
Carbon Framework Reference
Carbon

2007-10-31

Apple Inc.
© 2007 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, AppleShare,
AppleTalk, Aqua, Carbon, Cocoa, ColorSync,
eMac, iBook, Keychain, Logic, Mac, Mac OS,
MacApp, Macintosh, MPW, Objective-C,
OpenDoc, Pages, PowerBook, Quartz,
QuickDraw, QuickTime, SANE, and SoundTrack
are trademarks of Apple Inc., registered in the
United States and other countries.

Finder, Numbers, and Spotlight are trademarks
of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

DEC is a trademark of Digital Equipment
Corporation.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

PowerPC and and the PowerPC logo are
trademarks of International Business Machines
Corporation, used under license therefrom.

SRS and the SRS Symbol are registered
trademarks of SRS Labs, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction 15

Part I Managers 17

Chapter 1 Appearance Manager Reference 19

Overview 19
Functions by Task 19
Functions 26
Callbacks 104
Data Types 113
Constants 120
Result Codes 217
Gestalt Constants 218

Chapter 2 Application Manager Reference 219

Overview 219
Functions by Task 219
Functions 221
Constants 233

Chapter 3 Carbon Event Manager Reference 239

Overview 239
Functions by Task 239
Functions 245
Callbacks 307
Data Types 310
Constants 322
Result Codes 452

Chapter 4 Carbon Help Manager Reference 455

Overview 455
Functions by Task 455
Functions 457
Callbacks 478
Data Types 483
Constants 487
Result Codes 494

3
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Chapter 5 Color Picker Manager Reference 495

Overview 495
Functions by Task 495
Functions 497
Callbacks by Task 506
Callbacks 507
Data Types 509
Constants 518
Result Codes 522

Chapter 6 Control Manager Reference 523

Overview 523
Functions by Task 524
Functions 535
Callbacks by Task 673
Callbacks 675
Data Types 696
Constants 719
Result Codes 824

Chapter 7 Dialog Manager Reference 829

Overview 829
Functions by Task 829
Functions 834
Callbacks by Task 890
Callbacks 891
Data Types 897
Constants 904
Result Codes 916
Gestalt Constants 917

Chapter 8 Drag Manager Reference 919

Overview 919
Functions by Task 919
Functions 923
Callbacks by Task 962
Callbacks 963
Data Types 969
Constants 973
Result Codes 986
Gestalt Constants 987

4
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 9 Event Manager Reference (Not Recommended) 989

Overview 989
Functions by Task 990
Functions 991
Data Types 1006
Constants 1010
Result Codes 1023

Chapter 10 Ink Services Reference 1025

Overview 1025
Functions by Task 1025
Functions 1027
Data Types 1043
Constants 1045
Result Codes 1054

Chapter 11 Interface Builder Services Reference 1055

Overview 1055
Functions by Task 1055
Functions 1056
Data Types 1061
Constants 1061

Chapter 12 Keyboard Layout Services Reference 1063

Overview 1063
Functions by Task 1063
Functions 1064
Data Types 1069
Constants 1069

Chapter 13 Keychain Manager Reference 1075

Overview 1075
Functions by Task 1075
Functions 1079
Callbacks 1131
Data Types 1132
Constants 1136
Result Codes 1154

5
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 14 List Manager Reference (Not Recommended) 1159

Overview 1159
Functions by Task 1159
Functions 1163
Callbacks 1200
Data Types 1206
Constants 1213

Chapter 15 Menu Manager Reference 1219

Overview 1219
Functions by Task 1219
Functions 1229
Callbacks 1349
Data Types 1354
Constants 1368
Result Codes 1399

Chapter 16 Navigation Services Reference 1401

Overview 1401
Functions by Task 1401
Functions 1404
Callbacks 1448
Data Types 1451
Constants 1464
Result Codes 1486

Chapter 17 Notification Manager Reference 1489

Overview 1489
Functions 1490
Callbacks 1492
Data Types 1492
Result Codes 1494
Gestalt Constants 1494

Chapter 18 Scrap Manager Reference (Not Recommended) 1495

Overview 1495
Functions by Task 1495
Functions 1497
Callbacks 1508
Data Types 1509
Constants 1511

6
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Result Codes 1514
Gestalt Constants 1515

Chapter 19 Speech Recognition Manager Reference 1517

Overview 1517
Functions by Task 1517
Functions 1520
Callbacks 1548
Data Types 1549
Constants 1554
Result Codes 1568
Gestalt Constants 1571

Chapter 20 Text Services Manager Reference 1573

Overview 1573
Functions by Task 1574
Functions 1577
Data Types 1613
Constants 1619
Result Codes 1647

Chapter 21 Text Utilities Reference 1649

Overview 1649
Functions by Task 1650
Functions 1654
Callbacks 1691
Data Types 1692
Constants 1699

Chapter 22 Translation Manager Reference 1705

Overview 1705
Functions 1706
Callbacks 1717
Data Types 1727
Constants 1731
Result Codes 1732
Gestalt Constants 1732

Chapter 23 URL Access Manager Reference (Not Recommended) 1733

Overview 1733
Functions by Task 1733

7
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Functions 1736
Callbacks 1759
Data Types 1762
Constants 1763
Result Codes 1779

Chapter 24 Window Manager Reference 1783

Overview 1783
Functions by Task 1784
Functions 1800
Callbacks 1973
Data Types 1979
Constants 1988
Result Codes 2051

Part II Other References 2055

Chapter 25 Apple Help Reference 2057

Overview 2057
Functions 2057
Constants 2060
Result Codes 2061

Chapter 26 Carbon Printing Reference 2063

Overview 2063
Functions by Task 2063
Functions 2067
Callbacks by Task 2100
Callbacks 2100
Data Types 2105
Constants 2106

Chapter 27 Data Browser Reference 2109

Overview 2109
Functions by Task 2110
Functions 2120
Callbacks 2233
Data Types 2260
Constants 2271
Result Codes 2298

8
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 28 Fonts Panel Reference 2301

Overview 2301
Functions 2301
Data Types 2303
Constants 2304
Result Codes 2308

Chapter 29 HIArchive Reference 2309

Overview 2309
Functions by Task 2309
Functions 2310
Data Types 2316
Constants 2316
Result Codes 2317

Chapter 30 HIGeometry Reference 2319

Overview 2319
Functions by Task 2319
Functions 2320
Data Types 2323
Constants 2324

Chapter 31 HIObject Reference 2327

Overview 2327
Functions by Task 2328
Functions 2329
Constants 2340
Result Codes 2345

Chapter 32 HIShape Reference 2347

Overview 2347
Functions by Task 2348
Functions 2349
Data Types 2360

Chapter 33 HIToolbar Reference 2361

Overview 2361
Functions by Task 2361
Functions 2363
Constants 2384

9
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 34 HIView Reference 2399

Overview 2399
Functions by Task 2399
Functions 2408
Data Types 2493
Constants 2498
Result Codes 2526

Chapter 35 HTML Rendering Library Reference (Not Recommended) 2527

Overview 2527
Functions by Task 2528
Functions 2534
Callbacks 2588
Data Types 2594
Constants 2596
Result Codes 2597

Chapter 36 Multilingual Text Engine Reference 2599

Overview 2599
Functions by Task 2599
Functions 2608
Callbacks 2700
Data Types 2706
Constants 2719
Result Codes 2773

Chapter 37 Open Scripting Architecture Reference 2777

Overview 2777
Functions by Task 2777
Functions 2785
Callbacks 2852
Data Types 2855
Constants 2859
Result Codes 2885

Chapter 38 Printing Plug-in Interfaces Reference 2889

Overview 2889
Functions 2889
Callbacks by Task 2891
Callbacks 2894
Data Types 2922

10
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Constants 2933
Result Codes 2938

Chapter 39 TextEdit Reference (Not Recommended) 2941

Overview 2941
Functions by Task 2941
Functions 2950
Callbacks 3004
Data Types 3011
Constants 3030
Result Codes 3037

Document Revision History 3039

Index 3041

11
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

12
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CONTENTS

Figures and Tables

Chapter 3 Carbon Event Manager Reference 239

Table 3-1 Parameter names and types for AppleEvent kinds 336
Table 3-2 Parameter names and types for application event kinds 341
Table 3-3 Parameter names and types for command event kinds 343
Table 3-4 Parameter names and types for common control event kinds 359
Table 3-5 Parameter names and types for ink event kinds 371
Table 3-6 Parameter names and types for keyboard event kinds 373
Table 3-7 Parameter names and types for menu event kinds 383
Table 3-8 Parameter names and types for mouse event kinds 392
Table 3-9 Parameter names and types for Service class events 400
Table 3-10 Required parameter names and types for text input event kinds 405
Table 3-11 Parameter names and types for window action event kinds 424
Table 3-12 Parameter names and types for window activation event kinds 427
Table 3-13 Parameter names and types for window state change event kinds 433
Table 3-14 Parameter names and types for window refresh event kinds 435
Table 3-15 Parameter names and types for window cursor change event kinds 435
Table 3-16 Parameter names and types for window focus event kinds 437
Table 3-17 Parameter names and types for window sheet event kinds 438
Table 3-18 Parameter names and types for window drawer event kinds 439
Table 3-19 Parameter names and types for window definition event kinds 442

Chapter 15 Menu Manager Reference 1219

Table 15-1 Metacharacters available to pass in AppendMenu 1230

Chapter 27 Data Browser Reference 2109

Figure 27-1 A container can open to more rows or expand to show more information 2217
Figure 27-2 Differentiation between the selectable content and background 2241

Chapter 28 Fonts Panel Reference 2301

Table 28-1 Parameters and parameter data types for a font selection event. 2308

Chapter 31 HIObject Reference 2327

Table 31-1 Parameter names and types for HIObject base class events 2343

13
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Chapter 33 HIToolbar Reference 2361

Table 33-1 Parameter names and types for toolbar events 2390
Table 33-2 Parameter names and types for toolbar item events 2395
Table 33-3 Parameter names and types for toolbar item view events 2397

Chapter 34 HIView Reference 2399

Table 34-1 Parameter names and types for date or time change events 2499
Table 34-2 Parameter names and types for combo box events 2502
Table 34-3 Parameter names and types for mouse tracking area events 2514
Table 34-4 Parameter names and types for scrollable events 2517
Table 34-5 Parameter names and types for text field events 2523

Chapter 36 Multilingual Text Engine Reference 2599

Table 36-1 Event classes and kinds supported by MLTE 2710

14
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

FIGURES AND TABLES

Framework /System/Library/Frameworks/Carbon

Header file directories /System/Library/Frameworks/Carbon.framework/Headers

Declared in AEDataModel.h
ASDebugging.h
ASRegistry.h
Appearance.h
AppleHelp.h
AppleScript.h
CarbonEvents.h
CarbonEventsCore.h
ColorPicker.h
ControlDefinitions.h
Controls.h
Dialogs.h
Drag.h
Events.h
FontPanel.h
HIAccessibility.h
HIArchive.h
HIButtonViews.h
HIClockView.h
HICocoaView.h
HIComboBox.h
HIContainerViews.h
HIDataBrowser.h
HIDisclosureViews.h
HIGeometry.h
HIImageViews.h
HILittleArrows.h
HIMenuView.h
HIObject.h
HIPopupButton.h
HIProgressViews.h
HIRelevanceBar.h
HIScrollView.h
HISearchField.h
HISegmentedView.h
HISeparator.h
HIShape.h
HISlider.h
HITabbedView.h
HITextViews.h
HIToolbar.h
HIToolboxDebugging.h
HIView.h

15
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

HIWindowViews.h
HTMLRendering.h
IBCarbonRuntime.h
IOMacOSTypes.h
Ink.h
Keyboards.h
KeychainCore.h
KeychainHI.h
Lists.h
MacApplication.h
MacHelp.h
MacTextEditor.h
MacWindows.h
Menus.h
Navigation.h
Notification.h
NumberFormatting.h
OSA.h
OSAComp.h
OSAGeneric.h
PMApplication.h
PMApplicationDeprecated.h
PMIOModule.h
PMPluginHeader.h
PMPrinterBrowsers.h
PMPrinterModuleDeprecated.h
PMPrintingDialogExtensionsDeprecated.h
QuickdrawTypes.h
Scrap.h
SpeechRecognition.h
StringCompare.h
TSMTE.h
TextEdit.h
TextServices.h
TextUtils.h
Translation.h
TranslationExtensions.h
TypeSelect.h
URLAccess.h
cssmspi.h

This collection of documents provides the API reference for many fundamental user experience features—such
as windows, menus, text handling, and event management—used in Carbon applications.

The Carbon framework also includes support for a number of legacy technologies—such as TextEdit and the
Event Manager—that have been superseded by newer technologies like Multilingual Text Engine (MLTE)
and the Carbon Event Manager.

16
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction

17
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART I

Managers

18
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART I

Managers

Framework: Carbon/Carbon.h

Declared in Appearance.h
HITheme.h

Overview

The Appearance Manager coordinates the look of human interface elements in Mac OS X. You can use the
Appearance Manager to adapt any nonstandard interface elements in your program to the same coordinated
look as the rest of Mac OS X. The Appearance Manager also provides many standard human interface elements,
such as focus rings and group boxes, that can eliminate the need to create and maintain your own custom
solutions.

In Mac OS X v10.3 and later, the Appearance Manager provides a new API called HITheme for drawing
appearance primitives. Currently, this API is documented in the HITheme.h interface file. The HITheme API
is similar to the legacy Appearance Manager API, but many parameters have been modified to use Quartz
2D types instead of QuickDraw types. For example, HITheme functions draw into a Quartz graphics context
instead of the current QuickDraw graphics port. The legacy Appearance Manager API is implemented on top
of the HITheme API, so using the new API can provide a significant performance advantage.

Functions by Task

Accessing Theme Information

CopyThemeIdentifier (page 28)
Retrieves a string identifying the current theme variant.

GetTheme (page 59)
Obtains a collection containing data describing the current theme.

GetThemeMetric (page 70)
Retrieves the value of a metric property of a user interface element.

GetThemeFont (page 65) Deprecated in Mac OS X v10.5
Obtains information about a system font in the current theme. (Deprecated. Some theme fonts cannot
be drawn using QuickDraw; use HIThemeDrawTextBox instead.)

IsValidAppearanceFileType (page 90) Deprecated in Mac OS X v10.5
Returns whether the system can interpret files of a given file type as appearance files. (Deprecated.
There is no replacement function.)

Overview 19
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

IterateThemes (page 91) Deprecated in Mac OS X v10.5
Iterates over all themes installed on a system. (Deprecated. There is no replacement function.)

SetTheme (page 97) Deprecated in Mac OS X v10.5
Sets a specified collection as the current theme. (Deprecated. There is no replacement function.)

UseThemeFont (page 103) Deprecated in Mac OS X v10.5
Sets the font of the current graphics port to one of the current theme’s system fonts. (Deprecated.
Use HIThemeDrawTextBox instead.)

Drawing Theme-Compliant Controls

GetThemeCheckBoxStyle (page 64)
Obtains the system preference for the type of mark to use in a checkbox.

GetThemeScrollBarArrowStyle (page 70)
Obtains the system preference for the type of scroll bar arrows to be used.

GetThemeScrollBarThumbStyle (page 71)
Obtains the system preference for the type of scroll box to be used.

DrawThemeButton (page 31) Deprecated in Mac OS X v10.5
Draws a button. (Deprecated. Use HIThemeDrawButton instead.)

DrawThemeChasingArrows (page 33) Deprecated in Mac OS X v10.5
Draws an asynchronous arrows indicator. (Deprecated. Use HIThemeDrawChasingArrows instead.)

DrawThemeEditTextFrame (page 34) Deprecated in Mac OS X v10.5
Draws an editable text frame. (Deprecated. Use HIThemeDrawFrame instead.)

DrawThemeFocusRect (page 34) Deprecated in Mac OS X v10.5
Draws or erases a focus ring around a specified rectangle. (Deprecated. Use HIThemeDrawFocusRect
instead.)

DrawThemeFocusRegion (page 35) Deprecated in Mac OS X v10.5
Draws or erases a focus ring around a specified region. (Deprecated. Use HIThemeDrawFocusRect
instead.)

DrawThemeGenericWell (page 36) Deprecated in Mac OS X v10.5
Draws an image well frame. (Deprecated. Use HIThemeDrawGenericWell instead.)

DrawThemeListBoxFrame (page 37) Deprecated in Mac OS X v10.5
Draws a list box frame. (Deprecated. Use HIThemeDrawFrame instead.)

DrawThemePlacard (page 42) Deprecated in Mac OS X v10.5
Draws a placard. (Deprecated. Use HIThemeDrawPlacard instead.)

DrawThemePopupArrow (page 43) Deprecated in Mac OS X v10.5
Draws a pop-up arrow. (Deprecated. Use HIThemeDrawPopupArrow instead.)

DrawThemePrimaryGroup (page 44) Deprecated in Mac OS X v10.5
Draws a primary group box frame. (Deprecated. Use HIThemeDrawGroupBox instead.)

DrawThemeScrollBarArrows (page 45) Deprecated in Mac OS X v10.5
Draws scroll bar arrows consistent with the current system preferences. (Deprecated. Use
HIThemeDrawTrack, which draws the entire scrollbar including both the track and arrows.)

DrawThemeSecondaryGroup (page 46) Deprecated in Mac OS X v10.5
Draws a secondary group box frame. (Deprecated. Use HIThemeDrawGroupBox instead.)

20 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DrawThemeSeparator (page 47) Deprecated in Mac OS X v10.5
Draws a separator line. (Deprecated. Use HIThemeDrawSeparator instead.)

DrawThemeTab (page 50) Deprecated in Mac OS X v10.5
Draws a tab. (Deprecated. Use HIThemeDrawTab instead.)

DrawThemeTabPane (page 51) Deprecated in Mac OS X v10.5
Draws a tab pane. (Deprecated. Use HIThemeDrawTabPane instead.)

DrawThemeTickMark (page 53) Deprecated in Mac OS X v10.5
Draws a tick mark. (Deprecated. Use HIThemeDrawTickMark instead.)

DrawThemeTrack (page 55) Deprecated in Mac OS X v10.5
Draws a track. (Deprecated. Use HIThemeDrawTrack instead.)

DrawThemeTrackTickMarks (page 56) Deprecated in Mac OS X v10.5
Draws tick marks for a track. (Deprecated. Use HIThemeDrawTrackTickMarks instead.)

GetThemeButtonBackgroundBounds (page 62) Deprecated in Mac OS X v10.5
Obtains the rectangle that contains a button. (Deprecated. Use
HIThemeGetButtonBackgroundBounds instead.)

GetThemeButtonContentBounds (page 62) Deprecated in Mac OS X v10.5
Obtains the rectangle where content can be drawn for a button. (Deprecated. Use
HIThemeGetButtonContentBounds instead.)

GetThemeButtonRegion (page 63) Deprecated in Mac OS X v10.5
Obtains the region occupied by a button. (Deprecated. Use HIThemeGetButtonShape instead.)

GetThemeScrollBarTrackRect (page 71) Deprecated in Mac OS X v10.5
Obtains the area containing the track portion of a scroll bar. (Deprecated. Use
HIThemeGetScrollBarTrackRect instead.)

GetThemeTabRegion (page 73) Deprecated in Mac OS X v10.5
Obtains the region occupied by a tab. (Deprecated. Use HIThemeGetTabDrawShape instead.)

GetThemeTrackBounds (page 76) Deprecated in Mac OS X v10.5
Obtains the bounding rectangle of a track. (Deprecated. Use HIThemeGetTrackBounds instead.)

GetThemeTrackDragRect (page 77) Deprecated in Mac OS X v10.5
Obtains the area in which the user may drag a track’s indicator. (Deprecated. Use
HIThemeGetTrackDragRect instead.)

GetThemeTrackLiveValue (page 78) Deprecated in Mac OS X v10.5
Obtains the current value of a track’s indicator, given its relative position. (Deprecated. Use
HIThemeGetTrackLiveValue instead.)

GetThemeTrackThumbPositionFromOffset (page 79) Deprecated in Mac OS X v10.5
Obtains the relative position of a track’s indicator, given an offset from its prior position. (Deprecated.
Use HIThemeGetTrackThumbPositionFromOffset instead.)

GetThemeTrackThumbPositionFromRegion (page 79) Deprecated in Mac OS X v10.5
Obtains the relative position of a track’s indicator, given its current position. (Deprecated. use
HIThemeGetTrackThumbPositionFromBounds instead.)

GetThemeTrackThumbRgn (page 80) Deprecated in Mac OS X v10.5
Obtains the region containing a track’s indicator. (Deprecated. Use HIThemeGetTrackThumbShape
instead.)

HitTestThemeScrollBarArrows (page 83) Deprecated in Mac OS X v10.5
Returns whether the user clicked upon the specified scroll bar’s arrows. (Deprecated. Use
HIThemeHitTestScrollBarArrows instead.)

Functions by Task 21
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

HitTestThemeTrack (page 84) Deprecated in Mac OS X v10.5
Returns whether the user clicked upon the specified track. (Deprecated. Use HIThemeHitTestTrack
instead.)

Drawing Theme-Compliant Menus

GetThemeMenuBarHeight (page 67)
Obtains the height of a menu bar.

GetThemeMenuItemExtra (page 68)
Obtains a measurement of the space surrounding a menu item.

GetThemeMenuSeparatorHeight (page 68)
Obtains the height of a menu separator line.

GetThemeMenuTitleExtra (page 69)
Obtains a measurement of the space to either side of a menu title.

DrawThemeMenuBackground (page 37) Deprecated in Mac OS X v10.5
Draws a menu background. (Deprecated. Use HIThemeDrawMenuBackground instead.)

DrawThemeMenuBarBackground (page 38) Deprecated in Mac OS X v10.5
Draws a menu bar background. (Deprecated. Use HIThemeDrawMenuBarBackground instead.)

DrawThemeMenuItem (page 38) Deprecated in Mac OS X v10.5
Draws a menu item. (Deprecated. Use HIThemeDrawMenuItem instead.)

DrawThemeMenuSeparator (page 40) Deprecated in Mac OS X v10.5
Draws a menu item separator line. (Deprecated. Use HIThemeDrawMenuSeparator instead.)

DrawThemeMenuTitle (page 40) Deprecated in Mac OS X v10.5
Draws a menu title. (Deprecated. Use HIThemeDrawMenuTitle instead.)

GetThemeMenuBackgroundRegion (page 66) Deprecated in Mac OS X v10.5
Obtains the background region for a menu. (Deprecated. Use HIThemeGetMenuBackgroundShape
instead.)

Drawing Theme-Compliant Windows

DrawThemeModelessDialogFrame (page 42) Deprecated in Mac OS X v10.5
Draws a beveled outline inside the content area of a modeless dialog box. (Deprecated. Use
HIThemeDrawWindowFrame instead.)

DrawThemeScrollBarDelimiters (page 46) Deprecated in Mac OS X v10.5
Outlines a window’s scroll bars. (Deprecated. Use HIThemeDrawScrollBarDelimiters instead.)

DrawThemeStandaloneGrowBox (page 48) Deprecated in Mac OS X v10.5
Draws a size box. (Deprecated. Use HIThemeDrawGrowBox instead.)

DrawThemeStandaloneNoGrowBox (page 49) Deprecated in Mac OS X v10.5
Draws a fill image for use in the corner space between scroll bars. (Deprecated. Use
HIThemeDrawGrowBox instead.)

DrawThemeTitleBarWidget (page 54) Deprecated in Mac OS X v10.5
Draws a close box, zoom box, or collapse box. (Deprecated. Use HIThemeDrawTitleBarWidget
instead.)

22 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DrawThemeWindowFrame (page 57) Deprecated in Mac OS X v10.5
Draws a window frame. (Deprecated. Use HIThemeDrawWindowFrame instead.)

DrawThemeWindowHeader (page 58) Deprecated in Mac OS X v10.5
Draws a window header. (Deprecated. Use HIThemeDrawHeader instead.)

DrawThemeWindowListViewHeader (page 58) Deprecated in Mac OS X v10.5
Draws a window list view header. (Deprecated. Use HIThemeDrawHeader instead.)

GetThemeStandaloneGrowBoxBounds (page 72) Deprecated in Mac OS X v10.5
Obtains the bounds of a size box. (Deprecated. Use HIThemeGetGrowBoxBounds instead.)

GetThemeWindowRegion (page 81) Deprecated in Mac OS X v10.5
Obtains the specified window region. (Deprecated. Use HIThemeGetWindowShape instead.)

GetThemeWindowRegionHit (page 82) Deprecated in Mac OS X v10.5
Obtains the part of the window that the user clicked upon. (Deprecated. Use
HIThemeGetWindowRegionHit instead.)

Playing Theme Sounds
The theme sound functions do nothing in Mac OS X.

BeginThemeDragSound (page 27)
Continuously plays a theme-specific sound associated with the user’s movement of a given interface
object.

EndThemeDragSound (page 59)
Terminates the playing of a sound associated with the user’s movement of a given interface object.

PlayThemeSound (page 94)
Plays an asynchronous sound associated with the specified state change.

Registering With the Appearance Manager

IsAppearanceClient (page 88) Deprecated in Mac OS X v10.5
Returns whether a given process is currently registered as a client of the Appearance Manager.
(Deprecated. There is no replacement function.)

RegisterAppearanceClient (page 95) Deprecated in Mac OS X v10.5
Registers your program with the Appearance Manager. (Deprecated. There is no replacement function.)

UnregisterAppearanceClient (page 103) Deprecated in Mac OS X v10.5
Informs the Appearance Manager that your program is no longer its client. (Deprecated. There is no
replacement function.)

Specifying Theme-Compliant Cursors

SetAnimatedThemeCursor (page 96)
Animates a version of the specified cursor type that is consistent with the current theme.

SetThemeCursor (page 98)
Sets the cursor to a version of the specified cursor type that is consistent with the current theme.

Functions by Task 23
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Using Theme-Compliant Colors and Patterns

DisposeThemeDrawingState (page 29)
Releases the memory associated with a reference to a graphics port’s drawing state.

GetThemeBrushAsColor (page 61)
Obtains the color that corresponds to a given theme brush type under the current theme.

GetThemeDrawingState (page 65)
Obtains the drawing state of the current graphics port.

GetThemeTextColor (page 74)
Obtains the text color used for a specified element under the current theme.

NormalizeThemeDrawingState (page 94)
Sets the current graphics port to a default drawing state.

SetThemeDrawingState (page 99)
Sets the drawing state of the current graphics port.

ApplyThemeBackground (page 26) Deprecated in Mac OS X v10.5
Sets the background color or pattern of the current port to be consistent with that of an embedding
object. (Deprecated. Use HIThemeApplyBackground instead.)

GetThemeAccentColors (page 60) Deprecated in Mac OS X v10.5
Obtains a copy of a theme’s accent colors. (Deprecated. There is no replacement function.)

IsThemeInColor (page 89) Deprecated in Mac OS X v10.5
Returns whether the current theme would draw in color in the given environment. (Deprecated. There
is no replacement function.)

SetThemeBackground (page 98) Deprecated in Mac OS X v10.5
Applies a theme-compliant color or pattern to the background of the current port. (Deprecated. Use
HIThemeSetFill and draw using Quartz 2D.)

SetThemePen (page 100) Deprecated in Mac OS X v10.5
Applies a theme-compliant color or pattern to the foreground of the current port. (Deprecated. Use
HIThemeSetStroke and draw using Quartz 2D.)

SetThemeTextColor (page 101) Deprecated in Mac OS X v10.5
Sets the current text color to be consistent with that of a specified element. (Deprecated. Use
HIThemeSetTextFill and draw with Quartz 2D, ATSUI, or HIThemeDrawTextBox.)

Drawing Theme-Compliant Text

GetThemeTextShadowOutset (page 76)
Tells you the amount of space taken up by the shadow for a given font and drawing state combination.

DrawThemeTextBox (page 51) Deprecated in Mac OS X v10.5
Draws text into the area you specify. (Deprecated. Use HIThemeDrawTextBox instead.)

GetThemeTextDimensions (page 74) Deprecated in Mac OS X v10.5
Tells you the height, width, and baseline for a string. (Deprecated. Use HIThemeGetTextDimensions
instead.)

TruncateThemeText (page 102) Deprecated in Mac OS X v10.5
Truncates text to fit within the width you specify. (Deprecated. There is no replacement function; use
HIThemeGetTextDimensions or HIThemeDrawTextBox instead.)

24 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Creating and Disposing Universal Procedure Pointers to Appearance
Manager Callbacks

DisposeMenuItemDrawingUPP (page 28) Deprecated in Mac OS X v10.5
Disposes of the UPP to a menu item drawing function. (Deprecated. There is no replacement function.)

DisposeMenuTitleDrawingUPP (page 29) Deprecated in Mac OS X v10.5
Disposes of the UPP to a menu title drawing function. (Deprecated. There is no replacement function.)

DisposeThemeButtonDrawUPP (page 29) Deprecated in Mac OS X v10.5
Disposes of the UPP to a button drawing function. (Deprecated. There is no replacement function.)

DisposeThemeEraseUPP (page 30) Deprecated in Mac OS X v10.5
Disposes of the UPP to a background drawing callback function. (Deprecated. There is no replacement
function.)

DisposeThemeIteratorUPP (page 30) Deprecated in Mac OS X v10.5
Disposes of the UPP to a theme iteration callback function. (Deprecated. There is no replacement
function.)

DisposeThemeTabTitleDrawUPP (page 31) Deprecated in Mac OS X v10.5
Disposes of the UPP to a tab title drawing function. (Deprecated. There is no replacement function.)

DisposeWindowTitleDrawingUPP (page 31) Deprecated in Mac OS X v10.5
Disposes of the UPP to a window title drawing function. (Deprecated. There is no replacement function.)

InvokeMenuItemDrawingUPP (page 85) Deprecated in Mac OS X v10.5
Invokes your menu item drawing function. (Deprecated. There is no replacement function.)

InvokeMenuTitleDrawingUPP (page 85) Deprecated in Mac OS X v10.5
Invokes your menu title drawing function. (Deprecated. There is no replacement function.)

InvokeThemeButtonDrawUPP (page 86) Deprecated in Mac OS X v10.5
Invokes your button drawing function. (Deprecated. There is no replacement function.)

InvokeThemeEraseUPP (page 86) Deprecated in Mac OS X v10.5
Invokes your background drawing callback function. (Deprecated. There is no replacement function.)

InvokeThemeIteratorUPP (page 87) Deprecated in Mac OS X v10.5
Invokes your theme iteration callback function. (Deprecated. There is no replacement function.)

InvokeThemeTabTitleDrawUPP (page 87) Deprecated in Mac OS X v10.5
Invokes your tab title drawing function. (Deprecated. There is no replacement function.)

InvokeWindowTitleDrawingUPP (page 88) Deprecated in Mac OS X v10.5
Invokes your window title drawing function. (Deprecated. There is no replacement function.)

NewMenuItemDrawingUPP (page 91) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a menu item drawing function. (Deprecated. There
is no replacement function.)

NewMenuTitleDrawingUPP (page 92) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a menu title drawing function. (Deprecated. There
is no replacement function.)

NewThemeButtonDrawUPP (page 92) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a button drawing function. (Deprecated. There
is no replacement function.)

NewThemeEraseUPP (page 92) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a background drawing callback function.
(Deprecated. There is no replacement function.)

Functions by Task 25
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

NewThemeIteratorUPP (page 93) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a theme iteration callback function. (Deprecated.
There is no replacement function.)

NewThemeTabTitleDrawUPP (page 93) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a tab title drawing function. (Deprecated. There
is no replacement function.)

NewWindowTitleDrawingUPP (page 94) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a window title drawing function. (Deprecated.
There is no replacement function.)

Functions

ApplyThemeBackground
Sets the background color or pattern of the current port to be consistent with that of an embedding object.
(Deprecated in Mac OS X v10.5. Use HIThemeApplyBackground instead.)

OSStatus ApplyThemeBackground (
 ThemeBackgroundKind inKind,
 const Rect *bounds,
 ThemeDrawState inState,
 SInt16 inDepth,
 Boolean inColorDev
);

Parameters
inKind

A value of type ThemeBackgroundKind. Pass a constant specifying the type of embedding object.
See “Theme Backgrounds” (page 144) for descriptions of possible values.

bounds
A pointer to a structure of type Rect. Before calling ApplyThemeBackground, set the rectangle to
a size and position that contains the embedding object, in local coordinates.

inState
A value of type ThemeDrawState. Pass a constant specifying the current state of the embedding
object. See “Theme Drawing States” (page 126) for descriptions of possible values.

inDepth
A signed 16-bit integer. Pass a value specifying the bit depth (in bits per pixel) of the current graphics
port.

inColorDev
A value of type Boolean. Pass true to indicate that you are drawing on a color device, or false for
a monochrome device.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

26 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Discussion
The ApplyThemeBackground function sets the background color or pattern of the current port to match
the background of an embedding object, such as a placard or tab control. Your application should call
ApplyThemeBackground before erasing the background of your application’s content to ensure that the
content background matches that of the object in which it is visually embedded.

ApplyThemeBackground aligns patterns based on the rectangle passed in the bounds parameter. This is
in contrast to the function SetThemeBackground (page 98), which aligns patterns based on the origin of
the current port.

You do not need to call ApplyThemeBackground if your content is an embedded part within a control
hierarchy and is logically as well as visually embedded in its container; in this case, the Control Manager
automatically requests the embedding control to set up the background before drawing the embedded
control.

If you have a custom control definition function that erases its background before drawing, you should use
the Control Manager function SetUpControlBackground before erasing. SetUpControlBackground calls
ApplyThemeBackground if necessary.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

BeginThemeDragSound
Continuously plays a theme-specific sound associated with the user’s movement of a given interface object.

OSStatus BeginThemeDragSound (
 ThemeDragSoundKind kind
);

Parameters
kind

A value of type ThemeDragSoundKind. Pass a constant specifying the sound to play; see “Theme
Drag Sounds” (page 210) for descriptions of possible values.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The Appearance Manager automatically plays drag sounds for standard user interface elements and for Drag
Manager drag actions. Your application may call BeginThemeDragSound, typically upon detecting a drag
initiation, to play a drag sound for a custom element. BeginThemeDragSound plays the specified sound in
a continuous loop until your application calls the function EndThemeDragSound (page 59), typically upon
receiving a mouse-up event.

Note that the BeginThemeDragSound function automatically tracks the current mouse position and handles
any panning or variations in pitch for the sound.

Functions 27
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

CopyThemeIdentifier
Retrieves a string identifying the current theme variant.

OSStatus CopyThemeIdentifier (
 CFStringRef *outIdentifier
);

Parameters
outIdentifier

A pointer to a string that, on output, contains the current theme variant. When you no longer need
the string, you should release it.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Availability
Available in Mac OS X v10.1 and later.

Declared In
Appearance.h

DisposeMenuItemDrawingUPP
Disposes of the UPP to a menu item drawing function. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

void DisposeMenuItemDrawingUPP (
 MenuItemDrawingUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

28 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DisposeMenuTitleDrawingUPP
Disposes of the UPP to a menu title drawing function. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

void DisposeMenuTitleDrawingUPP (
 MenuTitleDrawingUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

DisposeThemeButtonDrawUPP
Disposes of the UPP to a button drawing function. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

void DisposeThemeButtonDrawUPP (
 ThemeButtonDrawUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

DisposeThemeDrawingState
Releases the memory associated with a reference to a graphics port’s drawing state.

OSStatus DisposeThemeDrawingState (
 ThemeDrawingState inState
);

Parameters
inState

A value of type ThemeDrawingState. Pass a value specifying the previous drawing state for the
current graphics port. You may obtain this value from the outState parameter of
GetThemeDrawingState (page 65).

Functions 29
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Also see the function SetThemeDrawingState (page 99).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

DisposeThemeEraseUPP
Disposes of the UPP to a background drawing callback function. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

void DisposeThemeEraseUPP (
 ThemeEraseUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

DisposeThemeIteratorUPP
Disposes of the UPP to a theme iteration callback function. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

void DisposeThemeIteratorUPP (
 ThemeIteratorUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

30 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DisposeThemeTabTitleDrawUPP
Disposes of the UPP to a tab title drawing function. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

void DisposeThemeTabTitleDrawUPP (
 ThemeTabTitleDrawUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

DisposeWindowTitleDrawingUPP
Disposes of the UPP to a window title drawing function. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

void DisposeWindowTitleDrawingUPP (
 WindowTitleDrawingUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

DrawThemeButton
Draws a button. (Deprecated in Mac OS X v10.5. Use HIThemeDrawButton instead.)

Functions 31
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus DrawThemeButton (
 const Rect *inBounds,
 ThemeButtonKind inKind,
 const ThemeButtonDrawInfo *inNewInfo,
 const ThemeButtonDrawInfo *inPrevInfo,
 ThemeEraseUPP inEraseProc,
 ThemeButtonDrawUPP inLabelProc,
 URefCon inUserData
);

Parameters
inBounds

A pointer to a structure of type Rect. Pass a rectangle specifying the boundary of the button, in local
coordinates.

inKind
A value of type ThemeButtonKind. Pass a constant specifying the type of button to draw. See “Theme
Buttons” (page 153) for descriptions of possible values.

inNewInfo
A pointer to a structure of type ThemeButtonDrawInfo. Before calling DrawThemeButton, set the
structure to contain the new state, value, and adornment for the button. DrawThemeButton uses
the information passed in the inNewInfo and inPrevInfo parameters to apply transitional animation
or sound effects as the button state changes, if such are specified under the current theme.

inPrevInfo
A pointer to a structure of type ThemeButtonDrawInfo. If the button state is changing, set the
structure to contain the previous state, value, and adornment for the button, to allow
DrawThemeButton to apply any transitional effects. If the button state is not changing, you can pass
NULL.

inEraseProc
A value of type ThemeEraseUPP. If you have a custom background, use this parameter to pass a
universal function pointer to an application-defined function such as that described in
ThemeEraseProcPtr (page 108). DrawThemeButton calls this function to erase the background
before drawing the button. If you pass NULL, DrawThemeButton's default behavior is to erase the
background for you.

inLabelProc
A value of type ThemeButtonDrawUPP. If you pass a universal function pointer to an
application-defined function such as that described in ThemeButtonDrawProcPtr (page 107),
DrawThemeButton calls that function to draw the label of the button. If you pass NULL, no label is
drawn.

inUserData
An unsigned 32-bit integer. Provide any data to be passed in to the callback functions specified in
the inLabelProc and inEraseProc parameters. Pass NULL if you do not wish to provide any data.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeButton function draws a theme-compliant button. If a ThemeEraseProcPtr is specified in
the inEraseProc parameter, DrawThemeButton uses that function to erase the background of the button
before drawing the button. After the button is drawn, if a ThemeButtonDrawProcPtr is specified in the
inLabelProc parameter, DrawThemeButton calls that function to draw the button’s label.

32 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Note that DrawThemeButton also draws any appearance adornments for the button and that these can
extend beyond the button’s basic bounding rectangle, as specified in the inBounds parameter, and may be
of variable shape. You may therefore wish to call the function GetThemeButtonBackgroundBounds (page
62) to obtain the actual rectangle containing the pixels belonging to a button under the current theme.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeChasingArrows
Draws an asynchronous arrows indicator. (Deprecated in Mac OS X v10.5. Use HIThemeDrawChasingArrows
instead.)

OSStatus DrawThemeChasingArrows (
 const Rect *bounds,
 UInt32 index,
 ThemeDrawState state,
 ThemeEraseUPP eraseProc,
 URefCon eraseData
);

Parameters
bounds

A pointer to a structure of type Rect. Before calling DrawThemeChasingArrows, set the rectangle
to contain the asynchronous arrows, in local coordinates.

index
An unsigned 32-bit value. Pass a value specifying the current animation step of the arrows. To animate
the arrows, increment the initial value by 1 with each call to DrawThemeChasingArrows.

state
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the
asynchronous arrows indicator; see “Theme Drawing States” (page 126). The asynchronous arrows
indicator can be drawn as active or inactive; passing kThemeStatePressed produces an error.

eraseProc
A value of type ThemeEraseUPP. If you have a custom background, pass a universal function pointer
to an application-defined function such as that described in ThemeEraseProcPtr (page 108).
DrawThemeChasingArrows calls that function to erase the background before drawing the
asynchronous arrows. If you pass NULL, no erasing occurs.

eraseData
An unsigned 32-bit integer. Provide any data to be passed in to the eraseData parameter of the
callback function specified in the eraseProc parameter.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeChasingArrows function draws a theme-compliant asynchronous arrows (also known as
“chasing arrows”) indicator.

Functions 33
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeEditTextFrame
Draws an editable text frame. (Deprecated in Mac OS X v10.5. Use HIThemeDrawFrame instead.)

OSStatus DrawThemeEditTextFrame (
 const Rect *inRect,
 ThemeDrawState inState
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeEditTextFrame, set the rectangle
to the position around which to draw the editable text frame, in local coordinates.

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the editable
text frame; see “Theme Drawing States” (page 126). The frame can be drawn as active or inactive;
passing kThemeStatePressed produces an error.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeEditTextFrame function draws a theme-compliant frame for an editable text field. The
frame is a maximum of 2 pixels thick and is drawn outside the specified rectangle. You should not use this
function to draw frames for items other than editable text fields.

To ensure that you get an appropriate focus ring for your editable text field, you should pass the same
rectangle that you use withDrawThemeEditTextFrame function to the functionDrawThemeFocusRect (page
34).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeFocusRect
Draws or erases a focus ring around a specified rectangle. (Deprecated in Mac OS X v10.5. Use
HIThemeDrawFocusRect instead.)

34 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus DrawThemeFocusRect (
 const Rect *inRect,
 Boolean inHasFocus
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeFocusRect, set the rectangle to the
position around which to draw the focus ring, in local coordinates. The focus ring is drawn outside
the rectangle that is passed in, and it can be outset a maximum of 3 pixels.

inHasFocus
A value of type Boolean. Pass true to draw the focus ring. Pass false to erase the focus ring.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application can use the DrawThemeFocusRect function to draw a theme-compliant focus ring. The
presence of a focus ring indicates whether an item has keyboard focus.

If you are drawing a focus ring around an element for which you have drawn a frame using
DrawThemeEditTextFrame (page 34) or DrawThemeListBoxFrame (page 37), you must coordinate your
drawing sequence to achieve the correct look. When drawing the element, your application should first call
DrawThemeEditTextFrame or DrawThemeListBoxFrame and then call DrawThemeFocusRect, passing
the same rectangle in the inRect parameter. If you use DrawThemeFocusRect to erase the focus ring
around an editable text frame or list box frame, you must redraw the editable text frame or list box frame
after calling DrawThemeFocusRect, because there is typically an overlap.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeFocusRegion
Draws or erases a focus ring around a specified region. (Deprecated in Mac OS X v10.5. Use
HIThemeDrawFocusRect instead.)

OSStatus DrawThemeFocusRegion (
 RgnHandle inRegion,
 Boolean inHasFocus
);

Parameters
inRegion

A value of type RgnHandle. Before calling DrawThemeFocusRegion, set the region to the position
around which to draw the focus ring, in local coordinates. The focus ring is drawn outside the region
that is passed in, and it can be outset a maximum of 3 pixels.

inHasFocus
A value of type Boolean. Pass true to draw the focus region. Pass false to erase the focus region.

Functions 35
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application can use the DrawThemeFocusRegion function to draw a theme-compliant focus ring. The
presence of a focus ring indicates whether an item has keyboard focus.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeGenericWell
Draws an image well frame. (Deprecated in Mac OS X v10.5. Use HIThemeDrawGenericWell instead.)

OSStatus DrawThemeGenericWell (
 const Rect *inRect,
 ThemeDrawState inState,
 Boolean inFillCenter
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeGenericWell, set the rectangle to
the position around which to draw the image well frame, in local coordinates.

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the image
well frame; see “Theme Drawing States” (page 126). The well can be drawn as active or inactive; passing
kThemeStatePressed produces an error.

inFillCenter
A value of type Boolean. Set to true to fill the image well frame with white; otherwise, false.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeGenericWell function draws a theme-compliant image well frame. You can specify that
the center of the well be filled in with white.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

36 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DrawThemeListBoxFrame
Draws a list box frame. (Deprecated in Mac OS X v10.5. Use HIThemeDrawFrame instead.)

OSStatus DrawThemeListBoxFrame (
 const Rect *inRect,
 ThemeDrawState inState
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeListBoxFrame, set the rectangle to
the position around which to draw the list box frame, in local coordinates.

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the list box
frame; see “Theme Drawing States” (page 126). The frame can be drawn as active or inactive; passing
kThemeStatePressed produces an error.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeListBoxFrame function draws a theme-compliant list box frame. The frame is a maximum
of 2 pixels thick and is drawn outside the specified rectangle. To ensure that you get an appropriate focus
ring for your list box, you should pass the same rectangle that you use with the DrawThemeListBoxFrame
function to the function DrawThemeFocusRect (page 34).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeMenuBackground
Draws a menu background. (Deprecated in Mac OS X v10.5. Use HIThemeDrawMenuBackground instead.)

OSStatus DrawThemeMenuBackground (
 const Rect *inMenuRect,
 ThemeMenuType inMenuType
);

Parameters
inMenuRect

A pointer to a structure of type Rect. Before calling DrawThemeMenuBackground, set the rectangle
to contain the entire menu, in global coordinates.

inMenuType
A value of type ThemeMenuType. Pass a constant specifying the type of menu for which to draw a
background; see “Theme Menu Types” (page 176) for descriptions of possible values.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Functions 37
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Discussion
The DrawThemeMenuBackground function draws a theme-compliant menu background in the specified
rectangle.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeMenuBarBackground
Draws a menu bar background. (Deprecated in Mac OS X v10.5. Use HIThemeDrawMenuBarBackground
instead.)

OSStatus DrawThemeMenuBarBackground (
 const Rect *inBounds,
 ThemeMenuBarState inState,
 UInt32 inAttributes
);

Parameters
inBounds

A pointer to a structure of type Rect. Before calling DrawThemeMenuBarBackground, set the rectangle
to specify the menu bar’s initial size and location, in global coordinates.

inState
A value of type ThemeMenuBarState. Pass a constant specifying the state (active or selected) in
which to draw the menu bar; see “Theme Menu Bar States” (page 177).

inAttributes
A value indicating the attributes of the menu bar. Pass 0 for a standard menu bar or
kThemeMenuSquareMenuBar for a menu bar with square corners.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeMenuBarBackground function draws a theme-compliant menu bar background in the
specified rectangle.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeMenuItem
Draws a menu item. (Deprecated in Mac OS X v10.5. Use HIThemeDrawMenuItem instead.)

38 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus DrawThemeMenuItem (
 const Rect *inMenuRect,
 const Rect *inItemRect,
 SInt16 inVirtualMenuTop,
 SInt16 inVirtualMenuBottom,
 ThemeMenuState inState,
 ThemeMenuItemType inItemType,
 MenuItemDrawingUPP inDrawProc,
 URefCon inUserData
);

Parameters
inMenuRect

A pointer to a structure of type Rect. Before calling DrawThemeMenuItem, set the rectangle to contain
the entire menu, in global coordinates. This is the actual menu rectangle as used in your menu
definition function.

inItemRect
A pointer to a structure of type Rect. Before calling DrawThemeMenuItem, set the rectangle to contain
the menu item, in global coordinates. The menu item’s background is drawn in the rectangle passed
in the inItemRect parameter. You should calculate the size of the menu item’s content and then
call GetThemeMenuItemExtra (page 68) to get the amount of padding surrounding menu items in
the current theme; the width and height of the menu item rectangle are determined by adding these
values together.

inVirtualMenuTop
A signed 16-bit integer. Pass a value representing the actual top of the menu. Normally this value is
the top coordinate of the rectangle supplied in the inMenuRect parameter. This value could be
different, however, if a menu is scrolled or bigger than can be displayed in the menu rectangle. You
typically pass the value of the global variable TopMenuItem into this parameter if you are writing a
custom menu definition function.

inVirtualMenuBottom
A signed 16-bit integer. Pass a value representing the actual bottom of the menu. Typically this value
is the bottom coordinate of the rectangle supplied in the inMenuRect parameter. This value could
be different, however, if a menu is scrolled or bigger than can be displayed in the menu rectangle.
You typically pass the value of the global variable AtMenuBottom into this parameter if you are writing
a custom menu definition function.

inState
A value of type ThemeMenuState. Pass a constant specifying the state (active, selected, or disabled)
in which to draw the menu item; see “Theme Menu States” (page 176).

inItemType
A value of type ThemeMenuItemType. If you pass kThemeMenuItemScrollUpArrow or
kThemeMenuItemScrollDownArrow, then you should pass NULL for the inDrawProc parameter,
since there is no content to be drawn. If you pass kThemeMenuItemHierarchical, the hierarchical
arrow is drawn for you. See “Theme Menu Item Types” (page 177) for descriptions of possible values.

inDrawProc
A value of type MenuItemDrawingUPP. Pass a universal function pointer to a menu item drawing
function such as MenuItemDrawingProcPtr (page 104). The value of the inDrawProc parameter
can be a valid universal function pointer or NULL.

inUserData
An unsigned 32-bit integer. Provide any data to be passed in to the inUserData parameter of
MenuItemDrawingProcPtr (page 104).

Functions 39
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeMenuItem function draws a theme-compliant menu item.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeMenuSeparator
Draws a menu item separator line. (Deprecated in Mac OS X v10.5. Use HIThemeDrawMenuSeparator
instead.)

OSStatus DrawThemeMenuSeparator (
 const Rect *inItemRect
);

Parameters
inItemRect

A pointer to a structure of type Rect. Before calling DrawThemeMenuSeparator, set the rectangle
to contain the menu item separator to be drawn, in global coordinates. The rectangle should be the
same height as the height returned by the function GetThemeMenuSeparatorHeight (page 68).

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeMenuSeparator function draws a theme-compliant menu item separator line.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeMenuTitle
Draws a menu title. (Deprecated in Mac OS X v10.5. Use HIThemeDrawMenuTitle instead.)

40 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus DrawThemeMenuTitle (
 const Rect *inMenuBarRect,
 const Rect *inTitleRect,
 ThemeMenuState inState,
 UInt32 inAttributes,
 MenuTitleDrawingUPP inTitleProc,
 URefCon inTitleData
);

Parameters
inMenuBarRect

A pointer to a structure of type Rect. Before calling DrawThemeMenuTitle, set the rectangle to
contain the entire menu bar in which the title is to be drawn, in global coordinates. The menu bar
background is drawn in the rectangle passed in the inMenuBarRect parameter. Your application
can call GetThemeMenuBarHeight (page 67) to get the height of the menu bar.

inTitleRect
A pointer to a structure of type Rect. Before calling DrawThemeMenuTitle, set the rectangle to
contain the menu title, in global coordinates. The title background is drawn in the rectangle passed
in the inTitleRect parameter. The width of this rectangle is determined by calculating the width
of the menu title’s content and then calling GetThemeMenuTitleExtra (page 69) to get the amount
of padding between menu titles in the current theme; these two values are added together and added
to the left edge of where the title should be drawn. The top and bottom coordinates of this rectangle
should be the same as those of the inMenuBarRect parameter.

inState
A value of type ThemeMenuState. Pass a constant specifying the state (active, selected, or disabled)
in which to draw the menu title; see “Theme Menu States” (page 176).

inAttributes
Reserved. Pass 0.

inTitleProc
A value of type MenuTitleDrawingUPP. Pass a universal function pointer to a menu title drawing
function such as MenuTitleDrawingProcPtr (page 105), defining how to draw the contents of the
menu title. The value of the inTitleProc parameter can be a valid universal function pointer or
NULL.

inTitleData
An unsigned 32-bit integer. Provide any data to be passed in to the inUserData parameter of
MenuTitleDrawingProcPtr (page 105).

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeMenuTitle function draws a theme-compliant menu title.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

Functions 41
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DrawThemeModelessDialogFrame
Draws a beveled outline inside the content area of a modeless dialog box. (Deprecated in Mac OS X v10.5.
Use HIThemeDrawWindowFrame instead.)

OSStatus DrawThemeModelessDialogFrame (
 const Rect *inRect,
 ThemeDrawState inState
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeModelessDialogFrame, set the
rectangle to the boundary of the window’s content area (that is, its port rectangle), inset by 1 pixel
on each side, in local coordinates.

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the modeless
dialog box frame; see “Theme Drawing States” (page 126) for descriptions of possible values. The frame
can be drawn as active or inactive; passing kThemeStatePressed produces an error.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeModelessDialogFrame function draws a beveled frame, no more than 2 pixels wide, that
bounds the window’s content area. You can use this function to make a custom modeless dialog box
theme-compliant the Dialog Manager automatically draws the interior frame for standard dialog boxes.

If you use DrawThemeModelessDialogFrame to draw a frame for a modeless dialog box, your application
must explicitly invalidate and redraw the frame area if the dialog box is resized.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemePlacard
Draws a placard. (Deprecated in Mac OS X v10.5. Use HIThemeDrawPlacard instead.)

OSStatus DrawThemePlacard (
 const Rect *inRect,
 ThemeDrawState inState
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemePlacard, set the rectangle to a size
and position that contains the placard, in local coordinates.

42 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the placard;
see “Theme Drawing States” (page 126). The placard can be drawn as active, inactive, or pressed.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemePlacard function draws a theme-compliant placard inside the specified rectangle.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemePopupArrow
Draws a pop-up arrow. (Deprecated in Mac OS X v10.5. Use HIThemeDrawPopupArrow instead.)

OSStatus DrawThemePopupArrow (
 const Rect *bounds,
 ThemeArrowOrientation orientation,
 ThemePopupArrowSize size,
 ThemeDrawState state,
 ThemeEraseUPP eraseProc,
 URefCon eraseData
);

Parameters
bounds

A pointer to a structure of type Rect. Before calling DrawThemePopupArrow, set the rectangle to
contain the arrow, in local coordinates. DrawThemePopupArrow positions the arrow relative to the
top left corner of the rectangle.

orientation
A value of type ThemeArrowOrientation. Pass a constant specifying the direction in which the
pop-up arrow points. See “Theme Pop-Up Arrow Orientations” (page 160) for descriptions of possible
values.

size
A value of type ThemePopupArrowSize. Pass a constant specifying the size of the pop-up arrow to
draw. See “Theme Pop-Up Arrow Sizes” (page 161) for descriptions of possible values.

state
A value of type ThemeDrawState. Pass a constant specifying the current state of the button containing
the pop-up arrow. See “Theme Drawing States” (page 126) for descriptions of possible values.

eraseProc
A value of type ThemeEraseUPP. If you have a custom background, pass a universal function pointer
to an application-defined function such as that described in ThemeEraseProcPtr (page 108).
DrawThemePopupArrow calls that function to erase the background before drawing the pop-up
arrow. If you pass NULL, no erasing occurs.

Functions 43
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

eraseData
An unsigned 32-bit integer. Provide any data to be passed in to the eraseData parameter of the
callback function specified in the eraseProc parameter.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemePopupArrow function draws a theme-compliant pop-up arrow. A pop-up arrow is an image
drawn onto another control to indicate that when the control is clicked, you get a pop-up menu. A pop-up
arrow is not a separate button itself. Typically, a pop-up arrow is used in conjunction with a button, such as
a push button or bevel button. Bevel button controls automatically draw a pop-up arrow if a menu is associated
with the control.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemePrimaryGroup
Draws a primary group box frame. (Deprecated in Mac OS X v10.5. Use HIThemeDrawGroupBox instead.)

OSStatus DrawThemePrimaryGroup (
 const Rect *inRect,
 ThemeDrawState inState
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemePrimaryGroup, set the rectangle to
the bounds of the primary group box frame, in local coordinates.

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the primary
group box frame; see “Theme Drawing States” (page 126). The frame can be drawn as active or inactive;
passing kThemeStatePressed produces an error.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemePrimaryGroup function draws a theme-compliant primary group box frame. The primary
group box frame is drawn inside the specified rectangle and is a maximum of 2 pixels thick.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

44 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DrawThemeScrollBarArrows
Draws scroll bar arrows consistent with the current system preferences. (Deprecated in Mac OS X v10.5. Use
HIThemeDrawTrack, which draws the entire scrollbar including both the track and arrows.)

OSStatus DrawThemeScrollBarArrows (
 const Rect *bounds,
 ThemeTrackEnableState enableState,
 ThemeTrackPressState pressState,
 Boolean isHoriz,
 Rect *trackBounds
);

Parameters
bounds

A pointer to a structure of type Rect. Before calling DrawThemeScrollBarArrows, set the rectangle
to contain the scroll bar for which to draw arrows, in local coordinates. Typically, the rectangle you
specify is the entire base control rectangle—that is, the value contained in the contrlRect field of
the scroll bar’s ControlRecord structure.

enableState
A value of type ThemeTrackEnableState. Pass a constant specifying the current state of the scroll
bar; see “Theme Track States” (page 185) for descriptions of possible values.

pressState
A value of type ThemeTrackPressState. Pass a constant specifying what is pressed in an active
scroll bar or 0 if nothing is pressed. The press state is ignored if the scroll bar is not active. See “Theme
Track Press States” (page 187) for descriptions of possible values.

isHoriz
A value of type Boolean. Pass true if the scroll bar is horizontal; pass false if it is vertical.

trackBounds
A pointer to a structure of type Rect. On return, the rectangle is set to the bounds of the track portion
of the scroll bar; this rectangle excludes the area containing the scroll bar arrows. Pass NULL if you
do not wish to obtain this information.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeScrollBarArrows function draws a set of theme-compliant scroll bar arrows for the scroll
bar whose position and dimensions are specified in the bounds parameter. Depending upon the current
system preferences, DrawThemeScrollBarArrows draws the arrows in one of the following configurations:

 ■ one arrow at either end of the scroll bar

 ■ two arrows at the same end of the scroll bar

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

Functions 45
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DrawThemeScrollBarDelimiters
Outlines a window’s scroll bars. (Deprecated in Mac OS X v10.5. Use HIThemeDrawScrollBarDelimiters
instead.)

OSStatus DrawThemeScrollBarDelimiters (
 ThemeWindowType flavor,
 const Rect *inContRect,
 ThemeDrawState state,
 ThemeWindowAttributes attributes
);

Parameters
flavor

A value of type ThemeWindowType. Pass a constant specifying the type of window for which to draw
scroll bar delimiters. See “Theme Window Types” (page 189) for descriptions of possible values.

inContRect
A pointer to a structure of type Rect. Before calling DrawThemeScrollBarDelimiters, set the
rectangle to the boundary of the content rectangle of the window, in local coordinates.

state
A value of type ThemeDrawState. Pass a constant—either kThemeStateActive or
kThemeStateInactive—appropriate to the current state of the window. The scroll bar delimiters
can be drawn as active or inactive passing kThemeStatePressed produces an error. See “Theme
Drawing States” (page 126) for descriptions of these values.

attributes
A value of type ThemeWindowAttributes. Pass one or more constants corresponding to the window’s
current visual attributes. See “Theme Window Attributes” (page 191) for descriptions of possible values.
Pass 0 if the window has none of the enumerated attributes.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeScrollBarDelimiters function draws theme-compliant outlines for both the horizontal
and vertical scroll bars in a given window. The scroll bars are each assumed to cover the full length of their
respective sides of the window’s content region if the scroll bars for which you wish delimiters to be drawn
are not full length, or if only one scroll bar exists for a given window, DrawThemeScrollBarDelimiters
should not be used.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeSecondaryGroup
Draws a secondary group box frame. (Deprecated in Mac OS X v10.5. Use HIThemeDrawGroupBox instead.)

46 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus DrawThemeSecondaryGroup (
 const Rect *inRect,
 ThemeDrawState inState
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeSecondaryGroup, set the rectangle
to the bounds of the secondary group box frame to be drawn, in local coordinates.

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the secondary
group box frame; see “Theme Drawing States” (page 126). The frame can be drawn as active or inactive;
passing kThemeStatePressed produces an error.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeSecondaryGroup function draws a theme-compliant secondary group box frame. The
secondary group box frame is drawn inside the specified rectangle and is a maximum of 2 pixels thick. Note
that a secondary group box frame is typically nested within a primary group box frame.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeSeparator
Draws a separator line. (Deprecated in Mac OS X v10.5. Use HIThemeDrawSeparator instead.)

OSStatus DrawThemeSeparator (
 const Rect *inRect,
 ThemeDrawState inState
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeSeparator, set the rectangle to
contain the separator line, in local coordinates. The orientation of the rectangle determines where
the separator line is drawn. If the rectangle is wider than it is tall, the separator line is horizontal;
otherwise it is vertical.

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the separator
line; see “Theme Drawing States” (page 126). The separator line can be drawn as active or inactive;
passing kThemeStatePressed produces an error.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Functions 47
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Discussion
The DrawThemeSeparator function draws a theme-compliant separator line. The separator line is a maximum
of 2 pixels thick and is drawn inside the specified rectangle.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeStandaloneGrowBox
Draws a size box. (Deprecated in Mac OS X v10.5. Use HIThemeDrawGrowBox instead.)

OSStatus DrawThemeStandaloneGrowBox (
 Point origin,
 ThemeGrowDirection growDirection,
 Boolean isSmall,
 ThemeDrawState state
);

Parameters
origin

A structure of type Point. Pass the origin point of the size box rectangle. For example, the origin
point of the size box for an object that can grow downward and to the right is the size box’s upper-left
corner. Typically, you use the coordinates of the corner of whatever object owns the size box for the
origin value. For example, if you are drawing a scrolling list that can grow downward and to the
right, the origin value would be the coordinates of the bottom-right corner of the list.

growDirection
A value of type ThemeGrowDirection. Pass a constant specifying the direction(s) in which the
resizeable object can grow. See “Theme Size Box Directions” (page 180) for descriptions of possible
values. The Appearance Manager uses the growDirection parameter to establish which corner of
the size box is the origin.

isSmall
A value of type Boolean. Pass a value of true to specify a small size box (typically for use with small
scroll bars) or false to specify a standard size box.

state
A value of type ThemeDrawState. Pass a constant—either kThemeStateActive or
kThemeStateInactive—appropriate to the current state of the size box the size box cannot be
drawn as pressed. See “Theme Drawing States” (page 126) for descriptions of these values.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeStandaloneGrowBox function draws a theme-compliant size box that is suitable for use
inside the content area of a window. The image is designed to fit between scroll bars and does not have to
be abutted with the window frame.

Also see the function DrawThemeStandaloneNoGrowBox (page 49).

48 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeStandaloneNoGrowBox
Draws a fill image for use in the corner space between scroll bars. (Deprecated in Mac OS X v10.5. Use
HIThemeDrawGrowBox instead.)

OSStatus DrawThemeStandaloneNoGrowBox (
 Point origin,
 ThemeGrowDirection growDirection,
 Boolean isSmall,
 ThemeDrawState state
);

Parameters
origin

A structure of type Point. Pass the origin point of the rectangle in which to draw the image. Typically,
you use the coordinates of the corner of whatever object owns the image for the origin value. For
example, if you are drawing the image in the bottom-right corner of a window between the scroll
bars of a non-resizeable scrolling list, the origin value would be the coordinates of the bottom-right
corner of the list.

growDirection
A value of type ThemeGrowDirection. See “Theme Size Box Directions” (page 180) for descriptions
of possible values. The Appearance Manager uses the growDirection parameter to establish which
corner of the rectangle that contains the image is the origin.

isSmall
A value of type Boolean. Pass a value of true to specify a small image (for use with small scroll bars)
or false to specify a large image (for use with standard scroll bars).

state
A value of type ThemeDrawState. Pass a constant—either kThemeStateActive or
kThemeStateInactive—appropriate to the current state of the window containing the fill image
the image cannot be drawn as pressed. See “Theme Drawing States” (page 126) for descriptions of
these values.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeStandaloneNoGrowBox function draws a theme-compliant image for use as filler in the
corner space between scroll bars that

 ■ abut the frame of a window that is not resizeable and which therefore lacks a size box to fill the intervening
space

 ■ do not abut the window frame

Also see the function DrawThemeStandaloneGrowBox (page 48).

Functions 49
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeTab
Draws a tab. (Deprecated in Mac OS X v10.5. Use HIThemeDrawTab instead.)

OSStatus DrawThemeTab (
 const Rect *inRect,
 ThemeTabStyle inStyle,
 ThemeTabDirection inDirection,
 ThemeTabTitleDrawUPP labelProc,
 URefCon userData
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeTab, set the rectangle to the bounds
of the tab, in local coordinates. There are two standard sizes (or heights) for tabs that should be used
in your calculation of the tab rectangle—these are measured by the distance the tabs protrude from
the pane. Small tabs have a height of 16 pixels large tabs have a height of 21 pixels. (The widths of
tabs are variable.) Additionally, the distance that the tab overlaps the pane must be included in the
tab rectangle this overlap distance is always 3 pixels, although the 3-pixel overlap is only drawn for
the front tab. The tab rectangle should reflect the orientation of the tab that is specified in the
inDirection parameter.

inStyle
A value of type ThemeTabStyle. Pass a constant specifying the relative position (front or non-front)
and state of the tab. See “Theme Tab Styles” (page 183) for descriptions of possible values.

inDirection
A value of type ThemeTabDirection. Pass a constant specifying the direction in which to orient the
tab. See “Theme Tab Directions” (page 182) for descriptions of possible values.

labelProc
A value of type ThemeTabTitleDrawUPP. Pass a universal function pointer to an application-defined
function such as that described in ThemeTabTitleDrawProcPtr (page 111). DrawThemeTab calls
your function to draw the title of the tab. If you pass NULL, no drawing occurs.

userData
An unsigned 32-bit integer. Provide any data to be passed in to the userData parameter of the
callback function specified in the labelProc parameter.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeTab function draws a theme-compliant tab. A tab control consists of two basic components:
multiple tabs that label the various content pages that can be displayed and a single pane upon which the
content for each tab is drawn. Use the function DrawThemeTabPane (page 51) to draw the tab pane. The
Appearance Manager coordinates the appearance of the pane and frontmost tab automatically.

50 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeTabPane
Draws a tab pane. (Deprecated in Mac OS X v10.5. Use HIThemeDrawTabPane instead.)

OSStatus DrawThemeTabPane (
 const Rect *inRect,
 ThemeDrawState inState
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeTabPane, set the rectangle to the
bounds of the tab pane, in local coordinates.

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the tab pane;
see “Theme Drawing States” (page 126). The tab pane can be drawn as active or inactive; passing
kThemeStatePressed produces an error.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeTabPane function draws a theme-compliant tab pane. A tab control consists of two basic
components: multiple tabs that label the various content pages that can be displayed and a single pane
upon which the content for each tab is drawn. Use the function DrawThemeTab (page 50) to draw the tab.
The Appearance Manager coordinates the appearance of the pane and frontmost tab automatically.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeTextBox
Draws text into the area you specify. (Deprecated in Mac OS X v10.5. Use HIThemeDrawTextBox instead.)

Functions 51
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus DrawThemeTextBox (
 CFStringRef inString,
 ThemeFontID inFontID,
 ThemeDrawState inState,
 Boolean inWrapToWidth,
 const Rect *inBoundingBox,
 SInt16 inJust,
 CGContextRef inContext
);

Parameters
inString

A CFStringRef containing the unicode characters you wish to render. You must not pass in a
CFStringRef that was allocated with any of the "NoCopy" CFString creation functions; a string
created with a "NoCopy" function has transient storage which is incompatible with
DrawThemeTextBox's caches.

inFontID
The ThemeFontID describing the font you'd like to render the text with. See “Theme Font IDs” (page
166) for the values you can use here.

inState
The ThemeDrawState describing the state of the interface element you are drawing the text for. If,
for example, you are drawing text for an inactive window, you would pass kThemeStateInactive.
The ThemeDrawState is generally only used to determine the shadow characteristics for the text on
Mac OS X.

See “Theme Drawing States” (page 126) for the values you can use here.

Note that the ThemeDrawState does not imply a color. It is not used as a mechanism for graying the
text. If you wish to draw grayed text, you must set up the desired gray color and apply it to either the
current QuickDraw port or the CGContextRef, as appropriate.

inWrapToWidth
A Boolean value indicating whether you want to draw multiple lines of text wrapped to a bounding
box. False indicates that only one line of text should be drawn without any sort of wrapping.

inBoundingBox
The rectangle, in coordinates relative to the current QuickDraw port, describing the area to draw the
text within. The first line of text will be top-justified to this rectangle. Wrapping, if desired, will happen
at the horizontal extent of this rectangle. Regardless of the amount of text in your CFStringRef, all
drawn text will be clipped to this rectangle.

inJust
The horizontal alignment you would like for your text. You can use one of the standard alignment
constants from TextEdit.h.

inContext
The CGContextRef into which you would like to draw the text. On Mac OS X, all text drawing happens
in CGContextRefs; if you pass NULL, a transient CGContextRef will be allocated and deallocated
for use within the single function call. Relying on the system behavior if transiently creating
CGContextRefs may result in performance problems. On Mac OS 9, this parameter is ignored.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

52 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Discussion
DrawThemeTextBox allows you to draw theme-savvy —that is, Aqua-savvy on Mac OS X— text. It is unicode
savvy, although only partially so under CarbonLib, and allows you to customize certain text rendering
characteristics such as the font, wrapping behavior, and justification. The text is drawn into the CGContextRef
you provide, or into the current QuickDraw port if no CGContextRef is provided. None of
DrawThemeTextBox's parameters imply a color, so you must set up the desired text color separately before
calling DrawThemeTextBox. If you provide a CGContextRef, its fill color will be used to draw the text. If
you do not provide a CGContextRef, a color based on the current QuickDraw port's foreground color and
the grayishTextOr mode, if set, will be used to draw the text.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeTickMark
Draws a tick mark. (Deprecated in Mac OS X v10.5. Use HIThemeDrawTickMark instead.)

OSStatus DrawThemeTickMark (
 const Rect *bounds,
 ThemeDrawState state
);

Parameters
bounds

A pointer to a structure of type Rect. Before calling DrawThemeTickMark, set the rectangle to the
position that contains the tick mark, in local coordinates. Note that tick marks are of a fixed—3 pixel
by 8 pixel—size.

state
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the tick mark;
see “Theme Drawing States” (page 126). The tick mark can be drawn as active or inactive; passing
kThemeStatePressed produces an error.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeTickMark function draws a single theme-compliant tick mark. To draw a complete set of
tick marks for a track, call the function DrawThemeTrackTickMarks (page 56).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

Functions 53
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DrawThemeTitleBarWidget
Draws a close box, zoom box, or collapse box. (Deprecated in Mac OS X v10.5. Use
HIThemeDrawTitleBarWidget instead.)

OSStatus DrawThemeTitleBarWidget (
 ThemeWindowType flavor,
 const Rect *contRect,
 ThemeDrawState state,
 const ThemeWindowMetrics *metrics,
 ThemeWindowAttributes attributes,
 ThemeTitleBarWidget widget
);

Parameters
flavor

A value of type ThemeWindowType. Pass a constant specifying the type of window for which to draw
a title bar item. See “Theme Window Types” (page 189) for descriptions of possible values.

contRect
A pointer to a structure of type Rect. Before calling DrawThemeTitleBarWidget, specify the rectangle
for which you wish to draw a title bar item, in coordinates local to the current port. This rectangle is
typically the content rectangle of a window.

state
A value of type ThemeDrawState. Pass a constant— kThemeStateActive, kThemeStateInactive,
or kThemeStatePressed—appropriate to the current state of the title bar item. See “Theme Drawing
States” (page 126) for descriptions of these values.

metrics
A pointer to a structure of type ThemeWindowMetrics. Before calling DrawThemeTitleBarWidget,
set the structure to contain information describing the window for which you wish to draw a title bar
item.

attributes
A value of type ThemeWindowAttributes. Pass one or more constants corresponding to the window’s
current visual attributes. See “Theme Window Attributes” (page 191) for descriptions of possible values.
Pass 0 if the window has none of the enumerated attributes.

widget
A value of type ThemeTitleBarWidget. Pass a constant—kThemeWidgetCloseBox,
kThemeWidgetZoomBox, or kThemeWidgetCollapseBox—appropriate to the type of title bar item
you wish to draw. See “Theme Title Bar Items” (page 192) for descriptions of these values.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeTitleBarWidget function draws theme-compliant title bar items. Your application should
not typically need to call this function; DrawThemeTitleBarWidget is typically of use only for applications
that need to draw title bar items of simulated windows. Note that while the DrawThemeWindowFrame
function automatically draws all title bar items, your application must call the DrawThemeTitleBarWidget
function during tracking, to ensure that the title bar items’ states are drawn correctly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

54 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Declared In
Appearance.h

DrawThemeTrack
Draws a track. (Deprecated in Mac OS X v10.5. Use HIThemeDrawTrack instead.)

OSStatus DrawThemeTrack (
 const ThemeTrackDrawInfo *drawInfo,
 RgnHandle rgnGhost,
 ThemeEraseUPP eraseProc,
 URefCon eraseData
);

Parameters
drawInfo

A pointer to a structure of type ThemeTrackDrawInfo. Before calling DrawThemeTrack, set the
structure to contain the current visual characteristics of the track.

rgnGhost
A value of type RgnHandle. If the track is of a type that contains an indicator, such as a scroll bar or
slider, you may pass a handle to the region where DrawThemeTrack is to draw a ghost image of the
track indicator. Your application should only use a ghost image with the indicator when a track does
not support live feedback. Pass NULL if you do not want to draw a ghost image.

eraseProc
A value of type ThemeEraseUPP. If you have a custom background, pass a universal function pointer
to an application-defined function such as that described in ThemeEraseProcPtr (page 108).
DrawThemeTrack calls that function to erase the background before drawing the track. If you pass
NULL, no erasing occurs.

eraseData
An unsigned 32-bit integer. Provide any data to be passed in to the callback function specified in the
eraseProc parameter.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application may use the DrawThemeTrack function to draw a theme-compliant slider, progress bar, or
scroll bar. If you use DrawThemeTrack to draw a scroll bar, use the function
DrawThemeScrollBarArrows (page 45) to draw the scroll bar’s arrows. If you use DrawThemeTrack to
draw a slider, use DrawThemeTrackTickMarks (page 56) to draw any tick marks for the slider.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

Functions 55
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DrawThemeTrackTickMarks
Draws tick marks for a track. (Deprecated in Mac OS X v10.5. Use HIThemeDrawTrackTickMarks instead.)

OSStatus DrawThemeTrackTickMarks (
 const ThemeTrackDrawInfo *drawInfo,
 ItemCount numTicks,
 ThemeEraseUPP eraseProc,
 URefCon eraseData
);

Parameters
drawInfo

A pointer to a structure of type ThemeTrackDrawInfo. Before calling DrawThemeTrackTickMarks,
set the structure to describe the current visual characteristics of the track. Because, under Appearance
Manager 1.1, sliders are the only track type to support tick marks, you should set the kind field of
the ThemeTrackDrawInfo structure to kThemeSlider and fill out the remainder of the structure
appropriately for a slider track. You should set the bounds field of the ThemeTrackDrawInfo structure
to the boundary of the track itself, not including the area that contains the tick marks; you can obtain
the actual bounding rectangle of the track by calling the function GetThemeTrackBounds (page
76). DrawThemeTrackTickMarks draws the tick marks outside the track’s bounding rectangle, above
or below the track depending on the thumb direction indicated by the
drawInfo.trackInfo.slider.thumbDir field.

numTicks
A value of type ItemCount. Pass an unsigned 32-bit value specifying the number of tick marks to be
drawn.

eraseProc
A value of type ThemeEraseUPP. If you have a custom background, pass a universal function pointer
to an application-defined function such as that described in ThemeEraseProcPtr (page 108).
DrawThemeTrackTickMarks calls that function to erase the background before drawing tick marks.
If you pass NULL, no erasing occurs.

eraseData
An unsigned 32-bit integer. Provide any data to be passed in to the callback function specified in the
eraseProc parameter.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application can call the DrawThemeTrackTickMarks function to draw theme-compliant tick marks
for a slider control. (Under Appearance Manager 1.1, sliders are the only track type that supports tick marks.)
To draw a track control, call the function DrawThemeTrack (page 55). To draw a single tick mark, call the
function DrawThemeTickMark (page 53).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

56 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DrawThemeWindowFrame
Draws a window frame. (Deprecated in Mac OS X v10.5. Use HIThemeDrawWindowFrame instead.)

OSStatus DrawThemeWindowFrame (
 ThemeWindowType flavor,
 const Rect *contRect,
 ThemeDrawState state,
 const ThemeWindowMetrics *metrics,
 ThemeWindowAttributes attributes,
 WindowTitleDrawingUPP titleProc,
 URefCon titleData
);

Parameters
flavor

A value of type ThemeWindowType. Pass a constant specifying the type of window for which to draw
a frame. See “Theme Window Types” (page 189) for descriptions of possible values.

contRect
A pointer to a structure of type Rect. Before calling DrawThemeWindowFrame, specify the rectangle
for which you wish to draw a window frame, in coordinates local to the current port. This rectangle
is typically the content rectangle of a window.

state
A value of type ThemeDrawState. Pass a constant—either kThemeStateActive or
kThemeStateInactive—appropriate to the current state of the window. See “Theme Drawing
States” (page 126) for descriptions of these values.

metrics
A pointer to a structure of type ThemeWindowMetrics. Before calling DrawThemeWindowFrame, set
the structure to describe the window for which to draw a frame.

attributes
A value of type ThemeWindowAttributes. Pass one or more constants corresponding to the window’s
current visual attributes. See “Theme Window Attributes” (page 191) for descriptions of possible values.
Pass 0 if the window has none of the enumerated attributes.

titleProc
A value of type WindowTitleDrawingUPP. If you pass the value kThemeWindowHasTitleText in
the attributes parameter, you should pass a universal function pointer to an application-defined
function such as that described in WindowTitleDrawingProcPtr (page 112) in the titleProc
parameter. DrawThemeWindowFrame calls that function to draw the window’s title. Pass NULL if there
is no title to be drawn.

titleData
An unsigned 32-bit integer. Provide any data to be passed in to the userData parameter of the
callback function specified in the titleProc parameter.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeWindowFrame function draws a window frame appropriate to the specified window type.
You may use DrawThemeWindowFrame to make a custom window theme-compliant.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Functions 57
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeWindowHeader
Draws a window header. (Deprecated in Mac OS X v10.5. Use HIThemeDrawHeader instead.)

OSStatus DrawThemeWindowHeader (
 const Rect *inRect,
 ThemeDrawState inState
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeWindowHeader, specify the rectangle
containing the window header, in local coordinates.

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the window
header; see “Theme Drawing States” (page 126). The header can be drawn as active or inactive; passing
kThemeStatePressed produces an error.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeWindowHeader function draws a theme-compliant window header, such as that used by
the Finder.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

DrawThemeWindowListViewHeader
Draws a window list view header. (Deprecated in Mac OS X v10.5. Use HIThemeDrawHeader instead.)

OSStatus DrawThemeWindowListViewHeader (
 const Rect *inRect,
 ThemeDrawState inState
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling DrawThemeWindowListViewHeader, specify
the rectangle in which to draw the window list view header, in local coordinates.

58 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

inState
A value of type ThemeDrawState. Pass a constant specifying the state in which to draw the window
list view header; see “Theme Drawing States” (page 126). The header can be drawn as active or inactive;
passing kThemeStatePressed produces an error.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The DrawThemeWindowListViewHeader function draws a theme-compliant window list view header, such
as that used by the Finder. A window list view header is drawn without a line on its bottom edge, so that
bevel buttons can be placed against it without overlapping.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

EndThemeDragSound
Terminates the playing of a sound associated with the user’s movement of a given interface object.

OSStatus EndThemeDragSound (
 void
);

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The Appearance Manager automatically starts and stops drag sounds for standard user interface elements
and for Drag Manager drag actions. Your application may call BeginThemeDragSound (page 27), typically
upon detecting a drag initiation, to play a drag sound for a custom element. Call the EndThemeDragSound
function to turn off a drag sound when the drag is completed, typically upon receipt of a mouse-up event.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

GetTheme
Obtains a collection containing data describing the current theme.

Functions 59
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus GetTheme (
 Collection ioCollection
);

Parameters
ioCollection

A value of type Collection. Pass a reference to a collection object, such as that created by calling
the Collection Manager function NewCollection. On return, the collection contains data describing
attributes of the current theme.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The GetTheme function obtains a collection containing a copy of the data for the current theme. The theme
data is in the form of collection items, each corresponding to an attribute of the theme. For a given theme,
the actual number of collection items may vary, depending upon how fully the theme’s attributes are specified.
See “Theme Collection Tags” (page 122) for descriptions of the possible theme collection items.

Your application can use theme collection tags, along with various Collection Manager functions, to access
the data in the collection.

Also see the function SetTheme (page 97).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeAccentColors
Obtains a copy of a theme’s accent colors. (Deprecated in Mac OS X v10.5. There is no replacement function.)

OSStatus GetThemeAccentColors (
 CTabHandle *outColors
);

Parameters
outColors

A pointer to a value of type CTabHandle. On return, the handle refers to a ColorTable structure
containing the current accent colors.

Return Value
A result code. GetThemeAccentColors returns the result appearanceThemeHasNoAccents if the current
theme has no accent colors.

Discussion
Note that the Appearance Manager does not currently define semantics for any indexes into the color table
produced by the GetThemeAccentColors function.

Special Considerations

In Mac OS X, theme accent colors are not supported.

60 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeBrushAsColor
Obtains the color that corresponds to a given theme brush type under the current theme.

OSStatus GetThemeBrushAsColor (
 ThemeBrush inBrush,
 SInt16 inDepth,
 Boolean inColorDev,
 RGBColor *outColor
);

Parameters
inBrush

A value of type ThemeBrush. Pass a constant specifying the theme brush type for which you wish to
obtain a color; see “Theme Brushes” (page 145) for descriptions of possible values.

inDepth
A signed 16-bit integer. Pass a value specifying the bit depth (in bits per pixel) of the current graphics
port.

inColorDev
A value of type Boolean. Pass true to indicate that you are drawing on a color device. Pass false
for a monochrome device.

outColor
A pointer to a structure of type RGBColor. On return, the structure contains a color corresponding
to the color or pattern used by the specified theme brush under the current theme.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The GetThemeBrushAsColor function obtains a color that corresponds to that which is in use for a specified
theme brush. If, in the current theme, the specified brush draws with a pattern instead of a color, a
theme-specified approximate color is obtained. Your application should call GetThemeBrushAsColor only
when you must use an RGBColor value for a specific operation; typically, your application should call the
functions SetThemeBackground (page 98) and SetThemePen (page 100) for greatest fidelity with the current
theme.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

Functions 61
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

GetThemeButtonBackgroundBounds
Obtains the rectangle that contains a button. (Deprecated in Mac OS X v10.5. Use
HIThemeGetButtonBackgroundBounds instead.)

OSStatus GetThemeButtonBackgroundBounds (
 const Rect *inBounds,
 ThemeButtonKind inKind,
 const ThemeButtonDrawInfo *inDrawInfo,
 Rect *outBounds
);

Parameters
inBounds

A pointer to a structure of type Rect. Before calling GetThemeButtonBackgroundBounds, set the
rectangle to the boundary of the button without any adornments, in local coordinates.

inKind
A value of type ThemeButtonKind. Pass a constant specifying the type of button being examined.
See “Theme Buttons” (page 153) for descriptions of possible values.

inDrawInfo
A pointer to a structure of type ThemeButtonDrawInfo. Before calling
GetThemeButtonBackgroundBounds, set the structure to contain the state, value, and adornment
for the button.

outBounds
A pointer to a structure of type Rect. On return, the rectangle contains the actual boundary of the
button, including any adornments, in local coordinates.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Appearance adornments can extend beyond the basic bounding rectangle of a button and may be of variable
shape. Your application may call the GetThemeButtonBackgroundBounds function to obtain the actual
rectangle containing the pixels belonging to a button under the current theme.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeButtonContentBounds
Obtains the rectangle where content can be drawn for a button. (Deprecated in Mac OS X v10.5. Use
HIThemeGetButtonContentBounds instead.)

62 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus GetThemeButtonContentBounds (
 const Rect *inBounds,
 ThemeButtonKind inKind,
 const ThemeButtonDrawInfo *inDrawInfo,
 Rect *outBounds
);

Parameters
inBounds

A pointer to a structure of type Rect. Before calling GetThemeButtonContentBounds, set the
rectangle to contain the boundary of the button, in local coordinates.

inKind
A value of type ThemeButtonKind. Pass a constant specifying the type of button being examined.
See “Theme Buttons” (page 153) for descriptions of possible values.

inDrawInfo
A pointer to a structure of type ThemeButtonDrawInfo. Before calling
GetThemeButtonContentBounds, set the structure to contain the state, value, and adornment for
the button.

outBounds
A pointer to a structure of type Rect. On return, the rectangle contains the actual boundary, in local
coordinates, of the area of the button’s face in which content can be drawn.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The GetThemeButtonContentBounds function obtains the rectangle where content can be drawn for a
button under the current theme.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeButtonRegion
Obtains the region occupied by a button. (Deprecated in Mac OS X v10.5. Use HIThemeGetButtonShape
instead.)

OSStatus GetThemeButtonRegion (
 const Rect *inBounds,
 ThemeButtonKind inKind,
 const ThemeButtonDrawInfo *inNewInfo,
 RgnHandle outRegion
);

Parameters
inBounds

A pointer to a structure of type Rect. Before calling GetThemeButtonRegion, set the rectangle to
the boundary of the button without any adornments, in local coordinates.

Functions 63
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

inKind
A value of type ThemeButtonKind. Pass a constant specifying the type of button being examined.
See “Theme Buttons” (page 153) for descriptions of possible values.

inNewInfo
A pointer to a structure of type ThemeButtonDrawInfo. Before calling GetThemeButtonRegion,
set the structure to contain the state, value, and adornment for the button.

outRegion
A value of type RgnHandle. On return, the region contains the actual dimensions and position of the
button and any adornments, in local coordinates.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Appearance adornments can extend beyond the basic bounding rectangle of a button and may be of variable
shape. Your application may call the GetThemeButtonRegion function to obtain the exact area covered by
pixels belonging to a specific button under the current theme.

Special Considerations

This function is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeCheckBoxStyle
Obtains the system preference for the type of mark to use in a checkbox.

OSStatus GetThemeCheckBoxStyle (
 ThemeCheckBoxStyle *outStyle
);

Parameters
outStyle

A pointer to a value of type ThemeCheckBoxStyle. On return, the value specifies the type of mark
being used. See “Theme Checkbox Styles” (page 161) for descriptions of possible values.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Because international systems may specify the use of one type of mark to use in checkboxes over another,
your application should call GetThemeCheckBoxStyle to obtain the correct type of mark to use on the
current system.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

64 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Declared In
Appearance.h

GetThemeDrawingState
Obtains the drawing state of the current graphics port.

OSStatus GetThemeDrawingState (
 ThemeDrawingState *outState
);

Parameters
outState

A pointer to a value of type ThemeDrawingState. On return, GetThemeDrawingState sets the
outState parameter to point to a copy of the drawing state for the current graphics port.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application may call the GetThemeDrawingState function before performing an operation that modifies
the drawing state of a graphics port. To return the graphics port to its previous drawing state and release
the memory allocated for the drawing state reference, your application should call
SetThemeDrawingState (page 99), providing the reference obtained in the outState parameter of
GetThemeDrawingState. You can also call DisposeThemeDrawingState (page 29) to release the allocated
memory.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeFont
Obtains information about a system font in the current theme. (Deprecated in Mac OS X v10.5. Some theme
fonts cannot be drawn using QuickDraw; use HIThemeDrawTextBox instead.)

OSStatus GetThemeFont (
 ThemeFontID inFontID,
 ScriptCode inScript,
 Str255 outFontName,
 SInt16 *outFontSize,
 Style *outStyle
);

Parameters
inFontID

A value of type ThemeFontID. Pass a constant specifying the kind of font (that is, the current large,
small, or small emphasized system fonts or the views font) for which you wish to retrieve the current
font name, size, and style in use.

Functions 65
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

inScript
A value of type ScriptCode. Pass a script code identifying the script system for which you wish
obtain font information. You may pass the metascript code smSystemScript to specify the system
script.

outFontName
A value of type StringPtr. Pass a pointer to a Pascal string. On return, the string contains the name
of the font in use. Pass NULL if you do not wish to obtain this information.

outFontSize
A pointer to a signed 16-bit integer. On return, the integer value specifies the size of the font in use.
Pass NULL if you do not wish to obtain this information.

outStyle
A pointer to a value of type Style. On return, the value specifies the style of the font in use. Pass
NULL if you do not wish to obtain this information.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application can call the GetThemeFont function to obtain the precise font settings (font name, size,
and style) used by a system font under the current theme.

Also see the function UseThemeFont (page 103).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeMenuBackgroundRegion
Obtains the background region for a menu. (Deprecated in Mac OS X v10.5. Use
HIThemeGetMenuBackgroundShape instead.)

OSStatus GetThemeMenuBackgroundRegion (
 const Rect *inMenuRect,
 ThemeMenuType menuType,
 RgnHandle region
);

Parameters
inMenuRect

A pointer to a structure of type Rect. Before calling GetThemeMenuBackgroundRegion, set the
rectangle to contain the entire menu, in global coordinates.

menuType
A value of type ThemeMenuType. Pass a constant specifying the type of menu (pull-down, pop-up,
or hierarchical) whose background you wish to obtain; see “Theme Menu Types” (page 176) for
descriptions of possible values.

66 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

region
A value of type RgnHandle. Pass a region handle created by your application. On return, the region
is set to that of the rectangle specified in the inMenuRect parameter, that is, the menu’s background
region.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The GetThemeMenuBackgroundRegion function obtains the background region that a menu occupies
under the current theme.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeMenuBarHeight
Obtains the height of a menu bar.

OSStatus GetThemeMenuBarHeight (
 SInt16 *outHeight
);

Parameters
outHeight

A pointer to a signed 16-bit integer. On return, the integer value represents the height (in pixels) of
the menu bar.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The GetThemeMenuBarHeight function obtains the specified height of a menu bar in the current theme.
This is in contrast to the Menu Manager function GetMBarHeight, which obtains the actual space that the
menu bar is currently occupying on the screen. In most instances, the values produced by these two functions
are the same. But, when the menu bar is hidden, GetMBarHeight produces a value of 0, and
GetThemeMenuBarHeight still provides the “ideal” menu bar height.

Special Considerations

Because menu bar heights may vary among appearances by one or more pixels, you should check the current
menu bar height after a theme switch. Specifically, your application should respond to the theme-switch
Apple event, kAEAppearanceChanged, by checking the current menu bar height. See “Appearance Manager
Apple Events” (page 120) for more details on kAEAppearanceChanged.

It is important to check the menu bar height before positioning any windows. Failure to do so may result in
the menu bar overlapping your application’s windows.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 67
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Declared In
Appearance.h

GetThemeMenuItemExtra
Obtains a measurement of the space surrounding a menu item.

OSStatus GetThemeMenuItemExtra (
 ThemeMenuItemType inItemType,
 SInt16 *outHeight,
 SInt16 *outWidth
);

Parameters
inItemType

A value of type ThemeMenuItemType. Pass a constant identifying the type of menu item for which
you are interested in getting a measurement. See “Theme Menu Item Types” (page 177).

outHeight
A pointer to a signed 16-bit integer. On return, the integer value represents the total amount of
padding between the content of the menu item and the top and bottom of its frame (in pixels). Your
content’s height plus the measurement provided by the outHeight parameter equals the total item
height.

outWidth
A pointer to a signed 16-bit integer. On return, the integer value represents the total amount of
padding between the content of the menu item and the left and right limits of the menu (in pixels).
Your content’s width plus the measurement provided by the outWidth parameter equals the total
item width.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application should call the GetThemeMenuItemExtra function when you are writing your own menu
definition function and wish to be theme-compliant. Once you have determined the height and width of the
content of a menu item, call GetThemeMenuItemExtra to get a measurement in pixels of the space
surrounding a menu item, including any necessary inter-item spacing, in the current theme. By combining
the values for your menu item’s content and the extra padding needed by the theme, you can derive the
size of the rectangle needed to encompass both the content and the theme element together.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

GetThemeMenuSeparatorHeight
Obtains the height of a menu separator line.

68 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus GetThemeMenuSeparatorHeight (
 SInt16 *outHeight
);

Parameters
outHeight

A pointer to a signed 16-bit integer. On return, the integer value represents the height (in pixels) of
the menu separator line.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The GetThemeMenuSeparatorHeight function obtains the height of a menu separator line under the
current theme. Your application should call the GetThemeMenuSeparatorHeight function when you are
writing your own menu definition function and wish to calculate a menu rectangle for a separator to match
the current theme.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

GetThemeMenuTitleExtra
Obtains a measurement of the space to either side of a menu title.

OSStatus GetThemeMenuTitleExtra (
 SInt16 *outWidth,
 Boolean inIsSquished
);

Parameters
outWidth

A pointer to a signed 16-bit integer. On return, the integer value represents the horizontal distance
(in pixels) between the menu title and the bounds of its containing rectangle.

inIsSquished
A value of type Boolean. If all the titles do not fit in the menu bar and you wish to condense the
menu title’s spacing to fit, pass true. If you pass false, the menu title is not condensed.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Once you have determined the height and width of the content of a menu title, call
GetThemeMenuTitleExtra to get the space surrounding the menu title in the current theme.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

Functions 69
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

GetThemeMetric
Retrieves the value of a metric property of a user interface element.

OSStatus GetThemeMetric (
 ThemeMetric inMetric,
 SInt32 *outMetric
);

Parameters
inMetric

The user interface metric to retrieve. See “Theme Metrics” (page 128) for a list of possible metrics.

outMetric
A pointer to an integer value. On output, contains the value of the specified metric property, generally
in points.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

GetThemeScrollBarArrowStyle
Obtains the system preference for the type of scroll bar arrows to be used.

OSStatus GetThemeScrollBarArrowStyle (
 ThemeScrollBarArrowStyle *outStyle
);

Parameters
outStyle

A pointer to a value of type ThemeScrollBarArrowStyle. On return, the value specifies the type
of scroll bar arrows being used. See “Theme Scroll Bar Arrow Styles” (page 179) for descriptions of
possible values.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Because the user can specify varying types of scroll bar arrows on a theme-specific basis, your application
should call GetThemeScrollBarArrowStyle to obtain the preferred style under the current theme.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

70 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

GetThemeScrollBarThumbStyle
Obtains the system preference for the type of scroll box to be used.

OSStatus GetThemeScrollBarThumbStyle (
 ThemeScrollBarThumbStyle *outStyle
);

Parameters
outStyle

A pointer to a value of type ThemeScrollBarThumbStyle. On return, the value specifies the type
of scroll box being used. See “Theme Scroll Box Styles” (page 180) for descriptions of possible values.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Because the user can specify either proportional or fixed-size scroll boxes (also known as “scroll indicators”
or “thumbs”) on a theme-specific basis, your application should call GetThemeScrollBarThumbStyle to
obtain the preferred style under the current theme.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeScrollBarTrackRect
Obtains the area containing the track portion of a scroll bar. (Deprecated in Mac OS X v10.5. Use
HIThemeGetScrollBarTrackRect instead.)

OSStatus GetThemeScrollBarTrackRect (
 const Rect *bounds,
 ThemeTrackEnableState enableState,
 ThemeTrackPressState pressState,
 Boolean isHoriz,
 Rect *trackBounds
);

Parameters
bounds

A pointer to a structure of type Rect. Before calling GetThemeScrollBarTrackRect, set the rectangle
to the boundary of the scroll bar, in local coordinates. Typically, the rectangle you specify is the entire
base control rectangle—that is, the value contained in the contrlRect field of the track’s
ControlRecord structure.

enableState
A value of type ThemeTrackEnableState. Pass a constant specifying the current state of the scroll
bar; see “Theme Track States” (page 185) for descriptions of possible values.

pressState
A value of type ThemeTrackPressState. Pass a constant specifying what is pressed in an active
scroll bar or 0 if nothing is pressed; the press state is ignored if the scroll bar is not active. See “Theme
Track Press States” (page 187) for descriptions of possible values.

Functions 71
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

isHoriz
A value of type Boolean. Pass true if the scroll bar is horizontal; pass false if it is vertical.

trackBounds
A pointer to a structure of type Rect. On return, the structure contains the rectangle that bounds the
track portion of the scroll bar. Note that the rectangle produced does not include in its bounds any
tick marks that a track (such as a slider) might have; tick marks are drawn outside the track rectangle.
Similarly, for a scroll bar, the rectangle produced does not contain the scroll bar arrows, just the track
itself.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application may call the GetThemeScrollBarTrackRect function to obtain the actual rectangle
containing the track portion of a scroll bar under the current theme.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeStandaloneGrowBoxBounds
Obtains the bounds of a size box. (Deprecated in Mac OS X v10.5. Use HIThemeGetGrowBoxBounds instead.)

OSStatus GetThemeStandaloneGrowBoxBounds (
 Point origin,
 ThemeGrowDirection growDirection,
 Boolean isSmall,
 Rect *bounds
);

Parameters
origin

A structure of type Point. Pass the origin point of the size box rectangle. For example, the origin
point of the size box for an object that can grow downward and to the right is the size box’s upper-left
corner. Typically, you use the coordinates of the corner of whatever object owns the size box for the
origin value; for instance, if you are drawing a scrolling list that can grow downward and to the
right, the origin value would be the coordinates of the bottom-right corner of the list.

growDirection
A value of type ThemeGrowDirection. For a size box, pass a constant specifying the direction(s) in
which the window can grow. See “Theme Size Box Directions” (page 180) for descriptions of possible
values. The Appearance Manager uses the growDirection parameter to establish which corner of
the size box is the origin.

isSmall
A value of type Boolean. Pass a value of true to specify a small size box or fill image. Pass false to
specify a large size box or fill image.

72 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

bounds
A pointer to a structure of type Rect. On return, the rectangle contains the boundary of the size box
or fill image.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The GetThemeStandaloneGrowBoxBounds function obtains the bounds of a size box under the current
theme. Note that you can also use GetThemeStandaloneGrowBoxBounds to obtain the bounds of the fill
image drawn by the function DrawThemeStandaloneNoGrowBox (page 49).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeTabRegion
Obtains the region occupied by a tab. (Deprecated in Mac OS X v10.5. Use HIThemeGetTabDrawShape
instead.)

OSStatus GetThemeTabRegion (
 const Rect *inRect,
 ThemeTabStyle inStyle,
 ThemeTabDirection inDirection,
 RgnHandle ioRgn
);

Parameters
inRect

A pointer to a structure of type Rect. Before calling GetThemeTabRegion, set the rectangle to the
boundary of the tab, in local coordinates.

inStyle
A value of type ThemeTabStyle. Pass a constant specifying the relative position (front or non-front)
and state of the tab to be examined. See “Theme Tab Styles” (page 183) for descriptions of possible
values.

inDirection
A value of type ThemeTabDirection. Pass a constant specifying the direction in which the tab is
oriented. See “Theme Tab Directions” (page 182) for descriptions of possible values.

ioRgn
A value of type RgnHandle. On return, the region contains the actual dimensions and position of the
tab, in local coordinates.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Because a tab can have a non-rectangular shape, your application should call GetThemeTabRegion to get
the actual region containing the tab under the current theme, in order to perform accurate hit testing.

Functions 73
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeTextColor
Obtains the text color used for a specified element under the current theme.

OSStatus GetThemeTextColor (
 ThemeTextColor inColor,
 SInt16 inDepth,
 Boolean inColorDev,
 RGBColor *outColor
);

Parameters
inColor

A value of type ThemeTextColor. Pass a constant specifying the element for which you wish to
obtain the current text color; see “Theme Text Colors” (page 169) for descriptions of possible values.

inDepth
A signed 16-bit integer. Pass a value specifying the bit depth (in bits per pixel) of the current graphics
port.

inColorDev
A value of type Boolean. Pass true to indicate that you are drawing on a color device. Pass false
for a monochrome device.

outColor
A pointer to a structure of type RGBColor. On return, the structure contains the text color used for
the specified element under the current theme.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Also see the function SetThemeTextColor (page 101).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeTextDimensions
Tells you the height, width, and baseline for a string. (Deprecated in Mac OS X v10.5. Use
HIThemeGetTextDimensions instead.)

74 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus GetThemeTextDimensions (
 CFStringRef inString,
 ThemeFontID inFontID,
 ThemeDrawState inState,
 Boolean inWrapToWidth,
 Point *ioBounds,
 SInt16 *outBaseline
);

Parameters
inString

A CFStringRef containing the unicode characters you wish to measure. You must not pass in a
CFStringRef that was allocated with any of the "NoCopy" CFString creation functions, as mentioned
in the description of the DrawThemeTextBox (page 51) function.

inFontID
The ThemeFontID describing the font you'd like to measure the text with. See “Theme Font IDs” (page
166) for the values you can use here.

inState
The ThemeDrawState which matches the state you will ultimately render the string with. Drawing
state may affect text measurement, so you should be sure the value you pass to
GetThemeTextDimensions matches the value you will eventually use for drawing. See “Theme
Drawing States” (page 126) for the values you can use here.

inWrapToWidth
A Boolean indicating whether you want the measurements based on wrapping the text to a specific
width. If you pass true, you must specify the desired width in ioBounds->h.

ioBounds
On output, ioBounds->v contains the height of the text. If you pass false in the inWrapToWidth
parameter, ioBounds->h will contain the width of the text on output. If you pass true in
inWrapToWidth, ioBounds->h must (on input) contain the desired width for wrapping; on output,
ioBounds->h contains the same value you specified on input.

outBaseline
On output, outBaseline contains the offset (in QuickDraw space) from the bottom edge of the last
line of text to the baseline of the first line of text. outBaseline will generally be a negative value.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
GetThemeTextDimensionsmeasures the given string using the font and drawing state you specify. It always
reports the actual height and baseline. It sometimes reports the actual width. It can measure a string that
wraps. It is unicode savvy, although only partially so under CarbonLib.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

Functions 75
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

GetThemeTextShadowOutset
Tells you the amount of space taken up by the shadow for a given font and drawing state combination.

OSStatus GetThemeTextShadowOutset (
 ThemeFontID inFontID,
 ThemeDrawState inState,
 Rect *outOutset
);

Parameters
inFontID

The ThemeFontID describing the font you'd like the shadow characteristics of. Font and drawing
state both determine the amount of shadow that will be used on rendered text. See “Theme Font
IDs” (page 166) for the values you can use here.

inState
The ThemeDrawState which matches the drawing state you'd like the shadow characteristics of.
Font and state both determine the amount of shadow that will be used on rendered text. See “Theme
Drawing States” (page 126) for the values you can use here.

outOutset
On output, this parameter contains the amount of space the shadow will take up beyond each edge
of the text bounding rectangle returned by GetThemeTextDimensions. The fields of this parameter
will either be positive values or zero.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
GetThemeTextShadowOutset passes back the maximum amount of space the shadow will take up for text
drawn in the specified font and state. While GetThemeTextDimensions tells you how much space is taken
up by the character glyphs themselves, it does not incorporate the font or state shadow into its calculations.
If you need to know how much total space including the shadow will be taken up, call
GetThemeTextDimensions followed by GetThemeTextShadowOutset.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeTrackBounds
Obtains the bounding rectangle of a track. (Deprecated in Mac OS X v10.5. Use HIThemeGetTrackBounds
instead.)

76 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus GetThemeTrackBounds (
 const ThemeTrackDrawInfo *drawInfo,
 Rect *bounds
);

Parameters
drawInfo

A pointer to a structure of type ThemeTrackDrawInfo. Before calling GetThemeTrackBounds, set
the structure to describe the current visual characteristics of the track. Typically, the rectangle you
specify in ThemeTrackDrawInfo.bounds is the proposed bounding rectangle for the track.
GetThemeTrackBounds examines this rectangle to determine the actual bounds that the track would
occupy. Depending on the track type, the actual bounding rectangle for a track might contain an
absolute or fixed value (as for the height of a progress bar, which is always 14 pixels). Or, the track
bounds might scale (as for a scroll bar) to fit the proposed bounds.

bounds
A pointer to a structure of type Rect. On return, the rectangle contains the actual boundary of the
track, in local coordinates. Note that the rectangle produced does not include in its bounds any tick
marks that a track (such as a slider) might have; tick marks are drawn outside the track rectangle.
Similarly, for a scroll bar, the rectangle produced does not contain the scroll bar arrows, just the track
itself.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application may call the GetThemeTrackBounds function to obtain the actual rectangle containing a
track under the current theme.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeTrackDragRect
Obtains the area in which the user may drag a track’s indicator. (Deprecated in Mac OS X v10.5. Use
HIThemeGetTrackDragRect instead.)

OSStatus GetThemeTrackDragRect (
 const ThemeTrackDrawInfo *drawInfo,
 Rect *dragRect
);

Parameters
drawInfo

A pointer to a structure of type ThemeTrackDrawInfo. Before calling GetThemeTrackDragRect,
set the structure to contain the current visual characteristics of the track.

dragRect
A pointer to a structure of type Rect. On return, the rectangle contains the actual boundary of the
indicator’s drag rectangle, in local coordinates.

Functions 77
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Because of varying indicator geometries and theme designs, the draggable area for an indicator is not typically
exactly the same as the track rectangle. Your application should call GetThemeTrackDragRect to obtain
the actual area within a track where an indicator can be dragged under the current theme.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeTrackLiveValue
Obtains the current value of a track’s indicator, given its relative position. (Deprecated in Mac OS X v10.5.
Use HIThemeGetTrackLiveValue instead.)

OSStatus GetThemeTrackLiveValue (
 const ThemeTrackDrawInfo *drawInfo,
 SInt32 relativePosition,
 SInt32 *value
);

Parameters
drawInfo

A pointer to a structure of type ThemeTrackDrawInfo. Before calling GetThemeTrackLiveValue,
set the structure to contain the current visual characteristics of the track.

relativePosition
A signed 32-bit value. Pass the distance, in pixels, between the minimum end of the track and the
near side of the indicator. You may obtain this value by calling either of the functions
GetThemeTrackThumbPositionFromOffset (page 79) or
GetThemeTrackThumbPositionFromRegion (page 79).

value
A pointer to a signed 32-bit value. On return, this value contains the new value of the indicator.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application can use the GetThemeTrackLiveValue function to respond to the posCntl and
kControlMsgCalcValueFromPos control definition message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

78 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

GetThemeTrackThumbPositionFromOffset
Obtains the relative position of a track’s indicator, given an offset from its prior position. (Deprecated in Mac
OS X v10.5. Use HIThemeGetTrackThumbPositionFromOffset instead.)

OSStatus GetThemeTrackThumbPositionFromOffset (
 const ThemeTrackDrawInfo *drawInfo,
 Point thumbOffset,
 SInt32 *relativePosition
);

Parameters
drawInfo

A pointer to a structure of type ThemeTrackDrawInfo. Before calling
GetThemeTrackThumbPositionFromOffset, set the structure to contain the current visual
characteristics of the track.

thumbOffset
A structure of type Point. Pass the point (in coordinates local to the control’s window) that specifies
the vertical and horizontal offset, in pixels, by which the indicator has moved from its current position.
Typically, this is the offset between the locations where the cursor was when the user pressed and
released the mouse button while dragging the indicator.

relativePosition
A pointer to a signed 32-bit value. On return, this value contains the new distance, in pixels, between
the minimum end of the track and the near side of the indicator.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application can use the GetThemeTrackThumbPositionFromOffset function to respond to the
posCntl control definition message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeTrackThumbPositionFromRegion
Obtains the relative position of a track’s indicator, given its current position. (Deprecated in Mac OS X v10.5.
use HIThemeGetTrackThumbPositionFromBounds instead.)

Functions 79
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus GetThemeTrackThumbPositionFromRegion (
 const ThemeTrackDrawInfo *drawInfo,
 RgnHandle thumbRgn,
 SInt32 *relativePosition
);

Parameters
drawInfo

A pointer to a structure of type ThemeTrackDrawInfo. Before calling
GetThemeTrackThumbPositionFromRegion, set the structure to contain the current visual
characteristics of the track.

thumbRgn
A value of type RgnHandle. Before calling GetThemeTrackThumbPositionFromRegion set the
region to contain the actual dimensions and position of the indicator, in local coordinates.

relativePosition
A pointer to a signed 32-bit value. On return, this value contains the new distance, in pixels, between
the minimum end of the track and the near side of the indicator.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application can use the GetThemeTrackThumbPositionFromRegion function to respond to the
kControlMsgCalcValueFromPos control definition message.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeTrackThumbRgn
Obtains the region containing a track’s indicator. (Deprecated in Mac OS X v10.5. Use
HIThemeGetTrackThumbShape instead.)

OSStatus GetThemeTrackThumbRgn (
 const ThemeTrackDrawInfo *drawInfo,
 RgnHandle thumbRgn
);

Parameters
drawInfo

A pointer to a structure of type ThemeTrackDrawInfo. Before calling GetThemeTrackThumbRgn,
set the structure to contain the current visual characteristics of the track.

thumbRgn
A value of type RgnHandle. On return, the region contains the actual dimensions and position of the
indicator, in local coordinates.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

80 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Discussion
Your application can use the GetThemeTrackThumbRgn function to obtain the indicator region for tracks
that have indicators, such as sliders and scroll bars.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeWindowRegion
Obtains the specified window region. (Deprecated in Mac OS X v10.5. Use HIThemeGetWindowShape instead.)

OSStatus GetThemeWindowRegion (
 ThemeWindowType flavor,
 const Rect *contRect,
 ThemeDrawState state,
 const ThemeWindowMetrics *metrics,
 ThemeWindowAttributes attributes,
 AppearanceRegionCode winRegion,
 RgnHandle rgn
);

Parameters
flavor

A value of type ThemeWindowType. Pass a constant specifying the type of window to be examined.
See “Theme Window Types” (page 189) for descriptions of possible values.

contRect
A pointer to a structure of type Rect. Before calling GetThemeWindowRegion, set the rectangle to
the content area of the window, specified in coordinates local to the current port.

state
A value of type ThemeDrawState. Pass a constant—either kThemeStateActive or
kThemeStateInactive—appropriate to the current state of the window. See “Theme Drawing
States” (page 126) for descriptions of these values.

metrics
A pointer to a structure of type ThemeWindowMetrics. Before calling GetThemeWindowRegion, set
the structure to contain information describing the window.

attributes
A value of type ThemeWindowAttributes. Pass one or more constants corresponding to the window’s
current visual attributes. See “Theme Window Attributes” (page 191) for descriptions of possible values.
Pass 0 if the window has none of the enumerated attributes.

winRegion
A value of type WindowRegionCode. Pass a constant specifying the region of the window whose
dimensions you wish to obtain.

rgn
A value of type RgnHandle. Pass a handle to a valid region. On return, the region represents the
actual region requested.

Functions 81
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The GetThemeWindowRegion function obtains the dimensions of the specified window region under the
current theme.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

GetThemeWindowRegionHit
Obtains the part of the window that the user clicked upon. (Deprecated in Mac OS X v10.5. Use
HIThemeGetWindowRegionHit instead.)

Boolean GetThemeWindowRegionHit (
 ThemeWindowType flavor,
 const Rect *inContRect,
 ThemeDrawState state,
 const ThemeWindowMetrics *metrics,
 ThemeWindowAttributes inAttributes,
 Point inPoint,
 AppearanceRegionCode *outRegionHit
);

Parameters
flavor

A value of type ThemeWindowType. Pass a constant specifying the type of window to be examined.
See “Theme Window Types” (page 189) for descriptions of possible values.

inContRect
A pointer to a structure of type Rect. Before calling GetThemeWindowRegionHit, set rectangle to
the content area of the window, specified in coordinates local to the current port.

state
A value of type ThemeDrawState. Pass a constant—either kThemeStateActive or
kThemeStateInactive—appropriate to the current state of the window. See “Theme Drawing
States” (page 126) for descriptions of these values.

metrics
A pointer to a structure of type ThemeWindowMetrics. Before calling GetThemeWindowRegionHit,
set the structure to contain information describing the window.

inAttributes
A value of type ThemeWindowAttributes. Pass one or more constants corresponding to the window’s
current visual attributes. See “Theme Window Attributes” (page 191) for descriptions of possible values.
Pass 0 if the window has none of the enumerated attributes.

82 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

inPoint
A structure of type Point. Pass the point, specified in specified in coordinates local to the current
port, where the mouse-down event occurred. Your application may retrieve this value from the where
field of the event structure.

outRegionHit
A pointer to a value of type WindowRegionCode. On return, the value is set to the region code of
the window part in which the point passed in the inPoint parameter is located.

Return Value
A value of type Boolean. If true, the mouse-down event occurred inside the window; otherwise, false.

Discussion
Your window definition function should call the GetThemeWindowRegionHit function to determine where
a specified mouse-down event occurred.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

HitTestThemeScrollBarArrows
Returns whether the user clicked upon the specified scroll bar’s arrows. (Deprecated in Mac OS X v10.5. Use
HIThemeHitTestScrollBarArrows instead.)

Boolean HitTestThemeScrollBarArrows (
 const Rect *scrollBarBounds,
 ThemeTrackEnableState enableState,
 ThemeTrackPressState pressState,
 Boolean isHoriz,
 Point ptHit,
 Rect *trackBounds,
 AppearancePartCode *partcode
);

Parameters
scrollBarBounds

A pointer to a structure of type Rect. Before calling HitTestThemeScrollBarArrows, set the
rectangle to the boundary of the scroll bar, in local coordinates. Typically, the rectangle you specify
is the entire base control rectangle—that is, the value contained in the contrlRect field of the scroll
bar’s ControlRecord structure.

enableState
A value of type ThemeTrackEnableState. Pass a constant specifying the current state of the scroll
bar; see “Theme Track States” (page 185) for descriptions of possible values.

pressState
A value of type ThemeTrackPressState. Pass a constant specifying what is pressed in an active
scroll bar or 0 if nothing is pressed; the press state is ignored if the scroll bar is not active. See “Theme
Track Press States” (page 187) for descriptions of possible values.

Functions 83
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

isHoriz
A value of type Boolean. Pass true if the scroll bar is horizontal; pass false if it is vertical.

ptHit
A structure of type Point. Pass the point, specified in local coordinates, where the mouse-down event
occurred. Your application may retrieve this value from the where field of the event structure.

trackBounds
A pointer to a structure of type Rect. On return, the rectangle contains the bounds of the track portion
of the scroll bar; this rectangle excludes the area containing the scroll bar arrows. Pass NULL if you
do not wish to obtain this information.

partcode
A pointer to a value of type ControlPartCode. On return, this value specifies the arrow in which
the mouse-down event occurred.

Return Value
A value of type Boolean. If true, the mouse-down event occurred inside the scroll bar arrows; otherwise,
false.

Discussion
Your application may use the HitTestThemeScrollBarArrow function to test whether a given mouse-down
event occurred on a scroll bar’s arrows. If not, you may then use the rectangle produced in the trackBounds
parameter of HitTestThemeScrollBarArrows as the bounds of the track for the function
HitTestThemeTrack (page 84), in order to determine whether the mouse-down event occurred in the
track part of the scroll bar.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

HitTestThemeTrack
Returns whether the user clicked upon the specified track. (Deprecated in Mac OS X v10.5. Use
HIThemeHitTestTrack instead.)

Boolean HitTestThemeTrack (
 const ThemeTrackDrawInfo *drawInfo,
 Point mousePoint,
 AppearancePartCode *partHit
);

Parameters
drawInfo

A pointer to a structure of type ThemeTrackDrawInfo. Before calling HitTestThemeTrack, set the
structure to contain the current visual characteristics of the track.

mousePoint
A structure of type Point. Pass the point, specified in local coordinates, where the mouse-down event
occurred. Your application may retrieve this value from the where field of the event structure.

84 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

partHit
A pointer to a value of type ControlPartCode. On return, this value specifies the part of the track
in which the mouse-down event occurred.

Return Value
A value of type Boolean. If true, the mouse-down event occurred inside the track; otherwise, false.

Discussion
The HitTestThemeTrack function checks to see whether a given track contains the specified point at which
a mouse-down event occurred.

For a scroll bar–type track, your application should also check to see whether the mouse-down event occurred
in the scroll bar’s arrows, which are not considered part of the track and are not tested by this function. To
do this, your application should first use the function HitTestThemeScrollBarArrows (page 83) to test
whether a given mouse-down event occurred on a scroll bar’s arrows. If not, you may then use the rectangle
produced in the rTrack parameter of HitTestThemeScrollBarArrows as the bounds of the track for
HitTestThemeTrack, in order to determine whether the mouse-down event occurred in the track part of
the scroll bar.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

InvokeMenuItemDrawingUPP
Invokes your menu item drawing function. (Deprecated in Mac OS X v10.5. There is no replacement function.)

void InvokeMenuItemDrawingUPP (
 const Rect *inBounds,
 SInt16 inDepth,
 Boolean inIsColorDevice,
 SRefCon inUserData,
 MenuItemDrawingUPP userUPP
);

Discussion
You should not need to use the function InvokeMenuItemDrawingUPP, as the system calls your menu item
drawing function for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

InvokeMenuTitleDrawingUPP
Invokes your menu title drawing function. (Deprecated in Mac OS X v10.5. There is no replacement function.)

Functions 85
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

void InvokeMenuTitleDrawingUPP (
 const Rect *inBounds,
 SInt16 inDepth,
 Boolean inIsColorDevice,
 SRefCon inUserData,
 MenuTitleDrawingUPP userUPP
);

Discussion
You should not need to use the function InvokeMenuTitleDrawingUPP, as the system calls your menu
title drawing function for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

InvokeThemeButtonDrawUPP
Invokes your button drawing function. (Deprecated in Mac OS X v10.5. There is no replacement function.)

void InvokeThemeButtonDrawUPP (
 const Rect *bounds,
 ThemeButtonKind kind,
 const ThemeButtonDrawInfo *info,
 URefCon userData,
 SInt16 depth,
 Boolean isColorDev,
 ThemeButtonDrawUPP userUPP
);

Discussion
You should not need to use the function InvokeThemeButtonDrawUPP, as the system calls your button
drawing function for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

InvokeThemeEraseUPP
Invokes your background drawing callback function. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

86 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

void InvokeThemeEraseUPP (
 const Rect *bounds,
 URefCon eraseData,
 SInt16 depth,
 Boolean isColorDev,
 ThemeEraseUPP userUPP
);

Discussion
You should not need to use the function InvokeThemeEraseUPP, as the system calls your
ThemeEraseProcPtr (page 108) callback function for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

InvokeThemeIteratorUPP
Invokes your theme iteration callback function. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

Boolean InvokeThemeIteratorUPP (
 ConstStr255Param inFileName,
 SInt16 resID,
 Collection inThemeSettings,
 PRefCon inUserData,
 ThemeIteratorUPP userUPP
);

Discussion
You should not need to use the function InvokeThemeIteratorUPP, as the system calls your
ThemeIteratorProcPtr (page 109) callback function for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

InvokeThemeTabTitleDrawUPP
Invokes your tab title drawing function. (Deprecated in Mac OS X v10.5. There is no replacement function.)

Functions 87
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

void InvokeThemeTabTitleDrawUPP (
 const Rect *bounds,
 ThemeTabStyle style,
 ThemeTabDirection direction,
 SInt16 depth,
 Boolean isColorDev,
 URefCon userData,
 ThemeTabTitleDrawUPP userUPP
);

Discussion
You should not need to use the function InvokeThemeTabTitleDrawUPP, as the system calls your tab title
drawing function for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

InvokeWindowTitleDrawingUPP
Invokes your window title drawing function. (Deprecated in Mac OS X v10.5. There is no replacement function.)

void InvokeWindowTitleDrawingUPP (
 const Rect *bounds,
 SInt16 depth,
 Boolean colorDevice,
 URefCon userData,
 WindowTitleDrawingUPP userUPP
);

Discussion
You should not need to use the function InvokeWindowTitleDrawingUPP, as the system calls your window
title drawing function for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

IsAppearanceClient
Returns whether a given process is currently registered as a client of the Appearance Manager. (Deprecated
in Mac OS X v10.5. There is no replacement function.)

88 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Boolean IsAppearanceClient (
 const ProcessSerialNumber *process
);

Parameters
process

A pointer to a value of type ProcessSerialNumber. Pass the serial number of the process to examine.

Return Value
A value of type Boolean. If true, the specified process is currently registered as a client of the Appearance
Manager; otherwise, false.

Discussion
Applications typically do not need to call the IsAppearanceClient function. A plug-in could call
IsAppearanceClient to determine whether the process in which it is running is a registered Appearance
Manager client. To register with the Appearance Manager, call the function
RegisterAppearanceClient (page 95).

Special Considerations

This function always returns true in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

IsThemeInColor
Returns whether the current theme would draw in color in the given environment. (Deprecated in Mac OS
X v10.5. There is no replacement function.)

Boolean IsThemeInColor (
 SInt16 inDepth,
 Boolean inIsColorDevice
);

Parameters
inDepth

A signed 16-bit integer. Pass a value specifying the bit depth (in bits per pixel) of the current graphics
port.

inIsColorDevice
A value of type Boolean. Pass true to indicate that you are drawing on a color device, or false for
a monochrome device.

Return Value
A value of type Boolean. IsThemeInColor returns true if, given the depth and color device information,
the theme would draw in color; otherwise, false.

Functions 89
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Discussion
To be consistent with the current theme, your application can call the IsThemeInColor function to determine
whether or not the Appearance Manager is drawing the theme in color or black and white. If the function
returns true, you should draw in color; if it returns false, you should draw in black and white. Note that
the Appearance Manager may draw a theme in black and white not only because of the current bit depth
or device type, but also because the theme may have defined black-and-white elements, such as the “Black
& White” accent color in the platinum appearance.

Special Considerations

In Mac OS X, this function always returns true because the Aqua theme is always drawn in color.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

IsValidAppearanceFileType
Returns whether the system can interpret files of a given file type as appearance files. (Deprecated in Mac
OS X v10.5. There is no replacement function.)

Boolean IsValidAppearanceFileType (
 OSType fileType
);

Parameters
fileType

A four-character code. Pass the file type to be examined.

Return Value
A value of type Boolean. If true, files of the specified file type can be used as appearance files; otherwise,
false.

Discussion
Under Appearance Manager 1.1, only the 'thme' and 'pltn' file types, described in “Appearance Manager
File Types” (page 121), are valid appearance file types. Your application typically does not need to call this
function.

Special Considerations

This function always returns false in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

90 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

IterateThemes
Iterates over all themes installed on a system. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

OSStatus IterateThemes (
 ThemeIteratorUPP inProc,
 PRefCon inUserData
);

Parameters
inProc

A universal function pointer to an application-defined function such as that described in
ThemeIteratorProcPtr (page 109). IterateThemes calls the specified function for each theme
found installed in the system.

inUserData
A pointer to data of any type. Provide any data to be passed in to the inUserData parameter of the
callback function specified in the inProc parameter. Pass NULL, if you do not wish to provide any
data.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The IterateThemes function continues to iterate until the function specified in the inProc parameter
returns false or until there are no more themes.

Special Considerations

This function does nothing in Mac OS X; it does not call the theme iterator callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

NewMenuItemDrawingUPP
Creates a new universal procedure pointer (UPP) to a menu item drawing function. (Deprecated in Mac OS
X v10.5. There is no replacement function.)

MenuItemDrawingUPP NewMenuItemDrawingUPP (
 MenuItemDrawingProcPtr userRoutine
);

Return Value
A UPP. See MenuItemDrawingProcPtr (page 104) for information on the menu item drawing function. See
the description of the MenuItemDrawingUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Functions 91
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Declared In
Appearance.h

NewMenuTitleDrawingUPP
Creates a new universal procedure pointer (UPP) to a menu title drawing function. (Deprecated in Mac OS X
v10.5. There is no replacement function.)

MenuTitleDrawingUPP NewMenuTitleDrawingUPP (
 MenuTitleDrawingProcPtr userRoutine
);

Return Value
A UPP. See MenuTitleDrawingProcPtr (page 105) for information on the menu title drawing function. See
the description of the MenuTitleDrawingUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

NewThemeButtonDrawUPP
Creates a new universal procedure pointer (UPP) to a button drawing function. (Deprecated in Mac OS X
v10.5. There is no replacement function.)

ThemeButtonDrawUPP NewThemeButtonDrawUPP (
 ThemeButtonDrawProcPtr userRoutine
);

Return Value
A UPP. See ThemeButtonDrawProcPtr (page 107) for information on the button drawing function. See the
description of the ThemeButtonDrawUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

NewThemeEraseUPP
Creates a new universal procedure pointer (UPP) to a background drawing callback function. (Deprecated in
Mac OS X v10.5. There is no replacement function.)

92 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

ThemeEraseUPP NewThemeEraseUPP (
 ThemeEraseProcPtr userRoutine
);

Return Value
A UPP. See the description of the ThemeEraseUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

NewThemeIteratorUPP
Creates a new universal procedure pointer (UPP) to a theme iteration callback function. (Deprecated in Mac
OS X v10.5. There is no replacement function.)

ThemeIteratorUPP NewThemeIteratorUPP (
 ThemeIteratorProcPtr userRoutine
);

Return Value
A UPP. See the description of the ThemeIteratorUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

NewThemeTabTitleDrawUPP
Creates a new universal procedure pointer (UPP) to a tab title drawing function. (Deprecated in Mac OS X
v10.5. There is no replacement function.)

ThemeTabTitleDrawUPP NewThemeTabTitleDrawUPP (
 ThemeTabTitleDrawProcPtr userRoutine
);

Return Value
A UPP. See ThemeTabTitleDrawProcPtr (page 111) for information on the tab title drawing function. See
the description of the ThemeTabTitleDrawUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

Functions 93
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

NewWindowTitleDrawingUPP
Creates a new universal procedure pointer (UPP) to a window title drawing function. (Deprecated in Mac OS
X v10.5. There is no replacement function.)

WindowTitleDrawingUPP NewWindowTitleDrawingUPP (
 WindowTitleDrawingProcPtr userRoutine
);

Return Value
A UPP. See WindowTitleDrawingProcPtr (page 112) for information on the window title drawing function.
See the description of the WindowTitleDrawingUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Appearance.h

NormalizeThemeDrawingState
Sets the current graphics port to a default drawing state.

OSStatus NormalizeThemeDrawingState (
 void
);

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The NormalizeThemeDrawingState function sets the background of a graphics port to white; the pen of
the port to a size of 1 pixel by 1 pixel, a pattern mode of patCopy, and a pattern of black; and the text mode
of the port to srcOr. NormalizeThemeDrawingState also flushes from memory any color foreground or
background patterns saved in the port’s GrafPort.pnPat or GrafPort.bkPat fields, respectively.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

PlayThemeSound
Plays an asynchronous sound associated with the specified state change.

94 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus PlayThemeSound (
 ThemeSoundKind kind
);

Parameters
kind

A value of type ThemeSoundKind. Pass a constant specifying the sound to play; see “Theme
Sounds” (page 194) for descriptions of possible values.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The Appearance Manager automatically plays theme sounds for standard user interface elements. Your
application can call the PlayThemeSound function to play a theme sound for a custom element. The sound
plays asynchronously until complete, stopping automatically.

Special Considerations

This function is not implemented in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

RegisterAppearanceClient
Registers your program with the Appearance Manager. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

OSStatus RegisterAppearanceClient (
 void
);

Return Value
A result code. The result code appearanceProcessRegisteredErr indicates that your program was already
registered when you called the RegisterAppearanceClient function.

Discussion
The RegisterAppearanceClient function must be called at the beginning of your program, prior to
initializing or drawing any onscreen elements or invoking any definition functions, such as the menu bar.

You should call RegisterAppearanceClient in order to receive Appearance Manager Apple events. Under
Appearance Manager 1.1 and later, when the user changes the current appearance (that is, when a theme
switch occurs), the Appearance Manager sends Apple events to all running applications that are registered
as clients of the Appearance Manager and which are high-level event aware. Because typical results of a
theme switch might include a change in menu bar height or window structure dimensions, as well as changes
to the system fonts, colors, and patterns currently in use, you should listen for and respond to the Appearance
Manager Apple events under most circumstances. See “Appearance Manager Apple Events” (page 120) for
more details.

Functions 95
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

When your program calls RegisterAppearanceClient, the Appearance Manager also automatically maps
standard pre–Appearance Manager definition functions to their theme-compliant equivalents for your
program, whether or not systemwide appearance is active.

See also the function UnregisterAppearanceClient (page 103).

Special Considerations

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

SetAnimatedThemeCursor
Animates a version of the specified cursor type that is consistent with the current theme.

OSStatus SetAnimatedThemeCursor (
 ThemeCursor inCursor,
 UInt32 inAnimationStep
);

Parameters
inCursor

A value of type ThemeCursor. Pass a constant specifying the type of cursor to set; see “Theme
Cursors” (page 162) for a description of the possible values. Note that only cursors designated as able
to be animated should be used for this function. If you specify an unanimatable cursor type,
SetAnimatedThemeCursor returns the error themeBadCursorIndexErr (–30565).

inAnimationStep
An unsigned 32-bit value. Pass a value specifying the current animation step of the cursor. To animate
the cursor, increment the value by 1 with each call to SetAnimatedThemeCursor.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Appearance Manager 1.1 introduces cursors that can change appearance with a theme change. In order to
be theme-compliant, your program should use these theme-specific cursors whenever possible, instead of
the classic black-and-white cursors.

Your application should call the SetAnimatedThemeCursor function to ensure that its animated cursors
are theme-compliant, rather than using any QuickDraw cursor utilities functions such as SetCursor,
SetCCursor, SpinCursor, or RotateCursor. If you wish a non-animated cursor to be theme-compliant,
call the function SetThemeCursor (page 98).

Because these are color cursors, they currently cannot be set from interrupt time. Therefore, if you support
animated cursors that are changed at interrupt time you should continue to use your own cursors for now.

96 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Special Considerations

Do not call SetAnimatedThemeCursor at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

SetTheme
Sets a specified collection as the current theme. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

OSStatus SetTheme (
 Collection ioCollection
);

Parameters
ioCollection

A value of type Collection. Pass a reference to a collection object, such as that created by calling
the Collection Manager function NewCollection. Before calling SetTheme, set the collection to
contain theme data that you wish to use for the current theme. The theme data is in the form of
collection items, each corresponding to an attribute of the theme. For a given theme, the actual
number of collection items may vary, depending upon how fully the theme’s attributes are specified.
Your application can use theme collection tags, along with various Collection Manager functions, to
access the data in the collection. See “Theme Collection Tags” (page 122) for descriptions of the possible
theme collection items.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
The SetTheme function sets the attributes of the current theme. You may use SetTheme to set up a custom
theme environment for your application, to be used only when your application is active. You may also use
SetTheme to create a theme environment that you want to be user-selectable and to have systemwide effect.

Your application can use the GetTheme (page 59) function to obtain a collection containing a copy of the
data for the current theme.

Special Considerations

This function does not modify the current theme in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

Functions 97
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

SetThemeBackground
Applies a theme-compliant color or pattern to the background of the current port. (Deprecated in Mac OS
X v10.5. Use HIThemeSetFill and draw using Quartz 2D.)

OSStatus SetThemeBackground (
 ThemeBrush inBrush,
 SInt16 inDepth,
 Boolean inIsColorDevice
);

Parameters
inBrush

A value of type ThemeBrush. Pass a constant specifying the theme brush to which to set the
background; see “Theme Brushes” (page 145) for descriptions of possible values.

inDepth
A signed 16-bit integer. Pass a value specifying the bit depth (in bits per pixel) of the current graphics
port.

inIsColorDevice
A value of type Boolean. Pass true to indicate that you are drawing on a color device. Pass false
for a monochrome device.

Return Value
A result code. The result code appearanceBadBrushIndexErr indicates that the brush constant passed
was not valid.

Discussion
Your application should call the SetThemeBackground function each time you wish to draw in a specified
brush type. Note that the SetThemeBackground function aligns patterns with 0,0 in the current port. To
align a pattern independently of the port origin, use the function ApplyThemeBackground (page 26).

Because the constant in the inBrush parameter can specify a color or pattern, depending on the current
theme, your application must save and restore the current drawing state of the graphics port around calls
to SetThemeBackground. Under Appearance Manager 1.1 and later, you can use the functions
GetThemeDrawingState (page 65) and SetThemeDrawingState (page 99) to do this.

Prior to Appearance Manager 1.1, you must save and restore the pnPixPat and bkPixPat fields of your
graphics port when saving the text and background colors. Because patterns in the bkPixPat field override
the background color of the window, call the QuickDraw function BackPat to set your background pattern
to a normal white pattern. This ensures that you can use RGBBackColor to set your background color to
white, call the QuickDraw function EraseRect, and get the expected results.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

SetThemeCursor
Sets the cursor to a version of the specified cursor type that is consistent with the current theme.

98 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus SetThemeCursor (
 ThemeCursor inCursor
);

Parameters
inCursor

A value of type ThemeCursor. Pass a constant specifying the type of cursor to set; see “Theme
Cursors” (page 162) for a description of possible values.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Appearance Manager 1.1 introduces cursors that can change appearance with a theme change. In order to
be theme-compliant, your program should use these theme-specific cursors whenever possible, instead of
the classic black-and-white cursors. Because these are color cursors, they currently cannot be set from interrupt
time.

Your application should call the SetThemeCursor function to ensure that its cursors are theme-compliant,
rather than the QuickDraw cursor utilities functions SetCursor or SetCCursor. If you wish an animatable
cursor to be theme-compliant, call the function SetAnimatedThemeCursor (page 96).

Special Considerations

Do not call SetThemeCursor at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor
CarbonSketch
QTCarbonShell

Declared In
Appearance.h

SetThemeDrawingState
Sets the drawing state of the current graphics port.

OSStatus SetThemeDrawingState (
 ThemeDrawingState inState,
 Boolean inDisposeNow
);

Parameters
inState

A value of type ThemeDrawingState. Pass a ThemeDrawingState value such as that produced in
the outState parameter of GetThemeDrawingState (page 65).

Functions 99
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

inDisposeNow
A value of type Boolean. Pass a value of true to release the memory allocated for the drawing state
reference. Pass false if you wish to continue using the drawing state and do not want to dispose of
the memory at this time; you must call DisposeThemeDrawingState (page 29) to dispose of the
memory any time before your application terminates.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application can save the port state by calling the function GetThemeDrawingState (page 65) and
restore the port state by calling the function SetThemeDrawingState, supplying the value obtained in the
outState parameter of GetThemeDrawingState, after you have completed all of your drawing.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Appearance.h

SetThemePen
Applies a theme-compliant color or pattern to the foreground of the current port. (Deprecated in Mac OS X
v10.5. Use HIThemeSetStroke and draw using Quartz 2D.)

OSStatus SetThemePen (
 ThemeBrush inBrush,
 SInt16 inDepth,
 Boolean inIsColorDevice
);

Parameters
inBrush

A value of type ThemeBrush. Pass a constant specifying the theme brush type to which to set the
pen; see “Theme Brushes” (page 145) for descriptions of possible values.

inDepth
A signed 16-bit integer. Pass a value specifying the bit depth (in bits per pixel) of the current graphics
port.

inIsColorDevice
A value of type Boolean. Pass true to indicate that you are drawing on a color device. Pass false
for a monochrome device.

Return Value
A result code. The result code appearanceBadBrushIndexErr indicates that the brush constant passed
in was not valid.

Discussion
Your application should call the SetThemePen function each time you wish to draw an element in a specified
brush constant.

Because the constant in the inBrush parameter can represent a color or pattern, depending on the current
theme, your application must save and restore the current drawing state of the graphics port around calls
to SetThemePen. Under Appearance Manager 1.1 and later, you can use the functions

100 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

GetThemeDrawingState (page 65) and SetThemeDrawingState (page 99) to do this. Prior to Appearance
Manager 1.1, you must save and restore the pnPixPat and bkPixPat fields of your graphics port when
saving the text and background colors. Because patterns in the pnPixPat field override the foreground color
of the window, call the QuickDraw function PenPat to set your foreground pattern to a normal white pattern.
This ensures that you can use RGBForeColor to set your foreground color to white, call the QuickDraw
function PaintRect, and get the expected results.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

SetThemeTextColor
Sets the current text color to be consistent with that of a specified element. (Deprecated in Mac OS X v10.5.
Use HIThemeSetTextFill and draw with Quartz 2D, ATSUI, or HIThemeDrawTextBox.)

OSStatus SetThemeTextColor (
 ThemeTextColor inColor,
 SInt16 inDepth,
 Boolean inIsColorDevice
);

Parameters
inColor

A value of type ThemeTextColor. Pass a constant specifying an interface element.
SetThemeTextColor sets the current text color to be the same as the color of that element’s text.
See “Theme Text Colors” (page 169) for descriptions of possible values.

inDepth
A signed 16-bit integer. Pass a value specifying the bit depth (in bits per pixel) of the current graphics
port.

inIsColorDevice
A value of type Boolean. Pass true to indicate that you are drawing on a color device. Pass false
for a monochrome device.

Return Value
A result code. The result code appearanceBadTextColorIndexErr indicates that the text color index
passed was not valid.

Discussion
Your application typically uses the SetThemeTextColor function inside a DeviceLoop drawing function
to set the foreground color to a theme-compliant value.

Also see the function GetThemeTextColor (page 74).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Declared In
Appearance.h

TruncateThemeText
Truncates text to fit within the width you specify. (Deprecated in Mac OS X v10.5. There is no replacement
function; use HIThemeGetTextDimensions or HIThemeDrawTextBox instead.)

OSStatus TruncateThemeText (
 CFMutableStringRef inString,
 ThemeFontID inFontID,
 ThemeDrawState inState,
 SInt16 inPixelWidthLimit,
 TruncCode inTruncWhere,
 Boolean *outTruncated
);

Parameters
inString

A CFMutableStringRef containing the unicode characters you wish to truncate. On output, this
string may have been altered to fit within the specified width.

You must not pass in a CFString that was allocated with any of the "NoCopy" CFString creation
functions, as mentioned in the description of the DrawThemeTextBox (page 51) function.

inFontID
The ThemeFontID to use for text measurements. See “Theme Font IDs” (page 166) for the values you
can use here.

inState
The ThemeDrawState which matches the state you will ultimately render the string with. This may
affect text measurement during truncation, so you should be sure the value you pass to
TruncateThemeText matches the value you will eventually use for drawing. See “Theme Drawing
States” (page 126) for the values you can use here.

inPixelWidthLimit
The maximum width, in pixels, that the resulting truncated string may have.

inTruncWhere
A TruncCode indicating where you would like truncation to occur.

outTruncated
On output, this Boolean value indicates whether the string was truncated. Truemeans the string was
truncated. False means the string was not—and did not need to be—truncated.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
TruncateThemeText alters a unicode string to fit within a width that you specify. It is unicode savvy, although
only partially so under CarbonLib, and makes its calculations—and any subsequent string alteration—based
on the font and drawing state you specify. If the string needs to be truncated, it will be reduced to the
maximum number of characters which, with the addition of an ellipsis character, fits within the specified
width.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

102 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Not available to 64-bit applications.

Declared In
Appearance.h

UnregisterAppearanceClient
Informs the Appearance Manager that your program is no longer its client. (Deprecated in Mac OS X v10.5.
There is no replacement function.)

OSStatus UnregisterAppearanceClient (
 void
);

Return Value
A result code. The result code appearanceProcessNotRegisteredErr indicates that your program was
not registered when you called the UnregisterAppearanceClient function.

Discussion
The UnregisterAppearanceClient function is automatically called for you when your program terminates.
While you do not typically need to call this function, you might want to call UnregisterAppearanceClient
if you are running a plug-in architecture, and you know that a given plug-in is not theme-compliant. In this
case you would bracket your use of the plug-in with calls to UnregisterAppearanceClient (before the
plug-in is used) and RegisterAppearanceClient (after the plug-in is used), so that the Appearance
Manager is turned off for the duration of the plug-in’s usage.

See also the function RegisterAppearanceClient (page 95).

Special Considerations

This function does nothing in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

UseThemeFont
Sets the font of the current graphics port to one of the current theme’s system fonts. (Deprecated in Mac OS
X v10.5. Use HIThemeDrawTextBox instead.)

Functions 103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

OSStatus UseThemeFont (
 ThemeFontID inFontID,
 ScriptCode inScript
);

Parameters
inFontID

A value of type ThemeFontID. Pass a constant specifying the kind of font (that is, the current large,
small, or small emphasized system fonts or the views font) to be applied to the current port. See
“Theme Font IDs” (page 166) for descriptions of possible values.

inScript
A value of type ScriptCode. Pass a script code specifying the script system for which you wish to
set the current font; you may pass the metascript code smSystemScript to specify the system script.

Return Value
A result code. See “Appearance Manager Result Codes” (page 217).

Discussion
Your application can call the UseThemeFont function to draw text in one of the current theme’s system
fonts.

Also see the function GetThemeFont (page 65).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Appearance.h

Callbacks

MenuItemDrawingProcPtr
Draws a menu item.

typedef void (*MenuItemDrawingProcPtr)
(
 const Rect * inBounds,
 SInt16 inDepth,
 Boolean inIsColorDevice,
 SInt32 inUserData
);

If you name your function MyMenuItemDrawingCallback, you would declare it like this:

void MyMenuItemDrawingCallback (
 const Rect * inBounds,
 SInt16 inDepth,
 Boolean inIsColorDevice,
 SInt32 inUserData

104 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

);

Parameters
inBounds

A pointer to a structure of type Rect. You are passed a rectangle specifying the dimensions and
position in which you should draw your menu item content. Your menu item drawing function is
called clipped to the rectangle in which you are allowed to draw your content; do not draw outside
this region.

inDepth
A signed 16-bit integer. You are passed the bit depth (in bits per pixel) of the current graphics port.

inIsColorDevice
A value of type Boolean. You are passed true to indicate that you are drawing on a color device;
inIsColorDevice is false for a monochrome device.

inUserData
You are passed data specifying how to draw the menu item content from the inUserData parameter
of DrawThemeMenuItem (page 38).

Discussion
At the time your menu item drawing function is called, the foreground text color and mode is already set to
draw in the correct state (enabled, selected, disabled) and correct color for the theme. You do not need to
set the color unless you have special drawing needs. If you do have special drawing needs, you should supply
the inDepth value and the value of the inIsColorDevice parameter to the function IsThemeInColor
to determine whether or not you should draw the menu item content in color.

Note that the Appearance Manager calls your MyMenuItemDrawingCallback function for every device that
the inBounds rectangle intersects.

You should refer to your MyMenuItemDrawingCallback function using a MenuItemDrawingUPP, which
you can create with NewMenuItemDrawingUPP.

You typically use the NewMenuItemDrawingUPP function like this:

MenuItemDrawingUPP myMenuItemDrawingUPP;
myMenuItemDrawingUPP = NewMenuItemDrawingUPP(MyMenuItemDrawingCallback);

Special Considerations

The Appearance Manager draws the background of the menu item prior to calling your menu item drawing
function, so you should not erase the item’s background from this function.

Version Notes
This function is available with Appearance Manager 1.0.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

MenuTitleDrawingProcPtr
Draws a menu title.

Callbacks 105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

typedef void (*MenuTitleDrawingProcPtr)
(
 const Rect * inBounds,
 SInt16 inDepth,
 Boolean inIsColorDevice,
 SInt32 inUserData
);

If you name your function MyMenuTitleDrawingCallback, you would declare it like this:

void MyMenuTitleDrawingCallback (
 const Rect * inBounds,
 SInt16 inDepth,
 Boolean inIsColorDevice,
 SInt32 inUserData
);

Parameters
inBounds

A pointer to a structure of type Rect. You are passed a rectangle specifying the dimensions and
position in which you should draw your menu title content. Your menu title drawing function is called
clipped to the rectangle in which you are allowed to draw your content; do not draw outside this
region.

inDepth
A signed 16-bit integer. You are passed the bit depth (in bits per pixel) of the current graphics port.

inIsColorDevice
A value of type Boolean. You are passed true to indicate that you are drawing on a color device;
inIsColorDevice is false for a monochrome device.

inUserData
You are passed data specifying how to draw the menu title content from the inTitleData parameter
of DrawThemeMenuTitle (page 40).

Discussion
At the time your menu title drawing function is called, the foreground text color and mode is already set to
draw in the correct state (enabled, selected, disabled) and correct color for the theme. You do not need to
set the color unless you have special drawing needs. If you do have special drawing needs, you should supply
the inDepth value and the value of the inIsColorDevice parameter to the function IsThemeInColor
to determine whether or not you should draw the menu title content in color.

Note that the Appearance Manager calls your MyMenuTitleDrawingCallback function for every device
that the inBounds rectangle intersects.

You should refer to your MyMenuTitleDrawingCallback function using a MenuTitleDrawingUPP, which
you can create with the NewMenuTitleDrawingUPP function.

You typically use the NewMenuTitleDrawingUPP function like this:

MenuTitleDrawingUPP myMenuTitleDrawingUPP;
myMenuTitleDrawingUPP = NewMenuTitleDrawingUPP(MyMenuTitleDrawingCallback);

Special Considerations

The Appearance Manager draws the background of the menu title prior to calling your menu title drawing
function, so you should not erase the title’s background from this function.

106 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Version Notes
This function is available with Appearance Manager 1.0.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ThemeButtonDrawProcPtr
Draws a button label.

typedef void (*ThemeButtonDrawProcPtr)
(
 const Rect * bounds,
 ThemeButtonKind kind,
 const ThemeButtonDrawInfo * info,
 UInt32 userData,
 SInt16 depth,
 Boolean isColorDev
);

If you name your function MyThemeButtonDrawCallback, you would declare it like this:

void MyThemeButtonDrawCallback (
 const Rect * bounds,
 ThemeButtonKind kind,
 const ThemeButtonDrawInfo * info,
 UInt32 userData,
 SInt16 depth,
 Boolean isColorDev
);

Parameters
bounds

A pointer to a structure of type Rect. The rectangle you are passed is set to the area in which you
should draw your content. Your button label drawing function is called clipped to the rectangle in
which you are allowed to draw your content; do not draw outside this region. Note that if a right-to-left
adornment is specified in the ThemeButtonDrawInfo structure passed into the info parameter,
you may need to accommodate this orientation when placing your content.

kind
A value of type ThemeButtonKind. You are passed a constant specifying the button type. See “Theme
Buttons” (page 153) for descriptions of possible values.

info
A pointer to a structure of type ThemeButtonDrawInfo (page 115). The structure is set to contain
the current state, value, and adornment for the button.

userData
An unsigned 32-bit value. You are passed data specifying how to draw the content, from the
inUserData parameter of DrawThemeButton (page 31).

depth
A signed 16-bit value. You are passed the bit depth (in bits per pixel) of the current graphics port.

Callbacks 107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

isColorDev
A value of type Boolean. If true, indicates that you are drawing on a color device; a value of false
indicates a monochrome device.

Discussion
At the time your button label drawing function is called, the foreground text color and mode is already set
to draw in the correct state (active or inactive) and correct color for the theme. You do not need to set the
color unless you have special drawing needs. If you do have special drawing needs, you should supply the
depth value and the value of the isColorDevice parameter to the function IsThemeInColor to determine
whether or not you should draw your content in color. Note that the Appearance Manager calls your
MyThemeButtonDrawCallback function for every device that the bounds rectangle intersects.

You should refer to your MyThemeButtonDrawCallback function using a ThemeButtonDrawUPP, which
you can create with the NewThemeButtonDrawUPP function.

You typically use the NewThemeButtonDrawUPP function like this:

ThemeButtonDrawUPP myThemeButtonDrawUPP;
myThemeButtonDrawUPP = NewThemeButtonDrawUPP(MyThemeButtonDrawCallback);

Special Considerations

The Appearance Manager draws the button background prior to calling your button label drawing function,
so you should not erase the button background from your label drawing function.

Version Notes
This function is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ThemeEraseProcPtr
Draws a background.

typedef void (*ThemeEraseProcPtr) (
 const Rect * bounds,
 UInt32 eraseData,
 SInt16 depth,
 Boolean isColorDev
);

If you name your function MyThemeEraseCallback, you would declare it like this:

void MyThemeEraseCallback (
 const Rect * bounds,
 UInt32 eraseData,
 SInt16 depth,
 Boolean isColorDev
);

108 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Parameters
bounds

A pointer to a structure of type Rect. The rectangle you are passed is set to the area in which you
should draw. Your drawing function is called clipped to the rectangle in which you are allowed to
draw; do not draw outside this region.

eraseData
An unsigned 32-bit value. You are passed data specifying how to draw, from the eraseData parameter
ofDrawThemeChasingArrows (page 33),DrawThemePopupArrow (page 43),DrawThemeTrack (page
55), or DrawThemeTrackTickMarks (page 56) or from the inUserData parameter of
DrawThemeButton (page 31).

depth
A signed 16-bit value. You are passed the bit depth (in bits per pixel) of the current graphics port.

isColorDev
A value of type Boolean. If true, indicates that you are drawing on a color device; a value of false
indicates a monochrome device.

Discussion
At the time your drawing function is called, the foreground text color and mode is already set to draw in the
correct state (active or inactive) and correct color for the theme. You do not need to set the color unless you
have special drawing needs. If you do have special drawing needs, you should supply the depth value and
the value of the isColorDevice parameter to the function IsThemeInColor to determine whether or not
you should draw in color. Note that the Appearance Manager calls your MyThemeEraseCallback function
for every device that the bounds rectangle intersects, so your application does not need to call the
DeviceLoop function itself.

You should refer to your MyThemeEraseCallback function using a ThemeEraseUPP, which you can create
with the NewThemeEraseUPP function.

You typically use the NewThemeEraseUPP function like this:

ThemeEraseUPP myThemeEraseUPP;
myThemeEraseUPP = NewThemeEraseUPP(MyThemeEraseCallback);

Version Notes
This function is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ThemeIteratorProcPtr
Performs a custom response to an iteration over themes installed on a system.

Callbacks 109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

typedef Boolean (*ThemeIteratorProcPtr)
(
 ConstStr255Param inFileName,
 SInt16 resID,
 Collection inThemeSettings,
 void * inUserData
);

If you name your function MyThemeIteratorCallback, you would declare it like this:

Boolean MyThemeIteratorCallback (
 ConstStr255Param inFileName,
 SInt16 resID,
 Collection inThemeSettings,
 void * inUserData
);

Parameters
inFileName

A value of type ConstStr255Param. You are passed the name of the file containing the theme being
iterated upon.

resID
A signed 16-bit integer. You are passed the resource ID of the theme.

inThemeSettings
A value of type Collection. You are passed a reference to a collection that contains data describing
attributes of the theme. Note that the Appearance Manager owns this collection, and that your
application should not dispose of it.

inUserData
A pointer to data of any type. You are passed the value specified in the inUserData parameter of
the function IterateThemes (page 91).

Return Value
A value of type Boolean. If you return true, IterateThemes continues iterating. Set to false to terminate
the iteration.

Discussion
You should refer to your MyThemeIteratorCallback function using a ThemeIteratorUPP, which you
can create using the NewThemeIteratorUPP function.

You typically use the NewThemeIteratorUPP function like this:

ThemeIteratorUPP myThemeIteratorUPP;
myThemeIteratorUPP = NewThemeIteratorUPP(MyThemeIteratorCallback);

Special Considerations

Your application should not open and close theme files during this call.

Version Notes
This function is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

110 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Declared In
Appearance.h

ThemeTabTitleDrawProcPtr
Draws a tab title.

typedef void (*ThemeTabTitleDrawProcPtr)
(
 const Rect * bounds,
 ThemeTabStyle style,
 ThemeTabDirection direction,
 SInt16 depth,
 Boolean isColorDev,
 UInt32 userData
);

If you name your function MyThemeTabTitleDrawCallback, you would declare it like this:

void MyThemeTabTitleDrawCallback (
 const Rect * bounds,
 ThemeTabStyle style,
 ThemeTabDirection direction,
 SInt16 depth,
 Boolean isColorDev,
 UInt32 userData
);

Parameters
bounds

A pointer to a structure of type Rect. The rectangle you are passed is set to the area in which you
should draw your tab title content. Your tab title drawing function is called clipped to the rectangle
in which you are allowed to draw your content; do not draw outside this region.

style
A value of type ThemeTabStyle. You are passed a constant specifying the relative position (front or
non-front) and state of the tab. See “Theme Tab Styles” (page 183) for descriptions of possible values.

direction
A value of type ThemeTabDirection. You are passed a constant specifying the direction in which
the tab is oriented. See “Theme Tab Directions” (page 182) for descriptions of possible values.

depth
A signed 16-bit value. You are passed the bit depth (in bits per pixel) of the current graphics port.

isColorDev
A value of type Boolean. If true, indicates that you are drawing on a color device; a value of false
indicates a monochrome device.

userData
An unsigned 32-bit value. You are passed data specifying how to draw the tab title content, from the
userData parameter of DrawThemeTab (page 50).

Discussion
At the time your tab title drawing function is called, the foreground text color and mode is already set to
draw in the correct state (active or inactive) and correct color for the theme. You do not need to set the color
unless you have special drawing needs. If you do have special drawing needs, you should supply the depth

Callbacks 111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

value and the value of the isColorDevice parameter to the function IsThemeInColor to determine
whether or not you should draw the tab title content in color. Note that the Appearance Manager calls your
MyThemeTabTitleDrawCallback function for every device that the bounds rectangle intersects.

You should refer to your MyThemeTabTitleDrawCallback function using a ThemeTabTitleDrawUPP,
which you can create with the NewThemeTabTitleDrawUPP function.

You typically use the NewThemeTabTitleDrawUPP function like this:

ThemeTabTitleDrawUPP myThemeTabTitleDrawUPP;
myThemeTabTitleDrawUPP = NewThemeTabTitleDrawUPP(MyThemeTabTitleDrawCallback);

Special Considerations

The Appearance Manager draws the tab background prior to calling your tab title drawing function, so you
should not erase the tab background from your title drawing function.

Version Notes
This function is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

WindowTitleDrawingProcPtr
Draws a window title.

typedef void (*WindowTitleDrawingProcPtr)
(
 const Rect * bounds,
 SInt16 depth,
 Boolean colorDevice,
 UInt32 userData
);

If you name your function MyWindowTitleDrawingCallback, you would declare it like this:

void MyWindowTitleDrawingCallback (
 const Rect * bounds,
 SInt16 depth,
 Boolean colorDevice,
 UInt32 userData
);

Parameters
bounds

A pointer to a structure of type Rect. The rectangle you are passed is set to the area in which you
should draw your window title content. Your window title drawing function is called clipped to the
rectangle in which you are allowed to draw your content; do not draw outside this region.

depth
A signed 16-bit value. You are passed the bit depth (in bits per pixel) of the current graphics port.

112 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

colorDevice
A value of type Boolean. If true, indicates that you are drawing on a color device; a value of false
indicates a monochrome device.

userData
A signed 32-bit value. You are passed data specifying how to draw the window title content, from
the titleData parameter of DrawThemeWindowFrame (page 57).

Discussion
At the time your window title drawing function is called, the foreground text color and mode is already set
to draw in the correct window state (active or inactive) and correct color for the theme. You do not need to
set the color unless you have special drawing needs. If you do have special drawing needs, you should supply
the depth value and the value of the colorDeviceparameter to the function IsThemeInColor to determine
whether or not you should draw the window title content in color. Note that the Appearance Manager calls
your MyWindowTitleDrawingCallback function for every device that the bounds rectangle intersects.

You should refer to your MyWindowTitleDrawingCallback function using a WindowTitleDrawingUPP,
which you can create with the NewWindowTitleDrawingUPP function.

You typically use the NewWindowTitleDrawingUPP function like this:

WindowTitleDrawingUPP myWindowTitleDrawingUPP;
myWindowTitleDrawingUPP = NewWindowTitleDrawingUPP(MyWindowTitleDrawingCallback);

Special Considerations

The Appearance Manager draws the background of the window title prior to calling your window title drawing
function, so you should not erase the background from this function.

Version Notes
This function is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

Data Types

ProgressTrackInfo
Describes the progress bar–specific features of a given track control.

struct ProgressTrackInfo {
 UInt8 phase;
};
typedef struct ProgressTrackInfo ProgressTrackInfo;

Fields
phase

A value specifying the current animation phase for an indeterminate progress bar. You can pass any
value of type UInt8. Increment this value to animate the progress bar. Set this field to 0 for a
determinate progress bar.

Data Types 113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Discussion
Your application supplies a ProgressTrackInfo structure in the ThemeTrackDrawInfo (page 116) structure.

Version Notes
The ProgressTrackInfo structure is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ScrollBarTrackInfo
Describes the scroll bar–specific features of a given track control.

struct ScrollBarTrackInfo {
 SInt32 viewsize;
 ThemeTrackPressState pressState;
};
typedef struct ScrollBarTrackInfo ScrollBarTrackInfo;

Fields
viewsize

A signed 32-bit integer, specifying the size of the content being displayed. This value should be
expressed in terms of the same units of measurement as are used for the minimum, maximum, and
current settings of the scroll bar.

pressState
A value of type ThemeTrackPressState, specifying what in the scroll bar is currently pressed. See
“Theme Track Press States” (page 187) for descriptions of possible values. Pass 0 if nothing is currently
pressed.

Discussion
Your application uses the ScrollBarTrackInfo structure in the ThemeTrackDrawInfo (page 116) structure.

Version Notes
The ScrollBarTrackInfo structure is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

SliderTrackInfo
Describes the slider-specific features of a given track control.

114 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

struct SliderTrackInfo {
 ThemeThumbDirection thumbDir;
 ThemeTrackPressState pressState;
};
typedef struct SliderTrackInfo SliderTrackInfo;

Fields
thumbDir

A value of type ThemeThumbDirection, specifying the direction in which the slider indicator points.
See “Theme Thumb Directions” (page 181) for descriptions of possible values.

pressState
A value of type ThemeTrackPressState, specifying the part of the slider that is currently pressed.
See “Theme Track Press States” (page 187) for descriptions of possible values. Pass 0 if nothing is
currently pressed.

Discussion
Your application supplies a SliderTrackInfo structure to the ThemeTrackDrawInfo (page 116) structure.

Version Notes
The SliderTrackInfo structure is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ThemeButtonDrawInfo
Describes the changeable visual characteristics of a button.

struct ThemeButtonDrawInfo {
 ThemeDrawState state;
 ThemeButtonValue value;
 ThemeButtonAdornment adornment;
};
typedef struct ThemeButtonDrawInfo ThemeButtonDrawInfo;

Fields
state

A value of type ThemeDrawState, specifying the state of the button, such as whether it is active,
inactive, or pressed. See “Theme Drawing States” (page 126) for descriptions of possible values.

value
A value of type ThemeButtonValue, specifying the value of the button, such as, in the case of
checkbox, whether it is drawn as on, off, or mixed. See “Theme Button Values” (page 159) for
descriptions of possible values.

adornment
A value of type ThemeButtonAdornment, specifying any supplementary characteristics of the button,
such as whether it is drawn with a focus ring. See “Theme Button Adornments” (page 156) for
descriptions of possible values.

Data Types 115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Discussion
Your application can use a ThemeButtonDrawInfo structure, together with a constant of type
ThemeButtonKind, to fully describe the visual characteristics of a given button type at a given point in time.
See “Theme Buttons” (page 153) for a description of ThemeButtonKind values.

Your application uses the ThemeButtonDrawInfo structure in the function DrawThemeButton (page 31)
to draw a theme-compliant button and in the functions GetThemeButtonRegion (page 63) and
GetThemeButtonContentBounds (page 62) to obtain information about a specific button type.

Version Notes
The ThemeButtonDrawInfo structure is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ThemeTrackDrawInfo
Describes a track control.

struct ThemeTrackDrawInfo {
 ThemeTrackKind kind
 Rect bounds
 SInt32 min
 SInt32 max
 SInt32 value
 UInt32 reserved
 ThemeTrackAttributes attributes
 ThemeTrackEnableState enableState
 UInt8 filler1
 union {
 ScrollBarTrackInfo scrollbar;
 SliderTrackInfo slider;
 ProgressTrackInfo progress;
 } trackInfo;
};
typedef struct ThemeTrackDrawInfo ThemeTrackDrawInfo;

Fields
kind

A value of type ThemeTrackKind, specifying the type of track to be drawn. See “Theme Track
Kinds” (page 186) for descriptions of possible values.

bounds
A structure of type Rect specifying the dimensions and position of the track, in local coordinates.

min
A signed 32-bit integer specifying the minimum value for the track.

max
A signed 32-bit integer specifying the maximum value for the track.

value
A signed 32-bit integer specifying the current value for the track.

116 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

reserved
Reserved.

attributes
A value of type ThemeTrackAttributes specifying additional attributes of the track, such as whether
the track has an indicator. See “Theme Track Attributes” (page 184) for descriptions of possible values.

enableState
A value of type ThemeTrackEnableState specifying the current state of the track control; see
“Theme Track States” (page 185) for descriptions of possible values.

filler1
trackInfo

A union of the ScrollBarTrackInfo, SliderTrackInfo, and ProgressTrackInfo structures.
Your application fills in the structure that is appropriate for the kind of track with which you are
working. See ScrollBarTrackInfo (page 114), SliderTrackInfo (page 114), and
ProgressTrackInfo (page 113) for details on these structures.

Discussion
Your application fills out the applicable fields of a ThemeTrackDrawInfo structure to fully describe any
given track control.

Version Notes
The ThemeTrackDrawInfo structure is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ThemeWindowMetrics
Describes the dimensions of the parts of a window.

struct ThemeWindowMetrics {
 UInt16 metricSize;
 SInt16 titleHeight;
 SInt16 titleWidth;
 SInt16 popupTabOffset;
 SInt16 popupTabWidth;
 UInt16 popupTabPosition;
};
typedef struct ThemeWindowMetrics ThemeWindowMetrics;

Fields
metricSize

A value specifying the size of the ThemeWindowMetrics structure.

titleHeight
A measurement in pixels of the height of the title text in the current system font, including any icon
that may be present in the title region. Set this field to 0 if the window does not contain a title.

titleWidth
A measurement in pixels of the width of the title text in the current system font, including any icon
that may be present in the title region. Set this field to 0 if the window does not contain a title.

Data Types 117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

popupTabOffset
A measurement in pixels of the distance that the left edge of a pop-up window’s tab is offset from
the left edge of the window. This value is used in conjunction with the value passed in the
popupTabPosition field to determine the actual position of the tab. Set this field to 0 if the window
is not a pop-up window.

popupTabWidth
A measurement in pixels of the width of a pop-up window’s tab. Set this field to 0 if the window is
not a pop-up window.

popupTabPosition
A value specifying the rule to apply when positioning a pop-up window’s tab. Set this field to 0 if the
window is not a pop-up window. See “Pop-up Window Tab Positions” (page 193) for the values you
can use in this field.

Discussion
Your application uses the ThemeWindowMetrics structure to inform the Appearance Manager of the
dimensions of specific parts of your window.

Version Notes
The ThemeWindowMetrics structure is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ThemeDrawingState
Defines a reference to a private structure containing information about the current state of a graphics port.

typedef struct OpaqueThemeDrawingState * ThemeDrawingState;

Discussion
You can use the ThemeDrawingState type with the function GetThemeDrawingState (page 65) to obtain
the current graphics port’s drawing state and with the function SetThemeDrawingState (page 99) to
restore a port’s drawing state. You should dispose of the memory allocated to contain a ThemeDrawingState
reference by calling DisposeThemeDrawingState (page 29) or passing a value of true in the inDisposeNow
parameter of SetThemeDrawingState.

Version Notes
The ThemeDrawingState type is available with Appearance Manager 1.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

MenuItemDrawingUPP
Defines a universal procedure pointer (UPP) to a menu item drawing function.

118 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

typedef MenuItemDrawingProcPtr MenuItemDrawingUPP;

Discussion
See MenuItemDrawingProcPtr (page 104) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

MenuTitleDrawingUPP
Defines a universal procedure pointer (UPP) to a menu title drawing function.

typedef MenuTitleDrawingProcPtr MenuTitleDrawingUPP;

Discussion
See MenuTitleDrawingProcPtr (page 105) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ThemeButtonDrawUPP
Defines a universal procedure pointer (UPP) to a button drawing function.

typedef ThemeButtonDrawProcPtr ThemeButtonDrawUPP;

Discussion
See ThemeButtonDrawProcPtr (page 107) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ThemeEraseUPP
Defines a universal procedure pointer (UPP) to a background drawing callback function.

typedef ThemeEraseProcPtr ThemeEraseUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

Data Types 119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

ThemeIteratorUPP
Defines a universal procedure pointer (UPP) to a theme iteration callback function.

typedef ThemeIteratorProcPtr ThemeIteratorUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

ThemeTabTitleDrawUPP
Defines a universal procedure pointer (UPP) to a tab title drawing function.

typedef ThemeTabTitleDrawProcPtr ThemeTabTitleDrawUPP;

Discussion
See ThemeTabTitleDrawProcPtr (page 111) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

WindowTitleDrawingUPP
Defines a universal procedure pointer (UPP) to a window title drawing function.

typedef WindowTitleDrawingProcPtr WindowTitleDrawingUPP;

Discussion
See WindowTitleDrawingProcPtr (page 112) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Appearance.h

Constants

Appearance Manager Apple Events
Identify Apple events sent to Appearance Manager clients when a change occurs in the current appearance.

120 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kAppearanceEventClass = 'appr',
 kAEAppearanceChanged = 'thme',
 kAESystemFontChanged = 'sysf',
 kAESmallSystemFontChanged = 'ssfn',
 kAEViewsFontChanged = 'vfnt'
};

Constants
kAppearanceEventClass

The event class of Appearance Manager Apple events.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kAEAppearanceChanged
The ID of the event indicating the current appearance has changed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kAESystemFontChanged
The ID of the event indicating the current system font has changed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kAESmallSystemFontChanged
The ID of the event indicating the current small system font has changed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kAEViewsFontChanged
The ID of the event indicating the current views font has changed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
When the user changes the current appearance (that is, when a theme switch occurs), the Appearance
Manager may send any of these Apple events to all running applications that are high-level event aware and
which are registered as clients of the Appearance Manager. Your application registers itself with the Appearance
Manager by calling the function RegisterAppearanceClient (page 95).

Because typical results of a theme switch might include a change in menu bar height or window structure
dimensions, as well as changes to the system fonts, colors, and patterns that are currently in use, applications
should listen for and respond to the Appearance Manager Apple events under most circumstances. Note
that none of the Appearance Manager Apple events have parameters and that the return value for each is
ignored.

Appearance Manager File Types
Identify the various Appearance Manager file types.

Constants 121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeDataFileType = 'thme',
 kThemePlatinumFileType = 'pltn',
 kThemeCustomThemesFileType = 'scen',
 kThemeSoundTrackFileType = 'tsnd'
};

Constants
kThemeDataFileType

The file type of appearances other than the platinum appearance.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemePlatinumFileType
The file type of the platinum appearance.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeCustomThemesFileType
The file type of a file that contains user-defined themes. See SetTheme (page 97) for a discussion of
defining your own theme.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Theme Collection Tags
Identify items in a collection describing a theme.

122 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeNameTag = 'name',
 kThemeVariantNameTag = 'varn',
 kThemeVariantBaseTintTag = 'tint',
 kThemeHighlightColorTag = 'hcol',
 kThemeScrollBarArrowStyleTag = 'sbar',
 kThemeScrollBarThumbStyleTag = 'sbth',
 kThemeSoundsEnabledTag = 'snds',
 kThemeDblClickCollapseTag = 'coll'
 kThemeAppearanceFileNameTag = 'thme',
 kThemeSystemFontTag = 'lgsf',
 kThemeSmallSystemFontTag = 'smsf',
 kThemeViewsFontTag = 'vfnt',
 kThemeViewsFontSizeTag = 'vfsz',
 kThemeDesktopPatternNameTag = 'patn',
 kThemeDesktopPatternTag = 'patt',
 kThemeDesktopPictureNameTag = 'dpnm',
 kThemeDesktopPictureAliasTag = 'dpal',
 kThemeDesktopPictureAlignmentTag = 'dpan',
 kThemeHighlightColorNameTag = 'hcnm',
 kThemeExamplePictureIDTag = 'epic',
 kThemeSoundTrackNameTag = 'sndt',
 kThemeSoundMaskTag = 'smsk',
 kThemeUserDefinedTag = 'user',
 kThemeSmoothFontEnabledTag = 'smoo',
 kThemeSmoothFontMinSizeTag = 'smos'
};

Constants
kThemeNameTag

Identifies a collection item containing the name of the theme, e.g. "Mac OS Default". The Appearance
Manager only uses this collection item to identify themes within the Appearance control panel, so
the GetTheme function does not return this collection item. To specify a theme name, you must create
a new collection item of this type before calling the function SetTheme.

Collection data type: Str255

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeVariantNameTag
Identifies a collection item containing the color variation used for menus and controls in the theme.

Collection data type: Str255

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeHighlightColorTag
Identifies a collection item containing the text highlight color for the theme.

Collection data type: an RGBColor structure

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeScrollBarArrowStyleTag
Identifies a collection item containing a value of type ThemeScrollBarArrowStyle identifying the
type of scroll bar arrows used in the theme.

Collection data type: ThemeScrollBarArrowStyle

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeScrollBarThumbStyleTag
Identifies a collection item containing a value of type ThemeScrollBarThumbStyle identifying the
type of scroll boxes used in the theme.

Collection data type: ThemeScrollBarThumbStyle

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundsEnabledTag
Identifies a collection item specifying whether theme sounds are enabled for the theme.

Collection data type: Boolean

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDblClickCollapseTag
Identifies a collection item specifying whether the ability to double-click to collapse a window is
enabled for the theme.

Collection data type: Boolean

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAppearanceFileNameTag
Identifies a collection item containing the name of the appearance, e.g. "Apple platinum".

Collection data type: Str255

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSystemFontTag
Identifies a collection item containing the name of the large system font for the theme.

Collection data type: Str255

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSmallSystemFontTag
Identifies a collection item containing the name of the small system font for the theme.

Collection data type: Str255

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeViewsFontTag
Identifies a collection item containing the name of the views font for the theme.

Collection data type: Str255

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

124 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeViewsFontSizeTag
Identifies a collection item containing the size of the views font for the theme.

Collection data type: SInt16

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDesktopPatternNameTag
Identifies a collection item containing the name of the desktop pattern for the theme.

Collection data type: Str255

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDesktopPatternTag
Identifies a collection item containing a flattened version of the desktop pattern for the theme.

Collection data type: variable-length data

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDesktopPictureNameTag
Identifies a collection item containing the name of the desktop picture for the theme.

Collection data type: Str255

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDesktopPictureAliasTag
Identifies a collection item containing an alias handle for the desktop picture for the theme.

Collection data type: AliasHandle

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDesktopPictureAlignmentTag
Identifies a collection item containing a value specifying how to position the desktop picture for the
theme. Possible values are described in “Desktop Picture Alignments” (page 212).

Collection data type: UInt32

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeHighlightColorNameTag
Identifies a collection item containing the name of the text highlight color for the theme.

Collection data type: Str255

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeExamplePictureIDTag
Identifies a collection item containing the ID of the example picture for the theme.

Collection data type: SInt16

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundTrackNameTag
Identifies a collection item containing the name of the soundtrack for the theme.

Collection data type: Str255

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundMaskTag
Identifies a collection item containing an unsigned 32-bit integer whose bits are set to reflect the
classes of sounds that are enabled for a theme. Possibilities include sounds for menus, windows,
controls, and the Finder. See “Theme Sound Masks” (page 193) for descriptions of possible sound mask
values.

Collection data type: UInt32

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeUserDefinedTag
Identifies a collection item specifying whether the theme is user-defined; the value contained in a
kThemeUserDefinedTag collection should always be true if the kThemeUserDefinedTag collection
is present. The Appearance Manager uses this collection item to identify themes that the user can
delete. Note that the GetTheme function does not return this collection item.

Collection data type: Boolean

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSmoothFontEnabledTag
Identifies a collection item specifying whether font smoothing is enabled in the theme.

Collection data type: Boolean

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSmoothFontMinSizeTag
Identifies a collection item containing the minimum point size at which font smoothing may be
enabled in the theme. Possible values range from 12 to 24, inclusive.

Collection data type: UInt16

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
Your application may use these collection tags with the functions SetTheme (page 97) and GetTheme (page
59) to access aspects of a theme. The data type contained in each of the collection items accessed is noted
below.

Theme Drawing States
Specify the state in which human interface elements are drawn.

126 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeStateInactive = 0,
 kThemeStateActive = 1,
 kThemeStatePressed = 2,
 kThemeStateRollover = 6,
 kThemeStateUnavailable = 7,
 kThemeStateUnavailableInactive = 8,
 kThemeStatePressedUp = 2,
 kThemeStatePressedDown = 3
};
typedef UInt32 ThemeDrawState;

Constants
kThemeStateInactive

The drawing state of elements in an inactive window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeStateActive
The drawing state of elements in an active window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeStatePressed
The drawing state of elements in which a mouse click is occurring.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeStateRollover
The drawing state of elements over which the mouse is positioned.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeStateUnavailable
The drawing state of elements that are disabled. This state is used to indicate that an element cannot
be clicked.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeStateUnavailableInactive
The drawing state of elements that are disabled and are not in the currently active window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeStatePressedUp
For stepper controls, the drawing state of the increment button in which a mouse click is occurring.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeStatePressedDown
For stepper controls, the drawing state of the decrement button in which a mouse click is occurring.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Theme Metrics
Specify metric properties of user interface elements in the current environment.

128 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

typedef UInt32 ThemeMetric;
enum {
 kThemeMetricScrollBarWidth = 0,
 kThemeMetricSmallScrollBarWidth = 1,
 kThemeMetricCheckBoxHeight = 2,
 kThemeMetricRadioButtonHeight = 3,
 kThemeMetricEditTextWhitespace = 4,
 kThemeMetricEditTextFrameOutset = 5,
 kThemeMetricListBoxFrameOutset = 6,
 kThemeMetricFocusRectOutset = 7,
 kThemeMetricImageWellThickness = 8,
 kThemeMetricScrollBarOverlap = 9,
 kThemeMetricLargeTabHeight = 10,
 kThemeMetricLargeTabCapsWidth = 11,
 kThemeMetricTabFrameOverlap = 12,
 kThemeMetricTabIndentOrStyle = 13,
 kThemeMetricTabOverlap = 14,
 kThemeMetricSmallTabHeight = 15,
 kThemeMetricSmallTabCapsWidth = 16,
 kThemeMetricPushButtonHeight = 19,
 kThemeMetricListHeaderHeight = 20,
 kThemeMetricDisclosureTriangleHeight = 25,
 kThemeMetricDisclosureTriangleWidth = 26,
 kThemeMetricLittleArrowsHeight = 27,
 kThemeMetricLittleArrowsWidth = 28,
 kThemeMetricPopupButtonHeight = 30,
 kThemeMetricSmallPopupButtonHeight = 31,
 kThemeMetricLargeProgressBarThickness = 32,
 kThemeMetricPullDownHeight = 33,
 kThemeMetricSmallPullDownHeight = 34,
 kThemeMetricResizeControlHeight = 38,
 kThemeMetricSmallResizeControlHeight = 39,
 kThemeMetricHSliderHeight = 41,
 kThemeMetricHSliderTickHeight = 42,
 kThemeMetricVSliderWidth = 45,
 kThemeMetricVSliderTickWidth = 46,
 kThemeMetricTitleBarControlsHeight = 49,
 kThemeMetricCheckBoxWidth = 50,
 kThemeMetricRadioButtonWidth = 52,
 kThemeMetricNormalProgressBarThickness = 58,
 kThemeMetricProgressBarShadowOutset = 59,
 kThemeMetricSmallProgressBarShadowOutset = 60,
 kThemeMetricPrimaryGroupBoxContentInset = 61,
 kThemeMetricSecondaryGroupBoxContentInset = 62,
 kThemeMetricMenuMarkColumnWidth = 63,
 kThemeMetricMenuExcludedMarkColumnWidth = 64,
 kThemeMetricMenuMarkIndent = 65,
 kThemeMetricMenuTextLeadingEdgeMargin = 66,
 kThemeMetricMenuTextTrailingEdgeMargin = 67,
 kThemeMetricMenuIndentWidth = 68,
 kThemeMetricMenuIconTrailingEdgeMargin = 69
};
enum {
 kThemeMetricDisclosureButtonHeight = 17,
 kThemeMetricRoundButtonSize = 18,
 kThemeMetricSmallCheckBoxHeight = 21,
 kThemeMetricDisclosureButtonWidth = 22,
 kThemeMetricSmallDisclosureButtonHeight = 23,

Constants 129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

 kThemeMetricSmallDisclosureButtonWidth = 24,
 kThemeMetricPaneSplitterHeight = 29,
 kThemeMetricSmallPushButtonHeight = 35,
 kThemeMetricSmallRadioButtonHeight = 36,
 kThemeMetricRelevanceIndicatorHeight = 37,
 kThemeMetricLargeRoundButtonSize = 40,
 kThemeMetricSmallHSliderHeight = 43,
 kThemeMetricSmallHSliderTickHeight = 44,
 kThemeMetricSmallVSliderWidth = 47,
 kThemeMetricSmallVSliderTickWidth = 48,
 kThemeMetricSmallCheckBoxWidth = 51,
 kThemeMetricSmallRadioButtonWidth = 53,
 kThemeMetricSmallHSliderMinThumbWidth = 54,
 kThemeMetricSmallVSliderMinThumbHeight = 55,
 kThemeMetricSmallHSliderTickOffset = 56,
 kThemeMetricSmallVSliderTickOffset = 57
};
enum {
 kThemeMetricComboBoxLargeBottomShadowOffset = 70,
 kThemeMetricComboBoxLargeRightShadowOffset = 71,
 kThemeMetricComboBoxSmallBottomShadowOffset = 72,
 kThemeMetricComboBoxSmallRightShadowOffset = 73,
 kThemeMetricComboBoxLargeDisclosureWidth = 74,
 kThemeMetricComboBoxSmallDisclosureWidth = 75,
 kThemeMetricRoundTextFieldContentInsetLeft = 76,
 kThemeMetricRoundTextFieldContentInsetRight = 77,
 kThemeMetricRoundTextFieldContentInsetBottom = 78,
 kThemeMetricRoundTextFieldContentInsetTop = 79,
 kThemeMetricRoundTextFieldContentHeight = 80,
 kThemeMetricComboBoxMiniBottomShadowOffset = 81,
 kThemeMetricComboBoxMiniDisclosureWidth = 82,
 kThemeMetricComboBoxMiniRightShadowOffset = 83,
 kThemeMetricLittleArrowsMiniHeight = 84,
 kThemeMetricLittleArrowsMiniWidth = 85,
 kThemeMetricLittleArrowsSmallHeight = 86,
 kThemeMetricLittleArrowsSmallWidth = 87,
 kThemeMetricMiniCheckBoxHeight = 88,
 kThemeMetricMiniCheckBoxWidth = 89,
 kThemeMetricMiniDisclosureButtonHeight = 90,
 kThemeMetricMiniDisclosureButtonWidth = 91,
 kThemeMetricMiniHSliderHeight = 92,
 kThemeMetricMiniHSliderMinThumbWidth = 93,
 kThemeMetricMiniHSliderTickHeight = 94,
 kThemeMetricMiniHSliderTickOffset = 95,
 kThemeMetricMiniPopupButtonHeight = 96,
 kThemeMetricMiniPullDownHeight = 97,
 kThemeMetricMiniPushButtonHeight = 98,
 kThemeMetricMiniRadioButtonHeight = 99,
 kThemeMetricMiniRadioButtonWidth = 100,
 kThemeMetricMiniTabCapsWidth = 101,
 kThemeMetricMiniTabFrameOverlap = 102,
 kThemeMetricMiniTabHeight = 103,
 kThemeMetricMiniTabOverlap = 104,
 kThemeMetricMiniVSliderMinThumbHeight = 105,
 kThemeMetricMiniVSliderTickOffset = 106,
 kThemeMetricMiniVSliderTickWidth = 107,
 kThemeMetricMiniVSliderWidth = 108,
 kThemeMetricRoundTextFieldContentInsetWithIconLeft = 109,

130 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

 kThemeMetricRoundTextFieldContentInsetWithIconRight = 110,
 kThemeMetricRoundTextFieldMiniContentHeight = 111,
 kThemeMetricRoundTextFieldMiniContentInsetBottom = 112,
 kThemeMetricRoundTextFieldMiniContentInsetLeft = 113,
 kThemeMetricRoundTextFieldMiniContentInsetRight = 114,
 kThemeMetricRoundTextFieldMiniContentInsetTop = 115,
 kThemeMetricRoundTextFieldMiniContentInsetWithIconLeft = 116,
 kThemeMetricRoundTextFieldMiniContentInsetWithIconRight = 117,
 kThemeMetricRoundTextFieldSmallContentHeight = 118,
 kThemeMetricRoundTextFieldSmallContentInsetBottom = 119,
 kThemeMetricRoundTextFieldSmallContentInsetLeft = 120,
 kThemeMetricRoundTextFieldSmallContentInsetRight = 121,
 kThemeMetricRoundTextFieldSmallContentInsetTop = 122,
 kThemeMetricRoundTextFieldSmallContentInsetWithIconLeft = 123,
 kThemeMetricRoundTextFieldSmallContentInsetWithIconRight = 124,
 kThemeMetricSmallTabFrameOverlap = 125,
 kThemeMetricSmallTabOverlap = 126,
 kThemeMetricSmallPaneSplitterHeight = 127
};
enum {
 kThemeMetricHSliderTickOffset = 128,
 kThemeMetricVSliderTickOffset = 129,
 kThemeMetricSliderMinThumbHeight = 130,
 kThemeMetricSliderMinThumbWidth = 131,
 kThemeMetricScrollBarMinThumbHeight = 132,
 kThemeMetricScrollBarMinThumbWidth = 133,
 kThemeMetricSmallScrollBarMinThumbHeight = 134,
 kThemeMetricSmallScrollBarMinThumbWidth = 135,
 kThemeMetricButtonRoundedHeight = 136,
 kThemeMetricButtonRoundedRecessedHeight = 137
};
enum {
 kThemeMetricSeparatorSize = 138,
 kThemeMetricTexturedPushButtonHeight = 139,
 kThemeMetricTexturedSmallPushButtonHeight = 140
};

Constants
kThemeMetricScrollBarWidth

The width of a scroll bar. For horizontal scroll bars, this measurement is actually the scroll bar height.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallScrollBarWidth
The width of a small scroll bar. For horizontal scroll bars, this measurement is actually the scroll bar
height.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricCheckBoxHeight
The height of the non-label part of a check box control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricRadioButtonHeight
The height of the non-label part of a radio button control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricEditTextWhitespace
The amount of white space surrounding the text rectangle of the text inside of an Edit Text control.
If you select all of the text in an Edit Text control, this white space is visible. The metric is the number
of pixels, per side, that the text rectangle is outset to create the whitespace rectangle.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricEditTextFrameOutset
The thickness of the Edit Text frame that surrounds the whitespace rectangle (which surrounds the
text rectangle). The metric is the number of pixels, per side, that the frame rectangle is outset from
the whitespace rectangle.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricListBoxFrameOutset
The number of pixels that the list box frame is outset from the content of the list box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricFocusRectOutset
This is a deprecated metric and you should not use it. This metric describes how far from a control
the focus rectangle was drawn, but control focus drawing no longer uses this information.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricImageWellThickness
The thickness of the frame drawn by DrawThemeGenericWell.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricScrollBarOverlap
The number of pixels a scrollbar should overlap any bounding box which surrounds it and scrollable
content. This also includes the window frame when a scrollbar is along an edge of the window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricLargeTabHeight
The height of the large tab of a tab control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricLargeTabCapsWidth
The width of the caps, or end pieces, of the large tabs of a tab control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

132 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricTabFrameOverlap
The amount you must add to the tab height, kThemeMetricLargeTabHeight, to find the rectangle
height to use with the various tab drawing primitives. This amount is also the amount that each tab
overlaps the tab pane.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricTabIndentOrStyle
If less than zero, this indicates that the text should be centered on each tab. If greater than zero, the
text should be justified, according to the system script direction, and the amount is the offset from
the edge at which the text should start drawing.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricTabOverlap
The amount of space that every tab's drawing rectangle overlapsthat of the tab on either side of it.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallTabHeight
The height of the small tab of a tab control. This includes the pixels that overlap the tab pane and/or
tab pane bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallTabCapsWidth
The width of the caps, or end pieces, of the small tabs of a tab control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricPushButtonHeight
The height and the width of the push button control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricListHeaderHeight
The height of the list header field of the data browser control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricDisclosureTriangleHeight
The height of a disclosure triangle control. This triangle is the not the center of the disclosure button,
but its own control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricDisclosureTriangleWidth
The width of a disclosure triangle control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricLittleArrowsHeight
The height of a little arrows control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricLittleArrowsWidth
The width of a little arrows control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricPopupButtonHeight
The height of a popup button control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallPopupButtonHeight
The height of a small popup button control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricLargeProgressBarThickness
The height of the large progress bar, not including its shadow.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricPullDownHeight
This metric is not used.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallPullDownHeight
This metric is not used.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricResizeControlHeight
The height of the window grow box control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallResizeControlHeight
The width of the window grow box control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricHSliderHeight
The height of the horizontal slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

134 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricHSliderTickHeight
The height of the tick marks for a horizontal slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricVSliderWidth
The width of the vertical slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricVSliderTickWidth
The width of the tick marks for a vertical slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricTitleBarControlsHeight
The height of the title bar widgets (grow, close, and zoom boxes) for a document window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricCheckBoxWidth
The width of the non-label part of a check box control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricRadioButtonWidth
The width of the non-label part of a radio button control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricNormalProgressBarThickness
The height of the normal progress bar, not including its shadow.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricProgressBarShadowOutset
The number of pixels of shadow depth drawn below the progress bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallProgressBarShadowOutset
The number of pixels of shadow depth drawn below the small progress bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricPrimaryGroupBoxContentInset
The number of pixels that the content of a primary group box is inset from the bounds of the control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricSecondaryGroupBoxContentInset
The number of pixels that the content of a secondary group box is from the bounds of the control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricMenuMarkColumnWidth
The width allocated to draw the mark character in a menu.

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

kThemeMetricMenuExcludedMarkColumnWidth
The width allocated for the mark character in a menu item when the menu has the attribute
kMenuAttrExcludesMarkColumn.

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

kThemeMetricMenuMarkIndent
The indent into the interior of the mark column at which the mark character is drawn.

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

kThemeMetricMenuTextLeadingEdgeMargin
The whitespace at the leading edge of menu item text.

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

kThemeMetricMenuTextTrailingEdgeMargin
The whitespace at the trailing edge of menu item text.

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

kThemeMetricMenuIndentWidth
The width per indent level of a menu item. This indent is set by the SetMenuItemIndent function.

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

kThemeMetricMenuIconTrailingEdgeMargin
The whitespace at the trailing edge of a menu icon, if the item also has text.

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

kThemeMetricDisclosureButtonHeight
The height of a disclosure button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricRoundButtonSize
The height and the width of the round button control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

136 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricSmallCheckBoxHeight
The height of the non-label part of a small check box control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricDisclosureButtonWidth
The width of a disclosure button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallDisclosureButtonHeight
The height of a small disclosure button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallDisclosureButtonWidth
The width of a small disclosure button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricPaneSplitterHeight
The height (or width if vertical) of a pane splitter.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallPushButtonHeight
The height of the small push button control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallRadioButtonHeight
The height of the non-label part of a small radio button control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricRelevanceIndicatorHeight
The height of the relevance indicator control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricLargeRoundButtonSize
The height and the width of the large round button control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallHSliderHeight
The height of the small, horizontal slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricSmallHSliderTickHeight
The height of the tick marks for a small, horizontal slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallVSliderWidth
The width of the small, vertical slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallVSliderTickWidth
The width of the tick marks for a small, vertical slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallCheckBoxWidth
The width of the non-label part of a small check box control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallRadioButtonWidth
The width of the non-label part of a small radio button control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallHSliderMinThumbWidth
The minimum width of the thumb of a small, horizontal slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallVSliderMinThumbHeight
The minimum width of the thumb of a small, vertical slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallHSliderTickOffset
The offset of the tick marks from the appropriate side of a small horizontal slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricSmallVSliderTickOffset
The offset of the tick marks from the appropriate side of a small vertical slider control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMetricComboBoxLargeBottomShadowOffset

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricComboBoxLargeRightShadowOffset

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

138 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricComboBoxSmallBottomShadowOffset

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricComboBoxSmallRightShadowOffset

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricComboBoxLargeDisclosureWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricComboBoxSmallDisclosureWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldContentInsetLeft

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldContentInsetRight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldContentInsetBottom

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldContentInsetTop

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldContentHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricComboBoxMiniBottomShadowOffset

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricComboBoxMiniDisclosureWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricComboBoxMiniRightShadowOffset

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricLittleArrowsMiniHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

Constants 139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricLittleArrowsMiniWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricLittleArrowsSmallHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricLittleArrowsSmallWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniCheckBoxHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniCheckBoxWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniDisclosureButtonHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniDisclosureButtonWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniHSliderHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniHSliderMinThumbWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniHSliderTickHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniHSliderTickOffset

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniPopupButtonHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniPullDownHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

140 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricMiniPushButtonHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniRadioButtonHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniRadioButtonWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniTabCapsWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniTabFrameOverlap

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniTabHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniTabOverlap

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniVSliderMinThumbHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniVSliderTickOffset

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniVSliderTickWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricMiniVSliderWidth

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldContentInsetWithIconLeft

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldContentInsetWithIconRight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

Constants 141
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricRoundTextFieldMiniContentHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldMiniContentInsetBottom

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldMiniContentInsetLeft

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldMiniContentInsetRight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldMiniContentInsetTop

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldMiniContentInsetWithIconLeft

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldMiniContentInsetWithIconRight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldSmallContentHeight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldSmallContentInsetBottom

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldSmallContentInsetLeft

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldSmallContentInsetRight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldSmallContentInsetTop

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricRoundTextFieldSmallContentInsetWithIconLeft

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

142 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricRoundTextFieldSmallContentInsetWithIconRight

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricSmallTabFrameOverlap

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricSmallTabOverlap

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricSmallPaneSplitterHeight
The height of a small pane splitter. Should only be used in a window with thick borders, such as a
textured window.

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeMetricHSliderTickOffset
The horizontal start offset for the first tick mark on a horizontal slider.

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

kThemeMetricVSliderTickOffset
The vertical start offset for the first tick mark on a vertical slider.

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

kThemeMetricSliderMinThumbHeight
The minimum height for a thumb on a slider.

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

kThemeMetricSliderMinThumbWidth
The minimum width for a thumb on a slider.

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

kThemeMetricScrollBarMinThumbHeight
The minimum height for a thumb on a scroll bar.

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

kThemeMetricScrollBarMinThumbWidth
The minimum width for a thumb on a scroll bar.

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

kThemeMetricSmallScrollBarMinThumbHeight
The minimum height for a thumb on a small scroll bar.

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

Constants 143
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMetricSmallScrollBarMinThumbWidth
The minimum width for a thumb on a small scroll bar.

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

kThemeMetricButtonRoundedHeight
The height of a round-ended button (for example, the Kind button in a Finder Search query.)

Available in Mac OS X v10.5 and later.

Declared in Appearance.h.

kThemeMetricButtonRoundedRecessedHeight
The height of the inset round-ended button (for example, the Servers button in a Finder Search query.)

Available in Mac OS X v10.5 and later.

Declared in Appearance.h.

kThemeMetricSeparatorSize
The height of a horizontal separator, or the width of a vertical separator, drawn with the
HIThemeDrawSeparator theme primitive.

Available in Mac OS X v10.5 and later.

Declared in Appearance.h.

kThemeMetricTexturedPushButtonHeight
The height of the push button control designed for use in a textured window.

Available in Mac OS X v10.5 and later.

Declared in Appearance.h.

kThemeMetricTexturedSmallPushButtonHeight
The height of the small push button control designed for use in a textured window.

Available in Mac OS X v10.5 and later.

Declared in Appearance.h.

Theme Backgrounds
Identify theme-compliant backgrounds.

enum {
 kThemeBackgroundTabPane = 1,
 kThemeBackgroundPlacard = 2,
 kThemeBackgroundWindowHeader = 3,
 kThemeBackgroundListViewWindowHeader = 4,
 kThemeBackgroundSecondaryGroupBox = 5
};
typedef UInt32 ThemeBackgroundKind;

Constants
kThemeBackgroundTabPane

The background for a tab pane.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

144 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeBackgroundPlacard
The background for a placard.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBackgroundWindowHeader
The background for a window header.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBackgroundListViewWindowHeader
The background for a window list view header.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can pass a constant of type ThemeBackgroundKind to the function ApplyThemeBackground (page
26) to specify that an embedded object have a background consistent with the current theme and object
in which it is visually embedded.

Theme Brushes
Specify theme-compliant colors and patterns for particular human interface elements.

Constants 145
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeBrushDialogBackgroundActive = 1,
 kThemeBrushDialogBackgroundInactive = 2,
 kThemeBrushAlertBackgroundActive = 3,
 kThemeBrushAlertBackgroundInactive = 4,
 kThemeBrushModelessDialogBackgroundActive = 5,
 kThemeBrushModelessDialogBackgroundInactive = 6,
 kThemeBrushUtilityWindowBackgroundActive = 7,
 kThemeBrushUtilityWindowBackgroundInactive = 8,
 kThemeBrushListViewSortColumnBackground = 9,
 kThemeBrushListViewBackground = 10,
 kThemeBrushIconLabelBackground = 11,
 kThemeBrushListViewSeparator = 12,
 kThemeBrushChasingArrows = 13,
 kThemeBrushDragHilite = 14,
 kThemeBrushDocumentWindowBackground = 15,
 kThemeBrushFinderWindowBackground = 16,
 kThemeBrushScrollBarDelimiterActive = 17,
 kThemeBrushScrollBarDelimiterInactive = 18,
 kThemeBrushFocusHighlight = 19,
 kThemeBrushPopupArrowActive = 20,
 kThemeBrushPopupArrowPressed = 21,
 kThemeBrushPopupArrowInactive = 22,
 kThemeBrushAppleGuideCoachmark = 23,
 kThemeBrushIconLabelBackgroundSelected = 24,
 kThemeBrushStaticAreaFill = 25,
 kThemeBrushActiveAreaFill = 26,
 kThemeBrushButtonFrameActive = 27,
 kThemeBrushButtonFrameInactive = 28,
 kThemeBrushButtonFaceActive = 29,
 kThemeBrushButtonFaceInactive = 30,
 kThemeBrushButtonFacePressed = 31,
 kThemeBrushButtonActiveDarkShadow = 32,
 kThemeBrushButtonActiveDarkHighlight = 33,
 kThemeBrushButtonActiveLightShadow = 34,
 kThemeBrushButtonActiveLightHighlight = 35,
 kThemeBrushButtonInactiveDarkShadow = 36,
 kThemeBrushButtonInactiveDarkHighlight = 37,
 kThemeBrushButtonInactiveLightShadow = 38,
 kThemeBrushButtonInactiveLightHighlight = 39,
 kThemeBrushButtonPressedDarkShadow = 40,
 kThemeBrushButtonPressedDarkHighlight = 41,
 kThemeBrushButtonPressedLightShadow = 42,
 kThemeBrushButtonPressedLightHighlight = 43,
 kThemeBrushBevelActiveLight = 44,
 kThemeBrushBevelActiveDark = 45,
 kThemeBrushBevelInactiveLight = 46,
 kThemeBrushBevelInactiveDark = 47,
 kThemeBrushNotificationWindowBackground = 48,
 kThemeBrushMovableModalBackground = 49,
 kThemeBrushSheetBackgroundOpaque = 50,
 kThemeBrushDrawerBackground = 51,
 kThemeBrushToolbarBackground = 52,
 kThemeBrushSheetBackgroundTransparent = 53,
 kThemeBrushMenuBackground = 54,
 kThemeBrushMenuBackgroundSelected = 55,
 kThemeBrushListViewOddRowBackground = 56,
 kThemeBrushListViewEvenRowBackground = 57,

146 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

 kThemeBrushListViewColumnDivider = 58,
 kThemeBrushSheetBackground = kThemeBrushSheetBackgroundOpaque,
 kThemeBrushBlack = -1,
 kThemeBrushWhite = -2,
 kThemeBrushPrimaryHighlightColor = -3,
 kThemeBrushSecondaryHighlightColor = -4,
 kThemeBrushAlternatePrimaryHighlightColor = -5
};
typedef SInt16 ThemeBrush;

Constants
kThemeBrushDialogBackgroundActive

An active dialog box’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushDialogBackgroundInactive
An inactive dialog box’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushAlertBackgroundActive
An active alert box’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushAlertBackgroundInactive
An inactive alert box’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushModelessDialogBackgroundActive
An active modeless dialog box’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushModelessDialogBackgroundInactive
An inactive modeless dialog box’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushUtilityWindowBackgroundActive
An active utility window’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushUtilityWindowBackgroundInactive
An inactive utility window’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 147
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeBrushListViewSortColumnBackground
The background color or pattern of the list view column that is being sorted upon.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushListViewBackground
The background color or pattern of a list view column that is not being sorted upon.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushIconLabelBackground
An icon label’s color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushListViewSeparator
The color or pattern of the horizontal lines that separate rows of items in list view columns.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushChasingArrows
Asynchronous arrows’ color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushDragHilite
The color or pattern used to indicate that an element is a valid drag-and-drop destination

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushDocumentWindowBackground
A document window’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushFinderWindowBackground
A Finder window’s background color or pattern. Generally, you should not use this constant unless
you are trying to create a window that matches a Finder window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushScrollBarDelimiterActive
The color or pattern used to outline the sides of an active scroll bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushScrollBarDelimiterInactive
The color or pattern used to outline the sides of an inactive scroll bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

148 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeBrushFocusHighlight
The color or pattern of the focus ring around an element that is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushPopupArrowActive
The color or pattern of the arrow on an active pop-up menu button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushPopupArrowPressed
The color or pattern of the arrow on a pop-up menu button that is being clicked on by the user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushPopupArrowInactive
The color or pattern of the arrow on an inactive pop-up menu button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushAppleGuideCoachmark
The color or pattern of an Apple Guide coachmark.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushIconLabelBackgroundSelected
The color or pattern of the background of an icon’s label area, when the icon is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushStaticAreaFill
The background color or pattern of an element that does not support user interaction.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushActiveAreaFill
The color or pattern of an element that supports user interaction.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonFrameActive
The color or pattern that outlines an active button. Your application should draw the button outline
outside the edge of the button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonFrameInactive
The color or pattern that outlines an inactive button. Your application should draw the button outline
outside the edge of the button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 149
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeBrushButtonFaceActive
The color or pattern of the face of an active button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonFaceInactive
The color or pattern of the face of an inactive button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonFacePressed
The color or pattern of the face of a button that is being clicked on by the user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonActiveDarkShadow
For an active button with a 2-pixel-wide edge, the color or pattern of the bottom and right sides of
the outer ring of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonActiveDarkHighlight
For an active button with a 2-pixel-wide edge, the color or pattern of the top and left sides of the
outer ring of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonActiveLightShadow
For an active button with a 2-pixel-wide edge, the color or pattern of the bottom and right sides of
the inner ring of the edge. For an active button with a 1-pixel-wide edge, the color or pattern of the
bottom and right sides of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonActiveLightHighlight
For an active button with a 2-pixel-wide edge, the color or pattern of the top and left sides of the
inner ring of the edge. For an active button with a 1-pixel-wide edge, the color or pattern of the top
and left sides of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonInactiveDarkShadow
For an inactive button with a 2-pixel-wide edge, the color or pattern of the bottom and right sides
of the outer ring of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonInactiveDarkHighlight
For an inactive button with a 2-pixel-wide edge, the color or pattern of the top and left sides of the
outer ring of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

150 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeBrushButtonInactiveLightShadow
For an inactive button with a 2-pixel-wide edge, the color or pattern of the bottom and right sides
of the inner ring of the edge. For an inactive button with a 1-pixel-wide edge, the color or pattern of
the bottom and right sides of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonInactiveLightHighlight
For an inactive button with a 2-pixel-wide edge, the color or pattern of the top and left sides of the
inner ring of the edge. For an inactive button with a 1-pixel-wide edge, the color or pattern of the
top and left sides of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonPressedDarkShadow
For a button with a 2-pixel-wide edge that is being clicked on by the user, the color or pattern of the
bottom and right sides of the outer ring of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonPressedDarkHighlight
For a button with a 2-pixel-wide edge that is being clicked on by the user, the color or pattern of the
top and left sides of the outer ring of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonPressedLightShadow
For a button with a 2-pixel-wide edge that is being clicked on by the user, the color or pattern of the
bottom and right sides of the inner ring of the edge. For a button with a 1-pixel-wide edge that is
being clicked on by the user, the color or pattern of the bottom and right sides of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushButtonPressedLightHighlight
For a button with a 2-pixel-wide edge that is being clicked on by the user, the color or pattern of the
top and left sides of the inner ring of the edge. For a button with a 1-pixel-wide edge that is being
clicked on by the user, the color or pattern of the top and left sides of the edge.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushBevelActiveLight
For an active bevel button, the color or pattern of the top and left sides of the bevel.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushBevelActiveDark
For an active bevel button, the color or pattern of the bottom and right sides of the bevel.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 151
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeBrushBevelInactiveLight
For an inactive bevel button, the color or pattern of the top and left sides of the bevel.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushBevelInactiveDark
For an inactive bevel button, the color or pattern of the bottom and right sides of the bevel.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushNotificationWindowBackground

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushMovableModalBackground

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushSheetBackgroundOpaque

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

kThemeBrushDrawerBackground

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushToolbarBackground

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

kThemeBrushSheetBackgroundTransparent

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

kThemeBrushMenuBackground

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

kThemeBrushMenuBackgroundSelected

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

kThemeBrushListViewOddRowBackground

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

kThemeBrushListViewEvenRowBackground

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

152 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeBrushListViewColumnDivider

Available in Mac OS X v10.4 and later.

Declared in Appearance.h.

kThemeBrushSheetBackground

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushBlack
Black; this color does not change from theme to theme. You may use this constant instead of specifying
a direct RGB value.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushWhite
White; this color does not change from theme to theme. You may use this constant instead of specifying
a direct RGB value.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBrushPrimaryHighlightColor

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

kThemeBrushSecondaryHighlightColor

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

kThemeBrushAlternatePrimaryHighlightColor

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

Discussion
The Appearance Manager provides the underlying support for RGB color data and overrides System 7 color
tables such as 'cctb' and 'mctb' with an abstract mechanism that allows colors and patterns to be
coordinated with the current theme. You can pass constants of type ThemeBrush in the inBrush parameter
of SetThemeBackground (page 98), SetThemePen (page 100), and SetThemeWindowBackground (page
1933) to specify that the Appearance Manager substitute whatever the appropriate color or pattern is for a
given human interface element in the current theme.

Theme Buttons
Identify types of buttons.

Constants 153
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemePushButton = 0,
 kThemeCheckBox = 1,
 kThemeRadioButton = 2,
 kThemeBevelButton = 3,
 kThemeArrowButton = 4,
 kThemePopupButton = 5,
 kThemeDisclosureButton = 6,
 kThemeIncDecButton = 7,
 kThemeSmallBevelButton = 8,
 kThemeMediumBevelButton = 3,
 kThemeLargeBevelButton = 9,
 kThemeListHeaderButton = 10,
 kThemeRoundButton = 11,
 kThemeLargeRoundButton = 12,
 kThemeSmallCheckBox = 13,
 kThemeSmallRadioButton = 14,
 kThemeRoundedBevelButton = 15,
 kThemeNormalCheckBox = 1,
 kThemeNormalRadioButton = 2
};
typedef UInt16 ThemeButtonKind;

Constants
kThemePushButton

Identifies a push button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeCheckBox
Identifies a checkbox.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeRadioButton
Identifies a radio button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBevelButton
Identifies a bevel button with a medium-width bevel; this value is the same as
kThemeMediumBevelButton.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeArrowButton
Identifies an arrow button. This button has the appearance of a single button containing small upward-
and downward-pointing triangles drawn back to back; the typical use of this button is with an editable
text field to create an editable pop-up menu. This button should not be confused with an
increment/decrement button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

154 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemePopupButton
Identifies a pop-up menu button. This button has the appearance of a single button made of two
parts: a menu item text part and an arrow part.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDisclosureButton
Identifies a disclosure triangle.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeIncDecButton
Identifies an increment/decrement or "little arrows" button. This button has the appearance of two
separate buttons—one containing an upward-pointing triangle and the other containing a
downward-pointing triangle—placed back to back. This button should not be confused with the
arrow button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSmallBevelButton
Identifies a bevel button with a small-width bevel.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMediumBevelButton
Identifies a bevel button with a medium-width bevel; this value is the same as kThemeBevelButton.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeLargeBevelButton
Identifies a bevel button with a large-width bevel.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeListHeaderButton
Identifies a sort button for the top of a list.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeRoundButton
Identifies a round button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeLargeRoundButton
Identifies a large round button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 155
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSmallCheckBox
Identifies a small checkbox.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSmallRadioButton
Identifies a small radio button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeRoundedBevelButton
Identifies a rounded bevel button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeNormalCheckBox
Identifies a checkbox; this value is the same as kThemeCheckBox.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeNormalRadioButton
Identifies a radio button; this value is the same as kThemeRadioButton.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can pass constants of type ThemeButtonKind to the function DrawThemeButton (page 31) to draw
a theme-compliant button of a specific type. You can also pass ThemeButtonKind constants to the functions
GetThemeButtonRegion (page 63) and GetThemeButtonContentBounds (page 62) to retrieve information
about a specific button type.

Theme Button Adornments
Specify the visual characteristics of a button control.

156 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeAdornmentNone = 0,
 kThemeAdornmentDefault = (1 << 0),
 kThemeAdornmentFocus = (1 << 2),
 kThemeAdornmentRightToLeft = (1 << 4),
 kThemeAdornmentDrawIndicatorOnly = (1 << 5),
 kThemeAdornmentHeaderButtonLeftNeighborSelected = (1 <<
6),
 kThemeAdornmentHeaderButtonRightNeighborSelected = (1 <<
7),
 kThemeAdornmentHeaderButtonSortUp = (1 << 8),
 kThemeAdornmentHeaderMenuButton = (1 << 9),
 kThemeAdornmentHeaderButtonNoShadow = (1 << 10),
 kThemeAdornmentHeaderButtonShadowOnly = (1 << 11),
 kThemeAdornmentNoShadow = kThemeAdornmentHeaderButtonNoShadow,
 kThemeAdornmentShadowOnly = kThemeAdornmentHeaderButtonShadowOnly,
 kThemeAdornmentArrowLeftArrow = (1 << 6),
 kThemeAdornmentArrowDownArrow = (1 << 7),
 kThemeAdornmentArrowDoubleArrow = (1 << 8),
 kThemeAdornmentArrowUpArrow = (1 << 9)
};
typedef UInt16 ThemeButtonAdornment;

Constants
kThemeAdornmentNone

If no bits are set, the button is drawn with no adornment.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentDefault
If the bit specified by this mask is set, a default button ring is drawn. This constant applies to push
button controls only.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentFocus
If the bit specified by this mask is set, a focus ring is drawn.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentRightToLeft
If the bit specified by this mask is set, the button is drawn in a right-to-left orientation.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentDrawIndicatorOnly
If the bit specified by this mask is set, only the button is drawn, not its label. This characteristic applies
to radio buttons, checkboxes, and disclosure triangles.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 157
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeAdornmentHeaderButtonLeftNeighborSelected
If the bit specified by this mask is set, the left border of the button is drawn as selected (list header
button only).

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentHeaderButtonRightNeighborSelected
If the bit specified by this mask is set, the right border of the button is drawn as selected (list header
button only).

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentHeaderButtonSortUp
If the bit specified by this mask is set the sort indicator is drawn pointing upward (list header button
only).

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentHeaderMenuButton
If the bit specified by this mask is set, the button is drawn as a header menu button (list header button
only).

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentHeaderButtonNoShadow
If the bit specified by this mask is set, the non-shadow area of the button is drawn (list header button
only).

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentHeaderButtonShadowOnly
If the bit specified by this mask is set, only the shadow area of the button is drawn (list header button
only).

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentNoShadow
Use kThemeAdornmentHeaderButtonNoShadow instead.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentShadowOnly
Use kThemeAdornmentHeaderButtonShadowOnly instead.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentArrowLeftArrow
If the bit specified by this mask is set, a left arrow is drawn on the arrow button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

158 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeAdornmentArrowDownArrow
If the bit specified by this mask is set, a down arrow is drawn on the arrow button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentArrowDoubleArrow
If the bit specified by this mask is set, a double arrow is drawn on the arrow button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAdornmentArrowUpArrow
If the bit specified by this mask is set, an up arrow is drawn on the arrow button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
The ThemeButtonAdornment enumeration defines masks your application can use in the
ThemeButtonDrawInfo (page 115) structure to specify that button controls are drawn with the appropriate
human interface characteristics.

Theme Button Values
Specify the value of a button.

enum {
 kThemeButtonOff = 0,
 kThemeButtonOn = 1,
 kThemeButtonMixed = 2,
 kThemeDisclosureRight = 0,
 kThemeDisclosureDown = 1,
 kThemeDisclosureLeft = 2
};
typedef UInt16 ThemeButtonValue;

Constants
kThemeButtonOff

Identifies a button that is not selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeButtonOn
Identifies a button that is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeButtonMixed
Identifies a button that is in the mixed state, indicating that a setting is on for some elements in a
selection and off for others. This value typically applies to checkboxes and radio buttons.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 159
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeDisclosureRight
Identifies a disclosure triangle that is pointing to the right.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDisclosureDown
Identifies a disclosure triangle that is pointing down.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDisclosureLeft
Identifies a disclosure triangle that is pointing to the left.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can use constants of type ThemeButtonValue in the ThemeButtonDrawInfo (page 115) structure to
specify that button controls are drawn with the correct values.

Theme Pop-Up Arrow Orientations
Specify the direction in which a pop-up arrow is drawn on a button.

enum {
 kThemeArrowLeft = 0,
 kThemeArrowDown = 1,
 kThemeArrowRight = 2,
 kThemeArrowUp = 3
};
typedef UInt16 ThemeArrowOrientation;

Constants
kThemeArrowLeft

A left-pointing arrow.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeArrowDown
A downward-pointing arrow.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeArrowRight
A right-pointing arrow.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeArrowUp
An upward-pointing arrow.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

160 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Discussion
You can use a constant of type ThemeArrowOrientation in the function DrawThemePopupArrow (page
43).

Theme Pop-Up Arrow Sizes
Specify the size of the pop-up arrow that is drawn on a button.

enum {
 kThemeArrow3pt = 0,
 kThemeArrow5pt = 1,
 kThemeArrow7pt = 2,
 kThemeArrow9pt = 3
};
typedef UInt16 ThemePopupArrowSize;

Constants
kThemeArrow3pt

Identifies a pop-up arrow with a 3-pixel base.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeArrow5pt
Identifies a pop-up arrow with a 5-pixel base.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeArrow7pt
Identifies a pop-up arrow with a 7-pixel base.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeArrow9pt
Identifies a pop-up arrow with a 9-pixel base.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can use a constant of type ThemePopupArrowSize in the function DrawThemePopupArrow (page 43).

Theme Checkbox Styles
Specify types of checkbox marks.

Constants 161
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeCheckBoxClassicX = 0,
 kThemeCheckBoxCheckMark = 1
};
typedef UInt16 ThemeCheckBoxStyle;

Constants
kThemeCheckBoxClassicX

An “X” type of checkbox mark.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeCheckBoxCheckMark
A checkmark type of checkbox mark.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can call the function GetThemeCheckBoxStyle (page 64) to obtain the type of checkbox mark being
used in the current theme.

Theme Cursors
Identify types of cursors.

162 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeArrowCursor = 0,
 kThemeCopyArrowCursor = 1,
 kThemeAliasArrowCursor = 2,
 kThemeContextualMenuArrowCursor = 3,
 kThemeIBeamCursor = 4,
 kThemeCrossCursor = 5,
 kThemePlusCursor = 6,
 kThemeWatchCursor = 7,
 kThemeClosedHandCursor = 8,
 kThemeOpenHandCursor = 9,
 kThemePointingHandCursor = 10,
 kThemeCountingUpHandCursor = 11,
 kThemeCountingDownHandCursor = 12,
 kThemeCountingUpAndDownHandCursor = 13,
 kThemeSpinningCursor = 14,
 kThemeResizeLeftCursor = 15,
 kThemeResizeRightCursor = 16,
 kThemeResizeLeftRightCursor = 17,
 kThemeNotAllowedCursor = 18,
 kThemeResizeUpCursor = 19,
 kThemeResizeDownCursor = 20,
 kThemeResizeUpDownCursor = 21,
 kThemePoofCursor = 22
};
typedef UInt32 ThemeCursor;

Constants
kThemeArrowCursor

The cursor identified by this constant is typically used as the standard cursor.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeCopyArrowCursor
The cursor identified by this constant is typically used when the cursor is over a location where a drag
action would initiate a copy.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAliasArrowCursor
The cursor identified by this constant is typically used when the cursor is over a location where a drag
action would create an alias or link.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeContextualMenuArrowCursor
The cursor identified by this constant is typically used when the Control key is being pressed and the
cursor is over a location where a contextual menu can be activated.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 163
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeIBeamCursor
The cursor identified by this constant is typically used when the cursor is over an area where the user
can select text.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeCrossCursor
The cursor identified by this constant is typically used when the cursor is over an area where the user
can draw graphics.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemePlusCursor
The cursor identified by this constant is typically used when the cursor is over an area where the user
can select table cells.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeWatchCursor
The cursor identified by this constant is typically used to indicate that an operation is in progress.
You can animate this cursor so that a hand of the watch appears to move.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeClosedHandCursor
The cursor identified by this constant is typically used to indicate that an object has been grabbed
and is being moved by the user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeOpenHandCursor
The cursor identified by this constant is typically used to indicate that an object may be grabbed or
moved by the user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemePointingHandCursor
The cursor identified by this constant has the appearance of a pointing hand. You would typically use
this constant to indicate that the user may select an object by pressing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeCountingUpHandCursor
The cursor identified by this constant is typically used to indicate that an operation is in progress.
You can animate this cursor so that the fingers appear to open from the palm one by one.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

164 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeCountingDownHandCursor
The cursor identified by this constant is typically used to indicate that an operation is in progress.
You can animate this cursor so that the fingers appear to fold into the palm one by one.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeCountingUpAndDownHandCursor
The cursor identified by this constant is typically used to indicate that an operation is in progress.
You can animate this cursor so that the fingers appear to alternate between opening from the palm
one by one and folding into the palm one by one.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSpinningCursor
The cursor identified by this constant is typically used to indicate that an operation is in progress.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeResizeLeftCursor
The cursor identified by this constant is typically used to indicate that an object may be resized by
dragging to the left.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeResizeRightCursor
The cursor identified by this constant is typically used to indicate that an object may be resized by
dragging to the right.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeResizeLeftRightCursor
The cursor identified by this constant is typically used to indicate that an object may be resized in
either direction horizontally.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeNotAllowedCursor
The cursor identified by this constant is typically used to indicate that the current action is not allowed.
For example, you could use this cursor to indicate that an object being dragged cannot be dropped
at the current mouse position.

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

kThemeResizeUpCursor
The cursor identified by this constant is typically used to indicate that an object may be resized by
dragging vertically in the up direction.

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

Constants 165
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeResizeDownCursor
The cursor identified by this constant is typically used to indicate that an object may be resized by
dragging vertically in the down direction.

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemeResizeUpDownCursor
The cursor identified by this constant is typically used to indicate that an object may be resized by
dragging vertically in either direction.

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

kThemePoofCursor
The cursor identified by this constant is typically used to indicate that a dragged object will go away
if it is released at the current mouse position. When the object goes away, a poof cloud animation
should occur.

Available in Mac OS X v10.3 and later.

Declared in Appearance.h.

Discussion
You can pass constants of type ThemeCursor to the functions SetThemeCursor (page 98) and
SetAnimatedThemeCursor (page 96) to specify the category of cursor to be displayed for your application.
The Appearance Manager substitutes the theme-specific instance of the cursor for the cursor category as is
appropriate.

Theme Font IDs
Identify types of fonts.

166 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeSystemFont = 0,
 kThemeSmallSystemFont = 1,
 kThemeSmallEmphasizedSystemFont = 2,
 kThemeViewsFont = 3,
 kThemeEmphasizedSystemFont = 4,
 kThemeApplicationFont = 5,
 kThemeLabelFont = 6,
 kThemeMenuTitleFont = 100,
 kThemeMenuItemFont = 101,
 kThemeMenuItemMarkFont = 102,
 kThemeMenuItemCmdKeyFont = 103,
 kThemeWindowTitleFont = 104,
 kThemePushButtonFont = 105,
 kThemeUtilityWindowTitleFont = 106,
 kThemeAlertHeaderFont = 107,
 kThemeSystemFontDetail = 7,
 kThemeSystemFontDetailEmphasized = 8,
 kThemeCurrentPortFont = 200,
 kThemeToolbarFont = 108
};
typedef UInt16 ThemeFontID;

Constants
kThemeSystemFont

The current (large) system font. This is the font used to draw most interface elements. If you can't find
a more appropriate ThemeFontID constant, you should use this one. This font is suitable for drawing
titles on most custom widgets and buttons, as well as most static text in dialogs and windows.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSmallSystemFont
The current small system font. This is the font used to draw interface elements when space is at a
premium.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSmallEmphasizedSystemFont
The current small, emphasized system font. This constant is identical to kThemeSmallSystemFont,
except it draws bold or otherwise emphasized text, as is appropriate for your application’s language
and script.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeViewsFont
The current views font. This is the font used to draw file and folder names in Finder windows or other
browsable lists.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeEmphasizedSystemFont
The current emphasized system font. This constant is identical to kThemeSystemFont, except it
draws bold or otherwise emphasized text, as is appropriate for your application’s language and script.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 167
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeApplicationFont
An analog to the Script Manager's notion of the Application Font. This font is a suitable default choice
for your application's document-style text editing areas.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeLabelFont
Generally smaller than kThemeSmallSystemFont, this font is appropriate for drawing text labels
next to image content that reinforces the meaning of the text, such as you may use with a bevel
button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuTitleFont
The font used to draw menu titles in the menu bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemFont
The font used to draw menu items in menus.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemMarkFont
The font used to draw menu item marks in menus.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemCmdKeyFont
The font used to draw menu item command key equivalents in menus.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeWindowTitleFont
The font used to draw text in most window title bars.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemePushButtonFont
The font used to draw text labels on push buttons.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeUtilityWindowTitleFont
The font used to draw text in utility window title bars.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAlertHeaderFont
The font used to draw the first and most important message of an alert window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

168 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeCurrentPortFont
Unlike the otherThemeFontID constants,kThemeCurrentPortFontdoesn't map to a font appropriate
to your application's language or script. It maps directly to the font, size, and style of the current
QuickDraw port. This allows you to get somewhat customized behavior out of the functions that take
ThemeFontID constants.

Note, however, that kThemeCurrentPortFont does not support all QuickDraw styles on all platforms;
in particular, outline and shadow style are not supported on Mac OS X. Additionally,
kThemeCurrentPortFont is not completely unicode savvy; use of kThemeCurrentPortFont may
result in errors having to do with the current port's font not being appropriate for rendering or
measuring all glyphs in a given unicode string.

Because of overhead associated with gathering QuickDraw font information and converting it to the
native font format on Mac OS X, using kThemeCurrentPortFont may slow down your text drawing
and measuring significantly compared to other ThemeFontID constants. Use
kThemeCurrentPortFont only as a last resort.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeToolbarFont
The font used to draw the label of a toolbar item.

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

Discussion
A ThemeFontID constant is a virtual font ID that you can pass to one of the Appearance Manager’s text-related
functions. Within these functions, the ThemeFontID is mapped to the appropriate font or fonts, size, and
style based on a number of factors, including:

 ■ the system appearance (Platinum on Mac OS 9 and Aqua on Mac OS X)

 ■ the string to be rendered, if any

 ■ the language or script that the application is running in

The ThemeFontID constants allow you to get the correct text appearance for the platform your application
is currently running on.

kPublicThemeFontCount
The total number of public ThemeFontID constants.

enum {
 kPublicThemeFontCount = 17
};

Theme Text Colors
Identify the text colors appropriate to the contexts in which text is used.

Constants 169
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeTextColorDialogActive = 1,
 kThemeTextColorDialogInactive = 2,
 kThemeTextColorAlertActive = 3,
 kThemeTextColorAlertInactive = 4,
 kThemeTextColorModelessDialogActive = 5,
 kThemeTextColorModelessDialogInactive = 6,
 kThemeTextColorWindowHeaderActive = 7,
 kThemeTextColorWindowHeaderInactive = 8,
 kThemeTextColorPlacardActive = 9,
 kThemeTextColorPlacardInactive = 10,
 kThemeTextColorPlacardPressed = 11,
 kThemeTextColorPushButtonActive = 12,
 kThemeTextColorPushButtonInactive = 13,
 kThemeTextColorPushButtonPressed = 14,
 kThemeTextColorBevelButtonActive = 15,
 kThemeTextColorBevelButtonInactive = 16,
 kThemeTextColorBevelButtonPressed = 17,
 kThemeTextColorPopupButtonActive = 18,
 kThemeTextColorPopupButtonInactive = 19,
 kThemeTextColorPopupButtonPressed = 20,
 kThemeTextColorIconLabel = 21,
 kThemeTextColorListView = 22

/*Text colors available in Appearance 1.0.1 and later*/
 kThemeTextColorDocumentWindowTitleActive = 23,
 kThemeTextColorDocumentWindowTitleInactive = 24,
 kThemeTextColorMovableModalWindowTitleActive = 25,
 kThemeTextColorMovableModalWindowTitleInactive = 26,
 kThemeTextColorUtilityWindowTitleActive = 27,
 kThemeTextColorUtilityWindowTitleInactive = 28,
 kThemeTextColorPopupWindowTitleActive = 29,
 kThemeTextColorPopupWindowTitleInactive = 30,
 kThemeTextColorRootMenuActive = 31,
 kThemeTextColorRootMenuSelected = 32,
 kThemeTextColorRootMenuDisabled = 33,
 kThemeTextColorMenuItemActive = 34,
 kThemeTextColorMenuItemSelected = 35,
 kThemeTextColorMenuItemDisabled = 36,
 kThemeTextColorPopupLabelActive = 37,
 kThemeTextColorPopupLabelInactive = 38

/* Text colors available in Appearamce 1.1 and later*/
 kThemeTextColorTabFrontActive = 39,
 kThemeTextColorTabNonFrontActive = 40,
 kThemeTextColorTabNonFrontPressed = 41,
 kThemeTextColorTabFrontInactive = 42,
 kThemeTextColorTabNonFrontInactive = 43,
 kThemeTextColorIconLabelSelected = 44,
 kThemeTextColorBevelButtonStickyActive = 45,
 kThemeTextColorBevelButtonStickyInactive = 46

/*Text colors available in Appearance 1.1.1 and later*/
 kThemeTextColorNotification = 47

/*Text colors available later than Mac OS X 10.1.3
 kThemeTextColorSystemDetail = 48

170 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

/*Specific colors that do not change from theme to theme*/
 kThemeTextColorBlack = -1,
 kThemeTextColorWhite = -2
};
typedef SInt16 ThemeTextColor;

Constants
kThemeTextColorDialogActive

Text color for an active dialog box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorDialogInactive
Text color for an inactive dialog box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorAlertActive
Text color for an active alert box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorAlertInactive
Text color for an inactive alert box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorModelessDialogActive
Text color for an active modeless dialog box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorModelessDialogInactive
Text color for an inactive modeless dialog box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorWindowHeaderActive
Text color for the window header of an active window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorWindowHeaderInactive
Text color for the window header of an inactive window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorPlacardActive
Text color for a placard in an active window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 171
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeTextColorPlacardInactive
Text color for a placard in an inactive window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorPlacardPressed
Text color for a placard that is being clicked on by the user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorPushButtonActive
Text color for an active push button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorPushButtonInactive
Text color for an inactive push button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorPushButtonPressed
Text color for a push button that is being clicked on by the user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorBevelButtonActive
Text color for an active bevel button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorBevelButtonInactive
Text color for an inactive bevel button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorBevelButtonPressed
Text color for a bevel button that is being clicked on by the user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorPopupButtonActive
Text color for the menu of an active pop-up menu button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorPopupButtonInactive
Text color for the menu of an inactive pop-up menu button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

172 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeTextColorPopupButtonPressed
Text color for the menu of a pop-up menu button that is being clicked on by the user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorIconLabel
Text color for an icon label.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorListView
Text color for the contents of a list view column.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorDocumentWindowTitleActive
Text color for the title of an active document window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorDocumentWindowTitleInactive
Text color for the title of an inactive document window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorMovableModalWindowTitleActive
Text color for the title of an active movable modal window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorMovableModalWindowTitleInactive
Text color for the title of inactive movable modal window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorUtilityWindowTitleActive
Text color for the title of an active utility (floating) window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorUtilityWindowTitleInactive
Text color for the title of an inactive utility (floating) window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorPopupWindowTitleActive
Text color for the title of an active pop-up window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 173
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeTextColorPopupWindowTitleInactive
Text color for the title of an inactive pop-up window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorRootMenuActive
Text color for an active menu bar title.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorRootMenuSelected
Text color for a menu bar title that is being selected by the user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorRootMenuDisabled
Text color for a disabled menu bar title.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorMenuItemActive
Text color for an active menu item.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorMenuItemSelected
Text color for a menu item that is being selected by the user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorMenuItemDisabled
Text color for a disabled menu item.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorPopupLabelActive
Text color for the label of an active pop-up menu button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorPopupLabelInactive
Text color for the label of an inactive pop-up menu button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorTabFrontActive
Text color for the front tab of an active tab control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

174 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeTextColorTabNonFrontActive
Text color for an active tab that is not the frontmost of a tab control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorTabNonFrontPressed
Text color for a tab that is not the frontmost of a tab control, when the tab is being clicked on by the
user.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorTabFrontInactive
Text color for the front tab of an inactive tab control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorTabNonFrontInactive
Text color for an inactive tab that is not the frontmost of a tab control. The tab may either be inactive
because it has been individually disabled or because the tab control as a whole is currently inactive.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorIconLabelSelected
Text color for the label of an icon that is currently selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorBevelButtonStickyActive
Text color for an active bevel button that is currently on.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorBevelButtonStickyInactive
Text color for an inactive bevel button that is currently on.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorBlack
Black; this color does not change from theme to theme. You may use this constant instead of specifying
a direct RGB value.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTextColorWhite
White; this color does not change from theme to theme. You may use this constant instead of specifying
a direct RGB value.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 175
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Discussion
You can pass a constant of type ThemeTextColor to the function SetThemeTextColor (page 101) to specify
that the Appearance Manager substitute whatever the appropriate text color is for a given context under
the current theme. You can use the function GetThemeTextColor (page 74) to obtain the actual color in
use under the current theme for the specified ThemeTextColor constant.

Theme Menu Types
Specify a type of menu.

enum {
 kThemeMenuTypePullDown = 0,
 kThemeMenuTypePopUp = 1,
 kThemeMenuTypeHierarchical = 2,
 kThemeMenuTypeInactive = 0x0100
};
typedef UInt16 ThemeMenuType;

Constants
kThemeMenuTypePullDown

A pull-down menu.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuTypePopUp
A pop-up menu.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuTypeHierarchical
A hierarchical menu.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuTypeInactive
An inactive menu. Add this value to any other menu type if the entire menu is inactive.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can pass constants of type ThemeMenuType in the inMenuType parameter of
GetThemeMenuBackgroundRegion (page 66) and DrawThemeMenuBackground (page 37).

Theme Menu States
Specify the state in which theme-compliant menus are drawn.

176 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeMenuActive = 0,
 kThemeMenuSelected = 1,
 kThemeMenuDisabled = 3
};
typedef UInt16 ThemeMenuState;

Constants
kThemeMenuActive

Menu is drawn in its active state.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuSelected
Menu is drawn in its selected state.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can pass constants of type ThemeMenuState in the inState parameter of DrawThemeMenuItem (page
38) and DrawThemeMenuTitle (page 40). The ThemeMenuState constants are available with Appearance
Manager 1.0.1 and later.

Theme Menu Bar States
Specify whether theme-compliant menu bars are drawn as normal or selected.

enum {
 kThemeMenuBarNormal = 0,
 kThemeMenuBarSelected = 1
};
typedef UInt16 ThemeMenuBarState;

Constants
kThemeMenuBarNormal

Menu bar is drawn in its normal state.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuBarSelected
Menu bar is drawn in its selected state.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can pass constants of type ThemeMenuBarState in the inState parameter of
DrawThemeMenuBarBackground (page 38). The ThemeMenuBarState constants are available with
Appearance Manager 1.0.1 and later.

Theme Menu Item Types
Identify types of menu items.

Constants 177
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeMenuItemPlain = 0,
 kThemeMenuItemHierarchical = 1,
 kThemeMenuItemScrollUpArrow = 2,
 kThemeMenuItemScrollDownArrow = 3,
 kThemeMenuItemAtTop = 0x0100,
 kThemeMenuItemAtBottom = 0x0200,
 kThemeMenuItemHierBackground = 0x0400,
 kThemeMenuItemPopUpBackground = 0x0800,
 kThemeMenuItemHasIcon = 0x8000,
 kThemeMenuItemNoBackground = 0x4000
};
typedef UInt16 ThemeMenuItemType;

Constants
kThemeMenuItemPlain

A plain menu item.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemHierarchical
A hierarchical menu item.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemScrollUpArrow
A scroll-up arrow.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemScrollDownArrow
A scroll-down arrow.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemAtTop
This value may be added to other ThemeMenuItemType constants to specify that the item being
drawn appears at the top of the menu.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemAtBottom
This value may be added to other ThemeMenuItemType constants to specify that the item being
drawn appears at the bottom of the menu.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemHierBackground
This value may be added to other ThemeMenuItemType constants to specify that the item being
drawn is located in a hierarchical menu.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

178 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeMenuItemPopUpBackground
This value may be added to other ThemeMenuItemType constants to specify that the item being
drawn is located in a pop-up menu.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemHasIcon
This value may be added to the kThemeMenuItemPlain or kThemeMenuItemHierarchical
constants, to specify that an icon is drawn along with the item text. This value may not be used with
the kThemeMenuItemScrollUpArrow and kThemeMenuItemScrollDownArrow constants.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuItemNoBackground
This value may be added to otherThemeMenuItemType constants to specify that the menu background
should not be drawn along with the menu item. Available in Mac OS X.

Available in Mac OS X v10.1 and later.

Declared in Appearance.h.

Discussion
Your application may pass a ThemeMenuItemType constant to the function DrawThemeMenuItem (page
38) to draw a menu item of the specified type, or it may pass a ThemeMenuItemType constant to the function
GetThemeMenuItemExtra (page 68) to retrieve spatial information for the given menu item type under
the current theme.

kThemeMenuSquareMenuBar
Indicates that the menu bar should be drawn with square corners.

enum {
 kThemeMenuSquareMenuBar = (1 << 0)
};

Constants
kThemeMenuSquareMenuBar

Menu bar is drawn with square corners.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
If you wish the menu bar to be drawn with square upper corners (as for a laptop system) instead of rounded
ones (as for a desktop system), your application should set the bit for the attribute
kThemeMenuSquareMenuBar.

Theme Scroll Bar Arrow Styles
Specify types of scroll bar arrows.

Constants 179
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeScrollBarArrowsSingle = 0,
 kThemeScrollBarArrowsLowerRight = 1
};
typedef UInt16 ThemeScrollBarArrowStyle;

Constants
kThemeScrollBarArrowsSingle

Specifies the use of a single arrow at each end of a scroll bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeScrollBarArrowsLowerRight
Specifies the use of double arrows at one end of a scroll bar. For vertical scroll bars, the double arrows
are located at the lower end of the scroll bar. For horizontal scroll bars, the double arrows are located
at the right end of the scroll bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can call the function GetThemeScrollBarArrowStyle (page 70) to obtain the type of scroll bar arrows
being used in the current theme.

Theme Scroll Box Styles
Specify types of scroll boxes.

enum {
 kThemeScrollBarThumbNormal = 0,
 kThemeScrollBarThumbProportional = 1
};
typedef UInt16 ThemeScrollBarThumbStyle;

Constants
kThemeScrollBarThumbNormal

A classic scroll box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeScrollBarThumbProportional
A proportional scroll box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can call the function GetThemeScrollBarThumbStyle (page 71) to obtain the type of scroll boxes
(also known as "scroll indicators" or "thumbs") being used in the current theme.

Theme Size Box Directions
Identify the directions in which a window may be resized.

180 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeGrowLeft = (1 << 0),
 kThemeGrowRight = (1 << 1),
 kThemeGrowUp = (1 << 2),
 kThemeGrowDown = (1 << 3)
};
typedef UInt16 ThemeGrowDirection;

Constants
kThemeGrowLeft

If the bit specified by this mask is set, the object can grow to the left.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeGrowRight
If the bit specified by this mask is set, the object can grow to the right.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeGrowUp
If the bit specified by this mask is set, the object can grow upward.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeGrowDown
If the bit specified by this mask is set, the object can grow downward.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
The ThemeGrowDirection enumeration defines masks your application can use to specify the directions
in which a window may be resized. You may use constants of type ThemeGrowDirection with the function
DrawThemeStandaloneGrowBox (page 48) to draw a size box and with the function
GetThemeStandaloneGrowBoxBounds (page 72) to obtain the bounding rectangle of a size box. The
constants may be combined to set more than one direction of growth.

Theme Thumb Directions
Specify the direction in which the indicator points in a slider control.

enum {
 kThemeThumbPlain = 0,
 kThemeThumbUpward = 1,
 kThemeThumbDownward = 2
};
typedef UInt8 ThemeThumbDirection;

Constants
kThemeThumbPlain

A plain indicator; that is, one that does not point in any direction.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 181
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeThumbUpward
For a horizontal slider, an upward-pointing indicator. For a vertical slider, a left-pointing indicator.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeThumbDownward
For a horizontal slider, a downward-pointing indicator. For a vertical slider, a right-pointing indicator.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can use constants of type ThemeThumbDirection in the SliderTrackInfo (page 114) structure. You
may use these constants with either horizontal or vertical sliders, and the Appearance Manager interprets
the direction of the indicator appropriately.

Theme Tab Directions
Specify the orientation of a tab.

enum {
 kThemeTabNorth = 0,
 kThemeTabSouth = 1,
 kThemeTabEast = 2,
 kThemeTabWest = 3
};
typedef UInt16 ThemeTabDirection;

Constants
kThemeTabNorth

An upward-pointing tab.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTabSouth
A downward-pointing tab.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTabEast
A right-pointing tab.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTabWest
A left-pointing tab.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can pass constants of type ThemeTabDirection to the function DrawThemeTab (page 50) to draw
theme-compliant tabs that are oriented in various directions. You can also pass a ThemeTabDirection
constant to the function GetThemeTabRegion (page 73) to obtain the region containing a tab oriented in
a particular direction.

182 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Theme Tab Styles
Specfiy a type of tab.

enum {
 kThemeTabNonFront = 0,
 kThemeTabNonFrontPressed = 1,
 kThemeTabNonFrontInactive = 2,
 kThemeTabFront = 3,
 kThemeTabFrontInactive = 4,
 kThemeTabNonFrontUnavailable = 5,
 kThemeTabFrontUnavailable = 6
};
typedef UInt16 ThemeTabStyle;

Constants
kThemeTabNonFront

An active tab that is not the frontmost in a tab control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTabNonFrontPressed
A tab that is being clicked on by the user which is not the frontmost tab in a tab control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTabNonFrontInactive
An inactive tab that is not the frontmost in a tab control. The tab may either be inactive because it
has been individually disabled or because the tab control as a whole is currently inactive.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTabFront
The frontmost tab in an active tab control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTabFrontInactive
The frontmost tab in an inactive tab control.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can pass a constant of type ThemeTabStyle to the function DrawThemeTab (page 50) to draw a
theme-compliant tab in a specific state. You can also pass a ThemeTabStyle constant to the function
GetThemeTabRegion (page 73) to obtain the region containing a tab in a specific state.

Tab Heights
Specify the height of a tab.

Constants 183
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeSmallTabHeight = 16,
 kThemeLargeTabHeight = 21,
 kThemeTabPaneOverlap = 3,
 kThemeSmallTabHeightMax = 19,
 kThemeLargeTabHeightMax = 24
};

Constants
kThemeSmallTabHeight

The amount that small tabs protrude from the frame.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeLargeTabHeight
The amount that large tabs protrude from the frame.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTabPaneOverlap
The amount that tabs overlap the frame.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSmallTabHeightMax
The small tab height, including the overlap.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeLargeTabHeightMax
The large tab height, including the overlap.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
Use the kThemeSmallTabHeightMax and kThemeLargeTabHeightMax constants when calculating the
rectangles to draw tabs into. This height includes the tab frame overlap. Tabs that are not in the front are
only drawn to where they meet the frame, as if the height was just kThemeLargeTabHeight, for example.
Remember that for east and west tabs, the height referred to is actually the width.

Theme Track Attributes
Specify attributes of a track control.

184 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeTrackHorizontal = (1 << 0),
 kThemeTrackRightToLeft = (1 << 1),
 kThemeTrackShowThumb = (1 << 2),
 kThemeTrackThumbRgnIsNotGhost = (1 << 3),
 kThemeTrackNoScrollBarArrows = (1 << 4),
 kThemeTrackHasFocus = (1 << 5)
};
typedef UInt16 ThemeTrackAttributes;

Constants
kThemeTrackHorizontal

If the bit specified by this mask is set, the track is horizontally, not vertically, oriented.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTrackRightToLeft
If the bit specified by this mask is set, values for the track increase from right to left if the track is
horizontally oriented, or from bottom to top if the track is vertically oriented.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTrackShowThumb
If the bit specified by this mask is set, an indicator is drawn for this track.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTrackThumbRgnIsNotGhost
If the bit specified by this mask is set, the thumb region is drawn opaque, rather than as a ghost.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTrackNoScrollBarArrows
If the bit specified by this mask is set, the track scroll bar is drawn without arrows. This attribute
currently has no effect.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTrackHasFocus
If the bit specified by this mask is set, the thumb has focus. This attribute currently has effect only on
sliders.

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

Discussion
The ThemeTrackAttributes enumeration defines masks your application can use in the
ThemeTrackDrawInfo (page 116) structure to specify various attributes of track controls.

Theme Track States
Specify the state of a track control.

Constants 185
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeTrackActive = 0,
 kThemeTrackDisabled = 1,
 kThemeTrackNothingToScroll = 2,
 kThemeTrackInactive = 3
};
typedef UInt8 ThemeTrackEnableState;

Constants
kThemeTrackActive

A track in the active state.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTrackDisabled
A track in the disabled state.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTrackNothingToScroll
For scroll bars, the window containing the track is expanded to a sufficiently large state such that all
the content is viewable and there is nothing remaining to scroll.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can use constants of type ThemeTrackEnableState in the ThemeTrackDrawInfo (page 116) structure
and in the functionsGetThemeScrollBarTrackRect (page 71) andHitTestThemeScrollBarArrows (page
83).

Theme Track Kinds
Identify specific kinds of track-based controls to the Appearance Manager.

enum {
 kThemeMediumScrollBar = 0,
 kThemeSmallScrollBar = 1,
 kThemeMediumSlider = 2,
 kThemeMediumProgressBar = 3,
 kThemeMediumIndeterminateBar = 4,
 kThemeRelevanceBar = 5,
 kThemeSmallSlider = 6,
 kThemeLargeProgressBar = 7,
 kThemeLargeIndeterminateBar = 8
};
typedef UInt16 ThemeTrackKind;

Constants
kThemeMediumScrollBar

A scroll bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

186 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSmallScrollBar
A small scroll bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMediumSlider
A slider bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMediumProgressBar
A progress bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMediumIndeterminateBar
An indeterminate progress bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Theme Track Press States
Identify what is pressed in an active scroll bar or slider.

enum {
 kThemeLeftOutsideArrowPressed = 0x01,
 kThemeLeftInsideArrowPressed = 0x02,
 kThemeLeftTrackPressed = 0x04,
 kThemeThumbPressed = 0x08,
 kThemeRightTrackPressed = 0x10,
 kThemeRightInsideArrowPressed = 0x20,
 kThemeRightOutsideArrowPressed = 0x40,
 kThemeTopOutsideArrowPressed = 0x01,
 kThemeTopInsideArrowPressed = 0x02,
 kThemeTopTrackPressed = 0x04,
 kThemeBottomTrackPressed = 0x10,
 kThemeBottomInsideArrowPressed = 0x20,
 kThemeBottomOutsideArrowPressed = 0x40
};
typedef UInt8 ThemeTrackPressState;

Constants
kThemeLeftOutsideArrowPressed

For a horizontal scroll bar containing a single pair of arrows, this constant indicates that the arrow on
the left is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 187
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeLeftInsideArrowPressed
For a horizontal scroll bar containing a single pair of arrows, this constant should not be used. For a
horizontal scroll bar containing two pairs of arrows with one pair at each end, this constant indicates
that the inner arrow at the left end of the scroll bar is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeLeftTrackPressed
For a horizontal scroll bar or slider, indicates that the end of the track to the left of the scroll box or
indicator is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeThumbPressed
Indicates that the scroll box or indicator is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeRightTrackPressed
For a horizontal scroll bar or slider, indicates that the end of the track to the right of the scroll box or
indicator is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeRightInsideArrowPressed
For a horizontal scroll bar containing a single pair of arrows, this constant should not be used. For a
horizontal scroll bar containing two pairs of arrows with one pair at each end, this constant indicates
that the inner arrow at the right end of the scroll bar is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeRightOutsideArrowPressed
For a horizontal scroll bar containing a single pair of arrows, this constant indicates that the arrow on
the right is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTopOutsideArrowPressed
For a vertical scroll bar containing a single pair of arrows, this constant indicates that the arrow on
the top is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeTopInsideArrowPressed
For a vertical scroll bar containing a single pair of arrows, this constant should not be used. For a
vertical scroll bar containing two pairs of arrows with one pair at each end, this constant indicates
that the inner arrow at the top end of the scroll bar is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

188 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeTopTrackPressed
For a vertical scroll bar or slider, indicates that the end of the track above the scroll box or indicator
is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBottomTrackPressed
For a vertical scroll bar or slider, indicates that the end of the track beneath the scroll box or indicator
is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBottomInsideArrowPressed
For a vertical scroll bar containing a single pair of arrows, this constant should not be used. For a
vertical scroll bar containing two pairs of arrows with one pair at each end, this constant indicates
that the inner arrow at the bottom end of the scroll bar is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeBottomOutsideArrowPressed
For a vertical scroll bar containing a single pair of arrows, this constant indicates that the arrow on
the bottom is selected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can use constants of type ThemeTrackPressState in structures of type ScrollBarTrackInfo (page
114) and SliderTrackInfo (page 114) to identify what is pressed in an active scroll bar or slider; the press
state is ignored if the control is not active.

Note that some constants are undefined when the corresponding arrows do not exist in the current visual
appearance. Prior to using the ThemeTrackPressState constants, your application should call the function
GetThemeScrollBarArrowStyle (page 70) to obtain the type of scroll bar arrows currently being used.

Theme Window Types
Identify windows of specific visual categories.

Constants 189
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeDocumentWindow = 0,
 kThemeDialogWindow = 1,
 kThemeMovableDialogWindow = 2,
 kThemeAlertWindow = 3,
 kThemeMovableAlertWindow = 4,
 kThemePlainDialogWindow = 5,
 kThemeShadowDialogWindow = 6,
 kThemePopupWindow = 7,
 kThemeUtilityWindow = 8,
 kThemeUtilitySideWindow = 9,
 kThemeSheetWindow = 10,
 kThemeDrawerWindow = 11
};
typedef UInt16 ThemeWindowType;

Constants
kThemeDocumentWindow

A document window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDialogWindow
A modal dialog box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMovableDialogWindow
A movable modal dialog box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeAlertWindow
An alert box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMovableAlertWindow
A movable alert box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemePlainDialogWindow
A plain modal dialog box. This window visually corresponds to that produced by the plainDBox
pre–Appearance Manager window definition ID and does not change appearance by theme.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeShadowDialogWindow
A dialog box with shadowing.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

190 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemePopupWindow
A pop-up window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeUtilityWindow
A utility window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeUtilitySideWindow
A utility window with a side title bar.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Theme Window Attributes
Specify interface elements in a window.

enum {
 kThemeWindowHasGrow = (1 << 0),
 kThemeWindowHasHorizontalZoom = (1 << 3),
 kThemeWindowHasVerticalZoom = (1 << 4),
 kThemeWindowHasFullZoom = kThemeWindowHasHorizontalZoom +
kThemeWindowHasVerticalZoom,
 kThemeWindowHasCloseBox = (1 << 5),
 kThemeWindowHasCollapseBox = (1 << 6),
 kThemeWindowHasTitleText = (1 << 7),
 kThemeWindowIsCollapsed = (1 << 8),
 kThemeWindowHasDirty = (1 << 9)
};
typedef UInt32 ThemeWindowAttributes;

Constants
kThemeWindowHasGrow

If the bit specified by this mask is set, the window contains a size box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeWindowHasHorizontalZoom
If the bit specified by this mask is set, the window contains a horizontal zoom box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeWindowHasVerticalZoom
If the bit specified by this mask is set, the window contains a vertical zoom box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 191
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeWindowHasFullZoom
If the bit specified by this mask is set, the window contains a full (horizontal and vertical) zoom box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeWindowHasCloseBox
If the bit specified by this mask is set, the window contains a close box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeWindowHasCollapseBox
If the bit specified by this mask is set, the window contains a collapse box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeWindowHasTitleText
If the bit specified by this mask is set, the window contains a title.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeWindowIsCollapsed
If the bit specified by this mask is set, the window is currently collapsed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
The ThemeWindowAttributes enumeration defines masks your application can use to specify the various
interface elements that a given window contains.

Theme Title Bar Items
Identify specific types of window title bar items.

enum {
 kThemeWidgetCloseBox = 0,
 kThemeWidgetZoomBox = 1,
 kThemeWidgetCollapseBox = 2,
 kThemeWidgetDirtyCloseBox = 6
};
typedef UInt16 ThemeTitleBarWidget;

Constants
kThemeWidgetCloseBox

Identifies a close box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeWidgetZoomBox
Identifies a zoom box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

192 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeWidgetCollapseBox
Identifies a collapse box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You may pass constants of type ThemeTitleBarWidget to the function DrawThemeTitleBarWidget (page
54) to draw specific types of window title bar items. The Appearance Manager draws a theme-compliant
version of the title bar item type, as is appropriate.

Pop-up Window Tab Positions
Indicate how a pop-up window’s tab is positioned.

enum {
 kThemePopupTabNormalPosition = 0,
 kThemePopupTabCenterOnWindow = 1,
 kThemePopupTabCenterOnOffset = 2
};

Constants
kThemePopupTabNormalPosition

Specifies that the left edge of the tab is to be drawn at the position indicated by the popupTabOffset
field of the ThemeWindowMetrics structure.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemePopupTabCenterOnWindow
Specifies that the tab is to be drawn centered on the window; the popupTabOffset field is ignored.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemePopupTabCenterOnOffset
Specifies that the tab is to be drawn centered at the position indicated by the popupTabOffset field.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can use these constants in the popupTabPosition field of the ThemeWindowMetrics structure.

Theme Sound Masks
Define masks that are used to specify the classes of sounds that are enabled for a theme.

Constants 193
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeNoSounds = 0,
 kThemeWindowSoundsMask = (1 << 0),
 kThemeMenuSoundsMask = (1 << 1),
 kThemeControlSoundsMask = (1 << 2),
 kThemeFinderSoundsMask = (1 << 3)
};

Constants
kThemeNoSounds

If no bits are set, no theme sounds are enabled.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeWindowSoundsMask
If the bit specified by this mask is set, window sounds are enabled.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeMenuSoundsMask
If the bit specified by this mask is set, menu sounds are enabled.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeControlSoundsMask
If the bit specified by this mask is set, control sounds are enabled.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeFinderSoundsMask
If the bit specified by this mask is set, Finder sounds are enabled.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
You can use these masks to operate upon the unsigned 32-bit integer contained in the kThemeSoundMaskTag
collection item, which is described in “Theme Collection Tags” (page 122).

Theme Sounds
Identify theme-specific sounds played when an interface object changes state.

194 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeSoundNone = 0,
 kThemeSoundMenuOpen = 'mnuo',
 kThemeSoundMenuClose = 'mnuc',
 kThemeSoundMenuItemHilite = 'mnui',
 kThemeSoundMenuItemRelease = 'mnus',
 kThemeSoundWindowClosePress = 'wclp',
 kThemeSoundWindowCloseEnter = 'wcle',
 kThemeSoundWindowCloseExit = 'wclx',
 kThemeSoundWindowCloseRelease = 'wclr',
 kThemeSoundWindowZoomPress = 'wzmp',
 kThemeSoundWindowZoomEnter = 'wzme',
 kThemeSoundWindowZoomExit = 'wzmx',
 kThemeSoundWindowZoomRelease = 'wzmr',
 kThemeSoundWindowCollapsePress = 'wcop',
 kThemeSoundWindowCollapseEnter = 'wcoe',
 kThemeSoundWindowCollapseExit = 'wcox',
 kThemeSoundWindowCollapseRelease = 'wcor',
 kThemeSoundWindowDragBoundary = 'wdbd',
 kThemeSoundUtilWinClosePress = 'uclp',
 kThemeSoundUtilWinCloseEnter = 'ucle',
 kThemeSoundUtilWinCloseExit = 'uclx',
 kThemeSoundUtilWinCloseRelease = 'uclr',
 kThemeSoundUtilWinZoomPress = 'uzmp',
 kThemeSoundUtilWinZoomEnter = 'uzme',
 kThemeSoundUtilWinZoomExit = 'uzmx',
 kThemeSoundUtilWinZoomRelease = 'uzmr',
 kThemeSoundUtilWinCollapsePress = 'ucop',
 kThemeSoundUtilWinCollapseEnter = 'ucoe',
 kThemeSoundUtilWinCollapseExit = 'ucox',
 kThemeSoundUtilWinCollapseRelease = 'ucor',
 kThemeSoundUtilWinDragBoundary = 'udbd',
 kThemeSoundWindowOpen = 'wopn',
 kThemeSoundWindowClose = 'wcls',
 kThemeSoundWindowZoomIn = 'wzmi',
 kThemeSoundWindowZoomOut = 'wzmo',
 kThemeSoundWindowCollapseUp = 'wcol',
 kThemeSoundWindowCollapseDown = 'wexp',
 kThemeSoundWindowActivate = 'wact',
 kThemeSoundUtilWindowOpen = 'uopn',
 kThemeSoundUtilWindowClose = 'ucls',
 kThemeSoundUtilWindowZoomIn = 'uzmi',
 kThemeSoundUtilWindowZoomOut = 'uzmo',
 kThemeSoundUtilWindowCollapseUp = 'ucol',
 kThemeSoundUtilWindowCollapseDown = 'uexp',
 kThemeSoundUtilWindowActivate = 'uact',
 kThemeSoundDialogOpen = 'dopn',
 kThemeSoundDialogClose = 'dlgc',
 kThemeSoundAlertOpen = 'aopn',
 kThemeSoundAlertClose = 'altc',
 kThemeSoundPopupWindowOpen = 'pwop',
 kThemeSoundPopupWindowClose = 'pwcl',
 kThemeSoundButtonPress = 'btnp',
 kThemeSoundButtonEnter = 'btne',
 kThemeSoundButtonExit = 'btnx',
 kThemeSoundButtonRelease = 'btnr',
 kThemeSoundDefaultButtonPress = 'dbtp',
 kThemeSoundDefaultButtonEnter = 'dbte',

Constants 195
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

 kThemeSoundDefaultButtonExit = 'dbtx',
 kThemeSoundDefaultButtonRelease = 'dbtr',
 kThemeSoundCancelButtonPress = 'cbtp',
 kThemeSoundCancelButtonEnter = 'cbte',
 kThemeSoundCancelButtonExit = 'cbtx',
 kThemeSoundCancelButtonRelease = 'cbtr',
 kThemeSoundCheckboxPress = 'chkp',
 kThemeSoundCheckboxEnter = 'chke',
 kThemeSoundCheckboxExit = 'chkx',
 kThemeSoundCheckboxRelease = 'chkr',
 kThemeSoundRadioPress = 'radp',
 kThemeSoundRadioEnter = 'rade',
 kThemeSoundRadioExit = 'radx',
 kThemeSoundRadioRelease = 'radr',
 kThemeSoundScrollArrowPress = 'sbap',
 kThemeSoundScrollArrowEnter = 'sbae',
 kThemeSoundScrollArrowExit = 'sbax',
 kThemeSoundScrollArrowRelease = 'sbar',
 kThemeSoundScrollEndOfTrack = 'sbte',
 kThemeSoundScrollTrackPress = 'sbtp',
 kThemeSoundSliderEndOfTrack = 'slte',
 kThemeSoundSliderTrackPress = 'sltp',
 kThemeSoundBalloonOpen = 'blno',
 kThemeSoundBalloonClose = 'blnc',
 kThemeSoundBevelPress = 'bevp',
 kThemeSoundBevelEnter = 'beve',
 kThemeSoundBevelExit = 'bevx',
 kThemeSoundBevelRelease = 'bevr',
 kThemeSoundLittleArrowUpPress = 'laup',
 kThemeSoundLittleArrowDnPress = 'ladp',
 kThemeSoundLittleArrowEnter = 'lare',
 kThemeSoundLittleArrowExit = 'larx',
 kThemeSoundLittleArrowUpRelease = 'laur',
 kThemeSoundLittleArrowDnRelease = 'ladr',
 kThemeSoundPopupPress = 'popp',
 kThemeSoundPopupEnter = 'pope',
 kThemeSoundPopupExit = 'popx',
 kThemeSoundPopupRelease = 'popr',
 kThemeSoundDisclosurePress = 'dscp',
 kThemeSoundDisclosureEnter = 'dsce',
 kThemeSoundDisclosureExit = 'dscx',
 kThemeSoundDisclosureRelease = 'dscr',
 kThemeSoundTabPressed = 'tabp',
 kThemeSoundTabEnter = 'tabe',
 kThemeSoundTabExit = 'tabx',
 kThemeSoundTabRelease = 'tabr',
 kThemeSoundDragTargetHilite = 'dthi',
 kThemeSoundDragTargetUnhilite = 'dtuh',
 kThemeSoundDragTargetDrop = 'dtdr',
 kThemeSoundEmptyTrash = 'ftrs',
 kThemeSoundSelectItem = 'fsel',
 kThemeSoundNewItem = 'fnew',
 kThemeSoundReceiveDrop = 'fdrp',
 kThemeSoundCopyDone = 'fcpd',
 kThemeSoundResolveAlias = 'fral',
 kThemeSoundLaunchApp = 'flap',
 kThemeSoundDiskInsert = 'dski',
 kThemeSoundDiskEject = 'dske',

196 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

 kThemeSoundFinderDragOnIcon = 'fdon',
 kThemeSoundFinderDragOffIcon = 'fdof'
};
typedef OSType ThemeSoundKind;

Constants
kThemeSoundNone

Specifies that no sound is played.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundMenuOpen
Identifies a sound to be played when the user opens a menu.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundMenuClose
Identifies a sound to be played when the user closes a menu.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundMenuItemHilite
Identifies a sound to be played when the user highlights a menu item.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundMenuItemRelease
Identifies a sound to be played when the user selects a menu item.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowClosePress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
window’s close box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowCloseEnter
Identifies a sound to be played when the user moves the cursor over a window’s close box after
having moved the cursor away from the close box without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowCloseExit
Identifies a sound to be played when the user moves the cursor away from a position over a window’s
close box, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 197
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundWindowCloseRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
window’s close box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowZoomPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
window’s zoom box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowZoomEnter
Identifies a sound to be played when the user moves the cursor over a window’s zoom box after
having moved the cursor away from the zoom box without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowZoomExit
Identifies a sound to be played when the user moves the cursor away from a position over a window’s
zoom box, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowZoomRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
window’s zoom box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowCollapsePress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
window’s collapse box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowCollapseEnter
Identifies a sound to be played when the user moves the cursor over a window’s collapse box after
having moved the cursor away from the collapse box without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowCollapseExit
Identifies a sound to be played when the user moves the cursor away from a position over a window’s
collapse box, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

198 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundWindowCollapseRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
window’s collapse box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowDragBoundary
Identifies a sound to be played when the user drags a window to the edge of the area where it can
be dragged. Note: This functionality is not available under Appearance Manager 1.1 or prior versions
of Appearance.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinClosePress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
utility (floating) window’s close box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinCloseEnter
Identifies a sound to be played when the user moves the cursor over a utility (floating) window’s close
box after having moved the cursor away from the close box without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinCloseExit
Identifies a sound to be played when the user moves the cursor away from a position over a utility
(floating) window’s close box, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinCloseRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
utility (floating) window’s close box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinZoomPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
utility (floating) window’s zoom box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinZoomEnter
Identifies a sound to be played when the user moves the cursor over a utility (floating) window’s
zoom box after having moved the cursor away from the zoom box without releasing the mouse
button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 199
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundUtilWinZoomExit
Identifies a sound to be played when the user moves the cursor away from a position over a utility
(floating) window’s zoom box, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinZoomRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
utility (floating) window’s zoom box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinCollapsePress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
utility (floating) window’s collapse box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinCollapseEnter
Identifies a sound to be played when the user moves the cursor over a utility (floating) window’s
collapse box after having moved the cursor away from the collapse box without releasing the mouse
button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinCollapseExit
Identifies a sound to be played when the user moves the cursor away from a position over a utility
(floating) window’s collapse box, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinCollapseRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
utility (floating) window’s collapse box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWinDragBoundary
Identifies a sound to be played when the user drags a utility (floating) window to the edge of the
area where it can be dragged.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowOpen
Identifies a sound to be played when the user opens a window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowClose
Identifies a sound to be played when the user closes a window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

200 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundWindowZoomIn
Identifies a sound to be played when the user zooms a window in, that is, to the user state.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowZoomOut
Identifies a sound to be played when the user zooms a window out, that is, to the standard state.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowCollapseUp
Identifies a sound to be played when the user collapses a window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowCollapseDown
Identifies a sound to be played when the user uncollapses a window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundWindowActivate
Identifies a sound to be played when the user presses the mouse button while the cursor is over an
inactive window, thus activating it.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWindowOpen
Identifies a sound to be played when the user opens a utility (floating) window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWindowClose
Identifies a sound to be played when the user closes a utility (floating) window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWindowZoomIn
Identifies a sound to be played when the user zooms a utility (floating) window in, that is, to the user
state.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWindowZoomOut
Identifies a sound to be played when the user zooms a utility (floating) window out, that is, to the
standard state.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWindowCollapseUp
Identifies a sound to be played when the user collapses a utility (floating) window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 201
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundUtilWindowCollapseDown
Identifies a sound to be played when the user uncollapses a utility (floating) window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundUtilWindowActivate
Identifies a sound to be played when the user presses the mouse button while the cursor is over an
inactive utility (floating) window, thus activating it.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDialogOpen
Identifies a sound to be played when a dialog box opens.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDialogClose
Identifies a sound to be played when a dialog box closes.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundAlertOpen
Identifies a sound to be played when an alert box opens.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundAlertClose
Identifies a sound to be played when an alert box closes.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundPopupWindowOpen
Identifies a sound to be played when a pop-up window opens.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundPopupWindowClose
Identifies a sound to be played when a pop-up window closes.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundButtonPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
push button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundButtonEnter
Identifies a sound to be played when the user moves the cursor over a push button after having
moved the cursor away from the button without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

202 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundButtonExit
Identifies a sound to be played when the user moves the cursor away from a position over a push
button, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundButtonRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
push button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDefaultButtonPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
default button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDefaultButtonEnter
Identifies a sound to be played when the user moves the cursor over a default button after having
moved the cursor away from the button without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDefaultButtonExit
Identifies a sound to be played when the user moves the cursor away from a position over a default
button, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDefaultButtonRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
default button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundCancelButtonPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
Cancel button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundCancelButtonEnter
Identifies a sound to be played when the user moves the cursor over a Cancel button after having
moved the cursor away from the button without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 203
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundCancelButtonExit
Identifies a sound to be played when the user moves the cursor away from a position over a Cancel
button, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundCancelButtonRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
Cancel button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundCheckboxPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
checkbox.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundCheckboxEnter
Identifies a sound to be played when the user moves the cursor over a checkbox after having moved
the cursor away from the checkbox without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundCheckboxExit
Identifies a sound to be played when the user moves the cursor away from a position over a checkbox,
while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundCheckboxRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
checkbox.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundRadioPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
radio button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundRadioEnter
Identifies a sound to be played when the user moves the cursor over a radio button after having
moved the cursor away from the radio button without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

204 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundRadioExit
Identifies a sound to be played when the user moves the cursor away from a position over a radio
button, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundRadioRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
radio button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundScrollArrowPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
scroll bar arrow.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundScrollArrowEnter
Identifies a sound to be played when the user moves the cursor over a scroll bar arrow after having
moved the cursor away from the arrow without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundScrollArrowExit
Identifies a sound to be played when the user moves the cursor away from a position over a scroll
bar arrow, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundScrollArrowRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
scroll bar arrow.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundScrollEndOfTrack
Identifies a sound to be played when a scroll box arrives at the end of a scroll bar and can go no
further.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundScrollTrackPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over the
track part of a scroll bar (this area does not include the scroll box or scroll bar arrows).

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 205
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundSliderEndOfTrack
Identifies a sound to be played when a slider indicator arrives at the end of a slider track and can go
no further. Note: This functionality is not available under Appearance Manager 1.1 or prior versions
of Appearance.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundSliderTrackPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over the
track part of a slider (this area does not include the slider indicator).

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundBalloonOpen
Identifies a sound to be played when a help balloon appears.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundBalloonClose
Identifies a sound to be played when a help balloon disappears.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundBevelPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
bevel button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundBevelEnter
Identifies a sound to be played when the user moves the cursor over a bevel button after having
moved the cursor away from the bevel button without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundBevelExit
Identifies a sound to be played when the user moves the cursor away from a position over a bevel
button, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundBevelRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
bevel button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundLittleArrowUpPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over the
upward-pointing arrow of an increment/decrement button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

206 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundLittleArrowDnPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over the
downward-pointing arrow of an increment/decrement button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundLittleArrowEnter
Identifies a sound to be played when the user moves the cursor over an increment/decrement button
after having moved the cursor away from the button without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundLittleArrowExit
Identifies a sound to be played when the user moves the cursor away from a position over an
increment/decrement button, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundLittleArrowUpRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over the
upward-pointing arrow of an increment/decrement button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundLittleArrowDnRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over the
downward-pointing arrow of an increment/decrement button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundPopupPress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
pop-up menu button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundPopupEnter
Identifies a sound to be played when the user moves the cursor over a pop-up menu button after
having moved the cursor away from the button without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundPopupExit
Identifies a sound to be played when the user moves the cursor away from a position over a pop-up
menu button, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 207
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundPopupRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
pop-up menu button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDisclosurePress
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
disclosure triangle.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDisclosureEnter
Identifies a sound to be played when the user moves the cursor over a disclosure triangle after having
moved the cursor away from the disclosure triangle without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDisclosureExit
Identifies a sound to be played when the user moves the cursor away from a position over a disclosure
triangle, while the mouse button remains pressed.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDisclosureRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
disclosure triangle.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundTabPressed
Identifies a sound to be played when the user presses the mouse button while the cursor is over a
tab.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundTabEnter
Identifies a sound to be played when the user places the cursor over a tab.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundTabExit
Identifies a sound to be played when the user moves the cursor over a tab after having moved the
cursor away from the tab without releasing the mouse button.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundTabRelease
Identifies a sound to be played when the user releases the mouse button while the cursor is over a
tab.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

208 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundDragTargetHilite
Identifies a sound to be played when the user drags an object over a valid drag-and-drop destination.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDragTargetUnhilite
Identifies a sound to be played when the user drags an object away from a valid drag-and-drop
destination.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDragTargetDrop
Identifies a sound to be played when the user drops an object on a valid drag-and-drop destination.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundEmptyTrash
Identifies a sound to be played when the Finder completes emptying the Trash directory.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundSelectItem
Identifies a sound to be played when the user presses the mouse button while the cursor is over an
item in the Finder.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundNewItem
Identifies a sound to be played when the user creates a new item.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundReceiveDrop
Identifies a sound to be played when a Finder object changes parents, such as when the user drops
an icon on a folder.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundCopyDone
Identifies a sound to be played when the Finder completes a copy operation.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundResolveAlias
Identifies a sound to be played when the Finder resolves an alias.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundLaunchApp
Identifies a sound to be played when the Finder launches an application.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 209
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeSoundDiskInsert
Identifies a sound to be played when a disk is inserted.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundDiskEject
Identifies a sound to be played when a disk is ejected.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundFinderDragOnIcon
Identifies a sound to be played when the user drags an object over an icon.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeSoundFinderDragOffIcon
Identifies a sound to be played when the user drags an object off of an icon.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
Your application can pass constants of type ThemeSoundKind to the function PlayThemeSound (page 94)
to play a theme-specific sound for an interface object when it changes state. Each sound plays asynchronously
until complete, then stops automatically.

Theme Drag Sounds
Identify theme-specific sounds played when the user performs a drag.

enum {
 kThemeDragSoundNone = 0,
 kThemeDragSoundMoveWindow = 'wmov',
 kThemeDragSoundGrowWindow = 'wgro',
 kThemeDragSoundMoveUtilWindow = 'umov',
 kThemeDragSoundGrowUtilWindow = 'ugro',
 kThemeDragSoundMoveDialog = 'dmov',
 kThemeDragSoundMoveAlert = 'amov',
 kThemeDragSoundMoveIcon = 'imov',
 kThemeDragSoundSliderThumb = 'slth',
 kThemeDragSoundSliderGhost = 'slgh',
 kThemeDragSoundScrollBarThumb = 'sbth',
 kThemeDragSoundScrollBarGhost = 'sbgh',
 kThemeDragSoundScrollBarArrowDecreasing = 'sbad',
 kThemeDragSoundScrollBarArrowIncreasing = 'sbai',
 kThemeDragSoundDragging = 'drag'
};
typedef OSType ThemeDragSoundKind;

Constants
kThemeDragSoundNone

Specifies that no drag sound is used.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

210 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeDragSoundMoveWindow
Specifies a sound to be played when the user moves a document window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundGrowWindow
Specifies a sound to be played when the user resizes a window by dragging the size box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundMoveUtilWindow
Specifies a sound to be played when the user moves a utility window.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundGrowUtilWindow
Specifies a sound to be played when the user resizes a utility window by dragging the size box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundMoveDialog
Specifies a sound to be played when the user moves a dialog box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundMoveAlert
Specifies a sound to be played when the user moves an alert box.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundMoveIcon
Specifies a sound to be played when the user moves an icon.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundSliderThumb
Specifies a sound to be played when the user drags the indicator of a slider control that supports live
feedback.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundSliderGhost
Specifies a sound to be played when the user drags the indicator of a slider control that does not
support live feedback.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundScrollBarThumb
Specifies a sound to be played when the user drags a scroll box belonging to a scroll bar that supports
live feedback.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Constants 211
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kThemeDragSoundScrollBarGhost
Specifies a sound to be played when the user drags a scroll box belonging to a scroll bar that does
not support live feedback.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundScrollBarArrowDecreasing
Specifies a sound to be played when the user presses and holds the mouse button while the cursor
is over the scroll bar arrow that decreases the scroll bar’s value.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundScrollBarArrowIncreasing
Specifies a sound to be played when the user presses and holds the mouse button while the cursor
is over the scroll bar arrow that increases the scroll bar’s value.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

kThemeDragSoundDragging
Specifies a sound to be played during a Drag Manager drag.

Available in Mac OS X v10.0 and later.

Declared in Appearance.h.

Discussion
Your application can pass constants of type ThemeDragSoundKind to the function
BeginThemeDragSound (page 27) to play a theme-specific sound when a user drags an interface object or
otherwise holds the mouse button down for an extended action. Dragging sounds are looped for the duration
of the drag and cease when your application calls EndThemeDragSound (page 59) when the drag has
finished. Only one drag sound may occur at a time.

Desktop Picture Alignments
Represent picture alignments that might be reported in the data for the
kThemeDesktopPictureAlignmentTag theme collection tag.

enum {
 kTiledOnScreen = 1,
 kCenterOnScreen = 2,
 kFitToScreen = 3,
 kFillScreen = 4,
 kUseBestGuess = 5
};

Constants
kTiledOnScreen

The picture draws repeatedly.

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

212 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

kCenterOnScreen
The picture is its actual size, or clipped if necessary, with the desktop pattern showing to the side of
the picture if it is smaller than the desktop

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

kFitToScreen
The picture is reduced if necessary.

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

kFillScreen
The picture’s aspect ratio is altered if necessary.

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

kUseBestGuess
The picture is automatically positioned, based on picture and monitor sizes.

Available in Mac OS X v10.2 and later.

Declared in Appearance.h.

appearanceBadBrushIndexErr
Obsolete error codes. Use the result codes listed in the section “Appearance Manager Result Codes” (page
217) instead.

enum {
 appearanceBadBrushIndexErr = -30560,
 appearanceProcessRegisteredErr = -30561,
 appearanceProcessNotRegisteredErr = -30562,
 appearanceBadTextColorIndexErr = -30563,
 appearanceThemeHasNoAccents = -30564,
 appearanceBadCursorIndexErr = -30565
};

kAEThemeSwitch
Obsolete. Use kAEAppearanceChanged , described in "Appearance Manager Apple Events," instead.

enum {
 kAEThemeSwitch = kAEAppearanceChanged
};

kThemeActiveDialogBackgroundBrush
Obsolete. Use the constants described in "Theme Brushes" instead.

Constants 213
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeActiveDialogBackgroundBrush = kThemeBrushDialogBackgroundActive,
 kThemeInactiveDialogBackgroundBrush =
 kThemeBrushDialogBackgroundInactive,
 kThemeActiveAlertBackgroundBrush = kThemeBrushAlertBackgroundActive,
 kThemeInactiveAlertBackgroundBrush = kThemeBrushAlertBackgroundInactive,
 kThemeActiveModelessDialogBackgroundBrush =
 kThemeBrushModelessDialogBackgroundActive,
 kThemeInactiveModelessDialogBackgroundBrush =
 kThemeBrushModelessDialogBackgroundInactive,
 kThemeActiveUtilityWindowBackgroundBrush =
 kThemeBrushUtilityWindowBackgroundActive,
 kThemeInactiveUtilityWindowBackgroundBrush =
 kThemeBrushUtilityWindowBackgroundInactive,
 kThemeListViewSortColumnBackgroundBrush =
 kThemeBrushListViewSortColumnBackground,
 kThemeListViewBackgroundBrush = kThemeBrushListViewBackground,
 kThemeIconLabelBackgroundBrush = kThemeBrushIconLabelBackground,
 kThemeListViewSeparatorBrush = kThemeBrushListViewSeparator,
 kThemeChasingArrowsBrush = kThemeBrushChasingArrows,
 kThemeDragHiliteBrush = kThemeBrushDragHilite,
 kThemeDocumentWindowBackgroundBrush =
 kThemeBrushDocumentWindowBackground,
 kThemeFinderWindowBackgroundBrush = kThemeBrushFinderWindowBackground
};

kThemeActiveScrollBarDelimiterBrush
Obsolete. Use the constants described in "Theme Brushes" instead.

enum {
 kThemeActiveScrollBarDelimiterBrush =
 kThemeBrushScrollBarDelimiterActive,
 kThemeInactiveScrollBarDelimiterBrush =
 kThemeBrushScrollBarDelimiterInactive,
 kThemeFocusHighlightBrush = kThemeBrushFocusHighlight,
 kThemeActivePopupArrowBrush = kThemeBrushPopupArrowActive,
 kThemePressedPopupArrowBrush = kThemeBrushPopupArrowPressed,
 kThemeInactivePopupArrowBrush = kThemeBrushPopupArrowInactive,
 kThemeAppleGuideCoachmarkBrush = kThemeBrushAppleGuideCoachmark
};

kThemeBrushPassiveAreaFill
Obsolete. Use the kThemeBrushStaticAreaFill constant, described in "Theme Brushes," instead.

enum {
 kThemeBrushPassiveAreaFill = kThemeBrushStaticAreaFill
};

kThemeActiveDialogTextColor
Obsolete. Use the constants described in "Theme Text Colors" instead.

214 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeActiveDialogTextColor = kThemeTextColorDialogActive,
 kThemeInactiveDialogTextColor = kThemeTextColorDialogInactive,
 kThemeActiveAlertTextColor = kThemeTextColorAlertActive,
 kThemeInactiveAlertTextColor = kThemeTextColorAlertInactive,
 kThemeActiveModelessDialogTextColor =
 kThemeTextColorModelessDialogActive,
 kThemeInactiveModelessDialogTextColor =
 kThemeTextColorModelessDialogInactive,
 kThemeActiveWindowHeaderTextColor = kThemeTextColorWindowHeaderActive,
 kThemeInactiveWindowHeaderTextColor =
 kThemeTextColorWindowHeaderInactive,
 kThemeActivePlacardTextColor = kThemeTextColorPlacardActive,
 kThemeInactivePlacardTextColor = kThemeTextColorPlacardInactive,
 kThemePressedPlacardTextColor = kThemeTextColorPlacardPressed,
 kThemeActivePushButtonTextColor = kThemeTextColorPushButtonActive,
 kThemeInactivePushButtonTextColor = kThemeTextColorPushButtonInactive,
 kThemePressedPushButtonTextColor = kThemeTextColorPushButtonPressed,
 kThemeActiveBevelButtonTextColor = kThemeTextColorBevelButtonActive,
 kThemeInactiveBevelButtonTextColor = kThemeTextColorBevelButtonInactive,
 kThemePressedBevelButtonTextColor = kThemeTextColorBevelButtonPressed,
 kThemeActivePopupButtonTextColor = kThemeTextColorPopupButtonActive,
 kThemeInactivePopupButtonTextColor = kThemeTextColorPopupButtonInactive,
 kThemePressedPopupButtonTextColor = kThemeTextColorPopupButtonPressed,
 kThemeIconLabelTextColor = kThemeTextColorIconLabel,
 kThemeListViewTextColor = kThemeTextColorListView
};

kThemeActiveDocumentWindowTitleTextColor
Obsolete. Use the constants described in "Theme Text Colors" instead.

Constants 215
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeActiveDocumentWindowTitleTextColor =
 kThemeTextColorDocumentWindowTitleActive,
 kThemeInactiveDocumentWindowTitleTextColor =
 kThemeTextColorDocumentWindowTitleInactive,
 kThemeActiveMovableModalWindowTitleTextColor =
 kThemeTextColorMovableModalWindowTitleActive,
 kThemeInactiveMovableModalWindowTitleTextColor =
 kThemeTextColorMovableModalWindowTitleInactive,
 kThemeActiveUtilityWindowTitleTextColor =
 kThemeTextColorUtilityWindowTitleActive,
 kThemeInactiveUtilityWindowTitleTextColor =
 kThemeTextColorUtilityWindowTitleInactive,
 kThemeActivePopupWindowTitleColor =
 kThemeTextColorPopupWindowTitleActive,
 kThemeInactivePopupWindowTitleColor =
 kThemeTextColorPopupWindowTitleInactive,
 kThemeActiveRootMenuTextColor = kThemeTextColorRootMenuActive,
 kThemeSelectedRootMenuTextColor = kThemeTextColorRootMenuSelected,
 kThemeDisabledRootMenuTextColor = kThemeTextColorRootMenuDisabled,
 kThemeActiveMenuItemTextColor = kThemeTextColorMenuItemActive,
 kThemeSelectedMenuItemTextColor = kThemeTextColorMenuItemSelected,
 kThemeDisabledMenuItemTextColor = kThemeTextColorMenuItemDisabled,
 kThemeActivePopupLabelTextColor = kThemeTextColorPopupLabelActive,
 kThemeInactivePopupLabelTextColor = kThemeTextColorPopupLabelInactive
};

kThemeScrollBar
Obsolete. Use the constants described in "Theme Track Kinds" instead.

enum {
 kThemeScrollBar = kThemeMediumScrollBar,
 kThemeSlider = kThemeMediumSlider,
 kThemeProgressBar = kThemeMediumProgressBar,
 kThemeIndeterminateBar = kThemeMediumIndeterminateBar
};

kThemeMetricCheckBoxGlyphHeight
Obsolete. Use the constants described in "Theme Metrics" instead.

216 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

enum {
 kThemeMetricCheckBoxGlyphHeight = kThemeMetricCheckBoxHeight,
 kThemeMetricRadioButtonGlyphHeight = kThemeMetricRadioButtonHeight,
 kThemeMetricDisclosureButtonSize = kThemeMetricDisclosureButtonHeight,
 kThemeMetricBestListHeaderHeight = kThemeMetricListHeaderHeight,
 kThemeMetricSmallProgressBarThickness =
 kThemeMetricNormalProgressBarThickness,
 kThemeMetricProgressBarThickness = kThemeMetricLargeProgressBarThickness };

kThemeNoAdornment
Obsolete. Use the constants described in "Theme Button Adornments" instead.

enum {
 kThemeNoAdornment = kThemeAdornmentNone,
 kThemeDefaultAdornment = kThemeAdornmentDefault,
 kThemeFocusAdornment = kThemeAdornmentFocus,
 kThemeRightToLeftAdornment = kThemeAdornmentRightToLeft,
 kThemeDrawIndicatorOnly = kThemeAdornmentDrawIndicatorOnly
};

kThemeStateDisabled
Obsolete. Use the constants described in "Theme Drawing States" instead.

enum {
 kThemeStateDisabled = 0
};

kThemeWidgetABox
Obsolete. Use the constants described in "Theme Title Bar Items" instead.

enum {
 kThemeWidgetABox = 3,
 kThemeWidgetBBox = 4,
 kThemeWidgetBOffBox = 5
};

Result Codes

The most common result codes returned by Appearance Manager are listed below.

DescriptionValueResult Code

Invalid brush color constant-30560themeInvalidBrushErr

Available in Mac OS X v10.0 and later.

Result Codes 217
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

DescriptionValueResult Code

Application already registered as an Appearance
Manager client.

-30561themeProcessRegisteredErr

Available in Mac OS X v10.0 and later.

Application not registered as Appearance Manager
client.

-30562themeProcessNotRegisteredErr

Available in Mac OS X v10.0 and later.

Invalid text color constant-30563themeBadTextColorErr

Available in Mac OS X v10.0 and later.

Theme does not support accent colors-30564themeHasNoAccentsErr

Available in Mac OS X v10.0 and later.

Invalid cursor constant-30565themeBadCursorIndexErr

Available in Mac OS X v10.0 and later.

No font record for specified script.-30566themeScriptFontNotFoundErr

Available in Mac OS X v10.0 and later.

Theme cannot be supported on all monitors at their
current bit depth

-30567themeMonitorDepthNotSupportedErr

Available in Mac OS X v10.0 and later.

Theme brush has no corresponding theme text color-30568themeNoAppropriateBrushErr

Available in Mac OS X v10.2 and later.

Gestalt Constants

You can check for version and feature availability information by using the Appearance Manager selectors
defined in the Gestalt Manager. For more information, see Gestalt Manager Reference.

218 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 1

Appearance Manager Reference

Framework: Carbon/Carbon.h

Declared in MacApplication.h

Overview

Note: This document was previously titled Dock Manager Reference.

The Application Manager provides a set of functions that Mac OS X applications can use to perform various
application-level tasks. For example, you can use the Application Manager to:

 ■ Control the display of system-provided user interface elements such as the menu bar and Dock while
your application is in the foreground

 ■ Customize your application’s Dock tile by modifying the Dock icon and adding items to the contextual
menu displayed for your application

 ■ Display a Spotlight search window

 ■ Display a custom about box for your application

 ■ Retrieve the current application object (HIObject)

Functions by Task

Drawing in the Application Dock Tile

HIApplicationCreateDockTileContext (page 227)
Returns a Quartz graphics context for drawing in the application Dock tile.

BeginCGContextForApplicationDockTile (page 221)
Returns a Quartz graphics context for drawing in the application Dock tile.

EndCGContextForApplicationDockTile (page 223)
Releases the Quartz graphics context for an application Dock tile.

BeginQDContextForApplicationDockTile (page 221) Deprecated in Mac OS X v10.5
Returns a QuickDraw graphics port for drawing in the application Dock tile. (Deprecated. Use
BeginCGContextForApplicationDockTile (page 221) or
HIApplicationCreateDockTileContext (page 227) instead.)

Overview 219
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

EndQDContextForApplicationDockTile (page 223) Deprecated in Mac OS X v10.5
Releases the QuickDraw graphics port for an application Dock tile. (Deprecated. Use
EndCGContextForApplicationDockTile (page 223) instead.)

Working With the Dock Menu

GetApplicationDockTileMenu (page 224)
Returns the menu containing items added to the contextual menu for your application Dock tile.

SetApplicationDockTileMenu (page 231)
Adds items to the contextual menu for your application Dock tile.

Working With the Dock Icon

SetApplicationDockTileImage (page 230)
Replaces an application Dock icon.

OverlayApplicationDockTileImage (page 229)
Composites an image with your application's Dock icon.

RestoreApplicationDockTileImage (page 230)
Restores your application Dock icon to the application icon.

CreateCGImageFromPixMaps (page 222)
Creates a Quartz image from an image and a mask.

Getting Scripts and Encodings

GetApplicationScript (page 224)
Returns the application script.

GetApplicationTextEncoding (page 225)
Returns the application text encoding for Resource Manager resources.

Displaying an About Box

HIAboutBox (page 226)
Displays a generic, HI-compliant about box.

Controlling System-Provided User Interface Elements

SetSystemUIMode (page 232)
Sets the presentation mode of the calling application.

GetSystemUIMode (page 225)
Gets the presentation mode of the calling application.

HISearchWindowShow (page 229)
Displays a Spotlight search window.

220 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Getting the Application Object

HIApplicationGetCurrent (page 228)
Returns the currently running Carbon application object.

Getting the Focused Window

HIApplicationGetFocus (page 228)
Returns either the modeless or effective focused window.

Functions

BeginCGContextForApplicationDockTile
Returns a Quartz graphics context for drawing in the application Dock tile.

CGContextRef BeginCGContextForApplicationDockTile (
 void
);

Return Value
A graphics context you can use to draw in the application Dock tile with Quartz 2D.

Discussion
This function makes it possible to draw into the application Dock tile at a resolution of 128x128, which is the
size of all Dock tiles prior to Mac OS X v10.5. If the user interface scale factor is not 1.0, the drawing will be
scaled to the actual size of the tile.

This function locks the application Dock tile to prevent the Dock from drawing in the tile. When you are
finished using the context, you must call the function EndCGContextForApplicationDockTile to release
the context and the lock. Do not use CGEndContext or CFRelease for this purpose. To ensure that drawing
to the context appears onscreen, you should call CGContextFlush before releasing the context.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
EndCGContextForApplicationDockTile (page 223)

Declared In
MacApplication.h

BeginQDContextForApplicationDockTile
Returns a QuickDraw graphics port for drawing in the application Dock tile. (Deprecated in Mac OS X v10.5.
Use BeginCGContextForApplicationDockTile (page 221) or
HIApplicationCreateDockTileContext (page 227) instead.)

Functions 221
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

CGrafPtr BeginQDContextForApplicationDockTile (
 void
);

Return Value
A pointer to a graphics port. You can use this port to draw into your application Dock tile with QuickDraw.

Discussion
This function locks the application Dock tile to prevent the Dock from drawing in the tile. When you are
finished using the graphics port, you must call the function EndQDContextForApplicationDockTile to
release the port and the lock. Do not use DisposePort for this purpose.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

See Also
EndQDContextForApplicationDockTile (page 223)

Declared In
MacApplication.h

CreateCGImageFromPixMaps
Creates a Quartz image from an image and a mask.

OSStatus CreateCGImageFromPixMaps (
 PixMapHandle inImage,
 PixMapHandle inMask,
 CGImageRef *outImage
);

Parameters
inImage

A handle to the image you want to use to create the Quartz image. The image should be the same
size as the mask. For use in the Dock, the image should be 128 pixels square. Otherwise, the image
can be any size.

inMask
A handle to the mask to use as the alpha channel. The mask should be the same size as the image.

outImage
On return, a Quartz image.

Return Value
A result code.

Discussion
The function CreateCGImageFromPixMaps uses the mask as the alpha channel for the resulting image.
This allows you to have any level of transparency in the resulting image. You can pass the Quartz image as
a parameter to any Quartz 2D drawing function, as well as to Dock tile functions such as the functions
SetApplicationDockTileImage and OverlayApplicationDockTileImage. You can use
CreateCGImageFromPixMaps to create an image for a badge, and then apply the badge to your application
Dock icon.

222 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacApplication.h

EndCGContextForApplicationDockTile
Releases the Quartz graphics context for an application Dock tile.

void EndCGContextForApplicationDockTile (
 CGContextRef inContext
);

Parameters
inContext

A Quartz graphics context created by calling BeginCGContextForApplicationDockTile or
HIApplicationCreateDockTileContext. On output, the context is invalid and should no longer
be used.

Discussion
This function also releases the lock on the application Dock tile, signaling the Dock that you are done drawing
in the tile.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIApplicationCreateDockTileContext (page 227)
BeginCGContextForApplicationDockTile (page 221)

Declared In
MacApplication.h

EndQDContextForApplicationDockTile
Releases the QuickDraw graphics port for an application Dock tile. (Deprecated in Mac OS X v10.5. Use
EndCGContextForApplicationDockTile (page 223) instead.)

void EndQDContextForApplicationDockTile (
 CGrafPtr inContext
);

Parameters
inContext

A QuickDraw graphics port acquired by calling BeginQDContextForApplicationDockTile. On
output, the port is invalid and should no longer be used.

Discussion
This function also releases the lock on the application Dock tile, signaling the Dock that you are done drawing
in the tile.

Functions 223
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

See Also
BeginQDContextForApplicationDockTile (page 221)

Declared In
MacApplication.h

GetApplicationDockTileMenu
Returns the menu containing items added to the contextual menu for your application Dock tile.

MenuRef GetApplicationDockTileMenu (
 void
);

Return Value
The menu containing items added to your application Dock tile menu using the function
SetApplicationDockTileMenu (page 231), or NULL if there are no additional menu items.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

See Also
SetApplicationDockTileMenu (page 231)

Declared In
MacApplication.h

GetApplicationScript
Returns the application script.

ScriptCode GetApplicationScript (
 void
);

Return Value
The application script.

Discussion
Your application needs to get the application script when it uses a function, such as UseThemeFont, that
takes a script code as a parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

224 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Declared In
MacApplication.h

GetApplicationTextEncoding
Returns the application text encoding for Resource Manager resources.

TextEncoding GetApplicationTextEncoding (
 void
);

Return Value
The application text encoding.

Discussion
Your application needs to use the application text encoding when it creates a CFString from text stored in
Resource Manager resources. Typically the text uses a Mac encoding such as MacRoman or MacJapanese.
For more information, see Programming With the Text Encoding Conversion Manager.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
MacApplication.h

GetSystemUIMode
Gets the presentation mode of the calling application.

void GetSystemUIMode (
 SystemUIMode *outMode,
 SystemUIOptions *outOptions
);

Parameters
outMode

On output, the caller’s presentation mode. Pass NULL if you don't need this information. For a list of
possible modes, see “Presentation Modes” (page 235). The presentation mode of an application
determines which system-provided user interface elements are visible on the screen.

outOptions
On output, the options for the caller’s presentation mode. Pass NULL if you don't need this information.
For a list of possible options, see “Presentation Options” (page 236). Presentation options are used to
inhibit or allow certain user interface elements and commands.

Discussion
This function returns information about the presentation mode of the calling application, not the presentation
mode of the current login session. The login session mode may be different, since the login session mode is
determined by the presentation mode of the frontmost application. If the calling application is not currently
the frontmost application, then its presentation mode will not be in use. To track changes in the login session’s
presentation mode, you may handle the kEventAppSystemUIModeChanged Carbon event.

Functions 225
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
SetSystemUIMode (page 232)

Declared In
MacApplication.h

HIAboutBox
Displays a generic, HI-compliant about box.

OSStatus HIAboutBox (
 CFDictionaryRef inOptions
);

Parameters
inOptions

A dictionary of standard strings, a dictionary with the name of a localized strings file from which to
retrieve the strings, or NULL to retrieve the strings from the Info.plist file. See the discussion for
details.

Return Value
A result code.

Discussion
When this function is called, it displays a window called an about box that contains your application icon,
name, software version, and other optional information. In a Carbon event–based application, the standard
application event handler responds to the kHICommandAbout command by calling the function HIAboutBox
for you. If your application menu has an About menu item, you will get this behavior for free. You don’t need
to call this function unless you want to customize the contents of the about box.

In addition to the application name and version, this function is designed to display two additional strings
in the about box, a copyright string and a description string. You can customize what this function displays
by passing in various options in the inOptions parameter:

 ■ You can pass NULL to display application information defined in the Info.plist file or your bundle
resource (not recommended). This function looks the Info.plist file for three keys to get the name,
version, and copyright strings: CFBundleName, CFBundleVersion, and CFBundleGetInfoString.

 ■ You can pass a dictionary with replacement values for one or more strings. See “About Box Keys” (page
233) for a list of valid keys in this dictionary. If a replacement string is not passed, the default behavior
applies. For example, you could pass some variant of your application name in the dictionary, but not
pass a replacement version string or copyright string. The function would display your replacement
string, and fall back to looking in the Info.plist file for the other strings.

 ■ You can pass a dictionary with a single entry, the name of a localized strings file that contains replacement
values for one or more strings. The dictionary key is kHIAboutBoxStringFileKey, and the value is the
name of the strings file without the .strings extension. This function automatically uses that file to
find the strings for the about box. This example shows the key-value pairs in a typical strings file:

HIAboutBoxName = "AboutBox";
HIAboutBoxVersion = "v1.0";
HIAboutBoxCopyright = "© Apple Computer, 2006";

226 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

HIAboutBoxDescription = "An Example Application";

Again, if a string is not found in that file, this function falls back to looking for a string in the dictionary,
and then finally the Info.plist file.

Note that the description string can only be specified in an options dictionary or a strings file; this function
does not check your Info.plist file for a description string.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacApplication.h

HIApplicationCreateDockTileContext
Returns a Quartz graphics context for drawing in the application Dock tile.

CGContextRef HIApplicationCreateDockTileContext (
 HISize *outContextSize
);

Parameters
outContextSize

On output, the size of the graphics context in which the application should draw.

Return Value
A Quartz graphics context you can use to draw in the application Dock tile. For more information about this
context, see the Discussion below.

Discussion
This function makes it possible to draw into the application Dock tile at a resolution other than 128x128,
which is the size of all Dock tiles prior to Mac OS X v10.5. In Mac OS X v10.5 and later, dock tiles may use
different sizes when the user interface scale factor is not 1.0.

Unlike BeginCGContextForApplicationDockTile (page 221), this function returns a context that has no
transform applied to it; user space and device space are 1:1. Your application must use the output context
size to determine the area in which you should draw in the context.

Because the Dock's tile size can change dynamically, applications that use this function should be prepared
to redraw their Dock tile as necessary. A kEventAppUpdateDockTile Carbon event is sent when the
application needs to redraw its Dock tile.

This function locks the application Dock tile to prevent the Dock from drawing in the tile. When you are
finished using the context, you must call the function EndCGContextForApplicationDockTile to release
the context and the lock. Do not use CGEndContext or CFRelease for this purpose. To ensure that drawing
to the context appears onscreen, you should call CGContextFlush before releasing the context.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Functions 227
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

See Also
EndCGContextForApplicationDockTile (page 223)

Declared In
MacApplication.h

HIApplicationGetCurrent
Returns the currently running Carbon application object.

HIObjectRef HIApplicationGetCurrent (
 void
);

Return Value
The current application object.

Discussion
In Mac OS X v10.5 and later, you can use this function to install your own HIObject delegates on the application
object.

The function GetApplicationEventTarget (page 260) returns the event target associated with the
application object.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacApplication.h

HIApplicationGetFocus
Returns either the modeless or effective focused window.

WindowRef HIApplicationGetFocus (
 Boolean inConsideringModalFocus
);

Parameters
inConsideringModalFocus

A Boolean value that specifies whether to return the effective focus (true) or the modeless focus
(false).

Return Value
The focused window, or NULL if there is no focused window.

Discussion
With the introduction of the modal focus stack in Mac OS X v10.5, an application may have two different
focused windows: the modeless focus (the window most recently passed to the function
SetUserFocusWindow (page 1934)), and the effective focus (either the modeless focus or, if there is a non-empty
modal focus stack, the topmost window in the focus stack). This function returns either window.

228 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Applications can use this function to determine if the modeless focus and effective focus are different windows.
An application with a custom HIView can also use this function to determine if the application should show
an insertion point. The insertion point should only be visible if the view is inside the effective focus.

Note that the function GetUserFocusWindow (page 1841) returns the modeless focus—the same window
returned when you pass false to HIApplicationGetFocus.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacApplication.h

HISearchWindowShow
Displays a Spotlight search window.

OSStatus HISearchWindowShow (
 CFStringRef inSearchString,
 OptionBits inFlags
);

Parameters
inSearchString

An initial query string. Pass NULL to open the search window with no initial query string.

inFlags
Optional flags. Currently, you should pass kNilOptions.

Return Value
A result code.

Discussion
This function displays a window with the standard Spotlight search interface. For more information, see
Spotlight Query Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacApplication.h

OverlayApplicationDockTileImage
Composites an image with your application's Dock icon.

OSStatus OverlayApplicationDockTileImage (
 CGImageRef inImage
);

Parameters
inImage

The image to overlay onto your application Dock icon.

Functions 229
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Return Value
A result code.

Discussion
You can overlay an image, such as a badge, to indicate the application’s status to the user.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacApplication.h

RestoreApplicationDockTileImage
Restores your application Dock icon to the application icon.

OSStatus RestoreApplicationDockTileImage (
 void
);

Return Value
A result code.

Discussion
If you’ve called the functions SetApplicationDockTileImage or OverlayApplicationDockTileImage,
you can use the function RestoreApplicationDockTileImage to restore the Dock icon to the original
application icon.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacApplication.h

SetApplicationDockTileImage
Replaces an application Dock icon.

OSStatus SetApplicationDockTileImage (
 CGImageRef inImage
);

Parameters
inImage

The image to use for your application Dock tile.

Return Value
A result code.

230 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Discussion
When an application starts up, by default the application icon is always used as the application Dock tile.
You can use the function SetApplicationDockTileImage to replace the application icon with another
image. This can be useful to indicate the state of the application to the user. If you set the image, it will not
revert back to its original image when your application terminates. You need to manually restore it before
quitting using the function RestoreApplicationDockTileImage.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacApplication.h

SetApplicationDockTileMenu
Adds items to the contextual menu for your application Dock tile.

OSStatus SetApplicationDockTileMenu (
 MenuRef inMenu
);

Parameters
inMenu

A menu containing the additional items, or NULL to remove the current menu.

Return Value
A result code.

Discussion
When you position the cursor over an application Dock tile and hold down the mouse button, a contextual
menu automatically displays a list of the application’s document windows and standard application Dock
menu items such as Open at Login and Show in Finder. You can use the function
SetApplicationDockTileMenu to add menu items to the contextual menu displayed for your application
Dock tile. The items in the menu you pass to this function are inserted into your application Dock tile menu,
between the list of document windows and the standard items.

This function increments the reference count of the menu you pass to it. Before the menu is displayed, it
receives the Carbon events kEventMenuPopulate, kEventMenuOpening, and kEventMenuEnableItems,
so any event handlers for these events can update the menu appropriately. You can receive notifications of
and handle selections from the menu using kEventCommandProcess Carbon event handlers installed in
the application event target. You must make sure each menu item has a command ID, as the
kEventCommandProcess event sent to your application provides the menu item’s command ID.

When you use this function to pass a menu to the Dock, the following state of each menu item is preserved:

 ■ Information about whether the item is a text item or a separator

 ■ The item text (if the item is not a separator)

 ■ The item command ID

 ■ The item command key modifiers (but not the command key itself)

 ■ The item mark

 ■ The item indent

Functions 231
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

 ■ The item style

 ■ The item icon, if the icon was specified with kMenuSystemIconSelectorType or
kMenuIconResourceType

 ■ The item’s submenu

 ■ These menu item attributes:

 ❏ kMenuItemAttrNotPreviousAlternate

 ❏ kMenuItemAttrSectionHeader

 ❏ kMenuItemAttrDisabled

 ❏ kMenuItemAttrIconDisabled

 ❏ kMenuItemAttrSubmenuParentChoosable

 ❏ kMenuItemAttrDynamic

No other menu or menu item state is preserved when the menu is displayed by the Dock. For example, you
can set a custom font for the menu or a menu item, but the menu as displayed by the Dock will not use that
font.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

See Also
GetApplicationDockTileMenu (page 224)

Declared In
MacApplication.h

SetSystemUIMode
Sets the presentation mode of the calling application.

OSStatus SetSystemUIMode (
 SystemUIMode inMode,
 SystemUIOptions inOptions
);

Parameters
inMode

The new presentation mode. Pass one of the constants listed in “Presentation Modes” (page 235). The
presentation mode of an application determines which system-provided user interface elements are
visible on the screen.

inOptions
A mask that specifies options controlling how the specified presentation mode behaves. Pass one or
more of the flags listed in “Presentation Options” (page 236), or zero to indicate that no options are
needed. Presentation options are used to inhibit or allow certain user interface elements and
commands.

232 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Return Value
A result code.

Discussion
The purpose of this function is to make it easier to implement a dedicated kiosk system, in which the user is
not permitted access to certain elements and features in the system user interface. This function gives your
application control over the visibility of the Dock and the menu bar, and over various other system-provided
user interface features such as process switching, logout, restart, and shutdown.

If your application is frontmost and you call this function to request a new presentation mode, your
presentation mode will take effect immediately. If another application becomes frontmost, the presentation
mode you requested will no longer be in effect. If your application becomes frontmost again, the presentation
mode you previously established will come back into effect.

When the frontmost application uses this function to change its presentation mode, a
kEventAppSystemUIModeChanged Carbon event is sent to all applications that have registered for the
event. This event is also sent when an application is activated; it contains the newly active application's
presentation mode.

In addition to using this function, an application may also specify an initial presentation mode when it is
launched by using the LSUIPresentationMode key in its Info.plist file. This key should be of type
Number and should have the value of one of the presentation mode constants listed in “Presentation
Modes” (page 235).

Special Considerations

If your application uses the LSUIElement or LSBackgroundOnly key in its Info.plist file, you should
not use this function. The presentation mode of the current login session is determined by the presentation
mode of the frontmost application, and applications that use these keys generally do not become the
frontmost application.

Availability
Available in Mac OS X v10.2 and later.

See Also
GetSystemUIMode (page 225)

Declared In
MacApplication.h

Constants

About Box Keys
Constants that specify keys used in an options dictionary passed to the function HIAboutBox (page 226).

Constants 233
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

#define kHIAboutBoxNameKey CFSTR("HIAboutBoxName")
#define kHIAboutBoxVersionKey CFSTR("HIAboutBoxVersion")
#define kHIAboutBoxCopyrightKey CFSTR("HIAboutBoxCopyright")
#define kHIAboutBoxDescriptionKey CFSTR("HIAboutBoxDescription")
#define kHIAboutBoxStringFileKey CFSTR("HIAboutBoxStringFile")

Constants
kHIAboutBoxNameKey

Key for the application name that replaces the name specified by the CFBundleName key in the
Info.plist file.

Available in Mac OS X v10.3 and later.

Declared in MacApplication.h.

kHIAboutBoxVersionKey
Key for the application software version number that replaces the version number specified by the
CFBundleVersion key in the Info.plist file.

Available in Mac OS X v10.3 and later.

Declared in MacApplication.h.

kHIAboutBoxCopyrightKey
Key for the application copyright notice that replaces the text specified by the
CFBundleGetInfoString key in the Info.plist file.

Available in Mac OS X v10.3 and later.

Declared in MacApplication.h.

kHIAboutBoxDescriptionKey
Key for a short description of the application.

Available in Mac OS X v10.3 and later.

Declared in MacApplication.h.

kHIAboutBoxStringFileKey
Key for the name of a localized strings file that contains about-box strings for the application.

Available in Mac OS X v10.3 and later.

Declared in MacApplication.h.

Discussion
The values associated with the keys in an options dictionary are all strings.

HIToolbox Version Number
Constant that specifies the current version number of HIToolbox.

const float kHIToolboxVersionNumber;

Constants
kHIToolboxVersionNumber

The current HIToolbox version number, which is incremented each time that HIToolbox is rebuilt
during the course of a Mac OS X release.

Available in Mac OS X v10.3 and later.

Declared in MacApplication.h.

234 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Discussion
You can use this constant to check for the presence of bug fixes documented in HIToolbox release notes.
For example, to test for the HIToolbox included in Mac OS X 10.4.2, check that kHIToolboxVersionNumber
is at least 220. See the header file MacApplication.h for a list of the version numbers for specific releases.

Presentation Modes
Constants used to control the presentation of user interface elements provided by Mac OS X, such as the
menu bar and Dock.

enum {
 kUIModeNormal = 0,
 kUIModeContentSuppressed = 1,
 kUIModeContentHidden = 2,
 kUIModeAllSuppressed = 4,
 kUIModeAllHidden = 3,
};
typedef UInt32 SystemUIMode;

Constants
kUIModeNormal

All standard system UI elements are visible.

Available in Mac OS X v10.2 and later.

Declared in MacApplication.h.

kUIModeContentSuppressed
System UI elements positioned in the content area of the screen (the area other than the menu bar)
are hidden. However, these elements may automatically show themselves in response to mouse
movements or other user activity.

Available in Mac OS X v10.2 and later.

Declared in MacApplication.h.

kUIModeContentHidden
System UI elements positioned in the content area of the screen (the area other than the menu bar)
are hidden.

Available in Mac OS X v10.2 and later.

Declared in MacApplication.h.

kUIModeAllSuppressed
All system UI elements (including the menu bar) are hidden. However, these elements may
automatically show themselves in response to mouse movements or other user activity.

Available in Mac OS X v10.3 and later.

Declared in MacApplication.h.

kUIModeAllHidden
All system UI elements (including the menu bar) are hidden.

Available in Mac OS X v10.2 and later.

Declared in MacApplication.h.

Discussion
The presentation mode of an application determines which system-provided user interface elements are
visible on the screen. Your application can specify its presentation mode using the function
SetSystemUIMode (page 232).

Constants 235
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Presentation Options
Flags used to control optional behavior of system-provided user interface elements and features.

enum {
 kUIOptionAutoShowMenuBar = 1 << 0,
 kUIOptionDisableAppleMenu = 1 << 2,
 kUIOptionDisableProcessSwitch = 1 << 3,
 kUIOptionDisableForceQuit = 1 << 4,
 kUIOptionDisableSessionTerminate = 1 << 5,
 kUIOptionDisableHide = 1 << 6
};
typedef OptionBits SystemUIOptions;

Constants
kUIOptionAutoShowMenuBar

This flag specifies that the menu bar automatically shows itself when the user moves the mouse into
the screen area that would ordinarily be occupied by the menu bar. Only valid for the presentation
mode kUIModeAllHidden.

Available in Mac OS X v10.2 and later.

Declared in MacApplication.h.

kUIOptionDisableAppleMenu
This flag disables all items in the Apple menu. Valid for all presentation modes.

Available in Mac OS X v10.2 and later.

Declared in MacApplication.h.

kUIOptionDisableProcessSwitch
This flag disables the Command-Tab and Command-Shift-Tab key sequences to switch the active
process, and the global window rotation key sequence selected by the user in the Keyboard preference
pane. The function SetFrontProcess may still be used to explicitly switch the active process. Only
valid with presentation modes other than kUIModeNormal.

Available in Mac OS X v10.2 and later.

Declared in MacApplication.h.

kUIOptionDisableForceQuit
This flag disables the Command-Option-Escape key sequence and the Force Quit menu item in the
Apple menu to open the Force Quit window. Only valid with presentation modes other than
kUIModeNormal.

Available in Mac OS X v10.2 and later.

Declared in MacApplication.h.

kUIOptionDisableSessionTerminate
This flag disables the Power key (if present) and the Restart, Shut Down, and Log Out menu items in
the Apple menu. Only valid with modes other than kUIModeNormal.

Available in Mac OS X v10.2 and later.

Declared in MacApplication.h.

kUIOptionDisableHide
This flag disables the Hide menu item in the Application menu. Note that this option does not prevent
this application from being hidden if Hide Others is selected in some other application.

Available in Mac OS X v10.3 and later.

Declared in MacApplication.h.

236 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Discussion
Presentation mode options are used to inhibit or allow certain user interface elements and commands. Your
application can specify these options using the function SetSystemUIMode (page 232).

Constants 237
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

238 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 2

Application Manager Reference

Framework: Carbon/Carbon.h

Declared in CarbonEventsCore.h
CarbonEvents.h

Overview

The Carbon Event Manager is the preferred API for handling events in Carbon applications. You can use this
interface to handle events generated in response to user input as well as to create your own custom events.
Because event handling is so fundamental to all applications, this document is relevant for everyone writing
Carbon applications. To use this document, you should be familiar with Macintosh terminology and understand
the basics of creating and manipulating the Mac OS user interface (windows, controls, menus, and so on).

For more information about HIObjects and the HIView subclass, see HIView Programming Guide.

Functions by Task

Creating and Manipulating Event Handlers

InstallEventHandler (page 274)
Installs an event handler on a specified event target.

InstallStandardEventHandler (page 278)
Installs the standard event handler for the specified target.

RemoveEventHandler (page 294)
Removes the specified event handler.

AddEventTypesToHandler (page 246)
Adds events to an installed handler.

RemoveEventTypesFromHandler (page 295)
Removes events from an installed event handler.

CallNextEventHandler (page 247)
Calls the next handler in the handler chain.

RegisterEventHotKey (page 290)
Registers a global hot key.

UnregisterEventHotKey (page 306)
Unregisters a global hot key.

Overview 239
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

RegisterToolboxObjectClass (page 291) Deprecated in Mac OS X v10.4
Registers events to be associated with a toolbox object. (Deprecated. Use the HIObject function
HIObjectRegisterSubclass (page 2335) instead.)

UnregisterToolboxObjectClass (page 307) Deprecated in Mac OS X v10.4
Unregisters events for a given toolbox object class (Deprecated. Use the HIObject function
HIObjectUnregisterClass (page 2340) instead.)

Creating and Manipulating Event Timers

InstallEventLoopTimer (page 276)
Installs a timer.

InstallEventLoopIdleTimer (page 275)
Installs a timer that fires only when there is no user activity.

RemoveEventLoopTimer (page 295)
Removes the specified timer.

SetEventLoopTimerNextFireTime (page 300)
Sets the next time that the specified timer will fire.

Creating and Manipulating Events

GetEventClass (page 264)
Returns the class of an event (for example, window, mouse, or keyboard).

GetEventKind (page 265)
Returns the event kind for the specified event.

GetEventParameter (page 266)
Obtains a parameter from the specified event.

SetEventParameter (page 300)
Sets a parameter associated with a particular event.

CreateEvent (page 252)
Creates an event.

CopyEvent (page 250)
Copies an event.

CopyEventAs (page 250)
Copies an existing event, allowing you to change the class and kind of the event.

RetainEvent (page 296)
Increments the reference count of an event.

ReleaseEvent (page 292)
Releases, and possibly disposes of, the specified event.

GetEventRetainCount (page 268)
Returns the reference count of an event.

ConvertEventRefToEventRecord (page 249)
Converts an event reference into an event record.

IsEventInMask (page 280)
Determines whether an event reference matches a WaitNextEvent-style event mask.

240 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

GetEventMonitorTarget (page 266)
Obtains an event monitor target.

Dispatching Events

SendEventToEventTarget (page 299)
Sends an event to the specified event target.

SendEventToEventTargetWithOptions (page 299)
Sends an event to the specified event target with propagation options.

GetControlEventTarget (page 261)
Obtains the event target reference for the specified control.

GetWindowEventTarget (page 273)
Obtains the event target reference for a specified window.

GetMenuEventTarget (page 270)
Obtains an event target reference for the specified menu.

GetApplicationEventTarget (page 260)
Obtains the event target reference for the application.

GetEventDispatcherTarget (page 264)
Obtains the event target reference for the standard toolbox dispatcher.

GetUserFocusEventTarget (page 272)
Obtains the event target reference for the user focus.

ProcessHICommand (page 287)
Sends a command to the command chain.

Managing Secure Event Input

EnableSecureEventInput (page 257)
Enables secure event input mode.

DisableSecureEventInput (page 255)
Disables secure event input mode.

IsSecureEventInputEnabled (page 282)
Determines whether secure event input mode is enabled.

Managing Event Queues

GetCurrentEventQueue (page 263)
Obtains the current event queue.

GetMainEventQueue (page 269)
Obtains the main event queue.

PostEventToQueue (page 286)
Adds an event to the specified event queue.

RemoveEventFromQueue (page 294)
Removes an event from the event queue.

Functions by Task 241
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

IsEventInQueue (page 281)
Determines whether an event is in a particular queue.

AcquireFirstMatchingEventInQueue (page 245)
Obtains the first event that matches the specified list of event classes and kinds.

FlushEventsMatchingListFromQueue (page 259)
Removes events from the event queue by kind and class.

FindSpecificEventInQueue (page 258)
Finds a specific event in the event queue.

FlushSpecificEventsFromQueue (page 260)
Removes specified events from the event queue.

FlushEventQueue (page 259)
Removes all events from the event queue.

GetNumEventsInQueue (page 271)
Returns the number of events in the event queue.

Managing the Event Loop

RunApplicationEventLoop (page 297)
Runs the application event loop.

QuitApplicationEventLoop (page 288)
Terminates the application event loop.

GetMainEventLoop (page 269)
Obtains a reference to the main event loop.

GetCurrentEventLoop (page 263)
Obtains a reference to the current event loop.

GetCFRunLoopFromEventLoop (page 261)
Obtains a Core Foundation CFRunLoop from an Carbon event loop reference.

RunCurrentEventLoop (page 298)
Executes the event loop in the current thread.

QuitEventLoop (page 289)
Causes a specific event loop to terminate.

ReceiveNextEvent (page 289)
Waits for the next event of a specified type.

Manipulating Event Time

GetCurrentEventTime (page 263)
Returns the current time since last system startup, in seconds.

GetEventTime (page 268)
Returns the time a specific event occurred.

SetEventTime (page 301)
Sets the event time for a given event.

242 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

GetLastUserEventTime (page 268)
Returns the last time a user input event arrived in the main event queue of the application.

Implementing Modal Windows

RunAppModalLoopForWindow (page 298)
Puts the window in an application-modal state.

QuitAppModalLoopForWindow (page 288)
Quits the application-modal state for a window.

BeginAppModalStateForWindow (page 247)
Puts the window in an application-modal state, but does not process events.

EndAppModalStateForWindow (page 258)
Ends the application-modal state entered using the function BeginAppModalStateForWindow.

Tracking the Mouse

TrackMouseLocation (page 303)
Tracks the mouse, blocking your application when there is no activity.

TrackMouseLocationWithOptions (page 304)
Tracks the mouse with additional options.

TrackMouseRegion (page 305)
Tracks the mouse within a region.

ChangeMouseTrackingRegion (page 248)
(Deprecated. Use HIViewChangeTrackingArea (page 2445) instead.)

ClipMouseTrackingRegion (page 248)
(Deprecated. No replacement function. Use HIView-based mouse tracking areas instead.)

GetMouseTrackingRegionID (page 270)
(Deprecated. Use HIViewGetTrackingAreaID (page 2465) instead.)

MoveMouseTrackingRegion (page 283)
(Deprecated. No replacement function. Use HIView-based tracking areas instead.)

SetMouseTrackingRegionEnabled (page 302)
(Deprecated. No replacement function. Use HIView-based tracking areas instead.)

ClipWindowMouseTrackingRegions (page 249)
(Deprecated. No replacement function. Use HIView-based tracking areas instead.)

MoveWindowMouseTrackingRegions (page 283)
(Deprecated. No replacement function. Use HIView-based tracking areas instead.)

SetWindowMouseTrackingRegionsEnabled (page 303)
(Deprecated. Use HIView-based tracking areas instead.)

ReleaseWindowMouseTrackingRegions (page 293)
(Deprecated. No replacement function. Use HIView-based tracking areas instead.)

HIMouseTrackingGetParameters (page 273)
Obtains information about how mouse tracking loops should behave.

Functions by Task 243
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

CreateMouseTrackingRegion (page 253) Deprecated in Mac OS X v10.4
Creates a mouse tracking region. (Deprecated. Use the HIView function
HIViewNewTrackingArea (page 2473) instead.)

GetMouseTrackingRegionRefCon (page 271) Deprecated in Mac OS X v10.4
Obtains the reference constant for a mouse tracking region. (Deprecated. No replacement function.
Use HIView-based mouse tracking areas instead.)

ReleaseMouseTrackingRegion (page 293) Deprecated in Mac OS X v10.4
Releases a mouse tracking region. (Deprecated. Use HIViewDisposeTrackingArea (page 2450)
instead.)

RetainMouseTrackingRegion (page 296) Deprecated in Mac OS X v10.4
Retains a mouse tracking region. (Deprecated. No replacement function. Use HIView-based tracking
areas instead.)

Working with Hot Keys

CopySymbolicHotKeys (page 252)
Obtains information about symbolic hot keys in the Keyboard preferences pane.

PushSymbolicHotKeyMode (page 287)
Sets a new mode for enabling and disabling symbolic hot keys.

PopSymbolicHotKeyMode (page 286)
Removes a hot key mode request from the hot key mode stack.

GetSymbolicHotKeyMode (page 272)
Obtains the current hot key mode.

Callback-Related Functions

NewEventComparatorUPP (page 284)
Creates an event comparator UPP.

InvokeEventComparatorUPP (page 278)
Calls an event comparator function through a UPP.

DisposeEventComparatorUPP (page 256)
Disposes of an event comparator UPP.

NewEventHandlerUPP (page 284)
Creates an event handler UPP.

DisposeEventHandlerUPP (page 256)
Disposes of an event handler UPP.

InvokeEventHandlerUPP (page 279)
Calls an event handler through a UPP.

NewEventLoopTimerUPP (page 285)
Creates an event loop timer UPP.

InvokeEventLoopTimerUPP (page 280)
Calls an event loop timer through a UPP.

DisposeEventLoopTimerUPP (page 257)
Disposes of an event loop timer.

244 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

NewEventLoopIdleTimerUPP (page 285)
Creates an event loop idle timer UPP.

InvokeEventLoopIdleTimerUPP (page 280)
Calls an event loop idle timer through a UPP.

DisposeEventLoopIdleTimerUPP (page 257)
Disposes of an event loop idle timer.

Miscellaneous

CopyServicesMenuCommandKeys (page 251)
Obtains information about command key shortcuts in an application’s Services menu.

CreateTypeStringWithOSType (page 255)
Converts an OSType string to a Core Foundation string.

GetCurrentEventKeyModifiers (page 262)
Obtains the queue-synchronized keyboard modifier state.

IsMouseCoalescingEnabled (page 281)
Indicates whether mouse coalescing is enabled.

SetMouseCoalescingEnabled (page 302)
Turns mouse coalescing on or off.

IsUserCancelEventRef (page 282)
Returns whether the specified event indicates the user wishes to cancel an operation.

Functions

AcquireFirstMatchingEventInQueue
Obtains the first event that matches the specified list of event classes and kinds.

EventRef AcquireFirstMatchingEventInQueue (
 EventQueueRef inQueue,
 ItemCount inNumTypes,
 const EventTypeSpec *inList,
 OptionBits inOptions
);

Parameters
inQueue

The queue to check.

inNumTypes
The number of event kinds for which to search. You may pass 0 if you also pass NULL for inList.

inList
The list of event classes and kinds to search for in the queue. You may pass NULL if inNumTypes is
0. Doing so effectively matches any event in the queue and causes this function to return the first
event in the queue.

Functions 245
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

inOptions
Must be kEventQueueOptionsNone.

Return Value
An event reference, or NULL if no events match. The reference count for the event has been incremented
(that is, it has been retained), so you must release the event reference.

Discussion
This function does not remove the event from the queue. To remove the event, call
RemoveEventFromQueue (page 294).

This function does not call the run loop, so no timers fire as a result of calling this function. This function
does not cause any window flushing to occur, but it does get new events from the window server.

This function should have better performance characteristics than the older EventAvail API.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CarbonEventsCore.h

AddEventTypesToHandler
Adds events to an installed handler.

OSStatus AddEventTypesToHandler (
 EventHandlerRef inHandlerRef,
 ItemCount inNumTypes,
 const EventTypeSpec *inList
);

Parameters
inHandlerRef

The event handler to add events to.

inNumTypes
The number of events to add.

inList
A pointer to an array of EventTypeSpec structures.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
You can use this function to dynamically change which events you want your handler to respond to.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

246 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

BeginAppModalStateForWindow
Puts the window in an application-modal state, but does not process events.

OSStatus BeginAppModalStateForWindow (
 WindowRef inWindow
);

Parameters
inWindow

The window you wish to behave modally. See the Window Manager documentation for a description
of the WindowRef data type.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
This function is a lower level function than RunAppModalLoopForWindow (page 298). You use it if you want
to enter an application modal state for a window but need to control the event loop yourself. Once you begin
your application modal state, the menu bar will disable and prepare for the modal situation. You can then
call low-level functions (such as ReceiveNextEvent) to run the event loop and process events.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

CallNextEventHandler
Calls the next handler in the handler chain.

OSStatus CallNextEventHandler (
 EventHandlerCallRef inCallRef,
 EventRef inEvent
);

Parameters
inCallRef

The event handler call reference passed into your event handler.

inEvent
The event you want to pass to the next handler.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Calls through to the event handlers below you in the event handler stack of the target to which your handler
is bound. You might use this to call through to the default toolbox handling in order to post-process the
event. You can only call this routine from within an event handler.

Availability
Available in Mac OS X v10.0 and later.

Functions 247
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Related Sample Code
BSDLLCTest
CarbonSketch
QTCarbonShell

Declared In
CarbonEventsCore.h

ChangeMouseTrackingRegion
(Deprecated in Mac OS X v10.4. Use HIViewChangeTrackingArea (page 2445) instead.)

OSStatus ChangeMouseTrackingRegion (
 MouseTrackingRef inMouseRef,
 RgnHandle inRegion,
 RgnHandle inClip
);

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. For more details about tracking areas, see
the mouse tracking region section in Carbon Event Manager Programming Guide. For details about HIViews,
see HIView Programming Guide.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

ClipMouseTrackingRegion
(Deprecated in Mac OS X v10.4. No replacement function. Use HIView-based mouse tracking areas instead.)

OSStatus ClipMouseTrackingRegion (
 MouseTrackingRef inMouseRef,
 RgnHandle inRegion
);

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. You generally don’t need to modify the
clipping of a tracking area. For more details about tracking areas, see the mouse tracking region section in
Carbon Event Manager Programming Guide. For details about HIViews, see HIView Programming Guide.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

248 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Declared In
CarbonEvents.h

ClipWindowMouseTrackingRegions
(Deprecated in Mac OS X v10.4. No replacement function. Use HIView-based tracking areas instead.)

OSStatus ClipWindowMouseTrackingRegions (
 WindowRef inWindow,
 OSType inSignature,
 RgnHandle inClip
);

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. You generally don’t need to modify the
clipping of a tracking area. For more details about tracking areas, see the mouse tracking region section in
Carbon Event Manager Programming Guide. For details about HIViews, see HIView Programming Guide.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

ConvertEventRefToEventRecord
Converts an event reference into an event record.

Boolean ConvertEventRefToEventRecord (
 EventRef inEvent,
 EventRecord *outEvent
);

Parameters
inEvent

The event reference to convert.

outEvent
The event record to fill out. See the Event Manager documentation for a description of the
EventRecord data type.

Return Value
A Boolean value indicating whether the conversion was successful (true) or not (false).

Discussion
This function helps you when you need an EventRecord structure and all you have is a Carbon event
reference. If the event can be converted, outEvent is filled in and the function returns true. If not, the
function returns false and outEvent contains nullEvent.

This function can convert the following events:

Functions 249
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

 ■ kEventMouseDown, kEventMouseUp, kEventMouseMoved, and kEventMouseDragged
(kEventClassMouse)

 ■ kEventRawKeyDown, kEventRawKeyUp, and kEventRawKeyRepeat (kEventClassKeyboard)

 ■ kEventWindowUpdate, kEventWindowActivate, kEventWindowDeactivate, and
kEventWindowCursorChange (kEventClassWindow)

 ■ kEventAppActivated and kEventAppDeactivate (kEventClassApplication)

 ■ kEventAppleEvent (kEventClassAppleEvents)

 ■ kEventControlTrack (kEventClassControl) is converted to a mouse down event in Mac OS X v10.4
and later

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

CopyEvent
Copies an event.

EventRef CopyEvent (
 EventRef inOther
);

Parameters
inOther

The event to copy.

Return Value
A new event reference for the specified event.

Discussion
The CopyEvent function makes an exact duplicate of an existing event reference. The reference count for
the duplicate event reference is set to 1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

CopyEventAs
Copies an existing event, allowing you to change the class and kind of the event.

250 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

EventRef CopyEventAs (
 CFAllocatorRef inAllocator,
 EventRef inOther,
 OSType inEventClass,
 UInt32 inEventKind
);

Parameters
inOther

The allocator to use to allocate the event data. Pass NULL or kCFAllocatorDefault to use the
standard allocator.

inOther
The event to copy.

inEventClass
The new event class for the copy of the event.

inEventKind
The new event kind for the copy of the event.

Return Value
A new event reference or NULL if the inOtherwas NULL or memory for the new event could not be allocated.

Discussion
The CopyEventAs is useful during event flow and transformation. For example, this function is used when
upgrading a raw mouse down to a window click event, to ensure that the window click event has exactly
the same parameters as the original mouse down event.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CarbonEventsCore.h

CopyServicesMenuCommandKeys
Obtains information about command key shortcuts in an application’s Services menu.

OSStatus CopyServicesMenuCommandKeys (
 CFArrayRef *outCommandKeyArray
);

Parameters
outCommandKeyArray

On return, an array of items in the Services menu that have command key shortcuts associated with
them.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Each array entry is a reference to a CFDictionary, and each dictionary contains information about a single
command key shortcut for items in the application’s Services menu. Each dictionary contains the following
keys: kHIServicesMenuProviderName, kHIServicesMenuItemName, kHIServicesMenuCharCode, and
kHIServicesMenuKeyModifiers. The array must be released by the caller. The dictionaries do not need
to be released because they are released automatically when the array is released.

Functions 251
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

CopySymbolicHotKeys
Obtains information about symbolic hot keys in the Keyboard preferences pane.

OSStatus CopySymbolicHotKeys (
 CFArrayRef *outHotKeyArray
);

Parameters
outHotKeyArray

An array of dictionaries containing information about the systemwide symbolic hot keys defined in
the Keyboard preferences pane, such as the Screen Capture, Universal Access, and Keyboard Navigation
keys. The array does not include information about custom, application-specific command keys. You
must release the array when you no longer need it. The dictionaries are automatically released when
you release the array.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Each array entry is a reference for a CFDictionary, and each dictionary contains information about a single
hot key. There is currently no way to determine which hot key in the Keyboards preference pane corresponds
to a specific dictionary. Each dictionary contains the following keys: kHISymbolicHotKeyCode,
kHISymbolicHotKeyModifiers, and kHISymbolicHotKeyEnabled. For details, see “Symbolic Hot Key
Definitions” (page 376).

The number of hot keys will increase in the future, so do not call this function unnecessarily or in highly
performance-sensitive code.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CarbonEvents.h

CreateEvent
Creates an event.

252 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

OSStatus CreateEvent (
 CFAllocatorRef inAllocator,
 UInt32 inClassID,
 UInt32 kind,
 EventTime when,
 EventAttributes flags,
 EventRef * outEvent
);

Parameters
inAllocator

A reference to the desired memory allocator to use to allocate memory for the event. Pass NULL to
use the default allocator. See the Base Services documentation for a description of the
CFAllocatorRef data type.

inClassID
The event class of the event to create.

kind
The event kind of the event to create.

when
The time the event occurred. Pass 0 to specify the current event time (as returned by the
GetCurrentEventTime (page 263) function).

flags
The event attributes to set. Currently you can pass kEventAttributeNone or
kEventAttributeUserEvent.

outEvent
On return, a reference to the newly created event.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
You can use this function to create your own custom events or to simulate existing events. If you are creating
custom events, you must make sure that the event signature (the combination of event class and event kind)
does not conflict with any existing events.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
CarbonEventsCore.h

CreateMouseTrackingRegion
Creates a mouse tracking region. (Deprecated in Mac OS X v10.4. Use the HIView function
HIViewNewTrackingArea (page 2473) instead.)

Functions 253
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

OSStatus CreateMouseTrackingRegion (
 WindowRef inWindow,
 RgnHandle inRegion,
 RgnHandle inClip,
 MouseTrackingOptions inOptions,
 MouseTrackingRegionID inID,
 void *inRefCon,
 EventTargetRef inTargetToNotify,
 MouseTrackingRef *outTrackingRef
);

Parameters
inWindow

The window to contain the tracking region.

inRegion
The region for which you want to receive mouse entered/exited events.

inClip
The clip region for the inRegion region (can be NULL).

inOptions
Tracking options that define whether the inRegion region is in local or global coordinates.

inID
A signature and ID to uniquely define this tracking region. See MouseTrackingRegionID (page 318)
for information about the structure of this ID.

inRefCon
A pointer to an application-defined value. You can obtain this value by calling
GetMouseTrackingRegionRefCon (page 271).

inTargetToNotify
The event target to send the mouse tracking event. If you pass NULL, the event target is the owning
window specified in inWindow.

outTrackingRef
On return, a pointer to the new mouse tracking region.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
CreateMouseTrackingRegion allows you to define regions in your window, and the specified event target
is notified (using kEventMouseEntered or kEventMouseExited events) when the mouse cursor interacts
with the region. Your application can define any number of regions as long as each has a unique ID. This
function is especially useful for creating rollover effects without having to constantly poll the mouse.

If you need to keep track of the state of the mouse (down or up) in a region, you should use
TrackMouseRegion (page 305), either instead of, or in conjunction with, mouse tracking regions.

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. For more details about tracking areas, see
the mouse tracking region section in Carbon Event Manager Programming Guide. For details about HIViews,
see HIView Programming Guide.

Availability
Available in Mac OS X v10.2 and later.

254 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
CarbonEvents.h

CreateTypeStringWithOSType
Converts an OSType string to a Core Foundation string.

CFStringRef CreateTypeStringWithOSType (
 OSType inType
);

Return Value
The Core Foundation string version of the OSType string. A return value of NULL indicates that an error
occurred. See the Base Services documentation for a description of the CFStringRef data type.

Discussion
You can use this function to create CFString versions of OSType data types to pass to the Services Manager.
As this is a creation function, you must call CFRelease on your Core Foundation string when you no longer
need it.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

DisableSecureEventInput
Disables secure event input mode.

OSStatus DisableSecureEventInput (
 void
);

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
When secure event input mode is enabled, keyboard input goes only to the application with keyboard focus
and is not echoed to other applications that might be using the event monitor target to watch keyboard
input. The EditText and EditUnicodeText controls automatically enter secure input mode when a
password control has focus. If your application implements its own password entry, you should enable secure
event input while the user enters text.

Functions 255
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

This function maintains a count of the number of times that it has been called. Secure event input is not
disabled until DisableSecureEventInput has been called the same number of times. Be sure to disable secure
event input if your application becomes inactive. If your application crashes, secure event input is automatically
disabled if no other application has enabled it.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CarbonEventsCore.h

DisposeEventComparatorUPP
Disposes of an event comparator UPP.

void DisposeEventComparatorUPP (
 EventComparatorUPP userUPP
);

Parameters
userUPP

The UPP you want to destroy.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

DisposeEventHandlerUPP
Disposes of an event handler UPP.

void DisposeEventHandlerUPP (
 EventHandlerUPP userUPP
);

Parameters
userUPP

The event handler UPP you want to destroy.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
HID Explorer

Declared In
CarbonEventsCore.h

256 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

DisposeEventLoopIdleTimerUPP
Disposes of an event loop idle timer.

void DisposeEventLoopIdleTimerUPP (
 EventLoopIdleTimerUPP userUPP
);

Availability
Available in Mac OS X v10.2 and later.

Declared In
CarbonEventsCore.h

DisposeEventLoopTimerUPP
Disposes of an event loop timer.

void DisposeEventLoopTimerUPP (
 EventLoopTimerUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EnableSecureEventInput
Enables secure event input mode.

OSStatus EnableSecureEventInput (
 void
);

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
When secure event input mode is enabled, keyboard input goes only to the application with keyboard focus
and is not echoed to other applications that might be using the event monitor target to watch keyboard
input. The EditText and EditUnicodeText controls automatically enter secure input mode when a
password control has focus. If your application implements its own password entry, you should enable secure
event input while the user enters text.

This function maintains a count of the number of times that it has been called. Secure event input is not
disabled until DisableSecureEventInput (page 255) has been called the same number of times. Be sure
to disable secure event input if your application becomes inactive. If your application crashes, secure event
input is automatically disabled if no other application has enabled it.

Availability
Available in Mac OS X v10.3 and later.

Functions 257
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Declared In
CarbonEventsCore.h

EndAppModalStateForWindow
Ends the application-modal state entered using the function BeginAppModalStateForWindow.

OSStatus EndAppModalStateForWindow (
 WindowRef inWindow
);

Parameters
inWindow

The window you wish to stop acting as application- modal. See the Window Manager documentation
for a description of the WindowRef data type.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
This routine ends an app modal state started with BeginAppModalStateForWindow (page 247).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

FindSpecificEventInQueue
Finds a specific event in the event queue.

EventRef FindSpecificEventInQueue (
 EventQueueRef inQueue,
 EventComparatorUPP inComparator,
 void *inCompareData
);

Parameters
inQueue

The event queue to search.

inComparator
The comparison function to invoke for each event in the queue. See EventComparatorProcPtr (page
307) for the required format of your comparison function A return value of true from the comparator
indicates a match.

inCompareData
The data you wish to pass to your comparison function.

Return Value
An event reference.

258 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
Returns the first event that matches a comparator function, or NULL if no events match.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

FlushEventQueue
Removes all events from the event queue.

OSStatus FlushEventQueue (
 EventQueueRef inQueue
);

Parameters
inQueue

The event queue to flush.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Flushes all events from an event queue.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

FlushEventsMatchingListFromQueue
Removes events from the event queue by kind and class.

OSStatus FlushEventsMatchingListFromQueue (
 EventQueueRef inQueue,
 ItemCount inNumTypes,
 const EventTypeSpec *inList
);

Parameters
inQueue

The event queue to flush events from.

inNumTypes
The number of event kinds to flush.

inList
The list of event classes and kinds to flush from the queue.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Functions 259
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

FlushSpecificEventsFromQueue
Removes specified events from the event queue.

OSStatus FlushSpecificEventsFromQueue (
 EventQueueRef inQueue,
 EventComparatorUPP inComparator,
 void *inCompareData
);

Parameters
inQueue

The event queue to flush events from.

inComparator
The comparison function to invoke for each event in the queue. See EventComparatorProcPtr (page
307) for the required format of your comparison function. A return value of true from the comparator
indicates that the event should be flushed.

inCompareData
The data you wish to pass to your comparison function.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

GetApplicationEventTarget
Obtains the event target reference for the application.

EventTargetRef GetApplicationEventTarget (
 void
);

Return Value
An event target reference.

Discussion
Once you obtain this reference, you can send events to the target and install event handlers on it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

260 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Related Sample Code
QTCarbonShell
QTMetaData

Declared In
CarbonEvents.h

GetCFRunLoopFromEventLoop
Obtains a Core Foundation CFRunLoop from an Carbon event loop reference.

CFTypeRef GetCFRunLoopFromEventLoop (
 EventLoopRef inEventLoop
);

Parameters
inEventLoop

The event loop reference to translate.

Return Value
A reference to the CFRunLoop.

Discussion
There isn’t necessarily a one-to-one correspondence between Carbon event loops and Core Foundation
event loops, so you should use this function instead of simply calling the Core Foundation function
CFRunLoopGetCurrent.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CarbonEventsCore.h

GetControlEventTarget
Obtains the event target reference for the specified control.

EventTargetRef GetControlEventTarget (
 ControlRef inControl
);

Parameters
inControl

The control to return the target for. See the Control Manager documentation for a description of the
ControlRef data type.

Return Value
An event target reference.

Discussion
Once you obtain this reference, you can send events to the target and install event handlers on it.

Availability
Available in Mac OS X v10.0 and later.

Functions 261
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
CarbonEvents.h

GetCurrentEventKeyModifiers
Obtains the queue-synchronized keyboard modifier state.

UInt32 GetCurrentEventKeyModifiers (
 void
);

Return Value
A bit field indicating the queue-synchronized keyboard modifier state. This field is the same as the modifiers
field returned in an Event Manager EventRecord structure, but it includes only the keyboard modifier flags.

Discussion
The queue-synchronized keyboard modifier state indicates the modifier state according to the event most
recently dispatched through an event target. This state may be different from the hardware state obtained
using GetCurrentKeyModifiers (page 994). For example, say the user invokes a Control-click with the
mouse. If the user releases or changes a modifier key before the mouse down event is dispatched, the
hardware state reflects the new modifier state, not the one that generated the original mouse event.

The most recently dispatched event may not necessarily be the event that your event handler is handling.
For example, if a mouse-down event occurs, and you have a handler for the
kEventWindowHandleContentClick event that is generated from the mouse-down, then the keyboard
modifiers will be those that were attached to the mouse-down. The content-click event itself has a
kEventParamKeyModifiers parameter, which is copied from the mouse-down event, but
GetCurrentEventKeyModifiers returns the modifiers from the mouse-down, not from the content-click
event, because it was the mouse-down event that was most recently dispatched through the event dispatcher.

Events that are not sent through the event dispatcher target will not update the current event key modifiers.
Also, events arriving from outside the application, such as an AppleEvent or an Accessibility event, also will
not update the modifiers. If your application modifies its behavior based on modifier state, you should
parameterize your core code with the event modifiers, and determine the modifiers based on the origin of
the behavior request. For a request that originates directly from user input, you can use
GetCurrentEventKeyModifiers, but for a request that originates from an AppleEvent or Accessibility
event, you would probably use no modifiers. GetCurrentEventKeyModifiers gives a more consistent
user experience when the user input queue is being remote controlled or manipulated via non-hardware
event sources such as speech or AppleEvents; using GetCurrentEventKeyModifiers is also much faster
than using EventAvail(0, &eventRecord) or GetCurrentKeyModifiers.

GetCurrentEventKeyModifiers returns a valid modifier state only if your application is the active
application. If your application is not active, then user input events are not flowing through the event
dispatcher and the queue-synchronized state is not updated.

Availability
Available in Mac OS X v10.2 and later.

262 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Declared In
CarbonEventsCore.h

GetCurrentEventLoop
Obtains a reference to the current event loop.

EventLoopRef GetCurrentEventLoop (
 void
);

Return Value
An event loop reference.

Discussion
This function returns the event loop for the current thread. If the current thread is a cooperative thread, the
main event loop is returned.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HID Config Save
HID Explorer

Declared In
CarbonEventsCore.h

GetCurrentEventQueue
Obtains the current event queue.

EventQueueRef GetCurrentEventQueue (
 void
);

Return Value
An event queue reference.

Discussion
This function obtains the event queue for the current thread. If the current thread is a cooperative thread,
the main event queue is returned.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

GetCurrentEventTime
Returns the current time since last system startup, in seconds.

Functions 263
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

EventTime GetCurrentEventTime (
 void
);

Return Value
EventTime.

Discussion
Returns the current time since last system startup in seconds.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
CarbonEventsCore.h

GetEventClass
Returns the class of an event (for example, window, mouse, or keyboard).

OSType GetEventClass (
 EventRef inEvent
);

Parameters
inEvent

The event in question.

Return Value
The class ID of the event. See “Event Class Constants” (page 322) for more details.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
HID Calibrator
HID Config Save
HID Explorer
QTCarbonShell

Declared In
CarbonEventsCore.h

GetEventDispatcherTarget
Obtains the event target reference for the standard toolbox dispatcher.

264 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

EventTargetRef GetEventDispatcherTarget (
 void
);

Return Value
An event target reference.

Discussion
The standard toolbox dispatcher is the default mechanism for dispatching events to the appropriate event
targets. You typically don’t need to call this, but some applications may need to pick events off the event
queue and call the dispatcher themselves. This allows you to do just that instead of calling
RunApplicationEventLoop to handle it all.

If desired, you can attach event handlers to the event dispatcher target. Doing so allows you to intercept
any events before they can be sent to the appropriate event targets.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

GetEventKind
Returns the event kind for the specified event.

UInt32 GetEventKind (
 EventRef inEvent
);

Parameters
inEvent

The event in question.

Return Value
The kind of the event.

Discussion
Event kind values overlap in different event classes. For example, kEventMouseDown and
kEventAppActivated both have the same value (1). The combination of class and kind determines a unique
event signature.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
HID Calibrator
HID Config Save
HID Explorer
QTCarbonShell

Declared In
CarbonEventsCore.h

Functions 265
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

GetEventMonitorTarget
Obtains an event monitor target.

EventTargetRef GetEventMonitorTarget (
 void
);

Return Value
An event monitor target.

Discussion
The event monitor target is a special event target used to monitor user input events across all processes.
When an event handler is installed on the event monitor target, the Carbon Event Manager examines the
EventTypeSpec for user input event types, such as mouse-down, mouse-up, and key-down. It then requests
that the WindowServer make copies of any of these events that are sent to any process, and delivers them
to the current process. These events are queued into the main thread’s event queue and are sent directly to
the event handlers installed on the event monitor target during normal event dispatching. Monitored events
are not sent through the normal event dispatching path for the current process. Instead, they pass through
the event dispatcher target and are sent directly to the event monitor target.Handlers installed on the event
monitor target receive events only when the current application is inactive. When the current application is
active, all events flow through the event dispatcher target, and no events are sent to the event monitor
target. Currently, the event monitor supports the following event kinds: kEventRawKeyDown,
kEventRawKeyUp, kEventRawKeyRepeat, kEventRawKeyModifiersChange, kEventMouseDown,
kEventMouseUp, kEventMouseMoved, kEventMouseDragged, kEventMouseWheelMoved,
kEventTabletPoint, and kEventTabletProximity.To prevent keyboard events from being passed to
other applications, Carbon and Cocoa password-edit-text controls enable a secure input mode while the
focus is on the control. Their password-edit-text controls prevent the monitoring event target from being
used to capture password keystrokes. For added security, GetEventMonitorTarget requires that “Enable
access for assistive devices” be checked in the Universal Access preference pane in order to monitor
kEventRawKeyDown, kEventRawKeyUp, and kEventRawKeyRepeat events. If this control is not checked,
you can still install handlers for these events on the event monitor target, but no events of these types will
be sent to your handler. Administrator privileges are required to enable this feature. You can determine
whether this control is checked using the AXAPIEnabled function in AXUIElement.h.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CarbonEvents.h

GetEventParameter
Obtains a parameter from the specified event.

266 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

OSStatus GetEventParameter (
 EventRef inEvent,
 EventParamName inName,
 EventParamType inDesiredType,
 EventParamType *outActualType,
 ByteCount inBufferSize,
 ByteCount *outActualSize,
 void *outData
);

Parameters
inEvent

The event to get the parameter from.

inName
The symbolic name of the parameter (for example, kEventParamDirectObject). The Carbon Event
Manager defines a number of constants defining possible parameters.

inDesiredType
The desired type of the parameter (for example, typeWindowRef). The Carbon Event Manager
automatically uses AppleEvent coercion handlers to convert the data in the event into the desired
type, if possible. The Carbon Event Manager defines a number of constants to indicate possible
parameter types. Pass typeWildCard to request that the data be returned in its original format.

outActualType
The actual type of the parameter (can be NULL if you are not interested in receiving this information).

inBufferSize
The size of the output buffer.

outActualSize
The actual size of the data, or NULL if you don’t want this information.

outData
The pointer to the buffer receiving the parameter data.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Events often contain additional useful pieces of data, such as the location of a mouse-down event or the
window in which an event occurred.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
HID Calibrator
HID Config Save
HID Explorer
QTCarbonShell

Declared In
CarbonEventsCore.h

Functions 267
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

GetEventRetainCount
Returns the reference count of an event.

ItemCount GetEventRetainCount (
 EventRef inEvent
);

Return Value
The current reference count for the specified event.

Discussion
When an event is created, its reference count is 1. Calls to RetainEvent increment this count; calls to
ReleaseEvent decrement the count.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

GetEventTime
Returns the time a specific event occurred.

EventTime GetEventTime (
 EventRef inEvent
);

Parameters
inEvent

The event in question.

Return Value
The time the event occurred.

Discussion
Returns the time the event specified occurred, specified as an EventTime value, which is a floating point
number representing seconds since the last system startup.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
CarbonEventsCore.h

GetLastUserEventTime
Returns the last time a user input event arrived in the main event queue of the application.

268 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

EventTime GetLastUserEventTime (
 void
);

Return Value
The time of the last user event.

Discussion
A user input event is something generated by the user, typically a hardware event such as a mouse-click or
key-down event.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

GetMainEventLoop
Obtains a reference to the main event loop.

EventLoopRef GetMainEventLoop (
 void
);

Return Value
An event loop reference.

Discussion
The main loop is the event loop for the main application thread.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
QTCarbonShell

Declared In
CarbonEventsCore.h

GetMainEventQueue
Obtains the main event queue.

EventQueueRef GetMainEventQueue (
 void
);

Return Value
An event queue reference.

Functions 269
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
The main queue is the event queue for the main application thread.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
CarbonEventsCore.h

GetMenuEventTarget
Obtains an event target reference for the specified menu.

EventTargetRef GetMenuEventTarget (
 MenuRef inMenu
);

Parameters
inMenu

The menu to return the target for. See the Menu Manager documentation for a description of the
MenuRef data type.

Return Value
An event target reference.

Discussion
Once you obtain this reference, you can send events to the target and install event handlers on it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

GetMouseTrackingRegionID
(Deprecated in Mac OS X v10.4. Use HIViewGetTrackingAreaID (page 2465) instead.)

OSStatus GetMouseTrackingRegionID (
 MouseTrackingRef inMouseRef,
 MouseTrackingRegionID *outID
);

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. For more details about tracking areas, see
the mouse tracking region section in Carbon Event Manager Programming Guide. For details about HIViews,
see HIView Programming Guide.

270 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

GetMouseTrackingRegionRefCon
Obtains the reference constant for a mouse tracking region. (Deprecated in Mac OS X v10.4. No replacement
function. Use HIView-based mouse tracking areas instead.)

OSStatus GetMouseTrackingRegionRefCon (
 MouseTrackingRef inMouseRef,
 void **outRefCon
);

Parameters
inMouseRef

The mouse tracking region whose reference count you want to obtain.

outRefCon
On return, a handler for the mouse tracking region.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
You use this function to obtain the reference constant you set in the CreateMouseTrackingRegion (page
253) function.

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. Mouse tracking areas do not support a
reference constant. Instead, you can obtain the tracking area ID (using HIViewGetTrackingAreaID (page
2465)) and use that as a key to look up extended data in your own tables. For more details about tracking areas,
see the mouse tracking region section in CarbonEventManager ProgrammingGuide. For details about HIViews,
see HIView Programming Guide.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

GetNumEventsInQueue
Returns the number of events in the event queue.

Functions 271
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

ItemCount GetNumEventsInQueue (
 EventQueueRef inQueue
);

Parameters
inQueue

The event queue to query.

Return Value
The number of items in the queue.

Discussion
Returns the number of events in an event queue.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

GetSymbolicHotKeyMode
Obtains the current hot key mode.

OptionBits GetSymbolicHotKeyMode (
 void
);

Return Value
The mode request at the top of the hot key mode stack. If there are no mode requests on the stack, this
function returns 0 to indicate that hot keys are currently enabled.

Discussion
Unless the “Enable access for assistive devices” checkbox is checked in the Universal Access preference pane,
all hot keys are enabled, even if this function returns a nonzero value. This means that hot keys enabled by
the caller may be disabled for the current user session if they were disabled by another process.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CarbonEvents.h

GetUserFocusEventTarget
Obtains the event target reference for the user focus.

EventTargetRef GetUserFocusEventTarget (
 void
);

Return Value
An event target reference.

272 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
This event target always references the current user focus. For example, if you install a handler on this target,
then your handler will be called whenever an event is sent to the user focus. Keyboard events are always
sent to this target.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

GetWindowEventTarget
Obtains the event target reference for a specified window.

EventTargetRef GetWindowEventTarget (
 WindowRef inWindow
);

Parameters
inWindow

The window to return the event target for. See the QuickDraw Manager documentation for a description
of the WindowRef data type.

Return Value
An event target reference.

Discussion
Once you obtain this reference, you can send events to the target and install an event handler on it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
CarbonEvents.h

HIMouseTrackingGetParameters
Obtains information about how mouse tracking loops should behave.

OSStatus HIMouseTrackingGetParameters (
 OSType inSelector,
 EventTime *outTime,
 HISize *outDistance
);

Parameters
inSelector

The type of information to obtain. Currently, the only supported selector is kMouseParamsSticky.

Functions 273
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

outTime
When sticky mode is select, on return, the maximum time between mouse-down and mouse-up. If
the time between events is longer than this value, sticky mode should not be invoked. Pass NULL if
you don’t need this information.

outDistance
When sticky mode is select, on return, the maximum distance between mouse-down and mouse-up.
If the distance between events is longer than this value, sticky mode should not be invoked. Pass
NULL if you don’t need this information.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Mouse tracking loops use different timeouts and wander distances to determine their behavior. This function
provides a generic service for requesting this information.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CarbonEvents.h

InstallEventHandler
Installs an event handler on a specified event target.

OSStatus InstallEventHandler (
 EventTargetRef inTarget,
 EventHandlerUPP inHandler,
 ItemCount inNumTypes,
 const EventTypeSpec *inList,
 void *inUserData,
 EventHandlerRef *outRef
);

Parameters
inTarget

The event target to register your handler with.

inHandler
A pointer to your event handler function.

inNumTypes
The number of events you are registering for.

inList
A pointer to an array of EventTypeSpec entries representing the events you are interested in.

inUserData
The value you pass in this parameter is passed to your event handler function when it is called.

outRef
On return, an event handler reference, which you can use later to remove the handler. You can pass
NULL if you don’t want the reference—when the target is disposed, the handler is disposed as well.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

274 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
After being installed, your handler will be called when an event you registered for is sent to the specified
event target. Note that CarbonEvents.h defines several macros which you can use for particular event classes.
These macros simply combine the appropriate GetxxxEventTarget call with InstallEventHandler.

 ■ InstallApplicationEventHandler

 ■ InstallWindowEventHandler

 ■ InstallControlEventHandler

 ■ InstallMenuEventHandler

 ■ InstallHIObjectEventHandler (in Mac OS X v10.2 and later)

 ■ HIViewInstallEventHandler (in Mac OS X v10.2 and later)

Be sure to remove the event handler when you no longer need it by calling RemoveEventHandler (page
294). Doing so is especially important if the handler calls code that may disappear. For example, if a plugin
installs an event handler and is later removed without removing the handler, the system may attempt to call
back to the now nonexistent plugin code.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTCarbonShell
QTMetaData

Declared In
CarbonEventsCore.h

InstallEventLoopIdleTimer
Installs a timer that fires only when there is no user activity.

OSStatus InstallEventLoopIdleTimer (
 EventLoopRef inEventLoop,
 EventTimerInterval inDelay,
 EventTimerInterval inInterval,
 EventLoopIdleTimerUPP inTimerProc,
 void *inTimerData,
 EventLoopTimerRef *outTimer
);

Parameters
inEventLoop

The event loop to add the timer.

inFireDelay
The delay before first firing this timer, in seconds. In Mac OS X v10.3 and earlier, this delay must be
greater than zero. In Mac OS X v10.4 and later, the delay must be greater than or equal to zero. You
cannot pass kEventDurationForever.

inInterval
The timer interval, in seconds. Pass 0 or kEventDurationForever for a one-shot timer.

Functions 275
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

inTimerProc
The function to call when the timer fires.

inTimerData
Data to pass to the timer function when called.

outTimer
A reference to the newly installed timer.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
An idle timer is the same as a standard event timer except that it fires only when no user events are being
received. That is, if the system receives no user events for the inFireDelay delay time, the idle timer fires,
and will continue to fire at the rate specified by inInterval. If the user begins activity again, the timer stops
and resets. For example, you could use an idle timer in a search engine to begin a search 2 seconds after the
user stops typing in the search text field.

The callback function for idle timers takes an additional parameter that tells the callback the user status. See
EventLoopIdleTimerProcPtr (page 309) and “Idle Timer Event Constants” (page 416) for more information.

Be sure to dispose of the timer when you no longer need it by calling RemoveEventLoopTimer (page 295).
Doing so is especially important if your timer calls code that may no longer exist. For example, if a plugin
creates a timer that calls back to it, the timer will attempt to call it even after the plugin is removed.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
CarbonEventsCore.h

InstallEventLoopTimer
Installs a timer.

OSStatus InstallEventLoopTimer (
 EventLoopRef inEventLoop,
 EventTimerInterval inFireDelay,
 EventTimerInterval inInterval,
 EventLoopTimerUPP inTimerProc,
 void *inTimerData,
 EventLoopTimerRef *outTimer
);

Parameters
inEventLoop

The event loop to add the timer.

276 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

inFireDelay
The delay before first firing this timer, in seconds. In Mac OS X v10.3 and earlier, the delay must be
greater than zero. In Mac OS X v10.4, the delay can be greater than or equal to zero.

In Mac OS X and CarbonLib 1.5 and later, you may pass kEventDurationForever to stop the timer
from firing at all until SetEventLoopTimerNextFireTime is used to start it; in earlier versions of
CarbonLib, to achieve the same effect, just pass zero and then immediately call
SetEventLoopTimerNextFireTime(timer, (kEventDurationForever) before returning
control to your event loop.

inInterval
The timer interval, in seconds. Pass 0 or (in Mac OS X and CarbonLib 1.5 and later)
kEventDurationForever for a one-shot timer.

inTimerProc
The function to call when the timer fires.

inTimerData
Data to pass to the timer function when called.

outTimer
A reference to the newly installed timer.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Installs a timer onto the event loop specified. The timer can either fire once or repeatedly at a specified
interval depending on the parameters passed to this function. It executes at task level and should not be
confused with Time Manager tasks or any other interrupt-level callback. This means you can call toolbox
functions, allocate memory, and draw without worrying about consequences. When a timer fires, it calls the
callback you specified when the timer was installed.

Timers in general have two uses: as a timeout mechanism and as a periodic task. An everyday example of
using a timer for a timeout might be a light that goes out if no motion is detected in a room for 5 minutes.
For this, you might install a timer which will fire in 5 minutes. If motion is detected, you would reset the timer
fire time and let the clock start over. If no motion is detected for the full 5 minutes, the timer will fire and
you could power off the light. A periodic timer is one that fires at regular intervals (say every second or so).
You might use such a timer to blink the insertion point in your editor, and so on.

One advantage of timers is that you can install the timer right from the code that wants the time. For example,
the standard editable text control can install a timer to blink the cursor when it’s active, meaning that the
Control Manager function IdleControls is a no-op for that control and doesn’t need to be called. When
the control is inactive, it removes its timer and doesn’t waste CPU time in that state.

Currently, if you do decide to draw when your timer is called, be sure to save and restore the current port so
that calling your timer doesn’t inadvertently change the port out from under someone.

Be sure to dispose of the timer when you no longer need it by calling RemoveEventLoopTimer (page 295).
Doing so is especially important if your timer calls code that may no longer exist. For example, if a plugin
creates a timer that calls back to it, the timer will attempt to call it even after the plugin is removed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
HID Config Save

Functions 277
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

HID Explorer
QTCarbonShell

Declared In
CarbonEventsCore.h

InstallStandardEventHandler
Installs the standard event handler for the specified target.

OSStatus InstallStandardEventHandler (
 EventTargetRef inTarget
);

Parameters
inTarget

The event target for which you want to install the standard handler.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Currently you can install the standard handler only for window event targets. To install the standard application
handler, you must call RunApplicationEventLoop (page 297).

Note that events may also have default behaviors or standard definitions which define how an event is
handled if you choose not to handle it yourself. Default behavior is the response that occurs whenever you
choose not to handle the event, whether or not you have a standard handler installed. Standard definition
behavior defines how an event is handled based on that element’s standard definition. For example, the
standard menu definition provides some default responses for menu events you do not handle. However if
you are using your own custom definition, you cannot assume that these default responses will occur.

You can also install the standard handler for a window event target by calling ChangeWindowAttributes
to set the kWindowStandardHandlerAttribute window attribute on the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEventsCore.h

InvokeEventComparatorUPP
Calls an event comparator function through a UPP.

278 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Boolean InvokeEventComparatorUPP (
 EventRef inEvent,
 void *inCompareData,
 EventComparatorUPP userUPP
);

Parameters
inEvent

The event to compare against.

inCompareData
Application-specific data. Typically this is the data you passed when calling
FindSpecificEventInQueue (page 258) or FlushSpecificEventsFromQueue (page 260).

userUPP
A UPP to the comparator function you want to invoke.

Return Value
Returns true if the comparator function indicates a match with the specified event, false otherwise.

Discussion
You call this function only if you need to invoke your event comparator callback yourself. In most cases you
don’t need to call this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

InvokeEventHandlerUPP
Calls an event handler through a UPP.

OSStatus InvokeEventHandlerUPP (
 EventHandlerCallRef inHandlerCallRef,
 EventRef inEvent,
 void *inUserData,
 EventHandlerUPP userUPP
);

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
You use this function only if you need to invoke an event handler yourself. In most cases you don’t need to
call this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

Functions 279
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

InvokeEventLoopIdleTimerUPP
Calls an event loop idle timer through a UPP.

void InvokeEventLoopIdleTimerUPP (
 EventLoopTimerRef inTimer,
 EventLoopIdleTimerMessage inState,
 void *inUserData,
 EventLoopIdleTimerUPP userUPP
);

Discussion
You use this function only if you need to invoke an idle event timer callback yourself. In most cases you don’t
need to call this function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CarbonEventsCore.h

InvokeEventLoopTimerUPP
Calls an event loop timer through a UPP.

void InvokeEventLoopTimerUPP (
 EventLoopTimerRef inTimer,
 void *inUserData,
 EventLoopTimerUPP userUPP
);

Discussion
You use this function only if you need to invoke an event timer callback yourself. In most cases you don’t
need to call this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

IsEventInMask
Determines whether an event reference matches a WaitNextEvent-style event mask.

Boolean IsEventInMask (
 EventRef inEvent,
 EventMask inMask
);

Parameters
inEvent

The event reference to check against the event mask.

280 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

inMask
The mask to consider. See the Event Manager documentation for a description of the EventMask
data type.

Return Value
A Boolean whose value is TRUE if the event was in the mask; otherwise, FALSE.

Discussion
This is a companion function for ConvertEventRefToEventRecord (page 249), and is provided as a
convenience function to help you if there are places in your application where you want to check an EventRef
to see if it matches a classic EventMask bitfield. If the event matches, the function returns true.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

IsEventInQueue
Determines whether an event is in a particular queue.

Boolean IsEventInQueue (
 EventQueueRef inQueue,
 EventRef inEvent
);

Parameters
inQueue

The queue to check.

inEvent
The event in question.

Return Value
Returns true if the specified event is posted to a queue.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

IsMouseCoalescingEnabled
Indicates whether mouse coalescing is enabled.

Boolean IsMouseCoalescingEnabled (
 void
);

Return Value
A Boolean whose value is TRUE if mouse coalescing is on; otherwise, FALSE.

Functions 281
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
If mouse coalescing is enabled, intermediate mouse movement events are merged into the most recent
event, so that only one mouse moved or mouse dragged event is in the event queue at any time. For example,
when the user moves the mouse across the screen, more mouse moved events are generated than most
applications care about. Rather than place all these events in the queue (which would probably slow down
the application), the Carbon Event Manager first checks to see if a mouse moved event already exists. If a
mouse moved event already exists, that event is updated with the position and delta information from the
more recently-generated event.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

IsSecureEventInputEnabled
Determines whether secure event input mode is enabled.

Boolean IsSecureEventInputEnabled (
 void
);

Return Value
A Boolean whose value is TRUE if secure event input mode is enabled; otherwise, FALSE.

Discussion
This function determines whether secure event input is enabled by any process, not just the current process.
Secure event input may be disabled in the current process but enabled in another process, in which case,
this function returns TRUE.

Availability
Available in Mac OS X v10.3 and later.

Declared In
CarbonEventsCore.h

IsUserCancelEventRef
Returns whether the specified event indicates the user wishes to cancel an operation.

Boolean IsUserCancelEventRef (
 EventRef event
);

Return Value
A Boolean value indicating whether the event is a user cancel event.

Discussion
Tests the event given to see whether the event represents a user cancel event. Currently this is defined to
be either the escape key being pressed or command-period being pressed.

282 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

MoveMouseTrackingRegion
(Deprecated in Mac OS X v10.4. No replacement function. Use HIView-based tracking areas instead.)

OSStatus MoveMouseTrackingRegion (
 MouseTrackingRef inMouseRef,
 SInt16 deltaH,
 SInt16 deltaV,
 RgnHandle inClip
);

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. HIView-based mouse tracking areas move
automatically when the HIView moves. For more details about tracking areas, see the mouse tracking region
section in Carbon Event Manager Programming Guide. For details about HIViews, see HIView Programming
Guide.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

MoveWindowMouseTrackingRegions
(Deprecated in Mac OS X v10.4. No replacement function. Use HIView-based tracking areas instead.)

OSStatus MoveWindowMouseTrackingRegions (
 WindowRef inWindow,
 OSType inSignature,
 SInt16 deltaH,
 SInt16 deltaV,
 RgnHandle inClip
);

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. HIView-based mouse tracking areas move
automatically when the HIView moves. For more details about tracking areas, see the mouse tracking region
section in Carbon Event Manager Programming Guide. For details about HIViews, see HIView Programming
Guide.

Availability
Available in Mac OS X v10.2 and later.

Functions 283
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

NewEventComparatorUPP
Creates an event comparator UPP.

EventComparatorUPP NewEventComparatorUPP (
 EventComparatorProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your event comparator callback function.

Return Value
The UPP for your callback function.

Discussion
When calling FindSpecificEventInQueue (page 258) or FlushSpecificEventsFromQueue (page 260),
you must pass a universal procedure pointer (UPP) to your event comparator instead of a standard procedure
pointer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

NewEventHandlerUPP
Creates an event handler UPP.

EventHandlerUPP NewEventHandlerUPP (
 EventHandlerProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your event handler.

Return Value
The UPP for your event handler.

Discussion
When registering your event handler with InstallEventHandler (page 274), you must pass a universal
procedure pointer (UPP) to your event handler instead of a standard procedure pointer.

Availability
Available in Mac OS X v10.0 and later.

284 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Related Sample Code
BSDLLCTest
CarbonCocoa_PictureCursor
CarbonSketch
HID Config Save
QTMetaData

Declared In
CarbonEventsCore.h

NewEventLoopIdleTimerUPP
Creates an event loop idle timer UPP.

EventLoopIdleTimerUPP NewEventLoopIdleTimerUPP (
 EventLoopIdleTimerProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your idle event timer callback function.

Return Value
The UPP for your event loop idle timer callback function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CarbonEventsCore.h

NewEventLoopTimerUPP
Creates an event loop timer UPP.

EventLoopTimerUPP NewEventLoopTimerUPP (
 EventLoopTimerProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your event timer callback function.

Return Value
The UPP for your event timer callback function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
HID Config Save
HID Explorer

Functions 285
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Declared In
CarbonEventsCore.h

PopSymbolicHotKeyMode
Removes a hot key mode request from the hot key mode stack.

void PopSymbolicHotKeyMode (
 void *inToken
);

Parameters
inToken

The hot key mode token that was returned by a previous call to PushSymbolicHotKeyMode (page
287).

Discussion
If the request is the topmost request on the stack, the hot key mode changes to the next request on the
stack. If there are other mode requests on top of this request on the stack, the mode does not change.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CarbonEvents.h

PostEventToQueue
Adds an event to the specified event queue.

OSStatus PostEventToQueue (
 EventQueueRef inQueue,
 EventRef inEvent,
 EventPriority inPriority
);

Parameters
inQueue

The event queue to post the event onto.

inEvent
The event to post.

inPriority
The priority of the event. See “Event Priority Constants” (page 326) for a list of possible constants to
pass.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Posts an event to the queue specified and increments its retain count. This automatically wakes up the event
loop of the thread the queue belongs to.

Availability
Available in Mac OS X v10.0 and later.

286 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Related Sample Code
QTCarbonShell

Declared In
CarbonEventsCore.h

ProcessHICommand
Sends a command to the command chain.

OSStatus ProcessHICommand (
 const HICommand *inCommand
);

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452)

Discussion
ProcessHICommand is a convenience function for sending a “process command” event through the command
chain (for example, from menu to user focus to application). The command event is sent initially to either a
menu (if the command represents a menu command) or the current user focus. If the function returns
eventNotHandledErr, the command was not handled by any element in the chain.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

PushSymbolicHotKeyMode
Sets a new mode for enabling and disabling symbolic hot keys.

void * PushSymbolicHotKeyMode (
 OptionBits inOptions
);

Parameters
inOptions

The requested symbolic hot key mode. For details, see “Hot Key Constants” (page 376).

Return Value
A token that is passed to PopSymbolicHotKeyMode (page 286) to remove this mode request when it is no
longer needed.

Discussion
The Event Manager maintains a stack of hot key modes that have been requested by calls to this function.
The most recently pushed mode is the mode that is currently in use.

Disabling hot keys can significantly affect the usability of Mac OS X. For this reason, applications are allowed
to disable hot keys only if the “Enable access for assistive devices” checkbox is checked in the Universal Access
preference pane. If this checkbox is not checked when this function is called, the requested hot key mode is
pushed onto the mode stack and a valid token is returned but the actual hot key mode is unchanged.

Functions 287
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

If the frontmost application pushes a new hot key mode that disables any hot keys, the new mode is active
only while the application remains the frontmost application. If the application is deactivated or exits without
re-enabling hot keys, the hot key mode automatically reverts to the previous mode.

Availability
Available in Mac OS X v10.4 and later.

Declared In
CarbonEvents.h

QuitApplicationEventLoop
Terminates the application event loop.

void QuitApplicationEventLoop (
 void
);

Discussion
This function is used to quit the RunApplicationEventLoop (page 297) function. Typically, your application
doesn’t need to call this. If your application has the Quit menu item tagged with the kHICommandQuitmenu
command ID, the toolbox will automatically call this for your application, automatically terminating your
event loop. If your application wants to do pre-processing before the event loop exits, it should intercept
either the kHICommandQuit menu command, or the kEventAppQuit event.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
CarbonEvents.h

QuitAppModalLoopForWindow
Quits the application-modal state for a window.

OSStatus QuitAppModalLoopForWindow (
 WindowRef inWindow
);

Parameters
inWindow

The window that is leaving the modal state. See the Window Manager documentation for a description
of the WindowRef data type.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

288 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
This function is used to quit a currently running call to RunAppModalLoopForWindow (page 298) (that is, it
terminates a modal loop). Typically you call this from a handler you have installed on the modal window in
question when the user clicks the appropriate button (Ok, Cancel, and so on).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

QuitEventLoop
Causes a specific event loop to terminate.

OSStatus QuitEventLoop (
 EventLoopRef inEventLoop
);

Parameters
inEventLoop

The event loop to terminate.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Usage of this is similar to WakeUpProcess, in that it causes the event loop specified to return immediately
(as opposed to timing out). Typically you use this call in conjunction with RunCurrentEventLoop (page
298).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

ReceiveNextEvent
Waits for the next event of a specified type.

OSStatus ReceiveNextEvent (
 ItemCount inNumTypes,
 const EventTypeSpec *inList,
 EventTimeout inTimeout,
 Boolean inPullEvent,
 EventRef *outEvent
);

Parameters
inNumTypes

The number of event types to wait for (0 if any event should cause this function to return).

Functions 289
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

inList
The list of event types we are waiting for (pass NULL if any event should cause this function to return).

inTimeout
The time to wait before returning (passing kEventDurationForever is preferred).

inPullEvent
Pass true for this parameter to remove the next matching event from the queue.

outEvent
A pointer to the next event that matches the list passed in. If you passed true in the inPullEvent
parameter, the event is owned by you, and you should release it when done.

Return Value
A result indicating whether an event was received, the timeout expired, or the current event loop was quit.
See “Carbon Event Manager Result Codes” (page 452) for possible values.

Discussion
This function tries to fetch the next event of a specified type. If no events in the event queue match, this
function will run the current event loop until an event that matches arrives, or the timeout expires. Except
for timers firing, your application is blocked waiting for events to arrive when inside this function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

RegisterEventHotKey
Registers a global hot key.

OSStatus RegisterEventHotKey (
 UInt32 inHotKeyCode,
 UInt32 inHotKeyModifiers,
 EventHotKeyID inHotKeyID,
 EventTargetRef inTarget,
 OptionBits inOptions,
 EventHotKeyRef *outRef
);

Parameters
inHotKeyCode

The virtual key code of the hot key you want to register.

inHotKeyModifiers
The keyboard modifiers to look for. In Mac OS X v10.2 and earlier, if you do not specify a modifier key,
this function returns paramErr. In Mac OS X v10.3 and later, passing 0 does not cause an error.

inHotKeyID
The application-specified hot key ID. You will receive this ID in the kEventHotKeyPressed event as
the direct object parameter.

inTarget
The target to notify when the hot key is pressed.

inOptions
Currently unused. You must pass 0.

290 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

outRef
On return, a reference to the new hot key. You need this reference if you later wish to unregister it.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
This function registers a global hot key based on the virtual key code and modifiers you pass in. When the
user enters the hot-key combination, a kEventHotKeyPressed event is sent to the target you specified.
Only one such combination can exist for the current application (that is, multiple entities in the same
application cannot register for the same hot key combination). The same hot key can, however, be registered
by multiple applications. This means that multiple applications can potentially be notified when a particular
hot key is requested. This might not necessarily be desirable, but it is how it works at present.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

RegisterToolboxObjectClass
Registers events to be associated with a toolbox object. (Deprecated in Mac OS X v10.4. Use the HIObject
function HIObjectRegisterSubclass (page 2335) instead.)

OSStatus RegisterToolboxObjectClass (
 CFStringRef inClassID,
 ToolboxObjectClassRef inBaseClass,
 ItemCount inNumEvents,
 const EventTypeSpec *inEventList,
 EventHandlerUPP inEventHandler,
 void *inEventHandlerData,
 ToolboxObjectClassRef *outClassRef
);

Parameters
inClassID

The class ID of the toolbox object you want to register. This value should be a Core Foundation string
in the form com.myCorp.myApp.myWidget.

inBaseClass
The class reference of this toolbox object’s base class. Pass NULL if there is no base class.

inNumEvents
The number of events to register for this object class.

inEventList
An array of events you want to register for this object class. You define these events just as you would
for any other Carbon event handler.

inEventHandler
A universal procedure pointer to the event handler for this object class.

inEventHandlerData
Any application-specific data you want passed to your event handler when it is called.

Functions 291
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

outClassRef
On return, outClassRef contains a reference to the new object class. You use this value in your
custom definition specification (such as a ControlDefSpec or WindowDefSpec) to define your new
object class.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
You use this function to register event handlers to implement what were formerly called defproc messages;
that is, you can use toolbox objects in place of older custom window, menu, and control definitions.

Special Considerations

HIObject allows you to create subclasses that you can use for creating custom HIViews. HIViews support
compositing and Quartz and provide an easier way to handle user elements in windows. Use
HIObjectRegisterSubclass to create custom HIObjects and HIViews. See HIView Programming Guide for
more details.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

ReleaseEvent
Releases, and possibly disposes of, the specified event.

void ReleaseEvent (
 EventRef inEvent
);

Parameters
inEvent

The event to release.

Discussion
This function decrements the reference count of an event. If the reference count reaches 0, the event is
disposed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
CarbonEventsCore.h

292 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

ReleaseMouseTrackingRegion
Releases a mouse tracking region. (Deprecated in Mac OS X v10.4. Use HIViewDisposeTrackingArea (page
2450) instead.)

OSStatus ReleaseMouseTrackingRegion (
 MouseTrackingRef inMouseRef
);

Parameters
inMouseRef

The mouse tracking region to release.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
ReleaseMouseTrackingRegion decreases the reference count for the region. If the reference count drops
to zero, the mouse tracking region is disposed.

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. For more details about tracking areas, see
the mouse tracking region section in Carbon Event Manager Programming Guide. For details about HIViews,
see HIView Programming Guide.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
CarbonEvents.h

ReleaseWindowMouseTrackingRegions
(Deprecated in Mac OS X v10.4. No replacement function. Use HIView-based tracking areas instead.)

OSStatus ReleaseWindowMouseTrackingRegions (
 WindowRef inWindow,
 OSType inSignature
);

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. If you need to release multiple tracking
areas at once, you should keep track of them in your own data structures and release each one. For more
details about tracking areas, see the mouse tracking region section in Carbon Event Manager Programming
Guide. For details about HIViews, see HIView Programming Guide.

Availability
Available in Mac OS X v10.2 and later.

Functions 293
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

RemoveEventFromQueue
Removes an event from the event queue.

OSStatus RemoveEventFromQueue (
 EventQueueRef inQueue,
 EventRef inEvent
);

Parameters
inQueue

The queue to remove the event from.

inEvent
The event to remove.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Removes the given event from the queue on which it was posted and decrements its retain count.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

RemoveEventHandler
Removes the specified event handler.

OSStatus RemoveEventHandler (
 EventHandlerRef inHandlerRef
);

Parameters
inHandlerRef

The handler ref to remove (returned in a call to InstallEventHandler). After you call this function,
the handler reference is considered invalid and can no longer be used.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Removes an event handler from the event target to which it was bound.

Availability
Available in Mac OS X v10.0 and later.

294 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Related Sample Code
QTCarbonShell

Declared In
CarbonEventsCore.h

RemoveEventLoopTimer
Removes the specified timer.

OSStatus RemoveEventLoopTimer (
 EventLoopTimerRef inTimer
);

Parameters
inTimer

The timer to remove.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Removes a timer that was previously installed by a call to InstallEventLoopTimer (page 276) or
InstallEventLoopIdleTimer (page 275). You call this function when you are done using a timer.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
BSDLLCTest
HID Config Save
HID Explorer
QTCarbonShell

Declared In
CarbonEventsCore.h

RemoveEventTypesFromHandler
Removes events from an installed event handler.

OSStatus RemoveEventTypesFromHandler (
 EventHandlerRef inHandlerRef,
 ItemCount inNumTypes,
 const EventTypeSpec *inList
);

Parameters
inHandlerRef

The event handler to remove the events from.

inNumTypes
The number of events to remove.

Functions 295
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

inList
A pointer to an array of EventTypeSpec structures.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
You can use this function dynamically change which events you want your handler to respond to.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

RetainEvent
Increments the reference count of an event.

EventRef RetainEvent (
 EventRef inEvent
);

Parameters
inEvent

The event to retain.

Return Value
The event reference you passed in the inEvent parameter. A value of NULL indicates an error condition.

Discussion
The RetainEvent function increments an event’s reference count by 1. You can use this function to ensure
that an event is never disposed of by another event handler. However, if the event system or some other
event handler changes the event, those changes are reflected in your reference. To create a separate, unique
copy of an event, use CopyEvent (page 250) instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

RetainMouseTrackingRegion
Retains a mouse tracking region. (Deprecated in Mac OS X v10.4. No replacement function. Use HIView-based
tracking areas instead.)

OSStatus RetainMouseTrackingRegion (
 MouseTrackingRef inMouseRef
);

Parameters
inMouseRef

The mouse tracking region to retain.

296 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
RetainMouseTrackingRegion increases the reference count for the region.

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. Mouse tracking areas do not have a
retain/release semantic, so there is no direct replacement for RetainMouseTrackingRegion. For more
details about tracking areas, see the mouse tracking region section in Carbon Event Manager Programming
Guide. For details about HIViews, see HIView Programming Guide.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

RunApplicationEventLoop
Runs the application event loop.

void RunApplicationEventLoop (
 void
);

Discussion
This function is used as the main event loop for a Carbon Event-based application. Once entered, this function
waits for events to arrive and dispatches them to your event handlers automatically.

Note that calling RunApplicationEventLoop also installs the standard application handler, which provides
standard handler responses for menu and application events.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
HID Config Save
HID Explorer
QTCarbonShell
QTMetaData

Declared In
CarbonEvents.h

Functions 297
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

RunAppModalLoopForWindow
Puts the window in an application-modal state.

OSStatus RunAppModalLoopForWindow (
 WindowRef inWindow
);

Parameters
inWindow

The window you wish to behave modally. See the Window Manager documentation for a description
of the WindowRef data type.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
This function is used as a replacement for the Dialog Manager function ModalDialog to drive a Carbon
Event-based modal dialog. Once called, this function will not exit until QuitAppModalLoopForWindow (page
288) is called.

While in the modal state, the standard toolbox dispatcher processes events only for the modal window and
any that are above it (that is, closer to the front). This feature allows you to create stacked modal dialogs, if
desired.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

RunCurrentEventLoop
Executes the event loop in the current thread.

OSStatus RunCurrentEventLoop (
 EventTimeout inTimeout
);

Parameters
inTimeout

The time to wait until returning (can be kEventDurationForever).

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
This function “runs” the event loop, returning only if aborted or the timeout specified is reached. The event
loop is mostly blocked while in this function, occasionally waking up to fire timers or pick up events. The
typical use of this function is to cause the current thread to wait for some operation to complete, most likely
on another thread of execution.

Availability
Available in Mac OS X v10.0 and later.

298 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Declared In
CarbonEventsCore.h

SendEventToEventTarget
Sends an event to the specified event target.

OSStatus SendEventToEventTarget (
 EventRef inEvent,
 EventTargetRef inTarget
);

Parameters
inEvent

The event to send.

inTarget
The target to send it to.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
If you are creating your own events, you can dispatch them immediately to an event target by calling this
function.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
CarbonEventsCore.h

SendEventToEventTargetWithOptions
Sends an event to the specified event target with propagation options.

OSStatus SendEventToEventTargetWithOptions (
 EventRef inEvent,
 EventTargetRef inTarget,
 OptionBits inOptions
);

Parameters
inEvent

The event to send.

inTarget
The target to send it to.

Functions 299
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

inOptions
Options indicating how the event should be propagated. See “Event Target Propagation Options” (page
326) for a list of possible values.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
This function is identical to SendEventToEventTarget (page 299) except that you can specify how the
event is propagated using options.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CarbonEventsCore.h

SetEventLoopTimerNextFireTime
Sets the next time that the specified timer will fire.

OSStatus SetEventLoopTimerNextFireTime (
 EventLoopTimerRef inTimer,
 EventTimerInterval inNextFire
);

Parameters
inTimer

The timer whose firing time you want to set.

inNextFire
The interval from the current time to wait until firing the timer again.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
This function is used to “reset” a timer. It controls the next time the timer fires. This will override any interval
you might have set. For example, if you have a timer that fires every second, and you call this function setting
the next time to 5 seconds from now, the timer will sleep for 5 seconds, then fire. The timer will then resume
its one second interval. This function acts as if you removed the timer and reinstalled it with a new first-fire
delay.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

SetEventParameter
Sets a parameter associated with a particular event.

300 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

OSStatus SetEventParameter (
 EventRef inEvent,
 EventParamName inName,
 EventParamType inType,
 ByteCount inSize,
 const void *inDataPtr
);

Parameters
inEvent

The event to set the data for.

inName
The symbolic name of the parameter.

inType
The symbolic type of the parameter.

inSize
The size of the parameter data.

inDataPtr
A pointer to the parameter data.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
When creating events, you may want to specify additional event-related information, such as the mouse
location or the window in which the event occurred. To set these you call SetEventParameter, specifying
the type and value for the desired parameter.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonCocoa_PictureCursor
CarbonSketch
HID Calibrator
QTCarbonShell

Declared In
CarbonEventsCore.h

SetEventTime
Sets the event time for a given event.

OSStatus SetEventTime (
 EventRef inEvent,
 EventTime inTime
);

Parameters
inEvent

The event in question.

Functions 301
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

inTime
The new time.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
This function allows you to set the time of a given event, if you so desire. In general, you would never use
this function, except for those special cases where you reuse an event from time to time instead of creating
a new event each time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

SetMouseCoalescingEnabled
Turns mouse coalescing on or off.

OSStatus SetMouseCoalescingEnabled (
 Boolean inNewState,
 Boolean *outOldState
);

Parameters
inNewState

Pass true to turn mouse coalescing on, false otherwise.

outOldState
A Boolean value indicating the previous mouse coalescing state (that is, before you called this function
to set it). You can use this value if you want to save the previous state for later restoration. If you don’t
need this state information, pass NULL.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
See IsMouseCoalescingEnabled (page 281) for a definition of mouse coalescing.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

SetMouseTrackingRegionEnabled
(Deprecated in Mac OS X v10.4. No replacement function. Use HIView-based tracking areas instead.)

302 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

OSStatus SetMouseTrackingRegionEnabled (
 MouseTrackingRef inMouseRef,
 Boolean inEnabled
);

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. To disable tracking areas, you can either
delete the tracking area or ignore kEventControlTrackingAreaEntered events. For more details about tracking
areas, see the mouse tracking region section in Carbon Event Manager Programming Guide. For details about
HIViews, see HIView Programming Guide.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

SetWindowMouseTrackingRegionsEnabled
(Deprecated in Mac OS X v10.4. Use HIView-based tracking areas instead.)

OSStatus SetWindowMouseTrackingRegionsEnabled (
 WindowRef inWindow,
 OSType inSignature,
 Boolean inEnabled
);

Special Considerations

Tracking areas are HIView-based rather than window-based. HIViews support compositing and Quartz, and
provide a much easier way to handle user elements in windows. To disable tracking areas, you can either
delete the tracking area or ignore kEventControlTrackingAreaEntered events. For more details about tracking
areas, see the mouse tracking region section in Carbon Event Manager Programming Guide. For details about
HIViews, see HIView Programming Guide.

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

TrackMouseLocation
Tracks the mouse, blocking your application when there is no activity.

Functions 303
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

OSStatus TrackMouseLocation (
 GrafPtr inPort,
 Point *outPt,
 MouseTrackingResult *outResult
);

Parameters
inPort

The graphics port to consider for mouse coordinates. You can pass NULL for this parameter to indicate
the current port. The mouse location is returned in terms of local coordinates of this port. See the
QuickDraw Manager documentation for a description of the GrafPtr data type.

outPt
On exit, a pointer to the mouse location from the last mouse event that caused this function to exit.

outResult
On exit, a pointer to a value representing what kind of event was received that cause the function to
exit, such as kMouseTrackingMouseReleased.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Once entered, this function waits for certain mouse events (move, mouse down, mouse up). When one of
these events occurs, the function returns and tells the caller what happened and where the mouse is currently
located. While there is no activity, the current event loop is run, effectively blocking the current thread (save
for any timers that fire). This helps to minimize CPU usage when there is nothing going on.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

TrackMouseLocationWithOptions
Tracks the mouse with additional options.

OSStatus TrackMouseLocationWithOptions (
 GrafPtr inPort,
 OptionBits inOptions,
 EventTimeout inTimeout,
 Point *outPt,
 UInt32 *outModifiers,
 MouseTrackingResult *outResult
);

Parameters
inPort

The graphics port (GrafPort) to consider for mouse coordinates. You can pass NULL for this parameter
to indicate the current port. The mouse location is returned in global coordinates. See the QuickDraw
Manager documentation for a description of the GrafPtr data type.

304 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

inOptions
The only option supported by this function at present is the option to have the toolbox leave mouse
up events in the queue, rather than pulling them (which is the default). See “Mouse Tracking Option
Constant” (page 397) for more information.

inTimeout
The amount of time to wait for an event. If no events arrive within this time,
kMouseTrackingTimedOut is returned in outResult.

outPt
On return, a pointer to the mouse location from the last mouse event that caused this function to
exit. If a timeout or key modifiers changed event caused this function to exit, the current mouse
position at the time is returned.

outModifiers
On return, a pointer to the most recent state of the keyboard modifiers.

outResult
On return, a pointer to a value indicating the kind of event that caused the function to exit, such as
kMouseTrackingMouseReleased.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
Once entered, this function waits for certain mouse events (move, mouse down, mouse up). When one of
these events occurs, the function returns and tells the caller what happened and where the mouse is currently
located. While there is no activity, the current event loop is run, effectively blocking the current thread (save
for any timers that fire). This helps to minimize CPU usage when there is nothing going on.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
CarbonEvents.h

TrackMouseRegion
Tracks the mouse within a region.

OSStatus TrackMouseRegion (
 GrafPtr inPort,
 RgnHandle inRegion,
 Boolean *ioWasInRgn,
 MouseTrackingResult *outResult
);

Parameters
inPort

The graphics port to consider for mouse coordinates. You can pass NULL for this parameter to indicate
the current port. See the QuickDraw Manager documentation for a description of the GrafPtr data
type.

Functions 305
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

inRegion
The region to consider. This should be in the coordinates of the port you passed to inPort. See the
QuickDraw Manager documentation for a description of the RgnHandle data type.

ioWasInRgn
On entering the region, this parameter should be set to true if the mouse is currently inside the
region passed in inRegion, or false if the mouse is currently outside the region. On exit, this
parameter is updated to reflect the current reality. For example, if the outResult parameter returns
kMouseTrackingMouseExited, ioWasInRgnwill be set to falsewhen this function exits. Because
it is updated from within, you should only need to set this yourself before the first call to this function
in your tracking loop.

outResult
On exit, a pointer to a value indicating the kind of event that caused the function to exit, such as
kMouseTrackingMouseEntered.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Discussion
This function is largely identical to TrackMouseLocation (page 303). The difference between
TrackMouseLocation and TrackMouseRegion is that TrackMouseRegion only returns when the mouse
enters or exits a specified region that you pass in to the function, as opposed to whenever the mouse moves
(it also returns for mouse up/down events). This is useful if you don’t need to know intermediate mouse
events, but rather just if the mouse enters or leaves an area.

Note that in some cases you may prefer to register one or more special mouse tracking regions and receive
events when the mouse enters or exits the region. However, this alternative method does not automatically
inform you about mouse up and mouse down actions. See CreateMouseTrackingRegion (page 253) for
more details.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

UnregisterEventHotKey
Unregisters a global hot key.

OSStatus UnregisterEventHotKey (
 EventHotKeyRef inHotKey
);

Parameters
inHotKey

The event hot key reference of the hot key you want to unregister.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

306 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
Unregisters a global hot key that was previously registered with the function RegisterEventHotKey (page
290). You do not need to unregister a hot key when your application terminates; the system takes care of that
for you. You can use this function if the user changes a hot key for something in your application—you would
unregister the previous key and register your new key.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

UnregisterToolboxObjectClass
Unregisters events for a given toolbox object class (Deprecated in Mac OS X v10.4. Use the HIObject function
HIObjectUnregisterClass (page 2340) instead.)

OSStatus UnregisterToolboxObjectClass (
 ToolboxObjectClassRef inClassRef
);

Parameters
inClassRef

A reference to the toolbox object class you want to unregister.

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452).

Special Considerations

HIObject allows you to create subclasses that you can use for creating custom HIViews. HIViews support
compositing and Quartz and provide an easier way to handle user elements in windows. Use
HIObjectUnregisterClass to unregister custom HIObjects and HIViews. See HIView Programming Guide
for more details.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

Callbacks

EventComparatorProcPtr
Defines the format of your event comparator callback function.

Callbacks 307
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typedef Boolean (*EventComparatorProcPtr) (
 EventRef inEvent,
 void * inCompareData
);

If you name your function MyEventComparatorProc, you would declare it like this:

Boolean MyEventComparatorProc (
 EventRef inEvent,
 void * inCompareData
);

Parameters
inEvent

The event to compare.

inCompareData
The data you passed to FindSpecificEventInQueue (page 258) or
FlushSpecificEventsFromQueue (page 260).

Return Value
A Boolean value indicating whether the event matches (true) or not (false).

Discussion
You use this callback function when searching the event queue using functions such as
FindSpecificEventInQueue (page 258).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventHandlerProcPtr
Defines the format of your event handler.

typedef OSStatus (*EventHandlerProcPtr) (
 EventHandlerCallRef inHandlerCallRef,
 EventRef inEvent,
 void * inUserData
);

If you name your function MyEventHandlerProc, you would declare it like this:

OSStatus MyEventHandlerProc (
 EventHandlerCallRef inHandlerCallRef,
 EventRef inEvent,
 void * inUserData
);

308 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Parameters
inHandlerCallRef

A reference to the current handler call chain. This is passed to your handler so that you can call
CallNextEventHandler if you need to.

inEvent
The event that triggered this call.

inUserData
The application-specific data you passed in to InstallEventHandler (page 274).

Return Value
A result code. See “Carbon Event Manager Result Codes” (page 452). Returning noErr indicates you handled
the event. Returning eventNotHandledErr indicates you did not handle the event and perhaps other
handlers in the calling chain should take action.

Discussion
Callback to install on an event target.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventLoopIdleTimerProcPtr
Defines the format of your idle timer callback function.

typedef void (*EventLoopIdleTimerProcPtr) (
 EventLoopTimerRef inTimer,
 EventLoopIdleTimerMessage inState,
 void * inUserData
);

If you name your function MyEventLoopTimerProc, you would declare it like this:

void MyEventLoopTimerProc (
 EventLoopTimerRef inTimer,
 EventLoopIdleTimerMessage inState,
 void * inUserData
);

Parameters
inTimer

The timer that fired.

inState
The state of the idle period. See “Idle Timer Event Constants” (page 416) for a list of possible constants
you can receive.

inUserData
The application-specific data you passed into InstallEventLoopIdleTimer (page 275).

Discussion
Called when an idle timer fires.

Callbacks 309
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
CarbonEventsCore.h

EventLoopTimerProcPtr
Defines the format of your event loop timer callback function.

typedef void (*EventLoopTimerProcPtr) (
 EventLoopTimerRef inTimer,
 void * inUserData
);

If you name your function MyEventLoopTimerProc, you would declare it like this:

void MyEventLoopTimerProc (
 EventLoopTimerRef inTimer,
 void * inUserData
);

Parameters
inTimer

The timer that fired.

inUserData
The data you passed into InstallEventLoopTimer (page 276).

Discussion
Called when a timer fires.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

Data Types

EventClassID
Represents an event class ID.

typedef UInt32 EventClassID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

310 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

EventComparatorUPP
Represents a universal procedure pointer to an event comparator callback function.

typedef EventComparatorProcPtr EventComparatorUPP

EventHandlerCallRef
Indicates the next handler in the event handler calling hierarchy.

typedef struct OpaqueEventHandlerCallRef * EventHandlerCallRef;

Discussion
This structure is passed to your event handler, which can then choose to pass control to the next handler in
the calling hierarchy (such as a standard event handler). Doing so is a convenient way to add pre- or
post-processing to the standard event handler. See the CallNextEventHandler (page 247) function for
more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventHandlerUPP
Represents a universal procedure pointer for an event handler callback function.

typedef EventHandlerProcPtr EventHandlerUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventLoopTimerUPP
Represents a universal procedure pointer for an event timer callback function.

typedef EventLoopTimerProcPtr EventLoopTimerUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventLoopIdleTimerUPP
Represents a universal procedure pointer for an idle event timer callback function.

Data Types 311
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typedef EventLoopIdleTimerProcPtr EventLoopIdleTimerUPP;

Availability
Available in Mac OS X v10.2 and later.

Declared In
CarbonEventsCore.h

EventHandlerRef
Represents an installed event handler.

typedef struct OpaqueEventHandlerRef * EventHandlerRef;

Discussion
You receive an event handler reference when you install your handler using InstallEventHandler (page
274). You can use this reference when calling functions such as RemoveEventHandler (page 294) and
AddEventTypesToHandler (page 246).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventHotKeyID
Represents the ID of a global hot key.

struct EventHotKeyID {
 OSType signature;
 UInt32 id;
};
typedef struct EventHotKeyID EventHotKeyID;

Discussion
You register a hot key using the RegisterEventHotKey (page 290) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

EventHotKeyRef
Represents a registered global hot key.

typedef struct OpaqueEventHotKeyRef * EventHotKeyRef;

Discussion
You register a hot key using the RegisterEventHotKey (page 290) function.

312 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

EventLoopIdleTimerMessage
Represents an idle timer message.

typedef UInt16 EventLoopIdleTimerMessage;

Discussion
Sent to idle timer callback functions to indicate the current idle status. See “Idle Timer Event Constants” (page
416) for a list of possible values.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CarbonEventsCore.h

EventLoopRef
Represents an event loop.

typedef struct OpaqueEventLoopRef * EventLoopRef;

Discussion
The EventLoopRef type represents an event loop, which is the conceptual entity that you run to fetch
events from hardware and other sources and also fires timers that might be installed with
InstallEventLoopTimer (page 276) or InstallEventLoopIdleTimer (page 275). The term “run” is a bit
of a misnomer, as the event loop’s goal is to stay as blocked as possible to minimize CPU usage for the current
application. The event loop is run implicitly through calls to functions like ReceiveNextEvent (page 289),
RunApplicationEventLoop (page 297), or even the Classic Event Manager function WaitNextEvent. It
can also be run explicitly through a call to RunCurrentEventLoop (page 298). Each preemptive thread can
have an event loop. Cooperative threads share the main thread’s event loop.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventLoopTimerRef
Represents an installed event timer.

Data Types 313
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typedef struct __EventLoopTimer * EventLoopTimerRef;

Discussion
The EventLoopTimerRef type represents a timer function that is called either once or at regular intervals.
See InstallEventLoopTimer (page 276) and InstallEventLoopIdleTimer (page 275) for more
information about event timers.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventParamName
Represents an event parameter constant.

typedef OSType EventParamName;

Discussion
You specify an event parameter name when calling GetEventParameter (page 266) or
SetEventParameter (page 300). Parameter names indicate what kind of event parameter you want to set
or obtain (such as kEventParamDirectObject). For specific types, see the tables of event parameters and
types associated with each class of events (for example, Table 3-8 (page 392)).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventParamType
Represents an event parameter type constant.

typedef OSType EventParamType;

Discussion
You specify an event parameter type when calling GetEventParameter (page 266) or
SetEventParameter (page 300). Event parameter types indicate the data type of the parameter you want
to set or obtain (such as typeBoolean). For specific types, see the tables of event parameters and types
associated with each class of events (for example, Table 3-11 (page 424)).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventQueueRef
Represents an event queue.

314 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typedef struct OpaqueEventQueueRef * EventQueueRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventRef
Represents an opaque data structure that identifies individual events.

typedef struct OpaqueEventRef * EventRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventTargetRef
Represents an event target (such as a window or control).

typedef struct OpaqueEventTargetRef * EventTargetRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventTime
Represents a time value in seconds. An absolute EventTime value is seconds since boot time.

typedef double EventTime;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventTimeout
Represents a timeout interval, in seconds.

typedef EventTime EventTimeout;

Availability
Available in Mac OS X v10.0 and later.

Data Types 315
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Declared In
CarbonEventsCore.h

EventTimerInterval
Specifies the period of an event timer, in seconds.

typedef EventTime EventTimerInterval;

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

EventType
Represents an event type.

typedef UInt32 EventType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
cssmspi.h

EventTypeSpec
Describes the class and kind of an event.

struct EventTypeSpec {
 UInt32 eventClass;
 UInt32 eventKind;
};
typedef struct EventTypeSpec EventTypeSpec;

Discussion
This structure is used to specify an event. Typically, you pass a static array of EventTypeSpec structures into
functions such as InstallEventHandler (page 274), as well as functions such as
FlushEventsMatchingListFromQueue (page 259).

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

HICommand
Represents a command event; this structure has been superseded by the HICommandExtended structure.

316 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

struct HICommand {
 UInt32 attributes
 UInt32 commandID
 struct {
 MenuRef menuRef;
 MenuItemIndex menuItemIndex;
 } menu;
};
typedef struct HICommand HICommand;

Fields
attributes

Attributes of the command event.

commandID
The command ID of the command event.

menuRef
A reference to the menu containing the HICommand.

menuItemIndex
The index number of the menu item containing the HICommand.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

HICommandExtended
Represents an extended command event.

struct HICommandExtended {
 UInt32 attributes;
 UInt32 commandID;
 union {
 controlRef control;
 windowRef window;
 struct {
 MenuRef menuRef;
 MenuItemIndex menuItemIndex;
 } menu;
 } source;
};
typedef struct HICommandExtended HICommandExtended;

Fields
attributes

Attributes of the command event. The value of this field (indicating whether the source of the command
event is a control, window, or menu) determines what reference is stored in the union. See “Command
Event Source Constants” (page 350) for a list of possible values.

commandID
The command ID of the command event.

controlRef
The control that produced the command event.

Data Types 317
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

windowRef
The window that produced the command event.

menuRef
A reference to the menu containing the command event.

menuItemIndex
The index number of the menu item containing the command event.

Discussion
The HICommandExtended structure was introduced in Mac OS X v10.2 and CarbonLib 1.6. Because the
HICommand and HICommandExtended structures are exactly the same size and have the same fields at the
same offsets, you can use an HICommandExtended structure at runtime while running on any version of
CarbonLib or Mac OS X. The only difference is that the HICommandExtended structure has a union that
allows you to get type-safe access to the source object. The originator of the command determines whether
the structure actually contains a ControlRef, WindowRef, MenuRef, or nothing at all. You can determine what
is in the command by checking the attributes field.

For example, in Mac OS X v10.2 and later, when a push button is clicked, the Control Manager sends a
command event containing the push button’s command ID, sets the kHICommandFromControl bit in the
attributes field, and stores the button’s ControlRef in the source.control field. In Mac OS X v10.0 and
v10.1, the same command event is sent, but the kHICommandFromControl, kHICommandFromMenu, and
kHICommandFromWindow attributes are not set, and the source.controlRef, source.menu.menuRef
and source.windowRef fields are not initialized, respectively. Your code can use an HICommandExtended
structure when running on Mac OS X v10.0 and v10.1 as long as it first checks the kHICommandFromControl,
kHICommandFromMenu, and kHICommandFromWindow attributes before accessing the source.control,
menu.control, and window.control fields.

Availability
Available in Mac OS X v10.2 and later.

Declared In
CarbonEvents.h

MouseTrackingRef
Represents a mouse tracking region

typedef struct OpaqueMouseTrackingRef * MouseTrackingRef;

Discussion
Use CreateMouseTrackingRegion (page 253) to create a mouse tracking region.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

MouseTrackingRegionID
Represents a mouse tracking region identifier.

318 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

struct MouseTrackingRegionID {
 OSType signature;
 SInt32 id;
};
typedef struct MouseTrackingRegionID MouseTrackingRegionID;

Fields
signature

A four-character code (such as 'moof')that uniquely identifies the application that owns this mouse
tracking region.

id
An integer that identifies the mouse tracking region in this application.

Discussion
Each application can register multiple mouse tracking regions as long as each region has a unique ID. Use
CreateMouseTrackingRegion (page 253) to create a mouse tracking region.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
CarbonEvents.h

TabletPointRec
Defines a tablet point structure.

struct TabletPointRec {
 SInt32 absX;
 SInt32 absY;
 SInt32 absZ;
 UInt16 buttons;
 UInt16 pressure;
 SInt16 tiltX;
 SInt16 tiltY;
 UInt16 rotation;
 SInt16 tangentialPressure;
 UInt16 deviceID;
 SInt16 vendor1;
 SInt16 vendor2;
 SInt16 vendor3;
};
typedef struct TabletPointRec TabletPointRec;
typedef TabletPointRec TabletPointerRec;

Fields
absX

The x-coordinate of the pointer, in tablet space (at full tablet resolution).

absY
The y-coordinate of the pointer, in tablet space (at full tablet resolution).

absZ
The z-coordinate of the pointer, in tablet space (at full tablet resolution).

Data Types 319
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

buttons
The buttons that are pressed. This integer is interpreted as a bit field, with bit 0 indicating the first
button, bit 1 the second button, and so on. A value of 1 indicates that the button is down.

pressure
The scaled pressure value. The pressure value is in the range 0 to 65535.

tiltX
The scaled tilt x value. The tilt value is in the range -32767 to 32767.

tiltY
The scaled tilt y value. The tilt value is in the range -32767 to 32767.

rotation
The device rotation as a fixed-point value in a 10.6 format.

tangentialPressure
The tangential pressure on the device. This pressure is in the range -32767 to 32767.

deviceID
A unique system-assigned device ID. This ID matches the device ID you receive for the
kEventTabletProximity event.

vendor1
A vendor-defined value.

vendor2
A vendor-defined value.

vendor3
A vendor-defined value.

Discussion
You receive this structure in the kEventParamTabletPointRec parameter for the kEventTabletPoint
event.

Availability
Available in Mac OS X v10.1 and later.

Declared In
CarbonEvents.h

TabletProximityRec
Defines a tablet proximity structure.

320 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

struct TabletProximityRec {
 UInt16 vendorID;
 UInt16 tabletID;
 UInt16 pointerID;
 UInt16 deviceID;
 UInt16 systemTabletID;
 UInt16 vendorPointerType;
 UInt32 pointerSerialNumber;
 UInt64 uniqueID;
 UInt32 capabilityMask;
 UInt8 pointerType;
 UInt8 enterProximity;
};
typedef struct TabletProximityRec TabletProximityRec;

Fields
vendorID

A vendor-defined ID. This value is typically the USB vendor ID.

tabletID
A vendor-defined ID for the tablet. This value is typically the USB product ID for the tablet.

pointerID
A vendor-defined ID for the pointing device (for example, a pen).

deviceID
A unique system-assigned device ID. This ID matches the device ID you receive for the
kEventTabletPoint event.

systemTabletID
A system-assigned unique tablet ID.

vendorPointerType
A vendor-defined pointer type.

pointerSerialNumber
A vendor-defined serial number for the pointing device.

uniqueID
A vendor-defined ID for this pointer.

capabilityMask
A bit mask representing the capabilities of this device.

pointerType
The type of pointing device.

enterProximity
The proximity value. A nonzero value indicates that the pointer is entering the tablet proximity; zero
indicates that it is leaving.

Discussion
You receive this structure in the kEventParamTabletProximityRec parameter for the
kEventTabletProximity event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

Data Types 321
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

ToolboxObjectClassRef
Represents a toolbox object class.

typedef struct OpaqueToolboxObjectClassRef * ToolboxObjectClassRef;

Discussion
Typically you use toolbox object classes to specify custom user interface elements. See
RegisterToolboxObjectClass (page 291) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

Constants

Basic Event Constants

Event Class Constants
Define constants for specifying event classes.

322 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typedef UInt32 EventClass;
enum {
 kEventClassMouse = 'mous',
 kEventClassKeyboard = 'keyb',
 kEventClassTextInput = 'text',
 kEventClassApplication = 'appl',
 kEventClassAppleEvent = 'eppc',
 kEventClassMenu = 'menu',
 kEventClassWindow = 'wind',
 kEventClassControl = 'cntl',
 kEventClassCommand = 'cmds',
 kEventClassTablet = 'tblt',
 kEventClassVolume = 'vol ',
 kEventClassAppearance = 'appm',
 kEventClassService = 'serv',
 kEventClassToolbar = 'tbar',
 kEventClassToolbarItem = 'tbit',
 kEventClassToolbarItemView = 'tbiv',
 kEventClassAccessibility = 'acce'.
 kEventClassSystem = 'macs',
 kEventClassInk = 'ink ',
 kEventClassTSMDocumentAccess = 'tdac'
};

Constants
kEventClassMouse

Events related to the mouse (mouse down/up/moved).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventClassKeyboard
Events related to the keyboard.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventClassTextInput
Events related to text input (by keyboard or by input method).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventClassApplication
Application-level events (launch, quit, and so on).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventClassAppleEvent
Apple Events.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventClassMenu
Menu-related events.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 323
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventClassWindow
Window-related events.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventClassControl
Control-related events.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventClassCommand
Command events (HICommands).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventClassTablet
Events related to tablet input.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventClassVolume
Events related to File Manager volumes.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventClassAppearance
Events related to the Appearance Manager.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventClassService
Events related to the Services Manager.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventClassToolbar
Events related to the toolbar (not the toolbar window class).

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventClassToolbarItem
Events related to toolbar items.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventClassToolbarItemView
Events related to toolbar item views.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

324 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventClassAccessibility
Events related to application accessibility features.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventClassSystem
Events related to the system.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventClassInk
Events related to ink.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventClassTSMDocumentAccess
Events related to Text Services Manager document access.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Discussion
Event classes specify broad categories of events, grouped according to the object they are associated with.
Within an event class are specific event types.

Event Attributes
Define constants for special attributes of an event.

typedef UInt32 EventAttributes;
enum {
 kEventAttributeNone = 0,
 kEventAttributeUserEvent = (1 << 0),
 kEventAttributeMonitored= 1 << 3
};

Constants
kEventAttributeNone

No attributes.

Available in Mac OS X v10.0 and later.

Declared in CarbonEventsCore.h.

kEventAttributeUserEvent
An event generated in response to a user action.

Available in Mac OS X v10.0 and later.

Declared in CarbonEventsCore.h.

kEventAttributeMonitored
An event that was not originally targeted to this process but has been provided to this process because
an event handler for this event type has been installed on the event monitoring target. The event
dispatcher sends events with this attribute directly to the event monitor target.

Available in Mac OS X v10.3 and later.

Declared in CarbonEventsCore.h.

Constants 325
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
You use these attributes only if you are creating your own events.

Event Priority Constants
Define event priority constants.

typedef SInt16 EventPriority;
enum {
 kEventPriorityLow = 0,
 kEventPriorityStandard = 1,
 kEventPriorityHigh = 2
};

Constants
kEventPriorityLow

Lowest priority. Currently only window update events are posted at this priority.

Available in Mac OS X v10.0 and later.

Declared in CarbonEventsCore.h.

kEventPriorityStandard
Normal priority of events. Most events are standard priority.

Available in Mac OS X v10.0 and later.

Declared in CarbonEventsCore.h.

kEventPriorityHigh
Highest priority.

Available in Mac OS X v10.0 and later.

Declared in CarbonEventsCore.h.

Discussion
These values define the relative priority of an event, and are used when posting events with
PostEventToQueue (page 286). In general events are pulled from the queue in order of first posted to last
posted. These priorities are a way to alter that behavior when posting events. You can post a standard priority
event and then a high priority event, and the high priority event will be pulled from the queue first.

Event Target Propagation Options
Define options for the SendEventToEventTargetWithOptions function.

326 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventTargetDontPropagate = (1 << 0),
 kEventTargetSendToAllHandlers = (1 << 1)
};

Constants
kEventTargetDontPropagate

Do not propagate this event to any other event target. That is, even if the handler returns
eventNotHandledErr, the event is not propagated up the handler chain. When passed an event
sent with this option, CallNextEventHandler only calls other event handlers installed on the current
event target; it does not propagate the event to other event targets.

Available in Mac OS X v10.2 and later.

Declared in CarbonEventsCore.h.

kEventTargetSendToAllHandlers
Send this event to all event targets in the handler chain, regardless of any handler’s return value. For
example, if sent to a control, after returning, the event is sent to the owning window and then to the
application. Note that the Carbon Event Manager keeps track of the strongest result code when
progressing up the handler chain. That is, if the first handler returns noErr, and the second handler
returns eventNotHandledErr, the result returned is noErr.

Available in Mac OS X v10.2 and later.

Declared in CarbonEventsCore.h.

Event Queue Constants
Define constants for specifying how events should be handled on the queue.

enum {
 kEventLeaveInQueue = false,
 kEventRemoveFromQueue = true
};

Constants
kEventLeaveInQueue

Leave the event on the queue after examining.

Available in Mac OS X v10.0 and later.

Declared in CarbonEventsCore.h.

kEventRemoveFromQueue
Remove the event from the queue after examining.

Available in Mac OS X v10.0 and later.

Declared in CarbonEventsCore.h.

Discussion
When calling a function such as ReceiveNextEvent (page 289), you can specify whether to leave the event
on the queue (peeking at it to determine its class, type, and so on), or to pull it before dispatching it to an
event handler.

Direct Object Parameter
Define the direct object parameter.

Constants 327
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventParamDirectObject = '----'
};

Constants
kEventParamDirectObject

Type varies depending on event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEventsCore.h.

Discussion
The direct object parameter is usable for a wide variety of events. It defines the “object the event acted upon
or within.” For example, for window events, the direct object parameter returns a reference (that is a
WindowRef) to the window in which the event occurred.

Event Target Parameter
Define constants for a special event target parameter and its type, that you can set for any created event.

enum {
 kEventParamPostTarget = 'ptrg',
 typeEventTargetRef = 'etrg'
};

Constants
kEventParamPostTarget

Specifies the target the event should be sent to. Instead of sending an event directly to a given target,
you can set this parameter and post the event onto the event queue.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

typeEventTargetRef
The parameter type for kEventParamPostTarget.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

Object Reference Parameters and Types
Define constants for parameters that specify various objects and their types.

328 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventParamWindowRef = 'wind',
 kEventParamGrafPort = 'graf',
 kEventParamDragRef = 'drag',
 kEventParamMenuRef = 'menu',
 kEventParamEventRef = 'evnt',
 kEventParamControlRef = 'ctrl',
 kEventParamRgnHandle = 'rgnh',
 kEventParamEnabled = 'enab',
 kEventParamDimensions = 'dims',
 kEventParamBounds = 'boun',
 kEventParamAvailableBounds = 'avlb',
 kEventParamAEEventID = keyAEEventID,
 kEventParamAEEventClass = keyAEEventClass,
 kEventParamCGContextRef = 'cntx',
 kEventParamDeviceDepth = 'devd',
 kEventParamDeviceColor = 'devc',
 kEventParamMutableArray = 'marr',
 kEventParamResult = 'ansr',
 kEventParamMinimumSize = 'mnsz',
 kEventParamMaximumSize = 'mxsz',
 kEventParamAttributes = 'attr',
 kEventParamReason = 'why?',
 kEventParamTransactionID = 'trns',
 kEventParamGDevice = 'gdev',
 kEventParamIndex = 'indx',
 kEventParamUserData = 'usrd',
 kEventParamShape = 'shap',
 typeWindowRef = 'wind',
 typeGrafPtr = 'graf',
 typeGWorldPtr = 'gwld',
 typeDragRef = 'drag',
 typeMenuRef = 'menu',
 typeControlRef = 'ctrl',
 typeCollection = 'cltn',
 typeQDRgnHandle = 'rgnh',
 typeOSStatus = 'osst',
 typeCFIndex = 'cfix',
 typeCGContextRef = 'cntx',
 typeHIPoint = 'hipt',
 typeHISize = 'hisz',
 typeHIRect = 'hirc',
 typeHIShapeRef = 'shap',
 typeVoidPtr = 'void',
 typeGDHandle = 'gdev'
};

Constants
kEventParamWindowRef

A window reference. (typeWindowRef)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamGrafPort
typeGrafPtr

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 329
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamDragRef
typeDragRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEventsCore.h.

kEventParamMenuRef
typeMenuRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamEventRef
typeEventRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlRef
typeControlRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamRgnHandle
typeQDRgnHandle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamEnabled
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamDimensions
typeQDPoint

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamBounds
typeQDRectangle

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamAvailableBounds
typeQDRectangle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamAEEventID
typeType

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

330 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamAEEventClass
typeType

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamCGContextRef
typeCGContextRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamDeviceDepth
typeShortInteger

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventParamDeviceColor
typeBoolean

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventParamMutableArray
typeCFMutableArrayRef

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamResult
Any type, depending on the event

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamMinimumSize
typeHISize

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamMaximumSize
typeHISize

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamAttributes
typeUInt32

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamReason
typeUInt32

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Constants 331
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamTransactionID
typeUInt32

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamGDevice
typeGDHandle

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamIndex
typeCFIndex

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamUserData
typeVoidPtr

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamShape
typeHIShapeRef

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

typeWindowRef
WindowRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeGrafPtr
CGrafPtr

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeGWorldPtr
GWorldPtr

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeDragRef
DragRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEventsCore.h.

typeMenuRef
MenuRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

332 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeControlRef
ControlRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeCollection
Collection

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeQDRgnHandle
RgnHandle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeOSStatus
OSStatus

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeCFIndex
CFIndex

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

typeCGContextRef
CGContextRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeHIPoint
HIPoint

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

typeHISize
HISize

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

typeHIRect
HIRect

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

typeHIShapeRef
HIShapeRef

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Constants 333
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeVoidPtr
Void

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

typeGDHandle
GDHandle

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Discussion
You specify these parameters to obtain references to various objects such as windows, controls, graphics
ports, and so on. See the various event kinds to determine the parameters available for each event. For
example, Table 3-8 (page 392) in “Mouse Events” (page 390) lists the various parameters used in mouse events.

Core Foundation Object Types
Define type constants for Carbon event parameters that refer to Core Foundation objects.

enum {
 typeCFAttributedStringRef = 'cfas',
 typeCFMutableAttributedStringRef = 'cfaa',
 typeCFStringRef = 'cfst',
 typeCFMutableStringRef = 'cfms',
 typeCFArrayRef = 'cfar',
 typeCFMutableArrayRef = 'cfma',
 typeCFDictionaryRef = 'cfdc',
 typeCFMutableDictionaryRef = 'cfmd',
 typeCFNumberRef = 'cfnb',
 typeCFBooleanRef = 'cftf',
 typeCFTypeRef = 'cfty'
};

Constants
typeCFAttributedStringRef

A Core Foundation attributed string.

Available in Mac OS X v10.5 and later.

Declared in AEDataModel.h.

typeCFMutableAttributedStringRef
A Core Foundation mutable attributed string.

Available in Mac OS X v10.5 and later.

Declared in AEDataModel.h.

typeCFStringRef
A Core Foundation string.

Available in Mac OS X v10.1 and later.

Declared in AEDataModel.h.

typeCFMutableStringRef
A Core Foundation mutable string.

Available in Mac OS X v10.2 and later.

Declared in AEDataModel.h.

334 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeCFArrayRef
A Core Foundation array.

Available in Mac OS X v10.3 and later.

Declared in AEDataModel.h.

typeCFMutableArrayRef
A Core Foundation mutable array.

Available in Mac OS X v10.1 and later.

Declared in AEDataModel.h.

typeCFDictionaryRef
A Core Foundation dictionary.

Available in Mac OS X v10.3 and later.

Declared in AEDataModel.h.

typeCFMutableDictionaryRef
A Core Foundation mutable dictionary.

Available in Mac OS X v10.3 and later.

Declared in AEDataModel.h.

typeCFNumberRef
A Core Foundation number.

Available in Mac OS X v10.5 and later.

Declared in AEDataModel.h.

typeCFBooleanRef
A Core Foundation Boolean value.

Available in Mac OS X v10.5 and later.

Declared in AEDataModel.h.

typeCFTypeRef
A Core Foundation type.

Available in Mac OS X v10.2 and later.

Declared in AEDataModel.h.

Declared In
AEDataModel.h

Apple Event Constants

AppleEvent Constant
Define a constant related to events from kEventClassAppleEvent.

Constants 335
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventAppleEvent = 1
};

Constants
kEventAppleEvent

An AppleEvent event was received.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
The standard application handler automatically calls the Apple Event Manager function
AEProcessAppleEvent to handle Apple events.

Table 3-1 shows the parameter associated with AppleEvent events.

Table 3-1 Parameter names and types for AppleEvent kinds

Parameter typeParameter nameEvent kind

typeTypekEventParamAEEventIDkEventAppleEvent

Deprecated AppleEvent Event Constants
Define constants for older names for AppleEvent event constants.

enum {
 kEventClassEPPC = kEventClassAppleEvent,
 kEventHighLevelEvent = kEventAppleEvent
};

Constants
kEventClassEPPC

Equivalent to kEventClassAppleEvent.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventHighLevelEvent
Equivalent to kEventAppleEvent.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Appearance Manager Event Constants

Appearance Manager Events
Define a constant related to events from kEventClassAppearance.

336 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventAppearanceScrollBarVariantChanged = 1
};

Constants
kEventAppearanceScrollBarVariantChanged

The scroll bar variant has changed.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

Appearance Manager Event Parameter
Define a constant for the parameter to Appearance Manager events.

enum {
 kEventParamNewScrollBarVariant = 'nsbv'
};

Constants
kEventParamNewScrollBarVariant

typeShortInteger

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

Application Event Constants

Application Event Constants
Define constants related to events from kEventClassApplication.

Constants 337
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventAppActivated = 1,
 kEventAppDeactivated = 2,
 kEventAppQuit = 3,
 kEventAppLaunchNotification = 4,
 kEventAppLaunched = 5,
 kEventAppTerminated = 6,
 kEventAppFrontSwitched = 7,
 kEventAppFocusMenuBar = 8,
 kEventAppFocusNextDocumentWindow = 9,
 kEventAppFocusNextFloatingWindow = 10,
 kEventAppFocusToolbar = 11,
 kEventAppFocusDrawer = 12,
 kEventAppGetDockTileMenu = 20,
 kEventAppIsEventInInstantMouser = 104,
 kEventAppHidden = 107,
 kEventAppShown = 108,
 kEventAppSystemUIModeChanged = 109,
 kEventAppAvailableWindowBoundsChanged = 110,
 kEventAppActiveWindowChanged = 111
};

Constants
kEventAppActivated

The application was activated (resumed, in old parlance).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventAppDeactivated
The application was deactivated (suspended, in old parlance).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventAppQuit
The application is quitting.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventAppLaunchNotification
Response to asynchronous application launch.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventAppLaunched
Some other application was launched. (CarbonLib 1.3 or later)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventAppTerminated
Some other application was terminated. (CarbonLib 1.3 or later)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

338 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventAppFrontSwitched
The frontmost application has changed. (CarbonLib 1.3 or later)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventAppFocusMenuBar
Request to switch the keyboard focus to the menu bar. The Carbon Event Manager handles this event
by default.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventAppFocusNextDocumentWindow
Request to shift keyboard focus to the next or previous document window (depending on the state
of the Shift key). If there are no more document windows in the current process, focus should shift
to the document window in the next (or previous) process.

If something other than a document window currently has keyboard focus, you should shift focus to
the frontmost document window without changing the ordering of the windows.

If the document window does not have a focused area, you should set the focus to the main control
within the window.

The Carbon Event Manager handles this event by default; if you handle this event, you should only
check if the user focus is somewhere other than a document window, and if so, set the focus on the
active document window. If the focus is already on a document window, your handler should always
return eventNotHandledErr so that the default handler can rotate to the next window across all
processes.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventAppFocusNextFloatingWindow
Request to shift keyboard focus to the next or previous floating window (depending on the state of
the Shift key).

If something other than a floating window currently has keyboard focus, you should shift focus to
the frontmost floating window without changing the ordering of the windows.

If the floating window does not have a focused area, you should set the focus to the main control
within the window.

The default behavior for this event is to send a kEventCommandProcess event containing
kHICommandRotateFloatingWindowsForward or
kHICommandRotateFloatingWindowsBackward.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventAppFocusToolbar
Request to shift keyboard focus to the toolbar.

The default behavior for this event is to move the keyboard focus to the first item in the toolbar
(assuming you are using the standard toolbar).

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

Constants 339
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventAppFocusDrawer
Request to shift keyboard focus to the drawer in the focused window.

The default behavior for this event is to move the focus to the first control in the drawer in the focused
window if a drawer is present. If multiple drawers are present, focus is moved in clockwise order from
one drawer to the next, starting with the top drawer, if any. If the modifiers parameter contains the
shift key, focus is moved in reverse (counterclockwise) order.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kEventAppGetDockTileMenu
Request to display a pop-up menu by the application’s dock tile. You should return the menu reference
of the menu to display in the kEventParamMenuRef parameter. The sender of this event releases
this menu after the Dock displays it, so if you supply a permanently allocated menu reference, you
should call the Menu Manager function RetainMenu on it before returning from your handler.

The default behavior for this event is to return the menu (if any) supplied by the
SetApplicationDockTileMenu function (described in the Dock Manager Reference). Note that for
most functions, it’s easier to set a menu using SetApplicationDockTileMenu rather than installing
a handler for this event.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventAppIsEventInInstantMouser
The given event’s global mouse location is over an “instant mousing” area. An instant mousing area
is an area where a mouse down should not generate ink but should be interpreted as a click.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventAppHidden
The application was hidden.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventAppShown
The application was shown.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventAppSystemUIModeChanged
The system user interface mode of the frontmost application has changed.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventAppAvailableWindowBoundsChanged
The available window positioning bounds have changed. This event is currently sent when the Dock
has changed position or size and when the display configuration has changed. A separate copy of
this event is sent to each affected GDevice.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

340 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventAppActiveWindowChanged
The active window in the current process has changed. The Window Manager uses
ActiveNonFloatingWindow to track the active window. When SelectWindow is called on a window,
that window is made the new active window. At that time, the Window Manager also posts a
kEventAppActiveWindowChanged event to the main event queue.

If more than one window is activated sequentially before the event loop is run, a single
kEventAppActiveWindowChanged event is left in the event queue. Its PreviousActiveWindow
parameter will be the window that was originally active, and its CurrentActiveWindow parameter
will be the window that was finally active.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Discussion
You can pass any of these constants when registering an event handler. You can also pass these constants
to the CreateEvent (page 252) function to specify the type of application event you want to create.

Table 3-2 shows the event parameters associated with application events.

Table 3-2 Parameter names and types for application event kinds

Parameter typeParameter nameEvent kind

typeWindowRefkEventParamWindowRefkEventAppActivated

NonekEventAppDeactivated

NonekEventAppQuit

typeProcessSerialNumberkEventParamProcessIDkEventAppLaunchNotification

typeUInt32kEventParamLaunchRefCon

typeOSStatuskEventParamLaunchErr

typeProcessSerialNumberkEventParamProcessIDkEventAppLaunched

typeProcessSerialNumberkEventParamProcessIDkEventAppTerminated

typeProcessSerialNumberkEventParamProcessIDkEventAppFrontSwitched

typeUInt32kEventParamKeyModifierskEventAppFocusMenuBar

typeUInt32kEventParamKeyModifierskEventAppFocusNextDocumentWindow

typeUInt32kEventParamKeyModifierskEventAppFocusNextFloatingWindow

typeUInt32kEventParamKeyModifierskEventAppFocusToolbar

typeMenuRefkEventParamMenuRefkEventAppGetDockTileMenu

NonekEventAppHidden

NonekEventAppShown

typeUInt32kEventParamSystemUIModekEventAppSystemUIModeChanged

Constants 341
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Application Event Parameters
Define constants for parameters to application events.

enum {
 kEventParamProcessID = 'psn ',
 kEventParamLaunchRefCon = 'lref',
 kEventParamLaunchErr = 'err ',
 kEventParamSystemUIMode = 'uimd'
};

Constants
kEventParamProcessID

typeProcessSerialNumber

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamLaunchRefCon
typeWildcard

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamLaunchErr
typeOSStatus

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamSystemUIMode
typeUInt32

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

Command Events

Command Event Constants
Define constants related to events from kEventClassCommand.

342 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventProcessCommand = 1,
 kEventCommandProcess = 1,
 kEventCommandUpdateStatus = 2
};

Constants
kEventProcessCommand

A command has been invoked and the application should handle it. This event is sent when the user
chooses a menu item or when a control with a command is pressed. Some senders of this event will
also include the modifier keys that were pressed by the user when the command was invoked, but
this parameter is optional.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventCommandProcess
Same as kEventProcessCommand.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventCommandUpdateStatus
Sent when updates related to the command event may be required. When you receive this event,
you should update the necessary user interface elements in your application to reflect the current
status of the command. For example, if the command has the kHICommandFromMenu bit set, you
should update the menu item state, text, and so on, to reflect the current state of your application.

Note that the standard handler for kEventMenuEnableItems automatically sends this event to your
menu commands. As this can cause a performance hit if you have many menu items, you can choose
to bypass these updates by installing a no-op handler for kEventMenuEnableItems that simply
returns noErr.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
You pass this constant to the CreateEvent (page 252) function to indicate the type of command event you
want to create. Future releases of the Carbon Event Manager will provide additional command event types.

Table 3-3 shows the parameters associated with command events.

Table 3-3 Parameter names and types for command event kinds

Parameter typeParameter nameEvent kind

typeHICommandkEventParamDirectObjectkEventCommandProcess

typeUInt32kEventParamKeyModifiers (Optional)

typeUInt32kEventParamMenuContext (Optional)

typeHICommandkEventParamDirectObjectkEventCommand-
UpdateStatus

typeUInt32kEventParamMenuContext (Optional)

Constants 343
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Standard Command ID Constants
Define command IDs for common menu commands and controls.

enum {
 kHICommandOK = 'ok ',
 kHICommandCancel = 'not!',
 kHICommandQuit = 'quit',
 kHICommandUndo = 'undo',
 kHICommandRedo = 'redo',
 kHICommandCut = 'cut ',
 kHICommandCopy = 'copy',
 kHICommandPaste = 'past',
 kHICommandClear = 'clea',
 kHICommandSelectAll = 'sall',
 kHICommandHide = 'hide',
 kHICommandHideOthers = 'hido',
 kHICommandShowAll = 'shal',
 kHICommandPreferences = 'pref',
 kHICommandZoomWindow = 'zoom',
 kHICommandMinimizeWindow = 'mini',
 kHICommandMinimizeAll = 'mina',
 kHICommandMaximizeWindow = 'maxi',
 kHICommandMaximizeAll = 'maxa',
 kHICommandArrangeInFront = 'frnt',
 kHICommandBringAllToFront = 'bfrt',
 kHICommandWindowListSeparator = 'wldv',
 kHICommandWindowListTerminator = 'wlst',
 kHICommandSelectWindow = 'swin',
 kHICommandRotateWindowsForward = 'rotw',
 kHICommandRotateWindowsBackward = 'rotb',
 kHICommandRotateFloatingWindowsForward = 'rtfw',
 kHICommandRotateFloatingWindowsBackward = 'rtfb',
 kHICommandAbout = 'abou',
 kHICommandNew = 'new ',
 kHICommandOpen = 'open',
 kHICommandClose = 'clos',
 kHICommandSave = 'save',
 kHICommandSaveAs = 'svas',
 kHICommandRevert = 'rvrt',
 kHICommandPrint = 'prnt',
 kHICommandPageSetup = 'page',
 kHICommandAppHelp = 'ahlp',
 kHICommandShowCharacterPalette = 'chrp',
 kHICommandShowSpellingPanel = 'shsp',
 kHICommandCheckSpelling = 'cksp',
 kHICommandChangeSpelling = 'chsp',
 kHICommandCheckSpellingAsYouType = 'chsp',
 kHICommandIgnoreSpelling = 'igsp',
 kHICommandLearnWord = 'lrwd'
};

Constants
kHICommandOK

The OK button in a dialog or alert.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

344 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kHICommandCancel
The Cancel button in a dialog or alert.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandQuit
The application should quit.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandUndo
The last editing operation should be undone.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandRedo
The last editing operation should be redone.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandCut
The selected items should be cut.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandCopy
The selected items should be copied.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandPaste
The contents of the clipboard should be pasted.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandClear
The selected items should be deleted.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandSelectAll
All items in the active window should be selected.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandHide
The application should be hidden. The Menu Manager responds to this command automatically; your
application does not need to handle it.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 345
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kHICommandHideOthers
Other applications should be hidden. The Menu Manager responds to this command automatically;
your application does not need to handle it.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandShowAll
All applications should become visible. The Menu Manager responds to this command automatically;
your application does not need to handle it.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandPreferences
The Preferences menu item has been selected.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandZoom
The active window should be zoomed in or out. The default application handler responds to this
event automatically. Your application does not need to handle this event, but you may want to install
a Carbon event handler for kEventWindowGetIdealSize to return the ideal size for your document
windows.

kHICommandMinimizeWindow
The active window should be minimized. The default application handler will respond to this event
automatically; your application does not need to handle it.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandMinimizeAll
All collapsable windows should be minimized. The default application handler responds to this event
automatically; your application does not need to handle it.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandMaximizeWindow
The active window should be maximized. Sent only on Mac OS 9. The default application handler will
respond to this event automatically; your application does not need to handle it.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandMaximizeAll
All collapsible windows should be maximized. This event is not sent or handled on Mac OS X.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandArrangeInFront
All document-class windows should be arranged in a stack. The default application handler responds
to this event automatically; your application does not need to handle it.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

346 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kHICommandBringAllToFront
All windows of this application should be brought in front of windows from other applications. Sent
only on Mac OS X. The default application handler responds to this event automatically; your application
does not need to handle it.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandWindowListSeparator
A placeholder to mark the separator item dividing the Zoom/Minimize/Maximize/Arrange menu items
in the standard Window menu from the menu items listing the visible windows. If you need to add
your own menu items to the standard Window menu before the window list section, you can use
GetIndMenuItemWithCommandID (described in the Menu Manager Reference in the User Experience
section of the Carbon documentation) to look for the menu item with this command ID and insert
your menu items before the item with this ID.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandWindowListTerminator
Used as a placeholder to mark the end of the window list section of the standard Window menu. If
you need to add your own menu items to the standard Window menu after the window list section,
you can use GetIndMenuItemWithCommandID (described in the Menu Manager Reference in the
User Experience section of the Carbon documentation) to look for the menu item with this command
ID and insert your items after the item with this ID.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandSelectWindow
A window in the standard Window menu has been selected and should be activated. In Mac OS X
v10.3, this command is also sent by the toolbox whenever it needs to activate a window in your
application. For example, it is used when a window is selected from the application’s Dock menu, and
when a window that uses the standard window event handler is clicked. The default application
handler responds to this event automatically; your application does not need to handle it.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandRotateWindowsForward
The Rotate Windows hot key (cmd-~ by default) has been pressed. Non-floating windows should be
rotated so that the window after the active window is activated. The default application handler
responds to this event automatically; your application does not need to handle it.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kHICommandRotateWindowsBackward
The Rotate Windows hot key (cmd-~ by default) has been pressed. Non-floating windows should be
rotated so that the window before the active window is activated. The default application handler
responds to this event automatically; your application does not need to handle it.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

Constants 347
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kHICommandRotateFloatingWindowsForward
The floating window focus hot key (ctl-F6 by default) has been pressed, and floating windows should
be rotated so that the window after the focused window is activated. The default application handler
responds to this event automatically; your application does not need to handle it.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kHICommandRotateFloatingWindowsBackward
The floating window focus hot key (ctl-F6 by default) has been pressed, and floating windows should
be rotated so that the window before the focused window is activated. The default application handler
responds to this event automatically; your application does not need to handle it.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kHICommandAbout
The About menu item has been selected. In Mac OS X v10.3 and later, RunApplicationEventLoop
installs a handler for this command ID on the application target that handles this event automatically
by calling HIAboutBox. Your application can install its own handler if you want to display a customized
about box.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandNew
A new document or item should be created.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandOpen
The user wants to open an existing document.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandClose
The active window should be closed. This command is typically be generated by a Close menu item.
In Mac OS X v10.3 and later, the default application handler responds to this command by sending
a kEventWindowClose event; on earlier systems, only the standard window event handler responded
to this event.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandSave
The active document should be saved.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandSaveAs
The user wants to save the active document under a new name.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

348 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kHICommandRevert
The contents of the active document should be reverted to the last saved version.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandPrint
The active window should be printed.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandPageSetup
The user wants to configure the current page margins, formatting, and print options.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandAppHelp
The application’s help book should be displayed. The Help Manager installs a handler for this command
ID on the Help menu returned by HMGetHelpMenu and responds to this event automatically. Your
application does not need to handle it. In Mac OS X v10.4, the Help Manager installs a handler for this
event on the application event target rather than on the Help menu.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kHICommandShowCharacterPalette
The character palette needs to be shown. Events with this command ID are only generated in Mac
OS X v10.3 and later. The toolbox will respond to this event automatically; your application does not
need to handle it.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kHICommandShowSpellingPanel
Display the spelling panel if it is not already visible. Events with this command ID are only generated
in Mac OS X v10.4 and later. If spell checking has been enabled in the Multilingual Text Engine (MLTE)
or an HITextView, this command is handled automatically.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kHICommandCheckSpelling
Spell check the document now. Events with this command ID are only generated in Mac OS X v10.4
and later. If spell checking has been enabled in MLTE or an HITextView, this command is handled
automatically.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kHICommandChangeSpelling
Change the spelling. Events with this command ID are only generated in Mac OS X v10.4 and later. If
spell checking has been enabled in MLTE or an HITextView, this command is handled automatically.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Constants 349
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kHICommandCheckSpellingAsYouType
Begin interactive spell checking. Events with this command ID are only generated in Mac OS X v10.4
and later. If spell checking has been enabled in MLTE or an HITextView, this command is handled
automatically.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kHICommandIgnoreSpelling
Ignore this word while spell checking this text view. Events with this command ID are only generated
in Mac OS X v10.4 and later. If spell checking has been enabled in MLTE or an HITextView, this command
is handled automatically.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kHICommandLearnWord
Learn this spelling for all documents. Events with this command ID are generated only in Mac OS X
v10.4 and later. If spell checking has been enabled in MLTE or an HITextView, this command is handled
automatically.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Discussion
You should use these values for standard menu and control commands rather than defining your own.

Command Event Source Constants
Define constants for the user interface element that produced an HICommand event.

enum {
 kHICommandFromMenu = (1L << 0),
 kHICommandFromControl = (1L << 1),
 kHICommandFromWindow = (1L << 2)
};

Constants
kHICommandFromMenu

This bit is set for commands generated from menu items in all versions of CarbonLib and Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kHICommandFromControl
The command event originated from a control. This bit was introduced in Mac OS X v10.2 and
CarbonLib 1.6; it is never set in earlier versions of Mac OS X or CarbonLib.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kHICommandFromWindow
The command event originated from a window. This bit was introduced in Mac OS X v10.2 and
CarbonLib 1.6; it is never set in earlier versions of Mac OS X or CarbonLib.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

350 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Control Events

Control Event Constants
Define constants related to events from kEventClassControl.

Constants 351
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventControlInitialize = 1000,
 kEventControlDispose = 1001,
 kEventControlGetOptimalBounds = 1003,
 kEventControlDefInitialize = kEventControlInitialize,
 kEventControlDefDispose = kEventControlDispose,
 kEventControlHit = 1,
 kEventControlSimulateHit = 2,
 kEventControlHitTest = 3,
 kEventControlDraw = 4,
 kEventControlApplyBackground = 5,
 kEventControlApplyTextColor = 6,
 kEventControlSetFocusPart = 7,
 kEventControlGetFocusPart = 8,
 kEventControlActivate = 9,
 kEventControlDeactivate = 10,
 kEventControlSetCursor = 11,
 kEventControlContextualMenuClick = 12,
 kEventControlClick = 13,
 kEventControlGetNextFocusCandidate = 14,
 kEventControlGetAutoToggleValue = 15,
 kEventControlInterceptSubviewClick = 16,
 kEventControlGetClickActivation = 17,
 kEventControlDragEnter = 18,
 kEventControlDragWithin = 19,
 kEventControlDragLeave = 20,
 kEventControlDragReceive = 21,
 kEventControlTrack = 51,
 kEventControlGetScrollToHereStartPoint = 52,
 kEventControlGetIndicatorDragConstraint = 53,
 kEventControlIndicatorMoved = 54,
 kEventControlGhostingFinished = 55,
 kEventControlGetActionProcPart = 56,
 kEventControlGetPartRegion = 101,
 kEventControlGetPartBounds = 102,
 kEventControlSetData = 103,
 kEventControlGetData = 104,
 kEventControlGetSizeConstraints = 105,
 kEventControlValueFieldChanged = 151,
 kEventControlAddedSubControl = 152,
 kEventControlRemovingSubControl = 153,
 kEventControlBoundsChanged = 154,
 kEventControlTitleChanged = 158,
 kEventControlOwningWindowChanged = 159,
 kEventControlHiliteChanged = 160,
 kEventControlEnabledStateChanged = 161,
 kEventControlArbitraryMessage = 201
};

Constants
kEventControlInitialize

Sent when a control is created. Allows the control to initialize private data.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

352 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventControlDispose
Sent when a control is disposed. Allows the control to dispose of private data.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlGetOptimalBounds
Allows the control to report its best size and its text baseline based on its current settings. You should
set the kEventParamControlOptimalBounds parameter to an appropriate rectangle. You should
also set the kEventParamControlOptimalBaselineOffset parameter to be the offset from the
top of your optimal bounds of a text baseline, if any. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlDefInitialize
Same as kEventControlInitialize. You can use this event when creating custom control
definitions.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in CarbonEvents.h.

kEventControlDefDispose
Same as kEventControlDispose. You can use this event when creating custom control definitions.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in CarbonEvents.h.

kEventControlHit
Sent by the Control Manager functions TrackControl and HandleControlClick after handling a
click in a control. If you do not handle this event, and the control has a command ID associated with
it, then the Control Manager sends a kEventCommandProcess event to the control.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlSimulateHit
Sent when your control should simulate a click in response to some other action, such as a return key
for a default button. The default behavior is to use the Control Manager function HiliteControl
to highlight and unhighlight the part specified in the kEventParamControlPart parameter
(simulating the hit) and then call the control’s action callback function. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlHitTest
Sent when someone wants to find out what part of your control is at a given point in local coordinates.
You should set the kEventParamControlPart parameter to the appropriate part. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlDraw
Sent when your control should draw itself. The event can optionally contain parameters indicating
which port to draw into and which part to constrain drawing to. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 353
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventControlApplyBackground
Sent when your control should apply its background color/pattern to the port specified so the
subcontrol can properly erase. The port is optional; if it does not exist you should apply the background
to the current port. Note that if you don’t handle this event, the event is propagated to the control’s
parent. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kEventControlApplyTextColor
Sent when your control should apply a color/pattern to the specified port and context so a subcontrol
can draw text which looks appropriate for your control’s background. The port is optional; if it does
not exist, you should apply the text color to the current port. The context is also optional. (Mac OS X
only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlSetFocusPart
Sent when your control is gaining, losing, or changing the focus. Set the focus to the part indicated
by the kEventParamControlPart parameter. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlGetFocusPart
Sent when your the Control Manager wants to know what part of your control is currently focused.
Set the kEventParamControlPart parameter to your currently focused part. If you don’t handle
this event, the Control Manager sets the part parameter to the last part that was focused (or no part
if the control lost focus). (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlActivate
Sent when your control becomes active as a result of a call to ActivateControl. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlDeactivate
Sent when your control becomes inactive as a result of a call to DeactivateControl. (Mac OS X
only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlSetCursor
Sent when your control is asked to change the cursor as a result of a call to the Control Manager
function HandleControlSetCursor. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

354 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventControlContextualMenuClick
Sent when your control is asked to display a contextual menu as a result of a call to the Control
Manager function HandleControlContextualMenuClick. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlClick
A mouse down occurred in a control. The standard window handler sets the keyboard focus to the
control if it takes focus on clicks, and calls the Control Manager function HandleControlClick.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlGetNextFocusCandidate
Sent to allow a control to customize the focus order of its subcontrols. The current subcontrol with
focus is stored in the kEventParamStartControl parameter. The desired focus direction is indicated
by the kControlFocusNextPart or kControlFocusPrevPart constants, passed to you in the
kEventParamControlPart parameter. The handler should return the next subcontrol in the
kEventParamNextControl parameter. If the kEventParamStartControl parameter is NULL,
return the first subcontrol in the specified focus direction. If no next subcontrol exists in the desired
focus direction, return NULL or omit the kEventParamNextControl parameter.

The default behavior is to return the “most appropriate” peer control, which currently means the
previous control in the ordering scheme.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventControlGetAutoToggleValue
Sent when the system wants to auto-toggle a control. You can specify the value to use based on the
current value of your control.

If the control has the kControlAutoToggles feature bit set, then the default behavior is as follows:

 ■ If the control does not behave like a radio button (the kControlHasRadioBehavior feature
bit is not set), and its value is 1, then the kEventParamControlValue parameter is set to 0.

 ■ If the control’s value is anything other than 1, the kEventParamControlValue parameter is set
to 0.

Otherwise, there is no default behavior.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventControlInterceptSubviewClick
Sent when the HIViewGetViewForMouseClick function is called (typically by the Control Manager
before it descends into subviews). A view can use this event to intercept mouse clicks that would
normally be destined for one of its subviews. For example, the Toolbar control uses this event to
intercept command-clicks so that it can handle dragging of its children. If the command key is down,
the user wants to drag, so the handler returns noErr to indicate that this view (the Toolbar) should
receive the click, not the child that was actually under the mouse.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

Constants 355
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventControlGetClickActivation
Sent when a mouse click occurs in a background (inactive) control. This event is essentially the control
version of kEventWindowGetClickActivation. The only differences are that the mouse location
is view-relative and no window part parameter is passed to you.

This event is sent only when the standard window handler is installed. The default behavior is to
activate the view and absorb the mouse click (that is, the click is not passed on to the view).

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventControlDragEnter
Sent when a drag item enters a view’s bounds. If you want to respond to the drag, your drag entered
handler must return noErr If you return eventNotHandledErr then you will not receive further
drag events, nor will you be able to receive the drag item.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventControlDragWithin
Sent when a drag item has moved while in the view’s bounds (but not within any of its subviews). If
the drag subsequently enters a subview, all additional drag events are directed to that subview.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventControlDragLeave
Sent when a drag item leaves your view. You can use this event to unhighlight your view, and so on.
(Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventControlDragReceive
Sent when a drag item is dropped within your view.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventControlTrack
Sent to allow your control to completely replace the normal tracking that is part of a call to the Control
Manager functions TrackControl or HandleControlClick. Set the kEventParamControlPart
to the part hit during tracking.

This event is sent only to controls that return a non-zero control part code from
kEventControlHitTest. If you are implementing a custom HIView and you need to receive this
event, you must also handle kEventControlHitTest. The hit-test handler must place a valid control
part code into the kEventParamControlPart parameter and return noErr.

The default behavior is to implement indicator tracking (if the mouse is down in an indicator part,
such as for a scroll bar) or one-part tracking (if the mouse is down in a button or similar part). If the
tracking is successful, the Control Manager passes back the part that was hit.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

356 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventControlGetScrollToHereStartPoint
Sent so your control can support “Scroll To Here” behavior during tracking. Set the
kEventParamMouseLocation parameter to the mouse location in local coordinates which represents
where a click would have needed to be to cause your indicator to be dragged to the incoming mouse
location. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlGetIndicatorDragConstraint
Sent so your control can constrain the movement of its indicator during tracking. Set the
kEventParamControlIndicatorDragConstraint parameter to the appropriate constraint. (Mac
OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlIndicatorMoved
Sent during live-tracking of the indicator so your control can update its value based on the new
indicator position. During non-live tracking, this event lets you redraw the indicator ghost at the
appropriate place. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlGhostingFinished
Sent at the end of non-live indicator tracking so your control can update its value based on the final
ghost location. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlGetActionProcPart
Sent during tracking so your control can alter the part that is passed to its action callback based on
modifier keys, etc. Set the kEventParamControlPart to the part you want to have sent. (Mac OS
X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlGetPartRegion
Sent when a client wants to get a particular region of your control. See the GetControlRegion
function in the Control Manager. The kEventParamControlRegion contains a region for you to
modify.

If the requested part is kControlStructureMetaPart, the default behavior is to pass back a region
equal to the control’s bounds. Otherwise, there is no default behavior.

(Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlGetPartBounds
Sent when a client wants to get a particular rectangle of your control when it may be more efficient
than asking for a region. Set the kEventParamControlPartBounds parameter to the appropriate
rectangle. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 357
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventControlSetData
Sent when a client wants to change an arbitrary setting of your control. See the SetControlData
function in the Control Manager. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlGetData
Sent when a client wants to get an arbitrary setting of your control. See the Control Manager function
GetControlData. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlGetSizeConstraints
Sent when the HIViewGetSizeContraints function is called. You use this to let your custom view
indicate its maximum and minimum size. A parent view can use this information to help it lay out
subviews.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventControlValueFieldChanged
Sent when your control’s value, minimum, maximum, or view size has changed. Useful so other entities
can watch for your control’s value to change. If the window does not have compositing enabled, the
default behavior is to redraw the control (but not its subcontrols). (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlAddedSubControl
Sent when a control is embedded within your control.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlRemovingSubControl
Sent when one of your child controls will be removed from your control.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlBoundsChanged
Sent when your control’s bounding rectangle has changed. Note that the
kEventParamOriginalBounds and kEventParamPreviousBounds parameters for this event
contain the same value.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlTitleChanged
Sent when your control’s title changes.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

358 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventControlOwningWindowChanged
Sent when one your control’s owning window has changed. Useful to update any dependencies that
your control has on its owning window. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventControlHiliteChanged
Sent when a control’s highlight state changes.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventControlEnabledStateChanged
Sent when a control’s enabled state changes (that is, when a control is enabled or disabled).

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventControlArbitraryMessage
Sent when someone tries to send an old-style CDEF message to your control. In most cases, you
should implement Carbon event replacements for CDEF messages instead. If you do handle this event,
but do not explicitly handle a particular CDEF message, you should propagate this event up the
handler chain (either explicitly by calling CallNextEventHandler (page 247) or implicitly by returning
eventNotHandledErr), as some default behavior may be implemented for compatibility purposes.
(Mac OS X only)

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

Discussion
You can specify any of these events when installing an event handler. You can also pass these constants to
the CreateControlEvent function to specify the type of control event you want to create.

Note that many control events are not sent as a request for you to take action; rather they provide a way for
the application to override default behavior. Because this is the case, most control events do not have a
standard handler associated with them. Their default behavior occurs whether or not you have the standard
window handler installed.

Table 3-4 shows the parameters available for control events.

Table 3-4 Parameter names and types for common control event kinds

Parameter typeParameter nameEvent kind

typeControlRefkEventParamDirectObjectkEventControl-
Initialize

typeCollectionkEventParamInitCollection

typeUInt32kEventParamControlFeatures

typeControlRefkEventParamDirectObjectkEventControlDispose

typeControlRefkEventParamDirectObjectkEventControlGet-
OptimalBounds

Constants 359
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeQDRectanglekEventParamControlOptimalBounds

typeShortIntegerkEventParamControlOptimalBaseline-
Offset (Optional)

typeControlRefkEventParamDirectObjectkEventControlHit

typeControlPartCodekEventParamControlPart

typeUInt32kEventParamKeyModifiers

typeControlRefkEventParamDirectObjectkEventControl-
SimulateHit

typeControlPartCodekEventParamControlPart

typeUInt32kEventParamKeyModifiers

typeControlRefkEventParamDirectObjectkEventControlHitTest

typeQDPointkEventParamMouseLocation

typeControlPartCodekEventParamControlPart

typeControlRefkEventParamDirectObjectkEventControlDraw

typeControlPartCodekEventParamControlPart (Optional)

typeGrafPtrkEventParamGrafPort (Optional)

typeQDRgnHandlekEventParamRgnHandle (Optional)

typeCGContextRefkEventParamCGContextRef (Optional)

typeControlRefkEventParamDirectObjectkEventControlApply-
Background

typeControlRefkEventParamControlSubControl

typeShortIntegerkEventParamControlDrawDepth

typeGrafPtrkEventParamGrafPort (Optional)

typeControlRefkEventParamDirectObjectkEventControlApply-
TextColor

typeControlRefkEventParamControlSubControl

typeShortIntegerkEventParamControlDrawDepth

typeBooleankEventParamControlDrawInColor

typeGrafPtrkEventParamGrafPort (Optional)

typeCGContextRefkEventParamCGContextRef (Optional)

360 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeControlRefkEventParamNextControlkEventControlGetNext-
FocusCandidate

typeControlPartCodekEventParamControlPart

typeControlRefkEventParamDirectObjectkEventControlGet-
AutoToggleValue

typeControlPartCodekEventParamControlPart

typeLongIntegerkEventParamControlValue

typeEventRefkEventParamEventRefkEventControl-
InterceptSubview-
Click

typeClickActivationResultkEventParamClickActivationkEventControlGet-
ClickActivation

typeControlRefkEventParamDirectObjectkEventControl-
DragEnter

typeDragRefkEventParamDragRef

typeControlRefkEventParamDirectObjectkEventControl-
DragWithin

typeDragRefkEventParamDragRef

typeControlRefkEventParamDirectObjectkEventControl-
DragLeave

typeDragRefkEventParamDragRef

typeControlRefkEventParamDirectObjectkEventControl-
DragReceive

typeDragRefkEventParamDragRef

typeControlRefkEventParamDirectObjectkEventControl-
SetFocusPart

typeControlRefkEventParamStartControl

typeControlPartCodekEventParamControlPart

typeBooleankEventParamControlFocusEverything
(Optional)

typeControlRefkEventParamDirectObjectkEventControl-
GetFocusPart

typeControlPartCodekEventParamControlPart

Constants 361
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeControlRefkEventParamDirectObjectkEventControl-
Activate

typeControlRefkEventParamDirectObjectkEventControl-
Deactivate

typeControlRefkEventParamDirectObjectkEventControl-
SetCursor

typeQDPointkEventParamMouseLocation

typeUInt32kEventParamKeyModifiers

typeControlRefkEventParamDirectObjectkEventControl-
ContextualMenuClick

typeQDPointkEventParamMouseLocation

typeControlRefkEventParamDirectObjectkEventControlTrack

typeQDPointkEventParamMouseLocation

typeUInt32kEventParamKeyModifiers

typeControlActionUPPkEventParamControlAction

typeControlPartCodekEventParamControlPart

typeControlRefkEventParamDirectObjectkEventControlGet-
ScrollToHereStart-
Point

typeQDPointkEventParamMouseLocation

typeUInt32kEventParamKeyModifiers

typeControlRefkEventParamDirectObjectkEventControlGet-
IndicatorDrag-
Constraint

typeQDPointkEventParamMouseLocation

typeUInt32kEventParamKeyModifiers

typeIndicatorDrag-
Constraint

kEventParamControlIndicator Drag-
Constraint

typeControlRefkEventParamDirectObjectkEventControl-
IndicatorMoved

typeQDRgnHandlekEventParamControlIndicator Region

typeBooleankEventParamControlIsGhosting

362 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeControlRefkEventParamDirectObjectkEventControl-
GhostingFinished

typeQDPointkEventParamControlIndicator Offset

typeControlRefkEventParamDirectObjectkEventControlGet-
ActionProcPart

typeUInt32kEventParamKeyModifiers

typeControlPartCodekEventParamControlPart

typeControlRefkEventParamDirectObjectkEventControlGet-
PartRegion

typeControlPartCodekEventParamControlPart

typeQDRgnHandlekEventParamControlRegion

typeControlRefkEventParamDirectObjectkEventControlGet-
PartBounds

typeControlPartCodekEventParamControlPart

typeQDRectanglekEventParamControlBounds

typeControlRefkEventParamDirectObjectkEventControlSetData

typeControlPartCodekEventParamControlPart

typeEnumerationkEventParamControlDataTag

typePtrkEventParamControlDataBuffer

typeLongIntegerkEventParamControlDataBufferSize

typeControlRefkEventParamDirectObjectkEventControlGetData

typeControlPartCodekEventParamControlPart

typeEnumerationkEventParamControlDataTag

typePtrkEventParamControlDataBuffer

typeLongIntegerkEventParamControlDataBuffer Size

typeControlRefkEventParamDirectObjectkEventControlGet-
SizeConstraints

typeHISizekEventParamMinimumSize

typeHISizekEventParamMaximumSize

typeControlRefkEventParamDirectObjectkEventControlValue-
FieldChanged

Constants 363
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeControlRefkEventParamDirectObjectkEventControlAdded-
SubControl

typeControlRefkEventParamControlSubControl

typeControlRefkEventParamDirectObjectkEventControl-
RemovingSubControl

typeControlRefkEventParamControlSubControl

typeControlRefkEventParamDirectObjectkEventControlBounds-
Changed

typeUInt32kEventParamAttributes

typeQDRectanglekEventParamOriginalBounds

typeQDRectanglekEventParamPreviousBounds

typeQDRectanglekEventParamCurrentBounds

typeControlRefkEventParamDirectObjectkEventControlOwning-
WindowChanged

typeUInt32kEventParamAttributes

typeWindowRefkEventParamControl-
OriginalOwningWindow

typeWindowRefkEventParamControl-
CurrentOwningWindow

typeControlRefkEventParamDirectObjectkEventControlHilite-
StateChanged

typeControlPartCodekEventParamPreviousPart

typeControlPartCodekEventParamCurrentPart

typeControlRefkEventParamDirectObjectkEventControlEnabled-
StateChanged

typeControlRefkEventParamDirectObjectkEventControl-
ArbitraryMessage

typeShortIntegerkEventParamControlMessage

typeLongIntegerkEventParamControlParam

typeLongIntegerkEventParamControlResult

Control Bounds Constants
Define control bounds change-event attributes.

364 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kControlBoundsChangeSizeChanged = (1 << 2),
 kControlBoundsChangePositionChanged = (1 << 3)
};

Constants
kControlBoundsChangeSizeChanged

The dimensions of the control (width and height) changed.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kControlBoundsChangePositionChanged
The position of the control changed (that is, the top-left corner moved).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
When the system sends out a kEventControlBoundsChanged event, it also sends along a parameter
containing attributes of the event. These attributes can be used to determine what aspect of the control
changed (position, size, or both).

Control Event Parameters
Define parameters related to control events.

Constants 365
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventParamControlPart = 'cprt',
 kEventParamInitCollection = 'icol',
 kEventParamControlMessage = 'cmsg',
 kEventParamControlParam = 'cprm',
 kEventParamControlResult = 'crsl',
 kEventParamControlRegion = 'crgn',
 kEventParamControlAction = 'caup',
 kEventParamControlIndicatorDragConstraint = 'cidc',
 kEventParamControlIndicatorRegion = 'cirn',
 kEventParamControlIsGhosting = 'cgst',
 kEventParamControlIndicatorOffset = 'ciof',
 kEventParamControlClickActivationResult = 'ccar',
 kEventParamControlSubControl = 'csub',
 kEventParamControlOptimalBounds = 'cobn',
 kEventParamControlOptimalBaselineOffset = 'cobo',
 kEventParamControlDataTag = 'cdtg',
 kEventParamControlDataBuffer = 'cdbf',
 kEventParamControlDataBufferSize = 'cdbs',
 kEventParamControlDrawDepth = 'cddp',
 kEventParamControlDrawInColor = 'cdic',
 kEventParamControlFeatures = 'cftr',
 kEventParamControlPartBounds = 'cpbd',
 kEventParamControlOriginalOwningWindow = 'coow',
 kEventParamControlCurrentOwningWindow = 'ccow',
 kEventParamControlFocusEverything = 'cfev',
 kEventParamNextControl = 'cnxc',
 kEventParamStartControl = 'cstc',
 kEventParamControlSubview = 'csvw',
 kEventParamControlPreviousPart = 'copc',
 kEventParamControlCurrentPart = 'cnpc',
 kEventParamControlInvalRgn = 'civr',
 kEventParamControlValue = 'cval',
 kEventParamControlHit = 'chit',
 kEventParamControlPartAutoRepeats = 'caur',
 kEventParamControlFrameMetrics = 'cfmt',
 kEventParamControlWouldAcceptDrop = 'cldg',
 kEventParamControlPrefersShape = 'cpsh',
 typeControlActionUPP = 'caup',
 typeIndicatorDragConstraint = 'cidc',
 typeControlPartCode = 'cprt',
 typeControlFrameMetrics = 'cins'
};

Constants
kEventParamControlPart

typeControlPartCode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamInitCollection
typeCollection

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

366 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamControlMessage
typeShortInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlParam
typeLongInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlResult
typeLongInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlRegion
typeQDRgnHandle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlAction
typeControlActionUPP

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlIndicatorDragConstraint
typeIndicatorDragConstraint

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlIndicatorRegion
typeQDRgnHandle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlIsGhosting
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlIndicatorOffset
typeQDPoint

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlClickActivationResult
typeClickActivationResult

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 367
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamControlSubControl
typeControlRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlOptimalBounds
typeQDRectangle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlOptimalBaselineOffset
typeShortInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlDataTag
typeEnumeration

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlDataBuffer
typePtr

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlDataBufferSize
typeLongInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlDrawDepth
typeShortInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlDrawInColor
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlFeatures
typeUInt32

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlPartBounds
typeQDRectangle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

368 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamControlOriginalOwningWindow
typeWindowRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlCurrentOwningWindow
typeWindowRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamControlFocusEverything
typeBoolean

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamNextControl
typeControlRef

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamStartControl
typeControlRef

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamControlSubview
typeControlRef

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamControlPreviousPart
typeControlPartCode

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamControlCurrentPart
typeControlPartCode

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamControlInvalRgn
typeQDRgnHandle

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamControlValue
typeLongInteger

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

Constants 369
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamControlHit
typeBoolean

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamControlPartAutoRepeats
typeBoolean

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamControlFrameMetrics
typeControlFrameMetrics

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamControlWouldAcceptDrop
typeBoolean

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamControlPrefersShape
typeBoolean

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

typeControlActionUPP
ControlActionUPP

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeIndicatorDragConstraint
IndicatorDragConstraint

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeControlPartCode
ControlPartCode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeControlFrameMetrics
HIViewFrameMetrics

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Ink Events

Ink Event Constants
Define constants related to events from kEventClassInk.

370 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventInkPoint = 10,
 kEventInkGesture = 11,
 kEventInkText = 12
};

Constants
kEventInkPoint

A mouse event will be handled as an ink point and used for recognition. The Ink Manager has
determined that the mouse event in kEventParamEventRef should be used for recognition. If the
application handles the event and returns noErr, the Ink Manager does nothing further with the
mouse event. If the application returns any other value (including eventNotHandledErr), the Ink
Manager processes the point normally.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventInkGesture
The Ink Manager recognizes the current ink phrase as one of the known system gestures. Applications
can install a handler for these events to provide targeted gestures and support for context-dependent
(tentative) gestures. Applications should return noErr if they handled the gesture. If the gesture was
context dependent and does not apply to the current situation, applications should return
eventNotHandledErr.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventInkText
The Ink Manager recognizes a word. The kEventParamInkTextRef parameter contains the ink text
reference with all the information about the word. For more information, see Ink.h.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Discussion
Table 3-6 shows the parameters associated with ink events

Table 3-5 Parameter names and types for ink event kinds

Parameter typeParameter nameEvent kind

typeEventRefkEventParamEventRefkEventInkPoint

typeHIRectkEventParamInkGesturekEventInkGesture

typeHIRectkEventParamInkGestureBounds

typeHIPointkEventParamInkGestureHotspot

typePtrkEventParamInkTextRefkEventInkText

typeBooleankEventParamInkKeyboardShortcut

Ink Event Parameters
Define constants for parameters to ink events.

Constants 371
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventParamInkTextRef = 'iwrd',
 kEventParamInkKeyboardShortcut = 'ikbd',
 kEventParamInkGestureKind = 'gknd',
 kEventParamInkGestureBounds = 'gbnd',
 kEventParamInkGestureHotspot = 'ghot'
};

Constants
kEventParamInkTextRef

The ink text reference containing the data for the word the Ink Manager recognized. (typePtr)

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamInkKeyboardShortcut
A Boolean whose value indicates whether the word the Ink Manager recognized is a keyboard shortcut.
That is, the Command or Control key was pressed and the top-choice alternate text is a single character.
(typeBoolean)

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamInkGestureKind
Kind of gesture. (typeUInt32)

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamInkGestureBounds
Bounds of the gesture in global coordinates. (typeHIRect)

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamInkGestureHotspot
Hotspot, in global coordinates, for the gesture. (typeHIPoint)

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Keyboard Events

Keyboard Event Constants
Define constants related to events from kEventClassKeyboard.

372 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventRawKeyDown = 1,
 kEventRawKeyRepeat = 2,
 kEventRawKeyUp = 3,
 kEventRawKeyModifiersChanged = 4,
 kEventHotKeyPressed = 5,
 kEventHotKeyReleased = 6
};

Constants
kEventRawKeyDown

A key was pressed.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventRawKeyRepeat
Sent periodically as a key is held down by the user.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventRawKeyUp
A key was released.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventRawKeyModifiersChanged
The keyboard modifiers have changed.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventHotKeyPressed
A registered hot key was pressed.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventHotKeyReleased
A registered hot key was released.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
These events are the lowest-level keyboard events.

Table 3-6 shows the parameters associated with keyboard events.

Table 3-6 Parameter names and types for keyboard event kinds

Parameter typeParameter nameEvent kind

typeCharkEventParamKeyMacCharCodeskEventRawKeyDown

typeUInt32kEventParamKeyCode

typeUInt32kEventParamKeyModifiers

Constants 373
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeUInt32kEventParamKeyboardType

typeCharkEventParamKeyMacCharCodeskEventRawKeyRepeat

typeUInt32kEventParamKeyCode

typeUInt32kEventParamKeyModifiers

typeUInt32kEventParamKeyboardType

typeCharkEventParamKeyMacCharCodeskEventRawKeyUp

typeUInt32kEventParamKeyCode

typeUInt32kEventParamKeyModifiers

typeUInt32kEventParamKeyboardType

typeUInt32kEventParamKeyModifierskEventRawKey-
ModifiersChanged

typeEventHotKeyIDkEventParamDirectObjectkEventHotKeyPressed

typeEventHotKeyIDkEventParamDirectObjectkEventHotKeyReleased

Key Modifier Event Masks
Define values used to determine whether additional modifier keys are down for a keyboard or mouse event.

enum {
 kEventKeyModifierNumLockMask = 1L << kEventKeyModifierNumLockBit,
 kEventKeyModifierFnMask = 1L << kEventKeyModifierFnBit
};

Constants
kEventKeyModifierNumLockMask

A bit mask containing kEventKeyModifierNumLockBit. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventKeyModifierFnMask
A bit mask containing kEventKeyModifierFnBit. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Key Modifier Event Bits
Define key modifier change event bits.

374 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventKeyModifierNumLockBit = 16,
 kEventKeyModifierFnBit = 17
};

Constants
kEventKeyModifierNumLockBit

This keyboard event was generated either on the numeric keypad or in the numeric section of an
iBook or PowerBook keyboard with the Num Lock key pressed. This state bit does not provide an
indication of the Num Lock key on non-portable keyboards. This bit is set on Mac OS X only.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventKeyModifierFnBit
The Fn key was pressed when this keyboard event was generated. This bit is set on Mac OS X only.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
Note that bits 8 through 15 (cmdKeyBit to rightControlKeyBit) are compatible with the Classic Event
Manager modifiers.

Keyboard Event Parameters and Types
Define constants for parameters to raw keyboard events.

enum {
 kEventParamKeyCode = 'kcod',
 kEventParamKeyMacCharCodes = 'kchr',
 kEventParamKeyModifiers = 'kmod',
 kEventParamKeyUnicodes = 'kuni',
 kEventParamKeyboardType = 'kbdt',
 typeEventHotKeyID = 'hkid'
};

Constants
kEventParamKeyCode

typeUInt32

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamKeyMacCharCodes
typeChar

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamKeyModifiers
typeUInt32

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 375
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamKeyUnicodes
typeUnicodeText

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeEventHotKeyID
EventHotKeyID

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Symbolic Hot Key Definitions
Define CFDictionaryRef keys returned by CopySymbolicHotKeys.

#define kHISymbolicHotKeyCode CFSTR("kHISymbolicHotKeyCode")
#define kHISymbolicHotKeyModifiers CFSTR("kHISymbolicHotKeyModifiers")
#define kHISymbolicHotKeyEnabled CFSTR("kHISymbolicHotKeyEnabled")

Constants
kHISymbolicHotKeyCode

The virtual key code of the hot key, represented as a CFNumber.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kHISymbolicHotKeyModifiers
The hot key’s keyboard modifiers, represented as a CFNumber.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kHISymbolicHotKeyEnabled
The enable state of the hot key, represented as a CFBoolean.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Hot Key Constants
Define hot key states used by PushSymbolicHotKeyMode.

enum {
 kHIHotKeyModeAllEnabled = 0,
 kHIHotKeyModeAllDisabled = (1 << 0),
 kHIHotKeyModeAllDisabledExceptUniversalAccess = (1 << 1)
};

Constants
kHIHotKeyModeAllEnabled

All hot keys are enabled.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

376 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kHIHotKeyModeAllDisabled
All hot keys are disabled.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kHIHotKeyModeAllDisabledExceptUniversalAccess
All hot keys are disabled except for the Universal Access hot keys (that is, zooming, white-on-black,
and enhanced contrast).

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Menu Events

Menu Event Constants
Define constants related to events from kEventClassMenu.

enum {
 kEventMenuBeginTracking = 1,
 kEventMenuEndTracking = 2,
 kEventMenuChangeTrackingMode = 3,
 kEventMenuOpening = 4,
 kEventMenuClosed = 5,
 kEventMenuTargetItem = 6,
 kEventMenuMatchKey = 7,
 kEventMenuEnableItems = 8,
 kEventMenuPopulate = 9,
 kEventMenuMeasureItemWidth = 100,
 kEventMenuMeasureItemHeight = 101,
 kEventMenuDrawItem = 102,
 kEventMenuDrawItemContent = 103,
 kEventMenuDispose = 1001,
 kEventMenuCalculateSize = 1004,
 kEventMenuCreateFrameView = 1005, kEventMenuGetFrameBounds = 1006,
kEventMenuBecomeScrollable = 1007, kEventMenuCeaseToBeScrollable = 1008,
 kEventMenuBarShown = 2000, kEventMenuBarHidden = 2001
};

Constants
kEventMenuBeginTracking

The user has begun tracking the menubar or a pop-up menu. The direct object parameter is a valid
menu reference if tracking a pop-up menu, or NULL if tracking the menubar. The
kEventParamCurrentMenuTrackingMode parameter indicates whether the user is tracking the
menus using the mouse or the keyboard. The handler may return userCanceledErr to stop menu
tracking.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 377
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventMenuEndTracking
The user has finished tracking the menubar or a pop-up menu. In Mac OS X v10.3 and later, when a
menu tracking session ends, the Menu Manager sends kEventMenuEndTracking to every menu
that was opened during the session, in addition to the root menu. This is done to allow menus with
dynamic content to remove that content at the end of menu tracking; for example, a menu containing
many IconRefs might want to load the IconRefs dynamically in response to the
kEventMenuMenuPopulate event and remove them in response to the kEventMenuEndTracking
event to avoid the memory overhead of keeping the IconRef data in memory while the menu is not
being displayed.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMenuChangeTrackingMode
The user has switched from selecting a menu with the mouse to selecting with the keyboard, or from
selecting with the keyboard to selecting with the mouse.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMenuOpening
A menu is opening. This event is sent each time that the menu is opened (that is, more than once
during a given tracking session if the user opens the menu multiple times). It is sent before the menu
is actually drawn, so you can update the menu contents (including making changes that will alter the
menu size) and the new contents will be drawn correctly. ThekEventParamMenuFirstOpenparameter
indicates whether this is the first time this menu has been opened during this menu tracking session.
The handler may return userCanceledErr to prevent this menu from opening. Note that for most
applications, you should handle the kEventMenuPopulate event instead.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMenuClosed
A menu has been closed. Sent after the menu is hidden.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMenuTargetItem
The mouse is moving over a particular menu item. This event is sent for both enabled and disabled
items.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

378 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventMenuMatchKey
A menu is about to be examined for items that match a command key event. A handler for this event
may perform its own command key matching and override the Menu Manager’s default matching
algorithms. Returning noErr from your handler indicates that you have found a match. The handler
for this event should not examine submenus of this menu for a match; a separate event will be sent
for each submenu.

When called from IsMenuKeyEvent, the kEventParamEventRef parameter contains the event
reference that was passed to IsMenuKeyEvent, for your handler to examine; when called from
MenuKey or MenuEvent, the EventRef parameter contains an event created from the information
passed to MenuKey or MenuEvent. Note that in the MenuKey case, no virtual key code
(kEventParamKeyCode) or key modifiers (kEventParamKeyModifiers) will be available.

The kEventParamMenuEventOptions parameter contains a copy of the options that were passed
to IsMenuKeyEvent, or 0 if called from MenuKey or MenuEvent. The only option that your handler
will need to obey is kMenuEventIncludeDisabledItems.

If your handler finds a match, it should set the kEventParamMenuItemIndex parameter to contain
the item index of the matching item, and return noErr. If it does not find a match, it should return
menuItemNotFoundErr. Any other return value will cause the Menu Manager to use its default
command key matching algorithm for this menu.

This event is sent after kEventMenuEnableItems.

In CarbonLib and Mac OS X through version 10.3, the Menu Manager sends a
kEventMenuEnableItems event to the menu before sending kEventMenuMatchKey. In Mac OS X
10.4 and later, the Menu Manager no longer sends kEventMenuEnableItems (or the resulting
kEventCommandUpdateStatus events) to the menu; a handler forkEventMenuMatchKey is expected
to determine on its own whether a matching menu item is enabled.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 379
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventMenuEnableItems
A request that the items in the menu be properly enabled or disabled according to the current state
of the application. This event is sent from inside MenuKey, MenuEvent, and IsMenuKeyEvent before
those functions examine the menu for an item that matches a keyboard event. It is also sent during
menu tracking before a menu is first made visible; it is sent right after kEventMenuOpening, once
per menu per menu tracking session.

If you install an event handler for kEventProcessCommand, you should also install a handler for
kEventMenuEnableItems. This is necessary because the Carbon event system will attempt to match
command keys against the available menus before returning the keyboard event to your application
via WaitNextEvent. If you have menu command event handlers installed for your menu items, your
handlers will be called without you ever receiving the keyboard event or calling
MenuKey/MenuEvent/IsMenuKeyEvent yourself. Therefore, you have no opportunity to enable your
menu items properly other than from a kEventMenuEnableItems handler.

It is not necessary to handle this event if you do not install kEventProcessCommand handlers for
your menu items; in that case, the command key event will be returned from WaitNextEvent or
ReceiveNextEvent as normal, and you can set up your menus before calling
MenuKey/MenuEvent/IsMenuKeyEvent.

The kEventParamEnableMenuForKeyEvent parameter indicates whether this menu should be
enabled for key event matching (true) or because the menu itself is about to become visible (false).
If true, only the item enable state, command key, command key modifiers, and (optionally) the
command key glyph need to be correct. If false, the entire menu item contents must be correct. This
may be useful if you have custom menu content that is expensive to prepare.

Note that the standard application handler for kEventMenuEnableItems automatically sends
kEventCommandUpdateStatus to your menu commands. As this can cause a performance hit if you
have many menu items, you can choose to bypass these updates by installing a no-op handler for
kEventMenuEnableItems that simply returns noErr.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMenuPopulate
Sent when an application should dynamically create a menu. You should use this event instead of
kEventMenuOpening as the Menu Manager sends it before it searches a menu for a matching
command key sequence; therefore you can use this event to dynamically add menu items that have
command-key equivalents, making them selectable even if the menu itself is never displayed. The
kEventMenuPopulate event is sent just once during a menu tracking session, even if the menu is
opened and closed multiple times; the kEventWindowOpening event is sent each time the menu
opens.

To determine whether this event was triggered by a command-key sequence, you should examine
the kEventParamMenuContext parameter for the kMenuContextKeyMatching flag. If the event
corresponds to the actual display of a menu, the kEventContextMenuBarTracking or
kEventContextPopUpTracking flags are set.

Note that in Mac OS X v10.2 and later, the Menu Manager sends this event before it searches a menu
for a matching command ID. To determine if this event was triggered by a command ID, check for
the kMenuContextCommandIDSearch flag in the kEventParamMenuContext parameter. If that
flag is set, the command ID that triggered this event is contained in the kEventParamMenuCommand
parameter.)

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

380 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventMenuMeasureItemWidth
Sent by the standard window definition if a menu item has the kMenuItemAttrCustomDraw attribute
set. You should install your handler directly on the menu. Your handler should return a customized
width for the menu item in the kEventParamMenuItemWidth parameter.

The default behavior (if you are using the standard menu definition) is to return the standard width
for the item.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventMenuMeasureItemHeight
Sent by the standard window definition if a menu item has the kMenuItemAttrCustomDraw attribute
set. You should install your handler directly on the menu. Your handler should return a customized
height for the menu item in the kEventParamMenuItemHeight parameter.

The default behavior (if you are using the standard menu definition) is to return the standard height
for the item.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventMenuDrawItem
Sent by the standard window definition if a menu item has the kMenuItemAttrCustomDraw attribute
set. You should install your handler directly on the menu. Use your handler to override the drawing
of the menu item and background.

The default behavior (if you are using the standard menu definition) is to call the Appearance Manager
function DrawThemeMenuItem to draw the menu item’s background and content.

If you have the standard event handler installed, the event also contains additional parameters
indicating the bounds of the various portions of the menu item content, as well as the baseline of
the menu item text. Using these parameters, you can call CallNextEventHandler to let the system
handlers draw the standard menu content and then your handler can draw custom content on top.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventMenuDrawItemContent
Sent by the standard window definition if a menu item has the kMenuItemAttrCustomDraw attribute
set. You should install your handler directly on the menu. You use your handler to override the drawing
of one or more parts of the menu item’s content (that is the mark character, icon, text, and command
key information).

When you receive this event, the background and highlighting (if applicable) has already been drawn
using the standard system appearance.

The default behavior (if you are using the standard menu definition) is to draw the standard menu
item content.

If you have the standard event handler installed, the event also contains additional parameters
indicating the bounds of the various portions of the menu item content, as well as the baseline of
the menu item text. Using these parameters, you can call CallNextEventHandler to let the system
handlers draw the standard menu content and then your handler can draw custom content on top.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

Constants 381
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventMenuDispose
Sent when a menu is being disposed.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMenuCalculateSize
Sent by CalcMenuSize to request that the menu calculate its size. The Menu Manager provides a
default handler for all menus that calls the menu’s MDEF or menu content view to determine the
menu size. Applications typically do not need to handle this event. A custom menu definition or menu
content view should use kMenuSizeMsg or kEventControlGetOptimalBounds to calculate its
size. Note that if the menu uses an MDEF, the MDEF sets the menu’s width and height in response to
kMenuSizeMsg. The default handler for this event saves the old width and height before calling the
MDEF and restores them afterward. CalcMenuSize sets the final menu width and height based on
the dimensions returned from this event; applications may override this event to customize the width
or height of a menu by modifying the kEventParamDimensions parameter. This event is sent only
to the menu and is not propagated past the menu.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventMenuCreateFrameView
Requests that a menu content view create the HIView that will be used to draw the menu window
frame. The HIMenuView class provides a default handler for this event that creates an instance of the
standard menu window frame view. This event is sent only to the menu content view and is not
propagated past the view.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventMenuGetFrameBounds
Requests that a menu content view calculate the bounding rect, in global coordinates, of the menu
window frame that should contain the menu. This event is sent by the Menu Manager before displaying
pull-down, popup, and hierarchical menus. It provides an opportunity for the menu content view to
determine the position of the menu frame based on the position of the menu title, parent menu item,
or popup menu location. The HIMenuView class provides a default handler for this event that calculates
an appropriate location based on the bounds of the menu, the available screen space, and the frame
metrics of the menu window content view. This event is sent only to the menu content view and is
not propagated past the view.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventMenuBecomeScrollable
Requests that a menu content view prepare to be scrollable, which it does by installing the appropriate
event handlers, timers, and the like. This event is sent by the Menu Manager when a menu becomes
the most recently opened menu in the menu hierarchy. It is an indication that this menu content
view is now a candidate for scrolling. The Menu Manager provides a default handler for this event
that installs event handlers to provide automatic scrolling behavior for HIView-based menus. If a menu
content view does not wish to use the Menu Manager’s default scrolling support, it can override this
event and return noErr to prevent the event from being propagated to the Menu Manager’s default
handler. This event is sent only to the menu content view and is not propagated past the view.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

382 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventMenuCeaseToBeScrollable
Requests that a menu content view cease to be scrollable. This event is sent by the Menu Manager
when a menu ceases to be the most recently opened menu. This occurs when the menu is closed, or
when a submenu of the most recently opened menu is opened. It is an indication that this menu
content view is no longer a candidate for scrolling. The Menu Manager provides a default handler for
this event that removes event handlers installed in response to kEventMenuBecomeScrollable.
This event is sent only to the menu content view and is not propagated past the view.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventMenuBarShown
Sent to all handlers registered for this event when the front process shows its menubar. This event is
sent only to the application target.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventMenuBarHidden
Sent to all handlers registered for this event when the front process hides its menubar. This event is
sent only to the application target.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Discussion
Some menu events are sent or handled by the standard menu definition, which is a collection of handlers
that define the default menu behavior. If you have specified a custom menu definition, you will not get the
behavior provided by the standard definition.

Table 3-7 shows the parameters associated with menu events.

Table 3-7 Parameter names and types for menu event kinds

Parameter typeParameter nameEvent kind

typeMenuRefkEventParamDirectObjectkEventMenuBegin-
Tracking

typeMenuTrackingModekEventParamCurrentMenuTrackingMode

typeUInt32kEventParamMenuContext (Mac OS X v10.1
and later and CarbonLib 1.5 and later.)

typeMenuRefkEventParamDirectObjectkEventMenuEnd-
Tracking

typeUInt32kEventParamMenuContext (Mac OS X v10.1
and later and CarbonLib 1.5 and later.)

typeUInt32kEventParamMenuDismissed (Mac OS X v10.3
and later.)

typeMenuRefkEventParamDirectObjectkEventMenuChange-
Tracking Mode

typeMenuTrackingModekEventParamCurrentMenuTrackingMode

Constants 383
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeMenuTrackingModekEventParamNewMenuTrackingMode

typeUInt32kEventParamMenuContext

typeMenuRefkEventParamDirectObjectkEventMenuOpening

typeBooleankEventParamMenuFirstOpen

typeUInt32kEventParamMenuContext (Mac OS X v 10.0
and later and CarbonLib 1.5 and later.)

typeMenuRefkEventParamDirectObjectkEventMenuClosed

typeUInt32kEventParamMenuContext (Mac OS X v10.1
and later and CarbonLib 1.5 an later.)

typeMenuRefkEventParamDirectObjectkEventMenuTargetItem

typeMenuItemIndexkEventParamMenuItemIndex

typeMenuCommandkEventParamMenuCommand

typeUInt32kEventParamMenuContext (Mac OS X v10.1
and later and CarbonLib 1.5 and later.)

typeMenuRefkEventParamDirectObjectkEventMenuMatchKey

typeEventRefkEventParamEventRef

typeMenuEventOptionskEventParamMenuEventOptions

typeUInt32kEventParamMenuContext (Mac OS X v10.1
and later, and CarbonLib 1.5 and later.)

typeMenuItemIndexkEventParamMenuItemIndex

typeMenuRefkEventParamDirectObjectkEventMenuEnable-
Items

typeBooleankEventParamEnableMenuForKeyEvent

typeUInt32kEventParamMenuContext (Mac OS X v10.0
and later, and CarbonLib 1.1 and later.)

typeMenuRefkEventParamDirectObjectkEventMenuPopulate

typeUInt32kEventParamMenuContext

typeMenuCommandkEventParamMenuCommand (Mac OS X v10.2
and later, and CarbonLib 1.6 and later.)

typeMenuRefkEventParamDirectObjectkEventMenuMeasure-
ItemWidth

typeMenuItemIndexkEventParamMenuItemIndex

384 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeShortIntegerkEventParamMenuItemWidth

typeMenuRefkEventParamDirectObjectkEventMenuMeasure-
ItemHeight

typeMenuItemIndexkEventParamMenuItemIndex

typeShortIntegerkEventParamMenuItemHeight

typeMenuRefkEventParamDirectObjectkEventMenuDrawItem

typeQDRectanglekEventParamCurrentBounds

typeMenuItemIndexkEventParamMenuItemIndex

typeQDRectanglekEventParamMenuItemBounds

typeLongIntegerkEventParamMenuVirtualTop

typeLongIntegerkEventParamMenuVirtualBottom

typeThemeMenuStatekEventParamMenuDrawState

typeThemeMenuItemTypekEventParamMenuItemType

typeCGContextRefkEventParamCGContextRef

typeQDRectanglekEventParamMenuMarkBounds

typeQDRectanglekEventParamMenuIconBounds

typeQDRectanglekEventParamMenuTextBounds

typeShortIntegerkEventParamMenuTextBaseline

typeQDRectanglekEventParamMenuKeyCommandKeyBounds

typeMenuRefkEventParamDirectObjectkEventMenuDraw-
ItemContent

typeMenuItemIndexkEventParamMenuItemIndex

typeQDRectanglekEventParamMenuItemBounds

typeShortIntegerkEventParamDeviceDepth

typeBooleankEventParamDeviceColor

typeCGContextRefkEventParamCGContextRef

typeQDRectanglekEventParamMenuMarkBounds

typeQDRectanglekEventParamMenuIconBounds

typeQDRectanglekEventParamMenuTextBounds

Constants 385
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeShortIntegerkEventParamMenuTextBaseline

typeQDRectanglekEventParamMenuKeyCommandKeyBounds

typeMenuRefkEventParamDirectObjectkEventMenuDispose

typeMenuRefkEventParamDirectObjectkEventMenuCalculate-
Size

typeControlRefkEventParamControlRef

typeGDHandlekEventParamGDevice

typeQDRectanglekEventParamAvailableBounds

typeHISizekEventParamDimensions

typeEventRefkEventParamEventRefkEventMenuCreate-
FrameView

typeThemeMenuTypekEventParamMenuType

typeControlRefkEventParamMenuFrameView

typeThemeMenuTypekEventParamMenuTypekEventMenuGet-
FrameBounds

typeBooleankEventParamMenuIsPopup

typeControlRefkEventParamMenuFrameView

typeMenuDirectionkEventParamMenuDirection

typeHIRectkEventParamMenuItemBounds

typeGDHandlekEventParamGDevice

typeHIRectkEventParamAvailableBounds

typeMenuRefkEventParamParentMenu

typeMenuItemIndexkEventParamParentMenuItem

typeMenuItemIndexkEventParamMenuPopupItem

typeHIRectkEventParamBounds

typeHIPointkEventParamOrigin

NonekEventMenuBecome-
Scrollable

NonekEventMenuCease-
ToBeScrollable

NonekEventMenuBarShown

386 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

NonekEventMenuBarHidden

Menu Context Constants
Define constants that describe the usage or context of a menu event.

enum {
 kMenuContextMenuBar = 1 << 0,
 kMenuContextPullDown = 1 << 8,
 kMenuContextPopUp = 1 << 9,
 kMenuContextSubmenu = 1 << 10,
 kMenuContextMenuBarTracking = 1 << 16,
 kMenuContextPopUpTracking = 1 << 17,
 kMenuContextKeyMatching = 1 << 18,
 kMenuContextMenuEnabling = 1 << 19,
 kMenuContextCommandIDSearch = 1 << 20
};

Constants
kMenuContextMenuBar

The menu associated with this event is in the menu bar or is a submenu of a menu in the menubar.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kMenuContextPulldown
The menu associated with this event is a pulldown menu located in the menu bar.

kMenuContextPopUp
The menu associated with this event is a popup menu displayed by the Menu Manager function
PopUpMenuSelect.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kMenuContextSubmenu
The menu associated with this event is a submenu of a pulldown or popup menu.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kMenuContextMenuBarTracking
This event is being sent while a menu is being tracked in the menu bar.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kMenuContextPopUpTracking
This event is being sent while a popup menu is being tracked.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kMenuContextKeyMatching
This event is being sent while trying to match a command-key equivalent to a menu item.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

Constants 387
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kMenuContextMenuEnabling
Sent at idle time to update the enabled state of the menus.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kMenuContextCommandIDSearch
Sent while trying to match a command ID using the Menu Manager function
CountMenuItemsWithCommandID or GetIndMenuItemWithCommandID.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

Discussion
The bits corresponding to these constants are set in the kEventParamMenuContext parameter of the menu
event.

Menu Event Parameters
Define constants for parameters to menu events.

enum {
 kEventParamCurrentMenuTrackingMode = 'cmtm',
 kEventParamNewMenuTrackingMode = 'nmtm',
 kEventParamMenuFirstOpen = '1sto',
 kEventParamMenuItemIndex = 'item',
 kEventParamMenuCommand = 'mcmd',
 kEventParamEnableMenuForKeyEvent = 'fork',
 kEventParamMenuEventOptions = 'meop',
 kEventParamMenuContext = 'mctx',
 kEventParamMenuItemBounds = 'mitb',
 kEventParamMenuMarkBounds = 'mmkb',
 kEventParamMenuIconBounds = 'micb',
 kEventParamMenuTextBounds = 'mtxb',
 kEventParamMenuTextBaseline = 'mtbl',
 kEventParamMenuCommandKeyBounds = 'mcmb',
 kEventParamMenuVirtualTop = 'mvrt',
 kEventParamMenuVirtualBottom = 'mvrb',
 kEventParamMenuDrawState = 'mdrs',
 kEventParamMenuItemType = 'mitp',
 kEventParamMenuItemWidth = 'mitw',
 kEventParamMenuItemHeight = 'mith',
 typeMenuItemIndex = 'midx',
 typeMenuCommand = 'mcmd',
 typeMenuTrackingMode = 'mtmd',
 typeMenuEventOptions = 'meop',
 typeThemeMenuState = 'tmns',
 typeThemeMenuItemType = 'tmit'
};

Constants
kEventParamCurrentMenuTrackingMode

typeMenuTrackingMode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

388 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamNewMenuTrackingMode
typeMenuTrackingMode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamMenuFirstOpen
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamMenuItemIndex
typeMenuItemIndex

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamMenuCommand
typeMenuCommand

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamEnableMenuForKeyEvent
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamMenuEventOptions
typeMenuEventOptions

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeMenuItemIndex
MenuItemIndex

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeMenuCommand
MenuCommand

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeMenuTrackingMode
MenuTrackingMode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeMenuEventOptions
MenuEventOptions

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 389
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Services Menu Command Keys
Define CFDictionaryRef keys returned by CopyServicesMenuCommandKeys.

#define kHIServicesMenuProviderName CFSTR("kHIServicesMenuProviderName")
#define kHIServicesMenuItemName CFSTR("kHIServicesMenuItemName")
#define kHIServicesMenuCharCode CFSTR("kHIServicesMenuCharCode")
#define kHIServicesMenuKeyModifiers CFSTR("kHIServicesMenuKeyModifiers")

Constants
kHIServicesMenuProviderName

The name of the service provider.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kHIServicesMenuItemName
The name of the menu item.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kHIServicesMenuCharCode
The character code of the menu item shortcut.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kHIServicesMenuKeyModifiers
The keyboard modifiers of the menu item shortcut in Menu Manager modifiers format.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Mouse Events

Mouse Events
Define constants related to events from kEventClassMouse.

390 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventMouseDown = 1,
 kEventMouseUp = 2,
 kEventMouseMoved = 5,
 kEventMouseDragged = 6,
 kEventMouseEntered = 8,
 kEventMouseExited = 9,
 kEventMouseWheelMoved = 10
};

Constants
kEventMouseDown

A mouse button was pressed. Note that if you install a handler for this event on a window, you must
allow the event to propagate (either by calling CallNextEventHandler or returning
eventNotHandledErr) so that the window can be activated.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMouseUp
A mouse button was released.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMouseMoved
The mouse moved.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMouseDragged
The mouse moved, and a button was down.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMouseEntered
The mouse entered a tracking region. Used with mouse tracking regions. See
CreateMouseTrackingRegion (page 253) for more information.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventMouseExited
The mouse left a tracking region. Used with mouse tracking regions. See
CreateMouseTrackingRegion (page 253) for more information.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventMouseWheelMoved
The mouse wheel moved.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
Table 3-8 shows the parameters related to mouse events.

Constants 391
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Table 3-8 Parameter names and types for mouse event kinds

Parameter typeParameter nameEvent kind

typeQDPointkEventParamMouseLocationkEventMouseDown

typeUInt32kEventParamKeyModifiers

typeMouseButtonkEventParamMouseButton

typeUInt32kEventParamClickCount

typeWindowRefkEventParamWindowRef

typeHIPointkEventParamWindowMouseLocation

typeWindowPartCodekEventParamWindowPartCode

typeUInt32kEventParamMouseChord

typeUInt32kEventParamTabletEventType

typeTabletPointReckEventParamTabletPointRec

typeTabletProximityReckEventParamTabletProximityRec

typeQDPointkEventParamMouseLocationkEventMouseUp

typeUInt32kEventParamKeyModifiers

typeMouseButtonkEventParamMouseButton

typeWindowRefkEventParamWindowRef

typeHIPointkEventParamWindowMouseLocation

typeWindowPartCodekEventParamWindowPartCode

typeUInt32kEventParamClickCount

typeUInt32kEventParamMouseChord

typeUInt32kEventParamTabletEventType

typeTabletPointReckEventParamTabletPointRec

typeTabletProximityReckEventParamTabletProximityRec

typeQDPointkEventParamMouseLocationkEventMouseMoved

typeUInt32kEventParamKeyModifiers

typeHIPointkEventParamMouseDelta

typeWindowRefkEventParamWindowRef

392 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeHIPointkEventParamWindowMouseLocation

typeWindowPartCodekEventParamWindowPartCode

typeUInt32kEventParamTabletEventType

typeTabletPointReckEventParamTabletPointRec

typeTabletProximityReckEventParamTabletProximityRec

typeQDPointkEventParamMouseLocationkEventMouseDragged

typeUInt32kEventParamKeyModifiers

typeMouseButtonkEventParamMouseButton

typeUInt32kEventParamMouseChord

typeHIPointkEventParamMouseDelta

typeWindowRefkEventParamWindowRef

typeHIPointkEventParamWindowMouseLocation

typeWindowPartCodekEventParamWindowPartCode

typeUInt32kEventParamTabletEventType

typeTabletPointReckEventParamTabletPointRec

typeTabletProximityReckEventParamTabletProximityRec

typeMouseTrackingRefkEventParamMouseTrackingRefkEventMouseEntered

typeQDPointkEventParamMouseLocation

typeUInt32kEventParamKeyModifiers

typeWindowRefkEventParamWindowRef

typeHIPointkEventParamWindowMouseLocation

typeMouseTrackingRefkEventParamMouseTrackingRefkEventMouseExited

typeQDPointkEventParamMouseLocation

typeUInt32kEventParamKeyModifiers

typeWindowRefkEventParamWindowRef

typeHIPointkEventParamWindowMouseLocation

typeHIPointkEventParamMouseLocationkEventMouse-
WheelMoved

typeUInt32kEventParamKeyModifiers

Constants 393
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeWindowRefkEventParamWindowRef

typeHIPointkEventParamWindowMouseLocation

typeWindowPartCodekEventParamWindowPartCode

typeMouseWheelAxiskEventParamMouseWheelAxis

typeSInt32kEventParamMouseWheelDelta

Mouse Button Constants
Define mouse button constants.

typedef UInt16 EventMouseButton;
enum {
 kEventMouseButtonPrimary = 1,
 kEventMouseButtonSecondary = 2,
 kEventMouseButtonTertiary = 3
};

Constants
kEventMouseButtonPrimary

The primary mouse button (default for one-button mice, typically the left button for multi-button
mice).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMouseButtonSecondary
The “right-click” mouse button.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMouseButtonTertiary
The tertiary mouse button.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Mouse Wheel Constants
Define mouse scroll-wheel-axis constants.

394 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typedef UInt16 EventMouseWheelAxis;
enum {
 kEventMouseWheelAxisX = 0,
 kEventMouseWheelAxisY = 1
};

Constants
kEventMouseWheelAxisX

The x-axis (left-right movement).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventMouseWheelAxisY
The y-axis (up-down movement).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Mouse Tracking Region Options
Define constants used by the CreateMouseTrackingRegion function.

typedef UInt32 MouseTrackingOptions;
enum {
 kMouseTrackingOptionsLocalClip = 0,
 kMouseTrackingOptionsGlobalClip = 1,
 kMouseTrackingOptionsStandard = kMouseTrackingOptionsLocalClip
};

Constants
kMouseTrackingOptionsLocalClip

The region passed to CreateMouseTrackingRegion (page 253) is defined in local coordinates, and
that the region is clipped to the owning window’s content region.

Available in Mac OS X v10.2 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kMouseTrackingOptionsGlobalClip
The region passed to CreateMouseTrackingRegion (page 253) is defined in global coordinates and
that the region is clipped to the owning window’s structure region.

Available in Mac OS X v10.2 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kMouseTrackingOptionsStandard
Same as kMouseTrackingOptionsLocalClip.

Available in Mac OS X v10.2 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

Constants 395
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Alternate Mouse Tracking Result Constants
Define constants for alternate mouse tracking results.

enum {
 kMouseTrackingMousePressed = kMouseTrackingMouseDown,
 kMouseTrackingMouseReleased = kMouseTrackingMouseUp
};

Constants
kMouseTrackingMousePressed

The user pressed any mouse button.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kMouseTrackingMouseReleased
The user released the mouse button.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Mouse Event Parameters
Define constants for parameters to mouse events.

enum {
 kEventParamMouseLocation = 'mloc',
 kEventParamWindowMouseLocation = 'wmou',
 kEventParamMouseButton = 'mbtn',
 kEventParamClickCount = 'ccnt',
 kEventParamMouseWheelAxis = 'mwax',
 kEventParamMouseWheelDelta = 'mwdl',
 kEventParamMouseDelta = 'mdta',
 kEventParamMouseChord = 'chor',
 kEventParamTabletEventType = 'tblt',
 kEventParamMouseTrackingRef = 'mtrf',
 typeMouseButton = 'mbtn',
 typeMouseWheelAxis = 'mwax',
 typeMouseTrackingRef = 'mtrf'
};

Constants
kEventParamMouseLocation

typeQDPoint

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamMouseButton
typeMouseButton

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

396 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamClickCount
typeUInt32

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamMouseWheelAxis
typeMouseWheelAxis

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamMouseWheelDelta
typeSInt32

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamMouseDelta
typeQDPoint

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamMouseChord
typeUInt32

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

typeMouseButton
EventMouseButton

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeMouseWheelAxis
EventMouseWheelAxis

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Mouse Tracking Option Constant
Define options for the TrackMouseLocationWithOptions function.

enum {
 kTrackMouseLocationOptionDontConsumeMouseUp = (1 << 0)
};

Constants
kTrackMouseLocationOptionDontConsumeMouseUp

Leave mouse-up events in the event queue (the default is to pull them.)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
This constant can be passed to TrackMouseLocationWithOptions (page 304) in the inOptionsparameter.

Constants 397
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Mouse Tracking Constants
Define constants for mouse tracking.

typedef UInt16 MouseTrackingResult;
enum {
 kMouseTrackingMouseDown = 1,
 kMouseTrackingMouseUp = 2,
 kMouseTrackingMouseExited = 3,
 kMouseTrackingMouseEntered = 4,
 kMouseTrackingMouseDragged = 5,
 kMouseTrackingKeyModifiersChanged = 6,
 kMouseTrackingUserCancelled = 7,
 kMouseTrackingTimedOut = 8,
 kMouseTrackingMouseMoved = 9
};

Constants
kMouseTrackingMouseDown

The user pressed any mouse button.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kMouseTrackingMouseUp
The user released the mouse button.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kMouseTrackingMouseExited
The mouse exited the specified region.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kMouseTrackingMouseEntered
The mouse entered the specified region.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kMouseTrackingMouseDragged
The mouse moved while the mouse button was down.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kMouseTrackingKeyModifiersChanged
One or more keyboard modifiers (option, control, and so on) for the mouse changed.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kMouseTrackingMouseMoved
Prior to Mac OS X v10.2, this constant was equivalent to kMouseTrackingMouseDragged. In Mac
OS X v10.2 and later, kMouseTrackingMouseMoved indicates that the mouse moved while the mouse
button was up.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

398 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
These constants are returned by TrackMouseLocation (page 303) and TrackMouseRegion (page 305),
which are designed as replacements to calls such as StillDown and WaitMouseUp. The advantage over
those routines is that TrackMouseLocation and TrackMouseRegion block if the user is not moving the
mouse, whereas mouse tracking loops based on StillDown and WaitMouseUp spin, chewing up valuable
CPU time that could be better spent elsewhere. It is highly recommended that any tracking loops in your
application stop using StillDown and WaitMouseUp and start using TrackMouseLocation or
TrackMouseRegion. See the notes on those functions for more information.

Mouse Tracking Selectors
Define a constant for “sticky” mode used by the HIMouseTrackingGetParameters function.

enum {
 kMouseParamsSticky = 'stic'
};

Constants
kMouseParamsSticky

Requests the time and distance for determining “sticky” mouse tracking. When the mouse is clicked
on a menu title, the toolbox enters a sticky mouse-tracking mode that varies according to the time
and distance between the mouse-down event and the mouse-up event. In this mode, the menu is
tracked even though the mouse has already been released.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Services Manager Constants

Services Manager Events
Define constants related to Services Manager events.

enum {
 kEventServiceCopy = 1,
 kEventServicePaste = 2,
 kEventServiceGetTypes = 3,
 kEventServicePerform = 4
};

Constants
kEventServiceCopy

The user wants to invoke a service that requires your application to provide data. Your application
must update the scrap reference in the kEventParamScrapRef parameter to indicate the appropriate
data from the current selection or user focus. See the Discussion section for additional information
about this parameter for Mac OS X v10.3 and later.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

Constants 399
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventServicePaste
The user has invoked a service that requires your application to receive data. Your application must
update the current user focus with the data provided by the kEventParamScrapRef parameter. See
the Discussion section for additional information about this parameter for Mac OS X v10.3 and later.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventServiceGetTypes
Sent when the Services Manager needs to know what types of data it can cut-and-paste into the
scrap. The Services Manager uses this information to update the Services menu, indicating which
services are available for the current selection. This event passes two CFMutableArray references
to you in thekEventParamServiceCopyTypes andkEventParamServicePasteTypesparameters.
You should fill out these arrays with Core Foundation strings indicating which types your application
can copy and paste. Note that you can use the CreateTypeStringWithOSType (page 255) to create
a CFStringRef from an OSType.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventServicePerform
Sent when your application must perform a service. The kEventParamScrapRef parameter holds
the scrap information, and the kEventParamServiceMessageName parameter contains a Core
Foundation string indicating what service was requested. Only applications that can provide services
receive this event. See the Discussion section for additional information about this parameter for Mac
OS X v10.3 and later.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

Discussion
In Mac OS X 10.3 and later, the kEventServiceCopy, kEventServicePaste, and kEventServicePerform
events include a PasteboardRef and a ScrapRef. A handler for this event should provide its data using either
Pasteboard or Scrap Manager APIs, and the corresponding pasteboard or scrap reference, depending on
which is more convenient or appropriate. Data only needs to be placed on one of the pasteboard or scrap;
it does not need to be placed on both. Data written to the pasteboard is also be available on the scrap, and
vice versa.

Table 3-9 Parameter names and types for Service class events

Parameter typeParameter nameEvent kind

typePasteboardRefkEventParamPasteboardRef (Mac OS X v10.3
and later.)

kEventServiceCopy

typeScrapRefkEventParamScrapRef (Mac OS X v10.1 and
later.)

typePasteboardRefkEventParamPasteboardRef (Mac OS X v10.3
and later.)

kEventServicePaste

typeScrapRefkEventParamScrapRef (Mac OS X v10.1 and
later.)

typeCFMutableArrayRefkEventParamServiceCopyTypeskEventService-
GetTypes

400 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeCFMutableArrayRefkEventParamServicePasteTypes

typePasteboardRefkEventParamPasteboardRef (Mac OS X v10.3
and later.)

kEventServicePerform

typeScrapRefkEventParamScrapRef (Mac OS X v10.1 and
later.)

typeCFStringRefkEventParamServiceMessageName

typeCFStringRefkEventParamServiceUserData

Services Manager Event Parameters
Define constants for parameters to Service Manager events.

enum {
 kEventParamScrapRef = 'scrp',
 kEventParamServiceCopyTypes = 'svsd',
 kEventParamServicePasteTypes = 'svpt',
 kEventParamServiceMessageName = 'svmg',
 kEventParamServiceUserData = 'svud',
 typeScrapRef = 'scrp',
 typeCFMutableArrayRef = 'cfma'
};

Constants
kEventParamScrapRef

When provided as a parameter to the kEventServicePaste event, the current selection should be
replaced by data from this scrap. When provided as a parameter to kEventServicePerform, the
scrap that should be used to send and receive data from the requester. When provided as a parameter
to the kEventServiceCopy event, data from the current selection should be placed into this scrap.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventParamServiceCopyTypes
When provided as a parameter to the kEventServiceGetTypes event, add CFString references to
this array to report the types that can be pasted from the current selection. These strings will be
released automatically after the event is handled.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventParamServicePasteTypes
When provided as a parameter to the kEventServiceGetTypes event, add CFString references to
this array to report the types that can be copied from the current selection. These strings will be
released automatically after the event is handled.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

Constants 401
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamServiceMessageName
When provided as a parameter to the kEventServicePerform event, contains the name of the
advertised service that was invoked.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventParamServiceUserData
When provided as a parameter to the kEventServicePerform event, contains extra data provided
by the requestor.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

Tablet Event Constants

Tablet Events
Define constants for events related to drawing tablets.

enum {
 kEventTabletPoint = 1,
 kEventTabletProximity = 2,
 kEventTabletPointer = 1
};

Constants
kEventTabletPoint

Indicates that the pen has moved on a tablet. (Mac OS X only)

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventTabletProximity
Indicates that the pen has entered the proximity region of the tablet. (Mac OS X only)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventTabletPointer
Same as kEventTabletPoint. This deprecated constant is here for compatibility only.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Tablet Event Parameters
Define constants for parameters to table events.

402 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventParamTabletPointRec = 'tbrc',
 kEventParamTabletProximityRec = 'tbpx',
 typeTabletPointRec = 'tbrc',
 typeTabletProximityRec = 'tbpx',
 kEventParamTabletPointerRec = 'tbrc',
 typeTabletPointerRec = 'tbrc'
};

Constants
kEventParamTabletPointRec

typeTabletPointRec

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventParamTabletProximityRec
typeTabletProximityRec

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeTabletPointRec
kEventParamTabletPointRec

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

typeTabletProximityRec
kEventParamTabletProximityRec

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTabletPointerRec
typeTabletPointerRec

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeTabletPointerRec
kEventParamTabletPointerRec

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Text Input Events

Text Input Event Constants
Define constants related to events from kEventClassTextInput.

Constants 403
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventTextInputUpdateActiveInputArea = 1,
 kEventTextInputUnicodeForKeyEvent = 2,
 kEventTextInputOffsetToPos = 3,
 kEventTextInputPosToOffset = 4,
 kEventTextInputShowHideBottomWindow = 5,
 kEventTextInputGetSelectedText = 6,
 kEventTextInputUnicodeText = 7,
 kEventTextInputFilterText = 14
};

Constants
kEventTextInputUpdateActiveInputArea

Tells the application text engine to initiate or terminate or manage the content of inline input session.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventTextInputUnicodeForKeyEvent
Provides Unicode text resulting from a key event (in which TSM originates the event) or from a
kEventTextInputUnicodeText event produced by an input method, such as the Character Palette
class input method, or a Handwriting input method. A client need not be fully TSM-aware to process
or receive this event, which has become the standard way of getting Unicode text from key events.
You can also get Mac encoding characters from the raw keyboard event contained in this event. If no
UnicodeForKeyEvent handler is installed, and no kUnicodeNotFromInputMethod AppleEvent
handler is installed (or the application has not created a Unicode TSMDocument), the Mac encoding
charCodes (if these can be converted from the Unicodes) are provided to WaitNextEvent. This event
is generated automatically by TSM when a kEventRawKeyDown event is sent to the application event
target. The typical keyboard event flow begins with a kEventRawKeyDown event posted to the event
queue. This event is dequeued during WaitNextEvent or RunApplicationEventLoop, and sent
to the event dispatcher target. If the key down event reaches the application target, it is handled by
TSM, which generates a kEventTextInputUnicodeForKeyEvent event and sends it to the event
dispatcher target. The event dispatcher resends the event to the user focus target, which sends it to
the focused window.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventTextInputOffsetToPos
Convert from inline session text offset to global QD Point. This event is typically produced by an input
method so that it can best position a palette “near” the text being operated on by the user.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventTextInputPosToOffset
Convert from global QD point to inline session text offset. This event is typically produced by an input
method to perform proper cursor management as the cursor moves over various subranges, or clauses
of text (or the boundaries between these) in the inline input session.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

404 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventTextInputShowHideBottomWindow
Show/Hide the bottom line input window. This event is produced by Input Methods to control the
Text Services Manager bottom-line input window, and is not normally handled by an application.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventTextInputGetSelectedText
Get the selected text (or the character before or after the insertion point, based on the value of the
leadingEdge parameter) from the application’s text engine.)

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventTextInputUnicodeText
Produced only by input methods or other text services and is delivered to the Text Services Manager
by SendTextInputEvent. The Text Services Manager does not dispatch this event to the user focus,
so application handlers should not install handlers for this event. Instead, the Text Services Manager
chains this event into any active keyboard input method in order to prevent interference with existing
inline input sessions. The keyboard input method can either insert the text into the inline session or
confirm its session and return the UnicodeText event to the Text Services Manager unhandled, in
which case the Text Services Manager converts the event into a UnicodeForKey event (converting
the Unicodes to Mac character codes and synthesizing information where needed) and finally dispatch
the resulting event to the user focus as usual.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventTextInputFilterText
Sent before any final-form text is sent to the user focus. Final form text includes text produced by a
keyboard layout, Ink input method, Character palette or any other Text Services Manager text service,
and any text being “confirmed” (or committed) from an inline input session. In the case of text
confirmed from an inline input session, the Text Services Manager takes the resulting text buffer
filtered by the event handler and adjusts all parameters in the UpdateActiveInputArea event
produced by the input method. The text filtering action is thus transparent to both the application’s
UpdateActiveInputArea handler and the input method confirming the text.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Discussion
The following text input events re-implement the Apple events defined in the Text ServicesManager Reference,
and provide the benefits of Carbon event targeting, dispatching and propagation to applications that have
formerly handled the Text Services Manager suite of Apple events. You can install text input handlers on
controls, windows, or the application event target (which is equivalent to Apple-event-based handling). In
all cases, if a given text input handler is not installed, the Text Services Manager converts the event into an
AppleEvent and re-dispatches it via AESend to the current process, making adoption as gradual as is desired.

Table 3-10 shows the parameters related to text input events.

Table 3-10 Required parameter names and types for text input event kinds

Parameter typeParameter nameEvent kind

typeComponentInstancekEventParamTextInputSendComponent-
Instance

kEventTextInput-
UpdateActiveInput-
Area

Constants 405
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeLongIntegerkEventParamTextInputSendRefCon

typeIntlWritingCodekEventParamTextInputSendSLRec

typeLongIntegerkEventParamTextInputSendFixLen

typeUnicodeText for a
Unicode document;typeChar
otherwise

kEventParamTextInputSendText

typeComponentInstancekEventParamTextInputSendComponent-
Instance

kEventTextInput-
UnicodeForKeyEvent

typeLongIntegerkEventParamTextInputSendRefCon

typeIntlWritingCodekEventParamTextInputSendSLRec

typeUnicodeTextkEventParamTextInputSendText

typeEventRefkEventParamTextInputSendKeyboard
Event

typeComponentInstancekEventParamTextInputSendComponent
Instance

kEventTextInput-
OffsetToPos

typeLongIntegerkEventParamTextInputSendRefCon

typeLongIntegerkEventParamTextInputSendTextOffset

typeQDPointkEventParamTextInputReplyPoint

typeIntlWritingCodekEventParamTextInputSendSLRec
(Optional)

typeBooleankEventParamTextInputSendLeadingEdge
(Optional)

typeIntlWritingCodekEventParamTextInputSendReplySLRec
(Optional)

typeLongIntegerkEventParamTextInputSendReplyFont
(Optional)

typeUInt32kEventParamTextInputSendReplyFMFont
(Optional)

typeFixedkEventParamTextInput-
SendReplyPointSize (Optional)

typeShortIntegerkEventParamTextInput-
SendReplyLineHeight (Optional)

typeShortIntegerkEventParamTextInput-
SendReplyLineAscent (Optional)

406 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeFixedkEventParamTextInputSendReplyText
Angle (Optional)

typeComponentInstancekEventParamTextInputSendComponent
Instance

kEventTextInput-
PosToOffset

typeLongIntegerkEventParamTextInputSendRefCon

typeQDPointkEventParamTextInputSendCurrent
Point

typeLongIntegerkEventParamTextInputReplyRegionClass

typeLongIntegerkEventParamTextInputReplyTextOffset

typeBooleankEventParamTextInputSendDraggingMode
(Optional)

typeBooleankEventParamTextInputReplyLeadingEdge
(Optional)

typeIntlWritingCodekEventParamTextInputSendReplySLRec
(Optional)

typeComponentInstancekEventParamTextInputSendComponent-
Instance

kEventTextInputShow-
HideBottomWindow

typeLongIntegerkEventParamTextInputSendRefCon

typeBooleankEventParamTextInputSendShowHide
(Optional)

typeBooleankEventParamTextInputReplyShowHide
(Optional)

typeComponentInstancekEventParamTextInputSendComponent-
Instance

kEventTextInputGet-
SelectedText

typeLongIntegerkEventParamTextInputSendRefCon

typeBooleankEventParamTextInputSendLeadingEdge
(Optional)

TypeUInt32kEventParamTextInputSendTextService-
Encoding (Optional)

TypeUInt32kEventParamTextInput-
SendTextServiceMacEncoding (Optional)

typeUnicodeText or
typeChar depending on the
TSMDocument type.

kEventParamTextInputReplyText
(Optional)

typeIntlWritingCodekEventParamTextInputSendReplySLRec
(Optional)

Constants 407
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

TypeGlyphInfoArraykEventParamTextInputGlyphInfoArray
(Optional)

typeComponentInstancekEventParamTextInputSendComponent-
Instance

kEventTextInput-
UnicodeText

typeIntlWritingCodekEventParamTextInputSendSLRec

typeUnicodeTextkEventParamTextInputSendText

TypeUInt32kEventParamTextInputSendTextService-
Encoding (Optional)

TypeUInt32kEventParamTextInputSendText
ServiceMacEncoding (Optional)

TypeGlyphInfoArraykEventParamTextInputGlyphInfo Array
(Optional)

typeLongIntegerkEventParamTextInputSendRefConkEventTextInput-
FilterText

typeUnicodeTextkEventParamTextInputSendText

typeUnicodeTextkEventParamTextInputReplyText

Deprecated Text Input Constants
Define deprecated text input events.

enum {
 kEventUpdateActiveInputArea = kEventTextInputUpdateActiveInputArea,
 kEventUnicodeForKeyEvent = kEventTextInputUnicodeForKeyEvent,
 kEventOffsetToPos = kEventTextInputOffsetToPos,
 kEventPosToOffset = kEventTextInputPosToOffset,
 kEventShowHideBottomWindow = kEventTextInputShowHideBottomWindow,
 kEventGetSelectedText = kEventTextInputGetSelectedText
};

Constants
kEventUpdateActiveInputArea

Equivalent to kEventTextInputUpdateActiveInputArea.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventUnicodeForKeyEvent
Equivalent to kEventTextInputUnicodeForKeyEvent.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

408 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventOffsetToPos
Equivalent to kEventTextInputOffsetToPos.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventPosToOffset
Equivalent to kEventTextInputPosToOffset.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventShowHideBottomWindow
Equivalent to kEventTextInputShowHideBottomWindow.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventGetSelectedText
Equivalent to kEventTextInputGetSelectedText.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
These constants are superseded by constants described in “Text Input Event Constants” (page 403) and are
included for backwards compatibility.

Text Input Event Parameters
Define constants for parameters to text input events.

Constants 409
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventParamTextInputSendRefCon = 'tsrc',
 kEventParamTextInputSendComponentInstance = 'tsci',
 kEventParamTextInputSendSLRec = 'tssl',
 kEventParamTextInputReplySLRec = 'trsl',
 kEventParamTextInputSendText = 'tstx',
 kEventParamTextInputReplyText = 'trtx',
 kEventParamTextInputSendUpdateRng = 'tsup',
 kEventParamTextInputSendHiliteRng = 'tshi',
 kEventParamTextInputSendClauseRng = 'tscl',
 kEventParamTextInputSendPinRng = 'tspn',
 kEventParamTextInputSendFixLen = 'tsfx',
 kEventParamTextInputSendLeadingEdge = 'tsle',
 kEventParamTextInputReplyLeadingEdge = 'trle',
 kEventParamTextInputSendTextOffset = 'tsto',
 kEventParamTextInputReplyTextOffset = 'trto',
 kEventParamTextInputReplyRegionClass = 'trrg',
 kEventParamTextInputSendCurrentPoint = 'tscp',
 kEventParamTextInputSendDraggingMode = 'tsdm',
 kEventParamTextInputReplyPoint = 'trpt',
 kEventParamTextInputReplyFont = 'trft',
 kEventParamTextInputReplyFMFont = 'trfm',
 kEventParamTextInputReplyPointSize = 'trpz',
 kEventParamTextInputReplyLineHeight = 'trlh',
 kEventParamTextInputReplyLineAscent = 'trla',
 kEventParamTextInputReplyTextAngle = 'trta',
 kEventParamTextInputSendShowHide = 'tssh',
 kEventParamTextInputReplyShowHide = 'trsh',
 kEventParamTextInputSendKeyboardEvent = 'tske',
 kEventParamTextInputSendTextServiceEncoding = 'tsse',
 kEventParamTextInputSendTextServiceMacEncoding = 'tssm',
 kEventParamTextInputGlyphInfoArray = 'glph',
 kEventParamTextInputSendGlyphInfoArray = kEventParamTextInputGlyphInfoArray,
 kEventParamTextInputReplyGlyphInfoArray = 'rgph',
 kEventParamTextInputSendReplaceRange = 'tsrp'
};

Constants
kEventParamTextInputSendRefCon

typeLongInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendComponentInstance
typeComponentInstance

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendSLRec
typeIntlWritingCode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

410 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamTextInputReplySLRec
typeIntlWritingCode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendText
typeUnicodeText (if TSMDocument is Unicode), otherwise typeChar

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyText
typeUnicodeText (if TSMDocument is Unicode), otherwise typeChar

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendUpdateRng
typeTextRangeArray

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendHiliteRng
typeTextRangeArray

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendClauseRng
typeOffsetArray

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendPinRng
typeTextRange

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendFixLen
typeLongInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendLeadingEdge
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyLeadingEdge
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 411
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamTextInputSendTextOffset
typeLongInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyTextOffset
typeLongInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyRegionClass
typeLongInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendCurrentPoint
typeQDPoint

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendDraggingMode
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyPoint
typeQDPoint

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyFont
typeLongInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyFMFont
typeUInt32

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyPointSize
typeFixed

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyLineHeight
typeShortInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

412 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamTextInputReplyLineAscent
typeShortInteger

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyTextAngle
typeFixed

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendShowHide
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyShowHide
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendKeyboardEvent
typeEventRef

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendTextServiceEncoding
typeUInt32

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendTextServiceMacEncoding
typeUInt32

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamTextInputReplyGlyphInfoArray
typeGlyphInfoArray

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTextInputSendReplaceRange
typeCFRange

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Text Service Manager Document Events

Text Service Manager Document Event Parameters
Define constants for Text Service Manager Document event parameters and types.

Constants 413
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventParamTSMDocAccessSendRefCon = kEventParamTSMSendRefCon,
 kEventParamTSMDocAccessSendComponentInstance =
kEventParamTSMSendComponentInstance,
 kEventParamTSMDocAccessCharacterCount = 'tdct',
 kEventParamTSMDocAccessReplyCharacterRange = 'tdrr',
 kEventParamTSMDocAccessReplyCharactersPtr = 'tdrp',
 kEventParamTSMDocAccessSendCharacterIndex = 'tdsi',
 kEventParamTSMDocAccessSendCharacterRange = 'tdsr',
 kEventParamTSMDocAccessSendCharactersPtr = 'tdsp',
 kEventParamTSMDocAccessRequestedCharacterAttributes = 'tdca',
 kEventParamTSMDocAccessReplyATSFont = 'tdaf',
 kEventParamTSMDocAccessReplyFontSize = 'tdrs',
 kEventParamTSMDocAccessEffectiveRange = 'tder',
 kEventParamTSMDocAccessReplyATSUGlyphSelector = 'tdrg',
 kEventParamTSMDocAccessLockCount = 'tdlc',
 kEventParamTSMDocAccessLineBounds = 'tdlb',
 typeATSFontRef = 'atsf',
 typeGlyphSelector = 'glfs'
};

Constants
kEventParamTSMDocAccessSendRefCon

typeLongInteger

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessSendComponentInstance
typeComponentInstance

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessCharacterCount
typeCFIndex

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessReplyCharacterRange
typeCFRange

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessReplyCharactersPtr
typePtr

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessSendCharacterIndex
typeCFIndex

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

414 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamTSMDocAccessSendCharactersPtr
typePtr

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessRequestedCharacterAttributes
typeUInt32

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessReplyATSFont
typeATSFontRef

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessReplyFontSize
typeFloat

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessEffectiveRange
typeRange

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessReplyATSUGlyphSelector
typeGlyphSelector

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessLockCount
typeCFIndex

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessLineBounds
typeCFMutableArrayRef

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

typeATSFontRef
ATSFontRef

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

typeGlyphSelector
ATSUGlyphSelector

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Constants 415
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Timer Constants

Idle Timer Event Constants
Define constants used for timer events.

enum {
 kEventLoopIdleTimerStarted = 1,
 kEventLoopIdleTimerIdling = 2,
 kEventLoopIdleTimerStopped = 3
};

Constants
kEventLoopIdleTimerStarted

The idle period has just begun (and this is the first time your callback is being called for this idle
period).

Available in Mac OS X v10.2 and later.

Declared in CarbonEventsCore.h.

kEventLoopIdleTimerIdling
The idle period is continuing.

Available in Mac OS X v10.2 and later.

Declared in CarbonEventsCore.h.

kEventLoopIdleTimerStopped
The idle period has just stopped (a user event occurred). Your callback should do any necessary
cleanup of the idle process now that a user event has occurred.

Available in Mac OS X v10.2 and later.

Declared in CarbonEventsCore.h.

Discussion
These constants are passed to your idle timer callback function. For more information, see the
InstallEventLoopIdleTimer (page 275) function.

Toolbar Events

Toolbar Event Parameters
Define constants for parameters to toolbar events.

416 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventParamToolbar = 'tbar',
 kEventParamToolbarItem = 'tbit',
 kEventParamToolbarItemIdentifier = 'tbii',
 kEventParamToolbarItemConfigData = 'tbid',
 typeHIToolbarRef = 'tbar',
 typeHIToolbarItemRef = 'tbit'
};

Constants
kEventParamToolbar

typeHIToolbarRef

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventParamToolbarItem
typeHIToolbarItemRef

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventParamToolbarItemIdentifier
typeHIToolbarRef

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventParamToolbarItemConfigData
typeCFStringRef

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

Discussion
For details about toolbar events and event parameters, see HIToolbar Referencein the User Experience section
of the Carbon documentation.

Volume Events

Volume Event Constants
Define constants related to events from kEventClassVolume.

enum {
 kEventVolumeMounted = 1,
 kEventVolumeUnmounted = 2
};

Constants
kEventVolumeMounted

New volume (hard drive or removable media) mounted.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 417
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventVolumeUnmounted
Volume has been ejected or unmounted.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Volume Reference Constant
Define the type of a volume reference.

enum {
 typeFSVolumeRefNum = 'voln'
};

Constants
typeFSVolumeRefNum

An FSVolumeRefNum identifying the volume that was mounted or unmounted.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Window Events

Window Action Event Constants
Define constants related to events from kEventClassWindow.

418 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventWindowCollapse = 66,
 kEventWindowCollapseAll = 68,
 kEventWindowExpand = 69,
 kEventWindowExpandAll = 71,
 kEventWindowClose = 72,
 kEventWindowCloseAll = 74,
 kEventWindowZoom = 75,
 kEventWindowZoomAll = 77,
 kEventWindowContextualMenuSelect = 78,
 kEventWindowPathSelect = 79,
 kEventWindowGetIdealSize = 80,
 kEventWindowGetMinimumSize = 81,
 kEventWindowGetMaximumSize = 82,
 kEventWindowConstrain = 83,
 kEventWindowHandleContentClick = 85,
 kEventWindowTransitionStarted = 88,
 kEventWindowTransitionCompleted = 89,
 kEventWindowGetDockTileMenu = 90,
 kEventWindowGetDockTileMenu = 90,
 kEventWindowProxyBeginDrag = 128,
 kEventWindowProxyEndDrag = 129,
 kEventWindowToolbarSwitchMode = 150
};

Constants
kEventWindowCollapse

If the window is not collapsed, this event is sent by the standard window handler after it has received
kEventWindowClickCollapseRgn and received true from a call to TrackBox. The default behavior
is to call CollapseWindow and then send kEventWindowCollapsed if no error is received from
CollapseWindow.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowCollapseAll
Sent by the standard window handler (when the option key is down) after it has received
kEventWindowClickCollapseRgn and then received true from a call to TrackBox. The default
response is to send each window of the same class as the clicked window a kEventWindowCollapse
event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowExpand
If the window is collapsed, this event is sent by the standard window handler after it has received
kEventWindowClickCollapseRgn and received true from a call to TrackBox. The default response
is to call CollapseWindow, then send kEventWindowExpanded. Note that you will not receive this
event before a window is expanded from the dock, since minimized windows in the dock don’t uses
collapse boxes to unminimize.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 419
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowExpandAll
Sent by the standard window handler (when the option key is down) after it has received
kEventWindowClickCollapseRgn and then received true from a call to TrackBox. The default
response is to send each window of the same class as the clicked window a kEventWindowExpand
event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowClose
Sent by the standard window handler after it has received kEventWindowClickCloseRgn and
successfully called TrackBox. Your application might intercept this event to check if the document
is dirty, and display a Save/Don’t Save/Cancel alert.

The default response is to call the Window Manager function DisposeWindow.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowCloseAll
Sent by the standard window handler (when the option key is down) after it has received
kEventWindowClickCloseRgn and received true from a call to TrackGoAway. The standard window
handler’s response is to send each window with the same class as the clicked window a
kEventWindowClose event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowZoom
Sent by the standard window handler upon receiving kEventWindowClickZoomRgn and then
receiving true from a call to TrackBox. The default behavior is to zoom the window using
ZoomWindowIdeal then, if successful, send a kEventWindowZoomed event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowZoomAll
Sent by the standard window handler (when the option key is down) after it has received
kEventObjectClickZoomRgn and received true from a call to TrackBox. The standard window
handler’s response is to send each window with the same class as the clicked window a
kEventObjectZoom event and then to reposition all zoomed windows using the
kWindowCascadeOnParentWindowScreen positioning method. For more details, see the Window
Manager Reference for more details.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowContextualMenuSelect
Sent when either the right mouse button is pressed, or the control key is held down and the left
mouse button is pressed, or the left mouse button is held down for more than 1/4th of a second (and
nothing else is handling the generated mouse tracking events). The standard window handler ignores
this event. Note that this event supports kEventParamMouseLocation and other parameters
associated with the kEventMouseDown event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

420 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowPathSelect
Sent when the Window Manager function IsWindowPathSelectClick would return true. The
standard window handler sends this event while handling kEventWindowClickDragRgn if the click
occurs in the proxy icon. Set the menu reference parameter (kEventParamMenuRef) in the event if
you wish to customize the menu passed to the Window Manager function WindowPathSelect.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowGetIdealSize
Sent by the standard window handler to determine the standard state for zooming. The standard
window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowGetMinimumSize
Sent by the standard window handler to determine the minimum size of the window (used during
window resizing).

In Mac OS X v10.2 and later, the default behavior is to call the Window Manager function
GetWindowResizeLimits and return the size obtained in the kEventParamDimensions parameter.
There is no default behavior before Mac OS X v10.2.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowGetMaximumSize
Sent by the standard window handler to determine the maximum size of the window (used during
window resizing). In Mac OS X v10.2 and later, this event is also sent by the Window Manager functions
ResizeWindow and GrowWindow if the sizeContraints parameter was set to NULL.

In Mac OS X v10.2 and later, the default behavior is to call the Window Manager function
GetWindowResizeLimits and return the size obtained in the kEventParamDimensions parameter.
There is no default behavior before Mac OS X v10.2.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 421
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowConstrain
Sent by the standard window handler to warn of a change in the available window positioning bounds
on the window (for example, due to a change in screen resolution or Dock size).

In Mac OS v10.0 the default behavior is to call the Window Manager function
ConstrainWindowToScreen on the window with the kWindowConstrainMoveRegardlessOfFit
attribute set and a window region code of kWindowDragRgn. The window is constrained to the
bounds returned by the Window Manager function GetAvailableWindowPositioningBounds
for that display device.

In Mac OS X v10.1 and later the default behavior is to call ConstrainWindowToScreen on the window
with the kWindowConstrainMoveRegardlessOfFit and kWindowConstrainAllowPartial
attributes set, and a window region code of kWindowDragRgn. Instead of accepting the normal device
bounds, you can also modify the kEventParamAvailableBounds for this event, and the default
handler constrains the window to those bounds.

In Mac OS X v10.2 and later, you can set the following optional parameters:

 ■ kEventParamAttributes: You can set the constraint attributes to pass to
ConstrainWindowToScreen by specifying them in this parameter.

 ■ kEventParamWindowRegionCode: If you set this parameter (which must be of type
WindowRegionCode), the standard window handler passes this value to
ConstrainWindowToScreen instead of kWindowDragRgn.

In addition, the following optional parameters may exist in Mac OS X v10.2 and later:

 ■ kEventParamRgnHandle: Contains the gray region before a configuration change in the available
graphics devices (screens). This parameter exists only if the constrain event occurred because
the user changed the screen configuration. You can call the Window Manager function
GetGrayRgn to obtain the current gray region.

 ■ kEventParamCurrentDockRect: Holds the current bounds of the dock. This parameter and
kEventParamPreviousDockRect exist only if the constrain event resulted from a change in
the Dock size or position.

 ■ kEventParamPreviousDockRect: Holds the previous bounds of the dock.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowHandleContentClick
Sent by the standard window handler in response to kEventWindowClickContentRgn when a
mouse click is in the content region but is not a contextual menu invocation or a click on a control.
Note that this event supports kEventParamMouseLocation and other parameters associated with
the kEventMouseDown event.

The standard handler ignores this event.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kEventWindowTransitionStarted
Sent to all handlers registered for it. It is sent by the TransitionWindow,
TransitionWindowAndParent, and TransitionWindowWithOptions APIs just before the first
frame of the transition animation.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

422 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowTransitionCompleted
Sent to all handlers registered for it. It is sent by the TransitionWindow,
TransitionWindowAndParent, and TransitionWindowWithOptionsAPIs just after the last frame
of the transition animation.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventWindowGetDockTileMenu
Sent when a dock tile wants to display a menu. The sender of this event releases the menu after the
Dock has displayed it, so if you want to keep the menu, you must call RetainMenu on it before
returning from the event handler.

If you do not handle this event, the default behavior is to call the Window Manager function
GetWindowDockTileMenu and return the menu obtained in the kEventParamMenuRef parameter.
If no menu is specified, the default handler returns eventNotHandledErr.

Note that in most cases it is simpler to call the SetWindowDockTileMenu function directly rather
than register for this event.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventWindowProxyBeginDrag
Sent before a proxy icon drag; you can attach data to the DragRef in the event. The standard handler
ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowProxyEndDrag
Sent after the proxy icon drag is complete, whether successful or not. The standard handler ignores
this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowToolbarSwitchMode
The toolbar button (that is, the oblong button used to show and hide the toolbar) was successfully
clicked. The standard window handler sends this event when receiving a true return value from
TrackBox during the handling of the kEventWindowClickToobarButtonRgn event. Note, however,
that you do not have to have the standard window handler installed to receive this event; any window
that has a toolbar receives this event when its toolbar button is successfully clicked. Note that if you
handle this event, your application is responsible for keeping track of the toolbar’s mode (visible or
hidden).

The default response is to toggle the toolbar (that is, show it if it is hidden, and vice-versa) when the
toolbar button is clicked. If the option key is held down during the click, all toolbars in the windows
of the current process are toggled. If the command key is down during the click, the toolbar mode is
cycled between icons and text, icons alone, and text alone. If both the command and option keys are
held during the click, the system displays the toolbar configuration sheet.

Available in Mac OS X v10.1 and later.

Declared in CarbonEvents.h.

Discussion
These events indicate that certain changes have been made to a window. These events have greater semantic
meaning than the low-level window click events and are usually preferred for overriding.

Table 3-11 shows the parameters related to window action events.

Constants 423
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Table 3-11 Parameter names and types for window action event kinds

Parameter typeParameter nameEvent kind

typeWindowRefkEventParamDirectObjectkEventWindowCollapse

typeWindowRefkEventParamDirectObjectkEventWindowCollapsed

typeWindowRefkEventParamDirectObjectkEventWindowCollapseAll

typeWindowRefkEventParamDirectObjectkEventWindowExpand

typeWindowRefkEventParamDirectObjectkEventWindowExpanded

typeWindowRefkEventParamDirectObjectkEventWindowExpandAll

typeWindowRefkEventParamDirectObjectkEventWindowClose

typeWindowRefkEventParamDirectObjectkEventWindowClosed

typeWindowRefkEventParamDirectObjectkEventWindowCloseAll

typeWindowRefkEventParamDirectObjectkEventWindowZoom

typeWindowRefkEventParamDirectObjectkEventWindowZoomed

typeWindowRefkEventParamDirectObjectkEventWindowZoomAll

typeWindowRefkEventParamDirectObjectkEventWindow-
ContextualMenuSelect

Other parameters from kEventMouseDown

typeWindowRefkEventParamDirectObjectkEventWindowPathSelect

typeMenuRefkEventParamMenuRef

typeWindowRefkEventParamDirectObjectkEventWindowGetIdealSize

typeQDPointkEventParamDimensions

typeWindowRefkEventParamDirectObjectkEventWindowGetMinimumSize

typeQDPointkEventParamDimensions

typeWindowRefkEventParamDirectObjectkEventWindowGetMaximumSize

typeQDPointkEventParamDimensions

typeWindowRefkEventParamDirectObjectkEventWindowConstrain

typeQDRectanglekEventParamAvailableBounds

typeUInt32kEventParamAttributes

typeQDRgnHandlekEventParamWindowRegionCode

424 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeHIRectkEventParamPreviousDockRect

typeHIRectkEventParamCurrentDockRect

typeWindowRefkEventParamDirectObjectkEventWindowHandle-
WindowContent Click

Other parameters from kEventMouseDown

typeWindowRefkEventParamDirectObjectkEventWindowProxyBeginDrag

typeWindowRefkEventParamDirectObjectkEventWindowProxyEndDrag

typeWindowRefkEventParamDirectObjectkEventWindowToolbarSwitchMode

Window Activation Event Constants
Define constants related to events from kEventClassWindow that specify whether a window is activated
or deactivated.

enum {
 kEventWindowActivated = 5,
 kEventWindowDeactivated = 6,
 kEventWindowHandleActivate = 91,
 kEventWindowHandleDeactivate = 92
 kEventWindowGetClickActivation = 7,
 kEventWindowGetClickModality = 8
};

Constants
kEventWindowActivated

The window is active now. Sent to any window that is activated, regardless of whether the window
has the standard window handler installed.

In Mac OS X v10.3 and later, the standard window handler responds to this event by sending a
kEventWindowHandleActivate event to the window. On earlier releases of Mac OS X and CarbonLib,
the standard window handler calls ActivateControl on the window’s root control.

Note that this event is sent directly to the window target. If no handler takes the event (that is, they
all return eventNotHandledErr), then the Window Manager posts this event to the event queue.
Doing so allows the Carbon Event Manager to convert the event into an old-style event record
(EventRecord), to be returned from WaitNextEvent.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 425
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowDeactivated
The window is inactive now. Sent to any window that is deactivated, regardless of whether the window
has the standard window handler installed.

In Mac OS X v10.3 and later, the standard window handler responds to this event by sending a
kEventWindowHandleDeactivate event to the window. On earlier releases of Mac OS X and
CarbonLib, the standard window handler calls DeactivateControl on the window’s root control.

Note that this event is sent directly to the window target. If no handler takes the event (that is, they
all return eventNotHandledErr), then the Window Manager posts this event to the event queue.
Doing so allows the Carbon Event Manager to convert the event into an old-style event record
(EventRecord), to be returned from WaitNextEvent.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowHandleActivate
The window has received a kEventWindowActivated event, and its contents should become active.
This event is generated by the standard window handler in response to a kEventWindowActivated
event. You can handle this event by activating the window’s content appropriately. The standard
window handler responds to this event by calling ActivateControl on the window’s root control.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kEventWindowHandleDeactivate
The window has received a kEventWindowDeactivated event, and its contents should become
inactive. This event is generated by the standard window handler in response to a
kEventWindowDeactivated event. You can handle this event by deactivating the window’s content
appropriately. The standard window handler responds to this event by calling DeactivateControl
on the window’s root control.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kEventWindowGetClickActivation
Sent when a click occurs in a background window that has the standard window handler installed.

The default behavior is to bring the window forward and absorb the click (that is, the mouse click is
not passed on to the window). In addition, the appropriate click activation part code is returned in
the kEventParamClickActivationResult parameter. You can use this event to override this
behavior and implement click-through.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

426 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowGetClickModality
Sent to a window by the event dispatcher target before dispatching a mouse-down or mouse-up
event to the clicked window. A handler for this event may examine application state to determine
whether this click should be allowed. This event may also be sent in circumstances other than a mouse
event:

 ■ In SelectWindow

 ■ When handling the cmd-~ key sequence

 ■ When restoring a collapsed window from the Dock

 ■ When handling the kHICommandSelectWindow command

 ■ When activating a clicked window during application activation,

In each case, the result of this event is used to determine whether z-ordering, activation, and
highlighting of the window should be allowed.

This event contains an optional EventRef parameter that is the original mouse event. If the parameter
is not present, the handler should generally assume that the click was a single click.

A default handler for this event is installed on the application target. The default handler determines
whether this is a modal click by examining the modality of the visible, uncollapsed windows in front
of the clicked window, the location of the click, and the keyboard modifiers. A custom handler may,
of course, entirely ignore window z-order or modality, and determine modality in any way it deems
necessary.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Discussion
Events related to activating and deactivating a window.

Table 3-12 shows the parameters related to window activation events.

Table 3-12 Parameter names and types for window activation event kinds

Parameter typeParameter nameEvent kind

typeWindowRefkEventParamDirectObjectkEventWindow-
Activated

typeWindowRefkEventParamDirectObjectkEventWindow-
Deactivated

typeWindowRefkEventParamDirectObjectkEventWindowHandle-
Activate

typeWindowRefkEventParamDirectObjectkEventWindowHandle-
Deactivate

typeWindowRefkEventParamDirectObjectkEventWindowGetClick-
Activation

typeQDPointkEventParamMouseLocation

typeUInt32kEventParamKeyModifiers

typeWindowDefPartCodekEventParamWindowDefPart

Constants 427
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeControlRefkEventParamControlRef

typeClickActivation-
Result

kEventParamClickActivation

typeWindowRefkEventParamDirectObjectkEventWindowGet-
ClickModality

typeWindowPartCodekEventParamWindowPartCode

typeUInt32kEventParamKeyModifiers

typeEventRefkEventParamEventRef (Optional)

typeModalClickResultkEventParamModalClickResult

typeWindowRefkEventParamModalWindow (Required only
if kEventParamModalClickResult is
kHIModalClickIsModal.)

typeWindowModalitykEventParamWindowModality (Required
only if kEventParamModalClickResult is
kHIModalClickIsModal.)

Window Click Event Constants
Define constants related to events from kEventClassWindow occurring in the standard window controls
or regions (close, resize, drag, and so on).

enum {
 kEventWindowClickDragRgn = 32,
 kEventWindowClickResizeRgn = 33,
 kEventWindowClickCollapseRgn = 34,
 kEventWindowClickCloseRgn = 35,
 kEventWindowClickZoomRgn = 36,
 kEventWindowClickContentRgn = 37,
 kEventWindowClickProxyIconRgn = 38,
 kEventWindowClickToolbarButtonRgn = 41,
 kEventWindowClickStructureRgn = 42
};

Constants
kEventWindowClickDragRgn

Sent when the mouse is down in the drag region. The standard window handler calls DragWindow.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

428 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowClickResizeRgn
Sent when the mouse is down in the resize area. The standard window handler calls ResizeWindow.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kEventWindowClickCollapseRgn
Sent when the mouse is down in the collapse widget. The default behavior is to call CollapseWindow,
and then generate kEventWindowExpand or kEventWindowCollapse (whichever is the opposite
of the window’s original collapse state).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kEventWindowClickCloseRgn
Sent when the mouse is down in the close widget. The standard window handler calls TrackGoAway,
and then generates kEventWindowClose.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kEventWindowClickZoomRgn
Sent when the mouse is down in the zoom widget. The standard window handler calls TrackBox,
and then generates kEventWindowZoom.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kEventWindowClickContentRgn
Sent when the mouse is down in the content region. The standard window handler checks for
contextual menu clicks and clicks on controls, and sends kEventWindowContextualMenuSelect,
kEventControlClick, and kEventWindowHandleContentClick events as appropriate.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kEventWindowClickProxyIconRgn
Sent when the mouse is down in the proxy icon. The standard window handler handles proxy icon
dragging, and generates proxy icon events.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kEventWindowClickToolbarButtonRgn
Sent when the mouse is down in the toolbar button. The default behavior is to call TrackBox and
then generate a kEventWindowToolbarSwitchMode event.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

Constants 429
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
Low-level events which generate higher-level “action” events described in “Window Action Event
Constants” (page 418). These events are generated only for windows with the standard window handler
installed. Most clients should allow the standard window handler to implement these events.

Window State Event Constants
Define constants related to events from kEventClassWindow that notify of a change in the window’s state.

enum {
 kEventWindowShowing = 22,
 kEventWindowHiding = 23,
 kEventWindowShown = 24,
 kEventWindowHidden = 25,
 kEventWindowCollapsing = 86,
 kEventWindowCollapsed = 67,
 kEventWindowExpanding = 87,
 kEventWindowExpanded = 70,
 kEventWindowZoomed = 76,
 kEventWindowBoundsChanging = 26,
 kEventWindowBoundsChanged = 27,
 kEventWindowResizeStarted = 28,
 kEventWindowResizeCompleted = 29,
 kEventWindowDragStarted = 30,
 kEventWindowDragCompleted = 31,
 kEventWindowClosed = 73
};

Constants
kEventWindowShowing

A window is being shown. This is sent inside ShowHide. This event is propagated to all handlers that
registered for the event in the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowHiding
A window is being hidden. This is sent inside ShowHide. This event is propagated to all handlers that
registered for the event in the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowShown
The window has been shown. This event is propagated to all handlers that registered for the event
in the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

430 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowHidden
The window has been hidden. This event is propagated to all handlers that registered for the event
in the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowCollapsing
The window is collapsing. This event is propagated to all handlers that registered for the event in the
event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventWindowCollapsed
The object has successfully collapsed. This event is propagated to all handlers that registered for the
event in the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowExpanding
The window is expanding. This event is propagated to all handlers that registered for the event in
the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventWindowExpanded
The window has successfully expanded. This event is propagated to all handlers that registered for
the event in the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowZoomed
The window has been successfully zoomed. This event is propagated to all handlers that registered
for the event in the event target’s handler chain, regardless of return value.

In CarbonLib 1.1 through 1.4 and Mac OS X prior to v10.2, this event is sent only by the standard
window handler after handling kEventWindowZoom. In CarbonLib 1.5 and later and Mac OS X v10.2
and later, this event is sent by the Window Manager functions ZoomWindow and ZoomWindowIdeal.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 431
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowBoundsChanging
Sent during DragWindow or ResizeWindow, before the window is actually moved or resized. You
can alter the current bounds in the event (the kEventParamCurrentBounds parameter) to change
the eventual size and location of the window. Do not call the Window Manager functions SizeWindow
or SetWindowBounds from inside a handler for this event.

In Mac OS X v10.1 and later, this event is sent before all changes to a window’s bounds, whether
initiated by a user or by a Window Manager call. If the event was sent in response to a user action,
the kWindowBoundsChangeUserDrag or kWindowBoundsChangeUserResize attribute will be set
in the kEventParamAttributes parameter.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowBoundsChanged
The window has been moved or resized (or both). Do not call the Window Manager functions
SizeWindow or SetWindowBounds from inside a handler for this event. If you want to enforce certain
window bounds, you should do so from a kEventWindowBoundsChanging event handler.

This event is propagated to all handlers that registered for the event in the event target’s handler
chain, regardless of return value.

In Mac OS X v10.2 and later, the standard window handler can take this event under the following
conditions:

 ■ the window uses live resizing (the kWindowLiveResizeAttribute attribute is set.

 ■ the user is the one resizing the window

 ■ an update event for the window exists in the event queue

If these conditions are met, the standard window handler removes the update event from the event
queue and sends it to the event dispatcher target. Doing so simplifies redrawing window content
during live resizing.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowResizeStarted
The user has just started to resize a window. This event is propagated to all handlers that registered
for the event in the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowResizeCompleted
The user has just finished resizing a window. This event is propagated to all handlers that registered
for the event in the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

432 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowDragStarted
The user has just started to drag a window. This event is propagated to all handlers that registered
for the event in the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDragCompleted
The user has completed a window drag. This event is propagated to all handlers that registered for
the event in the event target’s handler chain, regardless of return value.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowClosed
Dispatched by DisposeWindow before the window is disposed. This event is propagated to all handlers
that registered for the event in the event target’s handler chain, regardless of return value.

In CarbonLib 1.5 and earlier and Mac OS X prior to v10.2, if a visible window is destroyed,
kEventWindowClosed is sent before the kEventWindowHidden event. In CarbonLib 1.6 and Mac
OS X v10.2 and later, the kEventWindowClosed event is sent after kEventWindowHidden.

The standard window handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
Table 3-13 shows the parameters related to window state change events.

Table 3-13 Parameter names and types for window state change event kinds

Parameter typeParameter nameEvent kind

typeWindowRefkEventParamDirectObjectkEventWindowBoundsChanging

typeUInt32kEventParamAttributes

typeQDRectanglekEventParamOriginalBounds

typeQDRectanglekEventParamPreviousBounds

typeQDRectanglekEventParamCurrentBounds

typeWindowRefkEventParamDirectObjectkEventWindowBoundsChanged

typeUInt32kEventParamAttributes

typeQDRectanglekEventParamOriginalBounds

typeQDRectanglekEventParamPreviousBounds

typeQDRectanglekEventParamCurrentBounds

typeWindowRefkEventParamDirectObjectkEventWindowShown

Constants 433
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeWindowRefkEventParamDirectObjectkEventWindowShowing

typeWindowRefkEventParamDirectObjectkEventWindowHidden

typeWindowRefkEventParamDirectObjectkEventWindowHiding

typeWindowRefkEventParamDirectObjectkEventWindowResizeStarted

typeWindowRefkEventParamDirectObjectkEventWindowResizeCompleted

typeWindowRefkEventParamDirectObjectkEventWindowDragStarted

typeWindowRefkEventParamDirectObjectkEventWindowDragCompleted

Window Refresh Event Constants
Define constants related to window refresh events from kEventClassWindow.

enum {
 kEventWindowUpdate = 1,
 kEventWindowDrawContent = 2
};

Constants
kEventWindowUpdate

Low-level update event. Sent to any window that needs updating regardless of whether the window
has the standard window handler installed. You must call the Window Manager function BeginUpdate,
and the QuickDraw function SetPort before drawing your window content, then call EndUpdate
when you are finished.

The standard window handler for this event calls BeginUpdate and SetPort, sends a
kEventWindowDrawContent event to the window, and then calls EndUpdate.

Note that this event is sent directly to the window target. If no handler takes the event (that is, they
all return eventNotHandledErr), then the Window Manager posts this event to the event queue.
Doing so allows the Carbon Event Manager to convert the event into an old-style event record
(EventRecord), to be returned from WaitNextEvent.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

kEventWindowDrawContent
Higher-level update event sent only if you have the standard window handler installed. Functions
exactly as kEventWindowUpdate, except that the Carbon Event Manager calls Begin/EndUpdate
and SetPort for you. All you need to do is draw the window content.

The standard window handler calls DrawControls for this window.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in CarbonEvents.h.

Discussion
Events related to drawing a window’s content.

434 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Table 3-14 shows the parameters related to window refresh events.

Table 3-14 Parameter names and types for window refresh event kinds

Parameter typeParameter nameEvent kind

typeWindowRefkEventParamDirectObjectkEventWindowUpdate

typeWindowRefkEventParamDirectObjectkEventWindowDrawContent

Window Cursor Change Event Constant
Define a constant related to events from kEventClassWindow that specify that the cursor must change.

enum {
 kEventWindowCursorChange = 40
};

Constants
kEventWindowCursorChange

Sent when the mouse is moving over the content region. This event is used to manage ownership of
the cursor. You should only change the cursor if you receive this event; otherwise, someone else
needed to adjust the cursor and handled the event (for example, a TSM Input Method when the
mouse is over an inline input region).

The standard handler ignores this event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
Table 3-15 shows the parameters related to window cursor change events.

Table 3-15 Parameter names and types for window cursor change event kinds

Parameter typeParameter nameEvent kind

typeWindowRefkEventParamDirectObjectkEventWindowCursorChange

typeQDPointkEventParamMouseLocation

typeUInt32kEventParamKeyModifiers

Window Focus Event Constants
Define constants related to events from kEventClassWindow that describe changes in the user focus.

Constants 435
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventWindowFocusAcquired = 200,
 kEventWindowFocusRelinquish = 201,
 kEventWindowFocusContent = 202,
 kEventWindowFocusToolbar = 203,
 kEventWindowFocusDrawer = 204
};

Constants
kEventWindowFocusAcquired

The user (or some other action) has caused the focus to shift to your window. In response to this, you
should focus any control that might need to be focused.

The standard window handler calls the Control Manager function SetKeyboardFocus to highlight
the first control in the window.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowFocusRelinquish
The user has shifted the focus to another window. You should take the necessary steps to unhighlight
the focus and so on.

The default behavior is to clear the current keyboard focus.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowFocusContent
Focus should be shifted to the main content area of your window. You should set the focus to the
content view of your window; if that area already has focus, then do nothing.

If the content area of the window already has focus, the standard handler does nothing. Otherwise,
it calls the HIView function HIViewAdvanceFocus to move the focus to the first control in the content
area.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventWindowFocusToolbar
Focus should be shifted to the window’s toolbar. You should set the focus to the first item in the
toolbar; if the toolbar already has focus, then do nothing.

If the toolbar already has focus, the default behavior is to do nothing. Otherwise, it calls the HIView
function HIViewAdvanceFocus to move the focus to the first control in the toolbar.

If the window does not have a toolbar, this event is not handled.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventWindowFocusDrawer
Focus should be shifted to the drawer of a window. You should set the focus to the first item in the
drawer. If the drawer already has focus, you should move the focus to the next or previous drawer,
if any, depending on whether the modifiers parameter contains the shift key modifier. If the focus is
not already contained within the drawer, the basic window handler responds to this event by calling
SetUserFocusWindow and sending a kEventWindowFocusContent event to the appropriate
drawer.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

436 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Discussion
These events are related to focus changes between windows. They are generated by
SetUserFocusWindow (page 1934). Because that function is called by default only by the standard window
handler, these events are normally sent only to windows with the standard window handler installed.

Table 3-16 shows the parameters related to window focus events.

Table 3-16 Parameter names and types for window focus event kinds

Parameter typeParameter nameEvent kind

typeWindowRefkEventParamDirectObjectkEventWindowFocusAcquire

typeWindowRefkEventParamDirectObjectkEventWindowFocusRelinquish

typeWindowRefkEventParamDirectObjectkEventWindowFocusContent

typeWindowRefkEventParamDirectObjectkEventWindowFocusToolbar

typeWindowRefkEventParamDirectObjectkEventWindowFocusDrawer

typeUInt32kEventParamKeyModifiers

Window Sheet Event Constants
Define constants for events from kEventClassWindow that describe window sheet changes.

enum {
 kEventWindowSheetOpening = 210,
 kEventWindowSheetOpened = 211,
 kEventWindowSheetClosing = 212,
 kEventWindowSheetClosed = 213
};

Constants
kEventWindowSheetOpening

A sheet is opening. This event is sent to the sheet, its parent window, and the application target
before the sheet begins to open. An event handler for this event may return userCanceledErr if
the sheet should not be opened. Any other return value is ignored, and the sheet is allowed to open.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kEventWindowSheetOpened
A sheet has opened. This event is sent to the sheet, its parent window, and the application target
after the sheet is fully open.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Constants 437
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowSheetClosing
A sheet is closing. This event is sent to the sheet, its parent window, and the application target before
the sheet begins to close. An event handler for this event may return userCanceledErr if the sheet
should not close. Any other return value is ignored, and the sheet is allowed to close.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kEventWindowSheetClosed
A sheet has closed. This event is sent to the sheet, its parent window, and the application target after
the sheet is fully closed.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Discussion
These events are related to sheet changes. Table 3-17 shows the parameters related to window sheet events.

Table 3-17 Parameter names and types for window sheet event kinds

Parameter typeParameter nameEvent kind

typeWindowRefkEventParamDirectObjectkEventWindowSheetOpening

typeWindowRefkEventParamDirectObjectkEventWindowSheetOpened

typeWindowRefkEventParamDirectObjectkEventWindowSheetClosing

typeWindowRefkEventParamDirectObjectkEventWindowSheetClosed

Window Drawer Event Constants
Define constants related to events from kEventClassWindow describing window drawer changes.

enum {
 kEventWindowDrawerOpening = 220,
 kEventWindowDrawerOpened = 221,
 kEventWindowDrawerClosing = 222,
 kEventWindowDrawerClosed = 223
};

Constants
kEventWindowDrawerOpening

Sent to the drawer and its parent window when the drawer is opening. If you don’t want the drawer
to open, your handler should return userCanceledErr.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventWindowDrawerOpened
Sent to the drawer and its parent window when the drawer has fully opened.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

438 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowDrawerClosing
Sent to the drawer and its parent window when the drawer is closing. If you don’t want the drawer
to close, your handler should return userCanceledErr.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventWindowDrawerClosed
Sent to the drawer and its parent when the drawer has fully closed.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

Discussion
Table 3-18 shows parameters related to window drawer events.

Table 3-18 Parameter names and types for window drawer event kinds

Parameter typeParameter nameEvent kind

typeWindowRefkEventParamDirectObjectkEventWindowDrawerOpening

typeWindowRefkEventParamDirectObjectkEventWindowDrawerOpened

typeWindowRefkEventParamDirectObjectkEventWindowDrawerClosing

typeWindowRefkEventParamDirectObjectkEventWindowDrawerClosed

Window Definition Message Constants
Define constants for events that correspond to classic WDEF messages.

Constants 439
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventWindowDrawFrame = 1000,
 kEventWindowDrawPart = 1001,
 kEventWindowGetRegion = 1002,
 kEventWindowHitTest = 1003,
 kEventWindowInit = 1004,
 kEventWindowDispose = 1005,
 kEventWindowDragHilite = 1006,
 kEventWindowModified = 1007,
 kEventWindowSetupProxyDragImage = 1008,
 kEventWindowStateChanged = 1009,
 kEventWindowMeasureTitle = 1010,
 kEventWindowDrawGrowBox = 1011,
 kEventWindowGetGrowImageRegion = 1012,
 kEventWindowPaint = 1013
};

Constants
kEventWindowDrawFrame

Sent by the Window Manager when it’s time to draw a window’s structure. This is the replacement
to the old wDraw defProc message (though it is a special case of the 0 part code indicating to draw
the entire window frame).

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDrawPart
Sent by the Window Manager when it’s time to draw a specific part of a window’s structure, such as
the close box. This is typically sent during window tracking.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowGetRegion
Sent by the Window Manager when it needs to get a specific region from a window, or when the
GetWindowRegion function is called. The region you should modify is sent in the
kEventParamRgnHandle parameter.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowHitTest
Sent when the Window Manager needs to determine what part of a window would be “hit” with a
given mouse location in global coordinates. If you handle this event, you should set the
kEventParamWindowDefPart parameter to reflect the part code hit.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowInit
Sent by the Window Manager when the window is being created. This is a hook to allow you to do
any initialization you might need to do. Note that if the window definition changes, you may receive
this event more than once. See the kEventWindowDispose event for more information.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

440 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowDispose
Sent by the Window Manager when the window is being disposed. You should dispose of any private
data structures associated with the window. Note, however, that receiving this event does not
necessarily mean that the window is being destroyed. Sometimes the Window Manager may need
to change the window definition (such as when ChangeWindowAttributes is used to change the
appearance of the window). In such cases, the window receives a kEventWindowDispose event
followed by a kEventWindowInit event to disconnect the old window definition and connect the
new one.

If you want to know when your window is actually being destroyed, you should register for the
kEventWindowClosed event.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDragHilite
Sent by the Window Manager when it is time to draw/erase any drag highlight in the window structure.
This is typically sent from within the HiliteWindowFrameForDrag function.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowModified
Sent by the Window Manager when it is time to redraw window structure to account for a change in
the document modified state. This is typically sent from within the SetWindowModified function.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowSetupProxyDragImage
Sent by the Window Manager when it is time to generate a drag image for the window proxy. This
is typically sent from within the BeginWindowProxyDrag function.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowStateChanged
Sent by the Window Manager when a particular window state changes. See the state-change flags
in MacWindows.h.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowMeasureTitle
Sent when the Window Manager needs to know how much space the window’s title area takes up.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDrawGrowBox
This is a compatibility event used before Mac OS 8 and not useful now. When the DrawGrowIcon
function is called, this event is sent to the window to tell it to draw the grow box. This is really needed
only for windows that do not have the grow box integrated into the window frame. Scroll bar delimiter
lines are also drawn.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 441
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowGetGrowImageRegion
This is a special way for a window to override the standard resize outline for windows that do not do
live resizing. As the user resizes the window, this event is sent with the current size the user has chosen
expressed as a rectangle. You should calculate your window outline and modify the
kEventParamRgnHandle parameter to reflect your desired outline.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowPaint
Sent when it is time to draw the entire window (such as when the window is first displayed). This is
a convenience event that gives you a chance to draw all the window elements at once.

If you do not handle this event, the Window Manager sends the kEventWindowDrawFrame event
to your window and erases the content region to its background color.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
These events, which correspond to WDEF messages, are sent to all windows, regardless of whether they have
the standard window handler installed.

Table 3-19 shows the parameters related to window definition events.

Table 3-19 Parameter names and types for window definition event kinds

Parameter typeParameter nameEvent kind

typeWindowRefkEventParamDirectObjectkEventWindowDrawFrame

typeWindowRefkEventParamDirectObjectkEventWindowDrawPart

typeWindowDefPartCodekEventParamWindowDefPart

typeWindowRefkEventParamDirectObjectkEventWindowGetRegion

typeWindowRegionCodekEventParamWindowRegionCode

typeQDRgnHandlekEventParamRgnHandle

typeWindowRefkEventParamDirectObjectkEventWindowHitTest

typeQDPointkEventParamMouseLocation

typeWindowDefPartCodekEventParamWindowDefPart

typeWindowRefkEventParamDirectObjectkEventWindowInit

typeUInt32kEventParamWindowFeatures

typeWindowRefkEventParamDirectObjectkEventWindowDispose

typeWindowRefkEventParamDirectObjectkEventWindowDragHilite

typeBooleankEventParamWindowDragHiliteFlag

typeWindowRefkEventParamDirectObjectkEventWindowModified

442 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeBooleankEventParamWindowModifiedFlag

typeWindowRefkEventParamDirectObjectkEventWindowSetup-
ProxyDrag Image

typeQDRgnHandlekEventParamWindowProxyImageRgn

typeQDRgnHandlekEventParamWindowProxyOutlineRgn

typeGWorldPtrkEventParamWindowProxyGWorlPtr

typeWindowRefkEventParamDirectObjectkEventWindowState-
Changed

typeUInt32kEventParamWindowStateChangedFlags

typeWindowRefkEventParamDirectObjectkEventWindowMeasure-
Title

typeSInt16kEventParamWindowTitleFullWidth

typeSInt16kEventParamWindowTitleTextWidth

typeWindowRefkEventParamDirectObjectkEventWindow-
DrawGrowBox

typeWindowRefkEventParamDirectObjectkEventWindowGetGrow-
Image Region

typeQDRectanglekEventParamWindowGrowRect

typeQDRectanglekEventParamRgnHandle

typeWindowRefkEventParamDirectObjectkEventWindowPaint

Alternate Window Definition Event Constants
Define alternate names for window definition events.

Constants 443
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventWindowDefDrawFrame = kEventWindowDrawFrame,
 kEventWindowDefDrawPart = kEventWindowDrawPart,
 kEventWindowDefGetRegion = kEventWindowGetRegion,
 kEventWindowDefHitTest = kEventWindowHitTest,
 kEventWindowDefInit = kEventWindowInit,
 kEventWindowDefDispose = kEventWindowDispose,
 kEventWindowDefDragHilite = kEventWindowDragHilite,
 kEventWindowDefModified = kEventWindowModified,
 kEventWindowDefSetupProxyDragImage = kEventWindowSetupProxyDragImage,
 kEventWindowDefStateChanged = kEventWindowStateChanged,
 kEventWindowDefMeasureTitle = kEventWindowMeasureTitle,
 kEventWindowDefDrawGrowBox = kEventWindowDrawGrowBox,
 kEventWindowDefGetGrowImageRegion = kEventWindowGetGrowImageRegion
};

Constants
kEventWindowDefDrawFrame

Equivalent to kEventWindowDrawFrame.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefDrawPart
Equivalent to kEventWindowDrawPart.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefGetRegion
Equivalent to kEventWindowGetRegion.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefHitTest
Equivalent to kEventWindowHitTest.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefInit
Equivalent to kEventWindowInit.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefDispose
Equivalent to kEventWindowDispose.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefDragHilite
Equivalent to kEventWindowDragHilite.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

444 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventWindowDefModified
Equivalent to kEventWindowModified.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefSetupProxyDragImage
Equivalent to kEventWindowSetupProxyDragImage.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefStateChanged
Equivalent to kEventWindowStateChanged.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefMeasureTitle
Equivalent to kEventWindowMeasureTitle.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefDrawGrowBox
Equivalent to kEventWindowDrawGrowBox.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventWindowDefGetGrowImageRegion
Equivalent to kEventWindowGetGrowImageRegion.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Discussion
For clarity, you can use these event names in place of the standard window events when using them in your
custom window definitions. For descriptions of these events, see “Window Definition Message Constants” (page
439).

Window Bounds Attributes
Define constants that describe how a window’s bounds are changing.

enum {
 kWindowBoundsChangeUserDrag = (1 << 0),
 kWindowBoundsChangeUserResize = (1 << 1),
 kWindowBoundsChangeSizeChanged = (1 << 2),
 kWindowBoundsChangeOriginChanged = (1 << 3),
 kWindowBoundsChangeZoom = (1 << 4)
};

Constants
kWindowBoundsChangeUserDrag

The bounds are changing because the user is dragging the window around.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 445
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kWindowBoundsChangeUserResize
The bounds are changing because the user is resizing the window.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kWindowBoundsChangeSizeChanged
The dimensions of the window (width and height) are changing.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kWindowBoundsChangeOriginChanged
The origin of the window is changing.

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kWindowBoundsChangeZoom
The bounds are changing as a result of the user clicking the zoom button.

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

Discussion
When the toolbox sends out a kEventWindowBoundsChanging or kEventWindowBoundsChanged event,
it also sends along a parameter containing attributes of the event (kEventParamAttributes). You can use
these attributes to determine what aspect of the window changed (origin, size, or both), and whether or not
some user action is driving the change (drag, resize, or zoom).

Window Event Parameters and Types
Define constants for parameters and attributes related to window events.

446 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

enum {
 kEventParamWindowFeatures = 'wftr',
 kEventParamWindowDefPart = 'wdpc',
 kEventParamWindowPartCode = wpar',
 kEventParamCurrentBounds = 'crct',
 kEventParamOriginalBounds = 'orct',
 kEventParamPreviousBounds = 'prct',
 kEventParamClickActivation = 'clac',
 kEventParamWindowRegionCode = 'wshp',
 kEventParamWindowDragHiliteFlag = 'wdhf',
 kEventParamWindowModifiedFlag = 'wmff',
 kEventParamWindowProxyGWorldPtr = 'wpgw',
 kEventParamWindowProxyImageRgn = 'wpir',
 kEventParamWindowProxyOutlineRgn = 'wpor',
 kEventParamWindowStateChangedFlags = 'wscf',
 kEventParamWindowTitleFullWidth = 'wtfw',
 kEventParamWindowTitleTextWidth = 'wttw',
 kEventParamWindowGrowRect = 'grct',
 kEventParamPreviousDockRect = 'pdrc',
 kEventParamPreviousDockDevice = 'pdgd',
 kEventParamCurrentDockRect = 'cdrc',
 kEventParamCurrentDockDevice = 'cdgd',
 kEventParamWindowTransitionAction = 'wtac',
 kEventParamWindowTransitionEffect = 'wtef',
 typeWindowRegionCode = 'wshp',
 typeWindowDefPartCode = 'wdpt',
 typeClickActivationResult = 'clac',
 typeWindowTransitionAction = 'wtac',
 typeWindowTransitionEffect = 'wtef'
};

Constants
kEventParamWindowFeatures

typeUInt32

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowDefPart
typeWindowDefPartCode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowPartCode
typeWindowPartCode

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamCurrentBounds
typeQDRectangle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 447
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamOriginalBounds
typeQDRectangle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamPreviousBounds
typeQDRectangle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamClickActivation
typeClickActivationResult

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowRegionCode
typeWindowRegionCode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowDragHiliteFlag
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowModifiedFlag
typeBoolean

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowProxyGWorldPtr
typeGWorldPtr

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowProxyImageRgn
typeQDRgnHandle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowProxyOutlineRgn
typeQDRgnHandle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowStateChangedFlags
typeUInt32

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

448 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamWindowTitleFullWidth
typeSInt16

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowTitleTextWidth
typeSInt16

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamWindowGrowRect
typeQDRectangle

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

kEventParamPreviousDockRect
typeHIRect

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamPreviousDockDevice
typeGDHandle

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamCurrentDockRect
typeHIRect

Available in Mac OS X v10.2 and later.

Declared in CarbonEvents.h.

kEventParamCurrentDockDevice
typeGDHandle

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamWindowTransitionAction
typeWindowTransitionAction

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamWindowTransitionEffect
typeWindowTransitionEffect

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

typeWindowRegionCode
WindowRegionCode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

Constants 449
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

typeWindowDefPartCode
WindowDefPartCode

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeWindowPartCode
WindowPartCode

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

typeClickActivationResult
ClickActivationResult

Available in Mac OS X v10.0 and later.

Declared in CarbonEvents.h.

typeWindowTransitionAction
WindowTransitionAction

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

typeWindowTransitionEffect
WindowTransitionEffect

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Modal Window Event Parameters and Types
Define constants related to events from kEventClassWindow used to determine whether a mouse-down
or mouse-up event is blocked by a modal window.

enum {
 typeModalClickResult = 'wmcr',
 typeWindowModality = 'wmod',
 kEventParamModalClickResult = typeModalClickResult,
 kEventParamModalWindow = 'mwin',
 kEventParamWindowModality = typeWindowModality
};

Constants
typeModalClickResult

HIModalClickResult

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

typeWindowModality
WindowModality

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

450 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kEventParamModalClickResult
On exit, a value indicating how the click should be handled. For details, see “Modal Window Click
Constants” (page 451).

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kEventParamModalWindow
On exit, the modal window that caused the click to be blocked, if any. The sender of this event uses
this information to determine which window should be activated if the application is inactive. This
parameter is only required if the kEventParamModalClickResult parameter contains
kHIModalClickIsModal. If an event handler wants to report that a click has been blocked by
modality, but cannot determine which window blocked the click, it is acceptable to either not add
this parameter to the event, or to set the parameter to a NULL window reference.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kEventParamWindowModality
On exit, the modality of the modal window that is in front of the clicked window, if any. This parameter
is required only if thekEventParamModalClickResultparameter containskHIModalClickIsModal.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Modal Window Click Constants
Define constants that describe responses to the kEventWindowGetModalityClick event.

typedef UInt32 HIModalClickResult;
enum {
 kHIModalClickIsModal = 1 << 0,
 kHIModalClickAllowEvent = 1 << 1,
 kHIModalClickAnnounce = 1 << 2,
 kHIModalClickRaiseWindow = 1 << 3,
};

Constants
kHIModalClickIsModal

A modal window prevents the mouse event from being passed to the clicked window. If this bit is
set, the kEventParamModalWindow and kEventParamWindowModality parameters should be set
before the event handler returns. If this bit is clear, normal event handling occurs: the clicked window
is typically z-ordered to the top of its window group, activated, becomes the user focus window, and
receives the mouse event for further processing.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kHIModalClickAllowEvent
If kHIModalClickIsModal is set, the kHIModalClickAllowEvent flag indicates whether the click
event should be allowed to pass to the clicked window. If kHIModalClickIsModal is not set, the
setting of kHIModalClickAllowEvent is ignored.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Constants 451
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

kHIModalClickAnnounce
If kHIModalClickIsModal is set and kHIModalClickAllowEvent is not set,
kHIModalClickAnnounce indicates whether the caller should announce that the click has been
blocked by a modal window using the appropriate UI (typically, by calling SysBeep). If
kHIModalClickIsModal is not set, or if kHIModalClickAllowEvent is set, the setting of
kHIModalClickAnnounce is ignored.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

kHIModalClickRaiseWindow
IfkHIModalClickIsModal andkHIModalClickAllowEvent are set,kHIModalClickRaiseWindow
indicates whether the clicked window should be z-ordered to the top of its window group. The window
is not, however, activated, nor does it become the user focus window. If kHIModalClickIsModal
or kHIModalClickAllowEvent is not set, kHIModalClickRaiseWindow is ignored.

Available in Mac OS X v10.4 and later.

Declared in CarbonEvents.h.

Result Codes

The most common result codes returned by the Carbon Event Manager are listed below.

DescriptionValueResult Code

No error.0noErr

Available in Mac OS X v10.0 and later.

Returned from PostEventToQueue (page 286) if the
event in question is already in the queue you are posting
it to (or any other queue).

-9860eventAlreadyPostedErr

Available in Mac OS X v10.0 and later.

The event target you are trying to modify is busy (for
example, dispatching an event).

-9861eventTargetBusyErr

Available in Mac OS X v10.1 and later.

This is obsolete and will be removed.-9862eventClassInvalidErr

Available in Mac OS X v10.0 and later.

This is obsolete and will be removed.-9864eventClassIncorrectErr

Available in Mac OS X v10.0 and later.

Returned from InstallEventHandler (page 274) if
the handler callback you pass is already installed for a
given event type you are trying to register.

-9866eventHandlerAlreadyInstalledErr

Available in Mac OS X v10.0 and later.

452 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

DescriptionValueResult Code

A generic error.-9868eventInternalErr

Available in Mac OS X v10.0 and later.

This is obsolete and will be removed.-9869eventKindIncorrectErr

Available in Mac OS X v10.0 and later.

The piece of data you are requesting from an event is
not present.

-9870eventParameterNotFoundErr

Available in Mac OS X v10.0 and later.

This is what you should return from an event handler
when your handler has received an event it doesn’t
currently want to (or isn’t able to) handle. If you handle
an event, you should return noErr from your event
handler.

-9874eventNotHandledErr

Available in Mac OS X v10.0 and later.

The event loop has timed out. This can be returned from
calls to ReceiveNextEvent (page 289) or
RunCurrentEventLoop (page 298).

-9875eventLoopTimedOutErr

Available in Mac OS X v10.0 and later.

The event loop was quit, probably by a call to
QuitEventLoop (page 289). This can be returned from
ReceiveNextEvent (page 289) or
RunCurrentEventLoop (page 298).

-9876eventLoopQuitErr

Available in Mac OS X v10.0 and later.

Returned from RemoveEventFromQueue (page 294)
when trying to remove an event that’s not in any queue.

-9877eventNotInQueueErr

Available in Mac OS X v10.0 and later.

The hot key combination you chose already exists-9878eventHotKeyExistsErr

Available in Mac OS X v10.0 and later.

This error code is not currently used.-9879eventHotKeyInvalidErr

Available in Mac OS X v10.0 and later.

Result Codes 453
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

454 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 3

Carbon Event Manager Reference

Framework: Carbon/Carbon.h

Declared in MacHelp.h

Overview

The Carbon Help Manager is an API that provides an interface for displaying short onscreen hints in help
tags. You can attach identifying text to individual windows, menus, or controls. Help tags replace Balloon
Help, introduced with System 7.

This document is relevant for developers creating a user interface for their Carbon application. To use this
document, you should be familiar with the basics of programming with the fundamental objects of the Mac
OS user interface (windows, menus, controls, and so forth)

Functions by Task

Obtaining a Reference to the Help Menu

HMGetHelpMenu (page 461)
Returns a reference to the Help menu.

Attaching Help Tag Content Directly to an Object

HMSetControlHelpContent (page 468)
Associates a help tag with a control.

HMSetWindowHelpContent (page 471)
Associates a help tag with a window.

HMSetMenuItemHelpContent (page 469)
Associates a help tag with a menu item.

HMGetControlHelpContent (page 460)
Returns the help tag associated with a control.

HMGetWindowHelpContent (page 464)
Returns the help tag associated with a window.

HMGetMenuItemHelpContent (page 462)
Returns the help tag associated with a menu item.

Overview 455
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Installing and Retrieving Help Tag Callbacks

HMInstallControlContentCallback (page 465)
Installs a help tag callback for a control.

HMInstallWindowContentCallback (page 468)
Installs a help tag callback for a window.

HMInstallMenuItemContentCallback (page 466)
Installs a help tag callback for a menu’s items.

HMInstallMenuTitleContentCallback (page 467)
Installs a help tag callback for a menu title.

HMGetControlContentCallback (page 460)
Retrieves the help tag callback associated with a control.

HMGetWindowContentCallback (page 464)
Retrieves the help tag callback associated with a window.

HMGetMenuItemContentCallback (page 462)
Retrieves the help tag callback associated with a menu’s items.

HMGetMenuTitleContentCallback (page 463)
Retrieves the help tag callback associated with a menu’s title.

Displaying and Hiding Help Tags

HMDisplayTag (page 459)
Displays a help tag at an application-defined location.

HMHideTag (page 465)
Hides the most recently displayed help tag.

Enabling and Disabling Help Tags

HMAreHelpTagsDisplayed (page 459)
Determines whether help tags are currently enabled.

HMSetHelpTagsDisplayed (page 469)
Enables or disables help tags.

Getting and Setting Help Tag Delay Time

HMSetTagDelay (page 470)
Sets the help tag delay time.

HMGetTagDelay (page 463)
Returns the current help tag delay time.

456 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Working With Universal Procedure Pointers to Help Tag Callback Functions

NewHMControlContentUPP (page 475)
Creates a new universal procedure pointer (UPP) to a help tag callback for a control.

NewHMWindowContentUPP (page 477)
Creates a new universal procedure pointer (UPP) to a help tag callback for a window.

NewHMMenuItemContentUPP (page 476)
Creates a new universal procedure pointer (UPP) to a help tag callback for a menu item.

NewHMMenuTitleContentUPP (page 477)
Creates a new universal procedure pointer (UPP) to a help tag callback for a menu title.

DisposeHMControlContentUPP (page 457)
Disposes of a universal procedure pointer (UPP) to a help tag callback for a control.

DisposeHMWindowContentUPP (page 459)
Disposes of a universal procedure pointer (UPP) to a help tag callback for a window.

DisposeHMMenuItemContentUPP (page 458)
Disposes of a universal procedure pointer (UPP) to a help tag callback for a menu item.

DisposeHMMenuTitleContentUPP (page 458)
Disposes of a universal procedure pointer (UPP) to a help tag callback for a menu title.

InvokeHMControlContentUPP (page 471)
Calls your help tag callback for a control.

InvokeHMWindowContentUPP (page 474)
Calls your help tag callback for a window.

InvokeHMMenuItemContentUPP (page 472)
Calls your help tag callback for a menu item.

InvokeHMMenuTitleContentUPP (page 473)
Calls your help tag callback for a menu title.

Functions

DisposeHMControlContentUPP
Disposes of a universal procedure pointer (UPP) to a help tag callback for a control.

void DisposeHMControlContentUPP (
 HMControlContentUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
To create a UPP to a help tag callback for a control, use NewHMControlContentUPP (page 475). For a
description of the help tag callback for a control, see HMControlContentProcPtr (page 478).

Functions 457
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

DisposeHMMenuItemContentUPP
Disposes of a universal procedure pointer (UPP) to a help tag callback for a menu item.

void DisposeHMMenuItemContentUPP (
 HMMenuItemContentUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
To create a UPP to a help tag callback for a menu item, use NewHMMenuItemContentUPP (page 476). For a
description of the help tag callback for a menu item, see HMMenuItemContentProcPtr (page 479).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

DisposeHMMenuTitleContentUPP
Disposes of a universal procedure pointer (UPP) to a help tag callback for a menu title.

void DisposeHMMenuTitleContentUPP (
 HMMenuTitleContentUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
To create a UPP to a help tag callback for a menu title, use NewHMMenuTitleContentUPP (page 477). For a
description of the help tag callback for a menu title, see HMMenuTitleContentProcPtr (page 480).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

458 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

DisposeHMWindowContentUPP
Disposes of a universal procedure pointer (UPP) to a help tag callback for a window.

void DisposeHMWindowContentUPP (
 HMWindowContentUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
To create a UPP to a help tag callback for a window, use NewHMWindowContentUPP (page 477). For a
description of the help tag callback for a window, see HMWindowContentProcPtr (page 482).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

HMAreHelpTagsDisplayed
Determines whether help tags are currently enabled.

Boolean HMAreHelpTagsDisplayed (
 void
);

Return Value
true if help tags are currently enabled; otherwise, false.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMDisplayTag
Displays a help tag at an application-defined location.

OSStatus HMDisplayTag (
 const HMHelpContentRec *inContent
);

Parameters
inContent

A pointer to a help tag structure that describes the help tag you want to display.

Functions 459
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Return Value
A result code. See “Result Codes” (page 494).

Discussion
Use the HMDisplayTag function to display a help tag at a location not associated with a control, window,
or menu.

Availability
Available in CarbonLib 1.5 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMGetControlContentCallback
Retrieves the help tag callback associated with a control.

OSStatus HMGetControlContentCallback (
 ControlRef inControl,
 HMControlContentUPP *outContentUPP
);

Parameters
inControl

A reference to the control for which to retrieve the help tag callback.

outContentUPP
On return, a universal procedure pointer to the help tag callback.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
To install a help tag callback for a control, use the HMInstallControlContentCallback (page 465) function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMGetControlHelpContent
Returns the help tag associated with a control.

460 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

OSStatus HMGetControlHelpContent (
 ControlRef inControl,
 HMHelpContentRec *outContent
);

Parameters
inControl

A reference to the control for which to retrieve the help tag.

outContent
A pointer to a help tag structure. On return, this structure describes the help tag for the control.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
To attach a help tag to a control, use the HMSetControlHelpContent (page 468) function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMGetHelpMenu
Returns a reference to the Help menu.

OSStatus HMGetHelpMenu (
 MenuRef *outHelpMenu,
 MenuItemIndex *outFirstCustomItemIndex
);

Parameters
outHelpMenu

On return, a pointer to a menu reference to the Help menu.

outFirstCustomItemIndex
On return, a pointer to the menu item index that will be used by the first application-supplied item
added to the menu. This parameter may be NULL.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
The HMGetHelpMenu function returns a reference to the Help menu, to which you can add your own custom
menu items.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Functions 461
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Declared In
MacHelp.h

HMGetMenuItemContentCallback
Retrieves the help tag callback associated with a menu’s items.

OSStatus HMGetMenuItemContentCallback (
 MenuRef inMenu,
 HMMenuItemContentUPP *outContentUPP
);

Parameters
inMenu

A reference to the menu for which to retrieve the menu item help tag callback.

outContentUPP
On return, a universal procedure pointer to the help tag callback.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
To install a menu item help tag callback, use the HMInstallMenuItemContentCallback (page 466) function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMGetMenuItemHelpContent
Returns the help tag associated with a menu item.

OSStatus HMGetMenuItemHelpContent (
 MenuRef inMenu,
 MenuItemIndex inItem,
 HMHelpContentRec *outContent
);

Parameters
inMenu

A reference to the menu containing the menu item for which to retrieve the help tag.

inItem
The index of the menu item.

outContent
A pointer to a help tag structure. On return, this structure describes the help tag for the menu item.

Return Value
A result code. See “Result Codes” (page 494).

462 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Discussion
To attach a help tag to a menu item, use the HMSetMenuItemHelpContent (page 469) function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMGetMenuTitleContentCallback
Retrieves the help tag callback associated with a menu’s title.

OSStatus HMGetMenuTitleContentCallback (
 MenuRef inMenu,
 HMMenuTitleContentUPP *outContentUPP
);

Parameters
inMenu

A reference to the menu for which to retrieve the help tag callback.

outContentUPP
On return, a universal procedure pointer to the help tag callback.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
To install a menu title help tag callback, use the HMInstallMenuTitleContentCallback (page 467)
function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMGetTagDelay
Returns the current help tag delay time.

OSStatus HMGetTagDelay (
 Duration *outDelay
);

Parameters
outDelay

On return, a pointer to the help tag delay time. A positive value represents the delay time in
milliseconds; a negative value represents the delay time in microseconds.

Functions 463
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Return Value
A result code. See “Result Codes” (page 494).

Discussion
The help tag delay time returned by the HMGetTagDelay function is the amount of time that the mouse
must remain motionless over a control, window, menu title, or menu item before the associated help tag is
displayed.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMGetWindowContentCallback
Retrieves the help tag callback associated with a window.

OSStatus HMGetWindowContentCallback (
 WindowRef inWindow,
 HMWindowContentUPP *outContentUPP
);

Parameters
inWindow

A reference to the window for which to retrieve the help tag callback.

outContentUPP
On return, a universal procedure pointer to the help tag callback.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
To install a help tag callback for a window, use the HMInstallWindowContentCallback (page 468) function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMGetWindowHelpContent
Returns the help tag associated with a window.

464 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

OSStatus HMGetWindowHelpContent (
 WindowRef inWindow,
 HMHelpContentRec *outContent
);

Parameters
inWindow

A reference to the window for which to retrieve the help tag.

outContent
A pointer to a help tag structure. On return, this structure describes the help tag for the window.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
To attach a help tag to a window, use the HMSetWindowHelpContent (page 471) function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMHideTag
Hides the most recently displayed help tag.

OSStatus HMHideTag (
 void
);

Return Value
A result code. See “Result Codes” (page 494).

Discussion
The Carbon Help Manager automatically removes help tags from the screen when user input occurs. To hide
a tag before the Carbon Help Manager removes it, use the HMHideTag function. HMHideTag removes the
most recently displayed help tag from the screen. If no help tag is currently visible, HMHideTag does nothing.

Availability
Available in CarbonLib 1.5 and later.
Available in Mac OS X 10.1 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMInstallControlContentCallback
Installs a help tag callback for a control.

Functions 465
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

OSStatus HMInstallControlContentCallback (
 ControlRef inControl,
 HMControlContentUPP inContentUPP
);

Parameters
inControl

A reference to the control for which to install the help tag callback.

inContentUPP
A universal procedure pointer to the help tag callback.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
HMInstallControlContentCallback associates your help tag callback with the control specified in the
inControl parameter. Thereafter, whenever the user hovers the mouse over this control, the Carbon Help
Manager calls your callback to determine the content to display in the help tag for the control. For a description
of the help tag callback for a control, see HMControlContentProcPtr (page 478).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMInstallMenuItemContentCallback
Installs a help tag callback for a menu’s items.

OSStatus HMInstallMenuItemContentCallback (
 MenuRef inMenu,
 HMMenuItemContentUPP inContentUPP
);

Parameters
inMenu

A reference to the menu for which to install the help tag callback.

inContentUPP
A universal procedure pointer to the help tag callback.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
HMInstallMenuItemContentCallback associates your help tag callback with the menu specified in the
inMenu parameter. Thereafter, whenever the user hovers the mouse over a menu item in this menu, the
Carbon Help Manager calls your callback to determine the content to display in the help tag for the menu
item. For a description of the help tag callback for a menu item, see HMMenuItemContentProcPtr (page
479).

466 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Special Considerations

Although the HMInstallMenuItemContentCallback function is available in CarbonLib, CarbonLib currently
does not support menu item help tags. Any help tag content you supply for a menu item using a help tag
callback in CarbonLib is not displayed.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMInstallMenuTitleContentCallback
Installs a help tag callback for a menu title.

OSStatus HMInstallMenuTitleContentCallback (
 MenuRef inMenu,
 HMMenuTitleContentUPP inContentUPP
);

Parameters
inMenu

A reference to the menu for which to install the help tag callback.

inContentUPP
A universal procedure pointer to the help tag callback.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
HMInstallMenuTitleContentCallback associates your help tag callback with the menu specified in the
inMenu parameter. Thereafter, whenever the user hovers the mouse over the title of this menu in the menu
bar, the Carbon Help Manager calls your callback to determine the content to display in the help tag for the
menu title. For a description of the help tag callback for a menu title, see
HMMenuTitleContentProcPtr (page 480).

Special Considerations

Although the HMInstallMenuTitleContentCallback function is available in CarbonLib, CarbonLib does
not support menu title help tags. Any help tag content you supply for a menu title using a help tag callback
in CarbonLib is not displayed.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

Functions 467
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

HMInstallWindowContentCallback
Installs a help tag callback for a window.

OSStatus HMInstallWindowContentCallback (
 WindowRef inWindow,
 HMWindowContentUPP inContentUPP
);

Parameters
inWindow

A reference to the window for which to install the help tag callback.

inContentUPP
A universal procedure pointer to the help tag content callback.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
HMInstallWindowContentCallback associates your help tag callback with the window specified in the
inWindow parameter. Thereafter, whenever the user hovers the mouse over this window, the Carbon Help
Manager calls this callback to determine the content to display in the help tag for the window. For a description
of the help tag callback for a window, see HMWindowContentProcPtr (page 482).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMSetControlHelpContent
Associates a help tag with a control.

OSStatus HMSetControlHelpContent (
 ControlRef inControl,
 const HMHelpContentRec *inContent
);

Parameters
inControl

A reference to the control with which you want to associate the help tag.

inContent
A pointer to a help tag structure that describes the help tag for the control.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
Once you attach a help tag to a control using the HMSetControlHelpContent function, this help tag is
displayed by the Carbon Help Manager whenever the user hovers the mouse over the control while help
tags are enabled.

468 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Use HMSetControlHelpContent to supply the content for a help tag when you create a control. To supply
the content for a help tag only when the tag is about to be displayed to the user, install a help tag callback
for the control with the function HMInstallControlContentCallback (page 465).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMSetHelpTagsDisplayed
Enables or disables help tags.

OSStatus HMSetHelpTagsDisplayed (
 Boolean inDisplayTags
);

Parameters
inDisplayTags

Pass true to enable help tags; false to disable help tags.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
Help tags are enabled by default when an application is launched; your application does not need to call
HMSetHelpTagsDisplayed to turn on help tag display. Disabling help tags with HMSetHelpTagsDisplayed
only turns off help tags in your application; help tag display in other applications is unaffected.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMSetMenuItemHelpContent
Associates a help tag with a menu item.

OSStatus HMSetMenuItemHelpContent (
 MenuRef inMenu,
 MenuItemIndex inItem,
 const HMHelpContentRec *inContent
);

Parameters
inMenu

A reference to the menu containing the menu item with which to associate the help tag.

Functions 469
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

inItem
The index of the menu item.

inContent
A pointer to a help tag structure that describes the help tag for the menu item.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
Once you attach a help tag to a menu item using the HMSetMenuItemHelpContent function, this help tag
is displayed by the Carbon Help Manager whenever the user hovers the mouse over the menu item while
help tags are enabled.

Use HMSetMenuItemHelpContent to supply the content for a help tag when you create a menu. To supply
the content for a help tag only when the tag is about to be displayed to the user, install a help tag callback
for the menu’s items with the function HMInstallMenuItemContentCallback (page 466).

Special Considerations

CarbonLib does not support menu item help tags. Any help tag content you supply with the
HMSetMenuItemHelpContent function in CarbonLib is not displayed.

In versions of Mac OS X version 10.1 and earlier, the Carbon Help Manager does not correctly interpret an
empty rectangle in the absHotRect field of the help tag structure passed to HMSetMenuItemHelpContent
when setting the help content for a menu title. Because there is no Menu Manager function for determining
the bounds of a menu title, Apple recommends that you install a help tag callback to supply help content
for a menu title. See HMMenuTitleContentProcPtr (page 480) for a description of the help tag callback for
a menu title.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMSetTagDelay
Sets the help tag delay time.

OSStatus HMSetTagDelay (
 Duration inDelay
);

Parameters
inDelay

The help tag delay time. A positive value represents the delay time in milliseconds; a negative value
represents the delay time in microseconds.

Return Value
A result code. See “Result Codes” (page 494).

470 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Discussion
The help tag delay time is the amount of time that the mouse must remain motionless over a control, window,
menu title, or menu item before the associated help tag is displayed.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

HMSetWindowHelpContent
Associates a help tag with a window.

OSStatus HMSetWindowHelpContent (
 WindowRef inWindow,
 const HMHelpContentRec *inContent
);

Parameters
inWindow

A reference to the window with which to associate the help tag.

inContent
A pointer to a help tag structure that describes the help tag for the window.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
Once you attach a help tag to a window using the HMSetWindowHelpContent function, this help tag is
displayed by the Carbon Help Manager whenever the user hovers the mouse over the window while help
tags are enabled.

Use HMSetWindowHelpContent to supply the content for a help tag when you create a window. To supply
the content for a help tag only when the tag is about to be displayed to the user, install a help tag callback
for the window with the function HMInstallWindowContentCallback (page 468).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
MacHelp.h

InvokeHMControlContentUPP
Calls your help tag callback for a control.

Functions 471
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

OSStatus InvokeHMControlContentUPP (
 ControlRef inControl,
 Point inGlobalMouse,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentRec *ioHelpContent,
 HMControlContentUPP userUPP
);

Parameters
inControl

A reference to the control for which the callback should supply help tag content.

inGlobalMouse
The current mouse position, in global coordinates.

inRequest
A value that specifies the type of the help tag content request. See “Content Request Types” (page
487) for a description of the possible requests.

outContentProvided
On output, a pointer to a value that indicates whether the help tag callback was able to fulfill the
request specified in the inRequest parameter. See “Content Provided Types” (page 492) for a
description of the values returned here.

ioHelpContent
A pointer to a help tag structure that describes the help tag for the control. On input, you must supply
a value in the version field. On output, if the value of the outContentProvided parameter is
kHMContentProvided, the help tag structure describes the help tag for the control.

userUPP
A universal procedure pointer to the help tag callback to invoke.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
Use this function to invoke your help tag callback for a control, rather than calling your callback directly, to
ensure code compatibility across different compiler targets. Typically, you do not need to invoke a help tag
callback yourself. If you associate your callback with a control, using the
HMInstallControlContentCallback (page 465) function, the operating system calls your callback when
it is needed. For more information on the help tag callback for a control, see
HMControlContentProcPtr (page 478).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

InvokeHMMenuItemContentUPP
Calls your help tag callback for a menu item.

472 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

OSStatus InvokeHMMenuItemContentUPP (
 const MenuTrackingData *inTrackingData,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentRec *ioHelpContent,
 HMMenuItemContentUPP userUPP
);

Parameters
inTrackingData

A pointer to the tracking information for the menu for which the callback should provide a menu-item
help tag. The specific menu item for which the callback should provide a help tag is at the index
number given in the itemUnderMouse field of the tracking data structure.

inRequest
A value that specifies the type of the help tag content request. See “Content Request Types” (page
487) for a description of the possible requests.

outContentProvided
On output, a pointer to a value that indicates whether the help tag callback was able to fulfill the
request specified in the inRequest parameter. See “Content Provided Types” (page 492) for a
description of the values returned here.

ioHelpContent
A pointer to a help tag structure that describes the help tag for the menu item. On input, you must
supply a value in the version field. On output, if the value of the outContentProvided parameter
is kHMContentProvided, the help tag structure describes the menu-item help tag.

userUPP
A universal procedure pointer to the help tag callback to invoke.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
Use this function to invoke your help tag callback for a menu item, rather than calling your callback directly,
to ensure code compatibility across different compiler targets. Typically, you do not need to invoke a help
tag callback yourself. If you associate your callback with a menu’s items, using the
HMInstallMenuItemContentCallback (page 466) function, the operating system calls your callback when
it is needed. For more information on the help tag callback for a menu item, see
HMMenuItemContentProcPtr (page 479).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

InvokeHMMenuTitleContentUPP
Calls your help tag callback for a menu title.

Functions 473
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

OSStatus InvokeHMMenuTitleContentUPP (
 MenuRef inMenu,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentRec *ioHelpContent,
 HMMenuTitleContentUPP userUPP
);

Parameters
inMenu

A reference to the menu for which to provide a help tag.

inRequest
A value that specifies the type of the help tag content request. See “Content Request Types” (page
487) for a description of the possible requests.

outContentProvided
On output, a pointer to a value that indicates whether the help tag callback was able to fulfill the
request specified in the inRequest parameter. See “Content Provided Types” (page 492) for a
description of the values returned here

ioHelpContent
A pointer to a help tag structure that describes the help tag for the menu title. On input, you must
supply a value in the version field. On output, if the value of the outContentProvided parameter
is kHMContentProvided, the help tag structure describes the menu-title help tag.

userUPP
A universal procedure pointer to the help tag callback to invoke.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
Use this function to invoke your help tag callback for a menu title, rather than calling your callback directly,
to ensure code compatibility across different compiler targets. Typically, you do not need to invoke a help
tag callback yourself. If you associate your callback with a menu, using the
HMInstallMenuTitleContentCallback (page 467) function, the operating system calls your callback
when it is needed. For more information on the help tag callback for a menu title, see
HMMenuTitleContentProcPtr (page 480).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

InvokeHMWindowContentUPP
Calls your help tag callback for a window.

474 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

OSStatus InvokeHMWindowContentUPP (
 WindowRef inWindow,
 Point inGlobalMouse,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentRec *ioHelpContent,
 HMWindowContentUPP userUPP
);

Parameters
inWindow

A reference to the window for which the callback should provide a help tag.

inGlobalMouse
The current mouse position, in global coordinates.

inRequest
A value that specifies the type of the help tag content request. See “Content Request Types” (page
487) for a description of the possible requests.

outContentProvided
On output, a pointer to a value that indicates whether the help tag callback was able to fulfill the
request specified in the inRequest parameter. See “Content Provided Types” (page 492) for a
description of the values returned here.

ioHelpContent
A pointer to a help tag structure that describes the help tag for the window. On input, you must
supply a value in the version field. On output, if the value of the outContentProvided parameter
is kHMContentProvided, the help tag structure describes the help tag for the window.

userUPP
A universal procedure pointer to the help tag callback to invoke.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
Use this function to invoke your help tag callback for a window, rather than calling your callback directly, to
ensure code compatibility across different compiler targets. Typically, you do not need to invoke a help tag
callback yourself. If you associate your callback with a window, using the
HMInstallWindowContentCallback (page 468) function, the operating system calls your callback when
it is needed. For more information on the help tag callback for a window, see
HMWindowContentProcPtr (page 482).

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

NewHMControlContentUPP
Creates a new universal procedure pointer (UPP) to a help tag callback for a control.

Functions 475
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

HMControlContentUPP NewHMControlContentUPP (
 HMControlContentProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your help tag callback. See HMControlContentProcPtr data type fir a description.

Return Value
On return, a UPP to the help tag callback. See HMControlContentUPP data type for a description.

Discussion
Pass the UPP returned by NewHMControlContentUPP to the HMInstallControlContentCallback (page
465) function to install your help tag callback with a control. When you are finished with the help tag
callback—for example, when you dispose of the control—you should dispose of the UPP with the
DisposeHMControlContentUPP (page 457) function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

NewHMMenuItemContentUPP
Creates a new universal procedure pointer (UPP) to a help tag callback for a menu item.

HMMenuItemContentUPP NewHMMenuItemContentUPP (
 HMMenuItemContentProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your help tag callback.

Return Value
On return, a UPP to the help tag callback. See the HMMenuItemContentUPP data type for a description.

Discussion
Pass the UPP returned byNewHMMenuItemContentUPP to theHMInstallMenuItemContentCallback (page
466) function to install your help tag callback with a menu’s items. When you are finished with the help tag
callback—for example, when you dispose of the menu—you should dispose of the UPP with the
DisposeHMMenuItemContentUPP (page 458) function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

476 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

NewHMMenuTitleContentUPP
Creates a new universal procedure pointer (UPP) to a help tag callback for a menu title.

HMMenuTitleContentUPP NewHMMenuTitleContentUPP (
 HMMenuTitleContentProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your help tag callback.

Return Value
On return, a UPP to the help tag callback. See the HMMenuTitleContentUPP data type for a description

Discussion
Pass the UPP returned by NewHMMenuTitleContentUPP to the
HMInstallMenuTitleContentCallback (page 467) function to install your help tag callback with a menu’s
title. When you are finished with the help tag callback—for example, when you dispose of the menu—you
should dispose of the UPP with the DisposeHMMenuTitleContentUPP (page 458) function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

NewHMWindowContentUPP
Creates a new universal procedure pointer (UPP) to a help tag callback for a window.

HMWindowContentUPP NewHMWindowContentUPP (
 HMWindowContentProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your help tag callback.

Return Value
On return, a UPP to the help tag callback function. See the HMWindowContentUPP data type for a description.

Discussion
Pass the UPP returned by NewHMWindowContentUPP to the HMInstallWindowContentCallback (page
468) function to install your help tag callback with a window. When you are finished with the help tag
callback—for example, when you dispose of the window—you should dispose of the UPP with the
DisposeHMWindowContentUPP (page 459) function.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
MacHelp.h

Functions 477
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Callbacks

HMControlContentProcPtr
Defines a pointer to the help tag callback for a control. Your help tag callback provides help tag content for
a control.

typedef OSStatus(* HMControlContentProcPtr)
(
 ControlRef inControl,
 Point inGlobalMouse,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent
);

If you name your function MyHMControlContentCallback, you would declare it like this:

OSStatus MyHMControlContentCallback (
 ControlRef inControl,
 Point inGlobalMouse,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent
);

Parameters
inControl

A reference to the control for which your callback should supply help tag content.

inGlobalMouse
The current mouse position, in global coordinates.

inRequest
A value that specifies the type of the help tag content request. See “Content Request Types” (page
487) for a description of the possible requests.

outContentProvided
On output, a pointer to a value that indicates whether your help tag callback was able to fulfill the
request specified in the inRequest parameter. Your callback should return one of the constants
described in “Content Provided Types” (page 492).

ioHelpContent
A pointer to a help tag structure that describes the help tag for the control. On input, the Carbon
Help Manager supplies a value in the version field. If the value of the inRequest parameter is
kHMSupplyContent, your callback must fill in the remaining fields of the structure or specify that it
was unable to fulfill the help tag content request.

Return Value
A result code. See “Result Codes” (page 494).

478 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Discussion
When the user hovers the mouse over a control for which you’ve registered a help tag callback, the Carbon
Help Manager calls your callback with a kHMSupplyContent request in the inRequestparameter. To supply
a help tag, your callback should fill in the fields of the help tag structure pointed to in the ioHelpContent
parameter.

When the help tag for the control is no longer needed, the Carbon Help Manager calls your callback with a
kHMDisposeContent request. When you receive this request, you should free any memory allocated for
the help tag content and perform any other cleanup necessary before the Carbon Help Manager removes
the help tag from the screen.

If your help tag callback handles the content request, your callback should return the constant
kHMContentProvided in the outContentProvided parameter. Otherwise, your callback should indicate
that it was unable to handle the help tag content request by returning the constant kHMContentNotProvided
in the outContentProvided parameter.

To register a help tag callback with a control, pass a universal procedure pointer (UPP) to your callback
function to the HMInstallControlContentCallback (page 465) function. You can create a UPP to your
callback function with the NewHMControlContentUPP (page 475) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacHelp.h

HMMenuItemContentProcPtr
Defines a pointer to the help tag callback for a menu item. Your help tag callback provides help tag content
for a menu item.

typedef OSStatus(* HMMenuItemContentProcPtr)
(
 const MenuTrackingData *inTrackingData,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent
);

If you name your function MyHMMenuItemContentCallback, you would declare it like this:

OSStatus MyHMMenuItemContentCallback (
 const MenuTrackingData *inTrackingData,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent
);

Parameters
inTrackingData

A pointer to the tracking information for the menu for which your callback should provide a menu-item
help tag. The specific menu item for which your callback should provide a help tag is at the index
number given in the itemUnderMouse field of the tracking data structure.

Callbacks 479
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

inRequest
A value that specifies the type of the help tag content request. See “Content Request Types” (page
487) for a description of the possible requests.

outContentProvided
On output, a pointer to a value that indicates whether your help tag callback was able to fulfill the
request specified in the inRequest parameter. Your callback should return one of the constants
described in “Content Provided Types” (page 492).

ioHelpContent
A pointer to a help tag structure that describes the help tag for the menu item. On input, the Carbon
Help Manager supplies a value in the version field. If the value of the inRequest parameter is
kHMSupplyContent, your callback must fill in the remaining fields of the structure or specify that it
was unable to fulfill the help tag content request.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
When the user hovers the mouse over a menu item in a menu for which you’ve registered a help tag callback,
the Carbon Help Manager calls your callback with a kHMSupplyContent request in the inRequestparameter.
To supply a help tag, your callback should fill in the remaining fields of the help tag structure pointed to in
the ioHelpContent parameter.

When the help tag for the menu item is no longer needed, the Carbon Help Manager calls your callback with
a kHMDisposeContent request. When you receive this request, you should free any memory allocated for
the help tag content and perform any other cleanup necessary before the Carbon Help Manager removes
the help tag from the screen.

If your help tag callback handles the request for help tag content, your callback should return the constant
kHMContentProvided in the outContentProvided parameter. Otherwise, your callback should indicate
that it was unable to handle the help tag content request by returning the constant kHMContentNotProvided
in the outContentProvided parameter.

To register a menu-item help tag callback with a menu, pass a universal procedure pointer (UPP) to your
callback function to the HMInstallMenuItemContentCallback (page 466) function. You can create a UPP
to your callback function with the NewHMMenuItemContentUPP (page 476) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacHelp.h

HMMenuTitleContentProcPtr
Defines a pointer to the help tag callback for a menu title. Your help tag callback provides help tag content
for a menu’s title.

480 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

typedef OSStatus(* HMMenuTitleContentProcPtr)
(
 MenuRef inMenu,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent
);

If you name your function MyHMMenuTitleContentCallback, you would declare it like this:

OSStatus MyHMMenuTitleContentCallback (
 MenuRef inMenu,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent
);

Parameters
inMenu

A reference to the menu for which to provide help tag content.

inRequest
A value that specifies the type of the help tag content request. See “Content Request Types” (page
487) for a description of the possible requests.

outContentProvided
On output, a pointer to a value that indicates whether your help tag callback was able to fulfill the
request specified in the inRequest parameter. Your callback should return one of the constants
described in “Content Provided Types” (page 492).

ioHelpContent
A pointer to a help tag structure that describes the help tag for the menu title. On input, the Carbon
Help Manager supplies a value in the version field. If the value of the inRequest parameter is
kHMSupplyContent, your callback must fill in the remaining fields of the structure or specify that it
was unable to fulfill the help tag content request.

Return Value
A result code. See “Result Codes” (page 494).

Discussion
When the user hovers the mouse over the title of a menu for which you’ve registered a help tag callback,
the Carbon Help Manager calls your callback with a kHMSupplyContent request in the inRequestparameter.
To supply a help tag, your callback should fill in the remaining fields of the help tag structure pointed to in
the ioHelpContent parameter.

When the help tag for the menu title is no longer needed, the Carbon Help Manager calls your callback with
a kHMDisposeContent request. When you receive this request, you should free any memory allocated for
the help tag content and perform any other cleanup necessary before the Carbon Help Manager removes
the help tag from the screen.

If your help tag callback handles the request for help tag content, your callback should return the constant
kHMContentProvided in the outContentProvided parameter. Otherwise, your callback should indicate
that it was unable to handle the help tag content request by returning the constant kHMContentNotProvided
in the outContentProvided parameter.

Callbacks 481
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

To register a menu title help tag callback with a menu, pass a universal procedure pointer (UPP) to your
callback function to the HMInstallMenuTitleContentCallback (page 467) function. You can create a
UPP to your callback function with the NewHMMenuTitleContentUPP (page 477) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacHelp.h

HMWindowContentProcPtr
Defines a pointer to the help tag callback for a window. Your help tag callback provides help tag content for
a window.

typedef OSStatus(* HMWindowContentProcPtr)
(
 WindowRef inWindow,
 Point inGlobalMouse,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent
);

If you name your function MyHMWindowContentCallback, you would declare it like this:

OSStatus MyHMWindowContentCallback (
 WindowRef inWindow,
 Point inGlobalMouse,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent
);

Parameters
inWindow

A reference to the window for which your callback should provide help tag content.

inGlobalMouse
The current mouse position, in global coordinates.

inRequest
A value that specifies the type of the help tag content request. See “Content Request Types” (page
487) for a description of the possible requests.

outContentProvided
On output, a pointer to a value that indicates whether your help tag callback was able to fulfill the
request specified in the inRequest parameter. Your callback should return one of the constants
described in “Content Provided Types” (page 492).

ioHelpContent
A pointer to a help tag structure that describes the help tag for the window. On input, the Carbon
Help Manager supplies a value in the version field. If the value of the inRequest parameter is
kHMSupplyContent, your callback must fill in the remaining fields of the structure or specify that it
was unable to fulfill the help tag content request.

482 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Return Value
A result code. See “Result Codes” (page 494).

Discussion
When the user hovers the mouse over a window for which you’ve registered a help tag callback, the Carbon
Help Manager calls your callback with a kHMSupplyContent request in the inRequestparameter. To supply
a help tag, your callback should fill in the fields of the help tag structure pointed to in the ioHelpContent
parameter.

When the help tag for the window is no longer needed, the Carbon Help Manager calls your callback with a
kHMDisposeContent request. When you receive this request, you should free any memory allocated for
the help tag content and perform any other cleanup necessary before the Carbon Help Manager removes
the help tag from the screen.

If your help tag callback handles the request for help tag content, your callback should return the constant
kHMContentProvided in the outContentProvided parameter. Otherwise, your callback should indicate
that it was unable to handle the help tag content request by returning the constant kHMContentNotProvided
in the outContentProvided parameter.

To register a help tag callback with a window, pass a universal procedure pointer (UPP) to your callback
function to the HMInstallWindowContentCallback (page 468) function. You can create a UPP to your
callback function with the NewHMWindowContentUPP (page 477) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacHelp.h

Data Types

HMHelpContentRec
Describes a help tag.

struct HMHelpContentRec {
 SInt32 version;
 Rect absHotRect;
 HMTagDisplaySide tagSide;
 HMHelpContent content[2];
};
typedef struct HMHelpContentRec HMHelpContentRec;

Fields
version

The structure version.

Data Types 483
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

absHotRect
The hot rectangle for the help tag, expressed in global coordinates. The hot rectangle defines the
area on the screen over which the user must hover the mouse to trigger the Carbon Help Manager
to display the help tag.

You may pass an empty rectangle—a rectangle with coordinates (0,0,0,0)—in this field. The Carbon
Help Manager automatically substitutes the current location of the control, window, or menu item
for the empty rectangle when the help tag is displayed.

tagSide
A value that specifies which side of the hot rectangle the help tag is displayed. For a description of
the constants used here, see “Help Tag Display Locations” (page 489).

content
An array of two help tag content structures describing the help message for the tag. The first structure
describes the content displayed by default in the help tag (the minimum content). The second structure
describes additional content that is displayed in the help tag if the user holds down the Command
key while the help tag is displayed (the maximum, or expanded, content).

Special Considerations

On Mac OS X version 10.1.x and earlier, you cannot supply an empty hot rectangle from a help tag callback.
You can, however, supply an empty hot rectangle to the HMSetControlHelpContent,
HMSetWindowHelpContent, and HMSetMenuItemHelpContent functions.

When you supply an empty hot rectangle for a control help tag, the Carbon Help Manager uses the function
LocalToGlobal to convert the control’s bounds from window-local coordinates into global coordinates.
LocalToGlobal only returns true global coordinates if the port origin is (0,0). If your application sets the
port origin to a non-zero value, it should do so only temporarily; your application should never leave the
port origin set to a non-zero value across calls to the event system that may attempt to display a help tag.
Setting the port origin to a non-zero value typically prevents help tags from being displayed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacHelp.h

HMHelpContentPtr
A pointer to a help tag structure.

typedef HMHelpContentRec* HMHelpContentPtr;

Discussion
See HMHelpContentRec (page 483) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacHelp.h

HMHelpContent
Contains a help tag message.

484 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

struct HMHelpContent {
 HMContentType contentType;
 union {
 CFStringRef tagCFString;
 Str255 tagString;
 HMStringResType tagStringRes;
 TEHandle tagTEHandle;
 SInt16 tagTextRes;
 SInt16 tagStrRes;
 } u;
};

Fields
contentType

A value that indicates the format of the help content contained in the structure. The help tag content
formats that are allowed are described by the constants “Help Tag Content Types” (page 488).

tagCFString
If the value of the contentType field is kHMCFStringContent, a CFString specifying the help tag
message. If the value of the contentType field is kHMCFStringLocalizedContent, a CFString
containing the name of the localized help tag message in the Localizable.strings file.

tagString
If the value of the contentType field is kHMPascalStrContent, a Pascal string specifying the help
tag message.

tagStringRes
If the value of the contentType field is kHMStringResContent, a ‘STR#’ resource ID and an index
number specifying the help tag message.

tagTEHandle
If the value of the contentType field is kHMTEHandleContent, a TextEdit handle specifying the
help tag message. This type of help tag content is only supported in CarbonLib and in Mac OS X
version 10.2 and later.

tagTextRes
If the value of the contentType field is kHMTextResContent, the resource ID of a ‘TEXT’ resource
and a ‘styl’ resource describing the help tag message. This type of help tag content is only supported
in CarbonLib and in Mac OS X version 10.2 and later.

tagStrRes
If the value of the contentType field is kHMStrResContent, a ‘STR ‘ resource ID, specifying the help
tag message.

Discussion
The HMHelpContent structure is used in the content field of the HMHelpContentRec (page 483) structure
to hold the help content associated with a help tag. The HMHelpContent structure describes a single help
message.

HMControlContentUPP
Defines a universal procedure pointer to the help tag callback for a control.

typedef struct OpaqueHMControlContentProcPtr* HMControlContentUPP;

Discussion
For more information, see the description of the HMControlContentProcPtr (page 478) callback function.

Data Types 485
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacHelp.h

HMWindowContentUPP
Defines a universal procedure pointer to the help tag callback for a window.

typedef struct OpaqueHMWindowContentProcPtr* HMWindowContentUPP;

Discussion
For more information, see the description of the HMWindowContentProcPtr (page 482) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacHelp.h

HMMenuItemContentUPP
Defines a universal procedure pointer to the help tag callback for a menu item.

typedef struct OpaqueHMMenuItemContentProcPtr* HMMenuItemContentUPP;

Discussion
For more information, see the description of the HMMenuItemContentProcPtr (page 479) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacHelp.h

HMMenuTitleContentUPP
Defines a universal procedure pointer to the help tag callback for a menu title.

typedef struct OpaqueHMMenuTitleContentProcPtr* HMMenuTitleContentUPP;

Discussion
For more information, see the description of the HMMenuTitleContentProcPtr (page 480) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacHelp.h

486 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Constants

Help Manager Version
Represents the current version of the HMHelpContentRec structure.

enum {
 kMacHelpVersion = 3
};

Constants
kMacHelpVersion

The current structure version.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

Discussion
When the Carbon Help Manager calls your help tag callback, it supplies the kMacHelpVersion constant in
the version field of the HMHelpContentRec (page 483) structure it passes to your callback.

Content Request Types
Identify the type of request made to a help tag callback.

typedef SInt16 HMContentRequest;
enum {
 kHMSupplyContent = 0,
 kHMDisposeContent = 1
};

Constants
kHMSupplyContent

The help tag callback should supply help content.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMDisposeContent
The help tag callback should dispose of help content.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

Discussion
These constants are passed to your help tag callback in the inRequest parameter to indicate the nature of
the help tag content request. In particular, the Carbon Help Manager passes kHMSupplyContent when the
user pauses with the mouse above a user interface object for which a help tag callback is registered. When
the user moves the mouse away from the object, the Carbon Help Manager passes kHMDisposeContent
to your callback.

Constants 487
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Help Tag Content Types
Identify the type of content contained in a help tag.

typedef UInt32 HMContentType;
enum {
 kHMNoContent = 'none',
 kHMCFStringContent = 'cfst',
 kHMCFStringLocalizedContent = ‘cfsl’,
 kHMPascalStrContent = 'pstr',
 kHMStringResContent = 'str#',
 kHMTEHandleContent = 'txth',
 kHMTextResContent = 'text',
 kHMStrResContent = 'str '
};

Constants
kHMNoContent

The help tag contains no content.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMCFStringContent
The help tag content is a CFString object.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMCFStringLocalizedContent
The help tag content is a localized string contained in the Localizeable.strings file. The content
field of the help tag structure contains a CFString key which the Carbon Help Manager uses to retrieve
the help tag string from the Localizable.strings file in the appropriate language folder.

Available in Mac OS X v10.2 and later.

Declared in MacHelp.h.

kHMPascalStrContent
The help tag content is a Pascal string.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMStringResContent
The help tag content is a text string, stored in the list of strings in a resource of type 'STR#'.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMTEHandleContent
The help tag content is contained in a TextEdit record, referred to by a TextEdit handle. This type of
help tag content is only supported in CarbonLib and in Mac OS X version 10.2 and later.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

488 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

kHMTextResContent
The help tag content is styled text, described by the combination of a text resource ('TEXT') and a
style resource ('styl'). This type of help tag content is only supported in CarbonLib and in Mac OS X
version 10.2 and later.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMStrResContent
The help tag content is a text string stored in a resource of type 'STR '.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

Discussion
These constants are used in the contentType field of the HMHelpContent (page 484) structure to identify
the format of the help content contained in that structure.

Help Tag Display Locations
Specify which side of the hot rectangle to display the help tag.

typedef SInt16 HMTagDisplaySide;
enum {
 kHMDefaultSide = 0,
 kHMOutsideTopScriptAligned = 1,
 kHMOutsideLeftCenterAligned = 2,
 kHMOutsideBottomScriptAligned = 3,
 kHMOutsideRightCenterAligned = 4,
 kHMOutsideTopLeftAligned = 5,
 kHMOutsideTopRightAligned = 6,
 kHMOutsideLeftTopAligned = 7,
 kHMOutsideLeftBottomAligned = 8,
 kHMOutsideBottomLeftAligned = 9,
 kHMOutsideBottomRightAligned = 10,
 kHMOutsideRightTopAligned = 11,
 kHMOutsideRightBottomAligned = 12,
 kHMOutsideTopCenterAligned = 13,
 kHMOutsideBottomCenterAligned = 14,
 kHMInsideRightCenterAligned = 15,
 kHMInsideLeftCenterAligned = 16,
 kHMInsideBottomCenterAligned = 17,
 kHMInsideTopCenterAligned = 18,
 kHMInsideTopLeftCorner = 19,
 kHMInsideTopRightCorner = 20,
 kHMInsideBottomLeftCorner = 21,
 kHMInsideBottomRightCorner = 22,
 kHMAbsoluteCenterAligned = 23
};

Constants
kHMDefaultSide

Display the help tag at the default system location. The system default is below the hot rectangle,
horizontally centered.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

Constants 489
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

kHMOutsideTopScriptAligned
Display the help tag above the hot rectangle, aligned with the right or left side, depending upon the
direction of the system script.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideLeftCenterAligned
Display the help tag to the left of the hot rectangle, centered vertically.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideBottomScriptAligned
Display the help tag below the hot rectangle, aligned with the right or left side, depending upon the
direction of the system script.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideRightCenterAligned
Display the help tag to the right of the hot rectangle, centered vertically.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideTopLeftAligned
Display the help tag above the hot rectangle, with their left edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideTopRightAligned
Display the help tag above the hot rectangle, with their right edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideLeftTopAligned
Display the help tag to the left of the hot rectangle, with their top edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideLeftBottomAligned
Display the help tag to the left of the hot rectangle, with their bottom edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideBottomLeftAligned
Display the help tag below the hot rectangle, with their left edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideBottomRightAligned
Display the help tag below the hot rectangle, with their right edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

490 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

kHMOutsideRightTopAligned
Display the help tag to the right of the hot rectangle, with their top edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideRightBottomAligned
Display the help tag to the right of the hot rectangle, with their bottom edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideTopCenterAligned
Display the help tag above the hot rectangle, centered horizontally.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMOutsideBottomCenterAligned
Display the help tag below the hot rectangle, centered horizontally.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMInsideRightCenterAligned
Display the help tag inside the hot rectangle, with their right edges aligned and centered vertically.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMInsideLeftCenterAligned
Display the help tag inside the hot rectangle, with their left edges aligned and centered vertically.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMInsideBottomCenterAligned
Display the help tag inside the hot rectangle, with their bottom edges aligned and centered
horizontally.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMInsideTopCenterAligned
Display the help tag inside the hot rectangle, with their top edges aligned and centered horizontally.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMInsideTopLeftCorner
Display the help tag inside the hot rectangle, with their top and left edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMInsideTopRightCorner
Display the help tag inside the hot rectangle, with their top and right edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

Constants 491
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

kHMInsideBottomLeftCorner
Display the help tag inside the hot rectangle, with their bottom and left edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMInsideBottomRightCorner
Display the help tag inside the hot rectangle, with their bottom and right edges aligned.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMAbsoluteCenterAligned
Display the help tag centered vertically and horizontally within the hot rectangle.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

Discussion
The locations described by these constants are relative to the help tag’s hot rectangle, which defines, in
global coordinates, the area on the screen with which the help tag is associated. These constants are used
in the tagSide field of the HMHelpContentRec (page 483) structure.

Content Provided Types
Indicate whether or not help tag content has been supplied.

typedef SInt16 HMContentProvidedType;
enum {
 kHMContentProvided = 0,
 kHMContentNotProvided = 1,
 kHMContentNotProvidedDontPropagate = 2
};

Constants
kHMContentProvided

Help tag content has been provided.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMContentNotProvided
Help tag content was not provided. When your callback returns this constant, the Carbon Help Manager
calls up to the next help tag callback in the hierarchy. If that callback also fails to provide help content,
the Carbon Help Manager continues to propagate the request for help tag content until the request
is fulfilled, the top of the hierarchy is reached, or a help tag callback tells the Carbon Help Manager
to stop propagating the request.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMContentNotProvidedDontPropagate
Help tag content was not provided. When your callback returns this constant, the Carbon Help Manager
assumes that there is no help content for the control, window, menu title, or menu item and does
not propagate the request.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

492 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Discussion
Your help tag callback function should return one of these constants in its outContentProvided parameter.

Help Tag Content Indexes
Identify an index into the array of help tag content structures in a help tag.

enum {
 kHMMinimumContentIndex = 0,
 kHMMaximumContentIndex = 1
};

Constants
kHMMinimumContentIndex

The index of the help tag’s minimum (or default) content.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

kHMMaximumContentIndex
The index of the help tag’s maximum (or expanded) content.

Available in Mac OS X v10.0 and later.

Declared in MacHelp.h.

Discussion
These constants are used to access the minimum or maximum content of a help tag, in the content field
of the HMHelpContentRec (page 483) structure.

Obsolete Help Tag Display Locations
Indicate the side of the hot rectangle on which the help tag should be displayed.

enum {
 kHMTopSide = 1,
 kHMLeftSide = 2,
 kHMBottomSide = 3,
 kHMRightSide = 4,
 kHMTopLeftCorner = 5,
 kHMTopRightCorner = 6,
 kHMLeftTopCorner = 7,
 kHMLeftBottomCorner = 8,
 kHMBottomLeftCorner = 9,
 kHMBottomRightCorner = 10,
 kHMRightTopCorner = 11,
 kHMRightBottomCorner = 12
};

Discussion
These constants have been replaced by the constants described in “Help Tag Display Locations”; you should
use those constants instead.

Constants 493
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Result Codes

The most common result codes returned by the Carbon Help Manager are listed in the table below.

DescriptionValueResult Code

Minimum content for a help tag is unrecognized.-10980errHMIllegalContentForMinimumState

Available in Mac OS X v10.0 and later.

Maximum content for a help tag is unrecognized.-10981errHMIllegalContentForMaximumState

Available in Mac OS X v10.0 and later.

494 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 4

Carbon Help Manager Reference

Framework: Carbon/Carbon.h

Declared in ColorPicker.h

Overview

Using Color Picker Manager functions, your application can use the standard user interface for soliciting color
choices from users. Your application can use these functions to display, respond to events within, and close
a color picker dialog box. The Color Picker Manager provides standard color pickers (which allow users to
select colors from ranges of colors) and a standard dialog box allowing users to interact with the color picker.
Your application can also create its own color pickers and dialog boxes to work with the Color Picker Manager.

Carbon supports the Color Picker Manager functions that most applications rely on, GetColor, PickColor,
and NPickColor. In addition, Carbon will support all the functions described as supported in "Technote
1100: Color Picker 2.1."

That same Technote specifies certain functions from earlier versions of the Color Picker Manager that are no
longer supported by the Mac OS; Carbon will not support these functions. In addition, many of the functions
that start with the word "Picker", such as PickerInit, PickerGetProfile, and PickerItemHit, are no
longer supported. These routines provided low-level access to the Color Picker Manager that was rarely used.

Functions by Task

Converting Between SmallFract and Fixed Values

Fix2SmallFract (page 498)
Converts a fixed integer to a SmallFract value.

SmallFract2Fix (page 506)
Converts a SmallFract value to a fixed integer.

Converting Colors Among Color Models

CMY2RGB (page 497)
Converts a CMY color to its equivalent RGB color.

HSL2RGB (page 500)
Converts an HSL color to an RGB color.

Overview 495
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

HSV2RGB (page 500)
Converts an HSV color to an RGB color.

RGB2CMY (page 505)
Converts an RGB color to a CMY color.

RGB2HSL (page 505)
Converts an RGB color to an HSL color.

RGB2HSV (page 505)
Converts an RGB color to an HSV color.

Using the Standard Color Picker Dialog Box

NPickColor (page 503)
Displays the Color Picker dialog.

GetColor (page 499)
Requests the user to choose a color. This function is obsolete; use the PickColor function instead.

PickColor (page 504)
Requests the user to choose a color from the standard color picker dialog box.

Working With Universal Procedure Pointers

NewUserEventUPP (page 503)
Creates a universal procedure pointer (UPP) to an event filter callback.

DisposeUserEventUPP (page 498)
Disposes of a a universal procedure pointer (UPP) to an event filter callback.

InvokeUserEventUPP (page 501)
Invokes an event filter callback.

NewNColorChangedUPP (page 502)
Creates a universal procedure pointer (UPP) to a color-changed callback.

InvokeNColorChangedUPP (page 501)
Invokes a color-changed callback.

DisposeNColorChangedUPP (page 497)
Disposes of a a universal procedure pointer (UPP) to a color-changed callback.

NewColorChangedUPP (page 502)
Creates a universal procedure pointer (UPP) to a color-changed callback.

InvokeColorChangedUPP (page 501)
Invokes a color-changed callback.

DisposeColorChangedUPP (page 497)
Disposes of a a universal procedure pointer (UPP) to a color-changed callback.

496 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Functions

CMY2RGB
Converts a CMY color to its equivalent RGB color.

void CMY2RGB (
 const CMYColor *cColor,
 RGBColor *rColor
);

Parameters
cColor

A pointer to a CMYColor structure to be converted.

rColor
A pointer to an RGBColor structure for the converted color.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

DisposeColorChangedUPP
Disposes of a a universal procedure pointer (UPP) to a color-changed callback.

void DisposeColorChangedUPP (
 ColorChangedUPP userUPP
);

Parameters
userUPP

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

DisposeNColorChangedUPP
Disposes of a a universal procedure pointer (UPP) to a color-changed callback.

Functions 497
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

void DisposeNColorChangedUPP (
 NColorChangedUPP userUPP
);

Parameters
userUPP

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
ColorPicker.h

DisposeUserEventUPP
Disposes of a a universal procedure pointer (UPP) to an event filter callback.

void DisposeUserEventUPP (
 UserEventUPP userUPP
);

Parameters
userUPP

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

Fix2SmallFract
Converts a fixed integer to a SmallFract value.

SmallFract Fix2SmallFract (
 Fixed f
);

Parameters
f

The value of type Fixed to be converted to a SmallFract value.

Return Value
A SmallFract converted from the fixed integer value specified in the f parameter. See the description of
the SmallFract data type.

Discussion
A SmallFract value can represent a value between 0 and 65,535. Introduced by the original Color Picker
Package, SmallFract values are used in CMYColor, HSLColor, and HSVColor structures. They can be
assigned directly to and from integers.

498 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

GetColor
Requests the user to choose a color. This function is obsolete; use the PickColor function instead.

Boolean GetColor (
 Point where,
 ConstStr255Param prompt,
 const RGBColor *inColor,
 RGBColor *outColor
);

Parameters
where

A point defining the location of the upper-left corner of the dialog box. If you set this parameter to
(0,0), the dialog box is centered horizontally on the main screen, with one-third of the empty space
above the box and two-thirds below, regardless of the screen size. If you set this parameter to (–1,–1),
the GetColor function displays the dialog box on the screen supporting the greatest pixel depth.

prompt
Text for prompting the user to choose a color. This string is displayed in the upper-left corner of the
dialog box.

inColor
A pointer to an RGBColor structure for a color at entry to the picker. This is the original color, which
the user may want for comparison.

outColor
A pointer to an RGBColor structure describing the new color. This is set to the last color that the user
picked before clicking OK. On entry, the outColor parameter is treated as undefined, so the output
color sample initially matches the input. Although the color being picked may vary widely, the input
color sample remains fixed, and clicking the input sample resets the output color sample to match
it.

Return Value
True if the user clicks the OK button; false if the user clicks the Cancel button. In either case, the dialog
box is removed.

Discussion
The GetColor function does not support ColorSync 1.0 color matching; however, the PickColor function
does. This function was designed for use for version 1.0 of the Color Picker Package and is still supported for
backward compatibility.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.

Functions 499
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Declared In
ColorPicker.h

HSL2RGB
Converts an HSL color to an RGB color.

void HSL2RGB (
 const HSLColor *hColor,
 RGBColor *rColor
);

Parameters
hColor

A pointer to the HSLColor structure to be converted.

rColor
A pointer to an RGBColor structure for the converted color.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

HSV2RGB
Converts an HSV color to an RGB color.

void HSV2RGB (
 const HSVColor *hColor,
 RGBColor *rColor
);

Parameters
hColor

A pointer to the HSVColor structure to be converted.

rColor
A pointer to an RGBColor structure for the converted color.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

500 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

InvokeColorChangedUPP
Invokes a color-changed callback.

void InvokeColorChangedUPP (
 SInt32 userData,
 PMColor *newColor,
 ColorChangedUPP userUPP
);

Parameters
newColor
userUPP

Discussion
You should not need to use the function InvokeColorChangedUPP, as the Color Picker Manager calls your
color-changed callback function for you.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

InvokeNColorChangedUPP
Invokes a color-changed callback.

void InvokeNColorChangedUPP (
 SRefCon userData,
 NPMColor *newColor,
 NColorChangedUPP userUPP
);

Parameters
newColor
userUPP

Discussion
You should not need to use the function InvokeNColorChangedUPP, as the Color Picker Manager calls your
color-changed callback function for you.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
ColorPicker.h

InvokeUserEventUPP
Invokes an event filter callback.

Functions 501
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Boolean InvokeUserEventUPP (
 EventRecord *event,
 UserEventUPP userUPP
);

Parameters
event
userUPP

Discussion
You should not need to use the function InvokeUserEventUPP, as the Color Picker Manager calls your
event filter callback function for you.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

NewColorChangedUPP
Creates a universal procedure pointer (UPP) to a color-changed callback.

ColorChangedUPP NewColorChangedUPP (
 ColorChangedProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ColorChangedUPP data type.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

NewNColorChangedUPP
Creates a universal procedure pointer (UPP) to a color-changed callback.

502 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

NColorChangedUPP NewNColorChangedUPP (
 NColorChangedProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the NColorChangedUPP data type.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
ColorPicker.h

NewUserEventUPP
Creates a universal procedure pointer (UPP) to an event filter callback.

UserEventUPP NewUserEventUPP (
 UserEventProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the UserEventUPP data type.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

NPickColor
Displays the Color Picker dialog.

OSErr NPickColor (
 NColorPickerInfo *theColorInfo
);

Parameters
theColorInfo

A pointer to a color picker parameter (NColorPickerInfo) data structure. On input, you specify
information such as the location of the dialog. Make sure that you set theColor.profile field in
this strucure to the color space that you want the color returned in. On output, the data structure
specifies information such as whether the user changed the color.

Functions 503
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Return Value
A result code. See “Color Picker Result Codes” (page 522).

Discussion
The NPickColor function displays the standard dialog for color pickers. Use the color picker parameter data
structure to specify information to and obtain information from the Color Picker Manager.

Availability
Available in CarbonLib 1.0 and later when ColorPicker 2.1 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

This call is identical to the unsupported function PickColor , but it replaces the older ColorSync 1.0 data
types with new ColorSync 2.x profile references. When filling out the parameter block for a call to the function
NPickColor, you must replace all profile handles with profile references. The optional color-changed proc
you has also changed; a new data structure NCMColor replaces the CMColor data type and uses profile
references.

Related Sample Code
CarbonSketch

Declared In
ColorPicker.h

PickColor
Requests the user to choose a color from the standard color picker dialog box.

OSErr PickColor (
 ColorPickerInfo *theColorInfo
);

Parameters
theColorInfo

A pointer to the ColorPickerInfo (Old) (page 510) structure, to specify information to and obtain
information from the Color Picker Manager.

Return Value
A result code. See “Color Picker Result Codes” (page 522).

Discussion
The PickColor function displays the standard modal dialog box for color pickers. When the user clicks the
OK button, PickColor removes the dialog box and returns true in the newColorChosen field and the
user’s selected color in the theColor field of theColorInfo. When the user clicks the Cancel button,
PickColor removes the dialog box and returns false in the newColorChosen field.

Availability
Available in CarbonLib 1.0 and later when ColorPicker 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

504 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

RGB2CMY
Converts an RGB color to a CMY color.

void RGB2CMY (
 const RGBColor *rColor,
 CMYColor *cColor
);

Parameters
rColor

A pointer to an RGBColor structure to be converted.

cColor
A pointer to a CMYColor structure for the converted color.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

RGB2HSL
Converts an RGB color to an HSL color.

void RGB2HSL (
 const RGBColor *rColor,
 HSLColor *hColor
);

Parameters
rColor

A pointer to the RGBColor structure to be converted.

hColor
A pointer to an HSLColor structure for the converted color.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

RGB2HSV
Converts an RGB color to an HSV color.

Functions 505
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

void RGB2HSV (
 const RGBColor *rColor,
 HSVColor *hColor
);

Parameters
rColor

A pointer to the RGBColor structure to be converted.

hColor
A pointer to an HSVColor structure for the converted color.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

SmallFract2Fix
Converts a SmallFract value to a fixed integer.

Fixed SmallFract2Fix (
 SmallFract s
);

Parameters
s

The value of type SmallFract to be converted into a fixed integer.

Return Value
A fixed integer converted from the SmallFract value specified in the s parameter.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

Callbacks by Task

Changing Colors in a Document

NColorChangedProcPtr (page 508)
Defines a pointer to your color-changed callback function, which applies a new color to a user’s
document.

506 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

ColorChangedProcPtr (page 507)
Defines a pointer to your color-changed callback function, which applies a new color to a user
document.

Handling Application-Directed Events in a Color Picker

UserEventProcPtr (page 508)
Defines a pointer to your event filter callback function, which determines whether your application
or the Color Picker Manager handles this user event.

Callbacks

ColorChangedProcPtr
Defines a pointer to your color-changed callback function, which applies a new color to a user document.

typedef void (*ColorChangedProcPtr) (
 SInt32 userData,
 PMColor *newColor
);

If you name your function MyColorChangedProc, you would declare it like this:

void MyColorChangedProc (
 SInt32 userData,
 PMColor *newColor
);

Parameters
userData

Data that your application supplies in the colorProcData field of ColorPickerInfo (Old) (page
510). Your application can use this value for any purpose it needs.

newColor
A pointer to a PMColor (page 516) structure that contains the new color selected by the user. Your
color-changed function should update the user’s document to use this color.

Discussion
Your application should supply the colorProc field of the color picker parameter with a pointer to your
color change callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

Callbacks 507
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

NColorChangedProcPtr
Defines a pointer to your color-changed callback function, which applies a new color to a user’s document.

typedef void (*NColorChangedProcPtr)
(
 SInt32 userData,
 NPMColor *newColor
);

If you name your function MyNColorChangedProc, you would declare it like this:

void MyNColorChangedProc (
 SInt32 userData,
 NPMColor *newColor
);

Parameters
newColor

Availability
Available in Mac OS X v10.0 and later.

Declared In
ColorPicker.h

UserEventProcPtr
Defines a pointer to your event filter callback function, which determines whether your application or the
Color Picker Manager handles this user event.

typedef Boolean (*UserEventProcPtr) (
 EventRecord *event
);

If you name your function MyUserEventProc, you would declare it like this:

Boolean MyUserEventProc (
 EventRecord *event
);

Parameters
event

A pointer to an event record.

Return Value
True if your application handles the event, false otherwise. The Color Picker Manager will process the
event further only if false is returned.

Discussion
Your application should supply the eventProc field of the color picker parameter block with a pointer to
your filter function. Your filter function should examine the event record passed in the first parameter to
determine whether your application needs to handle the event contained in the record.

508 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Applications can generally allow the Color Picker Manager to handle all events that might occur while
displaying the standard dialog box. Update events are exceptions to this, however.

The PickColor function calls the Dialog Manager function DialogSelect. DialogSelect does not allow
background windows to receive update events; therefore, at a minimum, your event filter function should
handle update events. If your application needs to filter or preprocess other events before DialogSelect
handles them, your application should do so in its event filter function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

Data Types

CMYColor
Contains cyan, magenta, and yellow values for a color.

struct CMYColor {
 SmallFract cyan;
 SmallFract magenta;
 SmallFract yellow;
};
typedef struct CMYColor CMYColor;

Fields
cyan

The SmallFract (page 517) value for the cyan component.

magenta
The SmallFract value for the magenta component.

yellow
The SmallFract value for the yellow component.

Discussion
The CMYColor structure contains cyan, magenta, and yellow colors. Your application can use a CMYColor
structure to specify a color in a PMColor (page 516) structure. For example, your application supplies a
PMColor structure in a ColorPickerInfo (Old) (page 510) block that it passes to the PickColor (page
504) function. Note that CMY and RGB colors are complementary.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

Data Types 509
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

ColorChangedUPP
Defines a universal procedure pointer to a color-changed callback.

typedef ColorChangedProcPtr ColorChangedUPP;

Discussion
For more information, see the description of the ColorChangedProcPtr (page 507) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ColorPicker.h

ColorPickerInfo (Old)
Contains information needed to display a standard color picker dialog box.

struct ColorPickerInfo {
 PMColor theColor;
 CMProfileHandle dstProfile;
 UInt32 flags;
 DialogPlacementSpec placeWhere;
 Point dialogOrigin;
 OSType pickerType;
 UserEventUPP eventProc;
 ColorChangedUPP colorProc;
 UInt32 colorProcData;
 Str255 prompt;
 PickerMenuItemInfo mInfo;
 Boolean newColorChosen;
 SInt8 filler;
};
typedef struct ColorPickerInfo ColorPickerInfo;

Fields
theColor

A PMColor (page 516) structure. The color that your application supplies in this field is passed to the
color picker for editing. This becomes the original color for the color picker. After the user clicks either
the OK or Cancel button to close the dialog box, this field contains the new color, that is, the color
last chosen by the user. Although the new colors selected by the user may vary widely, the original
color remains fixed for comparison.

dstProfile
A handle to a ColorSync 1.0 profile for the final output device. To use the default system profile, set
this field to NULL.

flags
Bits representing the color picker flags, which are described in detail in “Color Picker Flags” (page
518). Your application can set any of the following flags: CanModifyPalette, CanAnimatePalette,
AppIsColorSyncAware. The color picker may set any of the following flags and override your
application settings: InSystemDialog, InApplicationDialog, InPickerDialog,
DetachedFromChoices.

510 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

placeWhere
A specification for where to position the dialog box. Your application uses one of the following
constants (described in “Dialog Placement Constants” (page 520)) to specify the position for the color
picker dialog box: kAtSpecifiedOrigin, kDeepestColorScreen, kCenterOnMainScreen.

dialogOrigin
The point, in global coordinates, at which to locate the upper-left corner of the dialog box. This origin
point is used only if your application supplies the kAtSpecifiedOrigin specifier in the placeWhere
field.

pickerType
The component subtype of the initial color picker. If your application sets this field to 0, the default
color picker is used (that is, the last color picker chosen by the user). When PickColor returns, this
field contains the component subtype of the color picker that was chosen when the user closed the
color picker dialog box.

eventProc
A pointer to an application-defined event filter function for handling user events meant for your
application. If your filter function returns true, the Color Picker Manager will not process the event
any further. If your filter function returns false, the Color Picker Manager handles the event as if it
were meant for the color picker. The event filter function you can supply here is described in
UserEventProcPtr (page 508).

colorProc
A pointer to an application-defined function to handle color changes. This function, described in
ColorChangedProcPtr (page 507), should support the updating of colors in a document as the user
selects them.

colorProcData
A long integer that the Color Picker Manager passes to the application-defined function supplied in
the colorProc field. Your application-defined function can use this value for any purpose it needs.

prompt
A text string prompting the user to choose a color for a particular use (for example, “Choose a highlight
color:”).

mInfo
A PickerMenuItemInfo (page 515) structure. This structure allows your application to specify your
Edit menu for use when a color picker dialog box is displayed.

newColorChosen
True if the user chose a color and clicked the OK button, and false if the user clicked Cancel.

filler

Discussion
When your application calls the PickColor (page 504) function to display a standard color picker dialog box,
your application uses a color picker parameter block to specify information to and obtain information from
the Color Picker Manager. The color picker parameter block is defined by the ColorPickerInfo data type.

This version of the Color Picker Manager uses ColorSync 1.0 profiles only. The ColorSync 1.0 profile is a
handle-based profile. The profile format is defined by Apple Computer. You cannot use version 2.0 profiles,
which are identified by profile references, with this version of the Color Picker Manager. ColorSync 1.0 profiles
typically reside in the ColorSyncTM Profiles folder (within the Preferences folder of the System Folder). They
may also be embedded with the images to which they pertain in graphics files.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Data Types 511
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Declared In
ColorPicker.h

HSLColor
Contains hue, saturation and lightness information for a color.

struct HSLColor {
 SmallFract hue;
 SmallFract saturation;
 SmallFract lightness;
};
typedef struct HSLColor HSLColor;

Fields
hue

The SmallFract (page 517) value for the hue.

saturation
The SmallFract value for the saturation, where 1 is full color.

lightness
The SmallFract value for lightness, where 1 is full white.

Discussion
The HSLColor structure contains a color’s hue, saturation, and lightness values. Your application can use an
HSLColor structure to specify a color in a PMColor (page 516) structure. For example, your application
supplies a PMColor structure in a ColorPickerInfo (Old) (page 510) block that it passes to the
PickColor (page 504) function. Note that the standard HLS order is altered to HSL.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

HSVColor
Contains hue, saturation and value information for a color.

struct HSVColor {
 SmallFract hue;
 SmallFract saturation;
 SmallFract value;
};
typedef struct HSVColor HSVColor;

Fields
hue

The SmallFract (page 517) value for the hue.

saturation
The SmallFract value for the saturation, where 1 is full color.

512 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

value
The SmallFract value for the color’s value, where 1 is maximum intensity.

Discussion
The HSVColor structure contains the hue, saturation, and value of a color. Your application can use an
HSVColor structure to specify a color in a PMColor (page 516) structure. For example, your application
supplies a PMColor structure in a ColorPickerInfo (Old) (page 510) block that it passes to the
PickColor (page 504) function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

NColorChangedUPP
Defines a universal procedure pointer to your color-changed callback.

typedef NColorChangedProcPtr NColorChangedUPP;

Discussion
For more information, see the description of the NColorChangedProcPtr (page 508) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ColorPicker.h

NColorPickerInfo
Contains information needed to display a standard color picker dialog.

Data Types 513
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

struct NColorPickerInfo {
 NPMColor theColor;
 CMProfileRef dstProfile;
 UInt32 flags;
 DialogPlacementSpec placeWhere;
 Point dialogOrigin;
 OSType pickerType;
 UserEventUPP eventProc;
 NColorChangedUPP colorProc;
 UInt32 colorProcData;
 Str255 prompt;
 PickerMenuItemInfo mInfo;
 Boolean newColorChosen;
 UInt8 reserved;
};
typedef struct NColorPickerInfo NColorPickerInfo;

Fields
theColor

An NPMColor structure that contains a color profile and a color.

dstProfile
The destination profile.

flags
The options to apply when displaying the color picker dialog. For information on the flags that you
can supply, see “Color Picker Flags” (page 518).

dialogOrigin
A constant that specifies where on the screen to place the color picker dialog. The constant
kAtSpecifiedOrigin specifies to place the top-left corner of the color picker dialog at the point
specified in the dialogOrigin field of the color picker parameter block. The constant
kDeepestColorScreen specifies to center the color picker dialog on the screen with the greatest
color depth. The constant kCenterOnMainScreen specifies to center the color picker dialog on the
main screen.

pickerType
The type of color picker.

eventProc
A a universal procedure pointer to an event-filter callback.

colorProc
A universal procedure pointer to a color-changed callback.

colorProcData
Data needed for your color-changed callback.

prompt
A string to use as a prompt.

mInfo
A structure that contains information needed for your application to specify an Edit menu for use
when a color picker dialog box is displayed.

newColorChosen
A Boolean value that specifies whether or not a new color was chosen.

reserved
Reserved for future use.

514 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
ColorPicker.h

NPMColor
Contains a color profile and a color.

struct NPMColor {
 CMProfileRef profile;
 CMColor color;
};
typedef struct NPMColor NPMColor;

Fields
profile

A color-matching profile.

color
A color, as specified in a color-matching structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ColorPicker.h

NPMColorPtr
A pointer to an NPMColor data structure.

typedef NPMColor * NPMColorPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
ColorPicker.h

PickerMenuItemInfo
Contains information needed for your application to specify an Edit menu for use when a color picker dialog
box is displayed.

Data Types 515
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

struct PickerMenuItemInfo {
 short editMenuID;
 short cutItem;
 short copyItem;
 short pasteItem;
 short clearItem;
 short undoItem;
};
typedef struct PickerMenuItemInfo PickerMenuItemInfo;

Fields
editMenuID

The resource ID of the Edit menu for the color picker.

cutItem
The item number of the Cut command.

copyItem
The item number of the Copy command.

pasteItem
The item number of the Paste command.

clearItem
The item number of the Clear command.

undoItem
The item number of the Undo command.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ColorPicker.h

PMColor
Contains a color profile and a color.

 {
 CMProfileHandle profile;
 CMColor color;
};
typedef struct PMColor PMColor;

Fields
profile

A handle to a color-matching profile (CMProfile structure). If your application sets this field to NULL,
then the Color Picker Manager uses the default system profile.

color
A color, as specified in a color-matching structure. (CMColor is a union data type defined in the
ColorSync programming interface.

516 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Discussion
For defining colors, version 2.0 of the Color Picker Manager uses a picker color structure. For example, when
your application creates a ColorPickerInfo parameter block to pass to PickColor (page 504) , your
application supplies a picker color structure. The color that your application supplies in this field is passed
to the color picker for editing. After the user clicks either the OK or Cancel button to close the dialog box,
this field contains the color last chosen by the user.

The picker color structure includes a ColorSync 1.0 profile, a structure that matches colors among hardware
devices such as displays, printers, and scanners. This color-matching profile (a data structure of type
CMProfile) defines the color space of the color (which includes the type of color—RGB, CMYK, HSL, and so
on). Using the dstProfile field of ColorPickerInfo (Old) (page 510) or the PickerSetProfile function,
your application can specify a destination color-matching profile, which describes the color space of the
device for which the color is being chosen. Given information about the destination profile, color pickers
that are ColorSync aware can help the user choose a color that’s within the destination device’s gamut.

This version of the Color Picker Manager uses ColorSync 1.0 profiles only. The ColorSync 1.0 profile is a
handle-based profile. The profile format is defined by Apple Computer. You cannot use version 2.0 profiles,
which are identified by profile references, with this version of the Color Picker Manager. ColorSync 1.0 profiles
typically reside in the ColorSyncTM Profiles folder (within the Preferences folder of the System Folder). They
may also be embedded with the images to which they pertain in graphics files.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

PMColorPtr
A pointer to a PMColor data structure.

typedef PMColor * PMColorPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

SmallFract
Defines a data type for an unsigned short value.

typedef unsigned short SmallFract;

Discussion
The SmallFract type is derived from the low-order word of a fixed integer. The Color Picker Manager uses
SmallFract values to save memory and to be compatible with the Color QuickDraw RGBColor structure.
You can use the Fix2SmallFract (page 498) function to convert a fixed integer to a SmallFract value.
You can use the SmallFract2Fix (page 506) function to convert a SmallFract value to a fixed integer.

Data Types 517
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ColorPicker.h

UserEventUPP
Defines a universal procedure pointer to an event-filter callback.

typedef UserEventProcPtr UserEventUPP;

Discussion
For more information, see the description of the UserEventProcPtr (page 508) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ColorPicker.h

Constants

Color Picker Flags
Specify a variety of options to apply when displaying the color picker dialog.

enum {
 kColorPickerDialogIsMoveable = 1,
 kColorPickerDialogIsModal = 2,
 kColorPickerCanModifyPalette = 4,
 kColorPickerCanAnimatePalette = 8,
 kColorPickerAppIsColorSyncAware = 16,
 kColorPickerInSystemDialog = 32,
 kColorPickerInApplicationDialog = 64,
 kColorPickerInPickerDialog = 128,
 kColorPickerDetachedFromChoices = 256,
 kColorPickerCallColorProcLive = 512
};

Constants
kColorPickerDialogIsMoveable

If your application sets the bit represented by this constant when creating a custom dialog box, then
the color picker dialog box is moveable by the user.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

518 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

kColorPickerDialogIsModal
If your application sets the bit represented by this constant when creating a custom dialog box, then
the color picker dialog box is a modal dialog box.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

kColorPickerCanModifyPalette
Your application should set the bit represented by this constant if your application can install a palette
of its own that may modify (but not animate) the current color table. If you do not want the colors in
the document to change as the user makes choices in the color picker dialog box, do not set this flag.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

kColorPickerCanAnimatePalette
If your application sets the bit represented by this constant, then the color picker may modify or
animate the palette.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

kColorPickerAppIsColorSyncAware
Your application should set the bit represented by this constant if your application uses ColorSync
color matching. If your application sets this bit, a color may be returned to your application in a
different color space than the one initially passed to the PickColor function. For example, your
application could pass an RGB color with no color-matching profile in the field theColor in
ColorPickerInfo, and the Color Picker Manager could return a CMYK color with its associated
profile. If your application does not set this flag, the Color Picker Manager automatically converts any
color it receives back from the color picker to an RGB color.

This version of the Color Picker Manager uses ColorSync 1.0 profiles only. The ColorSync 1.0 profile is
a handle-based profile. The profile format is defined by Apple Computer. You cannot use version 2.0
profiles, which are identified by profile references, with this version of the Color Picker Manager.
ColorSync 1.0 profiles typically reside in the ColorSyncTM Profiles folder (within the Preferences folder
of the System Folder). They may also be embedded with the images to which they pertain in graphics
files.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

kColorPickerInSystemDialog
The color picker sets this flag to indicate that the color picker is in a system-owned dialog box.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

kColorPickerInApplicationDialog
The color picker sets this flag to indicate that the color picker is in an application-owned dialog box.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

kColorPickerInPickerDialog
The color picker sets this flag to indicate that the color picker is in its own dialog box.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

Constants 519
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

kColorPickerDetachedFromChoices
The color picker sets this flag to indicate that the color picker has been detached from the choices
list.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

kColorPickerCallColorProcLive
Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

Discussion
In the flags field of the ColorPickerInfo (Old) (page 510) parameter block your application specifies
characteristics for the color picker dialog box.

The color picker may set any of the InSystemDialog, InApplicationDialog, InPickerDialog, or
DetachedFromChoices flags and override your application settings.

Special Considerations

Dialog Placement Constants
Specify where on the screen to place the color picker dialog.

typedef SInt16 DialogPlacementSpec;
enum {
 kAtSpecifiedOrigin = 0,
 kDeepestColorScreen = 1,
 kCenterOnMainScreen = 2
};

Constants
kAtSpecifiedOrigin

Specify to place the top-left corner of the color picker dialog at the point specified in the
dialogOrigin field of the color picker parameter block.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

kDeepestColorScreen
Specify to center the color picker dialog on the screen with the greatest color depth.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

kCenterOnMainScreen
Specify to center the color picker dialog on the main screen.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

Discussion
In the placeWhere field of the ColorPickerInfo (Old) (page 510) , your application specifies where to
place the color picker dialog box. Your application uses the DialogPlacementSpec enumeration to specify
the position of the color picker dialog box.

520 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Maximum Small Fraction
Defines the maximum value for the SmallFract data type.

enum {
 kMaximumSmallFract = 0x0000FFFF
};

Width and Height Constants
Specify the width and height of the color picker dialog.

enum {
 kDefaultColorPickerWidth = 383,
 kDefaultColorPickerHeight = 238
};

Constants
kDefaultColorPickerWidth

Specifies the width of the color picker dialog.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

kDefaultColorPickerHeight
Specifies the height of the color picker dialog.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

Old Maximum Small Fraction
Defines the maximum value for the SmallFract data type.

enum {
 MaxSmallFract = 0x0000FFFF
};

Constants
MaxSmallFract

The maximum value of the SmallFract data type, as a long integer.

Available in Mac OS X v10.0 and later.

Declared in ColorPicker.h.

Old Color Picker Flags
Specify a variety of options to apply when displaying the color picker dialog.

Constants 521
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

enum {
 DialogIsMoveable = 1,
 DialogIsModal = 2,
 CanModifyPalette = 4,
 CanAnimatePalette = 8,
 AppIsColorSyncAware = 16,
 InSystemDialog = 32,
 InApplicationDialog = 64,
 InPickerDialog = 128,
 DetachedFromChoices = 256,
 CallColorProcLive = 512
};

Result Codes

The most common result codes returned by Color Picker are listed below.

DescriptionValueResult Code

Available in Mac OS X v10.0 and later.-4000firstPickerError

Available in Mac OS X v10.0 and later.-4000invalidPickerType

Available in Mac OS X v10.0 and later.-4001requiredFlagsDontMatch

Available in Mac OS X v10.0 and later.-4002pickerResourceError

Available in Mac OS X v10.0 and later.-4003cantLoadPicker

Available in Mac OS X v10.0 and later.-4004cantCreatePickerWindow

Available in Mac OS X v10.0 and later.-4005cantLoadPackage

Available in Mac OS X v10.0 and later.-4006pickerCantLive

Available in Mac OS X v10.0 and later.-4007colorSyncNotInstalled

Available in Mac OS X v10.0 and later.-4008badProfileError

Available in Mac OS X v10.0 and later.-4009noHelpForItem

522 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 5

Color Picker Manager Reference

Framework: Carbon/Carbon.h

Declared in Controls.h
ControlDefinitions.h

Overview

Your application uses the Control Manager to create and manage controls. Controls are onscreen objects
that the user can manipulate with the mouse. By manipulating controls, the user can take an immediate
action or change settings to modify a future action. For example, a scroll bar control allows a user to
immediately change the portion of the document that your application displays, whereas a pop-up menu
control for connection speed might allow the user to change the rate by which your application handles
subsequent data transmissions.

Virtually all applications need to implement controls, at least in the form of scroll bars for document windows.
Other standard Mac OS controls include buttons, checkboxes, radio buttons, and pop-up menus. You can
use the Control Manager to create and manage these controls, too.

In Mac OS X v10.2 and later, Control Manager controls may be implemented as HIViews. View-based controls
offer additional flexibility and extensibility for developers. For more information, see the document HIView
Programming Guide.

Important: Documentation for the data browser control is available separately inDataBrowser Programming
Guide.

Carbon supports most Control Manager functions, with the following changes:

 ■ The C-style, lowercase versions of Control Manager function names are no longer supported. If your
application uses any Control Manager lowercase function names, you must replace them with their
uppercase equivalents.

 ■ Custom control definition procedures (also known as CDEFs), must be compiled as PowerPC-native code,
and can not be stored as resources. See the Carbon Porting Guide for more information.

 ■ Your application must use the functions defined by the Control Manager to create and dispose of Control
Manager data structures. For example, instead of directly creating and disposing of control records,
applications must call the Control Manager functions GetNewControl and DisposeControl.

 ■ With the availability of the Appearance Manager, you should not access the PopupPrivateData structure,
but rather pass the kControlPopupButtonMenuHandleTag tag to GetControlData to obtain its
contents.

 ■ Your application must use Control Manager accessor functions to access Control Manager data structures.

Overview 523
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

 ■ You are encouraged to adopt the standard Mac OS control definition procedures in your application.
Applications that use the standard control definition procedures inherit the Mac OS human interface
appearance. Applications that use custom control definition procedures will work correctly, but because
custom definition procedures invoke their own drawing routines, Mac OS X can’t draw these applications
with the current appearance.

Functions by Task

Creating and Removing Controls

CreateBevelButtonControl (page 539)
Creates a bevel button control.

CreateChasingArrowsControl (page 540)
Creates a chasing arrows control.

CreateCheckBoxControl (page 541)
Creates a checkbox control.

CreateCheckGroupBoxControl (page 542)
Creates a group box control that has a check box as its title.

CreateClockControl (page 542)
Creates a clock control.

CreateDisclosureButtonControl (page 544)
Creates a new instance of the Disclosure Button Control.

CreateDisclosureTriangleControl (page 545)
Creates a disclosure triangle control.

CreateEditUnicodeTextControl (page 547)
Creates a new edit text control.

CreateGroupBoxControl (page 548)
Creates a group box control.

CreateIconControl (page 549)
Creates an icon control.

CreateImageWellControl (page 549)
Creates an image well control.

CreateListBoxControl (page 550)
Creates a list box control.

CreateLittleArrowsControl (page 552)
Creates a little arrows control.

CreatePictureControl (page 553)
Creates a picture control.

CreatePlacardControl (page 554)
Creates a placard control.

CreatePopupArrowControl (page 554)
Creates a pop-up arrow control.

524 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

CreatePopupButtonControl (page 555)
Creates a pop-up button control.

CreatePopupGroupBoxControl (page 556)
Creates a group box control that has a pop-up button as its title.

CreateProgressBarControl (page 558)
Creates a progress bar control.

CreatePushButtonControl (page 558)
Creates a push button control.

CreatePushButtonWithIconControl (page 559)
Creates a push button control containing an icon or other graphical content.

CreateRadioButtonControl (page 560)
Creates a radio button control.

CreateRadioGroupControl (page 561)
Creates a radio group control.

CreateRelevanceBarControl (page 561)
Creates a relevance bar control.

CreateRoundButtonControl (page 564)
Creates a new instance of the round button control.

CreateScrollBarControl (page 564)
Creates a scroll bar control.

CreateSeparatorControl (page 567)
Creates a separator control.

CreateSliderControl (page 567)
Creates a slider control.

CreateStaticTextControl (page 569)
Creates a new static text control.

CreateTabsControl (page 569)
Creates a tabs control.

CreateUserPaneControl (page 571)
Creates a user pane control.

CreateWindowHeaderControl (page 571)
Creates a window header control.

DisposeControl (page 573)
Decrements a control’s reference count and destroys it if the reference count becomes 0.

GetNewControl (page 610)
Creates a control from a control resource.

KillControls (page 632)
Removes all of the controls from a window that you wish to keep.

RegisterControlDefinition (page 640)
Registers an old-style control definition.

CreateCustomControl (page 543) Deprecated in Mac OS X v10.5
Creates a custom control. (Deprecated. Register your custom subclass of the HIView class and create
an instance of your class using HIObjectCreate.)

Functions by Task 525
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Embedding Controls

AutoEmbedControl (page 536)
Automatically embeds a control in the smallest appropriate embedder control.

CountSubControls (page 538)
Obtains the number of embedded controls within a control.

CreateRootControl (page 562)
Creates the root control for a specified window.

DumpControlHierarchy (page 582)
Writes a textual representation of the control hierarchy for a specified window into a file.

EmbedControl (page 583)
Embeds one control inside another.

GetControlOwner (page 600)
Returns the window to which a control is bound.

GetIndexedSubControl (page 608)
Obtains a handle to a specified embedded control.

GetRootControl (page 611)
Obtains a handle to a window’s root control.

GetSuperControl (page 611)
Obtains a handle to an embedder control.

Displaying Controls

DisableControl (page 573)
Disables a control.

Draw1Control (page 580)
Draws a control and any embedded controls that are currently visible in the specified window.

DrawControlInCurrentPort (page 581)
Draws a control in the current graphics port.

DrawControls (page 581)
Draws all controls currently visible in the specified window.

GetControlViewSize (page 607)
Obtains the size of the content to which a control’s size is proportioned.

IsControlVisible (page 631)
Determines whether a control is visible.

SetControlViewSize (page 662)
Informs the Control Manager of the size of the content to which a control’s size is proportioned.

SetUpControlBackground (page 667)
Applies the proper background color for the given control to the current port.

SetUpControlTextColor (page 668)
Applies the proper text color for the given control to the current port.¬¬

UpdateControls (page 672)
Draws controls in the specified update region of a window.

526 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

HideControl (page 618)
Makes a control, and any latent embedded controls, invisible.

ShowControl (page 669)
Makes an invisible control, and any latent embedded controls, visible.

SetControlVisibility (page 663)
Sets the visibility of a control, and any embedded controls, and specifies whether it should be drawn.

Handling Events in Controls

FindControl (page 585)
Obtains the location of a mouse-down event in a control.

FindControlUnderMouse (page 586)
Obtains the location of a mouse-down event in a control.

GetControlAction (page 591)
Returns a pointer to the action function associated with a control structure.

GetControlClickActivation (page 593)
Gets the control’s preferred behavior for responding to particular click.

GetControlCommandID (page 594)
Gets the command ID for a control.

HandleControlClick (page 613)
Responds to cursor movements in a control while the mouse button is down and returns the location
of the next mouse-up event.

HandleControlContextualMenuClick (page 614)
Allows a control to display a contextual menu.

HandleControlDragReceive (page 615)
Tells a control to accept the data from a drag.

HandleControlDragTracking (page 615)
Tells a control to respond visually to a drag.

HandleControlSetCursor (page 617)
Requests that a control set the cursor based on the mouse location.

IsAutomaticControlDragTrackingEnabledForWindow (page 629)
Indicates whether automatic drag tracking is enabled for the specified window.

IsControlDragTrackingEnabled (page 630)
Indicates whether a control’s drag track and receive support is enabled.

SetAutomaticControlDragTrackingEnabledForWindow (page 643)
Enables or disables automatic drag tracking for a window.

SetControlAction (page 649)
Sets the action function for a control.

SetControlCommandID (page 651)
Sets the command ID for a control.

SetControlDragTrackingEnabled (page 653)
Sets the drag tracking state for a control.

TestControl (page 670)
Obtains the control part in which a mouse-down event occurred.

Functions by Task 527
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

HandleControlKey (page 616) Deprecated in Mac OS X v10.5
Sends a keyboard event to a control with keyboard focus. (Deprecated. For HIView-based controls,
send the view a kEventTextInputUnicodeForKeyEvent event.)

Manipulating Controls

ActivateControl (page 535)
Activates a control and any latent embedded controls.

DeactivateControl (page 572)
Deactivates a control and any latent embedded controls.

EnableControl (page 584)
Enables a control.

GetControlRegion (page 605)
Obtains the region corresponding to a given control part.

IsControlActive (page 629)
Returns whether a control is active.

IsControlEnabled (page 631)
Indicates whether a control is enabled.

IsControlHilited (page 631)
Indicates whether or not the control is highlighted.

MoveControl (page 633)
Moves a control within its window.

SizeControl (page 670)
Changes the size of a control’s rectangle.

Handling Keyboard Focus

AdvanceKeyboardFocus (page 535)
Advances the keyboard focus to the next focusable control in a window.

ClearKeyboardFocus (page 537)
Removes the keyboard focus for the currently focused control in a window.

GetKeyboardFocus (page 609)
Obtains a handle to the control with the current keyboard focus for a specified window.

ReverseKeyboardFocus (page 642)
Returns keyboard focus to the prior focusable control in a window.

SetKeyboardFocus (page 665)
Sets the current keyboard focus to a specified control part for a window.

Accessing Control Settings and Data

ChangeControlPropertyAttributes (page 537)
Changes a property attribute.

528 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

CopyControlTitleAsCFString (page 538)
Makes a copy of the control’s title as a Core Foundation string.

GetBestControlRect (page 587)
Obtains a control’s optimal size and text placement.

GetControl32BitMaximum (page 589)
Obtains the maximum setting of a control.

GetControl32BitMinimum (page 590)
Obtains the minimum setting of a control.

GetControl32BitValue (page 590)
Obtains the current setting of a control.

GetControlBounds (page 592)
Gets the bounds of a control.

GetControlByID (page 592)
Finds a control in a window by its unique ID.

GetControlData (page 594)
Obtains control-specific data.

GetControlDataSize (page 596)
Obtains the size of a control’s tagged data.

GetControlHilite (page 597)
Gets the highlight status of a control.

GetControlID (page 598)
Gets the control ID for a control.

GetControlKind (page 598)
Returns the kind of the given control.

GetControlProperty (page 602)
Obtains a piece of data that has been previously associated with a control.

GetControlPropertySize (page 603)
Obtains the size of a piece of data that has previously been associated with a control.

GetControlReference (page 604)
Obtains a control’s current reference value.

GetImageWellContentInfo (page 608)
Gets information about the content of an image well.

GetControlPropertyAttributes (page 603)
Gets the property attributes for a control.

GetTabContentRect (page 612)
Gets the content rectangle for a tab.

IsValidControlHandle (page 632)
Reports whether a given handle is a control handle.

RemoveControlProperty (page 641)
Removes a piece of data that has been previously associated with a control.

SetControl32BitMaximum (page 647)
Changes the maximum setting of a control and, if appropriate, redraws it accordingly.

SetControl32BitMinimum (page 648)
Changes the minimum setting of a control and, if appropriate, redraws it accordingly.

Functions by Task 529
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

SetControl32BitValue (page 648)
Changes the current setting of a control and redraws it accordingly.

SetControlData (page 652)
Sets control-specific data.

SetControlBounds (page 650)
Sets the bounds of a control.

SetControlID (page 655)
Sets a control’s ID.

SetControlTitleWithCFString (page 661)
Sets the title for a control to the specified Core Foundation string.

SetDisclosureTriangleLastValue (page 664)
Sets the last value of a disclosure triangle.

SetImageWellContentInfo (page 664)
Sets the content information for an image well.

SetImageWellTransform (page 665)
Sets an image well transform.

SetTabEnabled (page 666)
Enables and disables a tab control.

SetControlFontStyle (page 654)
Sets the font style for a control.

SetControlProperty (page 658)
Associates data with a control.

SetControlReference (page 659)
Changes a control’s current reference value.

Manipulating Menus in Controls
The functions described in this section can only be called for pop-up button and pop-up group box controls,
which can support pop-up menus that activate when the user presses the control with the mouse.

GetControlPopupMenuHandle (page 601)
Gets the menu handle for a pop-up control.

GetControlPopupMenuID (page 601)
Gets the menu ID of a pop-up menu.

SetControlPopupMenuHandle (page 657)
Sets the menu handle for a pop-up control.

SetControlPopupMenuID (page 657)
Sets the menu ID for a pop-up control

Manipulating Bevel Buttons
Bevel button controls have additional features that you can or should manipulate to display them properly.
This section describes the functions you can use to manipulate these features.

530 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

GetBevelButtonContentInfo (page 588)
Gets the content information for a bevel button.

GetBevelButtonMenuHandle (page 588)
Gets the menu handle for a bevel button.

GetBevelButtonMenuValue (page 589)
Gets the value of a bevel button menu.

SetBevelButtonContentInfo (page 644)
Sets the content information for a bevel button.

SetBevelButtonGraphicAlignment (page 644)
Sets the alignment for a bevel button.

SetBevelButtonMenuValue (page 645)
Sets the value of a bevel button menu.

SetBevelButtonTextAlignment (page 645)
Sets the alignment of the text for a bevel button.

SetBevelButtonTextPlacement (page 646)
Sets the placement for bevel button text.

SetBevelButtonTransform (page 647)
Sets the transform for a bevel button.

Managing Control UPPs

DisposeControlActionUPP (page 574)
Disposes of a control action UPP.

DisposeControlCNTLToCollectionUPP (page 574)
Disposes of a CNLT to collection UPP.

DisposeControlEditTextValidationUPP (page 576)
Disposes of an edit text validation UPP.

DisposeControlKeyFilterUPP (page 576)
Disposes of a key filter UPP.

DisposeControlUserPaneActivateUPP (page 576)
Disposes of a user pane activate UPP.

DisposeControlUserPaneBackgroundUPP (page 577)
Disposes of a user pane background UPP.

DisposeControlUserPaneDrawUPP (page 577)
Disposes of a user pane draw UPP.

DisposeControlUserPaneFocusUPP (page 577)
Disposes of a user pane focus UPP.

DisposeControlUserPaneHitTestUPP (page 578)
Disposes of a user pane hit test UPP.

DisposeControlUserPaneIdleUPP (page 578)
Disposes of a user pane idle UPP.

DisposeControlUserPaneKeyDownUPP (page 578)
Disposes of a user pane key down UPP.

Functions by Task 531
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

DisposeControlUserPaneTrackingUPP (page 579)
Disposes of a user pane tracking UPP.

DisposeEditUnicodePostUpdateUPP (page 579)
Disposes of an edit unicode post update UPP.

InvokeControlActionUPP (page 620)
Invokes a control action UPP.

InvokeControlCNTLToCollectionUPP (page 621)
Invokes a control-to-collection UPP.

InvokeControlEditTextValidationUPP (page 623)
Invokes a control edit text validation UPP.

InvokeControlKeyFilterUPP (page 624)
Invokes a control key filter UPP.

InvokeControlUserPaneActivateUPP (page 624)
Invokes a control user pane activate UPP.

InvokeControlUserPaneBackgroundUPP (page 625)
Invokes a user pane background UPP.

InvokeControlUserPaneDrawUPP (page 625)
Invokes a user pane draw UPP.

InvokeControlUserPaneFocusUPP (page 626)
Invokes a user pane focus UPP.

InvokeControlUserPaneHitTestUPP (page 626)
Invokes a user pane hit test UPP.

InvokeControlUserPaneIdleUPP (page 627)
Invokes a user pane idle UPP.

InvokeControlUserPaneKeyDownUPP (page 627)
Invokes a user pane key down UPP.

InvokeControlUserPaneTrackingUPP (page 628)
Invokes a user pane tracking UPP.

InvokeEditUnicodePostUpdateUPP (page 628)
Invokes a Unicode post update UPP.

NewControlActionUPP (page 636)
Creates a UPP for a control action callback function.

NewControlCNTLToCollectionUPP (page 636)
Creates a UPP for a control-to-collection callback function.

NewControlEditTextValidationUPP (page 637)
Creates a UPP for a control edit text validation callback function.

NewControlKeyFilterUPP (page 637)

NewControlUserPaneActivateUPP (page 638)

NewControlUserPaneBackgroundUPP (page 638)

NewControlUserPaneDrawUPP (page 638)

532 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

NewControlUserPaneFocusUPP (page 638)

NewControlUserPaneHitTestUPP (page 639)

NewControlUserPaneIdleUPP (page 639)

NewControlUserPaneKeyDownUPP (page 639)

NewControlUserPaneTrackingUPP (page 640)

NewEditUnicodePostUpdateUPP (page 640)

DisposeControlDefUPP (page 575) Deprecated in Mac OS X v10.5
Disposes of a control definition UPP. (Deprecated. Use a custom HIView to draw a custom control.)

InvokeControlDefUPP (page 622) Deprecated in Mac OS X v10.5
Invokes a control definition UPP. (Deprecated. Use a custom HIView to draw a custom control.)

NewControlDefUPP (page 637) Deprecated in Mac OS X v10.5
Creates a UPP for a control definition callback function. (Deprecated. Use a custom HIView to draw a
custom control.)

Obsolete Functions
These functions are outdated and are not recommended.

CreateScrollingTextBoxControl (page 566)
Creates a scrolling text box control.

DisposeControlColorUPP (page 575)

GetControlFeatures (page 597)
Obtains the features a control supports.

GetControlMaximum (page 599)
Obtains a control’s maximum setting. (Deprecated. Use GetControl32BitMaximum (page 589)
instead.)

GetControlMinimum (page 600)
Obtains a control’s minimum setting. (Deprecated. UseGetControl32BitMinimum (page 590) instead.)

GetControlValue (page 606)
Obtains a control’s current setting. (Deprecated. Use GetControl32BitValue (page 590) instead.)

GetControlVariant (page 607)
Returns the variation code specified in the control definition function for a particular control.
(Deprecated. Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

InvokeControlColorUPP (page 622)

NewControlColorUPP (page 636)

Functions by Task 533
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

SetControlColorProc (page 650)
Associates a ControlColorUPPwith a given Control, thereby allowing you to bypass the embedding
hierarchy-based color setup of SetUpControlBackground/SetUpControlTextColor and replace
it with your own.

GetControlDataHandle (page 595)
Obtains a handle to control-specific data. (Deprecated. Use custom HIViews instead of custom CDEFs.
See HIView Programming Guide.)

SetControlDataHandle (page 653)
(Deprecated. Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

SetControlMaximum (page 655)
Changes the maximum setting of a control and redraws its indicator or scroll box accordingly.
(Deprecated. Use SetControl32BitMaximum (page 647) instead.)

SetControlMinimum (page 656)
Changes the minimum setting of a control and redraws its indicator or scroll box accordingly.
(Deprecated. Use SetControl32BitMinimum (page 648) instead.)

SetControlSupervisor (page 659)
Routes mouse-down events to the embedder control.

SetControlValue (page 661)
Changes the current setting of a control and redraws it accordingly. (Deprecated. Use
SetControl32BitValue (page 648) instead.)

TrackControl (page 671)
Responds to cursor movements in a control while the mouse button is down. (Deprecated. Use
HandleControlClick (page 613) instead.)

DragControl (page 579)
Draws and moves an outline of a control or its indicator while the user drags it. (Deprecated. Use Drag
Manager functions if you want drag-and-drop support for controls. See Drag Manager Reference.)

HiliteControl (page 619)
Changes the highlighting of a control.

SendControlMessage (page 642)
Sends a message to a control definition function. (Deprecated. For custom controls, use a custom
HIView instead of a control definition function. See HIView Programming Guide.)

GetControlTitle (page 605) Deprecated in Mac OS X v10.5
Obtains the title of a control. (Deprecated. Use HIViewCopyText (page 2448) or
CopyControlTitleAsCFString (page 538) instead.)

NewControl (page 634) Deprecated in Mac OS X v10.5
Creates a control based on parameter data. (Deprecated. Use the specific control creation function
instead (for example, CreateCheckBoxControl (page 541)).)

SetControlTitle (page 660) Deprecated in Mac OS X v10.5
Changes the title of a control and redraws the control accordingly. (Deprecated. Use
HIViewSetText (page 2488) or SetControlTitleWithCFString (page 661) instead.)

CreateEditTextControl (page 546) Deprecated in Mac OS X v10.4
Creates a new edit text control. (Deprecated. Use CreateEditUnicodeTextControl (page 547)
instead.)

IdleControls (page 620) Deprecated in Mac OS X v10.4
Performs idle event processing. (Deprecated. You should remove all calls to IdleControls because
it uses unnecessary processor time. System-supplied controls do not respond to IdleControls in
Mac OS X.)

534 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Functions

ActivateControl
Activates a control and any latent embedded controls.

OSErr ActivateControl (
 ControlRef inControl
);

Parameters
inControl

A handle to the control to activate. If you pass a window’s root control, ActivateControl activates
all controls in that window. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
The ActivateControl function should be called instead of HiliteControl to activate a specified control
and its latent embedded controls.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you activate a latent embedded control whose embedder is deactivated, the
embedded control becomes latent until the embedder is activated. However, if you deactivate a latent
embedded control, it will not be activated when its embedder is activated.

If a control definition function supports activate events, it will receive a kControlMsgActivate message
before redrawing itself in its active state.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

AdvanceKeyboardFocus
Advances the keyboard focus to the next focusable control in a window.

OSErr AdvanceKeyboardFocus (
 WindowRef inWindow
);

Parameters
inWindow

A pointer to the window for which to advance keyboard focus.

Functions 535
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
The AdvanceKeyboardFocus function skips over deactivated and hidden controls until it finds the next
focusable control in the window. If it does not find a focusable item, it simply returns.

When AdvanceKeyboardFocus is called, the Control Manager calls your control definition function and
passes kControlMsgFocus in its messageparameter and kControlFocusNextPart in its paramparameter.
In response to this message, your control definition function should change keyboard focus to its next part,
the entire control, or remove keyboard focus from the control, depending upon the circumstances. See
ControlDefProcPtr (page 677) for a discussion of possible responses to this message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

AutoEmbedControl
Automatically embeds a control in the smallest appropriate embedder control.

OSErr AutoEmbedControl (
 ControlRef inControl,
 WindowRef inWindow
);

Parameters
inControl

A handle to the control to be embedded.

inWindow
A pointer to the window in which to embed the control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
The Dialog Manager uses AutoEmbedControl (page 536) to position dialog items in an embedding hierarchy
based on both visual containment and the item list resource order. As items are added to a dialog box during
creation, controls that already exist in the window will be containers for new controls if they both visually
contain the control and have set the kControlSupportsEmbedding feature bit. For this reason, you should
place the largest embedder controls at the beginning of the item list resource. As an example, the Dialog
Manager would embed radio buttons in a tab control if they visually “fit” inside the tab control, as long as
the tab control was already created in a'DITL' resource and established as an embedder control. For more
information on embedding hierarchies in dialog and alert boxes, see the function EmbedControl (page 583).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

536 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ChangeControlPropertyAttributes
Changes a property attribute.

OSStatus ChangeControlPropertyAttributes (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag,
 OptionBits attributesToSet,
 OptionBits attributesToClear
);

Parameters
control

The control whose property’s attributes you want to change. For a description of this data type, see
ControlRef (page 709).

propertyCreator
An OSType signature, usually the signature of your application. Do not use all lower case signatures,
as these are reserved for use by Apple.

propertyTag
An OSType signature, defined by your application, defining the property whose attributes you want
to change.

attributesToSet
A bit field indicating the attributes you want to set for this property.

attributesToClear
A bit field indicating the attributes you want to clear for this property.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
If you have associated control properties with a control (by calling SetControlProperty (page 658), you
can also assign arbitrary attribute bits to the property. You can use these attributes to indicate information
about the property data.

Currently, kControlPropertyPersistent is the only control property attribute that is defined.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ClearKeyboardFocus
Removes the keyboard focus for the currently focused control in a window.

Functions 537
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSErr ClearKeyboardFocus (
 WindowRef inWindow
);

Parameters
inWindow

A pointer to the window in which to clear keyboard focus.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
When the ClearKeyboardFocus function is called, the Control Manager calls your control definition function
and passes kControlMsgFocus in its message parameter and kControlFocusNoPart in its param
parameter. See ControlDefProcPtr (page 677) for a discussion of possible responses to this message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

CopyControlTitleAsCFString
Makes a copy of the control’s title as a Core Foundation string.

OSStatus CopyControlTitleAsCFString (
 ControlRef inControl,
 CFStringRef *outString
);

Parameters
inControl

The control whose title is to be copied. For a description of this data type, see ControlRef (page 709).

outString
A copy of the control’s title.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

CountSubControls
Obtains the number of embedded controls within a control.

538 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSErr CountSubControls (
 ControlRef inControl,
 UInt16 *outNumChildren
);

Parameters
inControl

The control whose embedded controls are to be counted. For a description of this data type, see
ControlRef (page 709).

outNumChildren
On input, a pointer to an unsigned 16-bit integer value. On return, the value is set to the number of
embedded subcontrols.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
The CountSubControls function is useful for iterating over the control hierarchy. You can use the count
produced to determine how many subcontrols there are and then call GetIndexedSubControl (page 608)
to get each.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
Controls.h

CreateBevelButtonControl
Creates a bevel button control.

OSStatus CreateBevelButtonControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 ControlBevelThickness thickness,
 ControlBevelButtonBehavior behavior,
 ControlButtonContentInfoPtr info,
 MenuID menuID,
 ControlBevelButtonMenuBehavior menuBehavior,
 ControlBevelButtonMenuPlacement menuPlacement,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

Functions 539
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

title
The title of the control.

thickness
The thickness of the button. For possible values, see “Control Bevel Thickness Constants” (page 753).

behavior
The behavior the button is to have. For possible values, see “Bevel Button Behavior Constants” (page
721).

info
A value of type ControlButtonContentInfoPtr for the content information.

menuID
The menu ID. This parameter may be 0 if you don’t have a menu. Icon suite, picture, color icon, and
IconRef are supported on Mac OS X v10.0 through Mac OS X v10.4. Values of type CGImageRef are
supported in Mac OS X v10.4.

menuBehavior
The behavior of the menu. For possible values, see “Bevel Button Menu Constant” (page 727).

menuPlacement
The placement of the menu. For possible values, see “Control Bevel Button Menu Placement
Constants” (page 753).

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateChasingArrowsControl
Creates a chasing arrows control.

OSStatus CreateChasingArrowsControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

540 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
This control automatically animates via an event loop timer.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIProgressViews.h

CreateCheckBoxControl
Creates a checkbox control.

OSStatus CreateCheckBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 SInt32 initialValue,
 Boolean autoToggle,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the checkbox control. This parameter may be NULL in Mac OS X v10.3
and later.

boundsRect
The bounds of the desired checkbox in the window’s local coordinates.

title
The title of the checkbox.

initialValue
The initial setting of the checkbox. Set to a non-zero value to indicate the checked state.

autoToggle
If set to true, clicking the checkbox will automatically toggle its state (checked or unchecked).

outControl
On return, outControl points to the new checkbox. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

Functions 541
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

CreateCheckGroupBoxControl
Creates a group box control that has a check box as its title.

OSStatus CreateCheckGroupBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 SInt32 initialValue,
 Boolean primary,
 Boolean autoToggle,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The title of the control. The title is used as the title of the check box.

initialValue
The initial value of the check box.

primary
A Boolean whose value is true to create a primary group box or false to create a secondary group
box.

autoToggle
A Boolean whose value is true to create an auto-toggling check box. Auto-toggling check box titles
are only supported on Mac OS X; this parameter must be false when used with CarbonLib.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

CreateClockControl
Creates a clock control.

542 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus CreateClockControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlClockType clockType,
 ControlClockFlags clockFlags,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

clockType
The clock type. For possible values, see “Control Clock Type Constants” (page 753).

clockFlags
Clock options. For possible values, see “Clock Value Flag Constants” (page 734).

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIClockView.h

CreateCustomControl
Creates a custom control. (Deprecated in Mac OS X v10.5. Register your custom subclass of the HIView class
and create an instance of your class using HIObjectCreate.)

OSStatus CreateCustomControl (
 WindowRef owningWindow,
 const Rect *contBounds,
 const ControlDefSpec *def,
 Collection initData,
 ControlRef *outControl
);

Parameters
owningWindow

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

contBounds
The bounds of the new control in the window’s local coordinates.

def
A pointer to the control definition function you want to associate with the new control.

Functions 543
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

initData
The initial state of the control. For additional information, see “Control Collection Tag Constants” (page
768).

outControl
On return, outControl points to the new control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

CreateDisclosureButtonControl
Creates a new instance of the Disclosure Button Control.

OSStatus CreateDisclosureButtonControl (
 WindowRef inWindow,
 const Rect *inBoundsRect,
 SInt32 inValue,
 Boolean inAutoToggles,
 ControlRef *outControl
);

Parameters
inWindow

The WindowRef in which to create the control. This parameter may be NULL in Mac OS X v10.3 and
later.

inBoundsRect
The bounding rectangle for the control in the window’s local coordinates. The height of the control
is fixed and the control will be centered vertically within the rectangle you specify.

inValue
The initial value; either kControlDisclosureButtonClosed or
kControlDisclosureButtonDisclosed.

inAutoToggles
A Boolean value indicating whether its value should change automatically after tracking the mouse.

outControl
On successful exit, this will contain the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

544 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
CreateDisclosureButtonControl is preferred over NewControl (page 634) because it allows you to
specify the exact set of parameters required to create the control without overloading parameter semantics.
The initial minimum of the Disclosure Button will bekControlDisclosureButtonClosed, and the maximum
will be kControlDisclosureButtonDisclosed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIDisclosureViews.h

CreateDisclosureTriangleControl
Creates a disclosure triangle control.

OSStatus CreateDisclosureTriangleControl (
 WindowRef inWindow,
 const Rect *inBoundsRect,
 ControlDisclosureTriangleOrientation inOrientation,
 CFStringRef inTitle,
 SInt32 inInitialValue,
 Boolean inDrawTitle,
 Boolean inAutoToggles,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

inBoundsRect
The desired position, in the window’s local coordinates, for the disclosure triangle.

inOrientation
The direction the disclosure triangle should point when it is “closed.” Passing
kControlDisclosureTrianglePointDefault is only legal as of Mac OS X and CarbonLib 1.5. For
other possible values, see “Control Disclosure Triangle Orientation Constants” (page 753).

inTitle
The title for the disclosure triangle. The title is displayed only if the value of the inDrawTitle
parameter is true. Displaying the title only works on Mac OS X.

inInitialValue
The initial state of the disclosure triangle. A value of 0 causes the disclosure triangle to be drawn
initially in the “closed” state, and a value of 1 causes the triangle to be drawn initially in the “open”
state.

inDrawTitle
A Boolean whose value is true if the disclosure triangle should draw its title next to the widget.
Displaying the title only works on Mac OS X.

inAutoToggles
A Boolean whose value is true to enable auto toggling; otherwise, false. When auto toggling is
enabled, the disclosure triangle automatically changes from “open” to “closed” and from “closed” to
“open” when it is clicked.

Functions 545
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
A disclosure triangle is a small control that gives the user a way to toggle the visibility of information or other
user interface. When information is in a hidden state, a disclosure triangle is considered “closed” and should
point to the right (or sometimes to the left). When the user clicks it, a disclosure triangle rotates downwards
into the “open” state. The application should respond by revealing the appropriate information or interface.

On Mac OS X, a root control is created for the window if one does not already exist. If a root control exists
for the window, the disclosure triangle control is embedded in it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIDisclosureViews.h

CreateEditTextControl
Creates a new edit text control. (Deprecated in Mac OS X v10.4. Use CreateEditUnicodeTextControl (page
547) instead.)

OSStatus CreateEditTextControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef text,
 Boolean isPassword,
 Boolean useInlineInput,
 const ControlFontStyleRec *style,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. May be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

text
The text of the control. May be NULL.

isPassword
A Boolean indicating whether the field is to be used as a password field. Passing false indicates that
the field is to display entered text normally. Passing true means that the field is to be used as a
password field; any text typed into the field is displayed as bullets.

useInlineInput
A Boolean indicating whether the control is to accept inline input. Pass true to accept inline input;
otherwise pass false.

546 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

style
The control’s font style, size, color, and so on. May be NULL.

outControl
On return, the new control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
ControlDefinitions.h

CreateEditUnicodeTextControl
Creates a new edit text control.

OSStatus CreateEditUnicodeTextControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef text,
 Boolean isPassword,
 const ControlFontStyleRec *style,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

text
The text of the control. May be NULL.

isPassword
A Boolean indicating whether the field is to be used as a password field. Passing false indicates that
text entered in the field is to be displayed normally. Passing true means that the field is to be used
as a password field; any text typed into the field is displayed as bullets.

style
The control’s font style, size, color, and so on. May be NULL.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Functions 547
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
This function is the preferred way of creating edit text controls. Use it instead of the
CreateEditTextControl (page 546) function. The resulting control handles Unicode text and draws its
text using anti-aliasing. Controls created by CreateEditTextControl do not handle Unicode text and are
not drawn with anti-aliasing.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HITextViews.h

CreateGroupBoxControl
Creates a group box control.

OSStatus CreateGroupBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 Boolean primary,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the desired control in the window’s local coordinates.

title
The title of the control. This parameter can be NULL if you don’t want the control to have a title.

primary
A Boolean whose value is true to create a primary group box or false to create a secondary group
box. Secondary group boxes are intended to be contained within primary group boxes and have a
slightly different appearance.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

548 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

CreateIconControl
Creates an icon control.

OSStatus CreateIconControl (
 WindowRef inWindow,
 const Rect *inBoundsRect,
 const ControlButtonContentInfo *inIconContent,
 Boolean inDontTrack,
 ControlRef *outControl
);

Parameters
inWindow

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

inBoundsRect
The bounds of the control in the window’s local coordinates.

inIconContent
The descriptor for the icon you want the control to display. Mac OS X and CarbonLib 1.5 (and beyond)
support all of the icon content types. Prior to CarbonLib 1.5, the only content types that are properly
respected are kControlContentIconSuiteRes, kControlContentCIconRes, and
kControlContentICONRes.

inDontTrack
A Boolean whose value is true to indicate that the control should not be highlighted when it is
clicked; falsemeans that the control should be highlighted and the mouse tracked when the control
is clicked.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

CreateImageWellControl
Creates an image well control.

Functions 549
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus CreateImageWellControl (
 WindowRef window,
 const Rect *boundsRect,
 const ControlButtonContentInfo *info,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

info
The image that is to be displayed in the image well. The image can be an icon suite, picture, color
icon, or an IconRef in Mac OS X v10.0 and later. It can be also be a CGImageRef in Mac OS X v10.4
and later.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
An image well control is a control that displays an image inside a frame (or “well”). The user can drag other
images onto the well.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

CreateListBoxControl
Creates a list box control.

550 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus CreateListBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 Boolean autoSize,
 SInt16 numRows,
 SInt16 numColumns,
 Boolean horizScroll,
 Boolean vertScroll,
 SInt16 cellHeight,
 SInt16 cellWidth,
 Boolean hasGrowSpace,
 const ListDefSpec *listDef,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

autoSize
A Boolean whose value is true to enable auto-sizing; otherwise, false. When auto-sizing is enabled,
the control automatically resizes itself as necessary to ensure that the height of the control is an exact
multiple of the cell height.

numRows
The number of rows the control is to have.

numColumns
The number of columns the control is to have.

horizScroll
A Boolean whose value is true if the control is to have a horizontal scroll bar; otherwise, false.

vertScroll
A Boolean whose value is true if the control is to have a vertical scroll bar; otherwise, false.

cellHeight
The height of cells in the control.

cellWidth
The width of cells in the control.

hasGrowSpace
A Boolean whose value is true to indicate that the control is drawn so that there is room for a size
box; otherwise, false.

listDef
A pointer to the list definition function you want to associate with the new control. This parameter
may be NULL if you want to use the standard list definition function, which only displays text.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Functions 551
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
The list is created with default values, and uses the standard LDEF (0) if you don’t specify a custom list
definition function in the listDef parameter. You can set the LDEF to use by using
kControlListBoxLDEFTag. You can change the list by getting the list handle. To get the list handle, call
GetControlData (page 594) and pass the kControlListBoxListHandletag constant.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ControlDefinitions.h

CreateLittleArrowsControl
Creates a little arrows control.

OSStatus CreateLittleArrowsControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt32 value,
 SInt32 minimum,
 SInt32 maximum,
 SInt32 increment,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.

minimum
The minimum value the control can have.

maximum
The maximum value the control can have.

increment
The amount to increment each time an arrow is clicked.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
This control implements the little up and down arrows seen in the Date & Time system preferences panel.
To change the value of this control, you need to create a control action proc. The following sample code
creates the control and sets the action proc:

552 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

CreateLittleArrowsControl(&rect, minimum, maximum, increment, value);
SetControlAction(Arrows, LittleArrowActionProc);

Here is sample code for the action proc:

void LittleArrowActionProc(ControlRef cref, ControlPartCode part) {
 SInt32 val = GetControl32BitValue(cref);
 SInt32 s = 0;
 GetControlData(cref, 0, kControlLittleArrowsIncrementValueTag, sizeof(SInt32),
 &s, nil;
 switch (part) {
 case kControlUpButtonPart:
 SetControl32BitValue(cref, val+s);
 break;
 case kControlDownButtonPart:
 SetControl32BitValue(cref, val-s);
 break;
 };
 };

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HILittleArrows.h

CreatePictureControl
Creates a picture control.

OSStatus CreatePictureControl (
 WindowRef window,
 const Rect *boundsRect,
 const ControlButtonContentInfo *content,
 Boolean dontTrack,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

content
The descriptor for the picture you want the control to display. Only picture content is supported. You
can change the picture by calling SetControlData (page 652) and passing the
kControlPictureHandleTag constant.

dontTrack
A Boolean whose value is true to indicate that the control should not be highlighted when it is
clicked; falsemeans that the control should be highlighted and the mouse tracked when the control
is clicked.

Functions 553
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

outControl
On return, the new control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ControlDefinitions.h

CreatePlacardControl
Creates a placard control.

OSStatus CreatePlacardControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounding box of the control in the window’s local coordinates.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

CreatePopupArrowControl
Creates a pop-up arrow control.

554 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus CreatePopupArrowControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlPopupArrowOrientation orientation,
 ControlPopupArrowSize size,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

orientation
The orientation of the control.

size
The size of the control.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIPopupButton.h

CreatePopupButtonControl
Creates a pop-up button control.

OSStatus CreatePopupButtonControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 MenuID menuID,
 Boolean variableWidth,
 SInt16 titleWidth,
 SInt16 titleJustification,
 Style titleStyle,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

Functions 555
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

title
The title of the control.

menuID
The ID of a menu that should be used by the control. A menu with this ID should be inserted into the
menubar with InsertMenu(menu, kInsertHierarchicalMenu). You can also pass -12345 to
have the control delay its acquisition of a menu; in this case, you can build the menu and later provide
it to the control with SetControlData and kControlPopupButtonMenuRefTag or
kControlPopupButtonOwnedMenuRefTag.

variableWidth
A Boolean whose value indicates whether the width of the control is allowed to vary according to
the width of the selected menu item text (true), or should remain fixed to the original control bounds
width (false).

titleWidth
The width of the title.

titleJustification
The justification of the title. Use a TextEdit justification constant (teFlushDefault, teCenter,
teFlushRight, or teFlushLeft).

titleStyle
A QuickDraw style bitfield indicating the font style of the title.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIPopupButton.h

CreatePopupGroupBoxControl
Creates a group box control that has a pop-up button as its title.

556 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus CreatePopupGroupBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 Boolean primary,
 MenuID menuID,
 Boolean variableWidth,
 SInt16 titleWidth,
 SInt16 titleJustification,
 Style titleStyle,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The title of the control. The title is used as the title of the pop-up button.

primary
A Boolean whose value is true to create a primary group box or false to create a secondary group
box.

menuID
The menu ID of the menu that is to be displayed by the pop-up button. A menu with this ID should
be inserted into the menubar with InsertMenu(menu, kInsertHierarchicalMenu). You can
also pass -12345 to have the control delay its acquisition of a menu; in this case, you can build the
menu and later provide it to the control with SetControlData and
kControlPopupButtonMenuRefTag or kControlPopupButtonOwnedMenuRefTag.

variableWidth
A Boolean whose value is true if the pop-up button is to have a variable-width title or false if the
pop-up button is to have a fixed-width title. Fixed-width titles are only supported by Mac OS X; this
parameter must be true when used with CarbonLib.

titleWidth
The width in pixels of the pop-up button title.

titleJustification
The justification of the pop-up button title. Use a TextEdit justification constant (teFlushDefault,
teCenter, teFlushRight, or teFlushLeft).

titleStyle
The QuickDraw text style of the pop-up button title.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 557
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
HIContainerViews.h

CreateProgressBarControl
Creates a progress bar control.

OSStatus CreateProgressBarControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt32 value,
 SInt32 minimum,
 SInt32 maximum,
 Boolean indeterminate,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.

minimum
The minimum value of the control.

maximum
The maximum value of the control.

indeterminate
A Boolean whose value is true if you want the control to display a rotating barber pole effect to
indicate that something is happening (an indeterminate progress bar) or false if you want to display
a determinate progress bar that uses the values of the minimum and maximum parameters to show
progress from minimum to maximum.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIProgressViews.h

CreatePushButtonControl
Creates a push button control.

558 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus CreatePushButtonControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The control title. May be NULL.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreatePushButtonWithIconControl
Creates a push button control containing an icon or other graphical content.

OSStatus CreatePushButtonWithIconControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 ControlButtonContentInfo *icon,
 ControlPushButtonIconAlignment iconAlignment,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control, in local coordinates of the window.

title
The control title. May be NULL.

icon
The control graphic content. The value of this parameter can be kControlContentCIconRes in Mac
OS X v10.0 and later. It can also be kControlContentCGImageRef in Mac OS X v10.4 and later.

Functions 559
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

iconAlignment
The alignment of the control graphic content.For possible values, see “Control Push Button Icon
Alignment Constants” (page 753).

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateRadioButtonControl
Creates a radio button control.

OSStatus CreateRadioButtonControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef title,
 SInt32 initialValue,
 Boolean autoToggle,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

title
The control title. May be NULL.

initialValue
The initial value of the control. Should be 0 (off), 1 (on), or 2 (mixed). The control is automatically
given a minimum value of 0 and a maximum value of 2.

autoToggle
A Boolean whose value indicates whether this control should have auto-toggle behavior. If true, the
control automatically toggles between on and off states when clicked. This parameter should be
false if the control is embedded into a radio group control; in that case, the radio group handles
setting the correct control value in response to a click.

outControl
On return, the new control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

560 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateRadioGroupControl
Creates a radio group control.

OSStatus CreateRadioGroupControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
This control implements a radio group. It is an embedding control and can therefore only be used when a
control hierarchy is established for its owning window. You should only embed radio buttons within it. As
radio buttons are embedded into it, the group sets up its value, min, and max to represent the number of
embedded items. The current value of the control is the index of the sub-control that is the current “on”
radio button. To get the current radio button control handle, you can use the Control Manager call
GetIndexedSubControl (page 608), passing in the value of the radio group.

Note that when creating radio buttons for use in a radio group control, you should not use the auto-toggle
version of the radio button. The radio group control handles toggling the radio button values itself; auto-toggle
radio buttons do not work properly in a radio group control on Mac OS 9.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateRelevanceBarControl
Creates a relevance bar control.

Functions 561
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus CreateRelevanceBarControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt32 value,
 SInt32 minimum,
 SInt32 maximum,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.

minimum
The minimum value of the control.

maximum
The maximum value of the control.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIRelevanceBar.h

CreateRootControl
Creates the root control for a specified window.

OSErr CreateRootControl (
 WindowRef inWindow,
 ControlRef *outControl
);

Parameters
inWindow

A pointer to the window in which you wish to create a root control.

outControl
On input, a pointer to a ControlHandle value. On return, the ControlHandle value is set to a
handle to the root control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

562 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
Establishing an embedding hierarchy can be accomplished in two steps: creating a root control and embedding
controls within it.

To embed controls in a window, you must create a root control for that window. The root control is the
container for all other window controls. You create the root control in one of two ways—by calling the
CreateRootControl function or by setting the appropriate dialog flag. The root control can be retrieved
by calling the function GetRootControl (page 611).

The CreateRootControl function creates the root control for a window if no other controls are present. If
there are any controls in the window prior to calling CreateRootControl, an error is returned and the root
control is not created. Note that the minimum, maximum, and initial settings for a root control are reserved
and should not be changed.

The root control is implemented as a user pane control. You can attach any application-defined user pane
functions to the root control to perform actions such as hit testing, drawing, handling keyboard focus, erasing
to the correct background, and processing idle and keyboard events.

Once you have created a root control, newly created controls will automatically be embedded in the root
control when you call NewControl (page 634) or GetNewControl (page 610). You can specify that a specific
control be embedded into another by calling EmbedControl (page 583).

By acting on an embedder control, you can move, disable, or hide groups of items. For example, you can use
a blank user pane control as the embedder control for all items in a particular “page” of a tab control. After
creating as many user panes as you have tabs, you can hide one and show the next when a tab is clicked.
All the controls embedded in the user pane will be hidden and shown automatically when the user pane is
hidden and shown.

In addition to calling CreateRootControl, you can establish an embedding hierarchy in a dialog box by
either setting the feature bit kDialogFlagsUseControlHierarchy in the extended dialog resource or
passing it in the inFlags parameter of the Dialog Manager function NewFeaturesDialog. An embedding
hierarchy can be created in an alert box by setting the kAlertFlagsUseControlHierarchy bit in the
extended alert resource. It is important to note that a preexisting alert or dialog item will become a control
if it is in an alert or dialog box that now uses an embedding hierarchy.

The embedding hierarchy enforces drawing order by drawing the embedding control before its embedded
controls. Using an embedding hierarchy also enforces orderly hit-testing, since it performs an “inside-out”
hit test to determine the most deeply nested control that is hit by the mouse. An embedding hierarchy is
also necessary for controls to make use of keyboard focus, the default focusing order for which is a linear
progression that uses the order the controls were added to the window. For more details on keyboard focus,
see “Handling Keyboard Focus”.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

Functions 563
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

CreateRoundButtonControl
Creates a new instance of the round button control.

OSStatus CreateRoundButtonControl (
 WindowRef inWindow,
 const Rect *inBoundsRect,
 ControlRoundButtonSize inSize,
 ControlButtonContentInfo *inContent,
 ControlRef *outControl
);

Parameters
inWindow

The WindowRef in which to create the control.

inBoundsRect
The bounds of the control in the window’s local coordinates. The height and width of the control are
fixed (specified by the ControlRoundButtonSize parameter) and the control will be centered within
the rectangle you specify.

inSize
The button size; either kControlRoundButtonNormalSize or kControlRoundButtonLargeSize.

inContent
Any optional content displayed in the button. In Mac OS X v10.0 and later, kControlContentIconRef
is supported.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
CreateRoundButtonControl is preferred over NewControl (page 634) because it allows you to specify
the exact set of parameters required to create the control without overloading parameter semantics.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

CreateScrollBarControl
Creates a scroll bar control.

564 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus CreateScrollBarControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt32 value,
 SInt32 minimum,
 SInt32 maximum,
 SInt32 viewSize,
 Boolean liveTracking,
 ControlActionUPP liveTrackingProc,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.

minimum
The minimum value of the control.

maximum
The maximum value of the control.

viewSize
The size of the visible area of the scroll bar content. If this parameter is a non-zero value, this function
creates a proportional scroll bar thumb; a value of 0 causes a non-proportional scroll bar thumb to
be created.

liveTracking
A Boolean indicating whether or not live tracking is enabled for this scroll bar. If set to true and a
valid liveTrackingProc is also passed in, the callback is called repeatedly as the thumb is moved
during tracking. If set to false, a semi-transparent thumb called a “ghost thumb” draws and no live
tracking occurs.

liveTrackingProc
If the value of the liveTracking parameter is true, a ControlActionUPP callback is to be called
as the control live tracks. This callback is called repeatedly as the scroll thumb is moved during tracking.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIScrollView.h

Functions 565
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

CreateScrollingTextBoxControl
Creates a scrolling text box control.

OSStatus CreateScrollingTextBoxControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt16 contentResID,
 Boolean autoScroll,
 UInt32 delayBeforeAutoScroll,
 UInt32 delayBetweenAutoScroll,
 UInt16 autoScrollAmount,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

contentResID
The resource ID of ‘TEXT’ and (optionally) ‘style’ resources whose contents are to be displayed.

autoScroll
A Boolean whose value is true to enable automatic scrolling; otherwise, false.

delayBeforeAutoScroll
The number of ticks to wait before scrolling automatically. This parameter is ignored and can be set
to 0 if the value of the autoScroll parameter is false.

delayBetweenAutoScroll
The number of ticks to wait between automatic scrolls. This parameter is ignored and can be set to
0 if the value of the autoScroll parameter is false.

autoScrollAmount
The number of pixels to scroll. This parameter is ignored and can be set to 0 if the value of the
autoScroll parameter is false.

outControl
On return, outControl points to the newly-created control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
This control implements a scrolling box of text that cannot be edited. This is useful for credits in about boxes.

The standard version of this control has a scroll bar, but the autoscrolling variant does not. The autoscrolling
variant needs two pieces of information to work: delay (in ticks) before the scrolling starts, and time (in ticks)
between scrolls. This control scrolls one pixel at a time if created by NewControl (page 634), unless changed
by calling SetControlData (page 652).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ControlDefinitions.h

566 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

CreateSeparatorControl
Creates a separator control.

OSStatus CreateSeparatorControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

boundsRect
The bounds of the control in the window’s local coordinates.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
The horizontal or vertical orientation of a separator line is determined automatically based on the relative
height and width of its control bounds.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HISeparator.h

CreateSliderControl
Creates a slider control.

OSStatus CreateSliderControl (
 WindowRef window,
 const Rect *boundsRect,
 SInt32 value,
 SInt32 minimum,
 SInt32 maximum,
 ControlSliderOrientation orientation,
 UInt16 numTickMarks,
 Boolean liveTracking,
 ControlActionUPP liveTrackingProc,
 ControlRef *outControl
);

Parameters
window

The window that is to contain the control. This parameter may be NULL in Mac OS X v10.3 and later.

Functions 567
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

boundsRect
The bounds of the control in the window’s local coordinates.

value
The initial value of the control.

minimum
The minimum value of the control.

maximum
The maximum value of the control.

orientation
The orientation of the control. For possible values, see “Control Slider Orientation Constants” (page
754).

numTickMarks
The number of tick marks the slider control is to have.

liveTracking
A Boolean whose value is true to enable live tracking for the control; otherwise, false.

liveTrackingProc
If the value of the liveTracking parameter is true, a ControlActionUPP callback is to be called
as the control live tracks. This callback is called repeatedly as the slider is moved during tracking.

outControl
On return, outControl points to the new control. For a description of this data type, see
ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
Mac OS X has a “Scroll to here” option in the General pane of System Preferences that allows users to click
in the page up or page down regions of a slider and have the indicator jump directly to the clicked position,
which alters the value of the slider and moves any associated content appropriately. As long as the mouse
button is held down, the click is treated as though the user clicked the indicator.

If you want the sliders in your application to work with the “Scroll to here” option, you must do the following:

1. Create live-tracking sliders, not sliders that show a “ghost” thumb when you click on it. You can request
live-tracking sliders by passing true in the liveTracking parameter to CreateSliderControl. If
you create sliders with NewControl (page 634), use the kControlSliderLiveFeedback variant.

2. Write an appropriate ControlActionProc and associate it with your slider by calling
SetControlAction (page 649). This allows your application to update its content appropriately when
the live-tracking slider is clicked.

3. When callingHandleControlClick (page 613) or TrackControl (page 671) TrackControl, pass -1 in
the action proc parameter. This is a request for the Control Manager to use the action proc you associated
with your control in step 2. If you rely on the standard window event handler to do your control tracking,
this step is handled for you automatically.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

568 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
HISlider.h

CreateStaticTextControl
Creates a new static text control.

OSStatus CreateStaticTextControl (
 WindowRef window,
 const Rect *boundsRect,
 CFStringRef text,
 const ControlFontStyleRec *style,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

text
The text of the control. May be NULL.

style
The control’s font style, size, color, and so on. May be NULL.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HITextViews.h

CreateTabsControl
Creates a tabs control.

Functions 569
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus CreateTabsControl (
 WindowRef window,
 const Rect *boundsRect,
 ControlTabSize size,
 ControlTabDirection direction,
 UInt16 numTabs,
 const ControlTabEntry *tabArray,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

size
The control tab size. See “Control Tab Size Constants” (page 754) for possible values.

direction
The control tab direction. See “Control Tab Direction Constants” (page 754) for possible
values.

numTabs
The initial number of tabs.

tabArray
Information about each tab. There must be the same number of entries as specified by the numTabs
parameter.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
If you want to customize the accessibility information provided for individual tabs of a tabs control, such as
by handling various kEventClassAccessibility Carbon Events and by calling
HIObjectSetAuxiliaryAccessibilityAttribute, you need to know how to build or interpret
AXUIElement reference that represent individual tabs. The AXUIElement representing an individual tab must
be constructed using the tab control’s ControlRef and the UInt64 identifier of the one-based index of the
tab to which the element refers. A UInt64 identifier of 0 represents the tabs control as a whole. You cannot
interpret or create tab control elements whose identifiers are greater than the count of tabs in the tabs
control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HITabbedView.h

570 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

CreateUserPaneControl
Creates a user pane control.

OSStatus CreateUserPaneControl (
 WindowRef window,
 const Rect *boundsRect,
 UInt32 features,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

features
The user pane features with which the user pane is to be created. For possible constants, see “Control
Features Constants” (page 741).

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
User panes have two primary purposes: to allow easy implementation of a custom control by the developer,
and to provide a generic container for embedding other controls.

In Carbon, with the advent of Carbon-event-based controls, you may find it easier to write a new control
from scratch than to customize a user pane control. The set of callbacks provided by the user pane will not
be extended to support new Control Manager features; instead, you should just write a real control.User
panes do not, by default, support embedding. If you try to embed a control into a user pane, you will get
the errControlIsNotEmbedder. You can make a user pane support embedding by passing the
kControlSupportsEmbedding flag in the features parameter when you create the control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIContainerViews.h

CreateWindowHeaderControl
Creates a window header control.

Functions 571
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus CreateWindowHeaderControl (
 WindowRef window,
 const Rect *boundsRect,
 Boolean isListHeader,
 ControlRef *outControl
);

Parameters
window

The window in which the control is to be placed. This parameter may be NULL in Mac OS X v10.3 and
later.

boundsRect
The bounds of the control in the window’s local coordinates.

isListHeader
A Boolean whose value is true if the control should have an appropriate appearance to be the header
of a list; otherwise, false.

outControl
On return, the new control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

DeactivateControl
Deactivates a control and any latent embedded controls.

OSErr DeactivateControl (
 ControlRef inControl
);

Parameters
inControl

A handle to the control to deactivate. If you pass a window’s root control, DeactivateControl
deactivates all controls in that window.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
The DeactivateControl function should be called instead of HiliteControl to deactivate a specified
control and its latent embedded controls.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you activate a latent embedded control whose embedder is deactivated, the
embedded control becomes latent until the embedder is activated. However, if you deactivate a latent
embedded control, it will not be activated when its embedder is activated.

572 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

If a control definition function supports activate events, it will receive a kControlMsgActivate message
before redrawing itself in its inactive state.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

DisableControl
Disables a control.

OSStatus DisableControl (
 ControlRef inControl
);

Parameters
inControl

The control to disable. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

DisposeControl
Decrements a control’s reference count and destroys it if the reference count becomes 0.

void DisposeControl (
 ControlRef theControl
);

Parameters
theControl

The control you want to dispose of. For a description of this data type, see ControlRef (page 709).

Functions 573
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
The DisposeControl function reduces the control’s reference count and, if the reference count becomes
0, releases the memory occupied by the control structure and any data structures associated with the control.
Before destroying the control, DisposeControl removes the control (and any embedded controls it may
possess) from the screen and deletes the control from the window’s control list.

To destroy all of the controls from a window you want to keep, use the function KillControls (page 632).
If an embedding hierarchy is present, passing the root control to the DisposeControl function is the
effectively the same as calling KillControls (page 632). In that situation, DisposeControl disposes of
the controls embedded within a control before disposing of the container control.

You should use DisposeControl when you want to retain the window but remove one of its controls. The
Window Manager functions CloseWindow and DisposeWindow automatically remove all controls associated
with the window and release the memory the controls occupy.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

DisposeControlActionUPP
Disposes of a control action UPP.

void DisposeControlActionUPP (
 ControlActionUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

DisposeControlCNTLToCollectionUPP
Disposes of a CNLT to collection UPP.

574 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void DisposeControlCNTLToCollectionUPP (
 ControlCNTLToCollectionUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

DisposeControlColorUPP

Not recommended

void DisposeControlColorUPP (
 ControlColorUPP userUPP
);

Carbon Porting Notes

Instead of specifying a callback to redraw your background, you should make the background a control and
then embed your other controls within it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

DisposeControlDefUPP
Disposes of a control definition UPP. (Deprecated in Mac OS X v10.5. Use a custom HIView to draw a custom
control.)

void DisposeControlDefUPP (
 ControlDefUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 575
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
Controls.h

DisposeControlEditTextValidationUPP
Disposes of an edit text validation UPP.

void DisposeControlEditTextValidationUPP (
 ControlEditTextValidationUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

DisposeControlKeyFilterUPP
Disposes of a key filter UPP.

void DisposeControlKeyFilterUPP (
 ControlKeyFilterUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

DisposeControlUserPaneActivateUPP
Disposes of a user pane activate UPP.

void DisposeControlUserPaneActivateUPP (
 ControlUserPaneActivateUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

576 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
HIContainerViews.h

DisposeControlUserPaneBackgroundUPP
Disposes of a user pane background UPP.

void DisposeControlUserPaneBackgroundUPP (
 ControlUserPaneBackgroundUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

DisposeControlUserPaneDrawUPP
Disposes of a user pane draw UPP.

void DisposeControlUserPaneDrawUPP (
 ControlUserPaneDrawUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneFocusUPP
Disposes of a user pane focus UPP.

void DisposeControlUserPaneFocusUPP (
 ControlUserPaneFocusUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Functions 577
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
HIContainerViews.h

DisposeControlUserPaneHitTestUPP
Disposes of a user pane hit test UPP.

void DisposeControlUserPaneHitTestUPP (
 ControlUserPaneHitTestUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneIdleUPP
Disposes of a user pane idle UPP.

void DisposeControlUserPaneIdleUPP (
 ControlUserPaneIdleUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeControlUserPaneKeyDownUPP
Disposes of a user pane key down UPP.

void DisposeControlUserPaneKeyDownUPP (
 ControlUserPaneKeyDownUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

578 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
HIContainerViews.h

DisposeControlUserPaneTrackingUPP
Disposes of a user pane tracking UPP.

void DisposeControlUserPaneTrackingUPP (
 ControlUserPaneTrackingUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

DisposeEditUnicodePostUpdateUPP
Disposes of an edit unicode post update UPP.

void DisposeEditUnicodePostUpdateUPP (
 EditUnicodePostUpdateUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

DragControl
Draws and moves an outline of a control or its indicator while the user drags it. (Deprecated. Use Drag
Manager functions if you want drag-and-drop support for controls. See Drag Manager Reference.)

Not recommended

Functions 579
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void DragControl (
 ControlRef theControl,
 Point startPoint,
 const Rect *limitRect,
 const Rect *slopRect,
 DragConstraint axis
);

Parameters
theControl

A handle to the control to drag. For a description of this data type, see ControlRef (page 709).

startPoint
The location of the cursor at the time the mouse button was first pressed, in global coordinates. Your
application retrieves this point from the where field of the event structure.

limitRect
A pointer to a rectangle—whose coordinates should normally coincide with or be contained in the
window’s content region—delimiting the area in which the user can drag the control’s outline.

slopRect
A pointer to a rectangle that allows some extra space for the user to move the mouse while still
constraining the control within the rectangle specified in the limitRect parameter.

axis
The axis along which the user may drag the control’s outline. Specify the axis using one of the
following values: noConstraint (no constraint), hAxisOnly (drag along horizontal axis only),
vAxisOnly (drag along vertical axis only).

Discussion
The DragControl function moves a dotted outline of a control, such as a scroll box, around the screen,
following the movements of the cursor until the user releases the mouse button. When the user releases the
mouse button, DragControl moves the control to the new location.

The function TrackControl (page 671) automatically calls the DragControl function as appropriate; when
you use TrackControl, you don’t need to call DragControl.

Before tracking the cursor, DragControl calls the control definition function. If you define your own control
definition function, you can specify custom dragging behavior.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

Draw1Control
Draws a control and any embedded controls that are currently visible in the specified window.

580 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void Draw1Control (
 ControlRef theControl
);

Parameters
theControl

A handle to the control to draw. For a description of this data type, see ControlRef (page 709).

Discussion
Although you should generally use the functionUpdateControls (page 672) to update controls, you can
use the DrawOneControl function to update a single control. If an embedding hierarchy exists and the
control passed in has embedded controls, DrawOneControl draws the control and embedded controls. If
the root control for a window is passed in, the result is the same as if DrawControls was called.

If you are using compositing mode, you generally do not need to call Draw1Control. If you call
Draw1Control in compositing mode, keep in mind that it draws the specified control as well as all other
controls that intersect the control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

DrawControlInCurrentPort
Draws a control in the current graphics port.

void DrawControlInCurrentPort (
 ControlRef inControl
);

Parameters
inControl

A handle to the control to draw. For a description of this data type, see ControlRef (page 709).

Discussion
Typically, controls are automatically drawn in their owner’s graphics port with the functions
DrawControls (page 581), Draw1Control (page 580), and UpdateControls (page 672).
DrawControlInCurrentPort permits easy offscreen control drawing and printing. All standard system
controls support this function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

DrawControls
Draws all controls currently visible in the specified window.

Functions 581
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void DrawControls (
 WindowRef theWindow
);

Parameters
theWindow

A pointer to a window whose controls you want to display.

Discussion
Because the UpdateControls function redraws only those controls that need updating, your application
should generally use it instead of DrawControls when you receive an update event for a window that
contains controls. You should typically call either DrawControls or UpdateControls after calling the
Window Manager function BeginUpdate and before calling EndUpdate.

While the Dialog Manager automatically draws and updates controls in alert boxes and dialog boxes, Window
Manager functions such as SelectWindow, ShowWindow, and BringToFront do not automatically update
the window’s controls.

When the Appearance Manager is not available, the DrawControls function draws all controls currently
visible in the specified window in reverse order of creation; thus, in case of overlapping controls, the control
created first appears frontmost in the window. If you only wish to draw controls in need of update, call
UpdateControls (page 672) instead.

Note that DrawControls generally should not be called if you are using compositing mode.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
HID Config Save
HID Explorer

Declared In
Controls.h

DumpControlHierarchy
Writes a textual representation of the control hierarchy for a specified window into a file.

OSErr DumpControlHierarchy (
 WindowRef inWindow,
 const FSSpec *inDumpFile
);

Parameters
inWindow

A pointer to the window whose control hierarchy you wish to examine.

inDumpFile
A pointer to a file specification in which to place a text description of the window’s control hierarchy.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

582 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
The DumpControlHierarchy function places a text listing of the current control hierarchy for the window
specified into the specified file, overwriting any existing file. If the specified window does not contain a
control hierarchy, DumpControlHierarchy notes this in the text file. This function is useful for debugging
embedding-related problems.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIToolboxDebugging.h

EmbedControl
Embeds one control inside another.

OSErr EmbedControl (
 ControlRef inControl,
 ControlRef inContainer
);

Parameters
inControl

The control that is to be embedded. For a description of this data type, see ControlRef (page 709).

inContainer
The control in which the control specified by inControl is to be is to embedded. For a description
of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
Establishing an embedding hierarchy can be accomplished in two steps: creating a root control and embedding
controls within it.

To embed controls in a window, you must create a root control for that window. The root control is the
container for all other window controls. You create the root control in one of two ways—by calling the
CreateRootControl (page 562) function or by setting the appropriate dialog flag. The root control can be
retrieved by calling GetRootControl (page 611).

The root control is implemented as a user pane control. You can attach any application-defined user pane
functions to the root control to perform actions such as hit testing, drawing, handling keyboard focus, erasing
to the correct background, and processing idle and keyboard events.

Once you have created a root control, newly created controls will automatically be embedded in the root
control when you call NewControl (page 634) or GetNewControl (page 610). You can specify that a specific
control be embedded into another by calling EmbedControl.

Note that an embedding hierarchy must be established before your application calls the EmbedControl
function. If the specified control does not support embedding or there is no root control in the owning
window, an error is returned. Prior to Mac OS X, if the control you wish to embed is in a different window
from the embedder control, an error is returned. On Mac OS X, however, you can use EmbedControl to

Functions 583
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

move a control from one window to another. On Mac OS X v.10.0 and v.10.1, you can move all controls except
for the edit text and unicode edit text controls. Support for the edit text controls is available in Mac OS X
v.10.2 and later.

By acting on an embedder control, you can move, disable, or hide groups of items. For example, you can use
a blank user pane control as the embedder control for all items in a particular “page” of a tab control. After
creating as many user panes as you have tabs, you can hide one and show the next when a tab is clicked.
All the controls embedded in the user pane will be hidden and shown automatically when the user pane is
hidden and shown.

In addition to calling CreateRootControl, you can establish an embedding hierarchy in a dialog box by
either setting the feature bit kDialogFlagsUseControlHierarchy in the extended dialog resource or
passing it in the inFlags parameter of the Dialog Manager function NewFeaturesDialog. An embedding
hierarchy can be created in an alert box by setting the kAlertFlagsUseControlHierarchy bit in the
extended alert resource. It is important to note that a preexisting alert or dialog item will become a control
if it is in an alert or dialog box that now uses an embedding hierarchy.

The embedding hierarchy enforces drawing order by drawing the embedding control before its embedded
controls. Using an embedding hierarchy also enforces orderly hit-testing, since it performs an “inside-out”
hit test to determine the most deeply nested control that is hit by the mouse. An embedding hierarchy is
also necessary for controls to make use of keyboard focus, the default focusing order for which is a linear
progression that uses the order the controls were added to the window. For more details on keyboard focus,
see “Handling Keyboard Focus”.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

EnableControl
Enables a control.

OSStatus EnableControl (
 ControlRef inControl
);

Parameters
theControl

The control that is to be enabled.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

584 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Related Sample Code
QTCarbonShell

Declared In
Controls.h

FindControl
Obtains the location of a mouse-down event in a control.

ControlPartCode FindControl (
 Point testPoint,
 WindowRef theWindow,
 ControlRef *theControl
);

Parameters
testPoint

A point, specified in coordinates local to the window, where the mouse-down event occurred. Before
calling FindControl, use the GlobalToLocal function to convert the point stored in the where
field of the event structure (which describes the location of the mouse-down event) to coordinates
local to the window.

theWindow
A pointer to the window in which the mouse-down event occurred. Pass the window pointer returned
by the FindWindow function.

theControl
A pointer to a control handle. On output, FindControl returns a handle to the control in which the
mouse-down event occurred or NULL if the point was not over a control. For a description of this data
type, see ControlRef (page 709).

Return Value
The control part code of the control in which the mouse-down event occurred; see “Control Meta Part Code
Constants” (page 790), “Control Part Code Constants ” (page 748), and“ Control State Part Code Constants” (page
751). For a description of this data type, see ControlPartCode (page 708).

Discussion
The FindControl function is not recommended when the Appearance Manager is available. When the
Appearance Manager is available, you should call FindControlUnderMouse (page 586) to determine the
location of a mouse-down event in a control. FindControlUnderMouse will return a handle to the control
even if no part was hit and can determine whether a mouse-down event has occurred even if the control is
deactivated, while FindControl does not.

If the Appearance Manager is not available, then, when a mouse-down event occurs, your application can
call FindControl after using the Window Manager function FindWindow to ascertain that a mouse-down
event has occurred in the content region of a window containing controls.

When the user presses the mouse button while the cursor is in a visible, active control, FindControl returns
as its function result a part code identifying the control’s part the function also returns a handle to the control
in the parameter theControl.

If the mouse-down event occurs in an invisible or inactive control, or if it occurs outside a control,
FindControl sets the value referenced through theControl to NULL and returns 0 as its function result.

Functions 585
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

The FindControl function also returns NULL in the value referenced through the parameter theControl
and 0 as its function result if the window is invisible or if it doesn’t contain the given point. (However,
FindWindow won’t return a window pointer to an invisible window or to one that doesn’t contain the point
where the mouse-down event occurred. As long as you call FindWindow before FindControl, this situation
won’t arise.)

After using FindControl to determine that a mouse-down event has occurred in a control, you typically
call the function TrackControl (page 671) to follow and respond to the cursor movements in that control,
and then to determine in which part of the control the mouse-up event occurs.

The pop-up control definition function does not define part codes for pop-up menus. Instead, your application
should store the handles for your pop-up menus when you create them. Your application should then test
the handles you store against the handles returned by FindControl before responding to users’ choices in
pop-up menus.

The Dialog Manager automatically calls FindControl and TrackControl for mouse-down events inside
controls of alert boxes and dialog boxes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

FindControlUnderMouse
Obtains the location of a mouse-down event in a control.

ControlRef FindControlUnderMouse (
 Point inWhere,
 WindowRef inWindow,
 ControlPartCode *outPart
);

Parameters
inWhere

A point, specified in coordinates local to the window, where the mouse-down event occurred. Before
calling FindControlUnderMouse, use the QuickDraw GlobalToLocal function to convert the point
stored in the where field of the event structure (which describes the location of the mouse-down
event) to coordinates local to the window.

inWindow
A pointer to the window in which the mouse-down event occurred.

outPart
On input, a pointer to a signed 16-bit integer value. On return, the value is set to the part code of the
control part that was selected; see “Control Part Code Constants ” (page 748), “Control Part Code
Constants ” (page 748), and “ Control State Part Code Constants” (page 751).

Return Value
A handle to the control that was selected. If the mouse-down event did not occur over a control part,
FindControlUnderMouse returns NULL. For a description of this data type, see ControlRef (page 709).

586 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
You should call the FindControlUnderMouse function instead of FindControl (page 585) to determine
whether a mouse-down event occurred in a control, particularly if an embedding hierarchy is present.
FindControlUnderMouse will return a handle to the control even if no part was hit and can determine
whether a mouse-down event has occurred even if the control is deactivated, while FindControl does not.

When a mouse-down event occurs, your application should call FindControlUnderMouse after using the
Window Manager function FindWindow to ascertain that a mouse-down event has occurred in the content
region of a window containing controls.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetBestControlRect
Obtains a control’s optimal size and text placement.

OSErr GetBestControlRect (
 ControlRef inControl,
 Rect *outRect,
 SInt16 *outBaseLineOffset
);

Parameters
inControl

A handle to the control to be examined.

outRect
On input, a pointer to an empty rectangle (0, 0, 0, 0). On return, the rectangle is set to the optimal
size for the control. If the control doesn’t support getting an optimal size rectangle, the control’s
bounding rectangle is passed back.

outBaseLineOffset
On input, a pointer to a signed 16-bit integer value. On return, the value is set to the offset from the
bottom of control to the base of the text (usually a negative value). If the control doesn’t support
optimal sizing or has no text, 0 is passed back.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
You can call the GetBestControlRect function to automatically position and size controls in accordance
with human interface guidelines. This function is particularly helpful in determining the correct placement
of control text whose length is not known until run-time. For example, the StandardAlert function uses
GetBestControlRect to automatically size and position buttons in a newly created alert box.

Availability
Available in Mac OS X v10.0 and later.

Functions 587
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Not available to 64-bit applications.

Declared In
Controls.h

GetBevelButtonContentInfo
Gets the content information for a bevel button.

OSErr GetBevelButtonContentInfo (
 ControlRef inButton,
 ControlButtonContentInfoPtr outContent
);

Parameters
inButton

The control reference for the button to query.

outContent
A value of type ControlButtonContentInfoPtr for the bevel button’s content information.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

GetBevelButtonMenuHandle
Gets the menu handle for a bevel button.

OSErr GetBevelButtonMenuHandle (
 ControlRef inButton,
 MenuHandle *outHandle
);

Parameters
inButton

The control reference for the button to query.

outHandle
A pointer to the menu handle.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

588 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
HIButtonViews.h

GetBevelButtonMenuValue
Gets the value of a bevel button menu.

OSErr GetBevelButtonMenuValue (
 ControlRef inButton,
 MenuItemIndex *outValue
);

Parameters
inButton

The control reference for the button to query.

outValue
A pointer to the value of the bevel button menu.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

GetControl32BitMaximum
Obtains the maximum setting of a control.

SInt32 GetControl32BitMaximum (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose maximum setting you wish to obtain. For a description of this data
type, see ControlRef (page 709).

Return Value
The maximum setting of the control.

Discussion
Your application may use the GetControl32BitMaximum function to obtain a 32-bit value previously set
with the function SetControl32BitMaximum (page 647).

If your application uses a 32-bit control maximum value, it should not attempt to obtain this value by calling
the pre–Mac OS 8.5 function GetControlMaximum because the 16-bit value that is returned does not
accurately reflect the current 32-bit control value.

Availability
Available in Mac OS X v10.0 and later.

Functions 589
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
Controls.h

GetControl32BitMinimum
Obtains the minimum setting of a control.

SInt32 GetControl32BitMinimum (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose minimum setting you wish to obtain. For a description of this data
type, see ControlRef (page 709).

Return Value
The minimum setting of the control.

Discussion
Your application may use the GetControl32BitMinimum function to obtain a 32-bit value previously set
with the function SetControl32BitMinimum (page 648).

If your application uses a 32-bit control minimum value, it should not attempt to obtain this value by calling
the pre–Mac OS 8.5 function GetControlMinimum because the 16-bit value that is returned does not
accurately reflect the current 32-bit control value.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
Controls.h

GetControl32BitValue
Obtains the current setting of a control.

590 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

SInt32 GetControl32BitValue (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose current setting you wish to obtain.

Return Value
The current setting of the control.

Discussion
Your application may use the GetControl32BitValue function to obtain a 32-bit value previously set with
the function SetControl32BitValue (page 648).

If your application uses a 32-bit control value, it should not attempt to obtain this value by calling the pre–Mac
OS 8.5 function GetControlValue because the 16-bit value that is returned does not accurately reflect the
current 32-bit control value.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
Controls.h

GetControlAction
Returns a pointer to the action function associated with a control structure.

ControlActionUPP GetControlAction (
 ControlRef theControl
);

Parameters
theControl

A handle to a control.

Return Value
The action function associated with the control. The action function is called by the HandleControlClick
and TrackControl functions if you set the InAction parameter to (ControlActionUPP)-1. See
ControlActionProcPtr (page 675) for an example of an action function.

Discussion
The action function returned by the GetControlAction function defines an action to take in response to
a mouse button being held down while the cursor is in the control. An action function is usually specified in
the InAction parameter of the functions HandleControlClick (page 613) and TrackControl (page 671).
You can use the function SetControlAction (page 649) to change the action function.

Availability
Available in Mac OS X v10.0 and later.

Functions 591
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Not available to 64-bit applications.

Declared In
Controls.h

GetControlBounds
Gets the bounds of a control.

Rect * GetControlBounds (
 ControlRef control,
 Rect *bounds
);

Parameters
control

The control to query. For a description of this data type, see ControlRef (page 709).

bounds
On input, a pointer to a QuickDraw rectangle. On output, the rectangle contains the bounds of the
control in local coordinates.

Return Value
A pointer to the rectangle passed in the bounds parameter.

Discussion
When called in a composited window, this function returns the view’s frame, which is equivalent to calling
HIViewGetFrame.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
HID Explorer

Declared In
Controls.h

GetControlByID
Finds a control in a window by its unique ID.

OSStatus GetControlByID (
 WindowRef inWindow,
 const ControlID *inID,
 ControlRef *outControl
);

Parameters
inWindow

The window to query.

592 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

inID
The control ID.

outControl
A pointer to a value of type ControlRef that, on output, is filled in with the control reference for
the control specified by inID. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
As of Mac OS X v10.3, this function is superseded by the HIViewFindByID function, which is preferred over
the GetControlByID function. The first parameter to the HIViewFindByID function is a view and not a
window, so you can start the search at any point in the hierarchy.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Config Save
HID Explorer
QTCarbonShell

Declared In
Controls.h

GetControlClickActivation
Gets the control’s preferred behavior for responding to particular click.

OSStatus GetControlClickActivation (
 ControlRef inControl,
 Point inWhere,
 EventModifiers inModifiers,
 ClickActivationResult *outResult
);

Parameters
inControl
inWhere

The location at which the control was clicked.

inModifiers
Information from the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted. .

outResult
A pointer to a value of type ClickActivationResult containing the result. For possible values,
see “Click Activation Constants” (page 780).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Functions 593
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
Some complex controls, such as Data Browser, require proper sequencing of window activation and click
processing. In some cases, the control might want the window to be left inactive yet still handle the click, or
vice- versa. This function lets a control client ask the control how it wants to behave for a particular click.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlCommandID
Gets the command ID for a control.

OSStatus GetControlCommandID (
 ControlRef inControl,
 UInt32 *outCommandID
);

Parameters
inControl
outCommandID

A pointer to the command ID.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlData
Obtains control-specific data.

OSErr GetControlData (
 ControlRef inControl,
 ControlPartCode inPart,
 ResType inTagName,
 Size inBufferSize,
 void *inBuffer,
 Size *outActualSize
);

Parameters
inControl

A handle to the control to be examined.

594 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

inPart
“Control Meta Part Code Constants” (page 790)The part code of the control part from which data is
to be obtained; see , “Control Part Code Constants ” (page 748), and “ Control State Part Code
Constants” (page 751). Passing kControlEntireControl indicates that either the control has no
parts or the data is not tied to any specific part of the control. For a description of this data type, see
ControlPartCode (page 708).

inTagName
A constant representing the control-specific data you wish to obtain see the data tag constants in
the “Control Manager Constants” (page 719) section.

inBufferSize
The size (in bytes) of the data pointed to by the inBuffer parameter. For variable-length control
data, pass the value returned in the outMaxSize parameter of GetControlDataSize (page 596) in
the inBufferSize parameter. The number of bytes must match the actual data size.

inBuffer
On input, a pointer to a buffer allocated by your application. On return, the buffer contains a copy of
the control-specific data. If you pass NULL on input, it is equivalent to calling
GetControlDataSize (page 596). The actual size of the control-specific data will be returned in the
outActualSize parameter. For variable-length data, the number of bytes must match the actual
data size.

outActualSize
On input, a pointer to a Size value. On return, the value is set to the actual size of the data. You can
pass NULL if you don’t care about this value.

Return Value
A result code. See “Control Manager Result Codes” (page 824). The result code errDataNotSupported
indicates that the inTagName parameter is not valid.

Discussion
The GetControlData function will only copy the amount of data specified in the inBufferSizeparameter,
but will tell you the actual size of the buffer so you will know if the data was truncated.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonCocoa_PictureCursor
HID Explorer
QTCarbonShell

Declared In
Controls.h

GetControlDataHandle
Obtains a handle to control-specific data. (Deprecated. Use custom HIViews instead of custom CDEFs. See
HIView Programming Guide.)

Functions 595
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Handle GetControlDataHandle (
 ControlRef control
);

Return Value
A handle to control-specific data.

Discussion
The control data handle is for control-specific data used by a control’s implementation. The control data
handle is set by calling SetControlDataHandle (page 653).

In general, you should not attempt to interpret the contents of this handle if you did not implement the
control yourself. For controls that are provided by the operating system, the format of the data handle may
change from one release of the operating system to the next.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlDataSize
Obtains the size of a control’s tagged data.

OSErr GetControlDataSize (
 ControlRef inControl,
 ControlPartCode inPart,
 ResType inTagName,
 Size *outMaxSize
);

Parameters
inControl

A handle to the control to be examined.For a description of this data type, see ControlRef (page 709).

inPart
The part code of the control part with which the data is associated; see“Control Meta Part Code
Constants” (page 790), “Control Part Code Constants ” (page 748), and “ Control State Part Code
Constants” (page 751). Passing kControlEntireControl indicates that either the control has no
parts or the data is not tied to any specific part of the control.

inTagName
A constant representing the control-specific data whose size is to be obtained see the data tag
constants in the “Control Manager Constants” (page 719) section.

outMaxSize
On input, a pointer to a Size value. On return, the value is set to the size (in bytes) of the control’s
tagged data. This value should be passed to SetControlData (page 652) and GetControlData (page
594) to allocate a sufficiently large buffer for variable-length data.

Return Value
A result code. See “Control Manager Result Codes” (page 824). The result code errDataNotSupported
indicates that the inTagName parameter is not valid.

596 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
Pass the value returned in the outMaxSize parameter of GetControlDataSize in the inBufferSize
parameter of SetControlData (page 652) and GetControlData (page 594) to allocate an adequate buffer
for variable-length data.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlFeatures
Obtains the features a control supports.

Not recommended

OSErr GetControlFeatures (
 ControlRef inControl,
 UInt32 *outFeatures
);

Parameters
inControl

A handle to the control to be examined. For a description of this data type, see ControlRef (page 709).

outFeatures
On input, a pointer to an unsigned 32-bit integer value. On return, the value contains a bit field
specifying the features the control supports. For a list of the features a control may support, see
ControlDefProcPtr (page 677).

Return Value
A result code. See “Control Manager Result Codes” (page 824). The result code errMsgNotSupported indicates
that the control does not support Appearance-compliant features.

Discussion
The GetControlFeatures function obtains the Appearance-compliant features a control definition function
supports, in response to a kControlMsgGetFeatures message.

Carbon Porting Notes

Some feature bits may not be relevant when using Carbon event-based messages.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlHilite
Gets the highlight status of a control.

Functions 597
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

UInt16 GetControlHilite (
 ControlRef control
);

Parameters
control

The control to query. For a description of this data type, see ControlRef (page 709).

Return Value
Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlID
Gets the control ID for a control.

OSStatus GetControlID (
 ControlRef inControl,
 ControlID *outID
);

Parameters
inControl

The control to query. For a description of this data type, see ControlRef (page 709).

outID
A pointer to a value of type ControlID that, on return, contains the control ID of the control specified
by inControl.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlKind
Returns the kind of the given control.

598 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus GetControlKind (
 ControlRef inControl,
 ControlKind *outControlKind
);

Parameters
inControl

The control to query. For a description of this data type, see ControlRef (page 709).

outControlKind
On successful exit, this will contain the control signature and kind. See ControlDefinitions.h for
the kinds of each system control. For a description of this data type, see ControlKind (page 707).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
GetControlKind allows you to query the kind of any control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
Controls.h

GetControlMaximum
Obtains a control’s maximum setting. (Deprecated. Use GetControl32BitMaximum (page 589) instead.)

Not recommended

SInt16 GetControlMaximum (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose maximum value you wish to determine. For a description of this data
type, see ControlRef (page 709).

Return Value
The specified control’s maximum setting.

Discussion
When you create a control, you specify an initial maximum setting either in the control resource or in the
max parameter of the function NewControl (page 634). You can change the maximum setting by using the
function SetControlMaximum (page 655).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 599
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlMinimum
Obtains a control’s minimum setting. (Deprecated. Use GetControl32BitMinimum (page 590) instead.)

Not recommended

SInt16 GetControlMinimum (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose minimum value you wish to determine.

Return Value
The specified control’s minimum setting.

Discussion
When you create a control, you specify an initial minimum setting either in the control resource or in the
min parameter of the function NewControl (page 634). You can change the minimum setting by using the
function SetControlMinimum (page 656).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlOwner
Returns the window to which a control is bound.

WindowRef GetControlOwner (
 ControlRef control
);

Parameters
control

The control to query. For a description of this data type, see ControlRef (page 709).

Return Value
The window reference to which the control is bound, or NULL if the control is not bound to a window.

600 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

GetControlPopupMenuHandle
Gets the menu handle for a pop-up control.

MenuRef GetControlPopupMenuHandle (
 ControlRef control
);

Parameters
control

The pop-up control to query.

Return Value
See the Menu Manager documentation for a description of the MenuRef data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

GetControlPopupMenuID
Gets the menu ID of a pop-up menu.

short GetControlPopupMenuID (
 ControlRef control
);

Parameters
control

The pop-up control to query.

Return Value
The menu ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 601
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
Controls.h

GetControlProperty
Obtains a piece of data that has been previously associated with a control.

OSStatus GetControlProperty (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag,
 ByteCount bufferSize,
 ByteCount *actualSize,
 void *propertyBuffer
);

Parameters
control

A handle to the control whose associated data you wish to obtain.

propertyCreator
Your program’s signature, as registered through Apple Developer Technical Support. If your program
is of a type that would not normally have a signature (for example, a plug-in), you should still register
and use a signature in this case, even though your program’s file may not have the same creator code
as the signature that you register. The ‘macs' property signature is reserved for the system and
should not be used.

propertyTag
The application-defined code identifying the data.

bufferSize
A value specifying the size of the data to be obtained. If the size of the data is unknown, use the
function GetControlPropertySize (page 603) to get the data’s size. If the size specified in the
bufferSize parameter does not match the actual size of the property, GetControlProperty only
retrieves data up to the size specified or up to the actual size of the property, whichever is smaller,
and an error is returned.

actualSize
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the actual size of the
associated data. You may pass NULL for the actualSize parameter if you are not interested in this
information.

propertyBuffer
On input, a pointer to a buffer. On return, this buffer contains a copy of the data that is associated
with the specified control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
You may use the function GetControlProperty to obtain a copy of data previously set by your application
with the function SetControlProperty (page 658).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

602 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Related Sample Code
CarbonCocoa_PictureCursor
HID Calibrator
HID Explorer

Declared In
Controls.h

GetControlPropertyAttributes
Gets the property attributes for a control.

OSStatus GetControlPropertyAttributes (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag,
 OptionBits *attributes
);

Parameters
control

The control to query. For a description of this data type, see ControlRef (page 709).

propertyCreator
The OSType signature, usually the signature of your application, for the property creator of the
attributes that are to be obtained.

propertyTag
The OSType signature for the property tag for the attributes that are to be obtained.

attributes
A pointer to a value of type UInt32 that, on return, contains the attributes of the control specified
by control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlPropertySize
Obtains the size of a piece of data that has previously been associated with a control.

Functions 603
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus GetControlPropertySize (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag,
 ByteCount *size
);

Parameters
control

A handle to the control whose associated data you wish to examine. For a description of this data
type, see ControlRef (page 709).

propertyCreator
Your program’s signature, as registered through Apple Developer Technical Support. If your program
is of a type that would not normally have a signature (for example, a plug-in), you should still register
and use a signature in this case, even though your program’s file may not have the same creator code
as the signature that you register. The ‘macs' property signature is reserved for the system and
should not be used.

propertyTag
The application-defined code identifying the data.

size
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the actual size of the
data.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
If you want to retrieve a piece of associated data with the function GetControlProperty (page 602), you
will typically need to use the GetControlPropertySize function beforehand to determine the size of the
associated data.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlReference
Obtains a control’s current reference value.

SRefCon GetControlReference (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose current reference value you wish to determine.

Return Value
The current reference value for the specified control.

604 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
When you create a control, you specify an initial reference value, either in the control resource or in the
refCon parameter of the function NewControl (page 634). The reference value is stored in the contrlRfCon
field of the control structure. You can use this field for any purpose, and you can use the function
SetControlReference (page 659) to change this value.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlRegion
Obtains the region corresponding to a given control part.

OSStatus GetControlRegion (
 ControlRef inControl,
 ControlPartCode inPart,
 RgnHandle outRegion
);

Parameters
inControl

A handle to the control whose part region you want to obtain.

inPart
A constant identifying the control part for which a region is to be obtained. You may specify the
kControlStructureMetaPart and kControlContentMetaPart control part codes, as well as the
standard control part codes. See “Control Meta Part Code Constants” (page 790), “Control Part Code
Constants ” (page 748), and “ Control State Part Code Constants” (page 751) for descriptions of possible
values.

outRegion
On input, a value of type RgnHandle. On return, GetControlRegion sets the region to contain the
actual dimensions and position of the control part, in local coordinates.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlTitle
Obtains the title of a control. (Deprecated in Mac OS X v10.5. Use HIViewCopyText (page 2448) or
CopyControlTitleAsCFString (page 538) instead.)

Functions 605
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void GetControlTitle (
 ControlRef theControl,
 Str255 title
);

Parameters
theControl

A handle to the control whose title you want to determine.

title
On input, a pascal string. On output, the title of the control.

Discussion
The GetControlTitle function produces the title of the specified control, which is stored in the
contrlTitle field of the control structure.

When you create a control, you specify an initial title either in the control resource or in the title parameter
of the function NewControl (page 634). You can change the title by using SetControlTitle (page 660).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlValue
Obtains a control’s current setting. (Deprecated. Use GetControl32BitValue (page 590) instead.)

Not recommended

SInt16 GetControlValue (
 ControlRef theControl
);

Parameters
theControl

On input, a handle to a control.

Return Value
The current setting of the control.

Discussion
When you create a control, you specify an initial setting either in the control resource or in the value
parameter of the function NewControl (page 634). You can change the setting by calling
SetControlValue (page 661).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

606 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

CarbonSketch
ictbSample

Declared In
Controls.h

GetControlVariant
Returns the variation code specified in the control definition function for a particular control. (Deprecated.
Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

Not recommended

ControlVariant GetControlVariant (
 ControlRef theControl
);

Parameters
theControl

A handle to the control whose variation code you wish to determine.

Return Value
The variation code for the specified control see the control definition IDs in the “Control Manager
Constants” (page 719) section for descriptions of control variation codes. For a description of this data type,
see ControlVariant (page 712).

Discussion
A control definition function can use a variation code to describe variations of the same basic control. For
example, all pop-up arrows share the same basic control definition function, which is stored in a resource of
type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it has
a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Carbon Porting Notes

Use only if you are using message-based custom controls (CDEFs).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetControlViewSize
Obtains the size of the content to which a control’s size is proportioned.

Functions 607
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

SInt32 GetControlViewSize (
 ControlRef theControl
);

Parameters
theControl

A value of type ControlHandle. Pass a handle to the control whose view size you wish to obtain.

Return Value
A value equal to the current size of the content being displayed, expressed in terms of the same units of
measurement as are used for the minimum, maximum, and current settings of the control.

Discussion
Your application should call the GetControlViewSize function to obtain the current view size of a control.
This value is used by the scrollbar control to support proportional scroll boxes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetImageWellContentInfo
Gets information about the content of an image well.

OSErr GetImageWellContentInfo (
 ControlRef inButton,
 ControlButtonContentInfoPtr outContent
);

Parameters
inButton

The control reference to query.

outContent
On return, the value type ControlButtonContentInfoPtr for the control specified by inButton.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

GetIndexedSubControl
Obtains a handle to a specified embedded control.

608 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSErr GetIndexedSubControl (
 ControlRef inControl,
 UInt16 inIndex,
 ControlRef *outSubControl
);

Parameters
inControl

The control from which an embedded control handle is to be obtained. For a description of this data
type, see ControlRef (page 709).

inIndex
A one-based index—an integer between 1 and the value returned in the outNumChildren parameter
of CountSubControls (page 538)—specifying the control you wish to access.

outSubControl
On input, a pointer to a ControlHandle value. On return, the ControlHandle value is set to a
handle to the embedded control.

Return Value
A result code. See “Control Manager Result Codes” (page 824). If the index passed in is invalid, the paramErr
result code is returned.

Discussion
The GetIndexedSubControl function is useful for iterating over the control hierarchy. Also, the value of a
radio group control is the index of its currently selected embedded radio button control. So, passing the
current value of a radio group control into GetIndexedSubControl will give you a handle to the currently
selected radio button control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
Controls.h

GetKeyboardFocus
Obtains a handle to the control with the current keyboard focus for a specified window.

OSErr GetKeyboardFocus (
 WindowRef inWindow,
 ControlRef *outControl
);

Parameters
inWindow

A pointer to the window for which to obtain keyboard focus.

outControl
On input, a pointer to a ControlHandle value. On return, the ControlHandle value is set to a
handle to the control that currently has keyboard focus. Produces NULL if no control has focus.

Functions 609
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
The GetKeyboardFocus function returns the handle of the control with current keyboard focus within a
specified window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

GetNewControl
Creates a control from a control resource.

ControlRef GetNewControl (
 SInt16 resourceID,
 WindowRef owningWindow
);

Parameters
resourceID

The resource ID of the control you wish to create.

owningWindow
A pointer to the window in which to place the control.

Return Value
A handle to the control created from the specified control resource. If GetNewControl can’t read the control
resource from the resource file, it returns NULL. For a description of this data type, see ControlRef (page 709).

Discussion
The GetNewControl function creates a control structure from the information in the specified control
resource, adds the control structure to the control list for the specified window, and returns as its function
result a handle to the control. You use this handle when referring to the control in most other Control Manager
functions. After making a copy of the control resource, GetNewControl releases the memory occupied by
the original control resource before returning.

The control resource specifies the rectangle for the control, its initial setting, its visibility state, its maximum
and minimum settings, its control definition ID, a reference value, and its title (if any). After you use
GetNewControl to create the control, you can change the control characteristics with other Control Manager
functions.

If the control resource specifies that the control should be visible, the Control Manager draws the control. If
the control resource specifies that the control should initially be invisible, you can use the function
ShowControl (page 669) to make the control visible.

When an embedding hierarchy is established within a window, GetNewControl automatically embeds the
newly created control in the root control of the owning window.

Availability
Available in Mac OS X v10.0 and later.

610 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Not available to 64-bit applications.

Declared In
Controls.h

GetRootControl
Obtains a handle to a window’s root control.

OSErr GetRootControl (
 WindowRef inWindow,
 ControlRef *outControl
);

Parameters
inWindow

A pointer to the window to be examined.

outControl
Pass a pointer to a ControlHandle value. On return, the ControlHandle value is set to a handle
to the root control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
You can call GetRootControl to determine whether or not a root control (and therefore an embedding
hierarchy) exists within a specified window. Once you have the root control’s handle, you can pass it to
functions such asDisposeControl (page 573),ActivateControl (page 535),andDeactivateControl (page
572) to apply specified actions to the entire embedding hierarchy.

Note that the minimum, maximum, and initial settings for a root control are reserved and should not be
changed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

GetSuperControl
Obtains a handle to an embedder control.

Functions 611
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSErr GetSuperControl (
 ControlRef inControl,
 ControlRef *outParent
);

Parameters
inControl

A handle to an embedded control. For a description of this data type, see ControlRef (page 709).

outParent
A pointer to a ControlHandle value. On return, the ControlHandle value is set to a handle to the
embedder control. For a description of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
The GetSuperControl function gets a handle to the parent control of the control passed in.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

GetTabContentRect
Gets the content rectangle for a tab.

OSErr GetTabContentRect (
 ControlRef inTabControl,
 Rect *outContentRect
);

Parameters
inTabControl

The tab control reference to query.

outContentRect
On return, the value of this parameter is a pointer to the content rectangle for the tab specified by
inTabControl.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HITabbedView.h

612 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

HandleControlClick
Responds to cursor movements in a control while the mouse button is down and returns the location of the
next mouse-up event.

ControlPartCode HandleControlClick (
 ControlRef inControl,
 Point inWhere,
 EventModifiers inModifiers,
 ControlActionUPP inAction
);

Parameters
inControl

A handle to the control in which the mouse-down event occurred. Pass the control handle returned
by FindControl or FindControlUnderMouse.

inWhere
A point, specified in local coordinates, where the mouse-down event occurred. Supply the same point
you passed to FindControl or FindControlUnderMouse.

inModifiers
Information from the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

inAction
A universal procedure pointer to an action function defining what action your application takes while
the user holds down the mouse button. See ControlActionProcPtr (page 675) for a description
of such an action function. The value of the inAction parameter can be a valid procPtr, NULL, or
-1. A value of -1 indicates that the control should either perform auto tracking, or if it is incapable of
doing so, do nothing (like NULL). For custom controls, what you pass in this parameter depends on
how you define the control. If the part index is greater than 128, the pointer must be of type
DragGrayRegionUPP unless the control supports live feedback, in which case it should be a
ControlActionUPP.

Return Value
Returns a value of type ControlPartCode identifying the control’s part see “Control Meta Part Code
Constants” (page 790), “Control Part Code Constants ” (page 748), and“ Control State Part Code Constants” (page
751). For a description of this data type, see ControlPartCode (page 708).

Discussion
Call the HandleControlClick function after a call to FindControl (page 585) or
FindControlUnderMouse (page 586). The HandleControlClick function should be called instead of
TrackControl (page 671) to follow the user’s cursor movements in a control and provide visual feedback
until the user releases the mouse button. Unlike TrackControl, HandleControlClick allows modifier
keys to be passed in so that the control may use these if the control (such as a list box or editable text field)
is set up to handle its own tracking.

The visual feedback given by HandleControlClick depends on the control part in which the mouse-down
event occurs. When highlighting is appropriate, for example, HandleControlClick highlights the control
part (and removes the highlighting when the user releases the mouse button). When the user holds down
the mouse button while the cursor is in an indicator (such as the scroll box of a scroll bar) and moves the
mouse, HandleControlClick responds by dragging a dotted outline or a ghost image of the indicator. If
the user releases the mouse button when the cursor is in an indicator such as the scroll box,
HandleControlClick calls the control definition function to reposition the indicator.

Functions 613
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

While the user holds down the mouse button with the cursor in one of the standard controls,
HandleControlClick performs the following actions, depending on the value you pass in the parameter
inAction.

 ■ If you pass NULL in the inAction parameter, HandleControlClick uses no action function and
therefore performs no additional actions beyond highlighting the control or dragging the indicator. This
is appropriate for push buttons, checkboxes, radio buttons, and the scroll box of a scroll bar.

 ■ If you pass a pointer to an action function in the inAction parameter, it must define some action that
your application repeats as long as the user holds down the mouse button. This is appropriate for the
scroll arrows and gray areas of a scroll bar.

 ■ If you pass (ControlActionUPP)-1L in the inAction parameter, HandleControlClick calls the
control action function associated with the control. This is appropriate when you are tracking the cursor
in a pop-up menu. You can call GetControlAction (page 591) to get a pointer to the control action
function that is associated with the control, and you can call SetControlAction (page 649) to set the
control action function that is associated with the control.

For 'CDEF' resources that implement custom dragging, you usually call HandleControlClick, which
returns 0 regardless of the user’s changes of the control setting. To avoid this, you should use another method
to determine whether the user has changed the control setting, for instance, comparing the control’s value
before and after your call to HandleControlClick.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

HandleControlContextualMenuClick
Allows a control to display a contextual menu.

OSStatus HandleControlContextualMenuClick (
 ControlRef inControl,
 Point inWhere,
 Boolean *menuDisplayed
);

Parameters
inControl
inWhere

The location that was clicked.

menuDisplayed
Pointer to a Boolean whose value is true if the control displayed a contextual menu; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

614 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

HandleControlDragReceive
Tells a control to accept the data from a drag.

OSStatus HandleControlDragReceive (
 ControlRef inControl,
 DragReference inDrag
);

Parameters
inControl
inDrag

The drag reference that was dropped on the control.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
Call this function when the user drops a drag on a control in your window to give the control an opportunity
to take any interesting data from the drag. Before calling this function, you must call
SetControlDragTrackingEnabled (page 653) to enable drag and drop support for the control.Note that
this function should not be called in a composited window. Instead, the
SetAutomaticControlDragTrackingEnabledForWindowAPI should be used to enable automatic control
drag tracking.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

HandleControlDragTracking
Tells a control to respond visually to a drag.

Functions 615
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus HandleControlDragTracking (
 ControlRef inControl,
 DragTrackingMessage inMessage,
 DragReference inDrag,
 Boolean *outLikesDrag
);

Parameters
inControl
inMessage

A drag message indicating the state of the drag above the control. The meaning of the value you
pass in must be relative to the control, not the whole window. For when the drag first enters the
control, you should pass kDragTrackingEnterControl. While the drag stays within the control,
pass kDragTrackingInControl. When the drag leaves the control, pass
kDragTrackingLeaveControl.

inDrag
The drag reference that is over the control.

outLikesDrag
On output, a pointer to a Boolean whose value is true if the control can accept the data in the drag
reference or false if the control cannot accept the data. If the value is false,there is no need to call
HandleControlDragReceive (page 615) when the user drops the dragged object onto the control
because the control cannot accept the data.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
Call this function when a drag is above a control in your window and you want to give that control a chance
to draw appropriately in response to the drag. Before calling this function, you must call
SetControlDragTrackingEnabled (page 653) to enable drag and drop support for the control.Note that
this function should not be called in a composited window. Instead, the
SetAutomaticControlDragTrackingEnabledForWindowAPI should be used to enable automatic control
drag tracking.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

HandleControlKey
Sends a keyboard event to a control with keyboard focus. (Deprecated in Mac OS X v10.5. For HIView-based
controls, send the view a kEventTextInputUnicodeForKeyEvent event.)

616 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlPartCode HandleControlKey (
 ControlRef inControl,
 SInt16 inKeyCode,
 SInt16 inCharCode,
 EventModifiers inModifiers
);

Parameters
inControl

A handle to the control that currently has keyboard focus.

inKeyCode
The virtual key code, derived from the event structure. This value represents the key pressed or
released by the user. It is always the same for a specific physical key on a particular keyboard regardless
of which modifier keys were also pressed.

inCharCode
A character, derived from the event structure. The value that is generated depends on the virtual key
code, the state of the modifier keys, and the current'KCHR' resource.

inModifiers
Information from the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

Return Value
The part code that was hit during the keyboard event; see “Control Meta Part Code Constants” (page 790),
“Control Part Code Constants ” (page 748), and“ Control State Part Code Constants” (page 751). For a description
of this data type, see ControlPartCode (page 708).

Discussion
If you have determined that a keyboard event has occurred in a given window, before calling the
HandleControlKey function, call GetKeyboardFocus (page 609) to get the handle to the control that
currently has keyboard focus. The HandleControlKey function passes the values specified in its inKeyCode,
inCharCode, and inModifiers parameters to control definition functions that set the
kControlSupportsFocus feature bit.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

HandleControlSetCursor
Requests that a control set the cursor based on the mouse location.

Functions 617
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus HandleControlSetCursor (
 ControlRef control,
 Point localPoint,
 EventModifiers modifiers,
 Boolean *cursorWasSet
);

Parameters
inControl

.

localPoint
The location of the mouse.

modifiers
Information from the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

cursorWasSet
Out output, a pointer to a Boolean whose value is true if the cursor was set; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

HideControl
Makes a control, and any latent embedded controls, invisible.

void HideControl (
 ControlRef theControl
);

Parameters
theControl

A handle to the control to hide.

Discussion
The HideControl function makes the specified control invisible. This can be useful, for example, before
adjusting a control’s size and location. It also adds the control’s rectangle to the window’s update region, so
that anything else that was previously obscured by the control will reappear on the screen. If the control is
already invisible, HideControl has no effect.

When hiding groups of controls, the state of an embedded control that is hidden or deactivated is preserved
so that when the embedder control is shown or activated, the embedded control appears in the same state
as the embedder. If the specified control has embedded controls, HideControl makes the embedded
controls invisible as well.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you call HideControl on a latent embedded control, it would not be displayed
the next time ShowControl (page 669) was called on its embedder control.

618 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

To make the control visible again, call ShowControl (page 669).

You can also call SetControlVisibility (page 663) to hide or show a control without causing it to redraw.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

HiliteControl
Changes the highlighting of a control.

Not recommended

void HiliteControl (
 ControlRef theControl,
 ControlPartCode hiliteState
);

Parameters
theControl

A handle to the control. For a description of this data type, see ControlRef (page 709).

hiliteState
A value from 0 to 255 that specifies the highlighting state of the control. The value of 0 signifies an
active control with no highlighting. A value from 1 through 253 signifies a part code designating the
part of the (active) control to highlight. Values 254 and 255 signify that the control is to be made
disabled or inactive, respectively, and drawn accordingly. For a description of part code constants,
see “Control Part Code Constants ” (page 748), “Control Part Code Constants ” (page 748), and “ Control
State Part Code Constants” (page 751).

Discussion
If the Appearance Manager is available, you should call the functions ActivateControl (page 535) and
DeactivateControl (page 572) instead of HiliteControl to activate or deactivate a control. This is
important if the control is in an embedding hierarchy, since calling these functions will ensure that any latent
embedded controls will be activated and deactivated correctly.

If the Appearance Manager is not available, then when you need to make a control inactive (such as when
its window is not frontmost) or in any other way change the highlighting of a control, you can use the
HiliteControl function.

The HiliteControl function calls the control definition function to redraw the control with the highlighting
specified in the hiliteState parameter. The HiliteControl function uses the value in this parameter to
change the value of the contrlHilite field of the control structure.

Except for scroll bars, which you should hide using HideControl (page 618), you should use HiliteControl
to make all controls inactive when their windows are not frontmost. The function TrackControl (page 671)
automatically uses the HiliteControl function as appropriate; when you use TrackControl, you don’t
need to call HiliteControl.

Functions 619
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Carbon Porting Notes

If you are activating or deactivating a control, you should use ActivateControl or DeactivateControl
instead. Otherwise okay to use.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IdleControls
Performs idle event processing. (Deprecated in Mac OS X v10.4. You should remove all calls to IdleControls
because it uses unnecessary processor time. System-supplied controls do not respond to IdleControls in
Mac OS X.)

Not recommended

void IdleControls (
 WindowRef inWindow
);

Parameters
inWindow

A pointer to a window containing controls that support idle events.

Discussion
Your application should call the IdleControls function to give idle time to any controls that want the
kControlMsgIdle message. IdleControls calls the control with an idle event so the control can do
idle-time processing. You should call IdleControls at least once in your event loop. See
ControlDefProcPtr (page 677) for more details on how a control definition function should handle idle
processing.

Special Considerations

Idle events are not recommended. If you have a custom control that needs time to perform tasks (such as
animation), use Carbon Event timers instead. See Carbon EventManager Programming Guide for more details.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlActionUPP
Invokes a control action UPP.

620 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void InvokeControlActionUPP (
 ControlRef theControl,
 ControlPartCode partCode,
 ControlActionUPP userUPP
);

Parameters
theControl

The control for which the control action UPP is to be invoked. For a description of this data type, see
ControlRef (page 709).

partCode
The part code for which the control action UPP is to be invoked. For possible values, see “Control
Meta Part Code Constants” (page 790), “Control Part Code Constants ” (page 748), and “ Control State
Part Code Constants” (page 751).

userUPP
The UPP that is to be invoked.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

InvokeControlCNTLToCollectionUPP
Invokes a control-to-collection UPP.

OSStatus InvokeControlCNTLToCollectionUPP (
 const Rect *bounds,
 SInt16 value,
 Boolean visible,
 SInt16 max,
 SInt16 min,
 SInt16 procID,
 SRefCon refCon,
 ConstStr255Param title,
 Collection collection,
 ControlCNTLToCollectionUPP userUPP
);

Parameters
bounds

The bounds of the control.

value
The value of the control.

visible
A Boolean whose value is true if the control is visible; otherwise, false.

max
The maximum value of the control.

min
The minimum value of the control.

Functions 621
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

procID
The proc ID.

refCon
The refcon.

title
The title of the control.

collection
The collection.

userUPP
The UPP that is to be invoked.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlColorUPP

Not recommended

OSStatus InvokeControlColorUPP (
 ControlRef inControl,
 SInt16 inMessage,
 SInt16 inDrawDepth,
 Boolean inDrawInColor,
 ControlColorUPP userUPP
);

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Carbon Porting Notes

Instead of specifying a callback to redraw your background, you should make the background a control and
then embed your other controls within it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlDefUPP
Invokes a control definition UPP. (Deprecated in Mac OS X v10.5. Use a custom HIView to draw a custom
control.)

622 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

SInt32 InvokeControlDefUPP (
 SInt16 varCode,
 ControlRef theControl,
 ControlDefProcMessage message,
 SInt32 param,
 ControlDefUPP userUPP
);

Parameters
varCode

The variation code.

theControl
The control. For a description of this data type, see ControlRef (page 709).

message
The message.

param
The maximum value of the control.

userUPP
The UPP that is to be invoked.

Return Value
Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

InvokeControlEditTextValidationUPP
Invokes a control edit text validation UPP.

void InvokeControlEditTextValidationUPP (
 ControlRef control,
 ControlEditTextValidationUPP userUPP
);

Parameters
theControl

The control. For a description of this data type, see ControlRef (page 709).

userUPP
The UPP that is to be invoked.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

Functions 623
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

InvokeControlKeyFilterUPP
Invokes a control key filter UPP.

ControlKeyFilterResult InvokeControlKeyFilterUPP (
 ControlRef theControl,
 SInt16 *keyCode,
 SInt16 *charCode,
 EventModifiers *modifiers,
 ControlKeyFilterUPP userUPP
);

Parameters
theControl

The control. For a description of this data type, see ControlRef (page 709).

keyCode
The key code.

charCode
The character code.

modifiers
Information from the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted. .

userUPP
The UPP that is to be invoked.

Return Value
For a description of this data type, see ControlKeyFilterResult (page 707).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

InvokeControlUserPaneActivateUPP
Invokes a control user pane activate UPP.

void InvokeControlUserPaneActivateUPP (
 ControlRef control,
 Boolean activating,
 ControlUserPaneActivateUPP userUPP
);

Parameters
control

The control.

activating
A Boolean whose value is true if the user pane is being activated; otherwise, false.

userUPP
The UPP that is to be invoked.

624 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeControlUserPaneBackgroundUPP
Invokes a user pane background UPP.

void InvokeControlUserPaneBackgroundUPP (
 ControlRef control,
 ControlBackgroundPtr info,
 ControlUserPaneBackgroundUPP userUPP
);

Parameters
control

The control.

info
A pointer to information such as the depth and type of the drawing device. For a description of the
ControlBackgroundPtr data type, see ControlBackgroundRec (page 698).

userUPP
The UPP that is to be activated.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

InvokeControlUserPaneDrawUPP
Invokes a user pane draw UPP.

void InvokeControlUserPaneDrawUPP (
 ControlRef control,
 ControlPartCode part,
 ControlUserPaneDrawUPP userUPP
);

Parameters
control

The control.

userUPP
The part.

userUPP
The UPP that is to be activated.

Availability
Available in Mac OS X v10.0 and later.

Functions 625
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
HIContainerViews.h

InvokeControlUserPaneFocusUPP
Invokes a user pane focus UPP.

ControlPartCode InvokeControlUserPaneFocusUPP (
 ControlRef control,
 ControlFocusPart action,
 ControlUserPaneFocusUPP userUPP
);

Parameters
control

The control.

action
The action.

userUPP
The UPP that is to be activated.

Return Value
For a description of this data type, see ControlPartCode (page 708).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeControlUserPaneHitTestUPP
Invokes a user pane hit test UPP.

ControlPartCode InvokeControlUserPaneHitTestUPP (
 ControlRef control,
 Point where,
 ControlUserPaneHitTestUPP userUPP
);

Parameters
control

The control.

where
The location.

userUPP
The UPP that is to be activated.

Return Value
See ControlPartCode (page 708) for a description of the ControlPartCode data type.

Availability
Available in Mac OS X v10.0 and later.

626 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
HIContainerViews.h

InvokeControlUserPaneIdleUPP
Invokes a user pane idle UPP.

void InvokeControlUserPaneIdleUPP (
 ControlRef control,
 ControlUserPaneIdleUPP userUPP
);

Parameters
control

The control.

userUPP
The UPP that is to be activated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeControlUserPaneKeyDownUPP
Invokes a user pane key down UPP.

ControlPartCode InvokeControlUserPaneKeyDownUPP (
 ControlRef control,
 SInt16 keyCode,
 SInt16 charCode,
 SInt16 modifiers,
 ControlUserPaneKeyDownUPP userUPP
);

Parameters
control

The control.

keyCode
The key code.

charCode
The character code.

modifiers
The modifiers.

userUPP
The UPP that is to be activated.

Return Value
For a description of this data type, see ControlPartCode (page 708).

Functions 627
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeControlUserPaneTrackingUPP
Invokes a user pane tracking UPP.

ControlPartCode InvokeControlUserPaneTrackingUPP (
 ControlRef control,
 Point startPt,
 ControlActionUPP actionProc,
 ControlUserPaneTrackingUPP userUPP
);

Parameters
control

The control.

startPt
The starting point.

actionProc
The action proc.

userUPP
The UPP that is to be activated.

Return Value
For a description of this data type, see ControlPartCode (page 708).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

InvokeEditUnicodePostUpdateUPP
Invokes a Unicode post update UPP.

Boolean InvokeEditUnicodePostUpdateUPP (
 UniCharArrayHandle uniText,
 UniCharCount uniTextLength,
 UniCharArrayOffset iStartOffset,
 UniCharArrayOffset iEndOffset,
 void *refcon,
 EditUnicodePostUpdateUPP userUPP
);

Parameters
uniText

The UPP that is to be activated.

628 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

uniTextLength
The length of text in Unitext parameter.

iStartOffset
The starting offset.

iEndOffset
The ending offset.

refcon
The refcon.

userUPP
The UPP that is to be activated.

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

IsAutomaticControlDragTrackingEnabledForWindow
Indicates whether automatic drag tracking is enabled for the specified window.

OSStatus IsAutomaticControlDragTrackingEnabledForWindow (
 WindowRef inWindow,
 Boolean *outTracks
);

Parameters
inWindow
outTracks

On output, a pointer to a Boolean whose value is true if the Control Manager’s automatic drag
tracking is enabled for the window; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
For more information on automatic drag tracking, see
SetAutomaticControlDragTrackingEnabledForWindow (page 643).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsControlActive
Returns whether a control is active.

Functions 629
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Boolean IsControlActive (
 ControlRef inControl
);

Parameters
inControl

A handle to the control to be examined.

Return Value
A Boolean whose value is true if the control is active; otherwise, false.

Discussion
If you wish to determine whether a control is active, you should call IsControlActive instead of testing
the contrlHilite field of the control structure.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsControlDragTrackingEnabled
Indicates whether a control’s drag track and receive support is enabled.

OSStatus IsControlDragTrackingEnabled (
 ControlRef inControl,
 Boolean *outTracks
);

Parameters
inControl

.

outTracks
On output, a pointer to a Boolean whose value is true if automatic drag tracking and receive support
is enabled for the control; otherwise, false.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
Call this function to determine whether drag and drop support is enabled for a control. Some controls don’t
support drag and drop; these controls don’t track or receive drags even if the outTracks parameter indicates
a value of true.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

630 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

IsControlEnabled
Indicates whether a control is enabled.

Boolean IsControlEnabled (
 ControlRef inControl
);

Parameters
inControl

The control that is to be queried.

Return Value
A Boolean whose value is true if the control is enabled; otherwise, false.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsControlHilited
Indicates whether or not the control is highlighted.

Boolean IsControlHilited (
 ControlRef control
);

Parameters
control

The control that is to be queried.

Return Value
A Boolean whose value is true if the control is highlighted; otherwise, false.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsControlVisible
Determines whether a control is visible.

Boolean IsControlVisible (
 ControlRef inControl
);

Parameters
inControl

A handle to the control to be examined.

Functions 631
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Return Value
If true, the control is visible. If false, the control is hidden.

Discussion
If you want to determine whether a control is visible, call IsControlVisible. Note that this function
indicates the actual user visibility; if the control is marked visible, but its owning window or view is hidden,
isControlVisible returns false. (In compositing mode, if a window is hidden, its root view is also marked
as hidden. Similarly, any subviews of a hidden view are considered hidden.) A control’s latent visibility (its
visibility ignoring the visibility of its parents) can be determined by calling the HIView function
HIViewIsLatentlyVisible.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

IsValidControlHandle
Reports whether a given handle is a control handle.

Boolean IsValidControlHandle (
 ControlRef theControl
);

Parameters
theControl

A value of type ControlHandle. Pass the handle to be examined.

Return Value
true if the specified handle is a valid control handle; otherwise, false.

Discussion
The IsValidControlHandle function confirms whether a given handle is a valid control handle, but it does
not check the validity of the data contained in the control itself.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

KillControls
Removes all of the controls from a window that you wish to keep.

632 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void KillControls (
 WindowRef theWindow
);

Parameters
theWindow

A pointer to the window whose controls you wish to remove.

Discussion
The KillControls function disposes of all controls associated with the specified window. To remove just
one control, use DisposeControl (page 573). If an embedding hierarchy is present, KillControls disposes
of the controls embedded within a control before disposing of the container control.

You should use KillControls when you wish to retain the window but dispose of its controls. The Window
Manager functions CloseWindow and DisposeWindow automatically remove all controls associated with
the window and release the memory the controls occupy.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

MoveControl
Moves a control within its window.

void MoveControl (
 ControlRef theControl,
 SInt16 h,
 SInt16 v
);

Parameters
theControl

A handle to the control you wish to move.

h
The horizontal coordinate (local to the control’s window) of the new location of the upper-left corner
of the control’s rectangle.

v
The vertical coordinate (local to the control’s window) of the new location of the upper-left corner of
the control’s rectangle.

Discussion
The MoveControl function moves the control to the new location specified by the h and v parameters,
using them to change the rectangle specified in the contrlRect field of the control structure. When the
control is visible, MoveControl first hides it and then redraws it at its new location.

For example, if the user resizes a document window that contains a scroll bar, your application can use
MoveControl to move the scroll bar to its new location.

Availability
Available in Mac OS X v10.0 and later.

Functions 633
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

NewControl
Creates a control based on parameter data. (Deprecated in Mac OS X v10.5. Use the specific control creation
function instead (for example, CreateCheckBoxControl (page 541)).)

ControlRef NewControl (
 WindowRef owningWindow,
 const Rect *boundsRect,
 ConstStr255Param controlTitle,
 Boolean initiallyVisible,
 SInt16 initialValue,
 SInt16 minimumValue,
 SInt16 maximumValue,
 SInt16 procID,
 SRefCon controlReference
);

Parameters
owningWindow

A pointer to the window in which you want to place the control. All coordinates pertaining to the
control are interpreted in this window’s local coordinate system.

boundsRect
A pointer to a rectangle, specified in the given window’s local coordinates, that encloses the control
and thus determines its size and location. When specifying this rectangle, you should follow the
guidelines presented in “Dialog Box Layout”, in Mac OS 8 Human Interface Guidelines, for control
placement and alignment.

controlTitle
The title string, used for push buttons, checkboxes, radio buttons, and pop-up menus. When specifying
a multiple-line title, separate the lines with the ASCII character code 0x0D (carriage return). For controls
that don’t use titles, pass an empty string.

initiallyVisible
A Boolean value specifying the visible/invisible state for the control. If you pass true in this parameter,
NewControl draws the control immediately, without using your window’s standard updating
mechanism. If you pass false, you must later use ShowControl (page 669) to display the control.

initialValue
The initial setting for the control. For sliders and scrollbars, pass the appropriate integer value. For
checkboxes and radio buttons, pass the constant indicating the current setting (as defined in “Checkbox
Value Constants” (page 732) and “Radio Button Value Constants” (page 806). For plain buttons that do
not retain a setting, pass 0.

634 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

minimumValue
The minimum setting for the control. For sliders and scrollbars, pass the appropriate minimum integer
value. For checkboxes and radio buttons, pass 0 (or the equivalent constant from “Checkbox Value
Constants” (page 732) or “Radio Button Value Constants” (page 806)). For plain buttons that do not
retain a setting, pass 0.

maximumValue
The maximum setting for the control. For sliders and scrollbars, pass the appropriate maximum integer
value. For scroll bars, if the maximum value is equal to the minimum value, the control definition
function automatically disables the scroll bar. For checkboxes and radio buttons, pass 1 (or the
equivalent constant defined in “Checkbox Value Constants” (page 732) or “Radio Button Value
Constants” (page 806)). For plain buttons that do not retain a setting, pass 0.

procID
The control definition ID. If the control definition function isn’t in memory, it is read in. On Mac OS X,
if you do not pass a valid procID (that is, if it does not correspond to a CDEF resource), NewControl
will not create a control and will simply return NULL. On Mac OS 9 and earlier, passing an invalid
procID will cause NewControl to create a pushbutton control.

controlReference
The control’s reference value, which is set and used only by your application.

Return Value
A handle to the control described in its parameters. If NewControl runs out of memory or fails, it returns
NULL. For a description of this data type, see ControlRef (page 709).

Discussion
The NewControl function creates a control structure from the information you specify in its parameters,
adds the control structure to the control list for the specified window, and returns as its function result a
handle to the control. You use this handle when referring to the control in most other Control Manager
functions. Generally, you should use the function GetNewControl (page 610) instead of NewControl, because
GetNewControl is a resource-based control-creation function that allows you to localize your application
without recompiling.

When an embedding hierarchy is established within a window, NewControl automatically embeds the newly
created control in the root control of the owning window.

Carbon Porting Notes

Carbon does not support custom control definitions stored in'CDEF' resources. If you want to specify a
custom control definition for NewControl, you must compile your definition function directly in your
application and then register the function by calling RegisterControlDefinition (page 640). When
NewControl gets a procID value that doesn’t recognize, it checks a special mapping table to find the pointer
that is registered for the resource ID embedded in the procID parameter. It then calls that function to
implement your control.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

Functions 635
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

NewControlActionUPP
Creates a UPP for a control action callback function.

ControlActionUPP NewControlActionUPP (
 ControlActionProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your control action callback function. See ControlActionProcPtr (page 675) for
information about defining this function.

Return Value
A UPP to your control action callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

NewControlCNTLToCollectionUPP
Creates a UPP for a control-to-collection callback function.

ControlCNTLToCollectionUPP NewControlCNTLToCollectionUPP (
 ControlCNTLToCollectionProcPtr userRoutine
);

Return Value
A UPP to your control-to-collection callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

NewControlColorUPP

Not recommended

ControlColorUPP NewControlColorUPP (
 ControlColorProcPtr userRoutine
);

Carbon Porting Notes

Instead of specifying a callback to redraw your background, you should make the background a control and
then embed your other controls within it.

Availability
Available in Mac OS X v10.0 and later.

636 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Not available to 64-bit applications.

Declared In
Controls.h

NewControlDefUPP
Creates a UPP for a control definition callback function. (Deprecated in Mac OS X v10.5. Use a custom HIView
to draw a custom control.)

ControlDefUPP NewControlDefUPP (
 ControlDefProcPtr userRoutine
);

Return Value
A UPP to your control definition callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Controls.h

NewControlEditTextValidationUPP
Creates a UPP for a control edit text validation callback function.

ControlEditTextValidationUPP NewControlEditTextValidationUPP (
 ControlEditTextValidationProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

NewControlKeyFilterUPP
ControlKeyFilterUPP NewControlKeyFilterUPP (
 ControlKeyFilterProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

Functions 637
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

NewControlUserPaneActivateUPP
ControlUserPaneActivateUPP NewControlUserPaneActivateUPP (
 ControlUserPaneActivateProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

NewControlUserPaneBackgroundUPP
ControlUserPaneBackgroundUPP NewControlUserPaneBackgroundUPP (
 ControlUserPaneBackgroundProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

NewControlUserPaneDrawUPP
ControlUserPaneDrawUPP NewControlUserPaneDrawUPP (
 ControlUserPaneDrawProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

NewControlUserPaneFocusUPP
ControlUserPaneFocusUPP NewControlUserPaneFocusUPP (
 ControlUserPaneFocusProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

638 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
HIContainerViews.h

NewControlUserPaneHitTestUPP
ControlUserPaneHitTestUPP NewControlUserPaneHitTestUPP (
 ControlUserPaneHitTestProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

NewControlUserPaneIdleUPP
ControlUserPaneIdleUPP NewControlUserPaneIdleUPP (
 ControlUserPaneIdleProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

NewControlUserPaneKeyDownUPP
ControlUserPaneKeyDownUPP NewControlUserPaneKeyDownUPP (
 ControlUserPaneKeyDownProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Functions 639
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

NewControlUserPaneTrackingUPP
ControlUserPaneTrackingUPP NewControlUserPaneTrackingUPP (
 ControlUserPaneTrackingProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

NewEditUnicodePostUpdateUPP
EditUnicodePostUpdateUPP NewEditUnicodePostUpdateUPP (
 EditUnicodePostUpdateProcPtr userRoutine
);

Return Value
Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

RegisterControlDefinition
Registers an old-style control definition.

OSStatus RegisterControlDefinition (
 SInt16 inCDEFResID,
 const ControlDefSpec *inControlDef,
 ControlCNTLToCollectionUPP inConversionProc
);

Parameters
CDEFResID

The virtual resource ID you want to assign to the control definition.

def
A pointer to the control definition function you want to register. Pass NULL if you want to unregister
a given CDEF proc ID.

conversionProc
A UPP to a callback function to place initialization data (such as the bounds, min and max values, and
so on) into a collection.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
Mac OS X does not allow you to store custom control definitions in resources. However, some older functions
such as GetNewControl (page 610) expect a resource ID when creating controls. To work around this, you
can use RegisterControlDefinition to register “virtual” resource IDs for your control definition functions.

640 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Since custom control definitions receive initialization data as a collection in the param parameter, you must
provide a callback to properly package this information. See “Control Collection Tag Constants” (page 768)
for a list of tags you can apply to the collection. If you do not supply a conversion callback, the Control
Manager sends an empty collection to your control definition.

To unregister a control definition, pass NULL in the inDefSpec parameter for a given CDEF proc ID.

In Mac OS X v10.2 and later, you should consider reimplementing your custom control code using custom
HIViews. See Introducing HIView for more information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

RemoveControlProperty
Removes a piece of data that has been previously associated with a control.

OSStatus RemoveControlProperty (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag
);

Parameters
control

A handle to the control whose associated data you wish to remove.

propertyCreator
Your program’s signature, as registered through Apple Developer Technical Support. If your program
is of a type that would not normally have a signature (for example, a plug-in), you should still register
and use a signature in this case, even though your program’s file may not have the same creator code
as the signature that you register. The ’macs' property signature is reserved for the system and
should not be used.

propertyTag
The application-defined code identifying the associated data.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
Your application may dissociate data it has previously set with the SetControlProperty (page 658) function
by calling the RemoveControlProperty function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

Functions 641
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ReverseKeyboardFocus
Returns keyboard focus to the prior focusable control in a window.

OSErr ReverseKeyboardFocus (
 WindowRef inWindow
);

Parameters
inWindow

A pointer to the window for which to reverse keyboard focus.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
The ReverseKeyboardFocus function reverses the progression of keyboard focus, skipping over deactivated
and hidden controls until it finds the previous control to receive keyboard focus in the window.

When ReverseKeyboardFocus is called, the Control Manager calls your control definition function and
passes kControlMsgFocus in its messageparameter and kControlFocusPrevPart in its paramparameter.
In response to this message, your control definition function should change keyboard focus to its previous
part, the entire control, or remove keyboard focus from the control, depending upon the circumstances. See
ControlDefProcPtr (page 677) for a discussion of possible responses to this message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SendControlMessage
Sends a message to a control definition function. (Deprecated. For custom controls, use a custom HIView
instead of a control definition function. See HIView Programming Guide.)

Not recommended

SInt32 SendControlMessage (
 ControlRef inControl,
 SInt16 inMessage,
 void *inParam
);

Parameters
inControl

A handle to the control that is to receive a low-level message. For a description of this data type, see
ControlRef (page 709).

inMessage
A bit field representing the message(s) you wish to send; see ControlDefProcPtr (page 677).

inParam
The message-dependent data passed in the param parameter of the control definition function.

642 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Return Value
Varying data, depending upon the message sent in the inMessage parameter.

Discussion
Your application does not normally need to call the SendControlMessage function. If you have a special
need to call a control definition function directly, call SendControlMessage to access and manipulate the
control’s attributes.

Before calling SendControlMessage, you should determine whether the control supports the specific
message you wish to send by calling GetControlFeatures (page 597) and examining the feature bit field
returned. If there are no feature bits returned that correspond to the message you wish to send (for messages
0 through 12), you can assume that all system controls support that message.

Carbon Porting Notes

Don’t send messages to standard system control definitions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetAutomaticControlDragTrackingEnabledForWindow
Enables or disables automatic drag tracking for a window.

OSStatus SetAutomaticControlDragTrackingEnabledForWindow (
 WindowRef inWindow,
 Boolean inTracks
);

Parameters
inWindow
inTracks

A Boolean whose value is true to enable the Control Manager’s automatic drag tracking support or
false to disable automatic drag tracking support.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
By default, your application is responsible for installing drag tracking and receive handlers on a given window.
The Control Manager, however, has support for automatically tracking and receiving drags over controls that
you can enable by calling this function with the inTracks parameter set to true.

The Control Manager automatic drag tracking detects the control the drag is over and calls
HandleControlDragTracking (page 615) and HandleControlDragReceive (page 615) appropriately. By
default, the Control Manager’s automatic drag tracking is disabled.

Earlier versions of system software enabled automatic drag tracking by default, but as of Mac OS X v10.1.3,
Mac OS 9.2, and CarbonLib 1.4, you must call this function to enable automatic drag tracking.

Availability
Available in Mac OS X v10.0 and later.

Functions 643
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
Controls.h

SetBevelButtonContentInfo
Sets the content information for a bevel button.

OSErr SetBevelButtonContentInfo (
 ControlRef inButton,
 ControlButtonContentInfoPtr inContent
);

Parameters
inButton

The control reference for the bevel button whose content information is to be set.

inContent
A value of type ControlButtonContentInfoPtr for the content information that is to be set.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

SetBevelButtonGraphicAlignment
Sets the alignment for a bevel button.

OSErr SetBevelButtonGraphicAlignment (
 ControlRef inButton,
 ControlButtonGraphicAlignment inAlign,
 SInt16 inHOffset,
 SInt16 inVOffset
);

Parameters
inButton

The control reference for the bevel button that is to be aligned.

inAlign
The alignment that is to be set. For possible values, see “Bevel Button Graphic Alignment
Constants” (page 726).

644 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

inHOffset
The horizontal offset, in pixels, that is to be applied to the alignment specified by the inAlign
parameter.

inVOffset
The vertical offset, in pixels, that is to be applied to the alignment specified by the inAlign parameter.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

SetBevelButtonMenuValue
Sets the value of a bevel button menu.

OSErr SetBevelButtonMenuValue (
 ControlRef inButton,
 MenuItemIndex inValue
);

Parameters
inButton

The control reference for the bevel button whose menu value is to be set.

inValue
The value that is to be set.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

SetBevelButtonTextAlignment
Sets the alignment of the text for a bevel button.

Functions 645
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSErr SetBevelButtonTextAlignment (
 ControlRef inButton,
 ControlButtonTextAlignment inAlign,
 SInt16 inHOffset
);

Parameters
inButton

The control reference for the bevel button whose text is to be aligned.

inAlign
The alignment that is to be set. For possible values, see“Bevel Button Text Alignment Constants ” (page
729).

inHOffset
The horizontal offset, in pixels, that is to be applied to the alignment specified by the inAlign
parameter.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

SetBevelButtonTextPlacement
Sets the placement for bevel button text.

OSErr SetBevelButtonTextPlacement (
 ControlRef inButton,
 ControlButtonTextPlacement inWhere
);

Parameters
inButton

The control reference for the bevel button whose text is to be placed.

inWhere
The placement that is to be set. For possible values, see “Bevel Button Text Placement Constants
” (page 730).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

646 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

SetBevelButtonTransform
Sets the transform for a bevel button.

OSErr SetBevelButtonTransform (
 ControlRef inButton,
 IconTransformType transform
);

Parameters
inButton

The control reference for the bevel button whose text is to be placed.

transform
The transform that is to be set. For possible values, see the IconTransformType enumeration
described in the Icon Services and Utilities Reference.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIButtonViews.h

SetControl32BitMaximum
Changes the maximum setting of a control and, if appropriate, redraws it accordingly.

void SetControl32BitMaximum (
 ControlRef theControl,
 SInt32 newMaximum
);

Parameters
theControl

A handle to the control whose maximum setting you wish to change. For a description of this data
type, see ControlRef (page 709).

newMaximum
The new maximum setting of the control. In general, to avoid unpredictable behavior, do not set the
maximum control value lower than the current minimum value.

Discussion
Your application may use the SetControl32BitMaximum function to set a 32-bit value as the maximum
setting for a control.

If your application uses a 32-bit control maximum value, it should not attempt to obtain this value by calling
the pre–Mac OS 8.5 function GetControlMaximum because the 16-bit value that is returned does not
accurately reflect the current 32-bit control value. Instead, use the function GetControl32BitMaximum (page
589).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 647
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Related Sample Code
HID Calibrator
HID Explorer

Declared In
Controls.h

SetControl32BitMinimum
Changes the minimum setting of a control and, if appropriate, redraws it accordingly.

void SetControl32BitMinimum (
 ControlRef theControl,
 SInt32 newMinimum
);

Parameters
theControl

A handle to the control whose minimum setting you wish to change. For a description of this data
type, see ControlRef (page 709).

newMinimum
A value specifying the new minimum setting of the control. In general, to avoid unpredictable behavior,
do not set the minimum control value higher than the current maximum value.

Discussion
Your application may use the SetControl32BitMinimum function to set a 32-bit value as the minimum
setting for a control.

If your application uses a 32-bit control minimum value, it should not attempt to obtain this value by calling
the pre–Mac OS 8.5 function GetControlMinimum because the 16-bit value that is returned does not
accurately reflect the current 32-bit control value. Instead, use the function GetControl32BitMinimum (page
590).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Explorer

Declared In
Controls.h

SetControl32BitValue
Changes the current setting of a control and redraws it accordingly.

648 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void SetControl32BitValue (
 ControlRef theControl,
 SInt32 newValue
);

Parameters
theControl

A handle to the control whose current setting you wish to change. For a description of this data type,
see ControlRef (page 709).

newValue
A value specifying the new setting of the control. If the specified value is less than the minimum
setting for the control, SetControl32BitValue sets the current setting of the control to its minimum
setting. If the specified value is greater than the maximum setting, SetControl32BitValue sets
the control to its maximum.

Discussion
Your application may use the SetControl32BitValue function to set a 32-bit value as the current setting
for a control.

If your application uses a 32-bit control value, it should not attempt to obtain this value by calling the pre–Mac
OS 8.5 function GetControlValue because the 16-bit value that is returned does not accurately reflect the
current 32-bit control value. Instead, use the function GetControl32BitValue (page 590).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
HID Calibrator
HID Explorer
QTCarbonShell

Declared In
Controls.h

SetControlAction
Sets the action function for a control.

void SetControlAction (
 ControlRef theControl,
 ControlActionUPP actionProc
);

Parameters
theControl

A handle to the control whose action function is to be changed.

actionProc
A universal procedure pointer to an action function defining what action your application takes while
the user holds down the mouse button. See ControlActionProcPtr (page 675) for a description
of an action function.

Functions 649
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
The SetControlAction function associates the action function specified by actionProc with the control
specified by theControl. If the cursor is in the specified control, the HandleControlClick (page 613) and
TrackControl (page 671) functions call the specified action function when the user holds down the mouse
button. You must provide the action function, and it must define some action to perform repeatedly as long
as the user holds down the mouse button. HandleControlUnderClick and TrackControl always highlight
and drag the control as appropriate.

SetControlAction should be used to set the application-defined action function for providing live feedback
for standard system scroll bar controls.

Note that the action function associated with a control is used by TrackControl only if you set the action
function to TrackControl to Pointer(–1). Also, an action function can be specified in the actionProc
parameter to TrackControl, so you don’t have to call SetControlAction to change it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlBounds
Sets the bounds of a control.

void SetControlBounds (
 ControlRef control,
 const Rect *bounds
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

SetControlColorProc
Associates a ControlColorUPP with a given Control, thereby allowing you to bypass the embedding
hierarchy-based color setup of SetUpControlBackground/SetUpControlTextColor and replace it with
your own.

Not recommended

650 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus SetControlColorProc (
 ControlRef inControl,
 ControlColorUPP inProc
);

Parameters
inControl

The ControlRef with whom the color proc should be associated. For a description of this data type,
see ControlRef (page 709).

inProc
The color proc to associate with the ControlRef. If you pass NULL, the ControlRefwill be dissociated
from any previously installed color proc. For a description of the ControlColorUPP data type,

Return Value
A result code. See “Control Manager Result Codes” (page 824). An OSStatus code indicating success or failure.
The most likely error is a controlHandleInvalidErr resulting from a bad ControlRef.

Discussion
Before an embedded Control can erase, it calls SetUpControlBackground (page 667) to have its background
color set up by any parent controls. Similarly, any Control that draws text calls SetUpControlTextColor (page
668) to have the appropriate text color set up. This allows certain controls (such as tabs and placards) to offer
special backgrounds and text colors for any child controls. By default, the set up functions only move up the
Control Manager embedding hierarchy looking for a parent which has a special background.

This is fine in a plain vanilla embedding case, but many application frameworks find it troublesome; if there
are interesting views between two controls in the embedding hierarchy, the framework needs to be in charge
of the background and text colors, otherwise drawing defects will occur.

You can only associate a single color proc with a given ControlRef.

Carbon Porting Notes

Instead of specifying a callback to redraw your background, you should make the background a control and
then embed your other controls within it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlCommandID
Sets the command ID for a control.

OSStatus SetControlCommandID (
 ControlRef inControl,
 UInt32 inCommandID
);

Parameters
inControl

The control to set.

Functions 651
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

inCommandID
The command ID that is to be set.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlData
Sets control-specific data.

OSErr SetControlData (
 ControlRef inControl,
 ControlPartCode inPart,
 ResType inTagName,
 Size inSize,
 const void *inData
);

Parameters
inControl

A handle to the control for which data is to be set.

inPart
The part code of the control part for which data is to be set; see “Control Meta Part Code
Constants” (page 790), “Control Part Code Constants ” (page 748), and “ Control State Part Code
Constants” (page 751). Passing kControlEntireControl indicates that either the control has no
parts or the data is not tied to any specific part of the control.

inTagName
A constant representing the control-specific data you wish to set see the data tag constants in the
“Control Manager Constants” (page 719) section.

inSize
The size (in bytes) of the data pointed to by the inData parameter. For variable-length control data,
pass the value returned in the outMaxSize parameter of GetControlDataSize (page 596) in the
inSize parameter. The number of bytes must match the actual data size.

inData
A pointer to a buffer allocated by your application. This buffer contains the data that you are sending
to the control. After calling SetControlData, your application is responsible for disposing of this
buffer, if necessary, as information is copied by control.

Return Value
A result code. See “Control Manager Result Codes” (page 824). The result code errDataNotSupported
indicates that the inTagName parameter is not valid.

652 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
The SetControlData function sets control-specific data represented by the value in the inTagName
parameter to the data pointed to by the inData parameter. SetControlData could be used, for example,
to switch a progress indicator from a determinate to indeterminate state. For a list of the control attributes
that can be set, see the data tag constants in the “Control Manager Constants” (page 719) section.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Config Save
HID Explorer
QTCarbonShell

Declared In
Controls.h

SetControlDataHandle
(Deprecated. Use custom HIViews instead of custom CDEFs. See HIView Programming Guide.)

Not recommended

void SetControlDataHandle (
 ControlRef control,
 Handle dataHandle
);

Carbon Porting Notes

Only useful for message-based custom controls (CDEFs).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlDragTrackingEnabled
Sets the drag tracking state for a control.

Functions 653
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSStatus SetControlDragTrackingEnabled (
 ControlRef inControl,
 Boolean inTracks
);

Parameters
inControl

The control for which the drag tracking state is to be set.

inTracks
A Boolean whose value is true if you want the control to track and receive drags or false if want
to disable support for drag and drop.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
Call this function to enable a control’s support for drag and drop. If you don’t enable drag and drop support,
the control won’t track drags.

Some controls don’t support drag and drop; these controls won’t track or receive drags even if you call this
function with the inTracks parameter set to true.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
Controls.h

SetControlFontStyle
Sets the font style for a control.

OSErr SetControlFontStyle (
 ControlRef inControl,
 const ControlFontStyleRec *inStyle
);

Parameters
inControl

A handle to the control whose font style is to be set. For a description of this data type, see
ControlRef (page 709).

inStyle
A pointer to a ControlFontStyleRec (page 704) structure. If the flags field is cleared, the control
uses the system font unless the control variant kControlUsesOwningWindowsFontVariant has
been specified (control uses window font).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

654 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
The SetControlFontStyle function sets the font style for a given control. To specify the font for controls
in a dialog box, it is generally easier to use the dialog font table resource. SetControlFontStyle allows
you to override a control’s default font (system or window font, depending upon whether the control variant
kControlUsesOwningWindowsFontVariant has been specified). Once you have set a control’s font with
this function, you can cause the control to revert to its default font by passing a control font style structure
with a cleared flags field in the inStyle parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Controls.h

SetControlID
Sets a control’s ID.

OSStatus SetControlID (
 ControlRef inControl,
 const ControlID *inID
);

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
Controls.h

SetControlMaximum
Changes the maximum setting of a control and redraws its indicator or scroll box accordingly. (Deprecated.
Use SetControl32BitMaximum (page 647) instead.)

Not recommended

Functions 655
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void SetControlMaximum (
 ControlRef theControl,
 SInt16 newMaximum
);

Parameters
theControl

A handle to the control whose maximum setting you wish to change.

newMaximum
The new maximum setting.

Discussion
The SetControlMaximum function changes the maximum value of a control to the value specified by the
newMaximum parameter and redraws its indicator or scroll box to reflect its new range.

When you set the maximum setting of a scroll bar equal to its minimum setting, the control definition function
makes the scroll bar inactive. When you make the maximum setting exceed the minimum, the control
definition function makes the scroll bar active again.

When you create a control, you specify an initial maximum setting either in the control resource or in the
max parameter of the function NewControl (page 634). To determine a control’s current maximum setting,
use the function GetControlMaximum (page 599).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Explorer

Declared In
Controls.h

SetControlMinimum
Changes the minimum setting of a control and redraws its indicator or scroll box accordingly. (Deprecated.
Use SetControl32BitMinimum (page 648) instead.)

Not recommended

void SetControlMinimum (
 ControlRef theControl,
 SInt16 newMinimum
);

Parameters
theControl

A handle to the control whose minimum setting you wish to change. For a description of this data
type, see ControlRef (page 709).

newMinimum
The new minimum setting.

656 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
The SetControlMinimum function changes the control’s minimum value to the value specified by the
newMinimum parameter and redraws its indicator or scroll box to reflect its new range.

When you create a control, you specify an initial minimum setting either in the control resource or in the
min parameter of the NewControl (page 634) function. To obtain a control’s current minimum setting, use
the function GetControlMinimum (page 600).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

SetControlPopupMenuHandle
Sets the menu handle for a pop-up control.

void SetControlPopupMenuHandle (
 ControlRef control,
 MenuRef popupMenu
);

Parameters
control

The pop-up control.

popupMenu
The menu handle to set.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlPopupMenuID
Sets the menu ID for a pop-up control

void SetControlPopupMenuID (
 ControlRef control,
 short menuID
);

Parameters
control

The pop-up control.

Functions 657
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

menuID
The menu ID to set.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlProperty
Associates data with a control.

OSStatus SetControlProperty (
 ControlRef control,
 OSType propertyCreator,
 OSType propertyTag,
 ByteCount propertySize,
 const void *propertyData
);

Parameters
control

A handle to the control with which you wish to associate data. For a description of this data type, see
ControlRef (page 709).

propertyCreator
Your program’s signature, as registered through Apple Developer Technical Support. If your program
is of a type that would not normally have a signature (for example, a plug-in), you should still register
and use a signature in this case, even though your program’s file may not have the same creator code
as the signature that you register. The 'macs' property signature is reserved for the system and
should not be used.

propertyTag
A value identifying the data. You define the tag your application uses to identify the data.

propertySize
A value specifying the size of the data.

propertyData
On input, a pointer to data of any type. Pass a pointer to a buffer containing the data to be associated;
this buffer should be at least as large as the value specified in the propertySize parameter.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
Your application may use the SetControlProperty function to associate any type of data with a control.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor
HID Calibrator

658 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

HID Explorer

Declared In
Controls.h

SetControlReference
Changes a control’s current reference value.

void SetControlReference (
 ControlRef theControl,
 SRefCon data
);

Parameters
theControl

A handle to the control whose reference value you want to change. For a description of this data
type, see ControlRef (page 709).

data
The new reference value for the control.

Discussion
The SetControlReference function sets the control’s reference value to the value you specify in the data
parameter.

When you create a control, you specify an initial reference value, either in the control resource or in the
refCon parameter of the function NewControl (page 634). Call GetControlReference (page 604) to obtain
the current value. You can use this value for any purpose.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlSupervisor
Routes mouse-down events to the embedder control.

Not recommended

OSErr SetControlSupervisor (
 ControlRef inControl,
 ControlRef inBoss
);

Parameters
inControl

A handle to an embedded control. For a description of this data type, see ControlRef (page 709).

Functions 659
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

inBoss
A handle to the embedder control to which mouse-down events are to be routed. For a description
of this data type, see ControlRef (page 709).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
The SetControlSupervisor function allows an embedder control to respond to mouse-down events
occurring in its embedded controls.

An example of a standard control that uses this function is the radio group control. Mouse-down events in
the embedded controls of a radio group are intercepted by the group control. (The embedded controls in
this case must support radio behavior if a mouse-down event occurs in an embedded control within a radio
group control that does not support radio behavior, the control tracks normally and the group is not involved.)
The group handles all interactions and switches the embedded control’s value on and off. If the value of the
radio group changes, TrackControl (page 671) or HandleControlClick (page 613) will return the
kControlRadioGroupPart part code. If the user tracks off the radio button or clicks the current radio
button, kControlNoPart is returned.

Carbon Porting Notes

If you are using the Carbon Event Manager, send the event to the next higher control in the containment
hierarchy instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlTitle
Changes the title of a control and redraws the control accordingly. (Deprecated in Mac OS X v10.5. Use
HIViewSetText (page 2488) or SetControlTitleWithCFString (page 661) instead.)

Not recommended

void SetControlTitle (
 ControlRef theControl,
 ConstStr255Param title
);

Parameters
theControl

A handle to a control, the title of which you want to change.

title
The new title for the control.

Discussion
The SetControlTitle function changes the contrlTitle field of the control structure to the given string
and redraws the control, using the system font for the control title.

660 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

The Control Manager allows multiple lines of text in the titles of buttons, checkboxes, and radio buttons.
When specifying a multiple-line title, separate the lines with the ASCII character code 0x0D (carriage return).
If the control is a button, each line is horizontally centered, and the font leading is inserted between lines.
(The height of each line is equal to the distance from the ascent line to the descent line plus the leading of
the font used. Be sure to make the total height of the rectangle greater than the number of lines times this
height.) If the control is a checkbox or a radio button, the text is justified as appropriate for the user’s current
script system, and the checkbox or button is vertically centered within its rectangle.

When you create a control, you specify an initial title either in the control resource or in the title parameter
of the function NewControl (page 634). To determine a control’s current title, use the function
GetControlTitle (page 605).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Controls.h

SetControlTitleWithCFString
Sets the title for a control to the specified Core Foundation string.

OSStatus SetControlTitleWithCFString (
 ControlRef inControl,
 CFStringRef inString
);

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor
HID Explorer

Declared In
Controls.h

SetControlValue
Changes the current setting of a control and redraws it accordingly. (Deprecated. Use
SetControl32BitValue (page 648) instead.)

Not recommended

Functions 661
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void SetControlValue (
 ControlRef theControl,
 SInt16 newValue
);

Parameters
theControl

A handle to the control whose current setting you wish to change. For a description of this data type,
see ControlRef (page 709).

newValue
The new setting for the control.

Discussion
For controls whose values the user can set, you can use the SetControlValue function to change the value
to the specified value and redraw the control to reflect the new setting. For checkboxes and radio buttons,
the value 1 fills the control with the appropriate mark, and 0 removes the mark. For Mac OS 8 checkboxes
and radio buttons, 2 represents a mixed state; see “Checkbox Value Constants” (page 732) and “Radio Button
Value Constants” (page 806). For scroll bars, SetControlValue redraws the scroll box where appropriate.

If the specified value is less than the minimum setting for the control, SetControlValue sets the control
to its minimum setting; if the value is greater than the maximum setting, SetControlValue sets the control
to its maximum.

When you create a control, you specify an initial setting either in the control resource or in the value
parameter of the function NewControl (page 634). To determine a control’s current setting before changing
it in response to a user’s click in that control, use the function GetControlValue (page 606).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Config Save
HID Explorer
ictbSample

Declared In
Controls.h

SetControlViewSize
Informs the Control Manager of the size of the content to which a control’s size is proportioned.

662 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void SetControlViewSize (
 ControlRef theControl,
 SInt32 newViewSize
);

Parameters
theControl

A handle to the control whose view size is to be set. For a description of this data type, see
ControlRef (page 709).

newViewSize
A value specifying the size of the content being displayed. This value should be expressed in terms
of the same units of measurement as are used for the minimum, maximum, and current settings of
the control.

Discussion
Your application should call the SetControlViewSize function to support proportional scroll boxes. If the
user selects the systemwide Appearance preference for proportional scroll boxes and your application doesn’t
call SetControlViewSize, it will still have the traditional square scroll boxes.

To support a proportional scroll box, simply pass the size of the view area—in terms of whatever units the
scroll bar uses—to SetControlViewSize. The system automatically handles resizing the scroll box, once
your application supplies this information.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetControlVisibility
Sets the visibility of a control, and any embedded controls, and specifies whether it should be drawn.

OSErr SetControlVisibility (
 ControlRef inControl,
 Boolean inIsVisible,
 Boolean inDoDraw
);

Parameters
inControl

A handle to the control whose visibility is to be set.

inIsVisible
A Boolean value indicating whether the control is visible or invisible. If you set this value to true, the
control will be visible. If false, the control will be invisible. If you wish to show a control (and latent
embedded subcontrols) but do not want to cause screen drawing, pass true for this parameter and
false in the inDoDraw parameter.

inDoDraw
A Boolean value indicating whether the control should be drawn or erased. If true, the control’s
display on the screen should be updated (drawn or erased) based on the value passed in the
inIsVisible parameter. If false, the display will not be updated.

Functions 663
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
You should call the SetControlVisibility function instead of setting the contrlVis field of the control
structure to set the visibility of a control and specify whether it will be drawn. If the control has embedded
controls, SetControlVisibility allows you to set their visibility and specify whether or not they will be
drawn. If you wish to show a control but do not want it to be drawn onscreen, pass true in the inIsVisible
parameter and false in the inDoDraw parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetDisclosureTriangleLastValue
Sets the last value of a disclosure triangle.

OSErr SetDisclosureTriangleLastValue (
 HIViewRef inDisclosureTriangle,
 SInt16 inValue
);

Parameters
inDisclosureTriangle

The control reference for the disclosure triangle whose last value is to be set.

inValue
The value to set. For possible values, see “Disclosure Triangle Constants” (page 772).

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIDisclosureViews.h

SetImageWellContentInfo
Sets the content information for an image well.

664 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSErr SetImageWellContentInfo (
 ControlRef inButton,
 ControlButtonContentInfoPtr inContent
);

Parameters
inButton

The control reference for the image well whose content information is to be set.

inContent
The content to set.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

SetImageWellTransform
Sets an image well transform.

OSErr SetImageWellTransform (
 ControlRef inButton,
 IconTransformType inTransform
);

Parameters
inButton

The control reference for the image well.

inTransform
The transform to set. For possible values, see the IconTransformType enumeration described in
the Icon Services and Utilities Reference.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
An transform is a visual appearance modification that is to be made when drawing the control’s content.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

SetKeyboardFocus
Sets the current keyboard focus to a specified control part for a window.

Functions 665
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSErr SetKeyboardFocus (
 WindowRef inWindow,
 ControlRef inControl,
 ControlFocusPart inPart
);

Parameters
inWindow

A pointer to the window containing the control that is to receive keyboard focus.

inControl
A handle to the control that is to receive keyboard focus.

inPart
A part code specifying the part of a control to receive keyboard focus. To clear a control’s keyboard
focus, pass kControlFocusNoPart. For a description of this data type, see ControlFocusPart (page
703)

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Discussion
A control with keyboard focus receives keyboard events. The Dialog Manager tests to see which control has
keyboard focus when a keyboard event is processed and sends the event to that control. If no control has
keyboard focus, the keyboard event is discarded. A control retains keyboard focus if it is hidden or deactivated.

Keyboard focus is only available if an embedding hierarchy has been established in the focusable control’s
window. The default focusing order is based on the order in which controls are added to the window. For
more details on embedding hierarchies, see EmbedControl (page 583).

The SetKeyboardFocus function sets the keyboard focus to a specified control part. The control to receive
keyboard focus can be deactivated or invisible. This permits you to set the focus for an item in a dialog box
before the dialog box is displayed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

SetTabEnabled
Enables and disables a tab control.

666 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

OSErr SetTabEnabled (
 ControlRef inTabControl,
 SInt16 inTabToHilite,
 Boolean inEnabled
);

Parameters
inTabControl

The control reference for the tab.

inTabToHilite
The tab to highlight.

inEnabled
A Boolean whose value is true if the tab is to be enabled or false to disable the tab.

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HITabbedView.h

SetUpControlBackground
Applies the proper background color for the given control to the current port.

OSErr SetUpControlBackground (
 ControlRef inControl,
 SInt16 inDepth,
 Boolean inIsColorDevice
);

Parameters
inControl

The ControlRef that wants to erase. For a description of this data type, see ControlRef (page 709).

inDepth
A short integer indicating the color depth of the device onto which drawing will take place.On Mac
OS X, this parameter is ignored; you should always pass 32.

inIsColorDevice
A Boolean indicating whether the draw device is a color device. On Mac OS X, this parameter is ignored;
you should always pass true.

Return Value
A result code. See “Control Manager Result Codes” (page 824). An OSStatus code indicating success or failure.
The most likely error is a controlHandleInvalidErr, resulting from a bad ControlRef. Any non-noErr
result indicates that the color set up failed, and that the caller should probably give up its attempt to draw.

Discussion
An embedding-savvy control which erases before drawing must ensure that its background color properly
matches the body color of any parent controls on top of which it draws. This routine asks the Control Manager
to determine and apply the proper background color to the current port.

Functions 667
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

If a ControlColorProc callback has been provided for the given control, the callback will be called to set up
the background color. If no proc exists, or if the proc returns a value other than noErr, the Control Manager
ascends the parent chain for the given control looking for a control which has a special background (see the
kControlHasSpecialBackground feature bit). The first such parent is asked to set up the background
color (see the kControlMsgSetUpBackground message). If no such parent exists, the Control Manager
applies any ThemeBrush which has been associated with the owning window (see
SetThemeWindowBackground).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

SetUpControlTextColor
Applies the proper text color for the given control to the current port.¬¬

OSErr SetUpControlTextColor (
 ControlRef inControl,
 SInt16 inDepth,
 Boolean inIsColorDevice
);

Parameters
inControl

The ControlRef that wants to draw text.

inDepth
A short integer indicating the color depth of the device onto which drawing will take place. On Mac
OS X, this parameter is ignored; you should always pass 32.

inIsColorDevice
A Boolean indicating whether the draw device is a color device. On Mac OS X, this parameter is ignored;
you should always pass true.

Return Value
A result code. See “Control Manager Result Codes” (page 824). An OSStatus code indicating success or failure.
The most likely error is a controlHandleInvalidErr, resulting from a bad ControlRef. Any non-noErr
result indicates that the color set up failed, and that the caller should probably give up its attempt to draw.

Discussion
An embedding-savvy control which draws text must ensure that its text color properly contrasts the
background on which it draws. This routine asks the Control Manager to determine and apply the proper
text color to the current port.

If a ControlColorProc has been provided for the given control, the proc will be called to set up the text color.
If no proc exists, or if the proc returns a value other than noErr, the Control Manager ascends the parent
chain for the given control looking for a control which has a special background (see the
kControlHasSpecialBackground feature bit). The first such parent is asked to set up the text color (see
the kControlMsgApplyTextColor message). If no such parent exists, the Control Manager chooses a text
color which contrasts any ThemeBrush which has been associated with the owning window (see
SetThemeWindowBackground).

668 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ShowControl
Makes an invisible control, and any latent embedded controls, visible.

void ShowControl (
 ControlRef theControl
);

Parameters
theControl

A handle to the control to make visible. For a description of this data type, see ControlRef (page 709).

Discussion
If the specified control is invisible, the ShowControl function makes it visible and immediately draws the
control within its window without using your window’s standard updating mechanism. Note that the
ShowControl function draws the control in its window, but the control can still be completely or partially
obscured by overlapping windows or other objects. If the control is already visible, ShowControl has no
effect.

When showing groups of controls, the state of an embedded control that is hidden or deactivated is preserved,
so that when the embedder control is shown or activated, the embedded control appears in the same state
as the embedder. If the specified control has embedded controls, ShowControl makes the embedded
controls visible as well.

An embedded control is considered latent when it is deactivated or hidden due to its embedder control
being deactivated or hidden. If you call ShowControl on a latent embedded control whose embedder is
disabled, the embedded control will remain invisible until its embedder control is enabled.

You can make a control invisible in several ways:

 ■ Specifying its invisibility in the control resource.

 ■ Passing a value of false in the visible parameter of NewControl (page 634).

 ■ Calling HideControl (page 618).

 ■ Calling SetControlVisibility (page 663).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

Functions 669
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

SizeControl
Changes the size of a control’s rectangle.

void SizeControl (
 ControlRef theControl,
 SInt16 w,
 SInt16 h
);

Parameters
theControl

A handle to the control you wish to resize.

w
The new width, in pixels, of the resized control.

h
The new height, in pixels, of the resized control.

Discussion
The SizeControl function changes the rectangle specified in the contrlRect field of the control structure.
The lower-right corner of the rectangle is adjusted so that it has the width and height specified by the w and
h parameters the position of the upper-left corner is not changed. If the control is currently visible, it’s first
hidden and then redrawn in its new size. The SizeControl function will change the window’s update region.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Controls.h

TestControl
Obtains the control part in which a mouse-down event occurred.

ControlPartCode TestControl (
 ControlRef theControl,
 Point testPoint
);

Parameters
theControl

A handle to the control in which the mouse-down event occurred.

testPoint
The point, in a window’s local coordinates, where the mouse-down event occurred.

Return Value
The part code of the control part, or 0 if the point is outside the control; see “Control Meta Part Code
Constants” (page 790), “Control Part Code Constants ” (page 748), and“ Control State Part Code Constants” (page
751). If the control is invisible or inactive, TestControl returns 0. For a description of this data type, see
ControlPartCode (page 708).

670 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
TheTestControl function is called by theFindControl (page 585) andTrackControl (page 671) functions;
your application does not normally call it.

When the control specified by the parameter theControl is visible and active, TestControl tests which
part of the control contains the point specified by the parameter testPoint.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

TrackControl
Responds to cursor movements in a control while the mouse button is down. (Deprecated. Use
HandleControlClick (page 613) instead.)

Not recommended

ControlPartCode TrackControl (
 ControlRef theControl,
 Point startPoint,
 ControlActionUPP actionProc
);

Parameters
theControl

A handle to the control in which a mouse-down event occurred. For a description of this data type,
see ControlRef (page 709).

startPoint
A point, specified in coordinates local to the window, where the mouse-down event occurred.

actionProc
A pointer to an action function defining the action your application takes while the user holds down
the mouse button. The value of the actionProc parameter can be a valid procPtr, NULL, or -1. A
value of -1 indicates that the control should either perform auto tracking, or if it is incapable of doing
so, do nothing (like NULL). See ControlActionProcPtr (page 675) for information about an action
function to specify in this parameter.

Return Value
If the user releases the mouse button while the cursor is inside a control part, TrackControl returns a value
of type ControlPartCodeidentifying the control part in which the mouse-up event occurs; see “Control
Meta Part Code Constants” (page 790), “Control Part Code Constants ” (page 748), and“ Control State Part
Code Constants” (page 751). TrackControl returns 0 if the user releases the mouse button while the cursor
is outside the control part. If the user releases the mouse button when the cursor is in an indicator such as
a scroll box, TrackControl calls the control’s control definition function to reposition the indicator. For a
description of this data type, see ControlPartCode (page 708).

Functions 671
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
When the Appearance Manager is available, you should typically call HandleControlClick (page 613)
instead of TrackControl to follow the user’s cursor movements in a control and provide visual feedback
until the user releases the mouse button. Unlike the TrackControl function, HandleControlClick also
accepts modifier key information so that the control may take into account the current modifier key state if
the control is set up to handle its own tracking.

If the Appearance Manager is not available, you can use the TrackControl function to follow the user’s
cursor movements in a control and provide visual feedback until the user releases the mouse button. The
visual feedback given by TrackControl depends on the control part in which the mouse-down event occurs.
When highlighting is appropriate, for example, TrackControl highlights the control part (and removes the
highlighting when the user releases the mouse button). When the user holds down the mouse button while
the cursor is in an indicator (such as the scroll box of a scroll bar) and moves the mouse, TrackControl
responds by dragging a dotted outline of the indicator.

While the user holds down the mouse button with the cursor in one of the standard controls, TrackControl
performs the following actions, depending on the value you pass in the parameter actionProc. (For other
controls, what you pass in this parameter depends on how you define the control.)

 ■ If you pass NULL in the actionProc parameter, TrackControl uses no action function and therefore
performs no additional actions beyond highlighting the control or dragging the indicator. This is
appropriate for buttons, checkboxes, radio buttons, and the scroll box of a scroll bar.

 ■ If you pass a pointer to an action function in the actionProc parameter, you must provide the function,
and it must define some action that your application repeats as long as the user holds down the mouse
button. This is appropriate for the scroll arrows and gray areas of a scroll bar.

 ■ If you pass Pointer(–1) in the actionProc parameter, TrackControl looks in the contrlAction
field of the control structure for a pointer to the control’s action function. This is appropriate when you
are tracking the cursor in a pop-up menu. (You can use the GetControlAction function to determine
the value of this field, and you can use the SetControlAction function to change this value.) If the
contrlAction field of the control structure contains a function pointer, TrackControl uses the action
function it points to; if the field of the control structure also contains the value Pointer(–1),
TrackControl calls the control’s control definition function to perform the necessary action you may
wish to do this if you define your own control definition function for a custom control. If the field of the
control structure contains the value NULL, TrackControl performs no action.

Note that when you need to handle events in alert and dialog boxes, Dialog Manager functions automatically
call FindControl and TrackControl.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

UpdateControls
Draws controls in the specified update region of a window.

672 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

void UpdateControls (
 WindowRef inWindow,
 RgnHandle inUpdateRegion
);

Parameters
theWindow

On input, a pointer to the window containing the controls to update.

updateRegion
On input, a handle to the update region of the specified window.

Discussion
The UpdateControls function, which should not be called in a compositing window, draws only those
controls in the specified window that need updating. This function is faster than the DrawControls (page
581) function, which draws all of the controls in a window. By contrast, UpdateControls draws only those
controls in the update region.

Your application should call UpdateControls upon receiving an update event for a window that contains
controls. While the Dialog Manager handles update events for controls in alert boxes and dialog boxes,
Window Manager functions such as SelectWindow, ShowWindow, and BringToFront do not automatically
call UpdateControls to display the window’s controls.

In response to an update event, you normally call UpdateControls after using the Window Manager function
BeginUpdate and before using the Window Manager functionEndUpdate. You should set theupdateRegion
parameter to the visible region of the window’s port, as specified in the port’s visRgn field. Note that if your
application draws parts of a control outside of its rectangle, UpdateControls might not redraw it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

Callbacks by Task

Defining Your Own Action Function

ControlActionProcPtr (page 675)
Defines actions to be performed repeatedly in response to a mouse-down event in a control part.

Defining Your Own Control Definition Function

ControlDefProcPtr (page 677)
If you wish to define new, nonstandard controls for your application, you must write a control definition
function and either register it with the system using RegisterControlDefinition (page 640) or
create it directly using CreateCustomControl (page 543).

Callbacks by Task 673
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Defining Your Own Key Filter Function

ControlKeyFilterProcPtr (page 686)
The key filter function allows for the interception and possible changing of keystrokes destined for a
control.

Defining Your Own Text Validation Function

ControlEditTextValidationProcPtr (page 685)
Ensures that the content of an editable text control is valid.

Defining Your Own User Pane Functions

ControlUserPaneActivateProcPtr (page 687)
Handles activate and deactivate event processing.

ControlUserPaneBackgroundProcPtr (page 688)
Sets the background color or pattern for user panes that support embedding.

ControlUserPaneDrawProcPtr (page 690)
Draws the content of your user pane control in the rectangle of user pane control.

ControlUserPaneFocusProcPtr (page 691)
Handles keyboard focus.

ControlUserPaneHitTestProcPtr (page 692)
Returns the part code of the control that the point was in when the mouse-down event occurred.

ControlUserPaneIdleProcPtr (page 692)
Performs idle processing.

ControlUserPaneKeyDownProcPtr (page 693)
Handles keyboard event processing.

ControlUserPaneTrackingProcPtr (page 695)
Tracks a control while the user holds down the mouse button.

Miscellaneous

ControlCNTLToCollectionProcPtr (page 676)

ControlColorProcPtr (page 677)

EditUnicodePostUpdateProcPtr (page 696)

674 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Callbacks

ControlActionProcPtr
Defines actions to be performed repeatedly in response to a mouse-down event in a control part.

typedef void (*ControlActionProcPtr) (
 ControlRef theControl,
 ControlPartCode partCode
);

If you name your function MyControlActionProc, you would declare it like this:

void MyControlActionProc (
 ControlRef theControl,
 ControlPartCode partCode
);

Parameters
theControl

The control in which the mouse-down event occurred. For a description of this data type, see
ControlRef (page 709).

partCode
The control part in which the mouse-down event occurred; see “Control Meta Part Code
Constants” (page 790), “Control Part Code Constants ” (page 748), and “ Control State Part Code
Constants” (page 751). When the cursor is still in the control part where the mouse-down event first
occurred, this parameter contains that control’s part code. When the user drags the cursor outside
the original control part, this parameter contains 0.

Discussion
The Control Manager defines the data type ControlActionUPP to identify the universal procedure pointer
for this application-defined callback function. To provide a pointer to your callback, you can use the function
NewControlActionUPP (page 636). You can do so with code similar to the following:

ControlActionUPP myActionUPP;
myActionUPP = NewControlActionUPP (MyControlActionCallback);

When a mouse-down event occurs in a control, HandleControlClick (page 613) and TrackControl (page
671) respond as is appropriate, typically by highlighting the control or dragging the indicator as long as the
user holds down the mouse button. You can define other actions to be performed repeatedly during this
interval. To do so, define your own action function and point to it in the actionProc parameter of the
TrackControl function or the inAction parameter of HandleControlClick. This is the only way to
specify actions in response to all mouse-down events in a control or indicator.

When your action function is called for a control part, the action function is passed a handle to the control
and the control’s part code. The action function should then respond as is appropriate. MyActionProc is an
example of such an action function. The only exception to this is for indicators that don’t support live feedback.

If the mouse-down event occurs in an indicator of a control that does not support live feedback, your action
function should take no parameters, because the user may move the cursor outside the indicator while
dragging it.

Callbacks 675
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

As an alternative to passing a pointer to your action function in a parameter to TrackControl, you can use
the function SetControlAction (page 649) to store a pointer to the action function in the contrlAction
field in the control structure. When you pass Pointer(–1) instead of a function pointer to TrackControl,
TrackControl uses the action function pointed to in the control structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlCNTLToCollectionProcPtr
typedef OSStatus (*ControlCNTLToCollectionProcPtr) (
 const Rect * bounds,
 SInt16 value,
 Boolean visible,
 SInt16 max,
 SInt16 min,
 SInt16 procID,
 SInt32 refCon,
 ConstStr255Param title,
 Collection collection
);

If you name your function MyControlCNTLToCollectionProc, you would declare it like this:

OSStatus ControlCNTLToCollectionProcPtr (
 const Rect * bounds,
 SInt16 value,
 Boolean visible,
 SInt16 max,
 SInt16 min,
 SInt16 procID,
 SInt32 refCon,
 ConstStr255Param title,
 Collection collection
);

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

676 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlColorProcPtr
typedef OSStatus (*ControlColorProcPtr) (
 ControlRef inControl,
 SInt16 inMessage,
 SInt16 inDrawDepth,
 Boolean inDrawInColor
);

If you name your function MyControlColorProc, you would declare it like this:

OSStatus ControlColorProcPtr (
 ControlRef inControl,
 SInt16 inMessage,
 SInt16 inDrawDepth,
 Boolean inDrawInColor
);

Return Value
A result code. See “Control Manager Result Codes” (page 824).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlDefProcPtr
If you wish to define new, nonstandard controls for your application, you must write a control definition
function and either register it with the system using RegisterControlDefinition (page 640) or create it
directly using CreateCustomControl (page 543).

typedef SInt32 (*ControlDefProcPtr) (
 SInt16 varCode,
 ControlRef theControl,
 ControlDefProcMessage message,
 SInt32 param
);

If you name your function MyControlDefProc, you would declare it like this:

SInt32 MyControlDefProc (
 SInt16 varCode,
 ControlRef theControl,
 ControlDefProcMessage message,
 SInt32 param
);

Parameters
varCode

The control’s variation code.

Callbacks 677
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

theControl
A handle to the control that the operation will affect.

message
A code for the task to be performed. See “Control Definition Message Constants” (page 735) for a
description of the constants which you can use here. The subsections that follow explain each of
these tasks in detail. For a description of this data type, see ControlDefProcMessage (page 702).

param
Data associated with the task specified by the message parameter. If the task requires no data, this
parameter is ignored.

Return Value
The function results that your control definition function returns depend on the value that the Control
Manager passes in the message parameter.

Discussion
Note that Carbon does not allow you to store custom control definitions in a 'CDEF' resource file as you
could in preCarbon systems.

The Control Manager defines the data type ControlDefUPP to identify the universal procedure pointer for
this application-defined callback function. To provide a pointer to your callback, you can use the function
NewControlDefUPP (page 637). You can do so with code similar to the following:

ControlDefUPP myControlDefUPP;
myControlDefUPP = NewControlDefUPP (MyControlDefCallback);

A control definition function determines how a control generally looks and behaves. Various Control Manager
functions call a control definition function whenever they need to perform a control-dependent action, such
as drawing the control on the screen. In addition to standard control definition functions, defined by the
system, you can make your own custom control definition functions.

When various Control Manager functions need to perform a type-dependent action on the control, they call
the control definition function and pass it the variation code for its type as a parameter. You can define your
own variation codes; this allows you to use one custom definition to handle several variations of the same
general control.

To define your own type of control, you write a control definition function, compile it as a resource of type
'CDEF', and store it in your resource file. Whenever you create a control, you specify a control definition ID,
which the Control Manager uses to determine the control definition function. The control definition ID is an
integer that contains the resource ID of the control definition function in its upper 12 bits and a variation
code in its lower 4 bits. Thus, for a given resource ID and variation code

control definition ID = (16 x resource ID) + variation code

For example, buttons, checkboxes, and radio buttons all use the standard control definition function with
resource ID 0. Because they have variation codes of 0, 1, and 2, respectively, their respective control definition
IDs are 0, 1, and 2. See the control definition IDs in the “Control Manager Constants” section for more details.

The Control Manager calls the Resource Manager to access a control definition function with the given
resource ID. The Resource Manager reads a control definition function into memory and returns a handle to
it. The Control Manager stores this handle in the contrlDefProc field of the control structure.

The Control Manager calls your control definition function under various circumstances; the Control Manager
uses the message parameter to inform your control definition function what action it must perform. The
data that the Control Manager passes in the param parameter, the action that your control definition function

678 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

must undertake, and the function results that your control definition function returns all depend on the value
that the Control Manager passes in the message parameter. The rest of this section describes how to respond
to the various values that the Control Manager passes in the message parameter.

Drawing the Control or Its Part

When the Control Manager passes the value drawCntl in the message parameter, your control definition
function should respond by drawing the indicator or the entire control.

The Control Manager passes one of the drawing constants described in ReverseKeyboardFocus (page 642)
in the low word of the param parameter to specify whether the user is drawing an indicator or the whole
control. The high-order word of the param parameter may contain undefined data; therefore, evaluate only
the low-order word of this parameter.

With the exception of part code 128, which is reserved for future use and should not be used, any other value
indicates a part code for the control.

If the specified control is visible, your control definition function should draw the control (or the part specified
in the param parameter) within the control’s rectangle. If the control is invisible (that is, if its contrlVis
field is set to 0), your control definition function does nothing.

When drawing the control or its part, take into account the current values of its contrlHilite and
contrlValue fields in the control structure.

If the part code for your control’s indicator is passed in param, assume that the indicator hasn’t moved the
Control Manager, for example, may be calling your control definition function so that you may simply highlight
the indicator. However, when your application calls ClearKeyboardFocus (page 537),
SetKeyboardFocus (page 665), and “Control Meta Part Code Constants” (page 790), they in turn may call
your control definition function with the drawCntl message to redraw the indicator. Since these functions
have no way of determining what part code you chose for your indicator, they all pass 129 in param, meaning
that you should move your indicator. Your control definition function must detect this part code as a special
case and remove the indicator from its former location before drawing it. If your control has more than one
indicator, you should interpret 129 to mean all indicators.

When sent the message drawCntl, your control definition function should return 0 as its function result.

Testing Where the Mouse-Down Event Occurs

When the Control Manager passes the value for the testCntl constant in the message parameter, your
control definition function should respond by determining whether a specified point is in a visible control.

The Control Manager passes a point (in local coordinates) in the param parameter. The point’s vertical
coordinate is contained in the high-order word of the long integer, and horizontal coordinate is contained
in the low-order word.

Your control definition function should return the part code of the part that contains the specified point; it
should return 0 if the point is outside the control or if the control is inactive.

Calculating the Control and Indicator Regions on 24-Bit Systems

When the Control Manager passes the value for the calcCRgns constant in the message parameter,
your control definition function should calculate the region passed in the param parameter for the specified
control or its indicator.

Callbacks 679
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

The Control Manager passes a QuickDraw region handle in the param parameter. If the high-order bit of
param is set, the region requested is that of the control’s indicator otherwise, the region requested is that
of the entire control. Your control definition function should clear the high bit of the region handle before
calculating the region.

When passed this message, your control definition function should always return 0, and it should express
the region in the local coordinate system of the control’s window.

Note that the calcCRgns message will never be sent to any system running on 32-bit mode and is therefore
obsolete in Mac OS 7.6 and later. On Mac OS 7.6 and later, the calcCntlRgn and calcThumbRgn messages
are sent instead.

Calculating the Control and Indicator Regions on 32-Bit Systems

When the Control Manager passes the values for the calcCntlRgn or calcThumbRgn constants in the
message parameter, your control definition function should calculate the region for the specified control or
its indicator using the QuickDraw region handle passed in the param parameter.

If the Control Manager passes the value for the calcThumbRgn constant in the message parameter, calculate
the region occupied by the indicator. If the Control Manager passes the value for the calcCntlRgn constant
in the message parameter, calculate the region for the entire control.

When passed this message, your control definition function should always return 0, and it should express
the region in the local coordinate system of the control’s window.

Performing Additional Control Initialization

After initializing fields of a control structure as appropriate when creating a new control, the Control Manager
passes initCntl in the message parameter to give your control definition function the opportunity to
perform any type-specific initialization you may require. For example, the standard control definition function
for scroll bars allocates space for a region to hold the scroll box and stores the region handle in the
contrlData field of the new control structure.

When passed the value for the initCntl constant in the message parameter, your control definition function
should ignore the param parameter and return 0 as a function result.

Performing Additional Control Disposal Actions

The function DisposeControl (page 573) passes dispCntl in the message parameter to give your control
definition function the opportunity to carry out any additional actions when disposing of a control. For
example, the standard definition function for scroll bars releases the memory occupied by the scroll box
region, whose handle is kept in the contrlData field of the control structure.

When passed the value for the dispCntl constant in the message parameter, your control definition function
should ignore the param parameter and return 0 as a function result.

Dragging the Control or Its Indicator

When a mouse-up event occurs in the indicator of a control, the “ Control State Part Code Constants” (page
751) or ControlKeyDownRec (page 706) functions call your control definition function and pass posCntl in
the message parameter. In this case, the Control Manager passes a point (in coordinates local to the control’s
window) in the param parameter that specifies the vertical and horizontal offset, in pixels, by which your
control definition function should move the indicator from its current position. Typically, this is the offset

680 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

between the points where the cursor was when the user pressed and released the mouse button while
dragging the indicator. The point’s vertical offset is contained in the high-order word of the param parameter,
and its horizontal offset is contained in the low-order word.

Your definition function should calculate the control’s new setting based on the given offset and then, to
reflect the new setting, redraw the control and update the contrlValue field in the control structure. Your
control definition function should ignore the param parameter and return 0 as a function result.

Calculating Parameters for Dragging the Indicator

When the Control Manager passes the value for thumbCntl in the message parameter, your control definition
function should respond by calculating values analogous to the limitRect, slopRect, and axis parameters
of DragControl that constrain how the indicator is dragged. On entry, the fields limitRect.top and
limitRect.left contain the point where the mouse-down event first occurred.

The Control Manager passes a pointer to a structure of type IndicatorDragConstraint in the param
parameter. Your definition function should store the appropriate values into the fields of the structure pointed
to by the param parameter; they’re analogous to the similarly named parameters of the Window Manager
function DragGrayRgn.

Performing Custom Dragging

When the Control Manager passes the value for the dragCntl constant in the message parameter, the param
parameter typically contains a custom dragging constant with one of the values described in “Drag Control
Constants” to specify whether the user is dragging an indicator or the whole control.

When the Appearance Manager is present, the message kControlMsgHandleTracking should be sent
instead of dragCntl to handle any custom tracking; see “Performing Custom Tracking” below.

If you want to use the Control Manager’s default method of dragging, which is to call DragControl to drag
the control or the Window Manager function DragGrayRgn to drag its indicator, return 0 as the function
result for your control definition function.

If your control definition function returns a non-zero value, your control definition function (not the Control
Manager) must drag the specified control (or its indicator) to follow the cursor until the user releases the
mouse button. If the user drags the entire control, your definition function should use the function
MoveControl to reposition the control to its new location after the user releases the mouse button. If the
user drags the indicator, your definition function must calculate the control’s new setting (based on the pixel
offset between the points where the cursor was when the user pressed and released the mouse button while
dragging the indicator) and then, to reflect the new setting, redraw the control and update the contrlValue
field in the control structure. Note that, in this case, the functions HandleControlClick and TrackControl
return 0 whether or not the user changes the indicator’s position. Thus, you must determine whether the
user has changed the control’s setting by another method, for instance, by comparing the control’s value
before and after the call to HandleControlClick.

Executing an Action Function

The only way to specify actions in response to all mouse-down events in a control or its indicator is to define
your own control definition function that specifies an action function. When you create the control, your
control definition function must first respond to the initCntl message by storing (ControlDefUPP)-1L in
the contrlAction field of the control structure. (The Control Manager sends the initCntl message to
your control definition function after initializing the fields of a new control structure.) Then, when your
application passes (ControlActionUPP)-1L in the actionProc n passes (ControlActionUPP)-1L in the actionProc
parameter of HandleControlClick or TrackControl, HandleControlClick calls your control definition

Callbacks 681
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

function with the autoTrack message. The Control Manager passes the part code of the part where the
mouse-down event occurs in the param parameter. Your control definition function should then use this
information to respond as an action function would.

Note that for the autoTrack message, the high-order word of the param parameter may contain undefined
data; therefore, evaluate only the low-order word of this parameter.

If the mouse-down event occurs in an indicator of a control that supports live feedback, your action function
should take two parameters (a handle to the control and the part code of the control where the mouse-down
event first occurred). This action function is the same one you would use to define actions to be performed
in control part codes in respotrolActionProcPtr"> ControlActionProcPtr.

If the mouse-down event occurs in an indicator of a control that does not support live feedback, your action
function should take no parameters, because the user may move the cursor outside the indicator while
dragging it.

Specifying Whether Appearance-Compliant Messages Are Supported

If your control definition function supports Appearance-compliant messages, it should return
kControlSupportsNewMessages as a function result when the Control Manager passes
kControlMsgTestNewMsgSupport in the message parameter.

Specifying Which Appearance-Compliant Messages Are Supported

If your control definition function supports Appearance-compliant messages, it should return a bit field of
the features it supports in response to the kControlMsgGetFeatures message. Your control definition
function should ignore the param parameter.

Drawing a Ghost Image of the Indicator

If your control definition function supports indicator ghosting, it should return kControlSupportsGhosting
as one of the feature bits in response to a kControlMsgGetFeatures message. If this bit is set and the
control indicator is being tracked, the Control Manager calls your control definition function and passes
kControlMsgDrawGhost in the message parameter. A handle to the region where the ghost should be
drawn will be passed in the param parameter.

Your control definition function should respond by redrawing the control with the ghosted indicator at the
specified location and should return 0 as its function result.

Note that the ghost indicator should always be drawn before the actual indicator so that it appears underneath
the actual indicator.

Calculating the Optimal Control Rectangle

If your control definition function supports calculating the optimal dimensions of the control rectangle, it
should return kControlSupportsCalcBestRect as one of the feature bits in response to the
kControlMsgGetFeatures message. If this bit is set and GetBestControlRect is called, the Control
Manager will call your control definition function and pass kControlMsgCalcBestRect in the message
parameter. The Control Manager passes a pointer to a control size calculation structure, ControlCalcSizeRec,
in the param parameter.

Your control definition function should respond by calculating the width and height of the optimal control
rectangle and adjusting the rectangle by setting the height and width fields of the control size calculation
structure to the appropriate values. If your control definition function displays text, it should pass in the offset
from the bottom of control to the base of the text in the baseLine field of the structure. Your control

682 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

definition function should return the offset value stored in the structure’s in the baseLine field of the
structure. Your control definition function should return the offset value stored in the structure’s baseLine
field.

Performing Custom Tracking

If your control definition function supports custom tracking, it should return kControlHandlesTracking
as one of the feature bits in response to a kControlMsgGetFeatures message. If this bit is set and a
mouse-down event occurs in your control, TrackControl or HandleControlClick calls your control
definition function and passes kControlMsgHandlesTracking in the message parameter. The Control
Manager passes a pointer to a control tracking structure, ControlTrackingRec, in the param parameter.
Your control definition function should respond appropriately and return the part code that was hit, or
kControlNoPart if the mouse-down event occurred outside the control; see “Control Meta Part Code
Constants” (page 790) “Control Part Code Constants ” (page 748) and “ Control State Part Code Constants” (page
751).

Handling Keyboard Focus

If your control definition function can change its keyboard focus, it should set kControlSupportsFocus
and kControlGetsFocusOnClick as feature bits in response to a kControlMsgGetFeatures message.
If these bits are set and the AdvanceKeyboardFocus, ReverseKeyboardFocus, ClearKeyboardFocus,
or SetKeyboardFocus function is called, the Control Manager calls your control definition function and
passes kControlMsgFocus in the message parameter.

The Control Manager passes one of the control focus part code constants described in “Control Meta Part
Code Constants” (page 790).

If the Control Manager passes in a part code, your control definition function should focus on the specified
part code. Your function can interpret this in any way it wishes.

Your control definition function should return the control focus part code or actual control part that was
focused on. Return kControlFocusNoPart if your control does not accept focus or has just relinquished
it. Return a non-zero part code to indicate that your control received keyboard focus. Your control definition
function is responsible for maintaining which part is focused.

Handling Keyboard Events

If your control definition function can handle keyboard events, it should return kControlSupportsFocus
—every control that supports keyboard focus must also be able to handle keyboard events—as one of the
feature bits in response to a kControlMsgGetFeatures message. If this bit is set, the Control Manager will
pass kControlMsgKeyDown in the message parameter. The Control Manager passes a pointer to a control
key down structure, ControlKeyDownRec, in the param parameter. Your control definition function should
respond by processing the keyboard event as appropriate and return 0 as the function result.

Performing Idle Processing

If your control definition function can perform idle processing, it should return kControlWantsIdle as one
of the feature bits in response to a kControlMsgGetFeaturesmessage. If this bit is set and IdleControls
is called for the window your control is in, the Control Manager will pass kControlMsgIdle in the message
parameter. Your control definition function should ignore the param parameter and respond appropriately.
For example, indeterminate progress indicators and asynchronous arrows use idle time to perform their
animation.

Your control definition function should return 0 as the function result.

Callbacks 683
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Getting and Setting Control-Specific Data

If your control definition function supports getting and setting control-specific data, it should return
kControlSupportsDataAccess as one of its features bits in response to the kControlMsgGetFeatures
message. If this bit is set, the Control Manager will call your control definition function and pass
kControlMsgSetData in the message parameter when ControlDataAccessRec, in the param parameter.
Your definition function should respond by filling out the structure and returning an operating system status
message as the function result.

Handling Activate and Deactivate Events

If your control definition function wants to be informed whenever it is being activated or deactivated, it
should return kControlWantsActivate as one of the feature bits in response to the
kControlMsgGetFeatures message. If this bit is set and your control definition function is being activated
or deactivated, the Control Manager calls it and passes kControlMsgActivate in the message parameter.
The Control Manager passes a 0 or 1 in the param parameter. A value of 0 indicates that the control is being
deactivated; 1 indicates that it is being activated.

Your control definition function should respond by performing any special processing before the user pane
becomes activated or deactivated, such as deactivating its TEHandle or ListHandle if it is about to be
deactivated.

Your control definition function should return 0 as the function result.

Setting a Control’s Background Color or Pattern

If your control definition function supports embedding and draws its own background, it should return
kControlHasSpecialBackground as one of the feature bits in response to the kControlMsgGetFeatures
message. If this bit is set and an embedding hierarchy of controls is being drawn in your control, the Control
Manager passes kControlMsgSetUpBackground in the message parameter of your control definition
function. The Control Manager passes a pointer to a filled-in control background structure,
ControlBackgroundRec, in the param parameter. Your control definition function should respond by
setting its background color or pattern to whatever is appropriate given the bit depth and device type passed
in. Your control definition function should return 0 as the function result.

Supporting Live Feedback

If your control definition function supports live feedback while tracking the indicator, it should return
kControlSupportsLiveFeedback as one of the feature bits in response to the kControlMsgGetFeatures
message. If this bit is set, the Control Manager will call your control definition function when it tracks the
indicator and pass kControlMsgCalcValueFromPos in the message parameter. The Control Manager
passes a handle to the indicator region being dragged in the param parameter.

Your control definition function should respond by calculating its value and drawing the control based on
the new indicator region passed in. Your control definition function should not recalculate its indicator
position. After the user is done dragging the indicator, your control definition function will be called with a
posCntl message at which time you can recalculate the position of the indicator. Not recalculating the
indicator position each time your control definition function is called creates a smooth dragging experience
for the user.

Your control definition function should return 0 as the function result.

Being Informed When Subcontrols Are Added or Removed

684 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

If your control definition function wishes to be informed when subcontrols are added or removed, it should
return kControlSupportsEmbedding as one of the feature bits in response to the
kControlMsgGetFeatures message. If this bit is set, the Control Manager passes
ControlMsgSubControlAdded in the message parameter immediately after a subcontrol is added, or it
passes kControlMsgSubControlRemoved just before a subcontrol is removed.

Being Informed When Subcontrols Are Added or Removed

If your control definition function wishes to be informed when subcontrols are added or removed, it should
return kControlSupportsEmbedding as one of the feature bits in response to the
kControlMsgGetFeatures message. If this bit is set, the Control Manager passes
ControlMsgSubControlAdded in the message parameter immediately after a subcontrol is added, or it
passes kControlMsgSubControlRemoved just before a subcontrol is removed from your embedder control.
A handle to the control being added or removed from the embedding hierarchy is passed in the param
parameter. Your control definition function should respond appropriately and return 0 as the function result.

Typically, a control definition function only supports this message if it wants to do extra processing in response
to changes in its embedded controls. Radio groups use these messages to perform necessary processing for
handling embedded controls. For example, if a currently selected radio button is deleted, the group can
adjust itself accordingly.

Carbon Porting Notes

Moving forward, you should consider using Carbon Event-based custom controls rather than those based
on CDEF messages. See Handling CarbonWindows and Controls for more information about creating Carbon
event-based controls.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlEditTextValidationProcPtr
Ensures that the content of an editable text control is valid.

typedef void (*ControlEditTextValidationProcPtr) (
 ControlRef control
);

If you name your function MyControlEditTextValidationProc, you would declare it like this:

void MyControlEditTextValidationProc (
 ControlRef control
);

Parameters
control

A handle to the control containing the editable text to be validated. For a description of this data
type, see ControlRef (page 709).

Callbacks 685
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
Your application typically uses a MyControlEditTextValidationCallback function in conjunction with
a key filter function to ensure that editable text is valid in cases such as a cut, paste, or clear, where a key
filter cannot be called. Use the kControlEditTextValidationProcTag control data tag constant,
described in “Editable Text Control Data Tag Constants” (page 756), with the functions SetControlData
and GetControlData to set or retrieve a MyControlEditTextValidationCallback function.

Note that if you are using the inline input editable text control variant, the Control Manager will not call your
MyControlEditTextValidationCallback function during inline input. Instead, you may install your own
Text Services Manager TSMTEPostUpdateUPP callback function to validate text during inline input, or your
application can validate the input itself, immediately prior to using the text.

The Control Manager defines the data type ControlEditTextValidationUPP to identify the universal
procedure pointer for this application-defined callback function. To provide a pointer to your callback, you
can use the function NewControlEditTextValidationUPP (page 637). You can do so with code similar to
the following:

ControlEditTextValidationUPP myControlEditTextValidationUPP;
myControlEditTextValidationUPP = NewControlEditTextValidationUPP
(MyControlEditTextValidationCallback);

You can then pass myControlEditTextValidationUPP in the inData parameter of SetControlData.
When you no longer need the universal procedure pointer, you should remove it using the
DisposeRoutineDescriptor function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

ControlKeyFilterProcPtr
The key filter function allows for the interception and possible changing of keystrokes destined for a control.

typedef ControlKeyFilterResult (*ControlKeyFilterProcPtr) (
 ControlRef theControl,
 SInt16 * keyCode,
 SInt16 * charCode,
 EventModifiers * modifiers
);

If you name your function MyControlKeyFilterProc, you would declare it like this:

ControlKeyFilterResult MyControlKeyFilterProc (
 ControlRef theControl,
 SInt16 * keyCode,
 SInt16 * charCode,
 EventModifiers * modifiers
);

Parameters
theControl

A handle to the control in which the key-down event occurred.

686 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

keyCode
The virtual key code derived from the event structure. This value represents the key pressed or released
by the user. It is always the same for a specific physical key on a particular keyboard regardless of
which modifier keys were also pressed.

charCode
A particular character derived from the event structure. This value depends on the virtual key code,
the state of the modifier keys, and the current 'KCHR' resource. Because this filter provides
WorldScript-encoded text in its parameters, it provides no meaningful information for key events
generated when a Unicode keyboard layout or input method is active; these layouts and input methods
generate Unicode text that often cannot be translated into any WorldScript encoding.

modifiers
The constant in the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

Return Value
Returns a value indicating whether or not it allowed or blocked keystrokes; see “Key Filter Result Codes” (page
782). For a description of this data type, see ControlKeyFilterResult (page 707).

Discussion
Controls that support text input (such as editable text and list box controls) can attach a key filter function
to filter key strokes and modify them on return.

Important: On Mac OS X, you should avoid using this filter, or at most, use the filter as an indication that
the text is changing but do not depend on the charCode parameter to the filter. Use a
kEventTextInputUnicodeForKeyEvent Carbon event handler as a replacement for the ControlKeyFilter
callback; on Mac OS X v10.4 and later, you can also use a kEventTextShouldChangeInRange or
kEventTextDidChange event handler.

The Control Manager defines the data type ControlKeyFilterUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlKeyFilterUPP (page 637). You can do so with code similar to the following:

ControlKeyFilterUPP myControlKeyFilterUPP;
myControlKeyFilterUPP = NewControlKeyFilterUPP (MyControlKeyFilterCallback);

Your key filter function can intercept and change keystrokes destined for a control. Your key filter function
can change the keystroke, leave it alone, or block your control definition function from receiving it. For
example, an editable text control can use a key filter function to allow only numeric values to be input in its
field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlUserPaneActivateProcPtr
Handles activate and deactivate event processing.

Callbacks 687
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

typedef void (*ControlUserPaneActivateProcPtr) (
 ControlRef control,
 Boolean activating
);

If you name your function MyControlUserPaneActivateProc, you would declare it like this:

void MyControlUserPaneActivateProc (
 ControlRef control,
 Boolean activating
);

Parameters
control

A handle to the control in which the activate event occurred.

activating
If true, the control is being activated. If false, the control is being deactivated.

Discussion
The Control Manager defines the data type UserPaneActivateUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlUserPaneActivateUPP (page 638). You can do so with code similar to the following:

ControlUserPaneActivateUPP myControlUserPaneActivateUPP;
myControlUserPaneActivateUPP = NewControlUserPaneActivateUPP
(MyControlUserPaneActivateCallback);

Your MyControlUserPaneActivateCallback function should perform any special processing before the
user pane becomes activated or deactivated. For example, it should deactivate its TEHandle or ListHandle
if the user pane is about to be deactivated.

This function is called only if you’ve set the kControlWantsActivate feature bit on creation of the user
pane control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 652) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see
the “Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneActivateCallback, pass kControlUserPaneActivateProcTag in the tagName
parameter of SetControlData (page 652).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

ControlUserPaneBackgroundProcPtr
Sets the background color or pattern for user panes that support embedding.

688 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

typedef void (*ControlUserPaneBackgroundProcPtr) (
 ControlRef control,
 ControlBackgroundPtr info
);

If you name your function MyControlUserPaneBackgroundProc, you would declare it like this:

void MyControlUserPaneBackgroundProc (
 ControlRef control,
 ControlBackgroundPtr info
);

Parameters
control

A handle to the control for which the background color or pattern is to be set.

info
A pointer to information such as the depth and type of the drawing device. For a description of the
ControlBackgroundPtr data type, see ControlBackgroundRec (page 698).

Discussion
The Control Manager defines the data type ControlUserPaneBackgroundUPP to identify the universal
procedure pointer for this application-defined callback function. To provide a pointer to your callback, you
can use the function NewControlUserPaneBackgroundUPP (page 638). You can do so with code similar to
the following:

ControlUserPaneBackgroundUPP myControlUserPaneBackgroundUPP;
myControlUserPaneBackgroundUPP = NewControlUserPaneBackgroundUPP
(MyControlUserPaneBackgroundCallback);

Your MyControlUserPaneBackgroundCallback function should set the user pane background color or
pattern to whatever is appropriate given the bit depth and device type passed in. Your
MyControlUserPaneBackgroundCallback function is called to set up the background color. This ensures
that when an embedded control calls EraseRgn or EraseRect, the background is erased to the correct
color or pattern.

This function is called only if there is a control embedded in the user pane and if you’ve set the
kControlHasSpecialBackground and kControlSupportsEmbedding feature bits on creation of the
user pane control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 652) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the
“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneBackgroundCallback, passkControlUserPaneBackgroundProcTag in thetagName
parameter of SetControlData (page 652).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIContainerViews.h

Callbacks 689
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlUserPaneDrawProcPtr
Draws the content of your user pane control in the rectangle of user pane control.

typedef void (*ControlUserPaneDrawProcPtr) (
 ControlRef control,
 SInt16 part
);

If you name your function MyControlUserPaneDrawProc, you would declare it like this:

void MyControlUserPaneDrawProc (
 ControlRef control,
 SInt16 part
);

Parameters
control

A handle to the user pane control in which you wish drawing to occur. For a description of this data
type, see ControlRef (page 709).

part
The part code of the control you should draw. If 0, draw the entire control.

Discussion
The Control Manager defines the data type ControlUserPaneDrawUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlUserPaneDrawUPP (page 638). You can do so with code similar to the following:

ControlUserPaneDrawUPP myControlUserPaneDrawUPP;
myControlUserPaneDrawUPP = NewControlUserPaneDrawUPP
(MyControlUserPaneDrawCallback);

Application-defined user pane functions provide you with the ability to create a custom theme-compliant
control without writing your own control definition function. A user pane is a general purpose stub control;
it can be used as the root control for a window, as well as providing a way to hook in application-defined
functions such as those described below. When the Appearance Manager is available, user panes should be
used in dialog boxes instead of user items.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 652) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see
the “Control Manager Constants” section.

For example, to set a user pane draw function, pass the constant kControlUserPaneDrawProcTag in the
tagName parameter of SetControlData (page 652).The Control Manager then draws the control using a
universal procedure pointer to your user pane draw function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

690 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlUserPaneFocusProcPtr
Handles keyboard focus.

typedef ControlPartCode (*ControlUserPaneFocusProcPtr) (
 ControlRef control,
 ControlFocusPart action
);

If you name your function MyControlUserPaneFocusProc, you would declare it like this:

ControlPartCode MyControlUserPaneFocusProc (
 ControlRef control,
 ControlFocusPart action
);

Parameters
control

A handle to the control that is to adjust its focus.

action
The part code of the user pane to receive keyboard focus; see ControlDefProcPtr (page 677).

Return Value
The part of the user pane actually focused. The constant kControlFocusNoPart is returned if the user pane
has lost the focus or cannot be focused. For a description of this data type, see ControlPartCode (page 708).

Discussion
The Control Manager defines the data type ControlUserPaneFocusUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlUserPaneFocusUPP (page 638). You can do so with code similar to the following:

ControlUserPaneFocusUPP myControlUserPaneFocusUPP;
myControlUserPaneFocusUPP = NewControlUserPaneFocusUPP
(MyControlUserPaneFocusCallback);

Your MyControlUserPaneFocusCallback function is called in response to a change in keyboard focus. It
should respond by changing keyboard focus based on the part code passed in the action parameter. This
function is called only if you’ve set the kControlSupportsFocus feature bit on creation of the user pane
control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 652) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the
“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneFocusCallback, pass kControlUserPaneFocusProcTag in the tagNameparameter
of SetControlData (page 652).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

Callbacks 691
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlUserPaneHitTestProcPtr
Returns the part code of the control that the point was in when the mouse-down event occurred.

typedef ControlPartCode (*ControlUserPaneHitTestProcPtr) (
 ControlRef control,
 Point where
);

If you name your function MyControlUserPaneHitTestProc, you would declare it like this:

ControlPartCode MyControlUserPaneHitTestProc (
 ControlRef control,
 Point where
);

Parameters
control

A handle to the control in which the mouse-down event occurred. For a description of this data type,
see ControlRef (page 709).

where
The point, in a window’s local coordinates, where the mouse-down event occurred.

Return Value
The part code of the control where the mouse-down event occurred. If the point was not over a control, your
function should return kControlNoPart. For a description of this data type, see ControlPartCode (page
708).

Discussion
The Control Manager defines the data typeControlUserPaneHitTestUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlUserPaneHitTestUPP (page 639). You can do so with code similar to the following:

ControlUserPaneHitTestUPP myControlUserPaneHitTestUPP;
myControlUserPaneHitTestUPP = NewControlUserPaneHitTestUPP
(MyControlUserPaneHitTestCallback);

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 652) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the
“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneHitTestCallback, pass kControlUserPaneHitTestProcTag in the tagName
parameter of SetControlData.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

ControlUserPaneIdleProcPtr
Performs idle processing.

692 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

typedef void (*ControlUserPaneIdleProcPtr) (
 ControlRef control
);

If you name your function MyControlUserPaneIdleProc, you would declare it like this:

void MyControlUserPaneIdleProc (
 ControlRef control
);

Parameters
control

A handle to the control for which you wish to perform idle processing. For a description of this data
type, see ControlRef (page 709).

Discussion
The Control Manager defines the data type ControlUserPaneIdleUPP to identify the universal procedure
pointer for this application-defined callback function. To provide a pointer to your callback, you can use the
function NewControlUserPaneIdleUPP (page 639). You can do so with code similar to the following:

ControlUserPaneIdleUPP myControlUserPaneIdleUPP;
myControlUserPaneIdleUPP = NewControlUserPaneIdleUPP
(MyControlUserPaneIdleCallback);

This function is called only if you’ve set the kControlWantsIdle feature bit on creation of the user pane
control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 652) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the
“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneIdleCallback, pass kControlUserPaneIdleProcTag in the tagName parameter
of SetControlData (page 652).

Availability
This function is available with Appearance Manager 1.0 and later.

Declared In
HIContainerViews.h

ControlUserPaneKeyDownProcPtr
Handles keyboard event processing.

typedef ControlPartCode (*ControlUserPaneKeyDownProcPtr) (
 ControlRef control,
 SInt16 keyCode,
 SInt16 charCode,
 SInt16 modifiers
);

If you name your function MyControlUserPaneKeyDownProc, you would declare it like this:

ControlPartCode MyControlUserPaneKeyDownProc (
 ControlRef control,

Callbacks 693
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

 SInt16 keyCode,
 SInt16 charCode,
 SInt16 modifiers
);

Parameters
control

A handle to the control in which the keyboard event occurred. For a description of this data type, see
ControlRef (page 709).

keyCode
The virtual key code derived from event structure. This value represents the key pressed or released
by the user. It is always the same for a specific physical key on a particular keyboard regardless of
which modifier keys were also pressed.

charCode
A particular character derived from the event structure. This value depends on the virtual key code,
the state of the modifier keys, and the current 'KCHR' resource.

modifiers
The constant in the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

Return Value
The part code of the control where the keyboard event occurred. If the keyboard event did not occur in a
control, your function should return kControlNoPart. For a description of this data type, see
ControlPartCode (page 708).

Discussion
The Control Manager defines the data type UserPaneKeyDownUPP to identify the universal procedure pointer
for this application-defined callback function. To provide a pointer to your callback, you can use the function
NewControlUserPaneKeyDownUPP (page 639). You can do so with code similar to the following:

ControlUserPaneKeyDownUPP myControlUserPaneKeyDownUPP;
myControlUserPaneKeyDownUPP = NewControlUserPaneKeyDownUPP
(MyControlUserPaneKeyDownCallback);

Your MyControlUserPaneKeyDownCallback function should handle the key pressed or released by the
user and return the part code of the control where the keyboard event occurred. This function is called only
if you’ve set the kControlSupportsFocus feature bit on creation of the user pane control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 652) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the
“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneKeyDownCallback, pass kControlUserPaneKeyDownProcTag in the tagName
parameter of SetControlData (page 652).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

694 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlUserPaneTrackingProcPtr
Tracks a control while the user holds down the mouse button.

typedef ControlPartCode (*ControlUserPaneTrackingProcPtr) (
 ControlRef control,
 Point startPt,
 ControlActionUPP actionProc
);

If you name your function MyControlUserPaneTrackingProc, you would declare it like this:

ControlPartCode MyControlUserPaneTrackingProc (
 ControlRef control,
 Point startPt,
 ControlActionUPP actionProc
);

Parameters
control

A handle to the control in which the mouse-down event occurred. For a description of this data type,
see ControlRef (page 709).

startPt
The location of the cursor at the time the mouse button was first pressed, in local coordinates. Your
application retrieves this point from the where field of the event structure.

actionProc
A pointer to an action function defining what action your application takes while the user holds down
the mouse button. The value of the actionProc parameter can be a valid procPtr, NULL, or -1. A
value of -1 indicates that the control should either perform auto tracking, or if it is incapable of doing
so, do nothing (like NULL). For a description of this data type, see ControlActionProcPtr (page 675).

Return Value
The part code of the control part that was tracked. If tracking was unsuccessful, kControlNoPartCode is
returned. For a description of this data type, see ControlPartCode (page 708).

Discussion
The Control Manager defines the data type ControlUserPaneTrackingUPP to identify the universal
procedure pointer for this application-defined callback function. To provide a pointer to your callback, you
can use the function NewControlUserPaneTrackingUPP (page 640). You can do so with code similar to
the following:

ControlUserPaneTrackingUPP myControlUserPaneTrackingUPP;
myControlUserPaneTrackingUPP = NewControlUserPaneTrackingUPP
(MyControlUserPaneTrackingCallback);

Your MyControlUserPaneTrackingCallback function should track the control by repeatedly calling the
action function specified in the actionProc parameter until the mouse button is released. When the mouse
button is released, your function should return the part code of the control part that was tracked. This function
is called only if you’ve set the kControlHandlesTracking feature bit on creation of the user pane control.

Once you have provided a user pane application-defined function, you can call the function
SetControlData (page 652) in order to associate your function with a control. User pane application-defined
functions are identified to SetControlData by tag constants for a description of the tag constants, see the

Callbacks 695
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

“Control Manager Constants” section. For example, once you have created the function
MyControlUserPaneTrackingCallback, pass kControlUserPaneTrackingProcTag in the tagName
parameter of SetControlData (page 652).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIContainerViews.h

EditUnicodePostUpdateProcPtr
typedef Boolean (*EditUnicodePostUpdateProcPtr) (
 UniCharArrayHandle uniText,
 UniCharCount uniTextLength,
 UniCharArrayOffset iStartOffset,
 UniCharArrayOffset iEndOffset,
 void * refcon
);

If you name your function MyEditUnicodePostUpdateProc, you would declare it like this:

Boolean EditUnicodePostUpdateProcPtr (
 UniCharArrayHandle uniText,
 UniCharCount uniTextLength,
 UniCharArrayOffset iStartOffset,
 UniCharArrayOffset iEndOffset,
 void * refcon
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

Data Types

AuxCtlHandle
typedef AuxCtlPtr* AuxCtlHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

696 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

AuxCtlPtr
typedef AuxCtlRec* AuxCtlPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

AuxCtlRec
struct AuxCtlRec {
 Handle acNext;
 ControlRef acOwner;
 CCTabHandle acCTable;
 SInt16 acFlags;
 SInt32 acReserved;
 SInt32 acRefCon;
};
typedef AuxCtlRec AuxCtlRec;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ClickActivationResult
typedef UInt32 ClickActivationResult;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlApplyTextColorRec
struct ControlApplyTextColorRec {
 SInt16 depth;
 Boolean colorDevice;
 Boolean active;
};
typedef struct ControlApplyTextColorRec ControlApplyTextColorRec;
typedef ControlApplyTextColorRec * ControlApplyTextColorPtr;

Fields
depth

The Control Manager sets this field to specify the bit depth (in pixels) of the current graphics port.

Data Types 697
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

colorDevice
The Control Manager passes a value of true if you are drawing on a color device; otherwise, false.

active
The Control Manager passes a value of true to specify a color suitable for active text; otherwise,
false.

Discussion
If you implement a custom control definition function, when the Control Manager passes the message
kControlMsgApplyTextColor in your control definition function’s message parameter, it also passes a
pointer to a structure of type ControlApplyTextColorRec in the param parameter. The Control Manager
sets the ControlApplyTextColorRec structure to contain data describing the current drawing environment,
and your control definition function is responsible for using that data to apply the proper text color to the
current graphics port.

See “Control Definition Message Constants” (page 735) for more details on thekControlMsgApplyTextColor
message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlBackgroundRec
struct ControlBackgroundRec {
 SInt16 depth;
 Boolean colorDevice;
};
typedef struct ControlBackgroundRec ControlBackgroundRec;
typedef ControlBackgroundRec * ControlBackgroundPtr;

Fields
depth

A signed 16-bit integer indicating the bit depth (in pixels) of the current graphics port.

colorDevice
A Boolean value. If true, you are drawing on a color device. If false, you are drawing on a
monochrome device.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlBevelButtonBehavior
typedef UInt16 ControlBevelButtonBehavior;

Availability
Available in Mac OS X v10.0 and later.

698 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
HIButtonViews.h

ControlBevelButtonMenuBehavior
typedef UInt16 ControlBevelButtonMenuBehavior;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIButtonViews.h

ControlButtonContentInfo
struct ControlButtonContentInfo {
 ControlContentType contentType
 union {
 SInt16 resID;
 CIconHandle cIconHandle;
 Handle iconSuite;
 IconRef iconRef;
 PicHandle picture;
 Handle ICONHandle;
 CGImageRef imageRef;
 } u;
};
typedef struct ControlButtonContentInfo ControlButtonContentInfo;
typedef ControlButtonContentInfo ControlImageContentInfo;

Fields
contentType

Specifies the bevel button or image well content type and whether the content is text-only,
resource-based, or handle-based; see “Control Content Type Constants” (page 770) for possible values.
The value specified in the contentType field determines which of the other fields in the structure
are used. For a description of this data type, see ControlContentType (page 701).

u
If the content type specified in the contentType field is kControlContentIconSuiteRes,
kControlContentCIconRes, or kControlContentPictRes, this field contains the resource ID of
a picture, color icon, or icon suite resource. If the contentType field is kControlContentCGImageRef,
this field contains a CGImageRef.

Discussion
You can use the ControlButtonContentInfo structure to specify the content for a bevel button or image
well. Values of type ControlButtonContentInfo are set via SetControlData (page 652) and obtained
from GetControlData (page 594), in conjunction with the kControlBevelButtonContentTag and
kControlImageWellContentTag constants; see “Bevel Button Control Data Tag Constants” (page 723) and
“Image Well Control Data Tag Constants” (page 765).

Version Notes
The ControlButtonContentInfo type is available with Appearance Manager 1.0 and later.

Data Types 699
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlCalcSizeRec
struct ControlCalcSizeRec {
 SInt16 height;
 SInt16 width;
 SInt16 baseLine;
};
typedef struct ControlCalcSizeRec ControlCalcSizeRec;
typedef ControlCalcSizeRec * ControlCalcSizePtr;

Fields
height

The optimal height (in pixels) of the control’s bounding rectangle.

width
The optimal width (in pixels) of the control’s bounding rectangle.

baseLine
The offset from the bottom of the control to the base of the text. This value is generally negative.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlCapabilities
typedef UInt32 ControlCapabilities;

ControlClickActivationRec
struct ControlClickActivationRec {
 Point localPoint;
 EventModifiers modifiers;
 ClickActivationResult result;
};
typedef struct ControlClickActivationRec ControlClickActivationRec;
typedef ControlClickActivationRec * ControlClickActivationPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

700 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlContentType
typedef SInt16 ControlContentType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlContextualMenuClickRec
struct ControlContextualMenuClickRec {
 Point localPoint;
 Boolean menuDisplayed;
};
typedef struct ControlContextualMenuClickRec ControlContextualMenuClickRec;
typedef ControlContextualMenuClickRec * ControlContextualMenuClickPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlDataAccessRec
struct ControlDataAccessRec {
 ResType tag;
 ResType part;
 Size size;
 Ptr dataPtr;
};
typedef struct ControlDataAccessRec ControlDataAccessRec;
typedef ControlDataAccessRec * ControlDataAccessPtr;

Fields
tag

A constant representing a piece of data that is passed in (in response to a kControlMsgSetData
message) or returned (in response to a kControlMsgGetData message); see “Scrolling Text Box
Control Data Tag Constants” (page 809) for a description of these constants. The control definition
function should return errDataNotSupported if the value in the tag parameter is unknown or
invalid.

part
The part of the control that this data should be applied to. If the information is not tied to a specific
part of the control or the control has no parts, pass 0.

size
On entry, the size of the buffer pointed to by the dataPtrfield. In response to a kControlMsgGetData
message, this field should be adjusted to reflect the actual size of the data that the control is
maintaining. If the size of the buffer being passed in is smaller than the actual size of the data, the
control definition function should return errDataSizeMismatch.

Data Types 701
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

dataPtr
A pointer to a buffer to read or write the information requested. In response to a
kControlMsgGetData message, this field could be NULL, indicating that you wish to return the size
of the data in the size field.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlDefProcMessage
typedef SInt16 ControlDefProcMessage;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlDefSpec
struct ControlDefSpec {
 ControlDefType defType
 union {
 ControlDefUPP defProc;
 void * classRef;
 } u;
};
typedef struct ControlDefSpec ControlDefSpec;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlDefType
typedef UInt32 ControlDefType;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

702 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlEditTextSelectionRec
struct ControlEditTextSelectionRec {
 SInt16 selStart;
 SInt16 selEnd;
};
typedef struct ControlEditTextSelectionRec ControlEditTextSelectionRec;
typedef ControlEditTextSelectionRec * ControlEditTextSelectionPtr;

Fields
selStart

The start of the editable text selection.

selEnd
The end of the editable text selection.

Discussion
You can use the ControlEditTextSelectionRec type to specify a selection range in an editable text
control. You pass a pointer to the editable text selection structure to GetControlData (page 594) and
SetControlData (page 652) to access and set the current selection range in an editable text control.

Version Notes
The ControlEditTextSelectionRec type is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITextViews.h

ControlFocusPart
typedef SInt16 ControlFocusPart;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

Data Types 703
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlFontStyleRec
struct ControlFontStyleRec {
 SInt16 flags;
 SInt16 font;
 SInt16 size;
 SInt16 style;
 SInt16 mode;
 SInt16 just;
 RGBColor foreColor;
 RGBColor backColor;
};
typedef struct ControlFontStyleRec ControlFontStyleRec;
typedef ControlFontStyleRec * ControlFontStylePtr;

Fields
flags

A value specifying which fields of the structure should be applied to the control; see “Mac OS 8.5
Control Font Style Flag Constant” (page 787) and “Control Font Style Flag Constants” (page 745). If
none of the flags in the flags field of the structure are set, the control uses the system font unless
the control variant kControlUsesOwningWindowsFontVariant has been specified, in which case
the control uses the window font.

font
If the kControlUseFontMask bit is set, then this field contains a value specifying the ID of the font
family to use. If this bit is not set, then the system default font is used. A meta font constant can be
specified instead; see “Meta Font Constants” (page 791).

size
If the kControlUseSizeMask bit is set, then this field contains a value specifying the point size of
the text. If the kControlAddSizeMask bit is set, this value will represent the size to add to the current
point size of the text. A meta font constant can be specified instead; see “Meta Font Constants” (page
791).

style
If the kControlUseFaceMask bit is set, then this field contains a value specifying which styles to
apply to the text. If all bits are clear, the plain font style is used. The bit numbers and the styles they
represent are bold (0), italic (1), underline (2), outline (3), shadow (4), condensed (5), and extended
(6).

mode
If the kControlUseModeMask bit is set, then this field contains a value specifying how characters
are drawn in the bit image. See Inside Macintosh: Imaging With QuickDraw for a discussion of transfer
modes.

just
If the kControlUseJustMask bit is set, then this field contains a value specifying text justification.
Possible values are teFlushDefault (0), teCenter (1), teFlushRight (-1), and teFlushLeft (-2).

foreColor
If the kControlUseForeColorMask bit is set, then this field contains an RGB color value to use when
drawing the text.

backColor
If the kControlUseBackColorMask bit is set, then this field contains an RGB color value to use when
drawing the background behind the text. In certain text modes, background color is ignored.

704 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
You can use the ControlFontStyleRec type to specify a control’s font. You pass a pointer to the control
font style structure in the inStyle parameter of SetControlFontStyle (page 654) to specify a control’s
font. If none of the flags in the flags field of the structure are set, the control uses the system font unless
the control variant kControlUsesOwningWindowsFontVariant has been specified, in which case the
control uses the window font. The ControlFontStyleRec type is available with Appearance Manager 1.0
and later.

Note that if you wish to specify the font for controls in a dialog box, you should use a dialog font table
resource, which is automatically read in by the Dialog Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlGetRegionRec
struct ControlGetRegionRec {
 RgnHandle region;
 ControlPartCode part;
};
typedef struct ControlGetRegionRec ControlGetRegionRec;
typedef ControlGetRegionRec * ControlGetRegionPtr;

Fields
region

A value allocated by the Control Manager. Your control definition function should set this field to the
region that contains the control part specified in the part field.

part
The Control Manager passes a constant identifying the control part for which a region is to be obtained.
For descriptions of possible values, see “Control Part Code Constants ” (page 748), “Control Part Code
Constants ” (page 748), and “ Control State Part Code Constants” (page 751). For a description of this
data type, see ControlPartCode (page 708).

Discussion
If you implement a custom control definition function, when the Control Manager passes the message
kControlMsgGetRegion in your control definition function’s message parameter, it also passes a pointer
to a structure of type ControlGetRegionRec in the param parameter. Your control definition function is
responsible for setting the region field of the ControlGetRegionRec structure to the region that contains
the control part which the Control Manager specifies in the part field.

See “Control Definition Message Constants” (page 735) for more details on the kControlMsgGetRegion
message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

Data Types 705
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlHandle
typedef ControlRef ControlHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIObject.h

ControlID
struct ControlID {
 OSType signature;
 SInt32 id;
};
typedef struct ControlID ControlID;
typedef ControlID HIViewID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlImageContentInfo
typedef ControlButtonContentInfo ControlImageContentInfo;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlKeyDownRec
struct ControlKeyDownRec {
 EventModifiers modifiers;
 SInt16 keyCode;
 SInt16 charCode;
};
typedef struct ControlKeyDownRec ControlKeyDownRec;
typedef ControlKeyDownRec * ControlKeyDownPtr;

Fields
modifiers

The constant in the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

706 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

keyCode
The virtual key code derived from the event structure. This value represents the key pressed or released
by the user. It is always the same for a specific physical key on a particular keyboard regardless of
which modifier keys were also pressed.

charCode
A particular character derived from the event structure. This value depends on the virtual key code,
the state of the modifier keys, and the current 'KCHR' resource.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlKeyFilterResult
typedef SInt16 ControlKeyFilterResult;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlKeyScriptBehavior
typedef UInt32 ControlKeyScriptBehavior;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlKind
struct ControlKind {
 OSType signature;
 OSType kind;
};
typedef struct ControlKind ControlKind;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

Data Types 707
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlNotification
typedef UInt32 ControlNotification;

ControlNotificationUPP
typedef ControlNotificationProcPtr ControlNotificationUPP;

ControlPartCode
typedef SInt16 ControlPartCode;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlPopupArrowOrientation
typedef UInt16 ControlPopupArrowOrientation;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIPopupButton.h

ControlPopupArrowSize
typedef UInt16 ControlPopupArrowSize;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIPopupButton.h

ControlPtr
typedef ControlRecord* ControlPtr;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
Controls.h

708 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlRecord
struct ControlRecord {
 ControlRef nextControl;
 WindowRef contrlOwner;
 Rect contrlRect;
 UInt8 contrlVis;
 UInt8 contrlHilite;
 SInt16 contrlValue;
 SInt16 contrlMin;
 SInt16 contrlMax;
 Handle contrlDefProc;
 Handle contrlData;
 ControlActionUPP contrlAction;
 SInt32 contrlRfCon;
 Str255 contrlTitle;
};
typedef ControlRecord ControlRecord;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlRef
Defines an opaque type that represents a control.

typedef struct OpaqueControlRef * ControlRef;

Discussion
A control is a user interface object that gives feedback or otherwise facilitates user interaction. The ControlRef
type is an opaque type used to describe a control’s properties. You can obtain and change the values in a
control by calling specific control accessor functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIObject.h

ControlSetCursorRec
struct ControlSetCursorRec {
 Point localPoint;
 EventModifiers modifiers;
 Boolean cursorWasSet;
};
typedef struct ControlSetCursorRec ControlSetCursorRec;
typedef ControlSetCursorRec * ControlSetCursorPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Data Types 709
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Declared In
Controls.h

ControlSize
typedef UInt16 ControlSize;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

ControlTabEntry
struct ControlTabEntry {
 ControlButtonContentInfo * icon;
 CFStringRef name;
 Boolean enabled;
};
typedef struct ControlTabEntry ControlTabEntry;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITabbedView.h

ControlTabInfoRec
struct ControlTabInfoRec {
 SInt16 version;
 SInt16 iconSuiteID;
 Str255 name;
};
typedef struct ControlTabInfoRec ControlTabInfoRec;

Fields
version

The version of the tab information structure. The only currently available version value is 0.

iconSuiteID
The ID of an icon suite to use for the tab label. If the specified ID is not found, no icon is displayed for
the tab label. Pass 0 for no icon.

name
The title to be used for the tab label.

Discussion
You can use the ControlTabInfoRec type to specify the icon and title for a tab control. If you are not
creating a tab control with a 'tab#' resource, you can call SetControlMaximum to set the number of tabs
in a tab control. Then use the functions SetControlData (page 652) and GetControlData (page 594) with
the ControlTabInfoRec structure to access information for an individual tab in a tab control.

710 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Version Notes
The ControlTabInfoRec type is available with Appearance Manager 1.0.1 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITabbedView.h

ControlTabInfoRecV1
struct ControlTabInfoRecV1 {
 SInt16 version;
 SInt16 iconSuiteID;
 CFStringRef name;
};
typedef struct ControlTabInfoRecV1 ControlTabInfoRecV1;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HITabbedView.h

ControlTemplate
struct ControlTemplate {
 Rect controlRect;
 SInt16 controlValue;
 Boolean controlVisible;
 UInt8 fill;
 SInt16 controlMaximum;
 SInt16 controlMinimum;
 SInt16 controlDefProcID;
 SInt32 controlReference;
 Str255 controlTitle;
};
typedef struct ControlTemplate ControlTemplate;
typedef ControlTemplate * ControlTemplatePtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

Data Types 711
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

ControlTrackingRec
struct ControlTrackingRec {
 Point startPt;
 EventModifiers modifiers;
 ControlActionUPP action;
};
typedef struct ControlTrackingRec ControlTrackingRec;
typedef ControlTrackingRec * ControlTrackingPtr;

Fields
startPt

The location of the cursor at the time the mouse button was first pressed, in local coordinates. Your
application retrieves this point from the where field of the event structure.

modifiers
The constant in the modifiers field of the event structure specifying the state of the modifier keys
and the mouse button at the time the event was posted.

action
A pointer to an action function defining what action your application takes while the user holds down
the mouse button. The value of the actionProc parameter can be a valid procPtr, NULL, or -1. A
value of -1 indicates that the control should either perform auto tracking, or if it is incapable of doing
so, do nothing (like NULL). See ControlActionProcPtr (page 675) for more information about the
action function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Controls.h

ControlVariant
typedef SInt16 ControlVariant;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

712 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

DataBrowserCallbacks
struct DataBrowserCallbacks {
 UInt32 version
 union {
 struct {
 DataBrowserItemDataUPP itemDataCallback;
 DataBrowserItemCompareUPP itemCompareCallback;
 DataBrowserItemNotificationUPP itemNotificationCallback;
 DataBrowserAddDragItemUPP addDragItemCallback;
 DataBrowserAcceptDragUPP acceptDragCallback;
 DataBrowserReceiveDragUPP receiveDragCallback;
 DataBrowserPostProcessDragUPP postProcessDragCallback;
 DataBrowserItemHelpContentUPP itemHelpContentCallback;
 DataBrowserGetContextualMenuUPP getContextualMenuCallback;
 DataBrowserSelectContextualMenuUPP selectContextualMenuCallback;
 } v1;
 } u;
};
typedef struct DataBrowserCallbacks DataBrowserCallbacks;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserCustomCallbacks
struct DataBrowserCustomCallbacks {
 UInt32 version
 union {
 struct {
 DataBrowserDrawItemUPP drawItemCallback;
 DataBrowserEditItemUPP editTextCallback;
 DataBrowserHitTestUPP hitTestCallback;
 DataBrowserTrackingUPP trackingCallback;
 DataBrowserItemDragRgnUPP dragRegionCallback;
 DataBrowserItemAcceptDragUPP acceptDragCallback;
 DataBrowserItemReceiveDragUPP receiveDragCallback;
 } v1;
 } u;
};
typedef struct DataBrowserCustomCallbacks DataBrowserCustomCallbacks;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

Data Types 713
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

DataBrowserDragFlags
typedef DataBrowserDragFlags;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserListViewColumnDesc
struct DataBrowserListViewColumnDesc {
 DataBrowserTableViewColumnDesc propertyDesc;
 DataBrowserListViewHeaderDesc headerBtnDesc;
};
typedef struct DataBrowserListViewColumnDesc DataBrowserListViewColumnDesc;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserListViewHeaderDesc
struct DataBrowserListViewHeaderDesc {
 UInt32 version;
 UInt16 minimumWidth;
 UInt16 maximumWidth;
 SInt16 titleOffset;
 CFStringRef titleString;
 DataBrowserSortOrder initialOrder;
 ControlFontStyleRec btnFontStyle;
 ControlButtonContentInfo btnContentInfo;
};
typedef struct DataBrowserListViewHeaderDesc DataBrowserListViewHeaderDesc;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

714 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

DataBrowserPropertyDesc
struct DataBrowserPropertyDesc {
 DataBrowserPropertyID propertyID;
 DataBrowserPropertyType propertyType;
 DataBrowserPropertyFlags propertyFlags;
};
typedef struct DataBrowserPropertyDesc DataBrowserPropertyDesc;
typedef DataBrowserPropertyDesc DataBrowserTableViewColumnDesc;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserPropertyFlags
typedef DataBrowserPropertyFlags;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserPropertyPart
typedef OSType DataBrowserPropertyPart;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserPropertyType
typedef OSType DataBrowserPropertyType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

Data Types 715
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

DataBrowserTableViewColumnDesc
typedef DataBrowserPropertyDesc DataBrowserTableViewColumnDesc;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserTableViewColumnIndex
typedef UInt32 DataBrowserTableViewColumnIndex;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserTableViewRowIndex
typedef UInt32 DataBrowserTableViewRowIndex;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserTableViewColumnID
typedef DataBrowserPropertyID DataBrowserTableViewColumnID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserViewStyle
typedef OSType DataBrowserViewStyle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

716 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

DBItemProcDataType
typedef void* DBItemProcDataType;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.0.

Declared In
ControlDefinitions.h

DBRevealItemDataType
typedef DataBrowserRevealOptions DBRevealItemDataType;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.0.

Declared In
ControlDefinitions.h

DBSetSelectionDataType
typedef const DataBrowserItemID* DBSetSelectionDataType;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.0.

Declared In
ControlDefinitions.h

IndicatorDragConstraint
struct IndicatorDragConstraint {
 Rect limitRect;
 Rect slopRect;
 DragConstraint axis;
};
typedef struct IndicatorDragConstraint IndicatorDragConstraint;
typedef IndicatorDragConstraint * IndicatorDragConstraintPtr;

Fields
limitRect

A pointer to a rectangle—whose coordinates should normally coincide with or be contained in the
window’s content region—delimiting the area in which the user can drag the control’s outline.

slopRect
A pointer to a rectangle that allows some extra space for the user to move the mouse while still
constraining the control within the rectangle specified in the limitRect parameter.

axis
The axis along which the user may drag the control’s outline see “Part Identifier Constants” (page
792).

Data Types 717
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Controls.h

IndicatorDragConstraintHandle
typedef IndicatorDragConstraintPtr* IndicatorDragConstraintHandle;

PopupPrivateData
struct PopupPrivateData {
 MenuRef mHandle;
 SInt16 mID;
};
typedef PopupPrivateData PopupPrivateData;

Discussion
Use of this structure is not recommended. When the Appearance Manager is available, you should pass the
value kControlPopupButtonMenuHandleTag in the tagName parameter of the GetControlData (page
594) function to get the menu handle of a button, and the menu handle and the menu ID of the menu
associated with a pop-up menu.

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
ControlDefinitions.h

PopupPrivateDataHandle
typedef PopupPrivateDataPtr* PopupPrivateDataHandle;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
ControlDefinitions.h

PopupPrivateDataPtr
typedef PopupPrivateData* PopupPrivateDataPtr;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
ControlDefinitions.h

718 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kHIUserPaneClassID
Defines the HIObject class ID for the HIUserPane class.

#define kHIUserPaneClassID CFSTR("com.apple.HIUserPane");

Availability
Available in Mac OS X v10.4 and later.

Constants

Appearance–compliant Push Button, Radio Button, and Checkbox Control
Definition IDs
enum {
 kControlPushButtonProc = 368,
 kControlCheckBoxProc = 369,
 kControlRadioButtonProc = 370,
 kControlPushButLeftIconProc = 374,
 kControlPushButRightIconProc = 375
};

Constants
kControlPushButtonProc

Resource ID: 23

Appearance-compliant push button.This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlCheckBoxProc
Resource ID: 23

Appearance-compliant checkbox. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlRadioButtonProc
Resource ID: 23

Appearance-compliant radio button. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Constants 719
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlPushButLeftIconProc
Resource ID: 23

Appearance-compliant push button with a color icon to the left of the control title. (This direction is
reversed when the system justification is right to left). The contrlMax field of the control structure
for this control contains the resource ID of the 'cicn' resource drawn in the pushbutton. This control
definition is new with the Appearance Manager and is not supported unless the Appearance Manager
is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlPushButRightIconProc
Resource ID: 23

Appearance-compliant push button with a color icon to right of control title. (This direction is reversed
when the system justification is right to left). The contrlMax field of the control structure for this
control contains the resource ID of the 'cicn' resource drawn in the pushbutton. This control
definition is new with the Appearance Manager and is not supported unless the Appearance Manager
is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see “Defining Your Own
Control Definition Function”.

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

If your application contains code that uses the older, pre-Appearance control definition IDs or their constants,
your application can use the Appearance Manager to map the old IDs to those for the new, updated controls
introduced by the Appearance Manager. In particular, the control definition IDs for pre-Appearance checkboxes,
buttons, scroll bars, radio buttons, and pop-up menus will be automatically mapped to Appearance-compliant
equivalents.

720 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Asynchronous Arrows Control Definition ID
enum {
 kControlChasingArrowsProc = 112
};

Constants
kControlChasingArrowsProc

Resource ID: 7

Asynchronous arrows. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIProgressViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Bevel Button Behavior Constants
enum {
 kControlBehaviorPushbutton = 0,
 kControlBehaviorToggles = 0x0100,
 kControlBehaviorSticky = 0x0200,
 kControlBehaviorSingleValueMenu = 0,
 kControlBehaviorMultiValueMenu = 0x4000,
 kControlBehaviorOffsetContents = 0x8000
};

Constants
kControlBehaviorPushbutton

Push button (momentary) behavior. The bevel button pops up after being clicked.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Constants 721
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlBehaviorToggles
Toggle behavior. The bevel button toggles state automatically when clicked.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBehaviorSticky
Sticky behavior. Once clicked, the bevel button stays down until your application sets the control’s
value to 0. This behavior is useful in tool palettes and radio groups.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBehaviorMultiValueMenu
If this bit is set, the menus are multi-valued. The bevel button does not maintain the menu value as
it normally would (requiring that only one item is selected at a time). This allows the user to toggle
entries in a menu and have multiple items checked. In this mode, the menu value accessed with the
kControlMenuLastValueTag will return the value of the last menu item selected.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBehaviorOffsetContents
Bevel button contents are offset (one pixel down and to the right) when button is pressed.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
You can pass the bevel button behavior constants in the high byte of the minimumValue parameter of
NewControl (page 634) to create a bevel button with a specific behavior.

You can pass the bevel button menu constant, kControlBehaviorMultiValueMenu, in the high byte of
the minimumValue parameter of NewControl (page 634) to create a bevel button with a menu of a certain
behavior. Bevel buttons with menus have two values: the value of the button and the value of the menu.
You can specify the direction of the pop-up menu arrow (down or right) by using the
kControlBevelButtonMenuOnRight bevel button variant.

The bevel button behavior constants and the bevel button menu constant are available with Appearance
Manager 1.0 and later.

722 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Bevel Button Control Data Tag Constants
enum {
 kControlBevelButtonContentTag = 'cont',
 kControlBevelButtonTransformTag = 'tran',
 kControlBevelButtonTextAlignTag = 'tali',
 kControlBevelButtonTextOffsetTag = 'toff',
 kControlBevelButtonGraphicAlignTag = 'gali',
 kControlBevelButtonGraphicOffsetTag = 'goff',
 kControlBevelButtonTextPlaceTag = 'tplc',
 kControlBevelButtonMenuValueTag = 'mval',
 kControlBevelButtonMenuHandleTag = 'mhnd',
 kControlBevelButtonMenuRefTag = 'mhnd',
 kControlBevelButtonCenterPopupGlyphTag = 'pglc',
 kControlBevelButtonIsMultiValueMenuTag = 'mult'
};

Constants
kControlBevelButtonContentTag

Gets or sets a bevel button’s content type for drawing see “Bevel Button Menu Constant” (page 727).

Data type returned or set: ControlButtonContentInfostructure

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonTransformTag
Gets or sets a transform that is added to the standard transform of a bevel button

Data type returned or set: IconTransformType

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonTextAlignTag
Gets or sets the alignment of text in a bevel button; see “Bevel Button Menu Constant” (page 727).

Data type returned or set: ControlButtonTextAlignment

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonTextOffsetTag
Gets or sets the number of pixels that text is offset in a bevel button from the button’s left or right
edge this is used with left, right, or system justification, but it is ignored when the text is center aligned.

Data type returned or set: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonGraphicAlignTag
Gets or sets the alignment of graphics in a bevel button in relation to any text the button may contain;
see “Bevel Button Menu Constant” (page 727).

Data type returned or set: ControlButtonGraphicAlignment

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Constants 723
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlBevelButtonGraphicOffsetTag
Gets or sets the horizontal and vertical amounts that a graphic element contained in a bevel button
is offset from the button’s edges this value is ignored when the graphic is specified to be center
aligned on the button. Note that offset values should not be used for bevel buttons with content of
type kControlContentIconRef, because IconRef based icons may change with a theme switch;
see “Bevel Button Menu Constant” (page 727).

Data type returned or set: point

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonTextPlaceTag
Gets or sets the placement of a bevel button’s text see “Bevel Button Menu Constant” (page 727).

Data type returned or set: ControlButtonTextPlacement

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonMenuValueTag
Gets the menu value for a bevel button with an attached menu; see “Bevel Button Menu
Constant” (page 727).

Data type returned: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonMenuHandleTag
Gets or sets the menu handle for a bevel button with an attached menu. To set a non-resource-based
menu for a bevel button, you must pass in a non-zero value in the initialValue parameter of the
NewControl function, then call the SetControlData function with the
kControlBevelButtonMenuHandleTag constant and the return value from a call to the NewMenu
function.

Data type returned: MenuHandle

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonCenterPopupGlyphTag
Gets or sets the position of the pop-up arrow in a bevel button when a pop-up menu is attached.

Data type returned or set: Boolean; if true, glyph is vertically centered on the right; if false, glyph
is on the bottom right.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonMultiValueMenuTag
Gets or sets whether the associated menu is a multi-value menu. Available in Mac OS X v10.3 and
later.

Data type returned or set: Boolean; if true, the menu can have multiple selections; otherwise, false.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to

724 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Bevel Button Control Definition IDs
enum {
 kControlBevelButtonSmallBevelProc = 32,
 kControlBevelButtonNormalBevelProc = 33,
 kControlBevelButtonLargeBevelProc = 34
};

Constants
kControlBevelButtonSmallBevelProc

Resource ID: 2

Bevel button with a small bevel.

kControlBevelButtonSmallBevelProc + kControlBevelButtonMenuOnRight

Resource ID: 2 Control Definition ID: 4

Small bevel button with a pop-up menu. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonNormalBevelProc
Resource ID: 2

Bevel button with a normal bevel. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonLargeBevelProc
Resource ID: 2

Bevel button with a large bevel. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

Constants 725
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Bevel Button Graphic Alignment Constants
typedef SInt16 ControlButtonGraphicAlignment;
enum {
 kControlBevelButtonAlignSysDirection = -1,
 kControlBevelButtonAlignCenter = 0,
 kControlBevelButtonAlignLeft = 1,
 kControlBevelButtonAlignRight = 2,
 kControlBevelButtonAlignTop = 3,
 kControlBevelButtonAlignBottom = 4,
 kControlBevelButtonAlignTopLeft = 5,
 kControlBevelButtonAlignBottomLeft = 6,
 kControlBevelButtonAlignTopRight = 7,
 kControlBevelButtonAlignBottomRight = 8
};

Constants
kControlBevelButtonAlignSysDirection

Bevel button graphic is aligned according to the system default script direction (only left or right).

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignCenter
Bevel button graphic is aligned center.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignLeft
Bevel button graphic is aligned left.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignRight
Bevel button graphic is aligned right.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

726 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlBevelButtonAlignTop
Bevel button graphic is aligned top.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignBottom
Bevel button graphic is aligned bottom.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignTopLeft
Bevel button graphic is aligned top left.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignBottomLeft
Bevel button graphic is aligned bottom left.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignTopRight
Bevel button graphic is aligned top right.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignBottomRight
Bevel button graphic is aligned bottom right.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
You can use the ControlButtonGraphicAlignment constants to specify the alignment of icons and
pictures in bevel buttons. These constants are passed in the inData parameter of SetControlData (page
652) and returned by GetControlData (page 594).

Version Notes
The ControlButtonGraphicAlignment constants are available with Appearance Manager 1.0 and later.

Bevel Button Menu Constant
enum {
 kControlBehaviorCommandMenu = 0x2000
};

Constants
kControlBehaviorCommandMenu

If this bit is set, the menu contains commands, not choices, and should not be marked with a
checkmark. If this bit is set, it overrides the kControlBehaviorMultiValueMenu bit. This constant
is only available with Appearance 1.0.1 and later.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Constants 727
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
You can pass one or more bevel button menu constants in the high byte of the minimumValue parameter
of NewControl (page 634) to create a bevel button with a menu of a certain behavior. Bevel buttons with
menus have two values: the value of the button and the value of the menu. You can specify the direction of
the pop-up menu arrow (down or right) by using the kControlBevelButtonMenuOnRight bevel button
variant.

Bevel Button Menu Control Data Tag Constants
enum {
 kControlBevelButtonLastMenuTag = 'lmnu',
 kControlBevelButtonMenuDelayTag = 'mdly'
};

Constants
kControlBevelButtonLastMenuTag

Gets the menu ID of the last menu selected in the submenu or main menu. Available with Appearance
Manager 1.0.1 and later.

Data type returned: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonMenuDelayTag
Gets or sets the delay (in number of ticks) before the menu is displayed. Available with Appearance
Manager 1.0.1 and later.

Data type returned or set: SInt32

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

728 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Bevel Button Text Alignment Constants
typedef SInt16 ControlButtonTextAlignment;
enum {
 kControlBevelButtonAlignTextSysDirection = teFlushDefault,
 kControlBevelButtonAlignTextCenter = teCenter,
 kControlBevelButtonAlignTextFlushRight = teFlushRight,
 kControlBevelButtonAlignTextFlushLeft = teFlushLeft
};

Constants
kControlBevelButtonAlignTextSysDirection

Bevel button text is aligned according to the current script direction (left or right).

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignTextCenter
Bevel button text is aligned center.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignTextFlushRight
Bevel button text is aligned flush right.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonAlignTextFlushLeft
Bevel button text is aligned flush left.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
You can use the ControlButtonTextAlignment constants to specify the alignment of text in a bevel
button. These constants are passed in the inData parameter of SetControlData (page 652) and returned
by GetControlData (page 594).

Version Notes
The ControlButtonTextAlignment constants are available with Appearance Manager 1.0 and later.

Constants 729
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Bevel Button Text Placement Constants
typedef SInt16 ControlButtonTextPlacement;
enum {
 kControlBevelButtonPlaceSysDirection = -1,
 kControlBevelButtonPlaceNormally = 0,
 kControlBevelButtonPlaceToRightOfGraphic = 1,
 kControlBevelButtonPlaceToLeftOfGraphic = 2,
 kControlBevelButtonPlaceBelowGraphic = 3,
 kControlBevelButtonPlaceAboveGraphic = 4
};

Constants
kControlBevelButtonPlaceSysDirection

Bevel button text is placed according to the system default script direction.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonPlaceNormally
Bevel button text is centered.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonPlaceToRightOfGraphic
Bevel button text is placed to the right of the graphic.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonPlaceToLeftOfGraphic
Bevel button text is placed to the left of the graphic.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonPlaceBelowGraphic
Bevel button text is placed below the graphic.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlBevelButtonPlaceAboveGraphic
Bevel button text is placed above the graphic.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
You can use the ControlButtonTextPlacement constants to specify the placement of text in a bevel
button, in relation to an icon or picture. These constants are passed in the inData parameter of
SetControlData (page 652) and returned by GetControlData (page 594). They can be used in conjunction
with bevel button text and graphic alignment constants to create, for example, a button where the graphic
and text are left justified with the text below the graphic.

Version Notes
The ControlButtonTextPlacement constants are available with Appearance Manager 1.0 and later.

730 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Checkbox and Radio Button AutoToggle Control Definition IDs
enum {
 kControlCheckBoxAutoToggleProc = 371,
 kControlRadioButtonAutoToggleProc = 372
};

Constants
kControlCheckBoxAutoToggleProc

Identifies a checkbox control ('CDEF' resource ID 23) that automatically changes among its various
states (on, off, mixed) in response to user actions. Your application must only call the function
GetControl32BitValue (page 590) to get the checkbox’s new state—there is no need to manually
change the control’s value after tracking successfully.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlRadioButtonAutoToggleProc
Identifies a radio button control ('CDEF' resource ID 23) that automatically changes among its various
states (on, off, mixed) in response to user actions. Your application must only call the function
GetControl32BitValue (page 590) to get the radio button’s new state—there is no need to manually
change the control’s value after tracking successfully.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
The Mac OS 8.5 Control Manager defines these new control definition IDs.

When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs. These constants, and
their associated IDs, are not supported unless the Appearance Manager is available.

Constants 731
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Checkbox Value Constants
enum {
 kControlCheckBoxUncheckedValue = 0,
 kControlCheckBoxCheckedValue = 1,
 kControlCheckBoxMixedValue = 2
};

Constants
kControlCheckBoxUncheckedValue

The checkbox is unchecked.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlCheckBoxCheckedValue
The checkbox is checked.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlCheckBoxMixedValue
Mixed value. Indicates that a setting is on for some elements in a selection and off for others. This
state only applies to standard Appearance-compliant checkboxes.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
The checkbox value constants specify the value of a standard checkbox control and are passed in the newValue
parameter of SetControlValue (page 661) and are returned by GetControlValue (page 606) .

Version Notes
The checkbox value constants are changed with Appearance Manager 1.0 to support mixed-value checkboxes.

Clock Control Data Tag Constants
enum {
 kControlClockLongDateTag = 'date',
 kControlClockFontStyleTag = kControlFontStyleTag,
 kControlClockAnimatingTag = 'anim'
};

Constants
kControlClockLongDateTag

Gets or sets the clock control’s time or date.

Data type returned or set: LongDateRec structure. Note that depending on the variant of clock control
specified, some of the fields in the longDateRec structure may not be valid. For example, if the
control variant displays only a non-live user-adjustable date, the hour and minute fields are not valid
and will contain garbage.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

732 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Clock Control Definition IDs
enum {
 kControlClockTimeProc = 240,
 kControlClockTimeSecondsProc = 241,
 kControlClockDateProc = 242,
 kControlClockMonthYearProc = 243
};

Constants
kControlClockTimeProc

Resource ID: 15

Clock control displaying hour/minutes. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

kControlClockTimeSecondsProc
Resource ID: 15

Clock control displaying hours/minutes/seconds. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

kControlClockDateProc
Resource ID: 15

Clock control displaying date/month/year. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

Constants 733
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlClockMonthYearProc
Resource ID: 15

Clock control displaying month/year. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Clock Value Flag Constants
typedef UInt32 ControlClockFlags;
enum {
 kControlClockFlagStandard = 0,
 kControlClockNoFlags = 0,
 kControlClockFlagDisplayOnly = 1,
 kControlClockIsDisplayOnly = 1,
 kControlClockFlagLive = 2,
 kControlClockIsLive = 2
};

Constants
kControlClockNoFlags

Indicates that clock is editable but does not display the current “live” time.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

kControlClockIsDisplayOnly
When only this bit is set, the clock is not editable. When this bit and the kControlClockIsLive bit
is set, the clock automatically updates on idle (clock will have the current time).

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

734 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlClockIsLive
When only this bit is set, the clock automatically updates on idle and any changes to the clock affect
the system clock. When this bit and the kControlClockIsDisplayOnly bit is set, the clock
automatically updates on idle (clock will have the current time), but is not editable.

Available in Mac OS X v10.0 and later.

Declared in HIClockView.h.

Discussion
You can use the clock value flag constants to specify behaviors for a clock control. You can pass one or more
of these mask constants into the control ('CNTL') resource or in the initialValue parameter of
NewControl (page 634). Note that the standard clock control is editable and supports keyboard focus. Also,
the little arrows that allow manipulation of the date and time are part of the control, not a separate embedded
little arrows control. The clock value flag constants are available with Appearance Manager 1.0 and later.

Control Definition Message Constants
The Control Manager passes constants of type ControlDefProcMessage to Indicate the action your control
definition function must perform.

Constants 735
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

enum {
 drawCntl = 0,
 testCntl = 1,
 calcCRgns = 2,
 initCntl = 3,
 dispCntl = 4,
 posCntl = 5,
 thumbCntl = 6,
 dragCntl = 7,
 autoTrack = 8,
 calcCntlRgn = 10,
 calcThumbRgn = 11,
 drawThumbOutline = 12,
 kControlMsgDrawGhost = 13,
 kControlMsgCalcBestRect = 14,
 kControlMsgHandleTracking = 15,
 kControlMsgFocus = 16,
 kControlMsgKeyDown = 17,
 kControlMsgIdle = 18,
 kControlMsgGetFeatures = 19,
 kControlMsgSetData = 20,
 kControlMsgGetData = 21,
 kControlMsgActivate = 22,
 kControlMsgSetUpBackground = 23,
 kControlMsgCalcValueFromPos = 26,
 kControlMsgTestNewMsgSupport = 27,
 kControlMsgSubValueChanged = 25,
 kControlMsgSubControlAdded = 28,
 kControlMsgSubControlRemoved = 29,
 kControlMsgApplyTextColor = 30,
 kControlMsgGetRegion = 31,
 kControlMsgFlatten = 32,
 kControlMsgSetCursor = 33,
 kControlMsgDragEnter = 38,
 kControlMsgDragLeave = 39,
 kControlMsgDragWithin = 40,
 kControlMsgDragReceive = 41,
 kControlMsgDisplayDebugInfo = 46,
 kControlMsgContextualMenuClick = 47,
 kControlMsgGetClickActivation = 48
};

Constants
drawCntl

Draw the entire control or part of a control.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

testCntl
Test where the mouse has been pressed.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

736 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

calcCRgns
Calculate the region for the control or the indicator in 24-bit systems. This message is obsolete in Mac
OS 7.6 and later.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

initCntl
Perform additional control initialization.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

dispCntl
Perform additional control disposal actions.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

posCntl
Move and update the indicator setting.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

thumbCntl
Calculate the parameters for dragging the indicator.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

dragCntl
Perform customized dragging (of the control or its indicator).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

autoTrack
Execute the specified action function.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

calcCntlRgn
Calculate the control region in 32-bit systems.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Constants 737
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

calcThumbRgn
Calculate the indicator region in 32-bit systems.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgDrawGhost
Draw a ghost image of the indicator.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgCalcBestRect
Calculate the optimal control rectangle.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgHandleTracking
Perform custom tracking.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgFocus
Handle keyboard focus.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgKeyDown
Handle keyboard events.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgIdle
Perform idle processing.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgGetFeatures
Specify which Appearance-compliant messages are supported.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

738 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlMsgSetData
Set control-specific data.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgGetData
Get control-specific data.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgActivate
Handle activate and deactivate events.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgSetUpBackground
Set the control’s background color or pattern (only available if the control supports embedding).

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgCalcValueFromPos
Support live feedback while dragging the indicator and calculate the control value based on the new
indicator region.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgTestNewMsgSupport
Specify whether Appearance-compliant messages are supported.

Available with Appearance Manager 1.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgSubValueChanged
Be informed that the value of a subcontrol embedded in the control has changed; this message is
useful for radio groups.

Available with Appearance 1.0.1 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgSubControlAdded
Be informed that a subcontrol has been embedded in the control.

Available with Appearance 1.0.1 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Constants 739
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlMsgSubControlRemoved
Be informed that a subcontrol is about to be removed from the control.

Available with Appearance 1.0.1 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgApplyTextColor
Set the foreground color to be consistent with the current drawing environment and suitable for
display against the background color or pattern. To indicate that your control definition function
supports this message, set the kControlHasSpecialBackground feature bit. When this message
is sent, the Control Manager passes a pointer to a structure of type ControlGetRegionRec (page
705) in your control definition function’s param parameter. The Control Manager sets the
ControlApplyTextColorRec structure to contain data describing the current drawing environment.
Your control definition function is responsible for using this data to apply a text color which is
consistent with the current theme and optimally readable on the control’s background. Your control
definition function should return 0 as the function result.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlMsgGetRegion
Obtain the region occupied by the specified control part. To indicate that your control definition
function supports this message, set the kControlSupportsGetRegion feature bit. When this
message is sent, the Control Manager passes a pointer to a structure of type
ControlGetRegionRec (page 705) in your control definition function’s param parameter. Your control
definition function is responsible for setting the region field of the ControlGetRegionRec structure
to the region that contains the control part which the Control Manager specifies in the part field.
Your control definition function return a result code of type OSStatus as the function result.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Discussion
The Control Manager may pass these constants in the message parameter of your control definition function
to specify the actions that your function must perform. For more information, see ControlDefProcPtr (page
677).

740 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Features Constants
enum {
 kControlSupportsGhosting = 1 << 0,
 kControlSupportsEmbedding = 1 << 1,
 kControlSupportsFocus = 1 << 2,
 kControlWantsIdle = 1 << 3,
 kControlWantsActivate = 1 << 4,
 kControlHandlesTracking = 1 << 5,
 kControlSupportsDataAccess = 1 << 6,
 kControlHasSpecialBackground = 1 << 7,
 kControlGetsFocusOnClick = 1 << 8,
 kControlSupportsCalcBestRect = 1 << 9,
 kControlSupportsLiveFeedback = 1 << 10,
 kControlHasRadioBehavior = 1 << 11,
 kControlSupportsDragAndDrop = 1 << 12,
 kControlAutoToggles = 1 << 14,
 kControlSupportsGetRegion = 1 << 17,
 kControlSupportsFlattening = 1 << 19,
 kControlSupportsSetCursor = 1 << 20,
 kControlSupportsContextualMenus = 1 << 21,
 kControlSupportsClickActivation = 1 << 22,
 kControlIdlesWithTimer = 1 << 23
};

Constants
kControlSupportsGhosting

If this bit (bit 0) is set, the control definition function supports the kControlMsgDrawGhostmessage.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlSupportsEmbedding
If this bit (bit 1) is set, the control definition function supports the kControlMsgSubControlAdded
and kControlMsgSubControlRemovedmessages.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlSupportsFocus
If this bit (bit 2) is set, the control definition function supports the kControlMsgKeyDown message.
If this bit and the kControlGetsFocusOnClick bit are set, the control definition function supports
the kControlMsgFocus message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlWantsIdle
If this bit (bit 3) is set, the control definition function supports the kControlMsgIdle message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlWantsActivate
If this bit (bit 4) is set, the control definition function supports the kControlMsgActivate message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Constants 741
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlHandlesTracking
If this bit (bit 5) is set, the control definition function supports the kControlMsgHandleTracking
message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlSupportsDataAccess
If this bit (bit 6) is set, the control definition function supports the kControlMsgGetData and
kControlMsgSetData messages.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlHasSpecialBackground
If this bit (bit 7) is set, the control definition function supports the kControlMsgSetUpBackground
message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlGetsFocusOnClick
If this bit (bit 8) and the kControlSupportsFocus bit are set, the control definition function supports
the kControlMsgFocus message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlSupportsCalcBestRect
If this bit (bit 9) is set, the control definition function supports the kControlMsgCalcBestRect
message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlSupportsLiveFeedback
If this bit (bit 10) is set, the control definition function supports the kControlMsgCalcValueFromPos
message.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlHasRadioBehavior
If this bit (bit 11) is set, the control definition function supports radio button behavior and can be
embedded in a radio group control. This constant is available with Appearance 1.0.1 and later.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlAutoToggles
If the bit specified by this mask is set, the control definition function supports automatically changing
among various states (on, off, mixed) in response to user actions.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

742 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlSupportsGetRegion
If the bit specified by this mask is set, the control definition function supports the
kControlMsgGetRegion message, described in “Control Definition Message Constants” (page 735).

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
If your control definition function supports Appearance-compliant messages, it should return a bit field of
the features it supports, composed of one or more of these bits.

Control Focus Part Code Constants
enum {
 kControlFocusNoPart = 0,
 kControlFocusNextPart = -1,
 kControlFocusPrevPart = -2
};

Constants
kControlFocusNoPart

Your control definition function should relinquish its focus and return kControlFocusNoPart. It
might respond by deactivating its text edit handle and erasing its focus ring. If the control is at the
end of its subparts, it should return kControlFocusNoPart. This tells the focusing mechanism to
jump to the next control that supports focus.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlFocusNextPart
Your control definition function should change keyboard focus to its next part, the entire control, or
remove keyboard focus from the control, depending upon the circumstances.

For multiple part controls that already had keyboard focus, the next part of the control would receive
keyboard focus when kControlFocusNextPart was passed in the param parameter. For example,
a clock control with keyboard focus would change its focus to the left-most element of the control
(the month field).

For single-part controls that did not have keyboard focus and are now receiving it, the entire control
would receive keyboard focus when kControlFocusNextPartwas passed in the param parameter.

For single-part controls that already had keyboard focus and are now losing it, the entire control
would lose keyboard focus.

If you are passed kControlFocusNextPart and have run out of parts, return kControlFocusNoPart
to indicate that the user tabbed past the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Constants 743
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlFocusPrevPart
Your control definition function should change keyboard focus to its previous part, the entire control,
or remove keyboard focus from the control, depending upon the circumstances.

For multiple part controls that already had keyboard focus, the previous part of the control would
receive keyboard focus when kControlFocusPrevPart was passed in the param parameter. For
example, a clock control with keyboard focus would change its focus to the right-most element of
the control (the year field).

For single-part controls that did not have keyboard focus and are now receiving it, the entire control
would receive keyboard focus when kControlFocusNextPartwas passed in the param parameter.

For single-part controls that already had keyboard focus and are now losing it, the entire control
would lose keyboard focus.

If you are passed kControlFocusPrevPart and have run out of parts, return kControlFocusNoPart
to indicate that the user tabbed past the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Control Font Style and Key Filter Data Tag Constants
enum {
 kControlFontStyleTag = 'font',
 kControlKeyFilterTag = 'fltr',
 kControlKindTag = 'kind',
 kControlSizeTag = 'size'
};

Constants
kControlFontStyleTag

Sent with a pointer to a ControlKind record to be filled in. Only valid for GetControlData.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlKeyFilterTag
Gets or sets the key filter function for controls that handle filtered input (includes editable text and
list box).

Data type returned or set: ControlKeyFilterUPP

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data (e.g., text in an editable text control). These constants can
also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

744 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Control Font Style Flag Constants
enum {
 kControlUseFontMask = 0x0001,
 kControlUseFaceMask = 0x0002,
 kControlUseSizeMask = 0x0004,
 kControlUseForeColorMask = 0x0008,
 kControlUseBackColorMask = 0x0010,
 kControlUseModeMask = 0x0020,
 kControlUseJustMask = 0x0040,
 kControlUseAllMask = 0x00FF,
 kControlAddFontSizeMask = 0x0100
};

Constants
kControlUseFontMask

If the kControlUseFontMask flag is set (bit 0), the font field of the control font style structure is
applied to the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseFaceMask
If the kControlUseFaceMask flag is set (bit 1), the style field of the control font style structure is
applied to the control. This flag is ignored if you specify a meta font value; see “Meta Font
Constants” (page 791).

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseSizeMask
If the kControlUseSizeMask flag is set (bit 2), the size field of the control font style structure is
applied to the control. This flag is ignored if you specify a meta font value; see “Meta Font
Constants” (page 791).

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseForeColorMask
If the kControlUseForeColorMask flag is set (bit 3), the foreColor field of the control font style
structure is applied to the control. This flag only applies to static text controls.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Constants 745
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlUseBackColorMask
If the kControlUseBackColorMask flag is set (bit 4), the backColor field of the control font style
structure is applied to the control. This flag only applies to static text controls.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseModeMask
If the kControlUseModeMask flag is set (bit 5), the text mode specified in the mode field of the control
font style structure is applied to the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseJustMask
If the kControlUseJustMask flag is set (bit 6), the just field of the control font style structure is
applied to the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUseAllMask
If kControlUseAllMask is used, all flags in this mask will be set except
kControlUseAddFontSizeMask.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlAddFontSizeMask
If the kControlUseAddFontSizeMask flag is set (bit 8), the Dialog Manager will add a specified font
size to the size field of the control font style structure. This flag is ignored if you specify a meta font
value; see “Meta Font Constants” (page 791).

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
You can pass one or more control font style flag constants in the flags field of the control font style structure
to specify the field(s) of the structure that should be applied to the control; see ControlFontStyleRec (page
704). If none of the flags are set, the control uses the system font unless a control variant specifies use of a
window font.

Version Notes
These control font style flag constants are available with Appearance Manager 1.0 and later.

746 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Key Script Behavior Constants
enum {
 kControlKeyScriptBehaviorAllowAnyScript = 'any ',
 kControlKeyScriptBehaviorPrefersRoman = 'prmn',
 kControlKeyScriptBehaviorRequiresRoman = 'rrmn'
};

Constants
kControlKeyScriptBehaviorAllowAnyScript

Does not change the current keyboard and allows the user to change the keyboard at will. This is the
default for non-password fields.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlKeyScriptBehaviorPrefersRoman
Changes the current keyboard to Roman whenever the editable text field receives focus but allows
the user to change the keyboard at will. This is the default for password fields.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlKeyScriptBehaviorRequiresRoman
Changes the current keyboard to Roman whenever the editable text field receives focus and does
not allow the user to change the keyboard.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
With the Mac OS 8.5 Control Manager, you can use these constants of type ControlKeyScriptBehavior
to specify the kind of behavior to be used in an editable text control with respect to changing and locking
the keyboard menu as the field is focused. The ControlKeyScriptBehavior constants are set and retrieved
with the kControlEditTextKeyScriptBehaviorTag control data tag constant; for details on
kControlEditTextKeyScriptBehaviorTag, see “Editable Text Control Data Tag Constants” (page 756).

Constants 747
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Part Code Constants
enum {
 kControlLabelPart = 1,
 kControlMenuPart = 2,
 kControlTrianglePart = 4,
 kControlEditTextPart = 5,
 kControlPicturePart = 6,
 kControlIconPart = 7,
 kControlClockPart = 8,
 kControlListBoxPart = 24,
 kControlListBoxDoubleClickPart = 25,
 kControlImageWellPart = 26,
 kControlRadioGroupPart = 27,
 kControlButtonPart = 10,
 kControlCheckBoxPart = 11,
 kControlRadioButtonPart = 11,
 kControlUpButtonPart = 20,
 kControlDownButtonPart = 21,
 kControlPageUpPart = 22,
 kControlPageDownPart = 23,
 kControlClockHourDayPart = 9,
 kControlClockMinuteMonthPart = 10,
 kControlClockSecondYearPart = 11,
 kControlClockAMPMPart = 12,
 kControlDataBrowserPart = 24,
 kControlDataBrowserDraggedPart = 25
};

Constants
kControlLabelPart

Identifies the label of a pop-up menu control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlMenuPart
Identifies the menu of a pop-up menu control. For bevel buttons with a menu attached, this part
code specifies a menu item of the bevel button.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlTrianglePart
Identifies a disclosure triangle control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlEditTextPart
Identifies an editable text control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlPicturePart
Identifies a picture control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

748 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlIconPart
Identifies an icon control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlClockPart
Identifies a clock control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlListBoxPart
Identifies a list box control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlListBoxDoubleClickPart
Identifies a double-click in a list box control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlImageWellPart
Identifies an image well control.

Available with Appearance Manager 1.0 and later.

Declared in ControlDefinitions.h.

kControlRadioGroupPart
Identifies a radio group control.

Available with Appearance Manager 1.0.2 and later.

Declared in ControlDefinitions.h.

kControlButtonPart
Identifies either a push button or bevel button control. For bevel buttons with a menu attached, this
part code specifies the button but not the attached menu.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlCheckBoxPart
Identifies a checkbox control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlRadioButtonPart
Identifies a radio button control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlUpButtonPart
Identifies the up button of a scroll bar control (the arrow at the top or the left).

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Constants 749
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlDownButtonPart
Identifies the down button of a scroll bar control (the arrow at the right or the bottom).

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlPageUpPart
Identifies the page-up part of a scroll bar control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlPageDownPart
Identifies the page-down part of a scroll bar control.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlClockHourDayPart
Identifies the part of a clock control that contains the hour or the day. The Mac OS 8.5 Control Manager
defines this new control part code constant.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlClockMinuteMonthPart
Identifies the part of a clock control that contains the minute or the month. The Mac OS 8.5 Control
Manager defines this new control part code constant.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlClockSecondYearPart
Identifies the part of a clock control that contains the second or the year. The Mac OS 8.5 Control
Manager defines this new control part code constant.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlClockAMPMPart
Identifies the part of a clock control that contains the AM/PM information. The Mac OS 8.5 Control
Manager defines this new control part code constant.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
Constants of type ControlPartCode identify specific parts of controls.

Part codes are meaningful only within the scope of a single control definition function. For example, the
standard tab control uses part codes 1...N, where N is the number of tabs, even though those numbers do
collide with part codes defined for use with other control definition functions. Therefore, when you wish to
specify part codes for the tab control for use with the function SetControlData, for example, you should
use a part code corresponding to a 1-based index of the tab whose data you wish to set. In other words, the
first tab is part code 1, the second tab is part code 2, and so on.

750 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control State Part Code Constants
enum {
 kControlNoPart = 0,
 kControlIndicatorPart = 129,
 kControlDisabledPart = 254,
 kControlInactivePart = 255
};

Constants
kControlNoPart

Identifies no specific control part. This value unhighlights any highlighted part of the control when
passed to the HiliteControl function. For events in bevel buttons with an attached menu, this
part code indicates that either the mouse was released outside the bevel button and menu or that
the button was disabled.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlIndicatorPart
Identifies the scroll box of a scroll bar control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlDisabledPart
Used with HiliteControl (page 619)to disable the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlInactivePart
Used with HiliteControl (page 619) to make the control inactive.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
Constants of type ControlPartCode identify specific parts of controls.

Part codes are meaningful only within the scope of a single control definition function. For example, the
standard tab control uses part codes 1...N, where N is the number of tabs, even though those numbers do
collide with part codes defined for use with other control definition functions. Therefore, when you wish to
specify part codes for the tab control for use with the function SetControlData, for example, you should
use a part code corresponding to a 1-based index of the tab whose data you wish to set. In other words, the
first tab is part code 1, the second tab is part code 2, and so on.

Note that if you wish to create part codes for a custom control definition function, you may assign values
anywhere within the ranges 1–128 and 130–253. Note also that the function FindControl does not typically
return the kControlDisabledPart or kControlInactivePart part codes and never returns them with
standard controls.

Constants 751
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Variant Constants
enum {
 kControlNoVariant = 0,
 kControlUsesOwningWindowsFontVariant = 1 << 3
};

Constants
kControlNoVariant

Specifies no change to the standard control resource.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlUsesOwningWindowsFontVariant
Specifies that the control use the window font for any control text.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
You can use the control variant constants with any of the standard control resource IDs to specify additional
features of a control.

Version Notes
The control variant constants are changed with Appearance Manager 1.0 to support the additional control
types available with the Appearance Manager.

752 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Bevel Button Menu Placement Constants
typedef UInt16 ControlBevelButtonMenuPlacement;
enum {
 kControlBevelButtonMenuOnBottom = 0,
 kControlBevelButtonMenuOnRight = (1 << 2)
};

Control Bevel Thickness Constants
typedef UInt16 ControlBevelThickness;
enum {
 kControlBevelButtonSmallBevel = 0,
 kControlBevelButtonNormalBevel = 1,
 kControlBevelButtonLargeBevel = 2
};

Control Clock Type Constants
typedef UInt16 ControlClockType;
enum {
 kControlClockTypeHourMinute = 0,
 kControlClockTypeHourMinuteSecond = 1,
 kControlClockTypeMonthDayYear = 2,
 kControlClockTypeMonthYear = 3
};

Control Disclosure Triangle Orientation Constants
typedef UInt16 ControlDisclosureTriangleOrientation;
enum {
 kControlDisclosureTrianglePointDefault = 0,
 kControlDisclosureTrianglePointRight = 1,
 kControlDisclosureTrianglePointLeft = 2
};

Control Notify Constants
enum {
 controlNotifyNothing = 'nada',
 controlNotifyClick = 'clik',
 controlNotifyFocus = 'focu',
 controlNotifyKey = 'key '
};

Control Push Button Icon Alignment Constants
typedef UInt16 ControlPushButtonIconAlignment;
enum {
 kControlPushButtonIconOnLeft = 6,

Constants 753
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

 kControlPushButtonIconOnRight = 7
};

Control Round Button Size Constants
typedef SInt16 ControlRoundButtonSize;
enum {
 kControlRoundButtonNormalSize = kControlSizeNormal,
 kControlRoundButtonLargeSize = kControlSizeLarge
};

Control Slider Orientation Constants
typedef UInt16 ControlSliderOrientation;
enum {
 kControlSliderPointsDownOrRight = 0,
 kControlSliderPointsUpOrLeft = 1,
 kControlSliderDoesNotPoint = 2
};

Control Tab Direction Constants
typedef UInt16 ControlTabDirection;
enum {
 kControlTabDirectionNorth = 0,
 kControlTabDirectionSouth = 1,
 kControlTabDirectionEast = 2,
 kControlTabDirectionWest = 3
};

Control Tab Size Constants
typedef UInt16 ControlTabSize;
enum {
 kControlTabSizeLarge = kControlSizeNormal,
 kControlTabSizeSmall = kControlSizeSmall
};

Drag Control Constants
Specify whether the user is dragging an indicator or the whole control.

754 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

enum {
 kDragControlEntireControl = 0,
 kDragControlIndicator = 1
};

Constants
kDragControlEntireControl

Dragging the entire control.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kDragControlIndicator
Dragging the indicator.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Drawing Constants
enum {
 kDrawControlEntireControl = 0,
 kDrawControlIndicatorOnly = 129
};

Constants
kDrawControlEntireControl

Draw the entire control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kDrawControlIndicatorOnly
Draw the indicator only.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
The Control Manager passes one of these drawing constants in the low word of the param parameter to
specify whether the user is drawing an indicator or the whole control. The high-order word of the param
parameter may contain undefined data; therefore, evaluate only the low-order word of this parameter.

Constants 755
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Editable Text Control Data Tag Constants
enum {
 kControlEditTextStyleTag = kControlFontStyleTag,
 kControlEditTextTextTag = 'text',
 kControlEditTextTEHandleTag = 'than',
 kControlEditTextKeyFilterTag = kControlKeyFilterTag,
 kControlEditTextSelectionTag = 'sele',
 kControlEditTextPasswordTag = 'pass'
};
enum {
 kControlEditTextKeyScriptBehaviorTag = 'kscr',
 kControlEditTextLockedTag = 'lock',
 kControlEditTextFixedTextTag = 'ftxt',
 kControlEditTextValidationProcTag = 'vali',
 kControlEditTextInlinePreUpdateProcTag = 'prup',
 kControlEditTextInlinePostUpdateProcTag = 'poup'
};
enum {
 kControlEditTextCFStringTag = 'cfst',
 kControlEditTextPasswordCFStringTag = 'pwcf'
};

Constants
kControlEditTextTextTag

Gets or sets text in an editable text control.

Data type returned or set: character buffer

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlEditTextTEHandleTag
Gets a handle to a text edit structure.

Data type returned: TEHandle

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlEditTextSelectionTag
Gets or sets the selection in an editable text control.

Data type returned or set: ControlEditTextSelectionRec structure

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlEditTextKeyScriptBehaviorTag
Gets or sets the kind of behavior to be used in an editable text control with respect to changing and
locking the keyboard menu as the field is focused.

Data type retrieved or set: ControlKeyScriptBehavior. The default for password fields is
kControlKeyScriptBehaviorPrefersRoman. The default for non-password fields is
kControlKeyScriptBehaviorAllowAnyScript. See
ControlEditTextValidationProcPtr (page 685) for descriptions of possible values.

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

756 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlEditTextLockedTag
Gets or sets whether the text in an editable text control is currently editable.

Data type retrieved or set: Boolean; if true, the text is locked and cannot be edited; if false, the
text is editable.

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlEditTextFixedTextTag
Gets or sets inline input text in an editable text control, after confirming any text in the active input
area with the Text Services Manager function FixTSMDocument.

Data type retrieved or set: character buffer

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlEditTextValidationProcTag
Gets or sets a universal procedure pointer to a callback function such as that described in
ControlEditTextValidationProcPtr (page 685), which can be used to validate editable text after
an operation that changes the text, such as inline text entry, a cut, or paste.

Data type retrieved or set: ControlEditTextValidationUPP

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlEditTextInlinePreUpdateProcTag
Gets or sets a universal procedure pointer to a Text Services Manager pre-update callback function.

Data type retrieved or set: TSMTEPreUpdateUPP

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlEditTextInlinePostUpdateProcTag
Gets or sets a universal procedure pointer to a Text Services Manager post-update callback function.

Data type retrieved or set: TSMTEPostUpdateUPP

Available in Appearance 1.1 or Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlEditTextCFStringTag
Retrieves the contents of the edit text field as a CFString.

Data type retrieved: CFStringRef. You must release the string when you no longer need it.

Available in CarbonLib 1.5 and Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

Constants 757
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlEditTextPasswordCFStringTag
Extract the content of the edit text field if it is a password field.

Data type retrieved: CFStringRef. You must release the string when you no longer need it.

Available in CarbonLib 1.5 and Mac OS X v10.0 and later.

Available in Mac OS X v10.1 and later.

Declared in HITextViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data (e.g., text in an editable text control). These constants can
also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Editable Text Control Definition ID Constants
enum {
 kControlEditTextProc = 272,
 kControlEditTextPasswordProc = 274
};

Constants
kControlEditTextProc

Resource ID: 17

Editable text field for windows. This control maintains its own text handle (TEHandle).

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlEditTextPasswordProc
Resource ID: 17

Editable text field for passwords. This control is supported by the Script Manager. Password text can
be accessed via the kEditTextPasswordTag constant; see “Editable Text Control Data Tag
Constants” (page 756).

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

758 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Data Browser Error Constants
enum {
 errDataBrowserNotConfigured = -4970,
 errDataBrowserItemNotFound = -4971,
 errDataBrowserItemNotAdded = -4975,
 errDataBrowserPropertyNotFound = -4972,
 errDataBrowserInvalidPropertyPart = -4973,
 errDataBrowserInvalidPropertyData = -4974,
 errDataBrowserPropertyNotSupported = -4979
};

Group Box Control Data Tag Constants
enum {
 kControlGroupBoxMenuHandleTag = 'mhan',
 kControlGroupBoxMenuRefTag = 'mhan',
 kControlGroupBoxFontStyleTag = kControlFontStyleTag,
 kControlGroupBoxFrameRectTag = 'frec'
};

Constants
kControlGroupBoxMenuHandleTag

Gets the menu handle of a group box.

Data type returned: MenuHandle

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Constants 759
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlGroupBoxFrameRectTag
Gets the full rectangle that content is drawn in. This is slightly different from the content region
because the full rectangle includes the frame drawn around the content. Available in Mac OS X v10.3
and later.

Data type returned: Rect

Available in Mac OS X v10.3 and later.

Declared in HIContainerViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Group Box Control Definition ID Constants
enum {
 kControlGroupBoxTextTitleProc = 160,
 kControlGroupBoxCheckBoxProc = 161,
 kControlGroupBoxPopupButtonProc = 162,
 kControlGroupBoxSecondaryTextTitleProc = 164,
 kControlGroupBoxSecondaryCheckBoxProc = 165,
 kControlGroupBoxSecondaryPopupButtonProc = 166
};

Constants
kControlGroupBoxTextTitleProc

Resource ID: 10

Primary group box with text title. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlGroupBoxCheckBoxProc
Resource ID: 10

Primary group box with checkbox title. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

760 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlGroupBoxPopupButtonProc
Resource ID: 10

Primary group box with pop-up button title. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlGroupBoxSecondaryTextTitleProc
Resource ID: 10

Secondary group box with text title. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlGroupBoxSecondaryCheckBoxProc
Resource ID: 10

Secondary group box with checkbox title. This control definition is new with the Appearance Manager
and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlGroupBoxSecondaryPopupButtonProc
Resource ID: 10

Secondary group box with pop-up button title. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Constants 761
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Icon Control Data Tag Constants
enum {
 kControlIconTransformTag = 'trfm',
 kControlIconAlignmentTag = 'algn'
};

Constants
kControlIconTransformTag

Gets or sets a transform that is added to the standard transform of an icon see “Icon Utilities.”

Data type returned or set: IconTransformType

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

kControlIconAlignmentTag
Gets or sets an icon’s position (centered, left, right).

Data type returned or set: IconAlignmentType

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

762 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Icon Control Definition ID Constants
enum {
 kControlIconProc = 320,
 kControlIconNoTrackProc = 321,
 kControlIconSuiteProc = 322,
 kControlIconSuiteNoTrackProc = 323
};
enum {
 kControlIconRefProc = 324,
 kControlIconRefNoTrackProc = 325
};

Constants
kControlIconProc

Resource ID: 20

Icon control. This control definition is new with the Appearance Manager and is not supported unless
the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

kControlIconNoTrackProc
Resource ID: 20

Non-tracking icon. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

kControlIconSuiteProc
Resource ID: 20

Icon suite. This control definition is new with the Appearance Manager and is not supported unless
the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

kControlIconSuiteNoTrackProc
Resource ID: 20

Non-tracking icon suite. This control definition is new with the Appearance Manager and is not
supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

Constants 763
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlIconRefProc
Identifies the variant of the icon control ('CDEF' resource ID 20) that supports all standard types of
icon-based content. Note that you do not supply content for this control upon its creation with a call
to the NewControl function. Rather, after the control’s creation you can set or change its content at
any time by passing the SetControlData function the kControlIconContentTag control data
tag constant and a ControlButtonContentInfo structure containing any of the allowable data
types. Supported data types for this icon control variant are specified with the following
ControlContentType values: kControlContentIconSuiteRes, kControlContentCIconRes
(uses a black-and-white 'ICON' resource if the color resource isn’t available),
kControlContentIconSuiteHandle, kControlContentCIconHandle, and
kControlContentIconRef. Note, too, that if you supply the kControlContentIconRef value,
you must first use Icon Services functions to register your resources and generate IconRef values.
See the ControlButtonContentInfo (page 699) data type and “Control Content Type
Constants” (page 770) for more information.

Declared in HIImageViews.h.

Available in Mac OS 8.5 and later.

kControlIconRefNoTrackProc
Identifies the non-tracking variant of the icon control ('CDEF' resource ID 20) that supports all
standard types of icon-based content. This control immediately returns kControlIconPart as the
part code hit without tracking. Note that you do not supply content for this control upon its creation
with a call to the NewControl function. Rather, after the control’s creation you can set or change its
content at any time by passing the SetControlData function the kControlIconContentTag
control data tag constant and a ControlButtonContentInfo structure containing any of the
allowable data types. Supported data types for this icon control variant are specified with the following
ControlContentType values: kControlContentIconSuiteRes, kControlContentCIconRes
(uses a black-and-white 'ICON' resource if the color resource isn’t available),
kControlContentIconSuiteHandle, kControlContentCIconHandle, and
kControlContentIconRef. Note, too, that if you supply the kControlContentIconRef value,
you must first use Icon Services functions to register your resources and generate IconRef values.
See the ControlButtonContentInfo (page 699) data type and “Control Content Type
Constants” (page 770) for more information.

Declared in HIImageViews.h.

Available in Mac OS 8.5 and later.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

764 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Image Well Control Data Tag Constants
enum {
 kControlImageWellContentTag = 'cont',
 kControlImageWellTransformTag = 'tran',
 kControlImageWellIsDragDestinationTag = 'drag'
};

Constants
kControlImageWellContentTag

Gets or sets the content for an image well; see ControlButtonContentInfo (page 699).

Data type returned or set: ControlButtonContentInfo structure

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

kControlImageWellTransformTag
Gets or sets a transform that is added to the standard transform of an image well.

Data type returned or set: IconTransformType

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

Constants 765
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Image Well Control Definition ID
enum {
 kControlImageWellProc = 176
};

Constants
kControlImageWellProc

Resource ID: 11

Image well. This control behaves as a palette-type object: it can be selected by clicking, and clicking
on another object should change the keyboard focus. If the keyboard focus is removed, your application
should then set the value to 0 to remove the checked border.

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

766 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

inLabel
enum {
 inLabel = kControlLabelPart,
 inMenu = kControlMenuPart,
 inTriangle = kControlTrianglePart,
 inButton = kControlButtonPart,
 inCheckBox = kControlCheckBoxPart,
 inUpButton = kControlUpButtonPart,
 inDownButton = kControlDownButtonPart,
 inPageUp = kControlPageUpPart,
 inPageDown = kControlPageDownPart
};

inThumb
enum {
 inThumb = kControlIndicatorPart,
 kNoHiliteControlPart = kControlNoPart,
 kInIndicatorControlPart = kControlIndicatorPart,
 kReservedControlPart = kControlDisabledPart,
 kControlInactiveControlPart = kControlInactivePart
};

kControlBevelButtonOwnedMenuRefTag
enum {
 kControlBevelButtonOwnedMenuRefTag = 'omrf',
 kControlBevelButtonKindTag = 'bebk'
};

Bevel Button Size Constants
enum {
 kControlBevelButtonSmallBevelVariant = 0,
 kControlBevelButtonNormalBevelVariant = (1 << 0),
 kControlBevelButtonLargeBevelVariant = (1 << 1),
 kControlBevelButtonMenuOnRightVariant = (1 << 2)
};

Control Can Auto Invalidate Constant
enum {
 kControlCanAutoInvalidate = 1
};

Control Chasing Arrows Animating Tag Constant
enum {
 kControlChasingArrowsAnimatingTag = 'anim'

Constants 767
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

};

Control Collection Tag Constants
Specify initial control values passed in a collection.

enum {
 kControlCollectionTagBounds = 'boun',
 kControlCollectionTagValue = 'valu',
 kControlCollectionTagMinimum = 'min ',
 kControlCollectionTagMaximum = 'max ',
 kControlCollectionTagViewSize = 'view',
 kControlCollectionTagVisibility = 'visi',
 kControlCollectionTagRefCon = 'refc',
 kControlCollectionTagTitle = 'titl',
 kControlCollectionTagUnicodeTitle = 'uttl',
 kControlCollectionTagIDSignature = 'idsi',
 kControlCollectionTagIDID = 'idid',
 kControlCollectionTagCommand = 'cmd ',
 kControlCollectionTagVarCode = 'varc'
};

Constants
kControlCollectionTagBounds

A value of type Rect that contains the bounding rectangle of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagValue
A value of type SInt32 that contains the value of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagMinimum
A value of type SInt32 that contains the minimum value of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagMaximum
A value of type SInt32 that contains the maximum value of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagViewSize
A value of type SInt32 that contains the view size of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

768 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlCollectionTagVisibility
A Boolean that contains the visible state of the control. This tag is only interpreted on CarbonLib
versions through 1.5.x and Mac OS X v10.0.x. This tag is not interpreted on CarbonLib 1.6 and later
nor on Mac OS X v10.1 and later; use of this tag is not recommended.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagRefCon
A value of type SInt32 that contains the refcon for the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagTitle
A character array of arbitrary size that contains the title of the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagUnicodeTitle
A character array of arbitrary size that contains the title of the control as received via
CFStringCreateExternalRepresentation.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagIDSignature
An OSType that contains the ControlID signature for the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagIDID
A value of type SInt32 that contains the ControlID ID for the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagCommand
A value of type UInt32 that contains the command.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlCollectionTagVarCode
A value of type SInt16 that contains the variant for the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
These standard tags are used in the initial data collection that is passed in the param parameter to the
initCntl message and in the kEventParamInitCollection parameter to the
kEventControlInitialize event (Carbon only).

All tags at ID 0 in a control’s collection are reserved for Control Manager use. Custom control definitions
should use other IDs.

Most of these tags are interpreted when you call CreateCustomControl (page 543). The Control Manager
puts the value in the right place before it calls the control definition with the initialization message.

Constants 769
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Collection Tag Subcontrols Constant
enum {
 kControlCollectionTagSubControls = 'subc'
};

Control Content Type Constants
enum {
 kControlContentTextOnly = 0,
 kControlNoContent = 0,
 kControlContentIconSuiteRes = 1,
 kControlContentCIconRes = 2,
 kControlContentPictRes = 3,
 kControlContentICONRes = 4,
 kControlContentIconSuiteHandle = 129,
 kControlContentCIconHandle = 130,
 kControlContentPictHandle = 131,
 kControlContentIconRef = 132,
 kControlContentICON = 133
};

Constants
kControlContentTextOnly

Content type is text. This constant is passed in the contentType field of the
ControlButtonContentInfo structure if the content is text only. The variation code
kControlUsesOwningWindowsFontVariant applies when text content is used.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentIconSuiteRes
Content type uses an icon suite resource ID. The resource ID of the icon suite resource you wish to
display should be in the resID field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentCIconRes
Content type is a color icon resource ID. The resource ID of the color icon resource you wish to display
should be in the resID field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentPictRes
Content type is a picture resource ID. The resource ID of the picture resource you wish to display
should be in the resID field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentIconSuiteHandle
Content type is an icon suite handle. The handle of the icon suite you wish to display should be in
the iconSuite field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

770 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlContentCIconHandle
Content type uses a color icon handle. The handle of the color icon you wish to display should be in
the cIconHandle field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentPictHandle
Content type uses a picture handle. The handle of the picture you wish to display should be in the
picture field of the ControlButtonContentInfo structure.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentIconRef
Content type is IconRef. An IconRef value for the icon you wish to display should be provided in
the iconRef field of the ControlButtonContentInfo structure. Note that the
kControlBevelButtonGraphicOffsetTag control data tag constant should not be used with
IconRef based bevel button content, because IconRef based icons may change with a theme
switch; see “Bevel Button Control Data Tag Constants” (page 723). Supported with Mac OS 8.5 and
later.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Control Data Browser Tag Constants
enum {
 kControlDataBrowserIncludesFrameAndFocusTag = 'brdr',
 kControlDataBrowserKeyFilterTag = kControlEditTextKeyFilterTag,
 kControlDataBrowserEditTextKeyFilterTag = kControlDataBrowserKeyFilterTag,
 kControlDataBrowserEditTextValidationProcTag = kControlEditTextValidationProcTag
};

Control Def Constants
enum {
 kControlDefProcPtr = 0,
 kControlDefObjectClass = 1
};

Constants
kControlDefProcPtr

Indicates raw, proc-ptr based access.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

kControlDefObjectClass
Indicates event-based definition (Mac OS X only).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Constants 771
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Def Type Constants
enum {
 kControlDefProcType = 'CDEF',
 kControlTemplateResourceType = 'CNTL',
 kControlColorTableResourceType = 'cctb',
 kControlDefProcResourceType = 'CDEF'
};

Disclosure Triangle Constants
enum {
 kControlDisclosureButtonClosed = 0,
 kControlDisclosureButtonDisclosed = 1
};

Constants
kControlDisclosureButtonClosed

The control will be drawn suggesting a closed state.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

kControlDisclosureButtonDisclosed
The control will be drawn suggesting a disclosed state.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

Unicode Control Data Tags
Specify data tags used with Unicode edit text controls.

enum {
 kControlEditTextSingleLineTag = 'sglc',
 kControlEditTextInsertTextBufferTag = 'intx',
 kControlEditTextInsertCFStringRefTag = 'incf',
 kControlEditUnicodeTextPostUpdateProcTag = 'upup'
};

Constants
kControlEditTextSingleLineTag

Indicates whether the control should always be single line.

Data to set or get is type Boolean.

Available in Mac OS X v10.2 and later.

Declared in HITextViews.h.

kControlEditTextInsertTextBufferTag
Gets or sets the control’s text as WorldScript encoded text. Available in Mac OS X v10.3 and later.

Data to get or set is an array of char types.

Available in Mac OS X v10.3 and later.

Declared in HITextViews.h.

772 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlEditTextInsertCFStringRefTag
Gets or sets the control’s text as a CFString. Available in Mac OS X v10.3 and later.

Data to get or set is type CFStringRef. If obtaining the string, be sure to release it after you are done
with it.

Available in Mac OS X v10.3 and later.

Declared in HITextViews.h.

kControlEditUnicodeTextPostUpdateProcTag
Gets or sets the post-update callback function.

Data to get or set is type UnicodePostUpdateUPP.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

Discussion
You use these tags in conjunction with GetControlData (page 594) and SetControlData (page 652) on
Unicode edit text controls.

Constants 773
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Edit Unicode Text Post Update Proc Tag Constant
enum {
 kControlEditUnicodeTextPostUpdateProcTag = 'upup'
};

Control Edit Unicode Text Proc Constants
enum {
 kControlEditUnicodeTextProc = 912,
 kControlEditUnicodeTextPasswordProc = 914
};

Control Entire Control Constant
enum {
 kControlEntireControl = 0
};

Control Kind Bevel Button Constant
enum {
 kControlKindBevelButton = 'bevl'
};

Control Kind Chasing Arrows Constant
enum {
 kControlKindChasingArrows = 'carr'
};

Control Kind Clock Constant
enum {
 kControlKindClock = 'clck'
};

Control Kind Data Browser Constant
enum {
 kControlKindDataBrowser = 'datb'
};

Control Kind Disclosure Button Constant
enum {

774 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

 kControlKindDisclosureButton = 'disb'
};

Control Kind Disclosure Triangle Constant
enum {
 kControlKindDisclosureTriangle = 'dist'
};

Control Kind Edit Text Constant
enum {
 kControlKindEditText = 'etxt'
};

Control Kind Edit Unicode Text Constant
enum {
 kControlKindEditUnicodeText = 'eutx'
};

Control Kind Group Box Constants
enum {
 kControlKindGroupBox = 'grpb',
 kControlKindCheckGroupBox = 'cgrp',
 kControlKindPopupGroupBox = 'pgrp'
};

Control Kind Icon Constant
enum {
 kControlKindIcon = 'icon'
};

Control Kind Image Well Constant
enum {
 kControlKindImageWell = 'well'
};

Control Kind List Box Constant
enum {
 kControlKindListBox = 'lbox'
};

Constants 775
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlKindLittleArrows
enum {
 kControlKindLittleArrows = 'larr'
};

Control Kind Picture Constant
enum {
 kControlKindPicture = 'pict'
};

Control Kind Placard Constant
enum {
 kControlKindPlacard = 'plac'
};

Control Kind Pop-up Arrow Constant
enum {
 kControlKindPopupArrow = 'parr'
};

Control Kind Pop-up Button Constant
enum {
 kControlKindPopupButton = 'popb'
};

Control Kind Progress Bar Constants
enum {
 kControlKindProgressBar = 'prgb',
 kControlKindRelevanceBar = 'relb'
};

Control Kind Push and Radio Button Constants
enum {
 kControlKindPushButton = 'push',
 kControlKindPushIconButton = 'picn',
 kControlKindRadioButton = 'rdio',
 kControlKindCheckBox = 'cbox'
};

776 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Kind Radio Group Constant
enum {
 kControlKindRadioGroup = 'rgrp'
};

Control Kind Round Button Constant
enum {
 kControlKindRoundButton = 'rndb'
};

Control Kind Scroll Bar Constant
enum {
 kControlKindScrollBar = 'sbar'
};

Control Kind Scrolling Text Box Constant
enum {
 kControlKindScrollingTextBox = 'stbx'
};

Control Kind Separator Constant
enum {
 kControlKindSeparator = 'sepa'
};

Control Kind Signature Apple Constant
enum {
 kControlKindSignatureApple = 'appl'
};

Constants
kControlKindSignatureApple

Signature of all system controls.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Constants 777
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Kind Slider Constant
enum {
 kControlKindSlider = 'sldr'
};

Control Kind Static Text Constant
enum {
 kControlKindStaticText = 'stxt'
};

Control Kind Tabs Constant
enum {
 kControlKindTabs = 'tabs'
};

Control Kind User Pane Constant
enum {
 kControlKindUserPane = 'upan'
};

Control Kind Window Header Constant
enum {
 kControlKindWindowHeader = 'whed'
};

Control Picture Handle Tag Constant
enum {
 kControlPictureHandleTag = 'pich'
};

Control Pop-up Arrow Orientation Constants
enum {
 kControlPopupArrowOrientationEast = 0,
 kControlPopupArrowOrientationWest = 1,
 kControlPopupArrowOrientationNorth = 2,
 kControlPopupArrowOrientationSouth = 3
};

Control Pop-up Arrow Size Constants

778 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

enum {
 kControlPopupArrowSizeNormal = 0,
 kControlPopupArrowSizeSmall = 1
};

Control Pop-up Button Check Current Tag Constant
enum {
 kControlPopupButtonCheckCurrentTag = 'chck'
};

Control Property Persistent Constant
enum {
 kControlPropertyPersistent = 0x00000001
};

Control Round Button Content and Size Tag Constants
enum {
 kControlRoundButtonContentTag = 'cont',
 kControlRoundButtonSizeTag = kControlSizeTag
};

Control Scrollbar Shows Arrows Tag Constant
enum {
 kControlScrollBarShowsArrowsTag = 'arro'
};

Control Size Constants
enum {
 kControlSizeNormal = 0,
 kControlSizeSmall = 1,
 kControlSizeLarge = 2,
 kControlSizeAuto = 0xFFFF
};

Control Supports New Messages Constant
enum {
 kControlSupportsNewMessages = ' ok '
};

Constants

Constants 779
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlSupportsNewMessages
The control definition function supports new messages introduced with Mac OS 8 and the Appearance
Manager.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in Controls.h.

Discussion
If your control definition function supports Appearance-compliant messages, it should return
kControlSupportsNewMessages as a function result when the Control Manager passes
kControlMsgTestNewMsgSupport in the message parameter.

Control Tab Image Content Tag Constant
enum {
 kControlTabImageContentTag = 'cont'
};

Control Tab Info Version Constants
enum {
 kControlTabInfoVersionZero = 0,
 kControlTabInfoVersionOne = 1
};

Control Tab Type Constants
enum {
 kControlTabListResType = 'tab#',
 kControlListDescResType = 'ldes'
};

Control Use Theme Font ID Mask Constant
enum {
 kControlUseThemeFontIDMask = 0x0080
};

Click Activation Constants
Specify constants that indicate the way a control prefers to respond to a click.

780 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

enum {
 kDoNotActivateAndIgnoreClick = 0,
 kDoNotActivateAndHandleClick = 1,
 kActivateAndIgnoreClick = 2,
 kActivateAndHandleClick = 3
};
typedef UInt32 ClickActivationResult;

Constants
kDoNotActivateAndIgnoreClick

Indicates that the click should be ignored and that the window should not be activated. This constant
is defined for completeness and is rarely used.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kDoNotActivateAndHandleClick
Indicates that the control should handle the click while the window is still in the background.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kActivateAndIgnoreClick
Indicates that control doesn’t want to respond directly to the click, but window should still be brought
forward.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kActivateAndHandleClick
Indicates that the control wants to respond to the click, but only after the window has been activated.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
These constants are used by GetControlClickActivation (page 593).

Constants 781
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Selection Constants
enum {
 kDragSelect = 1,
 kSelectOnlyOne = 2,
 kResetSelection = 4,
 kCmdTogglesSelection = 8,
 kNoDisjointSelection = 16,
 kAlwaysExtendSelection = 32
};

Drag Tracking Enter Control Constants
enum {
 kDragTrackingEnterControl = 2,
 kDragTrackingInControl = 3,
 kDragTrackingLeaveControl = 4
};

Key Filter Result Codes
enum {
 kControlKeyFilterBlockKey = 0,
 kControlKeyFilterPassKey = 1
};

Constants
kControlKeyFilterBlockKey

The keystroke is blocked and not received by the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlKeyFilterPassKey
The keystroke is filtered and received by the control.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
Your key filter function returns these constants to specify whether or not a keystroke is filtered or blocked.

782 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

In Control Part Constants
enum {
 kInLabelControlPart = kControlLabelPart,
 kInMenuControlPart = kControlMenuPart,
 kInTriangleControlPart = kControlTrianglePart,
 kInButtonControlPart = kControlButtonPart,
 kInCheckBoxControlPart = kControlCheckBoxPart,
 kInUpButtonControlPart = kControlUpButtonPart,
 kInDownButtonControlPart = kControlDownButtonPart,
 kInPageUpControlPart = kControlPageUpPart,
 kInPageDownControlPart = kControlPageDownPart
};

Order Constants
enum {
 kOrderUndefined = 0,
 kOrderIncreasing = 1,
 kOrderDecreasing = 2
};

List Box Control Data Tag Constants
enum {
 kControlListBoxListHandleTag = 'lhan',
 kControlListBoxKeyFilterTag = kControlKeyFilterTag,
 kControlListBoxFontStyleTag = kControlFontStyleTag
};
enum {
 kControlListBoxDoubleClickTag = 'dblc',
 kControlListBoxLDEFTag = 'ldef'
};

Constants
kControlListBoxListHandleTag

Gets a handle to a list box.

Data type returned: ListHandle

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlListBoxDoubleClickTag
Checks to see whether the most recent click in a list box was a double click. Available with Appearance
1.0.1 and later.

Data type returned: Boolean; if true, the last click was a double click; if false, not.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Constants 783
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlListBoxLDEFTag
Sets the 'LDEF' resource to be used to draw a list box’s contents this is useful for creating a list box
without an 'ldes' resource. Available with Appearance 1.0.1 and later.

Data type set: SInt16

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

List Box Control Definition ID Constants
enum {
 kControlListBoxProc = 352,
 kControlListBoxAutoSizeProc = 353
};

Constants
kControlListBoxProc

Resource ID: 21

List box. This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlListBoxAutoSizeProc
Resource ID: 21

Autosizing list box. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

784 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Little Arrows Control Definition ID Constant
enum {
 kControlLittleArrowsProc = 96
};

Constants
kControlLittleArrowsProc

Resource ID: 6

Little arrows. This control definition is new with the Appearance Manager and is not supported unless
the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HILittleArrows.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Constants 785
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Little Arrows Control Tag Constant
enum {
 kControlLittleArrowsIncrementValueTag = 'incr'
};

Constants
kControlLittleArrowsIncrementValueTag

Gets or sets the increment value of the control. Currently, the little arrows control does not use the
increment value because the control does not change the value itself. You must use an action proc
to change the value. Available in Mac OS X v10.3 and later.

Data type retrieved: SInt32

Available in Mac OS X v10.3 and later.

Declared in HILittleArrows.h.

Mac OS 8.5 Bevel Button Control Data Tag Constant
enum {
 kControlBevelButtonScaleIconTag = 'scal'
};

Constants
kControlBevelButtonScaleIconTag

Gets or sets whether, when the proper icon size is unavailable, an icon should be scaled for use with
a given bevel button. This tag is only for use with icon suites or the IconRef data type.

Data type retrieved or set: Boolean. If true, indicates that if an icon of the ideal size isn’t available,
a larger or smaller icon should be scaled to the ideal size. If false, no scaling should occur; instead,
a smaller icon should be drawn or a larger icon clipped. Default is false.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
The Mac OS 8.5 Control Manager defines this new control data tag constant. This constant is passed in the
inTagName parameters of the functions SetControlData and GetControlData to specify the piece of
data in a control that you wish to set or get. You can also pass this constant in the inTagName parameter of
the function GetControlDataSize if you wish to determine the size of variable-length control data. This
constant can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The description here shows the data type
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

786 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Mac OS 8.5 Control Font Style Flag Constant
enum {
 kControlAddToMetaFontMask = 0x0200
};

Constants
kControlAddToMetaFontMask

If the bit specified by this mask is set, the control may use a meta-font while also adding other attributes
to the font. If the bit specified by this mask is not set, but a meta-font is specified for the control, any
additional attributes set for the font are ignored.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
With the Mac OS 8.5 Control Manager, you can pass this new control font style flag constant in the flags
field of the ControlFontStyleRec structure to specify the fields of the structure that should be applied to
the control. For more on control font style flag constants, see “Control Font Style Flag Constants” (page 745)
and the ControlFontStyleRec (page 704) structure.

Mac OS 8.5 Editable Text Control Definition ID Constant
enum {
 kControlEditTextInlineInputProc = 276
};

Constants
kControlEditTextInlineInputProc

Identifies the inline input variant of the editable text control ('CDEF' resource ID 17), which supports
2-byte script systems. This variant cannot be combined with the password variant of the editable text
box.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
The Mac OS 8.5 Control Manager defines this new control definition ID.

When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

Constants 787
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID. This of these constant,
and its associated ID, is not supported unless the Appearance Manager is available.

Mac OS 8.5 Group Box Control Data Tag Constant
enum {
 kControlGroupBoxTitleRectTag = 'trec'
};

Constants
kControlGroupBoxTitleRectTag

Gets the rectangle that contains the title of a group box (and any associated control, such as a checkbox
or other button).

Data type retrieved: Rect

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
The Mac OS 8.5 Control Manager defines this new control data tag constant. This constant is passed in the
inTagName parameters of the functions SetControlData and GetControlData to specify the piece of
data in a control that you wish to set or get. You can also pass this constant in the inTagName parameter of
the function GetControlDataSize if you wish to determine the size of variable-length control data. This
constant can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The description here shows the data type
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

Mac OS 8.5 Icon Control Data Tag Constants
enum {
 kControlIconResourceIDTag = 'ires',
 kControlIconContentTag = 'cont'
};

Constants
kControlIconResourceIDTag

Gets or sets the resource ID of the icon to use.

Data type retrieved or set: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

788 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlIconContentTag
Gets or sets the type of content to be used in an icon control.

Data type retrieved or set: ControlButtonContentInfo (page 699).

Available in Mac OS X v10.0 and later.

Declared in HIImageViews.h.

Discussion
The Mac OS 8.5 Control Manager defines these new control data tag constants. These constants are passed
in the inTagName parameters of the functions SetControlData and GetControlData to specify the piece
of data in a control that you wish to set or get. You can also pass these constants in the inTagName parameter
of the function GetControlDataSize if you wish to determine the size of variable-length control data.
These constants can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The descriptions here show the data types
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

Mac OS 8.5 Pop-up Button Control Data Tag Constants
enum {
 kControlPopupButtonExtraHeightTag = 'exht',
 kControlPopupButtonOwnedMenuRefTag = 'omrf'
};

Constants
kControlPopupButtonExtraHeightTag

Gets or sets the amount of extra vertical white space in a pop-up menu button.

Data type set or retrieved: SInt16; default is 0.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopUpButtonOwnedMenuRefTag
Sets the menu to be displayed by the popup button control. This tag operates identically to
kControlPopupButtonMenuRefTag, except that the popup button takes ownership of the specified
menu. If the popup button is disposed, or a new menu is specified, the popup button control will
automatically release the menu.

Data type set or retrieved: MenuRef

Discussion
The Mac OS 8.5 Control Manager defines this new control data tag constant. This constant is passed in the
inTagName parameters of the functions SetControlData and GetControlData to specify the piece of
data in a control that you wish to set or get. You can also pass this constant in the inTagName parameter of
the function GetControlDataSize if you wish to determine the size of variable-length control data. This
constant can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The description here shows the data type
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

Constants 789
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Control Meta Part Code Constants
enum {
 kControlStructureMetaPart = -1,
 kControlContentMetaPart = -2,
 kControlOpaqueMetaPart = -3,
 kControlClickableMetaPart = -4
};

Constants
kControlStructureMetaPart

The entire area that the control will draw into. This area may extend beyond the bounds of the control
(for example, if the control draws a focus ring outside of its bounds). You may return a superset of
the drawn area if this is computationally easier to construct. This area is used to determine the area
of a window that should be invalidated and redrawn when a control is invalidated. It is not necessary
for a control to return a shape that precisely describes the structure area; for example, a control whose
structure is an oval may simply return the oval's bounding rectangle. The default handler for the
kEventControlGetPartRegion event returns the control's bounds when this part is requested.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlContentMetaPart
The area of the control in which embedded controls should be positioned. This part is only defined
for controls that can contain other controls (for example, the group box). This area is largely
informational and is not used by the Control Manager itself. The default handler for the
kEventControlGetPartRegion event returns errInvalidPartCodewhen this part is requested.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlOpaqueMetaPart
The area of the control that, when drawn, is filled with opaque pixels. You may also return a subset
of the opaque area if this is computationally easier to construct. If a control is contained in a composited
window, the Control Manager will use this area to optimize drawing of other controls that intersect
this area; controls that are entirely contained within the opaque area, and that are z-ordered underneath
this control, will not be drawn at all, since any drawing would be completely overwritten by this
control. The default handler for the kEventControlGetPartRegion event returns an empty area
when this part is requested.

Available in Mac OS X v10.3 and later.

Declared in Controls.h.

kControlClickableMetaPart
The area of the control that causes a mouse event to be captured by that control. If a mouse event
falls inside the control bounds but outside of this area, then the Control Manager will allow the event
to pass through the control to the next control behind it in z-order. This area is used to determine
which parts of a window should allow async window dragging when clicked (the draggable area is
computed by subtracting the clickable areas of controls in the window from the window's total area).
You can also customize the clickable area of a control if you want the control to have an effectively
transparent area (for example, a control that draws multiple tabs might want clicks in the space
between the tabs to fall through to the next control rather than be captured by the tab-drawing
control). The default handler for the kEventControlGetPartRegion event returns the control's
bounds when this part is requested.

Available in Mac OS X v10.3 and later.

Declared in Controls.h.

790 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
An application that needs the structure and content regions of a control can call GetControlRegion (page
605) and specify these meta-parts. A custom HIView that needs to specialize its opaque and clickable regions
can provide a kEventControlGetPartRegion event handler that checks for these meta-parts and return
an appropriate region (or HIShape).

Meta Font Constants
enum {
 kControlFontBigSystemFont = -1,
 kControlFontSmallSystemFont = -2,
 kControlFontSmallBoldSystemFont = -3,
 kControlFontViewSystemFont = -4
};

Constants
kControlFontBigSystemFont

Use the system font.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlFontSmallSystemFont
Use the small system font.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

kControlFontSmallBoldSystemFont
Use the small emphasized system font (emphasis applied correctly for locale).

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
You can use the meta font constants in the font field of the structure ControlFontStyleRec (page 704)
and the Font ID field of a dialog font table resource to specify the style, size, and font family of the control
font. You should use these meta font constants whenever possible because the system font can change,
depending upon the current theme. If none of these constants are specified, the control uses the system
font unless directed to use a window font by a control variant.

Version Notes
The meta font constants are available with Appearance Manager 1.0 and later.

Constants 791
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Constraint Constants
enum {
 noConstraint = kNoConstraint,
 hAxisOnly = 1,
 vAxisOnly = 2
};

Part Identifier Constants
enum {
 cFrameColor = 0,
 cBodyColor = 1,
 cTextColor = 2,
 cThumbColor = 3,
 kNumberCtlCTabEntries = 4
};

Constants
cFrameColor

Produces foreground color for scroll arrows and gray area.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

cBodyColor
Produces color of the scroll box.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

cTextColor
Produces text color for scroll bars. Currently unused.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

cThumbColor
Reserved.

Available in Mac OS X v10.0 and later.

Declared in Controls.h.

Discussion
The part identifier constants are not recommended with the Appearance Manager. When the Appearance
Manager is available and you are using standard controls, part identifier constants are ignored and the colors
are determined by the current theme. If you are creating your own control definition function, you can still
use these constants in the partIdentifier field of a control color table structure to draw a control using
colors other than the system default and to identify the part of a control that a color affects.

When the Appearance Manager is not present, you can use these constants in the partIdentifier field
of a control color table resource 'cctb’ and the partIdentifier field of a control color table structure to
identify the part of the control that the color affects.

Note that the colors you specify in the color table are blended to produce the colors that are actually used.

792 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Picture Control Definition ID Constants
enum {
 kControlPictureProc = 304,
 kControlPictureNoTrackProc = 305
};

Constants
kControlPictureProc

Resource ID: 19

Picture control. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlPictureNoTrackProc
Resource ID: 19

Non-tracking picture. Immediately returns kControlPicturePart as the part code hit without
tracking.

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Constants 793
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Placard Control Definition ID Constant
enum {
 kControlPlacardProc = 224
};

Constants
kControlPlacardProc

Resource ID: 14

Placard. This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

794 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Pop-up Menu Title Constants
enum {
 popupTitleBold = 1 << 8,
 popupTitleItalic = 1 << 9,
 popupTitleUnderline = 1 << 10,
 popupTitleOutline = 1 << 11,
 popupTitleShadow = 1 << 12,
 popupTitleCondense = 1 << 13,
 popupTitleExtend = 1 << 14,
 popupTitleNoStyle = 1 << 15
};

Constants
popupTitleBold

Draw title in bold font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleItalic
Draw title in italic font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleUnderline
Draw title in underline font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleOutline
Draw title in outline font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleShadow
Draw title in shadow font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleCondense
Draw title in condensed text font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleExtend
Draw title in extended text font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleNoStyle
Draw title in plain text font style.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Constants 795
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Discussion
When you define a pop-up menu control in a control resource, you can use one or more of these constants
in the initial setting field to specify where and how to draw the pop-up menu control title.

Pop-up Menu Title Justification Constants
enum {
 popupTitleLeftJust = 0x00000000,
 popupTitleCenterJust = 0x00000001,
 popupTitleRightJust = 0x000000FF
};

Constants
popupTitleLeftJust

Place title to the left of the pop-up box.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleCenterJust
Center title over the pop-up box.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

popupTitleRightJust
Place title to the right of the pop-up box.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Discussion
When you define a pop-up menu control in a control resource, you can use one or more of these constants
in the initial setting field to specify where and how to draw the pop-up menu control title.

796 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Pop-up Arrow Control Definition ID Constants
enum {
 kControlPopupArrowEastProc = 192,
 kControlPopupArrowWestProc = 193,
 kControlPopupArrowNorthProc = 194,
 kControlPopupArrowSouthProc = 195,
 kControlPopupArrowSmallEastProc = 196,
 kControlPopupArrowSmallWestProc = 197,
 kControlPopupArrowSmallNorthProc = 198,
 kControlPopupArrowSmallSouthProc = 199
};

Constants
kControlPopupArrowEastProc

Resource ID: 12

Large, right-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowWestProc
Resource ID: 12

Large, left-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowNorthProc
Resource ID: 12

Large, up-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowSouthProc
Resource ID: 12

Large, down-facing pop-up arrow. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowSmallEastProc
Resource ID: 12

Small, right-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Constants 797
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlPopupArrowSmallWestProc
Resource ID: 12

Small, left-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowSmallNorthProc
Resource ID: 12

Small, up-facing pop-up arrow. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupArrowSmallSouthProc
Resource ID: 12

Small, down-facing pop-up arrow. This control definition is new with the Appearance Manager and
is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

798 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Pop-up Button Control Data Tag Constants
enum {
 kControlPopupButtonMenuHandleTag = 'mhan',
 kControlPopupButtonMenuRefTag = 'mhan',
 kControlPopupButtonMenuIDTag = 'mnid'
};

Constants
kControlPopupButtonMenuHandleTag

Gets or sets the menu handle for a popup button. Available with Appearance Manager 1.0.1 and later.

Data type returned or set: MenuHandle

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupButtonMenuRefTag
Gets or sets the menu reference assigned to a popup button. If setting the menu reference, the popup
button does not own the menu, so you must dispose of it yourself. To allow the popup button to take
ownership of the menu, use the kControlPopupButtonOwnedMenuRefTag tag (defined in “Mac
OS 8.5 Pop-up Button Control Data Tag Constants” (page 789)) instead.

Data type returned or set: MenuRef

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupButtonMenuIDTag
Gets or sets the menu ID for a popup button. Available with Appearance Manager 1.0.1 and later.

Data type returned or set: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Constants 799
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Pop-up Button Control Definition ID Constants
enum {
 kControlPopupButtonProc = 400,
 kControlPopupFixedWidthVariant = 1 << 0,
 kControlPopupVariableWidthVariant = 1 << 1,
 kControlPopupUseAddResMenuVariant = 1 << 2,
 kControlPopupUseWFontVariant = kControlUsesOwningWindowsFontVariant
};

Constants
kControlPopupButtonProc

Resource ID: 25

Appearance-compliant standard pop-up menu. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupFixedWidthVariant
(+ kControlPopupButtonProc)

Resource ID: 25

Appearance-compliant fixed-width pop-up menu. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupVariableWidthVariant
(+ kControlPopupButtonProc)

Resource ID: 25

Appearance-compliant variable-width pop-up menu. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

kControlPopupUseAddResMenuVariant
(+ kControlPopupButtonProc)

Resource ID: 25

Appearance-compliant pop-up menu with a value of type ResType in the contrlRfCon field of the
control structure. The Menu Manager adds resources of this type to the menu.

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

800 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlPopupUseWFontVariant
(+ kControlPopupButtonProc)

Resource ID: 25

Appearance-compliant pop-up menu with control title in window font. This control definition is new
with the Appearance Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIPopupButton.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Constants 801
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Pop-up Width Constants
enum {
 popupFixedWidth = 1 << 0,
 popupVariableWidth = 1 << 1,
 popupUseAddResMenu = 1 << 2,
 popupUseWFont = 1 << 3
};

Pre–Appearance Control Definition ID Constants
enum {
 pushButProc = 0,
 checkBoxProc = 1,
 radioButProc = 2,
 scrollBarProc = 16,
 popupMenuProc = 1008
};

Constants
pushButProc

Resource ID: 0

Pre-Appearance push button.

pushButProc + kControlUsesOwningWindowsFontVariant:

Resource ID: 0

Pre-Appearance push button with its text in the window font.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

checkBoxProc
Resource ID: 0

Pre-Appearance checkbox.

checkBoxProc + kControlUsesOwningWindowsFontVariant:

Resource ID: 0

Pre-Appearance checkbox with a control title in the window font.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

radioButProc
Resource ID: 0

Pre-Appearance radio button.

radioButProc + kControlUsesOwningWindowsFontVariant:

Resource ID: 0

Pre-Appearance radio button with a title in the window font.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

802 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

scrollBarProc
Resource ID: 0

Pre-Appearance scroll bar.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

popupMenuProc
Resource ID: 63

Pre-Appearance standard pop-up menu.

popupMenuProc + popupFixedWidth:

Resource ID: 63; Control Definition ID: 1009

Pre-Appearance, fixed-width pop-up menu.

popupMenuProc + popupVariableWidth

Resource ID: 63; Control Definition ID: 1010

Pre-Appearance, variable-width pop-up menu.

popupMenuProc + popupUseAddResMenu

Resource ID: 63; Control Definition ID: 1012

Pre-Appearance pop-up menu with a value of type ResType in the contrlRfCon field of the control
structure. The Menu Manager adds resources of this type to the menu.

popupMenuProc + popupUseWFont

Resource ID: 63; Control Definition ID: 1016

Pre-Appearance pop-up menu with a control title in the window font.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see “Defining Your Own
Control Definition Function”.

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Constants 803
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

If your application contains code that uses the older, pre-Appearance control definition IDs or their constants,
your application can use the Appearance Manager to map the old IDs to those for the new, updated controls
introduced by the Appearance Manager. In particular, the control definition IDs for pre-Appearance checkboxes,
buttons, scroll bars, radio buttons, and pop-up menus will be automatically mapped to Appearance-compliant
equivalents.

Progress Bar Control Data Tag Constants
enum {
 kControlProgressBarIndeterminateTag = 'inde',
 kControlProgressBarAnimatingTag = 'anim'
};

Constants
kControlProgressBarIndeterminateTag

Gets or sets whether a progress indicator is determinate or indeterminate.

Data type returned or set: Boolean; if true, switches to an indeterminate progress indicator; if false,
switches to an determinate progress indicator.

Available in Mac OS X v10.0 and later.

Declared in HIProgressViews.h.

Discussion
You can use this control data tag constant to set or obtain data that is associated with a control. This constant
is passed in the inTagName parameters of SetControlData (page 652) and GetControlData (page 594)
to specify the piece of data in a control that you wish to set or get. You can also pass this constant in the
inTagNameparameter ofGetControlDataSize (page 596) if you wish to determine the size of variable-length
control data. This constant can also be used by custom control definition functions that return the feature
bit kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the description of this control data tag constant lists the data type for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
This control data tag constant is available with Appearance Manager 1.0 and later.

804 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Progress Bar Control Definition ID Constants
enum {
 kControlProgressBarProc = 80,
 kControlRelevanceBarProc = 81
};

Constants
kControlProgressBarProc

Resource ID: 5

Progress indicator. To make the control determinate or indeterminate, set the
kControlProgressBarIndeterminateTag constant; see “Progress Bar Control Data Tag
Constants” (page 804). Progress indicators are only horizontal in orientation; vertical progress indicators
are not currently supported.

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIProgressViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Constants 805
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Push Button Control Data Tag Constants
enum {
 kControlPushButtonDefaultTag = 'dflt',
 kControlPushButtonCancelTag = 'cncl'
};

Constants
kControlPushButtonDefaultTag

Tells Appearance-compliant button whether to draw a default ring, or returns whether the Appearance
Manager draws a default ring for the button.

Data type returned or set: Boolean

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlPushButtonCancelTag
Gets or sets whether a given push button in a dialog or alert should be drawn with the theme-specific
adornments for a Cancel button.

Data type retrieved or set: Boolean; default is false.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
The Mac OS 8.5 Control Manager defines this new control data tag constant. This constant is passed in the
inTagName parameters of the functions SetControlData and GetControlData to specify the piece of
data in a control that you wish to set or get. You can also pass this constant in the inTagName parameter of
the function GetControlDataSize if you wish to determine the size of variable-length control data. This
constant can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The description here shows the data type
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

Radio Button Value Constants
enum {
 kControlRadioButtonUncheckedValue = 0,
 kControlRadioButtonCheckedValue = 1,
 kControlRadioButtonMixedValue = 2
};

Constants
kControlRadioButtonUncheckedValue

The radio button is unselected.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

kControlRadioButtonCheckedValue
The radio button is selected.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

806 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlRadioButtonMixedValue
Mixed value. Indicates that a setting is on for some elements in a selection and off for others. This
state only applies to standard Appearance-compliant radio buttons.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
These constants specify the value of a standard radio button control and are passed in the newValue
parameter of SetControlValue (page 661) and are returned by GetControlValue (page 606).

Version Notes
The radio button value constants are changed with Appearance Manager 1.0 to support mixed-value radio
buttons.

Radio Group Control Definition ID Constant
enum {
 kControlRadioGroupProc = 416
};

Constants
kControlRadioGroupProc

Resource ID: 26

Radio group. Embedder control for controls that have set the feature bitkControlHasRadioBehavior.

This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIButtonViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Constants 807
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Scroll Bar Control Definition ID Constants
enum {
 kControlScrollBarProc = 384,
 kControlScrollBarLiveProc = 386
};

Constants
kControlScrollBarProc

Resource ID: 24

Appearance-compliant scroll bar. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIScrollView.h.

kControlScrollBarLiveProc
Resource ID: 24

Appearance-compliant scroll bar with live feedback. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIScrollView.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

808 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Scrolling Text Box Control Data Tag Constants
enum {
 kControlScrollTextBoxDelayBeforeAutoScrollTag = 'stdl',
 kControlScrollTextBoxDelayBetweenAutoScrollTag = 'scdl',
 kControlScrollTextBoxAutoScrollAmountTag = 'samt',
 kControlScrollTextBoxContentsTag = 'tres',
 kControlScrollTextBoxAnimatingTag = 'anim'
};

Constants
kControlScrollTextBoxDelayBeforeAutoScrollTag

Gets or sets the number of ticks to delay before the initial scrolling of an auto-scrolling text box control
begins.

Data type retrieved or set: UInt32

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlScrollTextBoxDelayBetweenAutoScrollTag
Gets or sets the number of ticks to delay between each unit of scrolling, for an auto-scrolling text box
control. (The unit of scrolling for the auto-scrolling text box control is one pixel at a time, unless your
application changes this value by calling the SetControlData function.)

Data type retrieved or set: UInt32

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlScrollTextBoxAutoScrollAmountTag
Gets or sets the number of pixels by which an auto-scrolling text box control scrolls; default is 1.

Data type retrieved or set: UInt16

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlScrollTextBoxContentsTag
Sets the ID of a 'TEXT' resource—and, optionally, a 'styl' resource—to be used as the content in
a scrolling or auto-scrolling text box control.

Data type set: SInt16

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
The Mac OS 8.5 Control Manager defines these new control data tag constants. These constants are passed
in the inTagName parameters of the functions SetControlData and GetControlData to specify the piece
of data in a control that you wish to set or get. You can also pass these constants in the inTagName parameter
of the function GetControlDataSize if you wish to determine the size of variable-length control data.
These constants can also be used by custom control definition functions that return the feature bit
kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application gets or sets can be of various types. The descriptions here show the data types
for the information that you can set in the inData parameter to the SetControlData function and that
you can get in the inBuffer parameter to the GetControlData function.

Constants 809
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Scrolling Text Box Control Definition ID Constants
enum {
 kControlScrollTextBoxProc = 432,
 kControlScrollTextBoxAutoScrollProc = 433
};

Constants
kControlScrollTextBoxProc

Identifies the standard variant of the scrolling text box ('CDEF' resource ID 27), which contains a
scroll bar. Your application can use the kControlScrollTextBoxProc ID to create a scrolling box
of non-editable text, such as is used for an “About” box. You must pass the NewControl function the
ID of a 'TEXT' resource—and, optionally, a 'styl' resource—to be used for the initial value of the
control. The minimum and maximum values are reserved for the kControlScrollTextBoxProc
variant and should be set to 0.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

kControlScrollTextBoxAutoScrollProc
Identifies the auto-scrolling variant of the scrolling text box ('CDEF' resource ID 27); this variant does
not contain a scroll bar. Your application can use the kControlScrollTextBoxAutoScrollProc
ID to create a scrolling box of non-editable text, such as is used for an “About” box. You must pass
the NewControl function the ID of a 'TEXT' resource—and, optionally, a 'styl' resource—to be
used for the initial value of the control. For the minimum value of the control, pass a value equal to
the delay, in ticks, before the control begins scrolling this delay will also be used between when
scrolling completes and when it begins again. For the maximum value of the control, pass a value
equal to the delay, in ticks, between each unit of scrolling. The unit of scrolling for the auto-scrolling
text box control is one pixel at a time, unless your application changes this value by calling the
SetControlData function. Note that in order to advance the content of the text box—that is, to
scroll the content—you must call the IdleControls function on a periodic basis, such as whenever
you receive a null event.

Available in Mac OS X v10.0 and later.

Declared in ControlDefinitions.h.

Discussion
The Mac OS 8.5 Control Manager defines these new control definition IDs.

When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

810 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Your application can use the constants listed here in place of control definition IDs. These constants, and
their associated IDs, are not supported unless the Appearance Manager is available.

Separator Line Control Definition ID Constant
enum {
 kControlSeparatorLineProc = 144
};

Constants
kControlSeparatorLineProc

Resource ID: 9

Separator line.

Available in Mac OS X v10.0 and later.

Declared in HISeparator.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Constants 811
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Slider Control Definition ID Constants
enum {
 kControlSliderProc = 48,
 kControlSliderLiveFeedback = (1 << 0),
 kControlSliderHasTickMarks = (1 << 1),
 kControlSliderReverseDirection = (1 << 2),
 kControlSliderNonDirectional = (1 << 3)
};

Constants
kControlSliderProc

Resource ID: 3

Slider. Your application calls the function SetControlAction (page 649) to set the last value for the
control. This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HISlider.h.

kControlSliderLiveFeedback
(+ kControlSliderProc)

Resource ID: 3

Slider with live feedback. The value of the control is updated automatically by the Control Manager
before your action function is called. If no application-defined action function is supplied, the slider
draws an outline of the indicator as the user moves it. This control definition is new with the
Appearance Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HISlider.h.

kControlSliderHasTickMarks
(+ kControlSliderProc)

Resource ID: 3

Slider with tick marks. The control rectangle must be large enough to include the tick marks. This
control definition is new with the Appearance Manager and is not supported unless the Appearance
Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HISlider.h.

kControlSliderReverseDirection
(+ kControlSliderProc)

Resource ID: 3

Slider with a directional indicator. The indicator is positioned perpendicularly to the slider; that is, if
the slider is horizontal, the indicator points up, and if the slider is vertical, the indicator points left.
This control definition is new with the Appearance Manager and is not supported unless the
Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HISlider.h.

812 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlSliderNonDirectional
(+ kControlSliderProc)

Resource ID: 3

Slider with a rectangular, non-directional indicator. This variant overrides the
kSliderReverseDirection and kSliderHasTickMarks variants. This control definition is new
with the Appearance Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HISlider.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Static Text Control Data Tag Constants
enum {
 kControlStaticTextStyleTag = kControlFontStyleTag,
 kControlStaticTextTextTag = 'text',
 kControlStaticTextTextHeightTag = 'thei',
 kControlStaticTextTruncTag = 'trun',
 kControlStaticTextCFStringTag = 'cfst',
 kControlStaticTextIsMultilineTag = 'stim'
};

Constants
kControlStaticTextTextTag

Gets or sets text in a static text control.

Data type returned or set: character buffer.

Declared in HITextViews.h.

Available with Appearance Manager 1.0 and later.

Constants 813
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlStaticTextTextHeightTag
Gets the height of text in a static text control. Available with Appearance Manager 1.0 and later.

Data type returned or set:SInt16

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlStaticTextTruncTag
Gets or sets the control’s text truncation style. Truncation will not occur unless
kControlStaticTextIsMultilineTag is set to false.

Data type returned or set: TruncCode. The value truncEnd indicates that characters are truncated
off the end of the string; the value truncMiddle indicates that characters are truncated from the
middle of the string. Default is a value of -1, which indicates that no truncation occurs and the text
is wrapped instead.

Available with Appearance Manager 1.1 (Mac OS 8.5) and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlStaticTextCFStringTag
Gets or sets the control’s current text. When setting the text, the control retains the string, so you
may release the string after calling SetControlData. If the string you set is mutable, the control will
make a copy of the string, so any changes to the string after calling SetControlData will not affect
the control. When retrieving the text, the control retains the string before returning it to you, so you
must release the string after you are done with it.

Data type returned or set: CFStringRef

Available in CarbonLib 1.5 and later, and Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

kControlStaticTextIsMultilineTag
Gets or sets a flag specifying whether the control draws its text in multiple lines if the text is too wide
for the control bounds. If false, the control always draws the text in a single line.

Data type returned or set: Boolean

Declared in HITextViews.h.

Available in Mac OS X v10.1 and later.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

814 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Static Text Control Definition ID Constant
enum {
 kControlStaticTextProc = 288
};

Constants
kControlStaticTextProc

Resource ID: 18

Static text field. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HITextViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

Constants 815
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Text Proc Constants
enum {
 staticTextProc = 256,
 editTextProc = 272,
 iconProc = 288,
 userItemProc = 304,
 pictItemProc = 320
};

Tab Control Data Tag Constants
enum {
 kControlTabContentRectTag = 'rect',
 kControlTabEnabledFlagTag = 'enab',
 kControlTabFontStyleTag = kControlFontStyleTag
};

Constants
kControlTabContentRectTag

Gets the content rectangle of a tab control.

Data type returned: Rect

Available in Mac OS X v10.0 and later.

Declared in HITabbedView.h.

kControlTabEnabledFlagTag
Enables or disables a single tab in a tab control.

Data type returned or set: Boolean; if true, enabled; if false, disabled.

Available in Mac OS X v10.0 and later.

Declared in HITabbedView.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

816 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Tab Control Definition IDs
enum {
 kControlTabLargeProc = 128,
 kControlTabSmallProc = 129,
 kControlTabLargeNorthProc = 128,
 kControlTabSmallNorthProc = 129,
 kControlTabLargeSouthProc = 130,
 kControlTabSmallSouthProc = 131,
 kControlTabLargeEastProc = 132,
 kControlTabSmallEastProc = 133,
 kControlTabLargeWestProc = 134,
 kControlTabSmallWestProc = 135
};

Constants
kControlTabLargeProc

Resource ID: 8

Normal tab control. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HITabbedView.h.

kControlTabSmallProc
Resource ID: none

Small tab control. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HITabbedView.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Constants 817
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Tab Control Info Tag Constant
enum {
 kControlTabInfoTag = 'tabi'
};

Constants
kControlTabInfoTag

Gets or sets information for a tab in a tab control; see ControlTabInfoRec (page 710).

Data type returned or set: ControlTabInfoRec.

Available in Mac OS X v10.0 and later.

Declared in HITabbedView.h.

Discussion
You can use this control data tag constant to set or obtain data that is associated with a control. This constant
is passed in the inTagName parameters of SetControlData (page 652) and GetControlData (page 594)
to specify the piece of data in a control that you wish to set or get. You can also pass this constant in the
inTagNameparameter ofGetControlDataSize (page 596) if you wish to determine the size of variable-length
control data. This constant can also be used by custom control definition functions that return the feature
bit kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the description of this control data tag constant lists the data type for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
This control data tag constant is available with Appearance Manager 1.0.1 and later.

Triangle Control Data Tag Constant
enum {
 kControlTriangleLastValueTag = 'last'
};

Constants
kControlTriangleLastValueTag

Gets or sets the last value of a disclosure triangle. Used primarily for setting up a disclosure triangle
properly when using the auto-toggle variant.

Data type returned or set: SInt16

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

Discussion
You can use this control data tag constant to set or obtain data that is associated with a control. This constant
is passed in the inTagName parameters of SetControlData (page 652) and GetControlData (page 594)
to specify the piece of data in a control that you wish to set or get. You can also pass this constant in the
inTagNameparameter ofGetControlDataSize (page 596) if you wish to determine the size of variable-length
control data. This constant can also be used by custom control definition functions that return the feature
bit kControlSupportsDataAccess in response to a kControlMsgGetFeatures message.

818 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the description of this control data tag constant lists the data type for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
This control data tag constant is available with Appearance Manager 1.0 and later.

Triangle Control Definition ID Constants
enum {
 kControlTriangleProc = 64,
 kControlTriangleLeftFacingProc = 65,
 kControlTriangleAutoToggleProc = 66,
 kControlTriangleLeftFacingAutoToggleProc = 67
};

Constants
kControlTriangleProc

Resource ID: 4

Disclosure triangle. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

kControlTriangleLeftFacingProc
Resource ID: 4

Left-facing disclosure triangle. This control definition is new with the Appearance Manager and is not
supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

kControlTriangleAutoToggleProc
Resource ID: 4

Auto-tracking disclosure triangle. This control definition is new with the Appearance Manager and is
not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

kControlTriangleLeftFacingAutoToggleProc
Resource ID: 4

Left-facing, auto-tracking disclosure triangle. This control definition is new with the Appearance
Manager and is not supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIDisclosureViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

Constants 819
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

control definition ID = 16 * ('CDEF' resource ID) + variation code

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

User Item and User Pane Control Data Tag Constants
enum {
 kControlUserItemDrawProcTag = 'uidp',
 kControlUserPaneDrawProcTag = 'draw',
 kControlUserPaneHitTestProcTag = 'hitt',
 kControlUserPaneTrackingProcTag = 'trak',
 kControlUserPaneIdleProcTag = 'idle',
 kControlUserPaneKeyDownProcTag = 'keyd',
 kControlUserPaneActivateProcTag = 'acti',
 kControlUserPaneFocusProcTag = 'foci',
 kControlUserPaneBackgroundProcTag = 'back'
};

Constants
kControlUserItemDrawProcTag

Gets or sets an application-defined item drawing function. If an embedding hierarchy is established,
a user pane drawing function should be used instead of an item drawing function.

Data type returned or set: UserItemUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneDrawProcTag
Gets or sets a user pane drawing function; see ControlUserPaneBackgroundProcPtr (page 688).
Indicates that the Control Manager needs to draw a control.

Data type returned or set: ControlUserPaneDrawingUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneHitTestProcTag
Gets or sets a user pane hit-testing function. Indicates that the Control Manager needs to determine
if a control part was hit; see ControlUserPaneBackgroundProcPtr (page 688).

Data type returned or set: ControlUserPaneHitTestUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

820 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlUserPaneTrackingProcTag
Gets or sets a user pane tracking function, which will be called when a control definition function
returns the kControlHandlesTracking feature bit in response to a kControlMsgGetFeatures
message. Indicates that a user pane handles its own tracking; see
ControlUserPaneBackgroundProcPtr (page 688).

Data type returned or set: ControlUserPaneTrackingUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneIdleProcTag
Gets or sets a user pane idle function, which will be called when a control definition function returns
the kControlWantsIdle feature bit in response to a kControlMsgGetFeaturesmessage. Indicates
that a user pane performs idle processing; see ControlUserPaneBackgroundProcPtr (page 688).

Data type returned or set: ControlUserPaneIdleUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneKeyDownProcTag
Gets or sets a user pane key down function, which will be called when a control definition function
returns the kControlSupportsFocus feature bit in response to a kControlMsgGetFeatures
message. Indicates that a user pane performs keyboard event processing; see
ControlUserPaneBackgroundProcPtr (page 688).

Data type returned or set: ControlUserPaneKeyDownUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneActivateProcTag
Gets or sets a user pane activate function, which will be called when a control definition function
returns the kControlWantsActivatefeature bit in response to a kControlMsgGetFeatures
message. Indicates that a user pane wants to be informed of activate and deactivate events; see
ControlUserPaneBackgroundProcPtr (page 688).

Data type returned or set: ControlUserPaneActivateUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlUserPaneFocusProcTag
Gets or sets a user pane keyboard focus function, which will be called when a control definition
function returns the kControlSupportsFocus feature bit in response to a
kControlMsgGetFeatures message. Indicates that a user pane handles keyboard focus; see
ControlUserPaneBackgroundProcPtr (page 688).

Data type returned or set: ControlUserPaneFocusUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Constants 821
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

kControlUserPaneBackgroundProcTag
Gets or sets a user pane background function, which will be called when a control definition function
returns the kControlHasSpecialBackgroundand kControlSupportsEmbeddingfeature bits in
response to a kControlMsgGetFeaturesmessage. Indicates that a user pane can set its background
color or pattern; see ControlUserPaneBackgroundProcPtr (page 688).

Data type returned or set: ControlUserPaneBackgroundUPP

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
You can use the control data tag constants to set or obtain data that is associated with a control. The control
data tag constants are passed in the inTagName parameters of SetControlData (page 652) and
GetControlData (page 594) to specify the piece of data in a control that you wish to set or get. You can
also pass these constants in the inTagName parameter of GetControlDataSize (page 596) if you wish to
determine the size of variable-length control data. These constants can also be used by custom control
definition functions that return the feature bit kControlSupportsDataAccess in response to a
kControlMsgGetFeatures message.

The data that your application sets or obtains can be of various types, dependent upon the control. Therefore,
the descriptions of the control data tag constants list the data types for the information that you can set in
the inData parameter to the SetControlData function and that you can get in the inBuffer parameter
to the GetControlData function.

Version Notes
The control data tag constants are available with Appearance Manager 1.0 and later.

User Pane Control Definition ID Constant
enum {
 kControlUserPaneProc = 256
};

Constants
kControlUserPaneProc

Resource ID: 16

User pane. This control definition is new with the Appearance Manager and is not supported unless
the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

822 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constant listed here in place of a control definition ID.

useWFont Constants
enum {
 useWFont = kControlUsesOwningWindowsFontVariant
};

Window Control Definition IDs
enum {
 kControlWindowHeaderProc = 336,
 kControlWindowListViewHeaderProc = 337
};

Constants
kControlWindowHeaderProc

Resource ID: 21

Window header. This control definition is new with the Appearance Manager and is not supported
unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

kControlWindowListViewHeaderProc
Resource ID: 21

Window list view header. This control definition is new with the Appearance Manager and is not
supported unless the Appearance Manager is available.

Available in Mac OS X v10.0 and later.

Declared in HIContainerViews.h.

Discussion
When creating a control, your application supplies a control definition ID to one of the Control Manager
control-creation functions or to the control resource; see 'CNTL'. The control definition ID indicates the type
of control to create. A control definition ID is an integer that contains the resource ID of a control definition
function in its upper 12 bits and a variation code in its lower 4 bits. A control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

Constants 823
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

A control definition function determines how a control generally looks and behaves. Control definition
functions are stored as resources of type 'CDEF'. Various Control Manager functions call a control definition
function whenever they need to perform some control-dependent action, such as drawing the control on
the screen. For more information on how to create a control definition function, see
ControlDefProcPtr (page 677).

A control definition function, in turn, can use a variation code to describe variations of the same basic control.
For example, all pop-up arrows share the same basic control definition function, which is stored in a resource
of type 'CDEF' and has a resource ID of 12. The standard pop-up arrow is large and points to the right; it
has a control definition ID of 192. A variation of this is a large, left-pointing arrow, which has a control definition
ID of 193. Still another variation, in which the arrow points up, has a control definition ID of 194.

Your application can use the constants listed here in place of control definition IDs.

Window Control Data List Header Tag Constant
enum {
 kControlWindowHeaderIsListHeaderTag = 'islh'
};

Constants
kControlWindowHeaderIsListHeaderTag

Set to true if the control is to draw as a list header. Available in Mac OS X v10.3 and later.

Data type returned or set: Boolean

Available in Mac OS X v10.3 and later.

Declared in HIContainerViews.h.

Result Codes

The table below lists the result codes returned by Control Manager functions.

DescriptionValueResult Code

You calledSetControlProperty,GetControlProperty,
or a similar function with an illegal property creator
OSType.

-5603controlPropertyInvalid

Available in Mac OS X v10.0 and later.

The property tag and creator combination does not exist
for the specified control.

-5604controlPropertyNotFoundErr

Available in Mac OS X v10.0 and later.

824 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

DescriptionValueResult Code

In general, this return value means a control, window, or
menu definition does not support the message/event that
underlies an API call. For example, if you call
GetControlFeatures on a control whose control
definition function doesn’t support “new messages” (the
new group of CDEF messages that came into existence
with the Appearance Manager on Mac OS 8),
GetControlFeatures will return this error.

-30580errMessageNotSupported

Available in Mac OS X v10.0 and later.

Returned from GetControlData and SetControlData
if the control doesn’t support the tag name and/or part
code that is passed in. It can also be returned from other
functions that are essentially wrappers around
GetControlData and SetControlData (such as
SetControlFontStyle).

-30581errDataNotSupported

Available in Mac OS X v10.0 and later.

The control you passed to a focusing function (such as
SetKeyboardFocus) doesn’t support focus. On Mac OS
X, you’re likely to receive errCouldntSetFocus or
eventNotHandledErr i instead.

-30582errControlDoesntSupportFocus

Available in Mac OS X v10.0 and later.

The specified window does not support focus.-30583errWindowDoesntSupportFocus

Available in Mac OS X v10.0 and later.

This is a variant of (and serves the same purpose as)
controlHandleInvalidErr. Various Control Manager
functions return this error if one of the specified controls
is NULL or otherwise invalid.

-30584errUnknownControl

Available in Mac OS X v10.0 and later.

The focus couldn’t be set to a given control or advanced
through a hierarchy of controls. This could be because the
control doesn’t support focusing, the control isn’t currently
embedded in a window, or you are attempting to advance
focus in a window that contains no focusable controls.

-30585errCouldntSetFocus

Available in Mac OS X v10.0 and later.

No root control exists. Some examples of when you might
receive this error include: 1) You called GetRootControl
before anyone called CreateRootControl for a given
non-compositing window. 2) You called a Control Manager
function (such as ClearKeyboardFocus or
AutoEmbedControl) that can only do its work if there’s
a root control in the window, yet there’s no root control.

-30586errNoRootControl

Available in Mac OS X v10.0 and later.

Result Codes 825
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

DescriptionValueResult Code

Returned by CreateRootControl if a root control already
exists for the specified control.

-30587errRootAlreadyExists

Available in Mac OS X v10.0 and later.

The ControlPartCode you passed to a Control Manager
function is out of range, invalid, or otherwise unsupported.
For example, GetControlRegion returns
errInvalidPartCode if you pass kControlNoPart.

-30588errInvalidPartCode

Available in Mac OS X v10.0 and later.

You called CreateRootControl after creating one or
more non-root controls in a window, which is illegal; if you
want an embedding hierarchy on a given window, you
must call CreateRootControl before creating any other
controls for a given window.This is never returned on Mac
OS X, because a root control is created automatically (if it
doesn’t already exist) the first time any nonroot control is
created in a window.

-30589errControlsAlreadyExist

Available in Mac OS X v10.0 and later.

The control does not support embedding. Returned, for
example, by GetIndexedSubControl and
EmbedControl.

-30590errControlIsNotEmbedder

Available in Mac OS X v10.0 and later.

You called GetControlData or SetControlData with a
buffer whose size does not match the size of the data you
are attempting to get or set.

-30591errDataSizeMismatch

Available in Mac OS X v10.0 and later.

You called TrackControl, HandleControlClick, or a
similar mouse tracking function, on a control that is
invisible or disabled. You cannot track controls that are
invisible or disabled.

-30592errControlHiddenOrDisabled

Available in Mac OS X v10.0 and later.

The window region code is invalid.-30593errWindowRegionCodeInvalid

Available in Mac OS X v10.0 and later.

You called EmbedControl (or a similar function) with the
same control in the parent and child parameters. In other
words, you cannot embed a control into itself.

-30594errCantEmbedIntoSelf

Available in Mac OS X v10.0 and later.

You attempted to embed the root control in another
control.

-30595errCantEmbedRoot

Available in Mac OS X v10.0 and later.

826 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

DescriptionValueResult Code

You called GetDialogItemAsControl on a dialog item
(such as a kHelpDialogItem) that is not represented by
a control.

-30596errItemNotControl

Available in Mac OS X v10.0 and later.

You called GetControlData or SetControlData with a
buffer that represents a versioned structure, but the version
is unsupported by the control definition. This can happen
with the Tabs control and the kControlTabInfoTag.

-30597controlInvalidDataVersionErr

Available in Mac OS X v10.0 and later.

The control reference passed in was invalid.-30599controlHandleInvalidErr

Available in Mac OS X v10.0 and later.

Result Codes 827
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

828 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 6

Control Manager Reference

Framework: Carbon/Carbon.h

Declared in Dialogs.h

Overview

Your application can use the Dialog Manager to alert users to unusual situations and to solicit information
from users. For example, in some situations your application might not be able to carry out a command
normally, and in other situations the user must specify multiple parameters before your application can
execute a command. For circumstances like these, the Macintosh user interface includes these two features:

 ■ alerts–including alert sounds and alert boxes–which warn the user whenever an unusual or potentially
undesirable situation occurs within your application

 ■ dialog boxes, which allow the user to provide additional information or to modify settings before your
application carries out a command

Virtually all applications need to implement alerts and dialog boxes. To avoid needless development effort,
use the Dialog Manager to implement alerts and to create most dialog boxes. It is possible, however–and
sometimes desirable–to bypass the Dialog Manager and instead use Window Manager, Control Manager,
QuickDraw, and Event Manager routines to create or respond to events in complex dialog boxes.

Carbon supports the majority of the Dialog Manager. However, your application must access Dialog Manager
data structures only through the supplied accessor functions. Furthermore, your application must use the
functions provided for creating and disposing of Dialog Manager data structures.

Functions by Task

Creating Alert Boxes

StandardAlert (page 887)
Displays a standard alert box.

Alert (page 834)
Displays an alert box and/or plays an alert sound.

StopAlert (page 889)
Displays an alert box with a stop icon and/or plays an alert sound.

NoteAlert (page 874)
Displays an alert box with a note icon and/or plays an alert sound.

Overview 829
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

CautionAlert (page 839)
Displays an alert box with a caution icon and/or plays an alert sound.

GetAlertStage (page 850)
Determines the stage of the last occurrence of an alert.

ResetAlertStage (page 876)
Resets the current alert stage to the first alert stage.

Creating and Disposing of Dialog Boxes

GetNewDialog (page 858)
Creates a dialog box from a resource-based description.

NewFeaturesDialog (page 871)
Creates a dialog box from information passed in memory.

NewDialog (page 870)
Creates a dialog box from information passed in memory.

NewColorDialog (page 868)
Creates a dialog box from information passed in memory.

CloseDialog (page 840)
Dismisses a dialog box without disposing of the dialog structure.

DisposeDialog (page 847)
Dismisses a dialog box for which the Dialog Manager supplies memory and disposes of the dialog
structure.

Displaying Dialog Boxes and Items

DrawDialog (page 849)
Draws the entire contents of a specified dialog box.

HideDialogItem (page 861)
Makes an item in a dialog box invisible.

ShowDialogItem (page 885)
Redisplays an item that has been hidden by HideDialogItem.

Filtering Dialog Box Events

GetModalDialogEventMask (page 857)
Obtains the events to be received by the ModalDialog function.

SetModalDialogEventMask (page 884)
Specifies the events to be received by the ModalDialog function.

Handling Events in Dialog Boxes

ModalDialog (page 865)
Handles events while your application displays a modal or movable modal dialog box.

830 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

IsDialogEvent (page 863)
Determines whether a modeless dialog box or a movable modal dialog box is active when an event
occurs.

DialogSelect (page 845)
Handles most of the events inside the dialog box after you have determined that an event related to
an active modeless dialog box or an active movable modal dialog box has occurred.

UpdateDialog (page 890)
Redraws the update region of a specified dialog box.

Handling Text in Alert and Dialog Boxes

ParamText (page 875)
Replaces the text strings in the static text items of your alert or dialog boxes while your application
is running.

SetDialogItemText (page 882)
Sets the text string for static text and editable text fields.

GetDialogItemText (page 854)
Obtains the text string contained in an edit text or a static text item.

SelectDialogItemText (page 877)
Selects and highlights text contained in an edit text item.

DialogCut (page 844)
Handles the Cut editing command when a dialog box containing an edit text item is active.

DialogCopy (page 844)
Handles the Copy editing command when a dialog box containing an edit text item is active.

DialogPaste (page 845)
Handles the Paste editing command when a dialog box containing an edit text item is active.

DialogDelete (page 845)
Handles the Delete editing command when a dialog box containing an edit text item is active.

Initializing the Dialog Manager

SetDialogFont (page 880)
Sets the font used in static and edit text items.

Manipulating Items in Dialog Boxes and Alert Boxes

SetDialogCancelItem (page 878)
Sets the cancel item for a dialog box.

GetDialogCancelItem (page 851)
Returns the item number of the cancel item previously set with SetDialogCancelItem.

SetDialogDefaultItem (page 879)
Sets the default item for a dialog box and draws an appropriate border around the default item.

Functions by Task 831
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

GetDialogDefaultItem (page 851)
Returns the item number of the default item currently set for the standard filter function.

GetDialogItemAsControl (page 853)
Obtains the control handle for a dialog item in an embedding hierarchy.

GetDialogItem (page 852)
Obtains a handle to a dialog item.

SetDialogItem (page 881)
Sets or changes information for a dialog item.

GetDialogKeyboardFocusItem (page 854)
Returns the item number of the editable text item in a dialog box that has keyboard focus.

SetDialogTracksCursor (page 883)
Determines whether the Dialog Manager tracks the cursor’s movements and changes the cursor to
an I-beam whenever it is over an edit dialog box.

FindDialogItem (page 849)
Determines the item number of an item at a particular location in a dialog box.

MoveDialogItem (page 867)
Moves a dialog item to a specified location in a window.

SizeDialogItem (page 886)
Sizes a dialog item.

AutoSizeDialog (page 838)
Automatically resizes static text fields and their dialog boxes to accommodate changed static text.

AppendDialogItemList (page 835)
Adds items to an existing dialog box while your program is running.

AppendDITL (page 836)
Adds items to an existing dialog box while your application is running.

ShortenDITL (page 885)
Removes items from an existing dialog box while your application is running.

CountDITL (page 841)
Determines the number of items in a dialog box.

Simulating User Responses in Dialog Boxes

GetDialogTimeout (page 856)
Obtains the original countdown duration, the time remaining, and the item selection to be simulated
for a specified modal dialog box.

SetDialogTimeout (page 882)
Simulates an item selection in a modal dialog box after a specified amount of time elapses.

Using the Standard Filter Function

StdFilterProc (page 888)
Handles standard event filtering for a dialog box.

GetStdFilterProc (page 860)
Returns a pointer to the standard filter function.

832 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Miscellaneous

CloseStandardSheet (page 841)

CreateStandardAlert (page 842)
Creates an alert containing standard elements and using standard formatting rules.

CreateStandardSheet (page 842)
Creates an alert containing standard elements and using standard formatting rules, and prepares it
to be displayed as a sheet.

DisposeModalFilterUPP (page 848)

DisposeModalFilterYDUPP (page 848)

DisposeUserItemUPP (page 849)

GetDialogFromWindow (page 852)

GetDialogPort (page 855)

GetDialogTextEditHandle (page 856)

GetDialogWindow (page 857)

GetParamText (page 859)

GetStandardAlertDefaultParams (page 860)
Fills out an AlertStdCFStringAlertParamRec with default values: - not movable - no help button
- default button with title "OK" - no cancel or other buttons.

InsertDialogItem (page 862)

InvokeModalFilterUPP (page 862)

InvokeModalFilterYDUPP (page 863)

InvokeUserItemUPP (page 863)

NewModalFilterUPP (page 873)

NewModalFilterYDUPP (page 873)

NewUserItemUPP (page 873)

RemoveDialogItems (page 876)

Functions by Task 833
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

RunStandardAlert (page 877)
Shows and runs a standard alert using a modal dialog loop.

SetPortDialogPort (page 884)

Functions

Alert
Displays an alert box and/or plays an alert sound.

DialogItemIndex Alert (
 SInt16 alertID,
 ModalFilterUPP modalFilter
);

Parameters
alertID

The resource ID of an alert resource and extended alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the requested alert. See ‘alrx’ for a
description of the extended alert resource.

modalFilter
A universal procedure pointer for a filter function that responds to events not handled by the
ModalDialog (page 865) function. If you set this parameter to null, the Dialog Manager uses the
standard event filter function.

Return Value
If no alert box is to be drawn at the current alert stage or the 'ALRT' resource is not found, Alert returns
–1 otherwise, it creates and displays the alert box and returns the item number of the control selected by
the user see “Alert Button Constants” (page 904). See the description of the DialogItemIndex data type.

Discussion
The Alert function displays an alert box or, if appropriate for the alert stage, plays an alert sound instead
of or in addition to displaying the alert box. The Alert function creates the alert defined in the specified
alert resource and its corresponding extended alert resource. The function calls the current alert sound
function and passes it the sound number specified in the alert resource for the current alert stage. If no alert
box is to be drawn at this stage, Alert returns –1 otherwise, it uses the NewDialog function to create and
display the alert box. The default system window colors are used unless your application provides an alert
color table resource with the same resource ID as the alert resource. The Alert function uses the
ModalDialog (page 865) function to get and handle most events for you.

The Alert function does not display a default icon in the upper-left corner of the alert box you can leave
this area blank, or you can specify your own icon in the alert’s item list resource, which in turn is specified in
the alert resource.

The Alert function continues calling ModalDialog until the user selects an enabled control (typically a
button), at which time the Alert function removes the alert box from the screen and returns the item number
of the selected control. Your application then responds as appropriate when the user clicks this item.

834 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Your application should never draw its own default rings. Prior to Mac OS 8, the Alert function would only
redraw the default button ring once and never redraw it on an update event. However, when Appearance
is available, default rings do redraw when you call Alert.

See also the functions NoteAlert (page 874) , CautionAlert (page 839) , and StopAlert (page 889).

Special Considerations

If you need to display an alert box while your application is running in the background or is otherwise invisible
to the user, call AEInteractWithUser

The Dialog Manager uses the system alert sound as the error sound unless you change it by calling the
ErrorSound function .

Version Notes
This function was changed with Appearance Manager 1.0 to support the extended alert ('alrx') resource.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

AppendDialogItemList
Adds items to an existing dialog box while your program is running.

OSErr AppendDialogItemList (
 DialogRef dialog,
 SInt16 ditlID,
 DITLMethod method
);

Parameters
dialog

A pointer to the dialog box to which the items in the item list resource specified in the ditlID
parameter are to be appended.

ditlID
The resource ID of the item list resource whose items are to be appended to the dialog box specified
in the dialog parameter.

Functions 835
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

method
The manner in which the new items are to be displayed in the dialog box.

If you use the overlayDITL constant, AppendDialogItemList superimposes the appended items
over the dialog box by interpreting the coordinates of the display rectangles for the appended items
(as specified in their item list resource) as local coordinates within the dialog box.

If you use the appendDITLRight constant, AppendDialogItemList appends the items to the right
of the dialog box by positioning the display rectangles of the appended items relative to the upper-right
coordinate of the dialog box. The AppendDialogItemList function automatically expands the
dialog box to accommodate the new dialog items.

If you use the appendDITLBottom constant, AppendDialogItemList appends the items to the
bottom of the dialog box by positioning the display rectangles of the appended items relative to the
lower-left coordinate of the dialog box. The AppendDialogItemList function automatically expands
the dialog box to accommodate the new dialog items.

You can append a list of items relative to an existing item by passing a negative number. The absolute
value of this number is interpreted as the item in the dialog box relative to which the new items are
to be positioned. For example, if you pass -2, the display rectangles of the appended items are offset
relative to the upper-left corner of item number 2 in the dialog box.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
To be Appearance-compliant, your program should use the AppendDialogItemList function rather than
the AppendDITL function. Unlike AppendDITL, the AppendDialogItemList function takes a 'DITL'
resource ID instead of a handle as the parameter describing the dialog item list to be appended, and it
properly appends entries from a dialog font table ('dftb') resource, if there is a 'dftb' resource with the
same resource ID as the 'DITL' resource.

The AppendDialogItemList function adds the items in the item list resource specified in the parameter
ditlID to the items of a dialog box. This is especially useful if several dialog boxes share a single item list
resource, because you can use AppendDialogItemList to add items that are appropriate for individual
dialog boxes. Your application can use the Resource Manager function GetResource to get a handle to the
item list resource whose items you wish to add.

You typically create an invisible dialog box, call the AppendDialogItemList function, then make the dialog
box visible by using the Window Manager function ShowWindow.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

AppendDITL
Adds items to an existing dialog box while your application is running.

836 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

void AppendDITL (
 DialogRef theDialog,
 Handle theHandle,
 DITLMethod method
);

Parameters
theDialog

A pointer to a dialog structure. This is the dialog structure to which you will add the item list resource
specified in the parameter theHandle.

theHandle
A handle to the item list resource whose items you want to append to the dialog box. To avoid item
number conflicts, AppendDITL assigns new numbers to the items you are adding. For example, if
you have a dialog with item numbers 1-5, and you use AppendDITL to add a 'DITL' resource
containing item numbers 1-3, those become item numbers 6-8 in the dialog.

method
The manner in which you want the new items to be displayed in the existing dialog box. You can
pass a negative value to offset the appended items from a particular item in the existing dialog box.
You can also pass one of the values defined by the DITLMethod constant. See “Dialog Item List Display
Constants” (page 913) for possible values.

Discussion
The AppendDITL function adds the items specified in the theHandle parameter to the items of a dialog
box (handle-based). This function is especially useful if several dialog boxes share a single item list resource,
because you can use AppendDITL to add items that are appropriate for individual dialog boxes. Your
application can use the Resource Manager function GetResource to get a handle to the item list resource
whose items you wish to add.

In the parameter method, you specify how to append the new items, as follows:

 ■ If you use the overlayDITL constant, AppendDITL superimposes the appended items over the dialog
box. That is, AppendDITL interprets the coordinates of the display rectangles for the appended items
(as specified in their item list resource) as local coordinates within the dialog box.

 ■ If you use the appendDITLRight constant, AppendDITL appends the items to the right of the dialog
box by positioning the display rectangles of the appended items relative to the upper-right coordinate
of the dialog box. The AppendDITL function automatically expands the dialog box to accommodate
the new dialog items.

 ■ If you use the appendDITLBottom constant, AppendDITL appends the items to the bottom of the
dialog box by positioning the display rectangles of the appended items relative to the lower-left coordinate
of the dialog box. The AppendDITL function automatically expands the dialog box to accommodate
the new dialog items.

 ■ You can also append a list of items relative to an existing item by passing a negative number in the
parameter method. The absolute value of this number is interpreted as the item in the dialog box relative
to which the new items are to be positioned. For example, if you pass –2, the display rectangles of the
appended items are offset relative to the upper-left corner of item number 2 in the dialog box.

You typically create an invisible dialog box, call the AppendDITL function, then make the dialog box visible
by using the Window Manager function ShowWindow.

Functions 837
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Special Considerations

The AppendDITL function modifies the contents of the dialog box (for instance, by enlarging it). To use an
unmodified version of the dialog box at a later time, your application should use the Resource Manager
function ReleaseResource to release the memory occupied by the appended item list resource. Otherwise,
if your application calls AppendDITL to add items to that dialog box again, the dialog box remains modified
by your previous call—for example, it will still be longer at the bottom if you previously used the
appendDITLBottom constant.

Before calling AppendDITL, you should make sure that it is available by using the Gestalt function with
the gestaltDITLExtAttr selector. Test the bit indicated by the gestaltDITLExtPresent constant in
the response parameter. If the bit is set, then AppendDITL is available.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

AutoSizeDialog
Automatically resizes static text fields and their dialog boxes to accommodate changed static text.

OSErr AutoSizeDialog (
 DialogRef inDialog
);

Parameters
inDialog

A pointer to a dialog box.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
The AutoSizeDialog function is useful in situations such as localization, where the size of a static text field
(and the dialog box that contains it) may need to be altered to accommodate a change in the size of the
static text.

For each static text item AutoSizeDialog finds in the item list resource, it adjusts the static text field and
the bottom of the dialog box window to accommodate the text. Any items below a static text field are moved
down. If the dialog box is visible when this function is called, it is hidden, resized, and then shown. If the
dialog box has enough room to show the text as is, no resizing is done.

Note that the AutoSizeDialog function does not process update events for your dialog box, so your program
must call the DrawDialog function or the DialogSelect function to process the update event generated
from showing the window.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

838 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Declared In
Dialogs.h

CautionAlert
Displays an alert box with a caution icon and/or plays an alert sound.

DialogItemIndex CautionAlert (
 SInt16 alertID,
 ModalFilterUPP modalFilter
);

Parameters
alertID

The resource ID of an alert resource and extended alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the requested alert. See ‘alrx’ for a
description of the extended alert resource.

modalFilter
A universal procedure pointer for a filter function that responds to events not handled by the
ModalDialog (page 865) function. If you set this parameter to null, the Dialog Manager uses the
standard event filter function.

Return Value
If no alert box is to be drawn at the current alert stage, CautionAlert returns –1 otherwise, it uses NewDialog
to create and display the alert box and returns the item hit; see “Alert Button Constants” (page 904). See the
description of the DialogItemIndex data type.

Discussion
Displays an alert box with a caution icon in its upper-left corner or, if appropriate for the alert stage, to play
an alert sound instead of or in addition to displaying the alert box.

The CautionAlert function is the same as the Alert (page 834) function except that, before drawing the
items in the alert box, CautionAlert draws the caution icon in the upper-left corner. The caution icon has
resource ID 2, which you can also specify with the constant kCautionIcon. By default, the Dialog Manager
uses the standard caution icon from the System file. You can change this icon by providing your own 'ICON'
resource with resource ID 2.

Use a caution alert to alert the user of an operation that may have undesirable results if it’s allowed to
continue. Give the user the choice of continuing the action (by clicking an OK button) or stopping it (by
clicking a Cancel button).

Your application should never draw its own default rings or alert icons. Prior to Mac OS 8, the CautionAlert
function would only redraw the alert icon and default button ring once and never redraw them on an update
event. However, when Appearance is available, alert icons and default rings do redraw when you call
CautionAlert.

See also the functions NoteAlert (page 874) and StopAlert (page 889).

Special Considerations
Version Notes
This function was changed with Appearance Manager 1.0 to support the extended alert ('alrx') resource.

Availability
Available in Mac OS X v10.0 and later.

Functions 839
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Not available to 64-bit applications.

Declared In
Dialogs.h

CloseDialog
Dismisses a dialog box without disposing of the dialog structure.

void CloseDialog (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Return Value
Discussion
The CloseDialog function removes a dialog box from the screen and deletes it from the window list. The
CloseDialog function releases the memory occupied by

 ■ the data structures associated with the dialog box (such as its structure, content, and update regions)

 ■ all the items in the dialog box (except for pictures and icons, which might be shared by other resources)
and any data structures associated with them

Generally, you should provide memory for the dialog structure of modeless dialog boxes when you create
them. (You can let the Dialog Manager provide memory for modal and movable modal dialog boxes.) You
should then use CloseDialog to close a modeless dialog box when the user clicks the close box or chooses
Close from the File menu.

Because CloseDialog does not dispose of the dialog resource or the item list resource, it is important to
make these resources purgeable. Unlike GetNewDialog (page 858) , NewColorDialog (page 868) does not
use a copy of the item list resource. Thus, if you use NewColorDialog to create a dialog box, you may want
to use CloseDialog to keep the item list resource in memory even if you didn’t supply a pointer to the
memory.

Carbon Porting Notes

The CloseDialog function is not supported because developers do not allocate their own memory for
dialog boxes in Carbon. Use the DisposeDialog function to dismiss a dialog box instead.

Declared In
Dialogs.h

840 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

CloseStandardSheet

OSStatus CloseStandardSheet (
 DialogRef inSheet,
 UInt32 inResultCommand
);

Parameters
inSheet
inResultCommand

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

CountDITL
Determines the number of items in a dialog box.

DialogItemIndex CountDITL (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Return Value
The number of current items in a dialog box. See the description of the DialogItemIndex data type.

Discussion
You typically use CountDITL in conjunction with ShortenDITL (page 885) to remove items from a dialog
box.

Special Considerations

Before calling CountDITL, you should make sure that it is available by using the Gestalt function with the
gestaltDITLExtAttr selector. Test the bit indicated by the gestaltDITLExtPresent constant in the
response parameter. If the bit is set, then CountDITL is available.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 841
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

CreateStandardAlert
Creates an alert containing standard elements and using standard formatting rules.

OSStatus CreateStandardAlert (
 AlertType alertType,
 CFStringRef error,
 CFStringRef explanation,
 const AlertStdCFStringAlertParamRec *param,
 DialogRef *outAlert
);

Parameters
alertType

The type of alert to create. For a list of possible values, see “Alert Type Constants” (page 907).

error
The error string to display.

explanation
The explanation string to display. May be NULL or empty to display no explanation.

param
The parameter block describing how to create the alert. May be NULL.

outAlert
A pointer to a variable that, on return, refers to the new alert.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
This function should be used in conjunction with RunStandardAlert (page 877). After
CreateStandardAlert returns, the alert is still invisible. RunStandardAlert shows the alert and runs a
modal dialog loop to process events in the alert.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Dialogs.h

CreateStandardSheet
Creates an alert containing standard elements and using standard formatting rules, and prepares it to be
displayed as a sheet.

842 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

OSStatus CreateStandardSheet (
 AlertType alertType,
 CFStringRef error,
 CFStringRef explanation,
 const AlertStdCFStringAlertParamRec *param,
 EventTargetRef notifyTarget,
 DialogRef *outSheet
);

Parameters
alertType

The type of alert to create. For a list of possible values, see “Alert Type Constants” (page 907).

error
The error string to display.

explanation
The explanation string to display. May be NULL or empty to display no explanation.

param
The parameter block describing how to create the alert. May be NULL.

notifyTarget
The event target to be notified when the user dismisses the sheet. The caller should install an event
handler on this target for the kEventProcessCommand event. May be NULL if the caller does not
need the command event to be sent to any target. For more information, see the Discussion below.

outSheet
A pointer to a variable that, on return, refers to the new alert.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
This function should be used in conjunction withShowSheetWindow (page 1958). AfterCreateStandardSheet
returns, the alert is still invisible. ShowSheetWindow will show the alert as a sheet and then return. Events
in the sheet are handled asynchronously; the application should be prepared for the sheet window to be
part of its window list while running its own event loop.

When a button in the sheet is pressed, the event target passed to CreateStandardSheet will receive a
command event with one of the following commands: kHICommandOK, kHICommandCancel, or
kHICommandOther. The system takes care of closing the sheet and releasing the alert. Therefore after using
ShowSheetWindow (page 1958), you do not need to callHideSheetWindow (page 1872) orDisposeDialog (page
847).

Typically, the event target you pass in the notifyTarget parameter is the parent window of the sheet. A
standard practice is to install a command event handler on the parent window just before showing the sheet
window, and to remove the handler from the parent window after the sheet has been closed.

It is also possible to install a handler on the sheet window itself, in which case you would pass NULL in the
notifyTarget parameter, since the command event is automatically sent to the sheet window already. If
you install a handler on the sheet itself, make sure to return eventNotHandledErr from your handler,
because CreateStandardSheet installs its own handler on the sheet and that handler must be allowed to
run to close the sheet window and release the alert.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 843
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Related Sample Code
QTCarbonShell

Declared In
Dialogs.h

DialogCopy
Handles the Copy editing command when a dialog box containing an edit text item is active.

void DialogCopy (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Discussion
The DialogCopy function checks whether the dialog box has any edit text items and, if so, applies the
TextEdit function TECopy to the selected text. Your application should test whether a dialog box is the
frontmost window when handling mouse-down events in the Edit menu and then call this function when
appropriate.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

DialogCut
Handles the Cut editing command when a dialog box containing an edit text item is active.

void DialogCut (
 DialogRef theDialog
);

Parameters
theDialog

On input, a pointer to a dialog structure.

Discussion
The DialogCut function checks whether the dialog box has any edit text items and, if so, applies the TextEdit
function TECut to the selected text. Your application should test whether a dialog box is the frontmost
window when handling mouse-down events in the Edit menu and then call this function when appropriate.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

844 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

DialogDelete
Handles the Delete editing command when a dialog box containing an edit text item is active.

void DialogDelete (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Discussion
The DialogDelete function checks whether the dialog box has any edit text items and, if so, applies the
TextEdit function TEDelete to the selected text. Your application should test whether a dialog box is the
frontmost window when handling mouse-down events in the Edit menu and then call this function when
appropriate.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

DialogPaste
Handles the Paste editing command when a dialog box containing an edit text item is active.

void DialogPaste (
 DialogRef theDialog
);

Parameters
theDialog

On input, a pointer to a dialog structure.

Discussion
The DialogPaste function checks whether the dialog box has any edit text items and, if so, applies the
TextEdit function TEPaste to the selected edit text item. Your application should test whether a dialog box
is the frontmost window when handling mouse-down events in the Edit menu and then call this function
when appropriate.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

DialogSelect
Handles most of the events inside the dialog box after you have determined that an event related to an
active modeless dialog box or an active movable modal dialog box has occurred.

Functions 845
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Boolean DialogSelect (
 const EventRecord *theEvent,
 DialogRef *theDialog,
 DialogItemIndex *itemHit
);

Parameters
theEvent

A pointer to an event structure returned by an Event Manager function such as WaitNextEvent.

theDialog
A pointer to a dialog structure for the dialog box where the event occurred.

itemHit
A pointer to a short integer. DialogSelect returns a number corresponding to the position of an
item within the item list resource of the active dialog box.

Return Value
A Boolean value. If the event is an activate or update event for a dialog box, DialogSelect activates or
updates it and returns false. If the event involves an enabled item, DialogSelect returns a function result
of true.

Discussion
The DialogSelect function handles most of the events relating to a dialog box. Through its itemHit
parameter, it returns the item number of the item selected by the user. Through the parameter theDialog,
it returns a pointer to the dialog structure for the dialog box where the event occurred. In all other cases,
the DialogSelect function returns false. When DialogSelect returns true, do whatever is appropriate
as a response to the event involving that item in that particular dialog box; when it returns false, do nothing.

Generally, only controls should be enabled in a dialog box; therefore your application should normally respond
only when DialogSelect returns true after the user clicks an enabled control, such as the OK button.

The DialogSelect function first obtains a pointer to the window containing the event. For update and
activate events, the event structure contains the window pointer. For other types of events, DialogSelect
calls the Window Manager function FrontWindow. The Dialog Manager then makes this window the current
graphics port by calling the QuickDraw function SetPort. Then DialogSelect prepares to handle the
event by setting up text information if there are any edit text items in the active dialog box.

When an item is a control defined in a control resource, the rectangle added to the update region is the
rectangle defined in the control resource, not the display rectangle defined in the item list resource.

The DialogSelect function handles the event as follows:

 ■ In response to an activate or update event for the dialog box, DialogSelect activates or updates its
window and returns false.

 ■ If a key-down event or an auto-key event occurs and there’s an edit text item in the dialog box,
DialogSelect uses TextEdit to handle text entry and editing, and DialogSelect returns true for a
function result. Through its itemHit parameter, DialogSelect returns the item number.

 ■ If a key-down event or an auto-key event occurs and there’s no edit text item in the dialog box,
DialogSelect returns false.

 ■ If the user presses the mouse button while the cursor is in an edit text item, DialogSelect responds
to the mouse activity as appropriate—that is, either by displaying an insertion point or by selecting text.
If the edit text item is disabled, DialogSelect returns false. If the edit text item is enabled,

846 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

DialogSelect returns true and through its itemHit parameter returns the item number. Normally,
edit text items are disabled, and you use the GetDialogItemText function to read the information in
the items only after the OK button is clicked.

 ■ If the user presses the mouse button while the cursor is in a control, DialogSelect tracks the control.
If the user releases the mouse button while the cursor is in an enabled control, DialogSelect returns
true for a function result and through its itemHit parameter returns the control’s item number. Your
application should respond appropriately—for example, by performing a command after the user clicks
the OK button.

 ■ If the user presses the mouse button while the cursor is in any other enabled item in the dialog box,
DialogSelect returns true for a function result and through its itemHit parameter returns the item’s
number. Generally, only controls should be enabled. If your application creates a complex control—such
as one that measures how far a dial is moved—your application must handle mouse events in that item
before passing the event to DialogSelect.

 ■ If the user presses the mouse button while the cursor is in a disabled item, or if it is in no item, or if any
other event occurs, DialogSelect does nothing.

 ■ If the event isn’t one that DialogSelect specifically checks for (if it’s a null event, for example), and if
there’s an edit text item in the dialog box, DialogSelect calls the TextEdit function TEIdle to make
the insertion point blink.

Special Considerations

Because DialogSelect handles only mouse-down events in a dialog box and key-down events in a dialog
box’s edit text items, you should handle other events as appropriate before passing them to DialogSelect.
Likewise, when DialogSelect calls the Control Manager function TrackControl , it does not allow you
to specify any action function necessary for anything more complex than a button, radio button, or checkbox.
If you need a more complex control (for example, one that measures how long the user holds down the
mouse button or how far the user has moved an indicator), you can create your own control or a picture or
an application-defined item that draws a control-like object in your dialog box. You must then test for and
respond to those events yourself.

Within dialog boxes, use the functions DialogCut (page 844), DialogCopy (page 844), DialogPaste (page
845), and DialogDelete (page 845) to support Cut, Copy, Paste, and Clear commands in edit text boxes.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

DisposeDialog
Dismisses a dialog box for which the Dialog Manager supplies memory and disposes of the dialog structure.

void DisposeDialog (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Functions 847
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Return Value
Discussion
The DisposeDialog function calls CloseDialog (page 840) and, in addition, releases the memory occupied
by the dialog box’s item list resource and the dialog structure. Call DisposeDialog when you’re done with
a dialog box if you pass null in the dStorage parameter to GetNewDialog (page 858) ,
NewColorDialog (page 868) , or NewDialog (page 870).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
ictbSample

Declared In
Dialogs.h

DisposeModalFilterUPP

void DisposeModalFilterUPP (
 ModalFilterUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DisposeModalFilterYDUPP

void DisposeModalFilterYDUPP (
 ModalFilterYDUPP userUPP
);

Parameters
userUPP

Carbon Porting Notes

This function is supported in Carbon because several QuickTime routines require it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

848 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

DisposeUserItemUPP

void DisposeUserItemUPP (
 UserItemUPP userUPP
);

Parameters
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DrawDialog
Draws the entire contents of a specified dialog box.

void DrawDialog (
 DialogRef theDialog
);

Parameters
theDialog

A pointer to a dialog structure.

Return Value
Discussion
The DrawDialog function draws all dialog items, calls the Control Manager function DrawOneControl to
draw all controls, and calls the TextEdit function TEUpdate to update all static and edit text items and to
draw their display rectangles. The DrawDialog function also calls the application-defined items’ draw
functions if the items’ rectangles are within the update region.

DialogSelect (page 845) , ModalDialog (page 865) , Alert (page 834) , StopAlert (page 889) ,
NoteAlert (page 874) , and CautionAlert (page 839) use DrawDialog automatically. If you use
GetNewDialog (page 858) to create a dialog box but don’t use any of these other Dialog Manager functions
when handling events in the dialog box, you can use DrawDialog to redraw the contents of the dialog box
when it’s visible. If the dialog box is invisible, first use the Window Manager function ShowWindow and then
use DrawDialog.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

FindDialogItem
Determines the item number of an item at a particular location in a dialog box.

Functions 849
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

DialogItemIndexZeroBased FindDialogItem (
 DialogRef theDialog,
 Point thePt
);

Parameters
theDialog

A pointer to a dialog structure.

thePt
The point (in local coordinates) where the mouse-down event occurred.

Return Value
When an embedding hierarchy is established, the FindDialogItem function returns the deepest control
selected by the user corresponding to the point specified in the thePt parameter. When an embedding
hierarchy does not exist, FindDialogItem performs a linear search of the item list resource and returns a
number corresponding to the hit item’s position in the item list resource. For example, it returns 0 for the
first item in the item list, 1 for the second, and 2 for the third. If the mouse is not over a dialog item,
FindDialogItem returns –1. See the description of the DialogItemIndexZeroBased data type.

Discussion
The function FindDialogItem is useful for changing the cursor when the user moves the cursor over a
particular item.

To get the proper item number before calling the GetDialogItem (page 852) function or the
SetDialogItem (page 881) function, add 1 to the result of FindDialogItem, as shown here:

theItem = FindDialogItem(theDialog, thePoint) + 1;

Note that FindDialogItem returns the item number of disabled items as well as enabled items.

Version Notes
This function was changed with Appearance Manager 1.0 to support embedding hierarchies.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetAlertStage
Determines the stage of the last occurrence of an alert.

SInt16 GetAlertStage (
 void
);

Parameters
Return Value
A number from 0 to 3 as the stage of the last occurrence of an alert.

Discussion
You can use the GetAlertStage function to ensure that your application deactivates the active window
only if an alert box is to be displayed at that stage.

850 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogCancelItem
Returns the item number of the cancel item previously set with SetDialogCancelItem.

SInt16 GetDialogCancelItem (
 DialogRef dialog
);

Parameters
dialog

On input, a pointer to the dialog structure for the dialog box whose cancel item you want to get.

Return Value
The item number of the cancel item previously set with the SetDialogCancelItem (page 878) function.

Discussion
If you don’t explicitly call GetDialogCanceltItem, the standard filter function treats item 2 as the cancel
item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogDefaultItem
Returns the item number of the default item currently set for the standard filter function.

SInt16 GetDialogDefaultItem (
 DialogRef dialog
);

Parameters
dialog

On input, a pointer to the dialog structure for the dialog box whose default item you want to get.

Return Value
The item number of the default item currently set for the standard filter function.

Discussion
If you don’t explicitly call GetDialogDefaultItem, the standard filter function treats item 1 as the default
item.

Functions 851
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogFromWindow

DialogRef GetDialogFromWindow (
 WindowRef window
);

Parameters
window

Return Value
See the description of the DialogRef data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogItem
Obtains a handle to a dialog item.

void GetDialogItem (
 DialogRef theDialog,
 DialogItemIndex itemNo,
 DialogItemType *itemType,
 Handle *item,
 Rect *box
);

Parameters
theDialog

A pointer to the dialog box to examine.

itemNo
The position of the item in the dialog box’s item list resource use FindDialogItem (page 849) to
determine this value.

itemType
A pointer to a short value. On return, the value identifies the item type of the dialog item requested
in the itemNo parameter.

item
A pointer to an item handle. On return the handle refers to the item specified in the itemNo parameter
or, for application-defined draw functions, a pointer (coerced to a handle) to the draw function.

852 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

box
A pointer to a rectangle. On return, the rectangle specifies the display rectangle (described in
coordinates local to the dialog box), for the item specified in the itemNo parameter.

Return Value
Discussion
The GetDialogItem function produces the item type, a handle to the item (or, for application-defined draw
functions, the function pointer), and the display rectangle for a specified item in an item list resource. When
a control hierarchy is present in the dialog box, GetDialogItem gets the appropriate information (for
example, a text handle) from the controls. If you wish to get a control handle for a dialog item in an embedding
hierarchy, see GetDialogItemAsControl (page 853).

You should call GetDialogItem before calling functions such as SetDialogItemText (page 882) that need
a handle to a dialog item.

See also the function SetDialogItem (page 881).

Version Notes
This function was changed with Appearance Manager 1.0 to support retrieving item information from controls.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
ictbSample

Declared In
Dialogs.h

GetDialogItemAsControl
Obtains the control handle for a dialog item in an embedding hierarchy.

OSErr GetDialogItemAsControl (
 DialogRef inDialog,
 DialogItemIndex inItemNo,
 ControlRef *outControl
);

Parameters
inDialog

A pointer to the dialog box to examine.

inItemNo
The position of an item in the dialog box’s item list.

outControl
A pointer to a control handle that, on return, refers to the embedded control.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916). The Control Manager result code
errItemNotControl indicates that the specified dialog item is not a control.

Functions 853
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Discussion
When an embedding hierarchy is established,GetDialogItemAsControlproduces a handle to the embedded
controls (except Help items). It should be used instead of GetDialogItem (page 852) when an embedding
hierarchy is established.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogItemText
Obtains the text string contained in an edit text or a static text item.

void GetDialogItemText (
 Handle item,
 Str255 text
);

Parameters
item

On input, a handle to an edit text or a static text item. To get this handle, call the “Alert Button
Constants” (page 904) function.

text
On output, a string containing the text of the item that is specified by the item parameter.

Discussion
The GetDialogItemText function will only return the first 255 characters in an edit text item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogKeyboardFocusItem
Returns the item number of the editable text item in a dialog box that has keyboard focus.

SInt16 GetDialogKeyboardFocusItem (
 DialogRef dialog
);

Parameters
dialog

On input, a pointer to the dialog structure for the dialog box whose currently focused item you want
to identify.

854 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Return Value
The number of the editable text item in a dialog box that currently has keyboard focus.

Discussion
When the Appearance Manager is available and an embedding hierarchy is established, you should call the
Control Manager function GetKeyboardFocus instead of GetDialogKeyboardFocusItem to return the
item number of the item in a dialog box that has keyboard focus.

The GetDialogKeyboardFocusItem function accesses the edit field in the dialog structure.
GetDialogKeyboardFocusItem should only be called when there is no embedding hierarchy in the dialog
box.

Version Notes
This function is not recommended with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogPort

CGrafPtr GetDialogPort (
 DialogRef dialog
);

Parameters
dialog

Return Value
See the QuickDraw Manager documentation for a description of the CGrafPtr data type.

Discussion
Special Considerations
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 855
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

GetDialogTextEditHandle

TEHandle GetDialogTextEditHandle (
 DialogRef dialog
);

Parameters
dialog

Return Value
See the TextEdit documentation for a description of the TEHandle data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogTimeout
Obtains the original countdown duration, the time remaining, and the item selection to be simulated for a
specified modal dialog box.

OSStatus GetDialogTimeout (
 DialogRef inDialog,
 DialogItemIndex *outButtonToPress,
 UInt32 *outSecondsToWait,
 UInt32 *outSecondsRemaining
);

Parameters
inDialog

A pointer to the dialog box to be examined.

outButtonToPress
On input, a pointer to a signed 16-bit integer. On return, a value representing the number within the
item list of the item that is to be selected. You may pass NULL for the outButtonToPress parameter
if you do not desire this information.

outSecondsToWait
On input, a pointer to an unsigned 32-bit integer. On return, a value specifying the number of seconds
that were originally set to elapse before the Dialog Manager simulates an item selection. You may
pass NULL for the outSecondsToWait parameter if you do not desire this information.

outSecondsRemaining
On input, a pointer to an unsigned 32-bit integer. On return, a value specifying the number of seconds
remaining before the Dialog Manager simulates an item selection. You may pass NULL for the
outSecondsRemaining parameter if you do not desire this information.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
Also see the function SetDialogTimeout (page 882).

856 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetDialogWindow

WindowRef GetDialogWindow (
 DialogRef dialog
);

Parameters
dialog

Return Value
See the QuickDraw Manager documentation for a description of the WindowRef data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Dialogs.h

GetModalDialogEventMask
Obtains the events to be received by the ModalDialog function.

OSStatus GetModalDialogEventMask (
 DialogRef inDialog,
 EventMask *outMask
);

Parameters
inDialog

A pointer to the dialog box for which you wish to obtain the event mask.

outMask
On input, a pointer to a unsigned 16-bit integer of type EventMask. On return, your application may
test the bits of this value to determine the event(s) that the dialog box is currently set to receive.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
Also see the function SetModalDialogEventMask (page 884).

Version Notes
This function is available with Mac OS 8.5 and later.

Functions 857
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

GetNewDialog
Creates a dialog box from a resource-based description.

DialogRef GetNewDialog (
 SInt16 dialogID,
 void *dStorage,
 WindowRef behind
);

Parameters
dialogID

The resource ID of a dialog resource and an extended dialog resource. The resource IDs for both
resources must be identical. If the dialog resource is missing, the Dialog Manager returns to your
application without creating the requested dialog box. See ‘DLOG’ and ‘dlgx’ for a description of
the dialog resource and the extended dialog resource, respectively.

dStorage
A pointer to the memory for the dialog structure. If you set this parameter to null, the Dialog Manager
automatically allocates a nonrelocatable block in your application heap.

behind
A pointer to the window behind which the dialog box is to be placed on the desktop. Set this parameter
to the window pointer (WindowPtr)-1L to bring the dialog box in front of all other windows.

Return Value
Returns a pointer to a dialog box. If none was created, returns null. See the description of the DialogRef
data type.

Discussion
The GetNewDialog function creates a dialog structure from information in a dialog resource and an extended
dialog resource (if it exists) and returns a pointer to the dialog structure. You can use this pointer with Window
Manager or QuickDraw functions to manipulate the dialog box. If the dialog resource specifies that the dialog
box should be visible, the dialog box is displayed. If the dialog resource specifies that the dialog box should
initially be invisible, use the Window Manager function ShowWindow to display the dialog box.

The dialog resource contains a resource ID that specifies both the dialog box’s item list ('DITL') resource
and its dialog font table ('dftb') resource. After calling the Resource Manager to read these resources into
memory (if they are not already in memory), GetNewDialog makes a copy of the 'DITL' resource and uses
that copy; thus you may have several dialog boxes with identical items.

If you supply a dialog color table ('dctb') resource with the same resource ID as the dialog resource,
GetNewDialog uses NewColorDialog and returns a pointer to a color graphics port. If no dialog color table
resource is present, GetNewDialog uses NewDialog to return a pointer to a black-and-white graphics port,
although system software draws the window frame using the system’s default colors. However, if the
Appearance Manager is available and the kDialogFlagsUseThemeBackground feature bit of the extended
dialog resource is set, then the 'dctb' resource is ignored and a color graphics port is created.

858 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Special Considerations

The GetNewDialog function doesn’t release the memory occupied by the resources. Therefore, your
application should mark all resources used for a dialog box as purgeable or you should release the resources
yourself.

If either the dialog resource or the item list resource can’t be read, the function result is null; your application
should test to ensure that null is not returned before performing any more operations with the dialog box
or its items.

As with all other windows, dialogs are created with an update region equal to their port rectangle. However,
if the dialog’s 'DLOG' resource specifies that the dialog be made visible upon creation, the Dialog Manager
draws the controls immediately and calls ValidRgn for each of their bounding rectangles. Other items are
not drawn until the first update event for the dialog box is serviced.

If you need to display an alert box while your application is running in the background or is otherwise invisible
to the user, call AEInteractWithUser

Version Notes
This function was changed with Appearance Manager 1.0 to support the extended dialog ('dlgx') resource
and the dialog font table ('dftb') resource.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
ictbSample

Declared In
Dialogs.h

GetParamText

void GetParamText (
 StringPtr param0,
 StringPtr param1,
 StringPtr param2,
 StringPtr param3
);

Parameters
param0
param1
param2
param3

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 859
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

GetStandardAlertDefaultParams
Fills out an AlertStdCFStringAlertParamRecwith default values: - not movable - no help button - default
button with title "OK" - no cancel or other buttons.

OSStatus GetStandardAlertDefaultParams (
 AlertStdCFStringAlertParamPtr param,
 UInt32 version
);

Parameters
param

The parameter block to initialize.

version
The parameter block version; pass kStdCFStringAlertVersionOne.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Dialogs.h

GetStdFilterProc
Returns a pointer to the standard filter function.

OSErr GetStdFilterProc (
 ModalFilterUPP *theProc
);

Parameters
theProc

A universal procedure pointer to a filter function. On output, the Dialog Manager provides a pointer
to its standard filter function.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
The GetStdFilterProc function gets a pointer to the standard filter function. You must dispatch the
function yourself using the CallModalFilterProc macro; see ModalFilterProcPtr (page 891).

You normally don’t need to use GetStdFilterProc unless your development environment doesn’t include
the code required to support StdFilterProc (page 888).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

860 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Declared In
Dialogs.h

HideDialogItem
Makes an item in a dialog box invisible.

void HideDialogItem (
 DialogRef theDialog,
 DialogItemIndex itemNo
);

Parameters
theDialog

A pointer to a dialog structure.

itemNo
A number corresponding to the position of an item in the dialog box’s item list resource.

Return Value
Discussion
The HideDialogItem function hides the item specified by itemNo by giving it a display rectangle that’s off
the screen. Specifically, if the left coordinate of the item’s display rectangle is less than 8192 (hexadecimal
0x2000), HideDialogItem adds 16,384 (hexadecimal 0x4000) to both the left and right coordinates of the
rectangle. If the item is already hidden (that is, if the left coordinate is greater than 8192), HideDialogItem
does nothing. To redisplay an item that’s been hidden by HideDialogItem, you can use the ShowDialogItem
function.

Special Considerations

If your application needs to display a number of dialog boxes that are similar except for one or two items,
it’s generally easier to modify the common elements using the AppendDITL (page 836) and
ShortenDITL (page 885) functions than to use the HideDialogItem and ShowDialogItem (page 885)
functions.

If you hid an edit text item, the next visible edit text item will be highlighted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 861
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

InsertDialogItem

OSStatus InsertDialogItem (
 DialogRef theDialog,
 DialogItemIndex afterItem,
 DialogItemType itemType,
 Handle itemHandle,
 const Rect *box
);

Parameters
theDialog
afterItem
itemType
itemHandle
box

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

InvokeModalFilterUPP

Boolean InvokeModalFilterUPP (
 DialogRef theDialog,
 EventRecord *theEvent,
 DialogItemIndex *itemHit,
 ModalFilterUPP userUPP
);

Parameters
theDialog
theEvent
itemHit
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

862 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

InvokeModalFilterYDUPP

Boolean InvokeModalFilterYDUPP (
 DialogRef theDialog,
 EventRecord *theEvent,
 short *itemHit,
 void *yourDataPtr,
 ModalFilterYDUPP userUPP
);

Parameters
theDialog
theEvent
itemHit
yourDataPtr
userUPP

Carbon Porting Notes

This function is supported in Carbon because several QuickTime routines require it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

InvokeUserItemUPP

void InvokeUserItemUPP (
 DialogRef theDialog,
 DialogItemIndex itemNo,
 UserItemUPP userUPP
);

Parameters
theDialog
itemNo
userUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

IsDialogEvent
Determines whether a modeless dialog box or a movable modal dialog box is active when an event occurs.

Functions 863
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Boolean IsDialogEvent (
 const EventRecord *theEvent
);

Parameters
theEvent

A pointer to an event structure returned by an Event Manager function such as WaitNextEvent.

Return Value
A Boolean value. If any event, including a null event, occurs when your dialog box is active, IsDialogEvent
returns true; otherwise, it returns false.

Discussion
When IsDialogEvent returns false, pass the event to the rest of your event-handling code. When
IsDialogEvent returns true, pass the event to DialogSelect (page 845) after testing for the events that
DialogSelect does not handle.

A dialog structure includes a window structure. When you use the GetNewDialog (page 858) ,
NewDialog (page 870) ,NewFeaturesDialog (page 871) , orNewColorDialog (page 868) functions to create
a dialog box, the Dialog Manager sets the windowKind field in the window structure to dialogKind. To
determine whether the active window is a dialog box, IsDialogEvent checks the windowKind field.

Before passing the event toDialogSelect, you should perform the following tests wheneverIsDialogEvent
returns true :

 ■ Check whether the event is a key-down event for the Return, Enter, Esc, or Command-period keystrokes.
When the user presses the Return or Enter key, your application should respond as if the user had clicked
the default button; when the user presses Esc or Command-period, your application should respond as
if the user had clicked the Cancel button. Use the Control Manager function HiliteControl to highlight
the applicable button for 8 ticks.

 ■ At this point, you may also want to check for and respond to any special events that you do not wish to
pass to DialogSelect (page 845) or that require special processing before you pass them to
DialogSelect. You would need to do this, for example, if the dialog box needs to respond to
disk-inserted events.

 ■ Check whether the event is an update event for a window other than the dialog box and, if it is, update
your window.

 ■ For complex items that you create, such as pictures or application-defined items that emulate complex
controls, test for and respond to mouse events inside those items as appropriate. When DialogSelect
calls the Control Manager function TrackControl, it does not allow you to specify the action function
necessary for anything more complex than a button, radio button, or checkbox. If you need a more
complex control (for example, one that measures how long the user holds down the mouse button or
how far the user has moved an indicator), you can create your own control or a picture or an
application-defined item that draws a control-like object in your dialog box. You must then test for and
respond to those events yourself.

If your application uses IsDialogEvent to help handle events when you display a movable modal dialog
box, perform the following additional tests before passing events to DialogSelect :

 ■ Test for mouse-down events in the title bar of the movable modal dialog box and respond by dragging
the dialog box accordingly.

864 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

 ■ Test for and respond to mouse-down events in the Apple menu and, if the movable modal dialog box
includes edit text items, in the Edit menu. (You should disable all other menus when you display a
movable modal dialog box.)

 ■ Play the system alert sound for every other mouse-down event outside the movable modal dialog box.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

ModalDialog
Handles events while your application displays a modal or movable modal dialog box.

void ModalDialog (
 ModalFilterUPP modalFilter,
 DialogItemIndex *itemHit
);

Parameters
modalFilter

A universal procedure pointer for an event filter function. For modal dialog boxes, you can specify
null if you want to use the standard event-handling function. For movable modal dialog boxes, you
should specify your own event filter function.

itemHit
A pointer to a short integer. After receiving an event involving an enabled item, ModalDialog
produces a number representing the position of the selected item in the active dialog box’s item list
resource.

Return Value
Discussion
Call the ModalDialog function immediately after displaying a modal or movable modal dialog box. Your
application should continue calling ModalDialog until the user dismisses your dialog.

For modal dialogs, the ModalDialog function repeatedly handles events until an event involving an enabled
dialog box item—such as a click in a radio button, for example—occurs. If the event is a mouse-down event
outside the content region of the dialog box, ModalDialog plays the system alert sound and gets the next
event.

For movable modal dialogs, if the kDialogFlagsHandleMovableModal feature bit in the extended dialog
resource is set, the ModalDialog function will handle all standard movable modal user interactions, such
as dragging a dialog box by its title bar and allowing the user to switch into another application. However,
a difference between the ModalDialog function’s behavior with movable modal and modal dialogs is that,
with movable modal dialogs, your event filter function receives all events. If you want the Dialog Manager
to assist you in handling events in movable modal dialog boxes, callGetStdFilterProc andStdFilterProc.

For events inside the dialog box, ModalDialog passes the event to the event filter function pointed to in
the modalFilter parameter before handling the event. When the event filter returns false, ModalDialog
handles the event. If the event filter function handles the event, returning true, ModalDialog performs no
more event handling.

Functions 865
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

If you set the modalFilter parameter to null, the standard event filter function is executed. The standard
event filter function checks whether

 ■ the user has pressed the Enter or Return key and, if so, returns the item number of the default button

 ■ the user has pressed the Escape key or Command-period and, if so, returns the item number of the
Cancel button

 ■ the cursor is over an editable text box, and optionally changes the cursor to an I-beam whenever this is
the case

If you set the modalFilter parameter to point to your own event filter function, that function can use the
standard filter function to accomplish the above tasks. (To do so, you can call GetStdFilterProc, and
dispatch the event to the standard filter function yourself, or you can call StdFilterProc, which obtains a
ModalFilterUPP for the standard filter function and then dispatches the function.) Additionally, your own
event filter function should also

 ■ handle update events, so that background processes can receive processor time, and return false

 ■ return false for all events that your event filter function doesn’t handle

You can also use your event filter function to test for and respond to keyboard equivalents and more complex
events—for instance, the user dragging the cursor within an application-defined item. You can use your
same event filter function in most or all of your alert and modal dialog boxes.

If the event filter function does not handle the event (returning false), ModalDialog handles the event as
follows:

 ■ In response to an activate or update event for the dialog box, ModalDialog activates or updates its
window.

 ■ If the user presses the mouse button while the cursor is in an editable text item, ModalDialog responds
to the mouse activity as appropriate—that is, either by displaying an insertion point or by selecting text.
If a key-down event occurs and there’s an editable text item, ModalDialog uses TextEdit to handle text
entry and editing automatically. If the editable text item is enabled, ModalDialog produces its item
number after it receives either the mouse-down or key-down event. Normally, editable text items are
disabled, and you use the GetDialogItemText function to read the information in the items only after
the user clicks the OK button.

 ■ If the user presses the mouse button while the cursor is in a control, ModalDialog calls the Control
Manager function TrackControl. If the user releases the mouse button while the cursor is in an enabled
control, ModalDialog produces the control’s item number. Your application should respond
appropriately—for example, by performing a command after the user clicks the OK button.

 ■ If the user presses the mouse button while the cursor is in any other enabled item in the dialog box,
ModalDialog produces the item’s number, and your application should respond appropriately. Generally,
only controls should be enabled. If your application creates a control more complex than a button, radio
button, or checkbox, your application must handle events inside that item with your event filter function.

 ■ If the user presses the mouse button while the cursor is in a disabled item or in no item, or if any other
event occurs, ModalDialog does nothing.

Special Considerations

The ModalDialog function traps all events. This prevents your event loop from receiving activate events for
your windows. Thus, if one of your application’s windows is active when you use GetNewDialog to create
a modal dialog box, you must explicitly deactivate that window before displaying the modal dialog box.

866 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

When ModalDialog calls the Control Manager function TrackControl, it does not allow you to specify the
action function necessary for anything more complex than a button, radio button, or checkbox. If you need
a more complex control, you can create your own control, a picture, or an application-defined item that
draws a control-like object in your dialog box. You must then provide an event filter function that appropriately
handles events in that item.

Version Notes
This function was changed with Appearance Manager 1.0 to handle events for movable modal dialogs.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
ictbSample

Declared In
Dialogs.h

MoveDialogItem
Moves a dialog item to a specified location in a window.

OSErr MoveDialogItem (
 DialogRef inDialog,
 DialogItemIndex inItemNo,
 SInt16 inHoriz,
 SInt16 inVert
);

Parameters
inDialog

A pointer to the dialog box containing the item to move.

inItemNo
The position of the item in the dialog box’s item list resource use FindDialogItem (page 849) to
determine this value.

inHoriz
The new horizontal coordinate for the dialog item.

inVert
The new vertical coordinate for the dialog item.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
The MoveDialogItem function moves a dialog item to a specified location in a window. MoveDialogItem
ensures that if the item is a control, the control rectangle and the dialog item rectangle (maintained by the
Dialog Manager) are always the same.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Functions 867
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

NewColorDialog
Creates a dialog box from information passed in memory.

DialogRef NewColorDialog (
 void *dStorage,
 const Rect *boundsRect,
 ConstStr255Param title,
 Boolean visible,
 SInt16 procID,
 WindowRef behind,
 Boolean goAwayFlag,
 SRefCon refCon,
 Handle items
);

Parameters
dStorage

On input, a pointer to the memory for the dialog structure. If you set this parameter to null, the
Dialog Manager automatically allocates a nonrelocatable block in your application heap.

boundsRect
On input, a pointer to a rectangle, given in global coordinates, that determines the size and position
of the dialog box; these coordinates specify the upper-left and lower-right corners of the dialog box.

title
On input, a text string used for the title of a modeless or movable modal dialog box. You can specify
an empty string (not null) for a title bar that contains no text.

visible
On input, a flag that specifies whether the dialog box should be drawn on the screen immediately.
If you set this parameter to false, the dialog box is not drawn until your application uses the Window
Manager function ShowWindow to display it.

procID
On input, the window definition ID for the type of dialog box, specified with constants defined by
the Window Manager. Use the kWindowModalDialogProc constant to specify modal dialog boxes,
the kWindowDocumentProc constant to specify modeless dialog boxes, and the
kWindowMovableModalDialogProc constant to specify movable modal dialog boxes.

behind
On input, a pointer to the window behind which the dialog box is to be placed on the desktop. Set
this parameter to the window pointer (WindowPtr)-1L to bring the dialog box in front of all other
windows.

goAwayFlag
On input, a flag to specify whether a modeless dialog box can have a close box in its title bar when
the dialog box is active. If you set this parameter to true, the modeless dialog box has a close box
in its title bar when the window is active.

868 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

refCon
On input, a value that the Dialog Manager uses to set the refCon field of the dialog box’s window
structure. Your application may store any value here for any purpose. For example, your application
can store a number that represents a dialog box type, or it can store a handle to a structure that
maintains state information about the dialog box. You can use the Window Manager function
SetWRefCon at any time to change this value in the dialog structure for a dialog box, and you can
use the GetWRefCon function to determine its current value.

items
On input, a handle to an item list resource for the dialog box. You can get the handle by calling the
Resource Manager function GetResource to read the item list resource into memory. Use the Memory
Manager function HNoPurge to make the handle unpurgeable while you use it or use the Operating
System utility function HandToHand to make a copy of the handle and use the copy.

Return Value
A pointer to the new dialog box. If the function doesn’t create a new dialog box, returns null. See the
description of the DialogRef data type.

Discussion
The NewColorDialog function creates a dialog box as specified by its parameters. The first eight parameters
(dStorage through refCon) are passed to the Window Manager function NewWindow, which creates the
dialog box. You can use this pointer with Window Manager or QuickDraw functions to manipulate the dialog
box.

The Dialog Manager uses the default window colors for the dialog box. By using the system’s default colors,
you ensure that your application’s interface is consistent with that of the Finder and other applications.
However, if you absolutely feel compelled to break from this consistency, you can use the Window Manager
function SetWinColor to use your own dialog color table resource that specifies colors other than the default
colors. Be aware, however, that nonstandard colors in your alert and dialog boxes may initially confuse your
users.

The Window Manager creates an auxiliary window structure for the color dialog box. You can access this
structure with the Window Manager function GetAuxWin. If the dialog box’s content color isn’t white, it’s a
good idea to call NewColorDialog with the visible flag set to false. After the color table and color item
list resource are installed, use the Window Manager function ShowWindow to display the dialog box if it’s
the frontmost window. If the dialog box is a modeless dialog box that is not in front, use the Window Manager
function ShowHide to display it.

The NewColorDialog function generates an update event for the entire window contents. Thus, with the
exception of controls, items aren’t drawn immediately. The Dialog Manager calls the Control Manager to
draw controls, and the Control Manager draws them immediately. So that the controls won’t be drawn twice,
the Dialog Manager calls the Window Manager function ValidRect for the enclosing rectangle of each
control. If you find that there is too great a lag between the drawing of controls and the drawing of other
items, try making the dialog box initially invisible and then calling the Window Manager function ShowWindow
to show it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 869
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

NewDialog
Creates a dialog box from information passed in memory.

DialogRef NewDialog (
 void *dStorage,
 const Rect *boundsRect,
 ConstStr255Param title,
 Boolean visible,
 SInt16 procID,
 WindowRef behind,
 Boolean goAwayFlag,
 SRefCon refCon,
 Handle items
);

Parameters
dStorage

On input, a pointer to the memory for the dialog structure. If you set this parameter to null, the
Dialog Manager automatically allocates a nonrelocatable block in your application heap.

boundsRect
On input, a pointer to a rectangle, given in global coordinates, that determines the size and position
of the dialog box; these coordinates specify the upper-left and lower-right corners of the dialog box.

title
On input, a text string used for the title of a modeless or movable modal dialog box. You can specify
an empty string (not null) for a title bar that contains no text.

visible
On input, a flag that specifies whether the dialog box should be drawn on the screen immediately.
If you set this parameter to false, the dialog box is not drawn until your application uses the Window
Manager function ShowWindow to display it.

procID
On input, the window definition ID for the type of dialog box, specified with constants defined by
the Window Manager. Use the kWindowModalDialogProc constant to specify modal dialog boxes,
the kWindowDocumentProc constant to specify modeless dialog boxes, and the
kWindowMovableModalDialogProc constant to specify movable modal dialog boxes.

behind
On input, a pointer to the window behind which the dialog box is to be placed on the desktop. Set
this parameter to the window pointer (WindowPtr)-1L to bring the dialog box in front of all other
windows.

goAwayFlag
On input, a flag to specify whether a modeless dialog box can have a close box in its title bar when
the dialog box is active. If you set this parameter to true, the modeless dialog box has a close box
in its title bar when the window is active.

refCon
On input, a value that the Dialog Manager uses to set the refCon field of the dialog box’s window
structure. Your application may store any value here for any purpose. For example, your application
can store a number that represents a dialog box type, or it can store a handle to a structure that
maintains state information about the dialog box. You can use the Window Manager function
SetWRefCon at any time to change this value in the dialog structure for a dialog box, and you can
use the GetWRefCon function to determine its current value.

870 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

items
On input, a handle to an item list resource for the dialog box. You can get the handle by calling the
Resource Manager function GetResource to read the item list resource into memory. Use the Memory
Manager function HNoPurge to make the handle unpurgeable while you use it or use the Operating
System utility function HandToHand to make a copy of the handle and use the copy.

Return Value
A pointer to the new dialog box. If the function doesn’t create a new dialog box, returns null. See the
description of the DialogRef data type.

Discussion
The NewDialog function is identical to the NewColorDialog function, except that NewDialog returns a
pointer to a black-and-white graphics port. See the discussion of NewColorDialog (page 868) for descriptions
of the parameters that you also pass to NewDialog.

The NewDialog function creates a dialog box as specified by its parameters and returns a pointer to a
black-and-white graphics port for the new dialog box. The first eight parameters (wStorage through refCon)
are passed to the Window Manager function NewWindow, which creates the dialog box.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

NewFeaturesDialog
Creates a dialog box from information passed in memory.

DialogRef NewFeaturesDialog (
 void *inStorage,
 const Rect *inBoundsRect,
 ConstStr255Param inTitle,
 Boolean inIsVisible,
 SInt16 inProcID,
 WindowRef inBehind,
 Boolean inGoAwayFlag,
 SRefCon inRefCon,
 Handle inItemListHandle,
 UInt32 inFlags
);

Parameters
inStorage

A pointer to the memory for the dialog box. If you set this parameter to null, the Dialog Manager
automatically allocates a nonrelocatable block in your application heap.

inBoundsRect
A pointer to a rectangle, given in global coordinates, that determines the size and position of the
dialog box; these coordinates specify the upper-left and lower-right corners of the dialog box.

inTitle
A pointer to a text string used for the title of a modeless or movable modal dialog box. You can specify
an empty string (not null) for a title bar that contains no text.

Functions 871
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

inIsVisible
A flag that specifies whether the dialog box should be drawn on the screen immediately. If you set
this parameter to false, the dialog box is not drawn until your application uses the Window Manager
function ShowWindow to display it.

inProcID
The window definition ID for the type of dialog box, specified with constants defined by the Window
Manager. Use the kWindowModalDialogProc constant to specify modal dialog boxes, the
kWindowDocumentProc constant to specify modeless dialog boxes, and the
kWindowMovableModalDialogProc constant to specify movable modal dialog boxes.

inBehind
A pointer to the window behind which the dialog box is to be placed on the desktop. Set this parameter
to the window pointer (WindowPtr)-1L to bring the dialog box in front of all other windows.

inGoAwayFlag
A Boolean value. If true, specifies that an active modeless dialog box has a close box in its title bar.

inRefCon
A value that the Dialog Manager uses to set the refCon field of the dialog box’s window structure.
Your application may store any value here for any purpose. For example, your application can store
a number that represents a dialog box type, or it can store a handle to a structure that maintains state
information about the dialog box. You can use the Window Manager function SetWRefCon at any
time to change this value in the dialog structure for a dialog box, and you can use the GetWRefCon
function to determine its current value.

inItemListHandle
A handle to an item list resource for the dialog box. You can get the handle by calling the Resource
Manager function GetResource to read the item list resource into memory.

inFlags
An unsigned 32-bit mask specifying the dialog box’s Appearance-compliant feature flags see “Dialog
Feature Flag Constants” (page 909). To establish an embedding hierarchy in a dialog box, pass
kDialogFlagsUseControlHierarchy in the inFlags parameter.

Return Value
A pointer to the newly created dialog box. If NewFeaturesDialog doesn’t create a new dialog box, it returns
null. See the description of the DialogRef data type.

Discussion
The NewFeaturesDialog function creates a dialog box without using 'DLOG' or 'dlgx' resources. Although
the inItemListHandle parameter specifies an item list ('DITL') resource for the dialog box, the
corresponding dialog font table ('dftb') resource is not automatically accessed. You must explicitly set the
dialog box’s control font style(s) individually.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

872 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

NewModalFilterUPP

ModalFilterUPP NewModalFilterUPP (
 ModalFilterProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ModalFilterUPP data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

NewModalFilterYDUPP

ModalFilterYDUPP NewModalFilterYDUPP (
 ModalFilterYDProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ModalFilterYDUPP data type.

Carbon Porting Notes

This function is supported in Carbon because several QuickTime routines require it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

NewUserItemUPP

UserItemUPP NewUserItemUPP (
 UserItemProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the UserItemUPP data type.

Functions 873
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Discussion
Special Considerations
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

NoteAlert
Displays an alert box with a note icon and/or plays an alert sound.

DialogItemIndex NoteAlert (
 SInt16 alertID,
 ModalFilterUPP modalFilter
);

Parameters
alertID

The resource ID of an alert resource and extended alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the requested alert. See ‘alrx’ for a
description of the extended alert resource.

modalFilter
A universal procedure pointer for a filter function that responds to events not handled by the
ModalDialog (page 865) function. If you set this parameter to null, the Dialog Manager uses the
standard event filter function.

Return Value
If no alert box is to be drawn at the current alert stage, NoteAlert returns –1 otherwise, it creates and
displays the alert box and returns the item number of the control selected by the user see “Alert Button
Constants” (page 904). See the description of the DialogItemIndex data type.

Discussion
The NoteAlert function displays an alert box with a note icon in its upper-left corner or, if appropriate for
the alert stage, plays an alert sound instead of or in addition to displaying the alert box.

The NoteAlert function is the same as the Alert (page 834) function except that, before drawing the items
in the alert box, NoteAlert draws the note icon in the upper-left corner. The note icon has resource ID 1,
which you can also specify with the constant noteIcon. By default, the Dialog Manager uses the standard
note icon from the System file. You can change this icon by providing your own 'ICON' resource with
resource ID 1.

Use a note alert to inform users of a minor mistake that won’t have any disastrous consequences if left as is.
Usually this type of alert simply offers information, and the user responds by clicking an OK button.
Occasionally, a note alert may ask a simple question and provide a choice of responses.

Your application should never draw its own default rings or alert icons. Prior to Mac OS 8, the NoteAlert
function would only redraw the alert icon and default button ring once and never redraw them on an update
event. However, when Appearance is available, alert icons and default rings do redraw when you call
NoteAlert.

874 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

See also the functions CautionAlert (page 839) and StopAlert (page 889).

Version Notes
This function was changed with Appearance Manager 1.0 to support the extended alert ('alrx') resource.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

ParamText
Replaces the text strings in the static text items of your alert or dialog boxes while your application is running.

void ParamText (
 ConstStr255Param param0,
 ConstStr255Param param1,
 ConstStr255Param param2,
 ConstStr255Param param3
);

Parameters
param0

A text string to substitute for the special string ^0 in the static text items of all subsequently created
alert and dialog boxes.

param1
A text string to substitute for the special string ^1 in the static text items of all subsequently created
alert and dialog boxes.

param2
A text string to substitute for the special string ^2 in the static text items of all subsequently created
alert and dialog boxes.

param3
A text string to substitute for the special string ^3 in the static text items of all subsequently created
alert and dialog boxes.

Discussion
The ParamText function replaces the special strings ^0 through ^3 in the static text items of all subsequently
created alert and dialog boxes with the text strings you pass as parameters. Pass empty strings (not null)
for parameters not used.

Special Considerations

If the user launches a desk accessory (such as a driver) in your application’s partition and the desk accessory
calls ParamText, it may change the text in your application’s dialog box.

You should be very careful about using ParamText in modeless dialog boxes. If a modeless dialog box using
ParamText is onscreen and you display another dialog box or alert box that also uses ParamText, both
boxes will be affected by the latest call to ParamText.

Functions 875
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Note that you should try to store text strings in resource files to facilitate translation into other languages;
therefore, ParamText is best used for supplying text strings, such as document names, that the user specifies.
To avoid problems with grammar and sentence structure when you localize your application, you should
use ParamText to supply only one text string per screen message.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

RemoveDialogItems

OSStatus RemoveDialogItems (
 DialogRef theDialog,
 DialogItemIndex itemNo,
 DialogItemIndex amountToRemove,
 Boolean disposeItemData
);

Parameters
theDialog
itemNo
amountToRemove
disposeItemData

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

ResetAlertStage
Resets the current alert stage to the first alert stage.

void ResetAlertStage (
 void
);

Parameters
Return Value
Discussion
The ResetAlertStage function resets every alert to a first-stage alert.

Availability
Available in Mac OS X v10.0 and later.

876 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Not available to 64-bit applications.

Declared In
Dialogs.h

RunStandardAlert
Shows and runs a standard alert using a modal dialog loop.

OSStatus RunStandardAlert (
 DialogRef inAlert,
 ModalFilterUPP filterProc,
 DialogItemIndex *outItemHit
);

Parameters
inAlert

The alert to display. On return, the alert you pass in this parameter has been released and is no longer
valid. You should not call DisposeDialog (page 847) on this alert.

filterProc
An event filter function for handling events that do not apply to the alert. May be NULL.

outItemHit
On exit, contains the item index of the button that was pressed to close the alert.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
This function displays and runs an alert created by CreateStandardAlert (page 842). RunStandardAlert
handles all user interaction with the alert.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Dialogs.h

SelectDialogItemText
Selects and highlights text contained in an edit text item.

Functions 877
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

void SelectDialogItemText (
 DialogRef theDialog,
 DialogItemIndex itemNo,
 SInt16 strtSel,
 SInt16 endSel
);

Parameters
theDialog

On input, a pointer to a dialog structure.

itemNo
On input, a number corresponding to the position of an edit text item in the dialog box’s item list
resource.

strtSel
On input, a number representing the position of the first character to begin selecting.

endSel
On input, a number representing one position past the last character to be selected.

Discussion
If the item in the itemNo parameter is an edit text item that contains text, the SelectDialogItemText
function sets the text selection range to extend from the character position specified in the strtSelparameter
up to but not including the character position specified in the endSel parameter. The selection range is
highlighted unless strtSel equals endSel, in which case a blinking vertical bar is displayed to indicate an
insertion point at that position. If the edit text item doesn’t contain text, SelectDialogItemText displays
the insertion point.

You can select the entire text by specifying the number 0 in the strtSel parameter and the number 32767
in the endSel parameter.

For example, if the user makes an unacceptable entry in the edit text item, your application can display an
alert box reporting the problem and then use SelectDialogItemText to select the entire text so it can be
replaced by a new entry. Without this function, the user would have to select the item before making the
new entry.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetDialogCancelItem
Sets the cancel item for a dialog box.

878 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

OSErr SetDialogCancelItem (
 DialogRef theDialog,
 DialogItemIndex newItem
);

Parameters
theDialog

On input, a pointer to the dialog structure for the dialog box whose cancel item you want to set.

newItem
On input, the item number of the item you want to set as the cancel item; see “Alert Button
Constants” (page 904).

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
If you intend to use the standard filter function, you can first use the functions SetDialogDefaultItem
and SetDialogCancelItem to set the items that the standard filter function will treat as the default and
cancel items. You can use GetDialogDefaultItem and GetDialogCancelItem to determine the dialog
item numbers that the standard filter function will treat as the default and cancel items.

If you call the SetDialogCancelItem function before you call the standard filter function, the standard
filter function automatically interprets Escape and Command-period keypresses to mean that the specified
cancel item has been selected.

If you don’t explicitly call SetDialogCancelItem, the standard filter function treats item 2 as the cancel
item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetDialogDefaultItem
Sets the default item for a dialog box and draws an appropriate border around the default item.

OSErr SetDialogDefaultItem (
 DialogRef theDialog,
 DialogItemIndex newItem
);

Parameters
theDialog

On input, a pointer to the dialog structure for the dialog box whose default item you want to set.

newItem
On input, the item number of the item you want to set as the default item.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Functions 879
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Discussion
If you call the SetDialogDefaultItem function before you call the standard filter function, the standard
filter function automatically interprets Return and Enter keypresses to mean that the specified default item
has been selected.

If you don’t explicitly call SetDialogDefaultItem, the standard filter function treats item 1 as the default
item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetDialogFont
Sets the font used in static and edit text items.

void SetDialogFont (
 SInt16 fontNum
);

Parameters
fontNum

A font ID number. Do not rely on font number constants. Instead, use the Font Manager function
GetFNum to find the font number to pass in this parameter.

Discussion
For subsequently created dialog and alert boxes, SetDialogFont sets the font of the dialog or alert box’s
graphics port to the specified font. If you don’t call this function, the system font is used. The SetDialogFont
function does not affect titles of controls, which are always displayed in the system font.

Special Considerations

There are a number of caveats regarding the SetDialogFont function:

1. Most importantly, your application will be much easier to localize if you always use the system font in
your alert and dialog boxes and never use SetDialogFont.

2. The Standard File Package does not always properly calculate the position of the standard file dialog
box once this function has been called; for example, the standard file dialog box may be partially obscured
by a menu bar.

3. Be aware that this function affects all static text and edit text items in all of the alert and dialog boxes
you subsequently display.

4. SetDialogFont does not change the font for control titles.

5. You can’t use SetDialogFont to change the font size or font style.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

880 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Declared In
Dialogs.h

SetDialogItem
Sets or changes information for a dialog item.

void SetDialogItem (
 DialogRef theDialog,
 DialogItemIndex itemNo,
 DialogItemType itemType,
 Handle item,
 const Rect *box
);

Parameters
theDialog

A pointer to the dialog box containing the dialog item.

itemNo
The position of the item in the dialog box’s item list resource use FindDialogItem (page 849) to
determine this value.

itemType
A short value. Pass an item type constant identifying the dialog item specified in the itemNo parameter.
When an embedding hierarchy is established, only the kItemDisableBit item type constant is
honored.

item
Either a handle to the dialog item specified in the itemNo parameter or, for a custom dialog item, a
pointer (coerced to a handle) to an application-defined item drawing function. When an embedding
hierarchy is established, the item parameter is ignored unless you pass a universal procedure pointer
to an application-defined item draw function.

box
A pointer to the display rectangle (in local coordinates) for the item specified in the itemNo parameter.
If you set the control rectangle on an item when an embedding hierarchy is present, SetDialogItem
will move and resize the item appropriately for you, on return.

Return Value
Discussion
The SetDialogItem function sets the item specified by the itemNo parameter for the specified dialog box.
If an embedding hierarchy exists, however, you cannot change the type or handle of an item, although
application-defined item drawing functions can still be set.

See also the function GetDialogItem (page 852).

Version Notes
This function was changed with Appearance Manager 1.0 to work with embedding hierarchies.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Functions 881
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

SetDialogItemText
Sets the text string for static text and editable text fields.

void SetDialogItemText (
 Handle item,
 ConstStr255Param text
);

Parameters
item

A handle to an editable text field or static text field. When embedding is on, you should pass in the
control handle produced by a call to the function . If embedding is not on, pass in the handle produced
by the “Alert Button Constants” (page 904) function.

text
A pointer to a string containing the text to display in the field.

Discussion
The SetDialogItemText function sets and redraws text strings for static text and editable text fields.
SetDialogItemText is useful for supplying a default text string—such as a document name—for an editable
text field while your application is running.

Version Notes
This function was changed with Appearance Manager 1.0 to support embedding hierarchies.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetDialogTimeout
Simulates an item selection in a modal dialog box after a specified amount of time elapses.

OSStatus SetDialogTimeout (
 DialogRef inDialog,
 DialogItemIndex inButtonToPress,
 UInt32 inSecondsToWait
);

Parameters
inDialog

A pointer to the dialog box for which an item selection is to be simulated.

inButtonToPress
A signed 16-bit integer. Pass a value representing the number (within the item list) of the item that
is to be selected.

inSecondsToWait
An unsigned 32-bit integer. Pass a value specifying the number of seconds that are to elapse before
the Dialog Manager simulates an item selection. Pass 0 to clear a preexisting timeout value and cease
the countdown in progress.

882 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
Your application calls the SetDialogTimeout function each time you wish to start a countdown of the
specified duration for a given modal dialog box. When the amount of time specified in the inSecondsToWait
parameter has elapsed, the Dialog Manager simulates a click on the button specified in the inButtonToPress
parameter. If your application calls SetDialogTimeout again, or if any event is received for the dialog box,
the countdown is restarted.

In order to use SetDialogTimeout with a given modal dialog box, your application must handle events for
the dialog box through the ModalDialog function. The Dialog Manager will not simulate an item selection
for the dialog box until ModalDialog processes an event (including null events).

Also see the function GetDialogTimeout (page 856).

Version Notes
This function is available with Mac OS 8.5 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetDialogTracksCursor
Determines whether the Dialog Manager tracks the cursor’s movements and changes the cursor to an I-beam
whenever it is over an edit dialog box.

OSErr SetDialogTracksCursor (
 DialogRef theDialog,
 Boolean tracks
);

Parameters
theDialog

On input, a pointer to the dialog structure for the dialog box containing one or more edit text items
for which you want the Dialog Manager to track the cursor.

tracks
On input, a Boolean value. A value of true indicates you want the Dialog Manager to track the cursor’s
movements and change it to an I-beam whenever the cursor is over an edit dialog box a value of
false indicates you don’t want the Dialog Manager to track the cursor in this manner.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
You should call SetDialogTracksCursor before you call the standard filter function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 883
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Declared In
Dialogs.h

SetModalDialogEventMask
Specifies the events to be received by the ModalDialog function.

OSStatus SetModalDialogEventMask (
 DialogRef inDialog,
 EventMask inMask
);

Parameters
inDialog

A pointer to the dialog box for which you wish to set the event mask.

inMask
The desired mask value(s) for the event(s) you wish the dialog box to receive.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
Your application can use the SetModalDialogEventMask function to specify the events received by the
ModalDialog function for a given modal dialog box. This allows your application to specify additional events
that are not by default received by ModalDialog, such as disk-inserted events and operating-system events.
If you use SetModalDialogEventMask to change the ModalDialog function’s event mask, you should
pass ModalDialog a pointer to your own event filter function to handle any added events.

Also see the function GetModalDialogEventMask (page 857).

Version Notes
This function is available with Mac OS 8.5 and later.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SetPortDialogPort

void SetPortDialogPort (
 DialogRef dialog
);

Parameters
dialog

Availability
Available in Mac OS X v10.0 and later.

884 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Not available to 64-bit applications.

Declared In
Dialogs.h

ShortenDITL
Removes items from an existing dialog box while your application is running.

void ShortenDITL (
 DialogRef theDialog,
 DialogItemIndex numberItems
);

Parameters
theDialog

A pointer to a dialog structure.

numberItems
The number of items to remove (starting from the last item in the item list resource).

Discussion
The ShortenDITL function removes the specified number of items from the dialog box. This function is
especially useful if several dialog boxes share a single item list resource, because you can use ShortenDITL
to remove items as necessary for individual dialog boxes.

You typically create an invisible dialog box, call the ShortenDITL function, then make the dialog box visible
by using the Window Manager function ShowWindow. Note that ShortenDITL does not automatically resize
the dialog box; you can use AutoSizeDialog (page 838) or the Window Manager function SizeWindow if
you need to resize the dialog box.

Special Considerations

The ShortenDITL function is available in System 7 and in earlier versions of the Communications Toolbox.
Before calling ShortenDITL, you should make sure that it is available by using the Gestalt function with
the gestaltDITLExtAttr selector. Test the bit indicated by the gestaltDITLExtPresent constant in
the response parameter. If the bit is set, then ShortenDITL is available.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

ShowDialogItem
Redisplays an item that has been hidden by HideDialogItem.

Functions 885
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

void ShowDialogItem (
 DialogRef theDialog,
 DialogItemIndex itemNo
);

Parameters
theDialog

On input, a pointer to a dialog structure.

itemNo
On input, a number corresponding to the position of an item in the dialog box’s item list resource.

Return Value
Discussion
The ShowDialogItem function redisplays the item specified in the itemNo parameter by restoring the
display rectangle the item had prior to HideDialogItem (page 861). If the left coordinate of the item’s display
rectangle is greater than 8192, ShowDialogItem subtracts 16,384 from both the left and right coordinates
of the rectangle. If the item is already visible (that is, if the left coordinate is less than 8192), ShowDialogItem
does nothing.

The ShowDialogItem function adds the rectangle that contained the item to the update region so that it
will be drawn. Note that if the item is a control you define in a control (' CNTL ') resource, the rectangle
added to the update region is the rectangle defined in the control resource, not the display rectangle defined
in the item list resource. If the item is an edit text item, ShowDialogItem activates it by calling the TextEdit
function TEActivate.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

SizeDialogItem
Sizes a dialog item.

OSErr SizeDialogItem (
 DialogRef inDialog,
 DialogItemIndex inItemNo,
 SInt16 inWidth,
 SInt16 inHeight
);

Parameters
inDialog

A pointer to the dialog box containing the item to be resized.

inItemNo
The position of the item in the dialog box’s item list resource use FindDialogItem (page 849) to
determine this value.

inWidth
The new width (in pixels) of the dialog item’s control rectangle.

886 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

inHeight
The new height (in pixels) of the dialog item’s control rectangle.

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Discussion
The SizeDialogItem function resizes a dialog item to a specified size. If the dialog item is a control, the
control rectangle and the dialog item rectangle (maintained by the Dialog Manager) are always the same.

Version Notes
This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

StandardAlert
Displays a standard alert box.

OSErr StandardAlert (
 AlertType inAlertType,
 ConstStr255Param inError,
 ConstStr255Param inExplanation,
 const AlertStdAlertParamRec *inAlertParam,
 SInt16 *outItemHit
);

Parameters
inAlertType

A constant indicating the type of alert box you wish to create; see “Alert Type Constants” (page 907).

inError
A pointer to a Pascal string containing the primary error text you wish to display.

inExplanation
A pointer to a Pascal string containing the secondary text you wish to display; secondary text is
displayed in the small system font. Pass null to indicate no secondary text.

inAlertParam
A pointer to the standard alert structure; see AlertStdAlertParamRec (page 897). Pass null to
specify that you do not wish to your alert box to incorporate any of the features that the standard
alert structure provides.

outItemHit
A pointer to a signed 16-bit integer value. On return, the value indicates the alert button pressed; see
“Alert Button Constants” (page 904).

Return Value
A result code. See “Dialog Manager Result Codes” (page 916).

Functions 887
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Discussion
The StandardAlert function displays an alert box based on the values you pass it. You can pass the error
text you wish displayed in the error and explanation parameters, and customize the alert button text by
filling in the appropriate fields of the standard alert structure passed in the inAlertParam parameter.

StandardAlert automatically resizes the height of a dialog box to fit all static text. It ignores alert stages
and therefore provides no corresponding alert sounds.

Special Considerations

This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
QTMetaData

Declared In
Dialogs.h

StdFilterProc
Handles standard event filtering for a dialog box.

Boolean StdFilterProc (
 DialogRef theDialog,
 EventRecord *event,
 DialogItemIndex *itemHit
);

Parameters
theDialog

On input, a pointer to a dialog structure for an alert box or a modal dialog box.

event
On output, a pointer to an event structure returned by an Event Manager function such as
WaitNextEvent.

itemHit
On output, a pointer to a short integer. StdFilterProc returns a number corresponding to the
position of an item in the item list resource for the alert or modal dialog box.

Return Value
A Boolean value representing whether the standard filter proc handled the event. true means handled;
otherwise false.

Discussion
To use the standard filter function from within your own filter function, you can call GetStdFilterProc (page
860) , then dispatch the event to the standard filter function yourself; or you can call StdFilterProc, which
performs both steps for you. Calling StdFilterProc is equivalent to calling GetStdFilterProc (page
860) and then calling ModalFilterProcPtr (page 891).

888 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

StopAlert
Displays an alert box with a stop icon and/or plays an alert sound.

DialogItemIndex StopAlert (
 SInt16 alertID,
 ModalFilterUPP modalFilter
);

Parameters
alertID

The resource ID of an alert resource and extended alert resource. The resource ID of both types of
resources must be identical. If the alert resource is missing, the Dialog Manager returns to your
application without creating the requested alert. See ‘alrx’ for a description of the extended alert
resource.

modalFilter
A universal procedure pointer for a filter function that responds to events not handled by the
ModalDialog (page 865) function. If you set this parameter to null, the Dialog Manager uses the
standard event filter function.

Return Value
If no stop alert box is to be drawn at the current alert stage, StopAlert returns –1 otherwise, it creates and
displays the alert box and returns the item number of the control selected by the user see “Alert Button
Constants” (page 904). See the description of the DialogItemIndex data type.

Discussion
The StopAlert function displays an alert box with a stop icon in its upper-left corner or, if appropriate for
the alert stage, plays an alert sound instead of or in addition to displaying the alert box.

The StopAlert function is the same as the Alert (page 834) function except that, before drawing the items
in the alert box, StopAlert draws the stop icon in the upper-left corner. The stop icon has resource ID 0,
which you can also specify with the constant stopIcon . By default, the Dialog Manager uses the standard
stop icon from the System file. You can change this icon by providing your own 'ICON' resource with
resource ID 0.

Use a stop alert to inform the user that a problem or situation is so serious that the action cannot be completed.
Stop alerts typically have only a single button (OK), because all the user can do is acknowledge that the action
cannot be completed.

Your application should never draw its own default rings or alert icons. Prior to Mac OS 8, the StopAlert
function would only redraw the alert icon and default button ring once and never redraw them on an update
event. However, when Appearance is available, alert icons and default rings do redraw when you call
StopAlert.

See also the functions NoteAlert (page 874) and CautionAlert (page 839).

Functions 889
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Version Notes
This function was changed with Appearance Manager 1.0 to support the extended alert ('alrx') resource.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

UpdateDialog
Redraws the update region of a specified dialog box.

void UpdateDialog (
 DialogRef theDialog,
 RgnHandle updateRgn
);

Parameters
theDialog

A pointer to a dialog structure.

updateRgn
A handle to the window region that needs to be updated.

Discussion
The UpdateDialog function redraws only the region in a dialog box specified in the updateRgn parameter.
Your application generally should not use UpdateDialog. The Dialog Manager generally handles update
events in alert and dialog boxes. Alert (page 834). StopAlert (page 889) , NoteAlert (page 874) , and
CautionAlert (page 839) handle update events on their own.

Instead of drawing the entire contents of the specified dialog box, UpdateDialog draws only the items in
the specified update region. You can use UpdateDialog in response to an update event, and you should
usually bracket it by calls to the Window Manager functions BeginUpdate and EndUpdate. UpdateDialog
uses the QuickDraw function SetPort to make the dialog box the current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Dialogs.h

Callbacks by Task

Accessing and Modifying Low-Memory Data

UserItemProcPtr (page 895)

890 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

ModalFilterProcPtr (page 891)

SoundProcPtr (page 894)
Defines a pointer to your sound callback function.

Miscellaneous

ModalFilterYDProcPtr (page 893)

QTModelessCallbackProcPtr (page 894)

Callbacks

ModalFilterProcPtr

typedef Boolean (*ModalFilterProcPtr)
(
 DialogRef theDialog,
 EventRecord * theEvent,
 DialogItemIndex * itemHit
);

If you name your function MyModalFilterProc, you would declare it like this:

Boolean MyModalFilterProc (
 DialogRef theDialog,
 EventRecord * theEvent,
 DialogItemIndex * itemHit
);

Parameters
theDialog

A pointer to a dialog structure for an alert box or a modal dialog box.

theEvent
A pointer to an event structure returned by an Event Manager function such as WaitNextEvent.

itemHit
A pointer to a short integer. Your event filter function should return a number corresponding to the
position of an item in the item list resource for the alert or modal dialog box.

Return Value
A Boolean value. After receiving an event that it does not handle, your function should return false. When
your function returns false, ModalDialog handles the event, which you pass in the parameter theEvent.
(Your function can also change the event to simulate a different event and return false, which passes the
event to the Dialog Manager for handling.) If your function does handle the event, your function should
return true, and through the itemHit parameter return the number of the item that it handled.

Callbacks 891
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Discussion
To supplement the Dialog Manager’s ability to handle events in the Mac OS multitasking environment, you
should provide an event filter function that the Dialog Manager calls whenever it displays alert boxes and
modal dialog boxes. This function can receive all events that are sent to your application.

The ModalDialog (page 865) function and, in turn, the Alert (page 834) , NoteAlert (page 874) ,
StopAlert (page 889) , and CautionAlert (page 839) functions return the item number that your event
filter function returns in the itemHit parameter in their own itemHit parameters.

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter function that checks
whether

 ■ the user has pressed the Enter or Return key and, if so, returns the item number of the default button

 ■ the user has pressed the Escape key or Command-period and, if so, returns the item number of the
Cancel button

 ■ the cursor is over edit text in a dialog box, and optionally changes the cursor to an I-beam whenever
this is the case

If the dialog box is movable modal and the kDialogHandleMovable bit is set, your filter function will receive
all events (including apple events and update events) that your application receives.

Your own filter function should use the standard filter function to accomplish these tasks. To do so, you can
call GetStdFilterProc (page 860) , and dispatch the event to the standard filter function yourself; or you
can call StdFilterProc (page 888) , which obtains a ModalFilterUPP for the standard filter function and
then dispatches the function.

Your event filter function should also perform the following tasks:

 ■ update your windows in response to update events and return false. If you do not handle update
events for all the windows in your application, other processes won’t get time.

 ■ return false for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents and more complex
events—for instance, the user dragging the cursor in an application- defined item. For example, if you provide
an application-defined item that requires you to measure how long the user holds down the mouse button
or how far the user drags the cursor, use the event filter function to handle events inside that item.

Movable modal dialog boxes receive all events (not just those masked by the Event message mask).

In all alert and dialog boxes, any buttons that are activated by key sequences should highlight to indicate
which item has been selected. Use the Control Manager function HiliteControl to highlight a button for
8 ticks, long enough to be noticeable but not so long as to be annoying. The Control Manager performs this
action whenever users click a button, and your application should do this whenever the user presses the
keyboard equivalent of a button click.

For modal dialog boxes that contain edit text items, your application should handle menu bar access to allow
use of your Edit menu and its Cut, Copy, Paste, Clear, and Undo commands. Your event filter function should
then test for and handle clicks in your Edit menu and keyboard equivalents for the appropriate commands
in your Edit menu. Your application should respond by using the functions DialogCut (page 844) ,
DialogCopy (page 844) , DialogPaste (page 845) , and DialogDelete (page 845) to support the Cut, Copy,
Paste, and Clear commands.

892 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

For an alert box, you specify a universal procedure pointer to your event filter function in a parameter that
you pass to the Alert (page 834) , StopAlert (page 889) , CautionAlert (page 839) , and NoteAlert (page
874) functions. For a modal dialog box, specify a pointer to your event filter function in a parameter that you
pass to UpdateDialog.

The Dialog Manager defines the data type ModalFilterUPP to identify this application-defined function:

typedef UniversalProcPtr ModalFilterUPP;

You typically use the NewModalFilterProc macro like this:

ModalFilterUPP myEventFilterProc;

myEventFilterProc = NewModalFilterProc(MyEventFilter);

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

ModalFilterYDProcPtr

typedef Boolean (*ModalFilterYDProcPtr)
(
 DialogRef theDialog,
 EventRecord * theEvent,
 short * itemHit,
 void * yourDataPtr
);

If you name your function MyModalFilterYDProc, you would declare it like this:

Boolean MyModalFilterYDProc (
 DialogRef theDialog,
 EventRecord * theEvent,
 short * itemHit,
 void * yourDataPtr
);

Parameters
theDialog
theEvent
itemHit
yourDataPtr

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

Callbacks 893
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

QTModelessCallbackProcPtr

typedef void (*QTModelessCallbackProcPtr)
(
 EventRecord *theEvent,
 DialogRef theDialog,
 DialogItemIndex itemHit
);

If you name your function MyQTModelessCallbackProc, you would declare it like this:

void MyQTModelessCallbackProc (
 EventRecord *theEvent,
 DialogRef theDialog,
 DialogItemIndex itemHit
);

Parameters
theEvent
theDialog
itemHit

Carbon Porting Notes

This QuickTime function for manipulating dialog boxes is not supported in Carbon.

SoundProcPtr
Defines a pointer to your sound callback function.

typedef void (*SoundProcPtr) (
 SInt16 soundNumber
);

You should provide a sound callback function if you want the Dialog Manager to play sounds other than the
system alert sound. If you name your function MySoundProc, you would declare it like this:

void MySoundProc (
 SInt16 soundNumber
);

Parameters
soundNumber

An integer from 0 to 3, representing the four possible alert stages.

Return Value
Discussion
For each of the four alert stages that can be reported in the soundNumber parameter, your function can emit
any sound that you define. When the Dialog Manager calls your function, it passes 0 as the sound number
for alert sounds specified by the silent constant in the alert resource. The Dialog Manager passes 1 for sounds
specified by the sound1 constant, 2 for sounds specified by the sound2 constant, and 3 for sounds specified
by the sound3 constant.

894 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

The Dialog Manager defines the universal procedure pointer SoundUPP to identify this application-defined
function:

typedef UniversalProcPtr SoundUPP; /

You typically use the NewSoundProc macro like this:

SoundUPP mySoundProc;

mySoundProc = NewSoundProc(MyAlertSound)

Special Considerations

When the Dialog Manager detects a click outside an alert box or a modal dialog box, it uses the Sound
Manager function SysBeep to play the system alert sound. By changing settings in the Sound control panel,
the user can select which sound to play as the system alert sound. For consistency with system software and
other Macintosh applications, your sound function should call SysBeep whenever your sound function receives
sound number 1 (which you can represent with the sound1 constant).

Version Notes
Not recommended with Appearance Manager 1.0 and later.

Carbon Porting Notes

Using custom sounds in dialog boxes is not supported in Carbon.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

UserItemProcPtr

typedef void (*UserItemProcPtr) (
 DialogRef theDialog,
 DialogItemIndex itemNo
);

If you name your function MyUserItemProc, you would declare it like this:

void MyUserItemProc (
 DialogRef theDialog,
 DialogItemIndex itemNo
);

Parameters
theDialog

On input, a pointer to the dialog structure for the dialog box containing an application-defined item.
If your function can draw in more than one dialog box, this parameter tells your function which one
to draw in.

Callbacks 895
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

itemNo
On input, a number corresponding to the position of an item in the item list resource for the specified
dialog box. If your function draws more than one item, this parameter tells your function which one
to draw.

Return Value
Discussion
When the Appearance Manager is available and an embedding hierarchy is established in a dialog box, you
should provide the Control Manager user pane drawing function MyUserPaneDrawCallback instead of the
user item drawing function MyUserItemCallback to draw an application-defined control (a dialog item
becomes a control in a dialog box with an embedding hierarchy).

You can provide other user pane application-defined functions to hit test, track, perform idle processing,
handle keyboard, activate, and deactivate event processing, handle keyboard focus, and set the background
color or pattern in a user pane control.

When calling your draw function, the Dialog Manager sets the current port to the dialog box’s graphics port.
Normally, you create an invisible dialog box and then use the Window Manager function ShowWindow to
display the dialog box.

Before you display the dialog box, use SetDialogItem (page 881) to install this function in the dialog
structure. Before using SetDialogItem, you must first use GetDialogItem to obtain a handle to an item
of type userItem.

If you enable the application-defined item that you draw with this function, UpdateDialog and
StdFilterProc (page 888) return the item’s number when the user clicks that item. If your application needs
to respond to a user action more complex than this (for example, if your application needs to measure how
long the user holds down the mouse or how far the user drags the cursor), your application must track the
cursor itself. If you use ModalDialog, your event filter function must handle events inside the item; if you
use DialogSelect, your application must handle events inside the item before handing events to
DialogSelect.

The Dialog Manager defines the data type UserItemUPP to identify the universal procedure pointer for this
application-defined function:

typedef UniversalProcPtr UserItemUPP;

You typically use the NewUserItemProc macro like this:

UserItemUPP myItemProc;

myItemProc = NewUserItemProc (MyItem);

Version Notes
This function is not recommended with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

896 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Data Types

AlertStdAlertParamRec

struct AlertStdAlertParamRec {
 Boolean movable;
 Boolean helpButton;
 ModalFilterUPP filterProc;
 ConstStringPtr defaultText;
 ConstStringPtr cancelText;
 ConstStringPtr otherText;
 SInt16 defaultButton;
 SInt16 cancelButton;
 UInt16 position;
};
typedef struct AlertStdAlertParamRec AlertStdAlertParamRec;
typedef AlertStdAlertParamRec * AlertStdAlertParamPtr;

Fields
movable

A Boolean value indicating whether or not the alert box is movable.

helpButton
A Boolean value indicating whether or not the alert includes a Help button.

filterProc
If the value in the movable field is true (alert is movable), then specify in this parameter a universal
procedure pointer to an application-defined filter function that responds to events not handled by
ModalDialog (page 865). If you do, all events will get routed to your application-defined event filter
function for handling, even when your alert box window is in the background. If you set this parameter
to null, the Dialog Manager uses the standard event filter function.

defaultText
Text for button in OK position; see “Alert Default Text Constants” (page 904). The button automatically
sizes and positions itself in the alert box. To specify that the default button names should be used,
pass -1. To indicate that no button should be displayed, pass null.

cancelText
Text for button in Cancel position; see “Alert Default Text Constants” (page 904). The button
automatically sizes and positions itself in the alert box. To specify that the default button names
should be used, pass -1. To indicate that no button should be displayed, pass null.

otherText
Text for button in leftmost position; see “Alert Default Text Constants” (page 904). The button
automatically sizes and positions itself in the alert box. To specify that the default button names
should be used, pass -1. To indicate that no button should be displayed, pass null.

defaultButton
Specifies which button acts as the default button; see “Alert Button Constants” (page 904).

cancelButton
Specifies which button acts as the Cancel button (can be 0); see “Alert Button Constants” (page 904).

position
The alert box position, as defined by a window positioning constant. In this structure, the constant
kWindowDefaultPosition is equivalent to the constant
kWindowAlertPositionParentWindowScreen.

Data Types 897
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Discussion
A standard alert structure of type AlertStdAlertParamRec can be used when you call the function
StandardAlert (page 887) to customize the alert box. The AlertStdAlertParamRec type is available with
Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

AlertStdCFStringAlertParamRec
Defines an alert or sheet.

struct AlertStdCFStringAlertParamRec {
 UInt32 version;
 Boolean movable;
 Boolean helpButton;
 CFStringRef defaultText;
 CFStringRef cancelText;
 CFStringRef otherText;
 SInt16 defaultButton;
 SInt16 cancelButton;
 UInt16 position;
 OptionBits flags;
};
typedef struct AlertStdCFStringAlertParamRec AlertStdCFStringAlertParamRec;
typedef AlertStdCFStringAlertParamRec * AlertStdCFStringAlertParamPtr;

Fields
version

The version of this parameter record. Set this field to kStdCFStringAlertVersionOne.

movable
A Boolean value indicating whether or not the alert is movable.

helpButton
A Boolean value indicating whether or not the alert contains a Help button.

defaultText
Text for button in the OK position. The button automatically sizes and positions itself in the alert box.
To specify that the default button names should be used, pass -1 (see “Alert Default Text
Constants” (page 904) for values). To indicate that no button should be displayed, pass null

cancelText
Text for button in the Cancel position; see “Alert Default Text Constants” (page 904). The button
automatically sizes and positions itself in the alert box. To specify that the default button names
should be used, pass -1 see “Alert Default Text Constants” (page 904) for values). To indicate that no
button should be displayed, pass null.

otherText
Text for button in the other (leftmost) position; see “Alert Default Text Constants” (page 904). The
button automatically sizes and positions itself in the alert box. To specify that the default button
names should be used, pass -1. To indicate that no button should be displayed, pass null

898 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

defaultButton
Specifies which button acts as the default button; see “Alert Button Constants” (page 904).

cancelButton
Specifies which button acts as the default button; see “Alert Button Constants” (page 904).

position
The alert box position, as defined by a window positioning constant. In this structure, the constant
kWindowDefaultPosition is equivalent to the constant
kWindowAlertPositionParentWindowScreen. See the Window Manager Reference for other
possible positioning constants.

flags
Options for this alert. See “Standard Alert and Sheet Option Flags” (page 915) for possible values.

Discussion
You pass this structure when calling CreateStandardAlert (page 842) or CreateStandardSheet (page
842).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

AlertTemplate

struct AlertTemplate {
 Rect boundsRect;
 SInt16 itemsID;
 StageList stages;
};
typedef struct AlertTemplate AlertTemplate;
typedef AlertTemplate * AlertTPtr;

Fields
boundsRect
itemsID
stages

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

AlertType

typedef SInt16 AlertType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

Data Types 899
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

DialogItemIndex

typedef SInt16 DialogItemIndex;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DialogItemIndexZeroBased

typedef SInt16 DialogItemIndexZeroBased;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DialogItemType

typedef SInt16 DialogItemType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DialogPeek

typedef DialogRecord* DialogPeek;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

900 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

DialogRecord

struct DialogRecord {
 WindowRecord window;
 Handle items;
 TEHandle textH;
 SInt16 editField;
 SInt16 editOpen;
 SInt16 aDefItem;
};
typedef struct DialogRecord DialogRecord;

Fields

Discussion
A dialog structure of type DialogRecord is created whenever you call the functions Alert (page 834) or
GetNewDialog (page 858). These functions incorporate information from your item list resource and your
alert resource or dialog resource into this structure. Your application generally should not create a dialog
structure or directly access its fields.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

DialogRef

typedef DialogPtr DialogRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

Data Types 901
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

DialogTemplate

struct DialogTemplate {
 Rect boundsRect;
 SInt16 procID;
 Boolean visible;
 Boolean filler1;
 Boolean goAwayFlag;
 Boolean filler2;
 SInt32 refCon;
 SInt16 itemsID;
 Str255 title;
};
typedef struct DialogTemplate DialogTemplate;
typedef DialogTemplate * DialogTPtr;

Fields
boundsRect
procID
visible
filler1
goAwayFlag
filler2
refCon
itemsID
title

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

ModalFilterUPP

typedef ModalFilterProcPtr ModalFilterUPP;

Discussion
For more information, see the description of the ModalFilterUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

ModalFilterYDUPP

typedef ModalFilterYDProcPtr ModalFilterYDUPP;

Discussion
For more information, see the description of the ModalFilterYDUPP () callback function.

902 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

QTModelessCallbackUPP

typedef QTModelessCallbackProcPtr QTModelessCallbackUPP;

SoundUPP

typedef SoundProcPtr SoundUPP;

Discussion
For more information, see the description of the SoundUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

StageList

typedef SInt16 StageList;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

UserItemUPP

typedef UserItemProcPtr UserItemUPP;

Discussion
For more information, see the description of the UserItemUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Dialogs.h

Data Types 903
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Constants

Alert Button Constants
Define standard button types for alerts and sheets.

enum {
 kAlertStdAlertOKButton = 1,
 kAlertStdAlertCancelButton = 2,
 kAlertStdAlertOtherButton = 3,
 kAlertStdAlertHelpButton = 4
};

Constants
kAlertStdAlertOKButton

The OK button. The default text for this button is “OK”.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertStdAlertCancelButton
The Cancel button (optional). The default text for this button is “Cancel”.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertStdAlertOtherButton
A third button (optional). The default text for this button is “Don’t Save”.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertStdAlertHelpButton
The Help button (optional).

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can use these constants in the defaultButton and cancelButton fields in the standard alert structure
to specify which buttons act as the default and Cancel buttons in the standard alert structure. These constants
are also returned in the itemHit parameter of StandardAlert (page 887). Alert button constants are
available with Appearance Manager 1.0 and later.

Alert Default Text Constants
Defines the default text for alerts and sheets.

904 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

enum {
 kAlertDefaultOKText = -1,
 kAlertDefaultCancelText = -1,
 kAlertDefaultOtherText = -1
};

Constants
kAlertDefaultOKText

The default text for the default (right) button is “OK” on an English system. The text will vary depending
upon the localization of the user’s system. Use this constant in the defaultText field of the standard
alert structure.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertDefaultCancelText
The default text for the Cancel (middle) button is “Cancel” on an English system. The text will vary
depending upon the localization of your system. Use this constant in the cancelText field of the
standard alert structure.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertDefaultOtherText
The default text for the third (leftmost) button is “Don’t Save” for an English system. The text will vary
depending upon the localization of the user’s system. Use this constant in the otherText field of
the standard alert structure.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can use these constants in the defaultText, cancelText, and otherText fields of the standard alert
structure to specify the default text for the OK, Cancel, and Don’t Save buttons. Alert default text constants
are available with Appearance Manager 1.0 and later.

Alert Feature Flag Constants

enum {
 kAlertFlagsUseThemeBackground = (1 << 0),
 kAlertFlagsUseControlHierarchy = (1 << 1),
 kAlertFlagsAlertIsMovable = (1 << 2),
 kAlertFlagsUseThemeControls = (1 << 3)
};

Constants
kAlertFlagsUseThemeBackground

If this bit (bit 0) is set, the Dialog Manager sets the alert box’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Constants 905
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

kAlertFlagsUseControlHierarchy
If this bit (bit 1) is set, the Dialog Manager creates a root control in the alert box and establishes an
embedding hierarchy. Any alert items become controls once the embedding hierarchy is established.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertFlagsAlertIsMovable
If this bit (bit 2) is set, the alert box is movable modal. The Dialog Manager handles movable modal
behavior such as dragging the alert box by its title bar or switching out of the application by clicking
in another one.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertFlagsUseThemeControls
If this bit (bit 3) is set, the Dialog Manager creates Appearance-compliant controls in your alert box.
Otherwise, push buttons, checkboxes, and radio buttons will be displayed in their pre-Appearance
forms when systemwide Appearance is off.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can set these bits in the alert flags field of the extended alert resource to specify the alert box’s
Appearance-compliant features. Alert feature flag constants are available with Appearance Manager 1.0 and
later.

Alert Icon Resource ID Constants

enum {
 kStopIcon = 0,
 kNoteIcon = 1,
 kCautionIcon = 2,
 stopIcon = kStopIcon,
 noteIcon = kNoteIcon,
 cautionIcon = kCautionIcon
};

Constants
kStopIcon

Resource ID for the standard stop icon.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kNoteIcon
Resource ID for the standard note icon.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kCautionIcon
Resource ID for the standard caution icon.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

906 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

stopIcon
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

noteIcon
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

cautionIcon
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can pass these constants in the alertID parameter of StopAlert (page 889) , NoteAlert (page 874),
and CautionAlert (page 839) to specify the resource ID of the alert box icon you wish displayed.

Alert Type Constants

enum {
 kAlertStopAlert = 0,
 kAlertNoteAlert = 1,
 kAlertCautionAlert = 2,
 kAlertPlainAlert = 3
};

Constants
kAlertStopAlert

Stop alert box.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertNoteAlert
Note alert box.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertCautionAlert
Caution alert box.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kAlertPlainAlert
Alert box with no icon.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can pass constants of type AlertType in the inAlertType parameter of StandardAlert (page 887)
to specify the type of alert box you wish to create. Alert type constants are available with Appearance Manager
1.0 and later.

Constants 907
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

ctrlItem

enum {
 ctrlItem = 4,
 btnCtrl = 0,
 chkCtrl = 1,
 radCtrl = 2,
 resCtrl = 3,
 statText = 8,
 editText = 16,
 iconItem = 32,
 picItem = 64,
 userItem = 0,
 itemDisable = 128
};

Constants
ctrlItem

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

btnCtrl
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

chkCtrl
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

radCtrl
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

resCtrl
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

statText
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

editText
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

iconItem
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

picItem
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

userItem
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

908 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

itemDisable
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Dialog Feature Flag Constants

enum {
 kDialogFlagsUseThemeBackground = (1 << 0),
 kDialogFlagsUseControlHierarchy = (1 << 1),
 kDialogFlagsHandleMovableModal = (1 << 2),
 kDialogFlagsUseThemeControls = (1 << 3)
};

Constants
kDialogFlagsUseThemeBackground

If this bit (bit 0) is set, the Dialog Manager sets the dialog box’s background color or pattern.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFlagsUseControlHierarchy
If this bit (bit 1) is set, the Dialog Manager creates a root control in the dialog box and establishes an
embedding hierarchy. Any dialog items become controls once the embedding hierarchy is established.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFlagsHandleMovableModal
If this bit (bit 2) is set, and the dialog box is a movable modal (specify the
kWindowMovableModalDialogProc window definition ID), the Dialog Manager handles movable
modal behavior such as dragging a dialog box by its title bar or switching out of the application by
clicking in another one.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFlagsUseThemeControls
If this bit (bit 3) is set, the Dialog Manager creates Appearance-compliant controls in the dialog box
directly. Otherwise, push buttons, checkboxes, and radio buttons will be displayed in their
pre-Appearance forms when systemwide Appearance is off.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can set these bits in the dialog flags field of the extended dialog resource or pass them in the inFlags
parameter of NewFeaturesDialog (page 871) to specify the dialog box’s Appearance-compliant features.
Dialog feature flag constants are available with Appearance Manager 1.0 and later.

Constants 909
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Dialog Font Flag Constants

enum {
 kDialogFontNoFontStyle = 0,
 kDialogFontUseFontMask = 0x0001,
 kDialogFontUseFaceMask = 0x0002,
 kDialogFontUseSizeMask = 0x0004,
 kDialogFontUseForeColorMask = 0x0008,
 kDialogFontUseBackColorMask = 0x0010,
 kDialogFontUseModeMask = 0x0020,
 kDialogFontUseJustMask = 0x0040,
 kDialogFontUseAllMask = 0x00FF,
 kDialogFontAddFontSizeMask = 0x0100,
 kDialogFontUseFontNameMask = 0x0200,
 kDialogFontAddToMetaFontMask = 0x0400
};

Constants
kDialogFontNoFontStyle

If the kDialogFontNoFontStyle constant is used, no font style information is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseFontMask
If the kDialogFontUseFontMask flag (bit 0) is set, the font ID specified in the Font ID field of the
dialog font table is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseFaceMask
If the kDialogFontUseFaceMask flag (bit 1) is set, the font style specified in the Style field of the
dialog font table is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseSizeMask
If the kDialogFontUseSizeMask flag (bit 2) is set, the font size specified in the Font Size field of
the dialog font table is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseForeColorMask
If the kDialogFontUseForeColorMask flag (bit 3) is set, the text color specified in the Text Color
field of the dialog font table is applied. This flag only applies to static text controls.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseBackColorMask
If the kDialogFontUseBackColorMask flag (bit 4) is set, the background color specified in the
Background Color field of the dialog font table is applied. This flag only applies to static text controls.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

910 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

kDialogFontUseModeMask
If the kDialogFontUseModeMask flag (bit 5) is set, the text mode specified in the Text Mode field
of the dialog font table is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseJustMask
If the kDialogFontUseJustMask flag (bit 6) is set, the text justification specified in the Justification
field of the dialog font table is applied.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseAllMask
If the kDialogFontUseAllMask constant is used, all flags in this mask will be set except
kDialogFontAddFontSizeMask and kDialogFontUseFontNameMask.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontAddFontSizeMask
If the kDialogFontAddFontSizeMask flag (bit 8) is set, the Dialog Manager will add a specified font
size to the existing font size indicated in the Font Size field of the dialog font table resource.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontUseFontNameMask
If the kDialogFontUseFontNameMask flag (bit 9) is set, the Dialog Manager will use the string in
the Font Name field for the font name instead of a font ID.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kDialogFontAddToMetaFontMask
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can set the following bits in the dialog font table resource to specify fields in the dialog font table that
should be used. Dialog font flag constants are available with Appearance Manager 1.0 and later.

Constants 911
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Dialog Item Constants

enum {
 kControlDialogItem = 4,
 kButtonDialogItem = kControlDialogItem | 0,
 kCheckBoxDialogItem = kControlDialogItem | 1,
 kRadioButtonDialogItem = kControlDialogItem | 2,
 kResourceControlDialogItem = kControlDialogItem | 3,
 kStaticTextDialogItem = 8,
 kEditTextDialogItem = 16,
 kIconDialogItem = 32,
 kPictureDialogItem = 64,
 kUserDialogItem = 0,
 kHelpDialogItem = 1,
 kItemDisableBit = 128
};

Constants
kControlDialogItem

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kButtonDialogItem
Standard button control.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kCheckBoxDialogItem
Standard checkbox control.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kRadioButtonDialogItem
Standard radio button control.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kResourceControlDialogItem
Control defined in control resource.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kStaticTextDialogItem
Static text item.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kEditTextDialogItem
Edit text item.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

912 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

kIconDialogItem
Icon.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kPictureDialogItem
QuickDraw picture.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kUserDialogItem
Application-defined item.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kHelpDialogItem
Help balloon, as defined by the Help Manager.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kItemDisableBit
Add to disable any other constant, except kHelpDialogItem.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
These constants are returned in the itemType parameter of GetDialogItem (page 852) and can be passed
to SetDialogItem (page 881) and the dialog item list resource to specify dialog item type.

Dialog Item List Display Constants
Specify methods of appending new items to a dialog.

typedef SInt16 DITLMethod;
enum {
 overlayDITL = 0,
 appendDITLRight = 1,
 appendDITLBottom = 2
};

Constants
overlayDITL

Superimpose the appended items over the dialog box.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

appendDITLRight
Position the items to the right of the dialog box and relative to its upper-right coordinate.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Constants 913
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

appendDITLBottom
Position the items below the dialog box and relative to its lower-left coordinate.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Discussion
You can pass a constant value of type DITLMethod to the function AppendDITL (page 836) to specify how
you want appended dialog items displayed.

kDialogFontUseThemeFontIDMask

enum {
 kDialogFontUseThemeFontIDMask = 0x0080
};

Constants
kDialogFontUseThemeFontIDMask

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kHICommandOther

enum {
 kHICommandOther = 'othr'
};

Constants
kHICommandOther

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kOkItemIndex

enum {
 kOkItemIndex = 1,
 kCancelItemIndex = 2
};

Constants
kOkItemIndex

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kCancelItemIndex
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

914 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Standard Alert and Sheet Option Flags
Define flags used in the AlertStdCFStringAlertParamRec (page 898) structure.

enum {
 kStdAlertDoNotDisposeSheet = 1 << 0,
 kStdAlertDoNotAnimateOnDefault = 1 << 1,
 kStdAlertDoNotAnimateOnCancel = 1 << 2,
 kStdAlertDoNotAnimateOnOther = 1 << 3,
 kStdAlertDoNotCloseOnHelp = 1 << 4
};

Constants
kStdAlertDoNotDisposeSheet

Do not dispose of the sheet window after closing it. This option allows the sheet to be used again
when calling the Window Manager function ShowSheetWindow.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kStdAlertDoNotAnimateOnDefault
Do not animate hiding the sheet window when the user presses the default button.

Available in Mac OS X v10.1 and later.

Declared in Dialogs.h.

kStdAlertDoNotAnimateOnCancel
Do not animate hiding the sheet window when the user presses the Cancel button.

Available in Mac OS X v10.1 and later.

Declared in Dialogs.h.

kStdAlertDoNotAnimateOnOther
Do not animate hiding the sheet window when the user presses the other button.

Available in Mac OS X v10.1 and later.

Declared in Dialogs.h.

kStdAlertDoNotCloseOnHelp
Specifies that the alert stay up even after the user clicks the Help button. Normally, it would close
immediately. It is not necessary to set this option for sheets, as they merely send the HICommandHelp
command to the event target provided. When you specify this option, RunStandardAlert (page
877) returns with the Help button item in the outItemHit parameter, but the alert remains up. You
can then perform whatever help function you wish and then call RunStandardAlert again.

Declared in Dialogs.h.

Available in Mac OS X 10.4 or later.

Standard Alert Structure Version Constant
Indicates the version of the AlertStdCFStringAlertParamRec (page 898) structure.

Constants 915
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

enum {
 kStdCFStringAlertVersionOne = 1
};

Constants
kStdCFStringAlertVersionOne

First version. Pass this into the version field of the AlertStdCFStringAlertParamRec structure.

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kStdOkItemIndex

enum {
 kStdOkItemIndex = 1,
 kStdCancelItemIndex = 2,
 ok = kStdOkItemIndex,
 cancel = kStdCancelItemIndex
};

Constants
kStdOkItemIndex

Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

kStdCancelItemIndex
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

ok
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

cancel
Available in Mac OS X v10.0 and later.

Declared in Dialogs.h.

Result Codes

The result codes defined for the Dialog Manager are listed below.

DescriptionValueResult Code

No timeout has been set for this dialog.-5640dialogNoTimeoutErr

Available in Mac OS X v10.0 and later.

916 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Gestalt Constants

You can check for version and feature availability information by using the Dialog Manager selectors defined
in the Gestalt Manager. For more information, see Gestalt Manager Reference.

Gestalt Constants 917
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

918 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 7

Dialog Manager Reference

Framework: Carbon/Carbon.h

Declared in Drag.h

Overview

The Drag Manager facilitates dragging objects within the Macintosh user interface. The Drag Manager provides
functions that handle the user interface for dragging an object from, within, or to one of your application’s
windows. The Drag Manager can be used whenever an object is dragged within your application.

Use the Drag Manager if you want your users to be able to drag items within your own application’s windows
or between those of your application and other applications. You can also use the Drag Manager to allow
the user of your application to drag selections of your documents to the Finder to create "clippings" from
your documents and to allow selections from other applications to be dragged directly into your documents.

Functions by Task

Installing and Removing Drag Handlers

InstallReceiveHandler (page 940) Deprecated in Mac OS X v10.5
Installs a receive handler function for one or all of your application’s windows.

InstallTrackingHandler (page 941) Deprecated in Mac OS X v10.5
Installs a tracking handler function for one or all of your application’s windows.

RemoveReceiveHandler (page 947) Deprecated in Mac OS X v10.5
Removes a receive handler function from one or all of your application’s windows.

RemoveTrackingHandler (page 947) Deprecated in Mac OS X v10.5
Removes a tracking handler function from one or all of your application’s windows.

Creating and Disposing of Drag References

NewDrag (page 944)
Creates a new drag reference for your application to use with the Drag Manager.

DisposeDrag (page 926)
Disposes of a drag reference and its associated data.

Overview 919
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Adding Drag Item Flavors

AddDragItemFlavor (page 923) Deprecated in Mac OS X v10.5
Adds a flavor to a drag item, creating a new item if necessary.

SetDragItemFlavorData (page 953) Deprecated in Mac OS X v10.5
Sets the data or part of the data contained within an existing flavor.

Providing Drag Callback Functions

SetDragInputProc (page 952)
Sets the drag input function for the Drag Manager to use with a particular drag.

SetDragDrawingProc (page 948) Deprecated in Mac OS X v10.5
Sets the drag drawing function for the Drag Manager to use with a particular drag.

SetDragSendProc (page 955) Deprecated in Mac OS X v10.5
Sets the send data function for the Drag Manager to use with a particular drag.

Setting the Drag Image

SetDragImageWithCGImage (page 951)
Associates a Core Graphics image with a drag reference.

SetDragImage (page 950) Deprecated in Mac OS X v10.4
Associates an image with a drag reference. (Deprecated. Use SetDragImageWithCGImage (page
951) instead.)

Altering the Behavior of a Drag

ChangeDragBehaviors (page 924)
Changes the behavior of a drag.

Performing a Drag

TrackDrag (page 958)
Drags an item or collection of items from your application.

Getting Drag Item Information

GetDragItemBounds (page 932)
Gets the bounding rectangle of a drag item.

SetDragItemBounds (page 952)
Sets the bounding rectangle of a drag item.

CountDragItemFlavors (page 925) Deprecated in Mac OS X v10.5
Gets the number of flavors that are contained within a drag item.

920 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

CountDragItems (page 925) Deprecated in Mac OS X v10.5
Gets the number of drag items that are contained in a drag reference.

GetDragItemReferenceNumber (page 933) Deprecated in Mac OS X v10.5
Gets the reference number of a specific item in a drag reference.

GetFlavorData (page 936) Deprecated in Mac OS X v10.5
Gets all or part of the data for a specific flavor in a drag item.

GetFlavorDataSize (page 937) Deprecated in Mac OS X v10.5
Gets the size of the data for a specific flavor in a drag item.

GetFlavorFlags (page 937) Deprecated in Mac OS X v10.5
Gets the flags for a specific flavor in a drag item.

GetFlavorType (page 938) Deprecated in Mac OS X v10.5
Gets the type of a specific flavor in a drag item.

Getting and Setting the Drop Location

GetDropLocation (page 935) Deprecated in Mac OS X v10.5
Gets the Apple Event descriptor of the drop location.

GetStandardDropLocation (page 939) Deprecated in Mac OS X v10.5
Gets the standard drop location set by the receiver of a drag.

SetDropLocation (page 956) Deprecated in Mac OS X v10.5
Sets the Apple Event descriptor for the drop location of a drag.

SetStandardDropLocation (page 956) Deprecated in Mac OS X v10.5
Used by the receiver of a drag to set the standard drop location for a drag.

Getting Drag Status Information

GetDragAttributes (page 930)
Gets the current set of drag attribute flags.

GetDragMouse (page 934)
Gets the current mouse and pinned mouse locations.

SetDragMouse (page 954)
Sets the current pinned mouse location.

GetDragOrigin (page 934)
Gets the mouseDown parameter location that started the given drag.

GetDragModifiers (page 933)
Gets the current set of keyboard modifiers.

Accessing Drag Actions

GetDragAllowableActions (page 929)
Returns the actions that the drag receiver may take on the data within a drag.

SetDragAllowableActions (page 948)
Sets the actions that the drag receiver may take on the data within a drag.

Functions by Task 921
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

GetDragDropAction (page 931)
Returns the action performed by the receiver of the drag.

SetDragDropAction (page 949)
Sets the action performed by the receiver of the drag.

Highlighting a Drag

DragPostScroll (page 928) Deprecated in Mac OS X v10.5
Restores the drag highlight after scrolling part of your window.

DragPreScroll (page 929) Deprecated in Mac OS X v10.5
Prepares your window or pane for scrolling.

GetDragHiliteColor (page 931) Deprecated in Mac OS X v10.5
Returns the drag highlight color for a window.

HideDragHilite (page 939) Deprecated in Mac OS X v10.5
Removes highlighting created with the ShowDragHilite function.

ShowDragHilite (page 957) Deprecated in Mac OS X v10.5
Highlights an area of your window during a drag.

UpdateDragHilite (page 959) Deprecated in Mac OS X v10.5
Updates the portion of the drag highlight that was drawn over by your application.

Drag Manager Utilities

WaitMouseMoved (page 960)
Returns true if a mouse movement is the beginning of a drag.

ZoomRects (page 960) Deprecated in Mac OS X v10.5
Animates a rectangle into a second rectangle.

ZoomRegion (page 961) Deprecated in Mac OS X v10.5
Animates a region’s outline from one screen location to another.

Creating, Calling, and Deleting Universal Procedure Pointers

NewDragInputUPP (page 945)
Creates a new universal procedure pointer (UPP) to a drag input callback.

DisposeDragInputUPP (page 927)
Disposes of the universal procedure pointer (UPP) to a drag input callback.

InvokeDragInputUPP (page 942)
Calls your drag input callback.

DisposeDragDrawingUPP (page 926) Deprecated in Mac OS X v10.5
Disposes of the universal procedure pointer (UPP) to a drag drawing callback.

DisposeDragReceiveHandlerUPP (page 927) Deprecated in Mac OS X v10.5
Disposes of the universal procedure pointer (UPP) to a drag receive handler.

DisposeDragSendDataUPP (page 927) Deprecated in Mac OS X v10.5
Disposes of the universal procedure pointer (UPP) to a drag send data callback.

922 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

DisposeDragTrackingHandlerUPP (page 928) Deprecated in Mac OS X v10.5
Disposes of the universal procedure pointer (UPP) to a drag tracking handler.

InvokeDragDrawingUPP (page 942) Deprecated in Mac OS X v10.5
Calls your drag drawing callback.

InvokeDragReceiveHandlerUPP (page 943) Deprecated in Mac OS X v10.5
Calls your drag receive handler.

InvokeDragSendDataUPP (page 943) Deprecated in Mac OS X v10.5
Calls your drag send data callback.

InvokeDragTrackingHandlerUPP (page 944) Deprecated in Mac OS X v10.5
Calls your drag tracking handler.

NewDragDrawingUPP (page 944) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a drag drawing callback.

NewDragReceiveHandlerUPP (page 945) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a drag receive handler.

NewDragSendDataUPP (page 946) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a drag send data callback.

NewDragTrackingHandlerUPP (page 946) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a drag tracking handler.

Functions

AddDragItemFlavor
Adds a flavor to a drag item, creating a new item if necessary. (Deprecated in Mac OS X v10.5.)

OSErr AddDragItemFlavor (
 DragRef theDrag,
 DragItemRef theItemRef,
 FlavorType theType,
 const void *dataPtr,
 Size dataSize,
 FlavorFlags theFlags
);

Parameters
theDrag

A drag reference.

theItemRef
The drag item to add the flavor to. You create a new drag item by providing a unique item reference
number here. You add a flavor to an existing item by using the same item reference number as in a
previous call. You may use any item reference number when adding a flavor to an item. Item reference
numbers do not need to be specified in order, nor must they be sequential. In many cases it is easiest
to use index numbers as item reference numbers (1, 2, 3...). Item reference numbers are only used as
unique “key” numbers for each item. Depending on your application, it might be easier to use your
own internal memory addresses as item reference numbers (as long as each item being dragged has
a unique item reference number).

Functions 923
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

theType
The data type of the flavor to add. This may be any four-character scrap type. You may use your
application’s signature for a unique type for internal use. You must add all of the drag item flavors to
a drag item before calling the TrackDrag function. Once the TrackDrag function is called, receiving
applications may not operate properly if new drag items or drag item flavors are added.

dataPtr
A pointer to the flavor data to add. Pass NULL to defer the creation of a particular data type until a
receiver has specifically requested it. If you pass NULL, a promise is added to the drag; when the flavor
is requested, the Drag Manager calls the drag’s send data function to get the data from your application.

Note that this method of setting promises differs from the method of setting Scrap Manager promises.
See the Scrap Manager function PutScrapFlavor for more information.

dataSize
The size, in bytes, of the flavor data to add. If you pass NULL in the dataPtr parameter, the value in
this parameter is ignored.

theFlags
The set of attributes to set for this flavor.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

ChangeDragBehaviors
Changes the behavior of a drag.

OSErr ChangeDragBehaviors (
 DragRef theDrag,
 DragBehaviors inBehaviorsToSet,
 DragBehaviors inBehaviorsToClear
);

Parameters
theDrag

A drag reference.

inBehaviorsToSet
A value indicating the new behavior of the drag. See “Drag Behaviors” (page 974) for a description of
the values you can use in this parameter.

inBehaviorsToClear
A value indicating which existing behavior, if any, should be cleared. See “Drag Behaviors” (page 974)
for a description of the values you can use in this parameter.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

924 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

CountDragItemFlavors
Gets the number of flavors that are contained within a drag item. (Deprecated in Mac OS X v10.5.)

OSErr CountDragItemFlavors (
 DragRef theDrag,
 DragItemRef theItemRef,
 UInt16 *numFlavors
);

Parameters
theDrag

The drag reference.

theItemRef
An item reference number.

numFlavors
On return, a pointer to the number of flavors in the specified drag item. When the
CountDragItemFlavors function is called by an application other than the sender, the flavors that
are marked with the flavorSenderOnly flag are not included in the count.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

CountDragItems
Gets the number of drag items that are contained in a drag reference. (Deprecated in Mac OS X v10.5.)

OSErr CountDragItems (
 DragRef theDrag,
 UInt16 *numItems
);

Parameters
theDrag

The drag reference.

numItems
On return, a pointer to the number of drag items in the specified drag reference.

Functions 925
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

DisposeDrag
Disposes of a drag reference and its associated data.

OSErr DisposeDrag (
 DragRef theDrag
);

Parameters
theDrag

The drag reference of the drag object to dispose of. If the drag reference contains any drag item
flavors, the memory associated with the drag item flavors is disposed of as well.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
You should call the DisposeDrag function after a drag has been performed using the TrackDrag function
or if a drag reference was created but is no longer needed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

DisposeDragDrawingUPP
Disposes of the universal procedure pointer (UPP) to a drag drawing callback. (Deprecated in Mac OS X v10.5.)

void DisposeDragDrawingUPP (
 DragDrawingUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

926 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Declared In
Drag.h

DisposeDragInputUPP
Disposes of the universal procedure pointer (UPP) to a drag input callback.

void DisposeDragInputUPP (
 DragInputUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

DisposeDragReceiveHandlerUPP
Disposes of the universal procedure pointer (UPP) to a drag receive handler. (Deprecated in Mac OS X v10.5.)

void DisposeDragReceiveHandlerUPP (
 DragReceiveHandlerUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

DisposeDragSendDataUPP
Disposes of the universal procedure pointer (UPP) to a drag send data callback. (Deprecated in Mac OS X
v10.5.)

void DisposeDragSendDataUPP (
 DragSendDataUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Functions 927
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

DisposeDragTrackingHandlerUPP
Disposes of the universal procedure pointer (UPP) to a drag tracking handler. (Deprecated in Mac OS X v10.5.)

void DisposeDragTrackingHandlerUPP (
 DragTrackingHandlerUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

DragPostScroll
Restores the drag highlight after scrolling part of your window. (Deprecated in Mac OS X v10.5.)

OSErr DragPostScroll (
 DragRef theDrag
);

Parameters
theDrag

The drag reference.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The DragPostScroll function restores the drag highlight after scrolling part of your window. This function
must be called following each call to the DragPreScroll function and any subsequent scrolling.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

928 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

DragPreScroll
Prepares your window or pane for scrolling. (Deprecated in Mac OS X v10.5.)

OSErr DragPreScroll (
 DragRef theDrag,
 SInt16 dH,
 SInt16 dV
);

Parameters
theDrag

The drag reference.

dH
The horizontal distance you intend to scroll.

dV
The vertical distance you intend to scroll.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
Removes any drag highlighting that would be scrolled away from the hiliteFrame specified to the
ShowDragHilite function when scrolling part of your window while drag highlighting is showing. Use this
function if you plan to scroll part of your window using the ScrollRect or CopyBits functions.

Scrolling part of your window may inadvertently move part of the drag highlighting with it. The
DragPreScroll function is optimized to remove from the screen only the parts of the highlighting that will
be scrolled away from the hiliteFrame region. After calling the DragPreScroll function with the dH and
dV that you are going to scroll, you can then scroll your window followed by a call to the DragPostScroll
function which redraws any necessary highlighting after the scroll.

If you use an offscreen port to draw your window into while scrolling, it is recommended that you simply
use the HideDragHilite and ShowDragHilite functions to preserve drag highlighting in your offscreen
port. The DragScroll functions are optimized for onscreen scrolling.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

GetDragAllowableActions
Returns the actions that the drag receiver may take on the data within a drag.

Functions 929
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

OSStatus GetDragAllowableActions (
 DragRef theDrag,
 DragActions *outActions
);

Parameters
theDrag

The drag reference.

outActions
A pointer to a field that specifies, on return, the allowable drag actions. See “Drag Actions” (page 979)
for a description of the values that may be returned here.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The drag actions returned by the GetDragAllowableActions function are not actually requirements; they
are highly recommended suggestions for operations that the drag receiver may perform. The drag sender
sets the recommended actions for a drag using the SetDragAllowableActions (page 948) function. The
drag actions returned by GetDragAllowableActions are always local to the caller’s process.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
Drag.h

GetDragAttributes
Gets the current set of drag attribute flags.

OSErr GetDragAttributes (
 DragRef theDrag,
 DragAttributes *flags
);

Parameters
theDrag

A drag reference.

flags
On return, a pointer to the drag attribute flags for the specified drag reference. See “Drag
Attributes” (page 973) for a description of the values that may be returned here.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
If the GetDragAttributes function is called during a drag, the current set of drag attributes is returned. If
the GetDragAttributes function is called after a drag, the set of drag attributes that were set at drop time
is returned.

Availability
Available in Mac OS X v10.0 and later.

930 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Not available to 64-bit applications.

Declared In
Drag.h

GetDragDropAction
Returns the action performed by the receiver of the drag.

OSStatus GetDragDropAction (
 DragRef theDrag,
 DragActions *outAction
);

Parameters
theDrag

The drag reference from which to retrieve the drop action.

outAction
A pointer to a field that, on return, specifies the action performed by the drag receiver. More than
one action may be performed. See “Drag Actions” (page 979) for a description of the values that may
be returned here.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
Drag.h

GetDragHiliteColor
Returns the drag highlight color for a window. (Deprecated in Mac OS X v10.5.)

OSErr GetDragHiliteColor (
 WindowRef window,
 RGBColor *color
);

Parameters
window

The window for which to return the drag highlight color.

color
On return, a pointer to the highlight color.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Functions 931
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Discussion
Use the GetDragHiliteColor function to determine the color the Drag Manager will use for a particular
window. GetDragHiliteColor can safely be called when the gestaltDragMgrHasImageSupport bit is
set in the Gestalt response to the selector gestaltDragMgrAttr. For more information on the
gestaltDragMgrAttr selector, see Inside Mac OS X: Gestalt Manager Reference.

The Drag Manager chooses an appropriate color for highlighting, based on the color used for drag highlighting
in the current Appearance Manager theme.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

GetDragItemBounds
Gets the bounding rectangle of a drag item.

OSErr GetDragItemBounds (
 DragRef theDrag,
 DragItemRef theItemRef,
 Rect *itemBounds
);

Parameters
theDrag

A drag reference.

theItemRef
The reference number of the drag item whose bounds you wish to obtain.

itemBounds
On return, a pointer to the bounding rectangle (relative to the current pinned mouse position) of the
specified item in global coordinates.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
You can use the GetDragItemBounds function in your tracking or receive handlers to determine the current
or dropped location of each item in the drag.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

932 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

GetDragItemReferenceNumber
Gets the reference number of a specific item in a drag reference. (Deprecated in Mac OS X v10.5.)

OSErr GetDragItemReferenceNumber (
 DragRef theDrag,
 UInt16 index,
 DragItemRef *theItemRef
);

Parameters
theDrag

The drag reference.

index
The index of an item in a drag for which to get the reference.

theItemRef
On return, a pointer to the reference number of the item with the specified index.

Return Value
A result code. See “Drag Manager Result Codes” (page 986). If index is 0 or larger than the number of items
in the drag, GetDragItemReferenceNumber returns the badDragItemErr result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

GetDragModifiers
Gets the current set of keyboard modifiers.

OSErr GetDragModifiers (
 DragRef theDrag,
 SInt16 *modifiers,
 SInt16 *mouseDownModifiers,
 SInt16 *mouseUpModifiers
);

Parameters
theDrag

A drag reference.

modifiers
A pointer to a variable that, on return, contains the current keyboard modifiers. You may pass NULL
if you wish to disregard this value. The value will be 0 if the drag has not been started.

mouseDownModifiers
A pointer to a variable that, on return, contains the keyboard modifiers at the mouseDown parameter
time. You may pass NULL if you wish to disregard this value. The value will be 0 if the drag has not
been started.

Functions 933
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

mouseUpModifiers
A pointer to a variable that, on return, contains the keyboard modifiers at the mouseUp parameter
time. You may pass NULL if you wish to disregard this value. The value will be 0 if the drag has not
been completed.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

GetDragMouse
Gets the current mouse and pinned mouse locations.

OSErr GetDragMouse (
 DragRef theDrag,
 Point *mouse,
 Point *globalPinnedMouse
);

Parameters
theDrag

A drag reference.

mouse
A pointer to a variable containing, on return, the current mouse location in global screen coordinates.
You may pass NULL if you wish to ignore this value. The value will be (0, 0) if the drag is not yet used.
After a drag completes, the drop location is returned.

globalPinnedMouse
A pointer to a variable containing, on return, the current pinned mouse location in global screen
coordinates. You may pass NULL if you wish to ignore this value. The value will be (0, 0) if the drag is
not yet used. After a drag completes, the drop location is returned.The pinned mouse location is the
mouse location that is used to draw the drag region on the screen. The pinned mouse location is
different from the mouse location when the cursor is being constrained in either dimension by a
tracking handler.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

GetDragOrigin
Gets the mouseDown parameter location that started the given drag.

934 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

OSErr GetDragOrigin (
 DragRef theDrag,
 Point *globalInitialMouse
);

Parameters
theDrag

A drag reference.

globalInitialMouse
A pointer to a variable that contains, on return, the mouseDown parameter location that started the
drag, in global coordinates. The mouseDown location is returned whether or not the drag has
completed.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

GetDropLocation
Gets the Apple Event descriptor of the drop location. (Deprecated in Mac OS X v10.5.)

OSErr GetDropLocation (
 DragRef theDrag,
 AEDesc *dropLocation
);

Parameters
theDrag

A drag reference.

dropLocation
On return, a pointer to the Apple Event descriptor of the drop location. The drop location is only valid
after the receiver has set the drop location by calling the SetDropLocation function. If the destination
is in the Finder, the drop location will be an alias to the location in the file system that received the
drag. If the receiver of the drag has not set a drop location by calling the SetDropLocation function,
typeNull will be returned.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The GetDropLocation function may be called both during a drag as well as after a drag has completed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 935
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Declared In
Drag.h

GetFlavorData
Gets all or part of the data for a specific flavor in a drag item. (Deprecated in Mac OS X v10.5.)

OSErr GetFlavorData (
 DragRef theDrag,
 DragItemRef theItemRef,
 FlavorType theType,
 void *dataPtr,
 Size *dataSize,
 UInt32 dataOffset
);

Parameters
theDrag

A drag reference.

theItemRef
The reference number of the drag item containing the flavor data.

theType
The flavor type of the flavor to get the data from.

dataPtr
A pointer to a data buffer. On return, the buffer contains the requested flavor data. Your application
is responsible for allocating the memory for the flavor data and for setting the dataSize parameter
to the number of bytes that you have allocated for the data.

dataSize
On input, a pointer to the size of the data (in bytes) that you have allocated memory for and wish to
receive from the flavor. On return, a pointer to the actual number of bytes copied into the buffer
specified by the dataPtr parameter.

If you specify a dataSize that is smaller than the amount of data in the flavor, the data is copied
into your buffer and the dataSize parameter is unchanged. If you specify a dataSize that is larger
than the amount of data in the flavor, only the amount of data in the flavor is copied into your buffer
and the dataSize parameter contains, on return, the actual number of bytes copied. You have
reached the end of the flavor’s data when the dataSize parameter points to a number of bytes lower
than you provided.

If you wish to receive the flavor data in smaller pieces than the entire size of the data, you can set the
dataSize parameter to be as large as your buffer and call the GetFlavorData function multiple
times while incrementing the dataOffset parameter by the size of your buffer. If the dataOffset
parameter is larger than the amount of data contained within the flavor, 0 (zero) will be returned in
the number pointed to by the dataSize parameter indicating that no data was copied into your
buffer.

dataOffset
A pointer to the offset (in bytes) within the flavor structure at which to begin copying data.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
You can first determine the size of a flavor’s data by calling the GetFlavorDataSize function.

936 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Note that calling the GetFlavorData function on a flavor that requires translation will force that translation
to occur in order to return the data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

GetFlavorDataSize
Gets the size of the data for a specific flavor in a drag item. (Deprecated in Mac OS X v10.5.)

OSErr GetFlavorDataSize (
 DragRef theDrag,
 DragItemRef theItemRef,
 FlavorType theType,
 Size *dataSize
);

Parameters
theDrag

A drag reference.

theItemRef
The reference number of the drag item containing the flavor.

theType
The flavor type for which to get the size of the data.

dataSize
On return, a pointer to the size of the data for the specified drag item flavor.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
Note that calling the GetFlavorDataSize function on a flavor that requires translation will force that
translation to be performed in order to determine the data size. Since translation may require a significant
amount of time and memory during processing, call the GetFlavorDataSize function only when necessary.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

GetFlavorFlags
Gets the flags for a specific flavor in a drag item. (Deprecated in Mac OS X v10.5.)

Functions 937
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

OSErr GetFlavorFlags (
 DragRef theDrag,
 DragItemRef theItemRef,
 FlavorType theType,
 FlavorFlags *theFlags
);

Parameters
theDrag

A drag reference.

theItemRef
The reference number of the drag item containing the flavor.

theType
The flavor type for which to get the attributes.

theFlags
On return, a pointer to the attributes of the specified flavor. If a flavor is marked with the
flavorSenderOnly flag, it is not returned to any application other than the sender.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

GetFlavorType
Gets the type of a specific flavor in a drag item. (Deprecated in Mac OS X v10.5.)

OSErr GetFlavorType (
 DragRef theDrag,
 DragItemRef theItemRef,
 UInt16 index,
 FlavorType *theType
);

Parameters
theDrag

A drag reference.

theItemRef
The reference number of the drag item containing the flavor.

index
The index of the desired flavor.

theType
On return, a pointer to the type of the specified flavor. If a flavor is marked with the
flavorSenderOnly flag, it is not returned to any application other than the sender.

938 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Return Value
A result code. See “Drag Manager Result Codes” (page 986). If index is 0 or larger than the number of flavors
in the item, GetFlavorType returns the badDragFlavorErr result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

GetStandardDropLocation
Gets the standard drop location set by the receiver of a drag. (Deprecated in Mac OS X v10.5.)

OSStatus GetStandardDropLocation (
 DragRef theDrag,
 StandardDropLocation *outDropLocation
);

Parameters
theDrag

The drag reference.

outDropLocation
A pointer to a value that, on return, represents the location where the drag was dropped. You can
use the GetStandardDropLcoation function to easily determine whether a drag landed in the
trash; if the drop location is the trash, the value of this parameter is
kDragStandardDropLocationTrash. Otherwise, the value returned here is
kDragStandardDropLocationUnknown. See “Standard Drop Locations” (page 982) for more
information on these values.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

HideDragHilite
Removes highlighting created with the ShowDragHilite function. (Deprecated in Mac OS X v10.5.)

Functions 939
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

OSErr HideDragHilite (
 DragRef theDrag
);

Parameters
theDrag

The drag reference that is currently showing a drag highlight.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The HideDragHilite function assumes that the highlighting should be erased from the current port. Your
application should make sure that the correct port is set before calling the HideDragHilite function. Also,
highlighting erased by the HideDragHilite function is clipped to the current port. Make sure that the
port’s clip region is appropriately sized to remove the highlighting.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

InstallReceiveHandler
Installs a receive handler function for one or all of your application’s windows. (Deprecated in Mac OS X
v10.5.)

OSErr InstallReceiveHandler (
 DragReceiveHandlerUPP receiveHandler,
 WindowRef theWindow,
 void *handlerRefCon
);

Parameters
receiveHandler

A pointer to a receive handler function. Installing a receive handler function allows your application
to accept a drag by getting drag item flavor data from the Drag Manager when the user releases the
mouse button while dragging over one of your application’s windows.

theWindow
A reference to the window for which to install the receive handler. When a drop occurs over this
window, the Drag Manager calls your receive handler function to allow your application to accept
the drag. If you pass NULL, the receive handler function is installed in the default handler space for
your application. Receive handler functions installed in this way are called when a drop occurs over
any window that belongs to your application. You may install more than one receive handler function
on a single window.

handlerRefCon
A pointer to a reference constant that will be forwarded to your receive handler function when it is
called by the Drag Manager. Use this constant to pass any data you wish to forward to your drag
receive handler.

940 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The Drag Manager sequentially calls all of the receive handler functions installed on a window when a drop
occurs in that window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

InstallTrackingHandler
Installs a tracking handler function for one or all of your application’s windows. (Deprecated in Mac OS X
v10.5.)

OSErr InstallTrackingHandler (
 DragTrackingHandlerUPP trackingHandler,
 WindowRef theWindow,
 void *handlerRefCon
);

Parameters
trackingHandler

A pointer to a tracking handler function. Installing a tracking handler function allows your application
to track the user’s movements through your application’s windows during a drag.

theWindow
A reference to the window for which to track and handle dragging. When the cursor moves into this
window during a drag, the Drag Manager sends tracking messages to the tracking handler function.
If you pass NULL, the tracking handler function is installed in the default handler space for your
application. Tracking handler functions installed in this way are called when the user moves the mouse
over any window that belongs to your application. You may install more than one drag tracking
handler on a single window.

handlerRefCon
A pointer to a reference constant that will be forwarded to your tracking handler function when it is
called by the Drag Manager. Use this constant to pass any data you wish to forward to your tracking
handler function.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The Drag Manager sequentially calls all of the tracking handler functions installed for a window when the
user moves the cursor over that window during a drag.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 941
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Declared In
Drag.h

InvokeDragDrawingUPP
Calls your drag drawing callback. (Deprecated in Mac OS X v10.5.)

OSErr InvokeDragDrawingUPP (
 DragRegionMessage message,
 RgnHandle showRegion,
 Point showOrigin,
 RgnHandle hideRegion,
 Point hideOrigin,
 void *dragDrawingRefCon,
 DragRef theDrag,
 DragDrawingUPP userUPP
);

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
You should not need to use the function InvokeDragDrawingUPP, as the system calls your drag drawing
callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

InvokeDragInputUPP
Calls your drag input callback.

OSErr InvokeDragInputUPP (
 Point *mouse,
 SInt16 *modifiers,
 void *dragInputRefCon,
 DragRef theDrag,
 DragInputUPP userUPP
);

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
You should not need to use the function InvokeDragInputUPP, as the system calls your drag input callback
for you.

Availability
Available in Mac OS X v10.0 and later.

942 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Declared In
Drag.h

InvokeDragReceiveHandlerUPP
Calls your drag receive handler. (Deprecated in Mac OS X v10.5.)

OSErr InvokeDragReceiveHandlerUPP (
 WindowRef theWindow,
 void *handlerRefCon,
 DragRef theDrag,
 DragReceiveHandlerUPP userUPP
);

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
You should not need to use the function InvokeDragReceiveHandlerUPP, as the system calls your drag
receive handler for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

InvokeDragSendDataUPP
Calls your drag send data callback. (Deprecated in Mac OS X v10.5.)

OSErr InvokeDragSendDataUPP (
 FlavorType theType,
 void *dragSendRefCon,
 DragItemRef theItemRef,
 DragRef theDrag,
 DragSendDataUPP userUPP
);

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
You should not need to use the function InvokeDragSendDataUPP, as the system calls your drag send data
callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

Functions 943
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

InvokeDragTrackingHandlerUPP
Calls your drag tracking handler. (Deprecated in Mac OS X v10.5.)

OSErr InvokeDragTrackingHandlerUPP (
 DragTrackingMessage message,
 WindowRef theWindow,
 void *handlerRefCon,
 DragRef theDrag,
 DragTrackingHandlerUPP userUPP
);

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
You should not need to use the function InvokeDragTrackingHandlerUPP, as the system calls your drag
tracking handler for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

NewDrag
Creates a new drag reference for your application to use with the Drag Manager.

OSErr NewDrag (
 DragRef *theDrag
);

Parameters
theDrag

On return, a pointer to the newly created drag reference. This drag reference is required when adding
drag item flavors and calling the TrackDrag function. Your installed drag handler functions receive
this drag reference so they can call other Drag Manager functions.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

NewDragDrawingUPP
Creates a new universal procedure pointer (UPP) to a drag drawing callback. (Deprecated in Mac OS X v10.5.)

944 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

DragDrawingUPP NewDragDrawingUPP (
 DragDrawingProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your drag drawing callback.

Return Value
On return, a UPP to the drag drawing callback. See the description of the DragDrawingUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

NewDragInputUPP
Creates a new universal procedure pointer (UPP) to a drag input callback.

DragInputUPP NewDragInputUPP (
 DragInputProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your drag input callback.

Return Value
On return, a UPP to the drag input callback. See the description of the DragInputUPP data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

NewDragReceiveHandlerUPP
Creates a new universal procedure pointer (UPP) to a drag receive handler. (Deprecated in Mac OS X v10.5.)

DragReceiveHandlerUPP NewDragReceiveHandlerUPP (
 DragReceiveHandlerProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your drag receive handler.

Return Value
On return, a UPP to the drag receive handler. See the description of the DragReceiveHandlerUPP data
type.

Functions 945
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

NewDragSendDataUPP
Creates a new universal procedure pointer (UPP) to a drag send data callback. (Deprecated in Mac OS X v10.5.)

DragSendDataUPP NewDragSendDataUPP (
 DragSendDataProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your drag send data callback.

Return Value
On return, a UPP to the drag send data callback. See the description of the DragSendDataUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

NewDragTrackingHandlerUPP
Creates a new universal procedure pointer (UPP) to a drag tracking handler. (Deprecated in Mac OS X v10.5.)

DragTrackingHandlerUPP NewDragTrackingHandlerUPP (
 DragTrackingHandlerProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your drag tracking handler.

Return Value
On return, a UPP to the drag tracking handler. See the description of the DragTrackingHandlerUPP data
type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Drag.h

946 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

RemoveReceiveHandler
Removes a receive handler function from one or all of your application’s windows. (Deprecated in Mac OS X
v10.5.)

OSErr RemoveReceiveHandler (
 DragReceiveHandlerUPP receiveHandler,
 WindowRef theWindow
);

Parameters
receiveHandler

A pointer to a receive handler function.

theWindow
A reference to the window from which to remove the receive handler function. Pass NULL to remove
the specified receive handler function from the default handler space for your application.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

RemoveTrackingHandler
Removes a tracking handler function from one or all of your application’s windows. (Deprecated in Mac OS
X v10.5.)

OSErr RemoveTrackingHandler (
 DragTrackingHandlerUPP trackingHandler,
 WindowRef theWindow
);

Parameters
trackingHandler

A pointer to the tracking handler function to be removed.

theWindow
A reference to the window from which to remove the drag tracking handler function. Pass NULL to
remove the specified tracking handler function from the default handler space for your application.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 947
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Declared In
Drag.h

SetDragAllowableActions
Sets the actions that the drag receiver may take on the data within a drag.

OSStatus SetDragAllowableActions (
 DragRef theDrag,
 DragActions inActions,
 Boolean isLocal
);

Parameters
theDrag

The drag reference.

inActions
A field specifying the allowable actions for the drag. See “Drag Actions” (page 979) for a description
of the values you may use here.

isLocal
A Boolean value allowing the drag sender to specify whether the actions passed in the inActions
parameter are allowable for a local receiver or for a remote receiver. Pass true in this parameter if
the drag actions are for local receivers.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The actions set by the drag sender using the SetDragAllowableActions function are not requirements;
they are highly recommended suggestions for operations the drag receiver may perform. The caller may
select whether these drag actions apply to a remote or local process with the inLocal parameter.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
Drag.h

SetDragDrawingProc
Sets the drag drawing function for the Drag Manager to use with a particular drag. (Deprecated in Mac OS
X v10.5.)

Not recommended

948 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

OSErr SetDragDrawingProc (
 DragRef theDrag,
 DragDrawingUPP drawingProc,
 void *dragDrawingRefCon
);

Parameters
theDrag

The drag reference for which the drag drawing function will be set.

drawingProc
The drag drawing function to be called by the Drag Manager to draw, move, and hide the “dotted
outline” drag feedback on the screen during a drag.Your drag drawing function can implement any
type of drag feedback, such as dragging a bitmap of the object being dragged. Details for how to
write a drag drawing function are covered in the “Drag Manager Callbacks” (page 963) section.

dragDrawingRefCon
A pointer to a reference constant that will be forwarded to your drag drawing function when it is
called by the Drag Manager. Use this constant to pass any data you wish to forward to your drag
drawing function.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Carbon Porting Notes

Drag drawing functions are not supported in Mac OS X, although they continue to work in CarbonLib when
running Mac OS 8 and Mac OS 9.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

SetDragDropAction
Sets the action performed by the receiver of the drag.

OSStatus SetDragDropAction (
 DragRef theDrag,
 DragActions inAction
);

Parameters
theDrag

The drag reference for which to set the drop action.

inAction
The drop action performed. More than one action may be performed. See “Drag Actions” (page 979)
for a description of the values you may use here.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Functions 949
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
Drag.h

SetDragImage
Associates an image with a drag reference. (Deprecated in Mac OS X v10.4. Use
SetDragImageWithCGImage (page 951) instead.)

OSErr SetDragImage (
 DragRef inDrag,
 PixMapHandle inImagePixMap,
 RgnHandle inImageRgn,
 Point inImageOffsetPt,
 DragImageFlags inImageFlags
);

Parameters
theDrag

The drag reference.

imagePixMap
A handle to a PixMap describing the image. The Drag Manager temporarily locks the PixMapHandle
during the drag. The Drag Manager does not copy the information in this parameter; you must ensure
that the data to which this parameter refers continues to exist until TrackDrag completes.

imageRgn
A mask describing the portion of the PixMap contained in the imagePixMapparameter which contains
the drag image. Pass NULL for imageRgn if the entire PixMap, including white space, should be
dragged.

The Drag Manager does not copy the imageRgn parameter data. Until TrackDrag completes or
SetDragImage is called again to update the image, you must ensure that the data to which this
parameter refers continues to exist.

Don't confuse the region passed to the function TrackDrag and that passed to the SetDragImage
function. The former is what's drawn to the screen during dragging, while the latter is used only for
drawing the correct portion of the drag image.

imageOffsetPt
The offset required to move the PixMap specified in the imagePixMap parameter to the global
coordinates where the image initially appears. If this parameter is (0,0), the PixMap should already
be in global coordinates.

theImageFlags
Flags controlling the appearance of the drag image. See “Drag Image Flags” (page 982) for a description
of the values you can use in this parameter.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

950 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Discussion
The sending application should call SetDragImageprior to calling TrackDrag. Prior to calling SetDragImage,
the application should draw a solid, opaque image into the PixMap specified in the imagePixMap parameter.
The Drag Manager will provide translucency effects. Your application can obtain a PixMap by calling the
QuickDraw function GetGWorldPixMap and supplying a GWorld into which your application has drawn the
image.

To allow the Drag Manager to analyze the PixMap’s colors in order to determine if it can be rendered on the
available screens, Apple recommends using an 8-bit GWorld for the PixMap.

Special Considerations

SetDragImage installs a custom drawing procedure to do the translucent drawing. Applications calling
SetDragImage should not also call SetDragDrawingProc for the same drag.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
Drag.h

SetDragImageWithCGImage
Associates a Core Graphics image with a drag reference.

OSStatus SetDragImageWithCGImage (
 DragRef inDrag,
 CGImageRef inCGImage,
 const HIPoint *inImageOffsetPt,
 DragImageFlags inImageFlags
);

Parameters
inDrag

The drag reference for which to display the image.

inCGImage
A reference to the image to display during the drag. The Drag Manager retains this image for the
duration of the drag, so you may release the image immediately after calling
SetDragImageWithCGImage.

inImageOffsetPt
A pointer to the offset from the mouse location to the upper left corner of the image, normally
expressed in negative values. For example, an offset of (-30, -30) centers a 60 by 60 pixel image on
the mouse. Note that this differs from the usage of the offset passed to the SetDragImage function.

inImageFlags
Flags controlling the appearance of the drag image. See “Drag Image Flags” (page 982) for a description
of the values you can use in this parameter.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Functions 951
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Discussion
This function is called by the sender of a drag to set the image displayed to provide user feedback during
the drag. You can call the SetDragImageWithCGImage function at any point during the drag to update the
image.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
Drag.h

SetDragInputProc
Sets the drag input function for the Drag Manager to use with a particular drag.

OSErr SetDragInputProc (
 DragRef theDrag,
 DragInputUPP inputProc,
 void *dragInputRefCon
);

Parameters
theDrag

The drag reference for which the drag input function will be set.

inputProc
The drag input function to be called by the Drag Manager whenever the Drag Manager requires the
location of the mouse, the state of the mouse button, and the status of the modifier keys on the
keyboard. The Drag Manager typically calls this function once per cycle through the Drag Manager’s
main drag tracking loop.Your drag input function may either modify the current state of the mouse
and keyboard to slightly alter dragging behavior or entirely replace the input data to drive the drag
completely by itself. Details for how to write a drag input function are covered in the “Drag Manager
Callbacks” (page 963) section.

dragInputRefCon
A pointer to a reference constant that will be forwarded to your drag input function when it is called
by the Drag Manager. Use this constant to pass any data you wish to forward to your drag input
function.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

SetDragItemBounds
Sets the bounding rectangle of a drag item.

952 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

OSErr SetDragItemBounds (
 DragRef theDrag,
 DragItemRef theItemRef,
 const Rect *itemBounds
);

Parameters
theDrag

A drag reference.

theItemRef
The reference number of the drag item whose bounds you wish to set.

itemBounds
A pointer to the bounding rectangle to set for the specified drag item. This rectangle is specified in
global coordinates relative to the mouse down position.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
Your application would normally call the SetDragItemBounds function on each drag item before starting
a drag with the TrackDrag function.

If you do not set the bounds of an item, the rectangle returned by the GetDragItemBounds function is an
empty rectangle centered under the pinned mouse location.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

SetDragItemFlavorData
Sets the data or part of the data contained within an existing flavor. (Deprecated in Mac OS X v10.5.)

OSErr SetDragItemFlavorData (
 DragRef theDrag,
 DragItemRef theItemRef,
 FlavorType theType,
 const void *dataPtr,
 Size dataSize,
 UInt32 dataOffset
);

Parameters
theDrag

The drag reference whose flavor data will be set.

theItemRef
The drag item reference of the item that contains the flavor you wish to set all or part of the data for.
The data pointed to by the dataPtr parameter with the size specified in the dataSize parameter
is placed into the flavor structure at the offset specified by the dataOffset parameter.

Functions 953
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

theType
The data type of the existing flavor for which all or part of the data will be set.

dataPtr
A pointer to the flavor data.

dataSize
The size, in bytes, of the flavor data.

dataOffset
The offset, in bytes, into the flavor structure at which to place the data specified by the dataPtr and
the dataSize parameters.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
This function is commonly used in situations where a flavor’s data is not added to the flavor when the flavor
is created using the AddDragItemFlavor function. When the sender's drag send data function is called, the
SetDragItemFlavorData function can be used to provide the requested data to the Drag Manager. This
method is useful when the data needs to be translated by the sender and it would be expensive to compute
the data before it is required.

Unlike the functions that add flavors, this function may be called both before and during a drag.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

SetDragMouse
Sets the current pinned mouse location.

OSErr SetDragMouse (
 DragRef theDrag,
 Point globalPinnedMouse
);

Parameters
theDrag

A drag reference.

globalPinnedMouse
The coordinates to which to set the pinned mouse location, in global screen coordinates. The pinned
mouse location is used to draw the drag region on the screen.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
To constrain the mouse within one of your application’s windows, call the SetDragMouse function from
within your tracking handler when you receive the kDragTrackingInWindowmessages. The Drag Manager
updates the position of the drag region on the screen after each time your tracking handlers are called.

954 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

SetDragSendProc
Sets the send data function for the Drag Manager to use with a particular drag. (Deprecated in Mac OS X
v10.5.)

OSErr SetDragSendProc (
 DragRef theDrag,
 DragSendDataUPP sendProc,
 void *dragSendRefCon
);

Parameters
theDrag

The drag reference to set the send data function for.

sendProc
The send data function that will be called by the Drag Manager when the receiver of a drop requests
the flavor data of a flavor that has not been cached by the Drag Manager.

dragSendRefCon
A pointer to a reference constant that will be forwarded to your send data function when it is called
by the Drag Manager. Use this constant to pass any data you wish to forward to your send data
function.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The Drag Manager caches drag item flavor data when the flavor is added to a drag by calling the
AddDragItemFlavor function. If NULL is passed to the AddDragItemFlavor function as the data pointer,
the flavor data is not cached and the Drag Manager will call your send data function when the drag item
flavor data is requested.

You do not need to provide a send data function if your application never passes NULL to the
AddDragItemFlavor function when adding a drag item flavor to a drag.

Details for how to write a send data function are covered in the “Drag Manager Callbacks” (page 963) section.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

Functions 955
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

SetDropLocation
Sets the Apple Event descriptor for the drop location of a drag. (Deprecated in Mac OS X v10.5.)

OSErr SetDropLocation (
 DragRef theDrag,
 const AEDesc *dropLocation
);

Parameters
theDrag

A drag reference.

dropLocation
A pointer to the Apple Event descriptor of the drop location to set.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
This function is typically called by a receive handler before attempting to get any flavor data using the
GetFlavorDataSize or GetFlavorData functions. When a sender application's drag send data function
is called to provide flavor data to a receiver, the GetDropLocation function can be called to determine the
drop location while providing data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

SetStandardDropLocation
Used by the receiver of a drag to set the standard drop location for a drag. (Deprecated in Mac OS X v10.5.)

OSStatus SetStandardDropLocation (
 DragRef theDrag,
 StandardDropLocation dropLocation
);

Parameters
theDrag

The drag reference.

dropLocation
A value representing the location where the drag was dropped. See “Standard Drop Locations” (page
982) for a description of the values you may use here.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Availability
Available in Mac OS X v10.2 and later.
Deprecated in Mac OS X v10.5.

956 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Not available to 64-bit applications.

Declared In
Drag.h

ShowDragHilite
Highlights an area of your window during a drag. (Deprecated in Mac OS X v10.5.)

OSErr ShowDragHilite (
 DragRef theDrag,
 RgnHandle hiliteFrame,
 Boolean inside
);

Parameters
theDrag

The drag reference of the drag currently in progress.

hiliteFrame
A QuickDraw region of the frame of the window, pane, or shape you wish to highlight, in the window’s
local coordinate system.

inside
Pass true to draw the highlighting inside the frame shape. Otherwise it will be drawn outside the
frame shape. Note that in either case, the highlight will not include the boundary edge of the frame.
This allows you to highlight inside a window frame or a pane, or to highlight outside of a container
or object in your window.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The ShowDragHilite function creates a standard drag and drop highlight in your window. Your tracking
handler function should call this if a drop is allowed at the current mouse position.

You can only have one highlight showing at a time, and if you call this function when a highlight is currently
visible, the first one is removed before the newly requested highlight is shown.

The ShowDragHilite function uses a two pixel thick line when drawing the highlight.

The ShowDragHilite function assumes that the highlighting should be drawn in the current port. Your
application should make sure that the correct port is set before calling the ShowDragHilite function. Also,
highlighting drawn by the ShowDragHilite function is clipped to the current port. Make sure that the port’s
clip region is appropriately sized to draw the highlighting.

The Drag Manager maintains the currently highlighted portion of your window if you use the HideDragHilite
and UpdateDragHilite functions. If you intend to scroll the window that contains the highlighting, you
can use the DragPreScroll and DragPostScroll functions to properly update the drag highlighting.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 957
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Declared In
Drag.h

TrackDrag
Drags an item or collection of items from your application.

OSErr TrackDrag (
 DragRef theDrag,
 const EventRecord *theEvent,
 RgnHandle theRegion
);

Parameters
theDrag

A drag reference for performing the drag operation.

theEvent
A pointer to the mouseDown event record that your application received that resulted in starting a
drag.

theRegion
A region that represents the item or items being dragged. Note that under normal circumstances,
the drag region should only include the pixels that represent the outline of the items being dragged.
The Drag Manager draws the region on the screen by calling the PaintRgn function (not the FrameRgn
function).

Return Value
A result code. See “Drag Manager Result Codes” (page 986). Under some circumstances, TrackDrag may fail
with a procNotFound error. See "Special Considerations" below for a description of the events that may
cause this problem.

Discussion
The Drag Manager follows the cursor on the screen with the “dotted outline” drag feedback and sends
tracking messages to applications that have registered drag tracking handlers. The drag item flavor information
cached for the drag is available to each application that becomes active during a drag.

When the user releases the mouse button, the Drag Manager calls any drag receive handlers that have been
registered on the destination window. An application’s drag receive handler(s) are responsible for accepting
the drag and transferring the dragged data into their application.

The TrackDrag function returns noErr in situations where the user selected a destination for the drag and
the destination received data from the Drag Manager. If the user drops over a non-aware application or the
receiver does not accept any data from the Drag Manager, the Drag Manager automatically provides a "zoom
back" animation and returns the userCanceledErr flag.

Special Considerations

During the call to the TrackDrag function, your application’s context is temporarily switched out when the
Drag Manager calls a different application’s tracking and receive handlers. Do not depend on your application’s
context to be active for the entire duration of a drag.

The following actions may cause TrackDrag to fail with a procNotFound error:

 ■ Using a high-level debugger with the Drag Manager. Although there is no workaround for this problem,
your code should work fine when run without the debugger.

958 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

 ■ Passing TrackDrag an event record in which the where field is expressed in local coordinates. In such
cases, the where field often points outside of the window in which the drag originated. This problem
can cause a crash as well as a procNotFound error.

 ■ Using the Drag Manager with Text Services Manager windows when thegestaltDragMgrFloatingWind
bit isn't defined.

For more information, see the Q&A at:

http://developer.apple.com/dev/techsupport/develop/issue29/macqa.html.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

UpdateDragHilite
Updates the portion of the drag highlight that was drawn over by your application. (Deprecated in Mac OS
X v10.5.)

OSErr UpdateDragHilite (
 DragRef theDrag,
 RgnHandle updateRgn
);

Parameters
theDrag

The drag reference.

updateRgn
The region that needs to be updated, typically the port’s updateRgn.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
Use this function if your application draws into the highlighted portion of your window during a drag. For
example, dragging over a folder icon in the Finder causes the Finder to redraw the folder icon in its darkened
(selected) color. The Finder calls the UpdateDragHilite function to redraw any portion of the drag highlight
that may have intersected with the folder icon.

You must guarantee, however, that any current highlighting within the updateRgn has been completely
erased or is clipped out. If this function is asked to highlight over an area which is still highlighted, it will be
redrawn incorrectly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

Functions 959
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

http://developer.apple.com/dev/techsupport/develop/issue29/macqa.html

WaitMouseMoved
Returns true if a mouse movement is the beginning of a drag.

Boolean WaitMouseMoved (
 Point initialGlobalMouse
);

Parameters
initialMouse

The point where a mouseDown event occurred in global screen coordinates.

Return Value
True if the mouse moves away from the initialMouse location before the mouse button is released,
otherwise false.

Discussion
You can use this function to determine whether you should begin to drag the object when your application
receives a mouseDown event on a draggable object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Drag.h

ZoomRects
Animates a rectangle into a second rectangle. (Deprecated in Mac OS X v10.5.)

OSErr ZoomRects (
 const Rect *fromRect,
 const Rect *toRect,
 SInt16 zoomSteps,
 ZoomAcceleration acceleration
);

Parameters
fromRect

A pointer to the starting rectangle to animate from, in global coordinates.

toRect
A pointer to the ending rectangle to animate to, in global coordinates.

zoomSteps
Specifies the number of animation steps to be shown between the source and destination rectangles.
The minimum number of steps is 4. If less than 4 steps are specified, 4 will be used. The maximum
number of steps is 25. If more than 25 steps are specified, 25 will be used.

960 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

acceleration
Specifies how the intermediate animation steps will be calculated. Using the kZoomNoAcceleration
constant makes the distance between steps from the source to the destination equal. Using the
kZoomAccelerate constant makes each step from the source to the destination increasingly larger,
making the animation appear to speed up as it approaches the destination. Using the
kZoomDecelerate constant makes each step from the source to the destination smaller, making the
animation appear to slow down as it approaches the destination.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The ZoomRects function animates a movement between two rectangles on the screen. It does this by drawing
gray dithered rectangles incrementally toward the destination rectangle.

The ZoomRects function draws on the entire screen, outside of the current port. It does not change any
pixels on the screen except during the animation. It also preserves the current port and the port’s settings.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

ZoomRegion
Animates a region’s outline from one screen location to another. (Deprecated in Mac OS X v10.5.)

OSErr ZoomRegion (
 RgnHandle region,
 Point zoomDistance,
 SInt16 zoomSteps,
 ZoomAcceleration acceleration
);

Parameters
region

The region to animate.

zoomDistance
The horizontal and vertical distance from the starting point that the region will animate to.

zoomSteps
Specifies the number of animation steps to be shown between the source and destination rectangles.
The minimum number of steps is 4. If less than 4 steps are specified, 4 will be used. The maximum
number of steps is 25. If more than 25 steps are specified, 25 will be used.

Functions 961
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

acceleration
Specifies how the intermediate animation steps will be calculated. Using the kZoomNoAcceleration
constant makes the distance between steps from the source to the destination equal. Using the
kZoomAccelerate constant makes each step from the source to the destination increasingly larger,
making the animation appear to speed up as it approaches the destination. Using the
kZoomDecelerate constant makes each step from the source to the destination smaller, making the
animation appear to slow down as it approaches the destination.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The ZoomRegion function animates a region from one location to another on the screen. It does this by
drawing gray dithered regions incrementally toward the destination region.

The ZoomRegion function draws on the entire screen, outside of the current port. It does not change any
pixels on the screen except during its animation. It also preserves the current port and the port’s settings.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Drag.h

Callbacks by Task

Tracking and Receiving Drags

DragTrackingHandlerProcPtr (page 968)
Defines a pointer to a drag tracking handler.

DragReceiveHandlerProcPtr (page 966)
Defines a pointer to a drag receive handler.

Overriding Drag Manager Behavior

DragSendDataProcPtr (page 967)
Defines a pointer to a drag send data function, called by the Drag Manager to supply flavor data to
the drag receiver.

DragInputProcPtr (page 964)
Defines a pointer to a drag input function that modifies keyboard and mouse input to the Drag
Manager.

DragDrawingProcPtr (page 963)
Defines a pointer to a drag drawing function that draws the drag region.

962 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Callbacks

DragDrawingProcPtr
Defines a pointer to a drag drawing function that draws the drag region.

Not recommended

typedef OSErr (*DragDrawingProcPtr) (
 DragRegionMessage message,
 RgnHandle showRegion,
 Point showOrigin,
 RgnHandle hideRegion,
 Point hideOrigin,
 void * dragDrawingRefCon,
 DragRef theDrag);

If you name your function MyDragDrawingFunction, you would declare it like this:

OSErr MyDragDrawingFunction (
 DragRegionMessage message,
 RgnHandle showRegion,
 Point showOrigin,
 RgnHandle hideRegion,
 Point hideOrigin,
 void * dragDrawingRefCon,
 DragRef theDrag);

Parameters
message

A drag region drawing message from the Drag Manager. Use this message to determine what action
your drag drawing callback function should take. These messages are described further in “Drag
Drawing Messages” (page 975).

showRegion
A region containing the drag region as it should be drawn or is currently visible on the screen, in
global screen coordinates. The showRegion parameter has slightly different meanings depending
on the message passed to your drag drawing callback.

showOrigin
The point corresponding to the original mouseDown location in the drag region within the given
showRegion, in global screen coordinates.

hideRegion
A region containing the drag region as it should be erased from the screen, in global screen coordinates.
The hideRegion parameter has slightly different meanings depending on the message passed to
your drag drawing callback.

hideOrigin
The point corresponding to the original mouseDown location in the drag region within the given
hideRegion, in global screen coordinates.

dragDrawingRefCon
A pointer to the reference constant that was provided when the SetDragDrawingProc function
was called to install this function.

Callbacks 963
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

theDrag
The drag reference of the drag.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
If your application set a custom drawing function for a drag using the SetDragDrawingProc function, the
Drag Manager calls this drawing function to perform all drag region drawing operations.

The Drag Manager tracks the drag region as it appears on the screen and as it should follow the mouse. All
drag region operations are performed on the region specified to the TrackDrag function. Drag region
drawing is managed by sending your drag drawing callback function messages to show and hide pieces of
the drag region.

The Drag Manager has its own drag region port that is used to do all drag region drawing during a drag. This
port is set to the current port before calling your drag drawing function. The drag region port is for your drag
drawing function’s exclusive use during a drag. You may modify its fields and depend on its contents between
calls to your drag drawing callback function.

Special Considerations

For Classic applications, your application’s context is not available when your drag drawing callback function
is called by the Drag Manager. If you need access to your application’s global variables, you will need to setup
and restore your application’s A5 world yourself.

You cannot call the WaitNextEvent function or any other Event Manager functions in your drag drawing
callback function. This restriction includes calling any functions that may call the Event Manager, such as the
ModalDialog or Alert functions.

Carbon Porting Notes

Drag drawing functions are not supported in Mac OS X, although they continue to work in CarbonLib when
running Mac OS 8 and Mac OS 9.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

DragInputProcPtr
Defines a pointer to a drag input function that modifies keyboard and mouse input to the Drag Manager.

typedef OSErr (*DragInputProcPtr) (

 Point * mouse,
 SInt16 * modifiers,
 void * dragInputRefCon,
 DragRef theDrag);

If you name your function MyDragInputFunction, you would declare it like this:

OSErr MyDragInputFunction (
 Point * mouse,
 SInt16 * modifiers,

964 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

 void * dragInputRefCon,
 DragRef theDrag);

Parameters
mouse

On entry, a pointer to the location. On return, your drag input function should provide the desired
current mouse location. The mouse location is specified in global coordinates.

modifiers
On entry, a pointer to a value indicating the current state of the keyboard modifiers and mouse button.
On return, your drag input function should provide a pointer to the desired state of the keyboard
modifiers and mouse button. The modifiers are specified using the same format and constants as the
Event Manager’s EventRecord.modifiers field.

dragInputRefCon
A pointer to the reference constant that was provided when the SetDragInputProc function was
called to install this function.

theDrag
The drag reference of the drag.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
Each time the Drag Manager samples the mouse and keyboard, it calls your drag input callback (if one has
been set by calling the SetDragInputProc function) to provide a way for your application to modify or
completely change the mouse and keyboard input to the Drag Manager.

When your drag input callback function is called, the mouse and modifiers parameters contain the actual
values from the physical input devices. Your drag input callback function may modify these values in any
way. For example, your drag input callback function may simply inhibit the control key modifier bit from
being set or it may completely replace the mouse coordinates with those generated some other way to drive
the drag itself.

Note that the Drag Manager uses the buttonState flag in the modifiers parameter to determine when
the mouse button has been released to finish a drag.

Special Considerations

For Classic applications, your application’s context is not available when your drag input callback function
is called by the Drag Manager. If you need access to your application’s global variables, you will need to setup
and restore your application’s A5 world yourself.

You cannot call the WaitNextEvent function or any other Event Manager functions from your drag input
callback function. This restriction includes calling any functions that may call the Event Manager, such as the
ModalDialog or Alert functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

Callbacks 965
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

DragReceiveHandlerProcPtr
Defines a pointer to a drag receive handler.

typedef OSErr (*DragReceiveHandlerProcPtr)
(
 WindowRef theWindow,
 void * handlerRefCon,
 DragRef theDrag);

If you name your function MyDragReceiveHandler, you would declare it like this:

OSErr MyDragReceiveHandler (
 WindowRef theWindow,
 void * handlerRefCon,
 DragRef theDrag);

Parameters
theWindow

A reference to the window that the drop occurred in.

handlerRefCon
A pointer to the reference constant that was provided to the InstallReceiveHandler function
when this handler was installed.

theDrag
The drag reference of the drag.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
When the user releases a drag in a window, the Drag Manager calls any drag receive handler functions that
have been installed on that window. You can get the information about the data that is being dragged, to
determine if your window will accept the drop, by using the drag information functions provided by the
Drag Manager. After your drag receive handler decides that it can accept the drop, use the GetFlavorData
function to get the data from the sender of the drag.

When the Drag Manager calls your drag receive handler, the port is set to the window that the drop occurred
in. If you want to provide an optional Apple Event descriptor of the drop location for the sender, use the
SetDropLocation function to set the drop location descriptor before calling the sender with the
GetFlavorData or GetFlavorDataSize functions.

If you return any result code other than noErr from your drag receive handler, the Drag Manager will
"zoomback" the drag region to the source location and return the userCanceledErr result code from the
TrackDrag function. If the drag is dropped into a location that cannot accept the drag (such as the window
title bar or window scroll bars) or no acceptable data types were available, your drag receive handler should
return the dragNotAcceptedErr result code, which will cause the Drag Manager to provide the "zoomback"
animation described above.

Special Considerations

For Classic applications, the Drag Manager guarantees that your application’s A5 world and low-memory
environment is properly set up for your application’s use. Therefore, you can allocate memory, and use your
application’s global variables. You can also rely on low-memory globals being valid.

966 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Although it is possible to call WaitNextEvent or other functions that run the event loop from within your
drag receive handler, it is not recommended as it can cause the drag to timeout and may result in a crash or
in corrupt data.

Note that the Process Manager's process switching mechanism is disabled during calls to your handler. If
your application is not frontmost when calling these functions, your application will not be able to switch
forward. This could result in a situation where a modal dialog appears behind the front process but will not
be able to come forward in order to interact with the user.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

DragSendDataProcPtr
Defines a pointer to a drag send data function, called by the Drag Manager to supply flavor data to the drag
receiver.

typedef OSErr (*DragSendDataProcPtr)
(
 FlavorType theType,
 void * dragSendRefCon,
 DragItemRef theItemRef,
 DragRef theDrag);

If you name your function MyDragSendDataFunction, you would declare it like this:

OSErr MyDragSendDataFunction (
 FlavorType theType,
 void * dragSendRefCon,
 DragItemRef theItemRef,
 DragRef theDrag);

Parameters
theType

The flavor type being requested by a drop receiver.

dragSendRefCon
A pointer to the reference constant that was provided when the SetDragSendProc function was
called to install this function.

theItemRef
The item reference of the item from which the flavor data is being requested.

theDrag
The drag reference of the drag.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
The Drag Manager calls your drag send data function when drag item flavor data is requested by a drop
receiver if the drag item flavor data is not already cached by the Drag Manager. Use the function
SetDragItemFlavorData (page 953) to provide the requested data to the Drag Manager.

Callbacks 967
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

The Drag Manager caches all drag item flavor data that was specified in the data pointer when the flavor
was added using the AddDragItemFlavor function. If the data pointer was NULLwhen the flavor was added,
the Drag Manager calls the drag send data function to get the data when a receiver requests the data using
the GetFlavorData or GetFlavorDataSize functions.

A second scenario where the drag send data function is called is when a drop receiver requests a flavor that
is translated by the Translation Manager and the source data (which would be a different type than actually
requested by the receiver) is not already cached by the Drag Manager.

You can use the GetDropLocation function to get the Apple event descriptor of the drop location from
within your drag send data function. It is optional for the receiver to provide a drop location descriptor. If
the receiver does not provide the drop location descriptor, the typeNull value will be returned by the
GetDropLocation function.You do not need to provide a drag send data function if you never pass NULL
as the data pointer when calling the AddDragItemFlavor function.

Special Considerations

For Classic applications, the Drag Manager guarantees that your application’s A5 world and low-memory
environment is properly set up for your application’s use. Therefore, you can allocate memory, and use your
application’s global variables. You can also rely on low-memory globals being valid.

Although it is possible to call WaitNextEvent or other functions that run the event loop from within your
drag send data callback, it is not recommended as it can cause the drag to timeout and may result in a crash
or in corrupt data.

Note that the Process Manager's process switching mechanism is disabled during calls to your handler. If
your application is not frontmost when calling these functions, your application will not be able to switch
forward. This could result in a situation where a modal dialog appears behind the front process but will not
be able to come forward in order to interact with the user.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

DragTrackingHandlerProcPtr
Defines a pointer to a drag tracking handler.

typedef OSErr (*DragTrackingHandlerProcPtr)
(
 DragTrackingMessage message,
 WindowRef theWindow,
 void * handlerRefCon,
 DragRef theDrag);

If you name your function MyDragTrackingHandler, you would declare it like this:

OSErr MyDragTrackingHandler (
 DragTrackingMessage message,
 WindowRef theWindow,
 void * handlerRefCon,
 DragRef theDrag);

968 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Parameters
message

A tracking message from the Drag Manager indicating the action your tracking handler should take.
These messages are described further in “Drag Tracking Messages” (page 976).

theWindow
A reference to the window that the mouse is currently over.

handlerRefCon
A pointer to the reference constant that was provided to the InstallTrackingHandler function
when this handler was installed.

theDrag
The drag reference of the drag.

Return Value
A result code. See “Drag Manager Result Codes” (page 986).

Discussion
When the user drags an item or collection of items through a window, the Drag Manager calls any tracking
handlers that have been installed on that window. Your tracking handler can determine the contents of the
drag by calling the drag item information functions, such as CountDragItems (page 925),
CountDragItemFlavors (page 925), GetFlavorType (page 938) and GetFlavorFlags (page 937), and
highlighting or modifying the objects in your window accordingly.

When the Drag Manager calls your tracking handler, the port will always be set to the window that the mouse
is over.

Special Considerations

For Classic applications, the Drag Manager guarantees that your application’s A5 world and low-memory
environment is properly set up for your application’s use. Therefore, you can allocate memory, and use your
application’s global variables. You can also rely on low-memory globals being valid.

Although it is possible to call WaitNextEvent or other functions that run the event loop from within your
drag tracking handler, it is not recommended as it can cause the drag to timeout and may result in a crash
or in corrupt data.

Note that the Process Manager's process switching mechanism is disabled during calls to your handler. If
your application is not frontmost when calling these functions, your application will not be able to switch
forward. This could result in a situation where a modal dialog appears behind the front process but will not
be able to come forward in order to interact with the user.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

Data Types

DragRef
Defines a reference to a drag object.

Data Types 969
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

typedef struct OpaqueDragRef * DragRef;

Discussion
Before calling any other Drag Manager function, you must first create a new drag reference by calling the
NewDrag function. The drag reference that is returned by the NewDrag function is used in all subsequent
calls to the Drag Manager. Use the DisposeDrag function to dispose of a drag reference after you are finished
using it.

The meaning of the bits in a drag reference is internal to the Drag Manager. You should not attempt to
interpret the value of the drag reference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

DragItemRef
Defines a reference to a drag item.

typedef UInt32 DragItemRef;

Discussion
The drag item reference is a reference number used to refer to a single item in a drag. Drag item reference
numbers are created by the sender application when adding drag item flavor information to a drag. Drag
item reference numbers are created by and should only be interpreted by the sender application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

FlavorType
Defines a flavor type.

typedef OSType FlavorType;

Discussion
The flavor type is a four character type that describes the format of drag item flavor data. The flavor type has
the same function as a scrap type; it designates the format of the associated data. Any scrap type or resource
type may be used.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

970 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

HFSFlavor
Defines a flavor for dragging file system objects.

struct HFSFlavor {
 OSType fileType;
 OSType fileCreator;
 UInt16 fdFlags;
 FSSpec fileSpec;
};
typedef struct HFSFlavor HFSFlavor;

Fields
fileType

The file type of the object.

fileCreator
The file creator of the object.

fdFlags
The Finder flags of the object.

fileSpec
The FSSpec structure for the object.

Discussion
The Drag Manager defines a special flavor for dragging file system objects. The HFS drag item flavor is used
when dragging document and folder icons in the Finder. The HFS drag item flavor data structure is defined
by the HFSFlavor data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

PromiseHFSFlavor
Defines a data flavor for promising file system objects.

struct PromiseHFSFlavor {
 OSType fileType;
 OSType fileCreator;
 UInt16 fdFlags;
 FlavorType promisedFlavor;
};
typedef struct PromiseHFSFlavor PromiseHFSFlavor;

Fields
fileType

The file type of the object.

fileCreator
The file creator of the object.

fdFlags
The Finder flags of the object.

Data Types 971
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

promisedFlavor
The flavor type of a separate promise flavor to contain the FSSpec structure for the new file. Apple
recommends that you use the kDragPromisedFlavor type in this field.

Discussion
The promise HFS flavor type is used when you wish to create a new file when dragging to the Finder. The
flavor consists of an array of PromiseHFSFlavor structures, with the first entry being the preferred file type
you would like to create and subsequent array entries being file types in descending preference. This structure
allows you to create the file in your DragSendDataProcPtr (page 967) callback and provide the FSSpec for
the new file at that time.

After providing an FSSpec, the Finder will move the new file to the drop location. If you wish to create the
file before the drag and provide the FSSpec data up front, create the new file in the Temporary Items folder
so it does not prematurely appear in an open Finder window.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

DragDrawingUPP
Defines a universal procedure pointer (UPP) to a drag drawing callback.

typedef DragDrawingProcPtr DragDrawingUPP;

Discussion
For more information, see the description of the DragDrawingProcPtr (page 963) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

DragInputUPP
Defines a universal procedure pointer (UPP) to a drag input callback.

typedef DragInputProcPtr DragInputUPP;

Discussion
For more information, see the description of the DragInputProcPtr (page 964) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

972 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

DragReceiveHandlerUPP
Defines a universal procedure pointer (UPP) to a drag receive handler.

typedef DragReceiveHandlerProcPtr DragReceiveHandlerUPP;

Discussion
For more information, see the description of the DragReceiveHandlerProcPtr (page 966) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

DragSendDataUPP
Defines a universal procedure pointer (UPP) to a drag send data callback.

typedef DragSendDataProcPtr DragSendDataUPP;

Discussion
For more information, see the description of the DragSendDataProcPtr (page 967) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

DragTrackingHandlerUPP
Defines a universal procedure pointer (UPP) to a drag tracking handler.

typedef DragTrackingHandlerProcPtr DragTrackingHandlerUPP;

Discussion
For more information, see the description of the DragTrackingHandlerProcPtr (page 968) callback
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Drag.h

Constants

Drag Attributes
Provide additional information about a drag that is in progress.

Constants 973
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

typedef UInt32 DragAttributes;
enum {
 kDragHasLeftSenderWindow = (1L << 0),
 kDragInsideSenderApplication = (1L << 1),
 kDragInsideSenderWindow = (1L << 2) };

Constants
kDragHasLeftSenderWindow

Set if the drag has left the source window since the beginning of the drag. This flag is useful for
providing window highlighting after the user has moved the mouse outside of the source window.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragInsideSenderApplication
Set if the drag is currently in any window that belongs to the application that started the drag.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragInsideSenderWindow
Set if the drag is currently in the same window that the drag started from.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

Discussion
The attribute flags defined by the DragAttributes type provide information about the window and
application that the drag is currently occurring in. During a drag, the current drag attributes can be obtained
by calling the function GetDragAttributes (page 930).

Drag Behaviors
Specify the current zoomback behavior of a drag.

typedef UInt32 DragBehaviors;
enum {
 kDragBehaviorNone = 0,
 kDragBehaviorZoomBackAnimation = (1L << 0) };

Constants
kDragBehaviorNone

The Drag Manager performs no animation for a failed drag.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragBehaviorZoomBackAnimation
The Drag Manager performs zoomback animation for a failed drag. This behavior is normally enabled.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

Discussion
To change the behavior associated with a drag reference, use the ChangeDragBehaviors (page 924) function.

974 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Drag Drawing Messages
Define messages that may be sent to your drag drawing callback.

typedef SInt16 DragRegionMessage;
enum {
 kDragRegionBegin = 1,
 kDragRegionDraw = 2,
 kDragRegionHide = 3,
 kDragRegionIdle = 4,
 kDragRegionEnd = 5
};

Constants
kDragRegionBegin

Your drag drawing callback function receives this message when a drag is being started and it is time
to initialize your drawing function. You should not draw anything to the screen when you receive
this message.The showRegion and showOrigin parameters to your drag drawing callback function
contain the drag region and the mouseDown location, respectively, that were specified to the
TrackDrag function. The mouseDown location is the origin of the drag region.The hideRegion
parameter is NULL when your drag drawing callback function receives this message.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragRegionDraw
Your drag drawing callback receives this message when you should move your drag region from the
area of the screen defined by the hideRegion parameter to the area of the screen defined by the
showRegion parameter.The showRegion parameter contains the drag region that was passed to
the TrackDrag function, offset to the current pinned mouse location. This region represents the area
of the screen that must be drawn into.The hideRegion parameter contains the drag region as it is
currently visible on the screen from the last call with a dragRegionDraw message. This region
represents the area of the screen that must be restored. Any part of the drag region that was previously
obscured by a call with the dragRegionHidemessage is not included in this hideRegion parameter.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragRegionHide
Your drag drawing callback receives this message when you should remove part of the drag region
from the screen. You receive this message when the drag has ended or when part of the region must
be obscured for drawing operations to occur underneath the drag region.The showRegion parameter
is NULLwhen your drag drawing callback function receives this message.The hideRegion parameter
contains the part of the currently visible drag region that must be removed from the screen.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragRegionIdle
Your drag drawing callback receives this message when the drag region has not moved on the screen
and no drawing is necessary. You can use this message if animation of the drag region is necessary.The
showRegionparameter contains the drag region as it is currently visible on the screen.The hideRegion
parameter is NULL when your drag drawing callback receives this message.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

Constants 975
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

kDragRegionEnd
Your drag drawing callback receives this message when the drag has completed and it is time to
deallocate any allocations made from within your drag drawing callback. Your drag drawing callback
will have already received a dragRegionHidemessage to hide the entire drag region before receiving
this message. After you receive this message, your drag drawing callback will not be called again for
the duration of the drag.Both the showRegion and hideRegion parameters are NULL when your
drag drawing callback function receives this message.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

Discussion
See DragDrawingProcPtr (page 963) for more information on drag drawing callback functions.

Drag Tracking Messages
Define messages that may be sent to your drag tracking handler.

typedef SInt16 DragTrackingMessage;
enum {
 kDragTrackingEnterHandler = 1,
 kDragTrackingEnterWindow = 2,
 kDragTrackingInWindow = 3,
 kDragTrackingLeaveWindow = 4,
 kDragTrackingLeaveHandler = 5
};

Constants
kDragTrackingEnterHandler

Your tracking handler receives this message when the focus of a drag enters a window that is handled
by your tracking handler. If the user moves the drag directly to another window that is handled by
the same tracking handler, a second kDragTrackingEnterHandler message is not received. Your
tracking handler only receives this message when the drag enters the domain of your function after
leaving another.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragTrackingEnterWindow
Your tracking handler receives this message when a drag enters any window that is handled by your
tracking handler. This message is sent to your tracking handler for each window that the drag may
enter. Your tracking handler will always receive this message within a pair of
kDragTrackingEnterHandler and kDragTrackingLeaveHandler messages.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

976 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

kDragTrackingInWindow
Your tracking handler receives this message as the user is dragging within a window handled by your
tracking handler. You can use this message to track the dragging process through your window. Your
tracking handler will always receive this message within a pair of kDragTrackingEnterWindow and
kDragTrackingLeaveWindow messages.Your tracking handler would typically draw the majority
of your window highlighting and track objects in your window when you receive this message from
the Drag Manager.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragTrackingLeaveWindow
Your tracking handler receives this message when a drag leaves any window that is handled by your
tracking handler. You are guaranteed to receive this message after receiving a corresponding
kDragTrackingEnterWindow message. Your tracking handler will always receive this message
within a pair of kDragTrackingEnterHandler and kDragTrackingLeaveHandler messages.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragTrackingLeaveHandler
Your tracking handler receives this message when the focus of a drag enters a window that is not
handled by your tracking handler. Your tracking handler is guaranteed to receive this message after
receiving a corresponding kDragTrackingEnterHandler message.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

Discussion
See DragTrackingHandlerProcPtr (page 968) for more information on drag tracking handlers.

Flavor Flags
Provide additional information about drag item flavors.

typedef UInt32 FlavorFlags;
enum {
 flavorSenderOnly = (1 << 0),
 flavorSenderTranslated = (1 << 1),
 flavorNotSaved = (1 << 2),
 flavorSystemTranslated = (1 << 8),
 flavorDataPromised = (1 << 9) };

Constants
flavorSenderOnly

Set by the sender if the flavor should only be available to the sender of a drag. If this flag is set when
adding the flavor to a drag, no Drag Manager clients other than the sender can receive this flavor.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

Constants 977
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

flavorSenderTranslated
Set by the sender if the flavor data is translated by the sender. This flag is useful to a receiver if the
receiver needs to determine if the sender is performing its own translation to generate this data type.
Typically, receivers that store dragged data without interpreting each data type do not store translated
types. Flavor types marked with this flag are not stored by the Finder in clipping files.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

flavorNotSaved
Set by the sender if the flavor data should not be stored by the receiver. This flag is useful for marking
flavor data that will become stale after the drag has completed. Receivers that store dragged data
should not store flavors that are marked with this flag. Flavor types marked with this flag are not
stored by the Finder in clipping files.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

flavorSystemTranslated
Set if the flavor data is provided by the Translation Manager. If this flavor is requested, the Drag
Manager will obtain any required data types from the sender and then it will use the Translation
Manager to provide the data that the receiver requested. Typically, receivers that store dragged data
without interpreting each data type do not store translated types. Flavor types marked with this flag
are not stored by the Finder in clipping files.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

flavorDataPromised
Set by the sender if the flavor data is promised at a later time.

Available in Mac OS X v10.1 and later.

Declared in Drag.h.

Discussion
These constants are used when calling the AddDragItemFlavor (page 923) function and can be obtained
by calling the GetFlavorFlags (page 937) function.

flavorTypeDirectory
Represents a special flavor type for AOCE directory specifications.

enum {
 flavorTypeDirectory = 'diry'
};

Constants
flavorTypeDirectory

The flavor type for a AOCE directory specification. Refer to the AOCE documentation for a definition
of the DSSpec data structure.

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in Drag.h.

978 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Drag Actions
Specify the actions that should be or have been performed on the data in a drag.

enum {
 kDragActionNothing = 0,
 kDragActionCopy = 1L,
 kDragActionAlias = (1L << 1),
 kDragActionGeneric = (1L << 2),
 kDragActionPrivate = (1L << 3),
 kDragActionMove = (1L << 4),
 kDragActionDelete = (1L << 5),
 kDragActionAll = 0xFFFFFFFF };
typedef UInt32 DragActions;

Constants
kDragActionNothing

Nothing should be or has been done with the data in the drag. When set as an allowable action for
remote drags, the drag is not sent to applications other than the drag sender.

Available in Mac OS X v10.1 and later.

Declared in Drag.h.

kDragActionCopy
The data contained in the drag can be or has been copied.

Available in Mac OS X v10.1 and later.

Declared in Drag.h.

kDragActionAlias
The data contained in the drag can be or has been shared.

Available in Mac OS X v10.1 and later.

Declared in Drag.h.

kDragActionGeneric
When set by the drag sender, suggests that the drag receiver can determine the drag action. When
returned by the drag receiver, indicates that the receiver did not define a drag action.

Available in Mac OS X v10.1 and later.

Declared in Drag.h.

kDragActionPrivate
Suggests that the drag action should be negotiated privately between the drag source and destination.

Available in Mac OS X v10.1 and later.

Declared in Drag.h.

kDragActionMove
The data contained in the drag can be or has been moved.

Available in Mac OS X v10.1 and later.

Declared in Drag.h.

kDragActionDelete
The data contained in the drag can be or has been deleted.

Available in Mac OS X v10.1 and later.

Declared in Drag.h.

Constants 979
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

kDragActionAll
Indicates that all of the above drag actions are allowed.

Available in Mac OS X v10.1 and later.

Declared in Drag.h.

Discussion
The drag sender can use these constants to indicate what actions are allowable on the data contained within
a drag. The drag receiver can use these constants to indicate what, if any, action was performed on the drag.

Some of the drag actions defined here enforce a mode of operation, while others are suggestions. The
DragActions constants are used in conjunction with the GetDragAllowableActions (page 929),
SetDragAllowableActions (page 948),GetDragDropAction (page 931), andSetDragDropAction (page
949) functions. Using drag actions increases compatibility with the Cocoa drag operation model.

HFS Flavor Types
Identify flavor types for file system objects.

enum {
 kDragFlavorTypeHFS = 'hfs ',
 kDragFlavorTypePromiseHFS = 'phfs',
 flavorTypeHFS = kDragFlavorTypeHFS,
 flavorTypePromiseHFS = kDragFlavorTypePromiseHFS
};

Constants
kDragFlavorTypeHFS

The flavor type for an HFS file system object. The Finder uses HFS flavors when dragging existing file
system objects. The HFS flavor data is defined by the data type HFSFlavor (page 971).

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragFlavorTypePromiseHFS
The flavor type for promising an HFS file system object to the receiver of the drag. This flavor type
can be used when a file could be created if the destination of the drag can accept file system objects.
The data type PromiseHFSFlavor (page 971) is used to access the information in this flavor type.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

flavorTypeHFS
Use kDragFlavorTypeHFS instead.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

flavorTypePromiseHFS
Use kDragFlavorTypePromiseHFS instead.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

980 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Promised Flavor Types
Identify flavor types for the PromiseHFSFlavor structure.

enum {
 kDragPromisedFlavorFindFile = 'rWm1',
 kDragPromisedFlavor = 'fssP'
};

Constants
kDragPromisedFlavorFindFile

The value of the promisedFlavor field of the PromiseHFSFlavor structure for Find File.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragPromisedFlavor
The value of the promisedFlavor field of the PromiseHFSFlavor structure for all other file system
objects.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

Type and Creator Constants for Volumes and Directories
Define a creator code and file types for flavor data referring to a volume or directory.

enum {
 kDragPseudoCreatorVolumeOrDirectory = 'MACS',
 kDragPseudoFileTypeVolume = 'disk',
 kDragPseudoFileTypeDirectory = 'fold'
};

Constants
kDragPseudoCreatorVolumeOrDirectory

The "creator type" for volumes and directories. If the data in a drag containing kDragFlavorTypeHFS
data refers to a folder or volume, the fileCreator field of the HFSFlavor structure should be set
to this value.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragPseudoFileTypeVolume
The value of the fileType field of the HFSFlavor structure for a volume.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragPseudoFileTypeDirectory
The value of the fileType field of the HFSFlavor structure for a directory.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

Constants 981
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Standard Drop Locations
Define common drop locations.

enum {
 kDragStandardDropLocationTrash = 'trsh',
 kDragStandardDropLocationUnknown = 'unkn'
};
typedef OSType StandardDropLocation;

Constants
kDragStandardDropLocationTrash

Set when a drag is dropped on the trash icon. Setting this standard drop location automatically sets
the traditional drop location to an alias to the trash folder.

Available in Mac OS X v10.2 and later.

Declared in Drag.h.

kDragStandardDropLocationUnknown
The receiver did not specify a drop location. This is the default.

Available in Mac OS X v10.2 and later.

Declared in Drag.h.

Discussion
These values are used in conjunction with the GetStandardDropLocation (page 939) and
SetStandardDropLocation (page 956) functions.

Drag Image Flags
Specify the appearance of a translucent drag.

typedef UInt32 DragImageFlags;
enum {
 kDragRegionAndImage = (1L << 4)
 kDragStandardTranslucency = 0,
 kDragDarkTranslucency = 1,
 kDragDarkerTranslucency = 2,
 kDragOpaqueTranslucency = 3
};

Constants
kDragRegionAndImage

Add this constant to the transparency levels represented by the following constants to specify that
the outline region passed to TrackDrag should be drawn on screen, in addition to the translucent
drag image.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragStandardTranslucency
Use the standard translucency level for the drag image. Currently, this is 65%.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

982 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

kDragDarkTranslucency
Use 50% translucency for the drag image.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragDarkerTranslucency
Use 25% transparency for the drag image.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kDragOpaqueTranslucency
Use an opaque drag image (0% translucency).

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

Discussion
These constants are used in conjunction with the SetDragImageWithCGImage (page 951)and
SetDragImage (page 950) functions to specify the appearance of the drag image.

Finder Flavor Types
Identify flavor types for the Finder.

enum {
 kFlavorTypeClippingName = 'clnm',
 kFlavorTypeClippingFilename = 'clfn',
 kFlavorTypeUnicodeClippingName = 'ucln',
 kFlavorTypeUnicodeClippingFilename = 'uclf',
 kFlavorTypeDragToTrashOnly = 'fdtt',
 kFlavorTypeFinderNoTrackingBehavior = 'fntb'
};

Constants
kFlavorTypeClippingName

The flavor of a name hint for a clipping file. This flavor type is preferred over the
kFlavorTypeClippingFilename type.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kFlavorTypeClippingFilename
The flavor of the name of a clipping file.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kFlavorTypeUnicodeClippingName
The flavor of a hint for the unicode name of a clipping file. This flavor type is preferred over the
kFlavorTypeUnicodeClippingFilename type.

Available in Mac OS X v10.2 and later.

Declared in Drag.h.

Constants 983
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

kFlavorTypeUnicodeClippingFilename
The flavor of the unicode name of a clipping file.

Available in Mac OS X v10.2 and later.

Declared in Drag.h.

kFlavorTypeDragToTrashOnly
Specify this flavor to allow dragging private data to the trash.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kFlavorTypeFinderNoTrackingBehavior
A flavor type indicating that the Finder should ignore the drag.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

Zoom Acceleration Constants
Specify acceleration constants for the ZoomRects and ZoomRegion functions.

typedef SInt16 ZoomAcceleration;
enum {
 kZoomNoAcceleration = 0,
 kZoomAccelerate = 1,
 kZoomDecelerate = 2
};

Constants
kZoomNoAcceleration

Use linear interpolation for each frame of animation between the source and destination.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kZoomAccelerate
Increment the step size for each frame of animation between the source and destination. This option
produces the visual appearance of the animation speeding up as it approaches the destination.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

kZoomDecelerate
Decrement the step size for each frame of animation between the source and destination. This option
produces the visual appearance of the animation slowing down as it approaches the destination.

Available in Mac OS X v10.0 and later.

Declared in Drag.h.

zoomNoAcceleration
Obsolete. Use "Zoom Acceleration Constants" instead.

984 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

enum {
 zoomNoAcceleration = kZoomNoAcceleration,
 zoomAccelerate = kZoomAccelerate,
 zoomDecelerate = kZoomDecelerate
};

kDragStandardImage
Obsolete. Use "Drag Image Flags" instead.

enum {
 kDragStandardImage = kDragStandardTranslucency,
 kDragDarkImage = kDragDarkTranslucency,
 kDragDarkerImage = kDragDarkerTranslucency,
 kDragOpaqueImage = kDragOpaqueTranslucency
};

dragTrackingEnterHandler
Obsolete. Use "Drag Tracking Messages" instead.

enum {
 dragTrackingEnterHandler = kDragTrackingEnterHandler,
 dragTrackingEnterWindow = kDragTrackingEnterWindow,
 dragTrackingInWindow = kDragTrackingInWindow,
 dragTrackingLeaveWindow = kDragTrackingLeaveWindow,
 dragTrackingLeaveHandler = kDragTrackingLeaveHandler
};

dragRegionBegin
Obsolete. Use "Drag Drawing Messages" instead.

enum {
 dragRegionBegin = kDragRegionBegin,
 dragRegionDraw = kDragRegionDraw,
 dragRegionHide = kDragRegionHide,
 dragRegionIdle = kDragRegionIdle,
 dragRegionEnd = kDragRegionEnd
};

dragHasLeftSenderWindow
Obsolete. Use "Drag Attributes" instead.

Constants 985
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

enum {
 dragHasLeftSenderWindow = kDragHasLeftSenderWindow,
 dragInsideSenderApplication = kDragInsideSenderApplication,
 dragInsideSenderWindow = kDragInsideSenderWindow
};

Result Codes

The table below lists the most common result codes returned by the Drag Manager.

DescriptionValueResult Code

Unknown drag reference-1850badDragRefErr

Available in Mac OS X v10.0 and later.

Unknown drag item reference-1851badDragItemErr

Available in Mac OS X v10.0 and later.

Unknown flavor type-1852badDragFlavorErr

Available in Mac OS X v10.0 and later.

Flavor type already exists-1853duplicateFlavorErr

Available in Mac OS X v10.0 and later.

Error while trying to get flavor data-1854cantGetFlavorErr

Available in Mac OS X v10.0 and later.

Handler already exists-1855duplicateHandlerErr

Available in Mac OS X v10.0 and later.

Handler not found-1856handlerNotFoundErr

Available in Mac OS X v10.0 and later.

Drag was not accepted by receiver-1857dragNotAcceptedErr

Available in Mac OS X v10.0 and later.

Call is for PowerPC only-1858unsupportedForPlatformErr

Available in Mac OS X v10.0 and later.

No displays support translucency-1859noSuitableDisplaysErr

Available in Mac OS X v10.0 and later.

Bad translucent image region-1860badImageRgnErr

Available in Mac OS X v10.0 and later.

Bad translucent image PixMap-1861badImageErr

Available in Mac OS X v10.0 and later.

986 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

DescriptionValueResult Code

Illegal attempt to access originator only data-1862nonDragOriginatorErr

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availability information by using the Drag Manager selectors defined
in the Gestalt Manager. For more information see Inside Mac OS X: Gestalt Manager Reference

Gestalt Constants 987
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

988 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 8

Drag Manager Reference

Framework: Carbon/Carbon.h

Declared in Events.h

Overview

Important: The Event Manager is a legacy System 7 technology. You should use the Mac OS X Carbon Event
Manager instead. See Carbon Event Manager Programming Guide.

The Event Manager is a legacy System 7 technology that was created to support the cooperative, multitasking
environment available on Macintosh computers at the time. This environment allowed users to switch
between many open applications and allows other applications to receive background processing time.

The Carbon Event Manager, introduced in Mac OS X, offers a simple yet flexible approach to event handling
that greatly reduces the amount of code needed to write a basic application. Moreover, the Carbon Event
Manager's streamlined event handling enhances system performance on Mac OS X through more efficient
allocation of processing time. Applications that use the Carbon Event Manager not only run better on Mac
OS X, they help improve overall performance and responsiveness.

Since the introduction of the Macintosh computer, Mac applications have used the Event Manager to receive
information about actions performed by the user, to receive notices of changes in their processing, and to
communicate with other applications. For example, an application can retrieve information from the Event
Manager about whether the user has pressed a key or the mouse button, whether one of the application’s
windows needs updating, or whether some other hardware-related or software-related action requires a
response from the application.

Applications also used the Event Manager to support the cooperative, multitasking environment available
on versions of the Mac OS that preceded Mac OS X. This environment allows users to switch between many
open applications and allows other applications to receive background processing time. By using Event
Manager routines, an application allowed the system software to coordinate the scheduling of processing
time between it and other applications.

Carbon supports the majority of the Event Manager.

High-level events APIs (as contained in EPPC.h) are not supported. You should use Apple events instead.

Carbon does not support the diskEvt event. Support for volume mount and unmount events will be available
in the Carbon Event Manager.

Carbon does not set the convertClipboardFlag in the EventRecord to indicate that the scrap has changed
while the application was suspended. You should call the Scrap Manager function GetCurrentScrap instead.

Low-level event queue functions, such as GetEvQHdr and PPostEvent, are no longer supported.

Overview 989
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not
Recommended)

Application-defined function-key procedures are not supported in Carbon.

Functions by Task

Accessors for Low-Memory Globals

LMGetKeyRepThresh (page 1000)
Returns the low-memory auto-key rate.

LMGetKeyThresh (page 1000)
Returns the low-memory auto-key threshold.

LMSetKeyRepThresh (page 1002)
Sets the low-memory auto-key rate.

LMSetKeyThresh (page 1002)
Sets the low-memory auto-key threshold.

LMGetKbdType (page 1000)
Returns a value that specifies the physical keyboard type.

LMGetKbdLast (page 999)
Returns a value that specifies the last physical keyboard type used.

LMSetKbdLast (page 1001)
Sets a value that specifies the last physical keyboard type used.

LMSetKbdType (page 1001)
Sets the keyboard type.

Getting Timing Information

GetCaretTime (page 993)
Obtains the suggested difference in ticks that should exist between blinks of the caret (usually a
vertical bar marking the insertion point) in editable text.

GetDblTime (page 994)
Determines whether a sequence of mouse events constitutes a double click.

Making Keyboard Settings

KeyScript (page 997) Deprecated in Mac OS X v10.5
Changes the keyboard script (the script system used for keyboard input), changes the keyboard layout
(the mapping of keys to characters) or input method within the current keyboard script (a facility for
entering 2-byte characters), or makes a setting related to text input, using the supplied value.

Reading the Keyboard

GetKeys (page 995)
Obtains the current state of the keyboard.

990 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

KeyTranslate (page 998)
Converts a virtual key code to a character code based on a 'KCHR' resource.

GetCurrentKeyModifiers (page 994)
Returns the current state of the keyboard modifier keys.

IsCmdChar (page 997)
Tests whether the Command key is pressed in conjunction with another key (or keys) that could
generate the specified test character.

Receiving Events

EventAvail (page 992)
Retrieves the next available event from the Event Manager without removing the returned event from
your application’s event stream.

FlushEvents (page 993)
Removes low-level events from the Operating System event queue.

GetNextEvent (page 996)
Retrieves events one at a time from the Event Manager.

SetEventMask (page 1003)
Sets the system event mask of your application to the specified mask.

WaitNextEvent (page 1004)
Retrieves events one at a time from the Event Manager.

Sending Events

PostEvent (page 1002)
Posts events into the Operating System event queue.

Miscellaneous

CheckEventQueueForUserCancel (page 991)
Checks the event queue for an user-cancel event.

GetGlobalMouse (page 995)
Obtains the position of the mouse, in global coordinates.

Functions

CheckEventQueueForUserCancel
Checks the event queue for an user-cancel event.

Functions 991
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

Boolean CheckEventQueueForUserCancel (
 void
);

Return Value
Returns true if a user-cancel event is in the queue, false otherwise.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEvents.h

EventAvail
Retrieves the next available event from the Event Manager without removing the returned event from your
application’s event stream.

Boolean EventAvail (
 EventMask eventMask,
 EventRecord *theEvent
);

Parameters
eventMask

A value that indicates which kinds of events are to be returned; this parameter is interpreted as a sum
of event mask constants. You specify the event mask using one or more of the values defined by the
“Event Mask Constants” (page 1017). If no event of any of the designated types is available, EventAvail
returns a null event.

theEvent
A pointer to an event structure for the next available event of the specified type or types. The
EventAvail function does not remove the returned event from the event stream, but does return
the information about the event in an event structure. The event structure includes the type of event
received and other information.

Return Value
EventAvail returns false as its function result if the event being returned is a null event; otherwise,
EventAvail returns true.

Special Considerations

If EventAvail returns a low-level event from the Operating System event queue, the event will not be
accessible later if, in the meantime, the event queue becomes full and the event is discarded from it; however,
this is not a common occurrence.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Events.h

992 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

FlushEvents
Removes low-level events from the Operating System event queue.

void FlushEvents (
 EventMask whichMask,
 EventMask stopMask
);

Parameters
whichMask

A value that indicates which kinds of low-level events are to be removed from the Operating System
event queue; this parameter is interpreted as a sum of event mask constants. You specify the event
mask using one or more of the values defined in “Event Mask Constants” (page 1017). The whichMask
and stopMask parameters together specify which events to remove.

stopMask
A value that limits which low-level events are to be removed from the Operating System event queue;
this parameter is interpreted as a sum of event mask constants. You specify the event mask using
one or more of the values defined in “Event Mask Constants” (page 1017). FlushEvents does not
remove any low-level events that are specified by the stopMask parameter. To remove all events
specified by the whichMask parameter, specify 0 as the stopMask parameter.

Discussion
FlushEvents removes only low-level events stored in the Operating System event queue; it does not remove
activate, update, operating-system, or high-level events. FlushEvents does not remove any types of events
not stored in the Operating System event queue.

You can choose to use the FlushEvents function when your application first starts to empty the Operating
System event queue of any keystrokes or mouse events generated by the user while the Finder loaded your
application. In general, however, your application should not empty the queue at any other time as this loses
user actions and makes your application and the computer appear unresponsive to the user.

You specify which low-level events to remove using the whichMask and stopMask parameters. FlushEvents
removes the low-level events specified by the whichMask parameter, up to but not including the first event
of any type specified by the stopMask parameter.

If the event queue doesn’t contain any of the events specified by the whichMask parameter, FlushEvents
does not remove any events from the queue.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
HideMenuBar
ictbSample

Declared In
Events.h

GetCaretTime
Obtains the suggested difference in ticks that should exist between blinks of the caret (usually a vertical bar
marking the insertion point) in editable text.

Functions 993
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

UInt32 GetCaretTime (
 void
);

Return Value
The blink delay, in ticks.

Discussion
If your application supports editable text, your application should use the value returned by GetCaretTime
to determine how often to blink the caret. If your application uses only TextEdit, you can use TextEdit functions
to automatically blink the caret at the time interval that the user specifies in the General Controls panel.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Events.h

GetCurrentKeyModifiers
Returns the current state of the keyboard modifier keys.

UInt32 GetCurrentKeyModifiers (
 void
);

Parameters
Return Value
A bit mask indicating which keyboard modifier keys are pressed. See “Event Modifier Constants” (page 1010)
for a list of possible values.

Discussion
GetCurrentKeyModifiers provides a more convenient way to get the modifier key state than calling
GetNextEvent. It returns a value whose individual bits indicate which keyboard modifier keys are currently
being pressed. You can test for the Caps Lock, Shift, Control, Option, and Command keys.

Availability
Available in Mac OS X v10.0 and later.

Declared In
CarbonEventsCore.h

GetDblTime
Determines whether a sequence of mouse events constitutes a double click.

UInt32 GetDblTime (
 void
);

Return Value
The suggested maximum elapsed time, in ticks, between a mouse-up event and a mouse-down event.

994 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

Discussion
The GetDblTime function returns the suggested maximum elapsed time, in ticks, between a mouse-up event
and a mouse-down event. The user can adjust this value using the Mouse control panel.

If your application distinguishes a double click of the mouse from a single click, your application should use
the value returned by GetDblTime to make this distinction. If your application uses TextEdit, the TextEdit
functions automatically recognize and handle double clicks of text within a TextEdit edit structure by
appropriately highlighting or unhighlighting the selection.

The ratio of ticks to value in the DoubleTime global variable is 1:1. However, the Finder multiplies DoubleTime
by 2 to determine double click time because it needs to account for user problems that typically occur during
icon arrangement. Therefore, the Finder uses DoubleTime*2whereas the rest of the system uses DoubleTime.

Incidentally, the Finder does not limit the DoubleTime to 64 ticks. In most places, it treats it like a byte
although in some others it treats it like a longword. The best method would be to provide a one-second
double-byte (two seconds in the Finder).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Events.h

GetGlobalMouse
Obtains the position of the mouse, in global coordinates.

void GetGlobalMouse (
 Point *globalMouse
);

Parameters
globalMouse

The position of the mouse, as a global point.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
CarbonEventsCore.h

GetKeys
Obtains the current state of the keyboard.

Functions 995
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

void GetKeys (
 KeyMap theKeys
);

Parameters
theKeys

On output, the current state of the keyboard, including the keypad, if any.

Discussion
You can use the GetKeys function to determine the current state of the keyboard at any time. For example,
you can determine whether one of the modifier keys is down by itself or in combination with another key
using the GetKeys function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

GetNextEvent
Retrieves events one at a time from the Event Manager.

Boolean GetNextEvent (
 EventMask eventMask,
 EventRecord *theEvent
);

Parameters
eventMask

A value that indicates which kinds of events are to be returned; this parameter is interpreted as a sum
of event mask constants. You specify the event mask using one or more of the values defined in “Event
Mask Constants” (page 1017). If no event of any of the designated types is available, GetNextEvent
returns a null event.

theEvent
A pointer to an event structure for the next available event of the specified type or types. The
GetNextEvent function removes the returned event from the event stream and returns the
information about the event in an event structure. The event structure includes the type of event
received and other information.

Return Value
Discussion
GetNextEvent returns false as its function result if the event being returned is a null event or if
GetNextEvent has intercepted the event; otherwise, GetNextEvent returns true. The GetNextEvent
function calls the Operating System Manager function SystemEvent to determine whether the event should
be handled by the application or the Operating System.

The GetNextEvent function also intercepts Command–Shift–number key sequences and calls the
corresponding 'FKEY' resource to perform the associated action. The Event Manager’s processing of
Command–Shift–number key sequences with numbers 3 through 9 can be disabled by setting the
ScrDmpEnable global variable (a byte) to 0.

996 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

Special Considerations

For greater support of the multitasking environment, your application should use WaitNextEvent instead
of GetNextEvent whenever possible.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Events.h

IsCmdChar
Tests whether the Command key is pressed in conjunction with another key (or keys) that could generate
the specified test character.

Boolean IsCmdChar (
 const EventRecord *event,
 short test
);

Parameters
event

The event record for a key-down or auto-key event with the Command key down.

test
The character you want to test.

Return Value
The function returns TRUE if the test character is produced with the current modifier keys, or if it would be
produced by changing the current modifier key bits in either or both of the following ways: (1) turning the
Command bit off or (2) toggling the Shift bit.

Discussion
This function tests whether the Command key is pressed in conjunction with another key (or keys) that could
generate the test character for some combination of Command up or down and Shift up or down. This
accommodates European keyboards that may have the test character as a shifted character, and non-Roman
keyboards that will only generate the test character if the Command key is pressed. It's most useful for
testing for Command-period, but it can test for command-AnyCharacter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

KeyScript
Changes the keyboard script (the script system used for keyboard input), changes the keyboard layout (the
mapping of keys to characters) or input method within the current keyboard script (a facility for entering
2-byte characters), or makes a setting related to text input, using the supplied value. (Deprecated in Mac OS
X v10.5.)

Functions 997
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

void KeyScript (
 short code
);

Parameters
code

If 0 or positive, directly specifies a script system (that is, it is read as a script code). Negative values
have special meanings.

The code parameter is a selector that can explicitly specify a keyboard script by script code. See the
Script Manager for a list of script codes. If the selector specifies a script, then the current default
keyboard layout ('KCHR' resource) for that script, as specified in the script’s international bundle
resource, becomes the current keyboard layout.

The selector can also implicitly specify a keyboard script (for example, the next script), a keyboard
layout (for example, the previously used keyboard layout in the current script), or an input method
(for example, inline input versus window-based input). It can also specify settings that enable or
disable keyboard layouts and keyboard scripts, and toggle among input options or line direction.

Discussion
For the purposes of KeyScript, keyboard layout means a keyboard-layout ('KCHR') resource, plus optionally
a key-remap ('itlk') resource. To change keyboard layouts means to change the current keyboard-layout
resource.

If the Keyboard menu is displayed, KeyScript also updates the Keyboard menu.

If you call KeyScript and explicitly specify a script system that is not available, KeyScript does nothing.
The current keyboard script remains unchanged.

Note that Keyscript also does nothing when passed a positive or zero script code if the user has Font and
Keyboard Synchronization turned off. You can find the Font and Synchronization checkbox under Options
in the Input Menu tab of the International System Preference in Mac OS X.

Special Considerations

KeyScript operates only on those keyboard-layout and key-remap resources that are present in the System
file.

Your application’s keyboard-menu setting is not maintained by the Process Manager if the state of the
keyboard menu is changed while you are switched out, the Process Manager does not restore your setting
when you are switched back in. However, the Process Manager does maintain the keyboard disable state
(Script Manager variable smKeyDisableState) for your application. See the Script Manager for a description
of the smKeyDisableState variable. KeyScript may move memory; your application should not call this
function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Events.h

KeyTranslate
Converts a virtual key code to a character code based on a 'KCHR' resource.

998 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

UInt32 KeyTranslate (
 const void *transData,
 UInt16 keycode,
 UInt32 *state
);

Parameters
transData

A pointer to the 'KCHR' resource that you want the KeyTranslate function to use when converting
the key code to a character code.

keycode
A 16-bit value that your application should set so that bits 0–6 contain the virtual key code and bit 7
contains either 1 to indicate an up stroke or 0 to indicate a down stroke of the key. Bits 8–15 have
the same interpretation as the high byte of the modifiers field of the event structure and should
be set according to the needs of your application.

state
A pointer to a value that your application should set to 0 the first time it calls KeyTranslate or any
time your application calls KeyTranslate with a different 'KCHR' resource. Thereafter, your
application should pass the same value in the state parameter as KeyTranslate returned in the
previous call.

Return Value
A 32-bit value that gives the character code for the virtual key code specified by the keycode parameter.

Discussion
The KeyTranslate function returns the values that correspond to one or possibly two characters that are
generated by the specified virtual key code. The following diagram shows the structure of the 32-bit number
that KeyTranslate returns.

31 24 23 16 15 8 7 0

| | | | |

 Reserved 1 Character code 1 Reserved 2 Character code 2

For example, a given virtual key code might correspond to an alphabetic character with a separate accent
character. When the user presses Option-E followed by E, you can map this through the KeyTranslate
function using the U.S. 'KCHR' resource to produce é, which KeyTranslate returns as two characters in
the bytes labeled Character code 1 and Character code 2.

If KeyTranslate returns only one character code, it is always in the byte labeled Character code 2. However,
your application should always check both bytes labeled Character code 1 and Character code 2 for possible
values that map to the virtual key code.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Events.h

LMGetKbdLast
Returns a value that specifies the last physical keyboard type used.

Functions 999
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

UInt8 LMGetKbdLast (
 void
);

Return Value
The last physical keyboard type used.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

LMGetKbdType
Returns a value that specifies the physical keyboard type.

UInt8 LMGetKbdType (
 void
);

Return Value
The physical keyboard type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

LMGetKeyRepThresh
Returns the low-memory auto-key rate.

SInt16 LMGetKeyRepThresh (
 void
);

Return Value
The auto-key rate, that is, the amount of time, in ticks, that must elapse before the Event Manager generates
a subsequent auto-key event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

LMGetKeyThresh
Returns the low-memory auto-key threshold.

1000 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

SInt16 LMGetKeyThresh (
 void
);

Return Value
Returns the auto-key threshold, that is, the amount of time, in ticks, that must elapse before the Event Manager
generates an auto-key event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

LMSetKbdLast
Sets a value that specifies the last physical keyboard type used.

void LMSetKbdLast (
 UInt8 value
);

Parameters
value

The physical keyboard type you want to set.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Events.h

LMSetKbdType
Sets the keyboard type.

void LMSetKbdType (
 UInt8 value
);

Parameters
value

The physical keyboard type you want to set.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Events.h

Functions 1001
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

LMSetKeyRepThresh
Sets the low-memory auto-key rate.

void LMSetKeyRepThresh (
 SInt16 value
);

Parameters
value

The low-memory auto-key rate you want to set.

Discussion
LMSetKeyRepThresh sets the low-memory auto-key rate, that is, the amount of time, in ticks, that must
elapse before the Event Manager generates a subsequent auto-key event.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Events.h

LMSetKeyThresh
Sets the low-memory auto-key threshold.

void LMSetKeyThresh (
 SInt16 value
);

Parameters
value

The low-memory auto-key threshold you want to set.

Discussion
LMSetKeyThresh sets the low-memory auto-key threshold, that is, the amount of time, in ticks, that must
elapse before the Event Manager generates an auto-key event.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Events.h

PostEvent
Posts events into the Operating System event queue.

1002 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

OSErr PostEvent (
 EventKind eventNum,
 UInt32 eventMsg
);

Parameters
eventNum

A value that indicates the type of event to post into the Operating System event queue. You specify
the event kind using one or more of these values defined in “Event Mask Constants” (page 1017):
mouseDown, mouseUp, keyDown, keyUp, autoKey, and diskEvt. Do not attempt to post any other
type of event in the Operating System event queue.

eventMsg
An unsigned integer that contains the contents of the message field for the event that PostEvent
should post in the queue.

Return Value
A result code. See “Event Manager Result Codes” (page 1023).

Discussion
In the eventNum and eventMsg parameters, you specify the value for the what and message fields of the
event’s event structure. The PostEvent function fills out the when, where, and modifiers fields of the
event structure with the current time, current mouse location, and current state of the modifier keys and
mouse button.

The PostEvent function posts only events that are enabled by the system event mask. If the event queue
is full, PostEvent removes the oldest event in the queue and posts the new event.

Note that if you use PostEvent to repost an event, the PostEvent function fills out the when, where, and
modifier fields of the event structure, giving these fields of the reposted event different values from the
values contained in the original event.

Do not post any events other than mouse-down, mouse-up, key-down, key-up, auto-key, and disk-inserted
events in the Operating System event queue. Attempting to post other events into the Operating System
event queue interferes with the internal operation of the Event Manager.

In most cases, your application should not call the PostEvent function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Events.h

SetEventMask
Sets the system event mask of your application to the specified mask.

Functions 1003
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

void SetEventMask (
 EventMask value
);

Parameters
value

A value that specifies which events should be posted in the Operating System event queue. You
specify the event mask using one or more of the values defined in “Event Mask Constants” (page 1017).

Discussion
Your application should not call the SetEventMask function to disable any event types from being posted.
Use SetEventMask only to enable key-up events if your application needs to respond to key-up events.

The SetEventMask function sets the system event mask of your application according to the parameter
value. The Operating System Event Manager posts only low-level events (other than update or activate
events) corresponding to bits in the system event mask of the current process when posting events in the
Operating System event queue. The system event mask of an application is initially set to post mouse-up,
mouse-down, key-down, auto-key, and disk-inserted events into the Operating System event queue.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Events.h

WaitNextEvent
Retrieves events one at a time from the Event Manager.

Boolean WaitNextEvent (
 EventMask eventMask,
 EventRecord *theEvent,
 UInt32 sleep,
 RgnHandle mouseRgn
);

Parameters
eventMask

A value that indicates which kinds of events are to be returned. This parameter is interpreted as a
sum of event mask constants. You specify the event mask using values defined in “Event Mask
Constants” (page 1017). To accept all events, you can specify the everyEvent constant as the event
mask.

If no event of any of the designated types is available, WaitNextEvent returns a null event.
WaitNextEvent determines the next available event to return based on the eventMask parameter
and the priority of the event.

Events not designated by the event mask remain in the event stream until retrieved by an application.
Low-level events in the Operating System event queue are kept in the queue until they are retrieved
by your application or another application or until the queue becomes full. Once the queue becomes
full, the Operating System Event Manager begins discarding the oldest events in the queue.

1004 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

theEvent
A pointer to an event structure for the next available event of the specified type or types. The
WaitNextEvent function removes the returned event from the event stream and returns the
information about the event in an event structure. The event structure includes the type of event
received and other information.

In addition to the event structure, high-level events can contain additional data; use the Apple Event
Manager AEProcessAppleEvent function to get additional data associated with these events.

sleep
The number of ticks (a tick is approximately 1/60 of a second) indicating the amount of time your
application is willing to relinquish the processor if no events are pending for your application. If you
specify a value greater than 0 for the sleep parameter, your application relinquishes the processor
for the specified time or until an event occurs.

You should not set the sleep parameter to a value greater than the number of ticks returned by
GetCaretTime if your application provides text-editing capabilities. When the specified time expires,
and if there are no pending events for your application, WaitNextEvent returns a NULL event in the
parameter theEvent.

When running on Mac OS X, a Carbon application will block for the entire duration of the sleep
parameter if there are no events to be delivered. This is slightly different behavior than on Mac OS 9,
where the application will often receive NULL events before the sleep duration has elapsed.

mouseRgn
A handle to a region that specifies a region inside of which mouse movement does not cause
mouse-moved events. In other words, your application receives mouse-moved events only when the
cursor is outside the specified region. You should specify the region in global coordinates. If you pass
an empty region or a null region handle, the Event Manager does not report mouse-moved events
to your application. Note that your application should recalculate the mouseRgn parameter when it
receives a mouse-moved event, or it will continue to receive mouse-moved events as long as the
cursor position is outside the original mouseRgn.

Return Value
The WaitNextEvent function returns false as its function result if the event being returned is a null event
or if WaitNextEvent has intercepted the event; otherwise, WaitNextEvent returns true.

Discussion
The WaitNextEvent function calls the Operating System Event Manager function SystemEvent to determine
whether the event should be handled by the application or the Operating System.

If no events are pending for your application, WaitNextEvent waits for a specified amount of time for an
event. (During this time, processing time may be allocated to background processes.) If an event occurs, it
is returned through the parameter theEvent, and WaitNextEvent returns a function result of true. If the
specified time expires and there are no pending events for your application, WaitNextEvent returns a null
event in theEvent and a function result of false.

Before returning an event to your application, WaitNextEvent performs other processing and may intercept
the event.

The WaitNextEvent function intercepts Command–Shift–number key sequences and calls the corresponding
' FKEY ' resource to perform the associated action. The Event Manager’s processing of
Command–Shift–number key sequences with numbers 3 through 9 can be disabled by setting the
ScrDmpEnable global variable (a byte) to 0.

If the returned event is a high-level event and your application supports Apple events, use the Apple Event
Manager function AEProcessAppleEvent to respond to the Apple event and to get additional information
associated with the Apple event.

Functions 1005
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

To retrieve an event without removing it from the event stream, use EventAvail (page 992).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
Events.h

Data Types

EventRecord
Contains information associated with an event.

struct EventRecord {
 EventKind what;
 UInt32 message;
 UInt32 when;
 Point where;
 EventModifiers modifiers;
};
typedef struct EventRecord EventRecord;

Fields
what

The kind of event received. The Event Manager specifies the kind of event with one of the values
defined by the EventKind enumeration.

1006 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

message
Additional information associated with the event. The interpretation of this information depends on
the event type. The contents of the message field for each event type are summarized here:

 ■ For a null, mouse-up, or mouse-down event, the event message is:Undefined.

 ■ For a key-up, key-down, or auto-key event, the event message is:The low-order word contains
the character code and virtual key code, which you can access with the constants charCodeMask
and keyCodeMask, respectively. For Apple Desktop Bus (ADB) keyboards, the low byte of the
high-order word contains the ADB address of the keyboard where the keyboard event occurred.
The high byte of the high-order word is reserved.

 ■ For an update or activate event, the event message is:A pointer to the window to update, activate,
or deactivate.

 ■ For a disk-inserted event, the event message is:The drive number in the low-order word, the File
Manager result code in the high-order word.

 ■ For a resume event, the event message is:The suspendResumeMessage enumerator in bits 24–31
and a 1 (the resumeFlag enumerator) in bit 0 indicate the event is a resume event. Bit 1 contains
a 1 (the convertClipBoardFlag enumerator) if Clipboard conversion is required, and bits 2–23
are reserved.

 ■ For a suspend event, the event message is:The suspendResumeMessage enumerator in bits
24–31 and a 0 in bit 0 to indicate the event is a suspend event. Bit 1 is undefined, and bits 2–23
are reserved.

 ■ For a mouse-moved event, the event message is:The mouseMovedMessage enumerator in bits
24–31. Bits 2–23 are reserved, and bit 0 and bit 1 are undefined.

 ■ For a high-level event, the event message is:

The class of events to which the high-level event belongs. The message and where fields of a
high-level event define the specific type of high-level event received.

when
The when field indicates the time when the event was posted (in ticks since system startup).

where
For low-level events and operating-system events, the where field contains the location of the cursor
at the time the event was posted (in global coordinates).

For high-level events, the where field contains a second event specifier, the event ID. The event ID
defines the particular type of event within the class of events defined by the message field of the
high-level event. For high-level events, you should interpret the where field as having the data type
OSType, not Point.

Data Types 1007
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

modifiers
The modifiers field contains information about the state of the modifier keys and the mouse button
at the time the event was posted. For activate events, this field also indicates whether the window
should be activated or deactivated. In System 7 it also indicates whether the mouse-down event
caused your application to switch to the foreground.

Each of the modifier keys is represented by a specific bit in the modifiers field of the event structure.
The modifier keys include the Option, Command, Caps Lock, Control, and Shift keys. If your application
attaches special meaning to any of these keys in combination with other keys or when the mouse
button is down, you can test the state of the modifiers field to determine the action your application
should take. For example, you can use this information to determine whether the user pressed the
Command key and another key to make a menu choice.

Discussion
When your application uses an Event Manager function to retrieve an event, the Event Manager returns
information about the retrieved event in an event structure, which is a structure of type EventRecord.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

EvQEl
Defines an event queue entry.

struct EvQEl {
 QElemPtr qLink;
 SInt16 qType;
 EventKind evtQWhat;
 UInt32 evtQMessage;
 UInt32 evtQWhen;
 Point evtQWhere;
 EventModifiers evtQModifiers;
};
typedef struct EvQEl EvQEl;
typedef EvQEl * EvQElPtr;

Fields
qLink

Next queue entry.

qType
Queue type (evType).

evtQWhat
Event code.

evtQMessage
Event message.

evtQWhen
Ticks since startup.

evtQWhere
Mouse location.

1008 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

evtQModifiers
Modifier flags.

Discussion
A structure of type EvQEl defines an entry in the Operating System event queue. Each entry in the event
queue begins with 4 bytes of flags followed by a pointer to the next queue entry. The flags are maintained
by and internal to the Operating System Event Manager. The queue entries are linked by pointers, and the
first field of the EvQEl data type, which represents the structure of a queue entry, begins with a pointer to
the next queue entry. Thus, you cannot directly access the flags using the EvQEl data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

KeyMap
Contains information about the current state of the keyboard.

typedef BigEndianLong KeyMap[4];

Discussion
The type KeyMap is used in GetKeys (page 995) to return the current state of the keyboard, including the
keypad, if any. The KeyMap type is interpreted as an array of 128 elements, each having a Boolean value.
Each key on the keyboard or keypad corresponds to an element in the KeyMap array. A KeyMap element is
true if the corresponding key is down and false if it isn’t. The maximum number of keys that can be down
simultaneously is two character keys plus any combination of the five modifier keys.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

KeyMapByteArray
Contains information about the current state of the keyboard.

typedef UInt8 KeyMapByteArray[16];

Discussion
The type KeyMapByteArray is an alternate version of the type KeyMap (page 1009) for use on little endian
platforms.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Events.h

Data Types 1009
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

Constants

Event Modifier Constants
Define modifiers for event types.

enum {
 activeFlagBit = 0,
 btnStateBit = 7,
 cmdKeyBit = 8,
 shiftKeyBit = 9,
 alphaLockBit = 10,
 optionKeyBit = 11,
 controlKeyBit = 12,
 rightShiftKeyBit = 13,
 rightOptionKeyBit = 14,
 rightControlKeyBit = 15
};
typedef UInt16 EventModifiers;

Constants
activeFlagBit

Available in Mac OS X v10.0 and later.

Declared in Events.h.

btnStateBit
Available in Mac OS X v10.0 and later.

Declared in Events.h.

cmdKeyBit
Available in Mac OS X v10.0 and later.

Declared in Events.h.

shiftKeyBit
Available in Mac OS X v10.0 and later.

Declared in Events.h.

alphaLockBit
Available in Mac OS X v10.0 and later.

Declared in Events.h.

optionKeyBit
Available in Mac OS X v10.0 and later.

Declared in Events.h.

controlKeyBit
Available in Mac OS X v10.0 and later.

Declared in Events.h.

rightShiftKeyBit
Available in Mac OS X v10.0 and later.

Declared in Events.h.

1010 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

rightOptionKeyBit
Available in Mac OS X v10.0 and later.

Declared in Events.h.

rightControlKeyBit
Available in Mac OS X v10.0 and later.

Declared in Events.h.

charCodeMask

enum {
 charCodeMask = 0x000000FF,
 keyCodeMask = 0x0000FF00,
 adbAddrMask = 0x00FF0000,
 osEvtMessageMask = 0xFF000000
};

Constants
charCodeMask

The enumerator indicating you want your application to receive a character-code keyboard event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

keyCodeMask
The enumerator indicating you want your application to receive a key-code keyboard event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

adbAddrMask
The enumerator indicating you want your application to receive an ADB address if there is an ADB
keyboard.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

osEvtMessageMask
The enumerator indicating you want your application to receive a keyboard event that can be used
to extract a message code.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

convertClipboardFlag
Obsolete in Carbon.

Constants 1011
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

enum {
 convertClipboardFlag = 2
};

Constants
convertClipboardFlag

Available in Mac OS X v10.0 and later.

Declared in Events.h.

Discussion
Obsolete in Carbon. To determine if the clipboard has changed while your application was suspended, use
the Scrap Manager function GetCurrentScrap.

Carbon Porting Notes

Unsupported. To determine if the clipboard has changed while your application was suspended, use the
Scrap Manager function GetCurrentScrap.

Event Modifier Bits
Modifer bits for events.

enum {
 activeFlag = 1 << activeFlagBit,
 btnState = 1 << btnStateBit,
 cmdKey = 1 << cmdKeyBit,
 shiftKey = 1 << shiftKeyBit,
 alphaLock = 1 << alphaLockBit,
 optionKey = 1 << optionKeyBit,
 controlKey = 1 << controlKeyBit,
 rightShiftKey = 1 << rightShiftKeyBit,
 rightOptionKey = 1 << rightOptionKeyBit,
 rightControlKey = 1 << rightControlKeyBit
};

Constants
activeFlag

The enumerator that indicates a window is being activated or that a mouse-down event caused a
foreground switch.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

btnState
The enumerator indicating that the mouse button has been released.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

cmdKey
The enumerator indicating that the Command key is being pressed.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

1012 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

shiftKey
The enumerator indicating that the Shift key is being pressed.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

alphaLock
The enumerator indicating that the Caps Lock key is being pressed.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

optionKey
The enumerator indicating that the Option key is being pressed.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

controlKey
The enumerator indicating that the Control key is being pressed.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

rightShiftKey
Available in Mac OS X v10.0 and later.

Declared in Events.h.

rightOptionKey
Available in Mac OS X v10.0 and later.

Declared in Events.h.

rightControlKey
Available in Mac OS X v10.0 and later.

Declared in Events.h.

HighLevelEventMsgClass

enum {
 HighLevelEventMsgClass = 'jaym',
 rtrnReceiptMsgID = 'rtrn'
};

Constants
HighLevelEventMsgClass

The enumerator indicating a high-level event message class for return receipt.

rtrnReceiptMsgID
The posting enumerator indicating the return receipt message ID.

Character Codes
Define character codes for events.

Constants 1013
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

enum {
 kNullCharCode = 0,
 kHomeCharCode = 1,
 kEnterCharCode = 3,
 kEndCharCode = 4,
 kHelpCharCode = 5,
 kBellCharCode = 7,
 kBackspaceCharCode = 8,
 kTabCharCode = 9,
 kLineFeedCharCode = 10,
 kVerticalTabCharCode = 11,
 kPageUpCharCode = 11,
 kFormFeedCharCode = 12,
 kPageDownCharCode = 12,
 kReturnCharCode = 13,
 kFunctionKeyCharCode = 16,
 kCommandCharCode = 17,
 kCheckCharCode = 18,
 kDiamondCharCode = 19,
 kAppleLogoCharCode = 20,
 kEscapeCharCode = 27,
 kClearCharCode = 27,
 kLeftArrowCharCode = 28,
 kRightArrowCharCode = 29,
 kUpArrowCharCode = 30,
 kDownArrowCharCode = 31,
 kSpaceCharCode = 32,
 kDeleteCharCode = 127,
 kBulletCharCode = 165,
 kNonBreakingSpaceCharCode = 202
};

Constants
kNullCharCode

Available in Mac OS X v10.0 and later.

Declared in Events.h.

kHomeCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kEnterCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kEndCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kHelpCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kBellCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

1014 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

kBackspaceCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kTabCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kLineFeedCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kVerticalTabCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kPageUpCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kFormFeedCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kPageDownCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kReturnCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kFunctionKeyCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kCommandCharCode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kCheckCharCode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kDiamondCharCode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kAppleLogoCharCode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kEscapeCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

Constants 1015
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

kClearCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kLeftArrowCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kRightArrowCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kUpArrowCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kDownArrowCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kSpaceCharCode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kDeleteCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kBulletCharCode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kNonBreakingSpaceCharCode
Available in Mac OS X v10.0 and later.

Declared in Events.h.

kShiftUnicode

enum {
 kShiftUnicode = 0x21E7,
 kControlUnicode = 0x2303,
 kOptionUnicode = 0x2325,
 kCommandUnicode = 0x2318,
 kPencilUnicode = 0x270E,
 kCheckUnicode = 0x2713,
 kDiamondUnicode = 0x25C6,
 kBulletUnicode = 0x2022,
 kAppleLogoUnicode = 0xF8FF
};

Constants
kShiftUnicode

Available in Mac OS X v10.1 and later.

Declared in Events.h.

1016 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

kControlUnicode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kOptionUnicode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kCommandUnicode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kPencilUnicode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kCheckUnicode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kDiamondUnicode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kBulletUnicode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

kAppleLogoUnicode
Available in Mac OS X v10.1 and later.

Declared in Events.h.

Event Mask Constants
Define constants you can use in the event mask.

Constants 1017
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

enum {
 mDownMask = 1 << mouseDown,
 mUpMask = 1 << mouseUp,
 keyDownMask = 1 << keyDown,
 keyUpMask = 1 << keyUp,
 autoKeyMask = 1 << autoKey,
 updateMask = 1 << updateEvt,
 diskMask = 1 << diskEvt,
 activMask = 1 << activateEvt,
 highLevelEventMask = 0x0400,
 osMask = 1 << osEvt,
 everyEvent = 0xFFFF
};
typedef UInt16 EventMask;

Constants
mDownMask

The enumerator indicating you want your application to receive a mouse-down event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

mUpMask
The enumerator indicating you want your application to receive a mouse-up event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

keyDownMask
The enumerator indicating you want your application to receive a key-down event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

keyUpMask
The enumerator indicating you want your application to receive a key-up event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

autoKeyMask
The enumerator indicating you want your application to receive an auto-key event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

updateMask
The enumerator indicating you want your application to receive an update event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

diskMask
The enumerator indicating you want your application to receive a disk-inserted event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

1018 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

activMask
The enumerator indicating you want your application to receive an activate event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

highLevelEventMask
The enumerator indicating you want your application to receive a high-level event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

osMask
The enumerator indicating you want your application to receive an operating-system event

Available in Mac OS X v10.0 and later.

Declared in Events.h.

everyEvent
The enumerator indicating you want your application to receive every event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

mouseMovedMessage

enum {
 mouseMovedMessage = 0x00FA,
 suspendResumeMessage = 0x0001
};

Constants
mouseMovedMessage

The message code indicating the mouse-moved operating-system event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

suspendResumeMessage
The message code indicating a suspend or resume operating-system event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

msgWasPartiallyAccepted

enum {
 msgWasPartiallyAccepted = 2,
 msgWasFullyAccepted = 1,
 msgWasNotAccepted = 0
};

Constants
msgWasPartiallyAccepted

The posting enumerator value in the return receipt that indicates the message was partially accepted.

Constants 1019
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

msgWasFullyAccepted
The posting enumerator value in the return receipt that indicates the message was fully accepted.

msgWasNotAccepted
The posting enumerator value in the return receipt that indicates the message was fully accepted.

networkEvt

enum {
 networkEvt = 10,
 driverEvt = 11,
 app1Evt = 12,
 app2Evt = 13,
 app3Evt = 14,
 app4Evt = 15,
 networkMask = 0x0400,
 driverMask = 0x0800,
 app1Mask = 0x1000,
 app2Mask = 0x2000,
 app3Mask = 0x4000,
 app4Mask = 0x8000
};

Constants
networkEvt

Available in Mac OS X v10.0 and later.

Declared in Events.h.

driverEvt
Available in Mac OS X v10.0 and later.

Declared in Events.h.

app1Evt
Available in Mac OS X v10.0 and later.

Declared in Events.h.

app2Evt
Available in Mac OS X v10.0 and later.

Declared in Events.h.

app3Evt
Available in Mac OS X v10.0 and later.

Declared in Events.h.

app4Evt
Available in Mac OS X v10.0 and later.

Declared in Events.h.

networkMask
Available in Mac OS X v10.0 and later.

Declared in Events.h.

driverMask
Available in Mac OS X v10.0 and later.

Declared in Events.h.

1020 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

app1Mask
Available in Mac OS X v10.0 and later.

Declared in Events.h.

app2Mask
Available in Mac OS X v10.0 and later.

Declared in Events.h.

app3Mask
Available in Mac OS X v10.0 and later.

Declared in Events.h.

app4Mask
Available in Mac OS X v10.0 and later.

Declared in Events.h.

Event Kind Constants
Define event kinds.

enum {
 nullEvent = 0,
 mouseDown = 1,
 mouseUp = 2,
 keyDown = 3,
 keyUp = 4,
 autoKey = 5,
 updateEvt = 6,
 diskEvt = 7,
 activateEvt = 8,
 osEvt = 15,
 kHighLevelEvent = 23
};
typedef UInt16 EventKind;

Constants
nullEvent

The event code indicating that there are no other pending events.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

mouseDown
The event code indicating that the mouse button has been pressed.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

mouseUp
The event code indicating that the mouse button has been released.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

Constants 1021
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

keyDown
The event code indicating that a key has been pressed.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

keyUp
The event code indicating that a key has been released.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

autoKey
The event code indicating that a key has been repeatedly held down.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

updateEvt
The event code indicating that a window needs updating.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

diskEvt
The event code indicating that a disk has been inserted.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

activateEvt
The event code indicating that a window has been activated or deactivated.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

osEvt
The event code indicating a suspend, resume, or mouse-moved operating-system event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

kHighLevelEvent
A high-level event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

resumeFlag
Indicates a resume event.

1022 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

enum {
 resumeFlag = 1
};

Constants
resumeFlag

Flag for a resume event.

Available in Mac OS X v10.0 and later.

Declared in Events.h.

Result Codes

Result codes defined for the Event Manager are listed below.

DescriptionValueResult Code

Event not enabled for PostEvent.1evtNotEnb

Available in Mac OS X v10.0 and later.

Result Codes 1023
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

1024 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 9

Event Manager Reference (Not Recommended)

Framework: Carbon/Carbon.h

Declared in Ink.h

Overview

Ink is a technology that allows users to enter text by writing with a stylus on a graphics tablet without requiring
any modifications to the application that receives the text. As text is written on a tablet, it is automatically
recognized and entered as a stream of key-down events into a document or text field.

The Ink Services application programming interface provides a set of functions that enables you to customize
Ink input for your application. Using the Ink Services API, you can:

 ■ Programmatically turn handwriting recognition on or off for your application

 ■ Access Ink data at multiple levels (as points and recognized text)

 ■ Support gestures that allow the user to manipulate text directly

 ■ Set up deferred recognition or use on-demand recognition

 ■ Access alternate text interpretations

 ■ Manage options for drawing Ink

 ■ Create and terminate an Ink phrase

Ink Services provides Ink input data (text interpretations, gestures, and so forth) through the Carbon Event
Manager. Your application must set up one or more handlers to receive Ink-related events and to extract the
relevant parameters from the events of interest to your application.

Functions by Task

Customizing Ink Services

InkSetApplicationWritingMode (page 1029)
Controls where the user is allowed to write in the current application.

InkSetApplicationRecognitionMode (page 1028)
Specifies whether Ink input should be interpreted as text, gestures, both, or neither.

InkSetPhraseTerminationMode (page 1030)
Sets the conditions that define a phrase termination.

Overview 1025
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

InkSetDrawingMode (page 1030)
Controls what is drawn when the user writes.

Obtaining Information About Ink Services

InkUserWritingMode (page 1042)
Returns the Ink writing mode set by the user in the Ink preferences pane.

InkIsPhraseInProgress (page 1028)
Returns whether Ink Services has initiated and is currently maintaining an Ink phrase whose source
is user input.

Handling Ink Phrases

InkAddStrokeToCurrentPhrase (page 1027)
Adds a stroke to the current Ink phrase.

InkTerminateCurrentPhrase (page 1033)
Terminates the current phrase.

Working With Alternate Text Interpretations

InkTextAlternatesCount (page 1034)
Returns the number of alternate text interpretations available for an Ink phrase.

InkTextCreateCFString (page 1035)
Obtains the string associated with a text interpretation of an Ink phrase.

InkTextInsertAlternatesInMenu (page 1040)
Inserts a list of alternate text interpretations into a menu.

Working With Ink Text Objects

InkTextKeyModifiers (page 1042)
Returns a value that specifies the key modifiers applied to an Ink phrase.

InkTextCopy (page 1035)
Copies an existing Ink text object.

InkTextBounds (page 1034)
Returns the bounds of an Ink text object.

InkTextDraw (page 1036)
Rescales and draws Ink text into the specified bounds.

InkTextGetTypeID (page 1040)
Returns the CFTypeID of an InkTextRef object.

1026 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

Flattening and Unflattening Ink Text Objects

InkTextFlatten (page 1037)
Flattens an Ink text object for archiving.

InkTextCreateFromCFData (page 1036)
Creates an Ink text object from a previously-flattened Ink text object.

Working with Ink Stroke Objects

InkTextGetStroke (page 1038)
Returns a reference to the specified stroke in an InkTextRef.

InkTextGetStrokeCount (page 1039)
Returns the number of strokes in the specified InkTextRef.

InkStrokeGetPointCount (page 1031)
Returns the number of points in the specified InkStrokeRef.

InkStrokeGetPoints (page 1032)
Fills an array with the points belonging to the specified InkStrokeRef.

InkStrokeGetTypeID (page 1033)
Returns the CFTypeID of an InkStrokeRef object.

Functions

InkAddStrokeToCurrentPhrase
Adds a stroke to the current Ink phrase.

void InkAddStrokeToCurrentPhrase (
 unsigned long iPointCount,
 InkPoint *iPointArray
);

Parameters
iPointCount

The number of elements in the iPointArray array.

iPointArray
A pointer to an array of InkPoint structures that specify the path of the stylus, starting with the
point that defines the first stylus-down location and ending with the point that defines the last
stylus-down location.

Discussion
This function operates on the Ink source from the application, and not on that from direct user input. So
there is no need to specify the Ink source as kInkSourceApplication. See “Ink Source Types” (page 1052)
for more information on sources.

Functions 1027
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

You do not need to call this function unless you have raw data to process or you have turned off automatic
recognition (by calling the function InkSetApplicationWritingMode (page 1029)) and have set up your
application to handle Ink input events itself. For example, you might need to handle Ink input if your
application needs to acquire pen data in a device-specific manner.

If your application handles Ink input events, it can still take advantage of the recognition service provided
by Ink Services. To do so, your application should call the function InkAddStrokeToCurrentPhase to add
one stroke at a time to the current phrase. You then terminate the phrase at the appropriate time by calling
the functionInkTerminateCurrentPhrase (page 1033). Note that callingInkAddStrokeToCurrentPhase
adds a stroke to the current phrase, but does not draw the stroke. See Using Ink Services in Your Application
for details on writing code that uses the function InkAddStrokeToCurrentPhase to implement deferred
recognition.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkIsPhraseInProgress
Returns whether Ink Services has initiated and is currently maintaining an Ink phrase whose source is user
input.

Boolean InkIsPhraseInProgress (
 void
);

Return Value
Returns TRUE if the user is currently engaged in Ink input; FALSE otherwise.

Discussion
If your application manages its own phrase termination, you should use this function to make sure there is
a phrase that can be terminated before you call the function InkTerminateCurrentPhrase. Don’t call this
function if the Ink data stream originates from your application rather than directly from user input. The
application data stream is completely independent of the user data stream. If your application builds its own
Ink phrases by calling the function InkAddStrokeToCurrentPhrase, it should be able track whether such
a phrase is in-progress or not.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkSetApplicationRecognitionMode
Specifies whether Ink input should be interpreted as text, gestures, both, or neither.

1028 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

void InkSetApplicationRecognitionMode (
 InkRecognitionType iRecognitionType
);

Parameters
iRecognitionType

The recognition mode you want Ink Services to use. Pass kInkRecognitionGesture to specify
gesture recognition, kInkRecognitionText to specify text recognition, kInkRecognitionNone
to turn off recognition, or kInkRecognitionDefault (which is kInkRecognitionGesture |
kInkRecognitionText) to specify both gesture and text recognition. See “Recognition Modes” (page
1048) for more information on the constants you can supply.

Discussion
This function only affects recognition of Ink that originates from the user. It does not affect recognition of
Ink that originates from your application, and is recognized using the function
InkAddStrokeToCurrentPhrase. Note that only text recognition (not gesture recognition) is performed
on an Ink data stream that originates from your application.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkSetApplicationWritingMode
Controls where the user is allowed to write in the current application.

void InkSetApplicationWritingMode (
 InkApplicationWritingModeType iWriteWhere
);

Parameters
iWriteWhere

An “Application Modes” (page 1046) constant that specifies the Ink writing mode to use for your
application. Pass kInkWriteAnywhereInApp if you want your application to allow Ink input and
recognition and to receive Ink events when the user writing mode is set to kInkWriteInkAwareOnly.
When you call this function with the iWriteWhere parameter set to kInkWriteAnywhereInApp,
your application can receive Ink events whose screen locations lie outside the application windows.
Pass kInkWriteNowhereInApp to disable Ink input temporarily, such as when the user is using a
paint tool.

Discussion
You can call the function InkSetApplicationWritingMode to control when Ink input and recognition
are allowed in your application. Using this function, you can turn Ink Services on or off for your application.
Note that Ink input is available for your application only when your application is frontmost and when the
user has turned on recognition in the Ink preferences pane.

If your application calls the function InkSetApplicationWritingMode with the parameter
kInkWriteNowhereInApp to disable Ink Services management of pen events because you want to accumulate
Ink data yourself, be aware that you may need to manage mouse event coalescing yourself. You can use the
Carbon Event Manger function SetMouseCoalescingEnabled for this purpose. See Using Ink Services in
Your Application for a discussion of mouse coalescing.

Functions 1029
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkSetDrawingMode
Controls what is drawn when the user writes.

void InkSetDrawingMode (
 InkDrawingModeType iDrawingMode
);

Parameters
iDrawingMode

A “Drawing Modes” (page 1046) constant that specifies the drawing mode to use for your application.
The default (kInkDrawInkAndWritingGuides) is for Ink Services to draw both the Ink writing guides
and the Ink. Pass kInkDrawInkOnly if you want Ink Services to draw only the Ink. Pass
kInkDrawNothing to turn off drawing of both the Ink writing guides and the Ink.

Discussion
Normally Ink Services draws writing guides, similar in look to the alternating solid and broken lines used on
many paper writing tablets. The Ink itself is drawn anti-aliased and grayscale. Your application can call the
function InkSetDrawingMode to request that Ink Services not draw the writing guides or not draw either
Ink or the writing guides. If Ink drawing is disabled, your application must receive the points (by installing a
handler for kEventInkPoint events) and draw the Ink.

You do not need to call the function InkSetDrawingMode to inhibit drawing if you called the function
InkSetApplicationWritingMode, passing the value kInkWriteNowhereInApp. Also, Ink Services will
not draw any point for which a kEventInkPoint Carbon event handler returns noErr.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkSetPhraseTerminationMode
Sets the conditions that define a phrase termination.

1030 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

void InkSetPhraseTerminationMode (
 InkSourceType iSource,
 InkTerminationType iAllowedTerminationTypes
);

Parameters
iSource

An “Ink Source Types” (page 1052) constant that specifies the source of the Ink data stream. You can
use one of these constants to get independent control over termination of data originating with the
user versus data that is passed from your application to Ink Services. To manage phrase termination
for user input, pass the constant kInkSourceUser. To manage phrase termination for application
input (that is recognized using the function InkAddStrokeToCurrentPhrase, pass the constant
kInkSourceApplication.

iAllowedTerminationTypes
A constant that specifies the conditions which define a phrase termination. To turn off automatic
phrase termination, pass kInkTerminationNone. You can restore the default phrase termination
behavior by passing the constant kInkTerminationDefault. See “Phrase Termination Modes” (page
1047) for more information on the constants you can supply.

Discussion
The default behavior is for Ink Services to terminate a phrase when one of the following events occur:

 ■ The user removes the stylus from the proximity of the tablet

 ■ A specified period of time elapses in which the stylus is not pressed to the tablet (The user can control
the period of time in the Ink preferences pane.)

 ■ The user writes sufficiently far away from the previous Ink—either horizontally, or on a new line

You can use the function InkSetPhraseTerminationMode if your application does not want the default
behavior or wants complete control over when Ink phrases are terminated. If you turn off automatic phrase
termination, you must make sure you manage phrase termination appropriately for your application.

For example, if you want to force Ink drawn in a specific input window to be treated as a single phrase until
the user presses a “finished-writing” button, you would call InkSetPhraseTerminationMode with the
parameter kInkTerminationNone to turn off automatic phrase termination. Then you would need to install
a Carbon event handler for the event kEventInkPoint. Your handler would examine the kEventInkPoint
events, notice when a pen-down event occurs on the “finished-writing” button, and then terminate the
phrase by calling the function InkTerminateCurrentPhrase. See Using Ink Services in Your Application for
details on writing code to handle phrase termination.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkStrokeGetPointCount
Returns the number of points in the specified InkStrokeRef.

Functions 1031
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

CFIndex InkStrokeGetPointCount (
 InkStrokeRef iStrokeRef
);

Parameters
iStrokeRef

The InkStrokeRef to get the point count from.

Return Value
A CFIndex indicating the number of points contained in the specified InkStrokeRef.

Discussion
Given an InkStrokeRef, this function returns the number of points that stroke contains. Use this function
to calculate the appropriate size of the buffer passed to InkStrokeGetPoints (page 1032).

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.4 and later.

Declared In
Ink.h

InkStrokeGetPoints
Fills an array with the points belonging to the specified InkStrokeRef.

InkPoint * InkStrokeGetPoints (
 InkStrokeRef iStrokeRef,
 InkPoint *oPointBuffer
);

Parameters
iStrokeRef

The InkStrokeRef to get the points from.

oPointBuffer
The buffer into which the point data is to be copied.

Return Value
A pointer to the copied array of point data from the specified InkStrokeRef; this value is the same as the
oPointBuffer address provided by the application.

Discussion
Given an InkStrokeRef and a point buffer, this function fills that buffer with the points belonging to that
stroke.

The size of the point buffer must be at least the size of InkStrokeGetPointCount(iStrokeRef) *
sizeof(InkPoint). For details, see InkStrokeGetPointCount (page 1031). The pointer to the block of
memory containing the ink points is returned as the result.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.4 and later.

Declared In
Ink.h

1032 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

InkStrokeGetTypeID
Returns the CFTypeID of an InkStrokeRef object.

CFTypeID InkStrokeGetTypeID (
 void
);

Return Value
The CFTypeID of an InkStrokeRef object.

Discussion
Given an InkStrokeRef, this function returns its CFTypeID.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.4 and later.

Declared In
Ink.h

InkTerminateCurrentPhrase
Terminates the current phrase.

void InkTerminateCurrentPhrase (
 InkSourceType iSource
);

Parameters
iSource

An “Ink Source Types” (page 1052) constant that specifies the source of the Ink data stream.To terminate
a phrase that originates from application input (that is recognized using the function
InkAddStrokeToCurrentPhrase), pass the constant kInkSourceApplication.

If you are managing phrase termination that originates from direct user input, you can pass the
constant kInkSourceUser. Note that this function is normally not used in this fashion, as most
applications can let Ink Services terminate such phrases automatically.

Discussion
You do not need to call this function unless you have turned off automatic phrase termination (by calling
the function InkSetPhraseTerminationMode (page 1030)) and have set up your application to manage
phrase termination. When you call the function InkTerminateCurrentPhrase, any Ink drawn by Ink
Services is erased. If your application handles phrase termination, it can still take advantage of the recognition
service provided by Ink Services.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

Functions 1033
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

InkTextAlternatesCount
Returns the number of alternate text interpretations available for an Ink phrase.

CFIndex InkTextAlternatesCount (
 InkTextRef iTextRef
);

Parameters
iTextRef

On input, a reference to the Ink text object that specifies the Ink word whose alternate count you
want to obtain. You must obtain an Ink text object reference (InkTextRef) through your application’s
Ink event handler. Your handler must take care of the Carbon event class kEventClassInk and the
event kind kEventInkText. The event parameter kEventParamInkTextRef that you obtain from
this event kind is a reference to an Ink text object.

Return Value
Returns the number of interpretations available for the specified Ink phrase.

Discussion
You can obtain the string associated with a text interpretation by calling the function
InkTextCreateCFString (page 1035). If you want to display a list of the alternate text interpretations to the
user, call the function InkTextInsertAlternatesInMenu (page 1040).

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkTextBounds
Returns the bounds of an Ink text object.

HIRect InkTextBounds (
 InkTextRef iTextRef
);

Parameters
iTextRef

On input, a reference to the Ink text object whose bounds you want to obtain. You must obtain an
Ink text object reference (InkTextRef) through your application’s Ink event handler. Your handler
must take care of the Carbon event class kEventClassInk and the event kind kEventInkText. The
event parameter kEventParameterInkTextRef that you obtain from this event kind is a reference
to an Ink text object.

Return Value
An HIRect data structure that defines the bounds of the specified Ink text object.

Discussion
The bounds are initially global coordinates, and may extend beyond your application’s windows.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

1034 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

Declared In
Ink.h

InkTextCopy
Copies an existing Ink text object.

InkTextRef InkTextCopy (
 InkTextRef iTextRef
);

Parameters
iTextRef

On input, a reference to the Ink text object you want to copy. You must obtain an Ink text object
reference (InkTextRef) through your application’s Ink event handler. Your handler must take care
of the Carbon event class kEventClassInk and the event kind kEventInkText. The event parameter
kEventParameterInkTextRef that you obtain from this event kind is a reference to an Ink text
object.

Return Value
A reference to the newly-created Ink text object.

Discussion
You can use this function to implement copy-and-paste functions in a deferred-recognition application, or
in a text application to retain Ink when text is copied and pasted. The retention count of the new InkTextRef
is 1.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkTextCreateCFString
Obtains the string associated with a text interpretation of an Ink phrase.

CFStringRef InkTextCreateCFString (
 InkTextRef iTextRef,
 CFIndex iAlternateIndex
);

Parameters
iTextRef

On input, a reference to the Ink text object that specifies the Ink word for which you want to create
a string. You must obtain an Ink text object reference (InkTextRef) through your application’s Ink
event handler. Your handler must take care of the Carbon event class kEventClassInk and the
event kind kEventInkText. The event parameter kEventParamInkTextRef that you obtain from
this event kind is a reference to an Ink text object.

iIndex
The index that specfies the text interpretation for which you want to obtain a CFString. Text
interpretations are stored in an array in ranked order, with the most-likely interpretation at index zero.

Functions 1035
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

Return Value
A CFStringRef that specifies an interpretation for the given Ink text phrase. Returns NULL if the index you
provide is invalid. Your application is responsible for releasing the returned CFStringRef.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkTextCreateFromCFData
Creates an Ink text object from a previously-flattened Ink text object.

InkTextRef InkTextCreateFromCFData (
 CFDataRef iFlattenedInkText,
 CFIndex iIndex
);

Parameters
iFlattenedInkText

On input, a reference to a CFData data structure that contains data from a previously-flattened Ink
text object.

iIndex
The index at which to start reading the data.

Return Value
Returns a reference to the newly-created Ink text object. The retention count of the newly-created Ink text
object is 1.

Discussion
You can unflatten an Ink text object that was previously flattened using the function InkTextFlatten. If
you flattened more than one Ink text object to the CFMutableData data type, then you must call the function
InkTextCreateFromCFData for each Ink text object you want to unflatten, specifying the index that defines
the start of the Ink text data you want to unflatten.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkTextDraw
Rescales and draws Ink text into the specified bounds.

1036 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

void InkTextDraw (
 InkTextRef iTextRef,
 CGContextRef iContext,
 const CGRect *iBounds,
 InkTextDrawFlagsType iFlags
);

Parameters
iTextRef

On input, a reference to the Ink text object whose text you want to rescale and draw. You must obtain
an Ink text object reference (InkTextRef) through your application’s Ink event handler. Your handler
must take care of the Carbon event class kEventClassInk and the event kind kEventInkText. The
event parameter kEventParameterInkTextRef that you obtain from this event kind is a reference
to an Ink text object.

iContext
The CGContext into which you want to draw. Drawing is relative to the specified CGContextRef,
and subject to the usual window and clipping constraints. Pass NULL if you want to draw to the
canonical context of the current port.

iBounds
On input, a CGRect data structure that specifies the bounds into which you want the Ink text object
to be drawn.

iFlags
A “Text Drawing Flags” (page 1052) constant that specifies drawing settings. Pass
kInkTextDrawDefault to use the default system settings when drawing,
kInkTextDrawIgnorePressure if you do not want to use pressure sensitive gradients, and
kInkTextDrawHonorContext t o use the current Quartz context settings.

Discussion
The function InkTextDraw is useful to applications that implement deferred recognition or searchable Ink.
The original points and bounds of the Ink text object are scaled and offset to fit the specified bounds, so
subsequent calls to the function InkTextBounds return the rescaled bounds.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkTextFlatten
Flattens an Ink text object for archiving.

Functions 1037
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

CFIndex InkTextFlatten (
 InkTextRef iTextRef,
 CFMutableDataRef ioDataRef,
 CFIndex iIndex
);

Parameters
iTextRef

On input, a reference to the Ink text object you want to flatten. You must obtain an Ink text object
reference (InkTextRef) through your application’s Ink event handler. Your handler must take care
of the Carbon event class kEventClassInk and the event kind kEventInkText. The event parameter
kEventParameterInkTextRef that you obtain from this event kind is a reference to an Ink text
object.

ioDataRef
On input, a reference to a CFMutableData data type. On output, refers to the flattened data. Your
application is responsible for creating and releasing the CFMutableDataRef.

iIndex
The index at which you want the data to be written.

Return Value
Returns the number of bytes added to the ioDataRef. Returns 0 if the operation is unsuccessful or iTextRef
is NULL or empty.

Discussion
CFMutableData objects are extensible, which means you can flatten more than one Ink text object into a
CFMutableData object. You store data in a CFMutableData object by specifying the index at which data
is to be stored. The function InkTextFlatten accepts the starting index as an input parameter, writes all
the Ink text object data to the specified CFMutableData object, and returns the byte count for the amount
of data that is actually stored.

To flatten an additional Ink text object into the same CFMutableData object, you must supply a value for
the iIndex parameter that specifies the byte location at which to start writing the data for the additional
Ink text object. You can calculate this value by summing the byte count returned by the previous call with
the value of the iIndex parameter you provided in the previous call.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkTextGetStroke
Returns a reference to the specified stroke in an InkTextRef.

1038 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

InkStrokeRef InkTextGetStroke (
 InkTextRef iTextRef,
 CFIndex iStrokeIndex
);

Parameters
iTextRef

The InkTextRef to get the stroke from.

iStrokeIndex
The index of the stroke for which you want to get an InkStrokeRef.

Return Value
An InkStrokeRef for the specified stroke of the specified InkTextRef.

Discussion
Given an InkTextRef and a stroke index (between 0 and InkTextGetStrokeCount(iTextRef) -
1), this function returns the InkStrokeRef corresponding to the specified stroke index. For details, see
InkTextGetStrokeCount (page 1039).

The returned InkStrokeRef is guaranteed to persist only for the life of the InkTextRef from which it was
obtained. If you want to use the InkStrokeRef after the InkTextRef has been released, you must call the
function CFRetain and pass the InkStrokeRef to it.

When any Ink object reference is obtained from a Carbon event, it is guaranteed to persist only for the life
of the event handler. If you want to use the object at some later time, you must call the function CFRetain
and pass the object to it.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.4 and later.

Declared In
Ink.h

InkTextGetStrokeCount
Returns the number of strokes in the specified InkTextRef.

CFIndex InkTextGetStrokeCount (
 InkTextRef iTextRef
);

Parameters
iTextRef

The InkTextRef to get the stroke count from.

Return Value
The number of stokes in the specified InkTextRef.

Discussion
Given an InkTextRef, this function returns the number of strokes the InkTextRef contains.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.4 and later.

Functions 1039
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

Declared In
Ink.h

InkTextGetTypeID
Returns the CFTypeID of an InkTextRef object.

CFTypeID InkTextGetTypeID (
 void
);

Return Value
The CFTypeID of an InkStrokeRef object.

Discussion
Given an InkTextRef, this function returns its CFTypeID.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.4 and later.

Declared In
Ink.h

InkTextInsertAlternatesInMenu
Inserts a list of alternate text interpretations into a menu.

ItemCount InkTextInsertAlternatesInMenu (
 InkTextRef iTextRef,
 MenuRef iMenuRef,
 MenuItemIndex iAfterItem
);

Parameters
iTextRef

On input, a reference to an Ink text object that specifies the Ink word for which you want to provide
a list of alternate text interpretations. You must obtain an Ink text object reference (InkTextRef)
through your application’s Ink event handler. Your handler must take care of the Carbon event class
kEventClassInk and the event kind kEventInkText. The event parameter
kEventParamInkTextRef that you obtain from this event kind is a reference to an Ink text object.

iMenuRef
A reference to the menu into which you want to insert the list of alternate text interpretations. Ink
Services attaches menu event handlers to this menu, so you should use this MenuRef directly, rather
than copy items from the menu reference to another menu.

iAfterItem
A value that specifies the menu item after which you want to insert the list of alternate text
interpretations. If the specified menu item is 0, the text alternates are inserted at the head of the
menu. If the specified menu item is greater than or equal to the existing number of menu items, the
text alternates are appended to the end of the menu. Remember that the first item in a menu item
array is numbered 1, not 0.

1040 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

Return Value
Returns the number of menu items added to the menu. Returns 0 if the operation is not successful.

Discussion
The function InkTextInsertAlternatesInMenu allows your application to insert a list of text interpretations
for a given Ink text phrase into an existing contextual menu. You should handle a list of alternate text
interpretations as a standard contextual menu using the Menu Manager function ContextualMenuSelect.

When a user selects an item from the list of alternates, the list of alternates maintained by Ink Services are
reordered automatically. This means that if you call the function InkTextCreateCFStringwith the parameter
iIndex set to 0, you obtain the newly selected item.

Thus the user’s choice persists in internal system data structures without requiring your application to call
additional functions. However your application must update its own internal data structures appropriately.

You must rebuild the menu to reflect the user’s choice. After the user makes a choice and then reopens the
menu, you must make sure the newly-selected item shows up as the first item in the menu. The items in the
menu should mirror the list of alternates maintained by Ink Services.

Upon return from the function ContextualMenuSelect, your application can determine if the user has
made a selection by checking the value of the parameter outUserSelectionType. The value indicates the
item that the user selected from the contextual menu. If there is a selection, your application can examine
the outMenuID and outMenuItem parameters of the function ContextualMenuSelect, and use these
values to obtain the alternate text interpretation by calling the Menu Manager function
CopyMenuItemTextAsCFString.

Menu items for a set of alternates whose first letter is an alphabetical character always include an alternate
whose first letter is the opposite lettercase. Menu items for a set of alternates whose first letter is a
non-alphabetical character do not include a lettercase alternate.

When the menu items are reordered automatically, the text that was first in the list moves to the second or
the third position, depending upon whether the first letter is alphabetical or non-alphabetical. For example,
the following list of menu items:

crash, Crash, crush, crust, wrash

If the user chooses crush, the menu items are reordered as follows:

crush, Crush, crash, crust, wrash

Notice that the list of alternates is kept to a length of five. A lettercase alternate for crush is added to the
menu while the uppercase alternate Crash is dropped.

For a non-alphabetic first character, however, such as a number, the original moves to the second position.
So for the following menu:

1239, 1234, 1289, 1284

If the user chooses 1234, the menu becomes:

1234, 1239, 1289, 1284

If it is important for your application to maintain the original order of alternates, then it must use its own
internal data structures to keep track of the original list.

Functions 1041
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

See Using Ink Services in Your Application for details on writing code that uses the function
InkTextInsertAlternatesInMenu to implement a correction model.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
Ink.h

InkTextKeyModifiers
Returns a value that specifies the key modifiers applied to an Ink phrase.

UInt32 InkTextKeyModifiers (
 InkTextRef iTextRef
);

Parameters
iTextRef

On input, a reference to the Ink text object whose key modifiers you want to obtain. You must obtain
an Ink text object reference (InkTextRef) through your application’s Ink event handler. Your handler
must take care of the Carbon event class kEventClassInk and the event kind kEventInkText. The
event parameter kEventParameterInkTextRef that you obtain from this event kind is a reference
to an Ink text object.

Return Value
Returns a value that indicates which modifier keys were down during input of the Ink phrase. This value is
in the same form as that used by the Carbon Event Manager for the event parameter
kEventParamKeyModifiers.

Discussion
Ink Services assigns keyboard modifier keys to a stroke if those keys are held down for more than 50% of the
stroke’s points. Ink Services assigns the modifier keys associated with a phrase’s first stroke to the entire
phrase. Ink Services assigns the modifier keys associated with a phrase to all of the text interpretations that
are derived from an Ink phrase.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkUserWritingMode
Returns the Ink writing mode set by the user in the Ink preferences pane.

1042 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

InkUserWritingModeType InkUserWritingMode (
 void
);

Return Value
A value that specifies the current user preferences settings for Ink: kInkWriteInInkAwareAppsOnly,
kInkWriteAnywhere, or kInkWriteNowhere. In general, Ink services are not available if kInkWriteNowhere
is returned (indicating the user has turned Ink off entirely). See “User Writing Modes” (page 1045) for more
information on each of these constants.

Discussion
User preferences for Ink are set by the user in the Ink pane of System Preferences. Your application can only
read these values, not set them.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

Data Types

InkTextRef
Defines a data type for a reference to an opaque Ink text object.

typedef struct OpaqueInkTextRef * InkTextRef;

Discussion
You must use the Core Foundation functions CFRetain and CFRelease to manage the retention and release
of Ink text objects. When an Ink text reference is obtained from a Carbon event, it is guaranteed to persist
only for the life of the event handler. If your application needs to use the Ink text object at some later time,
you must call the function CFRetain, passing the object you want to retain as a parameter.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkStrokeRef
Defines a data type for a reference to an opaque Ink stroke object.

Data Types 1043
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

typedef struct OpaqueInkStrokeRef * InkStrokeRef;

Discussion
You must use the Core Foundation functions CFRetain and CFRelease to manage the retention and release
of Ink stroke objects. When an Ink stroke reference is obtained from a Carbon event, it is guaranteed to persist
only for the life of the event handler. If your application needs to use the Ink stroke object at some later time,
you must call the function CFRetain, passing the object you want to retain as a parameter.

Availability
Available in Mac OS X v10.4 and later.

Declared In
Ink.h

InkAlternateCount
Defines a data type that specifies the number of alternate text interpretations of an Ink phrase.

typedef unsigned long InkAlternateCount;

Discussion
Values of type InkAlternateCount are returned by the function InkTextAlternatesCount (page 1034)
and passed as a parameter to the function InkTextCreateCFString (page 1035).

Availability
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

InkPoint
Contains data that describes an Ink point.

struct InkPoint {
 HIPoint point;
 TabletPointRec tabletPointData;
 UInt32 keyModifiers;
};
typedef struct InkPoint InkPoint;
typedef InkPoint * InkPointPtr;

Fields
point

Defines a point in floating-point coordinates. These values are generally in global coordinates, with
full sub-pixel accuracy. This coordinate is what you obtain for a mouse event from the Carbon event
parameter kEventParamMouseLocation, which also contains a typeHIPoint value.

tabletPointData
A tablet point structure that contains pressure, tilt, rotation, and coordinate (in tablet space) data for
a pen. The pressure value is a measure of how hard the pen is being pressed, ranging from 0 to 65535.
Some tablet manufacturers allow users to adjust pen sensitivity. In these cases, the zero value always
corresponds to the threshold set by the user, and the pressure value is relative to that threshold. See
Carbon Event Manager Reference for information on the TabletPointRec data type.

1044 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

keyModifiers
A value that specifies the keyboard modifier key that is pressed when the point is sampled. This value
is in the same form as that used by the Carbon Event Manager for the event parameter
kEventParamKeyModifiers.

Discussion
An InkPoint data structure contains an essentially complete set of per-point data. Ink Services currently
only requires the point's (x,y) coordinates and pressure to perform recognition and to draw the ink, but future
recognition services may require other information from the TabletPointRec.

Availability
Available in Mac OS X v10.3 and later.

Declared In
Ink.h

Constants

User Writing Modes
Specify the Ink writing mode set by the user in the Ink pane of System Preferences.

enum {
 kInkWriteNowhere = 'nowh',
 kInkWriteAnywhere = 'anyw',
 kInkWriteInInkAwareAppsOnly = 'iapp'
};
typedef FourCharCode InkUserWritingModeType;

Constants
kInkWriteNowhere

Specifies the user has disabled Ink or that Ink Services are not available (for example, a tablet is not
attached).

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkWriteAnywhere
Specifies the user has enabled Ink to allow writing anywhere on the screen. Ink Services flows ink
points and recognition results to the frontmost application. This is the default situation when the user
enables Ink.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkWriteInInkAwareAppsOnly
Specifies the user has enabled Ink only to allow writing in an application that has enabled Ink Services
by calling the function InkSetApplicationWritingMode with the kInkWriteAnywhereInApp
parameter.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

Discussion
These constants are returned by the function InkUserWritingMode (page 1042).

Constants 1045
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

Application Modes
Specify an Ink input mode to use for an application.

enum {
 kInkWriteNowhereInApp = 'nowa',
 kInkWriteAnywhereInApp = 'anya'
};
typedef FourCharCode InkApplicationModeType;

Constants
kInkWriteNowhereInApp

Specifies not to allow Ink input in your application.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkWriteAnywhereInApp
Specifies to allow Ink input anywhere onscreen for your application.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

Discussion
You can supply these constants as parameters to the function InkSetApplicationWritingMode (page
1029). If the user has not enabled Ink or if there is not an Ink input device available, then calling
InkSetApplicationWritingMode (page 1029) with the parameter kInkWriteAnywhereInApp has no
effect.

Drawing Modes
Specify what Ink Services should draw.

enum {
 kInkDrawNothing = 0,
 kInkDrawInkOnly = 1,
 kInkDrawInkAndWritingGuides= 2
};
typedef unsigned long InkDrawingModeType;

Constants
kInkDrawNothing

Specifies not to draw Ink or the writing guides.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkDrawInkOnly
Specifies to draw Ink but not the writing guides.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkDrawInkAndWritingGuides
Specifies to draw both the Ink and the writing guides. This is the default.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

1046 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

Discussion
You can pass these constants as parameters to the function InkSetDrawingMode (page 1030).

Phrase Termination Modes
Defines the conditions under which an Ink phrase should be terminated.

enum InkTerminationType{
 kInkTerminationNone = 0,
 kInkTerminationTimeOut = 1,
 kInkTerminationOutOfProximity = 1 << 1,
 kInkTerminationRecognizerHorizontalBreak = 1 << 2,
 kInkTerminationRecognizerVerticalBreak = 1 << 3,
 kInkTerminationStroke = 1 << 4,
 kInkTerminationAll = (unsigned long) 0xFFFFFFFF,
 kInkTerminationDefault = 0x0F
};
typedef unsigned long InkTerminationType;

Constants
kInkTerminationNone

Specifies to inhibit automatic phrase termination by Ink Services.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkTerminationTimeOut
Specifies to terminate a phrase when all of the following are true:

 ■ The user stops writing and lifts the stylus

 ■ The user keeps the stylus within the proximity range of the tablet

 ■ The user does not resume writing within the period of time defined by the user in the Ink pane
of System Preferences

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkTerminationOutOfProximity
Specifies to terminate a phrase when the user stops writing and lifts the stylus entirely out of the
proximity range of the tablet. This is on by default. However, users can turn off proximity termination
in the Ink pane of System Preferences if they find it interferes with their writing style.

If the user turns off proximity termination, your application can’t turn it on even if you call the function
InkSetPhraseTerminationMode (page 1030) with the parameter
kInkTerminationOutOfProximity.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkTerminationRecognizerHorizontalBreak
Specifies to terminate a phrase when the user leaves a large horizontal space between words
(approximately two character widths or more).

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

Constants 1047
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

kInkTerminationRecognizerVerticalBreak
Specifies to terminate a phrase when the user finishes one line and begins writing on the next.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkTerminationStroke
Causes phrases to be terminated at the end of every stroke (whenever the pen is lifted from the tablet
while writing). Only useful for single-stroke gesture input, not for text.

Available in Mac OS X v10.4 and later.

Declared in Ink.h.

kInkTerminationAll
Specifies to restore automatic phrase termination by Ink Services. In this case, Ink Services uses all of
the termination modes (except kInkTerminationNone) described previously. Deprecated in Mac
OS X v10.4. As of Mac OS X v10.4, this value is overridden to behave like kInkTerminationDefault.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkTerminationDefault
Restores default phrase termination matching the current user settings (kInkTerminationTimeOut
| kInkTerminationOutOfProximity | kInkTerminationRecognizerHorizontalBreak |
kInkTerminationRecognizerVerticalBreak). See also kInkTerminationOutOfProximity.

Declared in Ink.h.

Available in Mac OS X v10.4 and later.

Discussion
An Ink phrase (represented as an InkTextRef in your application) is typically a word in a Roman language.
Ink Services uses phrases to determine when to erase onscreen Ink and initiate recognition. You can pass Ink
phrase termination constants as arguments to the function InkSetPhraseTerminationMode (page 1030).
You can combine two or more constants to obtain precise control over phrase termination.

Recognition Modes
Specify how to interpret Ink input for an application.

enum InkRecognitionType{
 kInkRecognitionNone = 0,
 kInkRecognitionText = 1,
 kInkRecognitionGesture = 1 << 1,
 kInkRecognitionDefault = 3
};
typedef unsigned long InkRecognitionType;

Constants
kInkRecognitionNone

Specifies to turn off Ink recognition.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

1048 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

kInkRecognitionText
Specifies to allow interpretation of Ink input as text.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkRecognitionGesture
Specifies to allow interpretation of Ink input as gestures.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkRecognitionDefault
Specifies the default setting, which is to interpret Ink input as text or gestures.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

Discussion
The recognition type constants are used as arguments for the function
InkSetApplicationRecognitionMode (page 1028). You can use these constants to specify that Ink Services
interprets input as both text and gestures or as either type individually.

Editing Gestures
Define editing actions.

enum InkGestureKind {
 kInkGestureUndo = 'undo',
 kInkGestureCut = 'cut ',
 kInkGestureCopy = 'copy',
 kInkGesturePaste = 'past',
 kInkGestureClear = 'cler',
 kInkGestureSelectAll = 'sall',
 kInkGestureLeftSpace = 'lspc',
 kInkGestureRightSpace = 'rspc',
 kInkGestureTab = 'tab ',
 kInkGestureLeftReturn = 'lrtn',
 kInkGestureRightReturn = 'rrtn',
 kInkGestureDelete = 'del ',
 kInkGestureEscape = 'esc ',
 kInkGestureJoin = 'join'
 };
typedef FourCharCode InkGestureKind;

Constants
kInkGestureUndo

Specifies to undo the last action.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGestureCut
Specifies to cut.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

Constants 1049
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

kInkGestureCopy
Specifies to copy.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGesturePaste
Specifies to paste.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGestureClear
Specifies to clear.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGestureSelectAll
Specifies to select all items in the area that has user focus.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGestureLeftSpace
Specifies to insert a single space character. The “left” distinction indicates that the gesture is drawn
with the long, horizontal tail is on the left side.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGestureRightSpace
Specifies to insert a single space character. The “right” distinction indicates that the gesture is drawn
with the long, horizontal tail is on the right side.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGestureTab
Specifies to insert a tab character.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGestureLeftReturn
Specifies to insert a return (new line) character. The “left” distinction indicates that the gesture is
drawn with the small angle-bracket pointing to the left side.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGestureRightReturn
Specifies to insert a return (new line) character. The “right” distinction indicates that the gesture is
drawn with the small angle-bracket pointing to the right side.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

1050 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

kInkGestureDelete
Specifies to delete. This corresponds to pressing the Delete key.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGestureEscape
This corresponds to pressing the Escape key.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkGestureJoin
Specifies to join two words into a single word, eliding the space between them, and may be applied
to editable objects other than text. The gesture is similar in shape to the letter “v”. The joined words
are the ones closest to the top-most points of the gesture. This is a tentative, always targeted, gesture,
meaning that the system treats the associated Ink tentatively as a gesture until your application either
confirms the Ink is indeed a gesture or returns eventNotHandledErr, informing the system the Ink
is not a gesture.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

Discussion
These constants are returned in the Carbon event parameter kEventParamInkGestureKind. The Carbon
event class for this parameter is kEventClassInk and the event kind is kEventInkGesture. The constants
define the complete set of gestures recognized by Ink Services. When a gesture event is received by your
application, your application should determine the gesture kind and then take appropriate action. For more
details, see Using Ink Services in Your Application.

Alternates Menu Command IDs
Specify the menu command IDs assigned to items inserted in the alternates menu.

enum {
 kInkAlternateCommand = 'inka',
 kInkSeparatorCommand = 'inks',
 kInkDrawingCommand = 'inkd'
};

Constants
kInkAlternateCommand

Specifies the menu command ID assigned to menu items inserted by the function
InkTextInsertAlternatesInMenu (page 1040). You can use this constant to determine which menu
items in a menu are supplied by Ink Services.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkSeparatorCommand
Specifies the menu command ID assigned to the separator item between the alternates and the Ink
drawing.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

Constants 1051
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

kInkDrawingCommand
Specifies the menu command ID assigned to the menu item containing the ink drawing.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

Text Drawing Flags
Specify settings to use when drawing Ink text.

enum unsigned long InkTextDrawFlagsType{
kInkTextDrawDefault = 0,
kInkTextDrawIgnorePressure = 1,
kInkTextDrawHonorContext = 1 << 1
};

Constants
kInkTextDrawDefault

Specifies to use the default system settings when drawing. By default, Ink is drawn with pressure
sensitive gradients, and the Quartz context settings are overridden for line color and width.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkTextDrawIgnorePressure
Specifies not to use pressure sensitive gradients when drawing.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

kInkTextDrawHonorContext
Specifies to use the current Quartz context settings for line color and width.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

Ink Source Types
Specify sources for an Ink data stream.

enum unsigned long InkSourceType{
 kInkSourceUser = 1,
 kInkSourceApplication = 2
};

Constants
kInkSourceUser

Specifies the Ink source from direct user input.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

1052 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

kInkSourceApplication
Specifies the Ink source from the application.

Available in Mac OS X v10.3 and later.

Declared in Ink.h.

Discussion
You can use these constants to specify which data stream is currently being controlled by calls to the functions
InkTerminateCurrentPhrase and InkSetPhraseTerminationMode. You can control phrase termination
for both the user-input data stream (kInkSourceUser) and an application-input data stream
(kInkSourceApplication) independently.

Ink Pen Constants
Specify ink pen constants.

enum {
 kInkPenTipButtonMask = NX_TABLET_BUTTON_PENTIPMASK + 0,
 kInkPenLowerSideButtonMask = NX_TABLET_BUTTON_PENLOWERSIDEMASK
+ 0,
 kInkPenUpperSideButtonMask = NX_TABLET_BUTTON_PENUPPERSIDEMASK
+ 0
};

Constants
kInkPenTipButtonMask

The writing or eraser tip.

Available in Mac OS X v10.4 and later.

Declared in Ink.h.

kInkPenLowerSideButtonMask
The lower pen barrel button.

Available in Mac OS X v10.4 and later.

Declared in Ink.h.

kInkPenUpperSideButtonMask
The upper pen barrel button.

Available in Mac OS X v10.4 and later.

Declared in Ink.h.

Discussion
Pens used with modern graphics tablets often have multiple barrel buttons that can be assigned special
meaning by the tablet driver or by an application. In addition, the writing or eraser tip may be engaged at
any given moment. By performing an AND operation of these contsants with that of a buttons member of
a TabletPointRec in Carbon or the value returned by the buttonMask message sent to tablet events (or
mouse events containing tablet data) in Cocoa, you can determine which (if any) pen tip or barrel buttons
are currently being held down. These buttons and buttonMask data are only available for tablet-point events
(not tablet-proximity events).

To ensure consistency between the values used by driver writers and the values used by applications, these
constants are defined in terms of NX_ constants from IOKit/hidsystem/IOLLEvent.h.

Availability
Available in Mac OS X v10.4 and later.

Constants 1053
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

Ink Tablet Constants
Specify ink tablet constants.

enum {
 kInkTabletPointerUnknown = NX_TABLET_POINTER_UNKNOWN + 0,
 kInkTabletPointerPen = NX_TABLET_POINTER_PEN + 0,
 kInkTabletPointerCursor = NX_TABLET_POINTER_CURSOR + 0,
 kInkTabletPointerEraser = NX_TABLET_POINTER_ERASER + 0
};

Constants
kInkTabletPointerUnknown

The type of tablet pointer is unknown; having an unknown type of tablet pointer should not happen.

Available in Mac OS X v10.4 and later.

Declared in Ink.h.

kInkTabletPointerPen
The writing end of a stylus-like device.

Available in Mac OS X v10.4 and later.

Declared in Ink.h.

kInkTabletPointerCursor
Any puck-like device.

Available in Mac OS X v10.4 and later.

Declared in Ink.h.

kInktabletPointerEraser
The eraser end of a stylus-like device.

Discussion
Pens used with modern graphics tablets often have a writing tip and an eraser tip. Some tablets also support
pucks in addition to, or instead of, stylus-like devices. By comparing these constants to the contents of the
pointerType element of a TabletProximityRec in Carbon or to the value returned by the pointerType
message to tablet events (or mouse events with tablet data in them) in Cocoa, you can determine what kind
of pointer device and which tip of a stylus-like device is being used with a graphics tablet. These pointerType
data are only available in tablet-proximity events (not tablet-point events).

To ensure consistency between the values used by driver writers and the values used by applications, these
constants are defined in terms of NX_ constants from IOKit/hidsystem/IOLLEvent.h.

Availability
Available in Mac OS X v10.4 and later.

Result Codes

There are no results codes specific to Ink Services. Rather than returning OSStatus values, functions return
NULL or specific, predetermined invalid responses when you pass invalid parameters to them. Designing the
API in this way allows you to chain function calls and write code that is more compact.

1054 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 10

Ink Services Reference

Framework: Carbon/Carbon.h

Declared in IBCarbonRuntime.h

Overview

This reference describes the functions you use to unarchive interface objects you create using Interface
Builder.

Carbon supports the Interface Builder APIs.

Functions by Task

Creating and Disposing of Nib References

CreateNibReference (page 1057)
Creates a reference to a nib file in the current bundle.

CreateNibReferenceWithCFBundle (page 1058)
Creates a reference to a nib file in the specified bundle.

DisposeNibReference (page 1060)
Disposes of a nib reference.

Unarchiving Menu Bars and Menus

CreateMenuBarFromNib (page 1056)
Unarchives a menu bar from a nib file.

SetMenuBarFromNib (page 1060)
Unarchives a menu bar from a nib file, then makes the menu bar available in your application.

CreateMenuFromNib (page 1056)
Unarchives a menu from a nib file.

Unarchiving Windows

CreateWindowFromNib (page 1059)
Unarchives a window from a nib file.

Overview 1055
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Interface Builder Services Reference

Functions

CreateMenuBarFromNib
Unarchives a menu bar from a nib file.

OSStatus CreateMenuBarFromNib (
 IBNibRef inNibRef,
 CFStringRef inName,
 Handle *outMenuBar
);

Parameters
inNibRef

A reference to the nib file that contains the menu bar you want to unarchive. You obtain this reference
by calling the function CreateNibReference (page 1057) or
CreateNibReferenceWithCFBundle (page 1058).

inName
A CFStringRef that denotes the menu bar you want to unarchive. This is the name you supplied to
the menu bar in the Instances pane of Interface Builder. See the Base Services documentation for a
description of the CFStringRef data type. You can use the Core Foundation function CFSTR to
convert a string to a CFString.

outMenuBar
On output, points to a handle to the menu bar.

Return Value
A result code. See Runtime Errors (page 1061).

Discussion
You need to call the Menu Manager function SetMenuBarFromNib to make the unarchived menu bar
available in your application.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
IBCarbonRuntime.h

CreateMenuFromNib
Unarchives a menu from a nib file.

1056 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Interface Builder Services Reference

OSStatus CreateMenuFromNib (
 IBNibRef inNibRef,
 CFStringRef inName,
 MenuRef *outMenuRef
);

Parameters
inNibRef

A reference to the nib file that contains the menu you want to unarchive. You obtain this reference
by calling the function CreateNibReference (page 1057) or
CreateNibReferenceWithCFBundle (page 1058).

inName
A CFStringRef that denotes the menu you want to unarchive. This is the name you supplied to the
menu in the Instance pane of Interface Builder. See the Base Services documentation for a description
of the CFStringRef data type. You can use the Core Foundation function CFSTR to convert a string
to a CFString.

outMenuRef
On output, points to a menu reference.

Return Value
A result code. See Runtime Errors (page 1061).

Discussion
After you call the function CreateMenuFromNib you need to call the Menu Manager function InsertMenu
to make the unarchived menu available in your application.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
IBCarbonRuntime.h

CreateNibReference
Creates a reference to a nib file in the current bundle.

OSStatus CreateNibReference (
 CFStringRef inNibName,
 IBNibRef *outNibRef
);

Parameters
inNibName

A CFStringRef that represents the name of a nib file you created for your application, but without
the nib extension. See the Base Services documentation for a description of the CFStringRef data
type. You can use the Core Foundation function CFSTR to convert a string to a CFString.

Functions 1057
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Interface Builder Services Reference

outNibRef
On output, points to a nib reference. You pass the nib reference to Interface Builder Services functions
that unarchive objects from a nib file.

Return Value
A result code. See Runtime Errors (page 1061).

Discussion
Use this function if the nib file is located in the current bundle. Use the function
CreateNibReferenceWithCFBundle (page 1058) if the nib file is located in a framework or other bundle
that is not the current bundle.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
HID Config Save
HID Explorer
QTCarbonShell
QTMetaData

Declared In
IBCarbonRuntime.h

CreateNibReferenceWithCFBundle
Creates a reference to a nib file in the specified bundle.

OSStatus CreateNibReferenceWithCFBundle (
 CFBundleRef inBundle,
 CFStringRef inNibName,
 IBNibRef *outNibRef
);

Parameters
inBundle

A CFBundleRef to your application’s bundle. See the Bundle Services documentation for a description
of the CFBundleRef data type. You can get this reference by calling the appropriate Core Foundation
Bundle Services functions.

inNibName
A CFStringRef that represents the name of a nib file you created for your application, but without
the nib extension. See the Base Services documentation for a description of the CFStringRef data
type. You can use the Core Foundation function CFSTR to convert a string to a CFString.

outNibRef
On output, points to a nib reference. You pass the nib reference to Interface Builder Services functions
that unarchive objects from a nib file.

Return Value
A result code. See Runtime Errors (page 1061).

1058 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Interface Builder Services Reference

Discussion
Use this function if the nib file is located in a framework or other bundle that is not the current bundle. Use
the function CreateNibReference (page 1057) if the nib file is located in the current bundle.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
IBCarbonRuntime.h

CreateWindowFromNib
Unarchives a window from a nib file.

OSStatus CreateWindowFromNib (
 IBNibRef inNibRef,
 CFStringRef inName,
 WindowRef *outWindow
);

Parameters
inNibRef

A reference to the nib file that contains the window you want to unarchive. You obtain this reference
by calling the function CreateNibReference (page 1057) or
CreateNibReferenceWithCFBundle (page 1058).

inName
A CFStringRef that denotes the window you want to unarchive. This is the name you supplied to
the window in the Instances pane of Interface Builder. See the Base Services documentation for a
description of the CFStringRef data type. You can use the Core Foundation function CFSTR to
convert a string to a CFString.

outWindow
On output, points to the window unarchived from the nib file.

Return Value
A result code. See Runtime Errors (page 1061).

Discussion
You need to call the Window Manager function ShowWindow to make the unarchived window visible.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Config Save
HID Explorer
QTCarbonShell

Functions 1059
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Interface Builder Services Reference

Declared In
IBCarbonRuntime.h

DisposeNibReference
Disposes of a nib reference.

void DisposeNibReference (
 IBNibRef inNibRef
);

Parameters
inNibRef

A nib reference you created by calling the function CreateNibReference (page 1057) or
CreateNibReferenceWithCFBundle (page 1058).

Return Value
Discussion
You should call the function DisposeNibReference immediately after you have finished unarchiving objects
(windows, menus, menu bar, and so forth) from the nib file associated with the nib reference.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Config Save
HID Explorer
QTMetaData

Declared In
IBCarbonRuntime.h

SetMenuBarFromNib
Unarchives a menu bar from a nib file, then makes the menu bar available in your application.

OSStatus SetMenuBarFromNib (
 IBNibRef inNibRef,
 CFStringRef inName
);

Parameters
inNibRef

A reference to the nib file that contains the menu bar you want to unarchive. You obtain this reference
by calling the function CreateNibReference (page 1057) or
CreateNibReferenceWithCFBundle (page 1058).

1060 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Interface Builder Services Reference

inName
A CFStringRef that denotes the menu bar you want to unarchive. This is the name you supplied to
the menu bar in the Instances pane of Interface Builder. (The default name is “MainMenu”.) See the
Base Services documentation for a description of the CFStringRef data type. You can use the Core
Foundation function CFSTR to convert a string to a CFString.

Return Value
A result code. See Runtime Errors (page 1061).

Discussion
The function SetMenuBarFromNib makes the menu bar visible and selectable by the user when your
application opens. If you don’t want the menu bar to be visible and selectable when it is unarchived, use the
function CreateMenuBarFromNib (page 1056).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor
HID Config Save
HID Explorer
QTCarbonShell
QTMetaData

Declared In
IBCarbonRuntime.h

Data Types

IBNibRef
A reference to a nib file.

typedef struct OpaqueIBNibRef * IBNibRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
IBCarbonRuntime.h

Constants

Runtime Errors
Specify a problem that occurs when Interface Builder Services tries to load nib files or objects.

Data Types 1061
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Interface Builder Services Reference

enum {
 kIBCarbonRuntimeCantFindNibFile = -10960,
 kIBCarbonRuntimeObjectNotOfRequestedType = -10961,
 kIBCarbonRuntimeCantFindObject = -10962
};

Constants
kIBCarbonRuntimeCantFindNibFile

Indicates the CFStringRef supplied for a nib file does not match the name of a nib file.

Available in Mac OS X v10.0 and later.

Declared in IBCarbonRuntime.h.

kIBCarbonRuntimeObjectNotOfRequestedType
Indicates the window, menu, or menu bar you want to unarchive isn’t what you specified.

Available in Mac OS X v10.0 and later.

Declared in IBCarbonRuntime.h.

kIBCarbonRuntimeCantFindObject
Indicates the window, menu, or menu bar wasn’t found.

Available in Mac OS X v10.0 and later.

Declared in IBCarbonRuntime.h.

1062 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 11

Interface Builder Services Reference

Framework: Carbon/Carbon.h

Declared in Keyboards.h

Overview

Keyboard Layout Services is the programming interface that lets you obtain information about available
keyboard layouts, set a keyboard layout, and access a keyboard layout property list. Keyboard Layout Services
fully supports Unicode ('uchr') as well as old style ('KCHR') keyboard layouts.

Functions by Task

Working With Keyboard Layouts

KBGetLayoutType (page 1064)
Obtains the type of keyboard attached to the computer.

KLGetCurrentKeyboardLayout (page 1064) Deprecated in Mac OS X v10.5
Obtains the keyboard layout for the layout currently selected in the Keyboards menu.

KLGetKeyboardLayoutAtIndex (page 1065) Deprecated in Mac OS X v10.5
Obtains the keyboard layout reference associated with the specified index.

KLGetKeyboardLayoutCount (page 1066) Deprecated in Mac OS X v10.5
Returns the number of keyboard layouts.

KLGetKeyboardLayoutProperty (page 1066) Deprecated in Mac OS X v10.5
Obtains the value associated with the specified property tag for a keyboard layout.

KLGetKeyboardLayoutWithIdentifier (page 1067) Deprecated in Mac OS X v10.5
Obtains the keyboard layout reference associated with the specified identifier.

KLGetKeyboardLayoutWithName (page 1068) Deprecated in Mac OS X v10.5
Obtains the keyboard layout associated with the specified name.

KLSetCurrentKeyboardLayout (page 1068) Deprecated in Mac OS X v10.5
Sets the keyboard layout.

Unsupported Functions

KLGetIndexedKeyboardLayout (page 1065)
Obtains the keyboard layout reference associated with the specified index.

Overview 1063
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

Functions

KBGetLayoutType
Obtains the type of keyboard attached to the computer.

PhysicalKeyboardLayoutType KBGetLayoutType (
 SInt16 iKeyboardType
);

Parameters
keyboardType

The keyboard type ID of the keyboard whose type you want to obtain. You can obtain the keyboard
type ID by calling the Event Manager function LMGetKbdType.

Return Value
The type of the keyboard attached to the computer. See “Physical Keyboard Layout Types” (page 1072) for the
values that can be returned.

Discussion
You can call the function KBGetLayoutType to determine whether the keyboard attached to the computer
is ANSI, ISO, or JIS. You should call this function in Mac OS 9 only if the Gestalt selector gestaltKeyboardLib
is present.

Availability
Not available in CarbonLib.
Available in Mac OS X version 10.0 and later.

Declared In
Keyboards.h

KLGetCurrentKeyboardLayout
Obtains the keyboard layout for the layout currently selected in the Keyboards menu. (Deprecated in Mac
OS X v10.5.)

OSStatus KLGetCurrentKeyboardLayout (
 KeyboardLayoutRef *oKeyboardLayout
);

Parameters
oKeyboardLayout

On output, a pointer to the keyboard layout reference for keyboard layout currently selected in the
Keyboard menu.

Return Value
A result code.

Availability
Not available in CarbonLib.
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1064 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

Declared In
Keyboards.h

KLGetIndexedKeyboardLayout
Obtains the keyboard layout reference associated with the specified index.

Not supported.

OSStatus KLGetIndexedKeyboardLayout (
 CFIndex iIndex,
 KeyboardLayoutRef * oKeyboardLayout
);

Availability
Unsupported. Not available in CarbonLib. Not available in Mac OS X version 10.2 and later.

Carbon Porting Notes

You should use the function KLGetKeyboardLayoutAtIndex (page 1065) instead.

Declared In
Keyboards.h

KLGetKeyboardLayoutAtIndex
Obtains the keyboard layout reference associated with the specified index. (Deprecated in Mac OS X v10.5.)

OSStatus KLGetKeyboardLayoutAtIndex (
 CFIndex iIndex,
 KeyboardLayoutRef *oKeyboardLayout
);

Parameters
iIndex

The index of the keyboard layout whose keyboard layout reference you want to retrieve. The index
must be a value from 0 through N-1, where N is the value returned in the oCount parameter by the
function KLGetKeyboardLayoutCount (page 1066).

oKeyboardLayout
On output, a pointer to the keyboard layout reference associated with the index specified by the
iIndex parameter.

Return Value
A result code.

Discussion
You can call this function from within an iteration to access all of the available keyboard layouts.

Availability
Not available in CarbonLib.
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 1065
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

Declared In
Keyboards.h

KLGetKeyboardLayoutCount
Returns the number of keyboard layouts. (Deprecated in Mac OS X v10.5.)

OSStatus KLGetKeyboardLayoutCount (
 CFIndex *oCount
);

Parameters
oCount

On output, a pointer to a variable that specifies the number of keyboard layouts.

Return Value
A result code.

Discussion
You can call the function KLGetKeyboardLayoutCount when you want to obtain the number of keyboard
layouts available to the user. Once you know the number of keyboard layouts, you can iterate through them
by setting up a loop and calling the function KLGetKeyboardLayoutAtIndex (page 1065).

Availability
Not available in CarbonLib.
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Keyboards.h

KLGetKeyboardLayoutProperty
Obtains the value associated with the specified property tag for a keyboard layout. (Deprecated in Mac OS
X v10.5.)

OSStatus KLGetKeyboardLayoutProperty (
 KeyboardLayoutRef iKeyboardLayout,
 KeyboardLayoutPropertyTag iPropertyTag,
 const void **oValue
);

Parameters
iKeyboardLayout

A keyboard layout reference for the keyboard layout whose property value you want to retrieve. You
must pass a valid keyboard layout reference. You can obtain a keyboard layout reference by calling
the functions KLGetKeyboardLayoutAtIndex (page 1065),
KLGetKeyboardLayoutWithIdentifier (page 1067), KLGetKeyboardLayoutWithName (page
1068),or KLGetCurrentKeyboardLayout (page 1064).

1066 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

iPropertyTag
A keyboard layout property tag that specifies the property whose value you want to retrieve. See
“Keyboard Layout Property Tag” (page 1070) for a list of the property tag constants you can supply.

oValue
On output, a pointer to the variable associated with the tag specified by the iPropertyTag parameter.

Return Value
A result code.

Discussion
You can use this function to obtain keyboard layout data, the keyboard identifier, the icon used for the
keyboard menu, the keyboard layout name (including its localized name), the group identifier, and the
keyboard layout kind. See “Keyboard Layout Property Tag” (page 1070) for a complete list of the available
property tags.

Availability
Not available in CarbonLib.
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Keyboards.h

KLGetKeyboardLayoutWithIdentifier
Obtains the keyboard layout reference associated with the specified identifier. (Deprecated in Mac OS X
v10.5.)

OSStatus KLGetKeyboardLayoutWithIdentifier (
 KeyboardLayoutIdentifier iIdentifier,
 KeyboardLayoutRef *oKeyboardLayout
);

Parameters
iIdentifier

The keyboard layout identifier for which you want to obtain a keyboard layout reference. See “Keyboard
Layout Identifier” (page 1069) for a list of the constants you can supply.

oKeyboardLayout
On output, a pointer to the keyboard layout reference associated with the identifier specified by the
iIdentifer parameter.

Return Value
A result code.

Availability
Not available in CarbonLib.
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Keyboards.h

Functions 1067
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

KLGetKeyboardLayoutWithName
Obtains the keyboard layout associated with the specified name. (Deprecated in Mac OS X v10.5.)

OSStatus KLGetKeyboardLayoutWithName (
 CFStringRef iName,
 KeyboardLayoutRef *oKeyboardLayout
);

Parameters
iName

A CFStringRef that specifies the name of the keyboard layout whose keyboard layout reference
you want to obtain. This name is the nonlocalized keyboard layout name.

oKeyboardLayout
On output, a pointer to the keyboard layout reference associated with the name specified by the
iName parameter.

Return Value
A result code.

Discussion
You can call this function when you want to obtain the keyboard layout reference for a keyboard layout other
than the active keyboard layout. If you want to obtain the keyboard layout reference for the active keyboard
layout, call the function KLGetCurrentKeyboardLayout (page 1064).

Availability
Not available in CarbonLib.
Available in Mac OS X version 10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Keyboards.h

KLSetCurrentKeyboardLayout
Sets the keyboard layout. (Deprecated in Mac OS X v10.5.)

OSStatus KLSetCurrentKeyboardLayout (
 KeyboardLayoutRef iKeyboardLayout
);

Parameters
iKeyboardLayout

A keyboard layout reference for the keyboard layout you want to set. You must pass a valid keyboard
layout reference. You can obtain a keyboard layout reference by calling the functions
KLGetKeyboardLayoutAtIndex (page 1065),KLGetKeyboardLayoutWithIdentifier (page 1067),
KLGetKeyboardLayoutWithName (page 1068),or KLGetCurrentKeyboardLayout (page 1064).

Return Value
A result code.

Availability
Not available in CarbonLib.
Available in Mac OS X version 10.2 and later.

1068 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Keyboards.h

Data Types

KeyboardLayoutRef
Specifies a reference to an opaque keyboard layout data structure.

typedef struct OpaqueKeyboardLayoutRef * KeyboardLayoutRef;

Discussion
You can use the Keyboard Layout Services functions KLGetKeyboardLayoutAtIndex (page 1065),
KLGetKeyboardLayoutWithIdentifier (page 1067), KLGetKeyboardLayoutWithName (page 1068),or
KLGetCurrentKeyboardLayout (page 1064) to obtain a keyboard layout reference. If you want to obtain
keyboard layout data, use the function KLGetKeyboardLayoutProperty (page 1066).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Keyboards.h

Constants

Keyboard Layout Constants

Keyboard Layout Identifier
Specifies a layout identifier for a keyboard.

typedef SInt32 KeyboardLayoutIdentifier;
enum {
 kKLUSKeyboard = 0
};

Constants
kKLUSKeyboard

Specifies a US keyboard layout. All systems support this keyboard layout.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

Data Types 1069
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

Discussion
You can supply this constant as the iIdentifier parameter to the function
KLGetKeyboardLayoutWithIdentifier (page 1067). This constant is the property value associated with
the keyboard layout property tag kKLIdentifier.

Keyboard Layout Formats
Specify the layout format used for a keyboard.

typedef SInt32 KeyboardLayoutKind;
enum {
 kKLKCHRuchrKind = 0,
 kKLKCHRKind = 1,
 kKLuchrKind = 2
};

Constants
kKLKCHRuchrKind

Specifies that both 'KCHR' and 'uchr' formats are available.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

kKLKCHRKind
Specifies that only the 'KCHR' format is available.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

kKLuchrKind
Specifies that only the 'uchr' format is available.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

Discussion
These values are associated with the keyboard layout property tag kKLKind.

Keyboard Layout Property Tag
Specify the property tag for a keyboard layout.

1070 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

typedef UInt32 KeyboardLayoutPropertyTag;
enum {
 kKLKCHRData = 0,
 kKLuchrData = 1,
 kKLIdentifier = 2,
 kKLIcon = 3,
 kKLLocalizedName = 4,
 kKLName = 5,
 kKLGroupIdentifier = 6,
 kKLKind = 7
};

Constants
kKLKCHRData

Specifies 'KCHR' layout format. The data associated with this tag is a pointer (const void *) to
keyboard layout data formatted as 'KCHR' data. You can use 'KCHR' data with the Event Manager
function KeyTranslate.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

kKLuchrData
Specifies 'uchr' layout format. The data associated with this tag is a pointer (const void *) to
keyboard layout data formatted as 'uchr' data. You can use 'uchr' data with the Unicode Utilities
function UCKeyTranslate.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

kKLIdentifier
Specifies a keyboard layout identifier. The data associated with this tag a “Keyboard Layout
Identifier” (page 1069) constant.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

kKLIcon
Specifies a keyboard layout icon. The data associated with this tag is an icon reference (IconRef)
that specifies the icon that appears in the Keyboard menu.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

kKLLocalizedName
Specifies the localized keyboard layout name. The data associated with this tag is a CFStringRef
that specifies the localized name for the keyboard layout.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

kKLName
Specifies the keyboard layout name. The data associated with this tag is a CFStringRef that specifies
the name for the keyboard layout.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

Constants 1071
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

kKLGroupIdentifier
Specifies the keyboard layout group identifier. The data associated with this tag is an SInt32 value
that specifies the grouping of a keyboard layout in the Keyboard menu.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

kKLKind
Specifies the keyboard layout format. The data associated with this tag is a “Keyboard Layout
Formats” (page 1070) constant.

Available in Mac OS X v10.2 and later.

Declared in Keyboards.h.

Discussion
You can supply any of these constants as the iPropertyTag parameter to the function
KLGetKeyboardLayoutProperty (page 1066) to retrieve the data associated with the property tag.

Physical Keyboard Layout Types
Specify the layout type associated with a physical keyboard.

typedef UInt32 PhysicalKeyboardLayoutType;
enum {
 kKeyboardJIS = 'JIS ',
 kKeyboardANSI = 'ANSI',
 kKeyboardISO = 'ISO ',
 kKeyboardUnknown = kUnknownType
};

Constants
kKeyboardJIS

Specifies a JIS keyboard.

Available in Mac OS X v10.0 and later.

Declared in Keyboards.h.

kKeyboardANSI
Specifies an ANSI keyboard layout.

Available in Mac OS X v10.0 and later.

Declared in Keyboards.h.

kKeyboardISO
Specifies an ISO keyboard layout.

Available in Mac OS X v10.0 and later.

Declared in Keyboards.h.

kKeyboardUnknown
Specifies the keyboard layout type is unknown.

Available in Mac OS X v10.0 and later.

Declared in Keyboards.h.

Discussion
These constants are returned by the function KBGetLayoutType (page 1064).

1072 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

Unsupported Constants

Trap Value
Specifies a trap value for Keyboard Layout Services.

enum {
 _KeyboardDispatch = 0xAA7A
};

Discussion
This constant is not needed in Mac OS X.

PS2 Error Codes
Specify an error returned by unsupported PS2 keyboard functions.

enum {
 errKBPS2KeyboardNotAvailable = -30850,
 errKBIlligalParameters = -30851,
 errKBFailSettingID = -30852,
 errKBFailTranslationTable = -30853
 errKBFailWritePreference = -30854
};

Discussion
These constants are returned as error codes by the unsupported PS2 keyboard functions. They are not relevant
to the functions whose prefix is ‘KL’.

Constants 1073
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

1074 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 12

Keyboard Layout Services Reference

Framework: CoreServices/CoreServices.h, Carbon/Carbon.h

Declared in KeychainCore.h
KeychainHI.h

Overview

The Keychain Manager is an API that provides a uniform way for your application to handle passwords for
multiple users, multiple databases, or any situation in which a user must enter single or multiple passwords.
You can use the Keychain Manager to provide secure storage for a user's passwords, cryptographic keys, and
digital certificates.

This document, which describes KeychainLib 2.0, is relevant to you if your application needs to create and
manage passwords and other secure data.

Important: Keychain Manager is being phased out and replaced by Keychain Services. Any new development
should use Keychain Services. See Keychain Services Reference.

Carbon fully supports the Keychain Manager.

Functions by Task

Getting Information About the Keychain Manager

KCGetKeychainManagerVersion (page 1114)
Determines the version of the Keychain Manager installed on the user’s system.

Creating and Disposing of Keychain References

KCMakeKCRefFromAlias (page 1119)
Creates a keychain reference from a keychain alias.

KCMakeAliasFromKCRef (page 1118)
Creates an alias to a keychain reference.

KCReleaseKeychain (page 1122)
Disposes of the memory associated with a keychain reference.

Overview 1075
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCMakeKCRefFromFSSpec (page 1119) Deprecated in Mac OS X v10.5
Creates a keychain reference from a file specification record.

Managing Keychains

KCCreateKeychain (page 1094)
Creates an empty keychain.

kccreatekeychain (page 1095)

KCSetDefaultKeychain (page 1126)
Sets the default keychain.

KCGetDefaultKeychain (page 1112)
Obtains the default keychain.

KCGetStatus (page 1116)
Determines the permissions that are set in a keychain.

KCGetKeychainName (page 1115)
Determines the name of a keychain.

kcgetkeychainname (page 1115)

KCCountKeychains (page 1093)
Determines the number of available keychains.

KCGetIndKeychain (page 1112)
Obtains the reference to an indexed keychain.

Storing and Retrieving Passwords

KCAddAppleSharePassword (page 1080)
Adds a new AppleShare server password to the default keychain.

kcaddapplesharepassword (page 1082)

KCFindAppleSharePassword (page 1096)
Finds the first AppleShare password in the default keychain that matches the specified parameters.

kcfindapplesharepassword (page 1098)

KCAddInternetPassword (page 1086)
Adds a new Internet server password to the default keychain.

kcaddinternetpassword (page 1087)

KCAddInternetPasswordWithPath (page 1088)
Adds a new Internet server password with a specified path to the default keychain.

kcaddinternetpasswordwithpath (page 1089)

1076 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCFindInternetPassword (page 1102)
Finds the first Internet password in the default keychain that matches the specified parameters.

kcfindinternetpassword (page 1104)

KCFindInternetPasswordWithPath (page 1105)
Finds the first Internet password in the default keychain that matches the specified parameters,
including path information.

kcfindinternetpasswordwithpath (page 1107)

KCAddGenericPassword (page 1084)
Adds a new generic password to the default keychain.

kcaddgenericpassword (page 1085)

KCFindGenericPassword (page 1100)
Finds the first generic password in the default keychain matching the specified parameters.

kcfindgenericpassword (page 1102)

Creating and Disposing of Keychain Item References

KCNewItem (page 1120)
Creates a reference to a keychain item.

KCReleaseItem (page 1121)
Disposes of the memory occupied by a keychain item reference.

Manipulating Keychain Items

KCAddItem (page 1090)
Adds a password or other keychain item to the default keychain.

KCDeleteItem (page 1096)
Deletes a password or other keychain item from the default keychain.

KCUpdateItem (page 1129)
Updates a password or other keychain item.

KCCopyItem (page 1092)
Copies a password or other keychain item from one keychain to another.

KCGetKeychain (page 1113)
Determines the location of a password or other keychain item.

Setting and Obtaining Keychain Item Data

KCSetAttribute (page 1124)
Sets or edits keychain item data using a keychain item attribute structure.

Functions by Task 1077
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCGetAttribute (page 1109)
Determines keychain item data using a keychain item attribute structure.

KCSetData (page 1125)
Sets or edits keychain item data.

KCGetData (page 1111)
Determines keychain item data.

Searching for Keychain Items

KCFindFirstItem (page 1099)
Finds the first keychain item in a specified keychain that matches specified attributes.

KCFindNextItem (page 1108)
Finds the next keychain item matching the previously specified search criteria.

KCReleaseSearch (page 1122)
Disposes of the memory occupied by a search criteria reference.

Managing User Interaction

KCLock (page 1117)
Locks a keychain.

KCUnlock (page 1127)
Displays a dialog box that prompts the user for a password before unlocking a keychain.

kcunlock (page 1129)

KCChangeSettings (page 1091)
Displays a dialog box enabling the user to change the name, password, or settings of a keychain.

KCSetInteractionAllowed (page 1127)
Enables or disables Keychain Manager functions that display a user interface.

KCIsInteractionAllowed (page 1117)
Indicates whether Keychain Manager functions that display a user interaction will do so.

Registering Your Keychain Event Callback Function

KCAddCallback (page 1083)
Registers your keychain event callback function.

KCRemoveCallback (page 1123)
Unregisters your keychain event callback function.

Working With Your Keychain Manager Callback Function

NewKCCallbackUPP (page 1130)
Creates a UPP to your keychain event callback.

1078 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

InvokeKCCallbackUPP (page 1079)
Invokes your keychain event callback.

DisposeKCCallbackUPP (page 1079)
Disposes of a UPP to your keychain event callback.

Unsupported Functions

KCChooseCertificate (page 1092)
Displays a list of certificates that the user can choose from.

KCFindX509Certificates (page 1109)
Finds the certificates in a keychain that match specified search criteria.

Functions

DisposeKCCallbackUPP
Disposes of a UPP to your keychain event callback.

Not recommended

void DisposeKCCallbackUPP (
 KCCallbackUPP userUPP
);

Parameters
userUPP

A Universal Procedure Pointer (UPP) to your keychain event callback function.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154).

Discussion
When you are finished with a UPP to your keychain event callback function, you should dispose of it by calling
the DisposeKCCallbackUPP function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

There is no replacement function available.

Declared In
KeychainCore.h

InvokeKCCallbackUPP
Invokes your keychain event callback.

Functions 1079
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Not recommended

OSStatus InvokeKCCallbackUPP (
 KCEvent keychainEvent,
 KCCallbackInfo *info,
 void *userContext,
 KCCallbackUPP userUPP
);

Parameters
keychainEvent

The keychain events you want your application to receive. See “Keychain Events Constants” (page
1140) for a description of possible values. The Keychain Manager tests the bitmask you pass in the
eventMaskparameter of the function KCAddCallback (page 1083) to determine which events to pass
to your callback function. See “Keychain Events Mask” (page 1142) for a description of this bitmask.

info
A pointer to a structure of type KCCallbackInfo (page 1133) that provides information about the
keychain event to your callback function. The Keychain Manager passes a pointer to this structure in
the info parameter of your callback function.

userContext
A pointer to application-defined storage. The Keychain Manager passes this value in the userContext
parameter of your callback function. Your application can use this to associate any particular call of
the InvokeKCCallbackUPP function with any particular call of the keychain event callback function.

userUPP
A Universal Procedure Pointer to your keychain event callback function. For information on how to
create a keychain event callback function, see KCCallbackProcPtr (page 1131).

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154).

Discussion
You should not need to use the function InvokeKCCallbackUPP, as the system calls your
KCAddCallback (page 1083) callback function for you.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

There is no replacement function available.

Declared In
KeychainCore.h

KCAddAppleSharePassword
Adds a new AppleShare server password to the default keychain.

Not recommended

1080 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus KCAddAppleSharePassword (
 AFPServerSignature *serverSignature,
 StringPtr serverAddress,
 StringPtr serverName,
 StringPtr volumeName,
 StringPtr accountName,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Parameters
serverSignature

A pointer to a 16-byte Apple File Protocol server signature block. Pass a value of type
AFPServerSignature (page 1132). Pass NULL to match any server signature. The Keychain Manager
identifies the location for the password by the information passed in the serverAddress and
serverSignature parameters. You must pass a valid value in at least one of these parameters.

serverAddress
A pointer to a Pascal string containing the server address, which may be specified as an AppleTalk
zone name, a DNS domain name (in the format "xxx.yyy.zzz"), or an IP address (in the format
"111.222.333.444"). The Keychain Manager identifies the location for the password by the information
passed in the serverAddress and serverSignature parameters. You must pass a valid value in
at least one of these parameters.

serverName
A pointer to a Pascal string containing the server name.

volumeName
A pointer to a Pascal string containing the volume name.

accountName
A pointer to a Pascal string containing the account name.

passwordLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer which will hold the returned password data. Before calling
KCAddAppleSharePassword, allocate enough memory for the buffer to hold the data you want to
store.

item
On return, a pointer to a reference to the added item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCDuplicateItem indicates that
you tried to add a password that already exists in the keychain. The result code errKCDataTooLarge indicates
that you tried to add more data than is allowed for a record of this type.

Discussion
The KCAddAppleSharePassword function adds a new AppleShare server password to the default keychain
that is uniquely identified by the serverName, volumeName, and accountName parameters, and a location
specified either by the serverAddress or serverSignatureparameters. The KCAddAppleSharePassword
function optionally returns a reference to the newly added item.

Functions 1081
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Most applications do not need to store AppleShare password data, as this is handled transparently by the
AppleShare client software. To be compatible with the AppleShare client, you should store a fully-specified
File Manager structure AFPXVolMountInfo as the password data.

The KCAddAppleSharePassword function automatically calls the function KCUnlock (page 1127) to display
the Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcaddapplesharepassword to add an AppleShare server password to the
default keychain. kcaddapplesharepassword requires that you pass a pointer to a C string instead of a
pointer to a Pascal string for the serverAddress, serverName, volumeName, accountName, and
passwordData parameters.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcaddapplesharepassword function
provides the same functionality as KCAddAppleSharePassword, except that it accepts C strings rather than
Pascal strings as arguments. In KeychainLib 2.0, you should use KCAddAppleSharePassword, since
kcaddapplesharepassword is provided for convenience only and may be removed from the header file
at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

It is recommended that you use internet passwords instead of AppleShare passwords. Use the
SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

kcaddapplesharepassword
Not recommended

OSStatus kcaddapplesharepassword (
 AFPServerSignature *serverSignature,
 const char *serverAddress,
 const char *serverName,
 const char *volumeName,
 const char *accountName,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCAddAppleSharePassword (page 1080) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

1082 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Carbon Porting Notes

It is recommended that you use internet passwords instead of AppleShare passwords. Use the
SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

KCAddCallback
Registers your keychain event callback function.

Not recommended

OSStatus KCAddCallback (
 KCCallbackUPP callbackProc,
 KCEventMask eventMask,
 void *userContext
);

Parameters
callbackProc

A Universal Procedure Pointer (UPP) to your keychain event callback function, described in
KCCallbackProcPtr (page 1131). You indicate the type of keychain events you want to receive by
passing a bitmask of the desired events in the eventMask parameter. To create a UPP to your callback
function, call the function NewKCCallbackUPP (page 1130).

eventMask
A bitmask indicating the keychain events that your application wishes to be notified of. See “Keychain
Events Mask” (page 1142) for a description of this bitmask. The Keychain Manager tests this mask to
determine the keychain events that you wish to receive, and passes these events in the
keychainEvent parameter of your callback function. See “Keychain Events Constants” (page 1140) for
a description of these events.

userContext
A pointer to application-defined storage that will be passed to your callback function. Your application
can use this to associate any particular call of the KCAddCallback function with any particular call
of your keychain event callback function.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCDuplicateCallback
indicates that your callback function is already registered.

Discussion
You can register your callback function by passing a UPP to it in the callbackProc parameter of the
KCAddCallback function. Once you have done so, the Keychain Manager calls the function
InvokeKCCallbackUPP (page 1079) when the keychain event specified in the eventMask parameter occurs.
In turn, the function InvokeKCCallbackUPP (page 1079) passes the keychain event, information about the
event, and application-defined storage to your keychain event callback function.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 1083
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Carbon Porting Notes

Use the SecKeychainAddCallback function in Keychain Services instead.

Declared In
KeychainCore.h

KCAddGenericPassword
Adds a new generic password to the default keychain.

Not recommended

OSStatus KCAddGenericPassword (
 StringPtr serviceName,
 StringPtr accountName,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Parameters
serviceName

A pointer to a Pascal string containing an application-defined service name.

accountName
A pointer to a Pascal string containing an application-defined account name.

passwordLength
The length of the password data to be stored

passwordData
A pointer to the buffer that holds the returned password data. Before calling the
KCAddGenericPassword function, allocate enough memory for the buffer to hold the data you want
to store.

item
On return, a pointer to a reference to the added item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCDuplicateItem indicates that
you tried to add a password that already exists in the keychain. The result code errKCDataTooLarge indicates
that you tried to add more data than is allowed for a record of this type.

Discussion
The KCAddGenericPassword function adds a new generic password to the default keychain. Required
parameters to identify the password are serviceName and accountName, which are application-defined
strings. The KCAddGenericPassword function optionally returns a reference to the newly added item.

You can use the KCAddGenericPassword function to add passwords for accounts other than Internet or
AppleShare. For example, you might add passwords for your database or scheduling programs.

1084 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

You can also call the function kcaddgenericpassword to add a new generic password to the default
keychain. The difference between the two functions is that the kcaddgenericpassword function takes a
pointer to a C string instead of a Pascal string in the serverAddress, serverName, volumeName,
accountName, and passwordData parameters.

The KCAddGenericPassword function automatically calls the function KCUnlock (page 1127) to display the
Unlock Keychain dialog box if the keychain containing the password is currently locked.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcaddgenericpassword function provides
the same functionality as the function KCAddGenericPassword, except that it accepts C strings rather than
Pascal strings as arguments. In KeychainLib 2.0, you should use the KCAddGenericPassword function, since
the kcaddgenericpassword function is provided for convenience only and may be removed from the
header file at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainAddGenericPassword function in Keychain Services instead.

Declared In
KeychainHI.h

kcaddgenericpassword
Not recommended

OSStatus kcaddgenericpassword (
 const char *serviceName,
 const char *accountName,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCAddGenericPassword (page 1084) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainAddGenericPassword function in Keychain Services instead.

Declared In
KeychainHI.h

Functions 1085
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCAddInternetPassword
Adds a new Internet server password to the default keychain.

Not recommended

OSStatus KCAddInternetPassword (
 StringPtr serverName,
 StringPtr securityDomain,
 StringPtr accountName,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Parameters
serverName

A pointer to a Pascal string containing the server name.

securityDomain
A pointer to a Pascal string containing the security domain. This parameter is optional, as not all
protocols will require it.

accountName
A pointer to a Pascal string containing the account name.

port
The TCP/IP port number. Pass the constant kAnyPort, described in “Default Internet Port
Constant” (page 1140), to specify any port.

protocol
The protocol associated with this password. See “Keychain Protocol Type Constants” (page 1151) for a
description of possible values. Pass the constant kAnyProtocol, described in “Default Internet
Protocol And Authentication Type Constants” (page 1140), to specify any protocol.

authType
The authentication scheme used. See “Authentication Type Constants” (page 1136) for a description of
possible values. Pass the constant kAnyAuthType, described in “Default Internet Protocol And
Authentication Type Constants” (page 1140), to specify any authentication scheme.

passwordLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer that holds the returned password data. Before calling the
KCAddInternetPasswordWithPath function, allocate enough memory for the buffer to hold the
data you want to store.

item
On return, a pointer to a reference to the added item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCDuplicateItem indicates that
you tried to add a password that already exists in the keychain. The result code errKCDataTooLarge indicates
that you tried to add more data than is allowed for a record of this type.

1086 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Discussion
The KCAddInternetPassword function adds a new Internet server password to the default keychain.
Required parameters to identify the password are serviceName and accountName (you cannot pass NULL
for both parameters). In addition, some protocols may require an optional value in the securityDomain
parameter when authentication is requested. KCAddInternetPassword optionally returns a reference to
the newly added item.

The KCAddInternetPassword function automatically calls the function KCUnlock (page 1127) to display the
Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcaddinternetpassword to add a new Internet server password to the
default keychain. The kcaddinternetpassword function requires that you pass a pointer to a C string
instead of a pointer to a Pascal string for the serverAddress, serverName, volumeName, accountName,
and passwordData parameters.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcaddinternetpassword function provides
the same functionality as KCAddInternetPassword, except that it accepts C strings rather than Pascal
strings as arguments. In KeychainLib 2.0, you should use KCAddInternetPassword, since
kcaddinternetpassword is provided for convenience only and may be removed from the header file at
some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

kcaddinternetpassword
Not recommended

OSStatus kcaddinternetpassword (
 const char *serverName,
 const char *securityDomain,
 const char *accountName,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCAddInternetPassword (page 1086) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 1087
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Carbon Porting Notes

Use the SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

KCAddInternetPasswordWithPath
Adds a new Internet server password with a specified path to the default keychain.

Not recommended

OSStatus KCAddInternetPasswordWithPath (
 StringPtr serverName,
 StringPtr securityDomain,
 StringPtr accountName,
 StringPtr path,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Parameters
serverName

A pointer to a Pascal string containing the server name.

securityDomain
A pointer to a Pascal string containing the security domain. This parameter is optional, as not all
protocols will require it.

accountName
A pointer to a Pascal string containing the account name.

path
A pointer to a Pascal string containing additional information that specifies a file or directory on the
server specified by the serverName parameter. In a typical URL, path information begins directly
after the first slash (“/”) character following the server name. This parameter is optional.

port
The TCP/IP port number. Pass the constant kAnyPort, described in “Default Internet Port
Constant” (page 1140), to specify any port.

protocol
The protocol associated with this password. See “Keychain Protocol Type Constants” (page 1151) for a
description of possible values. Pass the constant kAnyProtocol, described in “Default Internet
Protocol And Authentication Type Constants” (page 1140), to specify any protocol.

authType
The authentication scheme used. See “Authentication Type Constants” (page 1136) for a description of
possible values. Pass the constant kAnyAuthType, described in “Default Internet Protocol And
Authentication Type Constants” (page 1140), to specify any authentication scheme.

passwordLength
The length of the buffer pointed to by passwordData.

1088 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

passwordData
A pointer to a buffer which will hold the returned password data. Before calling
KCAddInternetPasswordWithPath, allocate enough memory for the buffer to hold the data you
want to store.

item
On return, a pointer to a reference to the added item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCDuplicateItem indicates that
you tried to add a password that already exists in the keychain. The result code errKCDataTooLarge indicates
that you tried to add more data than is allowed for a record of this type.

Discussion
The KCAddInternetPasswordWithPath function enables you to specify path information when adding a
new Internet server password to the default keychain. Required parameters to identify the password are
serviceName and accountName (you cannot pass NULL for both parameters). In addition, some protocols
may require an optional securityDomain when authentication is requested.
KCAddInternetPasswordWithPath optionally returns a reference to the newly added item.

The KCAddInternetPasswordWithPath function automatically calls the function KCUnlock (page 1127) to
display the Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcaddinternetpasswordwithpath to add a new Internet server password
to the default keychain. The function kcaddinternetpasswordwithpath requires that you pass a pointer
to a C string instead of a pointer to a Pascal string for the serverAddress, serverName, volumeName,
accountName, and passwordData parameters.

Version Notes
Available beginning with KeychainLib 2.0. In KeychainLib 1.0, the kcaddinternetpasswordwithpath
function provides the same functionality as the KCAddInternetPasswordWithPath function, except that
it accepts C strings rather than Pascal strings as arguments. In KeychainLib 2.0, you should use the
KCAddInternetPasswordWithPath function, since the function kcaddinternetpasswordwithpath is
provided for convenience only and may be removed from the header file at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

kcaddinternetpasswordwithpath
Not recommended

Functions 1089
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus kcaddinternetpasswordwithpath (
 const char *serverName,
 const char *securityDomain,
 const char *accountName,
 const char *path,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 passwordLength,
 const void *passwordData,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCAddInternetPasswordWithPath (page 1088) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainAddInternetPassword function in Keychain Services instead.

Declared In
KeychainHI.h

KCAddItem
Adds a password or other keychain item to the default keychain.

Not recommended

OSStatus KCAddItem (
 KCItemRef item
);

Parameters
item

A reference to the keychain item you wish to add. If you pass an existing item in the keychain, the
item is updated. If you pass an item that has not been previously added to the keychain and an
identical item already exists in the keychain,KCAddItem returns the result codeerrKCDuplicateItem.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCInvalidItemRef indicates that
the specified keychain item reference was invalid. The result code errKCDuplicateItem indicates that you
tried to add a new item that already exists in the keychain.

Discussion
You can use the KCAddItem function to add a password or other keychain item to the permanent data store
of the default keychain. If you want to add a password to a keychain other than the default, call the function
KCSetDefaultKeychain (page 1126) to change the default keychain. The KCAddItem function automatically
calls the function KCUnlock (page 1127) to display the Unlock Keychain dialog box if the keychain containing
the item is currently locked.

1090 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

When you use Keychain Services to create an item, it is always added to the specified keychain at creation
time.

Declared In
KeychainHI.h

KCChangeSettings
Displays a dialog box enabling the user to change the name, password, or settings of a keychain.

Not recommended

OSStatus KCChangeSettings (
 KCRef keychain
);

Parameters
keychain

A reference to an unlocked keychain. Pass in NULL to specify the default keychain.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errUserCanceled indicates
that the user pressed the Cancel button in the Change Settings dialog box. The result code
errKCNoDefaultKeychain indicates that the default keychain could not be found. The result code
errKCInvalidKeychain indicates that the specified keychain is invalid.

Discussion
Typically, your application should not call the KCChangeSettings function. You would only call the
KCChangeSettings function in response to a user's request to change keychain settings, name, or password.
Note that you cannot change a keychain passphrase directly. You must call the KCChangeSettings function
and allow the user to change it.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainSetSettings function in Keychain Services instead.

Declared In
KeychainHI.h

Functions 1091
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCChooseCertificate
Displays a list of certificates that the user can choose from.

Unsupported

OSStatus KCChooseCertificate (
 CFArrayRef items,
 KCItemRef *certificate,
 CFArrayRef policyOIDs,
 KCVerifyStopOn stopOn
);

Parameters
items

An array of certificate references.

certificate
If the items array only contains one certificate, on return, a pointer to that certificate. In this case, no
user interface is displayed.

policyOIDs
An array of trust policy options used for Macintosh file signing. To obtain a pointer to this array, call
the function SecMacGetDefaultPolicyOIDs.

stopOn
The criteria to use in selecting the certificates to display. See “Certificate Verification Criteria” (page
1139) for a description of this mask.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code userCanceledErr indicates
that the user pressed the Cancel button in the user interface.

Discussion
The KCChooseCertificate function displays a list of the certificates from which the user can choose. If
only one certificate matches the criteria, the reference is passed back in the certificate parameter and
no user interface is presented.

Version Notes
Available beginning with KeychainLib 2.0.

Carbon Porting Notes

This function is obsolete. There is currently no replacement.

Declared In
KeychainHI.h

KCCopyItem
Copies a password or other keychain item from one keychain to another.

Not recommended

1092 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus KCCopyItem (
 KCItemRef item,
 KCRef destKeychain,
 KCItemRef *copy
);

Parameters
item

A reference to the keychain item you wish to copy.

destKeychain
A reference to the keychain into which the item is to be copied.

copy
A pointer to a reference to the new copied keychain item.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCReadOnly indicates
that the destination keychain is read only. The result code errKCNoSuchClass indicates that the item has
an invalid keychain item class. The result code errKCInvalidItemRef indicates that the specified keychain
item reference was invalid.

Discussion
You can use the KCCopyItem function to copy a keychain item from one keychain to another. The KCCopyItem
function automatically calls the function KCUnlock (page 1127) to display the Unlock Keychain dialog box if
the keychain containing the item to be copied is currently locked.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemCopyContent function in Keychain Services instead.

Declared In
KeychainCore.h

KCCountKeychains
Determines the number of available keychains.

Not recommended

UInt16 KCCountKeychains (
 void
);

Parameters
Return Value
The number of available keychains. This includes all keychains in the Keychains folder, as well as any other
keychains known to the Keychain Manager.

Functions 1093
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Discussion
This function reports the number of keychains known to the Keychain Manager. These keychains are created
by the function KCCreateKeychain (page 1094).

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use theSecKeychainCopySearchList function in Keychain Services followed by a call toCFArrayGetCount
instead.

Declared In
KeychainCore.h

KCCreateKeychain
Creates an empty keychain.

Not recommended

OSStatus KCCreateKeychain (
 StringPtr password,
 KCRef *keychain
);

Parameters
password

A pointer to a Pascal string representing the password string which will be used to protect the new
keychain. If you pass NULL, the Keychain Setup dialog box will be displayed to obtain it.

keychain
A pointer to a reference to the keychain you wish to create. You create a keychain reference by calling
the function KCMakeKCRefFromFSSpec (page 1119) or KCMakeKCRefFromAlias (page 1119). If you
pass a pointer to a keychain reference, the user will not need to be prompted for a name and location;
in all other cases, KCCreateKeychain will interactively request this information from the user. If you
pass a pointer to a NULL keychain reference, the Keychain Manager allocates the memory for the
keychain reference and returns it in this parameter. Pass a NULL pointer if you do not need a reference
returned.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code userCanceledErr indicates
that the user pressed the Cancel button in the create keychain. The result code errKCDuplicateKeychain
indicates that the user tried to create a keychain which already exists. The result code errKCInvalidKeychain
indicates that the specified keychain is invalid. Additional errors may be returned if the keychain could not
be created (for example, a file system or network error may be returned if there is no write access to the
storage media).

Discussion
The KCCreateKeychain function creates an empty keychain. The keychain and password parameters are
optional. If user interaction to create a keychain is posted, the newly-created keychain is automatically
unlocked after creation.

1094 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

You can also call the function kccreatekeychain to create an empty keychain. The function
kccreatekeychain requires that you pass a pointer to a C string instead of a pointer to a Pascal string in
the password parameter.

Special Considerations

It is recommended that the KCCreateKeychain function not be explicitly called by applications. Instead,
you should call one of the add functions in “Storing and Retrieving Passwords” (page 1076) to add a password
to the default keychain. If a default keychain does not exist, it is created automatically.

When you are finished with a keychain, you must deallocate its memory by calling the function
KCReleaseKeychain (page 1122).

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kccreatekeychain function provides the
same functionality as KCCreateKeychain. In KeychainLib 2.0, you should use KCCreateKeychain, since
kccreatekeychain is provided for convenience only and may be removed from the header file at some
point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainCreate function in Keychain Services instead.

Declared In
KeychainHI.h

kccreatekeychain
Not recommended

OSStatus kccreatekeychain (
 const char *password,
 KCRef *keychain
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCCreateKeychain (page 1094) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainCreate function in Keychain Services instead.

Declared In
KeychainHI.h

Functions 1095
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCDeleteItem
Deletes a password or other keychain item from the default keychain.

Not recommended

OSStatus KCDeleteItem (
 KCItemRef item
);

Parameters
item

A reference to the keychain item you wish to delete. If you pass an item that has not been previously
added to the keychain, the function KCDeleteItem does nothing and returns noErr.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCInvalidItemRef indicates that
the specified keychain item reference was invalid.

Discussion
You can use the KCDeleteItem function to delete a keychain item from the permanent data store of the
default keychain. TheKCDeleteItem function automatically calls the functionKCUnlock (page 1127) to display
the Unlock Keychain dialog box if the keychain containing the item is currently locked.

Special Considerations

The KCDeleteItem function does not dispose the memory occupied by the item reference. To do so, call
the function KCReleaseItem (page 1121) when you are finished with an item.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemDelete function in Keychain Services instead.

Declared In
KeychainCore.h

KCFindAppleSharePassword
Finds the first AppleShare password in the default keychain that matches the specified parameters.

Not recommended

1096 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus KCFindAppleSharePassword (
 AFPServerSignature *serverSignature,
 ConstStringPtr serverAddress,
 ConstStringPtr serverName,
 ConstStringPtr volumeName,
 ConstStringPtr accountName,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Parameters
serverSignature

A pointer to a 16-byte Apple File Protocol server signature block. Pass a value of type
AFPServerSignature (page 1132). Pass NULL to match any server signature. The Keychain Manager
identifies the location for the password by the information passed in the serverAddress and
serverSignature parameters. You must pass a valid value in at least one of these parameters.

serverAddress
A pointer to a Pascal string containing the server address, which may be specified as an AppleTalk
zone name, a DNS domain name (in the format "xxx.yyy.zzz"), or an IP address (in the format
"111.222.333.444"). The Keychain Manager identifies the location for the password by the information
passed in the serverAddress and serverSignature parameters. You must pass a valid value in
at least one of these parameters.

serverName
A pointer to a Pascal string containing the server name. Pass NULL to match any server name.

volumeName
A pointer to a Pascal string containing the volume name. Pass NULL to match any volume name.

accountName
A pointer to a Pascal string containing the account name. Pass NULL to match any account name.

maxLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer which will hold the returned password data. Before calling
KCFindAppleSharePassword, allocate enough memory for the buffer to hold the data you want
to store. Pass NULL if you want to obtain the item reference but not the password data. In this case,
you must also pass NULL in the actualLength parameter. On return, a pointer to the returned
password data.

actualLength
On return, the actual length of the password data that was retrieved. If the buffer pointed to by
passwordData is smaller than the actual length of the data, KCFindAppleSharePassword returns
the result code errKCBufferTooSmall. In this case, your application must allocate a new buffer of
sufficient size before calling KCFindAppleSharePassword again.

item
On return, a pointer to a reference to the found item. Pass NULL if you don’t want to obtain this
reference.

Functions 1097
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain was found. The result code errKCItemNotFound indicates that no
matching password item was found. The result code errKCBufferTooSmall indicates that your application
must allocate a new buffer of sufficient size before calling KCFindAppleSharePassword again.

Discussion
The KCFindAppleSharePassword function finds the first AppleShare password item which matches the
attributes you provide. The buffer specified in the passwordData parameter must be large enough to hold
the password data, otherwiseKCFindAppleSharePassword returns the result codeerrKCBufferTooSmall.
In this case, your application must allocate a new buffer of sufficient size before calling the
KCFindAppleSharePassword function again. The KCFindAppleSharePassword function optionally
returns a reference to the found item.

The KCFindAppleSharePassword function automatically calls the function KCUnlock (page 1127) to display
the Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcfindapplesharepassword to find the first AppleShare server password
matching specified attributes. kcfindapplesharepassword requires that you pass a pointer to a C string
instead of a pointer to a Pascal string for the serverAddress, serverName, volumeName, accountName,
and passwordData parameters.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcfindapplesharepassword function
provides the same functionality as KCFindAppleSharePassword, except that it accepts C strings rather
than Pascal strings as arguments. In KeychainLib 2.0, you should use KCFindAppleSharePassword, since
kcfindapplesharepassword is provided for convenience only and may be removed from the header file
at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the Keychain Services function SecKeychainSearchCreateFromAttributes followed by the
SecKeychainSearchCopyNext function instead.

Declared In
KeychainCore.h

kcfindapplesharepassword
Not recommended

1098 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus kcfindapplesharepassword (
 AFPServerSignature *serverSignature,
 const char *serverAddress,
 const char *serverName,
 const char *volumeName,
 const char *accountName,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCFindAppleSharePassword (page 1096) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the Keychain Services function SecKeychainSearchCreateFromAttributes followed by the
SecKeychainSearchCopyNext function instead.

Declared In
KeychainCore.h

KCFindFirstItem
Finds the first keychain item in a specified keychain that matches specified attributes.

Not recommended

OSStatus KCFindFirstItem (
 KCRef keychain,
 const KCAttributeList *attrList,
 KCSearchRef *search,
 KCItemRef *item
);

Parameters
keychain

A reference to the keychain that you wish to search. If you pass a locked keychain, the Unlock Keychain
dialog box is displayed. If you pass NULL, the KCFindFirstItem function searches all unlocked
keychains.

attrList
A pointer to a list of 0 or more structures containing information about the keychain item attributes
to be matched. Pass NULL to match any attribute.

search
On return, a pointer to a reference to the current search criteria.

item
On return, a pointer to the first matching keychain item.

Functions 1099
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCItemNotFound indicates that no
matching keychain item was found. The result code errKCNoSuchAttr indicates that the specified attribute
is undefined for this item class.

Discussion
The KCFindFirstItem function returns a reference to the first keychain item in a keychain that matches a
list of attributes. The KCFindFirstItem function also returns a reference to the search criteria used. You
should pass the returned search criteria in the searchRef parameter of the function KCFindNextItem (page
1108).

The KCFindFirstItem function automatically calls the function KCUnlock (page 1127) to display the Unlock
Keychain dialog box if the keychain containing the item you are searching for is currently locked.

Special Considerations

When you are completely finished with a search, you should the functions KCReleaseItem (page 1121) and
KCReleaseSearch (page 1122) to release the memory occupied by the keychain item and search criteria
reference.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the Keychain Services function SecKeychainSearchCreateFromAttributes followed by a call to
SecKeychainSearchCopyNext instead.

Declared In
KeychainCore.h

KCFindGenericPassword
Finds the first generic password in the default keychain matching the specified parameters.

Not recommended

OSStatus KCFindGenericPassword (
 ConstStringPtr serviceName,
 ConstStringPtr accountName,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Parameters
serviceName

A pointer to a Pascal string containing an application-defined service name. Pass NULL to match any
service name.

1100 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

accountName
A pointer to a Pascal string containing an application-defined account name. Pass NULL to match any
account name.

maxLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to the buffer that holds the returned password data. Before calling the
KCFindGenericPassword function, allocate enough memory for the buffer to hold the data you
want to store. Pass NULL if you want to obtain the item reference but not the password data. In this
case, you must also pass NULL in the actualLength parameter. On return, a pointer to the returned
password data.

actualLength
On return, the actual length of the password data that was retrieved. If the buffer pointed to by the
passwordDataparameter is smaller than the actual length of the data, the KCFindGenericPassword
function returns the result code errKCBufferTooSmall. In this case, your application must allocate
a new buffer of sufficient size before calling the KCFindGenericPassword function again.

item
On return, a pointer to a reference to the found item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain was found. The result code errKCItemNotFound indicates that no
matching password item was found. The result code errKCBufferTooSmall indicates that your application
must allocate a new buffer of sufficient size before calling the function KCFindGenericPassword again.

Discussion
The KCFindGenericPassword function finds the first generic password item which matches the attributes
you provide. The buffer specified in the passwordData parameter must be large enough to hold the password
data, otherwise the function KCFindGenericPassword returns the result code errKCBufferTooSmall.
In this case, your application must allocate a new buffer of sufficient size before calling the function
KCFindGenericPassword again. The KCFindGenericPassword function optionally returns a reference
to the found item.

The KCFindGenericPassword function automatically calls the function KCUnlock (page 1127) to display the
Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcfindgenericpassword to find the first generic password matching specified
attributes. The kcfindgenericpassword function requires that you pass a pointer to a C string instead of
a pointer to a Pascal string for the serverAddress, serverName, volumeName, accountName, and
passwordData parameters.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcfindgenericpassword function provides
the same functionality as the function KCFindGenericPassword, except that it accepts C strings rather
than Pascal strings as arguments. In KeychainLib 2.0, you should use the KCFindGenericPassword function,
since the kcfindgenericpassword function is provided for convenience only and may be removed from
the header file at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 1101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Carbon Porting Notes

Use the SecKeychainFindGenericPassword function in Keychain Services instead.

Declared In
KeychainCore.h

kcfindgenericpassword
Not recommended

OSStatus kcfindgenericpassword (
 const char *serviceName,
 const char *accountName,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCFindGenericPassword (page 1100) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainFindGenericPassword function in Keychain Services instead.

Declared In
KeychainCore.h

KCFindInternetPassword
Finds the first Internet password in the default keychain that matches the specified parameters.

Not recommended

1102 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus KCFindInternetPassword (
 ConstStringPtr serverName,
 ConstStringPtr securityDomain,
 ConstStringPtr accountName,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Parameters
serverName

A pointer to a Pascal string containing the server name. Pass NULL to match any server name.

securityDomain
A pointer to a Pascal string containing the security domain. Pass NULL to match any domain.

accountName
A pointer to a Pascal string containing the account name. Pass NULL to match any account name.

port
The TCP/IP port number. Pass the constant kAnyPort, described in “Default Internet Port
Constant” (page 1140), to match any port.

protocol
The protocol associated with this password. See “Keychain Protocol Type Constants” (page 1151) for a
description of possible values. Pass the constant kAnyProtocol, described in “Default Internet
Protocol And Authentication Type Constants” (page 1140), to match any protocol.

authType
The authentication scheme used. See “Authentication Type Constants” (page 1136) for a description of
possible values. Pass the constant kAnyAuthType, described in “Default Internet Protocol And
Authentication Type Constants” (page 1140), to match any authentication scheme.

maxLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to the buffer that holds the returned password data. Before calling the
KCFindInternetPassword function, allocate enough memory for the buffer to hold the data you
want to store. Pass NULL if you want to obtain the item reference but not the password data. In this
case, you must also pass NULL in the actualLength parameter. On return, a pointer to the returned
password data.

actualLength
On return, the actual length of the password data that was retrieved. If the buffer pointed to by the
passwordData parameter is smaller than the actual length of the data, the
KCFindInternetPassword function returns the result code errKCBufferTooSmall. In this case,
your application must allocate a new buffer of sufficient size before calling the
KCFindInternetPassword function again.

item
On return, a pointer to a reference to the found item. Pass NULL if you don’t want to obtain this
reference.

Functions 1103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain was found. The result code errKCItemNotFound indicates that no
matching password item was found. The result code errKCBufferTooSmall indicates that your application
must allocate a new buffer of sufficient size before calling the function KCFindInternetPassword again.

Discussion
The KCFindInternetPassword function finds the first Internet password item that matches the attributes
you provide. The buffer specified in the passwordData parameter must be large enough to hold the password
data, otherwise the function KCFindInternetPassword returns the result code errKCBufferTooSmall.
In this case, your application must allocate a new buffer of sufficient size before calling the function
KCFindInternetPassword again. The KCFindInternetPassword function optionally returns a reference
to the found item.

The KCFindInternetPassword function automatically calls the function KCUnlock (page 1127) to display
the Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcfindinternetpassword to find the first Internet password item matching
specified attributes. The kcfindinternetpassword function requires that you pass a pointer to a C string
instead of a Pascal string for the serverAddress, serverName, volumeName, accountName, and
passwordData parameters.

Version Notes
Available beginning with KeychainLib 1.0. In KeychainLib 1.0, the kcfindinternetpassword function
provides the same functionality as the function KCFindInternetPassword, except that it accepts C strings
rather than Pascal strings as arguments. In KeychainLib 2.0, you should use the KCFindInternetPassword
function, since kcfindinternetpassword is provided for convenience only and may be removed from the
header file at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainFindInternetPassword function in Keychain Services instead.

Declared In
KeychainCore.h

kcfindinternetpassword
Not recommended

1104 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus kcfindinternetpassword (
 const char *serverName,
 const char *securityDomain,
 const char *accountName,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCFindInternetPassword (page 1102) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainFindInternetPassword function in Keychain Services instead.

Declared In
KeychainCore.h

KCFindInternetPasswordWithPath
Finds the first Internet password in the default keychain that matches the specified parameters, including
path information.

Not recommended

OSStatus KCFindInternetPasswordWithPath (
 ConstStringPtr serverName,
 ConstStringPtr securityDomain,
 ConstStringPtr accountName,
 ConstStringPtr path,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Parameters
serverName

A pointer to a Pascal string containing the server name. Pass NULL to match any server name.

securityDomain
A pointer to a Pascal string containing the security domain. Pass NULL to match any domain.

Functions 1105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

accountName
A pointer to a Pascal string containing the account name. Pass NULL to match any account name.

path
A pointer to a Pascal string containing additional information that specifies a file or directory on the
server specified by the serverName parameter. In a typical URL, path information begins directly
after the first slash (“/”) character following the server name. This parameter is optional.

port
The TCP/IP port number. Pass the constant kAnyPort, described in “Default Internet Port
Constant” (page 1140), to match any port.

protocol
The protocol associated with this password. See “Keychain Protocol Type Constants” (page 1151) for a
description of possible values. Pass the constant kAnyProtocol, described in “Default Internet
Protocol And Authentication Type Constants” (page 1140), to match any protocol.

authType
The authentication scheme used. See “Authentication Type Constants” (page 1136) for a description of
possible values. Pass the constant kAnyAuthType, described in “Default Internet Protocol And
Authentication Type Constants” (page 1140), to match any authentication scheme.

maxLength
The length of the buffer pointed to by passwordData.

passwordData
A pointer to a buffer which will hold the returned password data. Before calling the
KCFindInternetPasswordWithPath function, allocate enough memory for the buffer to hold the
data you want to store. Pass NULL if you want to obtain the item reference but not the password data.
In this case, you must also pass NULL in the actualLength parameter. On return, a pointer to the
returned password data.

actualLength
On return, the actual length of the password data that was retrieved. If the buffer pointed to by the
passwordData parameter is smaller than the actual length of the data, the function
KCFindInternetPasswordWithPath returns the result code errKCBufferTooSmall. In this case,
your application must allocate a new buffer of sufficient size before calling the function
KCFindInternetPasswordWithPath again.

item
On return, a pointer to a reference to the found item. Pass NULL if you don’t want to obtain this
reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain was found. The result code errKCItemNotFound indicates that no
matching password item was found. The result code errKCBufferTooSmall indicates that your application
must allocate a new buffer of sufficient size before calling the function KCFindInternetPasswordWithPath
again.

Discussion
The KCFindInternetPasswordWithPath function finds the first Internet password item which matches
the attributes you provide, including path information. The buffer specified in the passwordData parameter
must be large enough to hold the password data, otherwise the function
KCFindInternetPasswordWithPath returns the result code errKCBufferTooSmall. In this case, your
application must allocate a new buffer of sufficient size before calling the
KCFindInternetPasswordWithPath function again. The KCFindInternetPasswordWithPath function
optionally returns a reference to the found item.

1106 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

The KCFindInternetPasswordWithPath function automatically calls the function KCUnlock (page 1127)
to display the Unlock Keychain dialog box if the keychain containing the password is currently locked.

You can also call the function kcfindinternetpasswordwithpath to find the first Internet password item
matching specified attributes. The function kcfindinternetpasswordwithpath requires that you pass a
pointer to a C string instead of a pointer to a Pascal string for the serverAddress, serverName, volumeName,
accountName, and passwordData parameters.

Version Notes
Available beginning with KeychainLib 2.0. In KeychainLib 1.0, the kcfindinternetpassword function
provides the same functionality as the function KCFindInternetPassword, except that it accepts C strings
rather than Pascal strings as arguments. In KeychainLib 2.0, you should use KCFindInternetPassword,
since kcfindinternetpassword is provided for convenience only and may be removed from the header
file at some point in the future.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainFindInternetPassword function in Keychain Services instead.

Declared In
KeychainCore.h

kcfindinternetpasswordwithpath
Not recommended

OSStatus kcfindinternetpasswordwithpath (
 const char *serverName,
 const char *securityDomain,
 const char *accountName,
 const char *path,
 UInt16 port,
 OSType protocol,
 OSType authType,
 UInt32 maxLength,
 void *passwordData,
 UInt32 *actualLength,
 KCItemRef *item
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCFindInternetPasswordWithPath (page 1105) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainFindInternetPassword function in Keychain Services instead.

Functions 1107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Declared In
KeychainCore.h

KCFindNextItem
Finds the next keychain item matching the previously specified search criteria.

Not recommended

OSStatus KCFindNextItem (
 KCSearchRef search,
 KCItemRef *item
);

Parameters
search

A reference to the previously-specified search criteria. Pass the reference passed back in the searchRef
parameter of the function KCFindFirstItem (page 1099).

item
On return, a pointer to the next matching keychain item, if any.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCItemNotFound indicates that no
matching keychain item was found. The result code errKCInvalidSearchRef indicates that the specified
search reference was invalid.

Discussion
The KCFindNextItem function finds the next keychain item matching the search criteria previously specified
by a call to the function KCFindFirstItem (page 1099). The KCFindNextItem function returns a reference
to the matching item, if any. The KCFindNextItem function automatically calls the function KCUnlock (page
1127) to display the Unlock Keychain dialog box if the keychain containing the item you are searching for is
currently locked.

Special Considerations

When you are completely finished with a search, you should use the functions KCReleaseItem (page 1121)
and KCReleaseSearch (page 1122) to release the keychain item and search criteria reference.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainSearchCopyNext function in Keychain Services instead.

Declared In
KeychainCore.h

1108 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCFindX509Certificates
Finds the certificates in a keychain that match specified search criteria.

Unsupported

OSStatus KCFindX509Certificates (
 KCRef keychain,
 CFStringRef name,
 CFStringRef emailAddress,
 KCCertSearchOptions options,
 CFMutableArrayRef *certificateItems
);

Parameters
keychain

A reference to the keychain you want to search. If the keychain is locked, the Unlock Keychain dialog
box is automatically displayed.

name
A pointer to a C string containing the certificate owner's common name.

emailAddress
A pointer to a C string containing the certificate owner’s email address.

options
The search criteria you wish to use. See “Certificate Search Options” (page 1137) for a description of
this mask.

certificateItems
On return, a pointer to a list of the matching certificates. Pass NULL if you don’t want to obtain these
references.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that a default keychain was not found. The result code errKCBufferTooSmall indicates that the
certificate data was too large for the supplied buffer. In this case, you should allocate a new buffer of sufficient
size before calling KCFindX509Certificates again. The result code errKCItemNotFound indicates that
no matching certificate was found.

Version Notes
Available beginning with KeychainLib 2.0.

Carbon Porting Notes

This function is obsolete. There is currently no replacement.

Declared In
KeychainHI.h

KCGetAttribute
Determines keychain item data using a keychain item attribute structure.

Not recommended

Functions 1109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus KCGetAttribute (
 KCItemRef item,
 KCAttribute *attr,
 UInt32 *actualLength
);

Parameters
item

A reference to the keychain item whose attribute data you wish to determine.

attr
A pointer to a structure of typeKCAttribute (page 1132). Before calling theKCGetAttribute function,
fill in the tag, length, and data fields (the data field should contain a pointer to a buffer of sufficient
length for the type of data to be returned). On return, the KCGetAttribute function passes back
the requested data in the data field.

actualLength
On return, a pointer to the actual length of the attribute data. This may be more than the length you
allocated in the length field of the attribute structure.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCInvalidItemRef
indicates that the specified keychain item reference was invalid. The result code errKCNoSuchAttr indicates
that you tried to set an attribute which is undefined for this item class. The result code errKCBufferTooSmall
indicates that your application must allocate a new buffer of sufficient size before calling KCGetAttribute
again.

Discussion
You can call the function KCGetAttribute or the function KCGetData (page 1111) to obtain keychain item
data. The difference between the functions is that the function KCGetData (page 1111) requires that you pass
the length of the data and a pointer to that data as separate parameters rather than fields in a keychain item
attribute structure.

If the keychain that contains the item is locked, before calling the KCGetAttribute function you should
call the function KCUnlock (page 1127) to prompt the user to unlock the keychain.

You can determine any of the standard item attributes identified by the following tag constants:
kClassKCItemAttr, kCreationDateKCItemAttr, kModDateKCItemAttr, kDescriptionKCItemAttr,
kCommentKCItemAttr, kLabelKCItemAttr, kCreatorKCItemAttr, kScriptCodeKCItemAttr, and
kCustomIconKCItemAttr. There is additional data you can determine, depending upon the type of keychain
item whose data you wish to obtain. See “Keychain Item Attribute Tag Constants” (page 1144) for more
information.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemCopyAttributesAndData function in Keychain Services instead.

Declared In
KeychainCore.h

1110 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCGetData
Determines keychain item data.

Not recommended

OSStatus KCGetData (
 KCItemRef item,
 UInt32 maxLength,
 void *data,
 UInt32 *actualLength
);

Parameters
item

A reference to the keychain item whose data you wish to determine.

maxLength
The length of the data buffer pointed to by the data parameter.

data
A pointer to the buffer that holds the returned data. Before calling the KCGetData function, allocate
enough memory for the buffer to hold the data you want to store. On return, a pointer to the attribute
data you requested.

actualLength
On return, a pointer to the actual length of the data being retrieved. If the buffer pointed to by the
data parameter is smaller than the actual length of the data, the KCGetData function returns the
result code errKCBufferTooSmall. In this case, your application must allocate a new buffer of
sufficient size before calling KCGetData again.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCInvalidItemRef
indicates that the specified keychain item reference was invalid. The result code errKCBufferTooSmall
indicates that your application must allocate a new buffer of sufficient size before calling KCGetData again.
The result code errKCDataNotModifiable indicates that the data is not available for this item.

Discussion
You can call the function KCGetData or the function KCGetAttribute (page 1109) to obtain keychain item
data. The difference between the functions is that the function KCGetAttribute (page 1109) requires that
you pass the length of the data and a pointer to that data as fields in a keychain item attribute structure
rather than as separate parameters.

If the keychain that contains the item is locked, before calling the function KCGetData you should call the
function KCUnlock (page 1127) to prompt the user to unlock the keychain. You cannot call the KCGetData
function for a private key.

You can determine any of the standard item attributes identified by the following tag constants:
kClassKCItemAttr, kCreationDateKCItemAttr, kModDateKCItemAttr, kDescriptionKCItemAttr,
kCommentKCItemAttr, kLabelKCItemAttr, kCreatorKCItemAttr, kScriptCodeKCItemAttr, and
kCustomIconKCItemAttr. There is additional data you can determine, depending upon the type of keychain
item whose data you wish to obtain. See “Keychain Item Attribute Tag Constants” (page 1144) for more
information.

Version Notes
Available beginning with KeychainLib 1.0.

Functions 1111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemCopyContent function in Keychain Services instead.

Declared In
KeychainCore.h

KCGetDefaultKeychain
Obtains the default keychain.

Not recommended

OSStatus KCGetDefaultKeychain (
 KCRef *keychain
);

Parameters
keychain

On return, a pointer to default keychain reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that there is no default keychain.

Discussion
You can determine the name of the default keychain by passing the returned keychain reference to the
function KCGetKeychainName (page 1115).

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainCopyDefault function in Keychain Services instead.

Declared In
KeychainCore.h

KCGetIndKeychain
Obtains the reference to an indexed keychain.

Not recommended

1112 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus KCGetIndKeychain (
 UInt16 index,
 KCRef *keychain
);

Parameters
index

An index of the list of available keychains. Pass a value between 1 and the number returned by the
function KCCountKeychains (page 1093).

keychain
On return, pointer to the keychain reference corresponding to the index in the index parameter.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoSuchKeychain
indicates that the index value is out of range.

Discussion
To guarantee correct operation, you should call the function KCCountKeychains (page 1093) once before
calling KCGetIndKeychain.

Special Considerations

The memory that the keychain reference occupies must be released by calling the function
KCReleaseKeychain (page 1122) when you are finished with it.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainCopySearchList function in Keychain Services followed by a call to
CFArrayGetValueAtIndex instead.

Declared In
KeychainCore.h

KCGetKeychain
Determines the location of a password or other keychain item.

Not recommended

OSStatus KCGetKeychain (
 KCItemRef item,
 KCRef *keychain
);

Parameters
item

A reference to the keychain item whose keychain location you wish to determine. If you pass a
reference to a keychain item whose keychain is locked, the KCGetKeychain function returns the
result code errKCInvalidItemRef.

Functions 1113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

keychain
On return, a pointer to the keychain containing the specified item.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCInvalidItemRef
indicates that the keychain item reference was invalid.

Discussion
The KCGetKeychain function determines the location of a keychain item in an unlocked keychain. It does
not search locked keychains. Calling the KCGetKeychain function displays the Unlock Keychain dialog box
if the keychain containing the item is currently locked.

Special Considerations

The keychain reference returned by KCGetKeychain should be released by calling the function
KCReleaseItem (page 1121).

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemCopyKeychain function in Keychain Services instead.

Declared In
KeychainCore.h

KCGetKeychainManagerVersion
Determines the version of the Keychain Manager installed on the user’s system.

Not Recommended

OSStatus KCGetKeychainManagerVersion (
 UInt32 *returnVers
);

Parameters
returnVers

On return, a pointer to the version number of the Keychain Manager installed on the current system.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154).

Discussion
Your application can call the KCGetKeychainManagerVersion function to find out which version of the
Keychain Manager is installed on the user's system.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.

1114 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainGetVersion function in Keychain Services instead.

Declared In
KeychainCore.h

KCGetKeychainName
Determines the name of a keychain.

Not recommended

OSStatus KCGetKeychainName (
 KCRef keychain,
 StringPtr keychainName
);

Parameters
keychain

A reference to the keychain whose name you wish to obtain.

keychainName
A pointer to a Pascal string. On return, this string contains the name of the keychain.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCInvalidKeychain
indicates that the keychain is invalid.

Discussion
You can also call the function kcgetkeychainname to obtain the name of a keychain. kcgetkeychainname
requires that you pass a pointer to a C string instead of a pointer to a Pascal string in the keychainName
parameter.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainGetPath function in Keychain Services instead.

Declared In
KeychainCore.h

kcgetkeychainname
Not recommended

Functions 1115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus kcgetkeychainname (
 KCRef keychain,
 char *keychainName
);

Discussion
This function is available for convenience only and may be removed. Use the function
KCGetKeychainName (page 1115) instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainGetPath function in Keychain Services instead.

Declared In
KeychainCore.h

KCGetStatus
Determines the permissions that are set in a keychain.

Not recommended

OSStatus KCGetStatus (
 KCRef keychain,
 UInt32 *keychainStatus
);

Parameters
keychain

A pointer to the keychain reference whose permissions you wish to determine. Pass NULL to obtain
the status of the default keychain.

keychainStatus
On return, a pointer to a bitmask that you can test to determine the permissions that are set in a
keychain. See “Keychain Status Constants” (page 1153) for a description of this mask.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoSuchKeychain
indicates that the specified keychain could not be found. The result code errKCInvalidKeychain indicates
that the specified keychain is invalid.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainGetStatus function in Keychain Services instead.

1116 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Declared In
KeychainCore.h

KCIsInteractionAllowed
Indicates whether Keychain Manager functions that display a user interaction will do so.

Not recommended

Boolean KCIsInteractionAllowed (
 void
);

Parameters
Return Value
A Boolean value indicating whether user interaction is permitted. If true, user interaction is allowed, and
Keychain Manager functions that display a user interface can do so as appropriate.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainGetUserInteractionAllowed function in Keychain Services instead.

Declared In
KeychainCore.h

KCLock
Locks a keychain.

Not recommended

OSStatus KCLock (
 KCRef keychain
);

Parameters
keychain

A reference to the keychain to lock. Pass NULL to lock all unlocked keychains.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoSuchKeychain
indicates that specified keychain could not be found. The result code errKCInvalidKeychain indicates
that the specified keychain is invalid.

Discussion
Your application should not call the KCLock function unless you are responding to a user's request to lock
a keychain. In general, you should leave the keychain unlocked so that the user does not have to unlock it
again in another application.

Functions 1117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Version Notes
The function KCLock replaces the function KCLockKeychain, which was available in KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainLock function in Keychain Services instead.

Declared In
KeychainCore.h

KCMakeAliasFromKCRef
Creates an alias to a keychain reference.

Not Recommended

OSStatus KCMakeAliasFromKCRef (
 KCRef keychain,
 AliasHandle *keychainAlias
);

Parameters
keychain

A reference to the keychain for which you want to create an alias.

keychainAlias
On return, a pointer to an alias handle to the file referred to by the keychain reference.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154).

Discussion
You may wish to call the KCMakeAliasFromKCRef function to determine the location of a keychain.

Special Considerations

When you are finished with a keychain, you should call the function KCReleaseKeychain (page 1122) to
deallocate its memory. You should not use the keychain after its memory has been deallocated.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use theSecKeychainGetPath function in Keychain Services followed by calls to the functionFSPathMakeRef
and FSNewAlias instead.

Declared In
KeychainCore.h

1118 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCMakeKCRefFromAlias
Creates a keychain reference from a keychain alias.

Not Recommended

OSStatus KCMakeKCRefFromAlias (
 AliasHandle keychainAlias,
 KCRef *keychain
);

Parameters
keychainAlias

A handle to an alias record of the keychain file. Since the keychain is a file, an alias can be made to
the keychain file.

keychain
On return, a pointer to a reference to the keychain specified by the alias in the keychainAlias
parameter.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154).

Special Considerations

When you are finished with a keychain, you should call the function KCReleaseKeychain (page 1122) to
deallocate its memory. You should not use the keychain after its memory has been deallocated.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainOpen function in Keychain Services instead. If the keychain doesn’t exist, use the
SecKeychainCreate function in Keychain Services.

Declared In
KeychainCore.h

KCMakeKCRefFromFSSpec
Creates a keychain reference from a file specification record. (Deprecated in Mac OS X v10.5.)

Not Recommended

OSStatus KCMakeKCRefFromFSSpec (
 FSSpec *keychainFSSpec,
 KCRef *keychain
);

Parameters
keychainFSSpec

A pointer to a keychain file specification record.

Functions 1119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

keychain
On return, a pointer to a reference to the keychain specified by the file in the keychainFSSpec
parameter.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154).

Special Considerations

When you are finished with a keychain, you should call the function KCReleaseKeychain (page 1122) to
deallocate its memory. You should not use the keychain after its memory has been deallocated.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Carbon Porting Notes

Use the SecKeychainOpen function in Keychain Services instead. If the keychain doesn’t exist, use the
SecKeychainCreate function in Keychain Services.

Declared In
KeychainCore.h

KCNewItem
Creates a reference to a keychain item.

Not recommended

OSStatus KCNewItem (
 KCItemClass itemClass,
 OSType itemCreator,
 UInt32 length,
 const void *data,
 KCItemRef *item
);

Parameters
itemClass

The type of keychain item that you wish to create. See “Keychain Item Type Constants” (page 1150) for
a description of possible values and a description of the KCItemClass data type.

itemCreator
The creator code of the application that owns this item.

length
The length of the data to be stored in this item.

data
A pointer to a buffer containing the data to be stored in this item. Before calling KCNewItem, allocate
enough memory for the buffer to hold the data you want to store.

1120 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

item
On return, a pointer to a reference to the newly-created item.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The Memory Manager result codememFullErr
indicates that you did not allocate enough memory in the current heap to create the item.

Discussion
After calling the KCNewItem function, you should call the function KCAddItem (page 1090) if you wish to
permanently store a password or other keychain item. Note that a copy of the data buffer pointed to by the
data parameter is stored in the newly-created item.

Special Considerations

When you are done with a keychain item, you should call the function KCReleaseItem (page 1121) to release
its memory. You should not use the item after its memory has been deallocated.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemCreateFromContent function in Keychain Services instead.

Declared In
KeychainCore.h

KCReleaseItem
Disposes of the memory occupied by a keychain item reference.

Not recommended

OSStatus KCReleaseItem (
 KCItemRef *item
);

Parameters
item

A pointer to a keychain item reference. Pass the keychain item reference whose memory you want
to release. On return, the reference is set to NULL and should not be used again.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154).

Discussion
You should call the KCReleaseItem function to release the memory occupied by a keychain item reference
when you are finished with it.

Version Notes
Available beginning with KeychainLib 1.0

Functions 1121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the CFRelease function instead.

Declared In
KeychainCore.h

KCReleaseKeychain
Disposes of the memory associated with a keychain reference.

Not recommended

OSStatus KCReleaseKeychain (
 KCRef *keychain
);

Parameters
keychain

A pointer to a keychain reference. Pass the keychain reference whose memory you want to release.
On return, the reference is set to NULL and should not be used again.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154).

Discussion
You should call the KCReleaseKeychain function to release the memory occupied by a keychain reference
when you are finished with it. You should not use the reference after it has been released.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the CFRelease function instead.

Declared In
KeychainCore.h

KCReleaseSearch
Disposes of the memory occupied by a search criteria reference.

Not recommended

1122 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus KCReleaseSearch (
 KCSearchRef *search
);

Parameters
search

A pointer to a search criteria reference. Pass the search criteria reference whose memory you want
to release. On return, the reference is set to NULL and should not be used again.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCInvalidSearchRef
indicates that the specified search reference was invalid.

Discussion
You should call the KCReleaseSearch function to release the memory occupied by a search criteria reference
when you are completely finished with a search performed by calling the functions KCFindFirstItem (page
1099) or KCFindNextItem (page 1108).

Version Notes
Available beginning with KeychainLib 1.0

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the CFRelease function instead.

Declared In
KeychainCore.h

KCRemoveCallback
Unregisters your keychain event callback function.

Not recommended

OSStatus KCRemoveCallback (
 KCCallbackUPP callbackProc
);

Parameters
callbackProc

A Universal Procedure Pointer (UPP) to your keychain event callback function that was previously
registered with the function KCAddCallback (page 1083).

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCInvalidCallback
indicates that the callback function was not previously registered.

Discussion
After you pass a UPP to your keychain event callback function to the KCRemoveCallback function, it will
no longer be called by the Keychain Manager.

Functions 1123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Special Considerations

After calling KCRemoveCallback, you should call the function DisposeKCCallbackUPP (page 1079) to
dispose of the UPP to your callback function.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainRemoveCalllback function in Keychain Services instead.

Declared In
KeychainCore.h

KCSetAttribute
Sets or edits keychain item data using a keychain item attribute structure.

Not recommended

OSStatus KCSetAttribute (
 KCItemRef item,
 KCAttribute *attr
);

Parameters
item

A reference to the keychain item whose data you wish to set or edit.

attr
A pointer to a structure of type KCAttribute (page 1132) containing keychain item data you want to
set. Before calling the function KCSetAttribute, fill in the tag, length, and data fields of this
structure with the tag identifying the attribute you wish to modify or set, the length of the attribute
data you wish to set, and a pointer to that data, respectively.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCInvalidItemRef
indicates that the keychain item reference was invalid. The result code errKCNoSuchAttr indicates that the
item attribute you wish to set is undefined for the specified item. The result code errKCDataTooLarge
indicates that more data was supplied than is allowed for this attribute.

Discussion
You can call the KCSetAttribute function or the function KCSetData (page 1125) to set or modify keychain
item data. The difference between the functions is that the KCSetData (page 1125) function requires that you
pass the length of the data and a pointer to that data as separate parameters rather than fields in a keychain
item attribute structure.

If the keychain that contains the item is locked, before calling the KCSetAttribute function you should
call the function KCUnlock (page 1127) to prompt the user to unlock the keychain. The keychain must permit
read/write access in order to modify keychain item data.

1124 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

You can only set or modify standard item attributes identified by the tag constants
kDescriptionKCItemAttr, kCommentKCItemAttr, kLabelKCItemAttr, kCreatorKCItemAttr,
kTypeKCItemAttr, and kCustomIconKCItemAttr. In addition, each class of keychain item has attributes
specific to that class which may be set or modified. See “Keychain Item Attribute Tag Constants” (page 1144)
for more information.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemModifyAttributesAndData function in Keychain Services instead.

Declared In
KeychainCore.h

KCSetData
Sets or edits keychain item data.

Not recommended

OSStatus KCSetData (
 KCItemRef item,
 UInt32 length,
 const void *data
);

Parameters
item

A reference to the keychain item whose data you wish to set.

length
The length of the data buffer pointed to by the data parameter.

data
A pointer to a buffer containing the data to be stored in this item. Before calling the KCSetData
function, allocate enough memory for the buffer to hold the data you want to store.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCInvalidItemRef
indicates that the specified keychain item reference was invalid. The result code errKCDataTooLarge
indicates that the data was too large for the supplied buffer. The result code errKCDataNotModifiable
indicates that the data cannot be set for this item.

Discussion
You can call the function KCSetData or the function KCSetAttribute (page 1124) to set or modify keychain
item data. The difference between the functions is that the function KCSetAttribute (page 1124) requires
that you pass the length of the data buffer as a field in a keychain item attribute structure rather than as a
separate parameter.

Functions 1125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

If the keychain that contains the item is locked, before calling the KCSetData function you should call the
functionKCUnlock (page 1127) to prompt the user to unlock the keychain. The keychain must permit read/write
access in order to modify keychain item data.

You can set or edit any of the standard item attributes identified by the following tag constants:
kDescriptionKCItemAttr, kCommentKCItemAttr, kLabelKCItemAttr, kCreatorKCItemAttr,
kTypeKCItemAttr, and kCustomIconKCItemAttr. There is additional data you can set, depending upon
the type of keychain item whose data you are manipulating. See “Keychain Item Attribute Tag Constants” (page
1144) for more information.

Version Notes
Available beginning with KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemModifyContent function in Keychain Services instead.

Declared In
KeychainCore.h

KCSetDefaultKeychain
Sets the default keychain.

Not recommended

OSStatus KCSetDefaultKeychain (
 KCRef keychain
);

Parameters
keychain

A reference to the keychain you wish to make the default.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoSuchKeychain
indicates that the specified keychain could not be found. The result code errKCInvalidKeychain indicates
that the specified keychain is invalid.

Discussion
In most cases, your application should not need to set the default keychain, because this is a choice normally
made by the user. You should call the KCSetDefaultKeychain function to change where a password or
other keychain items are added.

The KCSetDefaultKeychain function sets the default keychain regardless of whether the keychain is
currently locked.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.

1126 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainSetDefault function in Keychain Services instead.

Declared In
KeychainCore.h

KCSetInteractionAllowed
Enables or disables Keychain Manager functions that display a user interface.

Not recommended

OSStatus KCSetInteractionAllowed (
 Boolean state
);

Parameters
state

A flag that indicates whether the Keychain Manager will display a user interface. If you pass true,
user interaction is allowed. This is the default value. If false, Keychain Manager functions that normally
display a user interface will instead return an error.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154).

Discussion
The KCSetInteractionAllowed function enables you to control whether the functions KCLock (page 1117),
KCUnlock (page 1127), and KCChangeSettings (page 1091) display a user interface. Note that failure to
re-enable user interaction will affect other clients of the Keychain Manager. By default, user interaction is
permitted.

Version Notes
Available beginning with KeychainLib 2.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 2.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainSetUserInteractionAllowed function in Keychain Services instead.

Declared In
KeychainCore.h

KCUnlock
Displays a dialog box that prompts the user for a password before unlocking a keychain.

Not recommended

Functions 1127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

OSStatus KCUnlock (
 KCRef keychain,
 StringPtr password
);

Parameters
keychain

A reference to the keychain to unlock. Pass NULL to specify the default keychain. If you pass NULL
and the default keychain is currently locked, the keychain will appear as the default choice. If you
pass a locked keychain, the function KCUnlock displays the Unlock Keychain dialog box and the
keychain appears as the chosen menu item in the keychain popup menu. If the default keychain is
currently unlocked, the Unlock Keychain dialog box is not displayed and the KCUnlock function
returns noErr.

password
A pointer to a Pascal string representing the password string for this keychain. Pass NULL if the user
password is unknown. In this case, The KCUnlock function displays the Unlock Keychain dialog box,
and the authentication user interface associated with the keychain about to be unlocked. If you specify
an invalid password, you will not be able to unlock the keychain with a specified password until the
machine is rebooted. In this case, the KCUnlock function returns errKCInteractionRequired.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code noErr does not guarantee
that the specified keychain is unlocked, because the user can select any available keychain and unlock it. The
result code userCanceledErr indicates that the user pressed the Cancel button in the Unlock Keychain
dialog box. The result code errKCAuthFailed indicates that authentication failed because of too many
unsuccessful retries. The result code errKCInteractionRequired indicates that user interaction is required
to unlock the keychain. In this case, you will not be able to unlock the keychain with that password until the
machine is rebooted.

Discussion
In most cases, your application does not need to call the KCUnlock function directly, since most Keychain
Manager functions that require an unlocked keychain call KCUnlock automatically. If your application needs
to verify that a keychain is unlocked, call the function KCGetStatus (page 1116).

You can also call the function kcunlock to display a user interface prompting the user to unlock a keychain.
The kcunlock function requires that you pass a pointer to a C string instead of a pointer to a Pascal string
in the password parameter.

Special Considerations

It is recommended that the KCUnlock function not be explicitly called by applications. Most functions that
require an unlocked keychain call the KCUnlock function for you.

The memory that the keychain reference occupies must be released by calling the function
KCReleaseKeychain (page 1122) when you are finished with it.

Version Notes
The KCUnlock function replaces the function KCUnlockKeychain, which was available in KeychainLib 1.0.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainUnlock function in Keychain Services instead.

1128 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Declared In
KeychainHI.h

kcunlock
Not recommended

OSStatus kcunlock (
 KCRef keychain,
 const char *password
);

Discussion
This function is available for convenience only and may be removed. Use the function KCUnlock (page 1127)
instead.

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainUnlock function in Keychain Services instead.

Declared In
KeychainHI.h

KCUpdateItem
Updates a password or other keychain item.

Not recommended

OSStatus KCUpdateItem (
 KCItemRef item
);

Parameters
item

A reference to the keychain item whose data you wish to update. If you pass an item that has not
been previously added to the keychain, the KCUpdateItem function does nothing and returns noErr.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). The result code errKCNoDefaultKeychain
indicates that no default keychain could be found. The result code errKCInvalidItemRef indicates that
the specified keychain item reference was invalid.

Discussion
You can use the KCUpdateItem function to update a password or other keychain item in a keychain’s
permanent data store after changing its data. The function KCUpdateItem automatically calls the function
KCUnlock (page 1127) to display the Unlock Keychain dialog box if the keychain containing the item is currently
locked.

Version Notes
Available beginning with KeychainLib 1.0.

Functions 1129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Availability
Available in CarbonLib 1.1 and later when KeychainLib 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

Use the SecKeychainItemModifyContent function in Keychain Services instead.

Declared In
KeychainCore.h

NewKCCallbackUPP
Creates a UPP to your keychain event callback.

Not recommended

KCCallbackUPP NewKCCallbackUPP (
 KCCallbackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your keychain event callback function. For information on how to create a keychain event
callback, see KCCallbackProcPtr (page 1131).

Return Value
A UPP to your callback function. You can register your callback function by passing this UPP in the
callbackProc parameter of the function KCAddCallback (page 1083). See the description of the
KCCallbackUPP data type.

Discussion
The NewKCCallbackUPP function creates a pointer to your keychain event callback function. You pass a
pointer to your callback function in the callbackProc parameter of the function KCAddCallback (page
1083) if you want your application to receive data transfer events.

Special Considerations

When you are finished with a UPP to your keychain event callback function, you should dispose of it by calling
the function DisposeKCCallbackUPP (page 1079).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Carbon Porting Notes

There is no replacement function available.

Declared In
KeychainCore.h

1130 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Callbacks

KCCallbackProcPtr
Defines a pointer to your keychain event callback that handles user keychain access events.

typedef OSStatus (*KCCallbackProcPtr)
(
 KCEvent keychainEvent,
 KCCallbackInfo * info,
 void * userContext
);

If you name your function MyKCCallbackProc, you would declare it like this:

OSStatus MyKCCallbackProc (
 KCEvent keychainEvent,
 KCCallbackInfo * info,
 void * userContext
);

Parameters
keychainEvent

The keychain event that your application wishes to be notified of. See “Keychain Events
Constants” (page 1140) for a description of possible values. The type of event that can trigger your
callback depends on the bitmask you passed in the eventMask parameter of the function
KCAddCallback (page 1083). For more information, see the discussion.

info
A pointer to a structure of type KCCallbackInfo (page 1133). On return, the structure contains
information about the keychain event that occurred. The Keychain Manager passes this information
to your callback function via the info parameter of the function InvokeKCCallbackUPP (page 1079).

userContext
A pointer to application-defined storage that your application previously passed to the function
KCAddCallback (page 1083). You can use this value to perform operations such as tracking which
instance of a function is operating.

Return Value
A result code. See “Keychain Manager Result Codes” (page 1154). Your keychain event callback function should
process the keychain event and return noErr.

Discussion
Your keychain event callback function handles those keychain events that you indicate. In order to be notified
of these events, you must pass a UPP to your notification callback function in the callbackProc parameter
of KCAddCallback (page 1083). You indicate the type of data transfer events you want to receive via a bitmask
in the eventMask parameter. When you no longer wish to receive notification of keychain events, you should
call the function KCRemoveCallback (page 1123) to dispose of the UPP to your keychain event callback
function.

Carbon Porting Notes

Use the SecKeychainCalllback function in Keychain Services instead.

Callbacks 1131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

Data Types

AFPServerSignature
Represents a 16-byte Apple File Protocol server signature block.

typedef UInt8 AFPServerSignature[16];

Discussion
The AFPServerSignature type represents a 16-byte Apple File Protocol server signature block. You can
pass a value of this type in the serverSignature parameter of the functions KCAddAppleSharePassword (page
1080) and KCFindAppleSharePassword (page 1096) to represent an Apple File Protocol server signature. You
can use a value of this type with the keychain item attribute constant kSignatureKCItemAttr to specify
an Apple File Protocol server signature.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCAttribute
Contains information about a keychain item attribute.

typedef SecKeychainAttribute KCAttribute;

Discussion
The KCAttribute type represents a structure containing information about the attribute of a keychain item.
It contains a tag that identifies a particular keychain item attribute value, the length of the attribute value,
and a pointer to the attribute value. You can modify attribute data for a keychain item attribute by passing
a pointer to this structure in the attr parameter of the function KCSetAttribute (page 1124). The function
KCGetAttribute (page 1109) passes back a pointer to this structure in the attr parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCAttributeList
Lists attributes in a keychain item.

1132 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

typedef SecKeychainAttributeList KCAttributeList;

Discussion
The KCAttributeList type represents a list of structures containing information about the attributes in a
keychain item. You pass a pointer to this list of 0 or more structures in the attrList parameter of the
function KCFindFirstItem (page 1099) to indicate the attributes to be matched.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCAttrType
Identifies a keychain item attribute value.

typedef SecKeychainAttrType KCAttrType;

Discussion
The KCAttrType type represents a tag that identifies a keychain item attribute value. You can use this value
in the tag field of the structure KCAttribute (page 1132) to identify the keychain item attribute value you
wish to set or obtain. See Keychain Item Attribute Tag Constants (page 1144) for a description of the
Apple-defined tag constants and the data types of the values they identify. Your application can create
application-defined tags of type KCAttrType.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCCallbackInfo
Contains information about a keychain event.

struct KCCallbackInfo {
 UInt32 version;
 KCItemRef item;
 long processID[2];
 long event[4];
 KCRef keychain;
};
typedef struct KCCallbackInfo KCCallbackInfo;

Fields
version

The version of this structure.

item
A reference to the keychain item in which the event occurred. If the event did not involve an item,
this field is not valid.

Data Types 1133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

processID
A 64-bit quantity containing the process serial number of the process in which the event occurred.
This is not available on Mac OS X.

event
The keychain event that occurred. If the event is a system event as indicated by the constant
kSystemKCEvent, the Keychain client can process events. If the event is not a system event, this field
is not valid. This is not available on Mac OS X.

keychain
A reference to the keychain in which the event occurred. If the event did not involve a keychain, this
field is not valid.

Discussion
The KCCallbackInfo type represents a structure that contains information about the keychain event of
which your application wants to be notified. The Keychain Manager passes a pointer to this structure in the
infoparameter of your callback function via the function InvokeKCCallbackUPP (page 1079), which invokes
your callback function. For information on how to write a keychain event callback function, see
KCCallbackProcPtr (page 1131).

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCCallbackUPP
Defines a data type for the KCCallbackProcPtr callback pointer.

typedef KCCallbackProcPtr KCCallbackUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCItemRef
Represents a reference to a keychain item.

typedef SecKeychainItemRef KCItemRef;

Discussion
The KCItemRef type represents a reference to an opaque structure that identifies a keychain item. You
should call the function KCNewItem (page 1120) to create a keychain item reference. The function
KCReleaseItem (page 1121) disposes of a keychain item reference when no longer needed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

1134 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCPublicKeyHash
Represents a 20-byte public key hash.

typedef UInt8 KCPublicKeyHash[20];

Discussion
The KCPublicKeyHash type represents a hash of a public key. You can use the constant
kPublicKeyHashKCItemAttr, described in Keychain Item Attribute Tag Constants (page 1144), to
set or retrieve a certificate attribute value of this type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCRef
Represents a reference to a keychain.

typedef SecKeychainRef KCRef;

Discussion
The KCRef type represents a reference to an opaque structure that identifies a keychain. You should call the
functionKCMakeKCRefFromFSSpec (page 1119) orKCMakeKCRefFromAlias (page 1119) to create a keychain
reference. The function KCReleaseKeychain (page 1122) disposes of a keychain reference when no longer
needed. You pass a reference of this type to Keychain Manager functions that operate on a keychain in some
way.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

KCSearchRef
Represents a reference to the current search criteria.

typedef SecKeychainSearchRef KCSearchRef;

Discussion
The KCSearchRef type represents a reference to an opaque structure that identifies the current search
criteria. The function KCFindFirstItem (page 1099) passes back a reference of this type in the search
parameter for subsequent calls to the function KCFindNextItem (page 1108). You must release this reference
when you are finished with a search by calling the function KCReleaseSearch (page 1122).

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

Data Types 1135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

KCStatus
Identifies a mask that you can use in determining the permissions that are set in a keychain.

typedef SecKeychainStatus KCStatus;

Discussion
The KCStatus enumeration defines masks your application can use to determine the read and write
permissions for a keychain. The function KCGetStatus (page 1116) passes back this mask in the status
parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
KeychainCore.h

Constants

Authentication Type Constants
Represent the type of authentication to use in storing and retrieving Internet passwords.

enum {
 kKCAuthTypeNTLM = 'ntlm',
 kKCAuthTypeMSN = 'msna',
 kKCAuthTypeDPA = 'dpaa',
 kKCAuthTypeRPA = 'rpaa',
 kKCAuthTypeHTTPDigest = 'httd',
 kKCAuthTypeDefault = 'dflt'
};
typedef FourCharCode KCAuthType;

Constants
kKCAuthTypeNTLM

Specifies Windows NT LAN Manager authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCAuthTypeMSN
Specifies Microsoft Network authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCAuthTypeDPA
Specifies Distributed Password authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

1136 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kKCAuthTypeRPA
Specifies Remote Password authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCAuthTypeHTTPDigest
Specifies HTTP Digest Access authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCAuthTypeDefault
Specifies default authentication.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCAuthType enumeration defines constants you can use to identify the type of authentication to use
in storing and retrieving Internet passwords. You can pass a constant of this type in the authType parameter
of the functions KCAddInternetPassword (page 1086), KCAddInternetPasswordWithPath (page 1088),
KCFindInternetPassword (page 1102), and KCFindInternetPasswordWithPath (page 1105).

Certificate Search Options
Represent a mask that specifies the search criteria to use when finding certificates.

Constants 1137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

typedef UInt32 KCCertSearchOptions;
enum {
 kCertSearchShift = 0,
 kCertSearchSigningIgnored = 0,
 kCertSearchSigningAllowed = 1 << (kCertSearchShift + 0),
 kCertSearchSigningDisallowed = 1 << (kCertSearchShift + 1),
 kCertSearchSigningMask = ((kCertSearchSigningAllowed) |
 (kCertSearchSigningDisallowed)),
 kCertSearchVerifyIgnored = 0,
 kCertSearchVerifyAllowed = 1 << (kCertSearchShift + 2),
 kCertSearchVerifyDisallowed = 1 << (kCertSearchShift + 3),
 kCertSearchVerifyMask = ((kCertSearchVerifyAllowed) |
 (kCertSearchVerifyDisallowed)),
 kCertSearchEncryptIgnored = 0,
 kCertSearchEncryptAllowed = 1 << (kCertSearchShift + 4),
 kCertSearchEncryptDisallowed = 1 << (kCertSearchShift + 5),
 kCertSearchEncryptMask = ((kCertSearchEncryptAllowed) |
 (kCertSearchEncryptDisallowed)),
 kCertSearchDecryptIgnored = 0,
 kCertSearchDecryptAllowed = 1 << (kCertSearchShift + 6),
 kCertSearchDecryptDisallowed = 1 << (kCertSearchShift + 7),
 kCertSearchDecryptMask = ((kCertSearchDecryptAllowed) |
 (kCertSearchDecryptDisallowed)),
 kCertSearchWrapIgnored = 0,
 kCertSearchWrapAllowed = 1 << (kCertSearchShift + 8),
 kCertSearchWrapDisallowed = 1 << (kCertSearchShift + 9),
 kCertSearchWrapMask = ((kCertSearchWrapAllowed) |
 (kCertSearchWrapDisallowed)),
 kCertSearchUnwrapIgnored = 0,
 kCertSearchUnwrapAllowed = 1 << (kCertSearchShift + 10),
 kCertSearchUnwrapDisallowed = 1 << (kCertSearchShift + 11),
 kCertSearchUnwrapMask = ((kCertSearchUnwrapAllowed) |
 (kCertSearchUnwrapDisallowed)),
 kCertSearchPrivKeyRequired = 1 << (kCertSearchShift + 12),
 kCertSearchAny = 0
};

Discussion
The KCCertSearchOptions enumeration defines masks that you can use in the options parameter of the
function KCFindX509Certificates (page 1109).

Certificate Usage Options
Represent a mask that specifies the usage options when adding certificates.

typedef UInt32 KCCertAddOptions;
enum {
 kSecOptionReserved = 0x000000FF,
 kCertUsageShift = 8,
 kCertUsageSigningAdd = 1 << (kCertUsageShift + 0),
 kCertUsageSigningAskAndAdd = 1 << (kCertUsageShift + 1),

1138 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

 kCertUsageVerifyAdd = 1 << (kCertUsageShift + 2),
 kCertUsageVerifyAskAndAdd = 1 << (kCertUsageShift + 3),
 kCertUsageEncryptAdd = 1 <<(kCertUsageShift + 4),
 kCertUsageEncryptAskAndAdd = 1 << (kCertUsageShift + 5),
 kCertUsageDecryptAdd = 1 << (kCertUsageShift + 6),
 kCertUsageDecryptAskAndAdd = 1 << (kCertUsageShift + 7),
 kCertUsageKeyExchAdd = 1 << (kCertUsageShift + 8),
 kCertUsageKeyExchAskAndAdd = 1 << (kCertUsageShift + 9),
 kCertUsageRootAdd = 1 << (kCertUsageShift + 10),
 kCertUsageRootAskAndAdd = 1 << (kCertUsageShift + 11),
 kCertUsageSSLAdd = 1 << (kCertUsageShift + 12),
 kCertUsageSSLAskAndAdd = 1 << (kCertUsageShift + 13),
 kCertUsageAllAdd = 0x7FFFFF00
};

Certificate Verification Criteria
Identify the verification criteria for use when displaying certificates to the user.

typedef UInt16 KCVerifyStopOn;
enum {
 kPolicyKCStopOn = 0,
 kNoneKCStopOn = 1,
 kFirstPassKCStopOn = 2,
 kFirstFailKCStopOn = 3
};

Constants
kPolicyKCStopOn

Indicates that the function KCChooseCertificate (page 1092) should use the trust policy options
currently in effect.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kNoneKCStopOn
Indicates that the functionKCChooseCertificate (page 1092) completes after examining all available
certificates.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kFirstPassKCStopOn
Indicates that the function KCChooseCertificate (page 1092) when one certificate meeting the
verification criteria is found.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kFirstFailKCStopOn
Specifies that the function KCChooseCertificate (page 1092) completes when one certificate that
fails to meet the verification criteria is found.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Discussion
The KCVerifyStopOn enumeration defines constants your application can use to identify the verification
criteria to use in selecting certificates. You can pass a constant of this type in the stopOn parameter of the
function KCChooseCertificate (page 1092).

Default Internet Port Constant
Represent the internet ports available.

enum {
 kAnyPort = 0
};

Constants
kAnyPort

Indicates that any Internet port can be used.

Available in Mac OS X v10.1 and later.

Declared in KeychainCore.h.

Default Internet Protocol And Authentication Type Constants
Represent the internet protocols and authentication types available.

enum {
 kAnyProtocol = 0,
 kAnyAuthType = 0
};

Constants
kAnyProtocol

Indicates that any Internet protocol can be used.

Available in Mac OS X v10.1 and later.

Declared in KeychainCore.h.

kAnyAuthType
Indicates that any Internet authentication type can be used.

Available in Mac OS X v10.1 and later.

Declared in KeychainCore.h.

Keychain Events Constants
Identify keychain events.

1140 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

typedef UInt16 KCEvent;
enum {
 kIdleKCEvent = 0,
 kLockKCEvent = 1,
 kUnlockKCEvent = 2,
 kAddKCEvent = 3,
 kDeleteKCEvent = 4,
 kUpdateKCEvent = 5,
 kPasswordChangedKCEvent = 6,
 kSystemKCEvent = 8,
 kDefaultChangedKCEvent = 9,
 kDataAccessKCEvent = 10,
 kKeychainListChangedKCEvent = 11
};

Constants
kIdleKCEvent

Indicates a NULL event.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kLockKCEvent
Indicates that the keychain was locked.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kUnlockKCEvent
Indicates that the keychain was unlocked.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kAddKCEvent
Indicates that an item was added to a keychain.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDeleteKCEvent
Indicates that an item was deleted from a keychain.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kUpdateKCEvent
Indicates that a keychain item was updated.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kPasswordChangedKCEvent
Indicates that the identity of the keychain was changed.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1141
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kSystemKCEvent
Indicates that the keychain client can process events.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDefaultChangedKCEvent
Indicates that the default keychain has changed.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDataAccessKCEvent
Indicates that a process has called the function KCGetData (page 1111) to access a keychain item’s
data.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKeychainListChangedKCEvent
Indicates that the list of keychains has changed.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCEvent enumeration defines constants that identify the Keychain-related events your callback function
wishes to receive. The Keychain Manager tests a mask that you pass in the eventMask parameter of the
function KCAddCallback (page 1083) to determine the data transfer events your notification callback function
wishes to receive. It passes these events in the keychainEvent parameter of the function
InvokeKCCallbackUPP (page 1079). For a description of the Keychain-related event masks, see Keychain
Events Mask (page 1142).

Keychain Events Mask
Identify a mask that you can use to set the keychain events you wish to receive.

typedef UInt16 KCEventMask;
enum {
 kIdleKCEventMask = 1 << kIdleKCEvent,
 kLockKCEventMask = 1 << kLockKCEvent,
 kUnlockKCEventMask = 1 << kUnlockKCEvent,
 kAddKCEventMask = 1 << kAddKCEvent,
 kDeleteKCEventMask = 1 << kDeleteKCEvent,
 kUpdateKCEventMask = 1 << kUpdateKCEvent,
 kPasswordChangedKCEventMask = 1 << kPasswordChangedKCEvent,
 kSystemEventKCEventMask = 1 << kSystemKCEvent,
 kDefaultChangedKCEventMask = 1 << kDefaultChangedKCEvent,
 kDataAccessKCEventMask = 1 << kDataAccessKCEvent,
 kEveryKCEventMask = 0xFFFF
};

Constants
kIdleKCEventMask

If the bit specified by this mask is set, your callback function will be invoked during a NULL event.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

1142 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kLockKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when the keychain is
locked.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kUnlockKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when the keychain is
unlocked.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kAddKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when an item is added
to the keychain.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDeleteKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when an item is removed
from the keychain.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kUpdateKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when a keychain item is
updated.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kPasswordChangedKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when the keychain identity
is changed.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kSystemEventKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when the keychain client
processes an event.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDefaultChangedKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when the default keychain
is changed.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1143
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kDataAccessKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when a process calls the
function KCGetData (page 1111).

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kEveryKCEventMask
If the bit specified by this mask is set, your callback function will be invoked when any of the above
Keychain-related events occur.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCEventMask enumeration defines masks your application can use to set Keychain event bits. You pass
this mask in the eventMask parameter of the function KCAddCallback (page 1083), thereby defining the
Keychain-related events to which your callback will respond. The Keychain Manager uses this mask to test
which events your callback function will handle. It passes these events in the keychainEvent parameter of
the function InvokeKCCallbackUPP (page 1079). For a description of Keychain-related events, see Keychain
Events Constants (page 1140).

Keychain Item Attribute Tag Constants
Represent tags that identify keychain item attribute values.

1144 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

enum {
 kClassKCItemAttr = 'clas',
 kCreationDateKCItemAttr = 'cdat',
 kModDateKCItemAttr = 'mdat',
 kDescriptionKCItemAttr = 'desc',
 kCommentKCItemAttr = 'icmt',
 kCreatorKCItemAttr = 'crtr',
 kTypeKCItemAttr = 'type',
 kScriptCodeKCItemAttr = 'scrp',
 kLabelKCItemAttr = 'labl',
 kInvisibleKCItemAttr = 'invi',
 kNegativeKCItemAttr = 'nega',
 kCustomIconKCItemAttr = 'cusi',
 kAccountKCItemAttr = 'acct',
 kServiceKCItemAttr = 'svce',
 kGenericKCItemAttr = 'gena',
 kSecurityDomainKCItemAttr = 'sdmn',
 kServerKCItemAttr = 'srvr',
 kAuthTypeKCItemAttr = 'atyp',
 kPortKCItemAttr = 'port',
 kPathKCItemAttr = 'path',
 kVolumeKCItemAttr = 'vlme',
 kAddressKCItemAttr = 'addr',
 kSignatureKCItemAttr = 'ssig',
 kProtocolKCItemAttr = 'ptcl',
 kSubjectKCItemAttr = 'subj',
 kCommonNameKCItemAttr = 'cn ',
 kIssuerKCItemAttr = 'issu',
 kSerialNumberKCItemAttr = 'snbr',
 kEMailKCItemAttr = 'mail',
 kPublicKeyHashKCItemAttr = 'hpky',
 kIssuerURLKCItemAttr = 'iurl',
 kEncryptKCItemAttr = 'encr',
 kDecryptKCItemAttr = 'decr',
 kSignKCItemAttr = 'sign',
 kVerifyKCItemAttr = 'veri',
 kWrapKCItemAttr = 'wrap',
 kUnwrapKCItemAttr = 'unwr',
 kStartDateKCItemAttr = 'sdat',
 kEndDateKCItemAttr = 'edat'
};
typedef FourCharCode KCItemAttr;

Constants
kClassKCItemAttr

Identifies the class attribute. You use this tag to set or get a value of type KCItemClass that indicates
whether the item is an AppleShare, Internet, or generic password, or a certificate. See
“KCPublicKeyHash” (page 1135) for a description of possible values.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kCreationDateKCItemAttr
Identifies the creation date attribute. You use this tag to set or get a value of type UInt32 that indicates
the date the item was created.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1145
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kModDateKCItemAttr
Identifies the modification date attribute. You use this tag to set or get a value of type UInt32 that
indicates the last time the item was updated.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDescriptionKCItemAttr
Identifies the description attribute. You use this tag to set or get a value of type string that represents
a user-visible string describing this item.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kCommentKCItemAttr
Identifies the comment attribute. You use this tag to set or get a value of type string that represents
a user-editable string containing comments for this item.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kCreatorKCItemAttr
Identifies the creator attribute. You use this tag to set or get a value of type OSType that represents
the item’s creator.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kTypeKCItemAttr
Identifies the type attribute. You use this tag to set or get a value of type OSType that represents the
item’s type.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kScriptCodeKCItemAttr
Identifies the script code attribute. You use this tag to set or get a value of type ScriptCode that
represents the script code for all strings.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kLabelKCItemAttr
Identifies the label attribute. You use this tag to set or get a value of type string that represents a
user-editable string containing the label for this item.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kInvisibleKCItemAttr
Identifies the invisible attribute. You use this tag to set or get a value of type Boolean that indicates
whether the item is invisible.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

1146 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kNegativeKCItemAttr
Identifies the negative attribute. You use this tag to set or get a value of type Boolean that indicates
whether there is a valid password associated with this keychain item. This is useful if your application
doesn't want a password for some particular service to be stored in the keychain, but prefers that it
always be entered by the user. The item (typically invisible and with zero-length data) acts as a
placeholder to say “don't use me.”

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kCustomIconKCItemAttr
Identifies the custom icon attribute. You use this tag to set or get a value of type Boolean that
indicates whether the item has an application-specific icon. To do this, you must also set the attribute
value identified by the tag kTypeKCItemAttr to a file type for which there is a corresponding icon in
the desktop database, and set the attribute value identified by the tag kCreatorKCItemAttr to an
appropriate application creator type. If a custom icon corresponding to the item's type and creator
can be found in the desktop database, it will be displayed by Keychain Access. Otherwise, default
icons are used.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kAccountKCItemAttr
Identifies the account attribute. You use this tag to set or get a value of type Str63 that represents
the user account. It also applies to generic and AppleShare passwords.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kServiceKCItemAttr
Identifies the service attribute for a generic password. You use this tag to set or get a value of type
Str63 that represents the service.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kGenericKCItemAttr
Identifies the generic attribute for a generic password. You use this tag to set or get a value of untyped
bytes that represents a user-defined attribute.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kSecurityDomainKCItemAttr
Identifies the security domain attribute for an internet password. You use this tag to set or get a value
of type Str63 that represents the Internet security domain.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kServerKCItemAttr
Identifies the server attribute for an internet password. You use this tag to set or get a value of type
string that represents the Internet server’s domain name or IP address.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1147
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kAuthTypeKCItemAttr
Identifies the authentication type attribute for an internet password. You use this tag to set or get a
value of type KCAuthType that represents the Internet authentication scheme.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kPortKCItemAttr
Identifies the port attribute for an internet password. You use this tag to set or get a value of type
UInt16 that represents the Internet port.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kPathKCItemAttr
Identifies the path attribute for an internet password. You use this tag to set or get a value of type
Str255 that represents the path.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kVolumeKCItemAttr
Identifies the volume attribute for an AppleShare password. You use this tag to set or get a value of
type Str63 that represents the AppleShare volume.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kAddressKCItemAttr
Identifies the address attribute for an AppleShare password. You use this tag to set or get a value of
type string that represents the zone name, or the IP or domain name that represents the server
address.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kSignatureKCItemAttr
Identifies the server signature attribute for an AppleShare password. You use this tag to set or get a
value of type KCPublicKeyHash (page 1135) that represents the server signature block.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kProtocolKCItemAttr
Identifies the protocol attribute for an AppleShare or internet password. You use this tag to set or get
a value of type KCProtocolType that represents the Internet protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kSubjectKCItemAttr
Identifies the subject attribute for a certificate. You use this tag to set or get DER-encoded data that
represents the subject distinguished name.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

1148 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kCommonNameKCItemAttr
Identifies the common name attribute for a certificate. You use this tag to set or get a UTF8-encoded
string that represents the common name.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kIssuerKCItemAttr
Identifies the issuer attribute for a certificate. You use this tag to set or get a DER-encoded data that
represents the issuer distinguished name.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kSerialNumberKCItemAttr
Identifies the serial number attribute for a certificate. You use this tag to set or get a DER-encoded
data that represents the serial number.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kEMailKCItemAttr
Identifies the email attribute for a certificate. You use this tag to set or get an ASCII-encoded string
that represents the issuer’s email address.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kPublicKeyHashKCItemAttr
Identifies the public key hash attribute for a certificate. You use this tag to set or get a value of type
KCPublicKeyHash (page 1135) that represents the hash of the public key.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kIssuerURLKCItemAttr
Identifies the issuer URL attribute for a certificate. You use this tag to set or get an ASCII-encoded
string that represents the URL of the certificate issuer.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kEncryptKCItemAttr
Identifies the encrypt attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can encrypt.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kDecryptKCItemAttr
Identifies the decrypt attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can decrypt.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1149
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kSignKCItemAttr
Identifies the sign attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can sign.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kVerifyKCItemAttr
Identifies the verify attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can verify.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kWrapKCItemAttr
Identifies the wrap attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can wrap.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kUnwrapKCItemAttr
Identifies the unwrap attribute for a certificate or key. You use this tag to set or get a value of type
Boolean that indicates whether the item can unwrap.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kStartDateKCItemAttr
Identifies the start date attribute for a certificate or key. You use this tag to set or get a value of type
UInt32 that indicates the start date.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kEndDateKCItemAttr
Identifies the end date attribute for a certificate or key. You use this tag to set or get a value of type
UInt32 that indicates the end date.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCItemAttr enumeration defines the Apple-defined tag constants that identify keychain item attribute
values. Your application can use one of these tags in the tag field of the structure KCAttribute (page 1132)
to identify the keychain item attribute value you wish to set or retrieve. Your application can create
application-defined tags of type KCAttrType (page 1133).

Keychain Item Type Constants
Identify the type of keychain item.

1150 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

enum {
 kCertificateKCItemClass = 'cert',
 kAppleSharePasswordKCItemClass = 'ashp',
 kInternetPasswordKCItemClass = 'inet',
 kGenericPasswordKCItemClass = 'genp'
};
typedef FourCharCode KCItemClass;

Constants
kCertificateKCItemClass

Specifies that the item is a digital certificate.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kAppleSharePasswordKCItemClass
Specifies that the item is an AppleShare password.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kInternetPasswordKCItemClass
Specifies that the item is an Internet password.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kGenericPasswordKCItemClass
Specifies that the item is a generic password.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCItemClass enumeration defines constants your application can use to specify the type of the keychain
item you wish to create, dispose, add, delete, update, copy, or locate. You pass a constant of this type to the
functionsKCNewItem (page 1120),KCReleaseItem (page 1121),KCAddItem (page 1090),KCDeleteItem (page
1096),KCUpdateItem (page 1129),KCCopyItem (page 1092), andKCGetKeychain (page 1113). You can also use
these constants with the tag constant kClassKCItemAttr, described in Keychain Item Attribute Tag
Constants (page 1144).

Keychain Protocol Type Constants
Identify the protocol to use in storing and retrieving Internet passwords.

Constants 1151
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

enum {
 kKCProtocolTypeFTP = 'ftp ',
 kKCProtocolTypeFTPAccount = 'ftpa',
 kKCProtocolTypeHTTP = 'http',
 kKCProtocolTypeIRC = 'irc ',
 kKCProtocolTypeNNTP = 'nntp',
 kKCProtocolTypePOP3 = 'pop3',
 kKCProtocolTypeSMTP = 'smtp',
 kKCProtocolTypeSOCKS = 'sox ',
 kKCProtocolTypeIMAP = 'imap',
 kKCProtocolTypeLDAP = 'ldap',
 kKCProtocolTypeAppleTalk = 'atlk',
 kKCProtocolTypeAFP = 'afp ',
 kKCProtocolTypeTelnet = 'teln'
};
typedef FourCharCode KCProtocolType;

Constants
kKCProtocolTypeFTP

Specifies the File Transfer Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeFTPAccount
Specifies the File Transfer Protocol Account.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeHTTP
Specifies the HyperText Transfer Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeIRC
Specifies the Internet Relay Channel Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeNNTP
Specifies the Network News Transfer Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypePOP3
Specifies the Post Office 3 Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeSMTP
Specifies the Simple Mail Transfer Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

1152 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kKCProtocolTypeSOCKS
Specifies the Secure Proxy Server Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeIMAP
Specifies the Internet Message Access Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeLDAP
Specifies the Lightweight Directory Access Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeAppleTalk
Specifies the AppleTalk Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeAFP
Specifies the AppleTalk File Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kKCProtocolTypeTelnet
Specifies the Telnet Protocol.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Discussion
The KCProtocolType enumeration defines constants you can use to identify the type of authentication to
use in storing and retrieving Internet passwords. You can pass a constant of this type in the protocol
parameter of the functionsKCAddInternetPassword (page 1086),KCAddInternetPasswordWithPath (page
1088), KCFindInternetPassword (page 1102), and KCFindInternetPasswordWithPath (page 1105).

Keychain Status Constants
Identify the keychain status.

enum {
 kUnlockStateKCStatus = 1,
 kRdPermKCStatus = 2,
 kWrPermKCStatus = 4
};

Constants
kUnlockStateKCStatus

If the bit specified by this mask is set (bit 0), the keychain is unlocked.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Constants 1153
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

kRdPermKCStatus
If the bit specified by this mask is set (bit 1), the keychain is unlocked with read permission.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

kWrPermKCStatus
If the bit specified by this mask is set (bit 2), the keychain is unlocked with write permission.

Available in Mac OS X v10.0 and later.

Declared in KeychainCore.h.

Result Codes

The most common result codes returned by Keychain Manager are listed below.

DescriptionValueResult Code

Indicates that the Keychain Manager was not loaded.-25291errKCNotAvailable

Available in Mac OS X v10.0 and later.

Returned by the function KCCopyItem to indicate that the
keychain file is read-only and cannot be edited.

-25292errKCReadOnly

Available in Mac OS X v10.0 and later.

Returned by the function KCUnlock to indicate that the
authentication failed (too many unsuccessful retries).

-25293errKCAuthFailed

Available in Mac OS X v10.0 and later.

Returned by the functions KCUnlock,
KCSetDefaultKeychain, KCGetStatus, and
KCGetIndKeychain to indicate that the specified keychain
was not found.

-25294errKCNoSuchKeychain

Available in Mac OS X v10.0 and later.

Returned by the functions KCUnlock,
KCSetDefaultKeychain, KCGetStatus,
KCGetKeychainName, KCChangeSettings, and
KCCreateKeychain to indicate that the keychain is not valid.

-25295errKCInvalidKeychain

Available in Mac OS X v10.0 and later.

Returned by the function KCCreateKeychain to indicate
that your application tried to create a keychain that already
exists.

-25296errKCDuplicateKeychain

Available in Mac OS X v10.0 and later.

Returned by the function KCAddCallback to indicate that
your callback function was already registered.

-25297errKCDuplicateCallback

Available in Mac OS X v10.0 and later.

1154 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

DescriptionValueResult Code

Returned by the function KCRemoveCallback to indicate
that the callback function was not previously registered.

-25298errKCInvalidCallback

Available in Mac OS X v10.0 and later.

Returned by the functions KCAddAppleSharePassword,
KCAddInternetPassword,
KCAddInternetPasswordWithPath,
KCAddGenericPassword, and KCAddItem to indicate that
you tried to add an existing keychain item to the keychain.

-25299errKCDuplicateItem

Available in Mac OS X v10.0 and later.

Returned by the functions KCFindAppleSharePassword,
KCFindInternetPassword,
KCFindInternetPasswordWithPath,
KCFindGenericPassword, KCFindNextItem, and
KCFindFirstItem to indicate that no matching item was
found.

-25300errKCItemNotFound

Available in Mac OS X v10.0 and later.

Returned by the functions KCFindAppleSharePassword,
KCFindInternetPassword,
KCFindInternetPasswordWithPath,
KCFindGenericPassword, KCGetAttribute, KCGetData,
and KCFindX509Certificates to indicate that the buffer
was not large enough to contain the password data.

-25301errKCBufferTooSmall

Available in Mac OS X v10.0 and later.

Returned by the functions KCAddAppleSharePassword,
KCAddInternetPassword,
KCAddInternetPasswordWithPath,
KCAddGenericPassword, KCSetAttribute, and
KCSetData to indicate that the data is too large.

-25302errKCDataTooLarge

Available in Mac OS X v10.0 and later.

Returned by the functions KCSetAttribute,
KCGetAttribute, and KCFindFirstItem to indicate that
no such attribute exists.

-25303errKCNoSuchAttr

Available in Mac OS X v10.0 and later.

Returned by the functions KCSetAttribute,
KCGetAttribute, KCSetData, KCGetData, KCAddItem,
KCDeleteItem, KCUpdateItem, KCCopyItem, and
KCGetKeychain to indicate that the keychain item reference
is invalid.

-25304errKCInvalidItemRef

Available in Mac OS X v10.0 and later.

Result Codes 1155
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

DescriptionValueResult Code

Returned by the functions KCFindNextItem and
KCReleaseSearch to indicate that the specified search
reference is invalid.

-25305errKCInvalidSearchRef

Available in Mac OS X v10.0 and later.

Returned by the function KCCopyItem to indicate that the
item class does not exist.

-25306errKCNoSuchClass

Available in Mac OS X v10.0 and later.

Returned by the functions KCChangeSettings,
KCSetDefaultKeychain, KCGetDefaultKeychain,
KCAddAppleSharePassword, KCAddInternetPassword,
KCAddInternetPasswordWithPath,
KCAddGenericPassword, KCFindAppleSharePassword,
KCFindInternetPassword,
KCFindInternetPasswordWithPath,
KCFindGenericPassword, KCCopyItem, KCAddItem,
KCDeleteItem, KCUpdateItem, KCFindNextItem,
KCFindFirstItem, and KCFindX509Certificates to
indicate that there is no default keychain.

-25307errKCNoDefaultKeychain

Available in Mac OS X v10.0 and later.

Returned by the functions KCCreateKeychain,
KCChangeSettings, KCUnlock, and KCGetData (the latter
two only when the Unlock Dialog and Allow Access dialog
boxes are needed) to indicate that there is no start-up
keychain.

-25308errKCInteractionNotAllowed

Available in Mac OS X v10.0 and later.

Returned by the function KCSetAttribute to indicate that
the keychain item attribute is read-only.

-25309errKCReadOnlyAttr

Available in Mac OS X v10.0 and later.

Indicates that the wrong version of Keychain Manager is
installed to perform this operation.

-25310errKCWrongKCVersion

Available in Mac OS X v10.0 and later.

Indicates that the key size is illegal.-25311errKCKeySizeNotAllowed

Available in Mac OS X v10.0 and later.

Returned by functions that prompts the loading of the
Keychain Manager to indicate that the storage module is not
found.

-25312errKCNoStorageModule

Available in Mac OS X v10.0 and later.

Returned when a function is required for a certificate and the
certificate module is not found.

-25313errKCNoCertificateModule

Available in Mac OS X v10.0 and later.

1156 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

DescriptionValueResult Code

Returned when a function is required for a trust policy and
the policy module is not found.

-25314errKCNoPolicyModule

Available in Mac OS X v10.0 and later.

Returned by the function KCUnlock to indicate that user
interaction is required for this operation.

-25315errKCInteractionRequired

Available in Mac OS X v10.0 and later.

Indicates that the requested data is not available.-25316errKCDataNotAvailable

Available in Mac OS X v10.0 and later.

Returned by the functions KCSetData and KCGetData to
indicate that the data cannot be modified.

-25317errKCDataNotModifiable

Available in Mac OS X v10.0 and later.

Returned by the functions KCChooseCertificate and
KCFindX509Certificates to indicate that the attempt to
create a new keychain failed.

-25318errKCCreateChainFailed

Available in Mac OS X v10.0 and later.

Result Codes 1157
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

1158 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 13

Keychain Manager Reference

Framework: Carbon/Carbon.h

Declared in Lists.h

Overview

Important: The List Manager is deprecated in Mac OS X version 10.5 and later. The replacement API is the
Data Browser. For more information, see Data Browser Programming Guide.

In Mac OS 9 and earlier, the List Manager allowed applications to create, manipulate, and display scrolling
lists of data items in a window. The List Manager was included in Carbon to facilitate the porting of legacy
applications to Mac OS X. For Carbon applications, the Data Browser provides a more convenient way to
present data for browsing and to create easily customized lists whose columns can be sorted, moved, and
resized.

You should not use the List Manager in new application development.

Functions by Task

Accessing and Manipulating Cell Data

LAddToCell (page 1177) Deprecated in Mac OS X v10.5
Appends data to the data already contained in a cell.

LClrCell (page 1179) Deprecated in Mac OS X v10.5
Clears the data contained in a cell.

LGetCell (page 1183) Deprecated in Mac OS X v10.5
Copies a cell’s data.

LGetCellDataLocation (page 1183) Deprecated in Mac OS X v10.5
Finds the memory location of cell data.

LSetCell (page 1190) Deprecated in Mac OS X v10.5
Changes the data contained in a cell.

Overview 1159
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Adding and Deleting Columns and Rows To and From a List

LAddColumn (page 1175) Deprecated in Mac OS X v10.5
Adds one or more columns to a list.

LAddRow (page 1176) Deprecated in Mac OS X v10.5
Adds one or more rows to a list.

LDelColumn (page 1180) Deprecated in Mac OS X v10.5
Deletes one or more columns from a list.

LDelRow (page 1181) Deprecated in Mac OS X v10.5
Deletes one or more rows from a list.

Changing the Size of Cells and Lists

LCellSize (page 1178) Deprecated in Mac OS X v10.5
Changes the size of cells in a list.

LSize (page 1193) Deprecated in Mac OS X v10.5
Changes the size of a list.

Creating and Disposing of Lists

LDispose (page 1181) Deprecated in Mac OS X v10.5
Disposes of the memory associated with a list.

LNew (page 1186) Deprecated in Mac OS X v10.5
Creates a new list in a window.

Creating and Managing Universal Procedure Pointers

DisposeListClickLoopUPP (page 1164) Deprecated in Mac OS X v10.5
Disposes of the universal procedure pointer (UPP) to a list click loop callback function.

DisposeListDefUPP (page 1165) Deprecated in Mac OS X v10.5
Disposes of the universal procedure pointer (UPP) to a list definition callback function.

DisposeListSearchUPP (page 1165) Deprecated in Mac OS X v10.5
Disposes of the universal procedure pointer (UPP) to a list search callback function.

InvokeListClickLoopUPP (page 1173) Deprecated in Mac OS X v10.5
Calls your list click loop callback function.

InvokeListDefUPP (page 1173) Deprecated in Mac OS X v10.5
Calls your list definition callback function.

InvokeListSearchUPP (page 1174) Deprecated in Mac OS X v10.5
Calls your list search callback function

NewListClickLoopUPP (page 1194) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a list click loop callback function.

NewListDefUPP (page 1194) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a list definition callback function.

1160 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

NewListSearchUPP (page 1195) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer (UPP) to a list search callback function.

Determining or Changing the Selection

LGetSelect (page 1184) Deprecated in Mac OS X v10.5
Gets information about which cells are selected.

LSetSelect (page 1192) Deprecated in Mac OS X v10.5
Selects or deselects a cell.

Getting Information About Cells

LLastClick (page 1185) Deprecated in Mac OS X v10.5
Determines the coordinates of the last cell clicked in a particular list.

LNextCell (page 1187) Deprecated in Mac OS X v10.5
Finds the next cell in a given row, in a given column, or in an entire list.

LRect (page 1188) Deprecated in Mac OS X v10.5
Finds a rectangle that encloses a cell.

Modifying a List’s Appearance

LAutoScroll (page 1178) Deprecated in Mac OS X v10.5
Scrolls a list so that the first selected cell is in the upper-left corner of the list’s visible rectangle.

LDraw (page 1182) Deprecated in Mac OS X v10.5
Draws a cell in a list.

LScroll (page 1189) Deprecated in Mac OS X v10.5
Scrolls a list a specified number of rows and columns.

LSetDrawingMode (page 1191) Deprecated in Mac OS X v10.5
Changes the automatic drawing mode specified when creating a list.

Responding to Events Affecting Lists

LActivate (page 1175) Deprecated in Mac OS X v10.5
Activates or deactivates a list.

LClick (page 1179) Deprecated in Mac OS X v10.5
Processes a mouse-down event in a list.

LUpdate (page 1193) Deprecated in Mac OS X v10.5
Responds to an update event.

Functions by Task 1161
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Searching a List for a Particular Item

LSearch (page 1190) Deprecated in Mac OS X v10.5
Finds a cell whose data matches data that you specify.

Miscellaneous

CreateCustomList (page 1163) Deprecated in Mac OS X v10.5

GetListActive (page 1165) Deprecated in Mac OS X v10.5

GetListCellIndent (page 1166) Deprecated in Mac OS X v10.5

GetListCellSize (page 1166) Deprecated in Mac OS X v10.5

GetListClickLocation (page 1167) Deprecated in Mac OS X v10.5

GetListClickLoop (page 1167) Deprecated in Mac OS X v10.5

GetListClickTime (page 1167) Deprecated in Mac OS X v10.5

GetListDataBounds (page 1168) Deprecated in Mac OS X v10.5

GetListDataHandle (page 1168) Deprecated in Mac OS X v10.5

GetListDefinition (page 1169) Deprecated in Mac OS X v10.5

GetListFlags (page 1169) Deprecated in Mac OS X v10.5

GetListHorizontalScrollBar (page 1169) Deprecated in Mac OS X v10.5

GetListMouseLocation (page 1170) Deprecated in Mac OS X v10.5

GetListPort (page 1170) Deprecated in Mac OS X v10.5

GetListRefCon (page 1171) Deprecated in Mac OS X v10.5

GetListSelectionFlags (page 1171) Deprecated in Mac OS X v10.5

GetListUserHandle (page 1171) Deprecated in Mac OS X v10.5

GetListVerticalScrollBar (page 1172) Deprecated in Mac OS X v10.5

1162 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

GetListViewBounds (page 1172) Deprecated in Mac OS X v10.5

GetListVisibleCells (page 1173) Deprecated in Mac OS X v10.5

RegisterListDefinition (page 1195) Deprecated in Mac OS X v10.5

SetListCellIndent (page 1196) Deprecated in Mac OS X v10.5

SetListClickLoop (page 1196) Deprecated in Mac OS X v10.5

SetListClickTime (page 1197) Deprecated in Mac OS X v10.5

SetListFlags (page 1197) Deprecated in Mac OS X v10.5

SetListLastClick (page 1198) Deprecated in Mac OS X v10.5

SetListPort (page 1198) Deprecated in Mac OS X v10.5

SetListRefCon (page 1198) Deprecated in Mac OS X v10.5

SetListSelectionFlags (page 1199) Deprecated in Mac OS X v10.5

SetListUserHandle (page 1199) Deprecated in Mac OS X v10.5

SetListViewBounds (page 1200) Deprecated in Mac OS X v10.5

Functions

CreateCustomList
(Deprecated in Mac OS X v10.5.)

Functions 1163
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

OSStatus CreateCustomList (
 const Rect *rView,
 const ListBounds *dataBounds,
 Point cellSize,
 const ListDefSpec *theSpec,
 WindowRef theWindow,
 Boolean drawIt,
 Boolean hasGrow,
 Boolean scrollHoriz,
 Boolean scrollVert,
 ListHandle *outList
);

Parameters
rView
dataBounds
cellSize
theSpec
theWindow
drawIt
hasGrow
scrollHoriz
scrollVert
outList

Return Value
A result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

DisposeListClickLoopUPP
Disposes of the universal procedure pointer (UPP) to a list click loop callback function. (Deprecated in Mac
OS X v10.5.)

void DisposeListClickLoopUPP (
 ListClickLoopUPP userUPP
);

Parameters
userUPP

Discussion
See the ListClickLoopProcPtr (page 1200) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

1164 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Declared In
Lists.h

DisposeListDefUPP
Disposes of the universal procedure pointer (UPP) to a list definition callback function. (Deprecated in Mac
OS X v10.5.)

void DisposeListDefUPP (
 ListDefUPP userUPP
);

Parameters
userUPP

Discussion
See the ListDefProcPtr (page 1201) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

DisposeListSearchUPP
Disposes of the universal procedure pointer (UPP) to a list search callback function. (Deprecated in Mac OS
X v10.5.)

void DisposeListSearchUPP (
 ListSearchUPP userUPP
);

Parameters
userUPP

Discussion
See the ListSearchProcPtr (page 1204) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

GetListActive
(Deprecated in Mac OS X v10.5.)

Functions 1165
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Boolean GetListActive (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListCellIndent
(Deprecated in Mac OS X v10.5.)

Point * GetListCellIndent (
 ListHandle list,
 Point *indent
);

Parameters
list
indent

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListCellSize
(Deprecated in Mac OS X v10.5.)

Point * GetListCellSize (
 ListHandle list,
 Point *size
);

Parameters
list
size

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1166 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Declared In
Lists.h

GetListClickLocation
(Deprecated in Mac OS X v10.5.)

Point * GetListClickLocation (
 ListHandle list,
 Point *click
);

Parameters
list
click

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListClickLoop
(Deprecated in Mac OS X v10.5.)

ListClickLoopUPP GetListClickLoop (
 ListHandle list
);

Parameters
list

Return Value
See the description of the ListClickLoopUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListClickTime
(Deprecated in Mac OS X v10.5.)

Functions 1167
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

SInt32 GetListClickTime (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListDataBounds
(Deprecated in Mac OS X v10.5.)

ListBounds * GetListDataBounds (
 ListHandle list,
 ListBounds *bounds
);

Parameters
list
bounds

Return Value
See the description of the ListBounds data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListDataHandle
(Deprecated in Mac OS X v10.5.)

DataHandle GetListDataHandle (
 ListHandle list
);

Parameters
list

Return Value
See the description of the DataHandle data type.

Availability
Available in Mac OS X v10.0 and later.

1168 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListDefinition
(Deprecated in Mac OS X v10.5.)

Handle GetListDefinition (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListFlags
(Deprecated in Mac OS X v10.5.)

OptionBits GetListFlags (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListHorizontalScrollBar
(Deprecated in Mac OS X v10.5.)

Functions 1169
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

ControlRef GetListHorizontalScrollBar (
 ListHandle list
);

Parameters
list

Return Value
See the Control Manager documentation for a description of the ControlRef data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListMouseLocation
(Deprecated in Mac OS X v10.5.)

Point * GetListMouseLocation (
 ListHandle list,
 Point *mouse
);

Parameters
list
mouse

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListPort
(Deprecated in Mac OS X v10.5.)

CGrafPtr GetListPort (
 ListHandle list
);

Parameters
list

Return Value
See the QuickDraw Manager documentation for a description of the CGrafPtr data type.

Availability
Available in Mac OS X v10.0 and later.

1170 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListRefCon
(Deprecated in Mac OS X v10.5.)

SInt32 GetListRefCon (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListSelectionFlags
(Deprecated in Mac OS X v10.5.)

OptionBits GetListSelectionFlags (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListUserHandle
(Deprecated in Mac OS X v10.5.)

Functions 1171
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Handle GetListUserHandle (
 ListHandle list
);

Parameters
list

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListVerticalScrollBar
(Deprecated in Mac OS X v10.5.)

ControlRef GetListVerticalScrollBar (
 ListHandle list
);

Parameters
list

Return Value
See the Control Manager documentation for a description of the ControlRef data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

GetListViewBounds
(Deprecated in Mac OS X v10.5.)

Rect * GetListViewBounds (
 ListHandle list,
 Rect *view
);

Parameters
list
view

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1172 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Declared In
Lists.h

GetListVisibleCells
(Deprecated in Mac OS X v10.5.)

ListBounds * GetListVisibleCells (
 ListHandle list,
 ListBounds *visible
);

Parameters
list
visible

Return Value
See the description of the ListBounds data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

InvokeListClickLoopUPP
Calls your list click loop callback function. (Deprecated in Mac OS X v10.5.)

Boolean InvokeListClickLoopUPP (
 ListClickLoopUPP userUPP
);

Parameters
userUPP

Discussion
See the ListClickLoopProcPtr (page 1200) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

InvokeListDefUPP
Calls your list definition callback function. (Deprecated in Mac OS X v10.5.)

Functions 1173
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

void InvokeListDefUPP (
 short lMessage,
 Boolean lSelect,
 Rect *lRect,
 Cell lCell,
 short lDataOffset,
 short lDataLen,
 ListHandle lHandle,
 ListDefUPP userUPP
);

Parameters
lMessage
lSelect
lRect
lCell
lDataOffset
lDataLen
lHandle
userUPP

Discussion
See the ListDefProcPtr (page 1201) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

InvokeListSearchUPP
Calls your list search callback function (Deprecated in Mac OS X v10.5.)

short InvokeListSearchUPP (
 Ptr aPtr,
 Ptr bPtr,
 short aLen,
 short bLen,
 ListSearchUPP userUPP
);

Parameters
aPtr
bPtr
aLen
bLen
userUPP

Return Value
Discussion
See the ListSearchProcPtr (page 1204) callback for more information.

1174 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

LActivate
Activates or deactivates a list. (Deprecated in Mac OS X v10.5.)

void LActivate (
 Boolean act,
 ListHandle lHandle
);

Parameters
act

Indicates whether the list should be activated. Specify TRUE to activate the list. Specify FALSE to
deactivate the list.

lHandle
The list to be activated or deactivated.

Discussion
If a list is being deactivated, this function removes highlighting from selected cells and hides the scroll bars.
If a list is being activated, the function highlights selected cells and shows the scroll bars.

This function has no effect on a list’s size box, if one exists.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LAddColumn
Adds one or more columns to a list. (Deprecated in Mac OS X v10.5.)

short LAddColumn (
 short count,
 short colNum,
 ListHandle lHandle
);

Parameters
count

The number of columns to add.

colNum
The column number of the first column to add.

Functions 1175
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

lHandle
The list to which to add the columns.

Return Value
The column number of the first column added, which is equal to the value specified by the colNum parameter
if that value is a valid column number. If the column number specified by colNum is not already in the list,
then new last columns are added. The value returned by this function thus has significance only in this case.

Discussion
This function inserts columns starting at the column specified by the colNum parameter. If there is insufficient
memory in the heap to add the new columns, this function may fail to add the new columns although it
returns a positive function result. Be sure there is enough memory in the heap to allocate the new columns
before calling LAddColumn.

Columns whose column numbers are initially greater than colNum have their column numbers increased by
count.

If the automatic drawing mode is enabled and the columns added by the function are visible, then the list
(including its scroll bars) is updated. New cells created by a call to this function are initially empty.

You may add columns to a list that does not yet have rows. The dataBounds field of the list record reflects
that the list has columns, but you can only access cells when both rows and columns have been added.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LAddRow
Adds one or more rows to a list. (Deprecated in Mac OS X v10.5.)

short LAddRow (
 short count,
 short rowNum,
 ListHandle lHandle
);

Parameters
count

The number of rows to add.

rowNum
The row number of the first row to add.

lHandle
The list to add the rows to.

Return Value
The row number of the first row added, which is equal to the value specified by the rowNum parameter if
that value is a valid row number. If the row number specified by rowNum is not already in the list, then new
last rows are added. The value returned by this function thus has significance only in this case.

1176 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Discussion
This function inserts rows starting at the row specified by the rowNum parameter. If there is insufficient
memory in the heap to add the new rows, the function may fail to add the new rows although it returns a
positive function result. Be sure there is enough memory in the heap to allocate the new rows before calling
this function.

Rows whose row numbers are initially greater than rowNum have their row numbers increased by count.

If the automatic drawing mode is enabled and the rows added by this function are visible, then the list
(including its scroll bars) is updated. New cells created by a call to this function are initially empty.

You may add rows to a list that does not yet have columns. The dataBounds field of the list record reflects
that the list has rows, but you can only access cells when both rows and columns have been added.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LAddToCell
Appends data to the data already contained in a cell. (Deprecated in Mac OS X v10.5.)

void LAddToCell (
 const void *dataPtr,
 short dataLen,
 Cell theCell,
 ListHandle lHandle
);

Parameters
dataPtr

A pointer to the data to be appended.

dataLen
The length in bytes of the data to be appended.

theCell
The coordinates of the cell to which the data should be appended.

lHandle
The list containing the cell given in the theCell parameter.

Discussion
If the cell coordinates specified by the parameter theCell are invalid, then this function does nothing.

If the data of a visible cell is changed and the automatic drawing mode is enabled, the function updates the
list.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 1177
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Declared In
Lists.h

LAutoScroll
Scrolls a list so that the first selected cell is in the upper-left corner of the list’s visible rectangle. (Deprecated
in Mac OS X v10.5.)

void LAutoScroll (
 ListHandle lHandle
);

Parameters
lHandle

The list to be scrolled.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LCellSize
Changes the size of cells in a list. (Deprecated in Mac OS X v10.5.)

void LCellSize (
 Point cSize,
 ListHandle lHandle
);

Parameters
cSize

The new size of each cell in the list. This function sets the cellSize field of the list record of the list
to the value of the cSize parameter. That is, the list’s new cells will be of width cSize.h and of
height cSize.v.

All cells in a list must be the same size.

lHandle
The list whose cells’ size is being changed.

Discussion
The function updates the list’s visible rectangle to contain cells of the specified size. However, it does not
redraw any cells.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

1178 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

LClick
Processes a mouse-down event in a list. (Deprecated in Mac OS X v10.5.)

Boolean LClick (
 Point pt,
 EventModifiers modifiers,
 ListHandle lHandle
);

Parameters
pt

The location in local coordinates of the mouse-down event. Your application can simply call
GlobalToLocal(myEvent.where) and then pass myEvent.where in this parameter.

If the pt parameter specifies a portion of the list’s visible rectangle, then cells are selected with an
algorithm that depends on the list’s selection flags and on the modifiers parameter. If the user
drags the cursor above or below the list’s visible rectangle and vertical autoscrolling is enabled, then
the List Manager vertically autoscrolls the list. If the user drags the cursor to the right or the left of
the list’s visible rectangle and horizontal autoscrolling is enabled, then the List Manager horizontally
autoscrolls the list.

If the pt parameter specifies a point within the list’s scroll bar, then the List Manager calls the scroll
bar’s control definition function to track the cursor and it scrolls the list appropriately.

modifiers
An integer value corresponding to the modifiers field of the event record.

lHandle
The list in which the mouse-down event occurred.

Return Value
TRUE if the click was a double-click, or FALSE otherwise.

Discussion
The LClick function handles all user interaction until the user releases the mouse button.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LClrCell
Clears the data contained in a cell. (Deprecated in Mac OS X v10.5.)

void LClrCell (
 Cell theCell,
 ListHandle lHandle
);

Parameters
theCell

The coordinates of the cell to be cleared.

Functions 1179
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

lHandle
The list containing the cell given in the theCell parameter.

Discussion
If the cell coordinates specified by the theCell parameter are invalid, then the function does nothing.

If the data of a visible cell is cleared and the automatic drawing mode is enabled, the function updates the
list.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LDelColumn
Deletes one or more columns from a list. (Deprecated in Mac OS X v10.5.)

void LDelColumn (
 short count,
 short colNum,
 ListHandle lHandle
);

Parameters
count

The number of columns to delete, or 0 to delete all columns.

colNum
The column number of the first column to delete.

lHandle
The list from which to delete the columns.

Discussion
This function deletes columns starting at the column specified by the colNum parameter. If the column
specified by colNum is invalid, then nothing is done.

Your application can quickly delete all columns from a list (and thus delete all cell data) simply by setting
the count parameter to 0. The number of rows is left unchanged. Your application can achieve the same
effect by setting the colNum parameter to (**lHandle).dataBounds.left and setting the count
parameter to a value greater than(**lHandle).dataBounds.right – (**lHandle).dataBounds.left.

Columns whose column numbers are initially greater than colNum have their column numbers decreased
by count.

If the automatic drawing mode is enabled and one or more of the columns deleted by this function are
visible, then the list (including its scroll bars) is updated.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1180 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Declared In
Lists.h

LDelRow
Deletes one or more rows from a list. (Deprecated in Mac OS X v10.5.)

void LDelRow (
 short count,
 short rowNum,
 ListHandle lHandle
);

Parameters
count

The number of rows to delete, or 0 to delete all rows.

rowNum
The row number of the first row to delete.

lHandle
The list from which to delete the rows.

Discussion
This function deletes rows starting at the row specified by the rowNum parameter. If the row specified by
rowNum is invalid, then nothing is done.

Your application can quickly delete all rows from a list (and thus delete all cell data) simply by setting the
count parameter to 0. The number of columns is left unchanged. Your application can achieve the same
effect by setting the rowNumparameter to (**lHandle).dataBounds.top and setting the countparameter
to a value greater than (**lHandle).dataBounds.bottom – (**lHandle).dataBounds.top.

Rows whose row numbers are initially greater than rowNum have their row numbers decreased by count.

If the automatic drawing mode is enabled and one or more of the rows deleted by the function are visible,
then the list (including its scroll bars) is updated.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LDispose
Disposes of the memory associated with a list. (Deprecated in Mac OS X v10.5.)

Functions 1181
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

void LDispose (
 ListHandle lHandle
);

Parameters
lHandle

The list to be disposed of.

Discussion
This function releases all memory allocated by the List Manager in creating a list. First, it issues a close request
to the list definition function and calls the Control Manager function DisposeControl for the list’s scroll
bars (if any). The function then uses the Memory Manager to free the memory referenced by the cells field,
then disposes of the list record itself.

Because it disposes of data associated with cells in your list, there is no need to clear the data from list cells
or to delete individual rows and columns before calling this function.

This function does not dispose of any memory associated with a list that the List Manager has not allocated.
In particular, it does not dispose of any memory referenced by the userHandle field of the list record. Your
application is responsible for deallocating any memory it has allocated through the userHandle field before
calling this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LDraw
Draws a cell in a list. (Deprecated in Mac OS X v10.5.)

void LDraw (
 Cell theCell,
 ListHandle lHandle
);

Parameters
theCell

The cell to draw.

lHandle
The list containing the cell identified by the parameter theCell.

Discussion
The List Manager makes the list’s graphics port the current port, sets the clipping region to the cell’s rectangle,
and calls the list definition function to draw the cell. It restores the clipping region and port before exiting.

Ordinarily, you should only need to use this function when the automatic drawing mode has been disabled.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

1182 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Not available to 64-bit applications.

Declared In
Lists.h

LGetCell
Copies a cell’s data. (Deprecated in Mac OS X v10.5.)

void LGetCell (
 void *dataPtr,
 short *dataLen,
 Cell theCell,
 ListHandle lHandle
);

Parameters
dataPtr

A pointer to the location to which to copy the cell’s data.

dataLen
On input, a pointer to the maximum number of bytes to copy. On return, a pointer to the number of
bytes actually copied.

theCell
The cell whose data is to be copied.

lHandle
The list containing the cell specified by the parameter theCell.

Discussion
If the cell data is longer than dataLen, only dataLen bytes are copied and the dataLen parameter is
unchanged. If the cell data is shorter than dataLen, then the function sets dataLen to the length in bytes
of the cell’s data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LGetCellDataLocation
Finds the memory location of cell data. (Deprecated in Mac OS X v10.5.)

Functions 1183
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

void LGetCellDataLocation (
 short *offset,
 short *len,
 Cell theCell,
 ListHandle lHandle
);

Parameters
offset

On return, a pointer to the offset of the cell’s data, specified from the beginning of the data handle
referenced by the cells field of the list record.

len
On return, a pointer to the length of the cell’s data in bytes.

theCell
The cell whose data’s location is sought.

lHandle
The list containing the cell specified by the parameter theCell.

Discussion
Your application can use this function to read cell data. The cells field of the list record contains a handle
to a relocatable block used to store all cell data. When this function returns, the offset parameter contains
the offset of the specified cell’s data in this relocatable block, and the len parameter specifies the length in
bytes of the cell’s data. In other words, the first byte of cell data is located at Ptr(ORD4(lHandle^^.cells^)
+ offset), and the last byte of cell data is located at Ptr(ORD4(lHandle^^.cells^) + offset +
len). Your application should not modify the contents of the cells field directly. To change a cell’s data,
use the LSetCell (page 1190) function or the LAddToCell (page 1177) function.

If the cell coordinates specified by the parameter theCell are invalid, then the function sets the offset
and len parameters to –1.

This function is also available as the LFind function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LGetSelect
Gets information about which cells are selected. (Deprecated in Mac OS X v10.5.)

1184 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Boolean LGetSelect (
 Boolean next,
 Cell *theCell,
 ListHandle lHandle
);

Parameters
next

Indicates whether the function should check only the cell specified by the parameter theCell, or
whether it should try to find the next selected cell. If next is TRUE, then the function searches the
list for the first selected cell beginning at the cell specified by theCell. (In particular, it first checks
cells in row theCell.v, and then cells in the next row, and so on.)

If next is FALSE, then the function checks only the cell specified by the parameter theCell.

theCell
On input, a pointer to the first cell whose selection status should be checked. If next is TRUE, then,
on return this parameter is a pointer to the next selected cell greater than or equal to the cell specified
on input. Otherwise, this parameter remains unchanged.

lHandle
The list in which the selection is being checked.

Return Value
TRUE if next is TRUE and the function finds a selected cell, or if next is FALSE and the cell specified by
theCell is selected. If this function does not find a selected cell, FALSE.

Special Considerations

This function is contained in a resource of resource type 'PACK'. Calling it could result in the loading of the
package resource and the allocation of memory. Thus, your application should not call this function from
within an interrupt, such as in a completion function or VBL task.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LLastClick
Determines the coordinates of the last cell clicked in a particular list. (Deprecated in Mac OS X v10.5.)

Cell LLastClick (
 ListHandle lHandle
);

Parameters
lHandle

The list to be checked for the last cell clicked.

Return Value
The cell coordinates of the last cell clicked. If the user has not clicked a cell since the creation of the list, then
both the h and v fields of the cell returned contain negative numbers. See the description of the Cell data
type.

Functions 1185
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Discussion
Note that the last cell clicked is not necessarily the last cell selected. The user could Shift-click in one cell and
then drag the cursor to select other cells.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LNew
Creates a new list in a window. (Deprecated in Mac OS X v10.5.)

ListHandle LNew (
 const Rect *rView,
 const ListBounds *dataBounds,
 Point cSize,
 short theProc,
 WindowRef theWindow,
 Boolean drawIt,
 Boolean hasGrow,
 Boolean scrollHoriz,
 Boolean scrollVert
);

Parameters
rView

A pointer to the rectangle in which to display the list, in local coordinates of the window specified
by the theWindow parameter. This rectangle does not include the area to be taken up by the list’s
scroll bars.

dataBounds
A pointer to the initial data bounds for the list. By setting the left and top fields of this rectangle
to (0,0) and the right and bottom fields to (kMyInitialColumns, kMyInitialRows), your
application can create a list that has kMyInitialColumns columns and kMyInitialRows rows.

cSize
The size of each cell in the list. If your application specifies (0,0) and is using the default list definition
function, the List Manager sets the v coordinate of this parameter to the sum of the ascent, descent,
and leading of the current font, and it sets the h coordinate using the following formula:

cSize.h = (rView.right - rView.left) / (dataBounds.right – dataBounds.left).

theProc
The resource ID of the list definition function to use for the list. To use the default list definition
function, which supports the display of unstyled text, specify a resource ID of 0.

theWindow
A pointer to the window in which to install the list.

1186 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

drawIt
Indicates whether the List Manager should initially enable the automatic drawing mode. When the
automatic drawing mode is enabled, the List Manager automatically redraws the list whenever a
change is made to it. You can later change this setting using the LSetDrawingMode (page 1191)
function. Your application should leave the automatic drawing mode disabled only for short periods
of time when making changes to a list (by, for example, adding rows and columns).

hasGrow
Indicates whether the List Manager should leave room for a size box. The List Manager does not
actually draw the grow icon. Usually, your application can draw it with the Window Manager’s
DrawGrowIcon function.

scrollHoriz
Indicates whether the list should contain a horizontal scroll bar. Specify TRUE if your list requires a
horizontal scroll bar; specify FALSE otherwise.

scrollVert
Indicates whether the list should contain a vertical scroll bar. Specify TRUE if your list requires a vertical
scroll bar; specify FALSE otherwise.

Return Value
A handle to the newly created list, or if the function cannot allocate the list, NULL. This might happen if there
is not enough memory available or if the function cannot load the resource specified by the theProc
parameter. If it returns successfully, then all of the fields of the list record referenced by the returned handle
are correctly set. See the description of the ListHandle data type.

Discussion
If the list contains a horizontal or vertical scroll bar and the window specified by the parameter theWindow
is visible, this function draws the scroll bar for the new list in the window just outside the list’s visible rectangle
specified by the rView parameter. This function does not, however, draw a 1-pixel border around the list’s
visible rectangle.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LNextCell
Finds the next cell in a given row, in a given column, or in an entire list. (Deprecated in Mac OS X v10.5.)

Functions 1187
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Boolean LNextCell (
 Boolean hNext,
 Boolean vNext,
 Cell *theCell,
 ListHandle lHandle
);

Parameters
hNext

Indicates whether the function should check columns other than the current column. To get the next
cell in a row, set this parameter to TRUE and set vNext to FALSE. The function then tries to find a cell
whose coordinates are greater than those of the cell specified in theCell parameter but that is in
the same row as theCell.

To get the next cell in a column, set this parameter to FALSE and set vNext to TRUE. The function
then tries to find a cell whose coordinates are greater than those of the cell specified in theCell but
that is in the same column as theCell.

To get the next cell in a list, set both this parameter and vNext to TRUE. This function then tries to
find a cell whose coordinates are greater than those of the cell specified in the parameter theCell.

vNext
Indicates whether the function should check rows other than the current row. To get the next cell in
a row, set this parameter to FALSE and set hNext to TRUE. The function then tries to find a cell whose
coordinates are greater than those of the cell specified in theCell parameter but that is in the same
row as theCell.

To get the next cell in a column, set this parameter to TRUE and set hNext to FALSE. The function
then tries to find a cell whose coordinates are greater than those of the cell specified in theCell but
that is in the same column as theCell.

To get the next cell in a list, set both this parameter and hNext to TRUE. This function then tries to
find a cell whose coordinates are greater than those of the cell specified in the parameter theCell.

theCell
A pointer to the coordinates of the current cell. On return, a pointer to the next cell in the list, column
or row being searched. If there are no more cells in the list, column or row, this parameter remains
unchanged.

lHandle
The list in which to find the next cell.

Return Value
TRUE, if the function finds the next cell in the list, column or row being searched. FALSE, if the cell initially
specified by theCell is the last in the row, column or list being searched. Also FALSE when both hNext
and vNext are FALSE.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LRect
Finds a rectangle that encloses a cell. (Deprecated in Mac OS X v10.5.)

1188 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

void LRect (
 Rect *cellRect,
 Cell theCell,
 ListHandle lHandle
);

Parameters
cellRect

On return, a pointer to the rectangle enclosing the cell, specified in local coordinates of the list’s
graphics port. This rectangle is not necessarily within the list’s rectangle.

theCell
The cell for which an enclosing rectangle is sought. This function does not check whether the cell is
actually contained within the list’s visible rectangle.

If this parameter specifies cell coordinates not contained within the list, this function sets the cellRect
parameter to (0,0,0,0).

lHandle
The list containing the cell specified by the parameter theCell.

Discussion
Because the List Manager automatically draws cells, few applications need to call this function directly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LScroll
Scrolls a list a specified number of rows and columns. (Deprecated in Mac OS X v10.5.)

void LScroll (
 short dCols,
 short dRows,
 ListHandle lHandle
);

Parameters
dCols

The number of columns to scroll. Specify a positive number to scroll down (that is, each cell moves
up), and a negative number to scroll up.

dRows
The number of rows to scroll. Specify a positive number to scroll right (that is, each cell moves left),
and a negative number to scroll left.

lHandle
The list to be scrolled.

Discussion
The List Manager will not scroll beyond the data bounds of the list. If the automatic drawing mode is enabled,
this function does all necessary updating of the list.

Functions 1189
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LSearch
Finds a cell whose data matches data that you specify. (Deprecated in Mac OS X v10.5.)

Boolean LSearch (
 const void *dataPtr,
 short dataLen,
 ListSearchUPP searchProc,
 Cell *theCell,
 ListHandle lHandle
);

Parameters
dataPtr

A pointer to the data being searched for.

dataLen
The length in bytes of the data being searched for.

searchProc
A pointer to a function to be used to compare the data being searched for with cell data. If NULL, the
Text Utilities Package function IUMagIDString is used.

If either the function pointed to by searchProc or IUMagIDString returns 0, LSearch has found
a match; otherwise, it checks the next cell in the list.

theCell
A pointer to the first cell to be searched. If the function finds a match, this parameter is, on return, a
pointer to the coordinates of the first cell whose data matches the data being searched for.

lHandle
The list to be searched.

Return Value
If the function finds a match, TRUE. Otherwise, FALSE.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LSetCell
Changes the data contained in a cell. (Deprecated in Mac OS X v10.5.)

1190 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

void LSetCell (
 const void *dataPtr,
 short dataLen,
 Cell theCell,
 ListHandle lHandle
);

Parameters
dataPtr

A pointer to the new data for a cell.

dataLen
The length in bytes of the new data.

theCell
The coordinates of the cell to hold the new data.

lHandle
The list containing the cell given in the theCell parameter.

Discussion
Any previous cell data in theCell is replaced. If there is insufficient memory in the heap, the function may
fail to set the cell’s data. If the cell coordinates specified by the theCell parameter are invalid, the function
does nothing.

If the data of a visible cell is changed and the automatic drawing mode is enabled, the function updates the
list.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LSetDrawingMode
Changes the automatic drawing mode specified when creating a list. (Deprecated in Mac OS X v10.5.)

void LSetDrawingMode (
 Boolean drawIt,
 ListHandle lHandle
);

Parameters
drawIt

Indicates whether the List Manager should enable the automatic drawing mode. Specify TRUE to
enable the automatic drawing mode. Specify FALSE to disable the automatic drawing mode.

lHandle
The list whose drawing mode is being changed.

Functions 1191
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Discussion
Your application can use the LSetDrawingMode function to enable or disable automatic drawing of lists. If
your application uses LSetDrawingMode to temporarily disable list drawing, then it must call the LDraw (page
1182) function to draw a cell when its appearance changes, or when new rows or columns are added to the
list. .

While the automatic drawing mode is turned off, all cell drawing and highlighting are disabled, and the scroll
bar does not function properly. Thus, your application should disable the automatic drawing mode only for
short periods of time. After enabling it, your application should ensure that the list is redrawn.

This function is also available as the LDoDraw function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LSetSelect
Selects or deselects a cell. (Deprecated in Mac OS X v10.5.)

void LSetSelect (
 Boolean setIt,
 Cell theCell,
 ListHandle lHandle
);

Parameters
setIt

Indicates whether the function should select or deselect the specified cell. Specify TRUE to select the
cell. If the cell is already selected, the function does nothing. Specify FALSE to deselect the cell. If the
cell is already deselected, the function does nothing.

theCell
The cell to be selected or deselected.

lHandle
The list containing the cell to be selected or deselected.

Discussion
If a cell’s selection status is changed and the cell is visible, LSetSelect redraws the cell.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

1192 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

LSize
Changes the size of a list. (Deprecated in Mac OS X v10.5.)

void LSize (
 short listWidth,
 short listHeight,
 ListHandle lHandle
);

Parameters
listWidth

The new width (in pixels) of the list’s visible rectangle.

listHeight
The new height (in pixels) of the list’s visible rectangle.

lHandle
The list whose size is being changed.

Discussion
This function adjusts the lower-right side of the list so that the list’s visible rectangle is the width and height
specified by the listWidth and listHeight parameters.

Because the list’s visible rectangle does not include room for the scroll bars, your application should make
listWidth 15 pixels less than the desired width of the list if it contains a vertical scroll bar, and it should
make listHeight 15 pixels less than the desired height of the list if it contains a horizontal scroll bar.

The contents of the list and the scroll bars are adjusted and redrawn as necessary. However, this function
does not draw a border around the list’s rectangle. Also, it does not erase any portions of the old list that
may still be visible. This approach should not be a problem if your application only calls LSize after the user
resizes a window containing a list in its lower-right corner.

Usually, you need to call this function only after calling the Window Manager function SizeWindow.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

LUpdate
Responds to an update event. (Deprecated in Mac OS X v10.5.)

void LUpdate (
 RgnHandle theRgn,
 ListHandle lHandle
);

Parameters
theRgn

The visible region of the list’s port after a call to the Window Manager’s BeginUpdate function.

Functions 1193
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

lHandle
The list to be updated.

Discussion
This function redraws all visible cells in the list specified by the lHandle parameter that intersect the region
specified by the parameter theRgn. It also redraws the scroll bars if they intersect the region.

You should bracket calls to LUpdateby calls to the Window Manager functions BeginUpdate and EndUpdate.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

NewListClickLoopUPP
Creates a new universal procedure pointer (UPP) to a list click loop callback function. (Deprecated in Mac OS
X v10.5.)

ListClickLoopUPP NewListClickLoopUPP (
 ListClickLoopProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ListClickLoopUPP data type.

Discussion
See the ListClickLoopProcPtr (page 1200) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

NewListDefUPP
Creates a new universal procedure pointer (UPP) to a list definition callback function. (Deprecated in Mac OS
X v10.5.)

1194 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

ListDefUPP NewListDefUPP (
 ListDefProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ListDefUPP data type.

Discussion
See the ListDefProcPtr (page 1201) callback for more information.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

NewListSearchUPP
Creates a new universal procedure pointer (UPP) to a list search callback function. (Deprecated in Mac OS X
v10.5.)

ListSearchUPP NewListSearchUPP (
 ListSearchProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the ListSearchUPP data type.

Discussion
See the ListSearchProcPtr (page 1204) callback for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Lists.h

RegisterListDefinition
(Deprecated in Mac OS X v10.5.)

Functions 1195
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

OSStatus RegisterListDefinition (
 SInt16 inResID,
 ListDefSpecPtr inDefSpec
);

Parameters
inResID
inDefSpec

Return Value
A result code.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListCellIndent
(Deprecated in Mac OS X v10.5.)

void SetListCellIndent (
 ListHandle list,
 Point *indent
);

Parameters
list
indent

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListClickLoop
(Deprecated in Mac OS X v10.5.)

1196 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

void SetListClickLoop (
 ListHandle list,
 ListClickLoopUPP clickLoop
);

Parameters
list
clickLoop

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListClickTime
(Deprecated in Mac OS X v10.5.)

void SetListClickTime (
 ListHandle list,
 SInt32 time
);

Parameters
list
time

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListFlags
(Deprecated in Mac OS X v10.5.)

void SetListFlags (
 ListHandle list,
 OptionBits listFlags
);

Parameters
list
listFlags

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Functions 1197
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Not available to 64-bit applications.

Declared In
Lists.h

SetListLastClick
(Deprecated in Mac OS X v10.5.)

void SetListLastClick (
 ListHandle list,
 Cell *lastClick
);

Parameters
list
lastClick

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListPort
(Deprecated in Mac OS X v10.5.)

void SetListPort (
 ListHandle list,
 CGrafPtr port
);

Parameters
list
port

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListRefCon
(Deprecated in Mac OS X v10.5.)

1198 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

void SetListRefCon (
 ListHandle list,
 SInt32 refCon
);

Parameters
list
refCon

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListSelectionFlags
(Deprecated in Mac OS X v10.5.)

void SetListSelectionFlags (
 ListHandle list,
 OptionBits selectionFlags
);

Parameters
list
selectionFlags

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

SetListUserHandle
(Deprecated in Mac OS X v10.5.)

void SetListUserHandle (
 ListHandle list,
 Handle userHandle
);

Parameters
list
userHandle

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Functions 1199
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Not available to 64-bit applications.

Declared In
Lists.h

SetListViewBounds
(Deprecated in Mac OS X v10.5.)

void SetListViewBounds (
 ListHandle list,
 const Rect *view
);

Parameters
list
view

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Lists.h

Callbacks

ListClickLoopProcPtr
Defines a pointer to a list click loop callback function. Your list click loop callback function overrides the
standard click-loop function that is used to select cells and automatically scroll a list.

typedef Boolean (*ListClickLoopProcPtr)
(
);

If you name your function MyListClickLoopProc, you would declare it like this:

Boolean MyListClickLoopProc ();

Parameters
Return Value
A value indicating whether the LClick function should continue tracking the mouse. Your function should
return TRUE if you wish LClick to continue to track the mouse, and FALSE if LClick should stop and return
immediately.

1200 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Discussion
If your application defines a custom click-loop function, then the LClick (page 1179) function repeatedly calls
the function until the user releases the mouse button. A click-loop function may perform any processing
desired when it is executed.

Because no parameters are passed to the click-loop function, your click-loop function probably needs to
access a global variable that contains a handle to the list record, which contains information about the
location of the cursor and other information potentially of interest to a click-loop function. You might also
create a global variable that stores the state of the modifier keys immediately before a call to the LClick
function. You would need to set these global variables immediately before calling LClick.

The pointer to your function, which you provide in the list record structure, should be a universal procedure
pointer (UPP). The definition of the UPP data type for your list click loop function is as follows:

typedef (ListClickLoopProcPtr) ListClickLoopUPP;

Before using your list click loop function, you must first create a new universal procedure pointer to it, using
the NewListClickLoopUPP (page 1194) function, as shown here:

ListClickLoopUPP MyListClickLoopUPP;
MyListClickLoopUPP = NewListClickLoopUPP(&MyListClickLoopProc)

You then use MyListClickLoopUPP in the lClickLoop field of the ListRec (page 1209) structure for your
list. The LClick (page 1179) function calls your list click loop function while the user holds down the mouse
button. If you wish to call your own list click loop function, you can use the InvokeListClickLoopUPP (page
1173) function:

continueTracking = InvokeListClickLoopUPP(MyListClickLoopUPP);

When you are finished using your list click loop callback function, you should dispose of the universal
procedure pointer associated with it, using the DisposeListClickLoopUPP (page 1164) function.

DisposeListClickLoopUPP(MyListClickLoopUPP);

A click-loop function does not execute at interrupt time. Instead, it is called directly by the LClick function.
Thus, a click-loop function can allocate memory, and it does not need to adjust the value contained in the
A5 register.

Special Considerations

A click-loop function does not execute at interrupt time. Instead, it is called directly by the LClick function.
Thus, a click-loop function can allocate memory, and it does not need to adjust the value contained in the
A5 register.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

ListDefProcPtr
Defines a pointer to a list definition callback function. Your list definition callback function defines a custom
list display.

Callbacks 1201
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

typedef void (*ListDefProcPtr) (
 SInt16 lMessage,
 Boolean lSelect,
 Rect *lRect,
 Cell lCell,
 SInt16 lDataOffset,
 SInt16 lDataLen,
 ListHandle lHandle
);

If you name your function MyListDefProc, you would declare it like this:

void MyListDefProc (
 SInt16 lMessage,
 Boolean lSelect,
 Rect * lRect,
 Cell lCell,
 SInt16 lDataOffset,
 SInt16 lDataLen,
 ListHandle lHandle
);

Parameters
lMessage

A value that identifies the operation to be performed. See “List Definition Constants” (page 1214).

lSelect
Indicates whether the cell specified by the lCell parameter should be highlighted. This parameter
is defined only for the lDrawMessage and lHiliteMsg messages.

lRect
A pointer to the rectangle (in local coordinates of the list’s graphics port) that encloses the specified
cell. Although this parameter is defined as a pointer, your list definition function must not change
the coordinates of the rectangle. This parameter is defined only for the lDrawMessage and
lHiliteMsg messages.

lCell
The coordinates of the cell to be drawn or highlighted. This parameter is defined only for the
lDrawMessage and lHiliteMsg messages.

lDataOffset
The location of the cell data associated with the specified cell. The location is specified as an offset
from the beginning of the relocatable block referenced by the cells field of the list record. This
parameter is defined only for the lDrawMessage and lHiliteMsg messages.

lDataLen
The length in bytes of the cell data associated with the specified. This parameter is defined only for
the lDrawMessage and lHiliteMsg messages.

lHandle
A handle to the list for which a message is being sent. Your application can access the list’s list record,
or it can call List Manager functions to manipulate the list.

Discussion
Your application can write a list definition function to customize list display. For example, you can write a
list definition function to support the display of color icons. A custom list definition function must be compiled
as a code resource of type 'LDEF' and added to the resource file of the application that needs to use it.

1202 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

The List Manager calls your list definition function whenever an application using the function creates a new
list with the LNew (page 1186) function, needs a cell to be drawn, needs a cell’s highlighting state to be reversed,
or has called the LDispose (page 1181) function to dispose of a list.

The pointer to your list definition function should be a universal procedure pointer (UPP). The definition of
the UPP data type for your definition function is as follows:

typedef (ListDefProcPtr) ListDefUPP;

Before using your list definition function, you must first create a new universal procedure pointer to it, using
the NewListDefUPP (page 1194) function, as shown here:

ListDefUPP MyListDefUPP;
MyListDefUPP = NewListDefUPP(&MyListDefProc)

The List Manager automatically invokes your list definition function when a new list is created. If you wish
to call your own list definition callback function, you can use the InvokeListDefUPP (page 1173) function:

InvokeListDefUPP(lMessage, lSelect, &lRect, lCell, lDataOffset,
 lDataLen, lHandle, MyListDefUPP)

When you are finished with your list definition function, you should dispose of the universal procedure pointer
associated with it, using the DisposeListDefUPP (page 1165) function.

DisposeListDefUPP(MyListDefUPP);

Because a list definition function is stored in a code resource, it cannot have its own global variables that it
accesses through the A5 register. (Some development systems, however, may allow code resources to access
global variables through some other register, such as A4. See your development system’s documentation
for more information.) If your list definition function needs access to global data, it might store a handle to
such data in the refCon or userHandle fields of the list record; however, applications would not then be
able to use these fields for their own purposes.

Special Considerations

Because a list definition function is stored in a code resource, it cannot have its own global variables that it
accesses through the A5 register. (Some development systems, however, may allow code resources to access
global variables through some other register, such as A4. See your development system’s documentation
for more information.) If your list definition function needs access to global data, it might store a handle to
such data in the refCon or userHandle fields of the list record; however, applications would not then be
able to use these fields for their own purposes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

Callbacks 1203
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

ListNotificationProcPtr

typedef void (*ListNotificationProcPtr)
(
 ListHandle theList,
 ListNotification notification,
 SInt32 param
);

If you name your function MyListNotificationProc, you would declare it like this:

void MyListNotificationProc (
 ListHandle theList,
 ListNotification notification,
 SInt32 param
);

Parameters
theList
notification
param

ListSearchProcPtr
Defines a pointer to a list search callback function. Your list search callback function compares data in a search
field to the contents of a list cell.

typedef SInt16 (*ListSearchProcPtr) (
 Ptr aPtr,
 Ptr bPtr,
 SInt16 aLen,
 SInt16 bLen
);

If you name your function MyListSearchProc, you would declare it like this:

short MyListSearchProc (
 Ptr aPtr,
 Ptr bPtr,
 short aLen,
 short bLen
);

Parameters
aPtr

A pointer to the data contained in a cell.

bPtr
A pointer to the data for which you are searching.

aLen
The number of bytes of data contained in the cell.

bLen
The number of bytes of data for which you are searching.

1204 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Return Value
If the cell data matches the search data, your function should return 0. Otherwise, your search function should
return 1.

Discussion
You can pass a pointer to your search function as the third parameter to the LSearch function. A search
function must compare the data defined by the aPtr and aLen parameters with the data defined by the
bPtr and bLen parameters. Your function can use any technique you choose to compare the data.

If you do not wish to create your own search function, your application can specify NULL as a parameter to
LSearch, in place of a pointer to your function. LSearch then uses the Text Utilities function IUMagIDString,
the default search function. The IUMagIDString function returns 0 if the search data exactly matches the
cell data, but IUMagIDString considers the strings 'Rose' and 'rosé' to be equivalent. If your application
simply needs a search function that works like IUMagIDString but considers 'Rose' to be different from
'rosé', the Text Utilities provides the case-sensitive comparison function IUMagString. Instead of writing
a custom function, your application can simply pass @IUMagString as the third parameter to the LSearch
function.

The pointer which you pass to the LSearch function should be a universal procedure pointer (UPP). The
definition of the UPP data type for your search function is as follows:

typedef (ListSearchProcPtr) ListSearchUPP;

Before using your search function, you must first create a universal procedure pointer to it, using the
NewListSearchUPP NewListSearchUPP (page 1195) function, as shown here:

ListSearchUPP MyListSearchUPP;
MyListSearchUPP = NewListSearchUPP(&MyListSearchProc)

You then pass MyListSearchUPP to the LSearch function, which will call your custom search function on
each cell it searches. If you wish to call your own list search function, use the InvokeListSearchUPP (page
1174) function:

isMatch = InvokeListSearchUPP(aPtr, bPtr, aLen, bLen,
 MyListSearchUPP);

When you are finished with your list search callback function, you should dispose of the universal procedure
pointer associated with it, using the DisposeListSearchUPP (page 1165) function:

DisposeListSearchUPP(MyListSearchUPP);

A search function does not execute at interrupt time. Instead, it is called directly by the LSearch function.
Thus, a search function can allocate memory, and it does not need to adjust the value contained in the A5
register.

Special Considerations

A search function does not execute at interrupt time. Instead, it is called directly by the LSearch function.
Thus, a search function can allocate memory, and it does not need to adjust the value contained in the A5
register.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

Callbacks 1205
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Data Types

Cell

typedef Point Cell;

Discussion
The Cell data type defines a cell record. The functions LGetSelect (page 1184) , LSetSelect (page 1192) ,
LSetCell (page 1190) ,LAddToCell (page 1177) ,LClrCell (page 1179) ,LGetCellDataLocation (page 1183)
,LGetCell (page 1183) ,LDraw (page 1182) ,LSearch (page 1190) ,LNextCell (page 1187) ,LRect (page 1188) ,
and LLastClick (page 1185) use the Cell data type to specify the coordinates of a cell in a list.

Note that column and row numbers are 0-based. Also note that this reference designates cells using the
notation (column–1, row–1), so that a cell with coordinates (2,5) is in the third column and sixth row of a list.
You specify a cell with coordinates (2,5) by setting the cell’s h field to 2 and its v field to 5.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

DataArray

typedef DataArray[32001];

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

DataHandle

typedef DataPtr * DataHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

DataPtr

typedef char * DataPtr;

Availability
Available in Mac OS X v10.0 and later.

1206 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Declared In
Lists.h

ListBounds

typedef Rect ListBounds;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

ListClickLoopUPP

typedef ListClickLoopProcPtr ListClickLoopUPP;

Discussion
For more information, see the description of the ListClickLoopUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

ListDefSpec

struct ListDefSpec {
 ListDefType defType
 union {
 ListDefUPP userProc;
 } u;
};
typedef struct ListDefSpec ListDefSpec;
typedef ListDefSpec * ListDefSpecPtr;

Fields
defType
ListDefUPP

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

Data Types 1207
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

ListDefType

typedef UInt32 ListDefType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

ListDefUPP

typedef ListDefProcPtr ListDefUPP;

Discussion
For more information, see the description of the ListDefUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

1208 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

ListNotification

typedef SInt32 ListNotification;

ListNotificationUPP

typedef ListNotificationProcPtr ListNotificationUPP;

ListRec

struct ListRec {
 Rect rView;
 GrafPtr port;
 Point indent;
 Point cellSize;
 ListBounds visible;
 ControlRef vScroll;
 ControlRef hScroll;
 SInt8 selFlags;
 Boolean lActive;
 SInt8 lReserved;
 SInt8 listFlags;
 long clikTime;
 Point clikLoc;
 Point mouseLoc;
 ListClickLoopUPP lClickLoop;
 Cell lastClick;
 long refCon;
 Handle listDefProc;
 Handle userHandle;
 ListBounds dataBounds;
 DataHandle cells;
 short maxIndex;
 short cellArray[1];
};
typedef struct ListRec ListRec;
typedef ListRec * ListPtr;
typedef ListPtr * ListHandle

Fields
rView

The rectangle in which the list’s visible rectangle is located, in local coordinates of the graphics port
specified by the port field. Note that the list’s visible rectangle does not include the area needed for
the list’s scroll bars. The width of a vertical scroll bar (which equals the height of a horizontal scroll
bar) is 15 pixels.

port
The graphics port of the window containing the list.

indent
The location, relative to the upper-left corner of a cell, at which drawing should begin. List definition
functions should set this field to a value appropriate to the type of data that a cell in a list is to contain.

Data Types 1209
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

cellSize
The size in pixels of each cell in the list. When your application creates a list, it can either specify the
cell size or let the List Manager calculate the cell size. You should not change the cellSize field
directly; if you need to change the cell size after creating a list, use the LCellSize (page 1178) function.

visible
The cells in a list that are visible within the area specified by the rView field. The List Manager sets
the left and top fields of visible to the coordinates of the first visible cell; however, the List
Manager sets the right and bottom fields so that each is 1 greater than the horizontal and vertical
coordinates of the last visible cell. For example, if a list contains 4 columns and 10 rows but only the
first 2 columns and the first 5 rows are visible (that is, the last visible cell has coordinates (1,4)), the
List Manager sets the visible field to (0,0,2,5).

vScroll
A control handle for a list’s vertical scroll bar, or NULL if a list does not have a vertical scroll bar.

hScroll
A control handle for a list’s horizontal scroll bar, or NULL if a list does not have a horizontal scroll bar.

selFlags
Indicates the selection flags for a list. When your application creates a list, the List Manager clears the
selFlags field to 0. This defines the List Manager’s default selection algorithm. To change the default
behavior for a particular list, set the desired bits in the list’s selFlags field. See “Selection Flags” (page
1217).

lActive
Indicates whether the list is active (TRUE if active, FALSE if inactive).

lReserved
Reserved.

listFlags
Indicates whether the List Manager should automatically scroll the list if the user clicks the list and
then drags the cursor outside the list display rectangle. See “List Flags” (page 1215) for the values used
in this field.

By default, the List Manager enables horizontal autoscrolling for a list if the list includes a horizontal
scroll bar, and enables vertical autoscrolling for a list if the list includes a vertical scroll bar.

clikTime
The time in ticks of the last click in the list. If your application depends on the value contained in this
field, then your application should update the field if the application selects a list item in response
to keyboard input.

clikLoc
The location in local coordinates of the last click in the list.

mouseLoc
Indicates the current location of the cursor in local coordinates. This value is continuously updated
by the LClick function after the user clicks a list.

lClickLoop
A universal procedure pointer to your click loop callback function, which is repeatedly called by the
LClick (page 1179) function, or NULL if the default click-loop function is to be used.

lastClick
The coordinates of the last cell in the list that was clicked. This may not be the same as the last cell
selected if the user selects a range of cells by Shift-dragging or Command-dragging. If your application
depends on the value contained in this field, then your application should update the field whenever
your application selects a list item in response to keyboard input.

1210 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

refCon
4 bytes for use by your application.

listDefProc
A handle to the code for the list definition function that defines how the list is drawn.

userHandle
4 bytes that your application can use as needed. For example, your application might use this field
to store a handle to additional storage associated with the list. However, the LDispose (page 1181)
function does not automatically release this storage when disposing of the list.

dataBounds
The range of cells in a list. When your application creates a list, it specifies the initial bounds of the
list. As your application adds rows and columns, the List Manager updates this field. The List Manager
sets the left and top fields of dataBounds to the coordinates of the first cell in the list; the List
Manager sets the right and bottom fields so that each is 1 greater than the horizontal and vertical
coordinates of the last cell. For example, if a list contains 4 columns and 10 rows (that is, the last cell
in the list has coordinates (3,9)), the List Manager sets the dataBounds field to (0,0,4,10).

cells
A handle to a relocatable block used to store cell data. Your application should not change the contents
of this relocatable block directly.

maxIndex
Used internally.

cellArray
Offsets to data that indicate the location of different cells’ data within the data handle specified by
the cells parameter. Your application should not access this field directly.

Discussion
Functions in the List Manager interface use the ListHandle datatype to identify a list. The ListHandle
type uses a ListRec structure to maintain information about a list. The ListRec data type defines a list
record.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

ListRef

typedef ListHandle ListRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

Data Types 1211
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

ListSearchUPP

typedef ListSearchProcPtr ListSearchUPP;

Discussion
For more information, see the description of the ListSearchUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

StandardIconListCellDataRec

struct StandardIconListCellDataRec {
 Handle iconHandle;
 short font;
 short face;
 short size;
 Str255 name;
};
typedef struct StandardIconListCellDataRec StandardIconListCellDataRec;
typedef StandardIconListCellDataRec * StandardIconListCellDataPtr;

Fields
iconHandle
font
face
size
name

Discussion
Version Notes
Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.

Declared In
Lists.h

1212 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Constants

kListDefProcPtr

enum {
 kListDefProcPtr = 0,
 kListDefUserProcType = kListDefProcPtr,
 kListDefStandardTextType = 1,
 kListDefStandardIconType = 2
};

Constants
kListDefProcPtr

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

kListDefUserProcType
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

kListDefStandardTextType
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

kListDefStandardIconType
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDrawingModeOff

enum {
 lDrawingModeOff = 8,
 lDoVAutoscroll = 2,
 lDoHAutoscroll = 1
};

Constants
lDrawingModeOff

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDoVAutoscroll
Set this bit to 1 if you wish to allow automatic vertical scrolling.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDoHAutoscroll
Set this bit to 1 if you wish to allow automatic horizontal scrolling.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

Constants 1213
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

lDrawingModeOffBit

enum {
 lDrawingModeOffBit = 3,
 lDoVAutoscrollBit = 1,
 lDoHAutoscrollBit = 0
};

Constants
lDrawingModeOffBit

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDoVAutoscrollBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDoHAutoscrollBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

List Definition Constants

enum {
 lInitMsg = 0,
 lDrawMsg = 1,
 lHiliteMsg = 2,
 lCloseMsg = 3
};

Constants
lInitMsg

In response to the lInitMsg message, your list definition function should perform any special
initialization needed for a list. For example, the function might set fields of the list record, such as the
cellSize and indent fields, to appropriate values. Your list definition function does not necessarily
need to do anything in response to the initialization message. If it does nothing, then memory is still
allocated for the list, and fields of the list record are set to the same values as they would be set to if
the default list definition function were being used.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lDrawMsg
Your list definition function should draw the cell specified by the theCell parameter after receiving
an lDrawMsg message. The function must ensure that it does not draw anywhere but within the
rectangle specified by the cellRect parameter. If the selected parameter is TRUE, then your list
definition function should draw the cell in its highlighted state; otherwise, it should draw the cell
without highlighting. When drawing, your list definition function should take care not to permanently
change any characteristics of the drawing environment.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

1214 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

lHiliteMsg
Your list definition function should respond to the lHiliteMsg message by reversing the selection
status of the cell contained within the rectangle specified by the cellRect parameter. If a cell is
highlighted, your list definition function should remove the highlighting; if a cell is not highlighted,
your list definition function should highlight it.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lCloseMsg
The List Manager sends your list definition function an lCloseMsg message before it disposes of a
list and its data. Your list definition function need only respond to this message if additional memory
has been allocated for the list. For example, your list definition function might allocate a relocatable
block in response to the lInitMsg message. In this case, your list definition function would need to
dispose of this relocatable block in response to the lCloseMsg message. Or, if your list definition
function defines cells simply to contain pointers or handles to data stored elsewhere in memory, it
would need to dispose of that memory in response to the lCloseMsg message.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

Discussion
The List Manager passes these values to your ListDefProcPtr (page 1201) function to identify the operation
to be performed.

List Flags

Constants
Discussion
The following constants define bits in thelistFlags field of theListRec (page 1209) structure that determine
whether horizontal autoscrolling and vertical autoscrolling are enabled:.

Constants 1215
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

listNotifyNothing

enum {
 listNotifyNothing = 'nada',
 listNotifyClick = 'clik',
 listNotifyDoubleClick = 'dblc',
 listNotifyPreClick = 'pclk'
};

Constants
listNotifyNothing
listNotifyClick
listNotifyDoubleClick
listNotifyPreClick

lOnlyOneBit

enum {
 lOnlyOneBit = 7,
 lExtendDragBit = 6,
 lNoDisjointBit = 5,
 lNoExtendBit = 4,
 lNoRectBit = 3,
 lUseSenseBit = 2,
 lNoNilHiliteBit = 1
};

Constants
lOnlyOneBit

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lExtendDragBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoDisjointBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoExtendBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoRectBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lUseSenseBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoNilHiliteBit
Available in Mac OS X v10.0 and later.

Declared in Lists.h.

1216 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Selection Flags

enum {
 lOnlyOne = -128,
 lExtendDrag = 64,
 lNoDisjoint = 32,
 lNoExtend = 16,
 lNoRect = 8,
 lUseSense = 4,
 lNoNilHilite = 2
};

Constants
lOnlyOne

Specify this value if you wish to allow only one item to be selected at once.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lExtendDrag
Specify this value if you wish to enable selection of multiple items by dragging without the Shift key.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoDisjoint
Specify this value if you wish to prevent discontinuous selections using the Command key.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoExtend
Specify this value if you wish to prevent extending Shift key selections. All items are deselected before
responding to Shift-click.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoRect
Specify this value if you wish to select all items in the cursor’s path during Shift-drag.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lUseSense
Specify this value if you wish to allow the user to deselect one or more items using the Shift key

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

lNoNilHilite
Specify this value if you wish to disable the highlighting of empty cells.

Available in Mac OS X v10.0 and later.

Declared in Lists.h.

Discussion
The ListRec (page 1209) structure uses these values in the selFlags field to indicate the List Manager’s
default selection algorithm. Use these values additively to select more than one selection option.

Constants 1217
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

1218 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 14

List Manager Reference (Not Recommended)

Framework: Carbon/Carbon.h

Declared in Menus.h

Overview

You can use the Menu Manager to create and manage the menus in your application. Menus allow the user
to view or choose from a list of choices and commands that your application provides. All Mac OS applications
should provide these standard menus: the Application menu, the File menu, and the Edit menu.

Carbon supports the Menu Manager, with the following changes:

 ■ Your application must use the functions defined by the Menu Manager whenever it creates and disposes
of Menu Manager data structures. Some applications, for example, create menus by using the Resource
Manager function GetResource (instead of the Menu Manager function GetMenu) and dispose of them
by calling ReleaseResource instead of DisposeMenu. This practice is not supported in Carbon.

 ■ The MenuInfo structure is opaque in Carbon. You must revise your application so that it accesses Menu
Manager data structures only through accessor functions.

 ■ Menu color information tables are not recommended in Carbon.

 ■ You are strongly encouraged to adopt the standard Mac OS menu definition functions (also known as
MDEFs) in your application. Your menus will then inherit the systemwide appearance and, furthermore,
take advantage of other Menu Manager enhancements planned for the future. If you decide to customize
the appearance of a menu and you are deploying your application for Mac OS X v10.3 and later, you
should use a custom HIView instead of a custom menu definition function.

Functions by Task

Function descriptions are grouped by the tasks for which you use the functions. For an alphabetical list of
functions, go to the API index at the end of the document.

Creating and Disposing of Menus

CreateNewMenu (page 1246)
Creates a new, untitled, empty menu.

DuplicateMenu (page 1255)
Creates a new menu that is a copy of another menu.

Overview 1219
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

DisposeMenu (page 1253)
Decrements the retain count of a menu.

CreateCustomMenu (page 1245)
Creates a new, untitled, empty menu using a custom menu definition function.

RegisterMenuDefinition (page 1318)
Registers a binding between a resource ID and a menu definition function.

SetMenuDefinition (page 1329)
Sets the menu definition structure for a menu.

GetMenuDefinition (page 1271)
Obtains the menu definition structure for a menu.

CreateStandardFontMenu (page 1247)
Creates a standard font menu.

UpdateStandardFontMenu (page 1349)
Updates a standard Font menu.

ReleaseMenu (page 1319) Deprecated in Mac OS X v10.5
Decrements the retain count of a menu.

RetainMenu (page 1321) Deprecated in Mac OS X v10.5
Increments the reference count of a menu.

Manipulating the Root Menu

AcquireRootMenu (page 1229)
Get the menu whose contents are displayed in the menubar.

SetRootMenu (page 1347)
Sets the menu whose contents are displayed in the menubar.

Manipulating the Menu Bar

HideMenuBar (page 1291)
Conceals the menu bar.

ShowMenuBar (page 1348)
Displays the menu bar.

IsMenuBarVisible (page 1303)
Reports whether the menu bar is currently visible.

FlashMenuBar (page 1259)
Highlights a menu title or the entire menu bar.

SetMenuBar (page 1327)
Sets the current menu list to a specified menu list.

GetMenuBar (page 1268)
Gets a handle to a copy of the current menu list.

DrawMenuBar (page 1255)
Draws the menu bar based on the current menu list.

1220 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

InvalMenuBar (page 1301)
Invalidates the menu bar.

GetMBarHeight (page 1265)
Determines the current height of the menu bar.

DuplicateMenuBar (page 1256)
Duplicates a menubar handle.

DisposeMenuBar (page 1253)
Releases a menubar handle.

Adding and Removing Menus

InsertMenu (page 1294)
Inserts an existing menu into the current menu list.

DeleteMenu (page 1248)
Deletes an existing menu from the current menu list.

ClearMenuBar (page 1237)
Deletes all menus from the current menu list.

GetMenuRetainCount (page 1286) Deprecated in Mac OS X v10.5
Returns the retain count of this menu.

Manipulating and Accessing Menu Characteristics

GetMenuRef (page 1286)
Obtains a menu reference corresponding to a menu ID.

GetMenuHandle (page 1273)
Obtains a menu reference corresponding to a menu ID.

SetMenuTitleWithCFString (page 1346)
Sets the title of a menu to the text contained in a CFString.

CopyMenuTitleAsCFString (page 1243)
Returns a CFString containing the title of a menu.

GetMenuType (page 1289)
Gets the display type (pulldown, hierarchical, or popup) of a menu.

SetMenuTitleIcon (page 1345)
Sets the title of a menu to be an icon.

GetMenuTitleIcon (page 1288)
Retrieves the icon, if any, being used as the title of a menu.

SetMenuID (page 1333)
Assigns a menu ID to a menu.

GetMenuID (page 1274)
Obtains the ID of a menu.

LMGetTheMenu (page 1308)
Returns the menu ID of the currently highlighted menu in the menu bar.

Functions by Task 1221
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

SetMenuHeight (page 1332)
Set the height of a menu.

GetMenuHeight (page 1274)
Obtains the height of a menu, in pixels.

SetMenuWidth (page 1347)
Sets the width of a menu.

GetMenuWidth (page 1289)
Obtains the width of the menu, in pixels.

CalcMenuSize (page 1234)
Recalculates the horizontal and vertical dimensions of a menu.

IsMenuSizeInvalid (page 1306)
Determines if a menu's size is invalid and should be recalculated.

GetMenuAttributes (page 1268)
Gets the attributes of a menu.

ChangeMenuAttributes (page 1235)
Changes the attributes of a menu.

IsValidMenu (page 1308)
Determines if a menu is valid.

SetMenuFlashCount (page 1331) Deprecated in Mac OS X v10.5
Specifies whether a menu should fade slowly or immediately disappear when closing.

Drawing Menus and Menu Items

HiliteMenu (page 1291)
Highlights or unhighlights menu titles.

UpdateInvalidMenuItems (page 1348)
Redraws the invalid items of an open menu.

InvalidateMenuEnabling (page 1299)
Requests that the menu’s enable state be recalculated.

InvalidateMenuItems (page 1299)
Invalidates a group of menu items so that they will be redrawn when UpdateInvalidMenuItems
is next called.

InvalidateMenuSize (page 1300)
Invalidates the menu size so that it will be recalculated when next displayed.

IsMenuBarInvalid (page 1302)
Determines if the menubar is invalid and should be redrawn.

IsMenuItemInvalid (page 1305)
Determines if a menu item is invalid and should be redrawn.

EraseMenuBackground (page 1258) Deprecated in Mac OS X v10.5
Erases the menu background to prepare for additional drawing.

ScrollMenuImage (page 1322) Deprecated in Mac OS X v10.5
Scrolls a portion of the menu image.

1222 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Adding and Deleting Menu Items

CopyMenuItems (page 1242)
Copies menu items from one menu to another.

DeleteMenuItem (page 1249)
Deletes an item from a menu.

DeleteMenuItems (page 1250)
Deletes multiple menu items.

Associating Data With Menu Items

SetMenuItemProperty (page 1341)
Associates data with a menu item.

SetMenuCommandProperty (page 1329)
Sets the property data for a menu item with the specified command ID.

GetMenuItemProperty (page 1281)
Obtains a piece of data that has been previously associated with a menu item.

GetMenuCommandProperty (page 1270)
Retrieves property data for a menu item with the specified command ID.

GetMenuItemPropertySize (page 1283)
Obtains the size of a piece of data that has been previously associated with a menu item.

GetMenuCommandPropertySize (page 1271)
Retrieves the size of the property data for a menu item with the specified command ID.

RemoveMenuItemProperty (page 1320)
Removes a piece of data that has been previously associated with a menu item.

RemoveMenuCommandProperty (page 1319)
Removes a property from a menu item with the specified command ID.

GetMenuItemPropertyAttributes (page 1282)
Gets the attributes of a menu item property.

ChangeMenuItemPropertyAttributes (page 1236)
Changes the attributes of a menu item property.

SetMenuItemRefCon (page 1342)
Sets application-specific information for a menu item.

GetMenuItemRefCon (page 1284)
Obtains application-specific information for a menu item.

Enabling Menus and Menu Items

CountMenuItems (page 1244)
Obtains the number of menu items in a menu

CountMenuItemsWithCommandID (page 1244)
Counts the menu items with a specified command ID.

Functions by Task 1223
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

EnableMenuItem (page 1257)
Enables a menu item or a menu.

EnableMenuCommand (page 1257)
Enables the menu item with a specified command ID.

DisableMenuItem (page 1251)
Disables a menu item or a menu.

DisableMenuCommand (page 1251)
Disables the menu item with a specified command ID.

EnableAllMenuItems (page 1256)
Enables all items in a menu.

DisableAllMenuItems (page 1250)
Disables all items in a menu.

IsMenuItemEnabled (page 1303)
Reports whether a given menu or menu item is enabled.

IsMenuCommandEnabled (page 1303)
Determines if the menu item with a specified command ID is enabled.

MenuHasEnabledItems (page 1310)
Determines if any items in a menu are enabled.

EnableMenuItemIcon (page 1258)
Enables the icon associated with a menu item.

DisableMenuItemIcon (page 1252)
Disables the icon associated with a menu item.

IsMenuItemIconEnabled (page 1304)
Reports whether a given menu item icon is enabled.

Manipulating Menu Item Text

SetMenuItemTextWithCFString (page 1344)
Sets the text of a menu item to the text contained in a CFString.

CopyMenuItemTextAsCFString (page 1243)
Returns a CFString containing the text of a menu item.

AppendMenuItemTextWithCFString (page 1231)
Appends a new menu item with text from a CFString.

InsertMenuItemTextWithCFString (page 1296)
Inserts a new menu item with text from a CFString.

GetMenuFont (page 1272)
Obtains the font used in a menu.

SetMenuFont (page 1331)
Sets the font to be used in a menu.

GetMenuItemFontID (page 1277)
Obtains a menu item’s font ID.

SetMenuItemFontID (page 1335)
Sets the font for a menu item.

1224 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

GetFontFamilyFromMenuSelection (page 1260)
Gets the font family reference and style from the menu identifier and menu item number returned
by the function MenuSelect.

SetItemStyle (page 1325)
Sets a menu item’s text style.

GetItemStyle (page 1264)
Returns a menu item’s text style.

GetMenuItemTextEncoding (page 1285) Deprecated in Mac OS X v10.5
Obtains the text encoding used for a menu item’s text.

SetMenuItemTextEncoding (page 1343) Deprecated in Mac OS X v10.5
Sets the text encoding for a menu item’s text.

Manipulating and Accessing Menu Item Characteristics

SetMenuItemIconHandle (page 1338)
Sets a menu item’s icon.

GetMenuItemIconHandle (page 1279)
Obtains a handle to a menu item’s icon.

SetItemMark (page 1324)
Sets the mark of a menu item.

SetMenuCommandMark (page 1328)
Locates the menu item with a specified command ID and sets its mark character.

GetItemMark (page 1263)
Returns a menu item’s mark.

GetMenuCommandMark (page 1269)
Locates the menu item with a specified command ID and returns its mark character.

CheckMenuItem (page 1237)
Adds or removes a check mark from a menu item.

SetMenuItemIndent (page 1338)
Sets the indent level of a menu item.

GetMenuItemIndent (page 1279)
Gets the indent level of a menu item.

SetMenuItemKeyGlyph (page 1339)
Sets the command key glyph code for a menu item.

GetMenuItemKeyGlyph (page 1280)
Obtains the keyboard glyph for a menu item’s keyboard equivalent.

SetMenuItemModifiers (page 1340)
Sets the modifier key(s) that must be pressed with a character key to select a particular menu item.

GetMenuItemModifiers (page 1281)
Obtains the modifier keys that must be pressed with a character key to select a particular menu item.

SetMenuItemCommandID (page 1333)
Sets a menu item’s command ID.

GetMenuItemCommandID (page 1275)
Obtains a menu item’s command ID.

Functions by Task 1225
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

SetMenuItemHierarchicalMenu (page 1337)
Attaches a submenu to a menu item.

GetMenuItemHierarchicalMenu (page 1278)
Returns the submenu attached to a menu item.

SetMenuItemCommandKey (page 1334)
Sets the keyboard equivalent of a menu item.

GetMenuItemCommandKey (page 1276)
Gets the keyboard equivalent of a menu item.

GetIndMenuItemWithCommandID (page 1261)
Finds a menu item with a specified command ID.

SetMenuItemData (page 1335)
Sets multiple attributes of a menu item at once.

CopyMenuItemData (page 1241)
Obtains multiple menu item attributes at once.

GetMenuItemAttributes (page 1275)
Gets the attributes of a menu item.

ChangeMenuItemAttributes (page 1235)
Changes the attributes of a menu item.

GetItemIcon (page 1262) Deprecated in Mac OS X v10.5
Returns a menu item’s icon or text encoding.

GetMenuItemHierarchicalID (page 1277) Deprecated in Mac OS X v10.5
Obtains the menu ID of a specified submenu.

SetItemIcon (page 1323) Deprecated in Mac OS X v10.5
Sets a menu item’s icon or text encoding.

SetMenuItemHierarchicalID (page 1336) Deprecated in Mac OS X v10.5
Attaches a submenu to a menu item.

Responding to Menu Events and User Selections

IsMenuKeyEvent (page 1305)
Determines if an event corresponds to a menu command key.

GetMenuTrackingData (page 1288)
Gets information about the menu currently selected by the user.

CancelMenuTracking (page 1234)
Cancels menu tracking.

MenuSelect (page 1312)
Allows the user to choose a menu item from a menu in the menu bar.

MenuChoice (page 1309)
Returns the menu ID and index of the menu item under the cursor.

IsShowContextualMenuEvent (page 1307)
Determines whether a particular Carbon event could invoke a contextual menu.

ContextualMenuSelect (page 1239)
Displays a contextual menu.

1226 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

PopUpMenuSelect (page 1316)
Displays a pop-up menu without using the standard pop-up control definition function.

Handling Contextual Menu Plugins

CMPluginExamineContext (page 1238)
An application-defined callback function that examines the context in a contextual menu CFPlugin.

CMPluginHandleSelection (page 1238)
An application-defined callback function that handles menu item selection in a contextual menu
CFPlugin.

CMPluginPostMenuCleanup (page 1239)
An application-defined callback function that handles any post-selection cleanup in a contextual
menu CFPlugin.

Obsolete Functions

GetItemCmd (page 1262)
Returns the value of a menu item’s keyboard equivalent field.

GetMenu (page 1266)
Creates a menu from the specified menu and extended menu resources.

GetMenuExcludesMarkColumn (page 1272)
Returns whether a menu contains space for mark characters.

GetNewMBar (page 1290)
Reads in the definition of a menu bar from an 'MBAR' resource.

IsShowContextualMenuClick (page 1306)
Determines whether a particular event could invoke a contextual menu.

MenuEvent (page 1309)
Maps a keyboard combination from the event structure to the keyboard equivalent of a menu item
in a menu in the current menu list.

SetItemCmd (page 1322)
Sets the value of the keyboard equivalent field of a menu item.

SetMenuExcludesMarkColumn (page 1330)
Sets whether a menu contains space for mark characters.

AppendMenu (page 1229) Deprecated in Mac OS X v10.5
Appends one or more items to a menu previously created.

AppendMenuItemText (page 1231) Deprecated in Mac OS X v10.5
Appends a menu item to a menu.

AppendResMenu (page 1232) Deprecated in Mac OS X v10.5
Searches all resource files open to your application for a given resource type and appends the names
of any resources it finds to a specified menu.

DeleteMCEntries (page 1248) Deprecated in Mac OS X v10.5
Deletes a menu item entry, a menu title entry, the menu bar entry, or all menu item entries of a specific
menu from your application’s menu color information table.

Functions by Task 1227
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

DisposeMCInfo (page 1252) Deprecated in Mac OS X v10.5
Disposes of a menu color information table.

DisposeMenuDefUPP (page 1254) Deprecated in Mac OS X v10.5
Disposes of universal procedure pointer to a custom menu definition.

GetMCEntry (page 1265) Deprecated in Mac OS X v10.5
Gets information about an entry in an application’s menu color information table.

GetMCInfo (page 1266) Deprecated in Mac OS X v10.5
Returns a handle to a copy of your application’s menu color information table.

GetMenuItemText (page 1285) Deprecated in Mac OS X v10.5
Obtains the text of a menu item.

GetMenuTitle (page 1287) Deprecated in Mac OS X v10.5
Obtains the title of the menu

InitContextualMenus (page 1292) Deprecated in Mac OS X v10.5
Adds a program to the system registry of contextual menu clients.

InsertFontResMenu (page 1293) Deprecated in Mac OS X v10.5
Inserts menu items from a font resource.

InsertIntlResMenu (page 1293) Deprecated in Mac OS X v10.5
Inserts menu items from an internationalized resource.

InsertMenuItem (page 1295) Deprecated in Mac OS X v10.5
Inserts one or more items into a menu previously created.

InsertMenuItemText (page 1296) Deprecated in Mac OS X v10.5
Inserts a menu item into a menu.

InsertResMenu (page 1297) Deprecated in Mac OS X v10.5
Searches all resource files open to your application for a given resource type and inserts the names
of any resources it finds in the specified menu.

InvokeMenuDefUPP (page 1301) Deprecated in Mac OS X v10.5
Calls your custom menu definition through a universal procedure pointer.

MenuKey (page 1311) Deprecated in Mac OS X v10.5
Maps a character key with the command key to determine the keyboard equivalent of a menu item
in a menu in the current menu list.

NewMenu (page 1314) Deprecated in Mac OS X v10.5
Creates an empty menu with a specified title and menu ID.

NewMenuDefUPP (page 1315) Deprecated in Mac OS X v10.5
Creates a new univeral procedure pointer to your custom menu definition.

ProcessIsContextualMenuClient (page 1317) Deprecated in Mac OS X v10.5
Determines whether a given program is a contextual menu client.

SetMCEntries (page 1326) Deprecated in Mac OS X v10.5
Sets entries in an application’s menu color information table.

SetMCInfo (page 1326) Deprecated in Mac OS X v10.5
Makes a copy of your application’s menu color information table.

SetMenuItemText (page 1342) Deprecated in Mac OS X v10.5
Sets menu item text to a specified string.

SetMenuTitle (page 1345) Deprecated in Mac OS X v10.5
Sets the title of a menu.

1228 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Functions

AcquireRootMenu
Get the menu whose contents are displayed in the menubar.

MenuRef AcquireRootMenu (
 void
);

Return Value
The current root menu. See page for a description of the MenuRef data type. If no root menu currently exists,
the Menu Manager creates one and returns its menu reference.

Discussion
This function increments the reference count of the root menu. The caller should call ReleaseMenu (page
1319) when done with the menu.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

AppendMenu
Appends one or more items to a menu previously created. (Deprecated in Mac OS X v10.5.)

Not recommended

void AppendMenu (
 MenuRef menu,
 ConstStr255Param data
);

Parameters
menu

The menu to which you wish to append the menu item or items.

data
A Pascal string that defines the characteristics of the new menu item or items. Note that in most cases
you should store the text of a menu item in a resource, so that your menu items can be more easily
localized. The AppendMenu function appends the menu items in the order in which they are listed in
the data parameter.

Discussion
Note that unless you are supporting legacy code, you should use the
AppendMenuItemTextWithCFString (page 1231) function instead.

Functions 1229
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

The AppendMenu function appends any defined menu items to a previously-created menu. The menu items
are added to the end of the menu. You specify the text of any menu items and their characteristics in the
data parameter. You can embed metacharacters in the string to define various characteristics of a menu
item.

Table 15-1 (page 1230) lists the metacharacters that you can specify in the data parameter:

Table 15-1 Metacharacters available to pass in AppendMenu

DescriptionMetacharacter

Separates menu items.; or Return

When followed by an icon number, defines the icon for the item. If the keyboard equivalent
field contains 0x1C, this number is interpreted as a text encoding.

^

When followed by a character, defines the mark for the item. If the keyboard equivalent
field contains 0x1B or the equivalent constant hMenuCmd, this value is interpreted as the
menu ID of a submenu of this menu item.

!

When followed by one or more of the characters B, I, U, O, and S, defines the character
style of the item to Bold, Italic, Underline, Outline, or Shadow, respectively.

<

When followed by a character, defines the keyboard equivalent for the item. When followed
by 0x1B or the equivalent constant hMenuCmd, specifies that this menu item has a
submenu. To specify that the menu item has a text encoding, small icon, or reduced icon,
use the SetItemCmd function to set the keyboard equivalent field to 0x1C, 0x1D, or 0x1E,
respectively.

/

Defines the menu item as disabled.(

You can specify any, all, or none of these metacharacters in the text string. The metacharacters that you
specify aren’t displayed in the menu item. (To use any of these metacharacters in the text of a menu item,
first use AppendMenu, specifying at least one character as the item’s text, and then use the function
SetMenuItemText (page 1342) to set the item’s text to the desired string.)

If you add menu items using the AppendMenu function, you should define the text and any marks or keyboard
equivalents in resources for easier localization.

You can specify the first character that defines the text of a menu item as a hyphen to create a divider line.
The string in the data parameter can be blank (containing one or more spaces), but it should not be an empty
string.

If you do not define a specific characteristic of a menu item, the AppendMenu function assigns the default
characteristic to the menu item. If you do not define any characteristic other than the text for a menu item,
the AppendMenu function inserts the menu item so that it appears in the menu as an enabled item, without
an icon or a mark, in the plain character style, and without a keyboard equivalent.

You can use AppendMenu to append items to a menu regardless of whether the menu is in the current menu
list.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

1230 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Menus.h

AppendMenuItemText
Appends a menu item to a menu. (Deprecated in Mac OS X v10.5.)

Not recommended

OSStatus AppendMenuItemText (
 MenuRef menu,
 ConstStr255Param inString
);

Parameters
menu

The menu to which the item is to be appended.

inString
A Pascal string containing the text of the menu item to append. You can pass a string containing any
characters, and these characters will be presented verbatim in the menu item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Note that unless you are supporting legacy code, you should use the
AppendMenuItemTextWithCFString (page 1231) function instead.

The AppendMenuItemText function appends the menu item containing the specified string to a menu,
without evaluating the string for metacharacters, as the pre–Mac OS 8.5 Menu Manager function AppendMenu
does. You may wish to use AppendMenuItemText if you need to present non-alphanumeric characters in a
menu item.

The appended menu item appears at the end of the menu as an enabled item. If you wish to place the menu
item elsewhere than at the end of the menu you should use the function InsertMenuItemText (page 1296).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

AppendMenuItemTextWithCFString
Appends a new menu item with text from a CFString.

Functions 1231
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus AppendMenuItemTextWithCFString (
 MenuRef inMenu,
 CFStringRef inString,
 MenuItemAttributes inAttributes,
 MenuCommand inCommandID,
 MenuItemIndex *outNewItem
);

Parameters
menu

The menu to which to append the new item.

inString
The text of the new item.

inAttributes
The attributes of the new item.

inCommandID
The command ID of the new item.

outNewItem
On exit, the index of the new item. May be NULL if the caller does not need this information.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
The Menu Manager will make its own copy of the CFString before returning from this function. Modifying
the string after calling AppendMenuItemTextWithCFString will have no effect on the menu item's actual
text. The caller may release the string after the call.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
HID Explorer

Declared In
Menus.h

AppendResMenu
Searches all resource files open to your application for a given resource type and appends the names of any
resources it finds to a specified menu. (Deprecated in Mac OS X v10.5.)

Not recommended

1232 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void AppendResMenu (
 MenuRef theMenu,
 ResType theType
);

Parameters
theMenu

The menu to which to append the names of any resources of a given type that AppendResMenu finds.

theType
A four-character code that identifies the resource type for which to search.

Discussion
Unless you must support legacy code, you should not use functions like AppendResMenu ,which assumes
that menu items to append are stored in resources.

If you want to insert fonts into a menu, you should call CreateStandardFontMenu (page 1247) instead.

The AppendResMenu function searches all resource files open to your application for resources of the type
defined by the parameter theType. It appends the names of any resources it finds of the given type to the
end of the specified menu. AppendResMenu appends the names of found resources in alphabetical order;
it does not alphabetize items already in the menu. The AppendResMenu function does not add resources
with names that begin with a period (.) or a percent sign (%) to the menu.

AppendResMenu assigns default characteristics to each menu item. Each appended menu item appears in
the menu as an enabled item, without an icon or a mark, in the plain character style, and without a keyboard
equivalent.

Note that for applications using CarbonLib, you no longer need to call AppendResMenu add resources of
type ' DRVR ' to your Apple menu; CarbonLib does this for you automatically.

If you specify that AppendResMenu append resources of type ' FONT ' or ' FOND ', the Menu Manager
performs special processing for any resources it finds that have font numbers greater than 0x4000. If the
script system associated with the font name is installed in the system, AppendResMenu stores information
in the itemDefinitions array (in the itemIcon and itemCmd fields for that item) in the menu structure.
This allows the Menu Manager to display the font name in the correct script.

Special Considerations

The AppendResMenu function calls the Resource Manager function SetResLoad (specifying true in the
load parameter) before returning. The AppendResMenu function reads the resource data of the resources
it finds into memory. If your application does not want the Resource Manager to read resource data into
memory when your application calls other functions that read resources, you need to call SetResLoad and
specify false in the load parameter after AppendResMenu returns.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Menus.h

Functions 1233
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

CalcMenuSize
Recalculates the horizontal and vertical dimensions of a menu.

void CalcMenuSize (
 MenuRef theMenu
);

Parameters
theMenu

The menu whose dimensions need recalculating.

Discussion
The CalcMenuSize function uses the menu definition function of the specified menu to calculate the
dimensions of the menu. In most cases, your application does not need to use the CalcMenuSize function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

CancelMenuTracking
Cancels menu tracking.

OSStatus CancelMenuTracking (
 MenuRef inRootMenu,
 Boolean inImmediate,
 UInt32 inDismissalReason
);

Parameters
inRootMenu

The root menu of the tracking session to dismiss. For menu bar tracking, pass the result from
AcquireRootMenu (page 1229); for popup menu tracking, pass the menu that was passed to
PopUpMenuSelect (page 1316).

inImmediate
Pass true if you want the open menus to disappear immediately, false if you want them to fade
out.

inDismissalReason
Why the menu is being dismissed. This value is passed in the kEventMenuEndTracking event. You
can pass the constants in “Menu Dismissal Constants” (page 1397). If you pass zero here, the
kEventMenuEndTracking event contains kMenuDismissedByCancelMenuTracking.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

1234 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

ChangeMenuAttributes
Changes the attributes of a menu.

OSStatus ChangeMenuAttributes (
 MenuRef menu,
 MenuAttributes setTheseAttributes,
 MenuAttributes clearTheseAttributes
);

Parameters
menu

The menu whose attributes you want to change.

setTheseAttributes
The attributes to add to the menu. See “Menu Attribute Constants” (page 1375) for a list of possible
values.

clearTheseAttributes
The attributes to remove from the menu. See “Menu Attribute Constants” (page 1375) for a list of
possible values.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

ChangeMenuItemAttributes
Changes the attributes of a menu item.

OSStatus ChangeMenuItemAttributes (
 MenuRef menu,
 MenuItemIndex item,
 MenuItemAttributes setTheseAttributes,
 MenuItemAttributes clearTheseAttributes
);

Parameters
menu

The menu.

item
The index of the menu item.

setTheseAttributes
The attributes to add to the menu item. See “Menu Item Attribute Constants” (page 1377) for a list of
possible values.

Functions 1235
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

clearTheseAttributes
The attributes to remove from the menu item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

ChangeMenuItemPropertyAttributes
Changes the attributes of a menu item property.

OSStatus ChangeMenuItemPropertyAttributes (
 MenuRef menu,
 MenuItemIndex item,
 OSType propertyCreator,
 OSType propertyTag,
 OptionBits attributesToSet,
 OptionBits attributesToClear
);

Parameters
menu

The menu containing the menu item whose properties you want ot change.

item
The index of the menu item.

propertyCreator
The creator code of the property.

propertyTag
The property tag.

attributesToSet
The attributes to add to the menu item property.

attributesToClear
The attributes to remove from the menu item property.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Currently you can only specify the kMenuPropertyPersistent attribute (See “Menu Item Property Attribute
Constant” (page 1395)), which currently has no effect on Mac OS X. Therefore,
SetMenuItemPropertyAttributes is not useful at this time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1236 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

CheckMenuItem
Adds or removes a check mark from a menu item.

void CheckMenuItem (
 MenuRef theMenu,
 short item,
 Boolean checked
);

Parameters
theMenu

The menu containing the menu item to check or uncheck.

item
The menu index of the item to check or uncheck.

checked
Pass true to add a check, false to remove it.

Discussion
You can also add or remove a check mark using the SetItemMark (page 1324) function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

ClearMenuBar
Deletes all menus from the current menu list.

void ClearMenuBar (
 void
);

Discussion
The ClearMenuBar function deletes all menus from the current menu list. ClearMenuBar decrements the
reference count of each menu in the menu list; if the reference count reaches zero, the memory associated
with the menu is released. To explicitly release the memory occupied by a menu, use DisposeMenu (page
1253).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

Functions 1237
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

CMPluginExamineContext
An application-defined callback function that examines the context in a contextual menu CFPlugin.

OSStatus CMPluginExamineContext (
 void *thisInstance,
 const AEDesc *inContext,
 AEDescList *outCommandPairs
);

Parameters
thisInstance

The instance of this plugin.

inContext
The Apple event descriptor describing the selection that invoked the contextual menu.

outCommandPairs
On return, outCommandPairs points to an array of Apple event descriptors, each of which contains
information about a menu item to display in the contextual menu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Your contextual menu plugin must implement this function to determine what menu items to display given
the user selection. The Apple event descriptor for each menu item contains the information to display in the
item (such as text) and a command ID.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Menus.h

CMPluginHandleSelection
An application-defined callback function that handles menu item selection in a contextual menu CFPlugin.

OSStatus CMPluginHandleSelection (
 void *thisInstance,
 AEDesc *inContext,
 SInt32 inCommandID
);

Parameters
thisInstance

The instance of this plugin.

inContext
The Apple event descriptor describing the selection that invoked the contextual menu.

inCommandID
The command ID associated with the user’s menu item selection.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

1238 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
Your contextual menu plugin must implement this function to handle a user’s selection of an item in the
contextual menu. The command ID indicates which of the choices you gave in CMPluginExamineContext
the user selected, so you can use that and the user selection stored in the inContext parameter to execute
the conxtexual menu selection appropriately.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Menus.h

CMPluginPostMenuCleanup
An application-defined callback function that handles any post-selection cleanup in a contextual menu
CFPlugin.

void CMPluginPostMenuCleanup (
 void *thisInstance
);

Parameters
thisInstance

The instance of this plugin.

Discussion
Your contextual menu plugin must implement this function to handle any necessary cleanup required after
displaying the contextual menu. If no cleanup is needed, you can simply return from this function.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Menus.h

ContextualMenuSelect
Displays a contextual menu.

Functions 1239
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus ContextualMenuSelect (
 MenuRef inMenu,
 Point inGlobalLocation,
 Boolean inReserved,
 UInt32 inHelpType,
 ConstStr255Param inHelpItemString,
 const AEDesc *inSelection,
 UInt32 *outUserSelectionType,
 MenuID *outMenuID,
 MenuItemIndex *outMenuItem
);

Parameters
inMenu

The menu containing application commands to display. The caller creates this menu based on the
current context, the mouse location, and the current selection (if it was the target of the mouse). If
you pass NULL, only system commands are displayed.

inGlobalLocation
The location (in global coordinates) of the mouse near which the menu is to be displayed.

inReserved
Reserved for future use. Pass false for this parameter.

inHelpType
An identifier specifying the type of help provided by the application; see “Contextual Menu Help Type
Constants” (page 1369).

inHelpItemString
The string containing the text to be displayed for the help menu item. This string is unused unless
you also pass the constant kCMOtherHelp in the inHelpType parameter.

inSelection
A pointer to an object specifier for the current selection. This allows the system to examine the
selection and add special system commands accordingly. Passing a value of NULL indicates that no
selection should be examined, and most likely, no special system actions will be included.

outUserSelectionType
A pointer to an unsigned 32-bit value. On return, the value indicates what the user selected from the
contextual menu; see “Contextual Menu Selection Type Constants” (page 1370) for a list of possible
values.

outMenuID
A pointer to a signed 16-bit value. On return, if outUserSelectionType is set to
kCMMenuItemSelected, the value is set to the menu ID of the chosen item.

outMenuItem
A pointer to an unsigned 16-bit value. On return, if outUserSelectionType is set to
kCMMenuItemSelected, the value is set to the index of the menu item chosen.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399). Returns userCanceledErr and sets
outUserSelectionType to kCMNothingSelected if the user selects an item that requires no additional
actions on your part.

1240 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
If your application uses the standard window handler, you may want to install handlers for the
kEventWindowContextualMenuSelect or kEventControlContextualMenuClick events and call
ContextualMenuSelect from within your handler. The standard window handler automatically detects
contextual menu clicks and sends the kEventWindowContextualMenuSelect and
kEventControlContextualMenuClick events.

If the IsShowContextualMenuEvent function returns true or you receive the appropriate contextual menu
Carbon event, you should call the ContextualMenuSelect function after generating your own menu and
preparing an Apple Event descriptor (AEDesc) that describes the item for which your application is displaying
a contextual menu. This descriptor may contain an object specifier or raw data and will be passed to all
contextual menu plug-ins.

The system will add other items before displaying the contextual menu, and it will remove those items before
returning, leaving the menu in its original state.

After all the system commands are added, the contextual menu is displayed and tracked. If the user selects
one of the system items, it is handled by the system and the call returns as though the user didn’t select
anything from the menu. If the user selects any other item (or no item at all), the Menu Manager passes back
appropriate values in the parameters outUserSelectionType, outMenuID, and outMenuItem.

Your application should provide visual feedback indicating the item that was clicked upon. For example, a
click on an icon should highlight the icon, while a click on editable text should not eliminate the current
selection.

If the outUserSelectionType parameter contains kCMMenuItemSelected, you should look at the
outMenuID and outMenuItem parameters to determine what menu item the user chose and handle it
appropriately. If the outUserSelectionType parameter contains kCMShowHelpSelected, you should
open the proper help sequence.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

CopyMenuItemData
Obtains multiple menu item attributes at once.

OSStatus CopyMenuItemData (
 MenuRef inMenu,
 MenuItemID inItem,
 Boolean inIsCommandID,
 MenuItemDataPtr ioData
);

Parameters
menu

The menu whose attributes you want to get. Note that if you pass true for the inIsCommandID
parameter, you can pass NULL here, in which case the Menu Manager searches the root menu for the
first menu that matches the specified command ID.

Functions 1241
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

item
The menu item index or the command ID of the menu item.

isCommandID
A Boolean value indicating whether the value passed for the inItem parameter is a command ID or
a menu item index. Pass true to indicate a command ID, false to indicate that it is a menu item
index. If you pass true, the Menu Manager returns the data for the first menu item that matches the
specified command ID.

outData
A pointer to a MenuItemDataRec structure. Before calling, you should set the whichData field to
indicate what data you want to obtain. (Individual fields may also require initialization before calling.)
On return, the structure contains the data you requested. For more details on the types of data you
can obtain, see “Menu Item Data Flags” (page 1390).

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You can use this function to obtain multiple menu item attributes simultaneously, which is often more
efficient than making several different calls. For example, a menu definition function could use
CopyMenuItemData to obtain all the individual attributes necessary for drawing a menu all at once.

This function returns copies of the data in the menu, so you should release any data in the MenuItemDataRec
structure that was allocated dynamically (such as the CFString item text).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

CopyMenuItems
Copies menu items from one menu to another.

OSStatus CopyMenuItems (
 MenuRef inSourceMenu,
 MenuItemIndex inFirstItem,
 ItemCount inNumItems,
 MenuRef inDestMenu,
 MenuItemIndex inInsertAfter
);

Parameters
inSourceMenu

The menu from which to copy items.

inFirstItem
The first item to copy.

inNumItems
The number of items to copy.

inDestMenu
The menu to which to copy items.

1242 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

inInsertAfter
The menu item in the destination menu after which to insert the copied items. Pass zero to insert
items at the beginning of the menu. Note that you cannot specify an index value greater than the
number of items in the destination menu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

CopyMenuItemTextAsCFString
Returns a CFString containing the text of a menu item.

OSStatus CopyMenuItemTextAsCFString (
 MenuRef inMenu,
 MenuItemIndex inItem,
 CFStringRef *outString
);

Parameters
menu

The menu containing the item.

item
The item whose text you want to copy.

outString
On exit, a CFString containing the item's text. The caller must release this string when it is no longer
needed.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

CopyMenuTitleAsCFString
Returns a CFString containing the title of a menu.

Functions 1243
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus CopyMenuTitleAsCFString (
 MenuRef inMenu,
 CFStringRef *outString
);

Parameters
inMenu

The menu whose title you want to obtain.

outString
On exit, a CFString containing the menu's title. This string must be released by the caller.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

CountMenuItems
Obtains the number of menu items in a menu

UInt16 CountMenuItems (
 MenuRef theMenu
);

Parameters
theMenu

The menu whose items you want to count.

Return Value
The number of menu items in the menu.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Explorer

Declared In
Menus.h

CountMenuItemsWithCommandID
Counts the menu items with a specified command ID.

1244 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

ItemCount CountMenuItemsWithCommandID (
 MenuRef inMenu,
 MenuCommand inCommandID
);

Parameters
menu

The menu in which to begin searching for items with the specified command ID. Pass NULL to begin
searching with the root menu. The search will descend into all submenus of this menu.

commandID
The command ID for which to search.

Return Value
The number of menu items that match the specified command ID.

Version Notes
In CarbonLib 1.0.x, this function always returns zero or one; it stops after finding the first menu item with
the specified command ID. In CarbonLib 1.1 and Mac OS X v10.0, it will count all menu items with the specified
command ID.

In Mac OS X v10.0 and CarbonLib 1.0 through 1.4, this function searches only top-level menus (that is, those
that are visible in the menu bar) and submenus of top-level menus. It does not search hierarchical menus
that are in the menu bar but are not submenus of a top-level menu. For example, it does not search menus
that are inserted for use in a popup menu. In Mac OS X v10.1 and later, and CarbonLib 1.5 and later, this
function also searches hierarchical menus.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

CreateCustomMenu
Creates a new, untitled, empty menu using a custom menu definition function.

OSStatus CreateCustomMenu (
 const MenuDefSpec *inDefSpec,
 MenuID inMenuID,
 MenuAttributes inMenuAttributes,
 MenuRef *outMenuRef
);

Parameters
inDefSpec

A data structure that specifies a custom menu definition function.

inMenuID
The menu ID to use for the new menu.

inMenuAttributes
The menu attributes to use for the new menu. See “Menu Attribute Constants” (page 1375) for a list of
possible values.

Functions 1245
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

outMenuRef
On exit, contains the new menu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Similar to CreateNewMenu (page 1246), but also allows you to create a menu from a custom menu definition
function This definition can be procedure pointer–based or HIView-based, which you specify in the
MenuDefSpec structure. (Note that HIView–based menus are available only in Mac OS X v10.3 and later.)

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

CreateNewMenu
Creates a new, untitled, empty menu.

OSStatus CreateNewMenu (
 MenuID inMenuID,
 MenuAttributes inMenuAttributes,
 MenuRef *outMenuRef
);

Parameters
inMenuID

The menu ID to use for the new menu. Note that zero is a valid ID in Carbon.

inMenuAttributes
The menu attributes to use for the new menu. See “Menu Attribute Constants” (page 1375) for a list of
possible values.

outMenuRef
On exit, contains the new menu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Unless you need to create new menus on-the-fly, you should not use functions like CreateNewMenu that
create menus programmatically. Instead, you should define menus in Interface Builder, store them as nib
files, and then call the Interface Builder Services function CreateMenuFromNib to create them.

CreateNewMenu is preferred over NewMenu because it allows you to specify the menu's attributes and it
does not require you to specify a Str255-based menu title. To set the menu title, you should use
SetMenuTitleWithCFString (page 1346).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1246 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

CreateStandardFontMenu
Creates a standard font menu.

OSStatus CreateStandardFontMenu (
 MenuRef menu,
 MenuItemIndex afterItem,
 MenuID firstHierMenuID,
 OptionBits options,
 ItemCount *outHierMenuCount
);

Parameters
menu

The menu to which you want to add the font items.

afterItem
The item number of the menu item after which the new menu items are to be added. If you want to
insert the new items before the first menu items, specify 0. If you want to insert the items after the
last item in the menu, specify a number greater than or equal to the last item in the menu. Otherwise,
specify the item number for the menu item after which you want to insert new items.

firstHierMenuID
The first menu ID to use if any hierarchical menus are created. This ID is incremented for each additional
hierarchical menu.

options
An option bits structure that specifies the behavior for the Font menu. Specify the Hierarchical
Font Menu Option Constant (page 1375) if you want to construct a hierarchical font menu.

outHierMenuCount
On return, this parameter contains the number of hierarchical menus attached to the standard font
menu. This value may be NULL if the hierarchical menus count is not useful. For example, if the only
submenus in your application are those created by CreateStandardFontMenu, then you don’t need
to worry about the hierarchical menu count, as any existing submenu must be a font menu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You should use this function instead of the functions AppendResMenu (page 1232) or InsertResMenu (page
1297) to designate objects in the font database as menu items in the Font menu. The fonts objects will appear
by name.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

Functions 1247
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

DeleteMCEntries
Deletes a menu item entry, a menu title entry, the menu bar entry, or all menu item entries of a specific menu
from your application’s menu color information table. (Deprecated in Mac OS X v10.5.)

Not recommended

void DeleteMCEntries (
 MenuID menuID,
 short menuItem
);

Parameters
menuID

The menu ID that the DeleteMCEntries function should use to determine which entry to delete
from the menu color information table. Specify 0 in the menuID parameter (and the menuItem
parameter) to delete the menu bar entry. Specify the menu ID of a menu in the current menu list in
the menuID parameter and 0 in the menuItem parameter to delete a specific menu title entry. Specify
the menu ID of a menu in the current menu list in the menuID parameter and an item number in the
menuItem parameter to delete a specific menu item entry.

menuItem
The menu item that the DeleteMCEntries function should use to determine which entry to delete
from the menu color information table. If you specify 0 in this parameter, DeleteMCEntries deletes
either the menu bar entry or menu title entry, depending on the value of the menuID parameter. If
you specify the item number of a menu item in this parameter and the menu ID of a menu in the
current menu list in the menuID parameter, DeleteMCEntries deletes a specific menu item entry.
You can also delete all menu item entries for a specific menu from your application’s menu color
information table by specifying the constant mctAllItems.

Discussion
If the DeleteMCEntries function does not find the specified entry in your application’s menu color
information table, it does not delete the entry. Your application should not delete the last entry in your
application’s menu color information table.

If any of the deleted entries changes the menu bar color or a menu title color, your application should call
DrawMenuBar (page 1255) to update the menu bar.

Carbon Porting Notes

DeleteMCEntries does nothing, because the Appearance Manager doesn’t use color tables.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

DeleteMenu
Deletes an existing menu from the current menu list.

1248 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void DeleteMenu (
 MenuID menuID
);

Parameters
menuID

The menu ID of the menu to delete from the current menu list. If the menu list does not contain a
menu with the specified menu ID, DeleteMenu does nothing.

Discussion
The DeleteMenu function deletes the menu identified by the specified menu ID from the current menu list.
DeleteMenu decrements the reference count of the menu, and if the reference count reaches zero, the
memory occupied by the menu is released. To explicitly release the memory occupied by the menu, use
DisposeMenu (page 1253).

The DeleteMenu function first checks the submenu portion of the current menu list for a menu ID with the
specified ID. If it finds such a menu, it deletes that menu and returns. If DeleteMenu doesn’t find the menu
in the submenu portion, it checks the regular portion of the current menu list.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

DeleteMenuItem
Deletes an item from a menu.

void DeleteMenuItem (
 MenuRef theMenu,
 MenuItemIndex item
);

Parameters
theMenu

The menu from which you want to delete the menu item.

item
The item number of the menu item to delete. If you specify 0 or a number greater than the last item
in the menu, DeleteMenuItem does not delete any item from the menu.

Discussion
The DeleteMenuItem function deletes a specified menu item from a menu. You should not delete items
from an existing menu unless the user expects the menu (such as a menu that lists open documents) to
change.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

Functions 1249
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

DeleteMenuItems
Deletes multiple menu items.

OSStatus DeleteMenuItems (
 MenuRef inMenu,
 MenuItemIndex inFirstItem,
 ItemCount inNumItems
);

Parameters
inMenu

The menu from which to delete items.

inFirstItem
The first item to delete.

inNumItems
The number of items to delete.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You can call this function rather than calling DeleteMenuItem (page 1249) multiple times.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Explorer

Declared In
Menus.h

DisableAllMenuItems
Disables all items in a menu.

void DisableAllMenuItems (
 MenuRef theMenu
);

Parameters
theMenu

The menu whose items you want to disable.

Discussion
This function is equivalent to older code that masked the enableFlags field of the MenuInfo structure
(now opaque in Carbon) with 0x01. It disables all items (including items past item 31) but does not affect
the state of the menu title.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1250 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

DisableMenuCommand
Disables the menu item with a specified command ID.

void DisableMenuCommand (
 MenuRef inMenu,
 MenuCommand inCommandID
);

Parameters
theMenu

The menu in which to begin searching for the item. Pass NULL to begin searching with the root menu.
The search will descend into all submenus of this menu.

commandID
The command ID of the menu item to be disabled. If more than one item has this command ID, only
the first will be disabled.

Discussion
If you have access to the menu item index, in most cases you should use DisableMenuItem (page 1251)
instead, as that function is faster and requires no searching.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Menus.h

DisableMenuItem
Disables a menu item or a menu.

void DisableMenuItem (
 MenuRef theMenu,
 MenuItemIndex item
);

Parameters
theMenu

The menu containing the item to be disabled.

item
The index of the menu item that you wish to disable. Pass 0 to specify the menu title (disabling the
entire menu).

Discussion
The DisableMenuItem function disables a menu item (and any associated icon) so that the user cannot
choose the item from the menu.

Functions 1251
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Note that EnableMenuItem calls the InvalMenuBar (page 1301) function to update the menu bar the next
time through the event loop.

See also the EnableMenuItem (page 1257) and IsMenuItemEnabled (page 1303) functions.

Carbon Porting Notes

Note that the implementation of Carbon on Mac OS 8.1 only supports disabling menu items less than or
equal to 31.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Menus.h

DisableMenuItemIcon
Disables the icon associated with a menu item.

void DisableMenuItemIcon (
 MenuRef theMenu,
 MenuItemIndex item
);

Parameters
theMenu

The menu containing the icon to be disabled.

item
The index of the menu item containing the icon.

Discussion
Your application can use the DisableMenuItemIcon function to dim individual menu item icons. The menu
item that contains the icon is unaffected by calling DisableMenuItemIcon. That is, if DisableMenuItemIcon
disables an enabled menu item’s icon, the menu item itself will remain enabled. Calling
DisableMenuItemIcon on the icon of a menu item that is currently disabled will cause the icon to be
disabled once the menu item is re-enabled.

See also the functions EnableMenuItemIcon (page 1258) and IsMenuItemIconEnabled (page 1304).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

DisposeMCInfo
Disposes of a menu color information table. (Deprecated in Mac OS X v10.5.)

1252 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Not recommended

void DisposeMCInfo (
 MCTableHandle menuCTbl
);

Parameters
menuCTbl

The handle to the menu color information table you want to remove.

Discussion
The DisposeMCInfo function disposes of the menu color information table referred to by the menuCTbl
parameter.

Carbon Porting Notes

DisposeMCInfo does nothing, because Appearance Manager doesn’t use color tables.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

DisposeMenu
Decrements the retain count of a menu.

void DisposeMenu (
 MenuRef theMenu
);

Parameters
theMenu

The menu whose retain count to decrement. If the retain count falls to zero, the menu is destroyed.

Discussion
The reference that you pass in the theMenu parameter is not valid after DisposeMenu returns. This function
is identical to ReleaseMenu (page 1319).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Explorer

Declared In
Menus.h

DisposeMenuBar
Releases a menubar handle.

Functions 1253
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus DisposeMenuBar (
 MenuBarHandle inMbar
);

Parameters
mbar

The menubar handle to release.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Carbon applications should call this function when releasing a handle returned from GetNewMBar (page 1290),
GetMenuBar (page 1268), or DuplicateMenuBar (page 1256). Doing so ensures that the reference counts of
the menus in the menubar handle can be decremented when the handle is released.

Do not call the Memory Manager function DisposeHandle to release such a handle.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

DisposeMenuDefUPP
Disposes of universal procedure pointer to a custom menu definition. (Deprecated in Mac OS X v10.5.)

Not recommended

void DisposeMenuDefUPP (
 MenuDefUPP userUPP
);

Parameters
userUPP

Carbon Porting Notes

Apple discourages you from writing and using your own menu definition functions and encourages you to
use the system-supplied menu definition function instead. New features that have previously been missing
are now available in the system-supplied menu definition function. Since Appearance Manager 1.0 (in Mac
OS 8.0), for example, the system-supplied menu definition function has supported extended menu item
command key modifiers and glyphs. And in Carbon, the system-supplied menu definition function supports
dynamic items, which allow the contents of a menu item to be redrawn while the menu is displayed in
response to the user pressing a modifier key on the keyboard.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

1254 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

DrawMenuBar
Draws the menu bar based on the current menu list.

void DrawMenuBar ();

Discussion
The DrawMenuBar function draws (or redraws) the menu bar according to the current menu list. Note that
most Menu Manager calls that affect the menu bar call InvalMenuBar (page 1301) so that the menu bar is
redrawn the next time through the event loop; however, you can call DrawMenuBar if you want the changes
to appear immediately.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Menus.h

DuplicateMenu
Creates a new menu that is a copy of another menu.

OSStatus DuplicateMenu (
 MenuRef inSourceMenu,
 MenuRef *outMenu
);

Parameters
inSourceMenu

The menu to duplicate.

outMenu
On exit, a copy of the source menu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Unlike RetainMenu (page 1321), DuplicateMenu creates an entirely new menu that is an exact copy of the
original menu. The menu definition for the new menu will receive an initialization message/event after the
menu has been fully created.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

Functions 1255
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

DuplicateMenuBar
Duplicates a menubar handle.

OSStatus DuplicateMenuBar (
 MenuBarHandle inMbar,
 MenuBarHandle *outMbar
);

Parameters
inMbar

The menubar handle to duplicate.

outMBar
On exit, contains the new menubar handle.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Carbon applications should use this function when duplicating a handle returned from GetMenuBar or
GetNewMBar. Doing so ensures that the reference counts of the menus in the menubar handle can be
incremented when the handle is duplicated.

Do not use Memory Manager APIs (HandToHand, NewHandle, and so on) to duplicate such a handle.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

EnableAllMenuItems
Enables all items in a menu.

void EnableAllMenuItems (
 MenuRef theMenu
);

Parameters
theMenu

The menu whose items to enable.

Discussion
This function is equivalent to older code that OR'd the enableFlags field of the MenuInfo structure (now
opaque in Carbon) with 0xFFFFFFFE. It enables all items (including items past item 31) but does not affect
the state of the menu title.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

1256 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

EnableMenuCommand
Enables the menu item with a specified command ID.

void EnableMenuCommand (
 MenuRef inMenu,
 MenuCommand inCommandID
);

Parameters
inMenu

The menu in which to begin searching for the item. Pass NULL to begin searching with the root menu.
The search will descend into all submenus of this menu.

inCommandID
The command ID of the menu item to be enabled. If more than one item has this command ID, only
the first will be enabled.

Discussion
If you have access to the menu item index, in most cases you should use EnableMenuItem (page 1257) instead,
as that function is faster and requires no searching. For example, when receiving a
kEventCommandUpdateStatus event, the HICommand structure contains both the menu item’s command
ID and index. If you wanted to enable the menu item, you should call EnableMenuItem (page 1257).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Menus.h

EnableMenuItem
Enables a menu item or a menu.

void EnableMenuItem (
 MenuRef theMenu,
 MenuItemIndex item
);

Parameters
theMenu

The menu containing the item to be enabled.

item
The item number of the menu item that you wish to enable. If you pass 0, EnableMenuItem enables
the menu title and all items in the menu that were not previously individually disabled.

Discussion
The EnableMenuItem function enables a menu item so that the user can choose the item from the menu.
If the menu item has an associated icon, that icon is also enabled, unless the icon was previously individually
disabled with the function DisableMenuItemIcon (page 1252).

Functions 1257
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Note that EnableMenuItem calls the InvalMenuBar (page 1301) function to update the menu bar the next
time through the event loop.

See also the DisableMenuItem (page 1251) and IsMenuItemEnabled (page 1303) functions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Menus.h

EnableMenuItemIcon
Enables the icon associated with a menu item.

void EnableMenuItemIcon (
 MenuRef theMenu,
 MenuItemIndex item
);

Parameters
theMenu

The menu containing the icon to be enabled.

item
The item number of the menu item containing the icon.

Discussion
Your application can use the EnableMenuItemIcon function to enable individual menu item icons that
have been previously disabled by a call to the function DisableMenuItemIcon (page 1252). The menu item
that contains the icon is unaffected by calling EnableMenuItemIcon. Note that enabling the icon of a
currently disabled menu item has no visual effect; however, once the menu item is enabled, the icon is also
enabled.

See also the DisableMenuItemIcon (page 1252) and IsMenuItemIconEnabled (page 1304) functions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

EraseMenuBackground
Erases the menu background to prepare for additional drawing. (Deprecated in Mac OS X v10.5.)

1258 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus EraseMenuBackground (
 MenuRef inMenu,
 const Rect *inEraseRect,
 CGContextRef inContext
);

Parameters
inMenu

The menu whose background you want to erase.

inEraseRect
The bounds of the area to erase, in the local coordinates of the current port.

inContext
The Core Graphics context to erase. If set to NULL, this function creates a new context based on the
current port.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Typically you use this function only if you are implementing message-based custom menu definition functions.
HIView-based custom menus and normal application code do not need to call EraseMenuBackground.

Before calling the Appearance Manager function DrawThemeMenuBackground, you must erase the current
menu background. Themes such as Aqua draw the menu background using an alpha channel, so if the old
background is not erased, portions of the old image will show through the menu background.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

FlashMenuBar
Highlights a menu title or the entire menu bar.

void FlashMenuBar (
 MenuID menuID
);

Parameters
menuID

The menu ID of the menu whose title you want to highlight. Pass zero in this parameter to signal a
visual alert (that is, flash the entire screen) If you pass a menu ID that is not in the menubar,
FlashMenuBar returns immediately without flashing the bar or any menu title.

Discussion
Call this function twice if you want the menu or menu bar to blink.

Functions 1259
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Only one menu title can be highlighted at a time. If no menus are currently highlighted, calling FlashMenuBar
with a specific menu ID highlights the title of that menu. If you call FlashMenuBar again specifying another
menu ID that is different from that of the previously highlighted menu title, FlashMenuBar restores the
previously highlighted menu to normal and then highlights the title of the specified menu.

If you pass zero for the menu ID, this function flashes the entire screen, as if an alert had occurred while the
user had specified the “Flash the screen when an alert sound occurs” checkbox in the Universal Access
preference pane.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetFontFamilyFromMenuSelection
Gets the font family reference and style from the menu identifier and menu item number returned by the
function MenuSelect.

OSStatus GetFontFamilyFromMenuSelection (
 MenuRef menu,
 MenuItemIndex item,
 FMFontFamily *outFontFamily,
 FMFontStyle *outStyle
);

Parameters
menu

A menu handle.

item
A menu item index.

outFontFamily
A pointer to the font family reference associated with the menu item.

outStyle
A pointer to the font style associated with the menu item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You use this function to obtain information from a font menu created using CreateStandardFontMenu (page
1247),AppendResMenu (page 1232),InsertFontResMenu (page 1293),InsertIntlResMenu (page 1293), or
InsertResMenu (page 1297).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

1260 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

GetIndMenuItemWithCommandID
Finds a menu item with a specified command ID.

OSStatus GetIndMenuItemWithCommandID (
 MenuRef inMenu,
 MenuCommand inCommandID,
 UInt32 inItemIndex,
 MenuRef *outMenu,
 MenuItemIndex *outIndex
);

Parameters
inMenu

The menu in which to begin searching for items with the specified command ID. Pass NULL to begin
searching with the root menu. The search will descend into all submenus of this menu.

inCommandID
The command ID for which to search.

inItemIndex
The 1-based index of the menu item to retrieve. In CarbonLib 1.0.x, this parameter must be 1. In
CarbonLib 1.1 and Mac OS X 1.0, this parameter may vary from 1 to the number of menu items with
the specified command ID.

outMenu
On exit, the menu containing the menu item with the specified command ID.

outIndex
On exit, the item index of the menu item with the specified command ID.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
This API searches the specified menu and its submenus for the n'th menu item with the specified command
ID. You often want to use this function in conjunction with CountMenuItemsWithCommandID (page 1244).

Version Notes
In CarbonLib 1.1 and earlier, only the first menu item will be returned. In CarbonLib 1.2 and Mac OS X v10.0
and later, this API will iterate over all menu items with the specified command ID and return the itemIndex’th
one.

In Mac OS X v10.0 and CarbonLib 1.0 through 1.4, this function searches only top-level menus (that is, those
that are visible in the menu bar) and submenus of top-level menus. It does not search hierarchical menus
that are in the menu bar but are not submenus of a top-level menu. For example, it does not search menus
that are inserted for use in a popup menu. In Mac OS X v10.1 and later, and CarbonLib 1.5 and later, this
function also searches hierarchical menus.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Menus.h

Functions 1261
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

GetItemCmd
Returns the value of a menu item’s keyboard equivalent field.

Not recommended

void GetItemCmd (
 MenuRef theMenu,
 MenuItemIndex item,
 CharParameter *cmdChar
);

Parameters
theMenu

The menu containing the menu item whose keyboard equivalent you want to obtain.

item
An integer representing the item number of the menu item whose keyboard equivalent you want to
determine.

cmdChar
On output, an integer representing the item’s keyboard equivalent field. The Menu Manager uses this
value to map keyboard equivalents to menu commands or to indicate special characteristics of the
menu item.

If the value referenced through the cmdChar parameter contains 0x1B, the menu item has a submenu;
a value of 0x1C indicates that the item has a text encoding; a value of 0x1D indicates that the Menu
Manager reduces the item’s 'ICON' resource; and a value of 0x1E indicates that the item has an 'SICN'
resource.

Discussion
You should call GetMenuItemCommandKey (page 1276) , GetMenuItemHierarchicalID (page 1277) , and
GetMenuItemTextEncoding (page 1285) instead ofGetItemCmd to obtain a menu item’s keyboard equivalent
and text encoding and to determine that a menu item has a submenu.

The GetItemCmd function returns the value in the keyboard equivalent field of the specified menu item in
the value pointed to by the cmdChar parameter (or 0 if the item doesn’t have a keyboard equivalent, submenu,
text encoding, reduced icon, or small icon).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetItemIcon
Returns a menu item’s icon or text encoding. (Deprecated in Mac OS X v10.5.)

1262 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void GetItemIcon (
 MenuRef theMenu,
 MenuItemIndex item,
 short *iconIndex
);

Parameters
theMenu

The menu containing the item.

item
The menu index of the item.

iconIndex
On output, an integer representing the menu item’s icon or text encoding. For menu items that do
not specify 0x1C in the keyboard equivalent field, a value from 1 through 255 if the menu item has
an icon associated with it and is 0 otherwise representing the item’s icon number.

Discussion
In most cases, you should use GetMenuItemTextEncoding (page 1285) rather than GetItemIcon to get the
menu item’s text encoding.

The GetItemIcon function returns the icon number or text encoding of the specified menu item through
the iconIndex parameter (or 0 if the item doesn’t have an icon or a text encoding). If the menu item’s
keyboard equivalent field contains 0x1C, the returned number represents the text encoding of the menu
item. Otherwise, the returned number represents the item’s icon number.

In the iconIndex parameter, you can add 256 to the icon number to generate the resource ID of the ' cicn
', ' ICON ', or ' SICN ' resource that describes the icon of the menu item. For example, if the GetItemIcon
function returns 5 as the icon number, then the icon of the menu item is described by an icon resource with
resource ID 261.

For menu items that contain 0x1C in the keyboard equivalent field, the GetItemIcon function returns the
text encoding of the menu item. The Menu Manager displays the menu item using this text encoding if the
corresponding script system is installed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

GetItemMark
Returns a menu item’s mark.

Functions 1263
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void GetItemMark (
 MenuRef theMenu,
 MenuItemIndex item,
 CharParameter *markChar
);

Parameters
theMenu

The menu containing the item.

item
The menu index of the item.

markChar
On output, an integer representing the mark of the menu item or its submenu (item has a submenu).
See the Font Manager for a list of character marking constants that this function can obtain. This
parameter is set to 0 if the menu item has neither mark nor submenu.

Discussion
You should call GetMenuItemHierarchicalID (page 1277) instead of GetItemMark to obtain the menu ID
of a menu item’s submenu. However, you can still use GetItemMark to obtain the mark of a menu item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Menus.h

GetItemStyle
Returns a menu item’s text style.

void GetItemStyle (
 MenuRef theMenu,
 MenuItemIndex item,
 Style *chStyle
);

Parameters
theMenu

The menu containing the item.

item
The menu index of the item.

chStyle
On output, an integer representing the menu item’s text style. The functions returns one of the
following constants: normal, bold, italic, underline, outline, shadow, condense, and extend
.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1264 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

GetMBarHeight
Determines the current height of the menu bar.

short GetMBarHeight (
 void
);

Return Value
The current height, in pixels, of the menu bar.

Discussion
The GetMBarHeight function determines the menu bar height based on factors such as the current script
system and theme.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMCEntry
Gets information about an entry in an application’s menu color information table. (Deprecated in Mac OS X
v10.5.)

Not recommended

MCEntryPtr GetMCEntry (
 MenuID menuID,
 short menuItem
);

Parameters
menuID

The menu ID that the GetMCEntry function should use to return information about the menu color
information table. Specify 0 in the menuID parameter (and the menuItem parameter) to get the menu
bar entry. Specify the menu ID of a menu in the current menu list in the menuID parameter and 0 in
the menuItem parameter to get a specific menu title entry. Specify the menu ID of a menu in the
current menu list in the menuID parameter and an item number in the menuItem parameter to get
a specific menu item entry.

menuItem
The menu item that the GetMCEntry function should use to return information about the menu color
information table. If you specify 0 in this parameter, GetMCEntry returns either the menu bar entry
or the menu title entry, depending on the value of the menuID parameter. If you specify the item
number of a menu item in this parameter and the menu ID of a menu in the current menu list in the
menuID parameter, GetMCEntry returns a specific menu item entry.

Functions 1265
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Return Value
A menu bar entry, a menu title entry, or a menu item entry according to the values specified in the menuID
and menuItem parameters. If the GetMCEntry function finds the specified entry in your application’s menu
color information table, it returns a pointer to a structure of data type MCEntry. If the specified entry is not
found, GetMCEntry returns null. The menu color information table is relocatable, so the pointer returned
by the GetMCEntry function may not be valid across functions that may move or purge memory. Your
application should make a copy of the menu color entry structure if necessary. See page for a description of
the MCEntry data structure.

Carbon Porting Notes

GetMCEntry does nothing, because Appearance Manager doesn’t use color tables.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

GetMCInfo
Returns a handle to a copy of your application’s menu color information table. (Deprecated in Mac OS X
v10.5.)

Not recommended

MCTableHandle GetMCInfo (
 void
);

Return Value
A handle to a copy of your application’s menu color information table. If the copy fails, GetMCInfo returns
null.

Carbon Porting Notes

The Menu Manager ignores color tables in Mac OS X, so there is no reason to call GetMCInfo.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenu
Creates a menu from the specified menu and extended menu resources.

Not recommended

1266 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

MenuRef GetMenu (
 short resourceID
);

Parameters
resourceID

The resource ID of the menu and extended menu that defines the characteristics of the menu. You
typically use the same number for a menu’s resource ID as the number that you specify for the menu
ID in the menu resource.

Return Value
The new menu. You can use the returned menu handle to refer to this menu in most Menu Manager functions.
If GetMenu is unable to read the menu or menu definition function from the resource file, GetMenu returns
null. See the description of the MenuRef data type.

Discussion
Unless you must support legacy code, you should not use functions like GetMenu that rely on menus stored
as resources. Instead, you should define menus in Interface Builder, store them as nib files, and then call the
Interface Builder Services function CreateMenuFromNib to create them.

GetMenu reads the menu definition function into memory (if not already present) and stores a handle to the
menu definition function in the menu structure. GetMenu does not insert the newly created menu into the
current menu list.

You typically use the GetMenu function only when you create submenus; you can create all your pull-down
menus at once using the function GetNewMBar, and you can create pop-up menus using the standard pop-up
menu button control definition function.

After reading the 'MENU' resource, GetMenu searches for an extended menu resource and an 'mctb'
resource with the same resource ID as the 'MENU' resource. If the specified 'mctb' resource exists, GetMenu
uses SetMCEntries to add the entries defined by the resource to the application’s menu color information
table. If the 'mctb' resource does not exist, GetMenu uses the default colors specified in the menu bar entry
of the application’s menu color information. If neither a menu bar entry nor a 'mctb' resource exists, GetMenu
uses the standard colors for the menu.

Storing the definitions of your menus in resources (especially menu titles and menu items) makes your
application easier to localize.

After creating a menu with GetMenu or NewMenu (page 1314) , use InsertMenuItem (page 1295) ,
AppendMenu (page 1229) , or InsertResMenu (page 1297) to add menu items to the menu. To add a menu
created by GetMenu to the current menu list, use InsertMenu (page 1294). To update the menu bar with any
new menu titles, use DrawMenuBar (page 1255).

Menus in a resource must not be purgeable nor should the resource lock bit be set. Do not define a “circular”
hierarchical menu—that is, a hierarchical menu in which a submenu has a submenu whose submenu is a
hierarchical menu higher in the chain.

Special Considerations

To release the memory associated with a menu that you created using GetMenu, first call DeleteMenu to
remove the menu from the current menu list and to remove any entries for this menu in your application’s
menu color information table then call DisposeMenu to dispose of the menu structure.

Functions 1267
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Carbon Porting Notes

In Carbon, the GetMenu function always returns a newly created MenuRef. Prior to Carbon, GetMenu would
first check if the menu was already in memory. If so, GetMenuwould return the in-memory copy. This behavior
is no longer supported.

Carbon does not support custom menu definitions stored in 'MDEF' resources. If you want to specify a custom
menu definition for GetMenu, you must compile your definition function directly in your application and
then register the function by calling RegisterMenuDefinition (page 1318). When GetMenu gets a
resourceID value that doesn't recognize, it checks a special mapping table to find the pointer that's registered
for the resourceID parameter. It then calls that function to implement your menu.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuAttributes
Gets the attributes of a menu.

OSStatus GetMenuAttributes (
 MenuRef menu,
 MenuAttributes *outAttributes
);

Parameters
menu

The menu.

outAttributes
On exit, contains the attributes of the menu. See “Menu Attribute Constants” (page 1375) for a list of
possible values.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuBar
Gets a handle to a copy of the current menu list.

1268 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

MenuBarHandle GetMenuBar (
 void
);

Return Value
A handle to a copy of the current menu list. See the description of the MenuBarHandle data type.

Discussion
The GetMenuBar function creates a copy of the current menu list and returns a handle to the copy. You can
save the returned menu list and then add menus to or remove menus from the current menu list using
InsertMenu (page 1294) , DeleteMenu (page 1248) , or ClearMenuBar (page 1237). You can later restore the
saved menu list using SetMenuBar (page 1327).

To release the memory occupied by a saved menu list, use the DisposeMenuBar (page 1253) function.

GetMenuBar doesn’t copy the menu structures, just the menu list (which contains handles to the menu
structures). Do not dispose of any menus in a saved menu list if you wish to restore the menu list later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuCommandMark
Locates the menu item with a specified command ID and returns its mark character.

OSStatus GetMenuCommandMark (
 MenuRef inMenu,
 MenuCommand inCommandID,
 UniChar *outMark
);

Parameters
theMenu

The menu in which to begin searching for the item. Pass NULL to begin searching with the root menu.
The search will descend into all submenus of this menu.

commandID
The command ID of the menu item to be examined. If more than one item has this command ID, only
the first will be examined.

outMark
On exit, the menu item's mark character.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If you have access to the menu item index, in most cases you should use GetItemMark (page 1263) instead,
as that function is faster and requires no searching.

Availability
Available in Mac OS X v10.0 and later.

Functions 1269
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Not available to 64-bit applications.

Declared In
Menus.h

GetMenuCommandProperty
Retrieves property data for a menu item with the specified command ID.

OSStatus GetMenuCommandProperty (
 MenuRef inMenu,
 MenuCommand inCommandID,
 OSType inPropertyCreator,
 OSType inPropertyTag,
 ByteCount inBufferSize,
 ByteCount *outActualSize,
 void *inPropertyBuffer
);

Parameters
inMenu

The menu in which to search for the command ID. Pass NULL to begin searching with the root menu.
The search will descend into all submenus of this menu.

inCommandID
The command ID of the menu item containing the property. Note that if more than one item has the
same command ID, only the first match is used.

inPropertyCreator
The four-character creator code of the application.

inPropertyTag
The four-character tag of the property to obtain.

inBufferSize
The size of the buffer to hold the retrieved data, in bytes.

outActualSize
The actual size of the property data. If you do not need this information, pass NULL.

inPropertyBuffer
A pointer to the buffer in which to place the data. On return, the buffer contains the property data.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If you have access to the menu item index, in most cases you should use GetMenuItemProperty (page 1281)
instead, as that function is faster and requires no searching.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

1270 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

GetMenuCommandPropertySize
Retrieves the size of the property data for a menu item with the specified command ID.

OSStatus GetMenuCommandPropertySize (
 MenuRef inMenu,
 MenuCommand inCommandID,
 OSType inPropertyCreator,
 OSType inPropertyTag,
 ByteCount *outSize
);

Parameters
menu

The menu in which to search for the command ID. Pass NULL to begin searching with the root menu.
The search will descend into all submenus of this menu.

commandID
The command ID of the menu item containing the property. If more than one menu item has the
same command ID, only the first match is used.

propertyCreator
The four-character creator code of the application.

propertyTag
The four-character tag of the property data whose size you want to obtain.

size
On return, contains the size of the property data.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If you have access to the menu item index, in most cases you should use GetMenuItemPropertySize (page
1283) instead, as that function is faster and requires no searching.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuDefinition
Obtains the menu definition structure for a menu.

OSStatus GetMenuDefinition (
 MenuRef menu,
 MenuDefSpecPtr outDefSpec
);

Parameters
menu

The menu whose menu definition structure you want to obtain.

Functions 1271
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

outDefSpec
On return, a pointer to the menu’s MenuDefSpec structure.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Note that you cannot use this function to obtain the standard system menu definition. If you call
GetMenuDefinition on a menu that uses the standard system MDEF or menu content HIView, the function
returns menuUsesSystemDefErr.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuExcludesMarkColumn
Returns whether a menu contains space for mark characters.

Not recommended

Boolean GetMenuExcludesMarkColumn (
 MenuRef menu
);

Parameters
menu

The menu whose width is to be examined.

Return Value
Returns true if the menu currently contains no space for mark characters; false if the menu is currently
drawn in its full width, with space for mark characters.

Discussion
See also the SetMenuExcludesMarkColumn (page 1330) function.

Carbon Porting Notes

You should instead inspect the kMenuExcludesMarkColumnmenu attribute using the GetMenuAttributes
function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuFont
Obtains the font used in a menu.

1272 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus GetMenuFont (
 MenuRef menu,
 SInt16 *outFontID,
 UInt16 *outFontSize
);

Parameters
menu

The menu whose font is to be obtained.

outFontID
On input, a pointer to a signed 16-bit integer. On return, this value identifies the font family ID for
the menu font. Note that this is the menu item font, not the menu title font.

outFontSize
On input, a pointer to an unsigned 16-bit integer. On return, this value identifies the size of the font,
in points.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Your application may use the GetMenuFont function to retrieve the font used for an individual menu, such
as a pop-up menu.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuHandle
Obtains a menu reference corresponding to a menu ID.

MenuRef GetMenuHandle (
 MenuID menuID
);

Parameters
menuID

The menu ID of the menu whose reference you want to obtain. (Note that this is not the resource ID,
although you often assign the menu ID so that it matches the resource ID.) You assign a menu ID in
a nib file or in the 'MENU' resource of a menu. If you do not define your menus in nib files or in ‘MENU’'
resources, you can assign a menu ID using NewMenu (page 1314) or SetMenuID (page 1333).

Return Value
The menu corresponding to the specified ID. If the specified menu is not in the current menu list,
GetMenuHandle returns NULL. See the description of the MenuRef data type.

Discussion
You can also call this function as GetMenuRef (menuID);.

Functions 1273
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Use the GetMenuHandle function to obtain the menu reference for any of your application’s pull-down
menus or submenus in the current menu list, other than the Help menu. You can also use the Help Manager
function HMGetHelpMenuHandle to get a handle for your application’s Help menu.

Special Considerations

To get a menu reference for a pop-up menu that you create using the pop-up control definition function,
call the Control Manager functions GetControlData and GetControlDataSize, passing the tag constant
kControlPopupButtonMenuRefTag in the tagName parameter to specify the menu reference.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Menus.h

GetMenuHeight
Obtains the height of a menu, in pixels.

SInt16 GetMenuHeight (
 MenuRef menu
);

Parameters
menu

The menu whose height you want to obtain.

Return Value
The height of the menu, in pixels.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuID
Obtains the ID of a menu.

MenuID GetMenuID (
 MenuRef menu
);

Parameters
menu

Return Value
The menu ID of the menu. See the description of the MenuID data type.

1274 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemAttributes
Gets the attributes of a menu item.

OSStatus GetMenuItemAttributes (
 MenuRef menu,
 MenuItemIndex item,
 MenuItemAttributes *outAttributes
);

Parameters
menu

The menu.

item
The index of the menu item.

outAttributes
On exit, contains the attributes of the menu item. See “Menu Item Attribute Constants” (page 1377) for
a list of possible values.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemCommandID
Obtains a menu item’s command ID.

OSErr GetMenuItemCommandID (
 MenuRef inMenu,
 MenuItemIndex inItem,
 MenuCommand *outCommandID
);

Parameters
inMenu

The menu that contains the menu item whose command ID you want to obtain.

inItem
The menu index of the item.

Functions 1275
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

outCommandID
Pass a pointer to an unsigned 32-bit integer value. On return, the value is set to the item’s command
ID.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
After a successful call to MenuSelect, MenuEvent (page 1309) , or MenuKey (page 1311), call the
GetMenuItemCommandID function to get a menu item’s command ID. You can use a menu item’s command
ID as a position-independent method of signalling a specific action in an application.

See also the function SetMenuItemCommandID (page 1333).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemCommandKey
Gets the keyboard equivalent of a menu item.

OSStatus GetMenuItemCommandKey (
 MenuRef inMenu,
 MenuItemIndex inItem,
 Boolean inGetVirtualKey,
 UInt16 *outKey
);

Parameters
inMenu

The menu containing the item.

inItem
The item whose keyboard equivalent you want to retrieve.

inGetVirtualKey
Indicates whether to retrieve the item's character code (false) or virtual keycode equivalent (true).

outKey
On exit, the keyboard equivalent of the item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
A menu item's keyboard equivalent may be either a character code or a virtual keycode. An item's character
code and virtual keycode are stored separately and may contain different values, but only one is used by the
Menu Manager at any given time. When requesting a menu item's virtual keycode equivalent, you should
first check that the item is using a virtual keycode by testing the kMenuItemAttrUseVirtualKey attribute
for that item. If this attribute is not set, the item's virtual keycode is ignored by the Menu Manager. Note that
zero is a valid virtual keycode, so you cannot test the returned keycode against zero to determine if the item
is using a virtual keycode equivalent. You must test the kMenuItemAttrUseVirtualKey attribute.

1276 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemFontID
Obtains a menu item’s font ID.

OSErr GetMenuItemFontID (
 MenuRef inMenu,
 MenuItemIndex inItem,
 SInt16 *outFontID
);

Parameters
inMenu

The menu that contains the menu item for which you wish to get a font ID.

inItem
The menu index of the item.

outFontID
Pass a pointer to a signed 16-bit integer value. On return, the value is set to the font ID for the menu
item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
See also the function SetMenuItemFontID (page 1335).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemHierarchicalID
Obtains the menu ID of a specified submenu. (Deprecated in Mac OS X v10.5.)

OSErr GetMenuItemHierarchicalID (
 MenuRef inMenu,
 MenuItemIndex inItem,
 MenuID *outHierID
);

Parameters
inMenu

The menu that contains the menu item for which you wish to get the submenu’s menu ID.

Functions 1277
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

inItem
The menu index of the item.

outHierID
Pass a pointer to a signed 16-bit integer value. On return, the value is set to the menu ID of the
submenu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemHierarchicalMenu
Returns the submenu attached to a menu item.

OSStatus GetMenuItemHierarchicalMenu (
 MenuRef inMenu,
 MenuItemIndex inItem,
 MenuRef *outHierMenu
);

Parameters
inMenu

The parent menu.

inItem
The parent item.

outHierMenu
On exit, the item's submenu, or NULL if it does not have one.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
GetMenuItemHierarchicalMenu will return the submenu attached to a menu item regardless of how the
submenu was specified. If the submenu was specified by menu ID (using SetItemCmd or
SetMenuItemHierarchicalID), GetMenuItemHierarchicalMenuwill return the currently installed menu
with that ID, if any. The only case where GetMenuItemHierarchicalMenu will fail to return the item's
submenu is when the submenu is specified by menu ID, but the submenu is not currently inserted in the
menu bar.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

1278 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

GetMenuItemIconHandle
Obtains a handle to a menu item’s icon.

OSErr GetMenuItemIconHandle (
 MenuRef inMenu,
 MenuItemIndex inItem,
 UInt8 *outIconType,
 Handle *outIconHandle
);

Parameters
inMenu

The menu that contains the menu item for which you wish to obtain the handle.

inItem
The menu index of the item.

outIconType
Pass a pointer to an unsigned 8-bit value. On return, the value specifies the type of icon ('ICON',
'cicn', 'SICN', icon suite, CGImageRef, or IconRef) for which you are obtaining a handle. If the
menu item has no icon attached, this parameter will contain kMenuNoIcon. See “Menu Item Icon
Type Constants” (page 1394) for descriptions of possible values.

outIconHandle
Pass a pointer to a handle. On return, outIconHandle contains a handle to the icon that is attached
to the menu item. If the menu item has no icon attached, this parameter contains NULL.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
The GetMenuItemIconHandle function gets the icon handle and type of icon of the specified menu item.
If you wish to get a resource-based menu item icon, call GetItemIcon.

See also the function SetMenuItemIconHandle (page 1338).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemIndent
Gets the indent level of a menu item.

OSStatus GetMenuItemIndent (
 MenuRef inMenu,
 MenuItemIndex inItem,
 UInt32 *outIndent
);

Parameters
inMenu

The menu containing the item.

Functions 1279
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

inItem
The item whose indent level you want to retrieve.

outIndent
On exit, the indent level of the item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
The indent level of an item is an amount of extra space added to the left of the item's icon or checkmark.
The level is simply a number, starting at zero, which the Menu Manager multiplies by a constant to get the
indent in pixels. The default indent level is zero.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemKeyGlyph
Obtains the keyboard glyph for a menu item’s keyboard equivalent.

OSErr GetMenuItemKeyGlyph (
 MenuRef inMenu,
 MenuItemIndex inItem,
 SInt16 *outGlyph
);

Parameters
inMenu

The menu that contains the menu item for which you wish to get the keyboard glyph.

inItem
The menu index of the item.

outGlyph
A pointer to a signed 16-bit integer value. On return the value is set to the modifier key glyph. For a
description of available keyboard glyphs, see “Menu Glyph Constants” (page 1382).

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
See also the function SetMenuItemKeyGlyph (page 1339).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

1280 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

GetMenuItemModifiers
Obtains the modifier keys that must be pressed with a character key to select a particular menu item.

OSErr GetMenuItemModifiers (
 MenuRef inMenu,
 MenuItemIndex inItem,
 UInt8 *outModifiers
);

Parameters
inMenu

The menu that contains the menu item for which you wish to get the modifier key(s).

inItem
The menu index of the item.

outModifiers
A pointer to an unsigned 8-bit value. On return, the bits of the value are set to indicate the modifier
keys that can be used in selecting the menu item; see “Modifier Key Mask Constants” (page 1396).

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
See also the function SetMenuItemModifiers (page 1340).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemProperty
Obtains a piece of data that has been previously associated with a menu item.

OSStatus GetMenuItemProperty (
 MenuRef menu,
 MenuItemIndex item,
 OSType propertyCreator,
 OSType propertyTag,
 ByteCount bufferSize,
 ByteCount *actualSize,
 void *propertyBuffer
);

Parameters
menu

The menu containing the item to be examined for associated data.

item
The index number of the menu item or 0 if the data is associated with the menu as a whole.

Functions 1281
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

propertyCreator
A four-character code. Pass your program’s signature (also called a creator), as registered through
Apple Developer Technical Support. If your program is of a type that would not normally have a
signature (for example, a plug-in), you should still register and use a signature in this case, even
though your program’s file may not have the same creator code as the signature that you register.
The 'macs' property signature is reserved for the system and may not be used.

propertyTag
A four-character code. Pass the application-defined code identifying the data.

bufferSize
The size of the data to be obtained. If this is unknown, use the function
GetMenuItemPropertySize (page 1283) to get the data’s size. If the size specified in the bufferSize
parameter does not match the actual size of the property, GetMenuItemProperty only retrieves
data up to the size specified or up to the actual size of the property, whichever is smaller, and an error
is returned.

actualSize
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the actual size of the
associated data. You may pass NULL for the actualSize parameter if you are not interested in this
information.

propertyBuffer
On input, a pointer to a buffer. On return, this buffer contains a copy of the data that is associated
with the specified menu item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You may use the function GetMenuItemProperty to obtain a copy of data previously set with the function
SetMenuItemProperty (page 1341).

See also the RemoveMenuItemProperty (page 1320) function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Explorer
QTCarbonShell

Declared In
Menus.h

GetMenuItemPropertyAttributes
Gets the attributes of a menu item property.

1282 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus GetMenuItemPropertyAttributes (
 MenuRef menu,
 MenuItemIndex item,
 OSType propertyCreator,
 OSType propertyTag,
 OptionBits *attributes
);

Parameters
menu

The menu containing the item whose properties you want to obtain.

item
The menu index of the item.

propertyCreator
The creator code of the property.

propertyTag
The property tag.

attributes
On exit, contains the attributes of the property.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Currently the only attribute you can receive from this function is the kMenuPropertyPersistent attribute
(See “Menu Item Property Attribute Constant” (page 1395)), which currently has no effect on Mac OS X. Therefore,
GetMenuItemPropertyAttributes is not useful at this time.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemPropertySize
Obtains the size of a piece of data that has been previously associated with a menu item.

OSStatus GetMenuItemPropertySize (
 MenuRef menu,
 MenuItemIndex item,
 OSType propertyCreator,
 OSType propertyTag,
 ByteCount *size
);

Parameters
menu

The menu containing the item to be examined for associated data.

item
The index number of the menu item or 0 if the data is associated with the menu as a whole.

Functions 1283
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

propertyCreator
A four-character code. Pass your program’s signature, as registered through Apple Developer Technical
Support. If your program is of a type that would not normally have a signature (for example, a plug-in),
you should still register and use a signature in this case, even though your program’s file may not
have the same creator code as the signature that you register. The 'macs' property signature is
reserved for the system and may not be used.

propertyTag
A four-character code. Pass the application-defined code identifying the data.

size
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the actual size of the
data.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If you want to retrieve a piece of associated data with the function GetMenuItemProperty (page 1281) , you
will typically need to use the GetMenuItemPropertySize function beforehand to determine the size of
the associated data.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemRefCon
Obtains application-specific information for a menu item.

OSErr GetMenuItemRefCon (
 MenuRef inMenu,
 MenuItemIndex inItem,
 URefCon *outRefCon
);

Parameters
inMenu

The menu that contains the menu item for which you wish to get information.

inItem
The menu index of the item. In CarbonLib 1.6 and later and Mac OS X v10.2 and later, you may pass
zero to obtain the reference constant for the menu itself.

outRefCon
A pointer to an unsigned 32-bit integer value. On return, the value is set to the reference constant
associated with the menu item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If you have assigned any data to a menu item using SetMenuItemRefCon (page 1342) function, you can read
it using the GetMenuItemRefCon function.

1284 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuItemText
Obtains the text of a menu item. (Deprecated in Mac OS X v10.5.)

Not recommended

void GetMenuItemText (
 MenuRef theMenu,
 MenuItemIndex item,
 Str255 itemString
);

Parameters
theMenu

The menu containing the item.

item
The menu index of the item.

itemString
On output, the menu item’s text string.

Discussion
Unless you need to support legacy code, you should use the CopyMenuItemTextAsCFString (page 1243)
instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
Menus.h

GetMenuItemTextEncoding
Obtains the text encoding used for a menu item’s text. (Deprecated in Mac OS X v10.5.)

Functions 1285
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSErr GetMenuItemTextEncoding (
 MenuRef inMenu,
 MenuItemIndex inItem,
 TextEncoding *outScriptID
);

Parameters
inMenu

The menu containing the menu item whose text encoding you wish to obtain.

inItem
The menu index of the item.

outScriptID
A pointer to a TextEncoding value. On return, the value is set to the script code of the text encoding
used in the menu item’s text.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If a menu item has a command code of 0x1C when GetMenuItemTextEncoding is called,
GetMenuItemTextEncoding gets the value in the icon field of the menu item.

See also the function SetMenuItemTextEncoding (page 1343).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuRef
Obtains a menu reference corresponding to a menu ID.

MenuRef GetMenuHandle (
 MenuID menuID
);
#define GetMenuRef GetMenuHandle

Discussion
This is simply a redefinition of the GetMenuHandle (page 1273) function.

Declared In
Menus.h

GetMenuRetainCount
Returns the retain count of this menu. (Deprecated in Mac OS X v10.5.)

1286 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

ItemCount GetMenuRetainCount (
 MenuRef inMenu
);

Parameters
inMenu

The menu whose retain count you want to obtain.

Return Value
The retain count for the menu.

Version Notes
In Mac OS X v10.2 and later, all menus are Core Foundation CFTypes, so you can also call CFGetRetainCount
instead of GetMenuRetainCount.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuTitle
Obtains the title of the menu (Deprecated in Mac OS X v10.5.)

Not recommended

StringPtr GetMenuTitle (
 MenuRef menu,
 Str255 title
);

Parameters
menu
title

The menu title, as a Str255 string.

Return Value
A pointer to the menu title.

Discussion
Unless you need to support legacy code, you should use theCopyMenuTitleAsCFString (page 1243) function
instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

Functions 1287
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

GetMenuTitleIcon
Retrieves the icon, if any, being used as the title of a menu.

OSStatus GetMenuTitleIcon (
 MenuRef inMenu,
 UInt32 *outType,
 void **outIcon
);

Parameters
inMenu

The menu whose icon title to retrieve.

outType
On exit, contains the type of icon being used as the title of the menu. Contains kMenuNoIcon if the
menu does not have an icon title.

outIcon
On exit, contains the icon reference, icon suite reference, or Core Graphics image reference of the
icon being used as the title of the menu. If the menu does not have an icon title, this parameter is set
to NULL.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
This function does not increment the reference count of the returned icon, so the caller should not attempt
to release it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuTrackingData
Gets information about the menu currently selected by the user.

OSStatus GetMenuTrackingData (
 MenuRef theMenu,
 MenuTrackingData *outData
);

Parameters
menu

The menu about which to get tracking information. Pass NULL to get information about the most
recently opened menu; for example, if the user has selected a menu that contains a submenu, and
the submenu is open, then GetMenuTrackingData returns the submenu not its parent menu.

outData
On exit, contains tracking data about the menu.

1288 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Return Value
A result code. See “Menu Manager Result Codes” (page 1399). If the menu is not currently open,
menuNotFoundErr is returned.

Discussion
You can call this function only during menu tracking. As the standard menu definition automatically handles
tracking, you would probably need this function only when writing a custom menu definition.

This function replaces direct access to the pre-Carbon low-memory globals TopMenuItem, AtMenuBottom,
MenuDisable, and mbSaveLoc. See the Carbon Porting Notes for MenuDefProcPtr (page 1349) for more
information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

GetMenuType
Gets the display type (pulldown, hierarchical, or popup) of a menu.

OSStatus GetMenuType (
 MenuRef theMenu,
 UInt16 *outType
);

Parameters
theMenu

The menu whose type to get.

outType
On exit, the type of the menu. The returned value will be one of the Appearance Manager
ThemeMenuType constants: kThemeMenuTypePullDown, kThemeMenuTypePopUp, or
kThemeMenuTypeHierarchical. The kThemeMenuTypeInactive bit is never set.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You can call this function only when the menu is displayed. If the menu is not currently open, an error is
returned. The display type of a menu may vary from one menu tracking session to another; for example, the
same menu might be displayed as a pulldown menu and as a popup menu.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetMenuWidth
Obtains the width of the menu, in pixels.

Functions 1289
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

SInt16 GetMenuWidth (
 MenuRef menu
);

Parameters
menu

The menu whose width you want to obtain.

Return Value
The width of the menu, in pixels.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

GetNewMBar
Reads in the definition of a menu bar from an 'MBAR' resource.

Not recommended

MenuBarHandle GetNewMBar (
 short menuBarID
);

Parameters
menuBarID

The resource ID of an 'MBAR' resource that specifies the menus for a menu bar.

Return Value
A handle to the menu list. (If the resource isn’t already in memory, GetNewMBar reads it into memory.) If
GetNewMBar can’t read the resource, GetNewMBar returns NULL. See the description of the MenuBarHandle
data type.

Discussion
Unless you must support legacy code, you should not use functions like GetNewMBar that rely on menus
and menu bars stored as resources. Instead, you should define menus in Interface Builder, store them as nib
files, and then call the Interface Builder Services functions CreateMenuFromNib , CreateMenuBarFromNib,
or SetMenuBarFromNibto create them.

The GetNewMBar function reads in the definition of a menu bar and its associated menus from an ' MBAR '
resource. The ' MBAR ' resource identifies the order of menus contained in its menu bar. For each menu, it
also specifies the menu’s resource ID. The GetNewMBar function reads in each menu from the ' MENU '
resource with the resource ID specified in the ' MBAR ' resource.

The GetNewMBar function creates a menu list for the menu bar defined by the ' MBAR ' resource and returns
a handle to the menu list. GetNewMBar uses GetMenu (page 1266) to read in each individual menu.

After reading in menus from an ' MBAR ' resource, use SetMenuBar to make the menu list created by
GetNewMBar the current menu list. Then use DrawMenuBar (page 1255) to update the menu bar.

To release the memory occupied by a menu list, use the function DisposeMenuBar (page 1253)

1290 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Special Considerations

The GetNewMBar function first saves the current menu list and then clears the current menu list and your
application’s menu color information table. It then creates a new menu list. Before returning a handle to the
new menu list, the GetNewMBar function restores the current menu list to the previously saved menu list,
but GetNewMBar does not restore the previous menu color information table. To save and then restore your
application’s current menu color information table, call the functionGetMCInfo (page 1266) beforeGetNewMBar
and call SetMCInfo (page 1326) afterward.

While you supply only the resource ID of an 'MBAR' resource to the GetNewMBar function, your application
often needs to use the menu IDs defined in each of your menus’ 'MENU' resources. Most Menu Manager
functions require either a menu ID or a handle to a menu structure to perform operations on a specific menu.
For menus in the current menu list, you can use the GetMenuHandle (page 1273) function to get the handle
to a menu structure for a menu with a given menu ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

HideMenuBar
Conceals the menu bar.

void HideMenuBar (
 void
);

Discussion
The HideMenuBar function makes the menu bar invisible and unselectable by the user. You can use this
function to enable full-screen display; however, in Mac OS X v10.2 and later, you should call the
SetSystemUIMode function (available in MacApplication.h) instead.

Note that calling this function causes the kEventMenuBarHidden event to be sent to the application target
(if your application has registered for the event).

Also see the ShowMenuBar (page 1348) and IsMenuBarVisible (page 1303) functions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
Menus.h

HiliteMenu
Highlights or unhighlights menu titles.

Functions 1291
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void HiliteMenu (
 MenuID menuID
);

Parameters
menuID

The menu ID of the menu whose title should be highlighted. If the menu title of the specified menu
is already highlighted, HiliteMenu does nothing. If the menu ID is 0 or the specified menu ID isn’t
in the current menu list, HiliteMenu unhighlights whichever menu title is currently highlighted (if
any).

Discussion
TheIsMenuKeyEvent (page 1305),MenuSelect (page 1312),MenuEvent (page 1309), andMenuKey (page 1311)
functions highlight the title of the menu containing the item chosen by the user. After performing the chosen
task, your application should unhighlight the menu title by calling HiliteMenu and passing 0 in the menuID
parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Menus.h

InitContextualMenus
Adds a program to the system registry of contextual menu clients. (Deprecated in Mac OS X v10.5.)

Not recommended

OSStatus InitContextualMenus (
 void
);

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Your program should call the InitContextualMenus function early in your startup code to register your
application as a contextual menu client. If you do not register your program, some system-level functions
may respond as though your program does not use contextual menus. Not registering your program may
also cause ProcessIsContextualMenuClient (page 1317) to return an incorrect value.

Carbon Porting Notes

You do not need to call this function before using contextual menus in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1292 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

InsertFontResMenu
Inserts menu items from a font resource. (Deprecated in Mac OS X v10.5.)

Not recommended

void InsertFontResMenu (
 MenuRef theMenu,
 MenuItemIndex afterItem,
 short scriptFilter
);

Parameters
theMenu

The menu to add the fonts to.

afterItem
The menu item after which you want to add the fonts.

scriptFilter
The script filter you want to use.

Discussion
Unless you need to do script filtering, you should use CreateStandardFontMenu (page 1247)instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

InsertIntlResMenu
Inserts menu items from an internationalized resource. (Deprecated in Mac OS X v10.5.)

Not recommended

void InsertIntlResMenu (
 MenuRef theMenu,
 ResType theType,
 MenuItemIndex afterItem,
 short scriptFilter
);

Parameters
theMenu

The menu to add the menu items to.

theType
The resource to retrieve the menu items from.

Functions 1293
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

afterItem
The menu item after which you want to add the new items.

scriptFilter
The script filter you want to use.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

InsertMenu
Inserts an existing menu into the current menu list.

void InsertMenu (
 MenuRef theMenu,
 MenuID beforeID
);

Parameters
theMenu

The menu to insert.

beforeID
An integer that indicates where in the current menu list the menu should be inserted. InsertMenu
inserts the menu into the current menu list before the menu whose menu ID is specified in the
beforeID parameter. If the number in the beforeID parameter is 0 (or it isn’t the ID of any menu
in the menu list), InsertMenu adds the new menu after all others (except before the Help menu). If
the menu is already in the current menu list or the menu list is already full, InsertMenu does nothing.

To insert a submenu into the current menu list, specify –1 or the equivalent constant
kInsertHierarchicalMenu for the beforeID parameter. The submenus in the submenu portion
of the menu list do not have to be currently associated with a hierarchical menu item; you can store
submenus in the menu list and later specify that a menu item has a submenu if needed. However,
note that during command key matching the Menu Manager scans all menus in the menu list for
modifiers, including submenus that are not associated with any menu item.

You can also specify –1 for the beforeID parameter to insert a pop-up menu into the current menu
list. However, if you use the standard pop-up control definition function, the pop-up control
automatically inserts the menu into the current menu list according to the needs of the pop-up
control.

Discussion
Menus inserted using this function are added to a menu list attached to the current root menu. To obtain or
set this root menu, call AcquireRootMenu (page 1229) and SetRootMenu (page 1347) respectively.

Inserting a menu in the root menu (menu bar) increments its reference count; removing the menu decrements
its reference count.

To change a menu title, call SetMenuItemTextWithCFString (page 1344).

Availability
Available in Mac OS X v10.0 and later.

1294 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Menus.h

InsertMenuItem
Inserts one or more items into a menu previously created. (Deprecated in Mac OS X v10.5.)

Not recommended

void InsertMenuItem (
 MenuRef theMenu,
 ConstStr255Param itemString,
 short afterItem
);

Parameters
theMenu

The menu to which you wish to add the menu item or items.

itemString
A string that defines the characteristics of the new menu items. Note that in most cases you should
store the text of a menu item in a nib file or resource, so that your menu items can be more easily
localized. You can specify the contents of the itemString parameter using metacharacters; the
function InsertMenuItem accepts the same metacharacters as the AppendMenu (page 1229) function.
However, if you specify multiple items, the InsertMenuItem function inserts the items in the reverse
of their order in the itemString parameter.

afterItem
The item number of the menu item after which the new menu items are to be added. Specify 0 in
the afterItem parameter to insert the new items before the first menu item; specify the item number
of a current menu item to insert the new menu items after it; specify a number greater than or equal
to the last item in the menu to append the new items to the end of the menu.

Discussion
Note that unless you are supporting legacy code, you should use the
InsertMenuItemTextWithCFString (page 1296) function instead.

If you do not define a specific characteristic of a menu item, the InsertMenuItem function assigns the
default characteristic to the menu item. If you do not define any characteristic other than the text for a menu
item, the InsertMenuItem function inserts the menu item so that it appears in the menu as an enabled
item, without an icon or a mark, in the plain character style, and without a keyboard equivalent.

You can use InsertMenuItem to insert items into a menu regardless of whether the menu is in the current
menu list.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 1295
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

InsertMenuItemText
Inserts a menu item into a menu. (Deprecated in Mac OS X v10.5.)

Not recommended

OSStatus InsertMenuItemText (
 MenuRef menu,
 ConstStr255Param inString,
 MenuItemIndex afterItem
);

Parameters
menu

The menu into which the item is to be inserted.

inString
A Pascal string containing the text of the menu item to insert. You can pass a string containing any
characters, and these characters will be presented verbatim in the menu item.

afterItem
The item number of the menu item after which the new menu item is to be inserted. Specify 0 to
insert the new menu item at the top of the menu, before the first menu item. Specify a value greater
than or equal to the last menu item to append the new item to the end of the menu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion

Note that unless you are supporting legacy code, you should use the
InsertMenuItemTextWithCFString (page 1296) function instead.

The InsertMenuItemText function inserts an enabled menu item containing the specified string into a
menu, without evaluating the string for metacharacters, as the pre–Mac OS 8.5 Menu Manager function
InsertMenuItem does. You may wish to use InsertMenuItemText if you have a need to present
non-alphanumeric characters in a menu item.

See also the AppendMenuItemText (page 1231) function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

InsertMenuItemTextWithCFString
Inserts a new menu item with text from a CFString.

1296 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus InsertMenuItemTextWithCFString (
 MenuRef inMenu,
 CFStringRef inString,
 MenuItemIndex inAfterItem,
 MenuItemAttributes inAttributes,
 MenuCommand inCommandID
);

Parameters
menu

The menu in which to insert the new item.

inString
The text of the new item.

inAfterItem
The item after which to insert the new item. Pass zero to insert the item at the beginning of the menu.
If the index value is greater than the number of items in the menu, the item is inserted at the end of
the menu.

inAttributes
The attributes of the new item.

inCommandID
The command ID of the new item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If the CFString is mutable, the Menu Manager will make its own copy of the CFString before returning from
InsertMenuItemWithCFString. Modifying the string after calling InsertMenuItemTextWithCFString
will have no effect on the menu item's actual text.

If the CFString is immutable, the Menu Manager increments the reference count of the string before returning.

The caller may release the string after calling InsertMenuItemTextWithCFString.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

InsertResMenu
Searches all resource files open to your application for a given resource type and inserts the names of any
resources it finds in the specified menu. (Deprecated in Mac OS X v10.5.)

Not recommended

Functions 1297
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void InsertResMenu (
 MenuRef theMenu,
 ResType theType,
 MenuItemIndex afterItem
);

Parameters
theMenu

The menu to which to add the names of any resources of a given type that InsertResMenu finds.

theType
A four-character code that identifies the resource type for which to search.

afterItem
A number that indicates where in the menu to insert the names of any resources of the given type
that InsertResMenu finds. Specify 0 in the afterItem parameter to insert the items before the first
menu item; specify the item number of a menu item already in the menu to insert the items after the
specified item number. If you specify a number greater than or equal to the last item in the menu,
the items are inserted at the end of the menu.

Discussion
Unless you must support legacy code, you should not use functions like InsertResMenu that rely on searching
the resource chain. Prior to Carbon, you used InsertResMenu primarily to create an Apple menu (by passing
'DRVR' for the resource type or to create a font menu (by passing 'FONT'). In Carbon, the Apple menu is
created for you automatically, and you should call CreateStandardFontMenu (page 1247) to create a font
menu.

The InsertResMenu function searches all resource files open to your application for resources of the type
defined by the parameter theType. The specified menu must have been previously created using
NewMenu (page 1314) ,GetMenu (page 1266) , orGetNewMBar (page 1290).InsertResMenu adds the names of
found resources after the specified menu item in alphabetical order; it does not alphabetize items already
in the menu.

The InsertResMenu function does not add resources with names that begin with a period (.) or a percent
sign (%) to the menu.

The InsertResMenu function assigns default characteristics to each menu item. Each appended menu item
appears in the menu as an enabled item, without an icon or a mark, in the plain character style, and without
a keyboard equivalent.

If you specify that InsertResMenu add resources of type ' DRVR ' to your Apple menu, InsertResMenu
adds the name (and icon) of each item in the Apple Menu Items folder to the menu.

If you specify that InsertResMenu add resources of type ' FONT ' or ' FOND ', the Menu Manager performs
special processing for any resources it finds that have font numbers greater than 0x4000. If the script associated
with the font name is currently active, InsertResMenu stores information in the itemDefinitions array
(in the itemIcon and itemCmd fields for that item) in the menu structure that allows the Menu Manager to
display the font name in the correct script.

Special Considerations

The InsertResMenu function calls the Resource Manager function SetResLoad (specifying true in the
load parameter) before returning. The InsertResMenu function reads the resource data of the resources
it finds into memory. If your application does not want the Resource Manager to read resource data into
memory when your application calls other functions that read resources, you need to call the Resource
Manager function SetResLoad and specify false in the load parameter after InsertResMenu returns.

1298 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

InvalidateMenuEnabling
Requests that the menu’s enable state be recalculated.

OSStatus InvalidateMenuEnabling (
 MenuRef inMenu
);

Parameters
inMenu

The menu whose enable states should be recalculated. Pass NULL to recalculate enable states for all
menus in the root menu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
State changes in an application can cause changes in enable state of a menu’s menu items. For example,
selecting a block of text would usually require the Copy menu item to become enabled. Menu items are
typically updated in response to a kEventCommandUpdateStatus Carbon event. However, the update
event usually occurs only before an command key press or a click in the menu bar. To explicitly update the
enable states for a menu, you can call InvalidateMenuEnabling.

Note that the Carbon Event Manager automatically requests recalculation of enable states for all top-level
menus when

 ■ it dispatches a user event

 ■ the user focus changes

 ■ the active window changes

so in many cases you may not need to explicitly call this function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

InvalidateMenuItems
Invalidates a group of menu items so that they will be redrawn when UpdateInvalidMenuItems is next
called.

Functions 1299
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus InvalidateMenuItems (
 MenuRef inMenu,
 MenuItemIndex inFirstItem,
 ItemCount inNumItems
);

Parameters
inMenu

The menu whose items to invalidate.

inFirstItem
The first item to invalidate.

inNumItems
The number of items to invalidate.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Menu items are automatically invalidated when their contents are changed using Menu Manager APIs while
the menu is open. However, you might need to use this function if you have a custom menu definition that
draws based on information not contained in the menu. For example, say you have a custom menu definition
that draws a menu item using a color stored elsewhere in an application-defined data structure. If you change
the color in the data structure, there is no way for the menu definition to know this has occurred. Calling
InvalidateMenuItems after changing the color in the structure indicates that the menu should be redrawn.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

InvalidateMenuSize
Invalidates the menu size so that it will be recalculated when next displayed.

OSStatus InvalidateMenuSize (
 MenuRef inMenu
);

Parameters
inMenu

The menu whose size you want to invalidate.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Prior to Carbon, the technique for invalidating the menu size was to set the width and height to -1. Although
this technique still works, for best compatibility you should call InvalidateMenuSize so that the Menu
Manager has explicit notification that the menu is invalid.

Availability
Available in Mac OS X v10.0 and later.

1300 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Not available to 64-bit applications.

Declared In
Menus.h

InvalMenuBar
Invalidates the menu bar.

void InvalMenuBar (
 void
);

Discussion
The InvalMenuBar function marks the menu bar as changed and in need of updating. When the Carbon
Event Manager checks incoming events for regions that require updating, the Carbon Event Manager also
checks to determine whether the menu bar requires updating (because of a call to InvalMenuBar). If the
menu bar needs updating, the Carbon Event Manager calls the DrawMenuBar (page 1255) function to draw
the menu bar.

You can use InvalMenuBar instead of DrawMenuBar to minimize blinking in the menu bar. For example, if
you have several application-defined functions that can change the enabled state of a menu and each calls
DrawMenuBar, you can replace the calls to DrawMenuBar with calls to InvalMenuBar. In this way the menu
bar is redrawn only once instead of multiple times in quick succession. If you need to make immediate
changes to the menu bar, use DrawMenuBar. If you want to redraw the menu bar at most once each time
through your event loop, use InvalMenuBar. Note. however, that most Menu Manager calls that affect the
menu bar call InvalMenuBar (page 1301) before returning. so you probably won’t need to call it yourself.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

InvokeMenuDefUPP
Calls your custom menu definition through a universal procedure pointer. (Deprecated in Mac OS X v10.5.)

Not recommended

Functions 1301
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void InvokeMenuDefUPP (
 short message,
 MenuRef theMenu,
 Rect *menuRect,
 Point hitPt,
 short *whichItem,
 MenuDefUPP userUPP
);

Parameters
message
theMenu
menuRect
hitPt
whichItem
userUPP

Carbon Porting Notes

Apple discourages you from writing and using your own menu definition functions and encourages you to
use the system-supplied menu definition function instead. New features that have previously been missing
are now available in the system-supplied menu definition function. Since Appearance Manager 1.0 (in Mac
OS 8.0), for example, the system-supplied menu definition function has supported extended menu item
command key modifiers and glyphs. And in Carbon, the system-supplied menu definition function supports
dynamic items, which allow the contents of a menu item to be redrawn while the menu is displayed in
response to the user pressing a modifier key on the keyboard.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

IsMenuBarInvalid
Determines if the menubar is invalid and should be redrawn.

Boolean IsMenuBarInvalid (
 MenuRef rootMenu
);

Parameters
rootMenu

The root menu for the menubar to be examined. Pass NULL to check the state of the current menubar.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

1302 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

IsMenuBarVisible
Reports whether the menu bar is currently visible.

Boolean IsMenuBarVisible (
 void
);

Return Value
Returns true if the menu bar is currently visible; otherwise, false.

Discussion
Also see the HideMenuBar (page 1291) and ShowMenuBar (page 1348) functions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

IsMenuCommandEnabled
Determines if the menu item with a specified command ID is enabled.

Boolean IsMenuCommandEnabled (
 MenuRef inMenu,
 MenuCommand inCommandID
);

Parameters
inMenu

The menu in which to begin searching for the item. Pass NULL to begin searching with the root menu.
The search will descend into all submenus of this menu.

inCommandID
The command ID of the menu item to examine. If more than one item has this command ID, only the
first will be examined.

Discussion
If you have access to the menu item index, in most cases you should use IsMenuItemEnabled (page 1303)
instead, as that function is faster and requires no searching.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

IsMenuItemEnabled
Reports whether a given menu or menu item is enabled.

Functions 1303
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Boolean IsMenuItemEnabled (
 MenuRef menu,
 MenuItemIndex item
);

Parameters
menu

The menu containing the item to be examined.

item
The item number of the menu item. Pass 0 to specify the menu title and determine whether the menu
as a whole is enabled.

Return Value
Returns true if the menu item is currently enabled; otherwise, false.

Discussion
Your application can use the IsMenuItemEnabled function to determine whether specific menu items,
even those with item numbers greater than 31, are currently enabled and can therefore be selected by the
user.

Note that this function ignores the enable state of the menu when returning the enable state of a menu
item. For example, if you call IsMenuItemEnabled on an enabled item while its parent menu is disabled,
the function still returns true.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

IsMenuItemIconEnabled
Reports whether a given menu item icon is enabled.

Boolean IsMenuItemIconEnabled (
 MenuRef menu,
 MenuItemIndex item
);

Parameters
menu

The menu containing the icon to be examined.

item
The item number of the menu item containing the icon.

Return Value
Returns true if the menu item icon is currently enabled; otherwise, false.

Discussion
Your application can use the IsMenuItemIconEnabled function to determine whether a specific menu
item’s icon is currently enabled or dimmed.

See also the functions DisableMenuItemIcon (page 1252) and EnableMenuItemIcon (page 1258).

1304 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

IsMenuItemInvalid
Determines if a menu item is invalid and should be redrawn.

Boolean IsMenuItemInvalid (
 MenuRef inMenu,
 MenuItemIndex inItem
);

Parameters
inMenu

The menu whose item to examine.

inItem
The item to examine.

Return Value
Returns true if the menu is invalid, false otherwise.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

IsMenuKeyEvent
Determines if an event corresponds to a menu command key.

Boolean IsMenuKeyEvent (
 MenuRef inStartMenu,
 EventRef inEvent,
 MenuEventOptions inOptions,
 MenuRef *outMenu,
 MenuItemIndex *outMenuItem
);

Parameters
inStartMenu

The menu to search. IsMenuKeyEvent searches for matching menu items in this menu and all of its
submenus. Pass NULL to search the current menu bar contents.

inEvent
The event to match against. Non-keyboard events are ignored.

Functions 1305
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

inOptions
Options controlling how to search. See “Menu Event Option Constants” (page 1381) for possible options.
Pass kNilOptions for the default behavior.

outMenu
On exit, the menu containing the matching item. Set to NULL if no match was made.

outMenuItem
On exit, the menu item that matched. Set to NULL if no match was made.

Discussion
By default, IsMenuKeyEvent searches the menus in the current menu bar and highlights the menu title of
the menu containing the selected item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

IsMenuSizeInvalid
Determines if a menu's size is invalid and should be recalculated.

Boolean IsMenuSizeInvalid (
 MenuRef inMenu
);

Parameters
inMenu

The menu whose size you want to examine.

Return Value
Set to true if the menu size is invalid, false otherwise.

Discussion
Prior to Carbon, the technique for determining if a menu's size is invalid was to check if the width or height
was -1. This technique is not always reliable in Carbon due to implementation changes in the Menu Manager,
so you should use IsMenuSizeInvalid instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

IsShowContextualMenuClick
Determines whether a particular event could invoke a contextual menu.

Not recommended

1306 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Boolean IsShowContextualMenuClick (
 const EventRecord *inEvent
);

Parameters
inEvent

A pointer to the event structure that describes the event to examine.

Return Value
If true, the contextual menu should be displayed; if false, not.

Discussion
Before calling the IsShowContextualMenuClick function, you should call InitContextualMenus (page
1292). If no error is returned, you can then call IsShowContextualMenuClick.

Unless you must support the legacy WaitNextEvent event model, you should use the Carbon event–based
IsShowContextualMenuEvent (page 1307) function instead. In addition, some users may choose to use a
two-button mouse with their Macintosh computers, in which case a right-click does not return true with
IsShowContextualMenuClick unless the mouse manufacturer’s driver software deliberately returns
Control-left-click in place of the right-click. If you want to properly recognize the right-click to invoke a
contextual menu, you should use the IsShowContextualMenuEvent (page 1307) function.

Applications should call IsShowContextualMenuClick when they receive non-null events. If
IsShowContextualMenuClick returns true, your application should generate its own menu and Apple
Event descriptor (AEDesc), and then call ContextualMenuSelect (page 1239) to display and track the
contextual menu, and then handle the user’s choice.

If the mouse-down event did not invoke a contextual menu, then the application should check to see if the
event occurred in the menu bar (using the FindWindow function) and, if so, call MenuSelect to allow the
user to choose a command from the menu bar.

See also “Contextual Menu Gestalt Selector Constants” (page 1368).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

IsShowContextualMenuEvent
Determines whether a particular Carbon event could invoke a contextual menu.

Boolean IsShowContextualMenuEvent (
 EventRef inEvent
);

Parameters
inEvent

The event to examine.

Return Value
Returns true if the application should display a contextual menu, false otherwise.

Functions 1307
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
If your application supports Carbon events, you should use this function in place of the older
IsShowContextualMenuClick (page 1306). This function also properly supports right-click activation of
contextual menus, while IsShowContextualMenuClick (page 1306) does not.

However, if your application uses the standard window handler, you probably don’t need to use
IsShowContextualMenuEvent, because the standard window handler automatically detects contextual
menu clicks and sends the kEventWindowContextualMenuSelect and
kEventControlContextualMenuClick events.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

IsValidMenu
Determines if a menu is valid.

Boolean IsValidMenu (
 MenuRef inMenu
);

Parameters
inMenu

The menu to check for validity.

Return Value
Indicates whether the menu is valid.

Discussion
The Menu Manager keeps a table that maps menu references to their corresponding (opaque) MenuData
structures. A menu is considered valid if its menu reference appears in that table.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

LMGetTheMenu
Returns the menu ID of the currently highlighted menu in the menu bar.

MenuID LMGetTheMenu (
 void
);

Return Value
A value which contains the menu ID of the currently highlighted menu in the menu bar.

1308 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

MenuChoice
Returns the menu ID and index of the menu item under the cursor.

SInt32 MenuChoice (
 void
);

Return Value
The high-order word of the function result contains the menu ID of the menu, and the low-order word
contains the item number of the menu item chosen by the user. The MenuChoice function returns 0 as the
low-order word of its function result if the mouse button was released while the cursor was in the menu bar
or outside the menu.

Discussion
You can use this function in the rare cases that you want to take action based upon the selection of a disabled
menu item. For example, say the user is in contextual help mode (activated by pressing the Help key) and
wants to get help information about a disabled menu item. You can use MenuChoice to determine which
item the user selected and provide help for that item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

MenuEvent
Maps a keyboard combination from the event structure to the keyboard equivalent of a menu item in a menu
in the current menu list.

Not recommended

UInt32 MenuEvent (
 const EventRecord *inEvent
);

Parameters
inEvent

A pointer to the event structure containing the keyboard equivalent.

Return Value
A value that indicates the menu ID (in the high 16 bits) and menu item (in the low 16 bits) that the user
chose. If the given character does not map to an enabled menu item in the current menu list, MenuEvent
returns 0 in its high-order word and the low-order word is undefined.

Functions 1309
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
Note that unless your application uses the WaitNextEvent event model, you should use the Carbon
event–based IsMenuKeyEvent (page 1305) instead.

The MenuEvent function does not distinguish between uppercase and lowercase letters. This allows a user
to invoke a keyboard equivalent command, such as the Copy command, by pressing the Command key and
“c” or “C”. For consistency between applications, you should define the keyboard equivalents of your commands
so that they appear in uppercase in your menus.

If the given character maps to an enabled menu item in the current menu list, MenuEvent highlights the
menu title of the chosen menu, returns the menu ID in the high-order word of its function result, and returns
the chosen menu item in the low-order word of its function result. After performing the chosen task, your
application should unhighlight the menu title using the HiliteMenu function.

You should not define menu items with identical keyboard equivalents. The MenuEvent function scans the
menus from right to left and the items from top to bottom. If you have defined more than one menu item
with identical keyboard equivalents, MenuEvent returns the first one it finds.

The MenuEvent function first searches the regular portion of the current menu list for a menu item with a
keyboard equivalent matching the given key. If it doesn’t find one there, it searches the submenu portion
of the current menu list. If the given key maps to a menu item in a submenu, MenuEvent highlights the
menu title in the menu bar that the user would normally pull down to begin traversing to the submenu. Your
application should perform the desired command and then unhighlight the menu title.

Note that some keyboard equivalents are reserved for use by the system, such as Command–Shift–3 annd
Command-Shift-4 (for taking screen shots).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

MenuHasEnabledItems
Determines if any items in a menu are enabled.

Boolean MenuHasEnabledItems (
 MenuRef theMenu
);

Parameters
theMenu

The menu whose items to examine.

Return Value
Returns true if one or more items in the menu are enabled, false otherwise.

Discussion
This function is equivalent to pre-Carbon code that compared the enableFlags field of the MenuInfo
structure (now opaque in Carbon) with 0. It checks the enable state of all items to see if any are enabled, but
ignores the state of the menu title. It will return true even if the menu title is disabled.

1310 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

MenuKey
Maps a character key with the command key to determine the keyboard equivalent of a menu item in a menu
in the current menu list. (Deprecated in Mac OS X v10.5.)

Not recommended

SInt32 MenuKey (
 CharParameter ch
);

Parameters
ch

The 1-byte character that represents the key pressed by the user in combination with the Command
key.

Return Value
A value containing the menu ID and menu item that corresponds to the given character.If the given character
does not map to an enabled menu item in the current menu list, MenuKey returns 0 in its high-order word
and the low-order word is undefined.

Discussion
Note that unless your application uses the WaitNextEvent event model, you should use the Carbon
event–based IsMenuKeyEvent (page 1305) instead. Even when using the WaitNextEventmodel, you should
probably use MenuEvent (page 1309), as that function supports the Shift, Option, and Control modifier keys
in addition to the Command key

The MenuKey function determines whether the key combination maps to a current menu item when the
user presses another key while holding down the Command key.

MenuKey does not distinguish between uppercase and lowercase letters. This allows a user to invoke a
keyboard equivalent command, such as the Copy command, by pressing the Command key and “c” or “C”.
For consistency between applications, you should define the keyboard equivalents of your commands so
that they appear in uppercase in your menus.

You should not define menu items with identical keyboard equivalents. The MenuKey function scans the
menus from right to left and the items from top to bottom. If you have defined more than one menu item
with identical keyboard equivalents, MenuKey returns the first one it finds.

If the given character maps to an enabled menu item in the current menu list, MenuKey highlights the menu
title of the chosen menu, returns the menu ID in the high-order word of its function result, and returns the
chosen menu item in the low-order word of its function result. After performing the chosen task, your
application should unhighlight the menu title using the HiliteMenu function.

Functions 1311
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

The MenuKey function first searches the regular portion of the current menu list for a menu item with a
keyboard equivalent matching the given key. If it doesn’t find one there, it searches the submenu portion
of the current menu list. If the given key maps to a menu item in a submenu, MenuKey highlights the menu
title in the menu bar that the user would normally pull down to begin traversing to the submenu. Your
application should perform the desired command and then unhighlight the menu title.

You shouldn’t assign a Command–Shift–number key sequence to a menu item as its keyboard equivalent
Command–Shift–number key sequences are reserved for use as ' FKEY ' resources. Command–Shift–number
key sequences are not returned to your application, but instead are processed by the Event Manager. The
Event Manager invokes the ' FKEY ' resource with a resource ID that corresponds to the number that activates
it.

Apple reserves the Command-key codes 0x1B through 0x20 to indicate meanings other than keyboard
equivalents. MenuKey ignores these character codes and returns a function result of 0 if you specify any of
these values in the ch parameter. Your application should not use these character codes for its own use

Carbon Porting Notes

Carbon does not support desk accessories, so MenuKey cannot be used in OS X to pass keyboard equivalents
to desk accessories.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Menus.h

MenuSelect
Allows the user to choose a menu item from a menu in the menu bar.

SInt32 MenuSelect (
 Point startPt
);

Parameters
startPt

The location of the cursor at the time the mouse button was first pressed, in global coordinates. Your
application retrieves this point from the kEventParamMouseLocation parameter of a Carbon event,
or the where field of the EventRecord structure.

Return Value
If the user chooses an enabled menu item (including any item from a submenu), the MenuSelect function
returns a value as its function result that indicates which menu and menu item the user chose. The high-order
word of the function result contains the menu ID of the menu, and the low-order word contains the item
number of the menu item chosen by the user.

1312 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
If your application uses Carbon events, you probably don’t need to use this function. The standard event
handler installed by the Carbon Event Manager function RunApplicationEventLoop calls MenuSelect
for you to begin tracking when the user clicks in a menu. If you do not call RunApplicationEventLoop,
however, you will need to use this function to initiate menu tracking.

When the user presses the mouse button while the cursor is in the menu bar, your application receives a
mouse-down event. To handle mouse-down events in the menu bar, pass the location of the cursor at the
time of the mouse-down event as the startPt parameter to MenuSelect. The MenuSelect function displays
and removes menus as the user moves the cursor over menu titles in the menu bar, and it handles all user
interaction until the user dismisses the menu.

As the user drags the cursor through the menu bar, the MenuSelect function highlights the title of the menu
the cursor is currently over and displays all items in that menu. If the user moves the cursor so that it is over
a different menu, the MenuSelect function removes the previous menu and unhighlights its menu title.

The MenuSelect function highlights and unhighlights menu items as the user drags the cursor over the
items in a menu. The MenuSelect function highlights a menu item if the item is enabled and the cursor is
currently over it; it removes such highlighting when the user moves the cursor to another menu item. The
MenuSelect function does not highlight disabled menu items.

If the user chooses an enabled menu item (including any item from a submenu), the MenuSelect function
returns a value as its function result that indicates which menu and menu item the user chose. The high-order
word of the function result contains the menu ID of the menu, and the low-order word contains the item
number of the menu item chosen by the user.The MenuSelect function leaves the menu title highlighted;
after performing the chosen task your application should unhighlight the menu title using the
HiliteMenu (page 1291) function.

If the user chooses an item from a submenu, MenuSelect returns the menu ID of the submenu in the
high-order word and the item chosen by the user in the low-order word of its function result. The MenuSelect
function also highlights the title of the menu in the menu bar that the user originally displayed in order to
begin traversing to the submenu. After performing the chosen task, your application should unhighlight the
menu title.

If the user releases the mouse button while the cursor is over a disabled item, in the menu bar, or outside of
any menu, the MenuSelect function returns 0 in the high-order word of its function result and the low-order
word is undefined. If it is necessary for your application to find the item number of the disabled item, your
application can call MenuChoice (page 1309) to return the menu ID and menu item.

Note that MenuSelect sends a number of Carbon events during menu tracking:

 ■ kEventMenuBeginTracking when tracking begins, before displaying any menus. An event handler
for this event may return userCanceledErr to prevent menu tracking from occurring.

 ■ kEventMenuEndTracking after tracking was completed.

 ■ kEventMenuChangeTrackingModewhen the user switches from the mouse to the keyboard to navigate
through menus, or vice versa.

 ■ kEventMenuOpening is sent to each menu that the user opens, just before it opens. An event handler
for this event may return userCanceledErr to prevent menu tracking from occurring.

 ■ kEventMenuClosed is sent to each menu that the user closes.

 ■ kEventMenuPopulate is sent to a menu just before it is opened in a menu tracking session. This event
is sent only once per menu tracking session.

Functions 1313
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

 ■ kEventMenuEnableItems is sent to a menu just before it is opened in a menu tracking session. This
event is sent only once per menu tracking session.

 ■ kEventCommandUpdateStatus is sent to a menu just before it is opened in a menu tracking session.
This event is sent only once per menu tracking session.

 ■ kEventMenuTargetItem is sent to a menu when the mouse passes over a menu item or if the keyboard
is used to select a menu item. This event is sent for both enabled and disabled menu items, and is also
sent when the mouse is over a menu title.

 ■ kEventCommandProcess is sent to a menu when the user chooses one of its menu items.

For more details about these Carbon events, see the Carbon Event Manager Reference.

Carbon Porting Notes

Carbon does not support desk accessories, so MenuSelect cannot be used in Mac OS X to pass keyboard
equivalents to desk accessories.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Menus.h

NewMenu
Creates an empty menu with a specified title and menu ID. (Deprecated in Mac OS X v10.5.)

Not recommended

MenuRef NewMenu (
 MenuID menuID,
 ConstStr255Param menuTitle
);

Parameters
menuID

The ID for the menu. The menu ID is a number that identifies the menu. Menu IDs in Carbon can be
any value, but Apple recommends that the ID be either zero or positive. A menu ID of zero is a valid
ID. IDs of submenus should similarly be zero or a positive value.

menuTitle
The title of the new menu. Note that in most cases you should store the titles of menus in resources,
so that your menu titles can be more easily localized.

Return Value
A menu reference. If the NewMenu function is unable to create the menu structure, it returns NULL. See the
description of the MenuRef data type.

1314 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
Unless you must support legacy code, you should not use functions like NewMenu. If you need to create
menus programmatically, you can call CreateNewMenu (page 1246); otherwise you should define menus in
Interface Builder, store them as nib files, and then call the Interface Builder Services function
CreateMenuFromNib to create them.

The NewMenu function creates a menu with the specified title, assigns it the specified menu ID, and returns
a handle to the menu structure. It sets up the menu structure to use the standard menu definition function
(and it reads the standard menu definition function into memory if it isn’t already there). NewMenu does not
insert the newly created menu into the current menu list.

After creating a menu with NewMenu, use AppendMenu (page 1229) , InsertMenuItem (page 1295) ,
AppendResMenu (page 1232) , orInsertResMenu (page 1297) to add menu items to the menu. To add a menu
created by NewMenu to the current menu list, use InsertMenu (page 1294). In Carbon, you do not need to call
DrawMenuBar (page 1255) to update the menu bar, as the Menu Manager automatically invalidates andredraws
the menu bar.

Menus in a resource must not be purgeable nor should the resource lock bit be set. Do not define a “circular”
hierarchical menu—that is, a hierarchical menu in which a submenu has a submenu whose submenu is a
hierarchical menu higher in the chain.

Special Considerations

To release the memory associated with a menu that you created using NewMenu, first call DeleteMenu (page
1248) to remove the menu from the current menu list and to remove any entries for this menu in your
application’s menu color information table then callDisposeMenu (page 1253) to dispose of the menu structure.
Note that in Carbon, the Menu Manager automatically invalidates and redraws the menu bar after disposing
of a menu.

Version Notes
Note that if you are running on Mac OS 8.1 and earlier, the menu ID of a submenu must be within the range
0 to 255.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
Simple DrawSprocket

Declared In
Menus.h

NewMenuDefUPP
Creates a new univeral procedure pointer to your custom menu definition. (Deprecated in Mac OS X v10.5.)

Not recommended

Functions 1315
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

MenuDefUPP NewMenuDefUPP (
 MenuDefProcPtr userRoutine
);

Parameters
userRoutine

Return Value
See the description of the MenuDefUPP data type.

Carbon Porting Notes

Apple discourages you from writing and using your own menu definition functions and encourages you to
use the system-supplied menu definition function instead. New features that have previously been missing
are now available in the system-supplied menu definition function. Since Appearance Manager 1.0 (in Mac
OS 8.0), for example, the system-supplied menu definition function has supported extended menu item
command key modifiers and glyphs. And in Carbon, the system-supplied menu definition function supports
dynamic items, which allow the contents of a menu item to be redrawn while the menu is displayed in
response to the user pressing a modifier key on the keyboard.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

PopUpMenuSelect
Displays a pop-up menu without using the standard pop-up control definition function.

SInt32 PopUpMenuSelect (
 MenuRef menu,
 short top,
 short left,
 MenuItemIndex popUpItem
);

Parameters
menu

The pop-up menu to be displayed.

top
The y-coordinate of the top-left corner of the selected menu item when the menu opens. This value
should be in global coordinates.

left
The x-coordinate of the top-left corner of the selected menu item when the menu opens. This value
should be in global coordinates.

popUpItem
The index of the menu item to display at the global point (top, left). If you pass zero, the first menu
item is positioned at the indicated point.

1316 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Return Value
The menu ID of the chosen menu in the high 16-bit word of the function result and the chosen menu item
index value in the low 16-bit word. If no item was selected, the result is zero.

Discussion
If your application uses the standard pop-up control definition function, your application does not need to
use the PopUpMenuSelect function. PopUpMenuSelect uses the location specified by the top and left
parameters to determine where to display the specified item of the pop-up menu. PopUpMenuSelect displays
the pop-up menu so that the menu item specified in the popUpItem parameter appears highlighted at the
specified location.

The PopUpMenuSelect function highlights and unhighlights menu items and handles all user interaction
until the user releases the mouse button.

Note that PopUpMenuSelect sends a number of Carbon events during menu tracking (these are the same
as those sent for MenuSelect (page 1312)):

 ■ kEventMenuBeginTracking when tracking begins, before displaying any menus. An event handler
for this event may return userCanceledErr to prevent menu tracking from occurring.

 ■ kEventMenuEndTracking after tracking was completed.

 ■ kEventMenuChangeTrackingModewhen the user switches from the mouse to the keyboard to navigate
through menus, or vice versa.

 ■ kEventMenuOpening is sent to each menu that the user opens, just before it opens. An event handler
for this event may return userCanceledErr to prevent menu tracking from occurring.

 ■ kEventMenuClosed is sent to each menu that the user closes.

 ■ kEventMenuPopulate is sent to a menu just before it is opened in a menu tracking session. This event
is sent only once per menu tracking session.

 ■ kEventMenuEnableItems is sent to a menu just before it is opened in a menu tracking session. This
event is sent only once per menu tracking session.

 ■ kEventCommandUpdateStatus is sent to a menu just before it is opened in a menu tracking session.
This event is sent only once per menu tracking session.

 ■ kEventMenuTargetItem is sent to a menu when the mouse passes over a menu item or if the keyboard
is used to select a menu item. This event is sent for both enabled and disabled menu items, and is also
sent when the mouse is over a menu title.

 ■ kEventCommandProcess is sent to a menu when the user chooses one of its menu items.

For more details about these Carbon events, see the Carbon Event Manager Programming Guide.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

ProcessIsContextualMenuClient
Determines whether a given program is a contextual menu client. (Deprecated in Mac OS X v10.5.)

Functions 1317
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Not recommended

Boolean ProcessIsContextualMenuClient (
 ProcessSerialNumber *inPSN
);

Parameters
inPSN

A pointer to the ID of the process containing the program.

Return Value
true if the program in the process uses contextual menus; otherwise, false.

Discussion
In Mac OS X, you do not need to call InitContextualMenus (page 1292) to register your application, so this
function call is unnecessary.

The ProcessIsContextualMenuClient function checks the system registry of contextual menu clients
and returns true if the program in the given process supports contextual menus. However, the program
must have been registered as a client using InitContextualMenus (page 1292).

See also “Contextual Menu Gestalt Selector Constants” (page 1368).

Version Notes
This function is available with Appearance Manager 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

RegisterMenuDefinition
Registers a binding between a resource ID and a menu definition function.

OSStatus RegisterMenuDefinition (
 SInt16 inResID,
 MenuDefSpecPtr inDefSpec
);

Parameters
inResID

An MDEF resource ID, as used in a 'MENU' resource.

inDefSpec
Specifies the MenuDefUPP that should be used for menus with the given MDEF proc ID. Pass NULL if
you want to unregister the menu definition.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

1318 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
Mac OS X does not allow you to store custom menu definitions in resources. However, some older functions
such as GetMenu expect an 'MDEF' resource ID to be in the 'MENU' resource when creating menus . To
work around this, you can use RegisterMenulDefinition to register “virtual” resource IDs for your menu
definition functions. When GetMenu (or a similar function) attempts to access an 'MDEF' resource, the Menu
Manager uses the menu definition specified by the MenuDefSpec structure instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

ReleaseMenu
Decrements the retain count of a menu. (Deprecated in Mac OS X v10.5.)

OSStatus ReleaseMenu (
 MenuRef inMenu
);

Parameters
inMenu

The menu whose retain count to decrement. If the retain count falls to zero, the menu is destroyed.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
The reference that you pass in the theMenu parameter is not valid after DisposeMenu returns. This function
is identical to DisposeMenu (page 1253).

Version Notes
In Mac OS X v10.2 and later, all menus are Core Foundation CFTypes, so you can optionally call CFRelease
instead of ReleaseMenu.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Menus.h

RemoveMenuCommandProperty
Removes a property from a menu item with the specified command ID.

Functions 1319
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus RemoveMenuCommandProperty (
 MenuRef inMenu,
 MenuCommand inCommandID,
 OSType inPropertyCreator,
 OSType inPropertyTag
);

Parameters
inMenu

The menu in which to begin searching for the item. Pass NULL to begin searching with the root menu.
The search will descend into all the submenus of this menu.

inCommandID
The command ID of the menu item whose property you want to remove. If more than one item has
the same command ID, only the first will be modified.

inPropertyCreator
The four-character creator code for the application.

inPropertyTag
The four-character tag identifying the property to remove.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If you have access to the menu item index, in most cases you should use RemoveMenuItemProperty (page
1320) instead, as that function is faster and requires no searching.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

RemoveMenuItemProperty
Removes a piece of data that has been previously associated with a menu item.

OSStatus RemoveMenuItemProperty (
 MenuRef menu,
 MenuItemIndex item,
 OSType propertyCreator,
 OSType propertyTag
);

Parameters
menu

The menu containing the item whose associated data is to be removed.

item
The index number of the menu item or 0 if the data is associated with the menu as a whole.

1320 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

propertyCreator
A four-character code. Pass your program’s signature, as registered through Apple Developer Technical
Support. If your program is of a type that would not normally have a signature (for example, a plug-in),
you should still register and use a signature in this case, even though your program’s file may not
have the same creator code as the signature that you register. The 'macs' property signature is
reserved for the system and may not be used.

propertyTag
A four-character code. Pass the application-defined code identifying the associated data.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Your application may remove data set with the SetMenuItemProperty (page 1341) function by calling the
RemoveMenuItemProperty function.

When a menu is destroyed, all of its properties are removed automatically.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

RetainMenu
Increments the reference count of a menu. (Deprecated in Mac OS X v10.5.)

OSStatus RetainMenu (
 MenuRef inMenu
);

Parameters
inMenu

The menu whose reference count you want to increment.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
RetainMenu does not create a new menu. It simply adds one to the reference count.

Version Notes
In Mac OS X v10.2 and later, all menus are Core Foundation CFTypes, so you can optionally call CFRetain
instead of RetainMenu.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

Functions 1321
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

ScrollMenuImage
Scrolls a portion of the menu image. (Deprecated in Mac OS X v10.5.)

OSStatus ScrollMenuImage (
 MenuRef inMenu,
 const Rect *inScrollRect,
 int inHScroll,
 int inVScroll,
 CGContextRef inContext
);

Parameters
inMenu

The menu to scroll.

inScrollRect
The bounds of the area to scroll.

inHScroll
The distance to scroll horizontally, in pixels.

inVScroll
The distance to scroll vertically, in pixels.

inContext
The Core Graphics context to scroll. If you pass NULL, the function creates a context based on the
current port.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Scrolling menus on Mac OS X using ScrollRect or other QuickDraw functions destroys the alpha channel
data, so you should use ScrollMenuImage instead.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

SetItemCmd
Sets the value of the keyboard equivalent field of a menu item.

Not recommended

1322 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void SetItemCmd (
 MenuRef theMenu,
 MenuItemIndex item,
 CharParameter cmdChar
);

Parameters
theMenu

The menu containing the item.

item
The menu index of the item.

cmdChar
The value to set for the item’s keyboard equivalent field. The Menu Manager uses this value to map
keyboard equivalents to menu s or to define special characteristics of the menu item.

To indicate that the menu item has a submenu, specify 0x1B in the cmdChar parameter; specify a
value of 0x1C to indicate that the item has a special text encoding; specify a value of 0x1D to indicate
that the Menu Manager should reduce the item’s 'ICON' resource to the size of a small icon; and
specify a value of 0x1E to indicate that the item has an 'SICN' resource.

The values 0x01 through 0x1A, as well as 0x1F and 0x21, are reserved for use by Apple. You should
not use any of these reserved values in the cmdChar parameter.

Discussion
You should call SetMenuItemCommandKey (page 1334) , SetMenuItemHierarchicalID (page 1336) , and
SetMenuItemTextEncoding (page 1343) instead of SetItemCmd to set a menu item’s keyboard equivalent
and text encoding and to indicate that a menu item has a submenu.

You usually define the keyboard equivalents and other characteristics of your menu items in the 'MENU'
resource rather than using the SetItemCmd function. The SetItemCmd function sets the value in the keyboard
equivalent field of the specified menu item to the value specified by the cmdChar parameter (you can specify
0 if the item doesn’t have a keyboard equivalent, submenu, text encoding, reduced icon, or small icon). If
you specify that the item has a submenu, you should provide the menu ID of the submenu as the item’s
marking character. If you specify that the item has a special text encoding, you must provide the text encoding
in the icon field of the menu item. If you specify that the item has an 'SICN' or a reduced 'ICON' resource,
you must provide the icon number in the icon field of the item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetItemIcon
Sets a menu item’s icon or text encoding. (Deprecated in Mac OS X v10.5.)

Functions 1323
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void SetItemIcon (
 MenuRef theMenu,
 MenuItemIndex item,
 short iconIndex
);

Parameters
theMenu

The menu containing the item.

item
The menu index of the item.

iconIndex
An integer representing the icon number or text encoding for the specified menu item. If the menu
item’s keyboard equivalent field does not contain 0x1C, the SetItemIcon function sets the icon
number of the item’s icon to the number defined in this parameter. The icon number you specify
should be a value from 1 through 255 (or from 1 through 254 if the item has a small or reduced icon)
or 0 if the item does not have an icon.

The Menu Manager adds 256 to the icon number to generate the resource ID of the 'cicn' or 'ICON'
resource that describes the icon of the menu item. For example, if you specify 5 as the value of the
iconIndex parameter, when the Menu Manager needs to draw the item, it looks for an icon resource
with resource ID 261.

If the menu item’s keyboard equivalent field contains 0x1C, the SetItemIcon function sets the text
encoding of the menu item to the number defined in the iconIndex parameter. The Menu Manager
displays the menu item using the specified text encoding if the corresponding script system is installed.

You can specify 0 in the iconIndex parameter to indicate that the item uses the current system script
and does not have an icon number.

Discussion
In most cases, you should use SetMenuItemTextEncoding (page 1343) rather than SetItemIcon to set the
menu item’s text encoding.

The SetItemIcon function sets the icon number (for resource-based icons) or text encoding of the specified
menu item to the value in the iconIndex parameter. To use handle-based icons, call
SetMenuItemIconHandle (page 1338). Usually you display menu items in the current system script; however,
if needed, you can use the SetItemIcon function to set the text encoding of a menu item. For an item’s
text encoding to be set, the keyboard equivalent field of the item must contain 0x1C. If the keyboard equivalent
field contains any other value, the SetItemIcon function interprets the specified number as the item’s icon
number.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

SetItemMark
Sets the mark of a menu item.

1324 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void SetItemMark (
 MenuRef theMenu,
 MenuItemIndex item,
 CharParameter markChar
);

Parameters
theMenu

The menu containing the item.

item
The menu index of the item.

markChar
The mark of the menu item or its submenu (if the item has a submenu). To set the submenu associated
with this menu item, specify the menu ID of the submenu in the markChar parameter. You can pass
the character marking constants defined in the Font Manager. Pass 0 (noMark)if the menu item has
neither mark nor submenu.

Discussion
You should call SetMenuItemHierarchicalID (page 1336) instead of SetItemMark to set the menu ID of
a menu item’s submenu. However, you can still use SetItemMark to set the mark of a menu item.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Menus.h

SetItemStyle
Sets a menu item’s text style.

void SetItemStyle (
 MenuRef theMenu,
 MenuItemIndex item,
 StyleParameter chStyle
);

Parameters
theMenu

The menu containing the item.

item
The menu index of the item.

chStyle
An integer representing the menu item’s text style. You can choose from the following constants:
normal, bold, italic, underline, outline, shadow, condense, and extend .

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 1325
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

SetMCEntries
Sets entries in an application’s menu color information table. (Deprecated in Mac OS X v10.5.)

Not recommended

void SetMCEntries (
 short numEntries,
 MCTablePtr menuCEntries
);

Parameters
numEntries

The number of entries contained in the array of menu color entry structures.

menuCEntries
A pointer to an array of menu color entry structures. Specify the number of structures in the array in
the numEntries parameter.

Discussion
The SetMCEntries function sets any specified menu bar entry, menu title entry, or menu item entry according
to the values specified in the menu color entry structures. If an entry already exists for a specified menu color
entry, the SetMCEntries function updates the entry in your application’s menu color information table with
the new values. If the entry doesn’t exist, it is added to your application’s menu color information table.

If any of the added entries specify a new menu bar color or new menu title colors, your application should
call DrawMenuBar (page 1255) to update the menu bar with the new colors.

Special Considerations

The SetMCEntries function may move or purge memory. Your application should make sure that the array
specified by the menuCEntries parameter is nonrelocatable before calling SetMCEntries.

Carbon Porting Notes

SetMCEntries does nothing, because Appearance Manager doesn’t use color tables.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

SetMCInfo
Makes a copy of your application’s menu color information table. (Deprecated in Mac OS X v10.5.)

Not recommended

1326 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void SetMCInfo (
 MCTableHandle menuCTbl
);

Parameters
menuCTbl

A handle to a copy of your application’s menu color information table.

Discussion
The SetMCInfo function copies the table specified by the menuCTbl parameter to your application’s menu
color information table. If successful, the SetMCInfo function is responsible for disposing of your application’s
current menu color information table, so your application does not need to explicitly dispose of the current
table.

Your application should call the Memory Manager function MemError to determine whether the SetMCInfo
function successfully copied the table. If the SetMCInfo function cannot successfully copy the table, it does
not dispose of the current menu color information table and the MemError function returns a nonzero result
code. If the SetMCInfo function is able to successfully copy the table, it disposes of the current menu color
information table and the MemError function returns the noErr result code.

If the menu color information table specifies a new menu bar color or new menu title colors, your application
should call DrawMenuBar (page 1255) after calling SetMCInfo.

Note that GetNewMBar (page 1290) does not save your application’s current menu color information table. If
your application changes menu bars, you can save and restore your application’s current menu color
information table by calling GetMCInfo (page 1266) before GetNewMBar and calling SetMCInfo afterward.

Carbon Porting Notes

SetMCInfo does nothing, because Appearance Manager doesn’t use color tables.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuBar
Sets the current menu list to a specified menu list.

void SetMenuBar (
 MenuBarHandle mbar
);

Parameters
mbar

A handle to a menu list that specifies the menus for a menu bar. You should specify a handle returned
by GetMenuBar (page 1268) or GetNewMBar (page 1290).

Functions 1327
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
The SetMenuBar function copies the given menu list to the current menu list. As with GetMenuBar (page
1268) , SetMenuBar doesn’t copy the menu structures, just the menu list (which contains handles to the menu
structures).

You can use SetMenuBar to restore a menu list that you previously saved using GetMenuBar or to set the
current menu list to a menu list created from a nib file or from GetNewMBar (page 1290).

The SetMenuBar function sets the current menu list and calls InvalMenuBar (page 1301) so the menu bar
can be updated the next time through the event loop; if you want to redraw the menu bar immediately, call
the DrawMenuBar (page 1255) function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
Menus.h

SetMenuCommandMark
Locates the menu item with a specified command ID and sets its mark character.

OSStatus SetMenuCommandMark (
 MenuRef inMenu,
 MenuCommand inCommandID,
 UniChar inMark
);

Parameters
inMenu

The menu in which to begin searching for the item. Pass NULL to begin searching with the root menu.
The search will descend into all submenus of this menu.

inCommandID
The command ID of the menu item to be modified. If more than one item has this command ID, only
the first will be modified.

inMark
The new mark character. While this is a Unicode character, only the low byte is currently used as the
mark character, and it is interpreted using the application text encoding.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If you have access to the menu item index, in most cases you should use SetItemMark (page 1324) instead,
as that function is faster and requires no searching.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1328 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

SetMenuCommandProperty
Sets the property data for a menu item with the specified command ID.

OSStatus SetMenuCommandProperty (
 MenuRef inMenu,
 MenuCommand inCommandID,
 OSType inPropertyCreator,
 OSType inPropertyTag,
 ByteCount inPropertySize,
 const void *inPropertyData
);

Parameters
inMenu
inCommandID

The command ID of the menu item whose property you want to set. If more than one item has the
same command ID, only the first item’s property is set.

inPropertyCreator
The four-character creator code for the application.

inPropertyTag
The four-character tag for the property you want to set.

inPropertySize
The side of the property data, in bytes.

inPropertyData
The property data to set.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If you have access to the menu item index, in most cases you should use SetMenuItemProperty (page 1341)
instead, as that function is faster and requires no searching.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuDefinition
Sets the menu definition structure for a menu.

Functions 1329
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus SetMenuDefinition (
 MenuRef menu,
 const MenuDefSpec *defSpec
);

Parameters
menu

The menu whose menu definition structure you want to set.

defSpec
The new menu definition structure.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You can use this function to change your menu definition on-the-fly.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuExcludesMarkColumn
Sets whether a menu contains space for mark characters.

Not recommended

OSStatus SetMenuExcludesMarkColumn (
 MenuRef menu,
 Boolean excludesMark
);

Parameters
menu

The menu whose width is to be set.

excludesMark
Pass true to specify that the menu be drawn without space for mark characters; false to specify
that the menu be drawn in its full width, with space for mark characters.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Your application may use the SetMenuExcludesMarkColumn function to set the width of an individual
menu, so that no space is provided for mark characters such as checkmarks, dashes, or notification symbols
(diamonds).

The SetMenuExcludesMarkColumn function is only recommended for use with pop-up menus, and then
only in special cases. Mac OS human interface guidelines require that all standard (menu bar) menus include
space for mark characters, and pop-up menus that present user-selectable attributes or commands should

1330 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

also contain space for marks. If a pop-up menu does not present a list of user-selectable attributes or
commands, as is the case with the Mac OS 8.5 Window Manager window proxy pop-up menus that display
a standard file system path, then narrowing the menu to exclude space for marks may be appropriate.

See also the GetMenuExcludesMarkColumn (page 1272) function.

Carbon Porting Notes

You should instead set the kMenuExcludesMarkColumn menu attribute using the
ChangeMenuAttributes (page 1235) function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuFlashCount
Specifies whether a menu should fade slowly or immediately disappear when closing. (Deprecated in Mac
OS X v10.5.)

Modified

void SetMenuFlashCount (
 short count
);

Parameters
count

See the Discussion.

Discussion
Unlike the classic Mac OS version, SetMenuFlashCount no longer lets you set the flash count for a menu.
In Mac OS X, the flash count is always 1, and it not user adjustable.

Passing zero for the count parameter causes menus to disappear immediately when closing; passing any
nonzero parameter causes the menus to fade out when closing (the default).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuFont
Sets the font to be used in a menu.

Functions 1331
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus SetMenuFont (
 MenuRef menu,
 SInt16 inFontID,
 UInt16 inFontSize
);

Parameters
menu

The menu whose font is to be set.

inFontID
The font family ID for the font to be used. Pass 0 to use the current system font. Note that this is the
font to be used in the menu items, not the menu title. You cannot change the menu title font.

inFontSize
The size, in points, of the font to be used. Valid font size values range from 9 to 24 points, inclusive.
Pass 0 to use the font size of the current system font.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Your application may use the SetMenuFont function to set the font for an individual menu, such as a pop-up
menu. This function sets the font used by all the menu items in the menu. If you want to set the font of only
a particular menu item, use the SetMenuItemFontID (page 1335) function instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuHeight
Set the height of a menu.

void SetMenuHeight (
 MenuRef menu,
 SInt16 height
);

Parameters
menu

The menu whose height you want to set.

height
The height of the menu, in pixels.

Discussion
Calling CalcMenuSize (page 1234) on the menu overwrites the menu height you set with this function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1332 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

SetMenuID
Assigns a menu ID to a menu.

void SetMenuID (
 MenuRef menu,
 MenuID menuID
);

Parameters
menu

The menu you want to assign an ID to.

menuID
The menu ID to assign.

Discussion
In most cases you assign an ID to a menu when you first create it, but you can use this function to change it
later.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemCommandID
Sets a menu item’s command ID.

OSErr SetMenuItemCommandID (
 MenuRef inMenu,
 MenuItemIndex inItem,
 MenuCommand inCommandID
);

Parameters
inMenu

The menu that contains the menu item whose command ID you want to set.

inItem
The menu index of the item.

inCommandID
An integer representing the command ID that you wish to set.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You can use a menu item’s command ID as a position-independent method of signalling a specific action in
an application. See Carbon Event Manager Programming Guide for more information about command IDs.

Functions 1333
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Note that Apple reserves all command IDs that contain all lowercase letters; your application is free to use
any command ID containing uppercase characters.

See also the function GetMenuItemCommandID (page 1275).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemCommandKey
Sets the keyboard equivalent of a menu item.

OSStatus SetMenuItemCommandKey (
 MenuRef inMenu,
 MenuItemIndex inItem,
 Boolean inSetVirtualKey,
 UInt16 inKey
);

Parameters
inMenu

The menu containing the item.

inItem
The item whose keyboard equivalent you want to set.

inSetVirtualKey
Indicates whether to set the item's character code (false) or virtual keycode equivalent. (true).

inKey
The character code or virtual keycode equivalent to set.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
A menu item's keyboard equivalent may be either a character code or a virtual keycode. The character code
is always used to draw the item's keyboard equivalent in the menu, but either may be used for keyboard
equivalent matching by MenuEvent and IsMenuKeyEvent, depending on whether the
kMenuItemAttrUseVirtualKey item attribute is set. If SetMenuItemCommandKey is used to set the virtual
keycode equivalent for a menu item, it also automatically sets the kMenuItemAttrUseVirtualKey item
attribute. To make the menu item stop using the virtual keycode equivalent and use the character code
equivalent instead, use ChangeMenuItemAttributes to clear the kMenuItemAttrUseVirtualKey item
attribute.

Version Notes
Prior to Mac OS X v10.3, passing a character code in the range 0x1A to 0x21 (the range of command key
metacharacters such as hMenuCmd) returned an error. In Mac OS X v10.3 and later, the Menu Manager interprets
codes in this range as the ASCII character for that value, and displays the appropriate command key glyph.
For example, passing hMenuCmd would set the keyboard equivalent to be command-Escape, because the
value of hMenuCmd (0x1B) is the character code for the Escape character.

1334 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemData
Sets multiple attributes of a menu item at once.

OSStatus SetMenuItemData (
 MenuRef inMenu,
 MenuItemID inItem,
 Boolean inIsCommandID,
 const MenuItemDataRec *inData
);

Parameters
inMenu

The menu whose attributes you want to set. Note that if you pass true for the inIsCommandID
parameter, you can pass NULL here, in which case the Menu Manager searches the root menu for the
first menu that matches the specified command ID.

inItem
The menu item index or the command ID of the menu item.

inIsCommandID
A Boolean value indicating whether the value passed for the inItem parameter is a command ID or
a menu item index. Pass true to indicate a command ID, false to indicate that it is a menu item
index. If you pass true, the Menu Manager sets the data for the first menu item that matches the
specified command ID.

inData
A pointer to a MenuItemDataRec structure. Before calling, you should set the whichData field to
indicate what data you want to set and fill out those fields appropriately. For more details on the
types of data you can set, see “Menu Item Data Flags” (page 1390).

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
This function is often more efficient than calling individual accessor functions if you want to set multiple
attributes simultaneously.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemFontID
Sets the font for a menu item.

Functions 1335
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSErr SetMenuItemFontID (
 MenuRef inMenu,
 MenuItemIndex inItem,
 SInt16 inFontID
);

Parameters
inMenu

The menu that contains the menu item for which you wish to set the font.

inItem
The menu index of the item.

inFontID
An integer representing the font ID that you wish to set.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You can use this function to set up a font menu that displays item in its appropriate font. If you want to set
the font for all the items in a menu, you can use the SetMenuFont (page 1331) function.

See also the function GetMenuItemFontID (page 1277).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemHierarchicalID
Attaches a submenu to a menu item. (Deprecated in Mac OS X v10.5.)

OSErr SetMenuItemHierarchicalID (
 MenuRef inMenu,
 MenuItemIndex inItem,
 MenuID inHierID
);

Parameters
inMenu

The menu that contains the menu item to which you wish to attach a submenu.

inItem
The menu index of the item.

inHierID
An integer representing the menu ID of the submenu you wish to attach. This menu should be inserted
into the menu list by calling InsertMenu with the kInsertHierarchicalMenu constant.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

1336 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
The SetMenuItemHierarchicalID function should be called instead of setting the keyboard equivalent
to 0x1B. You should call SetMenuItemHierarchicalID instead of SetItemMark to set the menu ID of a
menu item’s submenu. However, you can still use SetItemMark to set the mark of a menu item.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemHierarchicalMenu
Attaches a submenu to a menu item.

OSStatus SetMenuItemHierarchicalMenu (
 MenuRef inMenu,
 MenuItemIndex inItem,
 MenuRef inHierMenu
);

Parameters
inMenu

The parent menu.

inItem
The parent item.

inHierMenu
The submenu to attach. Pass NULL to remove an existing submenu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Using SetMenuItemHierarchicalMenu, it is possible to directly specify the submenu for a menu item
without specifying its menu ID. It is not necessary to insert the submenu into the hierarchical portion of the
menubar, and it is not necessary for the submenu to have a unique menu ID. Simply use 0 as the menu ID
for the submenu, and identify selections from the menu by command ID.

The Menu Manager will increment the reference count of the submenu that you specify, and the submenu’s
reference count will be decremented automatically when the parent menu item is deleted or the parent
menu is disposed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

Functions 1337
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

SetMenuItemIconHandle
Sets a menu item’s icon.

OSErr SetMenuItemIconHandle (
 MenuRef inMenu,
 MenuItemIndex inItem,
 UInt8 inIconType,
 Handle inIconHandle
);

Parameters
inMenu

The menu that contains the menu item for which you wish to set an icon.

inItem
The menu index of the item.

inIconType
Pass a value representing the type of icon ('ICON', 'cicn', 'SICN', icon suite, or IconRef) you
wish to attach; see “Menu Item Icon Type Constants” (page 1394) for descriptions of possible values.

inIconHandle
Pass a handle to the icon you wish to attach to a menu item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
The SetMenuItemIconHandle function sets the icon of a menu item with an icon handle instead of a
resource ID. SetMenuItemIconHandle allows you to set icons of type 'ICON', 'cicn', 'SICN', IconRef,
CGImageRef, as well as icon suites. To set resource-based icons for a menu item, call SetItemIcon.

With the exception of types IconRef and CGImageRef,disposing of the menu will not dispose of the icon
handles set by this function. The Menu Manager retains IconRef, CGImageRef icons and releases them
when the menu is disposed or the menu item is removed. For all other icon types, your application should
dispose of the icons when you dispose of the menu, to prevent memory leaks.

See also the function GetMenuItemIconHandle (page 1279).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
Menus.h

SetMenuItemIndent
Sets the indent level of a menu item.

1338 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

OSStatus SetMenuItemIndent (
 MenuRef inMenu,
 MenuItemIndex inItem,
 UInt32 inIndent
);

Parameters
inMenu

The menu containing the item.

inItem
The item whose indent level you want to set.

inIndent
The new indent level of the item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
The indent level of an item is an amount of extra space added to the left of the item's icon or checkmark.
The level is simply a number, starting at zero, which the Menu Manager multiplies by a constant to get the
indent in pixels. The default indent level is zero.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemKeyGlyph
Sets the command key glyph code for a menu item.

OSErr SetMenuItemKeyGlyph (
 MenuRef inMenu,
 MenuItemIndex inItem,
 SInt16 inGlyph
);

Parameters
inMenu

The menu that contains the menu item for which you wish to substitute a keyboard glyph.

inItem
The menu index of the item.

inGlyph
An integer representing the substitute glyph to display. Pass 0 to remove an existing glyph code. For
a description of available keyboard glyphs, see “Menu Glyph Constants” (page 1382).

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Functions 1339
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
The SetMenuItemKeyGlyph function overrides the character that would normally be displayed in a menu
item’s keyboard equivalent with a substitute keyboard glyph. This is useful if the keyboard glyph in the font
doesn’t match the actual character generated. For example, you might use this function to display function
keys.

In addition, the glyph code you specify is used for command key matching if the menu item does not already
have a command key or virtual keycode assigned to it.

See also the function GetMenuItemKeyGlyph (page 1280).

Version Notes
In CarbonLib 1.2 and later and Mac OS X v10.0 and later, the Menu Manager automatically draws the
appropriate glyph for a menu item that has a virtual keycode assigned to it; you do not have to set both
virtual keycode and the glyph.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemModifiers
Sets the modifier key(s) that must be pressed with a character key to select a particular menu item.

OSErr SetMenuItemModifiers (
 MenuRef inMenu,
 MenuItemIndex inItem,
 UInt8 inModifiers
);

Parameters
inMenu

The menu that contains the menu item for which you wish to set the modifier key(s).

inItem
The menu index of the item.

inModifiers
A value representing the modifier key(s) to be used in selecting the menu item; see “Modifier Key
Mask Constants” (page 1396).

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You can call the SetMenuItemModifiers function to change the modifier key(s) you can include with a
character key to create your keyboard equivalent. For example, you can change Command-x to
Command-Option-Shift-x. By default, the Command key is always specified; you can remove it by calling
SetMenuItemModifiers with the kMenuNoCommandModifier mask constant, or (if you are using a nib
file) by unchecking the appropriate command checkbox in the Interface Builder menu item inspector.

See also the function GetMenuItemModifiers (page 1281).

1340 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemProperty
Associates data with a menu item.

OSStatus SetMenuItemProperty (
 MenuRef menu,
 MenuItemIndex item,
 OSType propertyCreator,
 OSType propertyTag,
 ByteCount propertySize,
 const void *propertyData
);

Parameters
menu

The menu containing the item with which you wish to associate data.

item
The index number of the menu item or 0 if the data is to be associated with the menu as a whole.

propertyCreator
A four-character code. Pass your program’s signature, as registered through Apple Developer Technical
Support. If your program is of a type that would not normally have a signature (for example, a plug-in),
you should still register and use a signature in this case, even though your program’s file may not
have the same creator code as the signature that you register. The 'macs' property signature is
reserved for the system and may not be used.

propertyTag
A four-character code that identifies the property to set. You define the tag your application uses to
identify the data; this code is not to be confused with the file type for the data, but may coincide if
you wish.

propertySize
The size of the data.

propertyData
A pointer to the data.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
You may use the SetMenuItemProperty function to associate arbitrary data, tagged with an identifying
code, with a menu item.

See also the GetMenuItemProperty (page 1281) and RemoveMenuItemProperty (page 1320) functions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 1341
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Related Sample Code
HID Explorer
QTCarbonShell

Declared In
Menus.h

SetMenuItemRefCon
Sets application-specific information for a menu item.

OSErr SetMenuItemRefCon (
 MenuRef inMenu,
 MenuItemIndex inItem,
 URefCon inRefCon
);

Parameters
inMenu

The menu that contains the menu item with which you wish to associate information.

inItem
The menu index of the item. In CarbonLib 1.6 and later and Mac OS X v10.2 and later, you may pass
zero to set a reference constant for the menu itself.

inRefCon
An unsigned 32-bit integer value. Pass a reference constant to associate with the menu item.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If you have any data you want to associate with a menu item, you can do so using the SetMenuItemRefCon
function. Note that you can also use SetMenuItemProperty (page 1341), which allows more flexibility in
specifying application-specific data.

See also the function GetMenuItemRefCon (page 1284).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemText
Sets menu item text to a specified string. (Deprecated in Mac OS X v10.5.)

Not recommended

1342 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

void SetMenuItemText (
 MenuRef theMenu,
 MenuItemIndex item,
 ConstStr255Param itemString
);

Parameters
theMenu

The menu containing the item.

item
The menu index of the item.

itemString
The menu item’s text string. This parameter must not be NULL or an empty (zero-length) string. Do
not use meta–font characters in this parameter.

Your menu item text string must be limited to 250 bytes. 251 or more bytes will cause the Menu
Manager to crash.

Discussion
The SetMenuItemText function does not recognize any metacharacters used by AppendMenu (page 1229)
and InsertMenuItem (page 1295).

If you set the text of a menu item using the SetMenuItemText function, you should store the text in a string
resource so that your application can be more easily localized.

Carbon Porting Notes

n Carbon, you should use the SetMenuItemTextWithCFString (page 1344) function instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemTextEncoding
Sets the text encoding for a menu item’s text. (Deprecated in Mac OS X v10.5.)

OSErr SetMenuItemTextEncoding (
 MenuRef inMenu,
 MenuItemIndex inItem,
 TextEncoding inScriptID
);

Parameters
inMenu

The menu containing the menu item whose text encoding you wish to set.

inItem
The menu index of the item.

inScriptID
The script code that corresponds to the text encoding you wish to set.

Functions 1343
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If a menu item has a command code of 0x1C when SetMenuItemTextEncoding is called, the values in the
menu item’s command key and icon ID fields are cleared and replaced with the value in the inScriptID
parameter of SetMenuItemTextEncoding.

See also the function GetMenuItemTextEncoding (page 1285).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuItemTextWithCFString
Sets the text of a menu item to the text contained in a CFString.

OSStatus SetMenuItemTextWithCFString (
 MenuRef inMenu,
 MenuItemIndex inItem,
 CFStringRef inString
);

Parameters
inMenu

The menu containing the item.

inItem
The item whose text you want to set.

inString
The CFString containing the new menu item text.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If the CFString is mutable, the Menu Manager will make its own copy of the CFString before returning from
SetMenuItemTextWithCFString. Modifying the string after calling SetMenuItemTextWithCFString
will have no effect on the item's actual text.

If the CFString is immutable, the Menu Manager increments the reference count of the string before returning.

The caller may release the string after calling SetMenuItemTextWithCFString.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

1344 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Declared In
Menus.h

SetMenuTitle
Sets the title of a menu. (Deprecated in Mac OS X v10.5.)

Not Recommended

OSStatus SetMenuTitle (
 MenuRef menu,
 ConstStr255Param title
);

Parameters
menu

The menu whose title you want to set.

title
A string containing the menu title to set.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
Unless you need to support legacy code, you should use the SetMenuTitleWithCFString (page 1346)
function instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuTitleIcon
Sets the title of a menu to be an icon.

OSStatus SetMenuTitleIcon (
 MenuRef inMenu,
 UInt32 inType,
 void *inIcon
);

Parameters
inMenu

The menu whose title to set.

inType
The type of icon being used to specify the icon title; use kMenuNoIcon to remove the icon from the
menu title. The supported types are kMenuIconSuiteType, kMenuIconRefType, and (in Mac OS X
v10.3 and later) kMenuIconCGImageRefType.

Functions 1345
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

inIcon
The icon; this parameter must be NULL if inType is kMenuNoIcon. The supported icon formats are
IconSuiteRef, IconRef, and (in Mac OS X v10.3 and later) CGImageRef.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
The Menu Manager takes ownership of the supplied icon after this call. When a menu with an title icon is
disposed, the Menu Manager will dispose the icon as well. The Menu Manager will also dispose of the current
title icon when a new text or icon title is supplied for a menu. If you specify an IconRef or CGImageRef,
the Menu Manager will increment its reference count, so you can release your reference to the IconRef
without invalidating the Menu Manager's copy. The menu bar is invalidated by this call and will be redrawn
at the first opportunity.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetMenuTitleWithCFString
Sets the title of a menu to the text contained in a CFString.

OSStatus SetMenuTitleWithCFString (
 MenuRef inMenu,
 CFStringRef inString
);

Parameters
inMenu

The menu whose title you want to set.

inString
The string containing the new menu title text.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
If the string is mutable, the Menu Manager will make its own copy of the CFString before returning from
SetMenuTitleWithCFString. Modifying the string after calling SetMenuTitleWithCFString will then
have no effect on the menu's actual title.

If the string is immutable, the Menu Manager simply increments the string’s reference count.

The caller may release the string after calling SetMenuTitleWithCFString.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

1346 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

SetMenuWidth
Sets the width of a menu.

void SetMenuWidth (
 MenuRef menu,
 SInt16 width
);

Parameters
menu

The menu whose width you want to set.

width
The width of the menu, in pixels.

Discussion
Calling CalcMenuSize (page 1234) on the menu overwrites the menu width you set with this function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

SetRootMenu
Sets the menu whose contents are displayed in the menubar.

OSStatus SetRootMenu (
 MenuRef inMenu
);

Parameters
inMenu

The new root menu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
The root menu should contain one menu item for each top-level menu to be displayed in the menu bar. Each
menu item in turn should have a submenu that was specified using SetMenuItemHierarchicalMenu (page
1337).

You can use the SetRootMenu function along with the AcquireRootMenu (page 1229) function to save and
restore the contents of the menu bar. Note that calling SetRootMenu sets the contents of the hierarchical
portion of the menu list as well as the top-level menus displayed in the menu bar. Before returning the root
menu, AcquireRootMenu calls InsertMenu (page 1294) with the kInsertHierarchialMenu option to
attach to the root menu a list of the menus that are currently inserted into the hierarchical portion of the
menu. SetRootMenu reinserts any attached hierarchical menus into the hierarchical portion of the menu
list. If you pass a newly-created menu to SetRootMenu, the hierarchical menu list is cleared and is empty.

Calling SetRootMenu also implicitly retains the new root menu, and you should release it at the appropriate
time by calling ReleaseMenu (page 1319).

Functions 1347
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

ShowMenuBar
Displays the menu bar.

void ShowMenuBar (
 void
);

Discussion
The ShowMenuBar function makes the menu bar visible and selectable by the user.

Note that calling this function also causes a kEventMenuBarShown event to be sent to the application target
(if your application has registered for the event).

See also the HideMenuBar (page 1291) and IsMenuBarVisible (page 1303) functions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

UpdateInvalidMenuItems
Redraws the invalid items of an open menu.

OSStatus UpdateInvalidMenuItems (
 MenuRef inMenu
);

Parameters
inMenu

The menu whose menu items you want to update.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
This function redraws menu items in an open menu that has either had some visible aspect of its menu items
change (such as their enable state) or has been invalidated by a call to InvalidateMenuItems (page 1299).

It is not necessary to use UpdateInvalidMenuItems if you are using Carbon's built-in support for dynamic
items based on modifier key state. However, if you are modifying items dynamically using your own
implementation, you should call UpdateInvalidMenuItems after completing your modifications for a single
menu. It will redraw any items that have been marked as invalid, and clear the invalid flag for those items.

1348 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

UpdateStandardFontMenu
Updates a standard Font menu.

OSStatus UpdateStandardFontMenu (
 MenuRef menu,
 ItemCount *outHierMenuCount
);

Parameters
menu

The menu you want to update.

outHierMenuCount
The number of hierarchical menus attached to the standard Font menu. This value may be NULL if
the hierarchical menus count is not useful. For example, if the only submenus in your application are
those created by CreateStandardFontMenu, then you don’t need to worry about the hierarchical
menu count, as any existing submenu must be a font menu.

Return Value
A result code. See “Menu Manager Result Codes” (page 1399).

Discussion
UpdateStandardFontMenu calls the Font Manager function FMGetFontGeneration to determine if the
fonts have changed and returns immediately without modifying the font menu if no changes occurred. As
there is little overhead if no fonts have changed, you can call this function whenever you think it may be
useful; for example, when your application is activated, or whenever you receive a kEventMenuPopulate
event for the font menu.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

Callbacks

MenuDefProcPtr
Defines a pointer to a custom menu definition callback function. Your menu definition callback function
draws the menu items in the menu, determines which item the user chose from the menu, and calculates
the menu’s dimensions.

Not recommended

Callbacks 1349
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

typedef void (*MenuDefProcPtr) (
 SInt16 message,
 MenuRef theMenu,
 Rect *menuRect,
 Point hitPt,
 SInt16 *whichItem
);

If you name your function MyMenuDefProc, you would declare it like this:

void *MyMenuDefProc (
 SInt16 message,
 MenuRef theMenu,
 Rect *menuRect,
 Point hitPt,
 SInt16 *whichItem
);

Parameters
message

A constant that identifies the operation the menu definition function should perform; see “Custom
Menu Definition Message Constants” (page 1372) and “Obsolete Menu Definition Messages” (page 1374)
for a description of the messages that your menu definition function can receive. Your menu definition
function should not respond to any value other than these defined messages. Other messages are
reserved for internal use by Apple Computer, Inc.

theMenu
The menu that the operation should affect. This menu reference may refer to a regular menu or a
popup menu.

menuRect
A pointer to the rectangle (in global coordinates) in which the menu is located.

hitPt
A mouse location (in global coordinates). The Menu Manager provides information in this parameter
to the menu definition function when the kMenuFindItemsMsg or kMenuPopUpMsg messages are
sent.

whichItem
A pointer to a value that specifies the item number of the menu item to act upon, or a pointer to a
data structure related to one or more menu items. The data pointed to depends on the message sent;
see the discussion for specifics.

Discussion
Carbon does not let you store menu definitions as resources. If you need to upgrade legacy code, see the
Carbon Porting Guide for information about converting your resource-based definitions. See the Carbon
Porting Notes for this callback for additional information about changes to older messages and access to
low-memory global data.

On Mac OS X v10.3 and later, all standard menus are implemented as HIViews, and custom menus can be
implemnented as custom HIViews. If you want to create custom menu definitions, you should subclass the
HIMenuView class. See Introducing HIView in Carbon User Experience documentation for more information.

When you define your menus, you specify the menu definition function the Menu Manager should use when
managing them. You’ll usually want to use the standard menu definition function for your application.
However, if you need a feature not provided by the standard menu definition function (for example, if you
want to include more graphics in your menus), you can choose to write your own menu definition function.

1350 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

The menu definition function is responsible for drawing the contents of the menu and its menu items,
determining whether the cursor is in a displayed menu, highlighting and unhighlighting menu items, and
calculating a menu’s dimensions. To create an instance of your custom menu, call the
CreateCustomMenu (page 1245) function.

The Menu Manager calls your menu definition function whenever it needs your definition function to perform
a certain action on a specific menu. The action your menu definition function should perform depends on
the value of the message parameter. When the Menu Manager requests your menu definition function to
perform an action on a menu, it provides your function with the appropriate menu reference. This allows
your function to access the data in the menu structure and to use any data in the variable data portion of
the menu structure to appropriately handle the menu items.

Your menu definition function should support the following messages:

 ■ kMenuInitMsg

The Menu Manager sends this message when creating a menu to give your menu definition a chance
to perform any required initialization. If an error occurs during initialization, your menu definition should
return a nonzero error code in the *whichItem parameter. This error is then returned by the function
used to create the menu.

 ■ kMenuDisposeMsg

Sent when a menu is destroyed. The Menu Manager sends this message to give your menu definition a
chance to release or dispose of any related data.

 ■ kMenuFindItemMsg

Sent when the Menu Manager is displaying a menu and needs to know what item is under the mouse.

The whichItem parameter points to a MenuTrackingData structure. On entry, the menu,
virtualMenuTop, and virtualMenuBottom fields of this structure are valid. Your menu definition
should determine which item, if any, contains the point passed to you in the hitPt parameter and fill
in the itemUnderMouse, itemSelected, and itemRect fields. If an item is found, the menu definition
should always fill in the itemUnderMouse and itemRect fields. The menu definition should only fill in
the itemSelected field if the item is available for selection; if it is unavailable (because it is disabled,
or for some other reason), the menu definition should set the itemSelected field to zero.

The index values placed in the itemUnderMouse and itemSelected fields should be less than or equal
to the number of items returned by CountMenuItems (page 1244) on this menu. These values should
also be identical if both are nonzero. The itemUnderMouse field should always be nonzero if the mouse
is actually over an item.

The menu definition should not highlight the found item in response to this message, as the Menu
Manager will send a separate kMenuHiliteItemMsg to request highlighting of the item.

If the menu definition supports scrolling, it should scroll the menu during this message, and update the
virtualMenuTop and virtualMenuBottom fields of the MenuTrackingData to indicate the menu's
new scrolled position.

If the menu definition uses QuickDraw to draw while scrolling, it should draw into the current port.

If the menu definition uses CoreGraphics to draw while scrolling, it should use the CGContextRef passed
in the context field of the MDEFHiliteItemData structure. Menu definitions must use the
ScrollMenuImage (page 1322) function, if available, to scroll the menu contents. (This function is available
in CarbonLib 1.5 and later, and in Mac OS X 10.1 and later.) ScrollMenuImage properly supports scrolling
the alpha channel in the menu's image data. Use of the QuickDraw function ScrollRect to scroll the
menu contents will result in the alpha channel being set to 0xFF (opaque) and the menu will no longer
be translucent.

Callbacks 1351
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

The menu definition should not modify the menu field of the MenuTrackingData structure.

 ■ kMenuHiliteItemMsg

Sent when the Menu Manager is displaying a menu and needs to highlight a newly selected item.

The whichItem parameter points to a MDEFHiliteItemData structure. The menu definition should
unhighlight the item in the previousItem field, if non-zero, and highlight the item in the newItem
field.

If the menu definition is using the Appearance Manager's menu drawing APIs, you should use the
EraseMenuBackground (page 1258) function to erase the old menu contents before unhighlighting a
menu item. This is necessary because the background of a menu is translucent in Aqua, and if the old
highlight is not erased first, it will show through the new unhighlighted menu background.

If the menu definition uses QuickDraw to draw, it should draw into the current port. If it uses CoreGraphics
to draw, it should use the CGContextRef passed in the context field of the MDEFHiliteItemData
structure.

 ■ kMenuDrawItemsMsg

Sent when the Menu Manager is displaying a menu and needs to redraw a portion of the menu. This
message is used by the dynamic menu item support code in the Menu Manager; for example, if items
five and six in a menu are a dynamic group, the Menu Manager will send a kMenuDrawItemsMsgmessage
when the group's modifier key is pressed or released to redraw the appropriate item, but no other items
in the menu.

The whichItem parameter for this message points to an MDEFDrawItemsData structure. The menu
definition should redraw the items starting with firstItem and ending with lastItem, inclusive.

If the menu definition uses QuickDraw to draw, it should draw into the current port. If it uses CoreGraphics
to draw, it should use the CGContextRef passed in the context field of the MDEFHiliteItemData
structure.

 ■ kMenuDrawMsg

Sent when the Menu Manager is displaying a menu and needs to redraw the entire menu.

The whichItem parameter is actually a pointer to a MenuTrackingData structure. On entry, the menu
field of this structure is valid. The menu definition should draw the menu and, if it supports scrolling,
should also fill in the virtualMenuTop and virtualMenuBottom fields of the structure to indicate the
menu's initial unscrolled position; typically, virtualMenuTop would be set to the same value as the
top coordinate of the menu bounds, and virtualMenuBottom would be set to virtualMenuTop plus
the virtual height of the menu.

If the menu definition uses QuickDraw to draw, it should draw into the current port. If it uses CoreGraphics
to draw, it should use the CGContextRef passed in the context field of the MDEFHiliteItemData
structure.

 ■ kMenuSizeMsg

Sent when the Menu Manager needs to determine the size of a menu.

The menu definition should calculate the width and height of the menu and store the sizes into the
menu with SetMenuWidth (page 1347) and SetMenuHeight (page 1332). If the
gestaltMenuMgrSendsMenuBoundsToDefProc bit is set in the Menu Manager's Gestalt value, then
the hitPt parameter sent with this message is the maximum width (hitPt.h) and height (hitPt.v)
of the menu. The menu definition should ensure that the width and height that it places in the menu
do not exceed these values. If the gestalt bit is not set, the menu definition should just use the main
display device’s (GDevice) width and height as constraints on the menu's width and height.

1352 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

 ■ kMenuPopUpMsg

Sent when the Menu Manager is about to display a popup menu. The Menu Manager uses the menu
definition function to support pop-up menus that are not implemented as controls. If your menu definition
function supports pop-up menus, it should respond appropriately to the kMenuPopUpMsg message.

The menu definition should calculate the appropriate menu bounds to contain the menu based on the
requested menu location and selected item. It should write the menu’s bounds into the Rect structure
passed by the menuRect parameter. If the gestaltMenuMgrSendsMenuBoundsToDefProc bit is set
in the Menu Manager's Gestalt value, then the menuRect parameter on entry to this message contains
a constraint rectangle, in global coordinates, outside of which the popup menu should not be positioned.
The menu definition should take these constraint bounds into account as it calculates the menu bounds.
If the gestalt bit is not set, the menu definition should use the bounds of the display device (GDevice)
containing the menu's top left corner as a constraint on the menu's position.

The hitPt parameter is the requested location for the top left corner of the menu. The coordinates of
this parameter are swapped from their normal order; hitPt.h contains the vertical coordinate and
hitPt.v contains the horizontal coordinate.

On entry, the whichItem parameter points at a menu item index which is requested to be the initial
selection when the menu is displayed. After calculating the menu's bounds, the menu definition should
write the menu's virtual top coordinate into the location pointed at by the whichItem parameter. If
displaying the menu at the requested location does not require scrolling, the virtual top will be the same
as the menu bounds top; if the menu must scroll to fit in the requested location, the virtual top may be
different.

 ■ kMenuCalcItemMsg

Sent when the Menu Manager needs to know the bounds of a menu item.

The menu definition should calculate the size of the menu item specified by the whichItem parameter
and store the bounds in the Rect structure specified by the menuRect parameter. Some sample menu
definition code provided by Apple has previously shown an implementation of this message that always
sets the top left corner of the item bounds to (0,0), regardless of the item's actual position in the menu.
For best future compatibility, menu definitions should begin storing an item bounds that gives the item's
actual position in the menu based on the menu's current virtual top. For example, if the virtual menu
top starts at 20, then the menu definition would calculate an item bounds for the first item that starts
at (0,20), an item bounds for the second item that starts at (0,40), and so on. The menu definition should
call GetMenuTrackingData (page 1288)to get the menu's current virtual position, and use zero for the
menu top if GetMenuTrackingData returns an error.

 ■ kMenuThemeSavvyMsg

Sent by the Menu Manager to determine whether the menu definition uses the Appearance Manager
menu-drawing functions to draw its menu. If it does, the menu definition should return
kThemeSavvyMenuResponse in the location pointed to by whichItem. If the menu definition draws
its own custom content without using the Appearance Manager menu-drawing functions, it should
ignore this message.

The Menu Manager defines the data type MenuDefUPP to identify the universal procedure pointer for an
application-defined menu definition function:

typedef UniversalProcPtr MenuDefUPP;

You typically use the NewMenuDefProc function like this:

MenuDefUPP myMenuDefProc;

Callbacks 1353
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

myMenuDefProc = NewMenuDefProc(MyMenu);

Carbon Porting Notes

Prior to Carbon, menu definitions needed to use several low-memory globals to communicate with the Menu
Manager. These globals have all been replaced or made obsolete in Carbon, as follows:

 ■ MenuDisable

MenuDisable is now set automatically by the Menu Manager using the value returned in the
itemUnderMouse field of the MenuTrackingData structure passed to kMenuFindItemMsg.

 ■ TopMenuItem, AtMenuBottom

TopMenuItem and AtMenuBottom are now set automatically by the Menu Manager using the values
returned in the virtualMenuTop and virtualMenuBottom fields of the MenuTrackingData structure
passed to kMenuDrawMsg and kMenuFindItemMsg.

 ■ mbSaveLoc

This undocumented low-memory global was used by older menu definitions to store the bounding rect
of the currently selected item and to avoid drawing glitches while the menu definition was scrolling the
contents of a menu that had submenus. The Menu Manager now automatically sets the selected item
bounds using the value returned in the itemRect field of the MenuTrackingData structure passed to
kMenuFindItemMsg. In order to correctly support scrolling of menus with submenus, a menu definition
should verify, before scrolling the menu contents, that no submenus of the scrolling menu are currently
visible. A menu definition can use GetMenuTrackingData to verify this condition, as follows:

Boolean SafeToScroll(MenuRef menuBeingScrolled)
 {
 MenuTrackingData lastMenuData;
 return GetMenuTrackingData(NULL, &lastMenuData) == noErr
 && lastMenuData.menu == menuBeingScrolled;
 }

If SafeToScroll returns false, the menu definition should not scroll the menu.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
Menus.h

Data Types

HMenuBarHeader
Defines a list of hierarchical menus that have been inserted into a menu bar.

1354 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

struct HMenuBarHeader {
 UInt16 lastHMenu;
 PixMapHandle menuTitleBits;
};
typedef struct HMenuBarHeader HMenuBarHeader;

Fields
lastHMenu

Offset from the start of the header to the last menu in the array of HMenuBar structures.

menuTitleBits
The saved bits behind the highlighted menu title. This value is undefined in menu bar handles returned
by GetNewMBar (page 1290) or GetMenuBar (page 1268).

Discussion
The hierarchical portion of the menu bar follow the nonhierarchical portion in a menu bar handle. The
hierarchical section consists of the HMenuBarHeader structure followed by an array of HMenuBarMenu (page
1355) structures.

You insert a hierarchical menu by specifying -1 for the beforeID parameter in InsertMenu (page 1294).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Menus.h

HMenuBarMenu
Defines a hierarchical menu.

struct HMenuBarMenu {
 MenuRef menu;
 SInt16 reserved;
};
typedef struct HMenuBarMenu HMenuBarMenu;

Fields
menu

The menu.

reserved
Currently unused.

Availability
Available in Mac OS X v10.2 and later.

Declared In
Menus.h

MCEntry
Specifies a menu color information table

Not recommended

Data Types 1355
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

struct MCEntry {
 MenuID mctID;
 short mctItem;
 RGBColor mctRGB1;
 RGBColor mctRGB2;
 RGBColor mctRGB3;
 RGBColor mctRGB4;
 short mctReserved;
};
typedef struct MCEntry MCEntry;
typedef MCEntry * MCEntryPtr;
typedef MCEntry MCTable[1];

Fields
mctID

Defines, along with the mctItem field, whether the entry is a menu bar entry, a menu title entry, or
a menu item entry. The mctID field contains either a menu ID or 0 (for a menu bar).

mctItem
Defines, along with the mctID field, whether the entry is a menu bar entry, a menu title entry, or a
menu item entry. The mctItem field contains either a menu item number or 0 (for a menu bar or
menu title).

mctRGB1
Specifies color information for the entry, as follows. For a menu bar entry, this value is the default
color for menu titles. For a menu title entry, this value is the title color of a specific menu. For a menu
item entry, this value is the mark color for a specific item.

mctRGB2
Specifies color information for the entry, as follows. For a menu bar entry, this value is the default
background color of a displayed menu. For a menu title entry, this value is the default color for the
menu bar. For a menu item entry, this value is the color for the text of a specific item.

mctRGB3
Specifies color information for the entry, as follows. For a menu bar entry, this value is the default
color of items in a displayed menu. For a menu title entry, this value is the default color for items in
a specific menu. For a menu item entry, this value is the color for the modifier of a specific item.

mctRGB4
Specifies color information for the entry, as follows. For a menu bar entry, this value is the default
color of the menu bar. For a menu title entry, this value is the background color of a specific menu.
For a menu item entry, this value is the background color of a specific menu.

mctReserved
Reserved.

Discussion
The menu color information table defines the standard color for the menu bar, menu titles, menu items, and
the background color of a displayed menu. If you do not add any menu color entries to this table, the Menu
Manager draws your menus using the current default colors. Using the menu color information table to
define custom colors for your menus is not recommended with Appearance Manager 1.0 and later.

When the Appearance Manager is available and you are using standard menus, if you do not include a menu
bar entry in your menu color information table, only the menu title color and menu item text color values
from menu color entries are used. If you do include a menu bar entry in your menu color information table,
all menu colors are used, and the menus revert to a standard System 7 appearance.

If you are creating your own custom menu definition function, all entries in the table are used.

1356 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

You can add custom colors to your menus by adding entries to your application’s menu color information
table, using Menu Manager functions or by defining these entries in an 'mctb' resource. Note that the menu
color information table uses a format different from the standard color table format.

The value of the mctID field in the last entry in a menu color information table is mctLastIDIndic, and the
rest of the fields of the last entry are reserved. The Menu Manager automatically creates the last entry in a
menu color information table; your application should not use the value mctLastIDIndic as the menu ID
of a menu if you wish to add a menu color entry for it.

The contents of a menu color table entry structure are interpreted differently, depending upon the values
of the mctID and mctItem fields. Depending upon the value of these fields, the MCEntry structure represents
a menu bar entry, a menu title entry, a menu item entry, or the last entry.

A menu bar entry is defined by a menu color entry structure that contains 0 in both the mctID and mctItem
fields. You can define only one menu bar entry in a menu color information table. If you don’t provide a
menu bar entry for your application’s menu color information table, the Menu Manager uses the standard
menu bar colors (black text on a white background), and it uses the standard colors for the other menu
elements. You can provide a menu bar entry to specify default colors for the menu title, the background of
a displayed menu, the items in a menu, and the menu bar. The color information fields for a menu bar entry
are interpreted as follows:

 ■ mctRGB1 specifies the default color for menu titles. If a menu doesn’t have a menu title entry, the Menu
Manager uses the value in this field as the color of the menu title.

 ■ mctRGB2 specifies the default color for the background of a displayed menu. If a menu doesn’t have a
menu title entry, the Menu Manager uses the value in this field as the color of the menu’s background
when it is displayed.

 ■ mctRGB3 specifies the default color for the items in a displayed menu. If a menu item doesn’t have a
menu item entry or a default color defined in a menu title entry, the Menu Manager uses the value in
this field as the color of the menu item.

 ■ mctRGB4 specifies the default color for the menu bar. If a menu doesn’t have a menu bar entry (and
doesn’t have any menu title entries), the Menu Manager uses the standard colors for the menu bar.

A menu title entry is defined by a menu color entry structure that contains a menu ID in the mctID field
and 0 in the mctItem field. You can define only one menu title entry for each menu. If you don’t provide
a menu title entry for a menu in your application’s menu color information table, the Menu Manager
uses the colors defined by the menu bar entry. If a menu bar entry doesn’t exist, the Menu Manager uses
the standard colors (black on white). You can provide a menu title entry to specify a color for the title
and background of a specific menu and a default color for its items. The color information fields for a
menu title entry are interpreted as follows:

 ■ mctRGB1 specifies the color for the menu title of the specified menu. If a menu doesn’t have a menu
title entry, the Menu Manager uses the default value defined in the menu bar entry.

 ■ mctRGB2 specifies the default color for the menu bar. If a menu color information table doesn’t have a
menu bar entry, the Menu Manager uses the value in this field as the color of the menu bar. If a menu
bar entry already exists, the Menu Manager replaces the value in the mctRGB2 field of the menu title
entry with the value defined in the mctRGB4 field of the menu bar entry.

 ■ mctRGB3 specifies the default color for the items in the menu. If a menu item doesn’t have a menu item
entry or a default color defined in a menu bar entry, the Menu Manager uses the value in this field as
the color of the menu item.

 ■ mctRGB4 specifies the color for the background of the menu.

Data Types 1357
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

A menu item entry is defined by a menu color entry structure that contains a menu ID in the mctID field
and an item number in the mctItem field. You can define only one menu item entry for each menu item.
If you don’t provide a menu item entry for an item in your application’s menu color information table,
the Menu Manager uses the colors defined by the menu title entry (or by the menu bar entry if the menu
containing the item doesn’t have a menu title entry). If neither a menu title entry nor a menu bar entry
exists, the Menu Manager draws the mark, text, and modifier in black. You can provide a menu item
entry to specify a color for the mark, text, and keyboard equivalent of a specific menu item. The color
information fields for a menu item entry are interpreted as follows:

 ■ mctRGB1 specifies the color for the mark of the menu item. If a menu item doesn’t have a menu item
entry, the Menu Manager uses the default value defined in the menu title entry or the menu bar entry.

 ■ mctRGB2 specifies the color for the text of the menu item. If a menu item doesn’t have a menu item
entry, the Menu Manager uses the default value defined in the menu title entry or the menu bar entry.
The Menu Manager also draws a black-and-white icon of a menu item using the same color as defined
by the mctRGB2 field. (Use a ' cicn ' resource to provide a menu item with a color icon.)

 ■ mctRGB3 specifies the color for the modifier of the menu item. If a menu item doesn’t have a menu item
entry, the Menu Manager uses the default value defined in the menu title entry or the menu bar entry.

 ■ mctRGB4 specifies the color for the background of the menu. If the menu color information table doesn’t
have a menu title entry for the menu this item is in, or doesn’t have a menu bar entry, the Menu Manager
uses the value in this field as the background color of the menu. If a menu title entry already exists, the
Menu Manager replaces the value in the mctRGB4 field of the menu item entry with the value defined
in the mctRGB4 field of the menu title entry (or with the mctRGB2 field of the menu bar entry).

You can use the GetMCInfo (page 1266) function to get a copy of your application’s menu color information
table and the SetMCEntries (page 1326) function to set entries of your application’s menu color information
table, or you can provide ' mctb ' resources that define the color entries for your menus.

TheGetMenu (page 1266) ,GetNewMBar (page 1290) , andClearMenuBar (page 1237) functions can also modify
the entries in the menu color information table. The GetMenu function looks for an ' mctb ' resource with
a resource ID equal to the value in the menuID parameter. If it finds one, it adds the entries to the application’s
menu color information table.

The GetNewMBar function builds a new menu color information table when it creates the new menu list. If
you want to save the current menu color information table, call GetMCInfo before calling GetNewMBar.

The ClearMenuBar function reinitializes both the current menu list and the menu color information table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MDEFDrawData
Contains information needed to draw a menu.

1358 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

struct MDEFDrawData {
 MenuTrackingData trackingData;
 void * context;
};
typedef struct MDEFDrawData MDEFDrawData;
typedef MDEFDrawData * MDEFDrawDataPtr;

Fields
trackingData

A data structure containing information about the menu to be drawn. Your menu definition should
fill in the virtualMenuTop and virtualMenuBottom fields of this structure while drawing the
menu.

context
The Core Graphics context that your menu definition should draw into. The Menu Manager flushes
the context after returning from the menu definition.

Discussion
The Menu Manager passes this structure to your custom menu definition in the whichItem parameter of
the kMenuDrawMsg message.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Menus.h

MDEFDrawItemsData
Contains information about which menu items to redraw.

struct MDEFDrawItemsData {
 MenuItemIndex firstItem;
 MenuItemIndex lastItem;
 MenuTrackingData * trackingData;
 void * context;
};
typedef struct MDEFDrawItemsData MDEFDrawItemsData;
typedef MDEFDrawItemsData * MDEFDrawItemsDataPtr;

Fields
firstItem

The first item to draw.

lastItem
The last item to draw.

trackingData
Information about the menu's tracking state. The virtualMenuTop and virtualMenuBottom fields
in this structure will be the most useful in handling the DrawItems message.

context
The Core Graphics drawing context that your menu definition should draw into. The Menu Manager
flushes the context after returning from the menu definition.

Discussion
The Menu Manager passes this structure to your custom menu definition in the whichItem parameter of
the kMenuDrawItemsMsg message.

Data Types 1359
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MDEFFindItemData
Contains information used to determine which item the user has currently selected.

struct MDEFFindItemData {
 MenuTrackingData trackingData;
 void * context;
};
typedef struct MDEFFindItemData MDEFFindItemData;
typedef MDEFFindItemData * MDEFFindItemDataPtr;

Fields
trackingData

A data structure containing information about the menu to be drawn. Your menu definition should
fill in the itemSelected , ItemUnderMouseand itemRect fields of this structure after determining
which item is under the specified point.

context
The Core Graphics context the menu definition should draw into if it needs to scroll the menu during
the kMenuFindItemMsg message. The Menu Manager flushes the context after the menu definition
returns.

Discussion
The Menu Manager passes this structure to your custom menu definition in the whichItem parameter of
the kMenuFindItemsMsg message.

Availability
Available in Mac OS X v10.1 and later.

Declared In
Menus.h

MDEFHiliteItemData
Contains information about which menu items should be highlighted and unhighlighted as the user moves
through the menus. .

1360 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

struct MDEFHiliteItemData {
 MenuItemIndex previousItem;
 MenuItemIndex newItem;
 void * context;
};
typedef struct MDEFHiliteItemData MDEFHiliteItemData;
typedef MDEFHiliteItemData * MDEFHiliteItemDataPtr;
typedef MDEFHiliteItemData HiliteMenuItemData;
typedef MDEFHiliteItemDataPtr HiliteMenuItemDataPtr;

Fields
previousItem

The menu item that was previously selected. This item needs to be redrawn in an unhighlighted state.
This parameter can be zero if no item was previously selected.

newItem
The menu item that is now selected. This item needs to be redrawn in a highlighted state. This
parameter can be zero if no item is currently highlighted.

context
The Core Graphics context the menu definition should draw into. The Menu Manager flushes the
context after the menu definition returns.

Discussion
This structure is used by menu definition functions, which receive a pointer to an MDEFHiliteItemData
structure as the whichItem parameter during the kMenuHiliteItemMsg message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuBarHandle
A handle to a menu bar header.

typedef Handle MenuBarHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuBarHeader
Defines a list of nonhierarchical menus that that have been placed in the menu bar.

Data Types 1361
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

struct MenuBarHeader {
 UInt16 lastMenu;
 SInt16 lastRight;
 SInt16 mbResID;
};
typedef struct MenuBarHeader MenuBarHeader;

Fields
lastMenu

Offset from the start of the header to the last menu in the array of MenuBarMenu (page 1362) structures,
in bytes.

lastRight
The x-coordinate of the right edge of the rightmost menu, in global coordinates. This value is undefined
in menu bar handles returned by GetNewMBar (page 1290) or GetMenuBar (page 1268).

mbResID
The MBDF resource ID. This value is undefined in menu bar handles returned by GetNewMBar (page
1290) or GetMenuBar (page 1268).

Discussion
This structure is contained within a menu bar handle (MenuBarHandle).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Menus.h

MenuBarMenu
Defines a nonhierarchical menu.

struct MenuBarMenu {
 MenuRef menu;
 SInt16 menuLeft;
};
typedef struct MenuBarMenu MenuBarMenu;

Fields
menu
menuLeft

The x-coordinate of the left edge of the menu title, in global coordinates. This value is undefined in
menu bar handles returned by GetNewMBar (page 1290) or GetMenuBar (page 1268).

Availability
Available in Mac OS X v10.2 and later.

Declared In
Menus.h

MenuCommand
Specifies a menu item’s command ID.

1362 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

typedef UInt32 MenuCommand;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuCRsrc
Specifies a set of menu color table entries

Not recommended

struct MenuCRsrc {
 short numEntries;
 MCTable mcEntryRecs;
};
typedef struct MenuCRsrc MenuCRsrc;
typedef MenuCRsrc * MenuCRsrcPtr;

Fields
numEntries
mcEntryRecs

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuDefSpec
Defines the type of menu definition.

struct MenuDefSpec {
 MenuDefType defType
 union {
 MenuDefUPP defProc;
 struct {
 CFStringRef classID;
 EventRef initEvent;
 } view;
 } u;
};
typedef struct MenuDefSpec MenuDefSpec;
typedef MenuDefSpec * MenuDefSpecPtr;

Fields
defType

The type of menu definition. See “Menu Definition Type Constants” (page 1379) for a list of possible
values.

Data Types 1363
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

u.defproc
If the defType field is kMenuDefProcPtr, the menu definition is a older procedure pointer–based
definition. This field then contains a UPP to the menu definition function.

u.view.classID
If the defType field is kMenuDefClassID, the menu definition is HIView–based. This field then
contains the ID of the HIView subclass that defines this menu.

u.view.initEvent
If the defType field is kMenuDefClassID, the menu definition is HIView–based. This field then
contains the initialization event for the HIView subclass if one exists. Otherwise, it is NULL.

Version Notes
HIView-based menu definitions are available in Mac OS X 10.3 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuDefUPP
Defines a universal procedure pointer to a menu definition function.

Not recommended

typedef MenuDefProcPtr MenuDefUPP;

Discussion
For more information, see the description of the MenuDefProcPtr (page 1349) callback.

Version Notes
In Mac OS X 10.3 and later, you should use HIView-based menu definitions instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuHandle
Defines a menu reference.

typedef MenuRef MenuHandle;

Discussion
You should refer to menus using the MenuRef (page 1367) type instead.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

1364 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

MenuID
Defines a menu ID.

typedef SInt16 MenuID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuItemDataRec
Used with theSetMenuItemData (page 1335) andCopyMenuItemData (page 1241) functions to get or change
aspects of a menu item.

struct MenuItemDataRec {
 MenuItemDataFlags whichData;
 StringPtr text;
 UniChar mark;
 UniChar cmdKey;
 UInt32 cmdKeyGlyph;
 UInt32 cmdKeyModifiers;
 Style style;
 Boolean enabled;
 Boolean iconEnabled;
 UInt8 filler1;
 SInt32 iconID;
 UInt32 iconType;
 Handle iconHandle;
 MenuCommand cmdID;
 TextEncoding encoding;
 MenuID submenuID;
 MenuRef submenuHandle;
 SInt32 fontID;
 UInt32 refcon;
 OptionBits attr;
 CFStringRef cfText;
 Collection properties;
 UInt32 indent;
 UInt16 cmdVirtualKey;
};
typedef struct MenuItemDataRec MenuItemDataRec;
typedef MenuItemDataRec * MenuItemDataPtr;

Fields
whichData

The fields to be set or obtained. You pass a bit mask as specified by “Menu Item Data Flags” (page
1390) to indicate which values you want to get or set. The values themselves are set or populated in
the fields that follow.

text
The menu item title, as an Str255 string.

mark
The menu item’s mark.

Data Types 1365
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

cmdKey
The menu item’s command key. This can be either a character code or a virtual key code.

cmdKeyGlyph
The menu item’s command key glyph.

cmdKeyModifiers
The menu item’s command key modifiers.

style
The menu item’s QuickDraw text style.

enabled
The menu item’s enable state.

iconEnabled
The enable state of the menu item icon.

filler1
Reserved.

iconID
The icon resource ID of the menu item.

iconHandle
The icon handle of the menu item.

cmdID
The command ID for the menu item.

encoding
The text encoding of the menu item.

submenuID
The menu ID of the submenu associated with this menu item.

submenuHandle
The MenuRef of the submenu associated with this menu item.

fontID
The font ID for the menu item.

refcon
The reference constant associated with this menu item.

attr
The menu item’s attributes.

cfText
The menu item’s title, as a Core Foundation string.

properties
A collection holding the menu item’s properties.

indent
The menu item’s indent level.

cmdVirtualKey
The menu item’s virtual key.

Discussion
When using this structure withCopyMenuItemData (page 1241) or SetMenuItemData (page 1335), the caller
must first set the whichData field to a combination of MenuItemDataFlags indicating which specific data
should be retrieved or set. Some fields also require initialization before calling CopyMenuItemData (page
1241); see “Menu Item Data Flags” (page 1390) for details.

1366 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuItemID
Defines a menu item.

typedef UInt32 MenuItemID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuItemIndex
Specifies a particular menu item in a menu.

typedef UInt16 MenuItemIndex;

Discussion
The menu item index is one-based, so item 1 is the first menu item, item 2 is the second, and so on. Some
functions allow you to pass an index of zero, which specifies the menu itself.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuRef
Defines a menu.

typedef struct OpaqueMenuRef * MenuRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

MenuTrackingData
Contains information about the menu currently being displayed during menu tracking.

Data Types 1367
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

struct MenuTrackingData {
 MenuRef menu;
 MenuItemIndex itemSelected;
 MenuItemIndex itemUnderMouse;
 Rect itemRect;
 SInt32 virtualMenuTop;
 SInt32 virtualMenuBottom;
};
typedef struct MenuTrackingData MenuTrackingData;
typedef MenuTrackingData * MenuTrackingDataPtr;

Fields
menu

The menu.

itemSelected
The index of the menu item that is currently selected. This field should either match the
itemUnderMouse field, or should be zero if the item under the mouse cannot be selected (for example,
if the item is disabled).

itemUnderMouse
The index of the menu item that is currently under the mouse.

itemRect
The Rect that defines the area of the menu item currently under the mouse. Note that the itemRect
field is not supported in CarbonLib and is always set to be empty. It is, however, supported in Mac
OS X.

virtualMenuTop
The y-coordinate of the actual top of the menu. Because the user can scroll the menu, the menu top
coordinate may be above the top of the visible screen (in which case it has a negative value).

virtualMenuBottom
The y-coordinate of the actual bottom of the menu. Because the user can scroll the menu, the menu
bottom coordinate may be below the bottom of the visible screen

Discussion
You can call GetMenuTrackingData (page 1288) to obtain this structure during menu tracking.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Menus.h

Constants

Contextual Menu Gestalt Selector Constants
Determine which contextual menu features are available.

1368 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

enum {
 gestaltContextualMenuAttr = 'cmnu',
 gestaltContextualMenuUnusedBit = 0,
 gestaltContextualMenuTrapAvailable = 1,
 gestaltContextualMenuHasAttributeAndModifierKeys = 2,
 gestaltContextualMenuHasUnicodeSupport = 3
};

Constants
gestaltContextualMenuAttr

The Gestalt selector passed to the Gestalt function to determine whether contextual menu
functions are available. Produces a value whose bits you should test to determine whether the
contextual menu functions are available.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

gestaltContextualMenuUnusedBit
Available in Mac OS X v10.0 and later.

Declared in Menus.h.

gestaltContextualMenuTrapAvailable
If this bit is set, the contextual menu functions are available to 68K applications. If this bit is not set,
these functions are not available to 68K applications.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

gestaltContextualMenuHasAttributeAndModifierKeys
The contextual menu supports attributes and modifier keys.

Available in Mac OS X v10.2 and later.

Declared in Menus.h.

gestaltContextualMenuHasUnicodeSupport
The contextual menu supports Unicode text.

Available in Mac OS X v10.2 and later.

Declared in Menus.h.

Discussion
Mac OS X and all versions of Mac OS that shipped with CarbonLib support contextual menus, so you need
to check only to see if certain features are available.

Contextual Menu Help Type Constants
Indicates what types of contextual menu help is available.

Constants 1369
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

enum {
 kCMHelpItemNoHelp = 0,
 kCMHelpItemAppleGuide = 1,
 kCMHelpItemOtherHelp = 2,
 kCMHelpItemRemoveHelp = 3
};

Constants
kCMHelpItemNoHelp

The application does not support any help. The Menu Manager will put an appropriate help string
into the menu and disable it.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kCMHelpItemAppleGuide
The application supports Apple Guide help. The Menu Manager will put the name of the main Guide
file into the menu and enable it.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kCMHelpItemOtherHelp
The application supports some other form of help. In this case, the application must also pass a valid
string into the inHelpItemString parameter of ContextualMenuSelect. This string will be the
text of the help item in the menu, and the help item will be enabled.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kCMHelpItemRemoveHelp
The application does not support any help. The Menu Manager will remove the Help item from the
contextual menu.

Available in CarbonLib 1.6 and Mac OS X and later. Note however, that in CarbonLib, this constant is
equivalent to kCMItemNoHelp, which only disables the Help item.

Available in Mac OS X v10.2 and later.

Declared in Menus.h.

Discussion
You can pass these constants in the inHelpType parameter of the function ContextualMenuSelect (page
1239) to specify the kind of help the application supports. Contextual menu help type constants are available
with Appearance Manager 1.0 and later.

Contextual Menu Selection Type Constants
Indicates the type of item the user selected from a contextual menu.

1370 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

enum {
 kCMNothingSelected = 0,
 kCMMenuItemSelected = 1,
 kCMShowHelpSelected = 3
};

Constants
kCMNothingSelected

The user did not choose an item from the contextual menu and the application should do no further
processing of the event.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kCMMenuItemSelected
The user chose one of the application’s items from the menu. The application can examine the
outMenuID and outMenuItem parameters of ContextualMenuSelect to see what the menu
selection was, and it should then handle the selection appropriately.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kCMShowHelpSelected
The user chose the Help item from the menu. The application should open an Apple Help database
to a section appropriate for the selection. If the application supports some other form of help, it should
be presented instead.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Discussion
These constants are returned in the outUserSelectionType parameter of the function
ContextualMenuSelect (page 1239) to specify what the user selected from the contextual menu. Contextual
menu selection type constants are available with Appearance Manager 1.0 and later.

Contextual Menu Item Content Constants
Specify contents of menu items in contextual menus.

enum {
 keyContextualMenuName = 'pnam',
 keyContextualMenuCommandID = 'cmcd',
 keyContextualMenuSubmenu = 'cmsb',
 keyContextualMenuAttributes = 'cmat',
 keyContextualMenuModifiers = 'cmmd'
};

Constants
keyContextualMenuName

The menu item text. In Mac OS X v10.1 and earlier, the data format must be either typeChar or
typeIntlText. In Mac OS X v10.2 and later, you can also specify typeStyledText, typeAEText,
typeUnicodeText, and typeCFStringRef. Note that if you specify typeCFStringRef, the Menu
Manager releases the CFString reference after displaying the menu. If you need to hold onto the
CFString reference, you should retain it before inserting it into the Apple event record (AERecord).

Available in Mac OS X v10.2 and later.

Declared in Menus.h.

Constants 1371
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

keyContextualMenuCommandID
The menu item command ID. The data format for this parameter must be typeLongInteger.

Available in Mac OS X v10.2 and later.

Declared in Menus.h.

keyContextualMenuSubmenu
The submenu of the menu item. You typically use this with the Apple Event Manager function
AEPutDesc to add an entire AEDesc record (which contains the submenu) as the parameter data.

Available in Mac OS X v10.2 and later.

Declared in Menus.h.

keyContextualMenuAttributes
Specifies the menu item attributes. The data format for this parameter must be typeLongInteger.

Available in Mac OS X v10.2 and later.

Declared in Menus.h.

keyContextualMenuModifiers
Specifies the modifer keys for the menu item. The data format for this parameter must be
typeLongInteger. By using this parameter along with the keyContextualMenuAttributes
parameter, you can create dynamic contextual menu items that change according to the state of the
modifier keys.

Declared in Menus.h.

Available in Mac OS X v10.2 and later.

Discussion
You use these keyword constants to specify parameters in an Apple Event record (AERecord) that defines
a contextual menu item. Typically you assign these values in your ExamineContext method of a contextual
menu plugin.

Custom Menu Definition Message Constants
Indicate messages used for non-HIView–based custom menu definitions.

1372 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

enum {
 kMenuDrawMsg = 0,
 kMenuSizeMsg = 2,
 kMenuPopUpMsg = 3,
 kMenuCalcItemMsg = 5,
 kMenuThemeSavvyMsg = 7,
 kMenuInitMsg = 8,
 kMenuDisposeMsg = 9,
 kMenuFindItemMsg = 10,
 kMenuHiliteItemMsg = 11,
 kMenuDrawItemsMsg = 12,
 mDrawMsg = kMenuDrawMsg,
 mSizeMsg = kMenuSizeMsg,
 mPopUpMsg = kMenuPopUpMsg,
 mCalcItemMsg = kMenuCalcItemMsg
};

Constants
kMenuDrawMsg

Draw the menu in the specified rectangle.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuSizeMsg
Calculate the dimensions of the menu rectangle and store them in the menu structure.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuPopUpMsg
Calculate the dimensions of the pop-up menu.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuCalcItemMsg
Calculate the dimensions of the specified menu item.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuThemeSavvyMsg
Identify whether your menu definition function is theme-compliant. If so, your menu definition function
should respond by passing back kThemeSavvyMenuResponse in the whichItem parameter. The
Menu Manager then draws the menu background as appropriate for the current theme.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuInitMsg
Perform any initializations required for the menu. Return an error code in *whichItem to indicate
success or failure.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Constants 1373
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuDisposeMsg
Dispose of the menu.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuFindItemMsg
Determine the item underneath the mouse.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuHiliteItemMsg
Highlight the specified menu item.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuDrawItemsMsg
Draw the specified menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

mDrawMsg
Same as kMenuDrawMsg. Obsolete.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

mSizeMsg
Same as kMenuSizeMsg. Obsolete.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

mPopUpMsg
Same as kMenuPopUpMsg. Obsolete.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

mCalcItemMsg
Same as kMenuCalcItemMsg. Obsolete.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Discussion
For applications running on Mac OS X v10.3 and later, Apple recommends creating custom menu definitions
using HIView subclasses rather than MDEF messages. See Introducing HIView for more information.

The Menu Manager passes a value defined by one of these constants in the message parameter of your
menu definition function specifying what action your function must perform. Other messages are reserved
for internal use by Apple Computer, Inc. For more information on how to respond to the various messages,
see MenuDefProcPtr (page 1349).

Obsolete Menu Definition Messages
Older MDEF messages.

1374 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

enum {
 mChooseMsg = 1,
 mDrawItemMsg = 4,
 kMenuChooseMsg = mChooseMsg,
 kMenuDrawItemMsg = mDrawItemMsg
};

Constants
mChooseMsg

Determine whether the specified mouse location is in an enabled menu item, and highlight or
unhighlight the menu item appropriately. Carbon MDEFs must replace mChooseMsg with the new
messages kMenuFindItemMsg and kMenuHiliteItemMsg.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

mDrawItemMsg
Draw the specified menu item in the specified rectangle. mDrawItemMsg was used by the popup
menu control in versions of the Mac OS prior to Mac OS 8.5, but is no longer used.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuChooseMsg
Same as mChooseMsg.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuDrawItemMsg
Same as mDrawItemMsg.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Hierarchical Font Menu Option Constant
Indicates that the font menu should be hierarchical.

enum {
 kHierarchicalFontMenuOption = 0x00000001
};

Constants
kHierarchicalFontMenuOption

The parent menu displays the font families, with font variations (plain, bold, and so on) displayed in
submenus.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Discussion
Use this option constant when calling the CreateStandardFontMenu (page 1247) function.

Menu Attribute Constants
Specify menu attributes.

Constants 1375
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

typedef UInt32 MenuAttributes;
enum {
 kMenuAttrExcludesMarkColumn = (1 << 0),
 kMenuAttrAutoDisable = (1 << 2),
 kMenuAttrUsePencilGlyph = (1 << 3),
 kMenuAttrHidden = (1 << 4),
 kMenuAttrCondenseSeparators = (1 << 5),
 kMenuAttrDoNotCacheImage = (1 << 6),
 kMenuAttrDoNotUseUserCommandKeys = (1 << 7)
};

Constants
kMenuAttrExcludesMarkColumn

No column space is allocated for the mark character when this menu is drawn.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuAttrAutoDisable
The menu title is automatically disabled when all of its menu items are disabled.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuAttrUsePencilGlyph
Use the pencil glyph from the Keyboard font (kMenuPencilGlyph) to draw the control modifier keys
when drawing keyboard equivalents. Typically used only for Japanese input method menus.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuAttrHidden
Do not draw the menu title, even when the menu is inserted in the menu bar. This attribute is useful
for specifying keyboard equivalent commands that don’t correspond with visible menu items. That
is, you can add command key equivalents to to menu items and keep the menu itself from appearing
in the menu.

Declared in Menus.h.

Available in Mac OS X v10.2 and later.

kMenuAttrCondenseSeparators
Hides extra separators to avoid blank spaces in a menu. That is, if separators exists at the beginning
or end of a menu, or if multiple contiguous separators exist, the Menu Manager marks the extra
separator items as hidden. The Menu Manager checks for extra separators whenever it recalculates
the menu size.

Declared in Menus.h.

Available in Mac OS X v10.3 and later.

kMenuAttrDoNotCacheImage
Disables automatic caching of the menu image. Normally, the Menu Manager caches images of all
HIView–based menus. (All standard menus are drawn using HIViews in Mac OS X v10.3 and later.) If
you specify this attribute, the Menu Manager draws the menu each time it is displayed.

Declared in Menus.h.

Available in Mac OS X v10.3 and later.

1376 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuAttrDoNotUseUserCommandKeys
Disables substitution of command key equivalents from the NSUserKeysEquivalents dictionary.
By default, the Menu Manager checks for matches in the dictionary for every menu item. Note that
this attribute is effective only if you set it when you create the menu; After the Menu Manager searches
the dictionary and sets the user command keys (which occurs in the CalcMenuSize (page 1234),
GetMenuItemCommandKey (page 1276),GetItemCmd (page 1262) and before command key matching),
you cannot retrieve the original command keys. Similarly, clearing this attribute does not restore the
original command keys.

Declared in Menus.h.

Available in Mac OS X v10.3 and later.

Discussion
Menu attributes control behavior of the entire menu. They are used with the ChangeMenuAttributes (page
1235) and GetMenuAttributes (page 1268).

Menu Item Attribute Constants
Specify attributes for menu items.

typedef UInt32 MenuItemAttributes;
enum {
 kMenuItemAttrDisabled = (1 << 0),
 kMenuItemAttrIconDisabled = (1 << 1),
 kMenuItemAttrSubmenuParentChoosable = (1 << 2),
 kMenuItemAttrDynamic = (1 << 3),
 kMenuItemAttrNotPreviousAlternate = (1 << 4),
 kMenuItemAttrHidden = (1 << 5),
 kMenuItemAttrSeparator = (1 << 6),
 kMenuItemAttrSectionHeader = (1 << 7),
 kMenuItemAttrIgnoreMeta = (1 << 8),
 kMenuItemAttrAutoRepeat = (1 << 9),
 kMenuItemAttrUseVirtualKey = (1 << 10),
 kMenuItemAttrCustomDraw = (1 << 11),
 kMenuItemAttrIncludeInCmdKeyMatching = (1 << 12),
 kMenuItemAttrAutoDisable = (1 << 13),
 kMenuItemAttrUpdateSingleItem = (1 << 14)
};

Constants
kMenuItemAttrDisabled

This menu item is disabled.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemAttrIconDisabled
This menu item’s icon is disabled.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemAttrSubmenuParentChoosable
The user can select the parent item of a submenu.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Constants 1377
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuItemAttrDynamic
This menu item changes dynamically based on the state of the modifier keys. For example, holding
down the command key might change the menu item from “Select widget” to “Select all widgets.”

When a menu item has alternate dynamic states, you should group them together sequentially in the
menu and assign them the same command key. A collection of menu item alternates is called a
dynamic group.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemAttrNotPreviousAlternate
This item is not part of the same dynamic group as the previous item. The Menu Manager determines
which menu items belong to a dynamic group by examining the command keys of each item; if a
menu item has the same command key as the previous item, the Menu Manager considers it to be
part of the same dynamic group.

However, in some cases you may have sequential items with the same command key (or no command
key at all) that should not be considered part of the same dynamic group. To distinguish the separation,
you should set this flag for the first menu item in the new group.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemAttrHidden
The menu item is not drawn when displaying the menu. The item is also not included in command-key
matching unless the kMenuItemAttrDynamic or kMenuItemIncludeInCmdKeyMatching attribute
is set.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemAttrSeparator
The menu item is a separator; any text in the item is ignored.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemAttrSectionHeader
The menu item is a menu section header; this item is disabled and not selectable.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemAttrIgnoreMeta
Ignore the dash (-) metacharacter in this menu item. Dashes at the beginning of a menu item title
traditionally signify that the menu item is a separator. However, in some cases you might want to
display the dash in the title (for example, if you wanted the menu item to read “-40 degrees F.”)

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemAttrAutoRepeat
The IsMenuKeyEvent (page 1305) event function recognizes this menu item when it receives an
autorepeat keyboard event.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

1378 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuItemAttrUseVirtualKey
When MenuEvent (page 1309) and IsMenuKeyEvent (page 1305) compare this menu item’s keyboard
equivalent against a keyboard event, they use the item’s virtual keycode equivalent rather than its
character code equivalent.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemAttrCustomDraw
This is a custom menu item. Setting this attribute causes custom menu item drawing Carbon events
to be sent to your application. Available in CarbonLib 1.4 and Mac OS X v10.1 and later.

Available in Mac OS X v10.1 and later.

Declared in Menus.h.

kMenuItemAttrIncludeInCmdKeyMatching
If this attribute is set, functions such as MenuKey (page 1311), MenuEvent (page 1309) and
IsMenuKeyEvent (page 1305) examine this menu item during command key matching. Typically,
visible items are examined and hidden items (unless they have the kMenuItemAttrDynamic attribute
set) are ignored during command key matching. However, by setting this attribute, you can force
hidden items to be included in the matching. Available in CarbonLib 1.6 and Mac OS X v10.2 and
later.

Available in Mac OS X v10.2 and later.

Declared in Menus.h.

kMenuItemAttrAutoDisable
Disables the menu item if it does not respond to the kEventCommandUpdateStatus event . That is,
if no kEventCommandUpdateStatus handler is installed on this item, or if all the handlers installed
for the update event return eventNotHandledErr, this item is automatically disabled. This attribute
is useful if your application uses the kEventCommandUpdateStatus event to enable menu items;
for example you no longer have to install an update status handler on the application target to disable
menu items when there are no document windows open.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

kMenuItemAttrUpdateSingleItem
Update only the menu item that matches when searching available command keys. Normally when
the Menu Manager does command key matching, it sends a kEventMenuEnableItems event to the
menu containing the matching item and then sends a kEventCommandUpdateStatus to each item
in the menu. Doing so can be inefficient, since in most cases only the item that matches needs to be
updated. By setting this attribute, only the matching item receives the update event and
kEventMenuEnableItems is not sent to the menu. If your application enables menu items solely
through kEventCommandUpdateStatus event handlers, you should set this attribute for your menu
items.

Declared in Menus.h.

Available in Mac OS X v10.3 and later.

Discussion
Menu item attributes control behavior of individual menu items. They are used with the
GetMenuItemAttributes (page 1275) and ChangeMenuItemAttributes (page 1235) APIs.

Menu Definition Type Constants
Indicate the type of menu definition being used.

Constants 1379
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

enum {
 kMenuDefProcPtr = 0,
 kMenuDefClassID = 1
};
typedef UInt32 MenuDefType;

Constants
kMenuDefProcPtr

A custom menu definition using the older MDEF messaging model.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuDefClassID
A custom menu definition using an HIView subclass.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

Menu Definition Feature Constants
Indicate menu definition features.

enum {
 kThemeSavvyMenuResponse = 0x7473
};

Constants
kThemeSavvyMenuResponse

Indicates that the menu is Appearance theme–savvy.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Discussion
The Menu Manager may pass the kMenuThemeSavvyMsg constant in the message parameter of your menu
definition function to determine if your custom menu is theme-savvy (that is, whether it draws using
Appearance Manager functions). In response, your menu definition function may respond with this flag in
the whichItem parameter.

Menu Definition IDs
Specify options used in menu item functions.

1380 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

enum {
 textMenuProc = 0,
 hMenuCmd = 27,
 hierMenu = -1,
 kInsertHierarchicalMenu = -1,
};

Constants
textMenuProc

The menu definition ID for menus that are not Appearance-compliant. When mapping is enabled,
this constant is mapped to kMenuStdMenuProc, its Appearance-compliant equivalent. Not normally
used.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

hMenuCmd
Deprecated. Use SetMenuItemHierarchicalMenu (page 1337) or
SetMenuItemHierarchicalID (page 1336) to specify a hierarchical menu instead.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

hierMenu
Deprecated. Use kInsertHierarchicalMenu instead.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kInsertHierarchicalMenu
Used with InsertMenu (page 1294) to insert a submenu or pop-up menu into the submenu portion
of the current menu list.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kHIMenuAppendItem
Pass to InsertMenuItem (page 1295), InsertMenuItemText (page 1296), or
InsertMenuItemTextWithCFString (page 1296) to indicate that the new menu item should be
added to the end of the menu. Note that you can simply call AppendMenu (page 1229),
AppendMenuItemText (page 1231), or AppendMenuItemTextWithCFString (page 1231) instead.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

Discussion
A menu definition ID is supplied to the menu resource or a menu-creation function such as NewMenu to
specify which menu definition function to use in creating the menu. The menu definition ID contains the
resource ID of the menu definition function.

Menu Event Option Constants
Specify options when attempting to match a keyboard event to a menu item.

Constants 1381
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

typedef UInt32 MenuEventOptions;
enum {
 kMenuEventIncludeDisabledItems = 0x0001,
 kMenuEventQueryOnly = 0x0002,
 kMenuEventDontCheckSubmenus = 0x0004
};

Constants
kMenuEventIncludeDisabledItems

Disabled items are examined for a match.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuEventQueryOnly
Don’t highlight the menu title if a match is found.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuEventDontCheckSubmenus
Don’t search the submenus of the starting menu when looking for a match.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Discussion
Menu event options control how the menus are searched for an item matching a particular keyboard event.
They are used with the IsMenuKeyEvent (page 1305) API.

Menu Glyph Constants
Specify menu glyphs.

1382 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

enum {
 kMenuNullGlyph = 0x00,
 kMenuTabRightGlyph = 0x02,
 kMenuTabLeftGlyph = 0x03,
 kMenuEnterGlyph = 0x04,
 kMenuShiftGlyph = 0x05,
 kMenuControlGlyph = 0x06,
 kMenuOptionGlyph = 0x07,
 kMenuSpaceGlyph = 0x09,
 kMenuDeleteRightGlyph = 0x0A,
 kMenuReturnGlyph = 0x0B,
 kMenuReturnR2LGlyph = 0x0C,
 kMenuNonmarkingReturnGlyph = 0x0D,
 kMenuPencilGlyph = 0x0F,
 kMenuDownwardArrowDashedGlyph = 0x10,
 kMenuCommandGlyph = 0x11,
 kMenuCheckmarkGlyph = 0x12,
 kMenuDiamondGlyph = 0x13,
 kMenuAppleLogoFilledGlyph = 0x14,
 kMenuParagraphKoreanGlyph = 0x15,
 kMenuDeleteLeftGlyph = 0x17,
 kMenuLeftArrowDashedGlyph = 0x18,
 kMenuUpArrowDashedGlyph = 0x19,
 kMenuRightArrowDashedGlyph = 0x1A,
 kMenuEscapeGlyph = 0x1B,
 kMenuClearGlyph = 0x1C,
 kMenuLeftDoubleQuotesJapaneseGlyph = 0x1D,
 kMenuRightDoubleQuotesJapaneseGlyph = 0x1E,
 kMenuTrademarkJapaneseGlyph = 0x1F,
 kMenuBlankGlyph = 0x61,
 kMenuPageUpGlyph = 0x62,
 kMenuCapsLockGlyph = 0x63,
 kMenuLeftArrowGlyph = 0x64,
 kMenuRightArrowGlyph = 0x65,
 kMenuNorthwestArrowGlyph = 0x66,
 kMenuHelpGlyph = 0x67,
 kMenuUpArrowGlyph = 0x68,
 kMenuSoutheastArrowGlyph = 0x69,
 kMenuDownArrowGlyph = 0x6A,
 kMenuPageDownGlyph = 0x6B,
 kMenuAppleLogoOutlineGlyph = 0x6C,
 kMenuContextualMenuGlyph = 0x6D,
 kMenuPowerGlyph = 0x6E,
 kMenuF1Glyph = 0x6F,
 kMenuF2Glyph = 0x70,
 kMenuF3Glyph = 0x71,
 kMenuF4Glyph = 0x72,
 kMenuF5Glyph = 0x73,
 kMenuF6Glyph = 0x74,
 kMenuF7Glyph = 0x75,
 kMenuF8Glyph = 0x76,
 kMenuF9Glyph = 0x77,
 kMenuF10Glyph = 0x78,
 kMenuF11Glyph = 0x79,
 kMenuF12Glyph = 0x7A,
 kMenuF13Glyph = 0x87,
 kMenuF14Glyph = 0x88,
 kMenuF15Glyph = 0x89,

Constants 1383
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

 kMenuControlISOGlyph = 0x8A,
 kMenuEjectGlyph = 0x8C
};

Constants
kMenuNullGlyph

The null character. Note that this glyph has no visible representation (that is, nothing appears in the
menu).

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuTabRightGlyph
The Tab-to-the-right key. Used in left to right script systems.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuTabLeftGlyph
The Tab-to-the-left key. Used in right to left script systems.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuEnterGlyph
The Enter key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuShiftGlyph
The Shift key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuControlGlyph
The Control key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuOptionGlyph
The Option key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuSpaceGlyph
The Space bar. Note that this glyph has no visible representation (that is, nothing appears in the
menu).

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuDeleteRightGlyph
The Delete-to-the-right key. Used in right-to-left script systems.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

1384 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuReturnGlyph
The Return key for left-to-right script systems.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuReturnR2LGlyph
The Return key for right-to-left script systems.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuNonmarkingReturnGlyph
The nonmarking Return key. Note that this glyph has no visible representation (that is, nothing appears
in the menu).

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuPencilGlyph
The Pencil key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuDownwardArrowDashedGlyph
The downward dashed arrow key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuCommandGlyph
The Command key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuCheckmarkGlyph
The Check mark key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuDiamondGlyph
The diamond mark.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuAppleLogoFilledGlyph
The filled Apple logo.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuParagraphKoreanGlyph
Unassigned. (Paragraph glyph in Korean)

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Constants 1385
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuDeleteLeftGlyph
The Delete-to-the-left key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuLeftArrowDashedGlyph
The dashed left arrow key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuUpArrowDashedGlyph
The dashed up arrow key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuRightArrowDashedGlyph
The dashed right arrow key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuEscapeGlyph
The Escape key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuClearGlyph
The Clear key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuLeftDoubleQuotesJapaneseGlyph
Unassigned. (Left double quotation marks in Japanese)

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuRightDoubleQuotesJapaneseGlyph
Unassigned (Right double quotation marks in Japanese)

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuTrademarkJapaneseGlyph
Unassigned. (Trademark in Japanese)

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuBlankGlyph
The blank key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

1386 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuPageUpGlyph
The Page Up key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuCapsLockGlyph
The Caps Lock key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuLeftArrowGlyph
The left arrow key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuRightArrowGlyph
The right arrow key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuNorthwestArrowGlyph
The northwest arrow key

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuHelpGlyph
The Help key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuUpArrowGlyph
The up arrow key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuSoutheastArrowGlyph
The southeast arrow key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuDownArrowGlyph
The down arrow key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuPageDownGlyph
The Page Down key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Constants 1387
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuAppleLogoOutlineGlyph
The outlined Apple logo.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuContextualMenuGlyph
The contextual menu key

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuPowerGlyph
The power key (that is, the startup key).

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF1Glyph
The F1 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF2Glyph
The F2 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF3Glyph
The F3 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF4Glyph
The F4 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF5Glyph
The F5 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF6Glyph
The F6 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF7Glyph
The F7 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

1388 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuF8Glyph
The F8 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF9Glyph
The F9 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF10Glyph
The F10 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF11Glyph
The F11 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF12Glyph
The F12 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF13Glyph
The F13 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF14Glyph
The F14 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuF15Glyph
The F15 key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuControlISOGlyph
The ISO standard control key.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuEjectGlyph
The Eject key (available in Mac OS X v10.2 and later).

Available in Mac OS X v10.2 and later.

Declared in Menus.h.

Discussion
Use these constants with GetMenuItemKeyGlyph (page 1280) and SetMenuItemKeyGlyph (page 1339).

Constants 1389
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Menu Item Data Flags
Indicate which fields of a MenuItemDataRec structure are to be copied or set.

enum {
 kMenuItemDataText = (1 << 0),
 kMenuItemDataMark = (1 << 1),
 kMenuItemDataCmdKey = (1 << 2),
 kMenuItemDataCmdKeyGlyph = (1 << 3),
 kMenuItemDataCmdKeyModifiers = (1 << 4),
 kMenuItemDataStyle = (1 << 5),
 kMenuItemDataEnabled = (1 << 6),
 kMenuItemDataIconEnabled = (1 << 7),
 kMenuItemDataIconID = (1 << 8),
 kMenuItemDataIconHandle = (1 << 9),
 kMenuItemDataCommandID = (1 << 10),
 kMenuItemDataTextEncoding = (1 << 11),
 kMenuItemDataSubmenuID = (1 << 12),
 kMenuItemDataSubmenuHandle = (1 << 13),
 kMenuItemDataFontID = (1 << 14),
 kMenuItemDataRefcon = (1 << 15),
 kMenuItemDataAttributes = (1 << 16),
 kMenuItemDataCFString = (1 << 17),
 kMenuItemDataProperties = (1 << 18),
 kMenuItemDataIndent = (1 << 19),
 kMenuItemDataCmdVirtualKey = (1 << 20),
 kMenuItemDataAllDataVersionOne = 0x000FFFFF,
 kMenuItemDataAllDataVersionTwo = kMenuItemDataAllDataVersionOne
| kMenuItemDataCmdVirtualKey
};
enum {
 kMenuItemDataAllData = kMenuItemDataAllDataVersionTwo
};
typedef UInt64 MenuItemDataFlags;

Constants
kMenuItemDataText

Set or return the Str255 text of a menu using the MenuItemDataRec.text field. If getting the text,
the text field must be initialized with a pointer to a Str255 variable before calling CopyMenuItemData.
If both kMenuItemDataText and kMenuItemCFString are set on entry to CopyMenuItemData,
the API will determine whether the menu text was most recently set using a Str255 or CFString, and
return only that text format; the flags value for the other format will be cleared. Valid for both menu
items and the menu title (if item number is 0).

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataMark
Set or return the mark character of a menu item using the MenuItemDataRec.mark field. Valid only
for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

1390 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuItemDataCmdKey
Set or return the command key of a menu using the MenuItemDataRec.cmdKey field. Valid only for
menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataCmdKeyGlyph
Set or return the command key glyph of a menu using the MenuItemDataRec.cmdKeyGlyph field.
Valid only for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataCmdKeyModifiers
Set or return the command key modifiers of a menu using the MenuItemDataRec.cmdKeyModifiers
field. Valid only for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataStyle
Set or return the QuickDraw text style of a menu item using the MenuItemDataRec.style field.
Valid only for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataEnabled
Set or return the enable state of a menu using the MenuItemDataRec.enabled field. Valid for both
menu items and the menu itself (if the item number is zero).

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataIconEnabled
Set or return the enable state of the menu item icon using the MenuItemDataRec.iconEnabled
field. Valid only for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataIconID
Set or return the icon resource ID of the menu item icon using the MenuItemDataRec.iconID field.
Valid only for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Constants 1391
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuItemDataIconHandle
Set or return the icon handle of a menu item using the MenuItemDataRec.iconType and
MenuItemDataRec.iconHandle field. You must initialize both fields if you are setting the handle;
both fields are returned when obtaining the handle.

The iconType field can contain one of the following constants: kMenuIconType,
kMenuShrinkIconType, kMenuSmallIconType, kMenuColorIcontype, kMenuIconSuiteType,
or kMenuIconRefType. The icon handle may be a handle to an 'ICON' resource, a 'SICN' resource,
a 'cicn' resource, an icon suite, or an icon reference. Valid only for menu items.

In Mac OS X v10.0 and later, the iconType field can also contain kMenuCGImageType, with the icon
handle being of type CGImageRef.

In Mac OS X v10.1 and later, the iconType field can also contain kMenuSystemIconSelectorType
or kMenuIconResource, which have icon handles of type OSType and CFStringRef respectively.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataCommandID
Set or return the command ID of a menu using the MenuItemDataRec.cmdID field. Valid only for
menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataTextEncoding
Set or return the text encoding of a menu item using the MenuItemDataRec.encoding field. Valid
only for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataSubmenuID
Set or return the menu ID of the submenu associated with this menu item using the
MenuItemDataRec.submenuID field. Valid only for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataSubmenuHandle
Set or return the menu reference (MenuRef) of the submenu associated with this menu using the
MenuItemDataRec.submenuHandle field. Valid only for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataFontID
Set or return the font ID associated with this menu item using the MenuItemDataRec.fomtID field.
Valid only for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataRefcon
Set or return the reference constant associated with this menu item using the
MenuItemDataRec.refcon field. If you specified a menu item index of 0, you can set or obtain the
menu reference constant.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

1392 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuItemDataAttributes
Set or return the attribute bits associated with this menu item using the MenuItemDataRec.attr
field. If you specified a menu item index of 0, you can set or obtain a MenuAttributes bit field, not
a MenuItemAttributes bit field.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataCFString
Set or return the title of the menu item (as a Core Foundation string) using the
MenuItemDataRec.cFText field. If you specified a menu item index of 0, you can set or obtain the
menu title.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataProperties
Set or return the properties of a menu using the MenuItemDataRec.properties field.

If setting properties, the properties field should contain a collection with the new properties; note
that this will overwrite any existing properties with the same collection creator and tag.

If getting properties, you should set the properties field to either a valid collection or NULL. A valid
collection is overwritten by the new properties. If you pass NULL, the CopyMenuItemData (page 1241)
function allocates a new collection and returns it in the properties field.

You can set this flag for both menu items and the menu itself (if the item number is zero).

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataIndent
Set or return the indent level of a menu item using the MenuItemDataRec.indent field. Valid only
for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataCmdVirtualKey
Set or return the virtual key code for this menu item using the MenuItemDataRec.cmdVirtualKey
field. Valid only for menu items.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataAllDataVersionOne
Sets all flags, except for kMenuItemDataCmdVirtualKey.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuItemDataAllDataVersionTwo
Sets all flags, including kMenuItemDataCmdVirtualKey.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Constants 1393
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Discussion
A MenuItemDataFlags value indicates which fields of a “MenuItemDataRec” (page 1365) structure should be
used by theCopyMenuItemData (page 1241) orSetMenuItemData (page 1335) functions. All menu item data
flags may be used when getting or setting the contents of a menu item; some may also be used when getting
or setting information about the menu itself, if the item index given to CopyMenuItemData (page 1241) or
SetMenuItemData (page 1335) is 0.

Menu Item Icon Type Constants
Specify types of icons to attach to menu items.

enum {
 kMenuNoIcon = 0,
 kMenuIconType = 1,
 kMenuShrinkIconType = 2,
 kMenuSmallIconType = 3,
 kMenuColorIconType = 4,
 kMenuIconSuiteType = 5,
 kMenuIconRefType = 6,
 kMenuCGImageRefType = 7,
 kMenuSystemIconSelectorType = 8,
 kMenuIconResourceType = 9
};

Constants
kMenuNoIcon

No icon.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuIconType
Identifies an icon of type 'ICON'.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuShrinkIconType
Identifies a 32-by-32-pixel icon of type 'ICON', shrunk (at display time) to 16-by-16.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuSmallIconType
Identifies an icon of type 'SICN'.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuColorIconType
Identifies an icon of type 'cicn'.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

1394 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuIconSuiteType
Identifies an icon suite.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuIconRefType
Identifies an icon of type IconRef. This value is supported under Mac OS 8.5 and later.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuCGImageRefType
Identifies an icon of type CGImageRef.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuSystemIconSelectorType
Identifies an OSType value that corresponds to an icon (type IconRef)registered with Icon Services
under kSystemIconsCreator.

Available in Mac OS X v10.1 and later.

Declared in Menus.h.

kMenuIconResourceType
Identifies a CFString that names an icon resource in the main bundle of the application.

Available in Mac OS X v10.1 and later.

Declared in Menus.h.

Discussion
These constants specify the type of an icon attached to a menu item. They are passed in
SetMenuItemIconHandle (page 1338) and obtained by GetMenuItemIconHandle (page 1279). Menu item
icon type constants are available with Appearance Manager 1.0 and later.

Menu Item Property Attribute Constant
Define attributes to associate with menu item properties.

enum {
 kMenuPropertyPersistent = 0x00000001
};

Constants
kMenuPropertyPersistent

If this bit is set, the menu item property is saved when the menu is flattened.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Menu Tracking Mode Constants
Indicates how the menu is being tracked.

Constants 1395
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

typedef UInt32 MenuTrackingMode;
enum {
 kMenuTrackingModeMouse = 1,
 kMenuTrackingModeKeyboard = 2
};

Constants
kMenuTrackingModeMouse

Menus are being tracked using the mouse.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuTrackingModeKeyboard
Menus are being tracked using the keyboard.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Discussion
A menu tracking mode constant is part of the kEventMenuBeginTracking and
kEventMenuChangeTrackingMode Carbon events. It indicates whether a menu is being tracked by mouse
movement or by directional keyboard input.

Modifier Key Mask Constants
Specify modifier keys used with menu item selections.

enum {
 kMenuNoModifiers = 0,
 kMenuShiftModifier = (1 << 0),
 kMenuOptionModifier = (1 << 1),
 kMenuControlModifier = (1 << 2),
 kMenuNoCommandModifier = (1 << 3)
};

Constants
kMenuNoModifiers

If no bit is set, only the Command key is used in the keyboard equivalent.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuShiftModifier
If this bit (bit 0) is set, the Shift key is used in the keyboard equivalent.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuOptionModifier
If this bit (bit 1) is set, the Option key is used in the keyboard equivalent.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

1396 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kMenuControlModifier
If this bit (bit 2) is set, the Control key is used in the keyboard equivalent.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

kMenuNoCommandModifier
If this bit (bit 3) is set, the Command key is not used in the keyboard equivalent.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Discussion
You can use one or more of these mask constants to determine which modifier key(s) must be pressed along
with a character key to create a keyboard equivalent for selecting a menu item. You set and obtain these
constants by calling SetMenuItemModifiers (page 1340) and GetMenuItemModifiers (page 1281),
respectively.

No Mark Marking Character Constant
Indicates that a menu item contains no marking characters.

enum {
 noMark = 0
};

Constants
noMark

No marking character to be associated with a menu or submenu item.

Available in Mac OS X v10.0 and later.

Declared in Menus.h.

Discussion
You can pass this constant, as well as those character marking constants defined in the Font Manager, in the
markChar parameter of the function SetItemMark (page 1324) and the marking character field of the menu
resource (of type ‘ MENU’) and return these constants in the markChar parameter of the function
GetItemMark (page 1263) to specify the mark of a specific menu item or the menu ID of the submenu associated
with the menu item.

Menu Dismissal Constants
Specify reasons why menu tracking ended.

Constants 1397
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

enum {
kHIMenuDismissedBySelection = 1,
kHIMenuDismissedByUserCancel = 2,
kHIMenuDismissedByMouseDown = 3,
kHIMenuDismissedByMouseUp = 4,
kHIMenuDismissedByKeyEvent = 5,
kHIMenuDismissedByAppSwitch = 6,
kHIMenuDismissedByTimeout = 7,
kHIMenuDismissedByCancelMenuTracking = 8,
kHIMenuDismissedByActivationChange = 9,
kHIMenuDismissedByFocusChange = 10
};

Constants
kHIMenuDismissedBySelection

The user selected a menu item.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

kHIMenuDismissedByUserCancel
The user cancelled menu tracking.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

kHIMenuDismissedByMouseDown
The user pressed the mouse someplace that did not result in a menu item selection.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

kHIMenuDismissedByMouseUp
The user released the mouse someplace that did not result in a menu item selection.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

kHIMenuDismissedByKeyEvent
A keyboard event occurred.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

kHIMenuDismissedByAppSwitch
The application with the menu is no longer frontmost.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

kHIMenuDismissedByTimeout
The menu tracking mode timed out.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

kHIMenuDismissedByCancelMenuTracking
The application called CancelMenuTracking.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

1398 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

kHIMenuDismissedByActivationChange
The active window changed.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

kHIMenuDismissedByFocusChange
The user focus window changed, or the keyboard focus was removed from the current process.

Available in Mac OS X v10.3 and later.

Declared in Menus.h.

Discussion
The Carbon Event Manager passes these constants in the kEventMenuEndTrackingEvent to indicate why
menu tracking ended.

Standard Menu Definition Constants
Specify the menu definitions for standard menus and menu bars.

enum {
 kMenuStdMenuProc = 63,
 kMenuStdMenuBarProc = 63
};

Constants
kMenuStdMenuProc

The menu definition ID for Appearance-compliant menus.

Available with Appearance Manager 1.0 and later.

Declared in Menus.h.

kMenuStdMenuBarProc
The menu bar definition ID for Appearance-compliant menu bars.

Available with Appearance Manager 1.0 and later.

Declared in Menus.h.

Result Codes

This table lists result codes defined for the Menu Manager.

DescriptionValueResult Code

You specified an Apple-reserved creator type in a menu property
function.

-5603menuPropertyInvalidErr

Available in Mac OS X v10.0 and later.

The specified property creator/ID combination was not found.-5604menuPropertyNotFoundErr

Available in Mac OS X v10.0 and later.

Result Codes 1399
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

DescriptionValueResult Code

The specified menu or menu ID wasn't found.-5620menuNotFoundErr

Available in Mac OS X v10.0 and later.

GetMenuDefinition failed because the menu uses the system
menu definition.

-5621menuUsesSystemDefErr

Available in Mac OS X v10.0 and later.

The specified menu item wasn't found.-5622menuItemNotFoundErr

Available in Mac OS X v10.0 and later.

The menu reference passed to the function was invalid.-5623menuInvalidErr

Available in Mac OS X v10.0 and later.

1400 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 15

Menu Manager Reference

Framework: Carbon/Carbon.h

Declared in Navigation.h

Overview

Navigation Services is an application programming interface that allows your application to provide a user
interface for navigating, opening, and saving Mac OS file objects.

This reference describes the application programming interface for Navigation Services, as introduced with
CarbonLib 1.1. Navigation Services establishes a new model for creating, displaying, and processing dialogs.
This new functionality gives you the ability to create truly modeless dialogs and provides support for Unicode
and Mac OS X sheets.

Navigation Services replaces the Standard File Package, which is not supported in Carbon.

Functions by Task

Creating Dialogs

NavGetDefaultDialogCreationOptions (page 1437)
Determines the default attributes or behavior for dialogs.

Choosing Files, Folders and Volumes

NavCreateChooseFileDialog (page 1419)
Creates a Choose File dialog, which prompts the user to select a single file as the target of an operation.

NavCreateChooseFolderDialog (page 1420)
Creates a Choose Folder dialog, which prompts the user to select a folder as the target of an operation.

NavCreateChooseVolumeDialog (page 1422)
Creates a Choose Volume dialog, which prompts the user to select a volume.

NavCreateChooseObjectDialog (page 1421)
Creates a Choose Object dialog, which prompts the user to select a file. folder or volume.

NavCreateGetFileDialog (page 1423)
Creates an Open dialog, which prompts the user to select a file or files to be opened.

Overview 1401
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

NavCreateNewFolderDialog (page 1424)
Creates a New Folder dialog.

Saving Files

NavCreatePutFileDialog (page 1426)
Creates a Save dialog, which prompts the user for the name and location of a file to be saved.

NavCreateAskSaveChangesDialog (page 1418)
Creates a dialog that asks the user whether to save changes.

NavCreateAskReviewDocumentsDialog (page 1417)
Creates a Review Changes dialog, which notifies the user of multiple unsaved documents and gives
the user the option to review them.

NavCreateAskDiscardChangesDialog (page 1416)
Creates a dialog that asks the user whether to discard changes.

NavDialogSetSaveFileName (page 1435)
Specifies the current value of the filename text field in a Save dialog.

NavDialogSetSaveFileExtensionHidden (page 1435)
Sets the current state of extension hiding in a Save dialog.

NavDialogGetSaveFileName (page 1431)
Obtains the current value of the filename text field in a Save dialog.

NavDialogGetSaveFileExtensionHidden (page 1431)
Gets the current state of extension hiding in a Save dialog.

NavCompleteSave (page 1415)
Completes a save operation and performs any needed translation on the file.

NavCreatePreview (page 1425) Deprecated in Mac OS X v10.5
Creates a document preview in a specified file.

Customizing Dialogs

NavCustomControl (page 1429)
Allows your application to control various settings in Navigation Services dialogs.

NavDialogSetFilterTypeIdentifiers (page 1434)
Sets UTI filtering criteria for “get file” and “choose file” dialogs.

Running And Disposing of Dialogs

NavDialogRun (page 1433)
Displays a previously created dialog.

NavDialogDispose (page 1430)
Disposes of a dialog reference.

1402 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Obtaining Dialog Information

NavDialogGetWindow (page 1433)
Obtains a window reference for a dialog.

NavDialogGetUserAction (page 1432)
Reports the user action taken to dismiss a dialog.

NavDialogGetReply (page 1430)
Reports the results of a dialog session (unless cancelled or programmatically terminated).

NavDisposeReply (page 1436)
Releases the memory allocated for a NavReplyRecord structure after your application has finished
using the structure.

Translating Files

NavTranslateFile (page 1445) Deprecated in Mac OS X v10.5
Provides a means for files opened through Navigation Services to be read from different file formats.

Identifying Navigation Services Availability

NavServicesAvailable (page 1444)
Reports whether the Navigation Services library is available on the user’s system.

NavLibraryVersion (page 1440) Deprecated in Mac OS X v10.5
Reports the currently installed version of the Navigation Services shared library.

Working With Universal Procedure Pointers

NewNavEventUPP (page 1446)
Creates a new universal procedure pointer to your application-defined event–handling function.

NewNavObjectFilterUPP (page 1447)
Creates a new universal procedure pointer to your application-defined filter function.

NewNavPreviewUPP (page 1447)
Creates a new universal procedure pointer to your application-defined preview function.

DisposeNavEventUPP (page 1404)
Disposes of a UPP to an application-defined event–handling function.

DisposeNavObjectFilterUPP (page 1405)
Disposes of a UPP to an application-defined filter function.

DisposeNavPreviewUPP (page 1405)
Disposes of a UPP to an application-defined preview function.

InvokeNavEventUPP (page 1406)
Calls your application-defined event–handling function.

InvokeNavObjectFilterUPP (page 1406)
Calls your application-defined filter function.

Functions by Task 1403
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

InvokeNavPreviewUPP (page 1407)
Calls your application-defined preview function.

Deprecated Functions

NavAskDiscardChanges (page 1407) Deprecated in Mac OS X v10.5
Displays an alert box that asks the user whether to discard changes to a particular document.

NavAskSaveChanges (page 1408) Deprecated in Mac OS X v10.5
Displays a Save Changes alert box.

NavChooseFile (page 1409) Deprecated in Mac OS X v10.5
Creates a simple dialog box that prompts the user to select a file.

NavChooseFolder (page 1411) Deprecated in Mac OS X v10.5
Displays a dialog box that prompts the user to choose a folder or volume.

NavChooseObject (page 1412) Deprecated in Mac OS X v10.5
Displays a dialog box that prompts the user to choose a file, folder, or volume.

NavChooseVolume (page 1413) Deprecated in Mac OS X v10.5
Displays a dialog box that prompts the user to choose a volume.

NavCustomAskSaveChanges (page 1428) Deprecated in Mac OS X v10.5
Displays a Save Changes alert box with a custom alert message.

NavGetDefaultDialogOptions (page 1437) Deprecated in Mac OS X v10.5
Determines the default attributes or behavior for dialog boxes.

NavGetFile (page 1438) Deprecated in Mac OS X v10.5
Displays a dialog box that prompts the user to select a file or files to be opened.

NavNewFolder (page 1441) Deprecated in Mac OS X v10.5
Displays a dialog box that prompts the user to create a new folder.

NavPutFile (page 1442) Deprecated in Mac OS X v10.5
Displays a Save dialog box.

Unsupported Functions

NavLoad (page 1441)
Pre-loads the Navigation Services shared library.

NavUnload (page 1446)
Unloads the Navigation Services shared library.

NavServicesCanRun (page 1444)

Functions

DisposeNavEventUPP
Disposes of a UPP to an application-defined event–handling function.

1404 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

void DisposeNavEventUPP (
 NavEventUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
For more information on event–handling functions, see NavEventProcPtr (page 1448).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Related Sample Code
QTMetaData

Declared In
Navigation.h

DisposeNavObjectFilterUPP
Disposes of a UPP to an application-defined filter function.

void DisposeNavObjectFilterUPP (
 NavObjectFilterUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
For more information on filter functions, see NavObjectFilterProcPtr (page 1449).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

DisposeNavPreviewUPP
Disposes of a UPP to an application-defined preview function.

void DisposeNavPreviewUPP (
 NavPreviewUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Functions 1405
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Discussion
For more information on preview functions, see NavPreviewProcPtr (page 1450).

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

InvokeNavEventUPP
Calls your application-defined event–handling function.

void InvokeNavEventUPP (
 NavEventCallbackMessage callBackSelector,
 NavCBRecPtr callBackParms,
 void *callBackUD,
 NavEventUPP userUPP
);

Discussion
You should not need to use the function InvokeNavEventUPP, as the system calls your event–handling
function for you.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

InvokeNavObjectFilterUPP
Calls your application-defined filter function.

Boolean InvokeNavObjectFilterUPP (
 AEDesc *theItem,
 void *info,
 void *callBackUD,
 NavFilterModes filterMode,
 NavObjectFilterUPP userUPP
);

Discussion
You should not need to use the function InvokeNavObjectFilterUPP, as the system calls your filter
function for you.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

1406 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

InvokeNavPreviewUPP
Calls your application-defined preview function.

Boolean InvokeNavPreviewUPP (
 NavCBRecPtr callBackParms,
 void *callBackUD,
 NavPreviewUPP userUPP
);

Discussion
You should not need to use the function InvokeNavPreviewUPP, as the system calls your preview function
for you.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

NavAskDiscardChanges
Displays an alert box that asks the user whether to discard changes to a particular document. (Deprecated
in Mac OS X v10.5.)

Not recommended

OSErr NavAskDiscardChanges (
 NavDialogOptions *dialogOptions,
 NavAskDiscardChangesResult *reply,
 NavEventUPP eventProc,
 void *callBackUD
);

Parameters
dialogOptions

A pointer to a structure of type NavDialogOptions (page 1463). Before calling
NavAskDiscardChanges, set up this structure to specify dialog box settings. In this case, the
savedFileName field is the only one you must supply with a value.

reply
A pointer to a structure of type NavAskDiscardChanges. On return, the value describes the user’s
response to the Discard Changes alert box. For a description of the constants used to represent
possible responses, see “Discard Changes Actions” (page 1475).

eventProc
A Universal Procedure Pointer (UPP) to your application-defined event-handling function. You obtain
this UPP by calling the function NewNavEventUPP. Implementing an event-handling function allows
your application to update windows after the user moves or resizes the dialog box. If you pass NULL
in this parameter, the Discard Changes alert box is not movable. For more information on
event-handling functions, see NavEventProcPtr (page 1448).

callBackUD
A pointer to a value set by your application. When the NavAskDiscardChanges function calls your
event-handling function, the callBackUD value is passed back to your application.

Functions 1407
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
If your application provides a Revert to Saved command, you can use the NavAskDiscardChanges function
to display a confirmation alert box when a user selects Revert to Saved for a document with unsaved changes.
Navigation Services uses the string you supply in the savedFileName field of the NavDialogOptions
structure you passed in the dialogOptions parameter to display the alert message, “Discard changes to
[savedFilename]?”.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Carbon Porting Notes

Apple recommends you use the function NavCreateAskDiscardChangesDialog (page 1416) in order to
take advantage of Mac OS X features like Unicode, long filenames and enhanced modality.

Declared In
Navigation.h

NavAskSaveChanges
Displays a Save Changes alert box. (Deprecated in Mac OS X v10.5.)

Not recommended

OSErr NavAskSaveChanges (
 NavDialogOptions *dialogOptions,
 NavAskSaveChangesAction action,
 NavAskSaveChangesResult *reply,
 NavEventUPP eventProc,
 void *callBackUD
);

Parameters
dialogOptions

A pointer to a structure of type NavDialogOptions (page 1463). Before calling NavAskSaveChanges,
set up this structure to specify dialog box settings. When calling NavAskSaveChanges, the
clientName and savedFileName fields are the only two fields you must supply with values.

action
A value of type NavAskSaveChangesAction. Pass a constant describing the user action that prompted
the Save Changes alert box. For a description of the constants, see “Save Changes Requests” (page
1481).

reply
A pointer to a value of type NavAskSaveChangesResult. On return, the value describes the user’s
response to the Save Changes alert box. For a description of the constants used to represent possible
responses, see “Save Changes Actions” (page 1481).

1408 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

eventProc
A Universal Procedure Pointer (UPP) to your application-defined event-handling function. You obtain
this UPP by calling the function NewNavEventUPP. Implementing an event-handling function allows
your application to update windows after the user moves or resizes the dialog box. If you pass NULL
in this parameter, the Save Changes alert box is not movable. For more information on event-handling
functions, see NavEventProcPtr (page 1448).

callBackUD
A pointer to a value set by your application. When the NavAskSaveChanges function calls your
event-handling function, the callBackUD value is passed back to your application.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function is useful when your application needs to display an alert when the user attempts to close a
document or an application with unsaved changes.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Carbon Porting Notes

Apple recommends you use the function NavCreateAskSaveChangesDialog (page 1418) in order to take
advantage of Mac OS X features like Unicode, long filenames and enhanced modality.

Declared In
Navigation.h

NavChooseFile
Creates a simple dialog box that prompts the user to select a file. (Deprecated in Mac OS X v10.5.)

Not recommended

OSErr NavChooseFile (
 AEDesc *defaultLocation,
 NavReplyRecord *reply,
 NavDialogOptions *dialogOptions,
 NavEventUPP eventProc,
 NavPreviewUPP previewProc,
 NavObjectFilterUPP filterProc,
 NavTypeListHandle typeList,
 void *callBackUD
);

Parameters
defaultLocation

A pointer to an Apple event descriptor structure (AEDesc). Before calling NavChooseFile, you can
set up a structure of AEDesc type 'typeFSS' to specify a default location to be viewed. If you pass
NULL in this parameter, Navigation Services displays the last location visited during a call to the
NavChooseFile function. If the file system specification in the AEDesc structure does not describe
a directory or volume, Navigation Services uses the desktop as the default location.

Functions 1409
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

reply
A pointer to a structure of type NavReplyRecord (page 1458). Upon return, Navigation Services uses
this structure to provide data to your application about the results of your NavChooseFile call.

dialogOptions
A pointer to a structure of type NavDialogOptions (page 1463). Before calling NavChooseFile, you
can set up this structure to specify dialog box settings. If you pass NULL in this parameter, Navigation
Services uses the defaults for all options. See “Dialog Configuration Options” (page 1471) for a description
of the default settings.

eventProc
A Universal Procedure Pointer (UPP) to your application-defined event-handling function. You obtain
this UPP by calling the function NewNavEventUPP. Implementing an event-handling function allows
your application to update windows after the user moves or resizes the dialog box. If you pass NULL
in this parameter, the Choose a File dialog box is not movable or resizable. For more information on
event-handling functions, see NavEventProcPtr (page 1448).

previewProc
A Universal Procedure Pointer (UPP) to your application-defined preview function. Obtain this UPP
by calling the function NewNavPreviewUPP. A preview function allows your application to draw
previews or to override Navigation Services previews. For more information on preview functions,
see NavPreviewProcPtr (page 1450).

filterProc
A Universal Procedure Pointer (UPP) to your application-defined filter function. Obtain this UPP by
calling the function NewNavObjectFilterUPP. An application-defined filter function determines if
a volume, directory, or file should be displayed in the browser list or pop-up menus. For more
information on filter functions, see NavObjectFilterProcPtr (page 1449).

typeList
A handle to a structure of type NavTypeList (page 1460). Before calling NavChooseFile, you can set
up this structure to declare file types that your application can open.

callBackUD
A pointer to a value set by your application. When the NavChooseFile function calls your
event-handling function, the callBackUD value is passed back to your application.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function allows the user to choose a single file, such as a preferences file, for an action other than opening.
The NavChooseFile function is similar to NavGetFile (page 1438), but is limited to selecting a single file.

The dialog box displayed by the NavChooseFile function does not display a Show menu. If you wish to
control the files displayed by the browser list or the pop-up menus, you must specify a list of file types in the
typeList parameter or specify a filter function in the filterProc parameter. If you specify a list of file
types in the typeList parameter, the NavChooseFile function ignores the signature field of the
NavTypeList structure. This means that all files of the types specified in the list of file types will be displayed,
regardless of their application signature.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

1410 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Carbon Porting Notes

Apple recommends you use the functionNavCreateChooseFileDialog (page 1419) in order to take advantage
of Mac OS X features like Unicode, long filenames and enhanced modality.

Declared In
Navigation.h

NavChooseFolder
Displays a dialog box that prompts the user to choose a folder or volume. (Deprecated in Mac OS X v10.5.)

Not recommended

OSErr NavChooseFolder (
 AEDesc *defaultLocation,
 NavReplyRecord *reply,
 NavDialogOptions *dialogOptions,
 NavEventUPP eventProc,
 NavObjectFilterUPP filterProc,
 void *callBackUD
);

Parameters
defaultLocation

A pointer to an Apple event descriptor structure (AEDesc). Before calling NavChooseFolder, you
can set up a structure of AEDesc type 'typeFSS' to specify a default location to be viewed. If you
pass NULL in this parameter, Navigation Services displays the last location visited during a call to the
NavChooseFolder function. If the file system specification in the AEDesc structure does not describe
a directory or volume, Navigation Services uses the desktop as the default location.

reply
A pointer to a structure of type NavReplyRecord (page 1458). Upon return, Navigation Services uses
this structure to provide data to your application about the results of your NavChooseFolder call.

dialogOptions
A pointer to a structure of type NavDialogOptions (page 1463). Before calling NavChooseFolder,
set up this structure to specify dialog box settings. If you pass NULL in this parameter, Navigation
Services uses the defaults for all options. See “Dialog Configuration Options” (page 1471) for a description
of the default settings.

eventProc
A Universal Procedure Pointer (UPP) to your application-defined event-handling function. You obtain
this UPP by calling the function NewNavEventUPP. Implementing an event-handling function allows
your application to update windows after the user moves or resizes the dialog box. If you pass NULL
in this parameter, the dialog box is not movable or resizable. For more information on event-handling
functions, see NavEventProcPtr (page 1448).

filterProc
A Universal Procedure Pointer (UPP) to your application-defined filter function. Obtain this UPP by
calling the function NewNavObjectFilterUPP. An application-defined filter function determines if
a volume, directory, or file should be displayed in the browser list or pop-up menus. For more
information on filter functions, see NavObjectFilterProcPtr (page 1449).

callBackUD
A pointer to a value set by your application. When the NavChooseFolder function calls your
event-handling function, the callBackUD value is passed back to your application.

Functions 1411
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function provides a way for your application to prompt the user to select a folder or volume. This might
be useful if you need to install application files, for example.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Carbon Porting Notes

Apple recommends you use the function NavCreateChooseFolderDialog (page 1420) in order to take
advantage of Mac OS X features like Unicode, long filenames and enhanced modality.

Declared In
Navigation.h

NavChooseObject
Displays a dialog box that prompts the user to choose a file, folder, or volume. (Deprecated in Mac OS X
v10.5.)

Not recommended

OSErr NavChooseObject (
 AEDesc *defaultLocation,
 NavReplyRecord *reply,
 NavDialogOptions *dialogOptions,
 NavEventUPP eventProc,
 NavObjectFilterUPP filterProc,
 void *callBackUD
);

Parameters
defaultLocation

A pointer to an Apple event descriptor structure (AEDesc). Before calling NavChooseObject, you
can set up a structure of AEDesc type 'typeFSS' to specify a default location to be viewed. If you
pass NULL in this parameter, Navigation Services displays the last location visited during a call to the
NavChooseObject function. If the file system specification in the AEDesc structure does not describe
a directory or volume, Navigation Services uses the desktop as the default location.

reply
A pointer to a structure of type NavReplyRecord (page 1458). Upon return, Navigation Services uses
this structure to provide data to your application about the results of your NavChooseObject call.

dialogOptions
A pointer to a structure of type NavDialogOptions (page 1463). Before calling NavChooseObject,
set up this structure to specify dialog box settings. If you do not provide this structure, Navigation
Services uses the defaults for all options. See “Dialog Configuration Options” (page 1471) for a description
of the default settings.

1412 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

eventProc
A Universal Procedure Pointer (UPP) to your application-defined event-handling function. You obtain
this UPP by calling the function NewNavEventUPP. Implementing an event-handling function allows
your application to update windows after the user moves or resizes the dialog box. If you pass NULL
in this parameter, the dialog box is not movable or resizable. For more information on event-handling
functions, see NavEventProcPtr (page 1448).

filterProc
A Universal Procedure Pointer (UPP) to your application-defined filter function. Obtain this UPP by
calling the function NewNavObjectFilterUPP. An application-defined filter function determines if
a volume, directory, or file should be displayed in the browser list or pop-up menus. For more
information on filter functions, see NavObjectFilterProcPtr (page 1449).

callBackUD
A pointer to a value set by your application. When the NavChooseObject function calls your
event-handling function, the callBackUD value is passed back to your application.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function is useful when you need to display a dialog box that prompts the user to choose a file object
that might be a file, folder, or volume. If you want the user to choose a specific type of file object, you should
use the function designed for that type of object; to select a file, for example, use the function
NavChooseFile (page 1409).

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Carbon Porting Notes

Apple recommends you use the function NavCreateChooseObjectDialog (page 1421) in order to take
advantage of Mac OS X features like Unicode, long filenames and enhanced modality.

Declared In
Navigation.h

NavChooseVolume
Displays a dialog box that prompts the user to choose a volume. (Deprecated in Mac OS X v10.5.)

Not recommended

Functions 1413
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

OSErr NavChooseVolume (
 AEDesc *defaultSelection,
 NavReplyRecord *reply,
 NavDialogOptions *dialogOptions,
 NavEventUPP eventProc,
 NavObjectFilterUPP filterProc,
 void *callBackUD
);

Parameters
defaultSelection

A pointer to an Apple event descriptor structure (AEDesc). Before calling NavChooseVolume, you
can set up a structure of AEDesc type 'typeFSS' to specify a default location to be viewed. If you
pass NULL in this parameter, Navigation Services displays the last location visited during a call to the
NavChooseVolume function. If the file system specification in the AEDesc structure does not describe
a directory or volume, Navigation Services uses the desktop as the default location.

reply
A pointer to a structure of type NavReplyRecord (page 1458). Upon return, Navigation Services uses
this structure to provide data to your application about the results of your NavChooseVolume call.

dialogOptions
A pointer to a structure of type NavDialogOptions (page 1463). Before calling, set up this structure
to specify dialog box settings. If you pass NULL in this parameter, Navigation Services uses the defaults
for all options. See “Dialog Configuration Options” (page 1471) for a description of the default settings.

eventProc
A Universal Procedure Pointer (UPP) to your application-defined event-handling function. You obtain
this UPP by calling the function NewNavEventUPP. Implementing an event-handling function allows
your application to update windows after the user moves or resizes the dialog box. If you pass NULL
in this parameter, the Choose a Volume dialog box is not movable or resizable. For more information
on event-handling functions, see NavEventProcPtr (page 1448).

filterProc
A Universal Procedure Pointer (UPP) to your application-defined filter function. Obtain this UPP by
calling the function NewNavObjectFilterUPP. An application-defined filter function determines if
a volume, directory, or file should be displayed in the browser list or pop-up menus. For more
information on filter functions, see NavObjectFilterProcPtr (page 1449).

callBackUD
A pointer to a value set by your application. When the NavChooseVolume function calls your
event-handling function, the callBackUD value is passed back to your application.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function provides a way for your application to prompt the user to select a volume. This might be useful
for a disk repair utility, for example.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

1414 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Carbon Porting Notes

Apple recommends you use the function NavCreateChooseVolumeDialog (page 1422) in order to take
advantage of Mac OS X features like Unicode, long filenames and enhanced modality.

Declared In
Navigation.h

NavCompleteSave
Completes a save operation and performs any needed translation on the file.

OSErr NavCompleteSave (
 const NavReplyRecord *reply,
 NavTranslationOptions howToTranslate
);

Parameters
reply

A pointer to a structure of type NavReplyRecord (page 1458). Upon return, Navigation Services uses
this structure to provide data to your application about the results of your NavCompleteSave call.

howToTranslate
A pointer to a structure of type NavTranslationOptions. Pass one of two values to specify how
to perform any needed translation. For a description of the constants you can use to represent these
values, see “Translation Options” (page 1483). Translating in-place causes the source file to be replaced
by the translation. Translating to a copy results in a file name followed by the string “(converted)” to
avoid unwanted replacement. If you call the NavCompleteSave function in response to a Save a
Copy command, you should pass the kNavTranslateInPlace constant in this parameter.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486). Since this function performs any needed
translation, it may return a translation error.

Discussion
You should always call NavCompleteSave to complete any file saving operation performed with the
NavCreatePutFileDialog function. NavCompleteSave performs any needed translation, so you do not
have to use the function NavTranslateFile (page 1445) when saving. If you wish to turn off automatic
translation, set to false the value of the translationNeeded field of the NavReplyRecord structure you
pass in the replyparameter of the NavPutFile function. If you turn off automatic translation, your application
is responsible for any required translation.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Navigation.h

Functions 1415
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

NavCreateAskDiscardChangesDialog
Creates a dialog that asks the user whether to discard changes.

OSStatus NavCreateAskDiscardChangesDialog (
 const NavDialogCreationOptions *inOptions,
 NavEventUPP inEventProc,
 void *inClientData,
 NavDialogRef *outDialog
);

Parameters
inOptions

A pointer to a structure specifying options that control the appearance and behavior of the dialog.
You must supply a string in the saveFileName field of this structure; otherwise the function returns
paramErr.

inEventProc
A Universal Procedure Pointer (UPP) to your application’s event-handling function. You are strongly
advised to create and register an event-handling function, as described in NavEventProcPtr (page
1448). You must have an event-handling function in order to create modeless or window-modal (sheet)
dialogs. Specify NULL in this parameter if you do not implement an event-handling function.

inClientData
A pointer to an application-defined value that is passed back to all callback functions. You can use
this value to provide context information, for example. You may pass NULL in this parameter.

outDialog
On successful creation of a Discard Changes dialog, A pointer to a Navigation Services dialog reference
that you can pass to the NavDialogRun (page 1433) function

Return Value
A result code.

Discussion
This function creates a dialog that gives the user the option of discarding unsaved changes to a file or
cancelling the operation. This dialog is most commonly used when the user wants to revert to the last saved
version of a document.

Once you have successfully created the Discard Changes dialog, you display it by calling the
NavDialogRun (page 1433) function. After the user interacts with the dialog, you can obtain information about
the dialog session by calling the NavDialogGetReply (page 1430) function. When you are finished with the
dialog, dispose of it by calling the NavDialogDispose (page 1430) function.

This function replaces the NavAskDiscardChanges function and adds support for Unicode and new window
modalities.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

1416 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

NavCreateAskReviewDocumentsDialog
Creates a Review Changes dialog, which notifies the user of multiple unsaved documents and gives the user
the option to review them.

OSStatus NavCreateAskReviewDocumentsDialog (
 const NavDialogCreationOptions *inOptions,
 ItemCount inDocumentCount,
 NavEventUPP inEventProc,
 void *inClientData,
 NavDialogRef *outDialog
);

Parameters
inOptions

A pointer to a structure specifying options that control the appearance and behavior of the dialog.

inDocumentCount
The number of documents needing review. This number appears in the text presented to the user. If
the total number of unsaved documents is unknown, specify 0; Navigation Services uses a general
message. You should not specify 1; this alert should be used only when more than one document
needs review. For more information, see Inside Mac OS X: Aqua Human Interface Guidelines.

inEventProc
A universal procedure pointer (UPP) to an application-defined event-handling function. You are
strongly advised to create and register an event-handling function, as described in
NavEventProcPtr (page 1448). You must have an event-handling function in order to create modeless
or window-modal (sheet) dialogs. Specify NULL in this parameter if you do not implement an
event-handling function.

inClientData
A pointer to an application-defined value that is passed back to all callback functions.

outDialog
Upon successful completion, a reference to the created dialog.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
The Review Changes dialog tells the user how many unsaved documents there are and asks the user to
choose one of the following options:

 ■ review the unsaved documents

 ■ don't save any documents

 ■ cancel

Use of this dialog is appropriate when an application is quitting and there is more than one unsaved document.
It is supported only on Mac OS X; prior to Mac O X, this dialog is not part of the application quit sequence.

Upon successful creation, the dialog is not visible; to present and run the dialog, call the NavDialogRun (page
1433) function. After the dialog is complete, dispose of it with theNavDialogDispose function. Upon dismissal
of the dialog, the user’s action is set to one of the following actions: kNavUserActionReviewDocuments,
kNavUserActionDiscardDocuments, or kNavUserActionCancel. You can obtain this reply by calling
the NavDialogGetReply (page 1430).

Functions 1417
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Related Sample Code
QTCarbonShell

Declared In
Navigation.h

NavCreateAskSaveChangesDialog
Creates a dialog that asks the user whether to save changes.

OSStatus NavCreateAskSaveChangesDialog (
 const NavDialogCreationOptions *inOptions,
 NavAskSaveChangesAction inAction,
 NavEventUPP inEventProc,
 void *inClientData,
 NavDialogRef *outDialog
);

Parameters
inOptions

A pointer to a structure specifying options that control the appearance and behavior of the dialog.

inAction
A value indicating whether the user is closing a document or quitting the application and thereby
determines the message displayed to the user. To provide a customized message for the dialog,
specify a non-NULL value in the message field of the structure provided in the inOptions parameter.

inEventProc
A Universal Procedure Pointer (UPP) to your application’s event-handling function. You are strongly
advised to create and register an event-handling function, as described in NavEventProcPtr (page
1448). You must have an event-handling function in order to create modeless or window-modal (sheet)
dialogs. Specify NULL in this parameter if you do not implement an event-handling function.

inClientData
A pointer to an application-defined value that is passed back to all callback functions. You can use
this value to provide context information, for example. You may pass NULL in this parameter.

outDialog
On successful creation of the Save Changes dialog, a pointer to a Navigation Services dialog reference
that you can pass to the NavDialogRun (page 1433) function.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486). A result code.

Discussion
This function creates a Save Changes dialog, which your application should display when the user attempts
to close a document or quit the application with unsaved changes. The Save Changes dialog allows the user
to choose one of the following options:

 ■ save the changes

 ■ discard the unsaved changes

1418 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

 ■ cancel the operation

Once you have successfully created the Save Changes dialog, you display it by calling the NavDialogRun (page
1433) function. After the user interacts with the dialog, you can obtain information about the dialog session
by calling the NavDialogGetReply (page 1430) function. When you are finished with the dialog, dispose of
it by calling the NavDialogDispose (page 1430) function.

If there is more than one document with unsaved changes when the user attempts to quit your application,
you should display a Review Changes dialog instead. You can create a Review Changes dialog with the
NavCreateAskReviewDocumentsDialog (page 1417) function.

This function replaces the NavAskSaveChanges function and adds support for Unicode and new window
modalities.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Navigation.h

NavCreateChooseFileDialog
Creates a Choose File dialog, which prompts the user to select a single file as the target of an operation.

OSStatus NavCreateChooseFileDialog (
 const NavDialogCreationOptions *inOptions,
 NavTypeListHandle inTypeList,
 NavEventUPP inEventProc,
 NavPreviewUPP inPreviewProc,
 NavObjectFilterUPP inFilterProc,
 void *inClientData,
 NavDialogRef *outDialog
);

Parameters
inOptions

A pointer to a structure specifying options that control the appearance and behavior of the dialog.

inTypeList
A structure specifying a creator signature and a list of file types to show in the Choose File dialog.

inEventProc
A Universal Procedure Pointer (UPP) to your application’s event-handling function. You are strongly
advised to create and register an event-handling function, as described in NavEventProcPtr (page
1448). You must have an event-handling function in order to create modeless or window-modal (sheet)
dialogs. Specify NULL in this parameter if you do not implement an event-handling function.

inPreviewProc
A Universal Procedure Pointer (UPP) to your application’s preview function. You may specify NULL if
you don’t need to register a preview function. For more information on preview functions, see
NavPreviewProcPtr (page 1450).

Functions 1419
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

inFilterProc
A Universal Procedure Pointer (UPP) to your application’s filter function. You may specify NULL if you
don’t need to register a filter function. For more information on filter functions, see
NavObjectFilterProcPtr (page 1449).

inClientData
A pointer to an application-defined value that is passed back to all callback functions. You can use
this value to provide context information, for example. You may pass NULL in this parameter.

outDialog
On successful creation of a Choose File dialog, A pointer to a Navigation Services dialog reference
that you can pass to the NavDialogRun (page 1433) function.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486). A result code.

Discussion
Once you have successfully created the Choose File dialog, you display it by calling the NavDialogRun (page
1433) function. After the user interacts with the dialog, you can obtain information about the dialog session
by calling the NavDialogGetReply (page 1430) function. When you are finished with the dialog, you should
dispose of it by calling the NavDialogDispose (page 1430) function.

This function replaces theNavChooseFile function and adds support for Unicode and new window modalities.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Related Sample Code
QTCarbonShell

Declared In
Navigation.h

NavCreateChooseFolderDialog
Creates a Choose Folder dialog, which prompts the user to select a folder as the target of an operation.

OSStatus NavCreateChooseFolderDialog (
 const NavDialogCreationOptions *inOptions,
 NavEventUPP inEventProc,
 NavObjectFilterUPP inFilterProc,
 void *inClientData,
 NavDialogRef *outDialog
);

Parameters
inOptions

A pointer to a structure specifying options that control the appearance and behavior of the dialog.

inEventProc
A Universal Procedure Pointer (UPP) to your application’s event-handling function. You are strongly
advised to create and register an event-handling function, as described in NavEventProcPtr (page
1448). You must have an event-handling function in order to create modeless or window-modal (sheet)
dialogs. Specify NULL in this parameter if you do not implement an event-handling function.

1420 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

inFilterProc
A Universal Procedure Pointer (UPP) to your application’s filter function. You may specify NULL if you
don’t need to register a filter function. For more information on filter functions, see
NavObjectFilterProcPtr (page 1449).

inClientData
A pointer to an application-defined value that is passed back to all callback functions. You can use
this value to provide context information, for example. You may pass NULL in this parameter.

outDialog
On successful creation of a Choose Folder dialog, A pointer to a Navigation Services dialog reference
that you can pass to the NavDialogRun (page 1433) function.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486). A result code.

Discussion
Once you have successfully created the Choose Folder dialog, you display it by calling the
NavDialogRun (page 1433) function. After the user interacts with the dialog, you can obtain information about
the dialog session by calling the NavDialogGetReply (page 1430) function. When you are finished with the
dialog, you should dispose of it by calling the NavDialogDispose (page 1430) function.

This function replaces the NavChooseFolder function and adds support for Unicode and new window
modalities.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

NavCreateChooseObjectDialog
Creates a Choose Object dialog, which prompts the user to select a file. folder or volume.

OSStatus NavCreateChooseObjectDialog (
 const NavDialogCreationOptions *inOptions,
 NavEventUPP inEventProc,
 NavPreviewUPP inPreviewProc,
 NavObjectFilterUPP inFilterProc,
 void *inClientData,
 NavDialogRef *outDialog
);

Parameters
inOptions

A pointer to a structure specifying options that control the appearance and behavior of the dialog.

inEventProc
A Universal Procedure Pointer (UPP) to your application’s event-handling function. You are strongly
advised to create and register an event-handling function, as described in NavEventProcPtr (page
1448). You must have an event-handling function in order to create modeless or window-modal (sheet)
dialogs. Specify NULL in this parameter if you do not implement an event-handling function.

Functions 1421
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

inPreviewProc
A Universal Procedure Pointer (UPP) to your application’s preview function. You may specify NULL if
you don’t need to register a preview function. For more information on preview functions, see
NavPreviewProcPtr (page 1450).

inFilterProc
A Universal Procedure Pointer (UPP) to your application’s filter function. You may specify NULL if you
don’t need to register a filter function. For more information on filter functions, see
NavObjectFilterProcPtr (page 1449).

inClientData
A pointer to an application-defined value that is passed back to all callback functions. You can use
this value to provide context information, for example. You may pass NULL in this parameter.

outDialog
On successful creation of a Choose Object dialog, a pointer to a Navigation Services dialog reference
that you can pass to the NavDialogRun (page 1433) function.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486). A result code.

Discussion
Once you have successfully created the Choose Object dialog, you display it by calling the
NavDialogRun (page 1433) function. After the user interacts with the dialog, you can obtain information about
the dialog session by calling the NavDialogGetReply (page 1430) function. When you are finished with the
dialog, you should dispose of it by calling the NavDialogDispose (page 1430) function.

This function replaces the NavChooseObject function and adds support for Unicode and new window
modalities.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

NavCreateChooseVolumeDialog
Creates a Choose Volume dialog, which prompts the user to select a volume.

OSStatus NavCreateChooseVolumeDialog (
 const NavDialogCreationOptions *inOptions,
 NavEventUPP inEventProc,
 NavObjectFilterUPP inFilterProc,
 void *inClientData,
 NavDialogRef *outDialog
);

Parameters
inOptions

A pointer to a structure specifying options that control the appearance and behavior of the dialog.

1422 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

inEventProc
A Universal Procedure Pointer (UPP) to your application’s event-handling function. You are strongly
advised to create and register an event-handling function, as described in NavEventProcPtr (page
1448). You must have an event-handling function in order to create modeless or window-modal (sheet)
dialogs. Specify NULL in this parameter if you do not implement an event-handling function.

inFilterProc
A Universal Procedure Pointer (UPP) to your application’s filter function. You may specify NULL if you
don’t need to register a filter function. For more information on filter functions, see
NavObjectFilterProcPtr (page 1449).

inClientData
A pointer to an application-defined value that is passed back to all callback functions. You can use
this value to provide context information, for example. You may pass NULL in this parameter.

outDialog
On successful creation of a Choose Volume dialog, A pointer to a Navigation Services dialog reference
that you can pass to the NavDialogRun (page 1433) function.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486). A result code.

Discussion
Once you have successfully created the Choose Volume dialog, you display it by calling the
NavDialogRun (page 1433) function. After the user interacts with the dialog, you can obtain information about
the dialog session by calling the NavDialogGetReply (page 1430) function. When you are finished with the
dialog, you should dispose of it by calling the NavDialogDispose (page 1430) function.

This function replaces the NavChooseVolume function and adds support for Unicode and new window
modalities.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

NavCreateGetFileDialog
Creates an Open dialog, which prompts the user to select a file or files to be opened.

OSStatus NavCreateGetFileDialog (
 const NavDialogCreationOptions *inOptions,
 NavTypeListHandle inTypeList,
 NavEventUPP inEventProc,
 NavPreviewUPP inPreviewProc,
 NavObjectFilterUPP inFilterProc,
 void *inClientData,
 NavDialogRef *outDialog
);

Parameters
inOptions

A pointer to a structure specifying options that control the appearance and behavior of the dialog.

Functions 1423
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

inTypeList
A structure specifying an application signature and a list of file types to show in the Open dialog.

inEventProc
A Universal Procedure Pointer (UPP) to your application’s event-handling function. You are strongly
advised to create and register an event-handling function, as described in NavEventProcPtr (page
1448). You must have an event-handling function in order to create modeless or window-modal (sheet)
dialogs. Specify NULL in this parameter if you do not implement an event-handling function.

inPreviewProc
A Universal Procedure Pointer (UPP) to your application’s preview function. You may specify NULL if
you don’t need to register a preview function. For more information on creating a preview function,
see NavPreviewProcPtr (page 1450).

inFilterProc
A Universal Procedure Pointer (UPP) to your application’s filter function. You may specify NULL if you
don’t need to register a filter function. For more information on creating a filter function, see
NavObjectFilterProcPtr (page 1449).

inClientData
A pointer to an application-defined value that is passed back to all callback functions. You can use
this value to provide context information, for example. You may pass NULL in this parameter.

outDialog
On successful creation of an Open dialog instance, this value specifies a Navigation Services dialog
reference that you can pass to the NavDialogRun (page 1433) function.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486). A result code.

Discussion
Once you have successfully created the Open dialog, you display it by calling the NavDialogRun (page 1433)
function. After the user interacts with the dialog, you can obtain information about the dialog session by
calling the NavDialogGetReply (page 1430) function. When you are finished with the dialog, you should
dispose of it by calling the NavDialogDispose (page 1430) function.

This function replaces the NavGetFile function and adds support for Unicode and new window modalities.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

NavCreateNewFolderDialog
Creates a New Folder dialog.

1424 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

OSStatus NavCreateNewFolderDialog (
 const NavDialogCreationOptions *inOptions,
 NavEventUPP inEventProc,
 void *inClientData,
 NavDialogRef *outDialog
);

Parameters
inOptions

A pointer to a structure specifying options that control the appearance and behavior of the dialog.

inEventProc
A Universal Procedure Pointer (UPP) to your application’s event-handling function. You are strongly
advised to create and register an event-handling function, as described in NavEventProcPtr (page
1448). You must have an event-handling function in order to create modeless or window-modal (sheet)
dialogs. Specify NULL in this parameter if you do not implement an event-handling function.

inClientData
A pointer to an application-defined value that is passed back to all callback functions. You can use
this value to provide context information, for example. You may pass NULL in this parameter.

outDialog
On successful creation of a New Folder dialog, a pointer to a Navigation Services dialog reference
that you can pass to the NavDialogRun (page 1433) function.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486). A result code.

Discussion
Once you have successfully created the New Folder dialog, you display it by calling the NavDialogRun (page
1433) function. After the user interacts with the dialog, you can obtain information about the dialog session
by calling the NavDialogGetReply (page 1430) function. When you are finished with the dialog, you should
dispose of it by calling the NavDialogDispose (page 1430) function

Use the New Folder dialog to allow the user to create a new folder. Navigation Services creates the folder as
specified by the user and returns a reference to the folder in the selection field of the reply record.

This function replaces the NavNewFolder function and adds support for Unicode and new window modalities.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

NavCreatePreview
Creates a document preview in a specified file. (Deprecated in Mac OS X v10.5.)

Functions 1425
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

OSErr NavCreatePreview (
 AEDesc *theObject,
 OSType previewDataType,
 const void *previewData,
 Size previewDataSize
);

Parameters
theObject

A pointer to an Apple Event Descriptor (AEDesc) structure specifying the file in which to create the
preview.

previewDataType
A four character code specifying the type of preview data to create. If you pass NULL in this parameter,
Navigation Services creates a preview of type 'PICT'.

previewData
A pointer to a buffer holding preview data. If you pass NULL in this parameter, Navigation Services
provides its own data.

previewDataSize
A value specifying the size, in bytes, of the preview data you are providing. If you pass NULL in this
parameter, Navigation Services provides its own data.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function creates a preview of the specified file and stores the data in an appropriate resource. If you call
this function without passing in preview data, as in the following snippet, Navigation Services obtains and
creates the preview automatically:

NavCreatePreview(theObject,0,NULL,0)

If the specified file is image-based ('PICT', 'JPEG', etc.), Navigation Services creates a thumbnail custom icon
for the file. Navigation Services does not create a custom icon if you pass in your own preview data.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 2.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Navigation.h

NavCreatePutFileDialog
Creates a Save dialog, which prompts the user for the name and location of a file to be saved.

1426 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

OSStatus NavCreatePutFileDialog (
 const NavDialogCreationOptions *inOptions,
 OSType inFileType,
 OSType inFileCreator,
 NavEventUPP inEventProc,
 void *inClientData,
 NavDialogRef *outDialog
);

Parameters
inOptions

A pointer to a structure specifying options that control the appearance and behavior of the dialog.

inFileType
A four-character code specifying a file type for the file to be saved.

inFileCreator
A four-character code specifying a creator signature for the file to be saved. If you want to change or
remove the top default item in the Format menu, pass kNavGenericSignature.

inEventProc
A Universal Procedure Pointer (UPP) to your application’s event-handling function. You are strongly
advised to create and register an event-handling function, as described in NavEventProcPtr (page
1448). You must have an event-handling function in order to create modeless or window-modal (sheet)
dialogs. Specify NULL in this parameter if you do not implement an event-handling function.

inClientData
A pointer to an application-defined value that is passed back to all callback functions. You can use
this value to provide context information, for example. You may pass NULL in this parameter.

outDialog
On successful creation of a Save dialog, a pointer to a Navigation Services dialog reference that you
can pass to the NavDialogRun (page 1433) function.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486). A result code.

Discussion
Once you have successfully created the Save dialog, you display it by calling the NavDialogRun (page 1433)
function. After the user interacts with the dialog, you can obtain information about the dialog session by
calling the NavDialogGetReply (page 1430) function. When you are finished with the dialog, you should
dispose of it by calling the NavDialogDispose (page 1430) function.

This function replaces the NavPutFile function and adds support for Unicode and new window modalities.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Navigation.h

Functions 1427
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

NavCustomAskSaveChanges
Displays a Save Changes alert box with a custom alert message. (Deprecated in Mac OS X v10.5.)

Not recommended

OSErr NavCustomAskSaveChanges (
 NavDialogOptions *dialogOptions,
 NavAskSaveChangesResult *reply,
 NavEventUPP eventProc,
 void *callBackUD
);

Parameters
dialogOptions

A pointer to a structure of type NavDialogOptions (page 1463). Before calling
NavCustomAskSaveChanges, set up this structure to specify dialog box settings. When calling
NavCustomAskSaveChanges, the message field is the only field you must supply with a value.

reply
A pointer to a value of type NavAskSaveChangesResult. On return, the value describes the user’s
response to the Save Changes alert box. For a description of the constants used to represent possible
responses, see “Save Changes Actions” (page 1481).

eventProc
A Universal Procedure Pointer (UPP) to your application-defined event-handling function. You obtain
this UPP by calling the function NewNavEventUPP. Implementing an event-handling function allows
your application to update windows after the user moves or resizes the dialog box. If you pass NULL
in this parameter, the Save Changes alert box is not movable. For more information on event-handling
functions, see NavEventProcPtr (page 1448).

callBackUD
A pointer to a value set by your application. When the NavCustomAskSaveChanges function calls
your event-handling function, the callBackUD value is passed back to your application.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function is similar to the function NavAskSaveChanges (page 1408), except that you provide a custom
alert message. This function is useful when you need to post a Save Changes alert box at times other than
quitting or closing a file. Your application can display this alert box if a specified time interval has passed
since the user last saved changes, for example.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Carbon Porting Notes

Apple recommends you use the function NavCreateAskSaveChangesDialog in order to take advantage
of Mac OS X features like Unicode, long filenames and enhanced modality. In order to provide a customized
alert message, pass a non-null message string in the NavDialogCreationOptions structure passed to
NavCreateAskSaveChangesDialog.

Declared In
Navigation.h

1428 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

NavCustomControl
Allows your application to control various settings in Navigation Services dialogs.

OSErr NavCustomControl (
 NavDialogRef dialog,
 NavCustomControlMessage selector,
 void *parms
);

Parameters
dialog

A Navigation Services dialog reference. You can obtain this value from the context field of the
structure of type NavCBRec (page 1451) specified in the callBackParms parameter of your
event-handling function.

selector
A value of type NavCustomControlMessage. Pass one or more of the constants representing the
possible values used to control various aspects of the active dialog. For a description of these constants,
see “Custom Control Settings” (page 1465).

parms
A pointer to a configuration value. Some of the control setting constants passed in the selector
parameter require that you provide an additional configuration value. For a description of which
constants require configuration values, see “Custom Control Settings” (page 1465).

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
If you provide an event-handling function and an event occurs in a Navigation Services dialog, Navigation
Services calls your event-handling function and specifies one of the constants described in “Event
Messages” (page 1475) in the param field of a NavCBRec (page 1451) structure. Navigation Services specifies
this structure in the callBackParms parameter of your event-handling function. When Navigation Services
supplies the kNavCBStart constant in the param field, your application can call the NavCustomControl
function and pass one of the constants described in “Custom Control Settings” (page 1465) to control various
aspects of the active Navigation Services dialog. For example, your application can tell Navigation Services
to sort the browser list by date by calling the NavCustomControl function and passing the kNavCtlSortBy
constant in the selector parameter and a pointer to the kNavSortDateField configuration constant in
the parms parameter. (Some of the NavCustomControlMessage constants do not require a corresponding
configuration constant.)

Note that your application can call the NavCustomControl function from within its event-handling function
or its preview-drawing function.

Special Considerations

Navigation Services does not accept calls to the NavCustomControl function until an appropriate dialog
box is fully initialized and displayed. Always check for the kNavCBStart constant, described in “Event
Messages” (page 1475), in the param field of the NavCBRec structure before calling the NavCustomControl
function.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Functions 1429
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Declared In
Navigation.h

NavDialogDispose
Disposes of a dialog reference.

void NavDialogDispose (
 NavDialogRef inDialog
);

Parameters
inDialog

A Navigation Services dialog reference previously obtained by your application.

Discussion
Use this function to dispose of a dialog reference when you are completely finished with its associated dialog.
You may call NavDialogDispose from within your application-defined event-handling function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Navigation.h

NavDialogGetReply
Reports the results of a dialog session (unless cancelled or programmatically terminated).

OSStatus NavDialogGetReply (
 NavDialogRef inDialog,
 NavReplyRecord *outReply
);

Parameters
inDialog

A reference to a previously created dialog.

outReply
A pointer to a reply record you allocate to be filled out by Navigation Services.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

1430 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Discussion
Call this function when you obtain a value other than kNavUserActionCancel or kNavUserActionNone
from theNavDialogGetUserAction (page 1432) function. Upon completion of theNavDialogGetReply (page
1430) function, Navigation Services fills out the specified reply record with information about the dialog session.
When you are finished with the reply record, remember to dispose of it by calling the NavDisposeReply
function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Navigation.h

NavDialogGetSaveFileExtensionHidden
Gets the current state of extension hiding in a Save dialog.

Boolean NavDialogGetSaveFileExtensionHidden (
 NavDialogRef inPutFileDialog
);

Parameters
inPutFileDialog

A reference to the Save dialog. You can create a Save dialog using the
NavCreatePutFileDialog (page 1426) function.

Return Value
True if the extension is hidden; false if the extension is visible or if there is no extension.

Discussion
This function can be called at any time to determine if a Save dialog is hiding the file extension—if any—of
the file to be saved.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
Navigation.h

NavDialogGetSaveFileName
Obtains the current value of the filename text field in a Save dialog.

Functions 1431
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

CFStringRef NavDialogGetSaveFileName (
 NavDialogRef inPutFileDialog
);

Parameters
inPutFileDialog

A reference to a previously created dialog.

Return Value
A reference to the string containing the save filename. You should retain this string reference if you need
the information after the dialog is dismissed. On Mac OS X, the full filename is returned, including any
extension that may be hidden from the user. See the CFString documentation for a description of the
CFStringRef data type.

Discussion
This function provides a Unicode-based replacement for using the kNavGetEditFileName selector with
the NavCustomControl (page 1429) function.

Special Considerations

Note that you cannot use NavDialogGetSaveFileName with a Save dialog created using the NavPutFile
function. You should instead create your Save dialog using the NavCreatePutFileDialog function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

NavDialogGetUserAction
Reports the user action taken to dismiss a dialog.

NavUserAction NavDialogGetUserAction (
 NavDialogRef inDialog
);

Parameters
inDialog

A reference to a previously created dialog.

Return Value
One of the constants defined by the NavUserAction enumeration. This value indicates the user action that
dismissed the dialog. See “User Actions” (page 1484) for a description of the values that may be returned here.

Discussion
If the dialog has not been dismissed or if the dialog was terminated by using the kNavCtlTerminate selector
with the NavCustomControl (page 1429) function, the NavDialogGetUserAction (page 1432) function
returns the kNavUserActionNone constant. When you obtain a value other than kNavUserActionCancel
or kNavUserActionNone after returning from a file-handling dialog, Navigation Services fills out a reply
record that you can obtain with the NavDialogGetReply (page 1430) function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

1432 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Related Sample Code
CarbonSketch

Declared In
Navigation.h

NavDialogGetWindow
Obtains a window reference for a dialog.

WindowRef NavDialogGetWindow (
 NavDialogRef inDialog
);

Parameters
inDialog

A reference to a previously created dialog.

Return Value
A window reference for the specified dialog. Note that a valid dialog reference may not have a window
associated with it until the NavDialogRun (page 1433) function is called. If no window is associated with the
specified dialog, the NavDialogGetWindow (page 1433) function returns NULL.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

NavDialogRun
Displays a previously created dialog.

OSStatus NavDialogRun (
 NavDialogRef inDialog
);

Parameters
inDialog

A reference to a previously created Navigation Services dialog.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
You must create a dialog before displaying it. To create a dialog, call one of the NavCreate...Dialog
functions described in “Choosing Files, Folders and Volumes” (page 1401) and “Saving Files” (page 1402). If you
specify an application-modal or system-modal dialog, the NavDialogRun (page 1433) function returns after
the dialog is dismissed. If you specify a window-modal dialog (sheet) or a modeless dialog, the
NavDialogRun (page 1433) function returns immediately; in order to know when the dialog has been dismissed,
you must supply an event-handling function and watch for the kNavCBUserAction event.

Functions 1433
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

After the user interacts with the dialog, you can obtain information about the dialog session by calling the
NavDialogGetReply (page 1430) function.

Version Notes
On Mac OS 9 and earlier, all Navigation Services dialogs are modal, even if a window-modal or modeless
dialog is requested. However, the kNavCBUserAction event is still sent to your event-handling function. It
is possible to use a single programming model on both Mac OS 9 and on Mac OS X, provided you assume
that the NavDialogRun function returns immediately after displaying the dialog.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Navigation.h

NavDialogSetFilterTypeIdentifiers
Sets UTI filtering criteria for “get file” and “choose file” dialogs.

OSStatus NavDialogSetFilterTypeIdentifiers (
 NavDialogRef inGetFileDialog,
 CFArrayRef inTypeIdentifiers
);

Parameters
inGetFileDialog

A Navigation Services dialog reference obtained from calling NavCreateChooseFileDialog (page
1419) or NavCreateGetFileDialog (page 1423).

inTypeIdentifiers
A Core Foundation array of uniform type identifiers. This array specifies the file types that you want
your dialog to enable. If you pass an empty array, all files are filtered (and will appear dimmed in the
dialog). If you pass NULL, all files are enabled.

The file types you specify here also appear in the popup menu (displayed using the localized name
associated with the UTI), allowing the user to filter by a specific file type. The “All readable documents”
selection displays all the types specified in the UTI array.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
For simple filtering by file type, you should use this function instead of writing a custom filter callback function.
However, you can also use this call in conjunction with a filter callback; your custom filter callback is called
after NavDialogSetFilterTypeIdentifiers performs the initial filtering.

This function supersedes the list of OSType values you can pass in the inTypeList parameter in dialog
creation functions.

1434 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

You can call this function at any time, even while the dialog is displayed. For example, say your dialog
contained a custom menu item to filter by a specific type. When the user selects your menu item, you could
call NavDialogSetFilterTypeIdentifiers with the UTI corresponding to that type, and the dialog will
automatically update with the new filtering criteria.

For more information about uniform type identifiers, see Uniform Type Identifiers Overview

Availability
Available in Mac OS X v10.4 and later.

Declared In
Navigation.h

NavDialogSetSaveFileExtensionHidden
Sets the current state of extension hiding in a Save dialog.

OSStatus NavDialogSetSaveFileExtensionHidden (
 NavDialogRef inPutFileDialog,
 Boolean inHidden
);

Parameters
inPutFileDialog

A reference to the Save dialog. You can create a Save dialog using the
NavCreatePutFileDialog (page 1426) function.

inHidden
A Boolean value indicating whether the file extension should be hidden. Pass true to hide the file
extension; false to make any extension visible.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function can be called at any time to hide or show the extension of the file to be saved in a Save dialog.
If the current filename has no extension, hiding the extension has no effect.

Availability
Not available in CarbonLib.
Available in Mac OS X 10.1 and later.

Declared In
Navigation.h

NavDialogSetSaveFileName
Specifies the current value of the filename text field in a Save dialog.

Functions 1435
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

OSStatus NavDialogSetSaveFileName (
 NavDialogRef inPutFileDialog,
 CFStringRef inFileName
);

Parameters
inPutFileDialog

A reference to a previously created dialog.

inFileName
The filename to specify.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function may be called at any time to set the current filename for a save operation. You may use it to
set an initial filename before calling NavDialogRun, or to change the filename dynamically while a dialog
is running.

This function provides a Unicode-based replacement for using the kNavSetEditFileName selector with
the NavCustomControl (page 1429) function.

Special Considerations

Note that you cannot use NavDialogSetSaveFileName with a Save dialog created using the NavPutFile
function. You should instead create your Save dialog using the NavCreatePutFileDialog function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

NavDisposeReply
Releases the memory allocated for a NavReplyRecord structure after your application has finished using
the structure.

OSErr NavDisposeReply (
 NavReplyRecord *reply
);

Parameters
reply

A pointer to a structure of type NavReplyRecord (page 1458) that your application has created.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
If your application calls a Navigation Services function that uses a structure of type NavReplyRecord (page
1458), you must use the NavDisposeReply function afterward to release the memory allotted for the
NavReplyRecord structure.

1436 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell
QTMetaData

Declared In
Navigation.h

NavGetDefaultDialogCreationOptions
Determines the default attributes or behavior for dialogs.

OSStatus NavGetDefaultDialogCreationOptions (
 NavDialogCreationOptions *outOptions
);

Parameters
outOptions

A pointer to a NavDialogCreationOptions (page 1452) structure that you provide. On return,
Navigation Services fills out the structure with default dialog configuration values.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function gives you a simple way to initialize a NavDialogCreationOptions (page 1452) structure and
set default options before creating a Navigation Services dialog. After you create the
NavDialogCreationOptions structure, you can change the configuration options before you call one of
the dialog creation functions.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
Navigation.h

NavGetDefaultDialogOptions
Determines the default attributes or behavior for dialog boxes. (Deprecated in Mac OS X v10.5.)

Not recommended

Functions 1437
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

OSErr NavGetDefaultDialogOptions (
 NavDialogOptions *dialogOptions
);

Parameters
dialogOptions

A pointer to a structure of type NavDialogOptions (page 1463). On return, Navigation Services fills
out the structure with default option values that your application can change as needed.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function gives you a simple way to initialize a structure of type NavDialogOptions (page 1463) and set
the default dialog box options before calling one of the dialog box display functions. After you create the
NavDialogOptions structure, you can supply it with the NavDialogOptions constants, described in
“Dialog Configuration Options” (page 1471), to change the configuration options.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Carbon Porting Notes

Apple recommends that you adopt the dialog creation functions (NavCreate...Dialog); you pass these
functions a NavDialogCreationOptions (page 1452) structure rather than a NavDialogOptions (page
1463) structure.

Related Sample Code
QTMetaData

Declared In
Navigation.h

NavGetFile
Displays a dialog box that prompts the user to select a file or files to be opened. (Deprecated in Mac OS X
v10.5.)

Not recommended

1438 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

OSErr NavGetFile (
 AEDesc *defaultLocation,
 NavReplyRecord *reply,
 NavDialogOptions *dialogOptions,
 NavEventUPP eventProc,
 NavPreviewUPP previewProc,
 NavObjectFilterUPP filterProc,
 NavTypeListHandle typeList,
 void *callBackUD
);

Parameters
defaultLocation

A pointer to an Apple event descriptor structure (AEDesc). Before calling NavGetFile, you can set
up a structure of AEDesc type 'typeFSS' to specify a default location to be viewed. If you pass
NULL in this parameter, Navigation Services defaults to the last location visited during a call to the
NavGetFile function. If the file system specification in the AEDesc structure does not describe a
directory or volume, Navigation Services uses the desktop as the default location.

reply
A pointer to a structure of type NavReplyRecord (page 1458). Upon return, Navigation Services uses
this structure to provide data to your application about the results of your NavGetFile call.

dialogOptions
A pointer to a structure of type NavDialogOptions (page 1463). Before calling NavGetFile, set up
this structure to specify dialog box settings. If you pass NULL in this parameter, Navigation Services
uses the defaults for all options. See “Dialog Configuration Options” (page 1471) for a description of
the default settings.

eventProc
A Universal Procedure Pointer (UPP) to your application-defined event-handling function. You obtain
this UPP by calling the function NewNavEventUPP. Implementing an event-handling function allows
your application to update windows after the user moves or resizes the dialog box. If you pass NULL
in this parameter, the Open dialog box is not movable or resizable. For more information on
event-handling functions, see NavEventProcPtr (page 1448).

previewProc
A Universal Procedure Pointer (UPP) to your application-defined preview function. Obtain this UPP
by calling the function NewNavPreviewUPP. A preview function allows your application to draw
previews or to override Navigation Services previews. For more information on preview functions,
see NavPreviewProcPtr (page 1450).

filterProc
A Universal Procedure Pointer (UPP) to your application-defined filter function. Obtain this UPP by
calling the function NewNavObjectFilterUPP. An application-defined filter function determines if
a volume, directory, or file should be displayed in the browser list or pop-up menus. For more
information on filter functions, see NavObjectFilterProcPtr (page 1449).

typeList
A handle to a structure of type NavTypeList (page 1460). Before calling, set up this structure to declare
file types that your application can open.

callBackUD
A pointer to a value set by your application. When the NavGetFile function calls your event-handling
function, the callBackUD value is passed back to your application.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Functions 1439
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Discussion
After your application calls the NavGetFile function to display an Open dialog box and the user selects one
or more files and clicks the Open button, NavGetFile closes the dialog box and returns references to the
files to be opened in the NavReplyRecord structure. Your application should check the validRecord field
of the NavReplyRecord structure; if this field is set to true, your application should open the files specified
in the selection field of the NavReplyRecord structure.

Always dispose of the NavReplyRecord structure after completing the file opening operation by calling the
function NavDisposeReply (page 1436). If you fail to use the NavDisposeReply function, memory used for
the NavReplyRecord structure remains allocated and unavailable.

If you use the Show pop-up menu in an Open dialog box, your application must provide adequate kind
strings to describe its native file types. For more information on kind strings, see Inside Macintosh: More
Macintosh Toolbox.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Carbon Porting Notes

Apple recommends you use the function NavCreateGetFileDialog (page 1423) in order to take advantage
of Mac OS X features like Unicode, long filenames and enhanced modality.

Related Sample Code
QTMetaData

Declared In
Navigation.h

NavLibraryVersion
Reports the currently installed version of the Navigation Services shared library. (Deprecated in Mac OS X
v10.5.)

UInt32 NavLibraryVersion (
 void
);

Return Value
An unsigned 32-bit integer. This value represents the version number (in binary-coded decimal) of Navigation
Services installed on the user’s system.

Discussion
If you want to use features that are present only in a specific version of Navigation Services, use the
NavLibraryVersion function to determine which version of Navigation Services is installed.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

1440 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Declared In
Navigation.h

NavLoad
Pre-loads the Navigation Services shared library.

Unsupported

OSErr NavLoad (
 void
);

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
Use this function to pre-load the Navigation Services library. Pre-loading increases the memory used by your
application, but it provides the best performance when using Navigation Services functions. If you don’t use
the NavLoad function, the Navigation Services shared library may not be loaded until your application calls
one of the Navigation Services functions. If you use the NavLoad function, you must call the function
NavUnload (page 1446) if you want to release reserved memory prior to quitting.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present. Not available in Mac OS
X.

Declared In
Navigation.h

NavNewFolder
Displays a dialog box that prompts the user to create a new folder. (Deprecated in Mac OS X v10.5.)

Not recommended

OSErr NavNewFolder (
 AEDesc *defaultLocation,
 NavReplyRecord *reply,
 NavDialogOptions *dialogOptions,
 NavEventUPP eventProc,
 void *callBackUD
);

Parameters
defaultLocation

A pointer to an Apple event descriptor structure (AEDesc). Before calling NavNewFolder, you can
set up a structure of AEDesc type 'typeFSS' to specify a default location to be viewed. If you pass
NULL in this parameter, Navigation Services displays the last location visited during a call to the
NavNewFolder function. If the file system specification in the AEDesc structure does not describe a
directory or volume, Navigation Services uses the desktop as the default location.

Functions 1441
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

reply
A pointer to a structure of type NavReplyRecord (page 1458). Upon return, Navigation Services uses
this structure to provide data to your application about the results of the NavNewFolder function
call.

dialogOptions
A pointer to a structure of type NavDialogOptions (page 1463). Before calling NavNewFolder, set
up this structure to specify dialog box settings. If you pass NULL in this parameter, Navigation Services
uses the defaults for all options. See “Dialog Configuration Options” (page 1471) for a description of
the default settings.

eventProc
A Universal Procedure Pointer (UPP) to your application-defined event-handling function. You obtain
this UPP by calling the function NewNavEventUPP. Implementing an event-handling function allows
your application to update windows after the user moves or resizes the dialog box. If you pass NULL
in this parameter, the dialog box is not movable or resizable. For more information on event-handling
functions, see NavEventProcPtr (page 1448).

callBackUD
A pointer to a value set by your application. When the NavNewFolder function calls your
event-handling function, the callBackUD value is passed back to your application.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function provides a way for your application to prompt the user to create a new folder. This might be
useful for creating a project folder, for example.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Carbon Porting Notes

Apple recommends you use the functionNavCreateNewFolderDialog (page 1424) in order to take advantage
of Mac OS X features like Unicode, long filenames and enhanced modality.

Declared In
Navigation.h

NavPutFile
Displays a Save dialog box. (Deprecated in Mac OS X v10.5.)

Not recommended

1442 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

OSErr NavPutFile (
 AEDesc *defaultLocation,
 NavReplyRecord *reply,
 NavDialogOptions *dialogOptions,
 NavEventUPP eventProc,
 OSType fileType,
 OSType fileCreator,
 void *callBackUD
);

Parameters
defaultLocation

A pointer to an Apple event descriptor structure (AEDesc). Before calling NavPutFile, you can set
up a structure of AEDesc type 'typeFSS' to specify a default location to be viewed. If you pass
NULL in this parameter, Navigation Services displays the last location visited during a call to the
NavPutFile function. If the file system specification in the AEDesc structure does not describe a
directory or volume, Navigation Services uses the desktop as the default location.

reply
A pointer to a structure of type NavReplyRecord (page 1458). Upon return, Navigation Services uses
this structure to provide data to your application about the results of your NavPutFile call.

dialogOptions
A pointer to a structure of type NavDialogOptions (page 1463). Before calling NavPutFile, you can
set up this structure to specify dialog box settings. If you pass NULL in this parameter, Navigation
Services uses the defaults for all options. See “Dialog Configuration Options” (page 1471) for a description
of the default settings.

eventProc
A Universal Procedure Pointer (UPP) to your application-defined event-handling function. You obtain
this UPP by calling the function NewNavEventUPP. Implementing an event-handling function allows
your application to update windows after the user moves or resizes the dialog box. If you pass NULL
in this parameter, the Save dialog box is not movable or resizable. For more information on
event-handling functions, see NavEventProcPtr (page 1448).

fileType
A four-character code. Pass the file type code for the document to be saved.

fileCreator
A four-character code. Pass the file creator code for the document to be saved. Under Navigation
Services 2.0 or later, you may pass the “Generic File Signature Constant” (page 1479) constant if you
want to override the types of files appearing in the Format popup.

callBackUD
A pointer to a value set by your application. When the NavPutFile function calls your event-handling
function, the callBackUD value is passed back to your application.

Return Value
A result code. See “Navigation Services Result Codes” (page 1486). Note: If you specify the
kNavDontResolveAliases constant as a dialog box option, as described in “Dialog Configuration
Options” (page 1471), before calling theNavPutFile function, Navigation Services returns aparamErr (-50).

Discussion
After your application calls the NavPutFile function to display a Save dialog box and the user selects a
location, enters a filename, and clicks OK, NavPutFile closes the dialog box and returns references to the
file to be saved in the NavReplyRecord structure. Your application should check the validRecord field of
the NavReplyRecord structure; if this field is set to true, your application should save the file and call the
function NavCompleteSave (page 1415).

Functions 1443
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

If you specify the Format pop-up menu in a dialog box displayed by the NavPutFile function, your application
must provide adequate kind strings to describe the file types available. If the user uses the Format menu to
save a file to a format other than the file’s native format, Navigation Services translates the file automatically.
If you wish to turn off automatic translation, set to false the value of the translationNeeded field of the
NavReplyRecord structure you pass in the reply parameter. If you turn off automatic translation, your
application is responsible for any required translation.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Carbon Porting Notes

Apple recommends you use the function NavCreatePutFileDialog (page 1426) in order to take advantage
of Mac OS X features like Unicode, long filenames and enhanced modality.

Related Sample Code
QTMetaData

Declared In
Navigation.h

NavServicesAvailable
Reports whether the Navigation Services library is available on the user’s system.

pascal Boolean NavServicesAvailable

Return Value
A Boolean value. This function returns true if Navigation Services is available, false if not.

Discussion
Use this function before attempting to use Navigation Services on Mac OS 8 and Mac OS 9. It is not necessary
to call this function on Mac OS X, as Navigation Services is always available.

Special Considerations

There is a known problem with Navigation Services 1.0 that occurs if you call NavServicesAvailablemore
than once without the Appearance Manager being installed. Make sure that you check for the presence of
the Appearance Manager before calling NavServicesAvailable.

Version Notes
Available in Navigation Services 1.0 and later.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavServicesCanRun

Unsupported

1444 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Boolean NavServicesCanRun (
 void
);

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present. Not available in Mac OS
X.

Declared In
Navigation.h

NavTranslateFile
Provides a means for files opened through Navigation Services to be read from different file formats.
(Deprecated in Mac OS X v10.5.)

OSErr NavTranslateFile (
 const NavReplyRecord *reply,
 NavTranslationOptions howToTranslate
);

Parameters
reply

A pointer to a structure of type NavReplyRecord (page 1458). Upon return, Navigation Services uses
this structure to provide translation information about the selected files.

howToTranslate
A value of type NavTranslationOptions. Pass one of these constants to tell Navigation Services
how to perform the translation: either in-place or by making a copy of the file. For a description of
the constants, see “Translation Options” (page 1483).

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
Under automatic file translation, Navigation Services calls the NavTranslateFile function as necessary
before returning from a file-opening function.

Your application can perform its own translation using the NavReplyRecord structure you specified in the
translateInfo parameter. The NavReplyRecord structure contains a list of descriptors for the file or files
to be opened and a corresponding list of translation specification records that can be passed to the Translation
Manager. To determine if your application has to translate a file, your application can examine the
NavReplyRecord structure to see if Navigation Services set the translationNeeded field to true. (The
translationNeeded field of the NavReplyRecord structure is also set to true after returning from a
NavGetFile call during which automatic translation was performed.) If you want to turn off automatic file
translation, set the constant kNavDontAutoTranslate in the dialogOptionFlags field of the structure
of type NavDialogOptions (page 1463) that you pass in the dialogOptions parameter of the file-opening
function.

If your application uses the NavTranslateFile function after opening a file without automatic translation,
Navigation Services checks to see if the source location can accept a new file. If the source location is not
available (as occurs when the volume is locked or there is insufficient space), Navigation Services prompts
the user to select a location in which to save the translated file. The same prompt may occur when automatic
translation is enabled in an Open dialog box.

Functions 1445
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Navigation.h

NavUnload
Unloads the Navigation Services shared library.

Unsupported

OSErr NavUnload (
 void
);

Return Value
A result code. See “Navigation Services Result Codes” (page 1486).

Discussion
This function allows your application to unload the Navigation Services library and release the memory
reserved for it. If you use the function NavLoad (page 1441) to load the Navigation Services library, you must
call the NavUnload function if you want to release reserved memory prior to quitting.

Availability
Available in CarbonLib 1.0 and later when Navigation Services 1.0 or later is present. Not available in Mac OS
X.

Declared In
Navigation.h

NewNavEventUPP
Creates a new universal procedure pointer to your application-defined event–handling function.

NavEventUPP NewNavEventUPP (
 NavEventProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your event–handling function.

Return Value
On return, a universal procedure pointer (UPP) to the event–handling function. See the description of the
NavEventUPP data type.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

1446 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Related Sample Code
CarbonSketch
QTMetaData

Declared In
Navigation.h

NewNavObjectFilterUPP
Creates a new universal procedure pointer to your application-defined filter function.

NavObjectFilterUPP NewNavObjectFilterUPP (
 NavObjectFilterProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your filter function.

Return Value
On return, a universal procedure pointer (UPP) to the filter function. See the description of the
NavObjectFilterUPP data type.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

NewNavPreviewUPP
Creates a new universal procedure pointer to your application-defined preview function.

NavPreviewUPP NewNavPreviewUPP (
 NavPreviewProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your preview function.

Return Value
On return, a universal procedure pointer (UPP) to the preview function. See the description of the
NavPreviewUPP data type.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.

Declared In
Navigation.h

Functions 1447
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Callbacks

NavEventProcPtr
A pointer to an event-handling function that handles events such as window updating and resizing.

typedef void (*NavEventProcPtr) (
 NavEventCallbackMessage callBackSelector,
 NavCBRecPtr callBackParms,
 void * callBackUD);

If you name your function MyNavEventProc, you would declare it like this:

void MyNavEventProc (
 NavEventCallbackMessage callBackSelector,
 NavCBRecPtr callBackParms,
 void * callBackUD);

Parameters
callBackSelector

One of the values specified by the NavEventCallbackMessage data type. These values indicate
which type of event your function must respond to. For a description of the constants that represent
these values, see “Event Messages” (page 1475).

callBackParms
A pointer to a NavCBRec (page 1451) structure. Your application uses the data supplied in this structure
to process the event.

callBackUD
A pointer to a value set by your application when it calls a Navigation Services dialog creation function.
When Navigation Services calls your event-handling function, the callBackUD value is passed back
to your application in this parameter.

Discussion
Register your event-handling function by passing a Universal Procedure Pointer (UPP) in the eventProc
parameter of a Navigation Services dialog creation function. You obtain this UPP by calling the function
NewNavEventUPP and passing a pointer to your event-handling function. If you determine that an event is
appropriate for your event-handling function, you can call other functions to handle custom control drawing.

When events involve controls, your event-handling function must respond to events only for your
application-defined controls. To determine which control is affected by an event, pass the
kNavCtlGetFirstControlID constant, described in “Custom Control Settings” (page 1465), in the selector
parameter of the function NavCustomControl (page 1429).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

1448 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

NavObjectFilterProcPtr
A pointer to a filter function that determines whether file objects should be displayed in the browser list and
navigation menus.

typedef Boolean (*NavObjectFilterProcPtr)
(
 AEDesc * theItem,
 void * info,
 void * callBackUD,
 NavFilterModes filterMode);

If you name your function MyNavObjectFilterProc, you would declare it like this:

Boolean MyNavObjectFilterProc (
 AEDesc * theItem,
 void * info,
 void * callBackUD,
 NavFilterModes filterMode);

Parameters
theItem

A pointer to an Apple event descriptor structure (AEDesc). Navigation Services uses this structure
to provide information about the object being passed to your filter function. Always check the Apple
event descriptor type before deciding if an object needs to be filtered. Never assume that an object
is a file specification, because the browser or pop-up menus may contain objects of other types. Make
sure that your function only returns true if it recognizes the object.

info
A pointer to a NavFileOrFolderInfo (page 1456) structure. Navigation Services uses this structure
to provide file or folder information about the item being passed to your filter function. This information
is only valid for objects of descriptor types 'typeFSS' or 'typeFSRef'.

callBackUD
A pointer to a value set by your application when it calls a Navigation Services dialog creation function.
When Navigation Services calls your filter function, the callBackUD value is passed back to your
application in this parameter.

filterMode
A value representing which list of objects is currently being filtered. For a description of the constants
used to represent these values, see “Object Filtering Constants” (page 1480).

Return Value
A Boolean value. If your application returns true, Navigation Services displays the object. If your application
returns false, Navigation Services displays the object as dimmed.

Discussion
Register your filter function by passing a Universal Procedure Pointer (UPP) in the filterProc parameter
of a dialog creation function. You obtain this UPP by calling the function NewNavObjectFilterUPP and
passing a pointer to your filter function. Navigation Services calls your filter function to determine whether
a file object should be displayed in the browser list or the pop-up menus.

If you use a filter function in conjunction with built-in translation, you should provide a list of file types to
inform Navigation Services which document types your application can open. You can do so using the
following methods:

Callbacks 1449
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

 ■ Call the NavDialogSetFilterTypeIdentifiers (page 1434) function on an existing dialog to filter by
uniform type identifiers. This method is preferable in Mac OS X v10.4 and later.

 ■ Provide a list of allowable OSType file types in the inTypeList parameter of a file-opening function
such as NavCreateGetFileDialog

If you provide a list of file types, your filter callback is called only for the files that match the specified type
list. For example, if you wanted to enable only text files below a certain size, you could use
NavDialogSetFilterTypeIdentifiers (page 1434) to enable only text files, and then use a filter callback
to screen for file size. You should make sure that your filter callback doesn’t automatically eliminate a document
type in the filter list (for example, if the list allows JPEG files and the callback eliminates everything but PICT
files). This is to ensure that the user can always see some files when a particular file type is selected from the
Enable popup menu.

If your filter function returns a result of true, Navigation Services displays the object. Note that this is the
opposite of Standard File filter functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavPreviewProcPtr
A pointer to a preview function that displays custom file previews.

typedef Boolean (*NavPreviewProcPtr)
(
 NavCBRecPtr callBackParms,
 void * callBackUD);

If you name your function MyNavPreviewProc, you would declare it like this:

Boolean MyNavPreviewProc (
 NavCBRecPtr callBackParms,
 void * callBackUD);

Parameters
callBackParms

A pointer to a NavCBRec (page 1451) structure. Navigation Services uses this structure to provide data
needed for your function to draw the preview.

callBackUD
A pointer to a value set by your application when it calls a Navigation Services function such as
NavCreateGetFileDialog. When Navigation Services calls your preview function, the callBackUD
value is passed back to your application in this parameter.

Return Value
A Boolean value. Your application returns true if your preview function successfully draws the custom file
preview. If your preview function returns false, Navigation Services displays the preview if the file contains
a valid 'pnot' resource. If your preview function returns false and a 'pnot' resource is not available,
Navigation Services displays a blank preview area.

1450 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Discussion
Register your preview function by passing the resulting Universal Procedure Pointer (UPP) in the previewProc
parameter of a Navigation Services dialog creation function. You obtain this UPP by calling the function
NewNavPreviewUPP and passing a pointer to your preview-drawing function. When the user selects a file,
Navigation Services calls your preview-drawing function. Your preview function, in turn, calls the function
NavCustomControl (page 1429) to determine if the preview area is visible and, if so, what its dimensions are.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

Data Types

NavDialogRef
An opaque reference to an instance of a Navigation Services dialog.

typedef struct __NavDialog * NavDialogRef;

Discussion
Your application obtains a NavDialogRef by calling one of the dialog creation functions described in
“Choosing Files, Folders and Volumes” (page 1401) and “Saving Files” (page 1402). Once you obtain a valid
reference, you pass it to other functions in order to display and process dialogs. When you are completely
finished using the reference, dispose of it by calling the function NavDialogDispose (page 1430). This data
type is available in CarbonLib 1.1 and later and in Mac OS X. It replaces the NavContext data type previously
used by Navigation Services.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavCBRec
Provides information you can use for event-handling and customization.

Data Types 1451
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

struct NavCBRec {
 UInt16 version;
 NavDialogRef context;
 WindowRef window;
 Rect customRect;
 Rect previewRect;
 NavEventData eventData;
 NavUserAction userAction;
 char reserved[218];
};
typedef struct NavCBRec NavCBRec;
typedef NavCBRec * NavCBRecPtr;

Fields
version

Identifies the version of this structure. This value is defined by the kNavCBRecVersion constant.

context
An opaque object identifying the dialog instance.

window
An opaque object identifying the dialog’s window.

customRect
A local coordinate rectangle describing the customization area available to your application. This
determines how much room your application has to install custom controls.

previewRect
A local coordinate rectangle describing the preview area available to your application’s preview
function. The minimum size is 145 pixels wide by 118 pixels high.

eventData
A structure of type NavEventData (page 1454). This structure provides event-specific data to your
NavEventProcPtr (page 1448) function.

userAction
A constant specifying the action taken by the user, generating a kNavCBUserAction event. See “User
Actions” (page 1484) for a description of the possible values for this field.

This field is available in CarbonLib 1.1 and later or in Mac OS X version 10.0 and later.

reserved
Reserved.

Discussion
The NavCBRec structure is passed to your application-defined event-handling and preview functions. For
more information on event-handling and preview functions, see NavEventProcPtr (page 1448) and
NavPreviewProcPtr (page 1450), respectively.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavDialogCreationOptions
Contains dialog configuration settings you can pass to Navigation Services dialog creation functions.

1452 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

struct NavDialogCreationOptions {
 UInt16 version;
 NavDialogOptionFlags optionFlags;
 Point location;
 CFStringRef clientName;
 CFStringRef windowTitle;
 CFStringRef actionButtonLabel;
 CFStringRef cancelButtonLabel;
 CFStringRef saveFileName;
 CFStringRef message;
 UInt32 preferenceKey;
 CFArrayRef popupExtension;
 WindowModality modality;
 WindowRef parentWindow;
 char reserved[16];
};
typedef struct NavDialogCreationOptions NavDialogCreationOptions;

Fields
version

Identifies the version of this structure. The structure version is represented by the
kNavDialogCreationOptionsVersion constant.

optionFlags
One of several constants defined by the NavDialogOptionFlags data type as described in “Dialog
Configuration Options” (page 1471).

location
A point describing the location of the upper-left corner of the dialog window, in global coordinates.
If you set this field to (-1,-1), then the dialog window appears in the same location as when it was last
closed. The size and location of the dialog window is persistent, but defaults to opening in the middle
of the main screen if any portion is not visible when opened at the persistent location and size.

This field is ignored for sheet dialogs.

clientName
A string that identifies your application in the window title of file dialogs and in the message displayed
for the Save Changes, Review Changes, and Ask Discard changes alerts.

On Mac OS 8 and 9, Navigation Services cannot maintain persistence information for your application
if you do not provide this string.

windowTitle
A string that you can provide to override the default window title. If you pass NULL, the default window
title is used.

actionButtonLabel
An alternative button title for the dialog’s default button. If you pass NULL, the button uses the default
label (Open or Save, for example.

cancelButtonLabel
An alternative button title for the dialog’s Cancel button. If you pass NULL, the default button title is
used.

saveFileName
The default filename for a file to be saved (Save dialog only). If you pass NULL, the filename field is
blank.

Data Types 1453
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

message
For the file dialogs, a string for the banner, or prompt, below the browser list. This message can
provide more descriptive instructions for the user. If you pass NULL, no banner appears and the
browser list expands to fill that area.

For the Save Changes, Review Changes and Ask Discard Changes alerts, a string specifying a custom
message that replaces the default message.

preferenceKey
An application-defined value that identifies which set of dialog preferences Navigation Services should
use. If your application maintains multiple sets of preferences for a particular type of dialog, you can
determine which set is active by specifying the appropriate value in the preferenceKey field. For
example, an application may provide one set of preferences when it calls the function to open text
files and a different set of preferences when opening movie files. If you do not wish to provide a
preference key, specify 0 for the preferenceKey value.

popupExtension
A reference to an array of menu item strings. These strings are used to add extra menu items to the
Show pop-up menu in an Open dialog or to the Format pop-up menu in a Save dialog. Your application
can use this array to add additional document types to be opened or saved, or different ways of saving
a file (with or without line breaks, for example).

modality
This value allows you to specify the modality of the dialog. The default modality for all dialogs is
kWindowModalityAppModal. If you specify the kWindowModalityWindowModal constant to make
a dialog appear as a sheet, you must provide a valid window reference in the parentWindow field.
If you specify the kWindowModalityWindowModal constant on Mac OS 8 or 9, the modality is set
to kWindowModalityAppModal.

This field is available in CarbonLib 1.1 and later or in Mac OS X version 10.0 and later.

parentWindow
A reference to the parent window for a sheet.

This field is available in CarbonLib 1.1 and later or in Mac OS X version 10.0 and later.

reserved
Reserved.

Discussion
When you create a Navigation Services dialog, using one of the NavCreate...Dialog creation functions,
you must supply a NavDialogCreationOptions structure to specify the appearance and behavior of the
dialog. You can initialize a NavDialogCreationOptions structure using the
NavGetDefaultDialogCreationOptions (page 1437) function; this fills out the structure with the default
dialog creation settings.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavEventData
Contains event data for Navigation Services dialogs.

1454 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

struct NavEventData {
 NavEventDataInfo eventDataParms;
 SInt16 itemHit;
};
typedef struct NavEventData NavEventData;

Fields
eventDataParms

A structure of type NavEventDataInfo (page 1455).

itemHit
A signed integer value. On return, this value represents the item number of the dialog item last clicked
by the user. If the user clicks something other than a valid Navigation Services-generated control
item, this value is -1.

Discussion
The NavEventData structure is passed to your application-defined event-handling or preview function in
the eventData field of the NavCBRec structure.

The NavEventData structure contains a structure of type NavEventDataInfo (page 1455). In Navigation
Services 1.1 or later, the NavEventData structure also contains a field describing the dialog item last clicked
by the user.

Version Notes
itemHit field added in Navigation Services 1.1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavEventDataInfo
Provides event–handling data to your application.

union NavEventDataInfo {
 EventRecord * event;
 void * param;
};
typedef union NavEventDataInfo NavEventDataInfo;

Fields
event

A pointer to the EventRecord structure describing an event to be handled by your event-handling
function.

param
A pointer to additional event data. In most cases, this data consists of an Apple event descriptor list
(AEDescList) for the file or files affected by the event described in the event field. For example, if
the event consists of the user making a selection in the browser list, the AEDescList specifies the
file or files selected.

Availability
Available in Mac OS X v10.0 and later.

Data Types 1455
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Declared In
Navigation.h

NavFileOrFolderInfo
Contains file or folder information for use by your application-defined filter function.

struct NavFileOrFolderInfo {
 UInt16 version
 Boolean isFolder
 Boolean visible
 UInt32 creationDate
 UInt32 modificationDate
 union {
 struct {
 Boolean locked;
 Boolean resourceOpen;
 Boolean dataOpen;
 Boolean reserved1;
 UInt32 dataSize;
 UInt32 resourceSize;
 FInfo finderInfo;
 FXInfo finderXInfo;
 } fileInfo;
 struct {
 Boolean shareable;
 Boolean sharePoint;
 Boolean mounted;
 Boolean readable;
 Boolean writeable;
 Boolean reserved2;
 UInt32 numberOfFiles;
 DInfo finderDInfo;
 DXInfo finderDXInfo;
 OSType folderType;
 OSType folderCreator;
 char reserved3[206];
 } folderInfo;
 } fileAndFolder;
};
typedef struct NavFileOrFolderInfo NavFileOrFolderInfo;

Fields
version

Identifies the version of this structure.

isFolder
A Boolean value. If this value is set to true, the object being described is a folder or volume; otherwise,
the value is set to false. An alias to a folder or volume returns true. Check for the kIsAlias constant
in the fileAndFolder.folderInfo.finderDInfo field to determine whether an object is an alias.

visible
A Boolean value. If this value is set to true, the object being described is visible in the browser list;
otherwise, the value is set to false.

creationDate
The creation date of the object being described.

1456 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

modificationDate
The modification date of the object being described.

fileAndFolder.fileInfo.locked
If isFolder is false, a Boolean value indicating whether the file is locked.

fileAndFolder.fileInfo.resourceOpen
If isFolder is false, a Boolean value indicating whether the resource fork of the file is open.

fileAndFolder.fileInfo.dataOpen
If isFolder is false, a Boolean value indicating whether the data fork of the file is open.

fileAndFolder.fileInfo.reserved1
Reserved.

fileAndFolder.fileInfo.dataSize
If isFolder is false, the size of the file’s data fork.

fileAndFolder.fileInfo.resourceSize
If isFolder is false, the size of the file’s resource fork.

fileAndFolder.fileInfo.finderInfo
If isFolder is false, a structure specifying further information about the file. See the Finder Interface
documentation for more information on the FInfo structure.

fileAndFolder.fileInfo.finderXInfo
If isFolder is false, a structure specifying extended Finder information for the file. See the Finder
Interface documentation for more information on the FXInfo structure.

fileAndFolder.folderInfo.shareable
If isFolder is true, a Boolean value indicating whether the folder is shareable.

fileAndFolder.folderInfo.sharePoint
If isFolder is true, a Boolean value indicating whether the folder is a share point.

fileAndFolder.folderInfo.mounted
If isFolder is true, a Boolean value indicating whether the folder is mounted.

fileAndFolder.folderInfo.readable
If isFolder is true, a Boolean value indicating whether the folder is readable.

fileAndFolder.folderInfo.writeable
If isFolder is true, a Boolean value indicating whether the folder is writeable.

fileAndFolder.folderInfo.reserved2
Reserved.

fileAndFolder.folderInfo.numberOfFiles
If isFolder is true, the number of files in the folder.

fileAndFolder.folderInfo.finderDInfo
If isFolder is true, a directory information structure describing the folder. See the Finder Interface
documentation for further information on the DInfo structure.

fileAndFolder.folderInfo.finderDXInfo
If isFolder is true, an extended directory information structure describing the folder. See the Finder
Interface documentation for further information on the DXInfo structure.

fileAndFolder.folderInfo.folderType
If isFolder is true, the package type (for structure version 1 or greater).

fileAndFolder.folderInfo.folderCreator
If isFolder is true, the creator code for the package (for structure version 1 or greater).

Data Types 1457
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Discussion
The NavFileOrFolderInfo structure contains file or folder information for use by your application-defined
filter function. Your filter function can determine whether the currently selected object is a file by checking
the isFolder field of the NavFileOrFolderInfo structure for the value false. After making this
determination, you can obtain more information about the object from the structure specified in the
fileAndFolder field.

Special Considerations

The information in this structure is valid only for HFS file objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavReplyRecord
Contains information about user interaction with a dialog.

struct NavReplyRecord {
 UInt16 version;
 Boolean validRecord;
 Boolean replacing;
 Boolean isStationery;
 Boolean translationNeeded;
 AEDescList selection;
 ScriptCode keyScript;
 FileTranslationSpecArrayHandle fileTranslation;
 UInt32 reserved1;
 CFStringRef saveFileName;
 Boolean saveFileExtensionHidden;
 UInt8 reserved2;
 char reserved[225];
};
typedef struct NavReplyRecord NavReplyRecord;

Fields
version

Identifies the version of this structure. The structure version is represented by the constant
kNavReplyRecordVersion.

validRecord
A Boolean value of true if the user closes a dialog by pressing Return or Enter, or by clicking the
default button in an Open or Save dialog. If this field is false, all other fields are unused and do not
contain valid data.

replacing
A Boolean value of true if the user chooses to save a file by replacing an existing file (thereby
necessitating the removal or renaming of the existing file).

isStationery
A Boolean value informing your application whether the file about to be saved should be saved as a
stationery document.

1458 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

translationNeeded
A Boolean value indicating whether translation was or will be needed for files selected in Open and
Save dialogs.

selection
For a file-opening or file-choosing dialog, this is an Apple event descriptor list (AEDescList) containing
references to items selected by the user. Navigation Services creates this list, which is automatically
disposed of when your application calls the NavDisposeReply function. Some dialogs may return
one or more items; you can determine the number of items in the list by calling the Apple Event
Manager function AECountItems. Each selected HFS file object is described in an AEDesc structure
of type 'typeFSS' or 'typeFSRef'. You can coerce this descriptor into a file reference to perform
operations such as opening the file. If you use one of the Carbon-compliant dialog creation functions
described in“Choosing Files, Folders and Volumes” (page 1401) and “Saving Files” (page 1402), the
descriptor is of type 'typeFSS' on Mac OS 8 or 9; on Mac OS X systems, this descriptor is of type
'typeFSRef'.File-saving dialogs always return a single descriptor in the list. If you use the
NavCreatePutFileDialog (page 1426) function, this descriptor specifies the directory where the file
is to be saved. You can obtain the name for the save file from the saveFileName field.

keyScript
The keyboard script system used for the filename.

fileTranslation
A handle to a Translation Manager structure of type FileTranslationSpec. This structure contains
a corresponding translation array for each file reference returned in the selection field. When
opening files, Navigation Services performs the translation automatically unless you set the
kNavDontAutoTranslate flag in the dialogOptionFlags field of the
NavDialogCreationOptions (page 1452) structure. When Navigation Services performs an automatic
translation, the FileTranslationSpec structure is strictly for the Translation Manager’s use. If you
turn off automatic translation, your application may use the FileTranslationSpec structure for
your own translation scheme. If the user chooses a translation for a saved file, the
FileTranslationSpec structure contains a single translation reference for the saved file and the
translationNeeded field of the NavReplyRecord structure is set to true. The handle to the
FileTranslationSpec structure is locked, so you can safely use dereferenced pointers.

reserved1
Reserved.

saveFileName
If the reply record is filled out by a dialog created with the NavCreatePutFileDialog (page 1426)
function, this field contains a string specifying the name of a file to be saved. This field contains the
entire name of the file, regardless of whether or not any file extension is visible to the user. You can
identify the directory in which the file is to be saved by checking the selection field.

This field was added in structure version 1.

saveFileExtensionHidden
A Boolean value indicating whether the extension on the name of the saved file should be hidden.
Once the file has been saved, the client call the NavCompleteSave function. NavCompleteSave
hides the extension on the file. However, the client needs to know that the extension is hidden so
that it can display the document name correctly in the user interface, such as in window titles and
menus. This field is only used if the client has requested extension preservation using the
kNavPreserveSaveFileExtension dialog option flag. This field was added in structure version 2.

reserved2
Reserved.

reserved
Reserved.

Data Types 1459
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Discussion
Navigation Services uses the NavReplyRecord structure to provide your application with information about
the user’s interactions with a Navigation Services dialog. If the dialog is created with the Carbon-compliant
NavCreate...Dialog functions, you obtain theNavReplyRecordby calling theNavDialogGetReply (page
1430) function after your event-handling function receives the kNavCBUserAction event. If you create the
dialog using one of the older functions, you pass the address of a NavReplyRecord directly to the function
that invokes the dialog. When your application is through using the structure, remember to dispose of it by
calling the function NavDisposeReply (page 1436).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavTypeList
Defines a list of file types that your application is capable of opening.

struct NavTypeList {
 OSType componentSignature;
 short reserved;
 short osTypeCount;
 OSType osType[1];
};
typedef struct NavTypeList NavTypeList;
typedef NavTypeList * NavTypeListPtr;

Fields
componentSignature

A four character code specifying your application signature. If you want your application to be able
to open all files of the types you specify in the osType field (regardless of which application created
them), specify the kNavGenericSignature constant in this field.

reserved
Reserved.

osTypeCount
A number indicating how many file types are defined in the osType field.

osType
A list of file types your application can open.

Discussion
Your application uses the NavTypeList structure to define a list of file types that your application is capable
of opening. Your application passes a pointer to this list to Navigation Services functions that display Open
or Save dialogs. You may create this list dynamically or reference a Translation Manager 'open' resource.

For more information on the 'open' resource and the Translation Manager, see the “Translation Manager”
chapter in Inside Macintosh: More Macintosh Toolbox.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

1460 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

NavEventUPP
Defines a universal procedure pointer (UPP) to an application-defined event–handling function.

typedef NavEventProcPtr NavEventUPP;

Discussion
For more information, see the description of the NavEventProcPtr (page 1448) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavObjectFilterUPP
Defines a universal procedure pointer (UPP) to an application-defined filter function.

typedef NavObjectFilterProcPtr NavObjectFilterUPP;

Discussion
For more information, see the description of the NavObjectFilterProcPtr (page 1449) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavPreviewUPP
Defines a universal procedure pointer (UPP) to an application-defined preview function.

typedef NavPreviewProcPtr NavPreviewUPP;

Discussion
For more information, see the description of the NavPreviewProcPtr (page 1450) callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavMenuItemSpec
Defines additional items in an Open dialog’s Show pop-up menu or a Save dialog’s Format pop-up menu.

Data Types 1461
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

struct NavMenuItemSpec {
 UInt16 version;
 OSType menuCreator;
 OSType menuType;
 Str255 menuItemName;
 char reserved[245];
};
typedef struct NavMenuItemSpec NavMenuItemSpec;
typedef NavMenuItemSpec * NavMenuItemSpecArrayPtr;
typedef NavMenuItemSpecArrayPtr * NavMenuItemSpecArrayHandle;
typedef NavMenuItemSpecArrayPtr NavMenuItemSpecPtr;
typedef NavMenuItemSpecArrayHandle NavMenuItemSpecHandle;

Fields
version

Identifies the version of this structure. Be sure to specify the kNavMenuItemSpecVersion constant
in this field.

menuCreator
A unique value set by your application. Navigation Services passes this value back to your application
to identify the application type of the selected menu item.

menuType
A unique value set by your application. Navigation Services passes this value back to your application
to identify the type of the selected menu item. Values from -1 to 10 are reserved for Navigation
Services.

menuItemName
The item name that appears in the pop-up menu.

reserved
Reserved for future use.

Discussion
For information about file creators and file types, see Inside Macintosh: Macintosh Toolbox Essentials.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

NavContext
An old name for NavDialogRef.

Not recommended

typedef NavDialogRef NavContext;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

1462 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

NavDialogOptions
Contains dialog box configuration settings.

Not recommended

struct NavDialogOptions {
 UInt16 version;
 NavDialogOptionFlags dialogOptionFlags;
 Point location;
 Str255 clientName;
 Str255 windowTitle;
 Str255 actionButtonLabel;
 Str255 cancelButtonLabel;
 Str255 savedFileName;
 Str255 message;
 UInt32 preferenceKey;
 NavMenuItemSpecArrayHandle popupExtension;
 char reserved[494];
};
typedef struct NavDialogOptions NavDialogOptions;

Fields
version

Identifies the version of this structure. Be sure to specify the kNavDialogOptionsVersion constant
in this field.

dialogOptionFlags
One of several constants defined by the NavDialogOptionFlags data type as described in “Dialog
Configuration Options” (page 1471).

location
The upper-left location of the dialog box (in global coordinates). If you set the dialogOptionFlags
field to NULL or set this field to (-1,-1), then the dialog box appears in the same location as when last
closed. The size and location of the dialog box is persistent, but defaults to opening in the middle of
the main screen if any portion is not visible when opened at the persistent location and size.

clientName
A string that identifies your application in the dialog box window title.

windowTitle
A string that you can provide to override the default window title.

actionButtonLabel
An alternative button title for the dialog box’s action button. If you do not specify a title, the button
will use the default label (Open or Save, for example.

cancelButtonLabel
An alternative button title for the Cancel button in dialog boxes.

savedFileName
The default filename for a saved file.

message
The string for the banner, or prompt, below the browser list. This message can provide more descriptive
instructions for the user. If you don’t provide a message string, the browser list expands to fill that
area.

Data Types 1463
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

preferenceKey
An application-defined value that identifies which set of dialog box preferences Navigation Services
should use. If your application maintains multiple sets of preferences for a particular type of dialog
box, you can determine which set is active by specifying the appropriate value in the preferenceKey
field. For example, an application may allow one set of preferences when it calls the function
NavGetFile (page 1438) to open text files and a different set of preferences when opening movie
files. If you do not wish to provide a preference key, specify NULL for the preferenceKey value.

popupExtension
A handle to one or more structures of type NavMenuItemSpec (page 1461) used to add extra menu
items to the Show pop-up menu in an Open dialog box or the Format pop-up menu in Save dialog
boxes. Using NavMenuItemSpec structures allows your application to add additional document types
to be opened or saved, or different ways of saving a file (with or without line breaks, for example).

reserved
Reserved for future use.

Carbon Porting Notes

The NavDialogCreationOptions (page 1452) structure is the recommended replacement for the
NavDialogOptions structure. NavDialogCreationOptions uses CFString objects instead of Pascal strings,
thereby adding support for Unicode. In addition, NavDialogCreationOptions adds fields for controlling
window modality and setting the parent window (necessary for sheets on OS X).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Navigation.h

Constants

Action State Constants
Let you block certain actions in dialogs.

typedef UInt32 NavActionState;
enum {
 kNavNormalState = 0x00000000,
 kNavDontOpenState = 0x00000001,
 kNavDontSaveState = 0x00000002,
 kNavDontChooseState = 0x00000004,
 kNavDontNewFolderState = 0x00000010
};

Constants
kNavNormalState

Allows all user actions. This is the default state.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1464 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavDontOpenState
Prevents Navigation Services from opening files.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavDontSaveState
Prevents Navigation Services from saving files.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavDontChooseState
Prevents Navigation Services from choosing files.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavDontNewFolderState
Prevents Navigation Services from creating new folders.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Discussion
The NavActionState enumeration defines constants you can specify in the parms parameter of the function
NavCustomControl (page 1429) in order to block certain actions in Navigation Services dialogs. When you
specify these constants, you must also specify the kNavSetActionState constant in the selectorparameter
of the NavCustomControl function.

Version Notes
These constants are only available in Navigation Services 2.0 or later.

Custom Control Settings
Provide constants that allow you to control various aspects of the active dialog.

Constants 1465
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

typedef SInt32 NavCustomControlMessage;
enum {
 kNavCtlShowDesktop = 0,
 kNavCtlSortBy = 1,
 kNavCtlSortOrder = 2,
 kNavCtlScrollHome = 3,
 kNavCtlScrollEnd = 4,
 kNavCtlPageUp = 5,
 kNavCtlPageDown = 6,
 kNavCtlGetLocation = 7,
 kNavCtlSetLocation = 8,
 kNavCtlGetSelection = 9,
 kNavCtlSetSelection = 10,
 kNavCtlShowSelection = 11,
 kNavCtlOpenSelection = 12,
 kNavCtlEjectVolume = 13,
 kNavCtlNewFolder = 14,
 kNavCtlCancel = 15,
 kNavCtlAccept = 16,
 kNavCtlIsPreviewShowing = 17,
 kNavCtlAddControl = 18,
 kNavCtlAddControlList = 19,
 kNavCtlGetFirstControlID = 20,
 kNavCtlSelectCustomType = 21,
 kNavCtlSelectAllType = 22,
 kNavCtlGetEditFileName = 23,
 kNavCtlSetEditFileName = 24,
 kNavCtlSelectEditFileName = 25,
 kNavCtlBrowserSelectAll = 26,
 kNavCtlGotoParent = 27,
 kNavCtlSetActionState = 28,
 kNavCtlBrowserRedraw = 29,
 kNavCtlTerminate = 30
};

Constants
kNavCtlShowDesktop

Tells Navigation Services to change the browser list location to the desktop.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlSortBy
Alerts Navigation Services that your application is setting a sort key in the browser list. In addition to
the kNavCtlSortBy constant, your application passes one of the NavSortKeyField constants in
the parms parameter of the function NavCustomControl (page 1429). For a description of the
NavSortKeyField constants, see “File Sorting Constants” (page 1478).

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlSortOrder
Alerts Navigation Services that your application is setting sort order, either ascending or descending,
in the browser list. In addition to passing the kNavCtlSortOrder constant, your application must
pass one of the NavSortOrder constants in the parmsparameter of the NavCustomControl function.
For a description of the NavSortOrder constants, see “Sort Order Constants” (page 1482).

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1466 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavCtlScrollHome
Tells Navigation Services to scroll the browser to the top of the file list.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlScrollEnd
Tells Navigation Services to scroll the browser to the bottom of the file list.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlPageUp
Tells Navigation Services to scroll the browser up one page length as a result of the user clicking the
scroll bar above the scroll box.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlPageDown
Tells Navigation Services to scroll the browser down one page length as a result of the user clicking
the scroll bar below the scroll box.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlGetLocation
Tells Navigation Services to return the current location. Navigation Services reports the current location
by setting a pointer to an AEDesc structure in the param field of the structure of type NavCBRec (page
1451) that you specified in your event-handling function.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlSetLocation
Tells Navigation Services that your application wishes to set the location being viewed in the browser
list. In addition to specifying the kNavCtlSetLocation constant, your application passes a pointer
to an AEDesc structure describing the new location in the parmsparameter of the NavCustomControl
function.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlGetSelection
Tells Navigation Services to return the selected item or items in the browser. When you specify this
constant, Navigation Services returns a pointer to an AEDesc structure describing the selected item(s)
in the param field of the structure of type NavCBRec (page 1451) that you specified in your
event-handling function. If the user deselects the current selection, the AEDescList returned by
Navigation Services contains an empty reference. You can account for this case by using the function
AECountItems and checking for a zero count.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Constants 1467
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavCtlSetSelection
Tells Navigation Services to change the browser list selection. In addition to specifying the
kNavCtlSetSelection constant, your application must pass a pointer to an AEDescList structure
describing the selection in the parms parameter of the NavCustomControl function. If you want to
deselect the current selection without making a new selection, pass NULL for the pointer. Note: If you
specify this constant, Navigation Services notifies your event-handling function by setting the
kNavCBSelectEntry constant twice; once when the previous selection is deselected, and once when
the new selection is made.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlShowSelection
Tells Navigation Services to make the current selection visible in the browser list if the selection has
been scrolled out of sight by the user.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlOpenSelection
Tells Navigation Services to open the current selection.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlEjectVolume
Tells Navigation Services to eject a volume. In addition to specifying this constant, you pass a pointer
to the volume reference number (vRefNum) of the volume to be ejected in the parms parameter of
the NavCustomControl function.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlNewFolder
Tells Navigation Services to create a new folder in the current browser location. In addition to specifying
the kNavCtlNewFolder constant, your application passes a string representing the name of the new
folder in the parms parameter of the NavCustomControl function.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlCancel
Tells Navigation Services to dismiss the Open or Save dialog as if the user had pressed the Cancel
button.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlAccept
Tells Navigation Services to close the Open or Save dialog as if the user had pressed the Open or Save
button. Navigation Services does not act on this constant if there is no current selection.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1468 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavCtlIsPreviewShowing
Asks Navigation Services if the preview area is currently available. If you specify this constant, Navigation
Services sets a pointer to a Boolean value in the param field of the NavCBRec (page 1451) structure
that you specified in your event-handling function. This value is true if the preview area is available,
false otherwise.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlAddControl
Tells Navigation Services to add one application-defined control to Open or Save dialogs. In addition
to sending this message, your application passes a control handle in the parms parameter of the
NavCustomControl function. Design the control in local coordinates.

Note: To avoid any unnecessary flickering or redrawing, ensure the control is initially invisible before
specifying this constant. You may set the control to visible after Navigation Services supplies the
kNavCBStart constant, described in “Event Messages” (page 1475), in the param field of the
NavCBRec (page 1451) structure. If the user resizes the dialog, your application must move the control
because it is not maintained by Navigation Services. If you use the kNavCtlAddControlList constant
(described next) and you supply a 'DITL' resource, you avoid the need to move the control yourself.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlAddControlList
Tells Navigation Services to add a list of application-defined dialog items to Open or Save dialogs. In
addition to specifying this constant, your application passes a handle to a dialog item list or 'DITL'
resource in the parms parameter of the NavCustomControl function. Design the 'DITL' resource
in local coordinates. Navigation Services adds the custom items relative to the upper left corner of
the customization area. If the user resizes the dialog, your custom items are moved automatically.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlGetFirstControlID
Asks Navigation Services to help you identify the first custom control in the dialog, in order to determine
which custom control item was selected by the user. Navigation Services returns a pointer to a 16-bit
integer that indicates the item number of the first custom control in the param field of the structure
of typeNavCBRec (page 1451) that you specified in your event-handling function. In your event-handling
function, use the Dialog Manager function FindDialogItem to find out which item was selected.
The FindDialogItem function returns 0 for the first item, 1 for the second and so on. To get the
proper item number, add 1 to the FindDialogItem function result. The Open or Save dialog’s
standard controls precede yours, so use the formula(itemHit - yourFirstItem + 1) to determine
which of your items was selected. Your application should not depend on any hardcoded value for
the number of items, since this value is likely to change in the future.

Be sure to test the result from FindDialogItem to ensure that it describes a control that you defined.
Your application must not respond to any controls that do not belong to it.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Constants 1469
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavCtlSelectCustomType
Tells Navigation Services to set one of your custom menu items in the Show pop-up menu or the
Format pop-up menu as the default selection. This is useful if you want to override the default pop-up
menu selection. In addition to specifying this constant, pass a pointer to a NavMenuItem structure
in the parms parameter of the NavCustomControl function. This structure describes the item you
wish to have selected.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlSelectAllType
Tells Navigation Services to override the default menu item in the Type pop-up menu. By specifying
one of the NavPopupMenuItem constants, described in“Menu Item Selection Constants” (page 1479),
in the parms parameter of the NavCustomControl function, you can set the default item to All
[AppName] Documents, All Readable Documents or All Documents.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlGetEditFileName
Tells Navigation Services to return the name of the file to be saved by a file-saving function. This
would be useful if you wanted to automatically add an extension to the filename, for example. When
you send this message, the parmsparameter of the NavCustomControl function returns a StringPtr
to a Pascal string containing the filename. Note that in Carbon, you can use the
NavDialogGetSaveFileName (page 1431) function to obtain a Unicode string containing the filename.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlSetEditFileName
Tells Navigation Services that your application wishes to set the name of the file to be saved by a
file-saving function. Your application normally specifies the KNavCtlSetEditFileName constant
after modifying the filename obtained by specifying the kNavCtlGetEditFileName constant. In
addition to specifying the kNavCtlSetEditFileName constant, your application passes a StringPtr
to a Pascal string containing the filename in the parms parameter of the NavCustomControl function.
Note that you can set the filename with a Unicode string by calling the
NavDialogSetSaveFileName (page 1435) function.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlSelectEditFileName
(Navigation Services 1.1 or later) Tells Navigation Services to display the name of the file to be saved
by the function with some or all of the filename string highlighted for selection. In addition to specifying
the kNavCtlSelectEditFileName constant, your application passes a Control Manager structure
of type ControlEditTextSelectionRec in the parms parameter of the NavCustomControl
function in order to specify which part of the filename string to highlight. For more information on
the ControlEditTextSelectionRec structure, see Inside Mac OS X: Control Manager Reference.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlBrowserSelectAll
(Navigation Services 2.0 or later.) Tells Navigation Services to select all files in the browser list.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1470 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavCtlGotoParent
(Navigation Services 2.0 or later.) Tells Navigation Services to navigate to the parent folder or volume
of the current selection.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlSetActionState
(Navigation Services 2.0 or later.) Prevents Navigation Services from handling certain user actions,
such as opening or saving files. This is useful if you want to prevent the dismissal of a dialog until
certain conditions are met, for example. Specify which actions to prevent by passing one or more of
the constants defined by the NavActionState enumeration, described in “Action State
Constants” (page 1464).

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlBrowserRedraw
(Navigation Services 2.0 or later.) Tells Navigation Services to refresh the browser list.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCtlTerminate
(Navigation Services 2.0 or later.) Tells Navigation Services to dismiss the current dialog. This constant
is similar to kNavCtlCancel, except that using kNavCtlTerminate does not return an error code.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Discussion
The NavCustomControlMessage data type defines constants that your application can pass in the selector
parameter of the function NavCustomControl (page 1429) to control various aspects of the active dialog.

Dialog Configuration Options
Specify dialog configuration options.

Constants 1471
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

typedef UInt32 NavDialogOptionFlags;
enum {
 kNavDefaultNavDlogOptions = 0x000000E4,
 kNavNoTypePopup = 0x00000001,
 kNavDontAutoTranslate = 0x00000002,
 kNavDontAddTranslateItems = 0x00000004,
 kNavAllFilesInPopup = 0x00000010,
 kNavAllowStationery = 0x00000020,
 kNavAllowPreviews = 0x00000040,
 kNavAllowMultipleFiles = 0x00000080,
 kNavAllowInvisibleFiles = 0x00000100,
 kNavDontResolveAliases = 0x00000200,
 kNavSelectDefaultLocation = 0x00000400,
 kNavSelectAllReadableItem = 0x00000800,
 kNavSupportPackages = 0x00001000,
 kNavAllowOpenPackages = 0x00002000,
 kNavDontAddRecents = 0x00004000,
 kNavDontUseCustomFrame = 0x00008000,
 kNavDontConfirmReplacement = 0x00010000,
 kNavPreserveSaveFileExtension = 0x00020000
};

Constants
kNavDefaultNavDlogOptions

Tells Navigation Services to use default configuration options. These default options include:

 ■ no custom control titles

 ■ no banner or prompt message

 ■ automatic resolution of aliases

 ■ support for file previews

 ■ no display of invisible file objects

 ■ support for multiple file selection

 ■ support for stationery

 ■ no package support

 ■ all chosen items added to Recent list

 ■ customization area is framed

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavNoTypePopup
Tells Navigation Services not to display the Show pop-up menu in the Open dialog or the Format
pop-up menu in the Save dialog.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1472 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavDontAutoTranslate
Tells Navigation Services not to do automatic file translation. Normally a file chosen in an Open dialog
that requires translation is automatically translated. Navigation Services informs your application that
a file needs translating by setting the translationNeeded field of the NavReplyRecord (page 1458)
structure to true. A translation specification array specified in the fileTranslation field of the
NavReplyRecord structure contains the associated translation specification records. When you set
the kNavDontAutoTranslate flag, your application is responsible for translation, either by calling
the function NavTranslate or by performing the translation itself.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavDontAddTranslateItems
Tells Navigation Services not to display file translation options in the Show pop-up menu.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavAllFilesInPopup
Tells Navigation Services to add a pop-up menu item called All Documents, so the user can see a
display of all files in the current directory.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavAllowStationery
Tells Navigation Services to display a Stationery Option command in the Format pop-up menu of
Save dialogs, so users can choose to save a file as a document or as stationery. This is a default option.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavAllowPreviews
Tells Navigation Services to provide previews, when available, of selected files. This is a default option.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavAllowMultipleFiles
Tells Navigation Services to allow users to select and open multiple files in the browser list by
shift-clicking or using the Select All command. If you don’t specify this constant, users can select
multiple files for drag-and-drop operations, but the default button (normally titled Open) is disabled
when multiple items are selected. Note that the user cannot add folders or volumes to a multiple
selection.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavAllowInvisibleFiles
Tells Navigation Services to show invisible file objects in the browser list.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Constants 1473
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavDontResolveAliases
Tells Navigation Services not to resolve any alias selected by the user. If the user selects an alias with
this option set, the file system specification returned by Navigation Services designates the alias file
instead of its referenced original.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavSelectDefaultLocation
Tells Navigation Services to select the default location in the browser list. By default, Navigation
Services will open the browser list with the default location displayed, not selected. For example, if
you define the System Folder as the default location and specify the kNavSelectDefaultLocation
constant, the System Folder appears as the current selection in the browser list. Without this constant,
the browser list displays the contents of the System Folder.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavSelectAllReadableItem
Tells Navigation Services to show All Readable Documents as the default selection in the Show pop-up
menu when the Open dialog is first displayed. If you do not specify this constant, Navigation Services
shows the All [AppName] Documents menu item as the default selection in the Show pop-up menu
when the Open dialog is first displayed.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavSupportPackages
(Available in Navigation Services 2.0 and later.) Tells Navigation Services to allow packages to be
displayed in the browser list.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavAllowOpenPackages
(Available in Navigation Services 2.0 and later.) Tells Navigation Services to allow packages to be
opened and navigated in the browser list.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavDontAddRecents
(Available in Navigation Services 2.0 and later.) Tells Navigation Services not to add file objects to the
Recent list after a dialog is closed. This is useful if you want to allow users to choose long lists of items
without cluttering up the Recent list.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavDontUseCustomFrame
(Available in Navigation Services 2.0 and later.) Tells Navigation Services not to draw a bevelled border
around the customization area. The border is drawn by default, so you must specify this constant if
you want to turn it off.

Note: Keep in mind that turning off the border may affect the placement of any controls you create
in the customization area. This means your controls may appear differently in different versions of
Navigation Services.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1474 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavDontConfirmReplacement
(Mac OS X only.) Tells Navigation Services not to display an alert when the user attempts to save a
file over another file with the same name.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavPreserveSaveFileExtension
(Available in Navigation Services 3.1 and later.) Tells Navigation Services that the extension in the
default filename should be preserved between dialog invocations and is initially hidden.

Available in Mac OS X v10.1 and later.

Declared in Navigation.h.

Discard Changes Actions
Describe the user response to a Discard Changes dialog.

typedef UInt32 NavAskDiscardChangesResult;
enum {
 kNavAskDiscardChanges = 1,
 kNavAskDiscardChangesCancel = 2
};

Constants
kNavAskDiscardChanges

User clicked the Okay button.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavAskDiscardChangesCancel
User clicked the Cancel button.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Discussion
After you display a dialog created using the NavCreateAskDiscardChangesDialog (page 1416) function,
your application determines the result of the function call by checking the eventData field of a structure
of type NavCBRec (page 1451) for one of the constants defined by the NavAskDiscardChangesResult data
type.

Event Messages
Define messages sent to your event-handling function.

Constants 1475
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

typedef SInt32 NavEventCallbackMessage;
enum {
 kNavCBEvent = 0,
 kNavCBCustomize = 1,
 kNavCBStart = 2,
 kNavCBTerminate = 3,
 kNavCBAdjustRect = 4,
 kNavCBNewLocation = 5,
 kNavCBShowDesktop = 6,
 kNavCBSelectEntry = 7,
 kNavCBPopupMenuSelect = 8,
 kNavCBAccept = 9,
 kNavCBCancel = 10,
 kNavCBAdjustPreview = 11,
 kNavCBUserAction = 12,
 kNavCBOpenSelection = (long)0x80000000
};

Constants
kNavCBEvent

Tells your application that an event has occurred (including an idle event), which provides an
opportunity for your application to track controls, update other windows, and so forth. Your application
can obtain the event record describing this event from the event field of the NavCBRec (page 1451)
structure. The kNavCBEvent constant is the only message that needs to be processed by most
applications that do not customize Open and Save dialogs.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBCustomize
Tells your application to supply a dialog customization request. The customRect field of the
NavCBRec (page 1451) structure defines a rectangle in the local coordinates of the dialog; the top-left
coordinates define the anchor point for a customization rectangle. If you want to customize the dialog,
your application responds to the kNavCBCustomize message by setting a value in the customRect
field that completes the dimensions of the customization rectangle. After your application responds,
Navigation Services inspects the customRect field to determine if the requested dimensions result
in a dialog that can fit on the screen. If the dimensions are too large, then Navigation Services responds
by setting the rectangle to the largest size that the screen can accommodate. Your application can
continue to "negotiate" by examining the customRect field and requesting a different size until
Navigation Services provides an acceptable rectangle value, at which time you should create your
custom control or item list. The minimum size for the customization area is 400 pixels wide by 40
pixels high.

Note: Don’t add new dialog items until your application receives the kNavCBStart event message
constant.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBStart
Tells your application that a dialog is ready to be displayed. After receiving the kNavCBCustomize
event message constant, your event-handling function should wait for the kNavCBStart event
message constant to ensure that your application can safely add dialog items. No additional data is
provided to your application with this constant.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1476 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavCBTerminate
Tells your application that the dialog is about to be closed, which means you must remove any
user-interface items that were created in response to the kNavCBStart message. You can determine
which user action closed the dialog by checking the userAction field of the NavCBRec (page 1451)
structure.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBAdjustRect
Tells your application that the dialog has been resized and the customization rectangle has been
accordingly resized. Use the customRect field from the NavCBRec (page 1451) structure to determine
the new customization rectangle size. Your application does not need to offset the controls; Navigation
Services moves them automatically. Your application is responsible for any redrawing of the controls
or handling events beyond moving the controls, however.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBNewLocation
Tells your application that a new location is being viewed in the dialog. The param field of the
NavCBRec (page 1451) structure contains a pointer to anAEDesc structure of type'typeFSS'describing
the new location. This pointer is valid only during the execution of your event-handling function.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBShowDesktop
Tells your application that the Open or Save dialog is showing the desktop view, consisting of the
composite of all desktop folders from all mounted volumes. The param field of the NavCBRec (page
1451) structure contains a pointer to an AEDescList structure identifying the desktop location. This
pointer is valid only during the execution of your event-handling function.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBSelectEntry
Tells your application that an entry in the browser list has been selected or deselected by the user.
The param field of the NavEventDataInfo structure contains a pointer to an AEDescList record
of type 'typeFSS' identifying the current selection. If the user deselects the current selection, the
AEDescList record contains an empty reference. This pointer is valid only during the execution of
your event-handling function.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBPopupMenuSelect
Tells your application that a selection was made from the Open dialog’s Show pop-up menu or Save
dialog’s Format pop-up menu. TheNavCBRec.eventData.eventDataParms.param field contains
a pointer to a NavMenuItemSpec structure describing the pop-up menu item selected. If the dialog
was created using the Carbon-only NavCreateXXXDialog APIs, then the menuType field of the
NavMenuItemSpec structure is set to the index into the client's CFArray of popupExtension strings
in the NavDialogCreationOptions (page 1452) structure. This data is valid only during the execution
of your event-handling function.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Constants 1477
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavCBAccept
Tells your application that the user has pressed the Accept button.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBCancel
Tells your application that the user has pressed the Cancel button.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBAdjustPreview
Tells your application that the user has toggled the preview area on or off. The param field of the
NavCBRec (page 1451) structure contains a pointer to a Boolean value of true if the preview area is
toggled on and false if toggled off. This information is useful if your application creates custom
controls in the preview area.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBUserAction
(Available only in CarbonLib 1.1 and later and in Mac OS X version 10.0 and later.) Tells your application
that the user has taken an action. To determine which action the user took, call the
NavDialogGetUserAction (page 1432) function.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavCBOpenSelection
(Navigation Services 2.0 or later.) Tells your application that the user has opened a file or chosen a
file object. After detecting this constant, you can call the NavCustomControl (page 1429) function
and specify one of the NavActionState constants, described in “Action State Constants” (page 1464),
in order to block the opening or choosing action.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

File Sorting Constants
Let you specify a sort key for how files display in browser.

typedef UInt16 NavSortKeyField;
enum {
 kNavSortNameField = 0,
 kNavSortDateField = 1
};

Constants
kNavSortNameField

Sort by filename.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1478 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavSortDateField
Sort by modification date.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Discussion
Your application can determine the sort key for displayed files by passing the kNavCtlSortBy constant,
described in “Custom Control Settings” (page 1465), in the selector parameter of the function
NavCustomControl (page 1429), and passing one of the constants defined in the NavSortKeyField data
type in the parms parameter of the NavCustomControl function.

Generic File Signature Constant
Defines a generic creator code.

enum {
 kNavGenericSignature = '****'
};

Constants
kNavGenericSignature

Tells Navigation Services to display all files of a specified type, regardless of the file’s creator code.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Discussion
To specify that your application can open all files of a given type (such as 'TEXT', for example), specify the
kNavGenericSignature constant in the componentSignature field of the structure of type
NavTypeList (page 1460) that you pass to a function that creates a file-opening dialog, such as
NavCreateGetFileDialog (page 1423). You can also pass this constant in the inFileCreator parameter
of the function NavCreatePutFileDialog (page 1426) in order to override the types of files appearing in
the Format pop-up menu.

Version Notes
Added in Navigation Services 2.0

Menu Item Selection Constants
Let you specify the default selection in the Show pop-up menu.

typedef UInt16 NavPopupMenuItem;
enum {
 kNavAllKnownFiles = 0,
 kNavAllReadableFiles = 1,
 kNavAllFiles = 2
};

Constants
kNavAllKnownFiles

Tells Navigation Services to display all files identified as readable by your application.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Constants 1479
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavAllReadableFiles
Tells Navigation Services to display all files identified as readable or translatable by your application.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavAllFiles
Tells Navigation Services to display all files.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Discussion
To set the default selection for the Show pop-up menu of an Open dialog box, your application passes the
kNavCtlSelectAllType constant, described in “Custom Control Settings” (page 1465), in the selector
parameter of the function NavCustomControl (page 1429) and passes one of the constants defined in the
NavPopupMenuItem data type in the parms parameter of the NavCustomControl function.

Object Filtering Constants
Inform you which part of a dialog contains object being filtered.

typedef SInt16 NavFilterModes;
enum {
 kNavFilteringBrowserList = 0,
 kNavFilteringFavorites = 1,
 kNavFilteringRecents = 2,
 kNavFilteringShortCutVolumes = 3,
 kNavFilteringLocationPopup = 4
};

Constants
kNavFilteringBrowserList

The browser list contains the object being filtered.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavFilteringFavorites
The Favorites pop-up menu contains the object being filtered.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavFilteringRecents
The Recent pop-up menu contains the object being filtered.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavFilteringShortCutVolumes
The Shortcuts pop-up menu contains the object being filtered.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1480 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavFilteringLocationPopup
The object being filtered is the path described by the Location menu.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Discussion
Navigation Services passes one of the constants defined by the NavFilterModes data type to the
filterMode parameter of your application-defined filter function to tell your application whether the browser
list or one of the navigation option pop-up menus contains the object currently being filtered.

Save Changes Actions
Describe the user response to a Save Changes dialog.

typedef UInt32 NavAskSaveChangesResult;
enum {
 kNavAskSaveChangesSave = 1,
 kNavAskSaveChangesCancel = 2,
 kNavAskSaveChangesDontSave = 3
};

Constants
kNavAskSaveChangesSave

User clicked the Save button.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavAskSaveChangesCancel
User clicked the Cancel button.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavAskSaveChangesDontSave
User clicked the Don’t Save button.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Discussion
When you create a Save dialog using the function NavCreatePutFileDialog (page 1426), you obtain the
user’s response by callingNavDialogGetReply (page 1430), specifying aNavReplyRecord (page 1458) structure
in the outReply parameter. On completion, this structure contains a value represented by one of the
constants defined by the NavAskSaveChangesResult data type.

Save Changes Requests
Describe the condition that prompts a Save Changes dialog.

Constants 1481
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

typedef UInt32 NavAskSaveChangesAction;
enum {
 kNavSaveChangesClosingDocument = 1,
 kNavSaveChangesQuittingApplication = 2,
 kNavSaveChangesOther = 0
};

Constants
kNavSaveChangesClosingDocument

Requests a Save Changes alert that asks the user whether to save changes when closing a document.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavSaveChangesQuittingApplication
Requests a Save Changes alert that asks the user whether to save changes when quitting your
application.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavSaveChangesOther
Requests a Save Changes alert that asks the user whether to save changes at some time other than
closing or quitting. This is useful when your application prompts the user to save documents at timed
intervals, for example.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Discussion
Your application requests a Save Changes alert by specifying one of the following constants, defined by the
NavAskSaveChangesAction data type, in the inAction parameter of the function
NavCreatePutFileDialog (page 1426).

Sort Order Constants
Let you specify ascending or descending sort order in the browser.

typedef UInt16 NavSortOrder;
enum {
 kNavSortAscending = 0,
 kNavSortDescending = 1
};

Constants
kNavSortAscending

Sort in ascending order.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavSortDescending
Sort in descending order.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1482 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Discussion
Your application can specify the sort order for displayed files by passing the kNavCtlSortOrder constant
in the selectorparameter of the function NavCustomControl (page 1429) and passing one of the constants
defined in the NavSortOrder data type in the parms parameter of the NavCustomControl function.

Translation Options
Let you specify how files are translated.

typedef UInt32 NavTranslationOptions;
enum {
 kNavTranslateInPlace = 0,
 kNavTranslateCopy = 1
};

Constants
kNavTranslateInPlace

Tells Navigation Services to replace the source file with the translation. This setting is the default for
Save dialogs.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavTranslateCopy
Tells Navigation Services to create a translated copy of the source file. This setting is the default for
Open dialogs. The NavCompleteSave function always uses this setting under automatic translation.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

Discussion
Your application passes one of the NavTranslationOptions constants to the howToTranslate parameter
to specify how files are to be translated by the function NavTranslateFile (page 1445).

Constants 1483
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

User Actions
typedef UInt32 NavUserAction;
enum {
 kNavUserActionNone = 0,
 kNavUserActionCancel = 1,
 kNavUserActionOpen = 2,
 kNavUserActionSaveAs = 3,
 kNavUserActionChoose = 4,
 kNavUserActionNewFolder = 5,
 kNavUserActionSaveChanges = 6,
 kNavUserActionDontSaveChanges = 7,
 kNavUserActionDiscardChanges = 8,
 kNavUserActionReviewDocuments = 9,
 kNavUserActionDiscardDocuments = 10
};

Constants
kNavUserActionNone

The dialog is still running or was terminated programmatically.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavUserActionCancel
The user pressed the Cancel button.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavUserActionOpen
The user pressed the Open button in a file-opening dialog.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavUserActionSaveAs
The user pressed the Save button in a file-saving dialog.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavUserActionChoose
The user pressed the Choose button in a Choose dialog.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavUserActionNewFolder
The user pressed the New Folder button in a New Folder dialog and Navigation Services created a
folder.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavUserActionSaveChanges
The user pressed the Save button in a Save Changes dialog.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

1484 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

kNavUserActionDontSaveChanges
The user pressed the Don’t Save button in a Save Changes dialog.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavUserActionDiscardChanges
The user pressed the Discard button in a Discard Changes dialog.

Available in Mac OS X v10.0 and later.

Declared in Navigation.h.

kNavUserActionReviewDocuments
The user clicked the Review Unsaved button in the Review Documents dialog (used only on Mac OS
X).

Available in Mac OS X v10.1 and later.

Declared in Navigation.h.

kNavUserActionDiscardDocuments
The user clicked the Discard Changes button in the Review Documents dialog (used only on Mac OS
X).

Available in Mac OS X v10.1 and later.

Declared in Navigation.h.

Discussion
Navigation Services passes one of the constants defined by the NavUserAction enumeration to your
application in the userAction field of a NavCBRec (page 1451) structure in order to indicate which action
was taken by the user during a Navigation Services dialog.

NavDialogCreationOptions Version Constant
Represents the current version of the NavDialogCreationOptions structure.

enum {
 kNavDialogCreationOptionsVersion = 0
};

NavCBRec Version Constant
Represents the current version of the NavCBRec structure.

enum {
 kNavCBRecVersion = 1
};

NavFileOrFolder Version Constant
Represents the current version of the NavFileOrFolder structure.

Constants 1485
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

enum {
 kNavFileOrFolderVersion = 1
};

NavMenuItemSpec Version Constant
Represents the current version of the NavMenuItemSpec structure.

enum {
 kNavMenuItemSpecVersion = 0
};

NavReplyRecord Version Constant
Represents the current version of the NavReplyRecord structure.

enum {
 kNavReplyRecordVersion = 2
};

Result Codes

The table below shows the most common result codes returned by Navigation Services.

DescriptionValueResult Code

Dialog is not in correct state for requested operation
(it must be running but is not, or vice versa.

-5694kNavWrongDialogStateErr

Available in Mac OS X v10.0 and later.

Requested operation is not valid for this type of
dialog.

-5695kNavWrongDialogClassErr

Available in Mac OS X v10.0 and later.

One or more Navigation Services–required system
components is missing or out of date.

-5696kNavInvalidSystemConfigErr

Available in Mac OS X v10.0 and later.

Navigation Services did not accept a control
message sent by your application.

-5697kNavCustomControlMessageFailedErr

Available in Mac OS X v10.0 and later.

Your application sent an invalid custom control
message.

-5698kNavInvalidCustomControlMessageErr

Available in Mac OS X v10.0 and later.

1486 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

DescriptionValueResult Code

No kind strings were provided to describe your
application's native file types.

-5699kNavMissingKindStringErr

Available in Mac OS X v10.0 and later.

Result Codes 1487
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

1488 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 16

Navigation Services Reference

Framework: Carbon/Carbon.h

Declared in Notification.h

Overview

The Notification Manager provides a notification service. It allows software running in the background (or
otherwise unseen by the user) to communicate information to the user. For example, applications that
manage lengthy background tasks (such as printing many documents or transferring large amounts of data
to other machines) might need to inform the user that the operation is complete. These applications cannot
use the standard methods of communicating with the user, such as alert or dialog boxes, because such
windows might easily be obscured by the windows of other applications. Moreover, even if those windows
are visible, the background application cannot be certain that the user is aware of the change. A more reliable
method is needed to manage the communication between a background application and the user, who
might be awaiting the completion of the background task while running some other application in the
foreground.

In the same way, relatively invisible operations such as Time Manager tasks, VBL tasks, or device drivers might
need to inform the user that some previously started routine is complete or perhaps that some error has
rendered further execution undesirable or impossible.

In all these cases, the communication generally needs to occur in one direction only, from the background
application (or task, or driver) to the user. The Notification Manager, included in system software versions
6.0 and later, allows you to alert the user by posting a notification, which is an audible or visible indication
that your application (or other piece of software) requires the user’s attention. You post a notification by
issuing a notification request to the Notification Manager, which places your request in a queue. When your
request reaches the top of the queue, the Notification Manager posts a notification to the user.

You can request three types of notification:

 ■ Polite notification. A small icon blinks, by periodically alternating with the Apple menu icon (the Apple
logo) or the Application menu icon in the menu bar.

 ■ Audible notification. The Sound Manager plays the system alert sound or a sound contained in an 'snd
' resource.

 ■ Alert notification. An alert box containing a short message appears on the screen. The user must dismiss
the alert box (by clicking the OK button) before foreground processing can continue.

These types of notification are not mutually exclusive. For example, an application can request both audible
and alert notifications. Moreover, if the requesting software is listed in the Application menu (and hence
represents a process that is loaded into memory), you can instruct the Notification Manager to place a

Overview 1489
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Notification Manager Reference

diamond-shaped mark next to the name of the requesting process. The mark is usually intended to prompt
the user to switch the marked application into the foreground. Finally, you can request that the Notification
Manager execute a notification response procedure, which is executed as the final step in a notification.

Functions

DisposeNMUPP
Releases a universal procedure pointer (UPP) to a response callback function.

void DisposeNMUPP (
 NMUPP userUPP
);

Parameters
userUPP

A valid UPP, created by calling the function NewNMUPP (page 1490).

Availability
CarbonLib 1.0 and later. Mac OS X version 10.0 and later.

Declared In
Notification.h

InvokeNMUPP
Invokes a response callback function.

void InvokeNMUPP (
 NMRecPtr nmReqPtr,
 NMUPP userUPP
);

Parameters
nmReqPtr

A pointer to a notification request. For information about defining a notification request, see
NMRec (page 1492).

userUPP
A response callback UPP, created by calling the function NewNMUPP (page 1490).

Availability
CarbonLib 1.0 and later. Mac OS X version 10.0 and later.

Declared In
Notification.h

NewNMUPP
Creates a universal procedure pointer (UPP) to a response callback function.

1490 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Notification Manager Reference

NMUPP NewNMUPP (
 NMProcPtr userRoutine
);

Parameters
userRoutine

A pointer to a response callback function. For more information about response callbacks, see
NMProcPtr (page 1492).

Return Value
A new UPP. When you no longer need this UPP, you should call DisposeNMUPP (page 1490) to release it.

Availability
CarbonLib 1.0 and later. Mac OS X version 10.0 and later.

Declared In
Notification.h

NMInstall
Installs a notification request in the notification queue.

OSErr NMInstall (
 NMRecPtr nmReqPtr
);

Parameters
request

A pointer to a notification request record that the caller provides.

Return Value
A result code. If the result is non-zero, the Notification Manager cannot install the request because it contains
invalid information. See “Notification Manager Result Codes” (page 1494).

Availability
CarbonLib 1.0 and later. Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
Notification.h

NMRemove
Removes a notification request from the notification queue.

OSErr NMRemove (
 NMRecPtr nmReqPtr
);

Parameters
nmReqPtr

A pointer to a notification request record.

Functions 1491
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Notification Manager Reference

Return Value
A result code. If the result is non-zero, the Notification Manager cannot remove the request. See “Notification
Manager Result Codes” (page 1494).

Availability
CarbonLib 1.0 and later. Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
Notification.h

Callbacks

NMProcPtr
Defines a pointer to a response callback function. Your response callback function is executed as the final
stage of a notification.

typedef void (*NMProcPtr) (
 NMRecPtr request
);

If you name your function MyNMProc, you would declare it like this:

void MyNMProc (
 NMRecPtr request
);

Parameters
request

A pointer to a notification request record.

Discussion
The nmResp field of the notification record defines a response function executed as the final stage of a
notification. If no processing is necessary in response to the notification, then you can supply the value NULL
in that field. If you supply a UPP to your own response function in the nmResp field, the Notification Manager
passes it one parameter, a pointer to your notification request.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Notification.h

Data Types

NMRec
Defines the record format of a notification request.

1492 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Notification Manager Reference

struct NMRec {
 QElemPtr qLink;
 short qType;
 short nmFlags;
 long nmPrivate;
 short nmReserved;
 short nmMark;
 Handle nmIcon;
 Handle nmSound;
 StringPtr nmStr;
 NMUPP nmResp;
 long nmRefCon;
};
typedef struct NMRec NMRec;
typedef NMRec * NMRecPtr;

Fields
qLink

This field is used internally by the Notification Manager. You do not need to assign a value to this
field.

qType
Indicates the type of queue. You should assign the value nmType to this field.

nmFlags
Reserved.

nmPrivate
Reserved.

nmReserved
Reserved.

nmMark
In Mac OS, the item to mark in the Application menu. If you do not want to display a mark, assign 0
to this field.

For additional information about the use of this field in Mac OS X, see the discussion below.

nmIcon
In Mac OS, a handle to a small icon that is to blink periodically in the menu bar. If you do not want to
display an icon, assign NULL to this field.

nmSound
In Mac OS, a handle to a sound resource to be played. If you do not want to play a sound, assign NULL
to this field.

nmStr
A string to appear in the notification window. In Mac OS, if you do not want a notification window
you should assign NULL to this field.

nmResp
A UPP to a response callback function. If no processing is necessary in response to the notification,
assign the value NULL to this field.

nmRefCon
A long integer for private use by your application.

Discussion
In Mac OS X version 10.0, only the alert notification is supported.

Data Types 1493
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Notification Manager Reference

In Mac OS X version 10.1 and later, mark and alert notifications are both supported. If you set the nmMark
field to a non-zero value, your process icon will bounce in the dock.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Notification.h

Result Codes

The most common result codes returned by the Notification Manager are listed in the table below.

DescriptionValueResult Code

The notification request contains an invalid queue type.-299nmTypErr

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availability information by using the Notification Manager selectors
defined in the Gestalt Manager. For more information, see Inside Mac OS X: Gestalt Manager Reference.

1494 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 17

Notification Manager Reference

Framework: Carbon/Carbon.h

Declared in Scrap.h

Overview

Important: The Scrap Manager is deprecated in Mac OS X version 10.5 and later. The replacement API is the
Pasteboard Manager. For more information, see Pasteboard Manager Programming Guide.

In Mac OS 9 and earlier, the Scrap Manager allowed applications to copy and paste data using the Clipboard.
The Scrap Manager was included in Carbon to facilitate the porting of legacy applications to Mac OS X. Only
the LoadScrap and UnloadScrap functions were retained from the original Scrap Manager. However, the
Carbon Scrap Manager provided new features, including support for promises.

The Pasteboard Manager supersedes the Scrap Manager and the drag flavor functionality in the Drag Manager,
adding greater flexibility in the type and quantity of data to be transferred. Pasteboard Manager pasteboards
are also fully compatible with Cocoa pasteboards.

You should not use the Scrap Manager in new application development.

Functions by Task

Getting Information About the Scrap

GetScrapFlavorCount (page 1500) Deprecated in Mac OS X v10.5
Obtains a scrap flavor count to use with the GetScrapFlavorInfoList function. (Deprecated. Use
PasteboardCopyItemFlavors instead.)

GetScrapFlavorFlags (page 1502) Deprecated in Mac OS X v10.5
Obtains information about a specified scrap flavor. (Deprecated. Use
PasteboardGetItemFlavorFlags instead.)

GetScrapFlavorInfoList (page 1502) Deprecated in Mac OS X v10.5
Fills an array with items which each describe a corresponding flavor in the scrap. (Deprecated. Use
PasteboardCopyItemFlavors instead.)

Overview 1495
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not
Recommended)

Reading Information From the Scrap

GetCurrentScrap (page 1499) Deprecated in Mac OS X v10.5
Obtains a reference to the current scrap. (Deprecated. Use PasteboardCreate instead.)

GetScrapByName (page 1499) Deprecated in Mac OS X v10.5
Obtains a reference to a named scrap. (Deprecated. Use PasteboardCreate instead.)

GetScrapFlavorData (page 1501) Deprecated in Mac OS X v10.5
Obtains the data for the specified flavor from the specified scrap. (Deprecated. Use
PasteboardCopyItemFlavorData instead.)

GetScrapFlavorSize (page 1503) Deprecated in Mac OS X v10.5
Obtains the size of the data for a specified flavor from a scrap. (Deprecated. Use
PasteboardCopyItemFlavorData instead.)

Writing Information to the Scrap

ClearCurrentScrap (page 1497) Deprecated in Mac OS X v10.5
Clears the current scrap. (Deprecated. Use PasteboardClear instead.)

ClearScrap (page 1498) Deprecated in Mac OS X v10.5
Clears a given scrap. (Deprecated. Use PasteboardClear instead.)

PutScrapFlavor (page 1505) Deprecated in Mac OS X v10.5
Puts data on or promises data to the specified scrap. (Deprecated. Use PasteboardPutItemFlavor
instead.)

Transferring Data Between the Scrap in Memory and the Scrap on Disk

LoadScrap (page 1504) Deprecated in Mac OS X v10.5
Reads the scrap from the scrap file into memory.

UnloadScrap (page 1507) Deprecated in Mac OS X v10.5
Writes the scrap from memory to the scrap file.

Working With Scrap Promise Keeper Functions

CallInScrapPromises (page 1497) Deprecated in Mac OS X v10.5
Forces all promised flavors to be supplied. (Deprecated. Use PasteboardResolvePromises instead.)

DisposeScrapPromiseKeeperUPP (page 1498) Deprecated in Mac OS X v10.5
Disposes of a universal procedure pointer to a function that provides promised scrap data.

InvokeScrapPromiseKeeperUPP (page 1504) Deprecated in Mac OS X v10.5
Calls a universal procedure pointer to a function that provides promised scrap data.

NewScrapPromiseKeeperUPP (page 1505) Deprecated in Mac OS X v10.5
Creates a new universal procedure pointer to a function that provides promised scrap data.

SetScrapPromiseKeeper (page 1507) Deprecated in Mac OS X v10.5
Associates an application-defined promise-keeper function with a scrap or removes an associated
promise-keeper. (Deprecated. Use PasteboardSetPromiseKeeper instead.)

1496 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Functions

CallInScrapPromises
Forces all promised flavors to be supplied. (Deprecated in Mac OS X v10.5. Use PasteboardResolvePromises
instead.)

OSStatus CallInScrapPromises (
 void
);

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
Before quitting, your application should call CallInScrapPromises in order to ensure the user's ability to
paste into other applications. Your application should call CallInScrapPromises even if your application
does not explicitly promise any flavors.

It doesn't hurt to call CallInScrapPromises more than once, though promise-keeper functions may be
asked to keep promises they already tried and failed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

ClearCurrentScrap
Clears the current scrap. (Deprecated in Mac OS X v10.5. Use PasteboardClear instead.)

OSStatus ClearCurrentScrap (
 void
);

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
Call ClearCurrentScrap immediately when the user requests a Copy or Cut operation, even if you maintain
a private scrap. You should not wait until receiving a suspend event to call ClearCurrentScrap. You don't
need to put any data on the scrap immediately, although it's perfectly fine to do so. You do need to call
GetCurrentScrap (page 1499) after ClearCurrentScrap so you'll have a valid scrap reference to pass to
other functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 1497
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Declared In
Scrap.h

ClearScrap
Clears a given scrap. (Deprecated in Mac OS X v10.5. Use PasteboardClear instead.)

OSStatus ClearScrap (
 ScrapRef *inOutScrap
);

Parameters
inOutScrap

A pointer to a scrap reference. On input, this parameter should refer to the scrap to clear. On output,
ClearScrap returns a reference to the cleared scrap.

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
ClearScrapwill clear the scrap passed in and return the incremented ScrapRef value. ClearScrap behaves
similarly to the GetScrapByName function when called with the kScrapClearNamedScrap option, with
the benefit of not requiring a name in the event one is not available.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

DisposeScrapPromiseKeeperUPP
Disposes of a universal procedure pointer to a function that provides promised scrap data. (Deprecated in
Mac OS X v10.5.)

void DisposeScrapPromiseKeeperUPP (
 ScrapPromiseKeeperUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Discussion
See ScrapPromiseKeeperProcPtr (page 1508) for more information on promise keeper functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Scrap.h

1498 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

GetCurrentScrap
Obtains a reference to the current scrap. (Deprecated in Mac OS X v10.5. Use PasteboardCreate instead.)

OSStatus GetCurrentScrap (
 ScrapRef *scrap
);

Parameters
scrap

A pointer to a scrap reference. On return, this scrap reference refers to the current scrap.

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
Your application can determine if the scrap contents have changed by storing the scrap reference returned
by GetCurrentScrap and comparing it against the scrap reference returned by GetCurrentScrap at a
later time. If the two scrap references are different, the scrap has changed.

Carbon applications should use GetCurrentScrap instead of checking the convertClipboardFlag in
the EventRecord.

The ScrapRef obtained via GetCurrentScrap becomes invalid and unusable after the scrap is cleared.
That is, the scrap reference is valid until a Carbon client calls ClearCurrentScrap (page 1497), a Classic client
calls ZeroScrap , or a Cocoa client calls declareTypes:owner:.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

GetScrapByName
Obtains a reference to a named scrap. (Deprecated in Mac OS X v10.5. Use PasteboardCreate instead.)

OSStatus GetScrapByName (
 CFStringRef name,
 OptionBits options,
 ScrapRef *scrap
);

Parameters
name

A CFString containing the name of the scrap to obtain. You may specify a standard scrap by passing
one of the constants described in “Named Scraps” (page 1513) in this parameter.

options
A value indicating whether the specified scrap should be cleared after the reference is returned. See
“Options for the GetScrapByName Function” (page 1513) for more information.

Functions 1499
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

scrap
A pointer to a scrap reference. On return, this scrap reference refers to the scrap named in the name
parameter.

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
GetScrapByName allows access to an indefinite number of public or private scraps. The constant
kScrapClipboardScrap refers to the "current" scrap. kScrapFindScrap allows Carbon applications to
interact seamlessly with Cocoa's global find scrap. Note that calling:

GetScrapByName(kScrapClipboardScrap, kScrapGetNamedScrap, &scrap);

is an exact match to the call:

GetCurrentScrap(&scrap);

Additionally, a call to:

 GetScrapByName(kScrapClipboardScrap, kScrapClearNamedScrap, &scrap);

is a replacement for the sequence:

ClearCurrentScrap();
GetCurrentScrap(&scrap);

You can use this API to generate your own private scraps to use as a high level interprocess communication
between your main and helper applications. Apple recommends using the Java naming convention for your
scraps, for example, com.mycompany.scrap.secret.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

GetScrapFlavorCount
Obtains a scrap flavor count to use with the GetScrapFlavorInfoList function. (Deprecated in Mac OS
X v10.5. Use PasteboardCopyItemFlavors instead.)

OSStatus GetScrapFlavorCount (
 ScrapRef scrap,
 UInt32 *infoCount
);

Parameters
scrap

A reference to the scrap to get the flavor count for.

infoCount
A pointer to a count variable. On return, specifies the flavor count for the specified scrap.

1500 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
For related information, see GetScrapFlavorInfoList (page 1502).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

GetScrapFlavorData
Obtains the data for the specified flavor from the specified scrap. (Deprecated in Mac OS X v10.5. Use
PasteboardCopyItemFlavorData instead.)

OSStatus GetScrapFlavorData (
 ScrapRef scrap,
 ScrapFlavorType flavorType,
 Size *byteCount,
 void *destination
);

Parameters
scrap

A reference to the scrap to get data from.

flavorType
The flavor type to obtain data for. Some flavor types are described in “Scrap Flavor Types” (page 1511).

byteCount
A pointer to a size variable. Before calling GetScrapFlavorData, specify the maximum number of
bytes your buffer can contain. On return, GetScrapFlavorData provides the number of bytes of
data that were actually available, even if this is more than you requested.

destination
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application. The size, in bytes, must be at least as large as the value you pass in the byteCount
parameter. On return, this buffer contains the specified flavor data. The amount of data returned will
not exceed the value you passed in byteCount, even if the number of bytes of available data is more
than you specified in byteCount.

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
This function blocks until the specified flavor data is available.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 1501
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Declared In
Scrap.h

GetScrapFlavorFlags
Obtains information about a specified scrap flavor. (Deprecated in Mac OS X v10.5. Use
PasteboardGetItemFlavorFlags instead.)

OSStatus GetScrapFlavorFlags (
 ScrapRef scrap,
 ScrapFlavorType flavorType,
 ScrapFlavorFlags *flavorFlags
);

Parameters
scrap

A reference to the scrap to check.

flavorType
The flavor type to check for. Some scrap flavor types are described in “Scrap Flavor Types” (page 1511).

flavorFlags
A pointer to a variable of type ScrapFlavorFlags; values for this type are described in “Scrap Flavor
Flags” (page 1512). On return, this variable contains information about the flavor specified by the
flavorType parameter.

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
The GetScrapFlavorFlags function tells you whether the scrap contains data for a particular flavor and,
if it does, provides some information about that flavor. This function never blocks, and is useful for deciding
whether to enable the Paste item in your Edit menu, among other things.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

GetScrapFlavorInfoList
Fills an array with items which each describe a corresponding flavor in the scrap. (Deprecated in Mac OS X
v10.5. Use PasteboardCopyItemFlavors instead.)

1502 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

OSStatus GetScrapFlavorInfoList (
 ScrapRef scrap,
 UInt32 *infoCount,
 ScrapFlavorInfo info[]
);

Parameters
scrap

A reference to the scrap to get the flavor information for.

infoCount
A pointer to a count variable. Before calling GetScrapFlavorInfoList, set the value to the number
of flavors to get information for. Your application typically obtains the flavor count by calling
GetScrapFlavorCount (page 1500).

On return, specifies the number of flavors for which information was supplied, which may be smaller
than the number requested.

info
An array of type ScrapFlavorInfo (page 1509), whose size is indicated by the infoCount parameter.
The array is created and disposed of by your application. On return, the array elements contain the
flavor information.

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

GetScrapFlavorSize
Obtains the size of the data for a specified flavor from a scrap. (Deprecated in Mac OS X v10.5. Use
PasteboardCopyItemFlavorData instead.)

OSStatus GetScrapFlavorSize (
 ScrapRef scrap,
 ScrapFlavorType flavorType,
 Size *byteCount
);

Parameters
scrap

A reference to the scrap to get the flavor data size from.

flavorType
The flavor type to obtain the size for. Some flavor types are described in “Scrap Flavor Types” (page
1511).

byteCount
A pointer to a size variable. On return, this variable contains the byte count for the data of the specified
flavor.

Functions 1503
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
This function will block until the size of the data is available. This may mean blocking until the data itself is
available, since some scrap senders don't know how big a flavor will be until they've made the flavor data.
GetScrapFlavorSize is intended as a prelude to allocating memory and calling
GetScrapFlavorData (page 1501).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

InvokeScrapPromiseKeeperUPP
Calls a universal procedure pointer to a function that provides promised scrap data. (Deprecated in Mac OS
X v10.5.)

OSStatus InvokeScrapPromiseKeeperUPP (
 ScrapRef scrap,
 ScrapFlavorType flavorType,
 void *userData,
 ScrapPromiseKeeperUPP userUPP
);

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
You should not need to use the function InvokeScrapPromiseKeeperUPP, as the system calls your scrap
promise keeper function for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Scrap.h

LoadScrap
Reads the scrap from the scrap file into memory. (Deprecated in Mac OS X v10.5.)

OSStatus LoadScrap (
 void
);

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

1504 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Discussion
The function allocates memory in your application’s heap to hold the scrap before reading the scrap into
memory. The scrap file is located in the System Folder of the startup volume and has the filename as indicated
by the scrapName field of the scrap information structure (usually "Clipboard"). If the scrap is already in
memory, this function does nothing.

Special Considerations

In Mac OS X, this function does nothing and is no longer necessary.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

NewScrapPromiseKeeperUPP
Creates a new universal procedure pointer to a function that provides promised scrap data. (Deprecated in
Mac OS X v10.5.)

ScrapPromiseKeeperUPP NewScrapPromiseKeeperUPP (
 ScrapPromiseKeeperProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your scrap promise keeper function.

Return Value
A UPP to the scrap promise keeper function. See the description of the ScrapPromiseKeeperUPP data type.

Discussion
See ScrapPromiseKeeperProcPtr (page 1508) for more information on promise keeper functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
Scrap.h

PutScrapFlavor
Puts data on or promises data to the specified scrap. (Deprecated in Mac OS X v10.5. Use
PasteboardPutItemFlavor instead.)

Functions 1505
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

OSStatus PutScrapFlavor (
 ScrapRef scrap,
 ScrapFlavorType flavorType,
 ScrapFlavorFlags flavorFlags,
 Size flavorSize,
 const void *flavorData
);

Parameters
scrap

A reference to the scrap to supply data or promises to.

flavorType
The flavor type to supply or promise the data for. Some flavor types are described in “Scrap Flavor
Types” (page 1511).

flavorFlags
A variable of type ScrapFlavorFlags that you use to supply information about the flavor specified
by the flavorType parameter. See “Scrap Flavor Flags” (page 1512) for a description of the values you
can use in this parameter.

flavorSize
The size of the data you are supplying or promising, in bytes. If you don't know the size, pass
kScrapFlavorSizeUnknown to place a promise for data of undetermined size on the scrap. If you
pass 0 in this parameter, a flavor with no expected data—not a promise—is placed on the scrap, and
the value of the flavorData parameter is ignored.

flavorData
A pointer to a buffer, local variable, or other storage location, created and disposed of by your
application. Before calling PutScrapFlavor to put flavor data on the scrap, store the data in this
buffer. For information on the number of bytes of data, see the description of the flavorSize
parameter.

Pass NULL for this parameter to indicate you will provide data through a subsequent call to
PutScrapFlavor, either later in the same code flow or during execution of your
ScrapPromiseKeeperProcPtr (page 1508) callback.

The last time you can provide scrap flavor data is when your scrap promise-keeper function gets
called. It is not possible to call PutScrapFlavor while handling a suspend event; suspend events
under Carbon don't work the way they do under Mac OS 8 and 9.

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
PutScrapFlavor is different than PutScrap in that it includes a ScrapRef parameter and it supports
promising a flavor for later delivery, rather than supplying it immediately.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

1506 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

SetScrapPromiseKeeper
Associates an application-defined promise-keeper function with a scrap or removes an associated
promise-keeper. (Deprecated in Mac OS X v10.5. Use PasteboardSetPromiseKeeper instead.)

OSStatus SetScrapPromiseKeeper (
 ScrapRef scrap,
 ScrapPromiseKeeperUPP upp,
 const void *userData
);

Parameters
scrap

A reference to the scrap to set the promise-keeper function for.

upp
A universal procedure pointer to a scrap promise-keeper function. For more information, see
ScrapPromiseKeeperProcPtr (page 1508)

You can remove a promise-keeper function from a scrap by passing NULL for this parameter.

userData
An untyped pointer to a buffer, local variable, or other storage location, created and disposed of by
your application. This value is passed to the promise-keeper function specified by the upp parameter,
which can do whatever it needs to do with the value. For example, you might pass a pointer or handle
to some private scrap data that your promise-keeper function uses in fabricating one or more promised
flavors.

If your promise-keeper function has no need for special user data, pass NULL for this parameter.

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

UnloadScrap
Writes the scrap from memory to the scrap file. (Deprecated in Mac OS X v10.5.)

OSStatus UnloadScrap (
 void
);

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

Discussion
This function releases the memory occupied by the scrap in your application’s heap. The scrap file is located
in the System Folder of the startup volume and has the filename as indicated by the scrapName field of the
scrap information structure (usually "Clipboard"). If the scrap is already on the disk, this function does nothing.

Functions 1507
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Special Considerations

In Mac OS X, this function does nothing and is no longer necessary.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
Scrap.h

Callbacks

ScrapPromiseKeeperProcPtr
Defines a pointer to a function the Scrap Manager calls to obtain promised scrap data for a specified flavor.

typedef OSStatus (*ScrapPromiseKeeperProcPtr)
(
 ScrapRef scrap,
 ScrapFlavorType flavorType,
 void * userData);

If you name your function MyScrapPromiseKeeperCallback, you would declare it like this:

OSStatus MyScrapPromiseKeeperCallback (

 ScrapRef scrap,
 ScrapFlavorType flavorType,
 void * userData);

Parameters
scrap

A reference to the scrap to which to supply the promised flavor data.

flavorType
The flavor type to supply the promised data for. Some scrap flavor types are described in “Scrap Flavor
Types” (page 1511).

userData
An untyped pointer to a buffer, local variable, or other storage location, created and disposed of by
your application, and supplied to the Scrap Manager by a previous call to
SetScrapPromiseKeeper (page 1507). For example, this parameter might refer to a pointer or handle
to some private scrap data which your promise-keeper function uses in fabricating one or more
promised flavors.

This parameter may have a value of NULL.

Return Value
A result code. See “Scrap Manager Result Codes” (page 1514).

1508 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Discussion
To provide a pointer to your promise-keeper function, you create a universal procedure pointer (UPP), using
the function NewScrapPromiseKeeperUPP (page 1505). You can do so with code similar to the following:

ScrapPromiseKeeperUPP MyPromiseKeeperUPP;
MyPromiseKeeperUPP = NewScrapPromiseKeeperUPP (&MyScrapPromiseKeeperCallback);

You can then associate the UPP with a scrap by passing MyScrapPromiseKeeperCallback as a parameter
to the SetScrapPromiseKeeper (page 1507) function.

If a promised flavor is requested through GetScrapFlavorData (page 1501) or GetScrapFlavorSize (page
1503), the Scrap Manager calls the application's ScrapPromiseKeeperProcPtr function. The scrap
promise-keeper function should call PutScrapFlavor (page 1505) as appropriate to fulfill its promises. Failure
to do so—including returning an error or simply neglecting to keep a promise for a flavor—will result in
errors being returned to corresponding callers of GetScrapFlavorData or GetScrapFlavorSize.

Under Mac OS X, the scrap promise-keeper function can be called during any call to GetScrapFlavorData
or GetScrapFlavorSize. Under Mac OS 8 and 9, the Carbon Scrap Manager still must support non-Carbon
callers of GetScrap, which does not know about promised flavors. As a result, the Carbon Scrap Manager
must make sure all promises have been kept when the application is suspended.

It is okay to keep a promise without ever receiving a call to a scrap promise-keeper function. You should not
call WaitNextEvent or any similar function from your promise-keeper function because the promise-keeper
might be running at suspend event time.

After you are finished with a promise-keeper function, and have removed it by passing NULL to the
SetScrapPromiseKeeper (page 1507) function, you can dispose of the UPP with the
DisposeScrapPromiseKeeperUPP (page 1498) function. However, don’t dispose of the UPP if any other
scrap uses it or if you plan to use it again.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Scrap.h

Data Types

ScrapFlavorInfo
Describes a single flavor within a scrap.

struct ScrapFlavorInfo {
 ScrapFlavorType flavorType;
 ScrapFlavorFlags flavorFlags;
};
typedef struct ScrapFlavorInfo ScrapFlavorInfo;

Fields
flavorType

The flavor type for the flavor. Some values for flavor types are described in “Scrap Flavor Types” (page
1511).

Data Types 1509
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

flavorFlags
The flavor flags for the flavor. Some values for flavor flags are described in “Scrap Flavor Flags” (page
1512).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Scrap.h

ScrapRef
Defines a reference to a scrap.

typedef struct OpaqueScrapRef * ScrapRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Scrap.h

ScrapPromiseKeeperUPP
Defines a universal procedure pointer to a scrap promise–keeper function.

typedef ScrapPromiseKeeperProcPtr ScrapPromiseKeeperUPP;

Discussion
See ScrapPromiseKeeperProcPtr (page 1508) for more information on scrap promise–keeper functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Scrap.h

ScrapFlavorType
Defines a scrap flavor type.

typedef FourCharCode ScrapFlavorType;

Discussion
Some values for scrap flavor types are shown in “Scrap Flavor Types” (page 1511).

Availability
Available in Mac OS X v10.0 and later.

Declared In
Scrap.h

1510 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Constants

Scrap Flavor Types
Identify commonly used scrap flavor types.

enum {
 kScrapFlavorTypePicture = 'PICT',
 kScrapFlavorTypeText = 'TEXT',
 kScrapFlavorTypeTextStyle = 'styl',
 kScrapFlavorTypeMovie = 'moov',
 kScrapFlavorTypeSound = 'snd ',
 kScrapFlavorTypeUnicode = 'utxt',
 kScrapFlavorTypeUnicodeStyle = 'ustl'
};

Constants
kScrapFlavorTypePicture

Specifies the contents of a PicHandle.

Available in Mac OS X v10.0 and later.

Declared in Scrap.h.

kScrapFlavorTypeText
Specifies a stream of text characters.

Available in Mac OS X v10.0 and later.

Declared in Scrap.h.

kScrapFlavorTypeTextStyle
Specifies a style scrap structure. For more information, see TEGetStyleScrapHandle in Inside Mac
OS X: TextEdit Reference.

Available in Mac OS X v10.0 and later.

Declared in Scrap.h.

kScrapFlavorTypeMovie
Specifies a reference to a QuickTime movie.

Available in Mac OS X v10.0 and later.

Declared in Scrap.h.

kScrapFlavorTypeSound
Specifies the contents of a 'snd ' resource. For more information, see the functions SndRecord and
SndPlay in Inside Mac OS X: Sound Manager Reference.

Available in Mac OS X v10.0 and later.

Declared in Scrap.h.

kScrapFlavorTypeUnicode
Specifies a stream of 16-bit Unicode characters.

Available in Mac OS X v10.0 and later.

Declared in Scrap.h.

Constants 1511
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

kScrapFlavorTypeUnicodeStyle
Specifies Unicode style information; defined by ATSUI and used by Textension.

Available in Mac OS X v10.0 and later.

Declared in Scrap.h.

Scrap Flavor Flags
Describe attributes of a scrap flavor.

enum {
 kScrapFlavorMaskNone = 0x00000000,
 kScrapFlavorMaskSenderOnly = 0x00000001,
 kScrapFlavorMaskTranslated = 0x00000002
};
typedef UInt32 ScrapFlavorFlags;

Constants
kScrapFlavorMaskNone

No flavors in the scrap.

Available in Mac OS X v10.0 and later.

Declared in Scrap.h.

kScrapFlavorMaskSenderOnly
The flavor is intended to be visible to the sender only. This is typically used to save a private flavor
into the scrap so that other public promised flavors can be derived from it on demand. If another
process put a flavor with this flag on the scrap, your process will never see the flavor, so you do not
need to test for this flag.

Available in Mac OS X v10.0 and later.

Declared in Scrap.h.

kScrapFlavorMaskTranslated
The flavor has been translated (or will be translated when the promise is kept) from some other flavor
in the scrap, either by the sender or by the Translation Manager.

Available in Mac OS X v10.0 and later.

Declared in Scrap.h.

Discussion
To determine the attributes of a scrap flavor, call the GetScrapFlavorFlags (page 1502) function.

Reserved Flavor Type
Identifies a flavor type reserved by the Scrap Manager.

enum {
 kScrapReservedFlavorType = 'srft'
};

Discussion
kScrapReservedFlavorType is a flavor type which is reserved for use by the Scrap Manager. If you pass
it to the Scrap Manager, it will be rejected.

1512 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Unknown Flavor Data Size Constant
Indicates that the size of the scrap flavor data is unknown.

enum {
 kScrapFlavorSizeUnknown = -1
};

Discussion
When promising a scrap flavor, it is okay if you don't yet know how big the flavor data will be. In this case,
pass kScrapFlavorSizeUnknown for the flavor data size.

Options for the GetScrapByName Function
Define options passed to the GetScrapByName function.

enum {
 kScrapGetNamedScrap = 0,
 kScrapClearNamedScrap = 0x00000001
};

Constants
kScrapGetNamedScrap

Get current named scrap without bumping or clearing the scrap.

Available in Mac OS X v10.1 and later.

Declared in Scrap.h.

kScrapClearNamedScrap
Acquire the named scrap, bumping and clearing the scrap.

Available in Mac OS X v10.1 and later.

Declared in Scrap.h.

Invalid Scrap Reference
Defines an invalid scrap reference.

#define kScrapRefNone ((ScrapRef)NULL)

Discussion
kScrapRefNone is guaranteed to be an invalid ScrapRef. This is convenient when initializing application
variables.

Named Scraps
Specify Apple–defined scrap names for the GetScrapByName function.

Constants 1513
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

#define kScrapClipboardScrap CFSTR("com.apple.scrap.clipboard")
#define kScrapFindScrap CFSTR("com.apple.scrap.find")

Constants
kScrapClipboardScrap

Traditional clipboard scrap.

Available in Mac OS X v10.1 and later.

Declared in Scrap.h.

kScrapFindScrap
Compatible with Cocoa's global find scrap.

Available in Mac OS X v10.1 and later.

Declared in Scrap.h.

Result Codes

The most common result codes returned by Scrap Manager are listed below.

DescriptionValueResult Code

Scrap does not exist (same as noScrapErr)-100needClearScrapErr

Available in Mac OS X v10.0 and later.

Scrap does not exist (not initialized)-100noScrapErr

Available in Mac OS X v10.0 and later.

No data of the requested format type in scrap-102noTypeErr

Available in Mac OS X v10.0 and later.

No data of the requested format type in scrap (same as
noTypeErr)

-102scrapFlavorNotFoundErr

Available in Mac OS X v10.0 and later.

Scrap Manager has encountered an internal error-4988internalScrapErr

Available in Mac OS X v10.0 and later.

Data (or a promise for data) of the specified format already
exists in the scrap

-4989duplicateScrapFlavorErr

Available in Mac OS X v10.0 and later.

Invalid scrap reference-4990badScrapRefErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-4991processStateIncorrectErr

No data supplied for the promised flavor-4992scrapPromiseNotKeptErr

Available in Mac OS X v10.0 and later.

1514 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

DescriptionValueResult Code

No scrap promise–keeper function set for the scrap-4993noScrapPromiseKeeperErr

Available in Mac OS X v10.0 and later.

Available in Mac OS X v10.0 and later.-4994nilScrapFlavorDataErr

Available in Mac OS X v10.0 and later.-4995scrapFlavorFlagsMismatchErr

Available in Mac OS X v10.0 and later.-4996scrapFlavorSizeMismatchErr

Invalid scrap flavor flags-4997illegalScrapFlavorFlagsErr

Available in Mac OS X v10.0 and later.

Invalid scrap flavor-4998illegalScrapFlavorTypeErr

Available in Mac OS X v10.0 and later.

Invalid size for scrap flavor data-4999illegalScrapFlavorSizeErr

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availability information by using the Scrap Manager selectors defined
in the Gestalt Manager. For more information see Gestalt Manager Reference.

Gestalt Constants 1515
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

1516 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 18

Scrap Manager Reference (Not Recommended)

Framework: Carbon/Carbon.h

Declared in SpeechRecognition.h

Overview

The Speech Recognition Manager provides speech recognition support in applications.

Functions by Task

Opening and Closing Recognition Systems

SRCloseRecognitionSystem (page 1524)
Closes a recognition system when your application is finished using it (for example, just before your
application quits).

SROpenRecognitionSystem (page 1537)
Opens a recognition system.

Creating and Manipulating Recognizers

SRCancelRecognition (page 1522)
Cancels the attempt to recognize the current utterance.

SRContinueRecognition (page 1524)
Causes a recognizer to continue recognizing speech.

SRGetLanguageModel (page 1528)
Gets a recognizer’s active language model.

SRIdle (page 1531)
Grants processing time to the Speech Recognition Manager if your application does not call
WaitNextEvent frequently.

SRNewRecognizer (page 1535)
Creates a new recognizer.

SRSetLanguageModel (page 1543)
Sets a recognizer’s active language model.

SRStartListening (page 1546)
Starts a recognizer listening and reporting results to your application.

Overview 1517
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

SRStopListening (page 1547)
Stops a recognizer listening and reporting results to your application.

Managing Speech Objects

SRGetProperty (page 1529)
Gets the current value of a property of a speech object.

SRGetReference (page 1530)
Obtains an extra reference to a speech object.

SRReleaseObject (page 1540)
Releases a speech object.

SRSetProperty (page 1543)
Sets the value of a property of a speech object.

Traversing Speech Objects

SRCountItems (page 1525)
Determines the number of subitems in a container object.

SRGetIndexedItem (page 1527)
Gets a subitem in a container object.

SRRemoveIndexedItem (page 1541)
Removes a subitem from a container object.

SRSetIndexedItem (page 1542)
Replaces a subitem in a container object with some other object.

Creating Language Objects

SRNewLanguageModel (page 1531)
Creates a new language model.

SRNewPath (page 1534)
Creates a new path.

SRNewPhrase (page 1535)
Creates a new phrase.

SRNewWord (page 1536)
Creates a new word.

Manipulating Language Objects

SRAddLanguageObject (page 1521)
Adds a language object to some other language object.

SRAddText (page 1522)
Adds text to the contents of a language object.

1518 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

SRChangeLanguageObject (page 1523)
Changes the contents of a language object.

SREmptyLanguageObject (page 1527)
Empties the contents of a language object.

SRNewLanguageObjectFromHandle (page 1533)
Creates a language object from the handle previously created by the
SRPutLanguageObjectIntoHandle function.

SRNewLanguageObjectFromDataFile (page 1532)
Reads a language object from a data file.

SRPutLanguageObjectIntoHandle (page 1540)
Puts a language object (and any embedded languages objects it contains) into a handle.

SRPutLanguageObjectIntoDataFile (page 1539)
Puts a language object (and any embedded language objects it contains) into a data file.

SRRemoveLanguageObject (page 1541)
Removes a language object from another language object that contains it.

Using the System Feedback Window

SRDrawRecognizedText (page 1525)
Draws recognized text in the feedback window.

SRDrawText (page 1526)
Draws output text in the feedback window.

SRProcessBegin (page 1537)
Indicates that a recognition result is being processed.

SRProcessEnd (page 1538)
Indicates that a recognition result is done being processed.

SRSpeakAndDrawText (page 1544)
Draws output text in the feedback window and causes the feedback character in the feedback window
to speak that text.

SRSpeakText (page 1545)
Causes the feedback character in the feedback window to speak a text string.

SRSpeechBusy (page 1546)
Determines if the feedback character in a feedback window is currently speaking.

SRStopSpeech (page 1547)
Terminates speech by the feedback character in a feedback window.

Creating, Invoking and Disposing UPPs

NewSRCallBackUPP (page 1520)
Creates a new universal procedure pointer (UPP) to a speech recognition callback function.

DisposeSRCallBackUPP (page 1520)
Disposes of a universal procedure pointer (UPP) to a speech recognition callback function.

InvokeSRCallBackUPP (page 1520)
Invokes your speech recognition callback function.

Functions by Task 1519
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Functions

DisposeSRCallBackUPP
Disposes of a universal procedure pointer (UPP) to a speech recognition callback function.

void DisposeSRCallBackUPP (
 SRCallBackUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

InvokeSRCallBackUPP
Invokes your speech recognition callback function.

void InvokeSRCallBackUPP (
 SRCallBackStruct *param,
 SRCallBackUPP userUPP
);

Discussion
You should not have to call the InvokeSRCallbackUPP function, as the system calls your speech recognition
callback function for you.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

NewSRCallBackUPP
Creates a new universal procedure pointer (UPP) to a speech recognition callback function.

SRCallBackUPP NewSRCallBackUPP (
 SRCallBackProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your speech recognition callback function.

1520 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Return Value
A UPP to the speech recognition callback function. See the description of the SRCallBackUPP data type.

Availability
Available in CarbonLib 1.0.2 and later.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRAddLanguageObject
Adds a language object to some other language object.

OSErr SRAddLanguageObject (
 SRLanguageObject base,
 SRLanguageObject addon
);

Parameters
base

The language object to which to add the language object specified by the addon parameter.

addon
The language object to add on to the language object specified in the base parameter. For example,
if addon specifies a word and base specifies a phrase, then SRAddLanguageObject appends that
word to the end of that phrase.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRAddLanguageObject function is useful for adding language objects to phrases, paths, and language
models. For a phrase or a path, SRAddLanguageObject appends the specified object to the end of the
phrase or path. For a language model, SRAddLanguageObject adds the specified object to the list of
alternative recognizable utterances.

The language object to which you add an object acquires a new reference to that object. Accordingly, any
changes you subsequently make to the added object are reflected in any object to which you added it. The
base object releases its reference to the added object when the base object is disposed of.

SRAddLanguageObject does not alter the value of the reference constant property of the language object
specified by the base parameter.

See SRAddText (page 1522) for a useful shortcut function.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

Functions 1521
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

SRAddText
Adds text to the contents of a language object.

OSErr SRAddText (
 SRLanguageObject base,
 const void *text,
 SInt32 textLength,
 SRefCon refCon
);

Parameters
base

A language object to which to add the text.

text
A pointer to a buffer that contains the words or phrase to add to the contents of the specified language
object.

textLength
The size, in bytes, of the specified text.

refCon
An application-defined reference constant. The value of the reference constant property of the new
word or phrase representing the specified text is set to this value.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRAddText function is useful for phrases, paths, and language models. If the base parameter specifies
a path or language model, SRAddText is equivalent to calling SRNewPhrase, SRAddLanguageObject, and
SRReleaseObject for the phrase specified by the text parameter and calling SRSetProperty to reset
the value of the reference constant property of the new phrase.

If the base parameter specifies a phrase, SRAddText is equivalent to calling SRNewPhrase,
SRAddLanguageObject, and SRReleaseObject for each distinguishable word in the text parameter and
calling SRSetProperty to set the value of the reference constant property of the new words.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRCancelRecognition
Cancels the attempt to recognize the current utterance.

OSErr SRCancelRecognition (
 SRRecognizer recognizer
);

Parameters
recognizer

A recognizer.

1522 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRCancelRecognition function instructs the recognizer specified by the recognizer parameter to
stop recognizing speech. You need to call either SRContinueRecognition or SRCancelRecognition
each time your application is notified that the user has started speaking (using Apple events or through an
application-defined callback routine).

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRChangeLanguageObject
Changes the contents of a language object.

OSErr SRChangeLanguageObject (
 SRLanguageObject languageObject,
 const void *text,
 SInt32 textLength
);

Parameters
languageObject

A language object.

text
A pointer to a buffer that contains the words or phrase to which the contents of the specified language
object are to be changed.

textLength
The size, in bytes, of the specified text.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
SRChangeLanguageObject is a convenient shortcut for calling SREmptyLanguageObject and then
SRAddText.

SRChangeLanguageObject does not alter the value of the reference constant property of the language
object specified by the languageObject parameter.

If there are no other references to the language object specified by the languageObject parameter, calling
SRChangeLanguageObject causes that object to be released.

If you want to swap rapidly among several language models, you should use the SRSetLanguageObject
function instead of SRChangeLanguageObject. Or, you could use the kSREnabled property to rapidly
enable and disable parts of the current language model to reflect the current context.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.

Functions 1523
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRCloseRecognitionSystem
Closes a recognition system when your application is finished using it (for example, just before your application
quits).

OSErr SRCloseRecognitionSystem (
 SRRecognitionSystem system
);

Parameters
system

A recognition system.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRCloseRecognitionSystem function closes the recognition system specified by the systemparameter.
If any speech objects are still attached to that recognition system, they are disposed of and any references
you have to those objects are thereby rendered invalid.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRContinueRecognition
Causes a recognizer to continue recognizing speech.

OSErr SRContinueRecognition (
 SRRecognizer recognizer
);

Parameters
recognizer

A recognizer.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
You need to call either SRContinueRecognition or SRCancelRecognition each time your application
is notified that the user has started speaking (using Apple events or through an application-defined callback
routine).

1524 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRCountItems
Determines the number of subitems in a container object.

OSErr SRCountItems (
 SRSpeechObject container,
 long *count
);

Parameters
container

A speech object.

count
On return, a pointer to a long containing the number of subitems in the specified speech object.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
This function is useful only for speech objects that have distinguishable subitems, such as phrases (which
contain words), paths (which contain words, phrases, and language models), and language models (which
contain words, phrases, paths, and possibly other language models).

Version Notes
In Speech Recognition Manager version 1.5, this function is useful only for operating on language objects
(of type SRLanguageObject), although it is defined for all speech objects.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRDrawRecognizedText
Draws recognized text in the feedback window.

Functions 1525
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

OSErr SRDrawRecognizedText (
 SRRecognizer recognizer,
 const void *dispText,
 SInt32 dispLength
);

Parameters
recognizer

A recognizer.

dispText
A pointer to a buffer that contains the text to be drawn.

dispLength
The size, in bytes, of the specified text.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
TheSRDrawRecognizedText function draws the text specified by thedispText anddispLengthparameters
in the transcript portion of the feedback window associated with the recognizer specified by the recognizer
parameter. The text is drawn in the style characteristic of all recognized text. You might want to use this
function to display a recognized phrase using a different spelling than the one used in the language model.

If the value of the kSRWantsResultTextDrawn property of the specified recognizer is TRUE (which is the
default value), a transcript of the text of a recognition result is automatically sent directly to the feedback
window. As a result, you should call SRDrawRecognizedText only when the value of the recognizer’s
kSRWantsResultTextDrawn property is FALSE.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRDrawText
Draws output text in the feedback window.

OSErr SRDrawText (
 SRRecognizer recognizer,
 const void *dispText,
 SInt32 dispLength
);

Parameters
recognizer

A recognizer.

dispText
A pointer to a buffer that contains the text to be drawn.

dispLength
The size, in bytes, of the specified text.

1526 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRDrawText function draws the text specified by the dispText and dispLength parameters in the
transcript portion of the feedback window associated with the recognizer specified by the recognizer
parameter. The text is drawn in the style characteristic of all output text.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SREmptyLanguageObject
Empties the contents of a language object.

OSErr SREmptyLanguageObject (
 SRLanguageObject languageObject
);

Parameters
languageObject

A language object.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SREmptyLanguageObject function empties the contents of the language object specified by the
languageObject parameter. (For example, if languageObject specifies a phrase containing two words,
calling SREmptyLanguageObject would result in a phrase that contains no words.) Any properties of that
object that are not related to its contents are unchanged. In particular, SREmptyLanguageObject does not
alter the value of the reference constant property of that language object.

If there are no other references to the words, phrases, and paths that were contained in the language object,
calling SREmptyLanguageObject causes them to be disposed of.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRGetIndexedItem
Gets a subitem in a container object.

Functions 1527
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

OSErr SRGetIndexedItem (
 SRSpeechObject container,
 SRSpeechObject *item,
 long index
);

Parameters
container

A speech object.

item
On return, a reference to the subitem in the specified speech object that has the specified index.

index
An integer ranging from 0 to one less than the number of subitems in the specified speech object.
(You can call the SRCountItems function to determine the number of subitems contained in a speech
object.) If the index you specify is not in this range, SRGetIndexedItem returns the result code
kSRParamOutOfRange.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
This function is useful for iterating through all subitems in a container object.

SRGetIndexedItem increases the reference count of the specified speech object. You should call the
SRReleaseObject function to release the object reference returned by SRGetIndexedItem when you are
done using it. For example, you can get a reference to the third word in a phrase by executing this code:

myErr = SRGetIndexedItem(myPhrase, &myWord, 2)

Then, when you are finished using the word, you should execute this code:

myErr = SRReleaseObject(myWord);

Version Notes
In Speech Recognition Manager version 1.5, this function is useful only for operating on language objects
(of type SRLanguageObject), although it is defined for all speech objects.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRGetLanguageModel
Gets a recognizer’s active language model.

1528 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

OSErr SRGetLanguageModel (
 SRRecognizer recognizer,
 SRLanguageModel *languageModel
);

Parameters
recognizer

A recognizer.

languageModel
On return, a reference to the language model currently active for the specified recognizer.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
SRGetLanguageModel increases the reference count of the specified language model. You should call the
SRReleaseObject function to release the language model reference returned by SRGetLanguageModel
when you are done using it.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRGetProperty
Gets the current value of a property of a speech object.

OSErr SRGetProperty (
 SRSpeechObject srObject,
 OSType selector,
 void *property,
 Size *propertyLen
);

Parameters
srObject

A speech object.

selector
A property selector. See “Recognizer Properties” (page 1564), “Recognizer Listen Key Properties” (page
1563), “Language Object Properties” (page 1557), and “Recognition System Properties” (page 1562) for lists
of the available property selectors.

property
A pointer to a buffer into which the value of the specified property is to be copied.

Functions 1529
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

propertyLen
On entry, a pointer to the length, in bytes, of the specified buffer. If the value is of a fixed size, then
propertyLen should point to a variable of type Size that specifies that size. If the size of the value
can vary (for example, if the value is a string), then propertyLen should point to a variable of type
Size that specifies the number of bytes in the buffer pointed to by the property parameter.

On return, if the buffer is large enough to hold the returned property value and no error occurs,
SRGetProperty sets propertyLen to the total number of bytes in the value of the specified property.
If the buffer is not large enough to hold the returned property value, SRGetProperty sets
propertyLen to the number of bytes required to store the requested property and returns the
kSRBufferTooSmall error code.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
Not all selectors are valid for all types of speech objects. If the selector you specify does not specify a property
of the specified speech object, SRGetProperty returns the result code kSRCantGetProperty.

If SRGetProperty returns an object reference, you must make sure to release that object reference (by
calling SRReleaseObject) when you are finished using it. Most selectors do not cause SRGetProperty to
return object references. For example, passing the selector kSRSpelling causes SRGetProperty to return
a buffer of text, not an object reference.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRGetReference
Obtains an extra reference to a speech object.

OSErr SRGetReference (
 SRSpeechObject srObject,
 SRSpeechObject *newObjectRef
);

Parameters
srObject

A speech object.

newObjectRef
On return, a new reference to the specified speech object.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The original object reference (contained in srObject) and the new reference (returned in newObjectRef)
may have different values. Accordingly, you cannot simply compare two object references to determine
whether they are references to the same speech object.

1530 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

SRGetReference increases the reference count of the specified speech object. You should call the
SRReleaseObject function to release the object reference returned by SRGetReference when you are
done using it.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRIdle
Grants processing time to the Speech Recognition Manager if your application does not call WaitNextEvent
frequently.

OSErr SRIdle (
 void
);

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRIdle function grants processing time to the Speech Recognition Manager, thereby allowing it to
process incoming sound and send recognition results.

Most applications do not need to call the SRIdle function. You need to call it only if your application does
a significant amount of processing without periodically calling WaitNextEvent. If you do use the SRIdle
function, you should call it often enough that the Speech Recognition Manager can perform its work.

Note, however, that if you call SRIdle and not WaitNextEvent, you give time to the recognizer but not to
the feedback window. You must call WaitNextEvent periodically to have the feedback animations work
correctly if your recognizer is using the standard feedback window.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRNewLanguageModel
Creates a new language model.

Functions 1531
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

OSErr SRNewLanguageModel (
 SRRecognitionSystem system,
 SRLanguageModel *model,
 const void *name,
 SInt32 nameLength
);

Parameters
system

A recognition system.

model
On return, a reference to a new empty language model associated with the specified recognition
system.

name
A pointer to a buffer that contains the name of the language model. The name of the language model
should be unique among all the language models your application creates, and it should be
comprehensible to users. (For example, a language model that defined a list of names might be called
“«Names»”).

The convention that language model names begin with the character “«” and end with the character
“»” is adopted to support future utilities that display the names of language models to the user
(perhaps as part of showing the user what he or she can say).

nameLength
The size, in bytes, of the specified name.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
You can add language objects (that is, words, phrases, paths, and other language models) to a language
model by calling the SRAddText and SRAddLanguageObject functions.

SRNewLanguageModel sets the reference count of the specified language model to 1. You should call the
SRReleaseObject function to release the language model reference returned by SRNewLanguageModel
when you are done using it.

You can get or set the name of an existing language model by calling the SRGetProperty or SRSetProperty
functions with the kSRSpelling property selector.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRNewLanguageObjectFromDataFile
Reads a language object from a data file.

1532 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

OSErr SRNewLanguageObjectFromDataFile (
 SRRecognitionSystem system,
 SRLanguageObject *languageObject,
 short fRefNum
);

Parameters
system

A recognition system.

languageObject
On return, a reference to a new language object whose description is stored in the open data file that
has the file reference number specified by the fRefNum parameter.

fRefNum
A file reference number of an open data file.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
SRNewLanguageObjectFromDataFile reads data beginning at the current file mark.

If the language object is successfully created and initialized, the file mark is left at the byte immediately
following the language object description. Otherwise, if the language object data is not appropriately
formatted, SRNewLanguageObjectFromDataFile returns the result code kSRCantReadLanguageObject
as its function result and the file mark is not moved.

You should call the SRReleaseObject function to release the language object reference returned by
SRNewLanguageObjectFromDataFile when you are done using it.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRNewLanguageObjectFromHandle
Creates a language object from the handle previously created by the SRPutLanguageObjectIntoHandle
function.

OSErr SRNewLanguageObjectFromHandle (
 SRRecognitionSystem system,
 SRLanguageObject *languageObject,
 Handle lObjHandle
);

Parameters
system

A recognition system.

languageObject
On return, a reference to a new language object created and initialized using the private data to which
the lobjHandle parameter is a handle.

Functions 1533
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

lObjHandle
A handle to a language object. The data specified by lobjHandle should have been created by a
previous call to the SRPutLanguageObjectIntoHandle function; if that data is not appropriately
formatted, SRNewLanguageObjectFromHandle returns the result code
kSRCantReadLanguageObject as its function result.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
You can use this function to load language objects from resources (for example, by using the Resource
Manager function GetResource).

You should call the SRReleaseObject function to release the language object reference returned by
SRNewLanguageObjectFromHandle when you are done using it.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRNewPath
Creates a new path.

OSErr SRNewPath (
 SRRecognitionSystem system,
 SRPath *path
);

Parameters
system

A recognition system.

path
On return, a reference to a new empty path associated with the specified recognition system.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
You can then add objects to a path by calling the SRAddText or SRAddLanguageObject functions.

You should call the SRReleaseObject function to release the path reference returned by SRNewPath when
you are done using it.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

1534 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

SRNewPhrase
Creates a new phrase.

OSErr SRNewPhrase (
 SRRecognitionSystem system,
 SRPhrase *phrase,
 const void *text,
 SInt32 textLength
);

Parameters
system

A recognition system.

phrase
On return, a reference to a new phrase associated with the specified recognition system.

text
A pointer to a buffer that contains the words that comprise the phrase.

textLength
The size, in bytes, of the specified text.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The phrase’s contents (that is, the words that comprise the phrase) is specified by the text and textLength
parameters. You can, if you wish, create a new empty phrase and then add words to it by calling the
SRAddText or SRAddLanguageObject functions.

You should call the SRReleaseObject function to release the phrase reference returned by SRNewPhrase
when you are done using it.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRNewRecognizer
Creates a new recognizer.

OSErr SRNewRecognizer (
 SRRecognitionSystem system,
 SRRecognizer *recognizer,
 OSType sourceID
);

Parameters
system

A recognition system.

Functions 1535
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

recognizer
On return, a reference to a new recognizer associated with the specified recognition system and using
the specified speech source.

sourceID
A speech source ID. See “Speech Source Constants” (page 1567).

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
SRNewRecognizer may need to load substantial amounts of data from disk into memory. As a result, you
might want to change the cursor to the watch cursor before you call SRNewRecognizer.

You should call theSRReleaseObject function to release the object reference returned bySRNewRecognizer
when you are done using it.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRNewWord
Creates a new word.

OSErr SRNewWord (
 SRRecognitionSystem system,
 SRWord *word,
 const void *text,
 SInt32 textLength
);

Parameters
system

A recognition system.

word
On return, a reference to a new word associated with the specified recognition system.

text
A pointer to a buffer that contains the characters that comprise the word.

textLength
The size, in bytes, of the specified text.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
You should call the SRReleaseObject function to release the word reference returned by SRNewWordwhen
you are done using it.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.

1536 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SROpenRecognitionSystem
Opens a recognition system.

OSErr SROpenRecognitionSystem (
 SRRecognitionSystem *system,
 OSType systemID
);

Parameters
system

On return, a reference to the recognition system having the specified system ID.

systemID
A recognition system ID.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
Generally, you should open a single recognition system when your application starts up and close it (by
calling the function SRCloseRecognitionSystem) before your application exits.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRProcessBegin
Indicates that a recognition result is being processed.

OSErr SRProcessBegin (
 SRRecognizer recognizer,
 Boolean failed
);

Parameters
recognizer

A recognizer.

failed
A Boolean value that determines how the feedback gestures are to be altered and whether the
response sound is to be played (FALSE) or not (TRUE).

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Functions 1537
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Discussion
The SRProcessBegin function causes the Speech Recognition Manager to provide the relevant feedback
(in the feedback window associated with the recognizer specified by the recognizer parameter) indicating
that the application is in the process of responding to a spoken command. Currently, the gestures of the
feedback character are changed to indicate that processing is occurring.

If you set the value of the recognizer’s kSRWantsAutoFBGestures property to FALSE, you should call
SRProcessBegin at the beginning of your response to a recognition result and SRProcessEnd at the end
of your response. During the interval separating the two calls, the feedback character displays an appropriate
set of gestures showing the user that the task is being processed. If you pass the value TRUE in the failed
parameter (indicating that the recognition result cannot successfully be processed), the feedback character
displays frowns, shrugs, or other appropriate gestures. In addition, when failed is TRUE, you do not need
to call SRProcessEnd to end the processing. If you pass the value FALSE in the failed parameter but
determine subsequently that the recognition result cannot successfully be processed, you should call
SRProcessEnd with the failed parameter set to TRUE.

If the value of the kSRWantsAutoFBGestures property of the specified recognizer is TRUE, the Speech
Recognition Manager calls SRProcessBegin internally before notifying your application of a recognition
result, and it calls SRProcessEnd internally after your application is notified. As a result, you should call
SRProcessBegin or SRProcessEnd only when the value of the recognizer’s kSRWantsAutoFBGestures
property is FALSE.

Because the default value of the kSRWantsAutoFBGestures property is TRUE, most applications do not
need to call SRProcessBegin. Calling SRProcessBegin is useful, however, when you know the resulting
action might take a significant amount of time.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRProcessEnd
Indicates that a recognition result is done being processed.

OSErr SRProcessEnd (
 SRRecognizer recognizer,
 Boolean failed
);

Parameters
recognizer

A recognizer.

failed
A Boolean value that determines how the feedback gestures are to be altered (FALSE) or not (TRUE).

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

1538 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Discussion
The SRProcessEnd function causes the Speech Recognition Manager to provide the relevant feedback (in
the feedback window associated with the recognizer specified by the recognizer parameter) indicating
that a recognition result is done being processed. Currently, the gestures of the feedback character are
changed and a response sound is played.

If the value of the kSRWantsAutoFBGestures property of the specified recognizer is TRUE, the Speech
Recognition Manager calls SRProcessBegin internally before notifying your application of a recognition
result, and it calls SRProcessEnd internally after your application is notified. As a result, you should call
SRProcessBegin or SRProcessEnd only when the value of the recognizer’s kSRWantsAutoFBGestures
property is FALSE.

Because the default value of the kSRWantsAutoFBGestures property is TRUE, most applications do not
need to call SRProcessBegin. Calling SRProcessBegin is useful, however, when you know the resulting
action might take a significant amount of time.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRPutLanguageObjectIntoDataFile
Puts a language object (and any embedded language objects it contains) into a data file.

OSErr SRPutLanguageObjectIntoDataFile (
 SRLanguageObject languageObject,
 short fRefNum
);

Parameters
languageObject

A language object.

fRefNum
A file reference number of an open data file into which the data describing the specified language
object is to be put.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRPutLanguageObjectIntoDataFile function puts a description of the language object specified
by the languageObject parameter into the data file specified by the fRefNum parameter. Data are written
starting at the current file mark, and the file mark is moved to the end of the written data.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

Functions 1539
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

SRPutLanguageObjectIntoHandle
Puts a language object (and any embedded languages objects it contains) into a handle.

OSErr SRPutLanguageObjectIntoHandle (
 SRLanguageObject languageObject,
 Handle lobjHandle
);

Parameters
languageObject

A language object.

lobjHandle
A handle to a block of memory into which the data describing the specified language object is to be
put. On entry, this handle can have a length of 0.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRPutLanguageObjectIntoHandle function puts a description of the language object specified by
the languageObject parameter into the block of memory specified by the lobjHandle parameter. This
replaces the data in the handle and resizes the handle if necessary.

You can use Resource Manager functions (such as AddResource) to store language objects into resources.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRReleaseObject
Releases a speech object.

OSErr SRReleaseObject (
 SRSpeechObject srObject
);

Parameters
srObject

A speech object.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
If there are no other remaining references to the object, SRReleaseObject disposes of the memory occupied
by the object.

Your application should balance every function call that returns an object reference with a call to
SRReleaseObject. This means that every call to a function whose name begins with SRNew or SRGet that
successfully returns an object reference must be balanced with a call to SRReleaseObject.

1540 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

In addition, you should call SRReleaseObject to release references to SRSearchResult objects that are
passed to your application (via an Apple event handler or a callback routine).

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRRemoveIndexedItem
Removes a subitem from a container object.

OSErr SRRemoveIndexedItem (
 SRSpeechObject container,
 long index
);

Parameters
container

A speech object.

index
An integer ranging from 0 to one less than the number of subitems in the specified speech object.
(You can call the SRCountItems function to determine the number of subitems contained in a speech
object.) If the index you specify is not in this range, SRRemoveIndexedItem returns the result code
kSRParamOutOfRange.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRRemoveIndexedItem function removes from the speech object specified by the containerparameter
the subitem located at the position specified by the index parameter. If SRRemoveIndexedItem completes
successfully, the number of subitems in the container object is reduced by 1, and the index of each subitem
that follows the removed item is reduced by 1.

Version Notes
In Speech Recognition Manager version 1.5, this function is useful only for operating on language objects
(of type SRLanguageObject), although it is defined for all speech objects.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRRemoveLanguageObject
Removes a language object from another language object that contains it.

Functions 1541
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

OSErr SRRemoveLanguageObject (
 SRLanguageObject base,
 SRLanguageObject toRemove
);

Parameters
base

The language object containing the language object to remove.

toRemove
The language object to remove.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The object specified by the base parameter should be a container one of whose subitems is the object
specified by the toRemove parameter.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRSetIndexedItem
Replaces a subitem in a container object with some other object.

OSErr SRSetIndexedItem (
 SRSpeechObject container,
 SRSpeechObject item,
 long index
);

Parameters
container

A speech object.

item
A speech object.

index
An integer ranging from 0 to one less than the number of subitems in the specified speech object.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRSetIndexedItem function replaces the subitem having the index specified by the index parameter
in the container object specified by the container parameter with the speech object specified by the item
parameter. A reference to the replacement item is maintained separately by the container; as a result, you
can release any reference to that item if you no longer need it. The reference to the replaced item is removed
from the container; if that reference was the last remaining reference to the object, the object is released.

1542 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Version Notes
In Speech Recognition Manager version 1.5, this function is useful only for operating on language objects
(of type SRLanguageObject), although it is defined for all speech objects.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRSetLanguageModel
Sets a recognizer’s active language model.

OSErr SRSetLanguageModel (
 SRRecognizer recognizer,
 SRLanguageModel languageModel
);

Parameters
recognizer

A recognizer.

languageModel
The language model you wish to become the active model for the specified recognizer.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
If no other references exist to the language model currently in use by the specified recognizer, calling
SRSetLanguageModel with a different language model causes the current one to be released.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRSetProperty
Sets the value of a property of a speech object.

Functions 1543
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

OSErr SRSetProperty (
 SRSpeechObject srObject,
 OSType selector,
 const void *property,
 Size propertyLen
);

Parameters
srObject

A speech object.

selector
A property selector. See “Recognizer Properties” (page 1564), “Recognizer Listen Key Properties” (page
1563), “Language Object Properties” (page 1557), and “Recognition System Properties” (page 1562) for lists
of the available property selectors.

property
A pointer to a buffer containing the value to which the specified property is to be set.

propertyLen
The length, in bytes, of the specified buffer.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRSetProperty function sets the value of the property of the speech object specified by the srObject
parameter to the value specified through the property parameter. The selector parameter specifies which
property is to be set and the propertyLen parameter specifies it size, in bytes.

Not all properties can be set. If you attempt to set a property that cannot be set, SRSetProperty returns
the result code kSRCantSetProperty or kSRBadSelector as its function result.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRSpeakAndDrawText
Draws output text in the feedback window and causes the feedback character in the feedback window to
speak that text.

OSErr SRSpeakAndDrawText (
 SRRecognizer recognizer,
 const void *text,
 SInt32 textLength
);

Parameters
recognizer

A recognizer.

text
A pointer to a buffer that contains the text to be drawn and spoken.

1544 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

textLength
The size, in bytes, of the specified text.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRSpeakText
Causes the feedback character in the feedback window to speak a text string.

OSErr SRSpeakText (
 SRRecognizer recognizer,
 const void *speakText,
 SInt32 speakLength
);

Parameters
recognizer

A recognizer.

speakText
A pointer to a buffer that contains the text to be spoken. The text pointed to by the speakText
parameter can contain embedded speech commands to enhance the prosody of the spoken string.

speakLength
The size, in bytes, of the specified text.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
While speaking, the feedback character lip-syncs the spoken string using the Speech Synthesis Manager’s
phoneme callback routines. SRSpeakText uses the default voice and rate selected in the Speech control
panel. (The Speech Synthesis Manager was formerly called the Speech Manager. Its name has been changed
to distinguish it from the Speech Recognition Manager and to describe its operation more clearly.)

You can use the SRSpeechBusy function to determine whether the feedback character is already speaking.
If it is, you can call the SRStopSpeech function to stop that speaking immediately.

The SRSpeakText function speaks the specified text but does not display it. Use the SRSpeakAndDrawText
function if you want to speak and display the text.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

Functions 1545
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

SRSpeechBusy
Determines if the feedback character in a feedback window is currently speaking.

Boolean SRSpeechBusy (
 SRRecognizer recognizer
);

Parameters
recognizer

A recognizer.

Return Value
On return, true if the feedback character in the feedback window associated with the recognizer specified
by the recognizer parameter is currently speaking; otherwise false.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRStartListening
Starts a recognizer listening and reporting results to your application.

OSErr SRStartListening (
 SRRecognizer recognizer
);

Parameters
recognizer

A recognizer.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRStartListening function instructs the recognizer specified by the recognizer parameter to begin
processing sound from its speech source and reporting its results to your application (either using Apple
events or through a speech recognition callback routine).

You must already have built a language model and attached it to the recognizer (by calling the
SRSetLanguageModel function) before you call SRStartListening.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

1546 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

SRStopListening
Stops a recognizer listening and reporting results to your application.

OSErr SRStopListening (
 SRRecognizer recognizer
);

Parameters
recognizer

A recognizer.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRStopListening function instructs the recognizer specified by the recognizer parameter to stop
processing sound from its speech source and reporting its results to your application.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

SRStopSpeech
Terminates speech by the feedback character in a feedback window.

OSErr SRStopSpeech (
 SRRecognizer recognizer
);

Parameters
recognizer

A recognizer.

Return Value
A result code. See “Speech Recognition Manager Result Codes” (page 1568).

Discussion
The SRStopSpeech function immediately terminates any speaking by the feedback character in the feedback
window associated with the recognizer specified by the recognizer parameter.

Availability
Available in CarbonLib 1.0 and later when Speech Recognition 1.0 or later is present.
Available in Mac OS X 10.0 and later.

Declared In
SpeechRecognition.h

Functions 1547
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Callbacks

SRCallBackProcPtr
Defines a pointer to a speech recognition callback function which is called whenever the recognizer encounters
one of the events specified in its kSRNotificationParam property.

typedef void (*SRCallBackProcPtr) (
 SRCallBackStruct * param
);

If you name your function MySRCallBackProc, you would declare it like this:

void MySRCallBackProc (
 SRCallBackStruct * param
);

Parameters
param

A pointer to a speech recognition callback structure. See SRCallBackStruct (page 1549) for a
description of this structure.

Discussion
You can receive notification of recognizer events either by installing an Apple event handler or by installing
a speech recognition callback function. In general, you should use an Apple event handler to process
recognition notifications. You should use callbacks only for executable code that cannot easily receive Apple
events.

You can determine what event caused your function to be called by inspecting the what field of the speech
recognition callback structure specified by the param parameter.

Because the Speech Recognition Manager is not fully reentrant, you should not call any of its functions other
than SRContinueRecognition or SRCancelRecognition from within your speech recognition callback.
Accordingly, your callback should simply queue the notification for later processing by your software (for
instance, when it receives background processing time).

If the event is of type kSRNotifyRecognitionBeginning (which occurs only if you request speech-begun
notifications), you must call either SRContinueRecognition or SRCancelRecognition before speech
recognition can continue. A recognizer that has issued a recognition notification suspends activity until you
call one of these two functions.

In general, when your speech recognition callback receives the kSRNotifyRecognitionBeginning
notification, it should queue an indication for your main code both to adjust the current language model (if
necessary) and to call the SRContinueRecognition function. When your callback receives the
kSRNotifyRecognitionDone notification, it should queue an indication for your main code to handle the
recognition result passed in the message field of the speech recognition callback structure specified by the
param parameter. You should make sure, however, that the message field contains a valid reference to a
recognition result by inspecting the status field of that structure; if status contains any value other than
noErr, the contents of the message field are undefined.

When your callback is executed, your application is not the current process. As a result, some restrictions
apply; for example, the current resource chain might not be that of your application.

1548 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

Data Types

SRCallBackParam
Defines a speech recognition callback parameter structure.

struct SRCallBackParam {
 SRCallBackUPP callBack;
 long refCon;
};
typedef struct SRCallBackParam SRCallBackParam;

Fields
callBack

A UPP for a speech recognition callback function. You can use the function NewSRCallBackUPP to
create this UPP.

refCon
An application-defined reference constant. This value is passed to your callback routine in the refcon
field of a speech recognition callback structure. You can pass any 4-byte value you wish.

Discussion
If you want to receive recognition notifications using a speech recognition callback routine instead of an
Apple event handler, you must change the value of the kSRCallBackParamproperty of the current recognizer.
The value of the kSRCallBackParam property is the address of a callback function parameter structure,
defined by the SRCallBackParam data type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRCallBackStruct
Defines a structure sent to your speech recognition callback function.

Data Types 1549
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

struct SRCallBackStruct {
 long what;
 long message;
 SRRecognizer instance;
 OSErr status;
 short flags;
 long refCon;
};
typedef struct SRCallBackStruct SRCallBackStruct;

Fields
what

A notification flag that indicates the kind of event that caused this notification to be issued. This field
contains either kSRNotifyRecognitionBeginning or kSRNotifyRecognitionDone. See
“Notification Flags” (page 1560) for complete details on the available notification flags.

message
If the value of the status field is noErr and the value of the what field is
kSRNotifyRecognitionDone, this field contains a reference to a recognition result. Your callback
routine can inspect the properties of this recognition result to determine what the user said.

Note that your callback routine must release this reference (by calling SRReleaseObject) when it
is finished using it. If the value of the status field is not noErr, the value of this field is undefined.

instance
A reference to the recognizer that issued this notification. You should not call SRReleaseObject on
this recognizer reference in response to a recognition notification.

status
An error code indicating the status of the recognition. If the value of this field is noErr, the message
field contains a reference to a recognition result. If the value of this field is kSRRecognitionDone
and the value of the what field is kSRNotifyRecognitionDone, the recognizer finished without
error but nothing belonging to that recognizer was recognized; in this case, the message field does
not contain a reference to a recognition result. If the value of this field is any other value, some other
error occurred.

flags
Reserved for use by Apple Computer, Inc.

refCon
An application-defined reference constant. The value in this field is the value you passed in the refcon
field of a callback function parameter structure (of type SRCallBackParam).

Discussion
When you receive a notification of recognition results through an application-defined callback function
(instead of using an Apple event handler), the Speech Recognition Manager sends your callback function a
pointer to a speech recognition callback structure, defined by the SRCallBackStruct data type.

For information on writing a speech recognition callback function, see SRCallBackProcPtr (page 1548).

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

1550 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

SRCallBackUPP
Defines a universal procedure pointer (UPP) to a speech recognition callback function.

typedef SRCallBackProcPtr SRCallBackUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRLanguageModel
Represents a language model.

typedef SRLanguageObject SRLanguageModel;

Discussion
A language model is a list of zero or more words, phrases, or paths.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRLanguageObject
Represents a language object.

typedef SRSpeechObject SRLanguageObject;

Discussion
A language model is built using four kinds of objects, collectively called language objects: words, phrases,
paths, and language models.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRPath
Represents a language object identifying a path.

typedef SRLanguageObject SRPath;

Discussion
A path is a sequence of zero or more words, phrases, or language models.

Availability
Available in Mac OS X v10.0 and later.

Data Types 1551
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Declared In
SpeechRecognition.h

SRPhrase
Represents a language object identifying a phrase.

typedef SRLanguageObject SRPhrase;

Discussion
A phrase is a sequence of zero or more words.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRRecognitionResult
Represents a recognition result which contains information about a recognized utterance.

typedef SRSpeechSource SRRecognitionResult;

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRRecognitionSystem
Represents a speech object identifying a recognition system.

typedef SRSpeechObject SRRecognitionSystem;

Discussion
A speech object is an instance of a speech class, which defines a set of properties for objects in the class. The
behavior of a speech object is determined by the set of properties associated with the object’s class.
Recognition systems have the properties associated with the SRRecognitionSystem class of speech objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRRecognizer
Represents a speech object identifying a speech recognizer.

1552 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

typedef SRSpeechObject SRRecognizer;

Discussion
A speech object is an instance of a speech class, which defines a set of properties for objects in the class. The
behavior of a speech object is determined by the set of properties associated with the object’s class. Speech
recognizers have the properties associated with the SRRecognizer class of speech objects.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRRejectionLevel

typedef SRRejectionLevel;

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRSpeechObject
Defines a reference to a speech object.

typedef struct OpaqueSRSpeechObject * SRSpeechObject;

Discussion
The Speech Recognition Manager is object oriented in the sense that many of its capabilities are accessed
by creating and manipulating speech objects. A speech object is an instance of a speech class, which defines
a set of properties for objects in the class. The behavior of a speech object is determined by the set of
properties associated with the object’s class.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRSpeechSource
Represents a speech object identifying a speech source.

typedef SRSpeechObject SRSpeechSource;

Discussion
A speech object is an instance of a speech class, which defines a set of properties for objects in the class. The
behavior of a speech object is determined by the set of properties associated with the object’s class. Speech
sources have the properties associated with the SRSpeechSource class of speech objects.

Data Types 1553
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRSpeedSetting

typedef SRSpeedSetting;

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

SRWord
Represents a language object identifying a word.

typedef SRLanguageObject SRWord;

Discussion
A word represents a single speakable word.

Availability
Available in Mac OS X v10.0 and later.

Declared In
SpeechRecognition.h

Constants

Feedback and Listening Modes
Identify the feedback and listening modes of the recognition system.

1554 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

enum {
 kSRNoFeedbackNoListenModes = 0,
 kSRHasFeedbackHasListenModes = 1,
 kSRNoFeedbackHasListenModes = 2
};

Constants
kSRNoFeedbackNoListenModes

If the feedback and listening modes value of a recognition system is set to
kSRNoFeedbackNoListenModes, the next created recognizer has no feedback window and does
not use the listening modes selected by the user in the Speech control panel. (For example, push-to-talk
is a listening mode.)

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRHasFeedbackHasListenModes
If the feedback and listening modes value of a recognition system is set to
kSRHasFeedbackHasListenModes, the next created recognizer opens a feedback window that uses
the listening modes selected by the user in the Speech control panel.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRNoFeedbackHasListenModes
If the feedback and listening modes value of a recognition system is set to
kSRNoFeedbackHasListenModes, the next created recognizer has no feedback window but does
use the listening modes selected by the user in the Speech control panel.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Apple Event Selectors
Define selectors that you can use to handle recognition notifications in your Apple event handler.

Constants 1555
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

enum {
 kAESpeechDone = 'srsd',
 kAESpeechDetected = 'srbd'
};
enum {
 kAESpeechSuite = 'sprc'
};
enum {
 keySRRecognizer = 'krec',
 keySRSpeechResult = 'kspr',
 keySRSpeechStatus = 'ksst'
};
enum {
 typeSRRecognizer = 'trec',
 typeSRSpeechResult = 'tspr'
};

Constants
kAESpeechDone

The message ID for a speech-done event.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kAESpeechDetected
The message ID for a speech-detected event.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kAESpeechSuite
The Apple event suite for speech recognition events.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

keySRRecognizer
The ID for the recognizer parameter.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

keySRSpeechResult
The ID for the recognition result parameter.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

keySRSpeechStatus
The ID for the speech status parameter, which is of type typeShortInteger.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

typeSRRecognizer
The type for the recognizer parameter.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

1556 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

typeSRSpeechResult
The type for the recognition result parameter.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion

Default Rejection Level
Represents a default rejection level.

enum {
 kSRDefaultRejectionLevel = 50
};

Language Object Properties
Define property selectors for language objects.

enum {
 kSRSpelling = 'spel',
 kSRLMObjType = 'lmtp',
 kSRRefCon = 'refc',
 kSROptional = 'optl',
 kSREnabled = 'enbl',
 kSRRepeatable = 'rptb',
 kSRRejectable = 'rjbl',
 kSRRejectionLevel = 'rjct'
};

Constants
kSRSpelling

The spelling of a language object. The value of this property is a variable-length string of characters.
For an object of type SRWord, the value is the spelled word. For an object of type SRPhrase, the
value is the concatenation of the spellings of each word in the phrase, separated by a
language-dependent separation character (for example, by a space character). For an object of type
SRPath, the value is the concatenation of the spellings of each word and language model name in
the path. For an object of type SRLanguageModel, the value is the name of the language model. For
any object, the string value does not include either a length byte (as in Pascal strings) or a null
terminating character (as in C strings).

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRLMObjType
The type of a language object. The value of this property is a four-character constant of type OSType;
see the section “Language Object Types” (page 1559) for the values that are defined for this property.
You cannot set a property of this type.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Constants 1557
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

kSRRefCon
The reference constant. The value of this property is a 4-byte value specified by your application. By
default, the value of a reference constant property is zero (0).

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSROptional
The optional flag. The value of this property is a Boolean value that indicates whether speaking the
words, phrases, paths, and language models represented by the object is optional (TRUE) or required
(FALSE). A user is not required to utter optional words, phrases, or language models. By default, the
value of an object’s optional flag is FALSE.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSREnabled
The enabled flag. The value of this property is a Boolean value that indicates whether the object is
enabled (TRUE) or disabled (FALSE). Disabled objects are ignored during speech recognition. By
default, the value of an object’s enabled flag is TRUE.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRRepeatable
The repeatable flag. The value of this property is a Boolean value that indicates whether the object
is repeatable (TRUE) or not (FALSE). A user can utter a repeatable object more than once. By default,
the value of an object’s repeatable flag is FALSE.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRRejectable
The rejectable flag. The value of this property is a Boolean value that indicates whether the object is
rejectable (TRUE) or not (FALSE). An object is rejectable if a recognition system can return the rejected
word instead of that object. (The rejected word is the value of the kSRRejectedWord property of
the recognition system.) By default, the value of an object’s rejectable flag is FALSE. However, if an
entire utterance is rejected, you can still get the rejected word. See “Recognition Result
Properties” (page 1561).

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRRejectionLevel
The rejection level. The value of this property is a 2-byte unsigned integer of type SRRejectionLevel
between 0 and 100, inclusive, that determines how likely a recognizer is to reject a language object
whose kSRRejectable property is TRUE. If an object’s rejection level is close to 0, the recognizer is
less likely to reject utterances (and hence more likely to return a result with phrases from the current
language model, whether or not the user actually said something in that language model) if an object’s
rejection level is close to 100, the recognizer is more likely to reject utterances. You can set an object’s
rejection flag to TRUE and its rejection level to some appropriate value to reduce the likelihood that
a recognizer will mistakenly recognize a random user utterance as part of the active language model.
By default, the value of an object’s rejection level is 50.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

1558 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Discussion
Every language object (that is, any instance of a subclass of the SRLanguageObject class) has a set of
properties that you can inspect and change by calling the SRGetProperty and SRSetProperty functions.
You specify a property by passing a property selector to those functions.

Language Object Types
Identify the four subclasses of the SRLanguageObject class.

enum {
 kSRLanguageModelType = 'lmob',
 kSRPathType = 'path',
 kSRPhraseType = 'phra',
 kSRWordType = 'word'
};

Constants
kSRLanguageModelType

A language model (that is, an object of type SRLanguageModel).

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRPathType
A path (that is, an object of type SRPath).

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRPhraseType
A phrase (that is, an object of type SRPhrase).

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRWordType
A word (that is, an object of type SRWord).

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion
You can use these constants, for instance, to help interpret the value of a language object’s kSRLMObjType
property.

Listen Key Modes
Identify listen key modes.

Constants 1559
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

enum {
 kSRUseToggleListen = 0,
 kSRUsePushToTalk = 1
};

Constants
kSRUseToggleListen

The recognizer interprets presses on the listen key as a toggle to turn listening on or off.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRUsePushToTalk
The recognizer listens only when the listen key is held down.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion
You can get (but not set) a recognizer’s listen key mode by accessing its property of type kSRListenKeyMode.
That property’s value is a 2-byte unsigned integer that determines whether the listen key operates in
push-to-talk or toggle-listening mode.

Notification Flags
Identify the recognizer events that may be sent to an application.

enum {
 kSRNotifyRecognitionBeginning = 1L << 0,
 kSRNotifyRecognitionDone = 1L << 1
};

Constants
kSRNotifyRecognitionBeginning

If this bit is set, your application will be notified when the user starts speaking and recognition is
ready to begin. When your application gets this notification, it must call either
SRContinueRecognition or SRCancelRecognition in order for recognition either to continue
or be canceled. If you do not call one of these functions, the recognizer will simply wait until you do
(and hence appear to have quit working). Note that calling SRCancelRecognition cancels a
recognition only for the application that requested it, not for all applications.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRNotifyRecognitionDone
If this bit is set, your application will be notified when recognition is finished and the result (if any)
of that recognition is available.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion
You can indicate which recognizer events you want your application be to notified of by setting the recognizer’s
notification property, which is a property of type kSRNotificationParam. That property’s value is a 4-byte
unsigned integer. The Speech Recognition Manager defines these masks for bits in that value.

1560 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Recognition Result Properties
Identify property selectors for recognition results.

enum {
 kSRTEXTFormat = 'TEXT',
 kSRPhraseFormat = 'lmph',
 kSRPathFormat = 'lmpt',
 kSRLanguageModelFormat = 'lmfm'
};

Constants
kSRTEXTFormat

The text format. The value of this property is a variable-length string of characters that is the text of
the recognized utterance. If the utterance was rejected, this text is the spelling of the rejected word.
The string value does not include either a length byte (as in Pascal strings) or a null terminating
character (as in C strings).

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRPhraseFormat
The phrase format. The value of this property is a phrase that contains one word (of type SRWord) for
each word in the recognized utterance. If the utterance was rejected, this path or phrase contains
one object, the rejected word. The reference constant value of the phrase is always 0, but each word
in the phrase retains its own reference constant property value.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRPathFormat
The path format. The value of this property is a path that contains a sequence of words (of type
SRWord) and phrases (of type SRPhrase) representing the text of the recognized utterance. If the
utterance was rejected, this path or phrase contains one object, the rejected word. The reference
constant value of the path is always 0, but each word or phrase in the path retains its own reference
constant property value.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRLanguageModelFormat
The language model format. The value of this property is a language model that contains a copy of
each word, phrase, path, and language model used in the recognized utterance. If the utterance was
rejected, the value of this property is the rejected word (that is, the kSRRejectedWord property of
the recognition system). The name and reference constant of this language model are the same as
the name and reference constant of the active language model, and each subitem in the language
model retains its own reference constant property value.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion
Every recognition result object has a set of properties that you can inspect by calling the SRGetProperty
function. You specify a property by passing a property selector to those functions.

SRGetProperty returns an object reference as the value of a recognition result’s kSRPhraseFormat,
kSRPathFormat, or kSRLanguageModelFormat property. You must make sure to release that object
reference (by calling SRReleaseObject) when you are finished using it.

Constants 1561
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Recognition System IDs
Defines a recognition system ID.

enum {
 kSRDefaultRecognitionSystemID = 0
};

Constants
kSRDefaultRecognitionSystemID

The default speech recognition system.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion
When you call SROpenRecognitionSystem to open a recognition system, you indicate the system to open
by passing a recognition system ID.

Recognition System Properties
Define property selectors for recognition systems.

enum {
 kSRFeedbackAndListeningModes = 'fbwn',
 kSRRejectedWord = 'rejq',
 kSRCleanupOnClientExit = 'clup'
};

Constants
kSRFeedbackAndListeningModes

The feedback and listening modes of the recognition system. The value of this property is an integer
that determines some of the features of a recognizer subsequently created by your application. See
“Feedback and Listening Modes” (page 1554) for a description of the values possible here.

The default value for version 1.5 is kSRNoFeedbackNoListenModes, but most applications should
set this to kSRHasFeedbackHasListenModes.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRRejectedWord
The rejected word of the recognition system. The value of this property is a value of type SRWord
that will be returned in a recognition result object when a recognizer encounters an unrecognizable
utterance. For example, if an utterance is rejected, the kSRLMObjType property of the rejection result
is the rejected word. By default, a recognition system’s rejected word is spelled “???” and has a reference
constant of 0.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

1562 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

kSRCleanupOnClientExit
The cleanup mode of the recognition system. Applications should never set this property. If, however,
you do not have a process ID (as issued by the Process Manager), you should set this property to
FALSE so that speech objects you allocate will not be associated with any other process. By default,
the value of a recognition system’s cleanup mode is TRUE.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion
A recognition system (that is, an instance of the SRRecognitionSystem class) has a set of properties that
you can inspect and change by calling the SRGetProperty and SRSetProperty functions. You specify a
property by passing a property selector to those functions.

Recognizer Listen Key Properties
Define listen key property selectors for recognizers.

enum {
 kSRListenKeyMode = 'lkmd',
 kSRListenKeyCombo = 'lkey',
 kSRListenKeyName = 'lnam',
 kSRKeyWord = 'kwrd',
 kSRKeyExpected = 'kexp'
};

Constants
kSRListenKeyMode

The listen key mode. The value of this property is a 2-byte unsigned integer that indicates whether
the listen key operates in push-to-talk or toggle-listening mode. See “Listen Key Modes” (page 1559)
for a description of the available listen key modes. The value of a recognizer’s listen key mode is
whatever the user has selected in the Speech control panel. This property is read-only you cannot set
a property of this type.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRListenKeyCombo
The listen key combination property. The value of this property is a 2-byte unsigned integer that
specifies the key combination the user must press for the listen key. The high-order byte of this value
has the same format as the high-order byte of the modifiers field of an event record. The low-order
byte of this value has the same format as the key code contained in the message field of an event
record. The value of a recognizer’s listen key combination property is whatever the user has selected
in the Speech control panel. This property is read-only you cannot set a property of this type.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRListenKeyName
The listen key name property. The value of this property is a string (of type Str63) that represents
the listen key combination specified by the kSRListenKeyCombo property. The value of a recognizer’s
listen key name property is whatever the user has selected in the Speech control panel. This property
is read-only you cannot set a property of this type.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Constants 1563
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

kSRKeyWord
The key word property. The value of this property is a string (of type Str255) that represents the key
word that must precede utterances when the recognizer is in toggle-listen mode. The value of a
recognizer’s key word property is whatever the user has selected in the Speech control panel. This
property is read-only you cannot set a property of this type.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRKeyExpected
The key expected flag. The value of this property is a Boolean value that indicates whether the
recognizer expects the user to hold down a key or to utter the key word in order to have the recognizer
begin listening (TRUE) or not (FALSE). The value of a recognizer’s key expected flag is a function of
the user’s Speech control panel selections. This property is TRUE whenever text is visible below the
feedback character in the lower-left corner of the feedback window. This property is read-only.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion
Every recognizer has a set of properties that you can inspect and change by calling the SRGetProperty and
SRSetProperty functions. You specify a property by passing a property selector to those functions.

The listen key properties are provided for use by applications that want to provide their own visual feedback.
If your application uses the default feedback mechanisms, you do not need to access those properties.

Recognizer Properties
Define property selectors for recognizers.

enum {
 kSRNotificationParam = 'noti',
 kSRCallBackParam = 'call',
 kSRSearchStatusParam = 'stat',
 kSRAutoFinishingParam = 'afin',
 kSRForegroundOnly = 'fgon',
 kSRBlockBackground = 'blbg',
 kSRBlockModally = 'blmd',
 kSRWantsResultTextDrawn = 'txfb',
 kSRWantsAutoFBGestures = 'dfbr',
 kSRSoundInVolume = 'volu',
 kSRReadAudioFSSpec = 'aurd',
 kSRCancelOnSoundOut = 'caso',
 kSRSpeedVsAccuracyParam = 'sped'
};

Constants
kSRNotificationParam

The notification property. The value of this property is a 4-byte unsigned integer whose bits encode
the kinds of events of which the recognizer will notify your application. See the section “Notification
Flags” (page 1560) for the bit masks that are defined for this property. By default, the value of a
recognizer’s notification property is kSRNotifyRecognitionDone.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

1564 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

kSRCallBackParam
The callback property. The value of this property is of type SRCallBackParam that determines
whether recognition notifications are sent to your application via Apple events or via an
application-defined callback routine. To specify a callback routine, set the value of this property to
the address of a callback routine parameter structure. By default, the value of a recognizer’s callback
property is NULL, indicating that Apple events are to be used to report recognizer events.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRSearchStatusParam
The search status. The value of this property is a 4-byte unsigned integer whose bits indicate the
current state of the recognizer. See the section “Search Status Flags” (page 1567) for the bit masks that
are defined for this property. This property is read-only; you cannot set a property of this type.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRAutoFinishingParam
Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRForegroundOnly
The foreground-only flag. The value of this property is a Boolean value that indicates whether the
recognizer is enabled only when your application is the foreground application (TRUE) or not (FALSE).
By default, the value of a recognizer’s foreground-only flag is TRUE.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRBlockBackground
The background-blocking flag. The value of this property is a Boolean value that indicates whether
all recognizers owned by other applications are automatically disabled whenever your application is
the foreground application (TRUE) or are not automatically disabled (FALSE). By default, the value of
a recognizer’s background-blocking flag is FALSE.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRBlockModally
The modal-blocking flag. The value of this property is a Boolean value that indicates whether the
language model associated with this recognizer is the only active language model (TRUE) or not
(FALSE). When this flag is TRUE, your application’s recognizer blocks those of other applications even
when it is not the foreground application in addition, the feedback window is hidden if you are not
using it. Setting this property to TRUE prevents speech recognition from working for other applications,
so you want to use this property only if your application is taking over the computer (like some games)
or briefly attempting to constrain the language model severely. By default, the value of a recognizer’s
modal-blocking flag is FALSE.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Constants 1565
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

kSRWantsResultTextDrawn
The text feedback flag. The value of this property is a Boolean value that indicates whether the results
of a search are to be automatically displayed as text in the feedback window (TRUE) or not (FALSE).
If you set the value of this property to FALSE, you should call SRDrawRecognizedText with a string
representing what the user said. By default, the value of a recognizer’s text feedback flag is TRUE.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRWantsAutoFBGestures
The automatic feedback gestures flag. The value of this property is a Boolean value that determines
whether the feedback gestures are automatically drawn (TRUE) or not (FALSE). If you want more
control over feedback behavior, you should set this property to FALSE; then call SRProcessBegin
when you want to begin responding to a spoken request and SRProcessEnd when you are finished.
During that time, the feedback character displays appropriate animated gestures to indicate that it
is busy performing the task. By default, the value of a recognizer’s automatic feedback gestures flag
is TRUE.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRSoundInVolume
The sound input volume. The value of this property is a 2-byte unsigned integer between 0 and 100,
inclusive, that indicates the current sound input volume. This property is read-only; you cannot set a
property of this type.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRReadAudioFSSpec
The audio file property. You can use this property to perform speech recognition from an audio file.
The value of this property is a pointer to a file system specification (a structure of type FSSpec). The
file system specification indicates an AIFF file that contains raw audio data (16-bit audio data sampled
at 22.050 kHz). After you create a new recognizer using the speech source ID
kSRCanned22kHzSpeechSource, you must set this recognizer property to perform recognition from
an audio file. Setting the audio source to a file also allows the Speech Recognition Manager to process
sound data at system background time rather than at interrupt time or deferred task time.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRCancelOnSoundOut
The cancel during sound output flag. The value of this property is a Boolean value that indicates
whether speech recognition is canceled whenever any sound is output by the computer during an
utterance (TRUE) or whether speech recognition continues (FALSE). By default, the value of a
recognizer’s cancel during sound output flag is TRUE.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRSpeedVsAccuracyParam
Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion
Every recognizer has a set of properties that you can inspect and change by calling the SRGetProperty and
SRSetProperty functions. You specify a property by passing a property selector to those functions.

1566 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Search Status Flags
Indicate the status of a recognizer search.

enum {
 kSRIdleRecognizer = 1L << 0,
 kSRSearchInProgress = 1L << 1,
 kSRSearchWaitForAllClients = 1L << 2,
 kSRMustCancelSearch = 1L << 3,
 kSRPendingSearch = 1L << 4
};

Constants
kSRIdleRecognizer

If this bit is set, the search engine is not active and the user is able to make a new utterance.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRSearchInProgress
If this bit is set, a search is currently in progress.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRSearchWaitForAllClients
If this bit is set, a search is not currently in progress, but will begin as soon as every recognizer using
the speech source used by this recognizer has called SRContinueRecognition to indicate that the
search should begin.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRMustCancelSearch
If this bit is set, a search is about to be canceled (for example, because the recognizer determined a
sound to be non-speech).

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRPendingSearch
If this bit is set, a search is about to begin.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion
You can determine the current status of a recognizer search by getting the recognizer’s search status, which
is a property of type kSRSearchStatusParam. That property’s value is a 4-byte unsigned integer. The Speech
Recognition Manager defines these masks for bits in that value.

Speech Source Constants
Identify Speech Recognition Manager-supported speech sources.

Constants 1567
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

enum {
 kSRDefaultSpeechSource = 0,
 kSRLiveDesktopSpeechSource = 'dklv',
 kSRCanned22kHzSpeechSource = 'ca22'
};

Constants
kSRDefaultSpeechSource

The default speech source.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRLiveDesktopSpeechSource
Live desktop sound input.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

kSRCanned22kHzSpeechSource
AIFF file based 16 bit, 22.050 KHz sound input.

Available in Mac OS X v10.0 and later.

Declared in SpeechRecognition.h.

Discussion
The Speech Recognition Manager supports several speech sources, which you can specify using these
constants. In version 1.5, the default speech source is kSRLiveDesktopSpeechSource.

Result Codes

The most common result codes returned by Speech Recognition Manager are listed below.

DescriptionValueResult Code

Requested service not available or applicable-5100kSRNotAvailable

Available in Mac OS X v10.0 and later.

Internal system or hardware error condition-5101kSRInternalError

Available in Mac OS X v10.0 and later.

Required component cannot be located-5102kSRComponentNotFound

Available in Mac OS X v10.0 and later.

Not enough memory available-5103kSROutOfMemory

Available in Mac OS X v10.0 and later.

Object is not valid-5104kSRNotASpeechObject

Available in Mac OS X v10.0 and later.

Invalid parameter specified-5105kSRBadParameter

Available in Mac OS X v10.0 and later.

1568 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

DescriptionValueResult Code

Parameter is out of valid range-5106kSRParamOutOfRange

Available in Mac OS X v10.0 and later.

Unrecognized selector specified-5107kSRBadSelector

Available in Mac OS X v10.0 and later.

Buffer is too small-5108kSRBufferTooSmall

Available in Mac OS X v10.0 and later.

Specified object is not a recognition system-5109kSRNotARecSystem

Available in Mac OS X v10.0 and later.

No feedback window associated with recognizer-5110kSRFeedbackNotAvail

Available in Mac OS X v10.0 and later.

Cannot set the specified property-5111kSRCantSetProperty

Available in Mac OS X v10.0 and later.

Cannot get the specified property-5112kSRCantGetProperty

Available in Mac OS X v10.0 and later.

Cannot set property during recognition-5113kSRCantSetDuringRecognition

Available in Mac OS X v10.0 and later.

System is already listening-5114kSRAlreadyListening

Available in Mac OS X v10.0 and later.

System is not listening-5115kSRNotListeningState

Available in Mac OS X v10.0 and later.

No acoustical models available to match request-5116kSRModelMismatch

Available in Mac OS X v10.0 and later.

Cannot access specified language model-5117kSRNoClientLanguageModel

Available in Mac OS X v10.0 and later.

No utterances to search-5118kSRNoPendingUtterances

Available in Mac OS X v10.0 and later.

Search was canceled-5119kSRRecognitionCanceled

Available in Mac OS X v10.0 and later.

Search has finished, but nothing was recognized-5120kSRRecognitionDone

Available in Mac OS X v10.0 and later.

Result Codes 1569
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

DescriptionValueResult Code

Another recognizer is already operating modally-5121kSROtherRecAlreadyModal

Available in Mac OS X v10.0 and later.

Specified object has no subitems-5122kSRHasNoSubItems

Available in Mac OS X v10.0 and later.

Specified subitem cannot be located-5123kSRSubItemNotFound

Available in Mac OS X v10.0 and later.

Language model too big to be built-5124kSRLanguageModelTooBig

Available in Mac OS X v10.0 and later.

Specified object has already been released-5125kSRAlreadyReleased

Available in Mac OS X v10.0 and later.

Specified language model has already been finished-5126kSRAlreadyFinished

Available in Mac OS X v10.0 and later.

Spelling could not be found-5127kSRWordNotFound

Available in Mac OS X v10.0 and later.

Language model not finished with rejection-5128kSRNotFinishedWithRejection

Available in Mac OS X v10.0 and later.

Language model is left recursive or is embedded too many
levels

-5129kSRExpansionTooDeep

Available in Mac OS X v10.0 and later.

Too many elements added to phrase, path, or other language
object

-5130kSRTooManyElements

Available in Mac OS X v10.0 and later.

Can't add specified type of object to the base language object-5131kSRCantAdd

Available in Mac OS X v10.0 and later.

Sound input source is disconnected-5132kSRSndInSourceDisconnected

Available in Mac OS X v10.0 and later.

Cannot create language object from file or pointer-5133kSRCantReadLanguageObject

Available in Mac OS X v10.0 and later.

Feature is not yet implemented-5199kSRNotImplementedYet

Available in Mac OS X v10.0 and later.

1570 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Gestalt Constants

You can check for version and feature availability information by using the Speech Recognition Manager
selectors defined in the Gestalt Manager. For more information see InsideMacOSX: GestaltManager Reference.

Gestalt Constants 1571
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

1572 Gestalt Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 19

Speech Recognition Manager Reference

Framework: Carbon/Carbon.h

Declared in TextServices.h

Overview

The Text Services Manager ("TSM") provides an environment for applications to use non-application-specific
text services. The Text Services Manager handles communication between client applications that request
text services and the software modules, known as text service components, that provide them. The Text
Services Manager exists so that these two types of programs can work together without needing to know
anything about the internal structures or identities of each other.

A client application is any text-processing program that uses the Text Services Manager to request a service
from a text service component. To accomplish this, a client application needs to make specific Text Services
Manager calls during execution.

A text service component is a utility program that uses the Text Services Manager to provide a text service
to an application. Text service components are registered components with the Component Manager. Text
services can include many different types of specific text-handling tasks, including spell-checking, hyphenation,
and handling the input of complex text.

The most prevalent category of text services are those that handle the entry of complex text, that is, input
methods. A typical example of an input method is a service that converts keyboard input into text that cannot
be directly entered via a keyboard. Text input in Japanese, Chinese, Korean, or Unicode usually requires an
input method.

TSM introduces input modes in Mac OS X version 10.3. An input mode allows an input method to temporarily
accept text input in a script other than the one it normally supports. An input method uses a CFDictionary
to define the input modes it supports and the tag kTextServiceInputModePropertyTag to specify that
the input method supports input modes. An application finds out what input modes are supported by an
input method by calling the function CopyTextServiceInputModeList.

Also new in Mac OS X version 10.3 is a suite of Carbon events that allow a text service relatively direct access
to a document's text content and text attributes, such as font and glyph information. To take advantage of
this new functionality in TSM, all text and offsets in your application must map to and from a flattened
Unicode space. Your application must also implement callback functions to handle the appropriate Carbon
events.

Mac OS X version 10.4 introduces input mode palette configuration routines.

The Text Services Manager defines three separate programming interfaces:

 ■ The first are functions implemented by the Text Services Manager and called by the application clients
of text service components.

Overview 1573
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

 ■ The second are functions implemented by the Text Services Manager and called by text service
components.

 ■ The third are low-level functions implemented by text service components and called by either
applications or the Text Services Manager.

Functions by Task

Applications - Facilitating User Interactions With Components

CopyTextServiceInputModeList (page 1579)
Obtains a copy of the set of input modes supported by a keyboard-class input method.

TSMCopyInputMethodEnabledInputModes (page 1606)
Obtain the array of the enabled (and visible) input modes for a component.

TSMSelectInputMode (page 1610)
Sets the specified input method input mode as the current input source.

CloseTextService (page 1578) Deprecated in Mac OS X v10.5
Closes a text service component, other than an input method, and disassociates it from the active
TSM document.

GetDefaultInputMethod (page 1585) Deprecated in Mac OS X v10.5
Obtains the default input method text service component for a given script and language.

GetDefaultInputMethodOfClass (page 1586) Deprecated in Mac OS X v10.5
Obtains the default input method text service component for a given text service class.

GetServiceList (page 1589) Deprecated in Mac OS X v10.5
Obtains a list of the text service components of a specified type that are currently available.

GetTextServiceLanguage (page 1590) Deprecated in Mac OS X v10.5
Obtains the current input script and language.

OpenTextService (page 1597) Deprecated in Mac OS X v10.5
Opens a text service component, other than an input method, and associates it with a TSM document.

SetDefaultInputMethod (page 1601) Deprecated in Mac OS X v10.5
Sets a default input method to a given script and language.

SetDefaultInputMethodOfClass (page 1602) Deprecated in Mac OS X v10.5
Sets the default input method text service component for a given text service class.

SetTextServiceLanguage (page 1603) Deprecated in Mac OS X v10.5
Changes the current input script and language.

Applications - Managing TSM Documents

NewTSMDocument (page 1595)
Creates a TSM document and returns a handle to the document’s ID.

DeleteTSMDocument (page 1582)
Closes all opened text service components for the TSM document.

1574 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

ActivateTSMDocument (page 1577)
Informs the Text Services Manager that a TSM document is active.

DeactivateTSMDocument (page 1581)
Informs the Text Services Manager that a TSM document is inactive.

FixTSMDocument (page 1584)
Informs the Text Services Manager that user input for a TSM document has been interrupted.

UseInputWindow (page 1613)
Associates a floating input window with one or more TSM documents.

TSMGetActiveDocument (page 1607)
Obtains the active TSM document in the current application context.

TSMSetInlineInputRegion (page 1611) Deprecated in Mac OS X v10.5
Defines a region within a TSM document in which inline input can occur.

Components - Sending Events

SendTextInputEvent (page 1600)
Sends Carbon text input events from a text service component to a client application.

SendAEFromTSMComponent (page 1598) Deprecated in Mac OS X v10.5
Sends Apple events from a text service component to a client application.

Low Level - Accessing Text Service Properties

SetTextServiceProperty (page 1603)
Notifies a text service component that one of its properties has been selected.

GetTextServiceProperty (page 1591)
Notifies a text service component that it must identify the current value of one of its properties.

Low Level - Confirming Text Service Input

FixTextService (page 1583)
Notifies a text service component that it must complete the processing of any input that is in progress.

Low Level - Managing Text Service States

InitiateTextService (page 1593)
Notifies a text service component that it must perform any necessary set-up tasks and begin operating.

ActivateTextService (page 1577)
Notifies a text service component that its associated document window is becoming active.

DeactivateTextService (page 1580)
Notifies a text service component that its associated document window is becoming inactive.

TerminateTextService (page 1604)
Notifies a text service component that it must terminate its operations in preparation for closing.

Functions by Task 1575
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

HidePaletteWindows (page 1592)
Notifies a text service component that it must hide its floating windows.

DeselectTextService (page 1583) Deprecated in Mac OS X v10.5
Notifies TSM that an input method has been closed.

IsTextServiceSelected (page 1595) Deprecated in Mac OS X v10.5
Determines if a text service component is selected.

SelectTextService (page 1598) Deprecated in Mac OS X v10.5
Selects a text service.

Low Level - Querying Text Services

GetTextServiceMenu (page 1590)
Notifies a text service component that it must produce a handle to its menu.

GetScriptLanguageSupport (page 1588) Deprecated in Mac OS X v10.5
Notifies a text service component that it must produce a list of its supported languages and scripts.

Low Level - Sending Events to Text Services

TextServiceEventRef (page 1605)
Provides an opportunity for a text service component to handle a Carbon event.

Working With Document Properties

TSMSetDocumentProperty (page 1611)
Sets a property for a TSM document.

TSMGetDocumentProperty (page 1607)
Obtains a TSM document property.

TSMRemoveDocumentProperty (page 1610)
Removes a property from a TSM document.

Input Mode Palette Configuration

InputModePaletteItemHit (page 1594)
Informs an input method that a function button on the input mode palette was pressed.

GetInputModePaletteMenu (page 1587) Deprecated in Mac OS X v10.5
Obtains from an input method the menu to display for a pull-down menu on the input mode palette.

TSMInputModePaletteLoadButtons (page 1609) Deprecated in Mac OS X v10.5
Notifies the input mode palette of changes to the controls for an input method and replaces the
current controls with the new control array.

TSMInputModePaletteUpdateButtons (page 1609) Deprecated in Mac OS X v10.5
Notifies the input mode palette of changes to the controls for an input method and updates the
controls.

1576 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Functions

ActivateTextService
Notifies a text service component that its associated document window is becoming active.

ComponentResult ActivateTextService (
 ComponentInstance ts
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

Return Value
See the Component Manager documentation for a description of the ComponentResult data type.

Discussion
Text service components must implement a function for this call.

The appropriate response to ActivateTextService is for the text service component to restore its active
state, including displaying all floating windows if they have been hidden. (Note that typically an input-method
component should not hide its windows in response to being deactivated. If the subsequent document being
activated is using the same component’s service, it would be irritating to the user to hide and then immediately
redisplay the same windows. An input-method component should hide its windows only in response to a
HidePaletteWindows call.) If the component is an input method, it should specify the redisplay of any
unconfirmed text currently in the active input area.

The Text Services Manager makes this call either on its own or in response to application-interface calls it
receives from client applications. Client applications may directly make this call, but the Text Services Manager
does not then play a role in the connection between the client application making the call and the text
service component receiving it.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

ActivateTSMDocument
Informs the Text Services Manager that a TSM document is active.

Functions 1577
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

OSErr ActivateTSMDocument (
 TSMDocumentID idocID
);

Parameters
idocID

A TSM document identification number created by a prior call to the NewTSMDocument (page 1595)
function.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
When a window that has an associated TSM document becomes active, your client application must call the
ActivateTSMDocument function to inform the Text Services Manager that the document is activated and
is ready to use text service components.

ActivateTSMDocument calls the equivalent text service component function ActivateTextService (page
1577) for all open text service components associated with the TSM document.

If a text service component has a menu, the Text Services Manager inserts the menu into the menu bar.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

CloseTextService
Closes a text service component, other than an input method, and disassociates it from the active TSM
document. (Deprecated in Mac OS X v10.5.)

OSErr CloseTextService (
 TSMDocumentID idocID,
 ComponentInstance aComponentInstance
);

Parameters
idocID

The identification number of a TSM document created by a prior call to the NewTSMDocument (page
1595) function.

aComponentInstance
The component instance created by a prior call to OpenTextService (page 1597).

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
When a user wants to close an opened text service component, your client application should call the function
CloseTextService.

1578 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

If the text service component displays a menu, the Text Services Manager removes the menu from the menu
bar. This function is for closing text service components other than input methods. Your application does
not need to open or close input methods.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

CopyTextServiceInputModeList
Obtains a copy of the set of input modes supported by a keyboard-class input method.

ComponentResult CopyTextServiceInputModeList (
 ComponentInstance ts,
 CFDictionaryRef *outInputModes
);

Parameters
ts

The component whose set of input modes you want to obtain.

outInputModes
On output, the CFDictionary contains the list of supported input modes. See the Discussion for more
information on the structure and requirements of the dictionary.

Return Value
See the Component Manager documentation for a description of the ComponentResult data type.

Discussion
This function is supported by input methods that adopt the input mode protocol. If this component call is
not supported by an input method, calls to functions that access text service properties (using the tag
kTextServiceInputModePropertyTag) return the result tsmComponentPropertyUnsupportedErr.

The CFDictionary of input modes (available in TSM 2.2 and later) must have the following form:

<dict>
<key> kTSInputModeListKey </key>
<dict>
<key> modeSignature : (internal ascii name)</key>
<!-- This can be any of the generic input modes defined in this file,-->
<!-- such as kTextServiceInputModeRoman,or can be a private input-->
<!-- mode such as CFSTR("com.apple.MyInputmethod.Japanese.CoolMode") -->
 <dict>
<key>menuIconFile</key>
<string> (path for menu icon image file)</string>
<key>alternateMenuIconFile</key>
<string> (path for alternate menu icon image file, when item is hilited)</string>
<key>paletteIconFile</key>
<string> (path for palette icon image file) </string>
<key>defaultState</key>
<boolean> (default on/off state) </boolean>

Functions 1579
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

<key>script</key>
<string> (scriptCode string for this mode, for example, "smRoman") </string>
<key>primaryInScript</key>
<boolean> (true if this is primary mode in this script) </boolean>
<key>isVisible</key>
<boolean> (true if this input mode should appear in System UI) </boolean>
<key>keyEquivalentModifiers</key>
<integer> (modifiers)</integer>
<key>keyEquivalent</key>
<string> (key equivalent character) </string>
<key>JISKeyboardShortcut</key>
<integer> (optional: 0=none,1=hiragana, 2=katakana, 3=eisu) </integer>
</dict>
</dict>
</dict>

This dictionary must also be present in the Info.plist for the component bundle, in addition to being available
through this component call. Availability in the Info.plist allows retrieval of input modes by the system without
opening the component. The component call is used whenever the system is notified of a change in the
contents of the input mode list, such as when the name or key-equivalents of individual input modes have
changed.

If, when the input method is first activated in a login session, the settings of the individual input modes
(names or key-equivalents) differ from the default settings as found in the component bundle Info.plist, the
system needs to be notified of the change. The input method does this by sending out the Carbon event
kEventTextInputInputMenuChanged, just as when the change originally took place.

For more information on the dictionary keys used to define input modes and the input mode dictionary, see
“Input Mode Dictionary Key” (page 1633) and “Individual Input Mode Keys” (page 1635).

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.3 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

DeactivateTextService
Notifies a text service component that its associated document window is becoming inactive.

1580 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

ComponentResult DeactivateTextService (
 ComponentInstance ts
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

Return Value
See the Component Manager documentation for a description of the ComponentResult data type.

Discussion
Text service components must implement a function for this call.

When it receives a DeactivateTextService call, the text service component is responsible for saving
whatever state information it needs to save, so that it can restore the proper information when it becomes
active again. Note that an input method should not confirm any unconfirmed text in the active input area,
but should save it until reactivated.

A component other than an input method should hide all its floating windows and menus. However, an
input-method component should not hide its windows in response to this call. If the subsequent document
being activated is using the same component’s service, it would be irritating to the user to hide and then
immediately redisplay the same windows. An input-method component should hide its windows only in
response to a HidePaletteWindows call.

The Text Services Manager makes this call either on its own or in response to application-interface calls it
receives from client applications. Client applications may directly make this call, but the Text Services Manager
does not then play a role in the connection between the client application making the call and the text
service component receiving it.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

DeactivateTSMDocument
Informs the Text Services Manager that a TSM document is inactive.

Functions 1581
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

OSErr DeactivateTSMDocument (
 TSMDocumentID idocID
);

Parameters
idocID

A TSM document identification number created by a prior call to the NewTSMDocument (page 1595)
function.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
The DeactivateTSMDocument function lets you inform the Text Services Manager that a TSM document
in your client application is no longer active and must temporarily stop using text service components.

The Text Services Manager calls the equivalent text service component function
DeactivateTextService (page 1580) for any text service component associated with the TSM document
being deactivated.

An application that supports inline input should always strive to have a TSM document active at all times. If
a situation arises in which all TSM documents are inactive and keyboard input occurs, the Text Services
Manager automatically interacts with the user via its floating input window. (This is the same floating window
that the Text Services Manager displays if an application calls the function UseInputWindow (page 1613) with
a value of TRUE for the useWindow parameter.)

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

DeleteTSMDocument
Closes all opened text service components for the TSM document.

OSErr DeleteTSMDocument (
 TSMDocumentID idocID
);

Parameters
idocID

A TSM document identification number created by a prior call to the NewTSMDocument (page 1595)
function.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

1582 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Discussion
When your application disposes of a TSM document, it must call the DeleteTSMDocument function to inform
the Text Services Manager that the document is no longer using text service components.
DeleteTSMDocument invokes the Component Manager CloseComponent function for each open text
service component associated with this document. It also disposes of the internal data structure for the TSM
document.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

DeselectTextService
Notifies TSM that an input method has been closed. (Deprecated in Mac OS X v10.5.)

OSStatus DeselectTextService (
 Component aComp
);

Parameters
aComp

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
This API is currently only intended for use by Character Palette class input methods. It allows such an input
method to notify TSM that it has been closed by the user as a result of interaction with the input method's
own UI, such a palette's close button, instead of via the normal UI provided by the System, such as the
Keyboard Menu.

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

FixTextService
Notifies a text service component that it must complete the processing of any input that is in progress.

Functions 1583
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

ComponentResult FixTextService (
 ComponentInstance ts
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

Return Value
See the Component Manager documentation for a description of the ComponentResult data type.

Discussion
Text service components must implement a function for this call.

For input method components, this function is equivalent to the user explicitly confirming text, but in this
case the request comes instead from the application or from the Text Services Manager. Typically, users
confirm text explicitly (such as by pressing the Return key), and input methods continually process these
user events and send the confirmed text to client applications. Circumstances may arise, however, in which
an application needs the input method to confirm and send input without an explicit confirmation from the
user.

If, for example, the user clicks the mouse in text outside the active input area, that constitutes an implicit
user acceptance of the text in the active input area. In this case, applications should explicitly terminate any
active input by calling the FixTSMDocument (page 1584) function, which notifies the Text Services Manager.
The Text Services Manager then calls the FixTextService function, which notifies the text service component
that it must stop accepting further input and pass the current contents (both converted and unconverted)
of the active input area as confirmed text to the client application.

Client applications may directly make this call, but the Text Services Manager does not then play a role in
the connection between the client application making the call and the text service component receiving it.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

FixTSMDocument
Informs the Text Services Manager that user input for a TSM document has been interrupted.

1584 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

OSErr FixTSMDocument (
 TSMDocumentID idocID
);

Parameters
idocID

The identification number of a TSM document created by a prior call to the NewTSMDocument (page
1595) function.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
Typically, an inline input text service component removes confirmed input from the active input area each
time the user presses the Return key, and passes the confirmed text to your application through a Carbon
event or an Apple event.

In certain situations, however, your client application may need to inform the text service component that
input in the active input area of a specified TSM document has been interrupted, and that the text service
component must confirm the text and terminate user input.In this case you call the FixTSMDocument function
to give the input method text service component the opportunity to confirm any input in progress.

For instance, if the user clicks in the close box of the window in which active input is taking place, call
FixTSMDocument before you close the window. The text service component will pass you the current
contents (both converted and unconverted) of the active input area as confirmed text.

For simple activating and deactivating of your application’s window, it is not necessary to confirm the text
in the active inline area. The input method saves the text and restores it when your window is reactivated.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

GetDefaultInputMethod
Obtains the default input method text service component for a given script and language. (Deprecated in
Mac OS X v10.5.)

Not recommended.

OSErr GetDefaultInputMethod (
 Component *ts,
 ScriptLanguageRecord *slRecordPtr
);

Parameters
ts

A pointer to the component identifier of the input method text service component that is associated
with the script and language combination given in the slRecord parameter.

Functions 1585
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

slRecordPtr
A pointer to a structure of type ScriptLanguageRecord (page 1614). This structure describes the
script and language combination that is associated with the input method text service specified in
the ts parameter.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
You should use the function GetDefaultInputMethodOfClass (page 1586) instead of this one.

The operating system uses GetDefaultInputMethod to find out which input method to activate when the
user selects a new keyboard script from the Keyboard menu or by Command-key combination, or when an
application calls KeyScript to change keyboard scripts. Your application should not typically need to call
this function.

Version Notes
For systems prior to Mac OS X, in versions of Japanese system software starting with KanjiTalk 7, if the default
input method is pre-KanjiTalk 7 and non-TSM-aware, GetDefaultInputMethod returns the error
tsmInputMethodIsOldErr. In that case the ts parameter contains the script code of the old input method
in its high-order word, and the reference ID of the old input method in its low-order word.

Availability
Not recommended. Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

GetDefaultInputMethodOfClass
Obtains the default input method text service component for a given text service class. (Deprecated in Mac
OS X v10.5.)

OSStatus GetDefaultInputMethodOfClass (
 Component *aComp,
 ScriptLanguageRecord *slRecPtr,
 TextServiceClass tsClass
);

Parameters
aComp

On return, a pointer to the component identifier of the input method text service component that is
associated with the script and language combination given in the slRecord parameter.

slRecPtr
On return, a pointer to a structure of typeScriptLanguageRecord (page 1614). This structure describes
the script and language combination that is associated with the input method text service specified
in the ts parameter.

1586 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

tsClass
The text service class whose component and script language record you want to obtain. Pass
kKeyboardInputMethodClass to specify a keyboard input method. Pass kInkInputMethod to
specify an Ink input method.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
Availability
Not available in CarbonLib.
Available in Mac OS X v 10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

GetInputModePaletteMenu
Obtains from an input method the menu to display for a pull-down menu on the input mode palette.
(Deprecated in Mac OS X v10.5.)

ComponentResult GetInputModePaletteMenu (
 ComponentInstance inInstance,
 UInt32 inItemID,
 CFArrayRef *outMenuItemsArray
);

Parameters
inInstance

The component instance.

inItemID
The item ID of the pull-down menu button.

outMenuItemsArray
On return, points to an array of menu items. A pull-down menu consists of an array of CFDictionary
objects that contain the keys described in Input Mode Palette Menu Definition Keys (page
1633).

Return Value
Returns a non-null value on successful handling of the call.

Availability
Available in Mac OS X v 10.4 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

Functions 1587
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

GetScriptLanguageSupport
Notifies a text service component that it must produce a list of its supported languages and scripts. (Deprecated
in Mac OS X v10.5.)

ComponentResult GetScriptLanguageSupport (
 ComponentInstance ts,
 ScriptLanguageSupportHandle *scriptHdl
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

scriptHdl
A handle to a structure of type ScriptLanguageSupport (page 1615). The handle must be either
NULL or a valid handle. If it is NULL, the text service component allocates a new handle. If it is already
a valid handle, the text service component resizes it as necessary. GetScriptLanguageSupport
should produce a list of scripts and languages in this parameter.

Return Value
The return value should contain 0 if the list is correct, or an error value if an error occurred. See the Component
Manager documentation for a description of the ComponentResult data type.

Discussion
Text service components must implement a function for this call.

In response to this call, the component should list all its supported scripts and languages, starting with the
primary script and language as specified in the componentFlags field of its component description structure.
The Text Services Manager makes the GetScriptLanguageSupport call after a component is opened via
the Component Manager function OpenComponent. One of the Text Services Manager’s uses of this script
information is to determine whether to exchange information with the component in the Unicode text
encoding.

For example, if a component is associated with a Macintosh script, but includes the smUnicodeScript
constant in its enumeration of supported constants, then the Text Services Manager determines that the
component produces and expects text in the Unicode encoding. Additionally, in this example, the Text
Services Manager also concludes that the Unicode characters which the component supports are limited to
those encoded in the repertoire of the encoding corresponding to the Macintosh script in the
componentFlags field of its component description structure. Note that if the script specified in the
componentFlags field is itself smUnicodeScript, the Text Services Manager imposes no restriction on the
set of supported characters, and it treats the component as being capable of handling any Unicode character.

Client applications may directly make this call, but the Text Services Manager does not then play a role in
the connection between the client application making the call and the text service component receiving it.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Deprecated in Mac OS X v10.5.

1588 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Not available to 64-bit applications.

Declared In
TextServices.h

GetServiceList
Obtains a list of the text service components of a specified type that are currently available. (Deprecated in
Mac OS X v10.5.)

OSErr GetServiceList (
 SInt16 numOfInterface,
 const OSType *supportedInterfaceTypes,
 TextServiceListHandle *serviceInfo,
 SInt32 *seedValue
);

Parameters
numOfInterface

The number of text service interface types supported by your client application.

supportedInterfaceTypes
A pointer to a value of type InterfaceTypeList (page 1614) specifying the kinds of text services that
your program supports. This list helps the Text Services Manager locate text services of the correct
interface type.

serviceInfo
A pointer to a handle to a structure of type TextServiceList (page 1616). If the handle is NULL, the
Text Services Manager allocates the handle; otherwise, it assumes the handle is a valid text service
component list handle, as defined by the TextServiceListHandle data type.

seedValue
A pointer to a value that indicates whether the list of text service components returned by
GetServiceList may have been modified.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
Your client application is responsible for providing a way—usually a menu—for the user to choose from
among all available text service components. To get a list of available text service components to display in
a menu, call the GetServiceList function. Be sure to filter out input methods, because the Keyboard menu
already displays them.

When your application calls GetServiceList, the Text Services Manager locates all the text service
components of the specified types and creates a text service component list, defined by the TextServiceList
data type, containing an entry for each of the text service components.

It is possible to register text service components or withdraw them from registration at any time. Once it has
compiled a list of text services, the Text Services Manager invokes the GetComponentListModSeed function
and returns the value in the modseed parameter. You can save that value and, the next time you need to
draw or regenerate the list of services, call the Component Manager GetComponentListModSeed function.
If the seed value differs from the one you received from your last call to GetServiceList, you need to call
GetServiceList once more to update the information. Alternately, you can simply call GetServiceList
each time you need to update the list, although that may be less efficient.

Functions 1589
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

GetTextServiceLanguage
Obtains the current input script and language. (Deprecated in Mac OS X v10.5.)

OSErr GetTextServiceLanguage (
 ScriptLanguageRecord *slRecordPtr
);

Parameters
slRecordPtr

A pointer to a structure of type ScriptLanguageRecord (page 1614). Upon completion of the call,
this structure describes the language supported by the default (current) text service component for
the current keyboard script.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
Your application should not typically need to call this function.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

GetTextServiceMenu
Notifies a text service component that it must produce a handle to its menu.

1590 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

ComponentResult GetTextServiceMenu (
 ComponentInstance ts,
 MenuRef *serviceMenu
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

serviceMenu
A pointer to a menu handle (defined by the Menu Manager MenuHandle data type) for the text service
component that is to be updated. The menu handle may be preallocated or it may be NULL. If the
menu handle is NULL, the text service component should allocate a new menu and return it. On Mac
OS 8 and 9, note that all instances of a component must share a single menu handle, allocated in the
system heap. On Mac OS X, all instances of a component must share a single menu handle within an
application’s context.

Return Value
If the text service component does not have a menu, it should return a ComponentResult value of
TSMHasNoMenuErr. See the Component Manager documentation for a description of the ComponentResult
data type.

Discussion
Text service components must implement a function for this call.

The Text Services Manager calls GetTextServiceMenu when a component is opened or activated, so that
it can put the component’s menu on the menu bar.

Client applications may directly make this call, but the Text Services Manager does not then play a role in
the connection between the client application making the call and the text service component receiving it.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

GetTextServiceProperty
Notifies a text service component that it must identify the current value of one of its properties.

Functions 1591
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

ComponentResult GetTextServiceProperty (
 ComponentInstance ts,
 TextServicePropertyTag inPropertyTag,
 TextServicePropertyValue *outPropertyValue
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

propertySelector
A constant identifying a general property of a text service. For descriptions of the system-defined
property selectors, see “Text Service Properties” (page 1640).

result
On return, a constant specifying the value for a text service property. For descriptions of the
system-defined property values, see “Text Service Properties” (page 1640).

Return Value
See the Component Manager documentation for a description of the ComponentResult data type.

Discussion
Text service components have the option of implementing a function for this call.

Both the Text Services Manager and client applications can call this function to manage text service properties.
If client applications directly make this call, the Text Services Manager does not then play a role in the
connection between the client application making the call and the text service component receiving it.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

HidePaletteWindows
Notifies a text service component that it must hide its floating windows.

1592 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

ComponentResult HidePaletteWindows (
 ComponentInstance ts
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

Return Value
If the text service component has no palettes, it should return a ComponentResult value of noErr. See the
Component Manager documentation for a description of the ComponentResult data type.

Discussion
Text service components must implement a function for this call.

If a window associated with a TSM document associated with your text service is being deactivated, your
text service component receives the DeactivateTextService (page 1580) call. You should perform any
necessary cleanup or other tasks associated with deactivating your current component instance. If your text
service component is not an input method, you should also hide all floating windows associated with the
document being deactivated. If your text service component is an input method and if the newly activated
document does not use your text services, you receive the HidePaletteWindows call. When it receives a
HidePaletteWindows call, your input method should hide all its floating and nonfloating windows associated
with the component instance being deactivated. Its menus, if any, will be removed from the menu bar by
the Text Services Manager.

The Text Services Manager makes this call either on its own or in response to application-interface calls it
receives from client applications. Client applications may directly make this call, but the Text Services Manager
does not then play a role in the connection between the client application making the call and the text
service component receiving it.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

InitiateTextService
Notifies a text service component that it must perform any necessary set-up tasks and begin operating.

Functions 1593
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

ComponentResult InitiateTextService (
 ComponentInstance ts
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

Return Value
This function should return a ComponentResult value of zero if there is no error, and an error code if there
is one. See the Component Manager documentation for a description of the ComponentResult data type.

Discussion
Text service components must implement a function for this call.

The Text Services Manager can call InitiateTextService to any component that it has already opened
with the Component Manager OpenComponent or OpenDefaultComponent functions. Text service
components should be prepared to handle InitiateTextService calls at any time.

Any text service component can receive multiple InitiateTextService calls. The Text Services Manager
calls InitiateTextService each time the user adds a text service to a TSM document, even if the text
service component has already been opened. This provides an opportunity for the component to restart or
to display user interface elements that the user may have closed.

The Text Services Manager makes this call either on its own or in response to application-interface calls it
receives from client applications. Client applications may directly make this call, but the Text Services Manager
does not then play a role in the connection between the client application making the call and the text
service component receiving it.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

InputModePaletteItemHit
Informs an input method that a function button on the input mode palette was pressed. (Deprecated in Mac
OS X v10.5.)

1594 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

ComponentResult InputModePaletteItemHit (
 ComponentInstance inInstance,
 UInt32 inItemID,
 UInt32 inItemState
);

Parameters
inInstance

The component instance.

inItemID
The item ID of the function button pressed on the palette.

inItemState
The new state of the button.

Return Value
Returns a non-null value on successful handling of the call.

Availability
Available in Mac OS X v 10.4 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

IsTextServiceSelected
Determines if a text service component is selected. (Deprecated in Mac OS X v10.5.)

Boolean IsTextServiceSelected (
 Component aComp
);

Parameters
aComp

The component you want to determine is selected or not.

Return Value
Returns true if the component is selected.

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.3 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

NewTSMDocument
Creates a TSM document and returns a handle to the document’s ID.

Functions 1595
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

OSErr NewTSMDocument (
 SInt16 numOfInterface,
 InterfaceTypeList supportedInterfaceTypes,
 TSMDocumentID *idocID,
 SRefCon refcon
);

Parameters
numOfInterface

The number of text service interface types that your application supports.

supportedInterfaceTypes
A value of typeInterfaceTypeList (page 1614) specifying the kinds of text services that your program
supports. This list helps the Text Services Manager locate the text services that have the correct
interface type.

idocID
Upon successful completion of the call, a pointer to the document identification number of the TSM
document created. If NewTSMDocument fails to create a new TSM document, it returns an error and
sets idocID to NULL.

refcon
A reference constant to be associated with the TSM document. This may have any value you wish.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
Each time your client application calls the NewTSMDocument function, the Text Services Manager creates an
internal structure called a TSM document and returns its ID.

If the call is successful, NewTSMDocument opens the default input method text service component of the
current keyboard script and assigns it to this document. If NewTSMDocument returns tsmScriptHasNoIMErr,
it has still created a valid TSM document, but has not associated an input method with it.

Starting in Mac OS X v10.3, the NewTSMDocument function turns on the
kTSMDocumentUnicodeInputWindowPropertyTag implicitly for TSMDocuments of interface type
kUnicodeDocumentInterfaceType. The effect is that Unicode input sources (keyboard layouts) can remain
available, not only in an editing mode where Unicode is supported by an application, but also outside of
editing mode where no TSMDocument in particular is active.

This change also provides compatibility with many applications that relied on Unicode input being available
even without activating any of their own TSMDocuments, as well as other applications that do create their
own Unicode TSMDocument but call the function UseInputWindow passing true (which was really an
undefined operation in the original Unicode/TSM specification).

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

1596 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

OpenTextService
Opens a text service component, other than an input method, and associates it with a TSM document.
(Deprecated in Mac OS X v10.5.)

OSErr OpenTextService (
 TSMDocumentID idocID,
 Component aComponent,
 ComponentInstance *aComponentInstance
);

Parameters
idocID

The identification number of a TSM document created by a prior call to the NewTSMDocument (page
1595) function.

aComponent
A component identifier for this text service component. You can obtain the component identifier to
pass in aComponent by comparing the menu item name selected by the user with the component
item name found in a TextServiceInfo (page 1615) structure. You can obtain a TextServiceInfo
structure by calling the function GetServiceList (page 1589) and examining the fServices field
of the TextServiceList structure that it produces.

aComponentInstance
Upon completion of the call, a pointer to a component instance. This value identifies your application’s
connection to a text service component. You must supply this value if you call the text service functions
provided by the component directly.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
This function instructs the Text Services Manager to open a text service component, other than an input
method, that a user has chosen and to associate it with a TSM document. The Text Services Manager opens
the requested component by calling the Component Manager OpenComponent function.

If the specified text service component is already open, the Text Services Manager does not open it again
and the tsmComponentAlreadyOpenErr error message is returned as a result code. Whether or not the
text service is open, the Text Services Manager calls the functions InitiateTextService (page 1593) and
ActivateTextService (page 1577) for the given text service and returns a valid component instance. Upon
completion of the OpenTextService call, the selected text service component is initialized and active.

This function is for opening text service components other than input methods. Your application does not
need to open or close input methods.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

Functions 1597
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

SelectTextService
Selects a text service. (Deprecated in Mac OS X v10.5.)

OSStatus SelectTextService (
 Component aComp
);

Parameters
aComp

The text service you want to select.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
This function is intended for use by input methods in text service classes which are additive in nature, that
is where the input method can operate in parallel to other input methods in the same class and other additive
text service classes. An example of such a class is the Character Palette class. This function is not for use by
traditional input methods, such as those that belong to the keyboard input method class.

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

SendAEFromTSMComponent
Sends Apple events from a text service component to a client application. (Deprecated in Mac OS X v10.5.)

OSErr SendAEFromTSMComponent (
 const AppleEvent *theAppleEvent,
 AppleEvent *reply,
 AESendMode sendMode,
 AESendPriority sendPriority,
 SInt32 timeOutInTicks,
 AEIdleUPP idleProc,
 AEFilterUPP filterProc
);

Parameters
theAppleEvent

A pointer to the Apple event to be sent.

reply
A pointer to the reply Apple event returned by SendAEFromTSMComponent.

1598 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

sendMode
The value that lets you specify one of the following modes specified by corresponding constants: the
reply mode for the Apple event, the interaction level, the application switch mode, the reconnection
mode, and the return receipt mode. To obtain the value for this parameter, add the appropriate
constants. Comprehensive details about these constants are provided in the description of the Apple
Event Manager AESend function.

sendPriority
The value that specifies whether to put the Apple event at the back of the event queue (set with the
kAENormalPriority flag) or at the front of the queue (kAEHighPriority flag).

timeOutInTicks
The length of time (in ticks) that the client application is willing to wait for the reply or return receipt
from the server application before it times out. If the value of this parameter is kNoTimeOut, the
Apple event never times out.

idleProc
A pointer to a function for any tasks (such as displaying a globe, a wristwatch, or a spinning beach
ball cursor) that the application performs while waiting for a reply or a return receipt.

filterProc
A pointer to a function that accepts certain incoming Apple events that are received while the handler
waits for a reply or a return receipt and filters out the rest.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
Component use of Apple events and the function SendAEFromTSMComponent is discouraged on Mac OS X.
Text service components should use Carbon text input events and the function SendTextInputEvent (page
1600) on Mac OS X, instead. See “Carbon Porting Notes” below for more details.

The SendAEFromTSMComponent function is essentially a wrapper function for the Apple Event Manager
function AESend. See the description of AESend for additional necessary information, including constants
for the sendMode parameter and result codes.

SendAEFromTSMComponent identifies your text service component from the keyAEServerInstance
parameter in the Apple event specified in the theAppleEvent parameter. If a reference constant in a TSM
document that corresponds to this parameter is found in the internal data structures of the Text Services
Manager, SendAEFromTSMComponent adds the reference constant as the keyAETSMDocumentRefcon
parameter to the given Apple event before sending it to the application.

If the client application is not TSM-aware, SendAEFromTSMComponent routes the Apple events to the floating
input window to allow bottom-line input.

If your text service component changes the environment in any way—such as by modifying the A5 world
or changing the current zone—while constructing an Apple event, it must restore the previous settings
before sending the Apple event.

Your text service component should always use the kCurrentProcess constant as the target address when
it creates an Apple event to send to the Text Services Manager.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Functions 1599
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Carbon Porting Notes

Note that this function is superseded by the function SendTextInputEvent (page 1600) on Mac OS X only.
With Mac OS X, text service components must be Carbon clients. This is in contrast to Mac OS 8 and 9, where
text service components must not be Carbon clients. (This restriction is due to the fact that it is potentially
destabilizing for a Carbon-based component to load Carbon in the context of a non-Carbon application.)
Therefore, text service components use Carbon text input events and the SendTextInputEvent function
only on Mac OS X. The function SendAEFromTSMComponent must be used by components running on Mac
OS 8 and 9.

On any system, the Text Services Manager automatically converts component-originated text input events
to the proper form for client applications. On Mac OS X, the Text Services Manager automatically converts
component-originated Carbon events to Apple events, if a client application does not provide handlers for
Carbon events. Conversely, on Mac OS 8 and 9, the Text Services Manager automatically converts
component-originated Apple events to Carbon events and provides these Carbon events to applications, so
they have the option of handling them.

Declared In
TextServices.h

SendTextInputEvent
Sends Carbon text input events from a text service component to a client application.

OSStatus SendTextInputEvent (
 EventRef inEvent
);

Parameters
inEvent

A reference to the Carbon event to be sent.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647). The SendTextInputEvent function
returns noErr if the event is successfully handled. If the event is not handled, the function may return a
Carbon Event Manager error, as well as Apple event or Text Encoding Conversion Manager errors.

Discussion
The SendTextInputEvent function allows a Carbon text service component on Mac OS X to send a Carbon
text input event to the Text Services Manager for dispatching to a client application. This function can be
used for events of Carbon event class kEventClassTextInput as well as for events of class
kEventClassTSMDocumentAccess.

If the client application does not handle a particular Carbon text input event, the Text Services Manager
converts the event to the corresponding Apple event and sends it again. An exception to this is when the
application is not Unicode-aware (that is, the active TSM document was not created with the
kUnicodeDocument interface type). In this case, a kEventUnicodeForKeyEvent Carbon event would not
be converted to the corresponding Apple event (kUnicodeNotFromInputMethod). In every case, if the
application handles neither the Unicode Carbon text input event nor the corresponding Apple event, the
Text Services Manager converts the component’s text input event into a stream of “classic” key events for
delivery to WaitNextEvent clients.

1600 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

If the application has no active TSM documents or has called the function UseInputWindow (page 1613) to
request input via the Text Services Manager’s floating input window—that is, if the application does not
handle the event at all—the Text Services Manager routes the component’s text input event to the floating
input window to allow bottom-line input.

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Carbon Porting Notes

Note that this function replaces the function SendAEFromTSMComponent (page 1598) on Mac OS X only. With
Mac OS X, text service components must be Carbon clients. This is in contrast to Mac OS 8 and 9, where text
service components must not be Carbon clients. (This restriction is due to the fact that it is potentially
destabilizing for a Carbon-based component to load Carbon in the context of a non-Carbon application.)
Therefore, text service components use Carbon text input events and the SendTextInputEvent function
only on Mac OS X. The function SendAEFromTSMComponent must be used by components running on Mac
OS 8 and 9.

On any system, the Text Services Manager automatically converts component-originated text input events
to the proper form for client applications. On Mac OS X, the Text Services Manager automatically converts
component-originated Carbon events to Apple events, if a client application does not provide handlers for
Carbon events. Conversely, on Mac OS 8 and 9, the Text Services Manager automatically converts
component-originated Apple events to Carbon events and provides these Carbon events to applications, so
they have the option of handling them.

Declared In
TextServices.h

SetDefaultInputMethod
Sets a default input method to a given script and language. (Deprecated in Mac OS X v10.5.)

Not recommended.

OSErr SetDefaultInputMethod (
 Component ts,
 ScriptLanguageRecord *slRecordPtr
);

Parameters
ts

The component identifier of the input method to be associated with the script and language
combination given in the slRecord parameter.

slRecordPtr
A pointer to a structure of type ScriptLanguageRecord (page 1614). This structure describes the
script and language combination to be associated with the input method specified in the ts parameter.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647). If the script code and language code
specified in the script-language structure are incompatible, SetDefaultInputMethod returns the error
paramErr.

Functions 1601
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Discussion
You should use the function SetDefaultInputMethodOfClass (page 1602) instead of this one.

The operating system uses SetDefaultInputMethod to associate an input method text service component
with a given script and language. The operating system calls this function when the user expresses input
method preferences through the Keyboard menu, Keyboard control panel, or other device. The associations
made with this function are permanent; that is, they persist after restart. Your application should not typically
need to call this function.

Availability
Not recommended. Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

SetDefaultInputMethodOfClass
Sets the default input method text service component for a given text service class. (Deprecated in Mac OS
X v10.5.)

OSStatus SetDefaultInputMethodOfClass (
 Component aComp,
 ScriptLanguageRecord *slRecPtr,
 TextServiceClass tsClass
);

Parameters
aComp

The component identifier of the input method to be associated with the script and language
combination given in the slRecord parameter.

slRecPtr
A pointer to a structure of type ScriptLanguageRecord (page 1614). This structure describes the
script and language combination to be associated with the input method specified in the ts parameter.

tsClass
The text service class whose component and script language record you want to obtain. Pass
kKeyboardInputMethodClass to specify a keyboard input method. Pass kInkInputMethod to
specify an Ink input method.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
Availability
Not available in CarbonLib.
Available in Mac OS X v 10.2 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1602 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Declared In
TextServices.h

SetTextServiceLanguage
Changes the current input script and language. (Deprecated in Mac OS X v10.5.)

OSErr SetTextServiceLanguage (
 ScriptLanguageRecord *slRecordPtr
);

Parameters
slRecordPtr

A pointer to a structure of type ScriptLanguageRecord (page 1614) specifying the new script and
language combination.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
The operating system calls this function when the user switches the keyboard script, so that the Text Services
Manager can synchronize the input method with the current keyboard script.

Your application should not typically need to call this function.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

SetTextServiceProperty
Notifies a text service component that one of its properties has been selected.

ComponentResult SetTextServiceProperty (
 ComponentInstance ts,
 TextServicePropertyTag inPropertyTag,
 TextServicePropertyValue inPropertyValue
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

Functions 1603
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

propertySelector
A constant identifying a general property of a text service. For descriptions of the system-defined
property selectors, see “Text Service Properties” (page 1640).

value
A constant specifying a particular value for the text service property. For descriptions of the
system-defined property values, see “Text Service Properties” (page 1640).

Return Value
See the Component Manager documentation for a description of the ComponentResult data type.

Discussion
Text service components have the option of implementing a function for this call.

An application can call SetTextServiceProperty to request that a text service component use a specific
feature or functionality of the component’s program. For example, if an application knows that a Japanese
input method which supports various typing methods is the currently active input method, the application
can solicit the user’s preference of typing methods. Then the application can call SetTextServiceProperty
to request that the input method use the preferred typing method, for example, Roman or Kana. Currently,
the only properties that are defined by the system are typing methods for Japanese input methods.

Both the Text Services Manager and client applications can call this function to manage text service properties.
If client applications directly make this call, the Text Services Manager does not then play a role in the
connection between the client application making the call and the text service component receiving it.

Availability
Available in CarbonLib 1.0 and later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

TerminateTextService
Notifies a text service component that it must terminate its operations in preparation for closing.

ComponentResult TerminateTextService (
 ComponentInstance ts
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

1604 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Return Value
If the text service component needs to remain open, it should return an OSErr value in the component result
return value. This could happen, for example, if the user chooses Cancel in response to a text service
component dialog box. See the Component Manager documentation for a description of the
ComponentResult data type.

Discussion
Text service components must implement a function for this call.

The Text Services Manager calls TerminateTextService before closing the component instance. A text
service component must use this opportunity to confirm any inline input in progress. If this call is made to
the last open instance of a text service component, the component should hide any open palette windows.
If it is an input method, the component should not dispose of its menu handle if it has a menu.

The Text Services Manager makes this call either on its own or in response to application-interface calls it
receives from client applications. Client applications may directly make this call, but the Text Services Manager
does not then play a role in the connection between the client application making the call and the text
service component receiving it.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

TextServiceEventRef
Provides an opportunity for a text service component to handle a Carbon event.

ComponentResult TextServiceEventRef (
 ComponentInstance ts,
 EventRef event
);

Parameters
ts

A Component Manager value of type ComponentInstance that identifies the component being
called. When the Text Services Manager makes this call, it passes the ComponentInstance value
returned by its call to the OpenComponent function. If an application makes this call, it may use the
ComponentInstance value obtained from the kEventParamTextInputSendComponentInstance
parameter of the Carbon event or the keyAEServerInstance parameter of an Apple event sent by
the component being called. Alternately, an application may obtain a ComponentInstance value
from a prior call to the function OpenTextService (page 1597).

event
A reference to the Carbon event being passed to the component.

Functions 1605
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Return Value
If the text service component handles the event, it should return a nonzero value for componentResult. If
it does not handle the event, it should return 0. Note that the Text Services Manager clones an event before
passing it to a component, so any changes made to the contents of an event by the text service have no
effect on the original event. See the Component Manager documentation for a description of the
ComponentResult data type.

Discussion
Carbon text service components (that is, Mac OS X text services) must implement a function for this call.

The Text Services Manager automatically passes raw keyboard Carbon events (events of class
kEventClassKeyboard) and some Carbon mouse events to text service components associated with an
active TSM document. The Text Services Manager passes mouse-click events (kEventMouseDown,
kEventMouseUp, kEventMouseDragged) to active text services directly. However, the Text Services Manager
does not send kEventMouseMoved events to text service components. Instead, when a mouse-moved event
occurs inside an inline input region (as registered via an application call to the TSMSetInlineInputRegion
function), the Text Services Manager promotes the kEventMouseMoved event to the window-specific
kEventWindowCursorChange event, which it then sends to the text service. For more details, see the
function TSMSetInlineInputRegion (page 1611).

Both the Text Services Manager and client applications can call this function to send Carbon events to
components. If client applications directly make this call, the Text Services Manager does not then play a role
in the connection between the client application making the call and the text service component receiving
it.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

TSMCopyInputMethodEnabledInputModes
Obtain the array of the enabled (and visible) input modes for a component. (Deprecated in Mac OS X v10.5.)

Boolean TSMCopyInputMethodEnabledInputModes (
 Component inComponent,
 CFArrayRef *outInputModeArray
);

Parameters
inComponent

The component whose input modes you want to obtain.

outInputModeArray
On return, points to an array of the enabled and visible input modes for the specified component.
This function is meaningful only for input methods that adopt the input mode protocol. If the
component passed is not input mode-savvy, the returned array is NULL. It is the responsibility of the
caller to release the returned array.

1606 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Discussion
You use this function to allow an input method to query the system for the subset of its own input modes
that are enabled. This allows you to omit from the component UI any input modes that are disabled by the
user or the system. The enabled input modes returned in the array are always visible ones. That is, the array
contains those input modes for which kTSInputModeIsVisibleKey is true; non-visible input modes are
not tracked by the system.

Availability
Available in Mac OS X v 10.3 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

TSMGetActiveDocument
Obtains the active TSM document in the current application context.

TSMDocumentID TSMGetActiveDocument (
 void
);

Parameters
Return Value
If the Text Services Manager has enabled bottom line input because no TSM document is active, NULL is
returned. See the description of the TSMDocumentID data type.

Discussion
This function can be useful to identify whether the currently active TSM document belongs to the application,
or whether it may belong to a control or a plug-in which has user focus within the application’s window.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X v 10.0 and later.

Declared In
TextServices.h

TSMGetDocumentProperty
Obtains a TSM document property.

Functions 1607
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

OSStatus TSMGetDocumentProperty (
 TSMDocumentID docID,
 TSMDocumentPropertyTag propertyTag,
 UInt32 bufferSize,
 UInt32 *actualSize,
 void *propertyBuffer
);

Parameters
docID

The TSMDocumentID that identifies the document whose property you want to obtain.

propertyTag
A tag that specifies the property you want to obtain.

bufferSize
The size of the data pointed to by the propertyBuffer parameter. See the Discussion for what to
supply.

actualSize
On return, the actual size of the data.

propertyBuffer
On return, a pointer to the property data.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
You can call the function TSMGetDocumentProperty to retrieve arbitrary data with a specific TSM document.
You associated arbitrary data with a TSM document by calling the function TSMSetDocumentProperty.

Input methods can call the function TSMGetDocumentProperty to determine whether the application that
owns the document supports the glyph ID specification (kTSMDocumentPropertySupportGlyphInfo).

You can call the function TSMGetDocumentProperty to check for the following predefined properties:

 ■ kUseFloatingWindowTag. The presence of this property indicates the document is using bottom-line
floating window for input. See “Collection Tags” (page 1644) for more information.

 ■ kUnicodeDocument. The presence of this property indicates the document is Unicode-savvy. See
“Unicode Identifiers” (page 1643) for more information.

 ■ kTSMTEInterfaceType. The presence of this property indicates a TSM Text Edit interface. See “TSM
Document Interfaces” (page 1642) for more information.

 ■ kTextService. The presence of this property indicates the document is not Unicode-savvy. See “TSM
Document Interfaces” (page 1642) for more information.

These properties do not have any data associated with them. If the function TSMGetDocumentProperty
returns noErr when you call the function with one of these properties, it indicated the property is present.

Typically you need to call this function twice, as follows:

1. Pass the document ID for the document, the tag that specifies the property you want to obtain, 0 for
the bufferSize parameter, NULL for the actualSize parameter, and NULL for the propertyBuffer
parameter.

1608 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

2. Allocate enough space for a buffer of the returned size, then call the function again, passing a pointer
in the propertyBuffer parameter. On return, the pointer references the property data.

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.2 and later.

Declared In
TextServices.h

TSMInputModePaletteLoadButtons
Notifies the input mode palette of changes to the controls for an input method and replaces the current
controls with the new control array. (Deprecated in Mac OS X v10.5.)

void TSMInputModePaletteLoadButtons (
 CFArrayRef paletteButtonsArray
);

Parameters
paletteButtonsArray

A CFArray that contains descriptions of the controls. Use a CFDictionary to describe each control. See
“Input Mode Palette Control Keys” (page 1634) for a description of the keys you can supply.

Availability
Available in Mac OS X v 10.4 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

TSMInputModePaletteUpdateButtons
Notifies the input mode palette of changes to the controls for an input method and updates the controls.
(Deprecated in Mac OS X v10.5.)

void TSMInputModePaletteUpdateButtons (
 CFArrayRef paletteButtonsArray
);

Parameters
paletteButtonsArray

A CFArray that contains descriptions of the controls. Use a CFDictionary to describe each control. See
“Input Mode Palette Control Keys” (page 1634) for a description of the keys you can supply.

Discussion
This function updates controls based on the control tag ID. It doe not replace or remove existing controls.

Availability
Available in Mac OS X v 10.4 and later.
Deprecated in Mac OS X v10.5.

Functions 1609
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Not available to 64-bit applications.

Declared In
TextServices.h

TSMRemoveDocumentProperty
Removes a property from a TSM document.

OSStatus TSMRemoveDocumentProperty (
 TSMDocumentID docID,
 TSMDocumentPropertyTag propertyTag
);

Parameters
docID

The TSMDocumentID that identifies the document whose property you want to obtain.

propertyTag
A tag that specifies the property you want to remove.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.2 and later.

Declared In
TextServices.h

TSMSelectInputMode
Sets the specified input method input mode as the current input source. (Deprecated in Mac OS X v10.5.)

OSStatus TSMSelectInputMode (
 Component inComponent,
 CFStringRef inInputMode
);

Parameters
inComponent

The component whose input mode you want to set.

inInputMode
The input mode you want to set as the current input source.

Discussion
You use this function to allow an input method to select one of its own input modes as the current input
source and update the Text Input menu icon in the menu bar. This function is only meaningful for input
methods that adopt the input mode protocol.

Availability
Available in Mac OS X v 10.3 and later.
Deprecated in Mac OS X v10.5.

1610 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Not available to 64-bit applications.

Declared In
TextServices.h

TSMSetDocumentProperty
Sets a property for a TSM document.

OSStatus TSMSetDocumentProperty (
 TSMDocumentID docID,
 TSMDocumentPropertyTag propertyTag,
 UInt32 propertySize,
 void *propertyData
);

Parameters
docID

The TSMDocumentID that identifies the document whose property you want to set.

propertyTag
A tag that specifies the property you want to set.

propertySize
The size of the property data.

propertyData
A pointer to the property data.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
You can call the function TSMSetDocumentProperty to associate arbitrary data with a specific TSM document.
You can call the function TSMGetDocumentProperty to retrieve arbitrary data.

If your application supports input of unencoded glyphs you must notify the Text Service Manager and input
methods by setting the glyph ID specification (kTSMDocumentPropertySupportGlyphInfo) as a property
of each TSM document.

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.2 and later.

Declared In
TextServices.h

TSMSetInlineInputRegion
Defines a region within a TSM document in which inline input can occur. (Deprecated in Mac OS X v10.5.)

Functions 1611
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

OSStatus TSMSetInlineInputRegion (
 TSMDocumentID inTSMDocument,
 WindowRef inWindow,
 RgnHandle inRegion
);

Parameters
inTSMDocument

The identification number of a TSM document created by a prior call to the NewTSMDocument (page
1595) function.

inWindow
A reference to the window that contains the inline input session. You can pass NULL for this parameter
to indicate the window that currently has user focus.

inRegion
The current inline input region. This region should be in coordinates local to the port associated with
the window specified in the inWindow parameter. The region must be recomputed each time the
text content of the inline input session changes (such as after an Update Active Input Area event)
and when the region moves for other reasons (such as window resizing or scrolling). If you pass NULL
for this parameter, the Text Service Manager defaults to intercepting mouse events for the window’s
entire content region.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
The TSMSetInlineInputRegion function informs the Text Services Manager of the region occupied by an
inline input session. If certain mouse events (such as clicks and mouse-moved events) occur within this region,
the Text Services Manager forwards these events to the current input method, so the component can respond
to the user’s actions.

When a mouse-moved event occurs inside an inline input region (as registered via the
TSMSetInlineInputRegion function), the Text Services Manager promotes the kEventMouseMoved event,
after it has been received by the applicable control or window, to the window-specific
kEventWindowCursorChange event. The Text Services Manager first delivers the
kEventWindowCursorChange event to the active input method, then, if it is not handled, to any other
active text services. If the event has still not been handled, the Text Services Manager finally passes the event
to the application’s kEventWindowCursorChange event handler, if any. This event-dispatching process
gives applications that need to see the low-level mouse-moved events a chance to see these events first,
while providing a mechanism for text services and applications to act on these events without conflict. After
completing this process, the Carbon Event Manager converts any kEventWindowCursorChange event that
remains unhandled to a “classic” mouse-moved event for WaitNextEvent clients.

If an application does not call this function, when an input method is active the Text Services Manager by
default intercepts mouse events in the entire content region of the window that currently has user focus.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X v 10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
TextServices.h

1612 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

UseInputWindow
Associates a floating input window with one or more TSM documents.

OSErr UseInputWindow (
 TSMDocumentID idocID,
 Boolean useWindow
);

Parameters
idocID

The TSM document ID of the particular TSM document to be associated with the floating input window.
If NULL, this call affects all your application’s TSM documents.

useWindow
Indicates whether to use the floating input window. Pass TRUE if you want to use a floating window;
pass FALSE if you do not want to use a floating window.

Return Value
A result code. See “Text Services Manager Result Codes” (page 1647).

Discussion
The Text Services Manager provides a floating input window for your application’s use if you call
UseInputWindow with a value of TRUE in the useWindow parameter. To specify inline input instead, call
UseInputWindow with a value of FALSE in the useWindow parameter.

The default value for useWindow is FALSE; if you do not call UseInputWindow, the Text Services Manager
assumes that your application wants to use inline input. If your application wants to save the user’s choice,
it can put the last-used value for useWindow in a preferences file before quitting.

If you pass a valid TSM document ID for the idocID parameter, the useWindow parameter affects only that
TSM document. If you pass NULL for the idocID parameter, the useWindow parameter affects all your
application’s TSM documents, including documents you create after making this call.

Availability
Available in CarbonLib 1.0 and later when running Mac OS 8.1 or later.
Available in Mac OS X v 10.0 and later.
Not available to 64-bit applications.

Declared In
TextServices.h

Data Types

TSM Document Interface Type
Defines an interface type for a TSM document.

Data Types 1613
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

typedef OSType TSMDocumentInterfaceType;

Discussion
As of Mac OS X version 10.3, TSM interface types are also stored as TSM document properties. Interface types
are a subset of TSM document properties; not all properties are interface types. Once a TSM document is
created, you can easily find out its interface types at document creation. See “TSM Document Interfaces” (page
1642) for a list of the possible interface types.

Availability
Available in Mac OS X v10.3 and later.

Declared In
TextServices.h

InterfaceTypeList
An array of four-character codes identifying Text Services Manager interface types.

typedef OSType InterfaceTypeList[1];

Discussion
The InterfaceTypeList type is used in the function NewTSMDocument (page 1595) to identify the type of
interfaces that an application supports and in the function GetServiceList (page 1589) to identify the types
of interfaces that are currently available. See “TSM Document Interfaces” (page 1642) for a list of the possible
interfaces.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextServices.h

ScriptLanguageRecord
Identifies a specific script-language combination.

struct ScriptLanguageRecord {
 ScriptCode fScript;
 LangCode fLanguage;
};
typedef struct ScriptLanguageRecord ScriptLanguageRecord;

Fields
fScript

A ScriptCode value identifying a particular set of written characters (for example, Roman versus
Cyrillic) and their encoding.

fLanguage
A LangCode value identifying a particular language (for example, English), as represented using a
particular ScriptCode value.

Discussion
Structures of type ScriptLanguageRecord are used in the functions SetDefaultInputMethod (page 1601),
GetDefaultInputMethod (page 1585), SetTextServiceLanguage (page 1603), and
GetTextServiceLanguage (page 1590).

1614 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextServices.h

ScriptLanguageSupport
Lists a component’s supported scripts and languages.

struct ScriptLanguageSupport {
 short fScriptLanguageCount;
 ScriptLanguageRecord fScriptLanguageArray[1];
};
typedef struct ScriptLanguageSupport ScriptLanguageSupport;
typedef ScriptLanguageSupport * ScriptLanguageSupportPtr;
typedef ScriptLanguageSupportPtr * ScriptLanguageSupportHandle;

Fields
fScriptLanguageCount

An integer specifying the number of ScriptLanguageRecord structures provided in the
fScriptLanguageArray field.

fScriptLanguageArray
A variable-length array of structures of type ScriptLanguageRecord (page 1614). Each of these
structures identifies a specific script-language combination.

Discussion
A structure of type ScriptLanguageSupport is used in the function GetScriptLanguageSupport (page
1588) to list all of a component’s supported scripts and languages. If you are a component developer filling
out a ScriptLanguageSupport structure, you should start with the component’s primary script and language
as specified in the componentFlags field of its ComponentDescription structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextServices.h

TextServiceInfo
Identifies a single text service component by name and Component value.

struct TextServiceInfo {
 Component fComponent;
 Str255 fItemName;
};
typedef struct TextServiceInfo TextServiceInfo;
typedef TextServiceInfo *TextServiceInfoPtr;

Fields
fComponent

A Component Manager value of type Component. A Component value is a pointer to an opaque
structure called a ComponentRecord that describes a component. You must supply a Component
value in the function OpenTextService (page 1597).

Data Types 1615
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

fItemName
A Pascal string with the name of a text service component. (The script system to use for displaying
the string is specified in the componentFlags field of a ComponentDescription structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextServices.h

TextServiceList
Lists one or more text service components by name and Component value.

struct TextServiceList {
 short fTextServiceCount;
 TextServiceInfo fServices[1];
};
typedef struct TextServiceList TextServiceList;
typedef TextServiceList * TextServiceListPtr;
typedef TextServiceListPtr * TextServiceListHandle;

Fields
fTextServiceCount

An integer specifying the number of TextServiceInfo structures in the text service component
list provided in the fServices field.

fServices
A variable-length array of structures of type TextServiceInfo (page 1615). Each TextServiceInfo
structure identifies a specific component by name and Component value.

Discussion
A structure of type TextServiceInfo is used in the function GetServiceList (page 1589) to list of all the
text service components of a specified type that are currently available on a system.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextServices.h

TextServicePropertyValue
Defines a data type for text service property values.

typedef SInt32 TextServicePropertyValue;

Discussion
The property values associated with this data type are “Text Services Property Values” (page 1641). Note that
these values are declared as CFStringRef data types, so they require a cast to the SInt32 data type before
you can supply them as a TextServicePropertyValue.

Availability
Available in Mac OS X v10.3 and later.

1616 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Declared In
TextServices.h

TSMContext
A reference to an opaque object that specifies a TSM context.

typedef struct OpaqueTSMContext * TSMContext;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared In
TextServices.h

TSMDocumentID
A reference to an opaque object that identifies a specific TSM document.

typedef struct OpaqueTSMDocumentID * TSMDocumentID;

Discussion
Each time a client application calls the function NewTSMDocument (page 1595), the Text Services Manager
creates an opaque internal structure called a TSM Document and returns a pointer to the document’s
identification number.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextServices.h

TSMGlyphInfo
Describes one glyph embedded in a run of text.

struct TSMGlyphInfo {
 CFRange range;
 ATSFontRef fontRef;
 UInt16 collection;
 UInt16 glyphID;
};
typedef struct TSMGlyphInfo TSMGlyphInfo;

Fields
range

A CFRange data structure that specifies, in UTF-16 offsets, a range within the text to which this
TSMGlyphInfo data structure applies. I

fontRef
An ATS font reference that specifies the font with which the glyph should be displayed. Note that the
character collection ROS (Adobe Registry, Ordering, Supplement) is a property of the font.

Data Types 1617
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

collection
A glyph collection type that specifies how the glyphID parameter should be interpreted. When the
value is kGlyphCollectionID, glyphID specifies the glyph's ID. When collection is a non-zero
value, it specifies a character collection and glyphID specifies a CID. Note that collection must
match the character collection of the font specified by the fontRef parameter.

When collections do not match, the TSMGlyphInfo data structure is invalid and should be ignored.
You need to supply an ATSUI constant of type GlyphCollection to specify the character set you
want to use. See Inside Mac OS X: ATSUI Reference for a list of the glyph collection constants you can
specify.

glyphID
A glyph ID that specifies the glyph to use you to use in place of the current glyph. If you pass 0 instead
of specifying a glyph, the TSMGlyphInfo data structure is used to attach a font to a range of text. In
this case, the fontRef parameter specifies a font that should be used to display the range of text
specified by the range parameter. This is useful when using characters in the Unicode private use
area. Windings and other Windows based pi fonts are examples of such characters. When glyphID
is zero, collection should also be zero and applications should ignore its value.

Discussion
The TSMGlyphInfo data structure is used as an item in the TSMGlyphInfoArray (page 1618) data structure.
You use these structures to provide TSM with glyph and font information when you want to override the
current glyph or font.

Availability
Available in Mac OS X v10.2 and later.

Declared In
TextServices.h

TSMGlyphInfoArray
Contains an array of glyph information structures.

struct TSMGlyphInfoArray {
 ItemCount numGlyphInfo;
 TSMGlyphInfo glyphInfo[1];
};
typedef struct TSMGlyphInfoArray TSMGlyphInfoArray;

Fields
numGlyphInfo

The number of items in the glyphInfo array.

glyphInfo
An array of glyph information structures.

Availability
Available in Mac OS X v10.2 and later.

Declared In
TextServices.h

1618 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Constants

Attribute Bits for TSM Document Access Carbon Events
Represents TSM document attributes.

enum {
 kTSMDocAccessFontSizeAttributeBit = 0,
 kTSMDocAccessEffectiveRangeAttributeBit = 1
};

Constants
kTSMDocAccessFontSizeAttributeBit

When this bit is set, indicates to obtain font size information; used in the Carbon event
kEventTSMDocumentAccessGetFont.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kTSMDocAccessEffectiveRangeAttributeBit
When this bit is set, indicates to obtain effective range information used in the Carbon events
kEventTSMDocumentAccessGetFont and kEventTSMDocumentAccessGetGlyphInfo.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Discussion
These bit assignments are used for the TSM document access attribute parameters. You can use these bits
to specify desired (optional) attributes in thekEventParamTSMDocAccessRequestedCharacterAttributes
parameter available for the events kEventTSMDocumentAccessGetFont and
kEventTSMDocumentAccessGetGlyphInfo.

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.3 and later.

Attribute Masks for TSM Document Access Carbon Events
Used to set or test for document-access attributes.

typedef UInt32 TSMDocAccessAttributes;
enum {
 kTSMDocAccessFontSizeAttribute = 1L << kTSMDocAccessFontSizeAttributeBit,
 kTSMDocAccessEffectiveRangeAttribute = 1L <<
kTSMDocAccessEffectiveRangeAttributeBit
};

Constants
kTSMDocAccessFontSizeAttribute

Use to set or test for the kTSMDocAccessFontSizeAttributeBit bit.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Constants 1619
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kTSMDocAccessEffectiveRangeAttribute
Use to set or test for the kTSMDocAccessEffectiveRangeAttributeBit bit.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.3 and later.

Carbon Event Class for TSM Document Access
Defines a constant for the Carbon event class used to allow TSM access to application documents content.

enum {
 kEventClassTSMDocumentAccess = 'tdac'
};

Constants
kEventClassTSMDocumentAccess

Used to request and deliver document content information. The events associated with this class
provide text access, text attribute access, and transaction information. See “Carbon Events for TSM
Document Access” (page 1620) for a list of the events defined for this class.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Discussion
The Text Services Manager (TSM) dispatches TSM document access events as Carbon events. You must install
a Carbon event handler to access these events because they are not available through AppleEvent handlers.

Text Services dispatches these Carbon events through the function SendTextInputEvent (page 1600).

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.3 and later.

Carbon Events for TSM Document Access
Define constants for the Carbon events associated with the TSM document access event class.

1620 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

enum {
 kEventTSMDocumentAccessGetLength = 1,
 kEventTSMDocumentAccessGetSelectedRange = 2,
 kEventTSMDocumentAccessGetCharactersPtr = 3,
 kEventTSMDocumentAccessGetCharactersPtrForLargestBuffer = 4,
 kEventTSMDocumentAccessGetCharacters = 5,
 kEventTSMDocumentAccessGetFont = 6,
 kEventTSMDocumentAccessGetGlyphInfo = 7,
 kEventTSMDocumentAccessLockDocument = 8,
 kEventTSMDocumentAccessUnlockDocument = 9
};

Constants
kEventTSMDocumentAccessGetLength

Returns the number of 16-bit Unicode characters in the document.

You can obtain the following event parameters from this event:

 ■ kEventParamTSMDocAccessSendComponentInstance. This parameter is provided by the text
service originating the event.

 ■ kEventParamTSMDocAccessSendRefCon. The TSM functionSendTextInputEvent (page 1600),
called by an input method, inserts this parameter before dispatching the event to the user focus.

 ■ kEventParamTSMDocAccessCharacterCount. The size of the document inUniChar characters.

You can obtain the same information from this event as you can by calling the function
CFStringGetLength, passing the document content formatted as a CFString.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventTSMDocumentAccessGetSelectedRange
Returns the selection range in the document.

You can obtain the following event parameters from this event:

 ■ kEventParamTSMDocAccessSendComponentInstance. This parameter is provided by the text
service originating the event. This can be NULL for input methods of the palette class, such as
the typography panel.

 ■ kEventParamTSMDocAccessSendRefCon. The TSM functionSendTextInputEvent (page 1600),
called by an input method, inserts this parameter before dispatching the event to the user focus.

 ■ kEventParamTSMDocAccessReplyCharacterRange. The selection range as a CFRange in
UniChar characters. If the selection is empty, the range identifies the insertion point and the
range specifies a length of 0.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Constants 1621
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kEventTSMDocumentAccessGetCharactersPtr
Returns a Unicode pointer to the entire document content. Handle this event when your application
has access to the entire document. If your application has access to a cache, use the event
kEventTSMDocumentAccessGetCharactersPtrForLargestBuffer.

Some text engines may not support this event for reasons that are implementation-dependent. For
example, a text engine backing store may consist of legacy encoding runs. It may also consist of
unflattened Unicode, stored as a B-tree of text blocks. For such reasons, a text engine may reject a
request for a pointer to a flattened Unicode buffer. Note that text access through this pointer is to
be strictly read-only, so any changes to the document should be made through TSM text input events,
such as kEventTextInputUpdateActiveInputArea or kEventTextInputUnicodeText. This
pointer is valid only during a transaction surrounded by document lock/unlock events, or until an
event causes the document to change, such as dispatching
kEventTextInputUpdateActiveInputAreaorkEventTextInputUnicodeText events, whichever
occurs first.

You can obtain the following event parameters from this event:

 ■ kEventParamTSMDocAccessSendComponentInstance. This parameter is provided by the
input method originating the event.

 ■ kEventParamTSMDocAccessSendRefCon. The TSM functionSendTextInputEvent (page 1600),
called by an input method, inserts this parameter before dispatching the event to the user focus.

 ■ kEventParamTSMDocAccessReplyCharactersPtr. The UniChar pointer to the document.

You can obtain the same information from this event as you can by calling the function
CFStringGetCharactersPtr, passing the document content formatted as a CFString.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

1622 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kEventTSMDocumentAccessGetCharactersPtrForLargestBuffer
Returns a Unicode pointer to a portion of the document. Handle this event when your application
has access to a cache. If your application has access to the entire document, use the event
kEventTSMDocumentAccessGetCharactersPtr.

Some text engines keep text in unflattened Unicode—for example, stored as a B-tree of text blocks.
Sometimes, especially for chunks of text near the insertion point, the text engine caches a chunk of
text to which it can readily provide a pointer. But because the text is not flattened, the text engine
might reject a request for such a pointer. See the Discussion for more information.

Note that text access through this pointer is strictly read-only, so any changes to the document should
be made through TSM text input events, such as kEventTextInputUpdateActiveInputArea or
kEventTextInputUnicodeText. This pointer is valid only during a transaction surrounded by
document lock/unlock, or until an event causes the document to change, such as dispatching
kEventTextInputUpdateActiveInputArea or kEventTextInputUnicodeText events.

You can obtain the following event parameters from this event:

 ■ kEventParamTSMDocAccessSendComponentInstance. This parameter is provided by the
input method originating the event.

 ■ kEventParamTSMDocAccessSendRefCon. The TSM function SendTextInputEvent, called by
an input method, inserts this parameter before dispatching the event to the user focus.

 ■ kEventParamTSMDocAccessSendCharacterIndex. The location in the document for which
the caller wants a pointer to a buffer of text that includes that location. This buffer could be
available from a cache due to recent interaction near that location, such as the insertion point.

 ■ kEventParamTSMDocAccessReplyCharactersPtr. The UniChar pointer to a portion of the
document text.

 ■ kEventParamTSMDocAccessReplyCharacterRange. A CFRange value for the text returned
by the text pointer. The initial offset in the range is document-relative.

This event is similar to calling the functionCFStringGetCharactersPtron a portion of the document
content formatted as a CFString, except that the substring is determined by the text engine.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventTSMDocumentAccessGetCharacters
This fills a caller provided buffer with Unicode characters in the specified range. This event is equivalent
to calling the function CFStringGetCharacters on the document content treated as a CFString.

You can obtain the following event parameters from this event:

 ■ kEventParamTSMDocAccessSendComponentInstance. This parameter is provided by the
input method originating the event.

 ■ kEventParamTSMDocAccessSendRefCon. The TSM function SendTextInputEvent, called by
an input method, inserts this parameter before dispatching the event to the user focus.

 ■ kEventParamTSMDocAccessSendCharacterRange. The range of text that should be copied
into the buffer provided by the caller.

 ■ kEventParamTSMDocAccessSendCharactersPtr. A buffer provided by the caller to contain
the specified range of UniChar characters. This buffer is identical in usage to the one used in
the function CFStringGetCharacters.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Constants 1623
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kEventTSMDocumentAccessGetFont
Returns font, font size, and the range over which these attributes are constant. Where the font/font
size attributes span multiple characters, an effective range (over which requested attributes are
constant) is returned by the text engine.

You can obtain the following event parameters from this event:

 ■ kEventParamTSMDocAccessSendComponentInstance. This parameter is provided by the
input method originating the event.

 ■ kEventParamTSMDocAccessSendRefCon. The TSM function SendTextInputEvent, called by
an input method, inserts this parameter before dispatching the event to the user focus.

 ■ kEventParamTSMDocAccessSendCharacterIndex. The location in the document for which
the caller would like font information.

 ■ kEventParamTSMDocAccessRequestedCharacterAttributes. ATSMDocAccessAttributes
bit field filled out with the desired attributes. Applicable values for this event are:
kTSMDocAccessFontSizeAttribute which requests font size information through the
kEventParamTSMDocAccessReplyFontSize parameter, and
kTSMDocAccessEffectiveRangeAttribute which requests the text range over which font
or font/size is constant.

 ■ kEventParamTSMDocAccessReplyATSFont. The ATSFontRef for the location specified by the
caller.

 ■ kEventParamTSMDocAccessReplyFontSize. The font size for the requested location. This is
an optional reply parameter. Return this information if kTSMDocAccessFontSizeAttribute
is specified in the bit field passed as the
kEventParamTSMDocAccessRequestedCharacterAttributes parameter.

 ■ kEventParamTSMDocAccessSendCharacterRange. The maximum range of text the caller
cares about. This is used to restrict the area of interest to the caller so the text engine doesn't
process more characters than necessary in order to return an effective range.

 ■ kEventParamTSMDocAccessEffectiveRange. The range of text over which both font and
size are constant, within the bounds of the kEventParamTSMDocAccessSendCharacterRange
parameter. This is an optional reply parameter. Return this information if
kTSMDocAccessEffectiveRangeAttribute is specified in the bit field passed as the
kEventParamTSMDocAccessRequestedCharacterAttributes parameter.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

1624 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kEventTSMDocumentAccessGetGlyphInfo
Returns glyph info and the range covered by that glyph. Where a glyph spans multiple characters,
the effective range, represented by the glyph, is returned by the application.

You can obtain the following event parameters from this event:

 ■ kEventParamTSMDocAccessSendComponentInstance. This parameter is provided by the
input method originating the event.

 ■ kEventParamTSMDocAccessSendRefCon. The TSM function SendTextInputEvent, called by
an input method, inserts this parameter before dispatching the event to the user focus.

 ■ kEventParamTSMDocAccessSendCharacterIndex. The location in the document for which
the caller would like glyph information.

 ■ kEventParamTSMDocAccessRequestedCharacterAttributes. ATSMDocAccessAttributes
bit field filled out with the information desired. The applicable value for this event is
kTSMDocAccessEffectiveRangeAttribute, which requests the text range represented by a
glyph.

 ■ kEventParamTSMDocAccessReplyATSUGlyphSelector. The glyph used to display the range
of text returned in the kEventParamTSMDocAccessEffectiveRange parameter. If the glyph
used is the one that ATSUI would normally derive, this parameter can be omitted.

 ■ kEventParamTSMDocAccessEffectiveRange. The range of text displayed as a glyph ID or
CID. This is an optional reply parameter. Return this information if
kTSMDocAccessEffectiveRangeAttribute is specified in the bit field passed as the
kEventParamTSMDocAccessRequestedCharacterAttributes parameter.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Constants 1625
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kEventTSMDocumentAccessLockDocument
Notifies the application that it should not change its document's text content (on its own) while a
text service is involved in a transaction. The application should not allow changes, for example, by
its secondary threads. This type of event defines how a text service can obtain access to a document
in a way that ensures data integrity during its transaction. The event can be used to prevent the
application from letting its secondary threads modify the document while a text service is busy
servicing an event, such as a key event, or some user interaction with text-service-provided user
interface such as a menu selection. Also, while the document is locked, a text service is free to request
pointer access to the document's text content (if this is supported by the application’s text engine.)
These lock-related events should be implemented using a retention counting scheme. Most applications
will not support this kind of threading, so implementation of these events in the text engine are
optional. In most text engines, the implementation of these events should be trivial, that is, just
maintain a simple semaphore. TSM itself will implicitly lock/unlock around normal entry points into
a text service, such as when it delivers key events to an input method, but there may be times when
document changes can be driven by an input method without TSM involvement, such as the Carbon
events involved when the user interacts with some user interface. In this case, the input method must
manage locking, if the application supports it. However, the logic in an input method should not
depend on whether TSM is in the call chain or not, and TSM should not depend on whether an input
method performs correctly. This is why the lock mechanism needs to be some kind of retention
counting scheme instead of a simple on and off mechanism. Document lock support is optional on
the part of the text engine (if it is not threaded). TSM implicitly locks/unlocks the document around
delivery of events to input methods, if the application supports it.You can obtain the following event
parameters from this event:

 ■ kEventParamTSMDocAccessSendComponentInstance. This parameter is provided by the
input method originating the event.

 ■ kEventParamTSMDocAccessSendRefCon. The TSM functionSendTextInputEvent (page 1600),
called by an input method, inserts this parameter before dispatching the event to the user focus.

 ■ kEventParamTSMDocAccessLockCount. The resulting retention count of locks on the document.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventTSMDocumentAccessUnlockDocument
Unlock the document so the application text engine is free to initiate changes again. (See
kEventTSMDocumentAccessLockDocument).

You can obtain the following event parameters from this event:

 ■ kEventParamTSMDocAccessSendComponentInstance. This parameter is provided by the
input method originating the event.

 ■ kEventParamTSMDocAccessSendRefCon. The TSM function SendTextInputEvent, called by
an input method, inserts this parameter before dispatching the event to the user focus.

 ■ kEventParamTSMDocAccessLockCount. The resulting retention count of locks on the document.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Discussion
Text-access events are very similar in design to the CFString API. You can think of an entire document as a
flattened Unicode string, and the events in this interface can access any portion of it. Just as the text is
Unicode, the text offsets are also Unicode.

1626 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

The event kEventTSMDocumentAccessGetSelectedRange allows a text service to obtain text near the
insertion point (or selection), but access is by no means restricted to this vicinity. Use the event
kEventTSMDocumentAccessGetLength to obtain the size of the document.

Supporting these events effectively provide hooks into the text engine, but it is understood that access to a
document in this way is strictly read-only. Where direct access to document content cannot be provided
through a pointer, the requested text can be copied instead. Situations where a pointer may not be available
from the text engine include the following:

 ■ The pointer requires conversion of text in Mac encodings to Unicode.

 ■ The pointer requires sparse Unicode text blocks to be flattened into a single buffer.

The idea is to minimize copying and converting text encodings where possible. The text service typically
begins by asking for a document pointer through the eventkEventTSMDocumentAccessGetCharactersPtr.
If this fails, it typically falls back to the event
kEventTSMDocumentAccessGetCharactersPtrForLargestBuffer, specifying a location of interest. If
this fails, it falls back to kEventTSMDocumentAccessGetCharacters, specifying a range of interest. Of
course, when requesting small amounts of data with such a few characters on either side of the insertion
point, there is no obligation to optimize in this way. It's valid to simply use
kEventTSMDocumentAccessGetCharacters.

The text engine is entirely free to deny a request for a text pointer for these or any other
implementation-specific reason.

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.3 and later.

Carbon Event Parameters for General TSM Events
Define general parameters for TSM events.

enum {
 kEventParamTSMSendRefCon = 'tsrc',
 kEventParamTSMSendComponentInstance = 'tsci'
};

Constants
kEventParamTSMSendRefCon

This parameter is equivalent to the text input parameter kEventParamTextInputSendRefCon; the
parameter data type is typeLongInteger.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMSendComponentInstance
This parameter is equivalent to the text input parameter
kEventParamTextInputSendComponentInstance; the parameter data type is
typeComponentInstance.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Constants 1627
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.3 and later.

Carbon Event Parameters for TSM Document Access
Define document access parameters for TSM events.

enum {
 kEventParamTSMDocAccessSendRefCon = kEventParamTSMSendRefCon,
 kEventParamTSMDocAccessSendComponentInstance =
kEventParamTSMSendComponentInstance,
 kEventParamTSMDocAccessCharacterCount = 'tdct',
 kEventParamTSMDocAccessReplyCharacterRange = 'tdrr',
 kEventParamTSMDocAccessReplyCharactersPtr = 'tdrp',
 kEventParamTSMDocAccessSendCharacterIndex = 'tdsi',
 kEventParamTSMDocAccessSendCharacterRange = 'tdsr',
 kEventParamTSMDocAccessSendCharactersPtr = 'tdsp',
 kEventParamTSMDocAccessRequestedCharacterAttributes = 'tdca',
 kEventParamTSMDocAccessReplyATSFont = 'tdaf',
 kEventParamTSMDocAccessReplyFontSize = 'tdrs',
 kEventParamTSMDocAccessEffectiveRange = 'tder',
 kEventParamTSMDocAccessReplyATSUGlyphSelector = 'tdrg',
 kEventParamTSMDocAccessLockCount = 'tdlc',
 typeATSFontRef = 'atsf',
 typeGlyphSelector = 'glfs'
};

Constants
kEventParamTSMDocAccessSendRefCon

The TSM functionSendTextInputEvent (page 1600), called by an input method, inserts this parameter
before dispatching the event to the user focus. The parameter data type is typeLongInteger.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessSendComponentInstance
The parameter data type is typeComponentInstance.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessCharacterCount
The parameter data type is typeCFIndex.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessReplyCharacterRange
The parameter data type is typeCFRange.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

1628 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kEventParamTSMDocAccessReplyCharactersPtr
The parameter data type is typePtr.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessSendCharacterIndex
The parameter data type is typeCFIndex.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessSendCharacterRange
The parameter data type is typeCFRange.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessSendCharactersPtr
The parameter data type is typePtr.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessRequestedCharacterAttributes
The parameter data type is typeUInt32.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessReplyATSFont
The parameter data type is typeATSFontRef.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessReplyFontSize
The parameter data type is typeFloat.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessEffectiveRange
The parameter data type is typeRange.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessReplyATSUGlyphSelector
The parameter data type is typeGlyphSelector.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

kEventParamTSMDocAccessLockCount
The parameter data type is typeCFIndex.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Constants 1629
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

typeATSFontRef
The parameter data type is ATSFontRef.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

typeGlyphSelector
The parameter data type is ATSUGlyphSelector.

Available in Mac OS X v10.3 and later.

Declared in CarbonEvents.h.

Discussion
See “Carbon Events for TSM Document Access” (page 1620) for more information on these parameters and
the information they contain for a specific event.

Availability
Not available in CarbonLib.
Available in Mac OS X v 10.3 and later.

Component Flags
Specify flags used for input method components.

enum {
 bTakeActiveEvent = 15,
 bHandleAERecording = 16,
 bScriptMask = 0x00007F00,
 bLanguageMask = 0x000000FF,
 bScriptLanguageMask = bScriptMask + bLanguageMask
};

Constants
bTakeActiveEvent

This bit is set if the component takes an active event,

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

bHandleAERecording
This bit is set if the component takes care of recording Apple Events.

Available beginning with version 2.0.

Declared in TextServices.h.

bScriptMask
Specifies bits 8 - 14.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

bLanguageMask
Specifies bits 0 - 7.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

1630 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

bScriptLanguageMask
Specifies bits 0 - 14.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

Document Property Tags
Specify property tags for a TSM document.

typedef OSType TSMDocumentPropertyTag;
enum {

kTSMDocumentSupportGlyphInfoPropertyTag = 'dpgi',
kTSMDocumentUseFloatingWindowPropertyTag = 'uswm',
kTSMDocumentUnicodeInputWindowPropertyTag = 'dpub',
kTSMDocumentSupportDocumentAccessPropertyTag = 'dapy',
kTSMDocumentRefconPropertyTag = 'refc',
kTSMDocumentInputModePropertyTag = 'imim',
kTSMDocumentPropertySupportGlyphInfo =
 kTSMDocumentSupportGlyphInfoPropertyTag,
kTSMDocumentPropertyUnicodeInputWindow =
 kTSMDocumentUnicodeInputWindowPropertyTag,
kTSMDocumentTextServicePropertyTag = kTextServiceDocumentInterfaceType,
kTSMDocumentUnicodePropertyTag = kUnicodeDocumentInterfaceType,
kTSMDocumentTSMTEPropertyTag = kTSMTEDocumentInterfaceType
};

Constants
kTSMDocumentSupportGlyphInfoPropertyTag

The existence of this property in a TSM document indicates that the event handlers associated with
he TSM document are aware of the TSM GlyhInfo data structure. This structure allows the input
source producing text to apply Glyph IDs, CIDs, or fonts to subranges of text produced. This is useful
or characters in Unicode private use area, such as Windings. For more information, see Technical Note
TN2079 Glyph Access Protocol. By convention, this value can be a UInt32 with a value of 0, but this
is arbitrary. Available in TSM 1.5, in Mac OS X 10.2 and later.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSMDocumentUseFloatingWindowPropertyTag
The presence of this property tag indicates that the TSM document should use the TSM floating input
window to handle input from input methods. This form of input does not support Unicode input by
default, unless the property kTSMDocumentUnicodeInputWindowPropertyTag is set.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSMDocumentUnicodeInputWindowPropertyTag
The presence of this property tag indicates that although the TSM document has been told to use
the TSM floating input window to handle input from input methods, the floating window is to support
Unicode input. This is useful when non input-related activity is to produce Unicode, such as keyboard
navigation.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

Constants 1631
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

http://developer.apple.com/technotes/tn2002/tn2079.html
http://developer.apple.com/technotes/tn2002/tn2079.html

kTSMDocumentSupportDocumentAccessPropertyTag
The presence of this property tag indicates that the event handlers associated with this TSM document
support the TSM document access event suite (see “Carbon Events for TSM Document Access” (page
1620).) This property also indicates that the handler for the TSMevent
kEventTextInputUpdateActiveInputArea supports the replaceRange parameter and that the
handler is a Carbon event handler, not an AppleEvent handler.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSMDocumentRefconPropertyTag
The property value initially contains the refcon value passed to the function NewTSMDocument. This
property is useful for changing the refcon value after the TSM document has been created. The
refcon value is a long, the same as that passed to NewTSMDocument. Property is value-dependent;
see the Discussion for more information.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSMDocumentInputModePropertyTag
The property value indicates which input mode should be used by the current keyboard-class input
method. It is useful for temporarily restricting text input to a subset of characters normally produced
by an input method in a given script, such as Katakana for Japanese input. See “Text Service
Properties” (page 1640) for more details. Also note that this property tag and value are passed unchanged
to the function “SetTextServiceProperty” (page 1603), so it also serves as a text service property tag.
See kTextServiceInputModePropertyTag for discussion on the values associated with this
property.

The property value is a CFStringRef data type. With the function TSMGetTextServiceProperty,
the behavior is that of a Copy function. The implementation of SetTextServiceProperty (in the
component) retains or copies the CFString object. In either case the caller is responsible for releasing
the reference. Property is value-dependent; see the Discussion for more information.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSMDocumentPropertySupportGlyphInfo
You should no longer use this property.

Available in Mac OS X v10.2 and later.

Declared in TextServices.h.

kTSMDocumentPropertyUnicodeInputWindow
You should no longer use this property.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSMDocumentTextServicePropertyTag
Specifies a non-Unicode savvy document. This property is equivalent to a pre-existing document
interface type.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSMDocumentUnicodePropertyTag
This property is equivalent to the Unicode document interface type.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

1632 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kTSMDocumentTSMTEPropertyTag
This property is equivalent to the TSMTE document interface type.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

Discussion
You can use the functions TSMSetDocumentProperty (page 1611) and TSMGetDocumentProperty (page
1607) to set and get arbitrary property data needed by your application.

Unless otherwise noted, all properties are read-only, value-independent, and available in TSM version 2.2,
which is the version available starting in Mac OS X version 10.3.

Value-independent properties are used where the existence of the property, and not its value, is sufficient.
These properties can read by other clients, and are most often used by input methods. For example, input
methods can query the current TSM document to see if supports unrestricted Unicode input, or if it supports
the GlyphInfo protocol.

Value-dependent properties are used when the value associated with a property is meaningful.

Input Method Identifier
Specifies a keyboard input method text service.

enum {
 kInputMethodService = kKeyboardInputMethodClass
};

Constants
kInputMethodService

A four-character code identifying an input method text service. Specifies that the older constant name
kInputMethodService is equivalent to the newer constant name kKeyboardInputMethodClass.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

Input Mode Dictionary Key
Defines a string for the input mode dictionary key that you can use in the Component bundle info.plist.

#define kComponentBundleInputModeDictKey CFSTR("ComponentInputModeDict")

Discussion
If you are developing an input method, you use this key in the component bundle info.plist to identify a
dictionary of input mode information. The dictionary should contain keys to identify input modes—see
“Individual Input Mode Keys” (page 1635)—and should have the form described in the Discussion section of
the functionCopyTextServiceInputModeList (page 1579). The functionCopyTextServiceInputModeList
returns an input mode dictionary.

Input Mode Palette Menu Definition Keys
Defines keys used to describe the items in a pull-down menu.

Constants 1633
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

#define kTSInputModePaletteItemTitleKey CFSTR("tsInputModePaletteItemTitleKey")
#define kTSInputModePaletteItemKeyEquivalentKey
CFSTR("tsInputModePaletteItemKeyEquivalentKey")
#define kTSInputModePaletteItemKeyEquivalentModifiersKey
CFSTR("tsInputModePaletteItemKeyEquivalentModifiersKey")

Constants
kTSInputModePaletteItemTitleKey

A CFString that specifies a menu item title. Use - for a separator.

kTSInputModePaletteItemKeyEquivalentKey
A CFString that specifies a menu item keyboard shortcut .

kTSInputModePaletteItemKeyEquivalentModifiersKey
A CFNumber that specifies a menu item keyboard shortcut modifier (from Events.h).

Discussion
These keys are returned by the functionGetInputModePaletteMenu (page 1587), in theoutMenuItemsArray
parameter. For information on the structure of the CFDictionary, see the TextServices.h header file.

Input Mode Palette Control Keys
Defines keys used to describe controls for an input palette.

#define kTSInputModePaletteItemTypeKey CFSTR("tsInputModePaletteItemTypeKey")
#define kTSInputModePaletteItemIconKey CFSTR("tsInputModePaletteItemIconKey")
#define kTSInputModePaletteItemAltIconKey CFSTR("tsInputModePaletteItemAltIconKey")
#define kTSInputModePaletteItemStateKey CFSTR("tsInputModePaletteItemStateKey")
#define kTSInputModePaletteItemEnabledKey CFSTR("tsInputModePaletteItemEnabledKey")
#define kTSInputModePaletteItemIDKey CFSTR("tsInputModePaletteItemIDKey")

Constants
kTSInputModePaletteItemTypeKey

A CFNumber that specifies the type of control (0: push button, 1: toggle button, 2: pull-down menu),

kTSInputModePaletteItemIconKey
A CFString that specifies an icon file name. The file should be located in the input method bundle
resource directory, so this is just the file name, not full path.

kTSInputModePaletteItemAltIconKey
A CFString that specifies an alternate icon file name. The file should be located in the input method
bundle resource directory, so this is just the file name, not full path.

kTSInputModePaletteItemStateKey
A CFNumber that specifies the state of the control (0: clear or unpressed, 1: checked or pressed, 2:
mixed).

kTSInputModePaletteItemEnabledKey
A CFBoolean that specifies the enabled state of the control.

kTSInputModePaletteItemIDKey
A CFNumber that specifies a UInt32 tag ID for the control.

Discussion
You use these keys in a CFDictionary that contains control descriptions passed to the functions
TSMInputModePaletteLoadButtons (page 1609) andTSMInputModePaletteUpdateButtons (page 1609).
For information on the structure of the CFDictionary, see the TextServices.h header file.

1634 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Individual Input Mode Keys
Defines keys used to identify input modes in an input mode dictionary.

#define kTSInputModeListKey CFSTR("tsInputModeListKey")
#define kTSInputModeMenuIconFileKey CFSTR("tsInputModeMenuIconFileKey")
#define kTSInputModeAlternateMenuIconFileKey
 CFSTR("tsInputModeAlternateMenuIconFileKey")
#define kTSInputModePaletteIconFileKey
 CFSTR("tsInputModePaletteIconFileKey")
#define kTSInputModeDefaultStateKey CFSTR("tsInputModeDefaultStateKey")
#define kTSInputModeScriptKey CFSTR("tsInputModeScriptKey")
#define kTSInputModePrimaryInScriptKey
 CFSTR("tsInputModePrimaryInScriptKey")
#define kTSInputModeIsVisibleKey CFSTR("tsInputModeIsVisibleKey")
#define kTSInputModeKeyEquivalentModifiersKey
 CFSTR("tsInputModeKeyEquivalentModifiersKey")
#define kTSInputModeKeyEquivalentKey
 CFSTR("tsInputModeKeyEquivalentKey")
#define kTSInputModeJISKeyboardShortcutKey
 CFSTR("tsInputModeJISKeyboardShortcutKey")

Discussion
If you are developing an input method, you use these keys in a dictionary of input mode information. The
Component bundle info.plist should an input mode dictionary key that identifies the dictionary—see “Input
Mode Dictionary Key” (page 1633). The dictionary should have the form described in the Discussion section of
the functionCopyTextServiceInputModeList (page 1579). The functionCopyTextServiceInputModeList
returns an input mode dictionary.

Interfaces
Specify types of text services interfaces.

enum {
 kTextService = 'tsvc'
};

Constants
kTextService

A four-character code identifying a text service of any kind (including input methods). This value is
also used to identify non-Unicode TSM documents.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

Discussion
This constant is used in arrays of type InterfaceTypeList (page 1614). In addition to this constants, the
constant kTSMTEInterfaceType ('tmTE'), from TSMTE.h, is a supported interface type that allows TextEdit
to provide automatic inline input support in TextEdit documents.

Language and Script Constants
Specify the language or script is not known or neutral.

Constants 1635
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

enum {
 kUnknownLanguage = 0xFFFF,
 kUnknownScript = 0xFFFF,
 kNeutralScript = 0xFFFF
};

Constants
kUnknownLanguage

Specifies an unknown language.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kUnknownScript
Specifies an unknown script.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kNeutralScript
Specifies a neutral script.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

Low-level Routine Selectors
Specify low level routines which are dispatched directly to the Component Manager.

enum {
 kCMGetScriptLangSupport = 0x0001,
 kCMInitiateTextService = 0x0002,
 kCMTerminateTextService = 0x0003,
 kCMActivateTextService = 0x0004,
 kCMDeactivateTextService = 0x0005,
 kCMTextServiceEvent = 0x0006,
 kCMGetTextServiceMenu = 0x0007,
 kCMTextServiceMenuSelect = 0x0008,
 kCMFixTextService = 0x0009,
 kCMSetTextServiceCursor = 0x000A,
 kCMHidePaletteWindows = 0x000B,
 kCMGetTextServiceProperty = 0x000C,
 kCMSetTextServiceProperty = 0x000D
};

Constants
kCMGetScriptLangSupport

Specifies the function GetScriptLanguageSupport (page 1588); Component Manager call selector
1.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kCMInitiateTextService
Specifies the function InitiateTextService (page 1593); Component Manager call selector 2.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

1636 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kCMTerminateTextService
Specifies the function TerminateTextService (page 1604); Component Manager call selector 3.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kCMActivateTextService
Specifies the function ActivateTextService (page 1577); Component Manager call selector 4.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kCMDeactivateTextService
Specifies the function DeactivateTextService (page 1580); Component Manager call selector 5.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kCMTextServiceEvent
Specifies the function TextServiceEventRef (page 1605); Component Manager call selector 6.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kCMGetTextServiceMenu
Specifies the function GetTextServiceMenu (page 1590); Component Manager call selector 7.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kCMTextServiceMenuSelect
Component Manager call selector 8.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kCMFixTextService
Specifies the function FixTextService (page 1583); Component Manager call selector 9.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kCMSetTextServiceCursor
Component Manager call selector 10.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kCMHidePaletteWindows
Specifies the function HidePaletteWindows (page 1592); Component Manager call selector 11.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kCMGetTextServiceProperty
Specifies the function GetTextServiceProperty (page 1591); Component Manager call selector 12.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

Constants 1637
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kCMSetTextServiceProperty
Specifies the function SetTextServiceProperty (page 1603); Component Manager call selector 13.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

New Low-level Routine Selector
Specifies new low-level routine that are dispatched directly to the Component Manager.

enum {
 kCMUCTextServiceEvent = 0x000E
};

Constants
kCMUCTextServiceEvent

Component Manager call selector 14.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

Text Service Classes
Specify text service classes supported by TSM.

enum {
 kKeyboardInputMethodClass = 'inpm',
 kInkInputMethodClass = 'ink ',
 kCharacterPaletteInputMethodClass = 'cplt',
 kSpeechInputMethodClass = 'voic',
 kOCRInputMethodClass = 'ocr '
};
typedef OSType TextServiceClass;

Constants
kKeyboardInputMethodClass

Specifies a text service class for keyboard input methods. Behavior is exclusive. Input methods in this
class are normally associated with a Mac ScriptCode or Unicode, although they can be associated
with several scripts by adopting the input mode protocol.

Available in Mac OS X v10.2 and later.

Declared in TextServices.h.

kInkInputMethodClass
Specifies a text service class for Ink input methods. Behavior is additive. Text services in the Ink class
do not belong to any given script in the sense that those of the Keyboard class do. Once selected,
this kind of text service remains active regardless of the current keyboard script. Although text services
in this class are keyboard script agnostic, similar to input methods of the keyboard class they can still
profess to produce only those Unicodes that are encoded in the Mac encoding specified in their
component description record or their implementation of the GetScriptLanguageSupport
component call.

Available in Mac OS X v10.2 and later.

Declared in TextServices.h.

1638 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kCharacterPaletteInputMethodClass
Specifies a text service class for Character Palette input methods. Behavior is additive. Text services
in the character palette class do not belong to any given script in the same sense that do those of
the keyboard class. Once selected, this kind of text service remains active regardless of the current
keyboard script. Although text services in this class are keyboard script agnostic, similar to input
methods of the keyboard class, they can still produce only those Unicodes that are encoded in the
Mac encoding specified in their component description record or their implementation of the
GetScriptLanguageSupport component call. Unlike input methods in the keyboard class, multiple
such text services can be activate in parallel. Mac OS X provides a System user interface to allow the
user to both enable and select multiple such input methods.

Available in Mac OS X v10.2 and later.

Declared in TextServices.h.

kSpeechInputMethodClass
Specifies a text service class for Speech input methods. Behavior is additive. Similar to Character
palette class.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kOCRInputMethodClass
Specifies a text service class for Optical Character Recognition input methods. Behavior is additive.
Similar to Character palette class.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

Discussion
Text service classes fall in two categories or behaviors. Text services that belong to some classes are exclusive
of one another within a given Mac script code, such input methods of the keyboard class. Input Methods of
other classes are additive in nature, regardless of the current keyboard script.

Within a given class and script, exclusive input methods can only be activated one at a time. Input methods
in additive classes are keyboard script agnostic and can be active in parallel with other text services in the
same class, such as multiple character palettes.

These are the same as the component subtype for the component description.

Text Service Version
Specifies the interface type for version 2.

enum {
 kTextServiceVersion2 = 'tsv2'
};

Constants
kTextServiceVersion2

The interface type for V2 interfaces

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in TextServices.h.

Constants 1639
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Text Service Properties
Specify a feature or functionality of a component.

typedef OSType TextServicePropertyTag;
enum {
 kTextServiceInputModePropertyTag = kTSMDocumentInputModePropertyTag,
 kIMJaTypingMethodRoman = 'roma',
 kIMJaTypingMethodKana = 'kana',
 kIMJaTypingMethodProperty = kTextServiceJaTypingMethodPropertyTag,
 kTextServiceJaTypingMethodPropertyTag = 'jtyp'
};

Constants
kTextServiceInputModePropertyTag

Specifies the input mode property for input methods. This property is a CFString object that uniquely
identifies which input mode should be made current by a keyboard class input method, if possible.
This property tag is identical to the tag kTSMDocumentInputModePropertyTag passed to the
function TSMDocumentProperty. This allows the tag and value to be passed through without
interpretation.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kIMJaTypingMethodRoman
Not recommended. Specify Japanese input in Roman script.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kIMJaTypingMethodKana
Not recommended. Specify Japanese input in Kana script.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kIMJaTypingMethodProperty
Deprecated. Specify the typing method as Japanese input. This property is deprecated. Use the tag
kTextServiceInputModePropertyTag instead.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kTextServiceJaTypingMethodPropertyTag
Deprecated.Use the tag kTextServiceInputModePropertyTag instead.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

Discussion
Text Service Property constants are used in SetTextServiceProperty (page 1603) and
GetTextServiceProperty (page 1591). The only property that is recommend for you to use is the property
kTextServiceInputModePropertyTag.

Input modes are either generic (pre-defined by TSM), or specific to an input method. An example of a generic
input mode is Katakana input (Japanese) where input in a text field needs to be restricted to that character
subset. Another is Roman input mode. This is useful to temporarily provide Roman input from an input
method that normally allows text input in another script. The advantage to using Roman input mode over

1640 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

forcing the keyboard script to Roman is that the same user interface for the input method continues to be
available to the user, even though the input script changed. An example of a special input mode (input
method specific) is Hanin input mode in Traditional Chinese input methods.

To temporarily change the current input mode from whatever it is to a generic one, use the function
GetTextServiceProperty to obtain the current input mode, then call the function
SetTextServiceProperty to switch to the generic mode. When done using the generic input mode, you
can restore the original input mode.

You can find out what input modes are supported by an input method by calling the function
CopyTextServiceInputModeList. If the input method does not support a specified input mode, the
functions GetTextServiceProperty and SetTextServiceProperty return the result
tsmComponentPropertyUnsupportedErr. The function GetTextServiceProperty returns the result
tsmComponentPropertyNotFoundErr.

Text Services Property Values
Define values for the text services input mode property tags.

#define kTextServiceInputModeRoman CFSTR("com.apple.inputmethod.Roman")
#define kTextServiceInputModePassword
 CFSTR("com.apple.inputmethod.Password")
#define kTextServiceInputModeJapaneseHiragana
 CFSTR("com.apple.inputmethod.Japanese.Hiragana")
#define kTextServiceInputModeJapaneseKatakana
 CFSTR("com.apple.inputmethod.Japanese.Katakana")
#define kTextServiceInputModeJapaneseFullWidthRoman
 CFSTR("com.apple.inputmethod.Japanese.FullWidthRoman")
#define kTextServiceInputModeJapaneseHalfWidthKana
 CFSTR("com.apple.inputmethod.Japanese.HalfWidthKana")
#define kTextServiceInputModeJapanesePlaceName
 CFSTR("com.apple.inputmethod.Japanese.PlaceName")
#define kTextServiceInputModeJapaneseFirstName
 CFSTR("com.apple.inputmethod.Japanese.FirstName")
#define kTextServiceInputModeJapaneseLastName
 CFSTR("com.apple.inputmethod.Japanese.LastName")
#define kTextServiceInputModeBopomofo
 CFSTR("com.apple.inputmethod.TradChinese.Bopomofo")
#define kTextServiceInputModeTradChinesePlaceName
 CFSTR("com.apple.inputmethod.TradChinese.PlaceName")
#define kTextServiceInputModeHangul
 CFSTR("com.apple.inputmethod.Korean.Hangul")
#define kTextServiceInputModeJapanese
 CFSTR("com.apple.inputmethod.Japanese")
#define kTextServiceInputModeTradChinese
 CFSTR("com.apple.inputmethod.TradChinese")
#define kTextServiceInputModeSimpChinese
 CFSTR("com.apple.inputmethod.SimpChinese")
#define kTextServiceInputModeKorean
 CFSTR("com.apple.inputmethod.Korean")

Constants
kTextServiceInputModeRoman

Specifies to restrict output to Roman characters only.

Constants 1641
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kTextServiceInputModePassword
kTextServiceInputModeJapaneseHiragana

Specifies to restrict output to Hiragana characters only (no conversion to Kanji, that is, yomi).

kTextServiceInputModeJapaneseKatakana
Specifies to restrict output to Katakana characters only (no conversion to Kanji).

kTextServiceInputModeJapaneseFullWidthRoman
kTextServiceInputModeJapaneseHalfWidthKana
kTextServiceInputModeJapanesePlaceName
kTextServiceInputModeJapaneseFirstName
kTextServiceInputModeJapaneseLastName
kTextServiceInputModeBopomofo

Specifies to restrict output to Bopomofo characters only (no conversion to Han).

kTextServiceInputModeTradChinesePlaceName
Specifies to restrict output to traditional chines place name.

kTextServiceInputModeHangul
Specifies to restrict output to Hangul syllables only (no conversion to Hanja).

kTextServiceInputModeJapanese
Specifies unrestricted Japanese output.

kTextServiceInputModeTradChinese
Specifies traditional Chinese generic (unrestricted) input mode.

kTextServiceInputModeSimpChinese
Specifies simplified Chinese generic (unrestricted) input mode.

kTextServiceInputModeKorean
Specifies Korean generic (unrestricted) output (Hanja possible).

Discussion
These values require a cast from the CFStringRef data type to an SInt32 data type before they can be
used in text services functions.

Text Services Object Attributes
Specify characteristics of text services.

#define kKeyboardInputMethodTypeName "\pkeyboardinputmethod"
#define kHandwritingInputMethodTypeName "\phandwritinginputmethod"
#define kSpeechInputMethodTypeName "\pspeechinputmethod"
#define kTokenizeServiceTypeName "\ptokenizetextservice"
#define kInteractiveTextServiceTypeName "\pinteractivetextservice"
#define kInputMethodModeName "\pinputmethodmode"
#define kInputMethodModeVariantName "\pinputmethodvariantmode"
#define kTextServiceModeName "\ptextservicemode"
#define kTextServiceNeedsInlineAppMode "\ptextservicesneedsinlineapp"
#define kTextServiceNeedsGetProtocolMode "\ptextservicesneedsGetProtocol"
#define kTextServiceAnyAppMode "\ptextservicesanyapp"

TSM Document Interfaces
Specify types of TSM document interfaces.

1642 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

enum {
 kTextServiceDocumentInterfaceType = kTextService,
 kTSMTEDocumentInterfaceType = 'tmTE',
 kUnicodeDocumentInterfaceType = 'udoc',
 };

Constants
kTextServiceDocumentInterfaceType

A four-character code identifying a TSM document type for traditional (non-Unicode) TSM documents.
This is the traditional TSM document type. It does not support Unicode. TSM converts all Unicode
produced by input methods to the Mac encoding represented by the current keyboard script (or the
Mac encoding specified by the input method producing text.) Full Unicode input sources may not be
selectable when this TSM document is active.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSMTEDocumentInterfaceType
Deprecated. Specifies a TSM document type for TSMTE document (see kTSMTEInterfaceType in
TSMTE.h). This requests automatic management of inline input sessions by TextEdit (the text engine.)
See Technote TE27 - Inline Input for TextEdit with TSMTE. This document interface type should no longer
be used because TextEdit has been replaced by MLTE.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kUnicodeDocumentInterfaceType
Specifies a TSM document type for Unicode-savvy applications. TSM pass through all Unicode text
unchanged. When this TSM document is active, the full range of input sources is available to the user,
such as Unicode keyboard layouts.

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

Discussion
These constants are used in arrays of type InterfaceTypeList (page 1614). TSM Interface types, as of Mac
OS X 10.3, are also stored as TSM document properties, so once a TSM document is created, you can easily
find out its interface types at document creation.

Unicode Identifiers
Specify constants that identify Unicode components and documents.

enum {
 kUnicodeDocument = 'udoc',
 kUnicodeTextService = 'utsv'
};

Constants
kUnicodeDocument

A four-character code that identifies a Unicode TSM document, for use by Unicode-savvy applications.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

Constants 1643
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

kUnicodeTextService
Specifies a component type for a Unicode text service.

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

Collection Tags
Specify collection tags.

enum {
 kInteractiveServicesTag = 'tmin',
 kLocaleIDTag = 'loce',
 kTextInputObjectTag = 'tiot',
 kLocaleObjectRefTag = 'lobj',
 kLocaleRefTag = 'lref',
 kKeyboardInputMethodContextTag = 'kinp',
 kKeyboardLocaleObjectRefTag = 'kilo',
 kHandwritingInputMethodContextTag = 'hinp',
 kHandwritingLocaleObjectRefTag = 'hilo',
 kSpeechInputMethodContextTag = 'sinp',
 kSpeechLocaleObjectRefTag = 'silo',
 kPasswordModeTag = 'pwdm',
 kRefconTag = 'refc',
 kUseFloatingWindowTag = 'uswm',
 kReadOnlyDocumentTag = 'isro',
 kSupportsMultiInlineHolesTag = 'minl',
 kProtocolVersionTag = 'nprt',
 kTSMContextCollectionTag = 'tsmx'
};

Constants
kUseFloatingWindowTag

Specifies the use of a bottom-line floating window for an input method.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in TextServices.h.

Discussion
All the constants in this enumeration, except kUseFloatingWindowTag, are reserved for future use.

Input Mode Variants
Specify variant tags for input modes.

1644 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

enum {
 kIM2ByteInputMode = '2byt',
 kIM1ByteInputMode = '1byt',
 kIMDirectInputMode = 'dinp'
};

Constants
kIM2ByteInputMode

Specifies a double-byte input mode.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in TextServices.h.

kIM1ByteInputMode
Specifies a single-byte input mode.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in TextServices.h.

kIMDirectInputMode
Specifies a direct input mode.

Available in Mac OS X v10.0 through Mac OS X v10.2.

Declared in TextServices.h.

Discussion
These constants are reserved for future use.

Input Mode - Standard Tags
Specify standard tags for input method modes.

enum {
 kIMRomanInputMode = 'romn',
 kIMPasswordInputMode = 'pasw',
 kIMXingInputMode = 'xing',
 kIMHuaInputMode = 'huam',
 kIMPinyinInputMode = 'piny',
 kIMQuweiInputMode = 'quwe',
 kIMCangjieInputMode = 'cgji',
 kIMJianyiInputMode = 'jnyi',
 kIMZhuyinInputMode = 'zhuy',
 kIMB5CodeInputMode = 'b5cd',
 kIMKatakanaInputMode = 'kata',
 kIMHiraganaInputMode = 'hira'
};

Discussion
These constants are reserved for future use.

Locale Object Attributes
Specify attributes of a locale object.

Constants 1645
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

enum {
 kNeedsInputWindow = 1,
 kHandlesUpdateRegion = 2,
 kHandlesGetRegion = 3,
 kHandlesPos2Offset = 4,
 kHandlesOffset2Pos = 5,
 kInPasswordMode = 6,
 kHandleMultipleHoles = 7,
 kDocumentIsReadOnly = 8
};

Discussion
These constants are reserved for future use.

Version Constants
Specify versions of the Text Services Manager.

enum {
 kTSMVersion = 0x0150,
 kTSM15Version = kTSMVersion,
 kTSM20Version = 0x0200,
 kTSM22Version = 0x0220,
 kTSM23Version = 0x0230
};

Constants
kTSMVersion

Specifies the version of the Text Services Manager is 1.5

Available in Mac OS X v10.0 and later.

Declared in TextServices.h.

kTSM15Version
Specifies the version of the Text Services Manager is 1.5

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSM20Version
Specifies the version of the Text Services Manager is 2.0 (Mac OS X v10.0).

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSM22Version
Specifies the version of the Text Services Manager is 2.2 (Mac OS X 1v0.3).

Available in Mac OS X v10.3 and later.

Declared in TextServices.h.

kTSM23Version
Specifies the version of the Text Services Manager is 2.3 (Mac OS X v10.4).

Available in Mac OS X v10.4 and later.

Declared in TextServices.h.

1646 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Result Codes

The most common result codes returned by Text Services Manager are listed below.

DescriptionValueResult Code

Component result: no error0tsmComponentNoErr

Available in Mac OS X v10.0 and later.

Specified script and language are not supported-2500tsmUnsupScriptLanguageErr

Available in Mac OS X v10.0 and later.

Specified input method cannot be found-2501tsmInputMethodNotFoundErr

Available in Mac OS X v10.0 and later.

The caller was not an application-2502tsmNotAnAppErr

Available in Mac OS X v10.0 and later.

The caller is already TSM-initialized-2503tsmAlreadyRegisteredErr

Available in Mac OS X v10.0 and later.

The caller is not TSM-aware-2504tsmNeverRegisteredErr

Available in Mac OS X v10.0 and later.

Invalid TSM document ID-2505tsmInvalidDocIDErr

Available in Mac OS X v10.0 and later.

Document is still active-2506tsmTSMDocBusyErr

Available in Mac OS X v10.0 and later.

Document is not active-2507tsmDocNotActiveErr

Available in Mac OS X v10.0 and later.

There is no open text service component-2508tsmNoOpenTSErr

Available in Mac OS X v10.0 and later.

Can’t open the component-2509tsmCantOpenComponentErr

Available in Mac OS X v10.0 and later.

No text service component found-2510tsmTextServiceNotFoundErr

Available in Mac OS X v10.0 and later.

There are open documents-2511tsmDocumentOpenErr

Available in Mac OS X v10.0 and later.

An input window is being used-2512tsmUseInputWindowErr

Available in Mac OS X v10.0 and later.

Result Codes 1647
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

DescriptionValueResult Code

The text service component has no menu-2513tsmTSHasNoMenuErr

Available in Mac OS X v10.0 and later.

Text service component is not open-2514tsmTSNotOpenErr

Available in Mac OS X v10.0 and later.

Text service component already open for document-2515tsmComponentAlreadyOpenErr

Available in Mac OS X v10.0 and later.

The default input method is old-style-2516tsmInputMethodIsOldErr

Available in Mac OS X v10.0 and later.

Script has no (or old) input method-2517tsmScriptHasNoIMErr

Available in Mac OS X v10.0 and later.

Unsupported interface type-2518tsmUnsupportedTypeErr

Available in Mac OS X v10.0 and later.

Any other error not listed in this table-2519tsmUnknownErr

Available in Mac OS X v10.0 and later.

Current input source is a keyboard layout resource-2524tsmDefaultIsNotInputMethodErr

Available in Mac OS X v10.0 and later.

Requested TSM document property not found-2528tsmDocPropertyNotFoundErr

Available in Mac OS X v10.2 and later.

Buffer passed for property value is too small-2529tsmDocPropertyBufferTooSmallErr

Available in Mac OS X v10.2 and later.

Enabled state of a TextService class has been forced
and cannot be changed

-2530tsmCantChangeForcedClassStateErr

Available in Mac OS X v10.2 and later.

1648 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 20

Text Services Manager Reference

Framework: CoreServices/CoreServices.h, Carbon/Carbon.h

Declared in TextUtils.h
StringCompare.h
NumberFormatting.h
TypeSelect.h

Overview

The Text Utilities provide you with an integrated collection of routines for performing a variety of operations
on textual information, ranging from modifying the contents of a string, to sorting strings from different
languages, to converting times, dates, and numbers from internal representations to formatted strings and
back. These routines work in conjunction with QuickDraw text drawing routines to help you display and
modify text in applications that are distributed to an international audience.

The Text Utilities functions are used for numerous text-handling tasks, including

 ■ defining strings–including functions for allocating strings in the heap and for loading strings from
resources

 ■ comparing and sorting strings–including functions for testing whether two strings are equal and functions
for finding the sorting relationship between two strings

 ■ modifying the contents of strings–including routines for converting the case of characters, stripping
diacritical marks, replacing substrings, and truncating strings

 ■ finding breaks and boundaries in text–including routines for finding word and line breaks, and for finding
different script runs in a line of text

 ■ converting and formatting date and time strings–including routines that convert numeric and string
representations of dates and times into record format, and routines that convert numeric and record
representations of dates and times into strings

 ■ converting and formatting numeric strings–including routines that convert string representations of
numbers into numeric representations

Carbon supports the majority of Text Utilities. However, Apple recommends that you use the comparison
and word breaking utilities supplied by Unicode Utilities instead.

A number of obsolete Text Utilities functions-such as those prefixed with iu or IU-are not supported.

Overview 1649
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Functions by Task

Comparing Strings for Equality

EqualString (page 1658) Deprecated in Mac OS X v10.4
Compares two Pascal strings for equality, using the comparison rules of the Macintosh file system.
(Deprecated. Use CFStringCompare instead.)

IdenticalString (page 1666) Deprecated in Mac OS X v10.4
Compares two Pascal strings for equality, making use of the string comparison information from a
resource that you specify as a parameter. (Deprecated. Use CFStringCompare instead.)

IdenticalText (page 1666) Deprecated in Mac OS X v10.4
Compares two text strings for equality, making use of the string comparison information from a
resource that you specify as a parameter. (Deprecated. Use CFStringCompare instead.)

Converting Between Integers and Strings

NumToString (page 1672) Deprecated in Mac OS X v10.4
Converts a long integer value into a Pascal string. (Deprecated. Use CFStringCreateWithFormat
instead.)

StringToNum (page 1682) Deprecated in Mac OS X v10.4
Converts the Pascal string representation of a base-10 number into a long integer value. (Deprecated.
Use CFStringGetIntValue instead.)

Converting Between Strings and Floating-Point Numbers

ExtendedToString (page 1659) Deprecated in Mac OS X v10.4
Converts an internal floating-point representation of a number into a string that can be presented to
the user, using a NumFormatStringRec structure to specify how the output number string is formatted
(Deprecated. Use CFNumberFormatterCreateNumberFromString instead.)

StringToExtended (page 1679) Deprecated in Mac OS X v10.4
Converts a string representation of a number into a floating-point number, using a
NumFormatStringRec structure to specify how the input number string is formatted. (Deprecated.
Use CFNumberFormatterCreateStringWithNumber instead.)

Converting Between C and Pascal Strings

c2pstr (page 1654)
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

C2PStr (page 1654)
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

1650 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

P2CStr (page 1673)
Converts a Pascal string to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

c2pstrcpy (page 1654) Deprecated in Mac OS X v10.4
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

CopyCStringToPascal (page 1657) Deprecated in Mac OS X v10.4
Converts a C string to a Pascal string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

CopyPascalStringToC (page 1657) Deprecated in Mac OS X v10.4
Converts a Pascal String to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

p2cstr (page 1673) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.4 Deprecated in Mac OS X
v10.5

Converts a Pascal string to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

p2cstrcpy (page 1674) Deprecated in Mac OS X v10.4
Converts a Pascal string to a C string. (Deprecated. You should store strings as Core Foundation
CFStrings instead. See CFString Reference.)

Defining and Specifying Strings

GetIndString (page 1664) Deprecated in Mac OS X v10.4
Loads a string from a string list ('STR#') resource into memory, given the resource ID of the string
list and the index of the individual string. (Deprecated. Use CFBundleCopyLocalizedString instead.)

GetString (page 1665) Deprecated in Mac OS X v10.4
Loads a string from a string ('STR') resource into memory. (Deprecated. Use
CFBundleCopyLocalizedString instead.)

NewString (page 1671) Deprecated in Mac OS X v10.4
Allocates memory in the heap for a string, copies its contents, and produces a handle for the heap
version of the string. (Deprecated. Use CFStringCreateCopy instead.)

SetString (page 1677) Deprecated in Mac OS X v10.4
Changes the contents of a string referenced by a string handle, replacing the previous contents by
copying the specified string. (Deprecated. Use CFStringCreateWithPascalString and
CFStringReplaceAll.)

Determining Sorting Order for Strings in Different Languages

LanguageOrder (page 1668) Deprecated in Mac OS X v10.4
Determines the order in which strings in two different languages should be sorted. (Deprecated. Use
CFStringCompare or UCCompareText instead.)

ScriptOrder (page 1677) Deprecated in Mac OS X v10.4
Determines the order in which strings in two different scripts should be sorted. (Deprecated. Use
CFStringCompare or UCCompareText instead.)

Functions by Task 1651
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

StringOrder (page 1678) Deprecated in Mac OS X v10.4
Compares two Pascal strings, taking into account the script system and language for each of the
strings. (Deprecated. Use CFStringCompare or UCCompareText instead.)

TextOrder (page 1684) Deprecated in Mac OS X v10.4
Compares two text strings, taking into account the script and language for each of the strings.
(Deprecated. Use CFStringCompare or UCCompareText instead.)

Determining Sorting Order for Strings in the Same Language

CompareString (page 1655) Deprecated in Mac OS X v10.4
Compares two Pascal strings, making use of the string comparison information from a resource that
you specify as a parameter. (Deprecated. Use CFStringCompare or UCCompareText instead.)

CompareText (page 1656) Deprecated in Mac OS X v10.4
Compares two text strings, making use of the string comparison information from a resource that
you specify as a parameter. (Deprecated. Use CFStringCompare or UCCompareText instead.)

RelString (page 1674) Deprecated in Mac OS X v10.4
Compares two Pascal strings using the string comparison rules of the Macintosh file system and
returns a value that indicates the sorting order of the first string relative to the second string.
(Deprecated. Use CFStringCompare or UCCompareText instead.)

relstring (page 1675) Deprecated in Mac OS X v10.4
Compares two strings. (Deprecated. Use CFStringCompare or UCCompareText instead.)

Modifying Characters and Diacritical Marks

LowercaseText (page 1669) Deprecated in Mac OS X v10.4
Converts any uppercase characters in a text string into their lowercase equivalents. (Deprecated. Use
CFStringLowercase instead.)

StripDiacritics (page 1683) Deprecated in Mac OS X v10.4
Strips any diacritical marks from a text string. (Deprecated. Use CFStringTransform instead.)

UppercaseStripDiacritics (page 1688) Deprecated in Mac OS X v10.4
Converts any lowercase characters in a text string into their uppercase equivalents and strips any
diacritical marks from the text. (Deprecated. Use CFStringTransform instead.)

UppercaseText (page 1689) Deprecated in Mac OS X v10.4
Converts any lowercase characters in a text string into their uppercase equivalents. (Deprecated. Use
CFStringUppercase instead.)

UpperString (page 1690) Deprecated in Mac OS X v10.4
Converts any lowercase letters in a Pascal string to their uppercase equivalents, using the Macintosh
file system rules. (Deprecated. Use CFStringUppercase instead.)

upperstring (page 1691) Deprecated in Mac OS X v10.4
Converts any lowercase letters in a Pascal string to their uppercase equivalents. (Deprecated. Use
CFStringUppercase instead.)

1652 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Searching for and Replacing Strings

Munger (page 1669)
Searches text for a specified string pattern and replaces it with another string.

ReplaceText (page 1676) Deprecated in Mac OS X v10.4
Searches text on a character-by-character basis, replacing all instances of a string in that text with
another string. (Deprecated. Use CFStringReplace instead.)

Using Number Format Specification Strings for International Number
Formatting

FormatRecToString (page 1663) Deprecated in Mac OS X v10.4
Converts an internal representation of number formatting information into a number format
specification string, which can be displayed and modified. (Deprecated. Use
CFNumberFormatterGetFormat instead.)

StringToFormatRec (page 1680) Deprecated in Mac OS X v10.4
Creates a number format specification string structure from a number format specification string that
you supply in a Pascal string. (Deprecated. Use CFNumberFormatterSetFormat instead.)

Working With Word, Script, and Line Boundaries

FindScriptRun (page 1660) Deprecated in Mac OS X v10.4
Finds the next block of subscript text within a script run. (Deprecated. There is no replacement function
because this capability is no longer needed in Mac OS X.)

FindWordBreaks (page 1661) Deprecated in Mac OS X v10.4
Determines the beginning and ending boundaries of a word in a text string. (Deprecated. Use
UCFindTextBreak instead.)

Working With Universal Procedure Pointers

DisposeIndexToStringUPP (page 1658) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer to an index-to-string callback.

InvokeIndexToStringUPP (page 1667) Deprecated in Mac OS X v10.4
Call an index-to-string callback.

NewIndexToStringUPP (page 1671) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to an index-to-string callback.

Working With Type Select Records

TypeSelectClear (page 1685) Deprecated in Mac OS X v10.4
Clears the key list and resets the type select record. (Deprecated. Use
UCTypeSelectFlushSelectorData instead.)

TypeSelectCompare (page 1686) Deprecated in Mac OS X v10.4
Compares a text buffer to the keystroke buffer. (Deprecated. Use UCTypeSelectCompare instead.)

Functions by Task 1653
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

TypeSelectFindItem (page 1686) Deprecated in Mac OS X v10.4
Finds the closest match between a specified list of characters and the keystrokes stored in the type
select record. (Deprecated. Use UCTypeSelectFindItem instead.)

TypeSelectNewKey (page 1687) Deprecated in Mac OS X v10.4
Creates a new type select record. (Deprecated. Use UCTypeSelectCreateSelector instead.)

Functions

c2pstr
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

StringPtr c2pstr (
 char *aStr
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

C2PStr
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

StringPtr C2PStr (
 Ptr cString
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

c2pstrcpy
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

1654 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

void c2pstrcpy (
 Str255 dst,
 const char *src
);

Parameters
dst

On output, the Pascal string.

src
The C string you want to convert.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
SoftVDigX

Declared In
TextUtils.h

CompareString
Compares two Pascal strings, making use of the string comparison information from a resource that you
specify as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText instead.)

short CompareString (
 ConstStr255Param aStr,
 ConstStr255Param bStr,
 Handle itl2Handle
);

Parameters
aStr

One of the Pascal strings to be compared.

bStr
The other Pascal string to be compared.

itl2Handle
The handle to the string-manipulation resource that contains string comparison information. If the
value of this parameter is NULL, CompareString makes use of the resource for the current script.
The string-manipulation resource includes functions and tables for modifying string comparison and
tables for case conversion and stripping of diacritical marks.

Return Value
Returns –1 if the first string is less than the second string, 0 if the first string is equal to the second string,
and 1 if the first string is greater than the second string.

Functions 1655
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates the sorting order of the first string relative to the second string.

Special Considerations

CompareString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

CompareText
Compares two text strings, making use of the string comparison information from a resource that you specify
as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText instead.)

short CompareText (
 const void *aPtr,
 const void *bPtr,
 short aLen,
 short bLen,
 Handle itl2Handle
);

Parameters
aPtr

A pointer to the first character of the first text string.

bPtr
A pointer to the first character of the second text string.

aLen
The length, in bytes, of the first text string.

bLen
The length, in bytes, of the second text string.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string comparison information. If
the value of this parameter is NULL, CompareText makes use of the resource for the current script.
The string-manipulation resource includes functions and tables for modifying string comparison and
tables for case conversion and stripping of diacritical marks.

Return Value
Returns –1 if the first string is less than the second string, 0 if the first string is equal to the second string,
and 1 if the first string is greater than the second string.

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates the sorting order of the first string relative to the second string.

1656 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Special Considerations

CompareText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

CopyCStringToPascal
Converts a C string to a Pascal string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

void CopyCStringToPascal (
 const char *src,
 Str255 dst
);

Parameters
src

The C string you want to convert.

dst
On output, the Pascal string.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
TextUtils.h

CopyPascalStringToC
Converts a Pascal String to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

Functions 1657
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

void CopyPascalStringToC (
 ConstStr255Param src,
 char *dst
);

Parameters
src

The Pascal string you want to convert.

dst
On output, the C string.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

DisposeIndexToStringUPP
Disposes of a universal procedure pointer to an index-to-string callback. (Deprecated in Mac OS X v10.4.)

void DisposeIndexToStringUPP (
 IndexToStringUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback IndexToStringProcPtr (page 1691) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

EqualString
Compares two Pascal strings for equality, using the comparison rules of the Macintosh file system. (Deprecated
in Mac OS X v10.4. Use CFStringCompare instead.)

1658 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Boolean EqualString (
 ConstStr255Param str1,
 ConstStr255Param str2,
 Boolean caseSensitive,
 Boolean diacSensitive
);

Parameters
str1

One of the Pascal strings to be compared.

str2
The other Pascal string to be compared.

caseSensitive
A flag that indicates how to handle case-sensitive information during the comparison. If the value of
caseSens is TRUE, uppercase characters are distinguished from the corresponding lowercase
characters. If it is FALSE, case information is ignored.

diacSensitive
A flag that indicates how to handle information about diacritical marks during the string comparison.
If the value of diacSens is TRUE, characters with diacritical marks are distinguished from the
corresponding characters without diacritical marks during the comparison. If it is FALSE, diacritical
marks are ignored.

Return Value
TRUE if the two strings are equal and FALSE if they are not equal. If its value is TRUE, EqualString
distinguishes uppercase characters from the corresponding lowercase characters. If its value is FALSE,
EqualString ignores diacritical marks during the comparison.

Discussion
The comparison is a simple, character-by-character value comparison. This function does not make use of
any script or language information (i.e., is not localizable); it assumes the use of a Roman script system.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

ExtendedToString
Converts an internal floating-point representation of a number into a string that can be presented to the
user, using a NumFormatStringRec structure to specify how the output number string is formatted
(Deprecated in Mac OS X v10.4. Use CFNumberFormatterCreateNumberFromString instead.)

Functions 1659
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

FormatStatus ExtendedToString (
 const extended80 *x,
 const NumFormatString *myCanonical,
 const NumberParts *partsTable,
 Str255 outString
);

Parameters
x

A pointer to a floating-point value in 80-bit SANE representation.

myCanonical
A pointer to the internal representation of the formatting information for numbers, as produced by
the StringToFormatRec function.

partsTable
A pointer to a structure, obtained from the tokens ('itl4') resource, that shows the correspondence
between generic number part separators (tokens) and their localized version (for example, a thousand
separator is a comma in the United States and a decimal point in France).

outString
On output, contains the number formatted according to the information in myFormatRec.

Return Value
A value that denotes the confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType. Be sure to cast the result of ExtendedToString to a
type FormatResultType before working with it. See the description of the FormatStatus data type.

Discussion
ExtendedToString creates a string representation of a floating-point number, using the formatting
information in the myFormatRec parameter (which was created by a previous call to StringToFormatRec)
to determine how the number should be formatted for output. It uses the number parts table to determine
the component parts of the number string.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

FindScriptRun
Finds the next block of subscript text within a script run. (Deprecated in Mac OS X v10.4. There is no
replacement function because this capability is no longer needed in Mac OS X.)

1660 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

ScriptRunStatus FindScriptRun (
 Ptr textPtr,
 long textLen,
 long *lenUsed
);

Parameters
textPtr

A pointer to the text string to be analyzed.

textLen
The number of bytes in the text string.

lenUsed
On output, a pointer to the length, in bytes, of the script run that begins with the first character in
the string; this length is always greater than or equal to 1, unless the string passed in is of length 0.

Return Value
Identifies the run as either native text, Roman, or one of the defined subscripts of the script system and
returns a structure of type ScriptRunStatus (page 1698). See the description of the ScriptRunStatus data
type.

Discussion
The FindScriptRun function is used to identify blocks of subscript text in a string, taking into account script
and language considerations, making use of tables in the string-manipulation ('itl2') resource in its
computations. Some script systems include subscripts, which are character sets that are subsidiary to the
main character set. One useful subscript is the set of all character codes that have the same meaning in
Roman as they do in a non-Roman script. For other scripts such as Japanese, there are additional useful
subscripts. For example, a Japanese script system might include some Hiragana characters that are useful
for input methods.

FindScriptRun computes the length of the current run of subscript text in the text string specified by
textPtr and textLen. It assigns the length, in bytes, to the lenUsed parameter and returns a status code.
You can advance the text pointer by the value of lenUsed to make subsequent calls to this function. You
can use this function to identify runs of subscript characters so that you can treat them separately.

Word processors and other applications can call FindScriptRun to separate style runs of native text from
non-native text. You can use this capability to extract those characters and apply a different font to them.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

FindWordBreaks
Determines the beginning and ending boundaries of a word in a text string. (Deprecated in Mac OS X v10.4.
Use UCFindTextBreak instead.)

Functions 1661
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

void FindWordBreaks (
 Ptr textPtr,
 short textLength,
 short offset,
 Boolean leadingEdge,
 BreakTablePtr breaks,
 OffsetTable offsets,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be examined.

textLength
The number of bytes in the text string.

offset
A byte offset into the text. This parameter plus the leadingEdge parameter determine the position
of the character at which to start the search.

leadingEdge
A flag that specifies which character should be used to start the search. If leadingEdge is TRUE, the
search starts with the character specified in the offset parameter; if it is FALSE, the search starts
with the character preceding the offset.

breaks
A pointer to a word-break table of type NBreakTable or BreakTable. If the value of this pointer is
0, the default word-break table of the script system specified by the script parameter is used. If the
value of this pointer is –1, the default line-break table of the specified script system is used.

offsets
On output, the values in this table indicate the boundaries of the word that has been found.

script
The script code for the script system whose tables are used to determine where word boundaries
occur.

Discussion
FindWordBreaks searches for a word in a text string, taking into account script and language considerations,
making use of tables in the string-manipulation ('itl2') resource in its computations. The textPtr and
textLength parameters specify the text string that you want searched. The offset parameter and
leadingEdge parameter together indicate where the search begins.

FindWordBreaks searches backward through the text string for one of the word boundaries and forward
through the text string for its other boundary. It uses the definitions in the table specified by nbreaks to
determine what constitutes the boundaries of a word. Each script system’s word-break table is part of its
string-manipulation ('itl2') resource.

FindWordBreaks returns its results in an OffsetTable structure. FindWordBreaks uses only the first
element of this three-element table. Each element is a pair of integers: offFirst and offSecond.

FindWordBreaks places the offset from the beginning of the text string to just before the leading edge of
the character of the word that it finds in the offFirst field.

FindWordBreaks places the offset from the beginning of the text string to just after the trailing edge of the
last character of the word that it finds in the offSecond field. For example, if the text “This is it” is passed
with offset set to 0 and leadingEdge set to TRUE, then FindWordBreaks returns the offset pair (0,4).

1662 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

If leadingEdge is TRUE and the value of offset is 0, then FindWordBreaks returns the offset pair (0,0).
If leadingEdge is FALSE and the value of offset equals the value of textLength, then FindWordBreaks
returns the offset pair with values (textLength, textLength).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

FormatRecToString
Converts an internal representation of number formatting information into a number format specification
string, which can be displayed and modified. (Deprecated in Mac OS X v10.4. Use
CFNumberFormatterGetFormat instead.)

FormatStatus FormatRecToString (
 const NumFormatString *myCanonical,
 const NumberParts *partsTable,
 Str255 outString,
 TripleInt positions
);

Parameters
myCanonical

A pointer to the internal representation of number formatting information, as created by a previous
call to the StringToFormatRec function.

partsTable
A pointer to a structure, obtained from the tokens ('itl4') resource, that shows the correspondence
between generic number part separators (tokens) and their localized version (for example, a thousand
separator is a comma in the United States and a decimal point in France).

outString
On output, contains the number format specification string.

positions
An array that specifies the starting position and length of each of the three possible format strings
(positive, negative, or zero) in the number format specification string. Semicolons are used as separators
in the string.

Return Value
A value that denotes the confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType. Be sure to cast the result of FormatRecToString to
a type FormatResultType before working with it. See the description of the FormatStatus data type.

Discussion
FormatRecToString is the inverse operation ofStringToFormatRec (page 1680). The internal representation
of the formatting information in myFormatRec must have been created by a prior call to the
StringToFormatRec function. The information in the number parts table specifies how to build the string
representation.

Functions 1663
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

The output number format specification string in outString specifies how numbers appear. This string
contains three parts, which are separated by semicolons. The first part is the positive number format, the
second is the negative number format, and the third part is the zero number format.

The positions parameter is an array of three integers (a TripleInt value), which specifies the starting
position in outString of each of three formatting specifications:

 ■ positions[fPositive]. The index in outString of the first byte of the formatting specification for
positive number values.

 ■ positions[fNegative]. The index in outString of the first byte of the formatting specification for
negative number values.

 ■ positions[fZero]. The index in outString of the first byte of the formatting specification for zero
number values.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

GetIndString
Loads a string from a string list ('STR#') resource into memory, given the resource ID of the string list and
the index of the individual string. (Deprecated in Mac OS X v10.4. Use CFBundleCopyLocalizedString
instead.)

void GetIndString (
 Str255 theString,
 short strListID,
 short index
);

Parameters
theString

On output, the Pascal string result; specifically, a copy of the string from a string list that has the
resource ID provided in the strListID parameter. If the resource that you specify cannot be read
or the index that you specify is out of range for the string list, GetIndString sets theString to an
empty string.

strListID
The resource ID of the 'STR#' resource that contains the string list.

index
The index of the string in the list. This is a value from 1 to the number of strings in the list that is
referenced by the strListID parameter.

1664 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Discussion
If necessary, GetIndString reads the string list from the resource file by calling the Resource Manager
function GetResource. GetIndString accesses the string specified by the index parameter and copies it
into theString.

Special Considerations

GetIndString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

GetString
Loads a string from a string ('STR') resource into memory. (Deprecated in Mac OS X v10.4. Use
CFBundleCopyLocalizedString instead.)

StringHandle GetString (
 short stringID
);

Parameters
stringID

The resource ID of the string ('STR ') resource containing the string.

Return Value
A handle to a string with the specified resource ID. If necessary, GetString reads the handle form the
resource file. If GetString cannot read the resource, it returns NULL.

Discussion
GetString calls the GetResource function of the Resource Manager to access the string. This means that
if the specified resource is already in memory, GetString simply returns its handle.

Like the NewString (page 1671) function, GetString returns a handle whose size is based upon the actual
length of the string.

If your application uses a large number of strings, it is more efficient to store them in a string list ('STR#')
resource than as individual resources in the resource file. You then use the GetIndString (page 1664) function
to access each string in the list.

Special Considerations

GetString does not create a copy of the string.

GetString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 1665
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Declared In
TextUtils.h

IdenticalString
Compares two Pascal strings for equality, making use of the string comparison information from a resource
that you specify as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare instead.)

short IdenticalString (
 ConstStr255Param aStr,
 ConstStr255Param bStr,
 Handle itl2Handle
);

Parameters
aStr

One of the Pascal strings to be compared.

bStr
The other Pascal string to be compared.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string comparison information.

The itl2Handle parameter is used to specify a string-manipulation resource. If the value of this
parameter is NULL, IdenticalString makes use of the resource for the current script. The
string-manipulation resource includes tables for modifying string comparison and tables for case
conversion and stripping of diacritical marks.

Return Value
Returns 0 if the two strings are equal; 1 if they are not equal. It compares the two strings without regard for
secondary sorting order, the meaning of which depends on the language of the strings. For example, for the
English language, using only primary differences means that IdenticalString ignores diacritical marks
and does not distinguish between lowercase and uppercase. For example, if the two strings are 'Rose' and
'rosé', IdenticalString considers them equal and returns 0.

Discussion
IdenticalString uses only primary differences in its comparison.

Special Considerations

IdenticalString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

IdenticalText
Compares two text strings for equality, making use of the string comparison information from a resource
that you specify as a parameter. (Deprecated in Mac OS X v10.4. Use CFStringCompare instead.)

1666 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

short IdenticalText (
 const void *aPtr,
 const void *bPtr,
 short aLen,
 short bLen,
 Handle itl2Handle
);

Parameters
aPtr

A pointer to the first character of the first text string.

bPtr
A pointer to the first character of the second text string.

aLen
The length, in bytes, of the first text string.

bLen
The length, in bytes, of the second text string.

itl2Handle
A handle to a string-manipulation ('itl2') resource that contains string comparison information.

The itl2Handle parameter is used to specify a string-manipulation resource. If the value of this
parameter is NULL, IdenticalText makes use of the resource for the current script. The
string-manipulation resource includes functions and tables for modifying string comparison and
tables for case conversion and stripping of diacritical marks.

Return Value
0 if the two text strings are equal; 1 if they are not equal. It compares the strings without regard for secondary
sorting order, which means that it ignores diacritical marks and does not distinguish between lowercase and
uppercase. For example, if the two text strings are 'Rose' and 'rosé', IdenticalText considers them
equal and returns 0.

Discussion
IdenticalText uses only primary sorting order in its comparison.

Special Considerations

IdenticalText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

InvokeIndexToStringUPP
Call an index-to-string callback. (Deprecated in Mac OS X v10.4.)

Functions 1667
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Boolean InvokeIndexToStringUPP (
 short item,
 ScriptCode *itemsScript,
 StringPtr *itemsStringPtr,
 void *yourDataPtr,
 IndexToStringUPP userUPP
);

Discussion
You should not need to use the function InvokeIndexToStringUPP, as the system calls your index-to-string
callback function for you. See the callback IndexToStringProcPtr (page 1691) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

LanguageOrder
Determines the order in which strings in two different languages should be sorted. (Deprecated in Mac OS
X v10.4. Use CFStringCompare or UCCompareText instead.)

short LanguageOrder (
 LangCode language1,
 LangCode language2
);

Parameters
language1

The language code of the first language.

language2
The language code of the second language.

Return Value
A value that indicates the sorting order: –1 if strings in the first language should be sorted before sorting
text in the second language, 1 if strings in the first language should be sorted after sorting strings in the
second language, or 0 if the sorting order does not matter (that is, if the languages are the same).

Discussion
LanguageOrder takes a pair of language codes and determines in which order strings from the first language
should be sorted relative to strings from the second language.

“Implicit Language Codes” (page 1702) are listed in the Constants section. The implicit language codes
scriptCurLang and scriptDefLang are not valid for LanguageOrder because the script system being
used is not specified as a parameter to this function.

Special Considerations

LanguageOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.

1668 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

LowercaseText
Converts any uppercase characters in a text string into their lowercase equivalents. (Deprecated in Mac OS
X v10.4. Use CFStringLowercase instead.)

void LowercaseText (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be converted.

len
The number of bytes in the text string. The text string can be up to 32 KB in length.

script
The script code for the script system whose resources are used to determine the results of converting
characters.

The conversion uses tables in the string-manipulation ('itl2') resource of the script specified by
the value of the script parameter. You can specify smSystemScript to use the system script and
smCurrentScript to use the script of the current font in the current graphics port.

Discussion
LowercaseText traverses the characters starting at the address specified by textPtr and continues for
the number of characters specified in len. It converts any uppercase characters in the text into lowercase.

If LowercaseText cannot access the specified resource, it generates an error code and does not modify the
string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

LowercaseText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Munger
Searches text for a specified string pattern and replaces it with another string.

Functions 1669
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

long Munger (
 Handle h,
 long offset,
 const void *ptr1,
 long len1,
 const void *ptr2,
 long len2
);

Parameters
h

A handle to the text string that is being manipulated.

offset
The byte offset in the destination string at which Munger begins its operation.

ptr1
A pointer to the first character in the string for which Munger is searching.

len1
The number of bytes in the string for which Munger is searching.

ptr2
A pointer to the first character in the substitution string.

len2
The number of bytes in the substitution string.

Return Value
A negative value if Munger cannot find the designated string.

Discussion
Munger manipulates bytes in a string to which you specify a handle in the h parameter. The manipulation
begins at a byte offset, specified in offset, in the string. Munger searches for the string specified by ptr1
and len1; when it finds an instance of that string, it replaces it with the substitution string, which is specified
by ptr2 and len2.

Munger operates on a byte-by-byte basis, which can produce inappropriate results for 2-byte script systems.
The ReplaceText (page 1676) function works properly for all languages. You are encouraged to use
ReplaceText instead of Munger whenever possible.

Munger takes special action if either of the specified pointer values is NULL or if either of the length values
is 0.

 ■ If ptr1 is NULL, Munger replaces characters without searching. It replaces len1 characters starting at
the offset location with the substitution string.

 ■ If ptr1 is NULL and len1 is negative, Munger replaces all of the characters from the offset location
to the end of the string with the substitution string.

 ■ If len1 is 0, Munger inserts the substitution string without replacing anything. Munger inserts the string
at the offset location and returns the offset of the first byte past where the insertion occurred.

 ■ If ptr2 is NULL, Munger searches but does not replace. In this case, Munger returns the offset at which
the string was found.

 ■ If len2 is 0 and ptr2 is not NULL, Munger searches and deletes. In this case, Munger returns the offset
at which it deleted.

1670 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

 ■ If the portion of the string from the offset location to its end matches the beginning of the string that
Munger is searching for, Munger replaces that portion with the substitution string.

Be careful not to specify an offset with a value that is greater than the length of the destination string.
Unpredictable results may occur.

Munger calls the GetHandleSize and SetHandleSize functions to access or modify the length of the
string it is manipulating.

Special Considerations

Munger may move memory; your application should not call this function at interrupt time.

The destination string must be in a relocatable block that was allocated by the Memory Manager.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextUtils.h

NewIndexToStringUPP
Creates a new universal procedure pointer (UPP) to an index-to-string callback. (Deprecated in Mac OS X
v10.4.)

IndexToStringUPP NewIndexToStringUPP (
 IndexToStringProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your index-to-string callback.

Return Value
On return, a UPP to the index-to-string callback.

Discussion
See the callback IndexToStringProcPtr (page 1691) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

NewString
Allocates memory in the heap for a string, copies its contents, and produces a handle for the heap version
of the string. (Deprecated in Mac OS X v10.4. Use CFStringCreateCopy instead.)

Functions 1671
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

StringHandle NewString (
 ConstStr255Param theString
);

Parameters
theString

A Pascal string that you want copied onto the heap.

Return Value
A handle to the newly allocated string. If the string cannot be allocated, NewString returns NULL. The size
of the allocated string is based on the actual length of theString, which may not be 255 bytes.

Discussion
Before using Pascal string functions that can change the length of the string, it is a good idea to maximize
the size of the string object on the heap. You can call either the SetString (page 1677) function or the Memory
Manager function SetHandleSize to modify the string’s size.

Special Considerations

NewString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

NumToString
Converts a long integer value into a Pascal string. (Deprecated in Mac OS X v10.4. Use
CFStringCreateWithFormat instead.)

void NumToString (
 long theNum,
 Str255 theString
);

Parameters
theNum

A long integer value. If the value of the number in the parameter theNum is negative, the string begins
with a minus sign; otherwise, the sign is omitted.

theString
On output, contains the Pascal string representation of the number. Leading zeros are suppressed,
except that a value of 0 produces the string “0”. NumToString does not include thousand separators
or decimal points in its formatted output.

Discussion
NumToString creates a string representation of theNum as a base-10 value and returns the result in
theString.

Unless patched by a script system with different rules, this function assumes that you are using standard
numeric token processing, meaning that the Roman script system number processing rules are used.

1672 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

For functions that make use of the token-processing information that is found in the tokens ('itl4') resource
of script systems for converting numbers, see the sections “Using Number Format Specification Strings for
International Number Formatting” and “Converting Between Strings and Floating-Point Numbers”.

Special Considerations

NumToString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

p2cstr
Converts a Pascal string to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

char * p2cstr (
 StringPtr aStr
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

P2CStr
Converts a Pascal string to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

Ptr P2CStr (
 StringPtr pString
);

Availability
Available in Mac OS X v10.4 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Functions 1673
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

p2cstrcpy
Converts a Pascal string to a C string. (Deprecated in Mac OS X v10.4. You should store strings as Core
Foundation CFStrings instead. See CFString Reference.)

void p2cstrcpy (
 char *dst,
 ConstStr255Param src
);

Parameters
dst

On output, the C string.

src
The Pascal string you want to convert.

Discussion
This function allows in-place conversion. That is, the src and dst parameters can point to the same memory
location.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

RelString
Compares two Pascal strings using the string comparison rules of the Macintosh file system and returns a
value that indicates the sorting order of the first string relative to the second string. (Deprecated in Mac OS
X v10.4. Use CFStringCompare or UCCompareText instead.)

short RelString (
 ConstStr255Param str1,
 ConstStr255Param str2,
 Boolean caseSensitive,
 Boolean diacSensitive
);

Parameters
str1

One of the Pascal strings to be compared.

str2
The other Pascal string to be compared.

caseSensitive
A flag that indicates how to handle case-sensitive information during the comparison. If the value of
caseSens is TRUE, uppercase characters are distinguished from the corresponding lowercase
characters. If it is FALSE, case information is ignored.

1674 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

diacSensitive
A flag that indicates how to handle information about diacritical marks during the string comparison.
If the value of diacSensitive is TRUE, characters with diacritical marks are distinguished from the
corresponding characters without diacritical marks during the comparison. If it is FALSE, diacritical
marks are ignored.

Return Value
Returns –1 if the first string is less than the second string, 0 if the two strings are equal, and 1 if the first string
is greater than the second string. It compares the two strings in the same manner as does the EqualString
function, by simply looking at the ASCII values of their characters. However, RelString provides more
information about the two strings—it indicates their relationship to each other, rather than determining if
they are exactly equal.

Discussion
This function does not make use of any script or language information; it assumes the original Macintosh
character set only.

Special Considerations

The RelString function is not localizable and does not work properly with non-Roman script systems.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

relstring
Compares two strings. (Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText instead.)

Not recommended

short relstring (
 const char *str1,
 const char *str2,
 Boolean caseSensitive,
 Boolean diacSensitive
);

Parameters
str1

The string to be compared to str2.

str2
The string to be compared to str1.

caseSensitive
A flag that indicates how to handle case-sensitive information during the comparison.

diacSensitive
A flag that indicates how to handle information about diacritical marks during the string comparison.

Functions 1675
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Return Value
Returns –1 if the first string is less than the second string, 0 if the two strings are equal, and 1 if the first string
is greater than the second string.

Discussion
This function is not recommended. Instead, see the function RelString (page 1674).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

ReplaceText
Searches text on a character-by-character basis, replacing all instances of a string in that text with another
string. (Deprecated in Mac OS X v10.4. Use CFStringReplace instead.)

short ReplaceText (
 Handle baseText,
 Handle substitutionText,
 Str15 key
);

Parameters
baseText

A handle to the string in which ReplaceText is to substitute text.

substitutionText
A handle to the string that ReplaceText uses as substitute text.

key
A Pascal string of less than 16 bytes that ReplaceText searches for.

Return Value
An integer value; if positive, it indicates the number of substitutions performed; if negative, it indicates an
error. The constant noErr is returned if there was no error and no substitutions were performed.

Discussion
ReplaceText searches the text specified by the baseText parameter for instances of the string in the key
parameter and replaces each instance with the text specified by the substitutionText parameter.
ReplaceText searches on a character-by-character basis (as opposed to byte-by-byte), so it works properly
for all script systems, including 2-byte script systems. It recognizes 2-byte characters in script systems that
contain them and advances the search appropriately after encountering a 2-byte character.

Special Considerations

ReplaceText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

1676 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Declared In
StringCompare.h

ScriptOrder
Determines the order in which strings in two different scripts should be sorted. (Deprecated in Mac OS X
v10.4. Use CFStringCompare or UCCompareText instead.)

short ScriptOrder (
 ScriptCode script1,
 ScriptCode script2
);

Parameters
script1

The script code of the first script.

script2
The script code of the second script.

Return Value
A value that indicates the sorting order: –1 if strings in the first script should be sorted before strings in the
second script are sorted, 1 if strings in the first script should be sorted after strings in the second script are
sorted, or 0 if the sorting order does not matter (that is, if the scripts are the same).

Discussion
Text of the system script is always first in a sorted list, regardless of the result returned by this function. When
determining the order in which text from two different script systems should be sorted, the system script
always sorts first, and scripts that are not enabled and installed always sort last. Invalid script or language
codes always sort after valid ones.

Special Considerations

ScriptOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

SetString
Changes the contents of a string referenced by a string handle, replacing the previous contents by copying
the specified string. (Deprecated in Mac OS X v10.4. Use CFStringCreateWithPascalString and
CFStringReplaceAll.)

Functions 1677
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

void SetString (
 StringHandle theString,
 ConstStr255Param strNew
);

Parameters
theString

A Pascal string.

strNew
A handle to the string in memory whose contents you are replacing. If the new string (theString)
is larger than the string originally referenced by strNew, SetString automatically resizes the handle
and copies in the contents of the specified string.

Special Considerations

SetString may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

StringOrder
Compares two Pascal strings, taking into account the script system and language for each of the strings.
(Deprecated in Mac OS X v10.4. Use CFStringCompare or UCCompareText instead.)

short StringOrder (
 ConstStr255Param aStr,
 ConstStr255Param bStr,
 ScriptCode aScript,
 ScriptCode bScript,
 LangCode aLang,
 LangCode bLang
);

Parameters
aStr

One of the Pascal strings to be compared.

bStr
The other Pascal string to be compared.

aScript
The script code for the second string.

bScript
The script code for the first string.

aLang
The language code for the first string.

bLang
The language code for the second string.

1678 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Return Value
–1 if the first string is less than the second string, 0 if the first string is equal to the second string, and 1 if the
first string is greater than the second string. The ordering of script and language codes, which is based on
information in the script-sorting resource, is considered in determining the relationship of the two strings.

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates whether the first string is less than, equal to, or greater than the second string.

“Implicit Language Codes” (page 1702) are listed in the Constants section. Most applications specify the language
code scriptCurLang for both the aLang and bLang values.

StringOrder first calls ScriptOrder (page 1677); if the result of ScriptOrder is not 0 (that is, if the strings
use different scripts), StringOrder returns the same result.

StringOrder next calls LanguageOrder (page 1668); if the result of LanguageOrder is not 0 (that is, if the
strings use different languages), StringOrder returns the same result.

At this point, StringOrder has two strings that are in the same script and language, so it compares them
by using the sorting rules for that script and language, applying both the primary and secondary sorting
orders. If that script is not installed and enabled, it uses the sorting rules specified by the system script or
the font script, depending on the state of the international resources selection flag.

The StringOrder function is primarily used to insert Pascal strings in a sorted list; for sorting, rather than
using this function, it may be faster to sort first by script and language by using the ScriptOrder and
LanguageOrder functions, and then to call the CompareString (page 1655) function, to sort strings within
a script or language group.

Special Considerations

StringOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

StringToExtended
Converts a string representation of a number into a floating-point number, using a NumFormatStringRec
structure to specify how the input number string is formatted. (Deprecated in Mac OS X v10.4. Use
CFNumberFormatterCreateStringWithNumber instead.)

Functions 1679
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

FormatStatus StringToExtended (
 ConstStr255Param source,
 const NumFormatString *myCanonical,
 const NumberParts *partsTable,
 extended80 *x
);

Parameters
source

A Pascal string that contains the string representation of a number.

myCanonical
A pointer to the internal representation of the formatting information for numbers, as produced by
the StringToFormatRec function.

partsTable
A pointer to a structure, obtained from the tokens ('itl4') resource, that shows the correspondence
between generic number part separators (tokens) and their localized version (for example, a thousand
separator is a comma in the United States and a decimal point in France).

x
On output, contains a pointer to the 80-bit SANE representation of the floating-point number.

Return Value
A value that denotes the confidence level for the conversion that it performed. The low byte of the
FormatStatus value is of type FormatResultType. Be sure to cast the result of StringToExtended to a
type FormatResultType before working with it. StringToExtended returns an 80-bit, not a 96-bit,
representation. See the description of the FormatStatus data type.

Discussion
StringToExtended uses the internal representation of number formatting information that was created
by a prior call to StringToFormatRec to parse the input number string. It uses the number parts table to
determine the components of the number string that is being converted. StringToExtended parses the
string and then converts the string to a simple form, stripping nondigits and replacing the decimal point
before converting it into a floating-point number. If the input string does not match any of the patterns, then
StringToExtended parses the string as well as it can and returns a confidence level result that indicates
the parsing difficulties.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

StringToFormatRec
Creates a number format specification string structure from a number format specification string that you
supply in a Pascal string. (Deprecated in Mac OS X v10.4. Use CFNumberFormatterSetFormat instead.)

1680 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

FormatStatus StringToFormatRec (
 ConstStr255Param inString,
 const NumberParts *partsTable,
 NumFormatString *outString
);

Parameters
inString

A Pascal string that contains the number formatting specification.

The inString parameter contains a number format specification string that specifies how numbers
appear. This string contains up to three specifications, separated by semicolons. The positive number
format is specified first, the negative number format is second, and the zero number format is last. If
the string contains only one part, that is the format of all three types of numbers. If the string contains
two parts, the first part is the format for positive and zero number values, and the second part is the
format for negative numbers.

partsTable
A pointer to a structure, usually obtained from the tokens ('itl4') resource, that shows the
correspondence between generic number part separators (tokens) and their localized version (for
example, a thousand separator is a comma in the United States and a decimal point in France).

outString
On output, a pointer to a NumFormatStringRec structure that contains the values that form the
internal representation of the format specification. The format of the data in this structure is private.

Return Value
A value that denotes the confidence level for the conversion that was performed. The low byte of the value
is of type FormatResultType. Be sure to cast the result of StringToFormatRec to a type
FormatResultType before working with it. See the description of the FormatStatus data type.

Discussion
StringToFormatRec converts a number format specification string into the internal representation contained
in a number format string structure. It uses information in the current script’s tokens resource to determine
the components of the number. StringToFormatRec checks the validity both of the input format string
and of the number parts table (since this table can be programmed by the application). StringToFormatRec
ignores spurious characters.

To obtain a handle to the number parts table from a tokens resource, use the GetIntlResourceTable
function.

Special Considerations

StringToFormatRec may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

Functions 1681
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

StringToNum
Converts the Pascal string representation of a base-10 number into a long integer value. (Deprecated in Mac
OS X v10.4. Use CFStringGetIntValue instead.)

void StringToNum (
 ConstStr255Param theString,
 long *theNum
);

Parameters
theString

A Pascal string representation of a base-10 number. The numeric string can be padded with leading
zeros or with a sign.

theNum
On output, contains a pointer to the numeric value.

Discussion
Unless patched by a script system with different rules, this function assumes that you are using standard
numeric token processing, meaning that the Roman script system number processing rules are used.

For functions that make use of the token-processing information that is found in the tokens ('itl4') resource
of script systems for converting numbers, see the sections “Using Number Format Specification Strings for
International Number Formatting” and “Converting Between Strings and Floating-Point Numbers”.

The 32-bit result is negated if the string begins with a minus sign. Integer overflow occurs if the magnitude
is greater than or equal to 2 raised to the 31st power. StringToNum performs the negation using the two’s
complement method: the state of each bit is reversed and then 1 is added to the result. For example, here
are possible results produced by StringToNum:

 ■ The value of theString is “-23”. StringToNum returns the value -23 in theNum.

 ■ The value of theString is “-0”. StringToNum returns the value 0 in theNum.

 ■ The value of theString is “055”. StringToNum returns the value 55 in theNum.

 ■ The value of theString is “2147483648” (magnitude is 2^31). StringToNum returns the value
–2147483648 in theNum.

 ■ The value of theString is “–2147483648”. StringToNum returns the value –2147483648 in theNum.

 ■ The value of theString is “4294967295” (magnitude is 2^32–1). StringToNum returns the value -1 in
theNum.

 ■ The value of theString is “–4294967295”. StringToNum returns the value 1 in theNum.

StringToNum does not check whether the characters in the string are between 0 and 9; instead, it takes
advantage of the fact that the ASCII values for these characters are $30 through $39, and masks the last four
bits for use as a digit. For example, StringToNum converts 2: to the number 30 since the character code for
the colon (:) is $3A. Because StringToNum operates this way, spaces are treated as zeros (the character code
for a space is $20), and other characters do get converted into numbers. For example, the character codes
for 'C', 'A', and 'T' are $43, $41, and $54 respectively. Hence, the strings ‘CAT’, ‘+CAT’, and ‘-CAT’ would produce
the results 314, 314, and -314.

One consequence of this conversion method is that StringToNum does not ignore thousand separators (the
“,” character in the United States), which can lead to improper conversions. It is a good idea to ensure that
all characters in theString are valid digits before you call StringToNum.

1682 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Special Considerations

StringToNum may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
NumberFormatting.h

StripDiacritics
Strips any diacritical marks from a text string. (Deprecated in Mac OS X v10.4. Use CFStringTransform
instead.)

void StripDiacritics (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be stripped.

len
The length, in bytes, of the text string. The text string can be up to 32 KB in length.

script
The script code for the script system whose rules are used for determining which character results
from stripping a diacritical mark.

The conversion uses tables in the string-manipulation ('itl2') resource of the script specified by
the value of the script parameter. You can specify smSystemScript to use the system script and
smCurrentScript to use the script of the current font in the current graphics port.

Discussion
StripDiacritics traverses the characters starting at the address specified by textPtr and continues for
the number of characters specified in len. It strips any diacritical marks from the text.

If StripDiacritics cannot access the specified resource, it generates an error code and does not modify
the string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

StripDiacritics may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Functions 1683
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

TextOrder
Compares two text strings, taking into account the script and language for each of the strings. (Deprecated
in Mac OS X v10.4. Use CFStringCompare or UCCompareText instead.)

short TextOrder (
 const void *aPtr,
 const void *bPtr,
 short aLen,
 short bLen,
 ScriptCode aScript,
 ScriptCode bScript,
 LangCode aLang,
 LangCode bLang
);

Parameters
aPtr

A pointer to the first character of the first text string.

bPtr
A pointer to the first character of the second text string.

aLen
The length, in bytes, of the first text string.

bLen
The length, in bytes, of the second text string.

aScript
The script code for the first text string.

bScript
The script code for the second text string.

aLang
The language code for the first text string.

bLang
The language code for the second text string.

Return Value
Returns –1 if the first string is less than the second string, 0 if the first string is equal to the second string,
and 1 if the first string is greater than the second string. The ordering of script and language codes, which
is based on information in the script-sorting resource, is considered in determining the relationship of the
two strings.

Discussion
This function takes both primary and secondary sorting orders into consideration and returns a value that
indicates whether the first string is less than, equal to, or greater than the second string.

“Implicit Language Codes” (page 1702) are listed in the Constants section. Most applications specify the language
code scriptCurLang for both the aLang and bLang values.

TextOrder first calls ScriptOrder (page 1677); if the result of ScriptOrder is not 0 (that is, if the strings
use different scripts), TextOrder returns the same result.

TextOrder next calls LanguageOrder (page 1668); if the result of LanguageOrder is not 0 (that is, if the
strings use different languages), TextOrder returns the same result.

1684 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

At this point, TextOrder has two strings that are in the same script and language, so it compares them by
using the sorting rules for that script and language, applying both the primary and secondary sorting orders.
If that script is not installed and enabled, it uses the sorting rules specified by the system script or the font
script, depending on the state of the international resources selection flag.

The TextOrder function is primarily used to insert text strings in a sorted list; for sorting, rather than using
this function, it may be faster to sort first by script and language by using the ScriptOrder and
LanguageOrder functions, and then to call the CompareText (page 1656) function, to sort strings within a
script or language group.

Special Considerations

TextOrder may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
StringCompare.h

TypeSelectClear
Clears the key list and resets the type select record. (Deprecated in Mac OS X v10.4. Use
UCTypeSelectFlushSelectorData instead.)

Not recommended.

void TypeSelectClear (
 TypeSelectRecord *tsr
);

Parameters
tsr

A pointer to the type-select record you want to clear.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

Functions 1685
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

TypeSelectCompare
Compares a text buffer to the keystroke buffer. (Deprecated in Mac OS X v10.4. Use UCTypeSelectCompare
instead.)

Not recommended.

short TypeSelectCompare (
 const TypeSelectRecord *tsr,
 ScriptCode testStringScript,
 StringPtr testStringPtr
);

Parameters
tsr

A type select record that contains the keystroke buffer.

testStringScript
The script code of the test string.

testStringPtr
A pointer to the text you want to compare to the keystroke buffer.

Return Value
A numerical value that represents the ordering of the characters in the keystroke buffer with respect to the
test string buffer. The value -1 is returned if characters in the keystroke buffer sort before those in
testStringPtr; 0 if characters in the keystroke buffer are the same as those in testStringPtr, and 1 if
the characters in the keystroke buffer sort after those in testStringPtr.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

TypeSelectFindItem
Finds the closest match between a specified list of characters and the keystrokes stored in the type select
record. (Deprecated in Mac OS X v10.4. Use UCTypeSelectFindItem instead.)

Not recommended.

1686 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

short TypeSelectFindItem (
 const TypeSelectRecord *tsr,
 short listSize,
 TSCode selectMode,
 IndexToStringUPP getStringProc,
 void *yourDataPtr
);

Parameters
tsr

A pointer to the type select record that contains the keystrokes you want to compare.

listSize
The size of the list to search through.

selectMode
The select mode. See Type Select Modes (page 1703)for a list of the constants you can supply.

getStringProc
A pointer to your index-to-string callback function. See IndexToStringProcPtr (page 1691) for more
information.

yourDataPtr
A pointer to your data structure. This is passed to your index-to-string callback, and can be NULL,
depending on how you implement your callback function.

Return Value
Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

TypeSelectNewKey
Creates a new type select record. (Deprecated in Mac OS X v10.4. Use UCTypeSelectCreateSelector
instead.)

Not recommended.

Functions 1687
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Boolean TypeSelectNewKey (
 const EventRecord *theEvent,
 TypeSelectRecord *tsr
);

Parameters
theEvent

A pointer to an event record.

tsr
A pointer to a type select record.

Return Value
Returns true if the function executed successfully; false otherwise.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Special Considerations

For Unicode-based applications, you should use the UCTypeSelect functions, which manipulate a
UCTypeSelectRef object. For more detalis, see Unicode Utilities (UnicodeUtilities.h).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TypeSelect.h

UppercaseStripDiacritics
Converts any lowercase characters in a text string into their uppercase equivalents and strips any diacritical
marks from the text. (Deprecated in Mac OS X v10.4. Use CFStringTransform instead.)

void UppercaseStripDiacritics (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be converted.

len
The length, in bytes, of the text string. The text string can be up to 32 KB in length.

1688 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

script
The script code of the script system whose resources are used to determine the results of converting
characters.

The conversion uses tables in the string-manipulation ('itl2') resource of the script specified by
the value of the script parameter. You can specify smSystemScript to use the system script and
smCurrentScript to use the script of the current font in the current graphics port.

Discussion
UppercaseStripDiacritics traverses the characters starting at the address specified by textPtr and
continues for the number of characters specified in len. It converts lowercase characters in the text into their
uppercase equivalents and also strips diacritical marks from the text string. This function combines the effects
of the UppercaseText (page 1689) and StripDiacritics (page 1683) functions.

If UppercaseStripDiacritics cannot access the specified resource, it generates an error code and does
not modify the string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

UppercaseStripDiacriticsmay move memory; your application should not call this function at interrupt
time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

UppercaseText
Converts any lowercase characters in a text string into their uppercase equivalents. (Deprecated in Mac OS
X v10.4. Use CFStringUppercase instead.)

void UppercaseText (
 Ptr textPtr,
 short len,
 ScriptCode script
);

Parameters
textPtr

A pointer to the text string to be converted.

len
The length, in bytes, of the text string. The text string can be up to 32 KB in length.

Functions 1689
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

script
The script code of the script system whose case conversion rules are used for determining uppercase
character equivalents.

The conversion uses tables in the string-manipulation ('itl2') resource of the specified script.
You can specify smSystemScript to use the system script and smCurrentScript to use the script
of the current font in the current graphics port.

Discussion
UppercaseText traverses the characters starting at the address specified by textPtr and continues for
the number of characters specified in len. It converts any lowercase characters in the text into uppercase.

If UppercaseText cannot access the specified resource, it generates an error code and does not modify the
string. You need to call the ResError function to determine which, if any, error occurred.

Special Considerations

UppercaseText may move memory; your application should not call this function at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

UpperString
Converts any lowercase letters in a Pascal string to their uppercase equivalents, using the Macintosh file
system rules. (Deprecated in Mac OS X v10.4. Use CFStringUppercase instead.)

void UpperString (
 Str255 theString,
 Boolean diacSensitive
);

Parameters
theString

On input, this is the Pascal string to be converted. On output, this contains the string resulting from
the conversion. UpperString traverses the characters in theString and converts any lowercase
characters with character codes in the range 0x00 through 0xD8 into their uppercase equivalents.
UpperString places the converted characters in theString.

diacSensitive
A flag that indicates whether the case conversion is to strip diacritical marks. If the value of this
parameter is TRUE, diacritical marks are considered in the conversion; if it is FALSE, any diacritical
marks are stripped.

Discussion
Only a subset of the Roman character set (character codes with values through $D8) are converted. Use this
function to emulate the behavior of the Macintosh file system.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

1690 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Not available to 64-bit applications.

Declared In
TextUtils.h

upperstring
Converts any lowercase letters in a Pascal string to their uppercase equivalents. (Deprecated in Mac OS X
v10.4. Use CFStringUppercase instead.)

Not recommended

void upperstring (
 char *theString,
 Boolean diacSensitive
);

Parameters
theString

On input, this is the Pascal string to be converted. On output, this contains the string resulting from
the conversion.

diacSensitive
A flag that indicates whether the case conversion is to strip diacritical marks. If the value of this
parameter is TRUE, diacritical marks are considered in the conversion; if it is FALSE, any diacritical
marks are stripped.

Discussion
You should use the function CFStringUppercase instead of this one.

Carbon Porting Notes

Use UpperString instead.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextUtils.h

Callbacks

IndexToStringProcPtr
Defines a pointer to your index-to-string callback function that retrieves the string associated with an index
value.

Not recommended.

Callbacks 1691
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

typedef Boolean (*IndexToStringProcPtr)
(
 short item,
 ScriptCode * itemsScript,
 StringPtr * itemsStringPtr,
 void * yourDataPtr
);

If you name your function MyIndexToStringProc, you would declare it like this:

Boolean MyIndexToStringProcPtr (
 short item,
 ScriptCode * itemsScript,
 StringPtr * itemsStringPtr,
 void * yourDataPtr
);

Parameters
item

The index value for which the TypeSelect function requests a string.

itemsScript
The script code of the string specified by itemsStringPtr.

itemsStringPtr
On return, points to the string that matches the index specify by the item parameter.

yourDataPtr
A pointer to your data structure. This is passed to your index-to-string callback, and can be NULL,
depending on how you implement your callback function.

Return Value
Returns true if a string matching that index value was found; false otherwise.

Discussion
The use of this function is not recommended in a Unicode-based application. If you want to use this function
in an application that uses the Unicode character set, you must first convert Unicode text strings to Macintosh
encoded Pascal text strings. You must also provide the encoding type or be able to determine it by extracting
it from the text or by examining the system or keyboard script.

Availability
Not recommended. Available in CarbonLib 1.0 and later.
Available in Mac OS X 10.0 and later.
Not available to 64-bit applications.

Declared In
TypeSelect.h

Data Types

BreakTable
Contains information used to determine the boundaries of a word.

1692 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

struct BreakTable {
 char charTypes[256];
 short tripleLength;
 short triples[1];
};
typedef struct BreakTable BreakTable;
typedef BreakTable * BreakTablePtr;

Discussion
You can supply a BreakTable as a parameter to the function FindWordBreaks (page 1661).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TextUtils.h

FormatClass
Defines a data type used to access entries in a triple integer array.

typedef SInt8 FormatClass;

Discussion
Each of the three FVector entries in a triple integer array is accessed by one of the values of the FormatClass
type. See FVector (page 1693) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

FormatStatus
Defines a data type used to denote the confidence level for a conversion.

typedef short FormatStatus;

Discussion
A FormatStatus value is returned by the functions ExtendedToString (page 1659),
StringToExtended (page 1679),FormatRecToString (page 1663), andStringToFormatRec (page 1680).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

FVector
Contains position and length information for one portion of a formatted numeric string.

Data Types 1693
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

struct FVector {
 short start;
 short length;
};
typedef struct FVector FVector;
typedef FVector TripleInt[3];

Fields
start

The starting byte position in the string of the specification information.

length
The number of bytes used in the string for the specification information.

Discussion
The FVector data structure is used in the TripleInt (page 1698) array.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

IndexToStringUPP
Defines a universal procedure pointer to an index-to-string callback.

typedef IndexToStringProcPtr IndexToStringUPP;

Discussion
For more information, see the description of the IndexToStringProcPtr (page 1691) callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TypeSelect.h

NBreakTable
Contains information used by the FindWordBreaks function to determine word boundaries.

1694 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

struct NBreakTable {
 SInt8 flags1;
 SInt8 flags2;
 short version;
 short classTableOff;
 short auxCTableOff;
 short backwdTableOff;
 short forwdTableOff;
 short doBackup;
 short length;
 char charTypes[256];
 short tables[1];
};
typedef struct NBreakTable NBreakTable;
typedef NBreakTable * NBreakTablePtr;

Fields
flags1

The high-order byte of the break table format flags. If the high-order bit of this byte is set to 1, this
break table is in the format used by FindWordBreaks.

flags2
The low-order byte of the break table format flags. If the value in this byte is 0, the break table belongs
to a 1-byte script system; in this case FindWordBreaks does not check for 2-byte characters.

version
The version of this break table.

classTableOff
The offset in bytes from the beginning of the break table to the beginning of the class table.

auxCTableOff
The offset in bytes from the beginning of the break table to the beginning of the auxiliary class table.

backwdTableOff
The offset in bytes from the beginning of the break table to the beginning of the backward-processing
table.

forwdTableOff
The offset in bytes from the beginning of the break table to the beginning of the forward-processing
table.

doBackup
The minimum byte offset into the buffer for doing backward processing. If the selected character for
FindWordBreaks has a byte offset less than doBackup, FindWordBreaks skips backward processing
altogether and starts from the beginning of the buffer.

length
The length in bytes of the entire break table, including the individuals tables.

charTypes
The class table.

tables
The data of the auxiliary class table, backward table, and forward table.

Discussion
The tables have this format and content:

Data Types 1695
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

 ■ The class table is an array of 256 signed bytes. Offsets into the table represent byte values; if the entry
at a given offset in the table is positive, it means that a byte whose value equals that offset is a single-byte
character, and the entry at that offset is the class number for the character. If the entry is negative, it
means that the byte is the first byte of a 2-byte character code, and the auxiliary class table must be
used to determine the character class. Odd negative numbers are handled differently from even negative
numbers.

 ■ The auxiliary class table assigns character classes to 2-byte characters. It is used when the class table
determines that a byte value represents the first byte of a 2-byte character.

 ❏ The auxiliary class table handles odd negative values from the class table as follows. If the first word
of the auxiliary class table is equal to or greater than zero, it represents the default class number for
2-byte character codes—the class assigned to every odd negative value from the class table. If the
first word is less than zero, it is the negative of the offset from the beginning of the auxiliary class
table to a first-byte class table (a table of 2-byte character classes that can be determined from just
the first byte). The value from the class table is negated, 1 is subtracted from it to obtain an even
offset, and the value at that offset into the first-byte class table is the class to be assigned.

 ❏ The auxiliary class table handles even negative values from the class table as follows. The auxiliary
class table begins with a variable-length word array. The words that follow the first word are offsets
to row tables. Row tables have the same format as the class table, but are used to map the second
byte of a 2-byte character code to a class number. If the entry in the class table for a given byte is
an even negative number, FindWordBreaks negates this value to obtain the offset from the
beginning of the auxiliary class table to the appropriate word, which in turn contains an offset to
the appropriate row table. That row table is then used to map the second byte of the character to
a class number.

 ■ The backward-processing table is a state table used by FindWordBreaks for backward searching. Using
the backward-processing table, FindWordBreaks starts at a specified character, moving backward as
necessary until it encounters a word boundary.

 ■ The forward-processing table is a state table used by FindWordBreaks for forward searching. Using
the forward-processing table, FindWordBreaks starts at one word boundary and moves forward until
it encounters another word boundary.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TextUtils.h

NumFormatString
Contains data that represents the internal number formatting specification.

1696 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

struct NumFormatString {
 UInt8 fLength;
 UInt8 fVersion;
 char data[254];
};
typedef struct NumFormatString NumFormatString;
typedef NumFormatString NumFormatStringRec;

Fields
fLength

The number of bytes in the data actually used for this number formatting specification.

fVersion
The version number of the number formatting specification.

data
The data that comprises the number formatting specification.

Discussion
Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

NumFormatStringRec
Defines an internal numeric representation that is independent of region, language, and other multicultural
consideration.

typedef NumFormatString NumFormatStringRec;

Discussion
To allow for all of the international variations in numeric presentation styles, you need to include in your
function calls a number parts table from a tokens ('itl4') resource. You can usually use the number parts
table in the standard tokens resource that is supplied with the system. You also need to define the format
of input and output numeric strings, including which characters (if any) to use as thousand separators, whether
to indicate negative values with a minus sign or by enclosing the number in parentheses, and how to display
zero values.

To make it possible to map a number that was formatted for one specification into another format, the Mac
OS defines an internal numeric representation that is independent of region, language, and other multicultural
considerations: the NumFormatStringRec structure. This structure is created from a number format
specification string that defines the appearance of numeric strings.

Four of the numeric string functions use the number formatting specification, defined by the
NumFormatStringRec data type: StringToFormatRec (page 1680), FormatRecToString (page 1663),
StringToExtended (page 1679), and ExtendedToString (page 1659). The number format specification
structure contains the data that represents the internal number formatting specification information. This
data is stored in a private format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

Data Types 1697
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

ScriptRunStatus
Contains script-specific information for a script run.

struct ScriptRunStatus {
 SInt8 script;
 SInt8 runVariant;
};
typedef struct ScriptRunStatus ScriptRunStatus;

Fields
script

The script code of the subscript run. Zero indicates the Roman script system.

runVariant
Script-specific information about the run, in the same format as that returned by the CharacterType
function. This information includes the type of subscript—for example, Kanji, Katakana, or Hiragana
for a Japanese script system.

Discussion
The FindScriptRun (page 1660) function returns the script run status structure, defined by the
ScriptRunStatus data type, when it completes its processing, which is to find a run of subscript text in a
string.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
TextUtils.h

TripleInt
Defines a data type used to return the position and length information for three different portions of a
formatted numeric string.

typedef FVector TripleInt[3];

Discussion
The FormatRecToString (page 1663) function uses the triple-integer array, defined by the TripleInt data
type, to return the starting position and length in a string of three different portions of a formatted numeric
string: the positive value string, the negative value string, and the zero value string. Each element of the
triple integer array is an FVector structure. Each of the three FVector entries in the triple integer array is
accessed by one of the values of the FormatClass type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NumberFormatting.h

TypeSelectRecord
Contains a buffer of keystrokes, the script code associated with the keystrokes, and timer information.

1698 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

struct TypeSelectRecord {
 unsigned long tsrLastKeyTime;
 ScriptCode tsrScript;
 Str63 tsrKeyStrokes;
};
typedef struct TypeSelectRecord TypeSelectRecord;

Fields
tsrLastKeyTime

A value that indicates timeout information.

tsrScript
A script code.

tsrKeyStrokes
The keystroke buffer.

Discussion
The TypeSelectRecord data structure is passed as a parameter to the functions TypeSelectNewKey (page
1687), TypeSelectFindItem (page 1686), TypeSelectCompare (page 1686), and TypeSelectClear (page
1685).

Availability
Available in Mac OS X v10.0 and later.

Declared In
TypeSelect.h

Constants

Format Result Types
Specify values that can be returned in the low byte of a format status (FormatStatus) value.

Constants 1699
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

enum {
 fFormatOK = 0,
 fBestGuess = 1,
 fOutOfSynch = 2,
 fSpuriousChars = 3,
 fMissingDelimiter = 4,
 fExtraDecimal = 5,
 fMissingLiteral = 6,
 fExtraExp = 7,
 fFormatOverflow = 8,
 fFormStrIsNAN = 9,
 fBadPartsTable = 10,
 fExtraPercent = 11,
 fExtraSeparator = 12,
 fEmptyFormatString = 13
};
typedef SInt8 FormatResultType;

Constants
fFormatOK

Specifies format is okay.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fBestGuess
Specifies the format is the best guess.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fOutOfSynch
Specifies the format is out of sync.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fSpuriousChars
Specifies the format contains spurious characters.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fMissingDelimiter
Specifies a missing delimiter.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fExtraDecimal
Specifies the format contains an extra decimal sign.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fMissingLiteral
Specifies the format is missing a literal.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

1700 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

fExtraExp
Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fFormatOverflow
Specifies a format overflow.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fFormStrIsNAN
Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fBadPartsTable
Specifies the parts table is bad.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fExtraPercent
Specifies the format contains an extra percent sign.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fExtraSeparator
Specifies an extra separator.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fEmptyFormatString
Specifies the format string is empty.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

Discussion
A format result type is returned in the low byte of a format status (FormatStatus) value. A
FormatStatus (page 1693) value is returned by the functions ExtendedToString (page 1659),
StringToExtended (page 1679),FormatRecToString (page 1663), andStringToFormatRec (page 1680). A
format status value denotes the confidence level for a conversion.

TripleInt Index Values
Specify an index for a TripleInt array.

Constants 1701
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

enum {
 fPositive = 0,
 fNegative = 1,
 fZero = 2
};

Constants
fPositive

Specifies the positive value string.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fNegative
Specifies the negative value string.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

fZero
Specifies the zero value string.

Available in Mac OS X v10.0 and later.

Declared in NumberFormatting.h.

Discussion
See TripleInt (page 1698) for more information.

NumFormatString Version
Specifies the first version of the NumFormatString data structure.

enum {
 fVNumber = 0
};

Discussion
See NumFormatString (page 1696) for more information.

Implicit Language Codes
Specify implicit language codes.

1702 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

enum {
 systemCurLang = -2,
 systemDefLang = -3,
 currentCurLang = -4,
 currentDefLang = -5,
 scriptCurLang = -6,
 scriptDefLang = -7
};

Constants
systemCurLang

Specifies the current language for system script (from 'itlb').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

systemDefLang
Specifies the default language for system script (from 'itlm').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

currentCurLang
Specifies the current language for current script (from 'itlb').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

currentDefLang
Specifies the default language for current script (from 'itlm').

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

scriptCurLang
Specifies the current language for specified script (from 'itlb')

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

scriptDefLang
Specifies the default language for specified script (from 'itlm')

Available in Mac OS X v10.0 and later.

Declared in StringCompare.h.

Discussion
The functionsLanguageOrder (page 1668),StringOrder (page 1678), andTextOrder (page 1684) accept as
parameters implicit language codes listed here, as well as explicit language codes.

Type Select Modes
Contains type-select code information.

Constants 1703
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

typedef SInt16 TSCode;
enum {
 tsPreviousSelectMode = -1,
 tsNormalSelectMode = 0,
 tsNextSelectMode = 1
};

Constants
tsPreviousSelectMode

Specifies previous-select mode.

Available in Mac OS X v10.0 and later.

Declared in TypeSelect.h.

tsNormalSelectMode
Specifies normal-select mode.

Available in Mac OS X v10.0 and later.

Declared in TypeSelect.h.

tsNextSelectMode
Specifies next-select mode.

Available in Mac OS X v10.0 and later.

Declared in TypeSelect.h.

Discussion
This structure is passed as a parameter to the function TypeSelectFindItem (page 1686).

Obsolete Language Code Values
Specify language code values that are no longer used.

enum {
 iuSystemCurLang = systemCurLang,
 iuSystemDefLang = systemDefLang,
 iuCurrentCurLang = currentCurLang,
 iuCurrentDefLang = currentDefLang,
 iuScriptCurLang = scriptCurLang,
 iuScriptDefLang = scriptDefLang
};

1704 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 21

Text Utilities Reference

Framework: Carbon/Carbon.h

Declared in Translation.h
TranslationExtensions.h

Overview

You can use the Translation Manager to direct the translation of documents from one format to another. For
example, Macintosh Easy Open uses the Translation Manager to provide

 ■ automatic translation of a document, if the application that created the document is not available

 ■ automatic translation of documents drop-launched onto an application

 ■ enhanced file-opening dialog boxes and (when necessary) automatic translation of documents the user
selects in those dialog boxes

 ■ batch desktop translation of documents

 ■ automatic translation of data pasted from the clipboard

These services allow your application to open documents created by other applications (possibly running
on other operating systems) and to import data from other applications with better fidelity than previously
possible.

Macintosh Easy Open does not do any translating itself, and it does not have any knowledge of translation
data models. Instead, it delegates these functions to translation extensions or to applications with built-in
translation capability. Translation extensions and application translation capabilities operate as "black boxes"
to Macintosh Easy Open. At system startup (or whenever new translation extensions become available),
Macintosh Easy Open catalogs the translation capability of each translation extension and each application,
and then invokes each as needed. Macintosh Easy Open can support multiple translation systems.

Carbon supports the Translation Manager in Mac OS 9, with the exception of the functions declared in
TranslationExtensions.h.

Overview 1705
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

Important: The Translation Manager was deprecated in Mac OS X v10.3. In Mac OS X, Carbon includes the
Translation Manager headers but does not implement any of the functionality. If you call the functions
declared in the API, they do nothing. You should use Translation Services instead.

Functions

CanDocBeOpened
Determines whether a specified application can open a particular document. (Deprecated in Mac OS X v10.3.
Use Launch Services to determine whether a document can be opened. See Launch Services Programming
Guide.)

Not Recommended

OSErr CanDocBeOpened (
 const FSSpec *targetDocument,
 short appVRefNumHint,
 OSType appSignature,
 const FileType *nativeTypes,
 Boolean onlyNative,
 DocOpenMethod *howToOpen,
 FileTranslationSpec *howToTranslate
);

Parameters
targetDocument

A pointer to the document to check.

appVRefNumHint
The volume reference number of the volume containing the application. The search for the specified
application begins on this volume if the application isn’t found there, the search continues to other
mounted volumes.

appSignature
The signature of the application.

nativeTypes
A pointer to the zero-terminated list of file types that the application can open without translation;
if this parameter contains NULL, the default list of file types returned by the
GetFileTypesThatAppCanNativelyOpen (page 1710) function is used.

onlyNative
If TRUE, determine only whether the application can open the document without translation; otherwise,
determine whether the application can open the document after translation.

howToOpen
On return, a pointer to a constant indicating the method of opening the document. This field contains
a meaningful value only if the function returns noErr (indicating that the specified document can
be opened). See “DocOpenMethod” (page 1731) for a description of the values you can use here.

1706 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

howToTranslate
On return, if the document needs to be translated before it can be opened, a pointer to a buffer of
information (in a private format) indicating how to translate the document. You pass the information
returned in this parameter to the TranslateFile (page 1714) function.

Return Value
A result code. If the application can open the document, the function returns noErr.

Discussion
A preference must have already been set (using the Document Converter tool) on how to open the document.

Special Considerations

This function might cause memory to be moved or purged; you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Translation.h

DisposeGetScrapDataUPP
Disposes of a universal procedure pointer (UPP) to a source-data fetcher callback. (Deprecated in Mac OS X
v10.3. There is no replacement function. You should adopt Translation Services instead.)

void DisposeGetScrapDataUPP (
 GetScrapDataUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the callback GetScrapDataProcPtr (page 1726) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
Translation.h

ExtendFileTypeList
Creates a list of file types that can be translated into a type in a given list. (Deprecated in Mac OS X v10.3.
Use the Translation Services function TranslationCreateWithSourceArray instead.)

Not Recommended

Functions 1707
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

OSErr ExtendFileTypeList (
 const FileType *originalTypeList,
 short numberOriginalTypes,
 FileType *extendedTypeList,
 short *numberExtendedTypes
);

Parameters
originalTypeList

A pointer to a list of file types that can be opened.

numberOriginalTypes
The number of file types in the originalTypeList parameter.

extendedTypeList
On return, a pointer to a buffer filled with file types that can be translated into the types in
originalTypeList.

numberExtendedTypes
On input, a pointer to the maximum number of file types that can be put into the buffer passed in
the extendedTypeList parameter. On return, a pointer to the actual number of file types put into
the extended type list.

Return Value
A result code. See “Translation Manager Result Codes” (page 1732).

Discussion
Note that the number of types specified in the parameters numberOriginalTypes and
numberExtendedTypes is limited only by available memory.

The Standard File Package calls this function internally your application probably won’t need to use it.

Special Considerations

This function might cause memory to be moved or purged; you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Translation.h

GetDocumentKindString
Allows you to get a document kind string. (Deprecated in Mac OS X v10.3. There is no replacement function,
but you can use Launch Services to obtain similar information. See Launch Services Programming Guide.)

Not Recommended

1708 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

OSErr GetDocumentKindString (
 short docVRefNum,
 OSType docType,
 OSType docCreator,
 Str63 kindString
);

Parameters
docVRefNum

The volume containing the document. This is a hint to the Translation Manager. If it doesn't find the
string on that volume, it will use an internal search path to look on other volumes for the string.

docType
The type code of the document you want to query.

docCreator
The creator code of the document you want to query.

kindString
Upon return, contains the kind string to display for the specified document type and creator.

Return Value
A result code. See “Translation Manager Result Codes” (page 1732).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Translation.h

GetFileTranslationPaths
A low-level routine that allows you to get all the translation capabilities of the Translation Manager. (Deprecated
in Mac OS X v10.3. Use the Translation Services function TranslationCreateWithSourceArray instead.)

Not Recommended

short GetFileTranslationPaths (
 const FSSpec *srcDocument,
 FileType dstDocType,
 unsigned short maxResultCount,
 FileTranslationSpecArrayPtr resultBuffer
);

Parameters
srcDocument

A source document (optional), or NULL.

dstDocType
The desired document type to which you would like srcDocument translated.

resultBuffer
The requested translation information.

Return Value
Returns the number of translation paths, or a result code if the value is negative.

Functions 1709
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Translation.h

GetFileTypesThatAppCanNativelyOpen
Obtains a list of file types that an application can open by itself. (Deprecated in Mac OS X v10.3. There is no
replacement function. Applications should use Translation Services instead.)

Not Recommended

OSErr GetFileTypesThatAppCanNativelyOpen (
 short appVRefNumHint,
 OSType appSignature,
 FileType *nativeTypes
);

Parameters
appVRefNumHint

The volume reference number of the volume containing the application. The search for the specified
application begins on this volume if the application isn’t found there, the search continues to other
mounted volumes.

appSignature
The signature of the application.

nativeTypes
On return, a pointer to an array of file types that the application can open without translation. If
successful, the array contains up to 64 file types. If fewer than 64 types are returned, the end of the
list is indicated by an entry whose value is 0.

Return Value
A result code. See “Translation Manager Result Codes” (page 1732).

Special Considerations

This function might cause memory to be moved or purged; you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Translation.h

1710 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

GetPathFromTranslationDialog
Displays the Translation Dialog, which attempts to generate a list of translation paths resulting in a document
readable by the target application. (Deprecated in Mac OS X v10.3. There is no replacement function. However,
applications can obtain this information using Launch Services, Translation Services, and uniform type
identifiers.)

Not Recommended

OSErr GetPathFromTranslationDialog (
 const FSSpec *theDocument,
 const FSSpec *theApplication,
 TypesBlockPtr typeList,
 DocOpenMethod *howToOpen,
 FileTranslationSpec *howToTranslate
);

Parameters
theDocument

The target file.

theApplication
The target application.

typeList
Specifies a list of file types into which to translate the target document.

howToOpen
Upon return, contains the translation open method.

howToTranslate
Upon return, contains the translation specification.

Return Value
A result code. See “Translation Manager Result Codes” (page 1732).

Special Considerations

For information about using Launch Services and uniform type identifiers, see Launch Services Programming
Guide and Uniform Type Identifiers Overview.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Translation.h

GetTranslationExtensionName
Finds the name of the extension performing the translation. (Deprecated in Mac OS X v10.3. There is no
replacement function. However, you can obtain useful user-level information by calling the Translation
Manager function TranslationCopyDestinationType and the uniform type identifiers function
UTTypeCopyDescription.)

Not Recommended

Functions 1711
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

OSErr GetTranslationExtensionName (
 const FileTranslationSpec *translationMethod,
 Str31 extensionName
);

Parameters
translationMethod

A file translation method obtained by calling CanDocBeOpened or GetFileTranslationPaths.

extensionName
Upon return, contains the name of the extension performing the translation.

Return Value
A result code. See “Translation Manager Result Codes” (page 1732).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Translation.h

InvokeGetScrapDataUPP
Calls a source-data fetcher callback. (Deprecated in Mac OS X v10.3. There is no replacement function. You
should adopt Translation Services instead.)

OSErr InvokeGetScrapDataUPP (
 ScrapType requestedFormat,
 Handle dataH,
 void *srcDataGetterRefCon,
 GetScrapDataUPP userUPP
);

Discussion
You should not need to use the function InvokeGetScrapDataUPP, as the system calls your source-data
fetcher callback for you. See the callback GetScrapDataProcPtr (page 1726) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
Translation.h

NewGetScrapDataUPP
Creates a new universal procedure pointer (UPP) to a source-data fetcher callback. (Deprecated in Mac OS X
v10.3. There is no replacement function. You should adopt Translation Services instead.)

1712 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

GetScrapDataUPP NewGetScrapDataUPP (
 GetScrapDataProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your source-data fetcher callback.

Return Value
On return, a UPP to the source-data fetcher callback.

Discussion
See the callback GetScrapDataProcPtr (page 1726) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.

Declared In
Translation.h

SetTranslationAdvertisement
Allows your translation extension to install an advertisement into the upper portion of the progress dialog
box. (Deprecated in Mac OS X v10.3. There is no replacement function. You should adopt Translation Services
instead.)

Unsupported

OSErr SetTranslationAdvertisement (
 TranslationRefNum refNum,
 PicHandle advertisement
);

Parameters
refNum

A translation reference number. You should set this parameter to the translation reference number
passed to your DoTranslateFileProcPtr (page 1723) or DoTranslateScrapProcPtr (page 1724)
callback functions. The Translation Manager uses that number internally.

Functions 1713
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

advertisement
A handle to a picture to display in the upper portion of the dialog box. If this parameter is NULL, no
advertisement is displayed and the upper portion of the dialog box is removed before the box is
displayed to the user. After the function installs the specified advertisement, it then displays the dialog
box.

Your translation extension can read the picture data from its resource fork, but it should detach the
resource from the resource fork (by calling the DetachResource function) and make the handle
unpurgeable before calling this function. Because you’ll usually load the picture data into the temporary
heap provided for the translation extension, the picture data is automatically disposed of when that
heap is destroyed. If your translation extension loads the picture data elsewhere in memory, you are
responsible for disposing of it before returning from your DoTranslateFile or DoTranslateScrap
callback function.

The size of the picture to display can be no larger than 280 by 50 pixels. If the picture you specify is
smaller than that, it is automatically centered (both vertically and horizontally) in the available space.

Return Value
A result code. See “Translation Manager Result Codes” (page 1732).

Discussion
Your translation extension should call this function only in response to the kTranslateTranslateFile or
kTranslateTranslateScrap request code (that is, you should only call this function in your
DoTranslateFile or DoTranslateScrap callback function). Do not call this function in response to any
other request code or from any code that isn’t a translation extension.

You must call this function before you call the UpdateTranslationProgress (page 1716) function for the
first time.

Special Considerations

This function might cause memory to be moved or purged; you should not call it at interrupt time.

Carbon Porting Notes

The functions contained in TranslationExtensions.h were originally written to be used only by someone
implementing a Mac Easy Open translation component. Carbon, however, is for applications and not extensions.
Therefore, this function is not supported.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
TranslationExtensions.h

TranslateFile
Translates a document from one format to another. (Deprecated in Mac OS X v10.3. Use the Translation
Services function TranslationPerformForFile or TranslationPerformForURL instead.)

Not Recommended

1714 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

OSErr TranslateFile (
 const FSSpec *sourceDocument,
 const FSSpec *destinationDocument,
 const FileTranslationSpec *howToTranslate
);

Parameters
sourceDocument

A pointer to the document to translate.

destinationDocument
A pointer to the file to put the translated document into. Note that your application only specifies
the name and location for the file; the function creates the file and puts the translated data into it.
The destination file must not exist before you call this function.

howToTranslate
A pointer to a buffer of information indicating how to translate the document. Usually, you’ll get this
information by calling the CanDocBeOpened (page 1706) function.

Return Value
A result code. See “Translation Manager Result Codes” (page 1732).

Special Considerations

This function might cause memory to be moved or purged; you should not call it at interrupt time.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Translation.h

TranslateScrap
Uses a client-specified callback function to get the source data to translate. (Deprecated in Mac OS X v10.3.
Use the Translation Manager function TranslationPerformForData instead.)

Not Recommended

OSErr TranslateScrap (
 GetScrapDataUPP sourceDataGetter,
 void *sourceDataGetterRefCon,
 ScrapType destinationFormat,
 Handle destinationData,
 short progressDialogID
);

Parameters
sourceDataGetter

The callback that provides the data to translate.

sourceDataGetterRefCon
A generic pointer to private information for your callback.

Functions 1715
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

destinationFormat
The desired translation format.

destinationData
A handle you provide. The Translation Extension will automatically re-size it as necessary during
translation. Upon exit, if the routine successfully executes, it will contain the translated information.

progressDialogID
This parameter should always be assigned the value TranslationScrapProgressDialogID.

Return Value
A result code. See “Translation Manager Result Codes” (page 1732).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
Translation.h

UpdateTranslationProgress
Allows your translation extension to update the progress dialog box that is displayed during file and scrap
translation and give the user a chance to cancel. (Deprecated in Mac OS X v10.3. There is no replacement
function. You should adopt Translation Services instead.)

Unsupported

OSErr UpdateTranslationProgress (
 TranslationRefNum refNum,
 short percentDone,
 Boolean *canceled
);

Parameters
refNum

A translation reference number. You should set this parameter to the translation reference number
passed to your DoTranslateFileProcPtr (page 1723) or DoTranslateScrapProcPtr (page 1724)
callback function. The Translation Manager uses that number internally.

percentDone
A value in the range 0–100 that indicates the percentage of the translation that has been completed
(the approximate percentage of time elapsed until completion). When the translation is complete,
you should call this function with this parameter set to 100 so that the user can see that the translation
is complete.

canceled
On return, a pointer to a value which indicates whether or not the user canceled the translation. TRUE
if the user clicked the Cancel button in the progress dialog box, or typed Command-period while the
box is displayed; otherwise, FALSE. When TRUE, you should stop the translation, and your
DoTranslateFile or DoTranslateScrap callback function should return the result code
userCancelledErr.

Return Value
A result code. See “Translation Manager Result Codes” (page 1732).

1716 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

Discussion
Your translation extension should call this function only in response to the kTranslateTranslateFile or
kTranslateTranslateScrap request code (that is, you should only call this function in your
DoTranslateFile or DoTranslateScrap callback function). Do not call this function in response to any
other request code or from any code that isn’t a translation extension.

You should already have called SetTranslationAdvertisement before calling
UpdateTranslationProgress.

Special Considerations

This function might cause memory to be moved or purged; you should not call it at interrupt time.

Carbon Porting Notes

The functions contained in TranslationExtensions.h were originally written to be used only by someone
implementing a Mac Easy Open translation component. Carbon, however, is for applications and not extensions.
Therefore, this function is not supported.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
TranslationExtensions.h

Callbacks

DoGetFileTranslationListProcPtr
Defines a pointer to a get file translation list callback function that returns a list of the file types which your
extension can translate.

Unsupported

typedef ComponentResult (*DoGetFileTranslationListProcPtr)
(
 ComponentInstance self,
 FileTranslationListHandle translationList
);

If you name your function MyDoGetFileTranslationListProc, you would declare it like this:

ComponentResult DoGetFileTranslationListProcPtr
(
 ComponentInstance self,
 FileTranslationListHandle translationList
);

Parameters
self

A component instance that identifies the component containing the translation extension.

Callbacks 1717
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

translationList
On entry to your function, this parameter contains a handle to a structure of type
FileTranslationList (page 1727). If your translation extension can translate any files at all, your
function should resize that handle and fill the block with a list of the file types it can translate. If the
translation list whose handle you return in this parameter has the groupCount field set to 0, Macintosh
Easy Open assumes that your extension cannot translate any file types.

For improved performance, Macintosh Easy Open remembers each translation extension’s most
recently returned file translation list and passes that list to your get file translation list callback function
in this parameter. If you determine that the list hasn’t changed, you should simply return the same
handle to Macintosh Easy Open.

Return Value
If successful, your function should return noErr. Otherwise, your function should return an appropriate result
code. The Component Manager requires this function to return a value of type ComponentResult to simplify
dispatching. See the Component Manager documentation for a description of the ComponentResult data
type.

Discussion
A file translation extension must respond to the kTranslateGetFileTranslationList request code.
Whenever it first notices the extension, Macintosh Easy Open calls your extension with this request code to
obtain a list of the file types that the extension can translate. You can handle this request by calling the
Component Manager function CallComponentFunctionWithStorage and passing it a pointer to a your
get file translation list callback function.

Carbon Porting Notes

The functions contained in TranslationExtensions.h were originally written to be used only by someone
implementing a Mac Easy Open translation component. Carbon, however, is for applications and not extensions.
Therefore, this function is not supported.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

DoGetScrapTranslationListProcPtr
Defines a pointer to a get-scrap-translation-list callback function that returns a list of the scrap types that
your extension can translate.

Unsupported

typedef ComponentResult (*DoGetScrapTranslationListProcPtr)
(
 ComponentInstance self,
 ScrapTranslationListHandle list
);

If you name your function MyDoGetScrapTranslationListProc, you would declare it like this:

ComponentResult DoGetScrapTranslationListProcPtr
(
 ComponentInstance self,
 ScrapTranslationListHandle list

1718 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

);

Parameters
self

A component instance that identifies the component containing the translation extension.

list
A handle to aScrapTranslationList (page 1729). Your function should return, through this parameter,
a handle to a list of the scrap types from and into which your translation extension can translate. If
your translation extension can translate any scrap types at all, your function should resize this handle
and fill the block with a list of the scrap types it can translate. If the translation list whose handle you
return in this parameter has the groupCount field set to 0, Macintosh Easy Open assumes that your
extension cannot translate any scrap types.

On entry to your function, this parameter contains a handle to a structure of type
ScrapTranslationList. When it first becomes aware of your extension, Macintosh Easy Open calls
your translation extension’s get scrap translation list function. For improved performance, Macintosh
Easy Open remembers each translation extension’s most recently returned scrap translation list and
passes that list to your function in this parameter. If you determine that the list hasn’t changed, you
should simply return the same handle to Macintosh Easy Open.

Return Value
If successful, your function should return noErr. Otherwise, your function should return an appropriate result
code. The Component Manager requires this function to return a value of type ComponentResult to simplify
dispatching. See the Component Manager documentation for a description of the ComponentResult data
type.

Discussion
A scrap translation extension must respond to the kTranslateGetScrapTranslationList request code.
At system startup time, the Translation Manager calls your extension with this code. You can handle this
request by calling the Component Manager function CallComponentFunctionWithStorage and passing
it a pointer to your get scrap translation list callback function.

Carbon Porting Notes

The functions contained in TranslationExtensions.h were originally written to be used only by someone
implementing a Mac Easy Open translation component. Carbon, however, is for applications and not extensions.
Therefore, this function is not supported.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

DoGetTranslatedFilenameProcPtr
Defines a pointer to a get-translated-filename callback function.

Unsupported

Callbacks 1719
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

typedef ComponentResult (*DoGetTranslatedFilenameProcPtr)
(
 ComponentInstance self,
 FileType dstType,
 long dstTypeHint,
 FSSpec * theDocument
);

If you name your function MyDoGetTranslatedFilenameProc, you would declare it like this:

ComponentResult DoGetTranslatedFilenameProcPtr
(
 ComponentInstance self,
 FileType dstType,
 long dstTypeHint,
 FSSpec * theDocument
);

Parameters
self
dstType
theDocument

Return Value
See the Component Manager documentation for a description of the ComponentResult data type.

Carbon Porting Notes

The functions contained in TranslationExtensions.h were originally written to be used only by someone
implementing a Mac Easy Open translation component. Carbon, however, is for applications and not extensions.
Therefore, this function is not supported.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

DoIdentifyFileProcPtr
Defines a pointer to a file identification callback function that identifies a file as having a format which your
extension can translate.

Unsupported

typedef ComponentResult (*DoIdentifyFileProcPtr)
(
 ComponentInstance self,
 const FSSpec * theDocument,
 FileType * docType
);

If you name your function MyDoIdentifyFileProc, you would declare it like this:

ComponentResult DoIdentifyFileProcPtr (
 ComponentInstance self,

1720 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

 const FSSpec * theDocument,
 FileType * docType
);

Parameters
self

A component instance that identifies the component containing the translation extension.

theDocument
A pointer to a file system specification structure that specifies the document that the translation
extension must identify.

docType
Your function should return, in this parameter, the file format type of the file specified in the
theDocument parameter.

Your function should not return 'TEXT' as a file type unless you determine that the document consists
solely of a plain, unformatted stream of ASCII characters.

Return Value
If successful, your function should return noErr. Otherwise, your function should return an appropriate result
code. If your translation extension does not recognize the type of the specified file, your function should
return the result code noTypeErr. The Component Manager requires this function to return a value of type
ComponentResult to simplify dispatching. See the Component Manager documentation for a description
of the ComponentResult data type.

Discussion
A file translation extension must respond to the kTranslateIdentifyFile request code. The Translation
Manager uses this request code to allow the translation extension to identify a file as having a format that
the extension can translate. You can handle this request by calling the Component Manager function
CallComponentFunctionWithStorage and passing it a pointer to your file identification callback function.

Carbon Porting Notes

The functions contained in TranslationExtensions.h were originally written to be used only by someone
implementing a Mac Easy Open translation component. Carbon, however, is for applications and not extensions.
Therefore, this function is not supported.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

DoIdentifyScrapProcPtr
Defines a pointer to a scrap identification callback function that identifies a scrap as one that your scrap
translation extension can translate.

Unsupported

Callbacks 1721
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

typedef ComponentResult (*DoIdentifyScrapProcPtr)
(
 ComponentInstance self,
 const void * dataPtr,
 Size dataLength,
 ScrapType * dataFormat
);

If you name your function MyDoIdentifyScrapProc, you would declare it like this:

ComponentResult DoIdentifyScrapProcPtr
(
 ComponentInstance self,
 const void * dataPtr,
 Size dataLength,
 ScrapType * dataFormat
);

Parameters
self

A component instance that identifies the component containing the translation extension.

dataPtr
A pointer to the scrap to translate.

dataLength
The size of the scrap to translate.

dataFormat
On entry, the type of the scrap format. Your function returns, through this parameter, the type of the
scrap format of the scrap specified by the dataPtr parameter, as recognized by your translation
extension.

In general, the scrap that your DoIdentifyScrap function is asked to identify is always in one of
the formats listed among the source formats in the translation groups contained in your extension’s
scrap translation list. Your scrap translation extension therefore needs only to verify that the indicated
scrap is of the specified format.

Return Value
If successful, your function should return noErr. Otherwise, your function should return an appropriate result
code. If your translation extension does not recognize the type of the specified scrap, your function should
return the result code noTypeErr. The Component Manager requires this function to return a value of type
ComponentResult to simplify dispatching. See the Component Manager documentation for a description
of the ComponentResult data type.

Discussion
A scrap translation extension must respond to the kTranslateIdentifyScrap request code. You can
handle this request by calling the Component Manager function CallComponentFunctionWithStorage
and passing it a pointer to a your scrap identification callback function.

Carbon Porting Notes

The functions contained in TranslationExtensions.h were originally written to be used only by someone
implementing a Mac Easy Open translation component. Carbon, however, is for applications and not extensions.
Therefore, this function is not supported.

Availability
Available in Mac OS X v10.0 and later.

1722 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

Declared In
TranslationExtensions.h

DoTranslateFileProcPtr
Defines a pointer to a file translation callback function that translates a document from one format into
another.

Unsupported

typedef ComponentResult (*DoTranslateFileProcPtr)
(
 ComponentInstance self,
 TranslationRefNum refNum,
 const FSSpec * sourceDocument,
 FileType srcType,
 long srcTypeHint,
 const FSSpec * dstDoc,
 FileType dstType,
 long dstTypeHint
);

If you name your function MyDoTranslateFileProc, you would declare it like this:

ComponentResult DoTranslateFileProcPtr
(
 ComponentInstance self,
 TranslationRefNum refNum,
 const FSSpec * sourceDocument,
 FileType srcType,
 long srcTypeHint,
 const FSSpec * dstDoc,
 FileType dstType,
 long dstTypeHint
);

Parameters
self

A component instance that identifies the component containing your translation extension.

refNum
The translation reference number for this translation.

Macintosh Easy Open assigns this reference number to the translation. Each translation is assigned a
unique number to distinguish the translation from any other translations that might occur. You need
to pass this reference number to any Macintosh Easy Open functions you call from within the file
translation extension; for instance, if by calling the SetTranslationAdvertisement function you
display the progress dialog box, you’ll pass that reference number in the refNum parameter.

sourceDocument
A file system specification structure that specifies the document to translate.

srcType
The format of the file to be translated.

srcTypeHint
The value in the hint field of the source document’s file type specification.

Callbacks 1723
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

dstDoc
A file system specification structure that specifies the destination document.

Your function should put the translated document into the file specified by this parameter. The data
fork of the destination file already exists by the time your function is called. In addition, if the flags
field in the appropriate destination file type specification in your extension’s file translation list has
the taDstDocNeedsResourceFork bit set, the destination file already contains a resource fork. Your
function should open the destination file and fill its data or resource fork (or both) with the appropriate
translated data.

dstType
The format into which to translate the source document.

dstTypeHint
The value in the hint field of the destination document’s file type specification.

Return Value
If successful, your function should return noErr. Otherwise, your function should return an appropriate result
code. If it cannot translate the source file, your function should return a result code different from noErr. In
that case, Macintosh Easy Open will automatically delete the destination file. The Component Manager
requires this function to return a value of type ComponentResult to simplify dispatching. See the Component
Manager documentation for a description of the ComponentResult data type.

Discussion
A file translation extension must respond to the kTranslateTranslateFile request code. You can handle
this request by calling the Component Manager function CallComponentFunctionWithStorage and
passing it a pointer to your file translation function.

Your file translation function can translate the source file itself or rely upon external translators.

Your translation extension should call the SetTranslationAdvertisement (page 1713) function to display
the progress dialog box and the UpdateTranslationProgress (page 1716) function to update the dialog
box periodically.

Carbon Porting Notes

The functions contained in TranslationExtensions.h were originally written to be used only by someone
implementing a Mac Easy Open translation component. Carbon, however, is for applications and not extensions.
Therefore, this function is not supported.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

DoTranslateScrapProcPtr
Defines a pointer to a scrap translation callback function that translates a scrap from one format into another.

Unsupported

1724 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

typedef ComponentResult (*DoTranslateScrapProcPtr)
(
 ComponentInstance self,
 TranslationRefNum refNum,
 const void * srcDataPtr,
 Size srcDataLength,
 ScrapType srcType,
 long srcTypeHint,
 Handle dstData,
 ScrapType dstType,
 long dstTypeHint
);

If you name your function MyDoTranslateScrapProc, you would declare it like this:

ComponentResult DoTranslateScrapProcPtr
(
 ComponentInstance self,
 TranslationRefNum refNum,
 const void * srcDataPtr,
 Size srcDataLength,
 ScrapType srcType,
 long srcTypeHint,
 Handle dstData,
 ScrapType dstType,
 long dstTypeHint
);

Parameters
self

A component instance that identifies the component containing the translation extension.

refNum
The translation reference number for this translation.

Macintosh Easy Open assigns this reference number to the translation. Each translation is assigned a
unique number to distinguish the translation from any other translations that might be occurring.
You need to pass this reference number to any Macintosh Easy Open functions you call from within
the scrap translation extension; for instance, if you display the progress dialog box by calling the
SetTranslationAdvertisement function, you’ll pass that reference number in the refNum
parameter.

srcDataPtr
A pointer to the scrap to translate.

srcDataLength
The size of the scrap to translate.

srcType
The format of the scrap to translate.

srcTypeHint
The value in the hint field of the source document’s scrap type specification.

dstData
A handle to the destination to be filled in. Your function should put the translated data into the block
specified here, resizing it as necessary.

Callbacks 1725
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

dstType
The format into which to translate the source scrap.

dstTypeHint
The value in the hint field of the destination document’s scrap type specification.

Return Value
If successful, your function should return noErr. Otherwise, your function should return an appropriate result
code. The Component Manager requires this function to return a value of type ComponentResult to simplify
dispatching. See the Component Manager documentation for a description of the ComponentResult data
type.

Discussion
A scrap translation extension must respond to the kTranslateTranslateScrap request code. You can
handle this request by calling the Component Manager function CallComponentFunctionWithStorage
and passing it a pointer to your function. Your scrap translation callback function can translate the source
file itself or rely upon external translators.

Your translation extension should call the SetTranslationAdvertisement (page 1713) function to display
the progress dialog box and the UpdateTranslationProgress (page 1716) function to update the dialog
box periodically.

Carbon Porting Notes

The functions contained in TranslationExtensions.h were originally written to be used only by someone
implementing a Mac Easy Open translation component. Carbon, however, is for applications and not extensions.
Therefore, this function is not supported.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

GetScrapDataProcPtr
Defines a pointer to a source-data fetching callback.

typedef OSErr (*GetScrapDataProcPtr)
(
 ScrapType requestedFormat,
 Handle dataH,
 void * srcDataGetterRefCon
);

If you name your function MyGetScrapDataProc, you would declare it like this:

OSErr GetScrapDataProcPtr (
 ScrapType requestedFormat,
 Handle dataH,
 void * srcDataGetterRefCon
);

1726 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

Parameters
requestedFormat

Format of data that TranslateScrap (page 1715) needs.

dataH
The handle in which to put the requested data.

Return Value
A result code. See “Translation Manager Result Codes” (page 1732).

Discussion
The first time this function is call ed, you should resize and fill in the handle with a list all the formats that
you have available to be translated, and the length of each. When called again, you should supply the data
in one of the formats in the list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
Translation.h

Data Types

FileTranslationList
Defines a list of file formats an extension can translate.

struct FileTranslationList {
 unsigned long modDate;
 unsigned long groupCount;
};
typedef struct FileTranslationList FileTranslationList;
typedef FileTranslationList * FileTranslationListPtr;
typedef FileTranslationListPtr * FileTranslationListHandle;

Fields
modDate

The creation date of the file translation list. If your extension uses external translators, you might set
this field to the modification date of a folder containing those translators.

groupCount
The number of translation groups that follow.

Discussion
The Translation Manager uses the file translation list that it gets from each translation system to create a
master database of format translations it can direct. A file translation list consists of a field indicating the
modification date of the list and a count of the number of groups that follow those two fields.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

Data Types 1727
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

FileTranslationSpec
Defines a file translation method supported by the Translation Manager.

struct FileTranslationSpec {
 OSType componentSignature;
 const void * translationSystemInfo;
 FileTypeSpec src;
 FileTypeSpec dst;
};
typedef struct FileTranslationSpec FileTranslationSpec;
typedef FileTranslationSpec * FileTranslationSpecArrayPtr;
typedef FileTranslationSpecArrayPtr * FileTranslationSpecArrayHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Translation.h

FileType
Defines the translation file type of a document.

typedef OSType FileType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

FileTypeSpec
Defines a descriptor for the source or destination file type used in a translation method.

struct FileTypeSpec {
 FileType format;
 long hint;
 TranslationAttributes flags;
 OSType catInfoType;
 OSType catInfoCreator;
};
typedef struct FileTypeSpec FileTypeSpec;

Fields
format

The translation file type of the document. Macintosh Easy Open uses this field as the canonical way
to describe the format of a file for translation purposes.

hint
A 4-byte value reserved for use by your translation extension.

1728 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

flags
A 4-byte value consisting of bit flags that specify how to control the translation. This field is used only
for destination file types; you should set it to 0 for all source file type specifications. Currently 2 bits
are defined; all other bits should be cleared to 0.

catInfoType
The type of the file as contained in the volume’s catalog file.

catInfoCreator
The creator of the file as contained in the volume’s catalog file.

Discussion
The FileTranslationList (page 1727) structure uses file type specifications to describe document formats.
A file type specification is defined by the FileTypeSpec data structure.

The interpretation of some of the fields of a file type specification depends on whether the specification
occurs in the list of source document types or in the list of destination document types:

In file type specifications occurring in the list of source document types in a file translation list, Macintosh
Easy Open uses the format and catInfoCreator fields to determine the kind string displayed in the “From”
format specification of the translation progress dialog box.

In file type specifications occurring in the list of destination document types in a file translation list, Macintosh
Easy Open uses the format and catInfoCreator fields to determine the kind string displayed in the “To”
format specification in the translation progress dialog box. The format and catInfoCreator fields are also
used to get the information displayed in the Document Converter dialog box. However, Macintosh Easy Open
uses the catInfoType and catInfoCreator fields to set the catalog type and creator of the destination
file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

ScrapTranslationList
Defines the scrap formats an extension can translate.

struct ScrapTranslationList {
 unsigned long modDate;
 unsigned long groupCount;
};
typedef struct ScrapTranslationList ScrapTranslationList;
typedef ScrapTranslationList * ScrapTranslationListPtr;
typedef ScrapTranslationListPtr * ScrapTranslationListHandle;

Fields
modDate

The creation date of the scrap translation list. If your extension uses external translators, you might
set this field to the modification date of a folder containing those translators.

groupCount
The number of translation groups that follow. The size of the translation list prepared by an extension
is variable, depending upon the number of groups, the scrap specification structure size, and the
number of scrap types that the extension knows about.

Data Types 1729
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

Discussion
The Translation Manager uses the scrap translation list that it gets from each translation system to create a
master database of its translation capability. A scrap translation list consists of a field indicating the modification
date of the list and a count of the number of groups that follow those two fields.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

ScrapType
Defines the scrap type in a Translation Manager scrap format.

typedef ResType ScrapType;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

ScrapTypeSpec
Describes a specific scrap format.

struct ScrapTypeSpec {
 ScrapType format;
 long hint;
};
typedef struct ScrapTypeSpec ScrapTypeSpec;

Fields
format

The type of the specified scrap.

hint
A 4-byte value reserved for use by your translation extension.

Discussion
The ScrapTypeSpec data structure is used by the ScrapTranslationList (page 1729) structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TranslationExtensions.h

TypesBlock
Defines a null-terminated array of OSType or FileType elements.

1730 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

 typedef OSType TypesBlock[64];
 typedef OSType * TypesBlockPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
Translation.h

Constants

DocOpenMethod
Specifies the ways a document can be opened.

enum {
 domCannot = 0,
 domNative = 1,
 domTranslateFirst = 2,
 domWildcard = 3
};
typedef short DocOpenMethod;

Constants
domCannot

Indicates that the application cannot open the document.

Available in Mac OS X v10.0 and later.

Declared in Translation.h.

domNative
Indicates that the application can open the document natively.

Available in Mac OS X v10.0 and later.

Declared in Translation.h.

domTranslateFirst
Indicates that the application can open the document only after it’s been translated.

Available in Mac OS X v10.0 and later.

Declared in Translation.h.

domWildcard
Indicates that the application has the file type '****' in its list of the file types that it can open and
hence can open any type of document.

Available in Mac OS X v10.0 and later.

Declared in Translation.h.

Discussion
The CanDocBeOpened (page 1706) function uses the following constants to specify the method for opening
a given document.

Constants 1731
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

Result Codes

The most common result codes returned by the Translation Manager are listed in the table below.

DescriptionValueResult Code

Source type to destination type not a valid path.-3025invalidTranslationPathErr

Available in Mac OS X v10.0 and later.

Source document does not contain source type.-3026couldNotParseSourceFileErr

Available in Mac OS X v10.0 and later.

Application cannot open document.-3030noTranslationPathErr

Available in Mac OS X v10.0 and later.

Translation path is invalid.-3031badTranslationSpecErr

Available in Mac OS X v10.0 and later.

No translation preference available.-3032noPrefAppErr

Available in Mac OS X v10.0 and later.

Gestalt Constants

You can check for version and feature availability information by using the Translation Manager selectors
defined in the Gestalt Manager. For more information, see Inside Mac OS X: Gestalt Manager Reference.

1732 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 22

Translation Manager Reference

Framework: Carbon/Carbon.h

Declared in URLAccess.h

Overview

Important: URL Access Manager is deprecated as of Mac OS X v10.4. You should use CFNetwork instead (as
described in CFNetwork Programming Guide).

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

The URL Access Manager is an API that you can use to perform data transfer to and from a URL from within
your application. It includes support for automatic decompression of compressed files and for automatic file
extraction from Stuffit archives (with version 5.0 of Stuffit).

The URL Access Manager allows you to use any of the following protocols during download operations: File
Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), secure Hypertext Transfer Protocol (HTTPS), or a
URL representing a local file (begins with file://). You might use the latter to test your application on a
computer that does not have access to an HTTP or FTP server. For upload operations, you must use an FTP
URL.

This document describes the URL Access Manager API through version 2.0.3.

Functions by Task

Getting Information About the URL Access Manager

URLGetURLAccessVersion (page 1749) Deprecated in Mac OS X v10.4
Determines the version of URL Access Manager installed on the user’s system. (Deprecated. Use
CFNetwork instead; see CFNetwork Programming Guide.)

Creating and Disposing of a URL Reference

URLDisposeReference (page 1741) Deprecated in Mac OS X v10.4
Disposes of the memory associated with a URL reference. (Deprecated. Use CFNetwork instead; see
CFNetwork Programming Guide.)

Overview 1733
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not
Recommended)

URLNewReference (page 1750) Deprecated in Mac OS X v10.4
Creates a URL reference. (Deprecated. Use CFNetwork instead; see CFNetwork Programming Guide.)

Getting and Setting Information About a URL

URLGetProperty (page 1747) Deprecated in Mac OS X v10.4
Obtains the value of a URL property. (Deprecated. Use CFNetwork instead; see CFNetwork Programming
Guide.)

URLGetPropertySize (page 1748) Deprecated in Mac OS X v10.4
Determines the size of a URL property. (Deprecated. Use CFNetwork instead; see CFNetwork
Programming Guide.)

URLSetProperty (page 1753) Deprecated in Mac OS X v10.4
Sets the value of a URL property. (Deprecated. Use CFNetwork instead; see CFNetwork Programming
Guide.)

Performing Simple Data Transfer

URLDownload (page 1741) Deprecated in Mac OS X v10.4
Downloads data from a URL specified by a URL reference. (Deprecated. Use CFNetwork instead; see
CFNetwork Programming Guide.)

URLSimpleDownload (page 1754) Deprecated in Mac OS X v10.4
Downloads data from a URL specified by a character string. (Deprecated. Use CFNetwork instead; see
CFNetwork Programming Guide.)

URLSimpleUpload (page 1756) Deprecated in Mac OS X v10.4
Uploads a file or directory to an FTP URL specified by a character string. (Deprecated. Use CFNetwork
instead; see CFNetwork Programming Guide.)

URLUpload (page 1757) Deprecated in Mac OS X v10.4
Uploads a file or directory to an FTP URL specified by a URL reference. (Deprecated. Use CFNetwork
instead; see CFNetwork Programming Guide.)

Getting More Control Over Data Transfer Operations

URLGetBuffer (page 1743) Deprecated in Mac OS X v10.4
Obtains the next buffer of data in a download operation. (Deprecated. Use CFNetwork instead; see
CFNetwork Programming Guide.)

URLGetDataAvailable (page 1745) Deprecated in Mac OS X v10.4
Determines the amount of data currently available for retrieval in a download operation. (Deprecated.
Use CFNetwork instead; see CFNetwork Programming Guide.)

URLOpen (page 1751) Deprecated in Mac OS X v10.4
Opens a URL and starts an asynchronous download or upload operation. (Deprecated. Use CFNetwork
instead; see CFNetwork Programming Guide.)

URLReleaseBuffer (page 1752) Deprecated in Mac OS X v10.4
Releases a buffer. (Deprecated. Use CFNetwork instead; see CFNetwork Programming Guide.)

1734 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Terminating Data Transfer Operations

URLAbort (page 1740) Deprecated in Mac OS X v10.4
Terminates a data transfer operation. (Deprecated. Use CFNetwork instead; see CFNetworkProgramming
Guide.)

Getting Data Transfer Information

URLGetCurrentState (page 1744) Deprecated in Mac OS X v10.4
Determines the status of a data transfer operation.

URLGetError (page 1746) Deprecated in Mac OS X v10.4
Determines the error code of a failed data transfer operation. (Deprecated. Use CFNetwork instead;
see CFNetwork Programming Guide.)

URLGetFileInfo (page 1746) Deprecated in Mac OS X v10.4
Obtains the file type and creator of a file. (Deprecated. Use CFNetwork instead; see CFNetwork
Programming Guide.)

URLIdle (page 1749) Deprecated in Mac OS X v10.4
Gives the URL Access Manager time to refill its buffers during download operations. (Deprecated. Use
CFNetwork instead; see CFNetwork Programming Guide.)

Working With URL Access Manager Callbacks

DisposeURLNotifyUPP (page 1736) Deprecated in Mac OS X v10.4
Disposes of a UPP to your data transfer event notification callback. (Deprecated. Use CFNetwork
instead; see CFNetwork Programming Guide.)

DisposeURLSystemEventUPP (page 1736) Deprecated in Mac OS X v10.4
Disposes of a UPP to your system event notification callback. (Deprecated. Use CFNetwork instead;
see CFNetwork Programming Guide.)

InvokeURLNotifyUPP (page 1737) Deprecated in Mac OS X v10.4
Invokes your data transfer event notification callback. (Deprecated. Use CFNetwork instead; see
CFNetwork Programming Guide.)

InvokeURLSystemEventUPP (page 1738) Deprecated in Mac OS X v10.4
Invokes your system event notification callback. (Deprecated. Use CFNetwork instead; see CFNetwork
Programming Guide.)

NewURLNotifyUPP (page 1738) Deprecated in Mac OS X v10.4
Creates a UPP to your data transfer event notification callback. (Deprecated. Use CFNetwork instead;
see CFNetwork Programming Guide.)

NewURLSystemEventUPP (page 1739) Deprecated in Mac OS X v10.4
Creates a UPP to your system event notification callback. (Deprecated. Use CFNetwork instead; see
CFNetwork Programming Guide.)

Functions by Task 1735
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Functions

DisposeURLNotifyUPP
Disposes of a UPP to your data transfer event notification callback. (Deprecated in Mac OS X v10.4. Use
CFNetwork instead; see CFNetwork Programming Guide.)

void DisposeURLNotifyUPP (
 URLNotifyUPP userUPP
);

Parameters
userUPP

A Universal Procedure Pointer (UPP) to your notification callback function.

Discussion
When you are finished with a UPP to your notification callback function, you should dispose of it by calling
the DisposeURLNotifyUPP function.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

DisposeURLSystemEventUPP
Disposes of a UPP to your system event notification callback. (Deprecated in Mac OS X v10.4. Use CFNetwork
instead; see CFNetwork Programming Guide.)

void DisposeURLSystemEventUPP (
 URLSystemEventUPP userUPP
);

Parameters
userUPP

A UPP to your system event callback function.

Discussion
When you are finished with a UPP to your system event callback function, you should dispose of it by calling
the DisposeURLSystemEventUPP function.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.

1736 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

InvokeURLNotifyUPP
Invokes your data transfer event notification callback. (Deprecated in Mac OS X v10.4. Use CFNetwork instead;
see CFNetwork Programming Guide.)

OSStatus InvokeURLNotifyUPP (
 void *userContext,
 URLEvent event,
 URLCallbackInfo *callbackInfo,
 URLNotifyUPP userUPP
);

Parameters
userContext

A pointer to application-defined storage. The URL Access Manager passes this value in the
userContext parameter of your notification callback function. Your application can use this to set
up its context when your data transfer event notification callback is called.

event
The data transfer events you want your application to receive. See “Data Transfer Event
Constants” (page 1764) for a description of possible values. The URL Access Manager tests the bitmask
you pass in the eventRegister parameter of the function URLOpen (page 1751) to determine which
events to pass to your callback function. See “Data Transfer Event Mask Constants” (page 1766) for a
description of this bitmask.

callbackInfo
A pointer to a structure of type URLCallbackInfo (page 1762) that provides information about the
data transfer event to your callback function. The URL Access Manager passes a pointer to this structure
in the callbackInfo parameter of your notification callback function.

userUPP
A Universal Procedure Pointer to your data transfer notification callback. For information on how to
write this function, see URLNotifyProcPtr (page 1759).

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URL Access Manager calls the InvokeURLNotifyUPP function when you pass a UPP to your callback
function in the notifyProc parameter of the function URLOpen (page 1751), and the data transfer event that
you specified in the eventRegister parameter occurs.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 1737
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Declared In
URLAccess.h

InvokeURLSystemEventUPP
Invokes your system event notification callback. (Deprecated in Mac OS X v10.4. Use CFNetwork instead; see
CFNetwork Programming Guide.)

OSStatus InvokeURLSystemEventUPP (
 void *userContext,
 EventRecord *event,
 URLSystemEventUPP userUPP
);

Parameters
userContext

A pointer to application-defined storage. The URL Access Manager passes this value in the
userContext parameter of your system event callback function. Your application can use this to set
up its context when your system event notification callback is called.

event
A pointer to an event record that provides information about the system event to your callback
function.

userUPP
A Universal Procedure Pointer to your system event notification callback. For information on how to
write this function, see URLSystemEventProcPtr (page 1760).

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URL Access Manager calls the InvokeURLSystemEventUPP function when you pass a UPP to your
callback function in the eventProc parameter of the functions URLSimpleDownload (page 1754),
URLSimpleUpload (page 1756),URLDownload (page 1741), orURLUpload (page 1757), and a system event occurs
while a progress indicator or authentication dialog box is being displayed.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

NewURLNotifyUPP
Creates a UPP to your data transfer event notification callback. (Deprecated in Mac OS X v10.4. Use CFNetwork
instead; see CFNetwork Programming Guide.)

1738 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

URLNotifyUPP NewURLNotifyUPP (
 URLNotifyProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your data transfer event notification callback. For information on how to write your
callback, see URLNotifyProcPtr (page 1759).

Return Value
A UPP to your data transfer event notification callback. You can register your callback by passing this UPP in
the notifyProc parameter of the function URLOpen (page 1751). See the description of the URLNotifyUPP
data type.

Discussion
The NewURLNotifyUPP function creates a pointer to your data transfer event notification callback. You pass
a pointer to your callback in the notifyProc parameter of the function URLOpen (page 1751) if you want your
application to receive data transfer events. Pass a bitmask in the eventRegister parameter of URLOpen (page
1751) indicating which data transfer events you want to receive.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

When you are finished with your data transfer event notification callback, you should dispose of the UPP by
calling the function DisposeURLNotifyUPP (page 1736).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

NewURLSystemEventUPP
Creates a UPP to your system event notification callback. (Deprecated in Mac OS X v10.4. Use CFNetwork
instead; see CFNetwork Programming Guide.)

URLSystemEventUPP NewURLSystemEventUPP (
 URLSystemEventProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your system event notification callback. For information on how to write your callback,
see URLSystemEventProcPtr (page 1760).

Return Value
A UPP to your system event notification callback. You can register your callback by passing this UPP in the
eventProc parameter of the function URLSimpleDownload (page 1754), URLSimpleUpload (page 1756),
URLDownload (page 1741), or URLUpload (page 1757). See the description of the URLSystemEventUPP data
type.

Functions 1739
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Discussion
The NewURLSystemEventUPP function creates a pointer to your system event callback function. You pass
a pointer to your callback function in the eventProc parameter of the functions URLSimpleDownload (page
1754),URLSimpleUpload (page 1756),URLDownload (page 1741), andURLUpload (page 1757) if you want update
events to be passed to your application while a dialog box is displayed. (In Mac OS X, this is not necessary,
since all dialog boxes are moveable). In order for these functions to display a dialog box, you must set the
mask constant kURLDisplayProgressFlag or kURLDisplayAuthFlag in the bitmask passed in the
openFlags parameter.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

When you are finished with your system event notification callback, you should dispose of the UPP by calling
the function DisposeURLNotifyUPP (page 1736).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLAbort
Terminates a data transfer operation. (Deprecated in Mac OS X v10.4. Use CFNetwork instead; see CFNetwork
Programming Guide.)

OSStatus URLAbort (
 URLReference urlRef
);

Parameters
urlRef

A reference to the URL whose data transfer operation you wish to terminate.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URLAbort function terminates any data transfer operation started by the functions
URLSimpleDownload (page 1754),URLDownload (page 1741),URLSimpleUpload (page 1756),URLUpload (page
1757), or URLOpen (page 1751). When your application calls URLAbort, the URL Access Manager changes the
state returned by the function URLGetCurrentState (page 1744) to kURLAbortingState and passes the
constant kURLAbortInitiatedEvent to your notification callback function. When data transfer is terminated,
the URL Access Manager changes the state returned by URLGetCurrentState (page 1744) to
kURLCompletedState and passes the constant kURLCompletedEvent in the event parameter of your
notification callback function.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

1740 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLDisposeReference
Disposes of the memory associated with a URL reference. (Deprecated in Mac OS X v10.4. Use CFNetwork
instead; see CFNetwork Programming Guide.)

OSStatus URLDisposeReference (
 URLReference urlRef
);

Parameters
urlRef

A reference to the URL whose associated memory you wish to dispose of. You should call the
URLDisposeReference function to release the memory occupied by a URL reference when you are
finished with it.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

You must call the URLDisposeReference function to dispose of the reference associated with a URL reference
even if the data transfer operation fails. Failure to call URLDisposeReferencemay result in thread or memory
leaks.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLDownload
Downloads data from a URL specified by a URL reference. (Deprecated in Mac OS X v10.4. Use CFNetwork
instead; see CFNetwork Programming Guide.)

Functions 1741
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

OSStatus URLDownload (
 URLReference urlRef,
 FSSpec *destination,
 Handle destinationHandle,
 URLOpenFlags openFlags,
 URLSystemEventUPP eventProc,
 void *userContext
);

Parameters
urlRef

A reference to the URL from which data is to be downloaded. Once you call URLDownload, you cannot
use the same reference if you call URLDownload again. Instead, you must create a new URL reference
by calling the function URLNewReference (page 1750).

destination
A pointer to a file specification structure that identifies the file or directory into which data is to be
downloaded. If you wish to download data into memory, pass NULL in this parameter and a valid
handle in the destinationHandle parameter. If you pass a file specification that does not identify
a file or directory, the name of the file or directory specified by the pathname in the urlRef parameter
is used. If you pass a file or directory that already exists, and do not specify
kURLReplaceExistingFlag in the openFlags parameter, URLDownload creates a new file or
directory whose name has a number appended before the extension. For example, if the URL specifies
a file named file.txt, URLDownload changes the filename to file1.txt.

destinationHandle
A handle to the destination in memory where you want the data downloaded. Before calling
URLDownload, create a zero-sized handle. If you wish to download data into a file or directory, pass
NULL in this parameter and a valid file specification in the destination parameter.

openFlags
A bitmask that indicates the data transfer options to use. You can specify any of the following masks
for downloading options: kURLReplaceExistingFlag, kURLExpandFileFlag,
kURLExpandAndVerifyFlag, kURLDisplayProgressFlag, kURLDisplayAuthFlag,
kURLIsDirectoryHintFlag, kURLDoNotTryAnonymousFlag, kURLDebinhexOnlyFlag,
kURLNoAutoRedirect, and kURLDirectoryListingFlag. See “Data Transfer Options Mask
Constants” (page 1770) for a description of possible values.

eventProc
A Universal Procedure Pointer (UPP) to your system event callback function, if one exists. For
information on how to write a system event callback, see URLSystemEventProcPtr (page 1760). If
you want to handle events that occur while a progress indicator or authentication dialog box is being
displayed, specify the appropriate mask (either kURLDisplayProgressFlag or
kURLDisplayAuthFlag) in the openFlags parameter and pass a UPP to your callback function in
this parameter. Pass NULL if you do not want to receive notification of these events. In this case, the
URL Access Manager displays a nonmovable modal progress indicator or authentication dialog box.

userContext
A pointer to application-defined storage that will be passed to your system event callback function,
if one exists. Your application can use this to set up its context when your system event callback
function is called.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779). If your application is multi-threaded, and
more than one thread calls URLDownload simultaneously, URLDownload returns the result code
kURLProgessAlreadyDisplayedError if you specify kURLDisplayProgressFlag in the openFlags
parameter and the URL Access Manager is already displaying a progress indicator.

1742 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Discussion
The URLDownload function downloads data from a URL specified by a URL reference to a file, directory, or
memory. It does not return until the download is complete. If you want to download data from a URL identified
by a URL string rather than a reference, call the function URLSimpleDownload (page 1754). The difference
between the two functions is that URLDownload allows you to access other URL Access Manager functions
before, after, or during the download. If you want more control over a data transfer operation, call the function
URLOpen (page 1751).

If you wish to download data to a file or directory, pass a valid file specification in the destination parameter.
If you instead wish to download data to memory, pass a valid handle in the destinationHandle parameter.
If the URL specified in the urlRef parameter points to a file, the file is downloaded regardless of whether
the bit specified by the mask constant kURLDirectoryListingFlag or KURLIsDirectoryHintFlag is
set in the openFlags parameter.

When URLDownload downloads data from a URL that represents a local file (that is, a URL that begins with
file://), the data fork is downloaded but the resource fork is not.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

URLDownload yields time to other threads. Your application should call URLDownload from a thread other
than the main thread so that other processes have time to run.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLGetBuffer
Obtains the next buffer of data in a download operation. (Deprecated in Mac OS X v10.4. Use CFNetwork
instead; see CFNetwork Programming Guide.)

OSStatus URLGetBuffer (
 URLReference urlRef,
 void **buffer,
 Size *bufferSize
);

Parameters
urlRef

A reference to the URL whose next buffer you wish to obtain.

buffer
On return, a handle to a buffer containing the downloaded data.

bufferSize
On return, a pointer to the number of bytes of data in the buffer.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Functions 1743
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Discussion
The URLGetBuffer function obtains the next buffer of data in a download operation. URLGetBuffer does
not enable you to retain or modify the transferred data. If you pass NULL in the fileSpec parameter of the
function URLOpen (page 1751), you should call URLGetBuffer to retrieve data as it is downloaded.

You should call URLGetBuffer repeatedly until URL Access Manager passes the event constant
kURLCompletedEvent or kURLAbortInitiatedEvent in the event parameter of your notification callback
function, or until the function URLGetCurrentState (page 1744) returns the state constant
kURLTransactionComplete or kURLAbortingState. Between calls to URLGetBuffer, you should call
the function URLIdle (page 1749) to allow time for the URL Access Manager to refill its buffers.

To determine the number of bytes remaining in the buffer, call the function URLGetDataAvailable (page
1745). The size returned byURLGetDataAvailable (page 1745) does not include the number of bytes in transit
to a buffer, nor does it include the amount of data not yet transferred from the URL.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

You should release the returned buffer as soon as possible after a call to URLGetBuffer by calling the
function URLReleaseBuffer (page 1752). This prevents the URL Access Manager from running out of buffers.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLGetCurrentState
Determines the status of a data transfer operation. (Deprecated in Mac OS X v10.4.)

OSStatus URLGetCurrentState (
 URLReference urlRef,
 URLState *state
);

Parameters
urlRef

A reference to the URL whose data transfer state you want to determine.

state
On return, a pointer to the state of data transfer. See “Data Transfer State Constants” (page 1773) for a
description of possible values.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URLGetCurrentState function determines the current status of a data transfer operation. You may
wish to call URLGetCurrentState periodically to monitor the status of a download or upload operation.

1744 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLGetDataAvailable
Determines the amount of data currently available for retrieval in a download operation. (Deprecated in Mac
OS X v10.4. Use CFNetwork instead; see CFNetwork Programming Guide.)

OSStatus URLGetDataAvailable (
 URLReference urlRef,
 Size *dataSize
);

Parameters
urlRef

A reference to the URL for which you wish to determine the amount od data currently available for
retrieval in a download operation.

dataSize
On return, a pointer to the size (in bytes) of data available for retrieval in a download operation.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URLGetDataAvailable (page 1745) function determines the amount of data remaining in the buffer of
the URL Access Manager that you will obtain from a call to the function URLGetBuffer (page 1743). You
should only call this function if you passed an invalid destination file to the function URLOpen (page 1751).
This does not include the number of bytes in transit to your buffer, nor does it include the amount of data
not yet transferred from the URL Access Manager. To calculate the amount of data remaining to be
downloaded, pass the name constant kURLResourceSize in the property parameter of the function
URLGetProperty (page 1747) and subtract the amount of data copied.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

Functions 1745
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

URLGetError
Determines the error code of a failed data transfer operation. (Deprecated in Mac OS X v10.4. Use CFNetwork
instead; see CFNetwork Programming Guide.)

OSStatus URLGetError (
 URLReference urlRef,
 OSStatus *urlError
);

Parameters
urlRef

A reference to the URL whose data transfer operation failed.

urlError
A pointer to a C string representing the name of the error code returned by the failed operation.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URLGetError function determines the error code returned when a data transfer operation fails. The
error code may be a system error code, a protocol-specific error code, or one of the error codes listed in “URL
Access Manager Result Codes” (page 1779).

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLGetFileInfo
Obtains the file type and creator of a file. (Deprecated in Mac OS X v10.4. Use CFNetwork instead; see CFNetwork
Programming Guide.)

OSStatus URLGetFileInfo (
 StringPtr fName,
 OSType *fType,
 OSType *fCreator
);

Parameters
fName

A pointer to a Pascal string representing the name of the file for which you want information.

fType
On return, a pointer to the file type code of the specified filename.

fCreator
On return, a pointer to the file creator code of the specified filename.

1746 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URLGetFileInfo function obtains the file type and creator codes for a specified filename. The type and
creator codes are determined by the Internet configuration mapping table and are based on the filename
extension. For example, if you pass the filename "jane.txt", URLGetFileInfo will return ’TEXT' in the
type parameter and 'ttxt' in the creator parameter.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLGetProperty
Obtains the value of a URL property. (Deprecated in Mac OS X v10.4. Use CFNetwork instead; see CFNetwork
Programming Guide.)

OSStatus URLGetProperty (
 URLReference urlRef,
 const char *property,
 void *propertyBuffer,
 Size bufferSize
);

Parameters
urlRef

A reference to the URL whose property value you want to determine.

property
A pointer to a C string representing the name of the property value you want to determine. For a
description of property name constants and their corresponding data types, see “Universal URL
Property Name Constants” (page 1776) and “HTTP and HTTPS URL Property Name Constants” (page
1775).

propertyBuffer
A pointer to a buffer containing the property value you want to obtain. You must also pass the correct
data type of the property value you wish to obtain. Before calling URLGetProperty, allocate enough
memory in this buffer to contain the property value you wish to obtain. On return, a pointer to a
buffer containing the property value. If you do not allocate enough memory for the buffer,
URLGetProperty does not pass back the property value in this parameter and returns the result
code kURLPropertyBufferTooSmallError.

bufferSize
The size (in bytes) of the buffer pointed to by propertyBuffer. To determine the buffer size, call
the function URLGetPropertySize (page 1748). If the buffer size is too small, URLGetProperty
returns the result code kURLPropertyBufferTooSmallError and does not pass back the property
value in the propertyBuffer parameter.

Functions 1747
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779). The result code
kURLPropertyBufferTooSmallError indicates that you did not allocate enough memory for the buffer
in the propertyBuffer parameter. The result code kURLPropertyNotYetKnownError indicates that the
value of the property is not yet available.

Discussion
The URLGetProperty function obtains the value of a URL property identified by the property name constant
specified in the property parameter.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLGetPropertySize
Determines the size of a URL property. (Deprecated in Mac OS X v10.4. Use CFNetwork instead; see CFNetwork
Programming Guide.)

OSStatus URLGetPropertySize (
 URLReference urlRef,
 const char *property,
 Size *propertySize
);

Parameters
urlRef

A reference to the URL whose property size you want to determine.

property
A pointer to a C string representing the name of the property value whose size you want to determine.
For a description of property name constants, see “Universal URL Property Name Constants” (page
1776) and “HTTP and HTTPS URL Property Name Constants” (page 1775).

propertySize
On return, a pointer to the size (in bytes) of the specified property value. If the size is not available,
URLGetPropertySize passes back -1 in this parameter and returns the result code
kURLPropertyNotYetKnownError.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URLGetProperty function obtains the size of the property value identified by the property name
constant passed in the property parameter. For a description of property name constants and data types of
the corresponding property values, see “Universal URL Property Name Constants” (page 1776) and “HTTP and
HTTPS URL Property Name Constants” (page 1775).

1748 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

You should call the URLGetPropertySize function before calling the function URLGetProperty (page
1747) to determine the size of the buffer containing the property value you wish to obtain. Pass the value
passed back in the propertySize parameter in the bufferSize parameter of URLGetProperty (page
1747).

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLGetURLAccessVersion
Determines the version of URL Access Manager installed on the user’s system. (Deprecated in Mac OS X v10.4.
Use CFNetwork instead; see CFNetwork Programming Guide.)

OSStatus URLGetURLAccessVersion (
 UInt32 *returnVers
);

Parameters
returnVers

On return, a pointer to the version number of the URL Access Manager installed on the user’s system.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLIdle
Gives the URL Access Manager time to refill its buffers during download operations. (Deprecated in Mac OS
X v10.4. Use CFNetwork instead; see CFNetwork Programming Guide.)

Functions 1749
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

OSStatus URLIdle (
 void
);

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URLIdle function gives the URL Access Manager time to refill its buffers during download operations.
You should call URLIdle periodically after you call the function URLOpen (page 1751) to allow time for the URL
Access Manager to refill its buffers.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLNewReference
Creates a URL reference. (Deprecated in Mac OS X v10.4. Use CFNetwork instead; see CFNetwork Programming
Guide.)

OSStatus URLNewReference (
 const char *url,
 URLReference *urlRef
);

Parameters
url

A pointer to a C string representing the name of the URL you want to create.

urlRef
On return, a pointer to the newly-created URL reference.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URLNewReference function creates a URL reference that you can use in subsequent calls to the URL
Access Manager. When you no longer need a URL reference, you should dispose of its memory by calling
the function URLDisposeReference (page 1741).

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

1750 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Declared In
URLAccess.h

URLOpen
Opens a URL and starts an asynchronous download or upload operation. (Deprecated in Mac OS X v10.4. Use
CFNetwork instead; see CFNetwork Programming Guide.)

OSStatus URLOpen (
 URLReference urlRef,
 FSSpec *fileSpec,
 URLOpenFlags openFlags,
 URLNotifyUPP notifyProc,
 URLEventMask eventRegister,
 void *userContext
);

Parameters
urlRef

A reference to the URL to or from which you wish to transfer data. You cannot use the same reference
if you call URLOpen again. Instead, you must create a new URL reference by calling the function
URLNewReference (page 1750). If the URL refers to a file, the file is downloaded regardless of whether
you specify kURLDirectoryListingFlag or KURLIsDirectoryHintFlag in the openFlags
parameter. See “Naming Your Destination File” for more information.

fileSpec
A pointer to a file specification that identifies the file or directory from which data is to be uploaded
or downloaded. For upload operations, you must pass a valid file specification. For download
operations, you can pass NULL. In this case, you must call the function URLGetBuffer (page 1743) to
retrieve the data as it is downloaded. For more information, see the function discussion.

openFlags
A bitmask that indicates the data transfer options to use. You can specify any of the following masks
for upload operations: kURLUploadFlag, kURLReplaceExistingFlag, kURLBinHexFileFlag,
and kURLDoNotTryAnonymousFlag. You can specify any of the following masks for download
operations: kURLReplaceExistingFlag, kURLIsDirectoryHintFlag,
kURLDoNotTryAnonymousFlag, kURLDebinhexOnlyFlag, kURLNoAutoRedirect, and
kURLDirectoryListingFlag. See “Data Transfer Options Mask Constants” (page 1770) for a description
of possible values.

notifyProc
A Universal Procedure Pointer (UPP) to a data transfer event notification callback, as described in
URLNotifyProcPtr (page 1759). You should create a notification callback function if you wish to
receive notification of certain data transfer events. In this case, you should also pass a bitmask of the
events you wish to receive in the eventRegister parameter. The data transfer events that you
receive will vary depending upon whether the destination file you specify is valid. Pass NULL if you
do not want to receive notification of data transfer events.

eventRegister
A bitmask that URLOpen will test to determine the data transfer events that you wish to receive
notification of. To receive data transfer events, you should also pass a UPP to your callback in the
notifyProc parameter. See “Data Transfer Event Mask Constants” (page 1766) for a description of this
mask.

Functions 1751
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

userContext
A pointer to application-defined storage that will be passed to your notification callback function.
Your application can use this to set up its context when your notification callback function is called.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URLOpen function starts a download or upload operation and returns control to your application
immediately. For download operations, you do not have to specify a valid destination file. In this case, you
should call the function URLGetBuffer (page 1743) repeatedly to get the next buffer of data. Between calls
to URLGetBuffer (page 1743), you should call the function URLIdle (page 1749) to allow time for the URL
Access Manager to refill its buffers during download operations. After each call to URLGetBuffer (page 1743),
you call the function URLReleaseBuffer (page 1752) to prevent the URL Access Manager from running out
of buffers. You can call the function URLGetDataAvailable (page 1745) to determine the amount of data
remaining in the buffer of the URL Access Manager that you will obtain from a call to the function
URLGetBuffer (page 1743).

If you pass a valid destination file, you should not call the functions URLGetBuffer (page 1743),
URLReleaseBuffer (page 1752), or URLGetDataAvailable (page 1745).

If you wish to be notified of certain data transfer events, you can specify a data transfer event callback and
pass a pointer to it in the URLEventMask parameter of URLOpen. The data transfer events that you receive
will vary depending upon whether the destination file you specify is valid. In addition, you should pass a
bitmask representing the events you wish to be notified of in the eventRegister parameter.

When URLOpen downloads data from a URL that represents a local file (that is, a URL that begins with
file://), the data fork is downloaded but the resource fork is not.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLReleaseBuffer
Releases a buffer. (Deprecated in Mac OS X v10.4. Use CFNetwork instead; see CFNetwork ProgrammingGuide.)

OSStatus URLReleaseBuffer (
 URLReference urlRef,
 void *buffer
);

Parameters
urlRef

A reference to the URL whose buffer you want to release.

buffer
A pointer to the buffer you want to release.

1752 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779).

Discussion
The URLReleaseBuffer function releases the buffer obtained by calling the function URLGetBuffer (page
1743). To prevent the URL Access Manager from running out of buffers, you should call URLReleaseBuffer
after each call to URLGetBuffer (page 1743).

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLSetProperty
Sets the value of a URL property. (Deprecated in Mac OS X v10.4. Use CFNetwork instead; see CFNetwork
Programming Guide.)

OSStatus URLSetProperty (
 URLReference urlRef,
 const char *property,
 void *propertyBuffer,
 Size bufferSize
);

Parameters
urlRef

A reference to the URL whose property value you want to set.

property
A pointer to a C string representing the name of the property value you want to set. You can only set
property values identified by the constants kURLPassword, kURLUserName,
kURLHTTPRequestMethod, kURLHTTPRequestHeader, kURLHTTPRequestBody, and
kURLHTTPUserAgent. For a description of these property name constants and their corresponding
data types, see “Universal URL Property Name Constants” (page 1776) and “HTTP and HTTPS URL Property
Name Constants” (page 1775).

propertyBuffer
A pointer to a buffer containing the data you would like the property to be set to. The data must be
of the correct type.

bufferSize
The size (in bytes) of the data you want to set.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779). The result code
kURLUnsettablePropertyError indicates that a property value cannot be set.

Functions 1753
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Discussion
The URLSetProperty function enables you to set those property values identified by the following constants:
kURLPassword, kURLUserName, kURLPassword, kURLHTTPRequestMethod, kURLHTTPRequestHeader,
kURLHTTPRequestBody, and kURLHTTPUserAgent. For a description of these property name constants
and their corresponding data types, see “Universal URL Property Name Constants” (page 1776) and “HTTP and
HTTPS URL Property Name Constants” (page 1775).

You may wish to call URLSetProperty before calling the function URLDownload (page 1741) or
URLUpload (page 1757) to set a URL property before a data transfer operation.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLSimpleDownload
Downloads data from a URL specified by a character string. (Deprecated in Mac OS X v10.4. Use CFNetwork
instead; see CFNetwork Programming Guide.)

OSStatus URLSimpleDownload (
 const char *url,
 FSSpec *destination,
 Handle destinationHandle,
 URLOpenFlags openFlags,
 URLSystemEventUPP eventProc,
 void *userContext
);

Parameters
url

A pointer to a C string representing the pathname of the URL from which data is to be downloaded.
If the pathname specifies a file, the file is downloaded regardless of whether you specify
kURLDirectoryListingFlag or KURLIsDirectoryHintFlag in the openFlags parameter.

destination
A pointer to a file specification structure that identifies the file or directory into which data is to be
downloaded. If you wish to download data into memory, pass NULL in this parameter and a valid
handle in the destinationHandle parameter. If you pass a file specification that does not identify
a file or directory, the name of the file or directory specified by the pathname in the url parameter
is used. If you pass a file or directory that already exists, and do not specify
kURLReplaceExistingFlag in the openFlags parameter, URLSimpleDownload creates a new
file or directory whose name has a number appended before the extension. For example, if the URL
specifies a file named file.txt, URLSimpleDownload changes the filename to file1.txt.

1754 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

destinationHandle
A handle to the destination in memory where you want the data downloaded. Before calling
URLDownload, create a zero-sized handle. If you wish to download data into a file or directory, pass
NULL in this parameter and a valid file specification in the destination parameter.

openFlags
A bitmask that indicates the data transfer options to use. You can specify any of the following masks
for downloading options: kURLReplaceExistingFlag, kURLExpandFileFlag,
kURLExpandAndVerifyFlag, kURLDisplayProgressFlag, kURLDisplayAuthFlag,
kURLIsDirectoryHintFlag, kURLDoNotTryAnonymousFlag, kURLDebinhexOnlyFlag,
kURLNoAutoRedirect, and kURLDirectoryListingFlag. See “Data Transfer Options Mask
Constants” (page 1770) for a description of possible values.

eventProc
A Universal Procedure Pointer (UPP) to your system event callback function, if one exists. For
information on how to write a system event callback, see URLSystemEventProcPtr (page 1760). If
you want to handle events that occur while a progress indicator or authentication dialog box is being
displayed, specify the appropriate mask (either kURLDisplayProgressFlag or
kURLDisplayAuthFlag) in the openFlags parameter and pass a UPP to your callback function in
this parameter. Pass NULL if you do not want to receive notification of these events. In this case, the
URL Access Manager displays a nonmovable modal progress indicator or authentication dialog box.

userContext
A pointer to application-defined storage that will be passed to your system event callback function,
if one exists. Your application can use this to set up its context when your system event callback
function is called.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779). If your application is multi-threaded, and
more than one thread calls URLSimpleDownload simultaneously, URLSimpleDownload returns the result
codekURLProgressAlreadyDisplayedError if you specifykURLDisplayProgressFlag in theopenFlags
parameter and the URL Access Manager is already displaying a progress indicator.

Discussion
The URLSimpleDownload function downloads data from a URL specified by a pathname to a specified file,
directory, or memory. It does not return until the download is complete. If you want to download data from
a URL identified by a reference rather than a pathname, call the function URLDownload (page 1741). The
difference between the two functions is that URLDownload (page 1741) allows you to access other URL Access
Manager functions before, after, or during the download. If you want more control over a data transfer
operation, call the function URLOpen (page 1751).

If you wish to download data to a file or directory, pass a valid file specification in the destination parameter.
If you instead wish to download data to memory, pass a valid handle in the destinationHandle parameter.

When URLSimpleDownload downloads data from a URL that represents a local file (that is, a URL that begins
with file://), the data fork is downloaded but the resource fork is not.

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

URLSimpleDownload yields time to other threads. Your application should call URLSimpleDownload from
a thread other than the main thread so that other processes have time to run.

Availability
Available in Mac OS X v10.0 and later.

Functions 1755
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLSimpleUpload
Uploads a file or directory to an FTP URL specified by a character string. (Deprecated in Mac OS X v10.4. Use
CFNetwork instead; see CFNetwork Programming Guide.)

OSStatus URLSimpleUpload (
 const char *url,
 const FSSpec *source,
 URLOpenFlags openFlags,
 URLSystemEventUPP eventProc,
 void *userContext
);

Parameters
url

A pointer to a C string representing the URL to which a file or directory is to be uploaded. If you wish
to replace the destination directory of this URL with the file or directory that you pass in the source
parameter, terminate the string with a slash character (/), and set the mask constant
kURLReplaceExistingFlag in the openFlags parameter. If you specify a name that already exists
on the server and do not specify kURLReplaceExistingFlag, URLSimpleUpload returns the result
code kURLDestinationExistsError. If you do not specify a name, do not specify
kURLReplaceExistingFlag in the openFlags parameter, and the name already exists on the
server, the URL Access Manager creates a unique name by appending a number to the original name
before the extension, if any. For example, if the URL specifies a file named file.txt,
URLSimpleUpload changes the filename to file1.txt. See “Naming Your Destination File” for
more information.

source
A pointer to a file specification structure that describes the file or directory you want to upload.

openFlags
A bitmask that indicates the data transfer options to use. You can specify any of the following masks
for uploading options: kURLReplaceExistingFlag, kURLBinHexFileFlag,
kURLDisplayProgressFlag, kURLDisplayAuthFlag, and kURLDoNotTryAnonymousFlag. See
“Data Transfer Options Mask Constants” (page 1770) for a description of possible values.

eventProc
A Universal Procedure Pointer (UPP) to your system event callback function, if one exists. For
information on how to write a system event callback, see URLSystemEventProcPtr (page 1760). If
you want to handle events that occur while a progress indicator or authentication dialog box is being
displayed, specify the appropriate mask (either kURLDisplayProgressFlag or
kURLDisplayAuthFlag) in the openFlags parameter and pass a UPP to your callback function in
this parameter. Pass NULL if you do not want to receive notification of these events. In this case, the
URL Access Manager displays a nonmovable modal progress indicator or authentication dialog box.

userContext
A pointer to application-defined storage that will be passed to your system event callback function,
if one exists. Your application can use this to set up its context when your system event callback
function is called.

1756 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779). The result code
kURLDestinationExistsError indicates that you specified a pathname that already exists on the server
but did not set the bit specified by the mask constant kURLReplaceExistingFlag in the openFlags
parameter. If your application is multi-threaded, and more than one thread calls URLSimpleUpload
simultaneously, URLSimpleUpload returns the result code kURLProgessAlreadyDisplayedError if you
specify kURLDisplayProgressFlag in the openFlags parameter and the URL Access Manager is already
displaying a progress indicator.

Discussion
The URLSimpleUpload function uploads a file or directory to an FTP URL specified by a pathname. It does
not return until the upload is complete. If you want to upload data from a URL identified by a reference rather
than a pathname, call the function URLUpload (page 1757). The difference between the two functions is that
URLUpload (page 1757) allows you to access other URL Access Manager functions before, after, or during the
download. If you want more control over a data transfer operation, call the function URLOpen (page 1751).

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

URLSimpleUpload yields time to other threads. Your application should call URLSimpleUpload from a
thread other than the main thread so that other processes have time to run.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

URLUpload
Uploads a file or directory to an FTP URL specified by a URL reference. (Deprecated in Mac OS X v10.4. Use
CFNetwork instead; see CFNetwork Programming Guide.)

Functions 1757
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

OSStatus URLUpload (
 URLReference urlRef,
 const FSSpec *source,
 URLOpenFlags openFlags,
 URLSystemEventUPP eventProc,
 void *userContext
);

Parameters
urlRef

A reference to the URL to which a file or directory is to be uploaded. Once you have called URLUpload,
you cannot use the same reference again. If you wish to replace the destination directory of this URL
with the file or directory that you pass in the source parameter, set the mask constant
kURLReplaceExistingFlag in the openFlags parameter. If you specify a name that already exists
on the server and do not specify kURLReplaceExistingFlag, URLUpload returns the result code
kURLDestinationExistsError. If you do not specify a name, do not specify
kURLReplaceExistingFlag in the openFlags parameter, and the name already exists on the
server, the URL Access Manager creates a unique name by appending a number to the original name
before the extension, if any. For example, if the URL specifies a file named file.txt, URLUpload
changes the filename to file1.txt. See “Naming Your Destination File” for more information.

source
A pointer to a file specification structure that describes the file or directory you want to upload.

openFlags
A bitmask that indicates the data transfer options you want used. You can specify any of the following
masks for uploading options: kURLReplaceExistingFlag, kURLBinHexFileFlag,
kURLDisplayProgressFlag, kURLDisplayAuthFlag, and kURLDoNotTryAnonymousFlag. See
“URL Access Manager Reference” (page 1736) for a description of possible values.

eventProc
A Universal Procedure Pointer (UPP) to your system event callback function, if one exists. For
information on how to write a system event callback, see URLSystemEventProcPtr (page 1760). If
you want to handle events that occur while a progress indicator or authentication dialog box is being
displayed, specify the appropriate mask (either kURLDisplayProgressFlag or
kURLDisplayAuthFlag) in the openFlags parameter and pass a UPP to your callback function in
this parameter. Pass NULL if you do not want to receive notification of these events. In this case, the
URL Access Manager displays a nonmovable modal progress indicator or authentication dialog box.

userContext
A pointer to application-defined storage that will be passed to your system event callback function,
if one exists. Your application can use this to set up its context when your system event callback
function is called.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779). The result code
kURLDestinationExistsError indicates that you specified a pathname that already exists on the server
but did not specify kURLReplaceExistingFlag in the openFlags parameter. If your application is
multi-threaded, and more than one thread calls URLUpload simultaneously, URLUpload returns the result
codekURLProgessAlreadyDisplayedError if you specifykURLDisplayProgressFlag in theopenFlags
parameter and the URL Access Manager is already displaying a progress indicator.

1758 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Discussion
The URLUpload function uploads a file or directory to an FTP URL specified by a URL reference. It does not
return until the upload is complete. If you want to upload data from a URL identified by a pathname rather
than a reference, call the function URLSimpleUpload (page 1756). The difference between the two functions
is that URLUpload allows you to access other URL Access Manager functions before, after, or during the
download. If you want more control over a data transfer operation, call the function URLOpen (page 1751).

Special Considerations

CFNetwork provides better reliability and performance and is used by Apple’s own applications. URL Access
Manager is no longer being enhanced or improved.

URLUpload yields time to other threads. Your application should call URLUpload from a thread other than
the main thread so that other processes have time to run.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
URLAccess.h

Callbacks

URLNotifyProcPtr
Defines a pointer to your notification callback function that handles certain data transfer events that occur
during data transfer operations.

typedef OSStatus (*URLNotifyProcPtr)
(
 void * userContext,
 URLEvent event,
 URLCallbackInfo * callbackInfo
);

If you name your function MyURLNotifyProc, you would declare it like this:

OSStatus MyURLNotifyProc (
 void * userContext,
 URLEvent event,
 URLCallbackInfo * callbackInfo
);

Parameters
userContext

A pointer to application-defined storage that your application previously passed to the function
URLOpen (page 1751). Your application can use this to set up its context when your notification callback
function is called.

Callbacks 1759
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

event
The data transfer event that your application wishes to be notified of. See “Data Transfer Event
Constants” (page 1764) for a description of possible values. The type of event that can trigger your
callback depends on the event mask you passed in the eventRegister parameter of the function
URLOpen (page 1751), and whether you pass a valid file specification in the fileSpec parameter of
URLOpen (page 1751). For more information, see the discussion.

callbackInfo
A pointer to a structure of type URLCallbackInfo (page 1762). On return, the structure contains
information about the data transfer event that occurred. The URL Access Manager passes this
information to your callback function via the callbackInfo parameter of the function
InvokeURLNotifyUPP (page 1737).

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779). Your notification callback function should
process the data transfer event and return noErr.

Discussion
Your notification callback function handles certain data transfer events that occur during data transfer
operations performed by the function URLOpen (page 1751). You can define an event notification function
and the events for which you want to receive notification only if you do not specify a file in which to store
the data for download operations. In order to be notified of these events, you must pass a UPP to your
notification callback function in the notifyProc parameter. You indicate the type of data transfer events
you want to receive via a bitmask in the eventRegister parameter.

Note that if you pass a valid file specification to URLOpen (page 1751), your callback function will not be notified
of data available and transaction completed events as identified by the constants kURLDataAvailableEvent
and kURLTransactionCompleteEvent. If you pass a valid file specification to URLOpen (page 1751), your
callback function notified if any of the following events occur: kURLPercentEvent, kURLPeriodicEvent,
kURLPropertyChangedEvent, kURLSystemEvent, kURLInitiatedEvent, kURLResourceFoundEvent,
kURLDownloadingEvent, kURLUploadingEvent, kURLAbortInitiatedEvent, kURLCompletedEvent,
and kURLErrorOccurredEvent.

When your callback is called, it should process the event immediately and return 0. You may wish your
callback function to update its user interface, allocate and deallocate memory, or call the Thread Manager
function NewThread.

Special Considerations

Do not call the function URLDisposeReference (page 1741) from your notification callback function. Doing
so may cause your application to stop working.

Availability
Available in Mac OS X v10.0 and later.

Declared In
URLAccess.h

URLSystemEventProcPtr
Defines a pointer to your system event notification callback that handles update events that occur while a
dialog box is displayed during a data transfer operation.

1760 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

typedef OSStatus (*URLSystemEventProcPtr)
(
 void * userContext,
 EventRecord * event
);

If you name your function MyURLSystemEventProc, you would declare it like this:

OSStatus MyURLSystemEventProc (
 void * userContext,
 EventRecord * event
);

Parameters
userContext

A pointer to application-defined storage that your application previously passed to the function
URLSimpleDownload (page 1754), URLDownload (page 1741), URLSimpleUpload (page 1756), or
URLUpload (page 1757). Your application can use this value to set up its context when the system
event callback function is called.

event
A pointer to an event record containing information about the system event that occurred during
the data transfer operation.

Return Value
A result code. See “URL Access Manager Result Codes” (page 1779). Your system event callback function should
process the system event and return noErr.

Discussion
You pass a pointer to your callback function in the eventProc parameter of the function
URLSimpleDownload (page 1754), URLSimpleUpload (page 1756), URLDownload (page 1741), or
URLUpload (page 1757) if you want update events to be passed to your application while a dialog box is
displayed by these functions. (In Mac OS X, this is not necessary, since all dialog boxes are moveable). In
order for these functions to display a dialog box, you must set the mask constant kURLDisplayProgressFlag
or kURLDisplayAuthFlag in the bitmask passed in the openFlags parameter. Call the function
NewURLSystemEventUPP (page 1739) to create a UPP to your system event notification callback. If you do
not write your own system event notification callback, these functions will display a nonmovable modal
dialog box.

When your callback is called, it should process the event immediately and return 0. You may wish your
callback function to update its user interface, allocate and deallocate memory, or call the Thread Manager
function NewThread.

Special Considerations

Do not call the function URLDisposeReference (page 1741) from your callback function. Doing so may cause
your application to stop working.

Availability
Available in Mac OS X v10.0 and later.

Declared In
URLAccess.h

Callbacks 1761
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Data Types

URLCallbackInfo
Contains information about a data transfer event.

struct URLCallbackInfo {
 UInt32 version;
 URLReference urlRef;
 const char * property;
 UInt32 currentSize;
 EventRecord * systemEvent;
};
typedef struct URLCallbackInfo URLCallbackInfo;

Fields
version

The version of this structure. This value is currently 0.

urlRef
A reference to the URL associated with the data transfer event.

property
A pointer to a C string representing the name of the URL property that has changed, if relevant. This
field is only valid if a property change event occurs as identified by the event constant
kURLPropertyChangedEvent, described in “Data Transfer Event Constants” (page 1764). or a description
of name constants and data types of the corresponding property values, see “Universal URL Property
Name Constants” (page 1776) and “HTTP and HTTPS URL Property Name Constants” (page 1775). You
should specify this field if the event involves a change in a property value.

currentSize
The current total size (in bytes) of the data that has been downloaded and processed by the client.

systemEvent
A pointer to an event record containing information about the system event that occurred, if relevant.
If the event is not a system event, as identified by the event constant kURLSystemEvent, described
in “Data Transfer Event Constants” (page 1764), this field is not valid.

Discussion
The URLCallbackInfo type represents a structure that contains information about the data transfer event
that you want notification of. The URL Access Manager passes a pointer to this structure in the callbackInfo
parameter of your notification callback function. For information on how to write a notification callback
function, see URLNotifyProcPtr (page 1759).

Availability
Available in Mac OS X v10.0 and later.

Declared In
URLAccess.h

1762 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

URLNotifyUPP
typedef URLNotifyProcPtr URLNotifyUPP;

Discussion
For more information, see the description of the callback function URLNotifyProcPtr (page 1759).

Availability
Available in Mac OS X v10.0 and later.

Declared In
URLAccess.h

URLReference
Represents a reference to a URL.

typedef struct OpaqueURLReference * URLReference;

Discussion
The URLReference type represents a reference to an opaque structure that identifies a URL. You should call
the function URLNewReference (page 1750) to create a URL reference. The function
URLDisposeReference (page 1741) disposes of a URL reference when no longer needed. You pass a reference
of this type to URL Access Manager functions that operate on a URL in some way.

Availability
Available in Mac OS X v10.0 and later.

Declared In
URLAccess.h

URLSystemEventUPP
typedef URLSystemEventProcPtr URLSystemEventUPP;

Discussion
For more information, see the description of the callback function URLSystemEventProcPtr (page 1760).

Availability
Available in Mac OS X v10.0 and later.

Declared In
URLAccess.h

Constants

Authentication Type Constant
Represents the default value of the property value identified by the property name constant kURLAuthType.

Constants 1763
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

enum {
 kUserNameAndPasswordFlag = 0x00000001
};

Constants
kUserNameAndPasswordFlag

Represents the default value of the property value identified by the property name constant
kURLAuthType, described in “Universal URL Property Name Constants” (page 1776). This value indicates
that both the user name and password are used for authentication.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Discussion
This constant represents the default value of the authentication type property value. The authentication type
property value is identified by the property name constant kURLAuthType, described in “Universal URL
Property Name Constants” (page 1776). If you do not set the kURLAuthType property, the default value will
be used for the authentication type. In this case, both the user name and password are used for authentication
purposes.

Data Transfer Event Constants
Identify data transfer events that occur during a data transfer operation.

typedef UInt32 URLEvent;
enum {
 kURLInitiatedEvent = kURLInitiatingState,
 kURLResourceFoundEvent = kURLResourceFoundState,
 kURLDownloadingEvent = kURLDownloadingState,
 kURLAbortInitiatedEvent = kURLAbortingState,
 kURLCompletedEvent = kURLCompletedState,
 kURLErrorOccurredEvent = kURLErrorOccurredState,
 kURLDataAvailableEvent = kURLDataAvailableState,
 kURLTransactionCompleteEvent = kURLTransactionCompleteState,
 kURLUploadingEvent = kURLUploadingState,
 kURLSystemEvent = 29,
 kURLPercentEvent = 30,
 kURLPeriodicEvent = 31,
 kURLPropertyChangedEvent = 32
};

Constants
kURLInitiatedEvent

Indicates the function URLOpen (page 1751) has been called but the location specified by the URL
reference has not yet been accessed.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLResourceFoundEvent
Indicates that the location specified by the URL reference has been accessed and is valid.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

1764 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLDownloadingEvent
Indicates that a download operation is in progress.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLAbortInitiatedEvent
Indicates that a data transfer operation has been aborted. When your application calls the function
URLAbort (page 1740), the URL Access Manager changes the state returned by the function
URLGetCurrentState (page 1744) to kURLAbortingState and passes the constant
kURLAbortInitiatedEvent to your notification callback function. When data transfer is terminated,
the URL Access Manager changes the state returned by URLGetCurrentState (page 1744) to
kURLCompletedState and passes the constant kURLCompletedEvent in the event parameter of
your notification callback function.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLCompletedEvent
Indicates that all operations associated with a call to URLOpen (page 1751) have been completed. This
includes the successful completion of a download or upload operation or the completion of cleanup
work after aborting a download or upload operation. For example, when a data transfer operation is
aborted, the URL Access Manager changes the state returned by the function
URLGetCurrentState (page 1744) to kURLCompletedState and passes the constant
kURLCompletedEvent in the event parameter of your notification callback function.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLErrorOccurredEvent
Indicates that an error occurred during data transfer. If you receive this event, you may wish to call
the function URLGetError (page 1746) to determine the nature of the error.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLDataAvailableEvent
Indicates that data is available in buffers. If you receive this event, you can call the function
URLGetBuffer (page 1743) to obtain the next buffer of data. You may wish to call the function
URLGetDataAvailable (page 1745) to determine the amount of data available for retrieval in a
download operation. Note that if you pass a valid file specification in the fileSpec parameter of
URLOpen (page 1751), your notification callback function will not be called for data available events.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLTransactionCompleteEvent
Indicates that a download operation is complete because there is no more data to retrieve from
buffers. Note that if you pass a valid file specification in the fileSpec parameter of URLOpen (page
1751), your notification callback function will not be called for transaction completed events.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLUploadingEvent
Indicates that an upload operation is in progress.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Constants 1765
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLSystemEvent
Indicates that a system event has occurred.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLPercentEvent
Indicates that the size of the data being downloaded is known. In this case, an increment of one
percent of the data was transferred into buffers.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLPeriodicEvent
Indicates that a time interval of approximately one quarter of a second has passed.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLPropertyChangedEvent
Indicates that a property such as a filename has become known or changed. In this case, the name
of the changed property will be passed to your notification function via the property field of the
callbackInfo structure.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Discussion
The URLEvent enumeration defines constants that identify data transfer events that occur during a data
transfer operation performed by URLOpen (page 1751). In order to be notified of these events, you must pass
a UPP to your data transfer notification callback in the notifyProc parameter. You indicate the type of data
transfer events you want to receive via a bitmask in the eventRegister parameter. For a description of this
bitmask, see “Data Transfer Event Mask Constants” (page 1766).

Data Transfer Event Mask Constants
Represent a mask that identifies the data transfer events occurring during a data transfer operation that your
application wants notification of.

1766 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

typedef unsigned long URLEventMask;
enum {
 kURLInitiatedEventMask = 1 << (kURLInitiatedEvent - 1),
 kURLResourceFoundEventMask = 1 << (kURLResourceFoundEvent
- 1),
 kURLDownloadingMask = 1 << (kURLDownloadingEvent - 1),
 kURLUploadingMask = 1 << (kURLUploadingEvent - 1),
 kURLAbortInitiatedMask = 1 << (kURLAbortInitiatedEvent
- 1),
 kURLCompletedEventMask = 1 << (kURLCompletedEvent - 1),
 kURLErrorOccurredEventMask = 1 << (kURLErrorOccurredEvent
- 1),
 kURLDataAvailableEventMask = 1 << (kURLDataAvailableEvent
- 1),
 kURLTransactionCompleteEventMask = 1 << (kURLTransactionCompleteEvent
- 1),
 kURLSystemEventMask = 1 << (kURLSystemEvent - 1),
 kURLPercentEventMask = 1 << (kURLPercentEvent - 1),
 kURLPeriodicEventMask = 1 << (kURLPeriodicEvent - 1),
 kURLPropertyChangedEventMask = 1 << (kURLPropertyChangedEvent
- 1),
 kURLAllBufferEventsMask = kURLDataAvailableEventMask +
kURLTransactionCompleteEventMask,
 kURLAllNonBufferEventsMask = kURLInitiatedEventMask + kURLDownloadingMask
+ kURLUploadingMask + kURLAbortInitiatedMask + kURLCompletedEventMask
+ kURLErrorOccurredEventMask + kURLPercentEventMask + kURLPeriodicEventMask
+ kURLPropertyChangedEventMask,
 kURLAllEventsMask = 0xFFFFFFFF
};

Constants
kURLInitiatedEventMask

If the bit specified by this mask is set, your notification callback function will be notified when the
function URLOpen (page 1751) has been called but the location specified by the URL reference has not
yet been accessed.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLResourceFoundEventMask
If the bit specified by this mask is set, your notification callback function will be notified when the
location specified by a URL reference has been accessed and is valid.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLDownloadingMask
If the bit specified by this mask is set, your notification callback function will be notified when a
download operation is in progress.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLUploadingMask
If the bit specified by this mask is set, your notification callback function will be notified when an
upload operation is in progress.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Constants 1767
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLAbortInitiatedMask
If the bit specified by this mask is set, your notification callback function will be notified when a
download or upload operation has been aborted. When your application calls the function
URLAbort (page 1740), the URL Access Manager changes the state returned by the function
URLGetCurrentState (page 1744) to kURLAbortingState and passes the constant
kURLAbortInitiatedEvent to your notification callback function. When data transfer is terminated,
the URL Access Manager changes the state returned by URLGetCurrentState (page 1744) to
kURLCompletedState and passes the constant kURLCompletedEvent in the event parameter of
your notification callback function.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLCompletedEventMask
If the bit specified by this mask is set, your notification callback function will be notified when all
operations associated with a call to the function URLOpen (page 1751) have been completed. This
indicates either the successful completion of an operation or the completion of cleanup work after
aborting the operation. For example, when a data transfer operation is aborted, the URL Access
Manager changes the state returned by the function URLGetCurrentState (page 1744) to
kURLCompletedState and passes the constant kURLCompletedEvent in the event parameter of
your notification callback function.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLErrorOccurredEventMask
If the bit specified by this mask is set, your notification callback function will be notified when an error
has occurred. If you receive this event, you may wish to call the function URLGetError (page 1746) to
determine the nature of the error.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLDataAvailableEventMask
If the bit specified by this mask is set, your notification callback function will be notified when data
is available in buffers. If you receive this event, you may wish to call the function
URLGetDataAvailable (page 1745) to determine the amount of data available for retrieval in a
download operation. Note that if you pass a valid file specification in the fileSpec parameter of the
function URLOpen (page 1751), your notification callback function will not be called for data available
events.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLTransactionCompleteEventMask
If the bit specified by this mask is set, your notification callback function will be notified when the
operation is complete because there is no more data to retrieve from buffers. Note that if you pass a
valid file specification in thefileSpecparameter of the functionURLOpen (page 1751), your notification
callback function will not be called for transaction completed events.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLSystemEventMask
Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

1768 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLPercentEventMask
If the bit specified by this mask is set, your notification callback function will be notified when an
increment of one percent of the data has been transferred into buffers. This occurs only when the
size of the data being transferred is known. This information is useful if you want the URL Access
Manager to display a progress indicator.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLPeriodicEventMask
If the bit specified by this mask is set, your notification callback function will be notified when a time
interval of approximately one quarter of a second has passed. You can use this event to report the
progress of the download operation when the size of the data is unknown or for other processing
that you wish to perform at regular intervals.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLPropertyChangedEventMask
If the bit specified by this mask is set, your notification callback function will be notified when the
value of a URL property, such as a filename or user name, has become known or changes.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLAllBufferEventsMask
If the bit specified by this mask is set, your notification callback function will be notified when a
buffer-related event indicated by the event constants kURLDataAvailableEvent or
kURLTransactionCompleteEvent occurred. If you pass a file specification in the fileSpec
parameter of the function URLOpen (page 1751), your notification callback function will not be called
for buffer-related events.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLAllNonBufferEventsMask
If the bit specified by this mask is set, your notification callback function will be notified when an
event unrelated to a buffer occurred. This includes all events except those represented by the constants
kURLDataAvailableEvent and kURLTransactionCompleteEvent.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLAllEventsMask
If the bit specified by this mask is set, your notification callback function will be notified when any of
the above data transfer events occur. If you pass a file specification in the fileSpec parameter of
the functionURLOpen (page 1751), your notification callback function will not be called for buffer-related
events.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Discussion
The URLEventMask enumeration defines masks that identify the data transfer events occurring during a call
to the function URLOpen (page 1751) that your application wants notification of. For a description of data
transfer events, see “Data Transfer Event Constants” (page 1764). You can define an event notification function
and the events for which you want to receive notification only if you do not specify a file in which to store
the data for downloads. You can indicate which events you want to receive notification of via a bitmask in
the eventRegister parameter of URLOpen (page 1751).

Constants 1769
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Data Transfer Options Mask Constants
Represent a mask that identifies the data transfer options to use when uploading or downloading data.

typedef UInt32 URLOpenFlags;
enum {
 kURLReplaceExistingFlag = 1 << 0,
 kURLBinHexFileFlag = 1 << 1,
 kURLExpandFileFlag = 1 << 2,
 kURLDisplayProgressFlag = 1 << 3,
 kURLDisplayAuthFlag = 1 << 4,
 kURLUploadFlag = 1 << 5,
 kURLIsDirectoryHintFlag = 1 << 6,
 kURLDoNotTryAnonymousFlag = 1 << 7,
 kURLDirectoryListingFlag = 1 << 8,
 kURLExpandAndVerifyFlag = 1 << 9,
 kURLNoAutoRedirectFlag = 1 << 10,
 kURLDebinhexOnlyFlag = 1 << 11,
 kURLDoNotDeleteOnErrorFlag = 1 << 12,
 kURLResumeDownloadFlag = 1 << 13,
 kURLReservedFlag = (unsigned long) 1 << 31
};

Constants
kURLReplaceExistingFlag

If the bit specified by this mask is set and the destination file or directory exists, the file or directory
contents are replaced by the newly downloaded or uploaded data. If this bit is not set and the name
of the file is specified and does exist, the URL Access Manager returns the result code
kURLDestinationExistsError. If the name of the file or directory is not specified, the file or
directory already exists, and the bit specified by this mask is not set, a number is appended to the
name before any extension until a unique name is created, and the data is transferred to the new file
or directory name without notifying the calling application that the name has changed. In the case
of a download operation, your application can check the destination parameter of the functions
URLSimpleDownload (page 1754) and URLDownload (page 1741) to obtain the new filename.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLBinHexFileFlag
If the bit specified by this mask is set, the URL Access Manager converts a nontext file that has a
resource fork to BinHex format before uploading it.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLExpandFileFlag
If the bit specified by this mask is set, files in BinHex format are decoded. If version 5.0 of the Stuffit
Engine is installed in the System Folder, the URL Access Manager uses it to expand the file.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

1770 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLDisplayProgressFlag
If the bit specified by this mask is set, the URL Access Manager displays a nonmovable modal progress
indicator during data transfer operations only if you have not provided a system event notification
callback. On Mac OS X, dialog boxes will always be moveable. To handle data transfer events that
occur while a progress indicator is being displayed, pass a UPP to your data transfer event notification
callback in the eventProc parameter of the functions URLSimpleDownload (page 1754),
URLDownload (page 1741), URLSimpleUpload (page 1756), and URLUpload (page 1757).

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLDisplayAuthFlag
If the bit specified by this mask is set, the URL Access Manager displays a nonmovable modal
authentication dialog box when user authentication is required only if you have not provided a system
event notification callback. On Mac OS X, dialog boxes will always be moveable. To handle data transfer
events that occur while an authentication dialog box is being displayed, pass a UPP to your data
transfer event notification callback in the eventProc parameter of the functions
URLSimpleDownload (page 1754), URLDownload (page 1741), URLSimpleUpload (page 1756), and
URLUpload (page 1757). If the bit specified by this mask is clear, the user name and password properties
of the URL are used for authentication purposes. If these are not set, the URL Access Manager returns
the result code kURLAuthenticationError.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLUploadFlag
If the bit specified by this mask is set, the function URLOpen (page 1751) will upload the file or directory
to the specified URL.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLIsDirectoryHintFlag
If the bit specified by this mask is set, download operations assume that the URL points to a directory.
Note that if you pass a pathname that specifies a file in the url parameter of the function
URLSimpleDownload (page 1754), the file is downloaded regardless of whether you specify
kURLDirectoryListingFlag or KURLIsDirectoryHintFlag in the openFlags parameter.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLDoNotTryAnonymousFlag
If the bits specified by this mask is set, when FTP authentication occurs, the functions
URLSimpleDownload (page 1754), URLDownload (page 1741), URLSimpleUpload (page 1756),
URLUpload (page 1757), and URLOpen (page 1751) will not try to log on anonymously. Instead, they will
rely on the setting of the mask constant kURLDisplayAuthFlag. If the bit specified by the
kURLDoNotTryAnonymousFlag mask is not set, these functions will first attempt to log on
anonymously.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Constants 1771
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLDirectoryListingFlag
If the bit specified by this mask is set, a listing of the directory, rather than the entire directory, is
downloaded. If the URL points to a file instead of a directory, the file is downloaded. Note that if you
pass a pathname that specifies a file in the url parameter of the function URLSimpleDownload (page
1754), the file is downloaded regardless of whether you specify kURLDirectoryListingFlag or
KURLIsDirectoryHintFlag in the openFlags parameter.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLExpandAndVerifyFlag
If this flag is available (that is, the File Signing shared library is available) and the bit specified by this
mask is set, the signature attached to the file is verified. Success indicates that the file was signed by
the certificate authority, but the certificate will not be displayed until after the file is downloaded.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLNoAutoRedirectFlag
If the bit specified by this mask is set, if an HTTP request returns a “redirect” status (300, 301, or 302),
the transfer will complete without attempting to redirect to the next URL. Otherwise, redirects are
followed until actual data is encountered or an error is returned.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLDebinhexOnlyFlag
If the bit specified by this mask is set, the internal engine is used to decode files, rather than the
external Stuffit Engine, even if Stuffit is installed. This prevents the display of the Stuffit progress user
interface. If you set this bit, you must also set the kURLExpandFileFlag mask.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLDoNotDeleteOnErrorFlag
Do not delete the downloaded file if an error or abort occurs. This flag applies to downloading only
and should be used if interested in later resuming the download.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLResumeDownloadFlag
The passed in file is partially downloaded, attempt to resume it. Currently works for HTTP only. If no
FSSpec passed in, this flag will be ignored. Overridden by kURLReplaceExistingFlag.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLReservedFlag
Reserved for internal use.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Discussion
The URLOpenFlags enumeration defines masks you can use to identify the data transfer options you want
used when performing data transfer operations. You pass this mask in the openFlags parameter of the
functions URLSimpleDownload (page 1754), URLDownload (page 1741), URLSimpleUpload (page 1756),

1772 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

URLUpload (page 1757), and URLOpen (page 1751). The options that you can specify for upload and download
operations differ, as do those that you can specify for the low-level function URLOpen (page 1751). For a
description of the options you can specify in each case, see the appropriate function discussions.

Data Transfer State Constants
Identifies the current state of a data transfer operation.

typedef UInt32 URLState;
enum {
 kURLNullState = 0,
 kURLInitiatingState = 1,
 kURLLookingUpHostState = 2,
 kURLConnectingState = 3,
 kURLResourceFoundState = 4,
 kURLDownloadingState = 5,
 kURLDataAvailableState = 0x10 + kURLDownloadingState,
 kURLTransactionCompleteState = 6,
 kURLErrorOccurredState = 7,
 kURLAbortingState = 8,
 kURLCompletedState = 9,
 kURLUploadingState = 10
};

Constants
kURLNullState

Indicates that the function URLOpen (page 1751) has not yet been called.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLInitiatingState
Indicates that the function URLOpen (page 1751) has been called, but the location specified by the URL
reference has not yet been accessed. The stream enters this state from the kURLNullState state.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLLookingUpHostState
Indicates that the function URLOpen (page 1751) has been called, and that the host is being looked up.
The stream enters this state from the kURLInitiatingState state.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLConnectingState
Indicates that the function URLOpen (page 1751) has been called, and a connection is being made. The
stream enters this state from the kURLLookingUpHostState state.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLResourceFoundState
Indicates that the location specified by the URL reference has been accessed and is valid. The stream
enters this state from the kURLConnectingState state.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Constants 1773
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLDownloadingState
Indicates that the download operation is in progress but there is currently no data in the buffers. The
stream enters this state initially from the kURLResourceFoundState state. During a download
operation, the stream’s state may alternate between the kURLDownloadingState and the
kURLDataAvailableState states.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLDataAvailableState
Indicates that the download operation is in progress and data is available in the buffers. The stream
initially enters this state from the kURLDownloadingState state. During a download operation, the
stream’s state may alternate between the kURLDownloadingState and the
kURLDataAvailableState states. If the stream is in the data available state, you may want to call
the function URLGetDataAvailable (page 1745) to determine the amount of data available for
download. If you pass NULL in the fileSpec parameter of the function URLOpen (page 1751), you will
need to call the function URLGetBuffer (page 1743) to obtain the next buffer of data.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLTransactionCompleteState
Indicates that a download or upload operation is complete. The stream can enter this state from the
kURLDownloadingState state.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLErrorOccurredState
Indicates that an error occurred during data transfer. The stream can enter this state from any state
except the kURLAbortingState state. If the stream is in this state, you may wish to call the function
URLGetError (page 1746) to determine the nature of the error.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLAbortingState
Indicates that a download or upload operation is aborting. The stream enters this state from the
kURLErrorOccurredState state or as a result of calling the function URLOpen (page 1751) when the
stream is in any other state. When your application calls the function URLAbort (page 1740), the URL
Access Manager changes the state returned by the function URLGetCurrentState (page 1744) to
kURLAbortingState and passes the constant kURLAbortInitiatedEvent to your notification
callback function.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLCompletedState
Indicates that there is no more activity to be performed on this stream. In this case, the data transfer
has either completed successfully or been aborted. The stream enters this state from the
kURLTransactionCompleteState or the kURLAbortingState state. When data transfer is
terminated after a data transfer operation is aborted, the URL Access Manager changes the state
returned by URLGetCurrentState (page 1744) to kURLCompletedState and passes the constant
kURLCompletedEvent in the event parameter of your notification callback function.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

1774 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLUploadingState
Indicates that an upload operation is in progress.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Discussion
The URLState enumeration defines constants that identify the status of a data transfer operation with respect
to a URL. The function URLGetCurrentState (page 1744) passes back one of these constants in the state
parameter to indicate the status of a data transfer operation. All constants except kURLDataAvailableState
and kURLCompletedState can be returned at any time. If you pass a valid file specification in the fileSpec
parameter of the function URLOpen (page 1751), your notification callback function will not be notified of data
available and transaction completed states as identified by the constants kURLDataAvailableState and
kURLTransactionCompleteState.

HTTP and HTTPS URL Property Name Constants
Identify property values specific to HTTP and HTTPS URLs.

#define kURLHTTPRequestMethod "URLHTTPRequestMethod"
#define kURLHTTPRequestHeader "URLHTTPRequestHeader"
#define kURLHTTPRequestBody "URLHTTPRequestBody"
#define kURLHTTPRespHeader "URLHTTPRespHeader"
#define kURLHTTPUserAgent "URLHTTPUserAgent"
#define kURLHTTPRedirectedURL "URLHTTPRedirectedURL"
#define kURLSSLCipherSuite "URLSSLCipherSuite"

Constants
kURLHTTPRequestMethod

Identifies the HTTP request method property value. You use this name constant to set or obtain a C
string that represents the HTTP method to be used in the request. If you are posting a form, you must
set this property to the string "POST".

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLHTTPRequestHeader
Identifies the HTTP request header property value. You use this name constant to set or obtain a C
string that represents the HTTP header to be used in the request. You may set this property to contain
all headers needed for the request. If you are posting a form and have set the properties identified
by the name constants kURLHTTPRequestMethod and kURLHTTPRequestBody, you do not need
to set the property identified by this tag.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLHTTPRequestBody
Identifies the HTTP request body property value. You use this name constant to set or obtain a buffer
of data that represents the HTTP body to be provided in the request. If you set the property identified
by this tag but not that identified by the name constant kURLHTTPHeader, a body-length header is
automatically added to the request. If you are posting a form, you must set this property to the form
data you want sent.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Constants 1775
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLHTTPRespHeader
Identifies the HTTP response header property value. You use this name constant to obtain a C string
that represents the HTTP response header that was received.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLHTTPUserAgent
Identifies the user agent property value. You use this name constant to set or obtain a C string that
represents the HTTP user agent string that is embedded in HTTP requests. By default, the URL Access
Manager sets the user agent string to "URL Access 1.0 (Macintosh; PPC)".

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLHTTPRedirectedURL
Identifies the redirected URL property value. You use this name constant to obtain a C string that
represents the URL that you were redirected to.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLSSLCipherSuite
Identifies the SSL cipher suite property value.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Discussion
These constants represent Apple-defined name constants that identify property values specific to HTTP and
HTTPS URLs. For a description of the name constants that identify property values universal to all URLs, see
Universal URL Property Name Constants (page 1776).

You pass one of these name constants in the property parameter of the functions URLSetProperty (page
1753) and URLGetProperty (page 1747), respectively, to set or obtain a particular property value. Note that
you can only set HTTP and HTTPS property values identified by the constants kURLHTTPRequestMethod ,
kURLHTTPRequestHeader, kURLHTTPRequestBody, and kURLHTTPUserAgent. You must also pass the
correct data type corresponding to the property value in the propertyBuffer parameter of these functions.

Version Notes
Prior to version 2.0.3 of the URL Access Manager, the data type of the property value identified by the name
constant kURLHTTPRequestBody was a C string. In 2.0.3 and later, the data type is a buffer of data.

Universal URL Property Name Constants
Identify property values universal to all URLs.

1776 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

#define kURLURL "URLString"
#define kURLResourceSize "URLResourceSize"
#define kURLLastModifiedTime "URLLastModifiedTime"
#define kURLMIMEType "URLMIMEType"
#define kURLFileType "URLFileType"
#define kURLFileCreator "URLFileCreator"
#define kURLCharacterSet "URLCharacterSet"
#define kURLResourceName "URLResourceName"
#define kURLHost "URLHost"
#define kURLAuthType "URLAuthType"
#define kURLUserName "URLUserName"
#define kURLPassword "URLPassword"
#define kURLStatusString "URLStatusString"
#define kURLIsSecure "URLIsSecure"
#define kURLCertificate "URLCertificate"
#define kURLTotalItems "URLTotalItems"
#define kURLConnectTimeout "URLConnectTimeout"

Constants
kURLURL

Identifies the name string property value. You use this name constant to obtain a C string that
represents the URL.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLResourceSize
Identifies the resource size property value. You use this name constant to obtain a value of type Size
that represents the total size of the data at the location specified by the URL.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLLastModifiedTime
Identifies the modification time property value. You use this name constant to obtain a value of type
UInt32 that represents the last time the data was modified.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLMIMEType
Identifies the MIME type property value. You use this name constant to obtain a Pascal string that
represents the MIME type of the URL.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLFileType
Identifies the file type property value. You use this name constant to set or obtain a value of type
OSType that represents the file type as specified in a call to the function URLOpen (page 1751). If the
file type was not specified, kURLFileType obtains the file type compatible with the MIME type.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Constants 1777
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLFileCreator
Identifies the file creator property value. You use this name constant to set or obtain a value of type
OSType that represents the file creator as specified in a call to the function URLOpen (page 1751). If the
file creator was not specified, kURLFileType obtains the file type compatible with the MIME type.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLCharacterSet
Identifies the character set property value. You use this name constant to obtain a Pascal string that
represents the character set used by the URL, as returned by the HTTP server.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLResourceName
Identifies the resource name property value. You use this name constant to obtain a Pascal string that
represents the name associated with the data to be downloaded.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLHost
Identifies the host property value. You use this name constant to obtain a Pascal string that represents
the host on which the data is located.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLAuthType
Identifies the authentication type property value. You use this name constant to obtain a value that
represents the type of authentication that the download operation requires. The default authentication
type is kUserNameAndPasswordFlag, described in Authentication Type Constant (page 1763).

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLUserName
Identifies the user name property value. You use this name constant to set or obtain a Pascal string
that represents the user name used for authentication.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLPassword
Identifies the password property value. You use this name constant to set or obtain a Pascal string
that represents the password used for authentication.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLStatusString
Identifies the status property value. You use this name constant to obtain a Pascal string that represents
the current status of the data stream. You can use this property to display the status of the data
transfer operation.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

1778 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

kURLIsSecure
Identifies the security property value. You use this name constant to get a Boolean value that indicates
whether the download operation is secure.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLCertificate
Identifies the certificate property value. You use this name constant to obtain a buffer of data that
represents the certificate provided by a remote server.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLTotalItems
Identifies the total items property value. You use this name constant to obtain a value of type UInt32
that represents the total number of items being uploaded or downloaded.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

kURLConnectTimeout
Identifies the connection timeout property value.

Available in Mac OS X v10.0 and later.

Declared in URLAccess.h.

Discussion
These constants represent Apple-defined name constants that identify property values universal to all URLs.
For a description of the name constants that identify property values specific to HTTP and HTTPS URLs, see
HTTP and HTTPS URL Property Name Constants (page 1775).

You pass one of these name constants in the property parameter of the functions URLSetProperty (page
1753) and URLGetProperty (page 1747), respectively, to set or obtain a particular property value. Note that
you can only set the universal property values identified by the constants kURLPassword and kURLUserName.
You must also pass the correct data type corresponding to the property value in the propertyBuffer
parameter of these functions.

Result Codes

The most common result codes returned by URL Access Manager are listed in the table below. The following
result codes may also be returned; noErr (0), nsvErr (-35), fnfErr (-43), paramErr (-50), and dirNFErr
(-120).

DescriptionValueResult Code

Returned by functions that operate on URL
references to indicate that a reference is invalid.

-30770kURLInvalidURLReferenceError

Available in Mac OS X v10.0 and later.

Result Codes 1779
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

DescriptionValueResult Code

Returned by the functions URLSimpleDownload,
URLDownload,URLSimpleUpload, andURLUpload
to indicate that a progress indicator is already
displayed.

-30771kURLProgressAlreadyDisplayedError

Available in Mac OS X v10.0 and later.

Returned by the functions URLSimpleUpload and
URLUpload to indicate that the destination file
already exists.

-30772kURLDestinationExistsError

Available in Mac OS X v10.0 and later.

Returned by functions that operate on URL strings
to indicate that the format of the URL is invalid.

-30773kURLInvalidURLError

Available in Mac OS X v10.0 and later.

Returned by functions that operate on URL strings
to indicate that the transfer protocol is not
supported.

-30774kURLUnsupportedSchemeError

Available in Mac OS X v10.0 and later.

Indicates a failed data transfer operation.-30775kURLServerBusyError

Available in Mac OS X v10.0 and later.

Returned by URLSimpleDownload, URLDownload,
URLSimpleUpload, and URLUpload functions if no
authentication dialog box is allowed and the user
name and password properties of the URL are set
incorrectly or don’t exist.

-30776kURLAuthenticationError

Available in Mac OS X v10.0 and later.

Returned by the functions URLGetProperty and
URLGetPropertySize to indicate that the value
or size of a URL property is not available.

-30777kURLPropertyNotYetKnownError

Available in Mac OS X v10.0 and later.

Returned by functions URLSetProperty,
URLGetProperty, and URLGetPropertySize to
indicate that the property is invalid or undefined.

-30778kURLUnknownPropertyError

Available in Mac OS X v10.0 and later.

Returned by the function URLGetProperty to
indicate that the buffer is too small to receive the
requested property.

-30779kURLPropertyBufferTooSmallError

Available in Mac OS X v10.0 and later.

1780 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

DescriptionValueResult Code

Returned by the function URLSetProperty to
indicate that the property cannot be set.

-30780kURLUnsettablePropertyError

Available in Mac OS X v10.0 and later.

Returned by the functions URLGetDataAvailable,
URLGetBuffer, and URLReleaseBuffer to
indicate that the call is invalid.

-30781kURLInvalidCallError

Available in Mac OS X v10.0 and later.

Indicates a failed data transfer operation.-30783kURLFileEmptyError

Available in Mac OS X v10.0 and later.

Indicates that your extension failed to load.-30785kURLExtensionFailureError

Available in Mac OS 9 and earlier.

Indicates a failed data transfer operation. This is
returned when you attempt to upload through an
HTTP proxy, since upload through proxies is not
supported.

-30786kURLInvalidConfigurationError

Available in Mac OS X v10.0 and later.

Returned by the function
URLGetURLAccessVersion to indicate that the
URL Access Manager is not available.

-30787kURLAccessNotAvailableError

Available in Mac OS X v10.0 and later.

Indicates that URL Access Manager was called from
within a 68K context.

-30788kURL68kNotSupportedError

Available in Mac OS 9 and earlier.

Result Codes 1781
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

1782 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 23

URL Access Manager Reference (Not Recommended)

Framework: Carbon/Carbon.h

Declared in MacWindows.h

Overview

Your application uses the Window Manager to create and manage windows. For example, your application
uses the Window Manager to create and display a new window when the user creates a new document or
opens an existing document. When the user clicks or holds down the mouse button while the cursor is in a
window created by your application, you use the Window Manager to determine the location of the mouse
action and to alter the window display as appropriate. When the user closes a window, you use the Window
Manager to remove the window from the screen.

A Macintosh application uses windows for most communication with the user, from discrete interactions
such as presenting and acknowledging alert boxes to open-ended interactions such as creating and editing
documents. Users generally type words and formulas, draw pictures, or otherwise enter data in a window
on the screen. Your application typically lets the user save this data in a file, open saved files, and view the
saved data in a window.

A window can be any size or shape, and the user can display any number of windows, within the limits of
available memory, on the screen at once.

The Window Manager defines a set of standard windows and provides a set of routines for managing them.
The Window Manager helps your application display windows that are consistent with the Macintosh user
interface.

Note: Historically, the Window Manager has offered different successive methods for creating and
manipulating windows. Many of the older functions have been deprecated and, in most cases, this reference
provides a recommended replacement. For the most up-to-date information about creating windows, see
the document Handling Carbon Windows and Controls.

Carbon supports the Window Manager. Be aware, however, that if you use custom window definition
procedures (also known as WDEFs), you must move them out of resources and compile them into your
application. In addition:

 ■ Your application must use the functions defined by the Window Manager whenever it creates and
disposes of Window Manager data structures. For example, instead of directly creating and disposing
of window records, applications must call Window Manager functions such as CreateNewWindow and
DisposeWindow.

 ■ You must revise your application so that it accesses Window Manager data structures only through
accessor functions.

Overview 1783
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

 ■ You are encouraged to adopt the standard Mac OS window definition procedures in your application.
Applications that use the standard Mac OS window definition procedures inherit the Mac OS human
interface appearance on Mac OS 9 and Mac OS X. Applications that use custom window definition
procedures work correctly, but because custom definition procedures invoke their own drawing routines,
the Mac OS can’t draw these applications with the current appearance (unless you specifically use
Appearance Manager drawing primitives).

Functions by Task

Accessing Information About a Window

IsValidWindowPtr (page 1902)
Reports whether a pointer is a valid window pointer.

GetWindowGreatestAreaDevice (page 1848)
Returns the graphics device with the greatest area of intersection with a specified window region.

HIWindowGetGreatestAreaDisplay (page 1887)
Finds the display with the greatest area of intersection with a window region.

HIWindowCopyShape (page 1879)
Retrieves a shape that describes a region of a window.

HIWindowGetScaleMode (page 1889)
Obtains the window’s scale mode and the application’s display scale factor.

GetWindowList (page 1856)
Obtains the first window in a window list.

GetWindowWidgetHilite (page 1868)
Obtains the window part code of the window widget that is currently highlighted.

IsWindowModified (page 1907)
Obtains the modification state of the specified window.

SetWindowModified (page 1946)
Sets the modification state of the specified window.

HIWindowGetCGWindowID (page 1886)
Returns the Quartz window ID assigned to a window.

HIWindowFromCGWindowID (page 1884)
Returns the window in the current process with a specified Quartz window ID.

GetWindowRegion (page 1864) Deprecated in Mac OS X v10.5
Obtains a handle to a specific window region.

Activating Window Path Pop-Up Menus

IsWindowPathSelectEvent (page 1908)
Determines whether a Carbon event describing a click on a window’s title should cause a path selection
menu to be displayed.

WindowPathSelect (page 1970)
Displays a window path pop-up menu.

1784 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

IsWindowPathSelectClick (page 1907) Deprecated in Mac OS X v10.5
Reports whether a mouse click should activate the window path pop-up menu. (Deprecated. Use
IsWindowPathSelectEvent (page 1908) instead.)

Associating Data With Windows

GetWindowProperty (page 1859)
Obtains a piece of data that is associated with a window.

SetWindowProperty (page 1948)
Associates an arbitrary piece of data with a window.

GetWindowPropertySize (page 1861)
Obtains the size of a piece of data that is associated with a window.

RemoveWindowProperty (page 1923)
Removes a piece of data that is associated with a window.

ChangeWindowPropertyAttributes (page 1806)
Changes attributes associated with a window property.

GetWindowPropertyAttributes (page 1860)
Obtains the attributes of a window property.

Collapsing Windows

CollapseWindow (page 1810)
Collapses or expands a window to the dock.

CollapseAllWindows (page 1810)
Collapses or expands all collapsable windows in an application.

IsWindowCollapsed (page 1904)
Determines whether a window is currently collapsed.

IsWindowCollapsable (page 1903)
Determines whether a window can be collapsed.

Creating, Storing, and Closing Windows

CreateNewWindow (page 1815)
Creates a window from parameter data.

CreateCustomWindow (page 1814)
Creates a custom window based on a registered toolbox object class or a custom window root view.

HIWindowCreate (page 1880)
Creates a standard or custom window.

DisposeWindow (page 1820)
Removes a window.

CreateWindowFromCollection (page 1817) Deprecated in Mac OS X v10.5
Creates a window from collection data. (Deprecated. Use HIArchiveCopyDecodedCFType (page
2310) to decode a window from an archive instead.)

Functions by Task 1785
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

CreateWindowFromResource (page 1818) Deprecated in Mac OS X v10.5
Creates a window from 'wind' resource data. (Deprecated. Use nib files and
CreateWindowFromNib (page 1059) instead.)

StoreWindowIntoCollection (page 1960) Deprecated in Mac OS X v10.5
Stores data describing a window into a collection. (Deprecated. Use HIArchiveEncodeCFType (page
2314) to encode a window to an archive instead.)

Displaying Floating Windows and Window Animations

AreFloatingWindowsVisible (page 1801)
Indicates whether an application’s floating windows are currently visible.

HideFloatingWindows (page 1871)
Hides an application’s floating windows.

ShowFloatingWindows (page 1956)
Shows an application’s floating windows.

Displaying Windows

ActivateWindow (page 1800)
Activates or deactivates a window.

IsWindowActive (page 1902)
Indicates whether the specified window is active.

HiliteWindow (page 1873)
Sets a window’s highlighting status.

SelectWindow (page 1929)
Makes a window active.

ShowWindow (page 1959)
Makes an invisible window visible.

HideWindow (page 1872)
Makes a window invisible.

ShowHide (page 1957)
Sets a window’s visibility.

BringToFront (page 1803)
Brings a window to the front.

SendBehind (page 1929)
Moves one window behind another.

HIWindowInvalidateShadow (page 1890)
Recalculates a window’s shadow.

Dragging Proxy Icons

BeginWindowProxyDrag (page 1802)
Creates the drag reference and the drag image when the user drags a proxy icon.

1786 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

EndWindowProxyDrag (page 1826)
Disposes of the drag reference when the user completes the drag of a proxy icon.

HiliteWindowFrameForDrag (page 1874)
Sets the highlight state of the window’s structure region to reflect the window’s validity as a
drag-and-drop destination.

TrackWindowProxyDrag (page 1963)
Handles all aspects of the drag process when the user drags a proxy icon.

TrackWindowProxyFromExistingDrag (page 1964)
Allows custom handling of the drag process when the user drags a proxy icon.

HIWindowTrackProxyDrag (page 1897)
Tracks the drag of a window proxy icon.

Establishing Proxy Icons

GetWindowProxyAlias (page 1862)
Obtains an alias for the file that is associated with a window.

SetWindowProxyAlias (page 1949)
Associates a file with a window.

GetWindowProxyIcon (page 1863)
Obtains a window’s proxy icon.

SetWindowProxyIcon (page 1951)
Overrides the default proxy icon for a window.

RemoveWindowProxy (page 1923)
Dissociates a file from a window.

SetWindowProxyCreatorAndType (page 1950)
Sets the proxy icon for a window that lacks an associated file.

HIWindowGetProxyFSRef (page 1888)
Obtains the FSRef used to determine the proxy icon for a window.

HIWindowSetProxyFSRef (page 1894)
Sets the proxy icon for a window using an FSRef to a file system object.

Getting and Setting Window Structure Fields

GetNextWindow (page 1839)
Returns the next window in a window list.

GetWindowKind (page 1856)
Returns a window’s window kind.

SetWindowKind (page 1945)
Sets a window’s window kind.

GetWindowPort (page 1858)
Gets the window’s color graphics port.

SetPortWindowPort (page 1932)
Sets the current graphics port to the window’s port.

Functions by Task 1787
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

GetWindowPortBounds (page 1859)
Obtains the bounds of the window port.

GetWindowStandardState (page 1866)
Obtains a window’s standard zoom rectangle.

SetWindowStandardState (page 1953)
Sets a window’s standard zoom rectangle.

GetWindowUserState (page 1868)
Returns a window’s user zoom rectangle.

SetWindowUserState (page 1954)
Sets a window’s user zoom rectangle.

IsWindowHilited (page 1905)
Indicates whether the window frame is currently highlighted.

IsWindowLatentVisible (page 1906)
Indicates whether a window is visible onscreen or is latently visible but not currently onscreen.

IsWindowVisible (page 1910)
Indicates whether the window frame is currently visible.

GetWindowStructurePort (page 1866)
Obtains a graphics port that is used when drawing a window’s structure.

GetWindowStructureWidths (page 1867)
Obtains the width of the structure region on each edge of a window.

Handling Mouse Events in Windows

DragWindow (page 1824)
Moves a window on the screen when the user drags it by its drag region.

MoveWindow (page 1910)
Moves a window on the desktop.

PinRect (page 1919)
Returns the point within the specified rectangle that is closest to the specified point.

SizeWindow (page 1959)
Sets the size of a window.

TrackBox (page 1961)
Tracks clicks in the collapse, close, size, and zoom boxes, and clicks of the toolbar button.

TrackGoAway (page 1962)
Tracks the cursor when the user presses the mouse button while the cursor is in the close box.

ZoomWindow (page 1971)
Zooms the window when the user has pressed and released the mouse button with the cursor in the
zoom box.

Locating Windows

ActiveNonFloatingWindow (page 1800)
Returns the currently active nonfloating window.

1788 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

FrontNonFloatingWindow (page 1829)
Returns to the application the frontmost visible window that is not a floating window.

FindWindow (page 1827)
Maps the location of the cursor to a part of the screen or a region of a window when your application
receives a mouse-down event.

FindWindowOfClass (page 1828)
Finds a window of a specific class at the specified point onscreen.

HIWindowFindAtLocation (page 1882)
Finds a window in the current process at a specified location.

GetFrontWindowOfClass (page 1834)
Obtains the frontmost window of a given class.

GetNextWindowOfClass (page 1839)
Obtains the next window in a given window group.

GetPreviousWindow (page 1840)
Returns the window above the specified window in the window list.

FrontWindow (page 1830) Deprecated in Mac OS X v10.5
Identifies the frontmost visible window. (Deprecated. Use ActiveNonFloatingWindow (page 1800),
FrontNonFloatingWindow (page 1829), or GetFrontWindowOfClass (page 1834) instead.)

Maintaining the Update Region

BeginUpdate (page 1801)
Starts updating a window when you receive an update event for that window.

EndUpdate (page 1826)
Finishes updating a window.

InvalWindowRect (page 1898)
Adds a rectangle to a window’s update region.

InvalWindowRgn (page 1899)
Adds a region to a window’s update region.

IsWindowUpdatePending (page 1909)
Determines whether a window update is pending.

ValidWindowRect (page 1969)
Removes a rectangle from a window’s update region.

ValidWindowRgn (page 1969)
Removes a region from a window’s update region.

Managing Activation Scope

GetWindowActivationScope (page 1841)
Obtains a window’s activation scope.

SetWindowActivationScope (page 1935)
Sets a window’s activation scope.

Functions by Task 1789
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Managing Dock Tiles

HIWindowCreateCollapsedDockTileContext (page 1881)
Creates a Quartz graphics context for drawing a collapsed window’s Dock tile.

HIWindowReleaseCollapsedDockTileContext (page 1892)
Releases a Quartz graphics context for drawing a collapsed window’s Dock tile.

GetWindowDockTileMenu (page 1847)
Returns the menu to be displayed by a window’s dock tile.

SetWindowDockTileMenu (page 1940)
Associates a pop-up menu with a window.

UpdateCollapsedWindowDockTile (page 1968)
Updates the image of a window in the dock to the current contents of the window.

CreateQDContextForCollapsedWindowDockTile (page 1816) Deprecated in Mac OS X v10.5
Obtains a CGrafPtr for a collapsed window’s tile in the dock. (Deprecated. Use
HIWindowCreateCollapsedDockTileContext (page 1881) instead.)

ReleaseQDContextForCollapsedWindowDockTile (page 1921) Deprecated in Mac OS X v10.5
Releases a port and other state created by CreateQDContextForCollapsedWindowDockTile.
(Deprecated. Use HIWindowReleaseCollapsedDockTileContext (page 1892) instead.)

Managing Modality

GetWindowModality (page 1857)
Obtains the modality of a window.

SetWindowModality (page 1946)
Sets the modality of a window.

HIWindowIsDocumentModalTarget (page 1891)
Determines if a window is currently the target window of another document modal window, such as
a sheet.

Managing Themes

SetThemeWindowBackground (page 1933)
Sets a window’s background theme.

SetThemeTextColorForWindow (page 1933)
Sets a text color that contrasts with a theme brush.

HIWindowGetThemeBackground (page 1889) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.5
Gets the theme background brush for a window.

Managing Toolbars

GetWindowToolbar (page 1867)
Obtains the toolbar associated with a window.

1790 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

SetWindowToolbar (page 1954)
Associates a toolbar with a window.

ShowHideWindowToolbar (page 1957)
Shows or hides the toolbar.

IsWindowToolbarVisible (page 1909)
Determines whether a window’s toolbar is visible.

HIWindowSetToolbarView (page 1895) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.5
Sets a custom toolbar view for a window.

Managing Transitions

TransitionWindow (page 1965)
Shows, hides, moves, or resizes a window with appropriate animation and sound.

TransitionWindowAndParent (page 1966)
Shows or hides a window, potentially also moving a second window, with animation and sound.

TransitionWindowWithOptions (page 1967)
Transitions a window from one state to another with appropriate animation and sound.

Managing Transparency

GetWindowAlpha (page 1842)
Returns the current alpha channel value for the window.

SetWindowAlpha (page 1935)
Sets the window’s alpha channel value.

Managing UPPs

DisposeWindowDefUPP (page 1821) Deprecated in Mac OS X v10.5
Disposes of the UPP for your window definition. (Deprecated. The WDEF interface is deprecated; use
a custom HIView to draw your custom window frame instead.)

DisposeWindowPaintUPP (page 1822) Deprecated in Mac OS X v10.5
Disposes of the UPP to your region painting callback function. (Deprecated. The window content
painting interface is deprecated; use a kEventControlDraw Carbon event handler on a compositing
window’s content view instead.)

InvokeWindowDefUPP (page 1900) Deprecated in Mac OS X v10.5
Invokes the UPP for a window definition. (Deprecated. The WDEF interface is deprecated; use a custom
HIView to draw your custom window frame instead.)

InvokeWindowPaintUPP (page 1901) Deprecated in Mac OS X v10.5
Invokes the UPP for the specified painting region. (Deprecated. The window content painting interface
is deprecated; use a kEventControlDraw Carbon event handler on a compositing window’s content
view instead.)

NewWindowDefUPP (page 1917) Deprecated in Mac OS X v10.5
Creates a new UPP for a window definition. (Deprecated. The WDEF interface is deprecated; use a
custom HIView to draw your custom window frame instead.)

Functions by Task 1791
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

NewWindowPaintUPP (page 1917) Deprecated in Mac OS X v10.5
Creates a new UPP for a painting region. (Deprecated. The window content painting interface is
deprecated; use a kEventControlDraw Carbon event handler on a compositing window’s content
view instead.)

Managing Window Attributes

GetWindowAttributes (page 1842)
Obtains the attributes of a window.

GetAvailableWindowAttributes (page 1830)
Returns the window attributes that are valid for a window class

ChangeWindowAttributes (page 1805)
Changes a window’s attributes.

HIWindowTestAttribute (page 1896)
Returns a Boolean value indicating whether a window has a specified attribute.

HIWindowChangeAttributes (page 1874)
Changes the attributes of a window.

HIWindowIsAttributeAvailable (page 1890)
Returns a Boolean value indicating whether a window attribute is valid for a specified window class.

Managing Window Availability

HIWindowChangeAvailability (page 1875)
Changes the availability of a window during Exposé or in Spaces.

HIWindowGetAvailability (page 1884)
Obtains the availability of a window during Exposé or in Spaces.

Managing Window Classes

GetWindowClass (page 1844)
Obtains the class of a window.

HIWindowChangeClass (page 1876)
Changes the appearance and behavior of a window.

IsValidWindowClass (page 1901)
Determines whether a given window class is valid.

SetWindowClass (page 1938) Deprecated in Mac OS X v10.5
Sets the class of a window. (Deprecated. Use HIWindowChangeClass (page 1876),
SetWindowGroup (page 1941), or HIWindowChangeAttributes (page 1874) instead.)

Managing Window Features

GetWindowFeatures (page 1847)
Obtains the features that a window supports.

1792 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

HIWindowChangeFeatures (page 1877)
Changes a window’s features.

Managing Window Focus

SetUserFocusWindow (page 1934)
Designates a window to receive user focus.

GetUserFocusWindow (page 1841)
Returns the current user focus window.

HIWindowShowsFocus (page 1896) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.4
Returns a Boolean value indicating whether a window's content should show focus indicators such
as focus rings.

Managing Window Groups

ChangeWindowGroupAttributes (page 1806)
Changes the attributes of a window group.

CopyWindowGroupName (page 1812)
Obtains a copy of the window group name.

CountWindowGroupContents (page 1813)
Counts the number of members of a window group.

CreateWindowGroup (page 1818)
Creates a window group.

DebugPrintAllWindowGroups (page 1819)
Debugging utility function listing all window groups.

DebugPrintWindowGroup (page 1819)
Debugging utility functions for use with window groups.

GetIndexedWindow (page 1836)
Obtains the window at the given index in the window group.

GetWindowGroup (page 1849)
Obtains the window group associated with a window.

GetWindowGroupAttributes (page 1849)
Obtains the attributes of a window group.

GetWindowGroupContents (page 1850)
Obtains the contents of a window group.

GetWindowGroupLevel (page 1851)
Obtains the level of the group in the window class hierarchy.

GetWindowGroupLevelOfType (page 1851)
Obtains the Core Graphics window level of a window group.

GetWindowGroupOfClass (page 1852)
Obtains the window group corresponding to a given window class.

GetWindowGroupOwner (page 1853)
Obtains the window that owns a window group. (if any)

Functions by Task 1793
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

GetWindowGroupParent (page 1853)
Obtains the parent group of a window group.

GetWindowGroupRetainCount (page 1853)
Determines the current reference count for a window group.

GetWindowGroupSibling (page 1854)
Obtains the next or previous group of a window group.

GetWindowIndex (page 1855)
Obtains the index number of a specified window in a group.

IsWindowContainedInGroup (page 1904)
Determines if a window is a member of a window group or any of its subgroups.

ReleaseWindowGroup (page 1922)
Decrements the reference count for a window group.

RetainWindowGroup (page 1927)
Increments the reference count for a window group.

SendWindowGroupBehind (page 1930)
Orders one window group behind another.

SetWindowGroup (page 1941)
Assigns a window to a window group.

SetWindowGroupLevel (page 1942)
Sets the level of group in the window class hierarchy.

SetWindowGroupLevelOfType (page 1942)
Sets the window level of a window group.

SetWindowGroupName (page 1943)
Assigns a name to a window group.

SetWindowGroupOwner (page 1944)
Sets a window as the owner of a window group.

SetWindowGroupParent (page 1944)
Sets a window group to be the parent of another window group.

Managing Window Titles

CopyWindowAlternateTitle (page 1812)
Obtains a copy of the alternate window title.

SetWindowAlternateTitle (page 1936)
Sets an alternate window title.

CopyWindowTitleAsCFString (page 1813)
Copies the window title into a Core Foundation string.

SetWindowTitleWithCFString (page 1953)
Sets the window title to the contents of a Core Foundation string.

1794 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Manipulating Drawers

OpenDrawer (page 1917)
Opens a drawer.

CloseDrawer (page 1809)
Closes a drawer.

GetDrawerCurrentEdge (page 1832)
Obtains the current window edge from which the drawer appears.

GetDrawerPreferredEdge (page 1833)
Obtains the preferred opening edge for a drawer.

SetDrawerPreferredEdge (page 1932)
Set the preferred window edge from which the drawer should appear.

GetDrawerOffsets (page 1833)
Obtains the positioning offsets of a drawer.

SetDrawerOffsets (page 1931)
Sets the positioning offsets for the drawer with respect to its parent window.

GetDrawerParent (page 1833)
Obtains the parent window of a drawer.

SetDrawerParent (page 1931)
Sets the parent window for a drawer.

GetDrawerState (page 1834)
Determines the current state of the drawer.

ToggleDrawer (page 1961)
Toggles the drawer state.

HIWindowCopyDrawers (page 1879) Deprecated in Mac OS X v10.4
Obtains an array of the drawers that are attached to a window.

Manipulating Sheets

GetSheetWindowParent (page 1841)
Obtains the parent window of a sheet.

ShowSheetWindow (page 1958)
Shows a sheet window using appropriate visual effects.

HideSheetWindow (page 1872)
Hides a sheet window using appropriate visual effects.

DetachSheetWindow (page 1819)
Detaches a sheet window from its parent window.

Manipulating Window Color Information

GetWindowContentColor (page 1845)
Obtains the color to which a window’s content region is redrawn.

Functions by Task 1795
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

GetWindowContentPattern (page 1846)
Obtains the pattern to which a window’s content region is redrawn.

SetWindowContentColor (page 1938)
Sets the color to which a window’s content region is redrawn.

GetWRefCon (page 1869)
Returns the reference constant from a window.

SetWindowContentPattern (page 1939)
Sets the pattern to which a window’s content region is redrawn.

SetWRefCon (page 1955)
Sets the refCon field of a window.

GetWindowPic (page 1858) Deprecated in Mac OS X v10.5
Returns a handle to a window’s picture. (Deprecated. Use an HIImageView object to draw a window's
content and ask the view for its image instead.)

SetWindowPic (page 1947) Deprecated in Mac OS X v10.5
Sets a picture for the Window Manager to draw in a window’s content region. (Deprecated. Use an
HIImageView object to draw a window's content instead.)

Referencing Windows

CloneWindow (page 1808) Deprecated in Mac OS X v10.5
Increments the number of references to a window. (Deprecated. Use CFRetain instead.)

GetWindowOwnerCount (page 1857) Deprecated in Mac OS X v10.5
Obtains the number of existing references to a window. (Deprecated. Use CFGetRetainCount
instead.)

GetWindowRetainCount (page 1865) Deprecated in Mac OS X v10.5
Returns the retain count of a window. (Deprecated. Use CFGetRetainCount instead.)

ReleaseWindow (page 1922) Deprecated in Mac OS X v10.5
Decrements the retain count of a window, and destroys the window if the retain count falls to zero.
(Deprecated. Use CFRelease instead.)

RetainWindow (page 1926) Deprecated in Mac OS X v10.5
Increments the retain count of a window. (Deprecated. Use CFRetain instead.)

Scrolling

ScrollWindowRect (page 1927)
Scroll any area of a window.

ScrollWindowRegion (page 1928)
Scrolls a window’s region.

Sizing and Positioning Windows

GetWindowBounds (page 1843)
Obtains the size and position of the bounding rectangle of the specified window region.

1796 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

HIWindowGetBounds (page 1885)
Gets the bounds of a specified region of a window.

SetWindowBounds (page 1936)
Sets a window’s size and position from the bounding rectangle of the specified window region.

HIWindowSetBounds (page 1893)
Sets the bounds of a window based on either the structure or content region.

MoveWindowStructure (page 1911)
Positions a window relative to its structure region.

RepositionWindow (page 1924)
Positions a window relative to another window or a display screen.

ResizeWindow (page 1925)
Handles all user interaction while a window is being resized.

GetAvailableWindowPositioningBounds (page 1831)
Obtains the available window positioning bounds.

HIWindowGetAvailablePositioningBounds (page 1885)
Gets the available window positioning bounds on a display.

GetAvailableWindowPositioningRegion (page 1832)
Obtains the available window positioning region.

HIWindowCopyAvailablePositioningShape (page 1878)
Copies the available window positioning shape on a display.

HIWindowConstrain (page 1877)
Moves and resizes a window to be within a specified bounding rectangle.

GetWindowResizeLimits (page 1865)
Returns the minimum and maximum content sizes for a window.

SetWindowResizeLimits (page 1952)
Sets the maximum and minimum resize limits for windows.

ConstrainWindowToScreen (page 1811) Deprecated in Mac OS X v10.4
Moves and resizes a window so that it’s contained entirely on a single screen.

Updating the Screen

EnableScreenUpdates (page 1825)
Enables screen updates for changes to the current application’s windows.

DisableScreenUpdates (page 1820)
Disables updates for changes to the current application’s windows.

Using Default and Cancel Buttons
You can use these functions to add dialog-like button controls to normal windows.

SetWindowDefaultButton (page 1940)
Specifies a default button for a window.

GetWindowDefaultButton (page 1846)
Returns the current default button for a window.

Functions by Task 1797
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

SetWindowCancelButton (page 1937)
Specifies a Cancel button for a window.

GetWindowCancelButton (page 1844)
Returns the current Cancel button for a window.

Zooming Windows

HIWindowGetIdealUserState (page 1887)
Gets the bounds of a window’s content region in its user state.

IsWindowInStandardState (page 1905)
Determines whether a window is currently zoomed in to the user state or zoomed out to the standard
state.

HIWindowIsInStandardState (page 1891)
Returns a Boolean value indicating whether a window is zoomed out to its standard state.

HIWindowSetIdealUserState (page 1894)
Sets the bounds of a window’s content region in its user state.

ZoomWindowIdeal (page 1972)
Zooms a window in accordance with human interface guidelines.

GetWindowIdealUserState (page 1854) Deprecated in Mac OS X v10.4
Obtains the size and position of a window in its user state.

SetWindowIdealUserState (page 1945) Deprecated in Mac OS X v10.4
Sets the size and position of a window in its user state.

Miscellaneous

CreateStandardWindowMenu (page 1816)
Creates a standard window menu for your application.

GetWindowFromPort (page 1848)
Gets a window reference from a CGrafPtr data type.

HIWindowFlush (page 1883)
Flushes any dirty areas a window might have.

RegisterWindowDefinition (page 1920)
Registers a binding between a resource ID and a window definition function.

ReshapeCustomWindow (page 1924)
Notifies the Window Manager that a custom window’s shape has changed.

InstallWindowContentPaintProc (page 1898) Deprecated in Mac OS X v10.5
Installs a window content painting callback. (Deprecated. Use a kEventControlDraw Carbon event
handler on a window's content view instead.)

Legacy Functions

CalcVis (page 1804) Deprecated in Mac OS X v10.5
Calculates the visible region of a window. (Deprecated. There is no replacement function.)

1798 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

CalcVisBehind (page 1804) Deprecated in Mac OS X v10.5
Calculates the visible regions of a series of windows. (Deprecated. There is no replacement function.)

CheckUpdate (page 1807) Deprecated in Mac OS X v10.5
Scans the window list for windows that need updating. (Deprecated. Use
FindSpecificEventInQueue (page 258) or AcquireFirstMatchingEventInQueue (page 245)
instead.)

ClipAbove (page 1808) Deprecated in Mac OS X v10.5
Determines the clip region of the Window Manager port. (Deprecated. There is no replacement
function.)

DragGrayRgn (page 1822) Deprecated in Mac OS X v10.5
Moves a gray outline of a region on the screen, following the movements of the cursor, until the
mouse button is released. (Deprecated. Use an overlay window or other custom drawing instead.)

DragTheRgn (page 1824) Deprecated in Mac OS X v10.5
Tracks the mouse as the user drags the outline of a region. (Deprecated. Use an overlay window or
other custom drawing instead.)

GetGrayRgn (page 1835) Deprecated in Mac OS X v10.5
Returns a region that covers the desktop area of all active displays. (Deprecated. To determine the
area in which a window may be positioned, use HIWindowGetAvailablePositioningBounds (page
1885) or HIWindowCopyAvailablePositioningShape (page 1878).)

GetNewCWindow (page 1836) Deprecated in Mac OS X v10.5
Creates a color window from a window resource. (Deprecated. Use nib files and
CreateWindowFromNib (page 1059) instead.)

GetNewWindow (page 1838) Deprecated in Mac OS X v10.5
Creates a window from a window resource. (Deprecated. Use nib files and
CreateWindowFromNib (page 1059) instead.)

GetWindowProxyFSSpec (page 1862) Deprecated in Mac OS X v10.5
Obtains a file system specification structure for the file that is associated with a window. (Deprecated.
Use HIWindowGetProxyFSRef (page 1888) instead.)

GetWTitle (page 1869) Deprecated in Mac OS X v10.5
Retrieves the title of a window as a Pascal string. (Deprecated. Use
CopyWindowTitleAsCFString (page 1813) instead.)

GetWVariant (page 1870) Deprecated in Mac OS X v10.5
Returns a window’s variation code. (Deprecated. UseGetWindowAttributes (page 1842) to determine
aspects of a window's appearance or behavior.)

GrowWindow (page 1870) Deprecated in Mac OS X v10.5
Allows the user to change the size of a window. (Deprecated. Use ResizeWindow (page 1925) instead.)

NewCWindow (page 1912) Deprecated in Mac OS X v10.5
Creates a window with a specified list of characteristics. (Deprecated. Use CreateNewWindow (page
1815) instead.)

NewWindow (page 1914) Deprecated in Mac OS X v10.5
Creates a window from a parameter list. (Deprecated. Use CreateNewWindow (page 1815) instead.)

PaintBehind (page 1918) Deprecated in Mac OS X v10.5
Redraws a series of windows in the window list. (Deprecated. Use InvalWindowRect (page 1898),
InvalWindowRgn (page 1899), or HIViewSetNeedsDisplay (page 2485) to invalidate a portion of a
window.)

Functions by Task 1799
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

PaintOne (page 1919) Deprecated in Mac OS X v10.5
Redraws the invalid, exposed portions of one window on the desktop. (Deprecated. Use
InvalWindowRect (page 1898), InvalWindowRgn (page 1899), or HIViewSetNeedsDisplay (page
2485) to invalidate a portion of a window.)

SetWindowProxyFSSpec (page 1950) Deprecated in Mac OS X v10.5
Associates a file with a window. (Deprecated. Use HIWindowSetProxyFSRef (page 1894) instead.)

SetWTitle (page 1956) Deprecated in Mac OS X v10.5
Specifies a window’s title. (Deprecated. Use SetWindowTitleWithCFString (page 1953) instead.)

DrawGrowIcon (page 1825) Deprecated in Mac OS X v10.4 Deprecated in Mac OS X v10.5
Draws a grow icon in the window frame. (Deprecated. There is no replacement function.)

Functions

ActivateWindow
Activates or deactivates a window.

OSStatus ActivateWindow (
 WindowRef inWindow,
 Boolean inActivate
);

Parameters
inWindow

The window to activate or deactivate.

inActivate
Pass true to activate the window, false otherwise.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
MacWindows.h

ActiveNonFloatingWindow
Returns the currently active nonfloating window.

1800 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

WindowRef ActiveNonFloatingWindow (
 void
);

Return Value
A reference to the active window.

Discussion
Note that the active window is not necessarily the frontmost window, and it is not necessarily the window
with user focus. Call GetUserFocusWindow (page 1841) to get the window that has user focus.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

AreFloatingWindowsVisible
Indicates whether an application’s floating windows are currently visible.

Boolean AreFloatingWindowsVisible (
 void
);

Return Value
A Boolean whose value is true if the application’s floating windows are currently shown or false if the
application’s floating windows are currently hidden.

Discussion
This function checks the visibility state of an application’s floating windows, which are hidden automatically
when the application receives a suspend event and are made visible automatically when the application
receives a resume event.

Special Considerations

The AreFloatingWindowsVisible function operates only upon windows created with the
kFloatingWindowClass constant; see “Window Class Constants” (page 1988) for more details on this constant.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

BeginUpdate
Starts updating a window when you receive an update event for that window.

Functions 1801
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

void BeginUpdate (
 WindowRef window
);

Parameters
window

The window that is to be updated when an update event is received. Your application gets this
information from the message field in the update event structure.

Discussion
The BeginUpdate function limits the visible region of the window’s graphics port to the intersection of the
visible region and the update region it then sets the window’s update region to an empty region. After calling
BeginUpdate, your application redraws either the entire content region or only the visible region. In either
case, only the parts of the window that require updating are actually redrawn on the screen.

Every call to BeginUpdate must be matched with a subsequent call to EndUpdate (page 1826) after your
application redraws the content region. BeginUpdate and EndUpdate can’t be nested. That is, you must
call EndUpdate before the next call to BeginUpdate.

In Mac OS X, you only receive one update event. If you don’t call BeginUpdate, you won’t receive any further
update events until the window is invalidated again.

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
MacWindows.h

BeginWindowProxyDrag
Creates the drag reference and the drag image when the user drags a proxy icon.

OSStatus BeginWindowProxyDrag (
 WindowRef window,
 DragRef *outNewDrag,
 RgnHandle outDragOutlineRgn
);

Parameters
window

The window whose proxy icon is being dragged.

1802 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

outNewDrag
On input, a pointer to a value of type DragRef. On return, the value refers to the current drag process.

outDragOutlineRgn
On input, a value of type RgnHandle. Your application can create this handle with a call to the
QuickDraw function NewRgn. On return, this region is set to the outline of the icon being dragged.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Typically, if the proxy icon represents a type of object (currently, file system entities such as files, folders, and
volumes) supported by the Window Manager, the Window Manager can handle all aspects of the drag process
itself, and your application should call the function TrackWindowProxyDrag (page 1963). However, if the
proxy icon represents a type of data that the Window Manager does not support, or if you want to implement
custom dragging behavior, your application should call the function
TrackWindowProxyFromExistingDrag (page 1964).

The TrackWindowProxyFromExistingDrag (page 1964) function accepts an existing drag reference and
adds file data if the window contains a file proxy. If your application uses
TrackWindowProxyFromExistingDrag, you then have the choice of using this function in conjunction
with the functions BeginWindowProxyDrag and EndWindowProxyDrag (page 1826) or simply calling
TrackWindowProxyFromExistingDrag and handling all aspects of creating and disposing of the drag
yourself.

Specifically, your application can call BeginWindowProxyDrag to set up the drag image and drag reference.
Your application must then track the drag, using TrackWindowProxyFromExistingDrag, and do any
required moving of data and, finally, call EndWindowProxyDrag (page 1826) to dispose of the drag reference.
BeginWindowProxyDrag should not be used for types handled by the Window Manager unless the application
wants to implement custom dragging behavior for those types.

Your application detects a drag when the function FindWindow (page 1827) returns the inProxyIcon result
code.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

BringToFront
Brings a window to the front.

void BringToFront (
 WindowRef window
);

Parameters
window

The window that is to be brought to the front.

Functions 1803
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
The BringToFront function puts the specified window at the beginning of the window list and redraws
the window in front of all others on the screen. It does not change the window’s highlighting or make it
active.

Your application does not ordinarily call BringToFront. The user interface guidelines specify that the
frontmost window should be the active window. To bring a window to the front and make it active, call the
function SelectWindow (page 1929).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
MacWindows.h

CalcVis
Calculates the visible region of a window. (Deprecated in Mac OS X v10.5. There is no replacement function.)

void CalcVis (
 WindowRef window
);

Parameters
window

On input, a pointer to the window’s complete window structure.

Discussion
The Window Manager calls the CalcVis function; your application does not normally need to. CalcVis
calculates the visible region of the specified window by starting with its content region and subtracting the
structure region of each window in front of it.

Special Considerations

In Mac OS X, the visible region of a window is managed by the window server. Applications never need to
call this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

CalcVisBehind
Calculates the visible regions of a series of windows. (Deprecated in Mac OS X v10.5. There is no replacement
function.)

1804 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

void CalcVisBehind (
 WindowRef startWindow,
 RgnHandle clobberedRgn
);

Parameters
startWindow

On input, a pointer to a window structure.

clobberedRgn
On input, a handle to the desktop region that has become invalid.

Discussion
The Window Manager calls the CalcVisBehind function; your application does not normally need to.
CalcVisBehind calculates the visible regions of the window specified by the startWindow parameter and
all windows behind startWindow that intersect clobberedRgn. It is called after PaintBehind.

Special Considerations

In Mac OS X, the visible region of a window is managed by the window server. Applications never need to
call this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

ChangeWindowAttributes
Changes a window’s attributes.

OSStatus ChangeWindowAttributes (
 WindowRef window,
 WindowAttributes setTheseAttributes,
 WindowAttributes clearTheseAttributes
);

Parameters
window

The window whose attributes you want to change.

setTheseAttributes
The attributes you want to set. Pass kWindowNoAttributes if you do not want to set any attributes.
See “Window Attributes” (page 1998) for a list of window attributes.

clearTheseAttributes
The attributes you want to clear (if any). Pass kWindowNoAttributes if you do not want to clear
any attributes. See “Window Attributes” (page 1998) for a list of window attributes.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Functions 1805
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
If the changed attributes affect the visible window’s frame, the window regions are recalculated and the
window is redrawn.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

ChangeWindowGroupAttributes
Changes the attributes of a window group.

OSStatus ChangeWindowGroupAttributes (
 WindowGroupRef inGroup,
 WindowGroupAttributes setTheseAttributes,
 WindowGroupAttributes clearTheseAttributes
);

Parameters
inGroup

The window group whose attributes you want to set.

setTheseAttributes
The attributes you want to set. See “Window Group Attributes” (page 2031) for a list of possible attributes.

clearTheseAttributes
The attributes you want to clear (if any). See “Window Group Attributes” (page 2031) for a list of possible
attributes.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ChangeWindowPropertyAttributes
Changes attributes associated with a window property.

1806 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus ChangeWindowPropertyAttributes (
 WindowRef window,
 OSType propertyCreator,
 OSType propertyTag,
 OptionBits attributesToSet,
 OptionBits attributesToClear
);

Parameters
window

The window whose property attributes are to be changed.

propertyCreator
The property creator.

propertyTag
The property tag.

attributesToSet
The attributes to set. For a possible value, see “Window Property Persistent Constant” (page 2024).

attributesToClear
The attributes to clear. For a possible value, see “Window Property Persistent Constant” (page 2024).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CheckUpdate
Scans the window list for windows that need updating. (Deprecated in Mac OS X v10.5. Use
FindSpecificEventInQueue (page 258) or AcquireFirstMatchingEventInQueue (page 245) instead.)

Boolean CheckUpdate (
 EventRecord *theEvent
);

Parameters
theEvent

On input, a pointer to an event structure to be filled in if a window needs updating.

Return Value
A Boolean value. If CheckUpdate finds a window structure whose update region is not empty and whose
window structure does not contain a picture handle, it stores an update event in the event structure referenced
through the parameter theEvent and returns true. If it finds no such window, it returns false.

Discussion
The Event Manager calls theCheckUpdate function; your application does not normally need to.CheckUpdate
scans the window list from front to back, checking for a visible window that needs updating (that is, a visible
window whose update region is not empty). If it finds one whose window structure contains a picture handle,
it redraws the window itself and continues through the list.

Functions 1807
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Special Considerations

If you are using a compositing window, the Window Manager never generates update events for the window
and you will never find update events in the event queue.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

ClipAbove
Determines the clip region of the Window Manager port. (Deprecated in Mac OS X v10.5. There is no
replacement function.)

void ClipAbove (
 WindowRef window
);

Parameters
window

On input, a pointer to the window.

Discussion
The Window Manager calls the ClipAbove function; your application does not normally need to. ClipAbove
sets the clip region of the Window Manager port to be the area of the desktop that intersects the current
clip region, minus the structure regions of all the windows in front of the specified window.

ClipAbove retrieves the desktop region from the global variable GrayRgn.

Special Considerations

Mac OS X applications never need to call this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

CloneWindow
Increments the number of references to a window. (Deprecated in Mac OS X v10.5. Use CFRetain instead.)

1808 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus CloneWindow (
 WindowRef window
);

Parameters
window

The window whose reference count is to be incremented.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
You should call CloneWindow if you are using a window and want to ensure that it is not disposed while
you are using it. With the Window Manager in Mac OS 8.5 and later, all windows are created with a reference
count (owner count) of one. The function CloneWindow increments the number of references to a window,
and the earlier function DisposeWindow decrements the number of references. When the reference count
reaches zero, DisposeWindow disposes of the window.

In Mac OS X v10.2 and later, you can also call CFRetain to increment the reference count of a window.

Special Considerations

To maintain an accurate reference count, you must follow every call to the CloneWindow function with a
matching call to the DisposeWindow function when your application is ready to release its reference to the
window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

CloseDrawer
Closes a drawer.

OSStatus CloseDrawer (
 WindowRef inDrawerWindow,
 Boolean inAsync
);

Parameters
inDrawerWindow

The drawer window that is to be closed.

inAsync
Pass true for asynchronous closing; otherwise, pass false.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Functions 1809
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
CloseDrawer may close the drawer either synchronously or asynchronously, depending on the value of the
inAsync parameter. If inAsync is true, CloseDrawer installs an event loop timer that closes the drawer
after CloseDrawer returns to the caller; therefore, the caller must be running its event loop for the drawer
to close. If inAsync is false, CloseDrawer closes the drawer completely before returning to the caller.
CloseDrawer retains the drawer window while the drawer is closing, and releases it when the drawer is
fully closed. CloseDrawer sends the kEventWindowDrawerClosing event to the drawer, the drawer’s
parent, and the application before closing the drawer. If an event handler for this event returns
userCanceledErr, CloseDrawerwill return immediately without closing the drawer. CloseDrawer sends
the kEventWindowDrawerClosed event to the drawer, the drawer’s parent, and the application after the
drawer has finished closing.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CollapseAllWindows
Collapses or expands all collapsable windows in an application.

OSStatus CollapseAllWindows (
 Boolean collapse
);

Parameters
collapse

Set to true to collapse all windows in the application. Set to false to expand all windows in the
application.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
In Mac OS X, this function works with any window that has the kWindowCollapseBoxAttribute. If that
attribute is not present, the Window Manager checks for the kWindowCanCollapse feature bit.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CollapseWindow
Collapses or expands a window to the dock.

1810 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus CollapseWindow (
 WindowRef window,
 Boolean collapse
);

Parameters
window

The window that is to be collapsed or expanded.

collapse
Indicates whether the window should be collapsed or expanded.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The CollapseWindow function tells the Window Manager to collapse or expand a window depending upon
the value passed in the collapse parameter. In Mac OS X, any window that has the
kWindowCollapseBoxAttribute can be collapsed. If that attribute is not present, the Window Manager
checks for the kWindowCanCollapse feature bit.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ConstrainWindowToScreen
Moves and resizes a window so that it’s contained entirely on a single screen.

OSStatus ConstrainWindowToScreen (
 WindowRef inWindowRef,
 WindowRegionCode inRegionCode,
 WindowConstrainOptions inOptions,
 const Rect *inScreenRect,
 Rect *outStructure
);

Parameters
inWindowRef

The window to constrain.

inRegionCode
The window region to constrain. See “Window Region Constants” (page 2021) for a list of possible
constants to pass.

inOptions
Flags controlling how the window is constrained.

inScreenRect
A rectangle, in global coordinates, in which to constrain the window. May be NULL. If NULL, the
window is constrained to the screen with the greatest intersection with the specified window region.

outStructure
On exit, contains the new structure bounds of the window, in global coordinates. May be NULL.

Functions 1811
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowConstrain (page 1877)

Declared In
MacWindows.h

CopyWindowAlternateTitle
Obtains a copy of the alternate window title.

OSStatus CopyWindowAlternateTitle (
 WindowRef inWindow,
 CFStringRef *outTitle
);

Parameters
inWindow

The window to get the alternate title from.

outTitle
Receives the alternate title for the window. If the window does not have an alternate title, NULL will
be returned in outTitle.

Return Value
A result code. See “Window Manager Result Codes” (page 2051). An operating system status code.

Discussion
See the discussion of SetWindowAlternateTitle (page 1936) for more information about alternate window
titles.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CopyWindowGroupName
Obtains a copy of the window group name.

1812 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus CopyWindowGroupName (
 WindowGroupRef inGroup,
 CFStringRef *outName
);

Parameters
inGroup

The window group to query. For information on this data type,

outName

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CopyWindowTitleAsCFString
Copies the window title into a Core Foundation string.

OSStatus CopyWindowTitleAsCFString (
 WindowRef inWindow,
 CFStringRef *outString
);

Parameters
inWindow

The window whose title is to be copied.

outString
On output, the window’s title.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
MacWindows.h

CountWindowGroupContents
Counts the number of members of a window group.

Functions 1813
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

ItemCount CountWindowGroupContents (
 WindowGroupRef inGroup,
 WindowGroupContentOptions inOptions
);

Parameters
inGroup

The window group whose members are to be counted.

inOptions
Counting options. See “Window Group Content Options” (page 2032) for possible constants to pass.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CreateCustomWindow
Creates a custom window based on a registered toolbox object class or a custom window root view.

OSStatus CreateCustomWindow (
 const WindowDefSpec *def,
 WindowClass windowClass,
 WindowAttributes attributes,
 const Rect *contentBounds,
 WindowRef *outWindow
);

Parameters
def

For information on this data type, see WindowDefSpec (page 1985).

windowClass
The class the custom window should belong to. This value determines the layer ordering of the custom
window.

attributes
Attributes for the window. See “Window Attributes” (page 1998) for a list of possible attributes.

contentBounds
Pointer to a Rect structure in global coordinates indicating the dimensions of the window’s content
region.

outWindow
On return, the newly-created window.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowCreate (page 1880)

1814 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

CreateNewWindow
Creates a window from parameter data.

OSStatus CreateNewWindow (
 WindowClass windowClass,
 WindowAttributes attributes,
 const Rect *contentBounds,
 WindowRef *outWindow
);

Parameters
windowClass

A constant that categorizes the class of window to be created. For certain classes, the window class
can be altered after the window is created by callingHIWindowChangeClass (page 1876). See “Window
Class Constants” (page 1988) for a description of possible values for this parameter.

attributes
Attributes for the window. See “Window Attributes” (page 1998) for a list of possible attributes.

contentBounds
Pointer to a Rect structure in global coordinates indicating the dimensions of the window’s content
region.

outWindow
On input, a pointer to a value of type WindowRef. On return, the window pointer points to the newly
created window.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The CreateNewWindow function creates a window based on the attributes and class you specify in the
attributes and windowClass parameters. CreateNewWindow sets the new window’s content region to
the size and location specified by the rectangle passed in the bounds parameter, which in turn determines
the dimensions of the entire window. The Window Manager creates the window invisibly and places it at
the front of the window’s window group. After calling CreateNewWindow, you should set any desired
associated data—using Window Manager or Control Manager accessor functions—then call the function
TransitionWindow (page 1965) or ShowWindow (page 1959) to display the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowCreate (page 1880)

Related Sample Code
CarbonSketch

Declared In
MacWindows.h

Functions 1815
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

CreateQDContextForCollapsedWindowDockTile
Obtains a CGrafPtr for a collapsed window’s tile in the dock. (Deprecated in Mac OS X v10.5. Use
HIWindowCreateCollapsedDockTileContext (page 1881) instead.)

OSStatus CreateQDContextForCollapsedWindowDockTile (
 WindowRef inWindow,
 CGrafPtr *outContext
);

Parameters
inWindow

The window whose CGrafPtr is to be obtained.

outContext
On output, a pointer to the window’s CGrafPtr.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

CreateStandardWindowMenu
Creates a standard window menu for your application.

OSStatus CreateStandardWindowMenu (
 OptionBits inOptions,
 MenuRef *outMenu
);

Parameters
inOptions

Option bits. Pass 0 or kWindowMenuIncludeRotate. For information on the
kWindowMenuIncludeRotate constant, see “Window Menu Item Property Constants” (page 2042).

outMenu
On output, a new menu reference that contains the standard window menu items and commands.

Return Value
A result code. See “Window Manager Result Codes” (page 2051). An operating system status code.

Discussion
You can call this function to create a window menu for your application. To register a window to be tracked
by this menu, you either create your window with CreateNewWindow (page 1815), passing the
kWindowInWindowMenuAttribute, or you can useChangeWindowAttributes (page 1805) after the window

1816 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

is created. The Toolbox takes care of acting on the standard items such as zoom and minimize, as well as
bringing selected windows to the front. All you need to do is insert the menu in your menu bar (typically at
the end of your menu list) and register your windows, and the Toolbox does the rest.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

CreateWindowFromCollection
Creates a window from collection data. (Deprecated in Mac OS X v10.5. Use
HIArchiveCopyDecodedCFType (page 2310) to decode a window from an archive instead.)

OSStatus CreateWindowFromCollection (
 Collection collection,
 WindowRef *outWindow
);

Parameters
collection

A reference to the collection to be used in creating the window. You pass a reference to a previously
created collection, such as that returned by the Collection Manager function NewCollection. The
collection used to create the window must contain the required items for a resource of type ‘wind’
or window creation fails.

outWindow
On input, a pointer to a value of type WindowRef. On return, the window pointer points to the newly
created window.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function creates a window invisibly and places it at the front of the window’s window group. After calling
CreateWindowFromCollection, you should set any desired associated data—using Window Manager or
Control Manager accessor functions—then call the function TransitionWindow (page 1965) or
ShowWindow (page 1959) to display the window. The number of references to the collection (that is, its owner
count) is incremented by a minimum of one for the duration of this call.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1817
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

CreateWindowFromResource
Creates a window from 'wind' resource data. (Deprecated in Mac OS X v10.5. Use nib files and
CreateWindowFromNib (page 1059) instead.)

OSStatus CreateWindowFromResource (
 SInt16 resID,
 WindowRef *outWindow
);

Parameters
resID

The resource ID of a resource of type ‘wind’. Pass in the ID of the 'wind' resource to be used to
create the window.

outWindow
On input, a pointer to a value of type WindowRef. On return, the window pointer points to the newly
created window.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The CreateWindowFromResource function loads a window from a 'wind' resource. The Window Manager
creates the window invisibly and places it at the front of the window’s window group. After calling
CreateWindowFromResource, you should set any desired associated data—using Window Manager or
Control Manager accessor functions—then call the function TransitionWindow (page 1965) or
ShowWindow (page 1959) to display the window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

CreateWindowGroup
Creates a window group.

OSStatus CreateWindowGroup (
 WindowGroupAttributes inAttributes,
 WindowGroupRef *outGroup
);

Parameters
inAttributes

Attributes for the new window group. See “Window Group Attributes” (page 2031) for a listing of
possible attributes.

outGroup
For information on this data type, see WindowGroupRef (page 1986).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

1818 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

DebugPrintAllWindowGroups
Debugging utility function listing all window groups.

void DebugPrintAllWindowGroups (
 void
);

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIToolboxDebugging.h

DebugPrintWindowGroup
Debugging utility functions for use with window groups.

void DebugPrintWindowGroup (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group. For information on this data type,

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
HIToolboxDebugging.h

DetachSheetWindow
Detaches a sheet window from its parent window.

Functions 1819
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus DetachSheetWindow (
 WindowRef inSheet
);

Parameters
inSheet

The window sheet that is to be detached from its parent window.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function detaches a sheet window from its parent window without affecting the visibility or position of
the sheet or its parent. This function is useful for hiding a sheet window without an animation effect. To do
so, call DetachSheetWindow to detach the sheet from the parent, and then call HideWindow (page 1872) to
hide the sheet. Call DisposeWindow (page 1820) to destroy the sheet.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

DisableScreenUpdates
Disables updates for changes to the current application’s windows.

OSStatus DisableScreenUpdates (
 void
);

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

DisposeWindow
Removes a window.

void DisposeWindow (
 WindowRef window
);

Parameters
window

On input, the window to be closed.

1820 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
The DisposeWindow function reduces a window’s reference count by one. If the resulting reference count
is zero, then DisposeWindow removes the window from the screen and deletes it from the window list, then
releases the memory occupied by all structures associated with the window, including the window structure.

Note that DisposeWindow assumes that any picture pointed to by the window structure field windowPic
is data, not a resource, and it calls the QuickDraw function KillPicture to delete it. If your application uses
a picture stored as a resource, you must release the resource or release the memory it occupies with the
ReleaseResource function and set the windowPic field to NULL before closing the window.

Any pending update events for the window are discarded. If the window being removed is the frontmost
window, the window behind it, if any, becomes the active window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Config Save
HID Explorer
QTCarbonShell
QTMetaData

Declared In
MacWindows.h

DisposeWindowDefUPP
Disposes of the UPP for your window definition. (Deprecated in Mac OS X v10.5. The WDEF interface is
deprecated; use a custom HIView to draw your custom window frame instead.)

void DisposeWindowDefUPP (
 WindowDefUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1821
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

DisposeWindowPaintUPP
Disposes of the UPP to your region painting callback function. (Deprecated in Mac OS X v10.5. The window
content painting interface is deprecated; use a kEventControlDraw Carbon event handler on a compositing
window’s content view instead.)

void DisposeWindowPaintUPP (
 WindowPaintUPP userUPP
);

Parameters
userUPP

The UPP that is to be disposed of.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
MacWindows.h

DragGrayRgn
Moves a gray outline of a region on the screen, following the movements of the cursor, until the mouse
button is released. (Deprecated in Mac OS X v10.5. Use an overlay window or other custom drawing instead.)

long DragGrayRgn (
 RgnHandle theRgn,
 Point startPt,
 const Rect *limitRect,
 const Rect *slopRect,
 short axis,
 DragGrayRgnUPP actionProc
);

Parameters
theRgn

On input, a handle to the region to be dragged.

startPt
On input, the location, in the local coordinates of the current graphics port, of the cursor when the
mouse button was pressed.

limitRect
On input, a pointer to a rectangle, given in the local coordinates of the current graphics port, that
limits where the region can be dragged. This parameter works with the slopRect parameter.

slopRect
On input, a pointer to a rectangle, given in the local coordinates of the current graphics port, that
gives the user some leeway in moving the mouse without violating the limits of the limitRect
parameter. The slopRect rectangle should be larger than the limitRect rectangle.

1822 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

axis
On input, a constant that constrains the region’s motion. The axis parameter can have one of three
values: noConstraint (0), hAxisOnly (1), or vAxisOnly (2).

If an axis constraint is in effect, the outline follows the cursor’s movements along only the specified
axis, ignoring motion along the other axis. With or without an axis constraint, the outline appears
only when the mouse is inside the slopRect rectangle.

actionProc
On input, a pointer to a function that defines an action to be performed repeatedly as long as the
user holds down the mouse button. The function can have no parameters. If the value of actionProc
is null, DragGrayRgn simply retains control until the mouse button is released.

Return Value
A long integer that specifies the difference between the point where the mouse button was pressed and the
offset point.

Discussion
The DragGrayRgn function is called by DragWindow to move an outline of a window around the screen as
the user drags a window. It returns the difference between the point where the mouse button was pressed
and the offset point (the point in the region whose horizontal and vertical offsets from the upper-left corner
of the region’s enclosing rectangle are the same as the offsets of the starting point when the user pressed
the mouse button. DragGrayRgn stores the vertical difference between the starting point and the offset
point in the high-order word of the return value and the horizontal difference in the low-order word.

It limits the movement of the region according to constraints set by the limitRect and slopRectparameters:

 ■ As long as the cursor is inside the limitRect rectangle, the region’s outline follows it normally. If the
mouse button is released while the cursor is within this rectangle, the return value reflects the simple
distance that the cursor moved in each dimension.

 ■ When the cursor moves outside the limitRect rectangle, the offset point stops at the edge of the
limitRect rectangle. If the mouse button is released while the cursor is outside the limitRect rectangle
but inside the slopRect rectangle, the return value reflects only the difference between the starting
point and the offset point, regardless of how far outside of the limitRect rectangle the cursor may
have moved. (Note that part of the region can fall outside the limitRect rectangle, but not the offset
point.)

 ■ When the cursor moves outside the slopRect rectangle, the region’s outline disappears from the screen.
The DragGrayRgn function continues to track the cursor, however, and if the cursor moves back into
the slopRect rectangle, the outline reappears. If the mouse button is released while the cursor is outside
the slopRect rectangle, both words of the return value are set to 0x8000. In this case, the Window
Manager does not move the window from its original location.

 ■ To accommodate systems with multiple monitors, QuickDraw recognizes a port rectangle of
screenBits.bounds as a special case and allows drawing on all parts of the desktop.

The region stops moving when the offset point reaches the edge of the limitRect rectangle. The cursor
continues to move, but the region does not.

If the mouse button is released while the cursor is anywhere inside the slopRect rectangle, the Window
Manager redraws the window in its new location, which is calculated from the value returned by DragGrayRgn.

Carbon Porting Notes

Can’t be used for live dragging. If you are implementing your own window dragging, use DragWindow
instead. If you need to override window positioning during a drag, register a Carbon event handler for
kEventWindowBoundsChanging. Okay to use if you’re dragging objects within a window.

Functions 1823
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

DragTheRgn
Tracks the mouse as the user drags the outline of a region. (Deprecated in Mac OS X v10.5. Use an overlay
window or other custom drawing instead.)

long DragTheRgn (
 RgnHandle theRgn,
 Point startPt,
 const Rect *limitRect,
 const Rect *slopRect,
 short axis,
 DragGrayRgnUPP actionProc
);

Carbon Porting Notes

Can’t be used for live dragging. If you are implementing your own window dragging, use DragWindow
instead. If you need to override window positioning during a drag, register a Carbon event handler for
kEventWindowBoundsChanging. Okay to use if you’re dragging objects within a window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

DragWindow
Moves a window on the screen when the user drags it by its drag region.

void DragWindow (
 WindowRef window,
 Point startPt,
 const Rect *boundsRect
);

Parameters
window

The window that is to be dragged.

startPt
On input, the location, in global coordinates, of the cursor at the time the user pressed the mouse
button. Your application retrieves this point from the where field of the event structure.

1824 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

boundsRect
On input, a pointer to a rectangle, given in global coordinates, that limits the region to which a window
can be dragged. If the mouse button is released when the cursor is outside the limits of boundsRect,
DragWindow returns without moving the window (or, if it was inactive, without making it the active
window).

In CarbonLib and Mac OS X, this parameter can be NULL to indicate that there are no restrictions on
window movement. This parameter is ignored by CarbonLib and Mac OS X v10.0 through v10.2; it is
obeyed in Mac OX v10.3 and later.

Discussion
The DragWindow function moves the window around the screen, following the movement of the cursor until
the user releases the mouse button. If the Command key was not pressed when the mouse button was
pressed, DragWindow calls SelectWindow to make the window active before it drags the window. If the
Command key was pressed when the mouse button was pressed, DragWindow moves the window without
making it active.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
MacWindows.h

DrawGrowIcon
Draws a grow icon in the window frame. (Deprecated in Mac OS X v10.5. There is no replacement function.)

void DrawGrowIcon (
 WindowRef window
);

Special Considerations

This function is not needed in Mac OS X. Theme-savvy windows include the grow box in the window frame.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

EnableScreenUpdates
Enables screen updates for changes to the current application’s windows.

Functions 1825
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus EnableScreenUpdates (
 void
);

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

EndUpdate
Finishes updating a window.

void EndUpdate (
 WindowRef window
);

Parameters
window

The window for which updating is to be finished.

Discussion
The EndUpdate function restores the normal visible region of a window’s graphics port. When you receive
an update event for a window, you call BeginUpdate (page 1801), redraw the update region, and then call
EndUpdate. Each call to BeginUpdate must be balanced by a subsequent call to EndUpdate.

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
MacWindows.h

EndWindowProxyDrag
Disposes of the drag reference when the user completes the drag of a proxy icon.

1826 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus EndWindowProxyDrag (
 WindowRef window,
 DragRef theDrag
);

Parameters
window

The window whose proxy icon is being dragged.

theDrag
A value that refers to the current drag process. Pass in the value produced in the outNewDrag
parameter of BeginWindowProxyDrag.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Typically, if the proxy icon represents a type of object (currently, file system entities such as files, folders, and
volumes) supported by the Window Manager, the Window Manager can handle all aspects of the drag process
itself, and your application should call the function TrackWindowProxyDrag (page 1963). However, if the
proxy icon represents a type of data that the Window Manager does not support, or if you want to implement
custom dragging behavior, your application should call the function
TrackWindowProxyFromExistingDrag (page 1964).

The TrackWindowProxyFromExistingDrag (page 1964) function accepts an existing drag reference and
adds file data if the window contains a file proxy. If your application uses
TrackWindowProxyFromExistingDrag, you then have the choice of using this function in conjunction
with the functions BeginWindowProxyDrag (page 1802) and EndWindowProxyDrag or simply calling
TrackWindowProxyFromExistingDrag and handling all aspects of creating and disposing of the drag
yourself.

Specifically, your application can call BeginWindowProxyDrag to set up the drag image and drag reference.
Your application must then track the drag, using TrackWindowProxyFromExistingDrag, and do any
required moving of data and, finally, call EndWindowProxyDrag to dispose of the drag reference and its
associated image data. The EndWindowProxyDrag function does not dispose of the region created for use
by BeginWindowProxyDrag, however, so this remains the application’s responsibility to dispose. The
EndWindowProxyDrag function should not be used for types handled by the Window Manager unless you
want to implement custom dragging behavior for those types.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

FindWindow
Maps the location of the cursor to a part of the screen or a region of a window when your application receives
a mouse-down event.

Functions 1827
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

WindowPartCode FindWindow (
 Point thePoint,
 WindowRef *window
);

Parameters
thePoint

The point, in global coordinates, where the mouse-down event occurred. Your application retrieves
this information from the where field of the event structure.

window
A pointer to the window in which the mouse-down event occurred. FindWindow produces NULL if
the mouse-down event occurred outside a window.

Return Value
The location of the cursor when the user pressed the mouse button; see “Window Part Code Constants” (page
2013).

Discussion
You typically call the function FindWindow whenever you receive a mouse-down event. The FindWindow
function helps you dispatch the event by reporting whether the cursor was in the menu bar or in a window
when the mouse button was pressed. If the cursor was in a window, the function will produce both a pointer
to the window and a constant that identifies the region of the window in which the event occurred.

If you are using the Carbon event handlers to handle events, a faster way of getting the window and part
that received a mouse-down event is to get thekEventParamWindowRef andkEventParamWindowPartCode
parameters from the event.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowFindAtLocation (page 1882)

Related Sample Code
HideMenuBar
Simple DrawSprocket

Declared In
MacWindows.h

FindWindowOfClass
Finds a window of a specific class at the specified point onscreen.

1828 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus FindWindowOfClass (
 const Point *where,
 WindowClass inWindowClass,
 WindowRef *outWindow,
 WindowPartCode *outWindowPart
);

Parameters
where

The point, in global coordinates, at which to search for a window.

inWindowClass
The class of window for which to search. Passing kAllWindowClasses returns any window found
at where.

outWindow
On return, a pointer to the window, if it is of the specified class. If no window was found, this value
is NULL. Note that you can pass NULL for this parameter.

outWindowPart
On return, the part code of the window part under the mouse. If no window was found, this value is
inDesk. Note that you can pass NULL for this parameter.

Return Value
A result code. If no window of the specified class is found at the specified point, this function returns
errWindowNotFound. For other possible return values, see “Window Manager Result Codes” (page 2051).

Discussion
This function is similar to FindWindow (page 1827), but lets you restrict the search to windows of a particular
class.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowFindAtLocation (page 1882)

Declared In
MacWindows.h

FrontNonFloatingWindow
Returns to the application the frontmost visible window that is not a floating window.

WindowRef FrontNonFloatingWindow (
 void
);

Return Value
The first visible window in the window list that is of a nonfloating class. See “Window Class Constants” (page
1988) for a description of window classes.

Functions 1829
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
Your application should call the FrontNonFloatingWindow function when you want to identify the frontmost
visible window that is not a floating window. If you want to identify the frontmost visible window, whether
floating or not, your application should call the function FrontWindow.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
MacWindows.h

FrontWindow
Identifies the frontmost visible window. (Deprecated in Mac OS X v10.5. Use
ActiveNonFloatingWindow (page 1800), FrontNonFloatingWindow (page 1829), or
GetFrontWindowOfClass (page 1834) instead.)

WindowRef FrontWindow (
 void
);

Return Value
The first visible window in the window list. If there are no visible windows, FrontWindow returns NULL.

Discussion
Most applications should callActiveNonFloatingWindow (page 1800) orFrontNonFloatingWindow (page
1829) instead ofFrontWindowbecauseActiveNonFloatingWindow andFrontNonFloatingWindow return
the active and frontmost document window, respectively, skipping over other types of windows that may
be in front of the active document, such as the menubar window, floating windows, help tags and toolbars.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
MacWindows.h

GetAvailableWindowAttributes
Returns the window attributes that are valid for a window class

1830 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

WindowAttributes GetAvailableWindowAttributes (
 WindowClass inClass
);

Parameters
inClass

The window class to query.

Return Value
The window attributes that are valid for the window class specified by inClass. See “Window Attributes” (page
1998) for a list of possible attributes.

Discussion
Some window classes support different attributes on different platforms. For example, floating windows can
have collapse boxes in Mac OS 9, but not in Mac OS X. The Window Manager returns an error if you attempt
to create a window with attributes that aren’t supported for the requested window class.

You can use this API to determine those attributes that are supported by the current platform and remove
those attributes that are not supported by the current platform before calling CreateNewWindow (page 1815).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetAvailableWindowPositioningBounds
Obtains the available window positioning bounds.

OSStatus GetAvailableWindowPositioningBounds (
 GDHandle inDevice,
 Rect *outAvailableRect
);

Parameters
inDevice

The screen for which the available window positioning bounds are to be obtained.

outAvailableRect
On return, a pointer to the available bounds for the device specified by inDevice.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The available window positioning bounds is that area on the screen inside which a window may be positioned
without intersecting or overlapping the menu bar, Dock, or other UI provided by the operating system.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1831
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

GetAvailableWindowPositioningRegion
Obtains the available window positioning region.

OSStatus GetAvailableWindowPositioningRegion (
 GDHandle inDevice,
 RgnHandle ioRgn
);

Parameters
inDevice

The screen for which the available window positioning region is to be obtained.

ioRgn
On input, contains a preallocated RgnHandle. On return, the RgnHandle has been modified to contain
the available region for the given screen.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The available window positioning region is that area on the screen inside which a window may be positioned
without intersecting or overlapping the menu bar, Dock, or other UI provided by the operating system. This
function differs from GetAvailableWindowPositioningBounds (page 1831) in that the bounds version
removes the entire area that may theoretically be covered by the Dock, even if the Dock does not currently
reach from edge to edge of the device on which it is positioned. The region version includes the area at the
sides of the Dock that is not covered by the Dock in the available region.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetDrawerCurrentEdge
Obtains the current window edge from which the drawer appears.

OptionBits GetDrawerCurrentEdge (
 WindowRef inDrawerWindow
);

Parameters
inDrawerWindow

The drawer window whose window edge is to be obtained.

Return Value
The current window edge. See “Window Edge Constants” (page 2041) for a list of possible return values.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

1832 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

GetDrawerOffsets
Obtains the positioning offsets of a drawer.

OSStatus GetDrawerOffsets (
 WindowRef inDrawerWindow,
 CGFloat *outLeadingOffset,
 CGFloat *outTrailingOffset
);

Parameters
inDrawerWindow

The drawer window whose positioning offsets are to be obtained.

outLeadingOffset
On exit, a pointer to the drawer’s leading offset. Pass NULL if you don’t need this information.

outTrailingOffset
On exit, a pointer to the drawer’s trailing offset. Pass NULL if you don’t need this information.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetDrawerParent
Obtains the parent window of a drawer.

WindowRef GetDrawerParent (
 WindowRef inDrawerWindow
);

Parameters
inDrawerWindow

The drawer window whose parent window is to be obtained.

Return Value
The window that is the parent of the drawer specified by inDrawerWindow.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetDrawerPreferredEdge
Obtains the preferred opening edge for a drawer.

Functions 1833
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OptionBits GetDrawerPreferredEdge (
 WindowRef inDrawerWindow
);

Parameters
inDrawerWindow

The drawer window whose preferred opening edge is to be obtained.

Return Value
See “Window Edge Constants” (page 2041) for a list of possible values.

Discussion
Note that the preferred edge may not be the same as the current edge, due to window positioning. For
example, the right edge may be the preferred edge, but if the window is placed such that the right edge is
offscreen, the drawer will appear on the left edge instead.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetDrawerState
Determines the current state of the drawer.

WindowDrawerState GetDrawerState (
 WindowRef inDrawerWindow
);

Parameters
inDrawerWindow

The drawer window whose state is to be determined.

Return Value
See “Drawer State Constants” (page 2040) for a list of possible values.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetFrontWindowOfClass
Obtains the frontmost window of a given class.

1834 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

WindowRef GetFrontWindowOfClass (
 WindowClass inWindowClass,
 Boolean mustBeVisible
);

Parameters
inWindowClass

The class of the window you want to obtain. If you pass kAllWindowClasses, the function returns
the frontmost window in the window list.

mustBeVisible
If set to true, the function returns the frontmost visible window. If set to false, the function returns
the frontmost window of the specified class, regardless of whether the window is visible.

Return Value
A reference to the frontmost window of the class specified by inWindowClass.

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Config Save
QTCarbonShell
QTMetaData

Declared In
MacWindows.h

GetGrayRgn
Returns a region that covers the desktop area of all active displays. (Deprecated in Mac OS X v10.5. To
determine the area in which a window may be positioned, use
HIWindowGetAvailablePositioningBounds (page 1885) or
HIWindowCopyAvailablePositioningShape (page 1878).)

RgnHandle GetGrayRgn (
 void
);

Return Value
A handle to the current desktop region from the global variable GrayRgn.

Discussion
When your application calls DragWindow to let the user drag a window, it can use GetGrayRgn to set the
limiting rectangle to the entire desktop area. The desktop region represents all available screen space, that
is, the desktop area displayed by all monitors attached to the computer.

Special Considerations

Your application should not modify the desktop region.

Availability
Available in Mac OS X v10.0 and later.

Functions 1835
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
MacWindows.h

GetIndexedWindow
Obtains the window at the given index in the window group.

OSStatus GetIndexedWindow (
 WindowGroupRef inGroup,
 ItemCount inIndex,
 WindowGroupContentOptions inOptions,
 WindowRef *outWindow
);

Parameters
inGroup

The window group. For information on this data type,

inIndex
The index of the window. This parameter may range from 1 to the value returned by
CountWindowGroupContents.

inOptions
Options for determining the number of windows. See “Window Group Content Options” (page 2032)
for possible values.

outWindow
The window at the index specified by inIndex in the group specified by inGroup.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetNewCWindow
Creates a color window from a window resource. (Deprecated in Mac OS X v10.5. Use nib files and
CreateWindowFromNib (page 1059) instead.)

1836 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

WindowRef GetNewCWindow (
 short windowID,
 void *wStorage,
 WindowRef behind
);

Parameters
windowID

On input, the resource ID of the 'WIND' resource that defines the properties of the window.

wStorage
On input, a pointer to memory space for the window structure. If you specify a value of null for
wStorage, the GetNewCWindow function allocates the window structure as a nonrelocatable object
in the heap. You can reduce the chances of heap fragmentation by allocating the memory your
application needs for window structures early in your initialization code. Whenever you need to create
a window, you can allocate memory from your own block and pass a pointer to it in the wStorage
parameter.

behind
On input, a pointer to the window that appears immediately in front of the new window on the
desktop. To place a new window in front of all other windows on the desktop, specify a value of
(WindowRef)-1L. When you place a window in front of all others, GetNewCWindow removes the
highlighting from the previously active window, highlights the newly created window, and generates
the appropriate activate events. Note that if you create an invisible window in front of all others on
the desktop, the user sees no active window until you make the new window visible (or make another
window active).

To place a new window behind all other windows, specify a value of null.

Return Value
A pointer to the newly created window structure.

Discussion
The GetNewCWindow function creates a new color window from the specified window resource and returns
a pointer to the newly created window structure. You can use the returned window pointer to refer to this
window in most Window Manager functions. If GetNewCWindow is unable to read the window or window
definition function from the resource file, it returns null.

The GetNewCWindow function looks for a 'wctb' resource with the same resource ID as that of the ' WIND '
resource. If it finds one, it uses the window color information in the ' wctb ' resource for coloring the window
content area.

If the window’s definition function (specified in the window resource) is not already in memory,
GetNewCWindow reads it into memory and stores a handle to it in the window structure.

To create the window, GetNewCWindow retrieves the window characteristics from the window resource and
then calls the NewCWindow function, passing the characteristics as parameters.

The GetNewCWindow function creates a window in a color graphics port. Your application typically sets up
its own global variables reflecting the system setup during initialization by calling the Gestalt function.

Special Considerations

If you must get your window definition from a resource, use CreateWindowFromResource. Otherwise, use
CreateWindowFromNib or CreateNewWindow.

Availability
Available in Mac OS X v10.0 and later.

Functions 1837
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetNewWindow
Creates a window from a window resource. (Deprecated in Mac OS X v10.5. Use nib files and
CreateWindowFromNib (page 1059) instead.)

WindowRef GetNewWindow (
 short windowID,
 void *wStorage,
 WindowRef behind
);

Parameters
windowID

On input, the resource ID of the 'WIND' resource that defines the properties of the window.

wStorage
On input, a pointer to memory space for the window structure. If you specify a value of null for
wStorage, the GetNewWindow function allocates the window structure as a nonrelocatable object
in the heap. You can reduce the chances of heap fragmentation by allocating the memory your
application needs for window structures early in your initialization code. Whenever you need to create
a window, you can allocate memory from your own block and pass a pointer to it in the wStorage
parameter.

behind
On input, a pointer to the window that appears immediately in front of the new window on the
desktop. To place a new window in front of all other windows on the desktop, specify a value of
(WindowRef)-1l. When you place a window in front of all others, GetNewWindow removes the
highlighting from the previously active window, highlights the newly created window, and generates
the appropriate activate events. Note that if you create an invisible window in front of all others on
the desktop, the user sees no active window until you make the new window visible (or make another
window active). To place a new window behind all other windows, specify a value of null.

Return Value
A pointer to the newly created color window structure.

Discussion
The GetNewWindow function takes the same parameters as GetNewCWindow (page 1836) and returns a value
of type WindowRef. The only difference is that it creates a monochrome graphics port, not a color graphics
port, regardless of the presence of a corresponding ' wctb ' resource (it loads the resource but doesn’t use
it). The window structure and graphics port structure that describe monochrome and color graphics ports
are the same size and can be used interchangeably in most Window Manager functions.

The GetNewWindow function creates a new window from the specified window resource and returns a pointer
to the newly created window structure. You can use the returned window pointer to refer to this window in
most Window Manager functions. If GetNewWindow is unable to read the window or window definition
function from the resource file, it returns null.

1838 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

If the window’s definition function (specified in the window resource) is not already in memory, GetNewWindow
reads it into memory and stores a handle to it in the window structure. It allocates space in the application
heap for the structure and content regions of the window.

To create the window, GetNewWindow retrieves the window characteristics from the window resource and
then calls the function NewWindow, passing the characteristics as parameters.

Special Considerations

If you must get your window definition from a resource, use CreateWindowFromResource. Otherwise, use
CreateWindowFromNib or CreateNewWindow.

Version Notes
The GetNewWindow function was originally implemented prior to Color QuickDraw. In Mac OS 8, you should
call the Color QuickDraw function GetNewCWindow instead of GetNewWindow to programmatically create
a window, because Color QuickDraw is always available in Mac OS 8. Use of this function is not recommended
with Mac OS 8 and later. GetNewWindow is described here only for completeness.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetNextWindow
Returns the next window in a window list.

WindowRef GetNextWindow (
 WindowRef window
);

Parameters
window

The window to start from.

Return Value
The next window in a window list.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetNextWindowOfClass
Obtains the next window in a given window group.

Functions 1839
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

WindowRef GetNextWindowOfClass (
 WindowRef inWindow,
 WindowClass inWindowClass,
 Boolean mustBeVisible
);

Parameters
inWindow

The window at which to start.

inWindowClass
The class of window to obtain. If you pass kAllWindowClasses, the function returns the window
directly behind the input window. If no windows exist behind the front window, the function returns
NULL.

mustBeVisible
If set to true, this function returns the next visible window of the specified window class. If set to
false, this function returns the next window of the specified window class, regardless of whether it
is visible.

Return Value
A reference for the next window of the specified class after the window specified by inWindow.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

GetPreviousWindow
Returns the window above the specified window in the window list.

WindowRef GetPreviousWindow (
 WindowRef inWindow
);

Parameters
inWindow

The window at which to start.

Return Value
A reference for the previous window of the specified class.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

1840 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

GetSheetWindowParent
Obtains the parent window of a sheet.

OSStatus GetSheetWindowParent (
 WindowRef inSheet,
 WindowRef *outParentWindow
);

Parameters
inSheet

The window sheet whose parent is to be obtained.

outParentWindow
A pointer to the reference for the parent of the window sheet specified by inSheet.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetUserFocusWindow
Returns the current user focus window.

WindowRef GetUserFocusWindow (
 void
);

Return Value
The window receiving user focus.

Discussion
This function returns the window that receives menu commands and keyboard input as part of the standard
event dispatching.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowActivationScope
Obtains a window’s activation scope.

Functions 1841
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus GetWindowActivationScope (
 WindowRef inWindow,
 WindowActivationScope *outScope
);

Parameters
inWindow

The window whose activation scope is to be obtained.

outScope
On return, a pointer to the window’s activation scope.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowAlpha
Returns the current alpha channel value for the window.

OSStatus GetWindowAlpha (
 WindowRef inWindow,
 CGFloat *outAlpha
);

Parameters
inWindow

The window for which the value of the alpha channel is to be obtained.

outAlpha
The current alpha value. This value can range from 0.0 (completely transparent) to 1.0 (opaque).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowAttributes
Obtains the attributes of a window.

1842 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus GetWindowAttributes (
 WindowRef window,
 WindowAttributes *outAttributes
);

Parameters
window

The window whose attributes you want to obtain.

outAttributes
On input, a pointer to an unsigned 32-bit value of type WindowAttributes. On return, the bits are
set to the attributes of the specified window. See “Window Attributes” (page 1998) for a description of
possible attributes.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Window attributes specify a window’s features (such as whether the window has a close box) and logical
attributes (such as whether the window receives update and activate events).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowBounds
Obtains the size and position of the bounding rectangle of the specified window region.

OSStatus GetWindowBounds (
 WindowRef window,
 WindowRegionCode regionCode,
 Rect *globalBounds
);

Parameters
window

The window whose bounds you want to obtain.

regionCode
A constant identifying the window region whose bounds you want to obtain. See “Window Region
Constants” (page 2021) for a list of possible values.

globalBounds
A pointer to a structure of type Rect. On return, the rectangle contains the dimensions and position,
in global coordinates, of the window region specified in the regionCode parameter.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Use the GetWindowBounds function to obtain the bounding rectangle for the specified window region for
the specified window.

Functions 1843
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowGetBounds (page 1885)

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

GetWindowCancelButton
Returns the current Cancel button for a window.

OSStatus GetWindowCancelButton (
 WindowRef inWindow,
 ControlRef *outControl
);

Parameters
inWindow

The window whose Cancel button you want to obtain.

outControl
A pointer to a control. On output, the control is the Cancel button.

Return Value
A result code.

Discussion
You can use this function to determine which button or control is the specified Cancel button for a given
window. This button would be considered to have been clicked if the user instead presses Command-period
or the Escape key.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowClass
Obtains the class of a window.

1844 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus GetWindowClass (
 WindowRef window,
 WindowClass *outClass
);

Parameters
window

The window whose class you want to obtain.

outClass
On input, a pointer to a value of type WindowClass. On return, this value identifies the class of the
specified window. See “Window Class Constants” (page 1988) for a list of possible window classes. In
Mac OS 8 and Mac OS 9, for windows not originally created by CreateNewWindow (page 1815), the
class pointed to by the outClass parameter is always identified by the constant
kDocumentWindowClass.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowContentColor
Obtains the color to which a window’s content region is redrawn.

OSStatus GetWindowContentColor (
 WindowRef window,
 RGBColor *color
);

Parameters
window

The window whose content color is being retrieved.

color
On input, a pointer to an RGBColor structure. On return, the structure contains the content color for
the specified window.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The GetWindowContentColor function obtains the color to which the window’s content region is redrawn.

See also the function SetWindowContentColor (page 1938).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 1845
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

GetWindowContentPattern
Obtains the pattern to which a window’s content region is redrawn.

OSStatus GetWindowContentPattern (
 WindowRef window,
 PixPatHandle outPixPat
);

Parameters
window

The window whose content pattern is being retrieved.

outPixPat
On input, a handle to a structure of type PixPat. On return, the structure contains a copy of the
content pattern data for the specified window, which your application is responsible for disposing.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The GetWindowContentPattern function obtains the pattern to which the window’s content region is
redrawn.

See also the function SetWindowContentPattern (page 1939).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowDefaultButton
Returns the current default button for a window.

OSStatus GetWindowDefaultButton (
 WindowRef inWindow,
 ControlRef *outControl
);

Parameters
inWindow

The window whose default button you want to obtain.

outControl
A pointer to a control. On output, the control is the default button.

Return Value
A result code.

1846 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
You can use this function to determine which button or control is the default for a given window. This button
would be considered to have been clicked if the user instead presses the Return or Enter keys on the keyboard.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowDockTileMenu
Returns the menu to be displayed by a window’s dock tile.

MenuRef GetWindowDockTileMenu (
 WindowRef inWindow
);

Parameters
inWindow

The window whose menu is to be obtained.

Return Value
The menu reference for the window specified by inWindow. See the Menu Manager documentation for a
description of the MenuRef data type.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowFeatures
Obtains the features that a window supports.

OSStatus GetWindowFeatures (
 WindowRef window,
 UInt32 *outFeatures
);

Parameters
window

A pointer to the window to be examined.

outFeatures
On input, a pointer to an unsigned 32-bit value. On return, the bits of the value specify the features
the window supports; see “Window Feature Bits” (page 2011).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Functions 1847
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
The GetWindowFeatures function produces a window definition function’s features in response to a
kWindowMsgGetFeatures message.

Instead of calling this function, most applications should call GetWindowAttributes (page 1842) to check
for specific attributes, such as kWindowCollapseBoxAttribute and kWindowResizableAttribute.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowFromPort
Gets a window reference from a CGrafPtr data type.

WindowRef GetWindowFromPort (
 CGrafPtr port
);

Parameters
port

The port to query.

Return Value
The window reference obtained from the port specified by port, or NULL if the port parameter is not actually
attached to a window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGreatestAreaDevice
Returns the graphics device with the greatest area of intersection with a specified window region.

OSStatus GetWindowGreatestAreaDevice (
 WindowRef inWindow,
 WindowRegionCode inRegion,
 GDHandle *outGreatestDevice,
 Rect *outGreatestDeviceRect
);

Parameters
inWindow

The window to compare against.

1848 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inRegion
The window region to compare against. See “Window Region Constants” (page 2021) for a list of possible
values.

outGreatestDevice
On return, the graphics device with the greatest intersection. May be NULL.

outGreatestDeviceRect
On return, the bounds of the graphics device with the greatest intersection. May be NULL. If the device
with the greatest intersection also contains the menu bar, the device rect will exclude the menu bar
area.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroup
Obtains the window group associated with a window.

WindowGroupRef GetWindowGroup (
 WindowRef inWindow
);

Parameters
inWindow

The window whose window group is to be obtained.

Return Value
The window group reference for the window specified by inWindow. For information on this data type, see
WindowGroupRef (page 1986).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupAttributes
Obtains the attributes of a window group.

Functions 1849
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus GetWindowGroupAttributes (
 WindowGroupRef inGroup,
 WindowGroupAttributes *outAttributes
);

Parameters
inGroup

The window group whose attributes are to be changed. For information on this data type,

outAttributes
On return, the attributes of the group. See “Window Group Attributes” (page 2031) for a list of possible
values.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupContents
Obtains the contents of a window group.

OSStatus GetWindowGroupContents (
 WindowGroupRef inGroup,
 WindowGroupContentOptions inOptions,
 ItemCount inAllowedItems,
 ItemCount *outNumItems,
 void **outItems
);

Parameters
inGroup

The window group whose contents you want to obtain. For information on this data type, see
WindowGroupRef (page 1986).

inOptions
Options for determining how to count the group members. See “Window Group Content
Options” (page 2032) for a list of possible values.

inAllowedItems
The number of items that will fit in outItems.

outNumItems
On return, the number of items in the group.

outItems
On entry, this parameter must be a pointer to a pre-allocated buffer in which the window group
contents (either window references or window group references) are to be placed. On return, the
buffer pointed to by this parameter contains the requested window references or window group
references.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

1850 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupLevel
Obtains the level of the group in the window class hierarchy.

OSStatus GetWindowGroupLevel (
 WindowGroupRef inGroup,
 SInt32 *outLevel
);

Parameters
inGroup

The window group. For information on this data type,

outLevel
On exit, the window level of the windows in this group.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The window group’s level is only used to set the level of its windows if the window group is a child of the
root group. If there is another group in the group hierarchy between this group and the root group, this
group’s level is ignored.

See the Core Graphics frameworks header CGWindowLevel.h for a listing of window levels.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupLevelOfType
Obtains the Core Graphics window level of a window group.

OSStatus GetWindowGroupLevelOfType (
 WindowGroupRef inGroup,
 UInt32 inLevelType,
 CGWindowLevel *outLevel
);

Parameters
inGroup

The window group whose Core Graphics window level is to be obtained.

Functions 1851
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inLevelType
The level type to obtain. Specify kWindowGroupLevelActive, kWindowGroupLevelInactive, or
kWindowGroupLevelPromoted. For details, see “Window Group Level Constants” (page 2048).

outLevel
On output, the Core Graphics window level for the windows in this group.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
In Mac OS X v10.4 and later, multiple Core Graphics window levels may be associated with a window group:
one level for when the application is active and another for when the application is inactive. The Window
Manager automatically switches each group’s Core Graphics window level as the application becomes active
or inactive. Use GetWindowGroupLevelOfType to get each Core Graphics window level associated with a
window group, including the promoted window level that is actually in use for windows in the group when
the application is active.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupOfClass
Obtains the window group corresponding to a given window class.

WindowGroupRef GetWindowGroupOfClass (
 WindowClass windowClass
);

Parameters
windowClass

The window class to query.

Return Value
For information on this data type, see WindowGroupRef (page 1986).

Discussion
Each window class has an associated pre-defined window group. This function returns the window group
reference for the window group that is associated with windowClass. Note that all windows in a group do
not have to be of the same window class.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

1852 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

GetWindowGroupOwner
Obtains the window that owns a window group. (if any)

WindowRef GetWindowGroupOwner (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group to query. For information on this data type,

Return Value
The window reference for the window that owns the group specified by inGroup.

Discussion
You call SetWindowGroupOwner (page 1944) to associate a window group with a particular window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupParent
Obtains the parent group of a window group.

WindowGroupRef GetWindowGroupParent (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group whose parent is to be obtained.

Return Value
The parent of the window group specified by inGroup.

Discussion
You can nest window groups within each other.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupRetainCount
Determines the current reference count for a window group.

Functions 1853
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

ItemCount GetWindowGroupRetainCount (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group for which the current reference count is to be obtained. For information on this
data type, see WindowGroupRef (page 1986).

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowGroupSibling
Obtains the next or previous group of a window group.

WindowGroupRef GetWindowGroupSibling (
 WindowGroupRef inGroup,
 Boolean inNextGroup
);

Parameters
inGroup

The window group for which the next or previous group is to be obtained. For information on this
data type, see WindowGroupRef (page 1986).

inNextGroup
Pass true to obtain the next sibling; false to obtain the previous sibling.

Return Value
The next or previous group. For information on this data type, see WindowGroupRef (page 1986).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowIdealUserState
Obtains the size and position of a window in its user state.

1854 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus GetWindowIdealUserState (
 WindowRef inWindow,
 Rect *outUserState
);

Parameters
inWindow

The window for which you want to obtain the user state.

outUserState
On input, a pointer to a structure of type Rect. On return, this rectangle specifies the current size and
position of the window’s user state, in global coordinates.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Because the window definition function relies upon the WStateData structure, it is unaware of the ideal
standard state, and this causes the user state data that it stores in the WStateData structure to be unreliable.
While the Window Manager is reliably aware of the window’s zoom state, it cannot record the current user
state in the WStateData structure, because the window definition function can overwrite that data. Therefore,
the function ZoomWindowIdeal (page 1972) maintains the window’s user state independently of the
WStateData structure. The GetWindowIdealUserState function gives your application access to the user
state data maintained by ZoomWindowIdeal. However, your application should not typically need to use
this function; it is supplied for completeness.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowGetIdealUserState (page 1887)

Declared In
MacWindows.h

GetWindowIndex
Obtains the index number of a specified window in a group.

OSStatus GetWindowIndex (
 WindowRef inWindow,
 WindowGroupRef inStartGroup,
 WindowGroupContentOptions inOptions,
 ItemCount *outIndex
);

Parameters
inWindow

The window whose window group index number is to be obtained.

inStartGroup
The window group to query.

Functions 1855
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inOptions
Specifies how to enumerate the specified window; kWindowGroupContentsReturnWindows is
implied and does not need to be specified explicitly.

outIndex
A pointer to a variable that, on return, contains the window’s z-order index. The frontmost window
in a window group has an index of 1. Window indexes increase as the window gets lower in z-order
(that is, visually further from the top of the window list and closer to the desktop.)

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowKind
Returns a window’s window kind.

short GetWindowKind (
 WindowRef window
);

Parameters
window

The window whose window kind is to be returned.

Return Value
An integer representing the window kind; see “Window Kinds” (page 2029).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowList
Obtains the first window in a window list.

WindowRef GetWindowList (
 void
);

Return Value
A window reference for the first window in the list.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1856 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

GetWindowModality
Obtains the modality of a window.

OSStatus GetWindowModality (
 WindowRef inWindow,
 WindowModality *outModalKind,
 WindowRef *outUnavailableWindow
);

Parameters
inWindow

The window whose modality is to be obtained.

outModalKind
On return, contains the modality of the window.

outUnavailableWindow
On return, if the window is window-modal, contains the target window of the specified window’s
modality.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowOwnerCount
Obtains the number of existing references to a window. (Deprecated in Mac OS X v10.5. Use
CFGetRetainCount instead.)

OSStatus GetWindowOwnerCount (
 WindowRef window,
 ItemCount *outCount
);

Parameters
window

The window whose reference (owner) count is to be determined.

outCount
A pointer to a value that, on return, contains the current number of references to the window.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Functions 1857
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
All windows are created with a reference count (owner count) of one. The function CloneWindow (page 1808)
increments the number of references to a window, and the earlier function DisposeWindow decrements
the number of references. When the reference count reaches zero, DisposeWindow disposes of the window.

In Mac OS X v10.2 and later, you can also call CFGetRetainCount to get the number of existing references
to a window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowPic
Returns a handle to a window’s picture. (Deprecated in Mac OS X v10.5. Use an HIImageView object to draw
a window's content and ask the view for its image instead.)

PicHandle GetWindowPic (
 WindowRef window
);

Parameters
window

The window whose picture handle is to be returned.

Return Value
A handle to the picture to be drawn in a specified window’s content region. The handle must have been
stored previously with the function SetWindowPic (page 1947).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowPort
Gets the window’s color graphics port.

CGrafPtr GetWindowPort (
 WindowRef window
);

Parameters
window

The window whose color graphics port is to be obtained.

1858 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Return Value
A pointer to the window’s color graphics port. See the QuickDraw Manager documentation for a description
of the CGrafPtr data type.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
MacWindows.h

GetWindowPortBounds
Obtains the bounds of the window port.

Rect * GetWindowPortBounds (
 WindowRef window,
 Rect *bounds
);

Parameters
window

The window whose port bounds you want.

bounds
A pointer to a Rect structure. On return, the Rect structure contains the bounds of the window port.

Return Value
The same value (pointer to a Rect structure) that was passed to GetWindowPortBounds in the bounds
parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
HID Explorer

Declared In
MacWindows.h

GetWindowProperty
Obtains a piece of data that is associated with a window.

Functions 1859
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus GetWindowProperty (
 WindowRef window,
 PropertyCreator propertyCreator,
 PropertyTag propertyTag,
 ByteCount bufferSize,
 ByteCount *actualSize,
 void *propertyBuffer
);

Parameters
window

The window to be examined for associated data.

propertyCreator
The creator code (typically, the application’s signature) of the associated data to be obtained.

propertyTag
The application-defined code identifying the associated data to be obtained.

bufferSize
The size of the associated data to be obtained. If the size of the data is unknown, use the function
GetWindowPropertySize (page 1861) to get the data’s size. If the size specified does not match the
actual size of the property, GetWindowProperty only retrieves data up to the size specified or up
to the actual size of the property, whichever is smaller, and an error is returned.

actualSize
On input, a pointer to a value. On return, the value specifies the actual size of the obtained data. You
may pass NULL for the actualSize parameter if you are not interested in this information.

propertyBuffer
On input, a pointer to a buffer. On return, this buffer contains a copy of the data that is associated
with the specified window.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The data retrieved by the GetWindowProperty function must have been previously associated with the
window with the function SetWindowProperty (page 1948).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTMetaData

Declared In
MacWindows.h

GetWindowPropertyAttributes
Obtains the attributes of a window property.

1860 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus GetWindowPropertyAttributes (
 WindowRef window,
 OSType propertyCreator,
 OSType propertyTag,
 OptionBits *attributes
);

Parameters
window

The window having a property whose attributes are to be obtained.

propertyCreator
The property creator.

propertyTag
The property tag.

attributes
On return, the property’s attributes. Currently, the only valid property is
kWindowPropertyPersistent. For a description of this property, see “Window Property Persistent
Constant” (page 2024).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowPropertySize
Obtains the size of a piece of data that is associated with a window.

OSStatus GetWindowPropertySize (
 WindowRef window,
 PropertyCreator creator,
 PropertyTag tag,
 ByteCount *size
);

Parameters
window

The window to be examined for associated data.

creator
The creator code (typically, the application’s signature) of the associated data whose size is to be
obtained.

tag
The application-defined code identifying the associated data whose size is to be obtained.

size
A pointer to a value that, on return, specifies the size of the associated data.

Functions 1861
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
If you want to retrieve a piece of associated data with the GetWindowProperty (page 1859) function, you
typically need to use the GetWindowPropertySize function to determine the size of the data beforehand.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowProxyAlias
Obtains an alias for the file that is associated with a window.

OSStatus GetWindowProxyAlias (
 WindowRef window,
 AliasHandle *alias
);

Parameters
window

The window for which you want to determine the associated file.

alias
On input, a pointer to a value of type AliasHandle. On return, the AliasRecord structure referenced
by the alias handle contains a copy of the alias data for the file associated with the specified window.
Your application must dispose of this handle.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Your application can call the GetWindowProxyAlias function to retrieve alias data for the file associated
with a window.

See also the function SetWindowProxyAlias (page 1949).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowProxyFSSpec
Obtains a file system specification structure for the file that is associated with a window. (Deprecated in Mac
OS X v10.5. Use HIWindowGetProxyFSRef (page 1888) instead.)

1862 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus GetWindowProxyFSSpec (
 WindowRef window,
 FSSpec *outFile
);

Parameters
window

A pointer to the window for which you wish to determine the associated file.

outFile
On input, a pointer to an FSSpec structure. On return, this structure contains a copy of the file system
specification data for the file associated with the specified window.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
You can use the GetWindowProxyFSSpec function to obtain identifying information about a proxy file: its
volume reference number, directory ID, and file name.

See also the function SetWindowProxyFSSpec.

Special Considerations

The use of file specification structures is no longer recommended.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

GetWindowProxyIcon
Obtains a window’s proxy icon.

OSStatus GetWindowProxyIcon (
 WindowRef window,
 IconRef *outIcon
);

Parameters
window

The window for which you want to obtain the proxy icon.

outIcon
A pointer to a variable of type IconRef that, on return, identifies the window’s proxy icon. Your
application must not dispose of this icon.

Return Value
A result code. If no proxy icon is found, this function returns errWindowDoesNotHaveProxy. For other
possible return values, see “Window Manager Result Codes” (page 2051).

Functions 1863
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
There are several different ways to associate a proxy icon with a window:

 ■ If you use the function SetWindowProxyIcon (page 1951), GetWindowProxyIcon returns the proxy
icon you set.

 ■ If you use the function SetWindowProxyCreatorAndType (page 1950), that function uses Icon Services
to find and set the proxy icon corresponding to the creator and type. GetWindowProxyIcon returns
that icon.

 ■ If you use SetWindowProxyAlias (page 1949), SetWindowProxyFSSpec (page 1950), or
HIWindowSetProxyFSRef (page 1894), then GetWindowProxyIcon attempts to resolve the alias (if
available) and returns the icon associated with the specified file.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowRegion
Obtains a handle to a specific window region. (Deprecated in Mac OS X v10.5.)

OSStatus GetWindowRegion (
 WindowRef window,
 WindowRegionCode inRegionCode,
 RgnHandle ioWinRgn
);

Parameters
window

The window for which a window region handle is to be obtained.

inRegionCode
A constant representing the window region whose handle you want to obtain; see “Window Region
Constants” (page 2021) for a list of possible values.

ioWinRgn
On input, a handle to a region created by your application. On return, the handle is set to the specified
window region.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The GetWindowRegion function produces a handle to a window definition function’s window region in
response to a kWindowMsgGetRegion message. The visibility of the window is unimportant for
GetWindowRegion to work correctly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

1864 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

See Also
HIWindowCopyShape (page 1879)

Declared In
MacWindows.h

GetWindowResizeLimits
Returns the minimum and maximum content sizes for a window.

OSStatus GetWindowResizeLimits (
 WindowRef inWindow,
 HISize *outMinLimits,
 HISize *outMaxLimits
);

Parameters
inWindow

The window whose minimum and maximum content sizes are to be obtained.

outMinLimits
On return, the window’s minimum content size. Pass NULL if you don’t want this information. For
information on the HISize data type, see HIGeometry.h.

outMaxLimits
On return, the window’s maximum content size. Pass NULL if you don’t want this information. For
information on the HISize data type, see HIGeometry.h.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowRetainCount
Returns the retain count of a window. (Deprecated in Mac OS X v10.5. Use CFGetRetainCount instead.)

ItemCount GetWindowRetainCount (
 WindowRef inWindow
);

Parameters
inWindow

The window whose retain count to retrieve.

Discussion
This API is equivalent to GetWindowOwnerCount (page 1857). For consistency with Core Foundation and
Carbon Events, it is preferred over GetWindowOwnerCount. Both APIs will continue to be supported.

Functions 1865
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowStandardState
Obtains a window’s standard zoom rectangle.

Rect * GetWindowStandardState (
 WindowRef window,
 Rect *rect
);

Parameters
window

The window whose standard zoom rectangle is to be obtained.

rect
On input, a pointer to a Rect structure. On return, the Rect structure contains the window’s standard
zoom rectangle, in global coordinates. A window’s standard zoom rectangle is the window content
bounds when the window is zoomed out to its greatest extent.

Return Value
The same value (pointer to a Rect structure) that was passed to GetWindowStandardState in the rect
parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowStructurePort
Obtains a graphics port that is used when drawing a window’s structure.

CGrafPtr GetWindowStructurePort (
 WindowRef inWindow
);

Parameters
inWindow

The window to query.

Return Value
The CGrafPtr that is used when drawing the window’s structure (window frame).

Availability
Available in Mac OS X v10.1 and later.

1866 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowStructureWidths
Obtains the width of the structure region on each edge of a window.

OSStatus GetWindowStructureWidths (
 WindowRef inWindow,
 Rect *outRect
);

Parameters
inWindow

The window to query.

outRect
On return, the Rect structure is filled in with the widths of the structure.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowToolbar
Obtains the toolbar associated with a window.

OSStatus GetWindowToolbar (
 WindowRef inWindow,
 HIToolbarRef *outToolbar
);

Parameters
inWindow

The window whose toolbar is to be obtained.

outToolbar
On return, the toolbar that is attached to the window, or NULL if the window has no toolbar.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Functions 1867
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

GetWindowUserState
Returns a window’s user zoom rectangle.

Rect * GetWindowUserState (
 WindowRef window,
 Rect *rect
);

Parameters
window

The window whose user zoom rectangle is to be returned.

rect
On input, a pointer to a Rect structure. On return, the Rect structure contains the window’s user
zoom rectangle, in global coordinates. A window’s user zoom rectangle is the window content bounds
when the window is zoomed back in.

Return Value
The same value (pointer to a Rect structure) that was passed to GetWindowUserState in the rectparameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWindowWidgetHilite
Obtains the window part code of the window widget that is currently highlighted.

OSStatus GetWindowWidgetHilite (
 WindowRef inWindow,
 WindowDefPartCode *outHilite
);

Parameters
inWindow

The window to query.

outHilite
The highlight.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1868 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

GetWRefCon
Returns the reference constant from a window.

SRefCon GetWRefCon (
 WindowRef window
);

Parameters
window

The window whose reference constant is to be returned.

Return Value
The long integer data stored in the refCon field of the window structure specified in the window parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
MacWindows.h

GetWTitle
Retrieves the title of a window as a Pascal string. (Deprecated in Mac OS X v10.5. Use
CopyWindowTitleAsCFString (page 1813) instead.)

void GetWTitle (
 WindowRef window,
 Str255 title
);

Parameters
window

On input, a pointer to the window structure.

title
A Pascal string. On output, the string contains the window title.

Discussion
The GetWTitle function returns the title of the window in the title parameter.

When you need to retrieve a window’s title, you should always use GetWTitle instead of reading the title
from a window structure.

Availability
Available in Mac OS X v10.0 and later.

Functions 1869
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GetWVariant
Returns a window’s variation code. (Deprecated in Mac OS X v10.5. Use GetWindowAttributes (page 1842)
to determine aspects of a window's appearance or behavior.)

short GetWVariant (
 WindowRef window
);

Parameters
window

On input, a pointer to the window structure.

Return Value
A short integer that specifies the variation code of the specified window. Depending on the window definition
function, the result of GetWVariant can represent one of the standard variation codes or a variation code
defined by your own window definition function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

GrowWindow
Allows the user to change the size of a window. (Deprecated in Mac OS X v10.5. Use ResizeWindow (page
1925) instead.)

long GrowWindow (
 WindowRef window,
 Point startPt,
 const Rect *bBox
);

Parameters
window

On input, a pointer to the window structure of the window to drag.

startPt
On input, the location of the cursor at the time the mouse button was first pressed, in global
coordinates. Your application retrieves this point from the where field of the event structure.

1870 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

bBox
On input, a pointer to a rectangle structure that specifies the limits on the vertical and horizontal
measurements of the port rectangle, in pixels.

Although the bBox parameter gives the address of a structure which is in the form of the Rect data
type, the four numbers in the structure represent lengths, not screen coordinates. The top, left,
bottom, and right fields of the bBox parameter specify the minimum vertical measurement (top),
the minimum horizontal measurement (left), the maximum vertical measurement (bottom), and
the maximum horizontal measurement (right).

The minimum measurements must be large enough to allow a manageable rectangle 64 pixels on a
side is typical. Because the user cannot ordinarily move the cursor off the screen, you can safely set
the upper bounds to the largest possible length (65,535 pixels) when you’re using GrowWindow to
follow cursor movements.

Return Value
A long integer that specifies the new dimensions, in pixels, of the resulting window: the height in the
high-order word of the returned long-integer value and the width in the low-order word. A return value of
0 means that the new size is the same as the size of the current port rectangle.

Discussion
The GrowWindow function displays an outline (grow image) of the window as the user moves the cursor to
make the window larger or smaller; it handles all user interaction until the user releases the mouse button.
After calling GrowWindow, you call the function SizeWindow to change the size of the window.

The GrowWindow function moves a dotted-line image of the window’s right and lower edges around the
screen, following the movements of the cursor until the mouse button is released. You can use the functions
HiWord and LoWord, described in the Mathematical and Logical Utilities Reference , to retrieve only the
high-order and low-order words, respectively.

Special Considerations

In non-Carbon implementations of GrowWindow on Mac OS 8 and 9, the maximum size that the specified
window is allowed to grow to is actually one less than the values specified in the bBox parameter. For example,
if you pass the values 500 in the bBox.bottom field and 600 in the bBox.right field, the maximum height
and width of the window would actually be 499 and 599, respectively.

However, in Carbon, the maximum height and width allowed for the specified window is equal to the values
passed in the bBox.bottom and bBox.right fields, respectively.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

HideFloatingWindows
Hides an application’s floating windows.

Functions 1871
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus HideFloatingWindows (
 void
);

Return Value
A result code. For details, see “Window Manager Result Codes” (page 2051).

Discussion
When an application receives a suspend event, its floating windows are hidden automatically. When the
application receives a resume event, the floating windows are made visible automatically. Call this function
if you want to hide your floating windows manually.

See also the function ShowFloatingWindows (page 1956).

Special Considerations

TheHideFloatingWindows function operates only upon windows created with thekFloatingWindowClass
constant; see “Window Class Constants” (page 1988) for more details on this constant.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HideSheetWindow
Hides a sheet window using appropriate visual effects.

OSStatus HideSheetWindow (
 WindowRef inSheet
);

Parameters
inSheet

The window sheet that is to be hidden.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HideWindow
Makes a window invisible.

1872 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

void HideWindow (
 WindowRef window
);

Parameters
window

The window that is to be made invisible.

Discussion
The HideWindow function make a visible window invisible. If you hide the frontmost window, HideWindow
removes the highlighting, brings the window behind it to the front, highlights the new frontmost window,
and generates the appropriate activate events.

To reverse the actions of HideWindow, you must call both ShowWindow (page 1959), to make the window
visible, and SelectWindow (page 1929), to select it.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HiliteWindow
Sets a window’s highlighting status.

void HiliteWindow (
 WindowRef window,
 Boolean fHilite
);

Parameters
window

On input, a pointer to the window structure.

fHilite
On input, a Boolean value that specifies the highlighting status: true highlights a window; false
removes highlighting.

Discussion
The HiliteWindow function sets a window’s highlighting status to the specified state. If the value of the
fHilite parameter is true, HiliteWindow highlights the specified window; if the specified window is
already highlighted, the function has no effect. If the value of fHilite is false, HiliteWindow removes
highlighting from the specified window; if the window is not already highlighted, the function has no effect.

Your application doesn’t normally need to call HiliteWindow. To make a window active, you can call
SelectWindow or ActivateWindow, which handle highlighting for you.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1873
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

HiliteWindowFrameForDrag
Sets the highlight state of the window’s structure region to reflect the window’s validity as a drag-and-drop
destination.

OSStatus HiliteWindowFrameForDrag (
 WindowRef window,
 Boolean hilited
);

Parameters
window

The window for which you want to set the highlight state.

hilited
Pass true if the window’s frame should be highlighted otherwise, pass false.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Applications typically call the Drag Manager functions ShowDragHilite and HideDragHilite to indicate
that a window is a valid drag-and-drop destination. If your application does not do this—that is, if your
application implements any type of custom drag highlighting, such as highlighting more than one area of
a window at a time—it must call the HiliteWindowFrameForDrag function.

The HiliteWindowFrameForDrag function highlights a window’s proxy icon when the user drags content
inside the window that is a valid content type for that destination. The default behavior of system-defined
windows is to highlight the proxy icon along with the window’s content area when the window is a valid
drag-and-drop destination. If you call the Drag Manager functions ShowDragHilite and HideDragHilite,
you don’t need to use HiliteWindowFrameForDrag.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowChangeAttributes
Changes the attributes of a window.

OSStatus HIWindowChangeAttributes (
 WindowRef inWindow,
 const int *inAttrToSet,
 const int *inAttrToClear
);

Parameters
inWindow

The window to change.

1874 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inAttrToSet
A zero-terminated array of window attribute constants. Possible values are described in “Window
Attribute Identifiers” (page 1992). Each array entry specifies an attribute of the window to set.
You may pass NULL if you do not wish to set any attributes.

inAttrToClear
A zero-terminated array of window attribute constants. Possible values are described in “Window
Attribute Identifiers” (page 1992). Each array entry specifies an attribute of the window to clear.
You may pass NULL if you do not wish to clear any attributes.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function takes two arrays of window attribute constants, as described in “Window Attribute
Identifiers” (page 1992). The first array specifies the attributes to set, and the second specifies the attributes
to clear. For example, you might call this function as follows:

int setAttr[] = { kHIWindowBitCloseBox, kHIWindowBitZoomBox, 0 };
int clearAttr[] = { kHIWindowBitNoTitleBar, 0 };
HIWindowChangeAttributes (window, setAttr, clearAttr);

Special Considerations

In Mac OS X v10.4 or earlier, you can use the function ChangeWindowAttributes (page 1805) to achieve
similar results.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowChangeAvailability
Changes the availability of a window during Exposé or in Spaces.

OSStatus HIWindowChangeAvailability (
 WindowRef inWindow,
 HIWindowAvailability inSetAvailability,
 HIWindowAvailability inClearAvailability
);

Parameters
inWindow

The window whose availability is to be changed.

inSetAvailability
The availability bits to set. For details, see “Window Availability Constants” (page 2046).

inClearAvailability
The availability bits to clear. For details, see “Window Availability Constants” (page 2046).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Functions 1875
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
This function overrides the default behavior of the Window Manager in determining whether a window is
visible during Exposé or in all Spaces workspaces. Most applications should not override the default behavior;
these options should only be used in special cases. For example, accessibility assistance applications may
need to create windows that are visible in all workspaces.

By default, newly created windows of class kDocumentWindowClass are given an availability of 0 (meaning
that they are available during Exposé), and windows from all other window classes are given an availability
of kHIWindowExposeHidden.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowChangeClass
Changes the appearance and behavior of a window.

OSStatus HIWindowChangeClass (
 WindowRef inWindow,
 WindowClass inWindowClass
);

Parameters
window

The window whose class you want to change.

inClass
The new class that is to be applied to the window. See “Window Class Constants” (page 1988) for a list
of possible window classes.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function changes the class of a window. Unlike SetWindowClass (page 1938), HIWindowChangeClass
effectively changes both the appearance and behavior of the window.

This function can convert a window between kDocumentWindowClass, kFloatingWindowClass,
kUtilityWindowClass, andkMovableModalWindowClassonly. It cannot, for example, change a document
window into a plain window.

The attributes of the window are adjusted to contain only those that are allowed for the new class. It is the
caller’s responsibility to adjust them further, as necessary, after HIWindowChangeClass returns.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

1876 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

HIWindowChangeFeatures
Changes a window’s features.

OSStatus HIWindowChangeFeatures (
 WindowRef inWindow,
 UInt64 inSetThese,
 UInt64 inClearThese
);

Parameters
inWindow

The window whose features are to be changed.

inSetThese
The feature bits to set. For details, see “Window Feature Bits” (page 2011).

inClearThese
The feature bits to clear. For details, see “Window Feature Bits” (page 2011).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
HIWindowChangeFeatures changes the features of a window on the fly. This function should only be used
by custom window definitions or window frame views.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowConstrain
Moves and resizes a window to be within a specified bounding rectangle.

OSStatus HIWindowConstrain (
 WindowRef inWindowRef,
 WindowRegionCode inRegionCode,
 WindowConstrainOptions inOptions,
 HICoordinateSpace inSpace,
 const HIRect *inScreenBounds,
 const HISize *inMinimumSize,
 HIRect *ioBounds
);

Parameters
inWindowRef

The window to constrain.

inRegionCode
The window region to constrain. For a list of possible values, see “Window Region Constants” (page
2021).

Functions 1877
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inOptions
Flags controlling how the window is constrained. For a list of possible options, see “Window
Constrain Options” (page 2028).

inSpace
The coordinate space in which the inScreenBounds, inMinimumSize, and ioBounds parameters
are expressed. This parameter must be either kHICoordSpaceScreenPixels or
kHICoordSpace72DPIGlobal.

inScreenBounds
A rectangle within which to constrain the window. You may pass NULL if you don't need to specify
a screen bounds. If NULL, the window is constrained to the screen that has the greatest intersection
with the specified window region.

inMinimumSize
A minimum size that should be kept within the specified screen bounds. This parameter is ignored
if the kWindowConstrainMoveMinimum option is not set. Even if that option is set, you may still
pass NULL if you don't need to customize the minimum dimensions.

ioBounds
If theinOptionsparameter containskWindowConstrainUseSpecifiedBounds, then this parameter
should be a bounding rectangle of the specified window region. The bounding rectangle does not
have to match the actual current bounds of the specified region; it may be a hypothetical bounds
that you would like to constrain without actually moving the window to that location. On output,
contains the new structure bounds of the window. You may pass NULL if you don't need the window
bounds returned.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowCopyAvailablePositioningShape
Copies the available window positioning shape on a display.

OSStatus HIWindowCopyAvailablePositioningShape (
 CGDirectDisplayID inDisplay,
 HICoordinateSpace inSpace,
 HIShapeRef *outShape
);

Parameters
inDisplay

The display for which to find the available shape. May be kCGNullDirectDisplay to request the
shape of the main display.

inSpace
The coordinate space in which the positioning shape should be returned. This parameter must be
either kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

1878 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

outShape
A pointer to a shape (an HIShape object). On output, the shape describes the available bounds for
the specified display. This shape is returned in the specified coordinate space. You should release the
shape when you no longer need it.

Discussion
This function finds the area on the display in which a window may be positioned without intersecting or
overlapping the menu bar, Dock, or other UI provided by the operating system. This function differs from
HIWindowGetAvailablePositioningBounds (page 1885) in that the bounds version removes the entire
area that may theoretically be covered by the Dock, even if the Dock does not currently reach from edge to
edge of the display on which it is positioned. The shape version includes the area at the sides of the Dock
that is not covered by the Dock.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowCopyDrawers
Obtains an array of the drawers that are attached to a window.

OSStatus HIWindowCopyDrawers (
 WindowRef inWindow,
 CFArrayRef *outDrawers
);

Parameters
inWindow

The parent window to access.

outDrawers
A pointer to a Core Foundation array. On output, each array entry is a drawer window attached to
the parent window specified in the inWindow parameter. The array will be valid, but empty, if the
parent window has no drawers. You should release the array when you no longer need it.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowCopyShape
Retrieves a shape that describes a region of a window.

Functions 1879
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus HIWindowCopyShape (
 WindowRef inWindow,
 WindowRegionCode inRegion,
 HICoordinateSpace inSpace,
 HIShapeRef *outShape
);

Parameters
inWindow

The window to access.

inRegion
The window region whose shape you want to obtain. For a list of possible values, see “Window Region
Constants” (page 2021).

inSpace
The coordinate space in which the shape should be returned. This parameter must be
kHICoordSpaceWindow, kHICoordSpaceScreenPixel, or kHICoordSpace72DPIGlobal.

outShape
A pointer to a shape (an HIShape object). On output, the shape describes the specified window region.
The shape is returned in the specified coordinate space. You should release the shape when you no
longer need it. If the window does not support the specified window region, no shape is returned.

Return Value
A result code. If the window does not support the specified window region, the result returned is
errWindowRegionCodeInvalid. For other possible values, see “Window Manager Result Codes” (page
2051).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowCreate
Creates a standard or custom window.

OSStatus HIWindowCreate (
 WindowClass inClass,
 const int *inAttributes,
 const WindowDefSpec *inDefSpec,
 HICoordinateSpace inSpace,
 const HIRect *inBounds,
 WindowRef *outWindow
);

Parameters
inClass

The class of window to be created. For a list of possible classes, see “Window Class
Constants” (page 1988).

1880 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inAttributes
A zero-terminated array of window attribute constants. Each array entry specifies an attribute of the
window to set. You may pass NULL if you don't need to set any attributes. For a list of possible
attributes, see “Window Attribute Identifiers” (page 1992).

inDefSpec
A pointer to a custom window proc ID or root view for the window. You may pass NULL if you don't
need to customize the window.

inSpace
The coordinate space in which the content bounds is expressed. This parameter must be either
kHICoordSpaceScreenPixels or kHICoordSpace72DPIGlobal.

inBounds
A pointer to the bounds of the content area of the window in the coordinate space specified by the
inSpace parameter. If you specify non-integral coordinates, they will be rounded to the nearest
integral value in screen pixel space when the window is actually positioned or sized.

outWindow
A pointer to a window variable. On output, the variable contains the new window.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function makes it possible to create windows with content bounds expressed in different coordinate
spaces. In Mac OS X v10.5 and later, you can use this function in place of CreateNewWindow (page 1815) or
CreateCustomWindow (page 1814) to create a window from a set of parameters.

Most developers will want to work primarily in the 72 DPI coordinate space. Doing so makes your code
independent of the current user interface scale factor, and eases source compatibility with earlier versions
of Mac OS X that do not support resolution independence. However, there are also certain cases where your
application must express your window's bounds in pixel coordinates; primarily when you need to position
your windows so they exactly align with each other or with some other fixed location, such as the edge of
the display. For these cases, you should use the screen pixel coordinate space.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowCreateCollapsedDockTileContext
Creates a Quartz graphics context for drawing a collapsed window’s Dock tile.

OSStatus HIWindowCreateCollapsedDockTileContext (
 WindowRef inWindow,
 CGContextRef *outContext,
 HISize *outContextSize
);

Parameters
inWindow

The collapsed window.

Functions 1881
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

outContext
A pointer to a CGContextRef variable. On output, the variable contains the graphics context for
drawing the window’s Dock tile.

outContextSize
A pointer to a HISize structure. On output, the structure contains the width and height of the area
in which to draw.

Return Value
A result code. If the window is not collapsed, the result code is windowWrongStateErr. For other possible
values, see “Window Manager Result Codes” (page 2051).

Discussion
When you are finished drawing in the graphics context, you should:

1. Call CGContextFlush to ensure that your drawing appears onscreen.

2. Call HIWindowReleaseCollapsedDockTileContext (page 1892) to release the context. Do not call
CFRelease or CGContextRelease to release the context, or you may leak system resources.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowFindAtLocation
Finds a window in the current process at a specified location.

OSStatus HIWindowFindAtLocation (
 const HIPoint *inLocation,
 HICoordinateSpace inSpace,
 WindowRef inStartWindow,
 OptionBits inOptions,
 WindowRef *outWindow,
 WindowPartCode *outWindowPart,
 HIPoint *outWindowLocation
);

Parameters
inLocation

The location, in global coordinates, at which to search for a window.

inSpace
The coordinate space in which the location is expressed. This parameter must be either
kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

inStartWindow
The window at which to start the search, inclusive. Pass kFirstWindowOfClass to start the search
at the beginning of the window list. Passing NULL will cause the search to start at the end of the
window list, and therefore no window will be found.

inOptions
Reserved. Pass zero.

1882 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

outWindow
A pointer to a window variable. On output, the variable contains the window in the current process
at the specified location, if any, or NULL if no window is found.

outWindowPart
A pointer to a window part code variable. On output, the variable contains the window part that was
hit. You may pass NULL if you don't need this information.

outWindowLocation
A pointer to a point variable. On output, the variable contains the specified location transformed into
window-relative coordinates, taking into account any window transform or magnification. You may
pass NULL if you don't need this information.

Return Value
A result code. If no window is found that satisfies the search criteria, this function returns errWindowNotFound.
For other possible return values, see “Window Manager Result Codes” (page 2051).

Discussion
This function searches the window list of the current process for a window that contains the specified location.
If you need to determine whether the window is of a particular class, you can use the function
GetWindowClass (page 1844) and compare the result to the desired class.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowFlush
Flushes any dirty areas a window might have.

OSStatus HIWindowFlush (
 WindowRef inWindow
);

Parameters
window

The window to flush.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function allows you to manually flush dirty areas of a window to the screen. This is the preferred way to
flush window buffers in Mac OS X v10.3 and later. If called for a composited window, this function also renders
any views in the window that are invalid.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1883
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

HIWindowFromCGWindowID
Returns the window in the current process with a specified Quartz window ID.

WindowRef HIWindowFromCGWindowID (
 CGWindowID inWindowID
);

Parameters
inWindowID

The window ID, as returned by HIWindowGetCGWindowID (page 1886) or
CGWindowListCopyWindowInfo.

Return Value
The window to which the window ID is assigned. This function returns NULL if the window ID is invalid or if
it refers to a window in another process.

Discussion
This function returns the window in the current process to which the specified window ID is assigned by the
window server when the window is created.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

See Also
HIWindowGetCGWindowID (page 1886)

Declared In
MacWindows.h

HIWindowGetAvailability
Obtains the availability of a window during Exposé or in Spaces.

OSStatus HIWindowGetAvailability (
 WindowRef inWindow,
 HIWindowAvailability *outAvailability
);

Parameters
inWindow

The window whose availability is to be obtained.

outAvailability
On exit, the current setting of the window’s availability bits. For details, see “Window Availability
Constants” (page 2046).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

1884 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

HIWindowGetAvailablePositioningBounds
Gets the available window positioning bounds on a display.

OSStatus HIWindowGetAvailablePositioningBounds (
 CGDirectDisplayID inDisplay,
 HICoordinateSpace inSpace,
 HIRect *outAvailableRect
);

Parameters
inDisplay

The display for which to find the available bounds. May be kCGNullDirectDisplay to request the
bounds of the main display.

inSpace
The coordinate space in which the positioning bounds should be returned. This must be either
kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

outAvailableRect
A pointer to a rectangle provided by the caller. On output, the rectangle contains the available bounds
for the specified display. This rectangle is returned in the specified coordinate space.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function gets the bounds of the display not including the menu bar and Dock, if located on that display.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowGetBounds
Gets the bounds of a specified region of a window.

OSStatus HIWindowGetBounds (
 WindowRef inWindow,
 WindowRegionCode inRegion,
 HICoordinateSpace inSpace,
 HIRect *outBounds
);

Parameters
inWindow

The window to access.

Functions 1885
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inRegion
The window region. For a list of possible values, see “Window Region Constants” (page 2021).

inSpace
The coordinate space in which the bounds should be returned. This parameter must be
kHICoordSpaceWindow, kHICoordSpaceScreenPixel, or kHICoordSpace72DPIGlobal.

outBounds
A pointer to an HIRect (page 2324) structure. On output, the structure contains the origin and size of
the bounding rectangle of the specified window region. If the window does not support the region,
the structure is not modified.

Return Value
A result code. If the window does not support the specified window region, the result returned is
errWindowRegionCodeInvalid.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

See Also
HIWindowSetBounds (page 1893)

Declared In
MacWindows.h

HIWindowGetCGWindowID
Returns the Quartz window ID assigned to a window.

CGWindowID HIWindowGetCGWindowID (
 WindowRef inWindow
);

Parameters
inWindow

The window to access.

Return Value
The window ID of the specified window, or zero if the window is invalid.

Discussion
This function returns the window ID assigned by the window server when a window is created. The window
ID is not generally useful with any other Carbon function, but may be used with other Mac OS X functions
that require a window ID, such as functions in OpenGL.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

See Also
HIWindowFromCGWindowID (page 1884)

Declared In
MacWindows.h

1886 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

HIWindowGetGreatestAreaDisplay
Finds the display with the greatest area of intersection with a window region.

OSStatus HIWindowGetGreatestAreaDisplay (
 WindowRef inWindow,
 WindowRegionCode inRegion,
 HICoordinateSpace inSpace,
 CGDirectDisplayID *outGreatestDisplay,
 HIRect *outGreatestDisplayRect
);

Parameters
inWindow

The window to compare against.

inRegion
The window region to compare against. See “Window Region Constants” (page 2021) for a list of possible
values.

inSpace
The coordinate space in which the display bounds should be returned. This must be either
kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

outGreatestDisplay
A pointer to a display ID provided by the caller, or NULL if you don't need this information. On output,
the display ID contains the display with the greatest intersection.

outGreatestDisplayRect
A pointer to a rectangle provided by the caller, or NULL if you don't need this information. On output,
the rectangle contains the bounds of the display with the greatest intersection. If the display with
the greatest intersection also contains the menu bar, the rectangle excludes the menu bar area. This
rectangle is returned in the specified coordinate space.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowGetIdealUserState
Gets the bounds of a window’s content region in its user state.

OSStatus HIWindowGetIdealUserState (
 WindowRef inWindow,
 HICoordinateSpace inSpace,
 HIRect *outUserState
);

Parameters
inWindow

The window to access.

Functions 1887
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inSpace
The coordinate space in which the user state bounds should be returned. This parameter must be
kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

outUserState
A pointer to a structure of type HIRect. On return, this rectangle contains the global coordinates of
the window’s content region when zoomed in. If the window has not yet been zoomed, this rectangle
contains the window’s current content bounds.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function returns information about the window’s user state most recently recorded by the function
ZoomWindowIdeal (page 1972).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowGetProxyFSRef
Obtains the FSRef used to determine the proxy icon for a window.

OSStatus HIWindowGetProxyFSRef (
 WindowRef window,
 FSRef *outRef
);

Parameters
inWindow

The window whose proxy FSRef is to be obtained.

outRef
On exit, the FSRef for the window’s proxy icon.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
If the specified window’s proxy icon has been specified using HIWindowSetProxyFSRef (page 1894) or
SetWindowProxyAlias (page 1949), HIWindowGetProxyFSRef returns noErr and a valid FSRef for the
window’s proxy icon. If the window has no proxy icon, or if the icon was specified by calling
SetWindowProxyCreatorAndType or SetWindowProxyIcon, this function returns an error.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

1888 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

HIWindowGetScaleMode
Obtains the window’s scale mode and the application’s display scale factor.

OSStatus HIWindowGetScaleMode (
 WindowRef inWindow,
 HIWindowScaleMode *outMode,
 CGFloat *outScaleFactor
);

Parameters
inWindow

The window whose scale mode is to be obtained.

outMode
On exit, an HIWindowScaleMode indicating the window’s scale mode. For details, see “Window Scale
Mode Constants” (page 2047).

outScaleFactor
On exit, a float indicating the display scale factor for the application. Pass NULL if you are not interested
in acquiring the scale factor.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The window’s scale mode is based on the application’s display scale factor and any resolution-independent
attributes specified at window creation time. Applications and the views within the window can use the scale
mode and display scale factor to draw properly the content of a window for a particular scale mode.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowGetThemeBackground
Gets the theme background brush for a window.

OSStatus HIWindowGetThemeBackground (
 WindowRef inWindow,
 ThemeBrush *outThemeBrush
);

Parameters
inWindow

The window from which to get the brush.

outThemeBrush
A pointer to a theme brush. On output, the brush is the window’s theme background brush.

Return Value
A result code. If no brush is found, themeNoAppropriateBrushErr is returned.

Functions 1889
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
This function gets the theme background brush previously set by calling the function
SetThemeWindowBackground (page 1933).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowInvalidateShadow
Recalculates a window’s shadow.

OSStatus HIWindowInvalidateShadow (
 WindowRef inWindow
);

Parameters
inWindow

The window whose shadow is to be recalculated.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
HIWindowInvalidateShadow is not typically used by applications. It is useful if your application has
customized window frames that change shape dynamically. After you have drawn the new window shape,
you should call HIWindowInvalidateShadow to recalculate the shadow so that it follows the new window
shape.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowIsAttributeAvailable
Returns a Boolean value indicating whether a window attribute is valid for a specified window class.

Boolean HIWindowIsAttributeAvailable (
 WindowClass inClass,
 int inAttr
);

Parameters
inClass

The window class to test.

1890 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inAttr
The window attribute to test. You must specify one of the window attributes described in “Window
Attribute Identifiers” (page 1992).

Return Value
If true, the window class supports the specified attribute. Otherwise, false.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowIsDocumentModalTarget
Determines if a window is currently the target window of another document modal window, such as a sheet.

Boolean HIWindowIsDocumentModalTarget (
 WindowRef inWindow,
 WindowRef *outOwner
);

Parameters
inWindow

The window to query.

outOwner
If this function returns true, inWindow is the target of a document modal window and outOwner
is set to the document modal window. If this function does not return true, outOwner is undefined.
Pass NULL if you don’t want the owner’s window reference.

Return Value
A Boolean whose value is true if the window specified by inWindow is currently the target of a document
modal window; otherwise, false.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowIsInStandardState
Returns a Boolean value indicating whether a window is zoomed out to its standard state.

Functions 1891
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Boolean HIWindowIsInStandardState (
 WindowRef inWindow,
 const HISize *inIdealSize,
 HICoordinateSpace inSpace,
 HIRect *outIdealStandardState
);

Parameters
inWindow

The window whose zoom state is to be determined.

inIdealSize
The ideal width and height of the window’s content region, regardless of the actual screen device
dimensions. If you set inIdealSize to NULL, this function examines the dimensions stored in the
stdState field of the WStateData structure.

inSpace
The coordinate space in which the ideal size is expressed and in which the standard state bounds
should be returned. This parameter must be either kHICoordSpaceScreenPixel or
kHICoordSpace72DPIGlobal.

outIdealStandardState
A pointer to an HIRect variable. On return, the variable contains the bounds of the content region
of the window in its standard state, based on the data supplied in the inIdealSize parameter. You
may pass NULL if you do not need this information.

Return Value
If true, the window is currently in its standard state. If false, the window is currently in its user state.

Discussion
This function compares the window’s current dimensions to those in theinIdealSizeparameter to determine
if the window is currently in its standard state. You can use this function to decide whether a user’s click in
the zoom box is a request to zoom to the user state or the standard state, as described in the function
ZoomWindowIdeal (page 1972). You can also use this function to determine the size and position of the
standard state that the Window Manager would calculate for a window, given a specified ideal size; this value
is returned in the outIdealStandardState parameter.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowReleaseCollapsedDockTileContext
Releases a Quartz graphics context for drawing a collapsed window’s Dock tile.

OSStatus HIWindowReleaseCollapsedDockTileContext (
 WindowRef inWindow,
 CGContextRef inContext
);

Parameters
inWindow

The collapsed window.

1892 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inContext
The graphics context to release. On return, the context is invalid and should no longer be used.

Return Value
A result code. If the window is not collapsed, the result code is windowWrongStateErr. For other possible
values, see “Window Manager Result Codes” (page 2051).

Discussion
To ensure that your drawing appears onscreen, you should call CGContextFlush before calling this function
to release the context. Do not call CFRelease or CGContextRelease to release the context, or you may
leak system resources.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowSetBounds
Sets the bounds of a window based on either the structure or content region.

OSStatus HIWindowSetBounds (
 WindowRef inWindow,
 WindowRegionCode inRegion,
 HICoordinateSpace inSpace,
 HIRect *inBounds
);

Parameters
inWindow

The window to access.

inRegion
The window region on which to base the window's new bounds. This parameter must be either
kWindowStructureRgn or kWindowContentRgn.

inSpace
The coordinate space in which the bounds are expressed. This parameter must be
kHICoordSpaceWindow, kHICoordSpaceScreenPixel, or kHICoordSpace72DPIGlobal.

inBounds
A pointer to anHIRect (page 2324) structure that specifies the origin and size of the bounding rectangle
of the specified window region. If the coordinate space is kHICoordSpaceWindow, then the origin
of the bounds is a window-relative value. Therefore, you can use this coordinate space to resize a
window without first getting its current bounds by setting the origin to (0,0), or you can offset a
window from its current position by setting the origin to the offset amount and the size to the window's
current size.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Functions 1893
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

See Also
HIWindowGetBounds (page 1885)

Declared In
MacWindows.h

HIWindowSetIdealUserState
Sets the bounds of a window’s content region in its user state.

OSStatus HIWindowSetIdealUserState (
 WindowRef inWindow,
 HICoordinateSpace inSpace,
 const HIRect *inUserState
);

Parameters
inWindow

The window to access.

inSpace
The coordinate space in which the user state bounds are expressed. This parameter must be either
kHICoordSpaceScreenPixel or kHICoordSpace72DPIGlobal.

inUserState
The new bounds (position and size) of the window’s content region in its user state.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
A window’s ideal user state is used by the function ZoomWindowIdeal (page 1972) when zooming in.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowSetProxyFSRef
Sets the proxy icon for a window using an FSRef to a file system object.

OSStatus HIWindowSetProxyFSRef (
 WindowRef window,
 const FSRef *inRef
);

Parameters
inWindow

The window whose proxy icon is to be set.

inRef
The file system object the window represents.

1894 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function determines the window’s proxy icon by asking Icon Services for the icon for the object specified
by inRef.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowSetToolbarView
Sets a custom toolbar view for a window.

OSStatus HIWindowSetToolbarView (
 WindowRef inWindow,
 HIViewRef inView
);

Parameters
inWindow

The window whose toolbar view to set.

inView
The custom toolbar view for the window. You may pass NULL to remove the custom view from the
window. Setting a custom view will also remove any HIToolbar that is associated with the window.

After a custom toolbar view has been set, the window owns the view and will release it automatically
when the window is destroyed, or when a different custom view or standard HIToolbar is set for the
window.

Return Value
A result code.

Discussion
This function is provided for use by applications that cannot use the HIToolbar API. For best compatibility
with future versions of Mac OS X, you should use HIToolbar if possible. However, if HIToolbar is not sufficient
for your needs, you can use this function to provide a custom toolbar view that will be placed at the standard
location inside the window frame.

You are responsible for defining the appearance and behavior of the view. You cannot use this function to
customize the view that is associated with an HIToolbar; a window with an HIToolbar uses a standard view
that cannot be customized. When using a custom toolbar view, no function that takes an HIToolbar will work
with that window. For more information about custom toolbar views, see MacWindows.h.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1895
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

HIWindowShowsFocus
Returns a Boolean value indicating whether a window's content should show focus indicators such as focus
rings.

Boolean HIWindowShowsFocus (
 WindowRef inWindow
);

Parameters
inWindow

The window to access.

Return Value
If true, a window's content should show focus indicators; otherwise false.

Discussion
This function returns true if the window is either the modeless focus or the effective focus.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

HIWindowTestAttribute
Returns a Boolean value indicating whether a window has a specified attribute.

Boolean HIWindowTestAttribute (
 WindowRef inWindow,
 int inAttr
);

Parameters
inWindow

The window to test.

inAttr
The window attribute to test. You must specify one of the window attributes described in “Window
Attribute Identifiers” (page 1992).

Return Value
If true, the window has the specified attribute. Otherwise, false.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

1896 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

HIWindowTrackProxyDrag
Tracks the drag of a window proxy icon.

OSStatus HIWindowTrackProxyDrag (
 WindowRef inWindow,
 EventRef inEvent,
 DragRef inDrag
);

Parameters
inWindow

The window whose proxy icon to drag.

inEvent
The event that resulted in starting a drag. This will most commonly be kEventControlTrack, but
any event with kEventParamMouseLocation and kEventParamKeyModifiers parameters is all
that is required.

inDrag
The proxy icon drag reference. You may pass NULL if you want the Window Manager to create and
populate the drag reference. The Window Manager will add its own drag flavors to the drag even if
you pass a pre-created drag reference.

Discussion
You can use this function to manage the dragging of the proxy icon in your application's windows. If you
use the standard window event handler and you do not need to customize the proxy icon drag process, you
may rely on the standard handler to call this function.

If you want to allow the Window Manager to create the drag reference and populate it with drag flavors, you
should pass NULL in the inDrag parameter. If you want to create the drag reference yourself and add your
own drag flavors, you should call BeginWindowProxyDrag (page 1802) to create the drag reference, add your
own flavors, call HIWindowTrackProxyDrag to track the proxy icon drag, and then call
EndWindowProxyDrag (page 1826) to release the drag reference.

A proxy icon may only be dragged if the window represented by the proxy icon is not modified, as indicated
by the IsWindowModified (page 1907) function. This restriction exists because a proxy icon is a representation
of a physical file system object, and dragging the proxy icon may result in the Finder making a copy of the
file system object. If the window is modified, then it contains user data that has not yet been saved to disk;
making a copy of the file system object would result in a stale copy that did not contain the user’s current
data.

By default, all newly created windows are considered to be dirty. The application must pass false to
SetWindowModified (page 1946) before the proxy icon will be draggable. In Mac OS X v10.3 and later, the
proxy icon is also draggable in dirty windows if the proxy icon was provided using the
SetWindowProxyIcon (page 1951) orSetWindowProxyCreatorAndType (page 1950) functions. Dragging is
allowed in this case because the window does not represent an actual file system object, and therefore there
is no risk of user data loss.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1897
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

InstallWindowContentPaintProc
Installs a window content painting callback. (Deprecated in Mac OS X v10.5. Use a kEventControlDraw
Carbon event handler on a window's content view instead.)

OSStatus InstallWindowContentPaintProc (
 WindowRef window,
 WindowPaintUPP paintProc,
 WindowPaintProcOptions options,
 void *refCon
);

Parameters
window

The window whose default content painting function you want to override.

paintProc
A UPP to your window painting callback function. See WindowPaintProcPtr (page 1978) for more
information about the format of this function.

options
The options that are to be set. See “Window Paint Callback Options” (page 2043) for a list of possible
values.

refCon
Application-defined data. This data is passed to your callback when it is called.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
To remove a previously-installed paint proc (returning to the standard window manager erase-to-white
content painting), pass NULL in the paintProc and refCon parameters.

Special Considerations

Instead of using this function, you should install a Carbon event handler for the kEventControlDraw event
on a window's content view.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

InvalWindowRect
Adds a rectangle to a window’s update region.

1898 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus InvalWindowRect (
 WindowRef window,
 const Rect *bounds
);

Parameters
window

The window containing the rectangle you want to be updated.

bounds
Set this structure to specify, in local coordinates, a rectangle to be added to the window’s update
region.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The InvalWindowRect function informs the Window Manager that an area of a window should be redrawn.

See also the functions ValidWindowRect (page 1969) and InvalWindowRgn (page 1899).

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
HID Explorer

Declared In
MacWindows.h

InvalWindowRgn
Adds a region to a window’s update region.

OSStatus InvalWindowRgn (
 WindowRef window,
 RgnHandle region
);

Parameters
window

The window containing the region that you want to update.

region
Set this region to specify, in local coordinates, the area to be added to the window’s update region.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Functions 1899
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
The InvalWindowRgn function informs the Window Manager that an area of a window should be redrawn.

See also the functions InvalWindowRect (page 1898) and ValidWindowRgn (page 1969).

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

InvokeWindowDefUPP
Invokes the UPP for a window definition. (Deprecated in Mac OS X v10.5. The WDEF interface is deprecated;
use a custom HIView to draw your custom window frame instead.)

long InvokeWindowDefUPP (
 short varCode,
 WindowRef window,
 short message,
 long param,
 WindowDefUPP userUPP
);

Parameters
varCode

The window’s variation code.

window
The window whose UPP is to be invoked.

message
The message.

param
The parameter.

userUPP
The UPP to invoke.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

1900 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

InvokeWindowPaintUPP
Invokes the UPP for the specified painting region. (Deprecated in Mac OS X v10.5. The window content
painting interface is deprecated; use a kEventControlDrawCarbon event handler on a compositing window’s
content view instead.)

OSStatus InvokeWindowPaintUPP (
 GDHandle device,
 GrafPtr qdContext,
 WindowRef window,
 RgnHandle inClientPaintRgn,
 RgnHandle outSystemPaintRgn,
 void *refCon,
 WindowPaintUPP userUPP
);

Parameters
device

The graphics device on which the window background should be painted.

qdContext
The QuickDraw port in which the window background should be painted.

window
The window whose UPP is to be invoked.

inClientPaintRgn
The region of the window background that needs to be painted, in local coordinates.

outSystemPaintRgn
On return, the region of the window background that the paint proc requests the Window Manager
to paint.

refCon
Application-defined data.

userUPP
The UPP to invoke. For more information on this data type, see WindowPaintUPP (page 1987).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
MacWindows.h

IsValidWindowClass
Determines whether a given window class is valid.

Functions 1901
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Boolean IsValidWindowClass (
 WindowClass inClass
);

Parameters
inClass

The window class to query.

Return Value
A Boolean whose value is true if the window class is valid; otherwise, false.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsValidWindowPtr
Reports whether a pointer is a valid window pointer.

Boolean IsValidWindowPtr (
 WindowRef possibleWindow
);

Parameters
possibleWindow

The window to query.

Return Value
A Boolean whose value is true if the specified pointer is a valid window pointer; otherwise, false.

Discussion
This function is primarily intended for use with debugging your application.

Special Considerations

The IsValidWindowPtr function is a processor-intensive call.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowActive
Indicates whether the specified window is active.

1902 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Boolean IsWindowActive (
 WindowRef inWindow
);

Parameters
inWindow

The window to query.

Return Value
Returns true if the window is active, false otherwise.

Discussion
Whether a window is considered active is determined by its activation scope, highlighting, and z-order. For
windows that have an activation scope of kWindowActivationScopeAll, a window is active if it is the
window returned by the ActiveNonFloatingWindow (page 1800) function or if it is in the same window
group as the window returned by ActiveNonFloatingWindow and the window group has the
kWindowGroupAttrSharedActivation attribute. For windows that have some other activation scope, the
window is active if its window frame is highlighted and the window is the frontmost window in its window
group.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowCollapsable
Determines whether a window can be collapsed.

Boolean IsWindowCollapsable (
 WindowRef window
);

Parameters
window

The window to be examined.

Return Value
If true, the window can be collapsed; otherwise, false.

Discussion
You can call the IsWindowCollapsable function to determine if a given window can be collapsed by the
CollapseWindow (page 1810) function. In Mac OS X, the presence or absence of the
kWindowCollapseBoxAttribute is the primary way of determining whether a window can be collapsed.
If that attribute is not present, the Window Manager checks for the kWindowCanCollapse feature bit.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1903
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

IsWindowCollapsed
Determines whether a window is currently collapsed.

Boolean IsWindowCollapsed (
 WindowRef window
);

Parameters
window

The window to be examined.

Return Value
If true, the window is collapsed. If false, the window is expanded.

Discussion
On Mac OS 9, only window definition functions that return the feature bit kWindowCanCollapse in response
to a kWindowGetFeatures message support this function; for more information, see
GetWindowFeatures (page 1847). Typically, a window’s content region is empty in a collapsed state. In Mac
OS X, the presence or absence of the kWindowCollapseBoxAttribute attribute determines whether a
window can be collapsed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowContainedInGroup
Determines if a window is a member of a window group or any of its subgroups.

Boolean IsWindowContainedInGroup (
 WindowRef inWindow,
 WindowGroupRef inGroup
);

Parameters
inWindow

The window to query.

inGroup
The window group to query.

Return Value
A Boolean whose value is true if inWindow is a member of the window group specified by inGroup, or if
inWindow is a member of a window group that is a member of the window group specified by inGroup.
Otherwise, this function returns false.

Discussion
This function returns true if group A contains window A. It also returns true if group A contains group B
and group B contains window A.

Availability
Available in Mac OS X v10.0 and later.

1904 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowHilited
Indicates whether the window frame is currently highlighted.

Boolean IsWindowHilited (
 WindowRef window
);

Parameters
window

The window to query.

Return Value
A Boolean value indicating whether or not the window frame is highlighted. If true, the window is visible.
If false, the window frame is not highlighted.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowInStandardState
Determines whether a window is currently zoomed in to the user state or zoomed out to the standard state.

Boolean IsWindowInStandardState (
 WindowRef inWindow,
 const Point *inIdealSize,
 Rect *outIdealStandardState
);

Parameters
inWindow

The window whose zoom state is to be determined.

inIdealSize
Set the Point structure to contain the ideal width and height of the window’s content region,
regardless of the actual screen device dimensions. If you set inIdealSize to NULL,
IsWindowInStandardState examines the dimensions stored in the stdState field of the
WStateData structure.

outIdealStandardState
On input, a pointer to a structure of type Rect. On return, the rectangle contains the global coordinates
for the content region of the window in its standard state, based on the data supplied in the
inIdealSize parameter. You may pass NULL if you do not want to receive this data.

Functions 1905
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Return Value
A Boolean whose value is true if the window is currently in its standard state; false if the window is currently
in the user state.

Discussion
The IsWindowInStandardState function compares the window’s current dimensions to those referred to
by the inIdealSize parameter to determine if the window is currently in the standard state. Your application
may use IsWindowInStandardState to decide whether a user’s click of the zoom box is a request to zoom
to the user state or the standard state, as described in the function ZoomWindowIdeal (page 1972). Your
application may also use IsWindowInStandardState to determine the size and position of the standard
state that the Window Manager would calculate for a window, given a specified ideal size; this value is
produced in the outIdealStandardState parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowIsInStandardState (page 1891)

Declared In
MacWindows.h

IsWindowLatentVisible
Indicates whether a window is visible onscreen or is latently visible but not currently onscreen.

Boolean IsWindowLatentVisible (
 WindowRef inWindow,
 WindowLatentVisibility *outLatentVisible
);

Parameters
inWindow

The window to query.

outLatentVisible
If the window is onscreen, the latent visibility is zero. If the window is offscreen, this parameter returns
the latent visibility flags of the window. If any of the flags are set, the window is latently visible.

Return Value
A Boolean whose value is true if the window is currently onscreen; otherwise, false.

Discussion
All windows are either onscreen or offscreen. A window that is offscreen may still be latently visible. This
occurs, for example, when a floating window is hidden as an application is suspended. The floating window
is not visible onscreen, but it is latently visible and is only hidden due to the suspended state of the application.
When the application becomes active again, the floating window will be placed back onscreen.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

1906 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

IsWindowModified
Obtains the modification state of the specified window.

Boolean IsWindowModified (
 WindowRef window
);

Parameters
window

The window whose modification state is to be obtained.

Return Value
true if the content of the window has been modified; otherwise, false. Newly created windows start out
with their modification state automatically set to true.

Discussion
Your application can use the functions IsWindowModified and SetWindowModified (page 1946) instead
of maintaining its own separate record of the modification state of the content of a window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

IsWindowPathSelectClick
Reports whether a mouse click should activate the window path pop-up menu. (Deprecated in Mac OS X
v10.5. Use IsWindowPathSelectEvent (page 1908) instead.)

Boolean IsWindowPathSelectClick (
 WindowRef window,
 const EventRecord *event
);

Parameters
window

The window in which the mouse-down event occurred.

event
A pointer to the EventRecord structure containing the mouse-down event that
IsWindowPathSelectClick is to examine.

Return Value
A Boolean whose value is true f the mouse click should activate the window path pop-up menu; otherwise
false.

Functions 1907
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
The Window Manager provides system support for your application to display window path pop-up menus,
such as those used in Finder windows. When the user presses the Command key and clicks on the window’s
title, the window displays a pop-up menu containing a standard file system path, informing the user of the
location of the document displayed in the window and allowing the user to open windows for folders along
the path.

Because the window title includes both the proxy icon region and part of the drag region of the window,
your application must be prepared to respond to a click in either region by displaying a window path pop-up
menu. Therefore, when the FindWindow (page 1827) function returns either the inDrag or the inProxyIcon
result code—you should pass the event to the IsWindowPathSelectClick function to determine whether
the mouse-down event should activate the window path pop-up menu. If IsWindowPathSelectClick
returns a value of true, your application should then call the function WindowPathSelect (page 1970) to
display the menu.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowPathSelectEvent
Determines whether a Carbon event describing a click on a window’s title should cause a path selection
menu to be displayed.

Boolean IsWindowPathSelectEvent (
 WindowRef window,
 EventRef inEvent
);

Parameters
window

The window to query.

inEvent
The event. In CarbonLib and in Mac OS X v10.2 and earlier, the function only returns true for
kEventClassMouse/kEventMouseDown events. In Mac OS X v10.3 and later, this function returns
true for any event that has suitable kEventParamMouseLocation and kEventParamModifiers
parameters.

Return Value
A Boolean whose value is true if the click should cause a path selection menu to be displayed; otherwise,
false. If this function returns true, the application should call WindowPathSelect (page 1970).

Discussion
Windows that have a proxy icon provided using an FSRef or alias can support a path selection menu, which
displays the file system path to the object, one menu item per directory. Making a selection from this item
automatically opens the corresponding object in the Finder.

Availability
Available in Mac OS X v10.0 and later.

1908 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowToolbarVisible
Determines whether a window’s toolbar is visible.

Boolean IsWindowToolbarVisible (
 WindowRef inWindow
);

Parameters
inWindow

The window to query.

Return Value
A Boolean whose value is true if the window’s toolbar is visible; otherwise, false.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

IsWindowUpdatePending
Determines whether a window update is pending.

Boolean IsWindowUpdatePending (
 WindowRef window
);

Parameters
window

The non-composited window to query.

Return Value
A Boolean whose value is true if an update is pending; otherwise, false.

Special Considerations

Modifying a composited window's update region does not affect the area of the window to be drawn. A
composited window does not use its window update region to control drawing. Instead, a composited
window determines what to draw by looking at the invalid regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1909
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

IsWindowVisible
Indicates whether the window frame is currently visible.

Boolean IsWindowVisible (
 WindowRef window
);

Parameters
window

The window to query.

Return Value
A Boolean value indicating whether or not the window is visible. If true, the window is visible. If false, the
window is invisible.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

MoveWindow
Moves a window on the desktop.

void MoveWindow (
 WindowRef window,
 short hGlobal,
 short vGlobal,
 Boolean front
);

Parameters
window

The window that is to be moved on the desktop.

hGlobal
On input, the new location, in global coordinates, of the left edge of the window’s port rectangle.

vGlobal
On input, the new location, in global coordinates, of the top edge of the window’s port rectangle.

front
On input, a Boolean value specifying whether the window is to become the frontmost, active window.
If the value of the front parameter is false, MoveWindow does not change its plane or status. If the
value of the front parameter is true and the window isn’t active, MoveWindow makes it active by
calling the SelectWindow (page 1929) function.

Discussion
The MoveWindow function moves the specified window to the location specified by the hGlobal and vGlobal
parameters, without changing the window’s size. The upper-left corner of the window’s port rectangle is
placed at the point (vGlobal, hGlobal). The local coordinates of the upper-left corner are unaffected.

1910 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Your application doesn’t normally call MoveWindow. When the user drags a window by dragging its title bar,
you can call DragWindow (page 1824) which in turn calls MoveWindow when the user releases the mouse
button.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
MacWindows.h

MoveWindowStructure
Positions a window relative to its structure region.

OSStatus MoveWindowStructure (
 WindowRef window,
 short hGlobal,
 short vGlobal
);

Parameters
window

The window that is to be moved.

hGlobal
A value specifying the horizontal position, in global coordinates, to which the left edge of the window’s
structure region is to be moved.

vGlobal
A value specifying the vertical position, in global coordinates, to which the top edge of the window’s
structure region is to be moved.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The MoveWindowStructure function moves the specified window, but does not change the window’s size.
When your application calls MoveWindowStructure, the positioning of the specified window is determined
by the positioning of its structure region. This is in contrast to the MoveWindow function, where the positioning
of the window’s content region determines the positioning of the window. After moving the window,
MoveWindowStructure displays the window in its new position.

Note that your application should not call the MoveWindowStructure function to position a window when
the user drags the window by its drag region. When the user drags the window, your application should call
the pre–Mac OS 8.5 Window Manager function DragWindow.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 1911
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

NewCWindow
Creates a window with a specified list of characteristics. (Deprecated in Mac OS X v10.5. Use
CreateNewWindow (page 1815) instead.)

WindowRef NewCWindow (
 void *wStorage,
 const Rect *boundsRect,
 ConstStr255Param title,
 Boolean visible,
 short procID,
 WindowRef behind,
 Boolean goAwayFlag,
 SRefCon refCon
);

Parameters
wStorage

On input, a pointer to the window structure. If you specify null as the value of wStorage, NewCWindow
allocates the window structure as a nonrelocatable object in the application heap. You can reduce
the chances of heap fragmentation by allocating memory from a block of memory reserved for this
purpose by your application and passing a pointer to it in the wStorage parameter.

boundsRect
On input, a pointer to a rectangle, given in global coordinates, that specifies the window’s initial size
and location. This rectangle becomes the port rectangle of the window’s graphics port. For the standard
window types, the boundsRect field defines the content region of the window. The NewCWindow
function places the origin of the local coordinate system at the upper-left corner of the port rectangle.
NewCWindow calls the QuickDraw function OpenCPort to create the graphics port. The bitmap, pen
pattern, and other characteristics of the window’s graphics port are the same as the default values
set by OpenCPort, except for the character font, which is set to the application font instead of the
system font.

title
On input, a pascal string that specifies the window’s title. If the title is too long to fit in the title bar,
the title is truncated. To suppress the title in a window with a title bar, pass an empty string, not null,
in the title parameter. null is an invalid value and may cause runtime errors.

1912 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

visible
On input, a Boolean value indicating visibility status: true means that the Window Manager displays
the window; false means it does not. If the value of the visible parameter is true, the Window
Manager draws a new window as soon as the window exists. The Window Manager first calls the
window definition function to draw the window frame. If the value of the goAwayFlag parameter is
also true and the window is frontmost (that is, if the value of the behind parameter is
(WindowRef)–1L), the Window Manager instructs the window definition function to draw a close box
in the window frame. After drawing the frame, the Window Manager generates an update event to
trigger your application’s drawing of the content region.

When you create a window, you typically specify false as the value of the visible parameter. When
you’re ready to display the window, call ShowWindow.

procID
On input, the window’s definition ID, a value that specifies both the window definition function and
the variation code within that definition function. For a list of possible values, see “Pre-Appearance
Window Definition IDs” (page 2048).

behind
On input, a pointer to the window that appears immediately in front of the new window on the
desktop. To place a new window in front of all other windows on the desktop, specify a value of
(WindowRef)–1L. When you place a new window in front of all others, NewCWindow removes
highlighting from the previously active window, highlights the newly created window, and generates
activate events that trigger your application’s updating of both windows. Note that if you create an
invisible window in front of all others on the desktop, the user sees no active window until you make
the new window visible (or make another window active).

To place a new window behind all other windows, specify a value of null.

goAwayFlag
On input, a Boolean value that determines whether the window has a close box. If the value of
goAwayFlag is true and the window type supports a close box, the Window Manager draws a close
box in the title bar and recognizes mouse clicks in the close region; if the value of goAwayFlag is
false or the window type does not support a close box, it does not.

refCon
On input, a window’s reference constant, set and used only by your application.

Return Value
A pointer to the newly created window structure.

Discussion
The NewCWindow function creates a window as specified by its parameters, adds it to the window list, and
returns a pointer to the newly created window structure. You can use the returned window pointer to refer
to this window in most Window Manager functions. If NewCWindow is unable to read the window definition
function from the resource file, it returns null.

The NewCWindow function looks for a ' wctb ' resource with the same resource ID as the ' WIND ' resource.
If it finds one, it uses the window color information in the ' wctb ' resource for coloring the window content
region.

If the window’s definition function is not already in memory, NewCWindow reads it into memory and stores
a handle to it in the window structure. It allocates space for the structure and content regions of the window.

Storing the characteristics of your windows as resources, especially window titles and window items, makes
your application easier to localize.

Functions 1913
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

The NewCWindow function creates a window in a color graphics port. Creating color windows whenever
possible ensures that your windows appear on color monitors with whatever color options the user has
selected. Your application typically sets up its own set of global variables reflecting the system setup during
initialization by calling the Gestalt function.

Special Considerations

If you let the Window Manager create the window structure in your application’s heap, call DisposeWindow
to close the window and dispose of its window structure. If you allocated the memory for the window structure
yourself and passed a pointer to NewCWindow, use the function CloseWindow to close the window and the
appropriate disposal function (determined by how you have allocated memory) to dispose of the window
structure.

Carbon Porting Notes

In Carbon, you cannot pass your own storage in to the wStorage parameter.

Carbon does not support custom window definitions stored in 'WDEF' resources. If you want to specify a
custom window definition for NewCWindow, you must compile your definition function directly in your
application and then register the function by calling RegisterWindowDefinition. When NewCWindow
gets a procID value that doesn't recognize, it checks a special mapping table to find the pointer that's
registered for the resource ID embedded in the procID parameter. It then calls that function to implement
your window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

NewWindow
Creates a window from a parameter list. (Deprecated in Mac OS X v10.5. Use CreateNewWindow (page 1815)
instead.)

WindowRef NewWindow (
 void *wStorage,
 const Rect *boundsRect,
 ConstStr255Param title,
 Boolean visible,
 short theProc,
 WindowRef behind,
 Boolean goAwayFlag,
 SRefCon refCon
);

Parameters
wStorage

On input, a pointer to the window structure. If you specify null as the value of wStorage, NewWindow
allocates the window structure as a nonrelocatable object in the heap. You can reduce the chances
of heap fragmentation by allocating the storage from a block of memory reserved for this purpose
by your application and passing a pointer to it in the wStorage parameter.

1914 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

boundsRect
On input, a pointer to a rectangle, given in global coordinates, which specifies the window’s initial
size and location. This rectangle becomes the port rectangle of the window’s graphics port. For the
standard window types, boundsRect defines the content region of the window. The NewWindow
function places the origin of the local coordinate system at the upper-left corner of the port rectangle.
NewWindow calls the QuickDraw function OpenPort to create the graphics port. The bitmap, pen
pattern, and other characteristics of the window’s graphics port are the same as the default values
set by OpenPort, except for the character font, which is set to the application font instead of the
system font. The coordinates of the graphics port’s port boundaries and visible region are changed
along with its port rectangle.

title
On input, a pascal string that specifies the window’s title. If the title is too long to fit in the title bar,
the title is truncated. To suppress the title in a window with a title bar, pass an empty string, not null.
null is an invalid value and may cause runtime errors.

visible
On input, a Boolean value indicating visibility status: true means that the Window Manager displays
the window; false means it does not.

If the value of the visible parameter is true, the Window Manager draws a new window as soon
as the window exists. The Window Manager first calls the window definition function to draw the
window frame. If the value of the goAwayFlag parameter (described below) is also true and the
window is frontmost (that is, if the value of the behind parameter is (WindowRef(–1L), the Window
Manager instructs the window definition function to draw a close box in the window frame. After
drawing the frame, the Window Manager generates an update event to trigger your application’s
drawing of the content region.

When you create a window, you typically specify false as the value of the visible parameter. When
you’re ready to display the window, you call the function ShowWindow.

theProc
On input, the window’s definition ID, which specifies both the window definition function and the
variation code for that definition function. For a list of possible values, see “Pre-Appearance Window
Definition IDs” (page 2048).

behind
On input, a pointer to the window that appears immediately in front of the new window on the
desktop. To place a new window in front of all other windows on the desktop, specify a value of
(WindowRef)–1L. When you place a new window in front of all others, NewWindow removes
highlighting from the previously active window, highlights the newly created window, and generates
activate events that trigger your application’s updating of both windows. Note that if you create an
invisible window in front of all others on the desktop, the user sees no active window until you make
the new window visible (or make another window active).

To place a new window behind all other windows, specify a value of null.

goAwayFlag
On input, a Boolean value that determines whether or not the window has a close box. If the value
of goAwayFlag is true and the window type supports a close box, the Window Manager draws a
close box in the title bar and recognizes mouse clicks in the close region; if the value of goAwayFlag
is false or the window type does not support a close box, it does not. The goAwayFlag parameter
is ignored for movable modal or modal dialog boxes which do not support a close box.

refCon
On input, the window’s reference constant, set and used only by your application.

Functions 1915
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
The NewWindow function takes the same parameters as NewCWindow and returns a WindowRef as its function
result. The only difference is that NewWindow creates a window in a monochrome graphics port, not a color
graphics port. The window structure and graphics port structure that describe monochrome and color graphics
ports are the same size and can be used interchangeably in most Window Manager functions.

The NewWindow function creates a window as specified by its parameters, adds it to the window list, and
returns a pointer to the newly created window structure. You can use the returned window pointer to refer
to this window in most Window Manager functions. If NewWindow is unable to read the window definition
function from the resource file, it returns null.

If the window’s definition function is not already in memory, NewWindow reads it into memory and stores a
handle to it in the window structure. It allocates space for the structure and content regions of the window.

Storing the characteristics of your windows as resources, especially window titles and window items, makes
your application easier to localize.

Special Considerations

If you let the Window Manager create the window structure in your application’s heap, call DisposeWindow
to close the window and dispose of its window structure. If you allocated the memory for the window structure
yourself and passed a pointer to NewWindow, use the function CloseWindow to close the window and the
appropriate disposal function (determined by how you have allocated memory) to dispose of the window
structure.

Version Notes
The NewWindow function was originally implemented prior to Color QuickDraw. In Mac OS 8, you should call
the Color QuickDraw function NewCWindow instead of NewWindow to programmatically create a window,
because Color QuickDraw is always available in Mac OS 8. Use of this function is not recommended with Mac
OS 8 and later. NewWindow is described here only for completeness.

Carbon Porting Notes

In Carbon, you cannot pass your own storage in to the wStorage parameter.

In Carbon, NewWindow is functionally equivalent to the NewCWindow, in that NewWindow returns a color
window instead of a monochrome window.

Carbon does not support custom window definitions stored in 'WDEF' resources. If you want to specify a
custom window definition for NewWindow, you must compile your definition function directly in your
application and then register the function by calling RegisterWindowDefinition. When NewWindow gets
a procID value that doesn't recognize, it checks a special mapping table to find the pointer that's registered
for the resource ID embedded in the procID parameter. It then calls that function to implement your window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

1916 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

NewWindowDefUPP
Creates a new UPP for a window definition. (Deprecated in Mac OS X v10.5. The WDEF interface is deprecated;
use a custom HIView to draw your custom window frame instead.)

WindowDefUPP NewWindowDefUPP (
 WindowDefProcPtr userRoutine
);

Parameters
userRoutine

For information, see WindowDefProcPtr (page 1973).

Return Value
For a description of the WindowDefUPP data type, see WindowDefUPP (page 1986).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

NewWindowPaintUPP
Creates a new UPP for a painting region. (Deprecated in Mac OS X v10.5. The window content painting
interface is deprecated; use a kEventControlDraw Carbon event handler on a compositing window’s
content view instead.)

WindowPaintUPP NewWindowPaintUPP (
 WindowPaintProcPtr userRoutine
);

Parameters
userRoutine

For information, see WindowPaintProcPtr (page 1978).

Return Value
A UPP to the window paint function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
MacWindows.h

OpenDrawer
Opens a drawer.

Functions 1917
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus OpenDrawer (
 WindowRef inDrawerWindow,
 OptionBits inEdge,
 Boolean inAsync
);

Parameters
inDrawerWindow

The drawer window to open.

inEdge
The parent window edge on which to open the drawer. Pass kWindowEdgeDefault to use the
drawer’s preferred edge. If there is not enough room on the preferred edge, OpenDrawer tries the
opposite edge. If there is insufficient room on both edges, the drawer will open on the preferred edge
but may extend offscreen, under the Dock, or under the menu bar.

inAsync
Indicates whether to open the drawer synchronously (the drawer is entirely opened before the function
call returns) or asynchronously (the drawer opens using an event loop timer after the function call
returns). Specify true for asynchronous and false for synchronous.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

PaintBehind
Redraws a series of windows in the window list. (Deprecated in Mac OS X v10.5. Use InvalWindowRect (page
1898), InvalWindowRgn (page 1899), or HIViewSetNeedsDisplay (page 2485) to invalidate a portion of a
window.)

void PaintBehind (
 WindowRef startWindow,
 RgnHandle clobberedRgn
);

Parameters
startWindow

On input, a pointer to the window’s complete window structure.

clobberedRgn
On input, a handle to the region that has become invalid.

Discussion
The Window Manager calls the PaintBehind function; your application does not normally need to.
PaintBehind calls PaintOne for startWindow and all the windows behind startWindow, clipped to
clobberedRgn.

Special Considerations

Mac OS X applications never need to call this function.

1918 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

PaintOne
Redraws the invalid, exposed portions of one window on the desktop. (Deprecated in Mac OS X v10.5. Use
InvalWindowRect (page 1898),InvalWindowRgn (page 1899), orHIViewSetNeedsDisplay (page 2485) to
invalidate a portion of a window.)

void PaintOne (
 WindowRef window,
 RgnHandle clobberedRgn
);

Parameters
window

On input, a pointer to the window structure.

clobberedRgn
On input, a handle to the region that has become invalid.

Discussion
The Window Manager calls the PaintOne function; your application does not normally need to. PaintOne
“paints” the invalid portion of the specified window and all windows above it. PaintOne draws as much of
the window frame as is in clobberedRgn and, if some content region is exposed, erases the exposed area
(paints it with the content pattern rather than the background pattern using SetWinColor or
SetThemeWindowBackground) and adds it to the window’s update region.

If the value of the window parameter is null, the window is the desktop, and PaintOne paints it with the
desktop pattern.

Special Considerations

Mac OS X applications never need to call this function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

PinRect
Returns the point within the specified rectangle that is closest to the specified point.

Functions 1919
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

long PinRect (
 const Rect *theRect,
 Point thePt
);

Parameters
theRect

On input, a pointer to a rectangle in which the point is to be contained.

thePt
On input, a pointer to the point to be contained.

Return Value
A long integer that specifies a point within the specified rectangle that is as close as possible to the specified
point. (The high-order word of the returned long integer is the vertical coordinate; the low-order word is the
horizontal coordinate.

Discussion
DragGrayRgn uses the PinRect function to contain a point within a specified rectangle. If the specified
point is within the rectangle, PinRect returns the point itself. If not, then

 ■ if the horizontal position is to the left of the rectangle, PinRect returns the left edge as the horizontal
coordinate

 ■ if the horizontal position is to the right of the rectangle, PinRect returns the right edge minus 1 as the
horizontal coordinate

 ■ if the vertical position is above the rectangle, PinRect returns the top edge as the vertical coordinate

 ■ if the vertical position is below the rectangle, PinRect returns the bottom edge minus 1 as the vertical
coordinate

The 1 is subtracted when the point is below or to the right of the rectangle so that a pixel drawn at that point
lies within the rectangle.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

RegisterWindowDefinition
Registers a binding between a resource ID and a window definition function.

OSStatus RegisterWindowDefinition (
 SInt16 inResID,
 const WindowDefSpec *inDefSpec
);

Parameters
inResID

A WDEF proc ID, as used in a 'WIND' resource.

1920 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inDefSpec
Specifies the WindowDefUPP that should be used for windows with the given WDEF proc ID. Pass
NULL to unregister a given WDEF proc ID.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
In the Mac OS 8.x Window Manager, a 'WIND' resource can contain an embedded WDEF procID that is used
by the Window Manager as the resource ID of a 'WDEF' resource to lay out and draw the window. The
'WDEF' resource is loaded by the Window Manager when you load the window with GetNewWindow. Since
WDEFs can no longer be packaged as code resources on Carbon, the procID can no longer refer directly to
a WDEF resource. However, using RegisterWindowDefinition you can instead specify a UniversalProcPtr
pointing to code in your application code fragment.

To unregister a window definition, pass NULL in the inDefSpec parameter for a given WDEF proc ID.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ReleaseQDContextForCollapsedWindowDockTile
Releases a port and other state created by CreateQDContextForCollapsedWindowDockTile. (Deprecated
in Mac OS X v10.5. Use HIWindowReleaseCollapsedDockTileContext (page 1892) instead.)

OSStatus ReleaseQDContextForCollapsedWindowDockTile (
 WindowRef inWindow,
 CGrafPtr inContext
);

Parameters
inWindow

The window whose port is to be released.

inContext
The port that is to be released.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
You must call this function instead of calling DisposePort directly, or you may leak system resources.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Functions 1921
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

ReleaseWindow
Decrements the retain count of a window, and destroys the window if the retain count falls to zero. (Deprecated
in Mac OS X v10.5. Use CFRelease instead.)

OSStatus ReleaseWindow (
 WindowRef inWindow
);

Parameters
inWindow

The window whose retain count is to be decremented.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This API is equivalent to DisposeWindow (page 1820). For consistency with Core Foundation and Carbon
Events, it is preferred over DisposeWindow. Both APIs will continue to be supported.

In Mac OS X v10.2 and later, you can also call CFRelease to decrement the retain count of a window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

ReleaseWindowGroup
Decrements the reference count for a window group.

OSStatus ReleaseWindowGroup (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group whose reference count is to be queried.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

1922 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

RemoveWindowProperty
Removes a piece of data that is associated with a window.

OSStatus RemoveWindowProperty (
 WindowRef window,
 PropertyCreator propertyCreator,
 PropertyTag propertyTag
);

Parameters
window

The window whose data is to be removed.

propertyCreator
The creator code (typically, the application’s signature) of the associated data to be removed.

propertyTag
The application-defined code identifying the associated data to be removed.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The data removed by the RemoveWindowProperty function must have been previously associated with the
window with the function SetWindowProperty (page 1948).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

RemoveWindowProxy
Dissociates a file from a window.

OSStatus RemoveWindowProxy (
 WindowRef window
);

Parameters
window

The window for which you want to remove the associated file.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The RemoveWindowProxy function redraws the window title bar after removing all data associated with a
given file, including the proxy icon, path menu, and file data.

Special Considerations

On Mac OS 8.x and Mac OS 9.x, you must save and restore the current graphics port—by calling the QuickDraw
functions GetPort and SetPort—around each call to the RemoveWindowProxy function.

Functions 1923
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

RepositionWindow
Positions a window relative to another window or a display screen.

OSStatus RepositionWindow (
 WindowRef window,
 WindowRef parentWindow,
 WindowPositionMethod method
);

Parameters
window

The window whose position you want to set.

parentWindow
A pointer to the “parent” window, as defined by your application. In cases where the window
positioning method does not require a parent window, you should set the parentWindow parameter
to NULL.

method
A constant specifying the window positioning method to be used; see “Window Position
Constants” (page 2017) for descriptions of possible values.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Your application may call the RepositionWindow function to position any window, relative to another
window or to a display screen. After positioning the window, RepositionWindow displays the window in
its new position.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest

Declared In
MacWindows.h

ReshapeCustomWindow
Notifies the Window Manager that a custom window’s shape has changed.

1924 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus ReshapeCustomWindow (
 WindowRef window
);

Parameters
window

The window whose shape has changed.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
If the shape of a custom window needs to change dynamically, outside of the context of normal Window
Manager operations, you must use ReshapeCustomWindow to notify the Window Manager so that it can
recalculate the window regions and update the screen. The Window Manager queries your custom window
definition for the new structure and content regions and updates the screen with the new window shape.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ResizeWindow
Handles all user interaction while a window is being resized.

Boolean ResizeWindow (
 WindowRef inWindow,
 Point inStartPoint,
 const Rect *inSizeConstraints,
 Rect *outNewContentRect
);

Parameters
window

The window that is to be resized.

inStartPoint
Set the Point structure to contain the location, specified in global coordinates, where the mouse-down
event occurred. Your application may retrieve this value from the where field of the EventRecord
structure.

inSizeConstraints
Set the rectangle to specify the limits on the vertical and horizontal measurements of the content
rectangle, in pixels. Although this parameter gives the address of a structure that is in the form of the
Rect data type, the four numbers in the structure represent limits, not screen coordinates. The top,
left, bottom, and right fields of the structure specify the minimum vertical measurement (top),
the minimum horizontal measurement (left), the maximum vertical measurement (bottom), and
the maximum horizontal measurement (right). The minimum dimensions should be large enough
to allow a manageable rectangle; 64 pixels on a side is typical. The maximum dimensions can be no
greater than 32,767. You can pass NULL to allow the user to resize the window to any size that is
contained onscreen.

Functions 1925
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

outNewContentRect
On input, a pointer to a structure of type Rect. On return, the structure contains the new dimensions
of the window’s content region, in global coordinates.

Return Value
true if the window was successfully resized; otherwise, false.

Discussion
The ResizeWindow function moves either an outline of the window’s edges (Mac OS 9.x and earlier) or the
actual window (Mac OS X) around the screen, following the user’s cursor movements, and handles all user
interaction until the mouse button is released. Unlike with the function GrowWindow, there is no need to
follow this call with a call to the function SizeWindow, because once the mouse button is released,
ResizeWindow resizes the window if the user has changed the window size. Once the resizing is complete,
ResizeWindow draws the window in the new size.

Your application should call ResizeWindow instead of the earlier Window Manager functions SizeWindow
and GrowWindow. The ResizeWindow function informs your application of the new window bounds, so that
your application can respond to any changes in the window’s position.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

RetainWindow
Increments the retain count of a window. (Deprecated in Mac OS X v10.5. Use CFRetain instead.)

OSStatus RetainWindow (
 WindowRef inWindow
);

Parameters
inWindow

The window whose retain count is to be incremented.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This API is equivalent to CloneWindow (page 1808). For consistency with Core Foundation and Carbon Events,
it is preferred over CloneWindow. Both APIs will continue to be supported.

In Mac OS X v10.2 and later, you can also call CFRetain to increment the retain count of a window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

1926 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

RetainWindowGroup
Increments the reference count for a window group.

OSStatus RetainWindowGroup (
 WindowGroupRef inGroup
);

Parameters
inGroup

The window group whose reference count is to be incremented. For information on this data type,
see WindowGroupRef (page 1986).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ScrollWindowRect
Scroll any area of a window.

OSStatus ScrollWindowRect (
 WindowRef inWindow,
 const Rect *inScrollRect,
 SInt16 inHPixels,
 SInt16 inVPixels,
 ScrollWindowOptions inOptions,
 RgnHandle outExposedRgn
);

Parameters
inWindow

The window to scroll in.

inScrollRect
The rectangle to scroll, in local coordinates.

inHPixels
The number of pixels to scroll horizontally.

inVPixels
The number of pixels to scroll vertically.

inOptions
Options for the scroll. See “Window Scrolling Options” (page 2044) for a list of possible options.

outExposedRgn
A valid region handle for the area newly revealed by the scroll (can be NULL). If NULL, the exposed
region is added to the window’s update region, regardless of the state of the
kScrollWindowInvalidate option. This prevents updates from being lost in multiple monitor
situations where the Window Manager can’t copy the entire region due to differing color tables.

Functions 1927
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Scrolls pixels that are inside the specified region of the input window. No other pixels or the bits they represent
are affected. The pixels are shifted a distance of inHPixels horizontally and inVPixels vertically. The
positive directions are to the right and down. The pixels that are shifted out of the specified window are not
displayed, and the bits they represent are not saved. The exposed empty area created by the scrolling is
returned in the update region parameter and optionally added to the window’s update region.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ScrollWindowRegion
Scrolls a window’s region.

OSStatus ScrollWindowRegion (
 WindowRef inWindow,
 RgnHandle inScrollRgn,
 SInt16 inHPixels,
 SInt16 inVPixels,
 ScrollWindowOptions inOptions,
 RgnHandle outExposedRgn
);

Parameters
inWindow

The window to scroll in.

inScrollRgn
The region to scroll, in local coordinates.

inHPixels
The number of pixels to scroll horizontally.

inVPixels
The number of pixels to scroll vertically.

inOptions
Options for the scroll. See “Window Scrolling Options” (page 2044) for a list of possible options.

outExposedRgn
A valid region handle for the area newly revealed by the scroll (can be NULL). If NULL, the exposed
region is added to the window’s update region, regardless of the state of the
kScrollWindowInvalidate option. This prevents updates from being lost in multiple monitor
situations where the Window Manager can’t copy the entire region due to differing color tables.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

1928 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
Scrolls pixels that are inside the specified region of the input window. No other pixels or the bits they represent
are affected. The pixels are shifted a distance of inHPixels horizontally and inVPixels vertically. The
positive directions are to the right and down. The pixels that are shifted out of the specified window are not
displayed, and the bits they represent are not saved. The exposed empty area created by the scrolling is
returned in the update region parameter and optionally added to the window’s update region

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SelectWindow
Makes a window active.

void SelectWindow (
 WindowRef window
);

Parameters
window

The window that is to be made active.

Discussion
The SelectWindow function removes highlighting from the previously active window, brings the specified
window to the front, highlights it, and generates the activate events to deactivate the previously active
window and activate the specified window. If the specified window is already active, SelectWindow has no
effect. Call SelectWindow when the user presses the mouse button while the cursor is in the content region
of an inactive window.

Even if the specified window is invisible, SelectWindow brings the window to the front, activates the window,
and deactivates the previously active window. Note that in this case, no active window is visible on the screen.
If you do select an invisible window, be sure to call ShowWindow (page 1959) immediately to make the window
visible (and accessible to the user).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar
QTCarbonShell

Declared In
MacWindows.h

SendBehind
Moves one window behind another.

Functions 1929
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

void SendBehind (
 WindowRef window,
 WindowRef behindWindow
);

Parameters
window

The window to be moved.

behindWindow
On input, a pointer to the window that is to be in front of the moved window.

Discussion
The SendBehind function moves the window pointed to by the parameter window behind the window
pointed to by the parameter behindWindow. If the move exposes previously obscured windows or parts of
windows, SendBehind redraws the frames as necessary and generates the appropriate update events to
have any newly exposed content areas redrawn.

If the value of behindWindow is NULL, SendBehind sends the window to be moved behind all other windows
on the desktop. If the window to be moved is the active window, SendBehind removes its highlighting,
highlights the newly exposed frontmost window, and generates the appropriate activate events.

Do not use SendBehind to deactivate a window after you’ve made a new window active with the function
SelectWindow (page 1929). The SelectWindow function automatically deactivates the previously active
window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SendWindowGroupBehind
Orders one window group behind another.

OSStatus SendWindowGroupBehind (
 WindowGroupRef inGroup,
 WindowGroupRef behindGroup
);

Parameters
inGroup

The window group.

behindGroup
The “behind” window group.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
A window group can contain multiple window groups. You can use this function to order nested groups.

1930 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetDrawerOffsets
Sets the positioning offsets for the drawer with respect to its parent window.

OSStatus SetDrawerOffsets (
 WindowRef inDrawerWindow,
 CGFloat inLeadingOffset,
 CGFloat inTrailingOffset
);

Parameters
inDrawerWindow

The drawer window whose positioning offsets are to be set.

inLeadingOffset
The new leading offset, in pixels. Pass kWindowOffsetUnchanged if you don’t want to change the
leading offset.

inTrailingOffset
The new trailing offset, in pixels. Pass kWindowOffsetUnchanged if you don’t want to change the
trailing offset.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetDrawerParent
Sets the parent window for a drawer.

OSStatus SetDrawerParent (
 WindowRef inDrawerWindow,
 WindowRef inParent
);

Parameters
inDrawerWindow

The drawer window whose parent window is to be set.

inParent
The window that is to be set as the parent of the window specified by inDrawerWindow.

Functions 1931
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetDrawerPreferredEdge
Set the preferred window edge from which the drawer should appear.

OSStatus SetDrawerPreferredEdge (
 WindowRef inDrawerWindow,
 OptionBits inEdge
);

Parameters
inDrawerWindow

The drawer window whose preferred window edge is to be set.

inEdge
The preferred edge. See “Window Edge Constants” (page 2041) for a list of possible values.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetPortWindowPort
Sets the current graphics port to the window’s port.

void SetPortWindowPort (
 WindowRef window
);

Parameters
window

The window whose graphics port is to be set.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Explorer

1932 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

QTCarbonShell

Declared In
MacWindows.h

SetThemeTextColorForWindow
Sets a text color that contrasts with a theme brush.

OSStatus SetThemeTextColorForWindow (
 WindowRef inWindow,
 Boolean inActive,
 SInt16 inDepth,
 Boolean inColorDev
);

Parameters
inWindow

The window whose text color is to be set.

inActive
A Boolean whose value is true to indicate an active state or false to indicate an inactive state.

inDepth
The bit depth of the window’s port. In Mac OS X, this parameter is ignored and should always be set
to 32.

inColorDev
A Boolean whose value is true to indicate that the window’s port is color or false to indicate that
the port is black and white. In Mac OS X, this parameter is ignored and should always be set to true.

Return Value
A result code. See “Window Manager Result Codes” (page 2051) for a list of possible values.

Discussion
SetThemeTextColorForWindow sets a text color in the specified window’s port that contrasts with the
brush specified by SetThemeWindowBackground (page 1933) and also matches the inActive parameter.

Only a subset of the theme brushes have theme text colors. As of Mac OS 9 and Mac OS X v10.4 and later,
the Alert, Dialog, Modeless Dialog, and Notification brushes have corresponding text colors. For any other
brush, SetThemeTextColorForWindow returns themeNoAppropriateBrushErr and does not modify
the text color.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetThemeWindowBackground
Sets a window’s background theme.

Functions 1933
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus SetThemeWindowBackground (
 WindowRef inWindow,
 ThemeBrush inBrush,
 Boolean inUpdate
);

Parameters
inWindow

The window whose background theme is to be set.

inBrush
The theme brush that determines how the window background is painted. For information on theme
brushes, see the Appearance Manager documentation.

inUpdate
A Boolean whose value is true if you want the window to be redrawn immediately using the new
background brush; otherwise, false.

Return Value
A result code. See “Window Manager Result Codes” (page 2051) for a list of possible values.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetUserFocusWindow
Designates a window to receive user focus.

OSStatus SetUserFocusWindow (
 WindowRef inWindow
);

Return Value
A result code.

Discussion
You can use this function to assign user focus to a specified window. This tells the Carbon Event Manager to
route events that should go to the user focus (for example, commands and keyboard events) to the specified
window. This can be used, for example, to route keyboard events to a floating palette, since floating palettes
do not normally receive user focus.

Setting focus automatically defocuses whatever element formerly had user focus. If the focus changes to a
new window, the kEventWindowFocusAcquired Carbon event will be sent to the newly focused window,
and the kEventWindowFocusRelinquish Carbon event will be sent to the previously focused window.

If you pass kUserFocusAuto in the inWindow parameter, the system picks the best candidate for user focus
(typically, this will be the active window). If you temporarily change the focus to a special window, you should
use this option to restore the focus rather than setting the focus to an explicit window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1934 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

SetWindowActivationScope
Sets a window’s activation scope.

OSStatus SetWindowActivationScope (
 WindowRef inWindow,
 WindowActivationScope inScope
);

Parameters
inWindow

The window whose activation scope is to be set.

inScope
The new activation scope.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowAlpha
Sets the window’s alpha channel value.

OSStatus SetWindowAlpha (
 WindowRef inWindow,
 CGFloat inAlpha
);

Parameters
inWindow

The window whose alpha channel value is to be set.

inAlpha
The alpha value to set. This value can range from 0.0 (completely transparent) to 1.0 (opaque).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1935
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

SetWindowAlternateTitle
Sets an alternate window title.

OSStatus SetWindowAlternateTitle (
 WindowRef inWindow,
 CFStringRef inTitle
);

Parameters
inWindow

The window for which to set the alternate title.

inTitle
The alternate title for the window. Passing NULL for this parameter will remove any alternate title
that might be present.

Return Value
A result code. See “Window Manager Result Codes” (page 2051). An operating system status code.

Discussion
This API sets an alternate title for a window. The alternate title overrides what is displayed in the Window
menu. If you do not set an alternate title, the normal window title is used. You would normally use this if the
window title was not expressive enough to be used in the Window menu (or similar text-only situation).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowBounds
Sets a window’s size and position from the bounding rectangle of the specified window region.

OSStatus SetWindowBounds (
 WindowRef window,
 WindowRegionCode regionCode,
 const Rect *globalBounds
);

Parameters
window

The window whose bounds are to be set.

regionCode
A constant specifying the region to be used in determining the window’s size and position. The only
region codes allowed for this parameter are kWindowStructureRgn and kWindowContentRgn.

globalBounds
Set the rectangle to specify the dimensions and position, in global coordinates, of the window region
specified in the regionCode parameter.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

1936 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
The SetWindowBounds function sets a window’s size and position to that specified by the rectangle that
your application passes in the globalBounds parameter. After doing so, SetWindowBounds redraws the
window, if the window is visible.

When you call the SetWindowBounds function, your application specifies whether the window’s content
region or its structure region is more important in determining the window’s ultimate size and position. This
distinction can be important with versions of the Mac OS running the Appearance Manager, since the total
dimensions of a window—and, therefore, its spatial relationship to the rest of the screen—may vary from
appearance to appearance. In general, you should specify kWindowStructureRgn for the regionCode
parameter if how the window as a whole relates to a given monitor is more important than the exact
positioning of its content on the screen. On the other hand, if you specify kWindowContentRgn for the
regionCode parameter because the positioning of your application’s content is of greatest concern, then
it is important to note that with some appearances some part of the window’s structure region or “frame”
may extend past the edge of a monitor and not be displayed.

See also the function GetWindowBounds (page 1843).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowSetBounds (page 1893)

Declared In
MacWindows.h

SetWindowCancelButton
Specifies a Cancel button for a window.

OSStatus SetWindowCancelButton (
 WindowRef inWindow,
 ControlRef inControl
);

Parameters
inWindow

The window whose Cancel button you want to set.

inControl
The control to designate as the Cancel button.

Return Value
A result code.

Discussion
You can use this function to specify a control (normally a button) to be the Cancel button for a given window.
This button would be considered to have been clicked if the user instead presses Command-period or the
Escape key.

Functions 1937
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

The standard window event handler looks for keystrokes that correspond to the cancel button and generates
events of type kEventControlHit when it detects the correct key being pressed. This is similar to the way
the Dialog Manager responds to cancel buttons, except that instead of returning an item index for which
button is pressed, the Carbon Event Manager generates a control hit event.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowClass
Sets the class of a window. (Deprecated in Mac OS X v10.5. Use HIWindowChangeClass (page 1876),
SetWindowGroup (page 1941), or HIWindowChangeAttributes (page 1874) instead.)

OSStatus SetWindowClass (
 WindowRef inWindow,
 WindowClass inWindowClass
);

Parameters
window

The window whose class you want to set.

inClass
The class that is to be set. See “Window Class Constants” (page 1988) for a list of possible window
classes.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function changes the class of a window. It also changes the window's z-order so that it is grouped with
other windows of the same class. It does not change the visual appearance of the window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowContentColor
Sets the color to which a window’s content region is redrawn.

1938 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus SetWindowContentColor (
 WindowRef window,
 const RGBColor *color
);

Parameters
window

The window whose content color is to be set.

color
Set this structure to specify the content color to be used.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
If your application uses the SetWindowContentColor function, the window’s content region is redrawn to
the color you specify, without affecting the value specified in the window’s CGrafPort structure for the
current background color.

See also the function GetWindowContentColor (page 1845).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowContentPattern
Sets the pattern to which a window’s content region is redrawn.

OSStatus SetWindowContentPattern (
 WindowRef window,
 PixPatHandle pixPat
);

Parameters
window

A pointer to the window whose content pattern is being set.

pixPat
Set this structure to specify the content pattern to be used. This handle is copied by the Window
Manager, and your application continues to own the original. Therefore there may be higher RAM
requirements for applications with numerous identically patterned windows.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
If your application uses the SetWindowContentPattern function, the window’s content region is redrawn
to the pattern you specify, without affecting the value specified in the window’s CGrafPort structure for
the current background pattern.

See also the function GetWindowContentPattern (page 1846).

Functions 1939
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowDefaultButton
Specifies a default button for a window.

OSStatus SetWindowDefaultButton (
 WindowRef inWindow,
 ControlRef inControl
);

Parameters
inWindow

The window whose default button you want to set.

inControl
The control to designate as the default.

Return Value
A result code.

Discussion
You can use this function to specify a control (normally a button) to be the default for a given window. This
button would be considered to have been clicked if the user instead presses the Return or Enter keys on the
keyboard.

The standard window event handler looks for keystrokes that correspond to the default button and generates
events of type kEventControlHit when it detects the correct key being pressed. This is similar to the way
the Dialog Manager responds to default buttons, except that instead of returning an item index for which
button is pressed, the Carbon Event Manager generates a control hit event.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonCocoa_PictureCursor

Declared In
MacWindows.h

SetWindowDockTileMenu
Associates a pop-up menu with a window.

1940 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus SetWindowDockTileMenu (
 WindowRef inWindow,
 MenuRef inMenu
);

Parameters
inWindow

The window with which a pop-up menu is to be associated.

inMenu
The pop-up menu that is to be associated with the window specified by inWindow

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
You specify a dock tile menu if you want to be able to present special selections when the user activates the
pop-up menu associated with the window’s minimized dock tile.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

SetWindowGroup
Assigns a window to a window group.

OSStatus SetWindowGroup (
 WindowRef inWindow,
 WindowGroupRef inNewGroup
);

Parameters
inWindow

The window that is to be assigned to a window group.

inNewGroup
The window group. For information on this data type, see WindowGroupRef (page 1986).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1941
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

SetWindowGroupLevel
Sets the level of group in the window class hierarchy.

OSStatus SetWindowGroupLevel (
 WindowGroupRef inGroup,
 SInt32 inLevel
);

Parameters
inGroup

The window group.

inLevel
The new level for the windows in this group.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The window group’s level is only used to set the level of its windows if the window group is a child of the
root group. If there is another group in the group hierarchy between this group and the root group, this
group’s level is ignored.

In Mac OS X v10.4 and later, SetWindowGroupLevel sets all three window levels associated with a window
group: active, inactive, and promoted. It then immediately determines if the active level needs to be promoted
to a larger value, and if so, sets the promoted level to that value.

See the Core Graphics frameworks header CGWindowLevel.h for a listing of window levels.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowGroupLevelOfType
Sets the window level of a window group.

OSStatus SetWindowGroupLevelOfType (
 WindowGroupRef inGroup,
 UInt32 inLevelType,
 CGWindowLevel inLevel
);

Parameters
inGroup

The window group whose Core Graphics window level is to be set.

inLevelType
The level type to set. Specify kWindowGroupLevelActive or kWindowGroupLevelInactive. For
details, see “Window Group Level Constants” (page 2048).

inLevel
The new level that is to be set for the windows in this group.

1942 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
In Mac OS X v10.4 and later, multiple window levels may be associated with a window group: one level for
when the application is active and another for when the application is inactive. The Window Manager
automatically switches each group’s level as the application becomes active or inactive. Call
SetWindowGroupLevelOfType to set the active and inactive window level for a window group. The window
group’s level is only used to set the level of its windows if the window group is a child of the root group. If
there is another group in the group hierarchy between this group and the root group, this group’s level is
ignored.

You can also use SetWindowGroupLevelOfType to set the promoted window level that is actually used
for windows in the group. Doing so is not recommended, however, because the promoted window level is
reset by the Window Manager whenever the window group hierarchy structure changes. Any changes that
you make to the promoted level may, therefore, be overwritten. In general, you should only use
SetWindowGroupLevelOfType to set the active and inactive window levels. When setting the active level
of a group with the fixed-level window group attribute, this function also automatically sets the promoted
level to the same value and updates the promoted level of any non-fixed-level groups above the group being
modified.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowGroupName
Assigns a name to a window group.

OSStatus SetWindowGroupName (
 WindowGroupRef inGroup,
 CFStringRef inName
);

Parameters
inGroup

The window group. For information on this data type, see WindowGroupRef (page 1986).

inName

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Carbon Porting Notes

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1943
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

SetWindowGroupOwner
Sets a window as the owner of a window group.

OSStatus SetWindowGroupOwner (
 WindowGroupRef inGroup,
 WindowRef inWindow
);

Parameters
inGroup

The window group that is to be set as the owner of the window group specified by inWindow.

inWindow
The window group whose owner is to be set.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
This function is rarely needed and is known to be problematic, so calling this function is not recommended.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowGroupParent
Sets a window group to be the parent of another window group.

OSStatus SetWindowGroupParent (
 WindowGroupRef inGroup,
 WindowGroupRef inNewGroup
);

Parameters
inGroup

The window group whose parent window group is to be set. The specified window group cannot
contain any windows at the time of this call.

inNewGroup
The window group that is to be the parent of inGroup. For information on this data type, see
WindowGroupRef (page 1986).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
You can nest groups within each other using this function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1944 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

SetWindowIdealUserState
Sets the size and position of a window in its user state.

OSStatus SetWindowIdealUserState (
 WindowRef inWindow,
 const Rect *inUserState
);

Parameters
inWindow

The window whose size and position in its user state is to be set.

inUserState
Set this rectangle to specify the new size and position of the window’s user state, in global coordinates.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Because the window definition function relies upon the WStateData structure, it is unaware of the ideal
standard state, and this causes the user state data that it stores in the WStateData structure to be unreliable.
While the Window Manager is reliably aware of the window’s zoom state, it cannot record the current user
state in the WStateData structure, because the window definition function can overwrite that data. Therefore,
the function SetWindowIdealUserState maintains the window’s user state independently of the
WStateData structure. The SetWindowIdealUserState function gives your application access to the user
state data maintained by ZoomWindowIdeal (page 1972). However, your application does not typically need
to use this function; it is supplied for completeness.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowSetIdealUserState (page 1894)

Declared In
MacWindows.h

SetWindowKind
Sets a window’s window kind.

void SetWindowKind (
 WindowRef window,
 short kind
);

Parameters
window

The window whose window kind is to be set.

Functions 1945
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kind
An integer representing the window kind.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowModality
Sets the modality of a window.

OSStatus SetWindowModality (
 WindowRef inWindow,
 WindowModality inModalKind,
 WindowRef inUnavailableWindow
);

Parameters
inWindow

The window whose modality to set.

inModalKind
The new modality for the window. See “Window Modality Options” (page 2016) for a list of possible
options.

inUnavailableWindow
If the window is becoming document-modal, this parameter specifies the window to which the
inWindow parameter is modal. The window specified by this parameter will not be available while
inWindow is in window-modal state.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The modality of a window is used by the Carbon event manager to automatically determine appropriate
event handling.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowModified
Sets the modification state of the specified window.

1946 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus SetWindowModified (
 WindowRef window,
 Boolean modified
);

Parameters
window

The window whose modification state is to be set.

modified
Pass true if the content of the window has been modified; otherwise, pass false.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Your application can use the functions SetWindowModified and IsWindowModified (page 1907) instead
of maintaining its own separate record of the modification state of the content of a window. The modification
state of a window is visually represented by a dot in the window’s close box. If the dot is present, the window
is modified; if the dot is absent, the window is not modified.

Your application should distinguish between the modification state of the window and the modification
state of the window’s contents, typically a document. The modification state of the window contents are
what should affect SetWindowModified. For example, in the case of a word processing document, you call
SetWindowModified (passing true in the modified parameter) whenever the user types new characters
into the document. However, you do not call SetWindowModified when the user moves the window,
because that change does not affect the document contents. If you need to track whether the window
position has changed, you need to do this with your own flag.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

SetWindowPic
Sets a picture for the Window Manager to draw in a window’s content region. (Deprecated in Mac OS X v10.5.
Use an HIImageView object to draw a window's content instead.)

void SetWindowPic (
 WindowRef window,
 PicHandle pic
);

Parameters
window

The window whose picture is to be set.

pic
On input, a handle to the picture to be drawn in the window.

Functions 1947
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
The SetWindowPic function stores in a window structure a handle to a picture to be drawn in the window.
When the window’s content region must be updated, the Window Manager then draws the picture or part
of the picture, as necessary, instead of generating an update event.

The DisposeWindow (page 1820) function assumes that any picture pointed to by the window structure field
windowPic is stored as data, not as a resource. If your application uses a picture stored as a resource, you
must release the memory it occupies by calling the Resource Manager’s ReleaseResource function and
set the WindowPic field to NULL before you close the window.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowProperty
Associates an arbitrary piece of data with a window.

OSStatus SetWindowProperty (
 WindowRef window,
 PropertyCreator propertyCreator,
 PropertyTag propertyTag,
 ByteCount propertySize,
 const void *propertyBuffer
);

Parameters
window

The window with which data is to be associated.

propertyCreator
The creator code (typically, the application’s signature) of the data to be associated.

propertyTag
A value identifying the data to be associated. You define the tag your application uses to identify the
data; this code is not to be confused with the file type for the data.

propertySize
The size of the data to be associated.

propertyBuffer
A pointer to the data to be associated.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Data set with the SetWindowProperty function may be obtained with the function
GetWindowProperty (page 1859) and removed with the function RemoveWindowProperty (page 1923).

Availability
Available in Mac OS X v10.0 and later.

1948 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Not available to 64-bit applications.

Related Sample Code
HID Calibrator
QTMetaData

Declared In
MacWindows.h

SetWindowProxyAlias
Associates a file with a window.

OSStatus SetWindowProxyAlias (
 WindowRef inWindow,
 AliasHandle inAlias
);

Parameters
inWindow

The window with which the specified file is to be associated.

inAlias
A handle to a structure of type AliasRecord for the file to associate with the specified window. You
can obtain an alias handle by calling the function GetWindowProxyAlias (page 1862). The Window
Manager copies the alias data, so you can dispose of the alias after SetWindowProxyAlias returns.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Your application should call the SetWindowProxyAlias function to establish a proxy icon for a given
window. The creator code and file type of the file associated with a window determine the proxy icon that
is displayed for the window.

Because the SetWindowProxyAlias function won’t work without a saved file, you must establish the initial
proxy icon for a new, untitled window with the function SetWindowProxyCreatorAndType (page 1950),
which requires that you know the file type and creator code for the file, but does not require that the file
have been saved.

Special Considerations

On Mac OS 8.x and Mac OS 9.x, you must save and restore the current graphics port—by calling the QuickDraw
functions GetPort and SetPort—around each call to the SetWindowProxyAlias function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Functions 1949
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

SetWindowProxyCreatorAndType
Sets the proxy icon for a window that lacks an associated file.

OSStatus SetWindowProxyCreatorAndType (
 WindowRef window,
 OSType fileCreator,
 OSType fileType,
 SInt16 vRefNum
);

Parameters
window

The window for which you want to set the proxy icon.

fileCreator
A code that is to be used, together with the fileType parameter, to determine the proxy icon. This
typically is the creator code of the file that would be created, were the user to save the contents of
the window.

fileType
A code that is to be used, together with the fileCreator parameter, to determine the proxy icon.
This typically is the file type of the file that would be created, were the user to save the contents of
the window.

vRefNum
A value identifying the volume containing the default desktop database to search for the icon
associated with the file type and creator code specified in the fileCreator and fileTypeparameters.
Pass kOnSystemDisk if the volume is unknown.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Special Considerations

On Mac OS 8.x and Mac OS 9.x, you must save and restore the current graphics port—by calling the QuickDraw
functions GetPort and SetPort—around each call to the SetWindowProxyCreatorAndType function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowProxyFSSpec
Associates a file with a window. (Deprecated in Mac OS X v10.5. Use HIWindowSetProxyFSRef (page 1894)
instead.)

1950 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus SetWindowProxyFSSpec (
 WindowRef window,
 const FSSpec *inFile
);

Parameters
window

A pointer to the window with which the specified file is to be associated.

inFile
Set the file system specification structure to contain the data for the file to associate with the specified
window. You can obtain an FSSpec structure by calling the function GetWindowProxyFSSpec (page
1862).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Your application should call the SetWindowProxyFSSpec function to establish a proxy icon for a given
window. The creator code and file type of the file associated with a window determine the proxy icon that
is displayed for the window.

Because the SetWindowProxyFSSpec function won’t work without a saved file, you must establish the initial
proxy icon for a new, untitled window with the function SetWindowProxyCreatorAndType , which requires
that you know the file type and creator code for the file, but does not require that the file have been saved.

You must save and restore the current graphics port—by calling the QuickDraw functions GetPort and
SetPort—around each call to the SetWindowProxyFSSpec function.

See also the function SetWindowProxyAlias.

Special Considerations

The use of file specifications is no longer recommended.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

SetWindowProxyIcon
Overrides the default proxy icon for a window.

Functions 1951
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus SetWindowProxyIcon (
 WindowRef window,
 IconRef icon
);

Parameters
window

The window for which you want to set the proxy icon.

icon
An icon reference identifying the icon to be used for the window’s proxy icon. If there is already a
proxy icon in use of the type desired, an IconRef value may be obtained for that icon by calling the
function GetWindowProxyIcon (page 1863). Otherwise, your application must call the Icon Services
function GetIconRefFromFile to get a value of type IconRef. The Window Manager retains the
IconRef, so you can release icon after SetWindowProxyIcon returns. See the Icon Services and
Utilities documentation for a description of the IconRef data type.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
If you want to override the proxy icon that the Window Manager displays by default for a given file, your
application should call the SetWindowProxyIcon function.

More typically, when you do not want to override a window’s default proxy icon, your application would call
one of the following functions: HIWindowSetProxyFSRef (page 1894), SetWindowProxyAlias (page 1949),
or SetWindowProxyCreatorAndType (page 1950).

On Mac OS 8.x and Mac OS 9.x, you must save and restore the current graphics port—by calling the QuickDraw
functions GetPort and SetPort—around each call to the SetWindowProxyIcon function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowResizeLimits
Sets the maximum and minimum resize limits for windows.

OSStatus SetWindowResizeLimits (
 WindowRef inWindow,
 const HISize *inMinLimits,
 const HISize *inMaxLimits
);

Parameters
inWindow

The window whose maximum and minimum resize limits are to be set.

inMinLimits
The minimum limits. Pass NULL if you don’t want to set this limit. For information on the HISize data
type, see HIGeometry.h.

1952 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inMaxLimits
The maximum limits. Pass NULL if you don’t want to set this limit. For information on the HISize
data type, see HIGeometry.h.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
MacWindows.h

SetWindowStandardState
Sets a window’s standard zoom rectangle.

void SetWindowStandardState (
 WindowRef window,
 const Rect *rect
);

Parameters
window

The window whose standard zoom rectangle is to be set.

rect
On input, a rectangle (in global coordinates) representing the window’s standard zoom rectangle. A
window’s standard zoom rectangle is the window content bounds when the window is zoomed out
to its largest extent.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowTitleWithCFString
Sets the window title to the contents of a Core Foundation string.

OSStatus SetWindowTitleWithCFString (
 WindowRef inWindow,
 CFStringRef inString
);

Parameters
inWindow

The window whose title is to be set.

Functions 1953
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inString
The title to set.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
QTCarbonShell
QTMetaData

Declared In
MacWindows.h

SetWindowToolbar
Associates a toolbar with a window.

OSStatus SetWindowToolbar (
 WindowRef inWindow,
 HIToolbarRef inToolbar
);

Parameters
inWindow

The window with which the toolbar specified by inToolbar is to be associated.

inToolbar
The toolbar that is to be associated with the window specified by inWindow.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWindowUserState
Sets a window’s user zoom rectangle.

1954 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

void SetWindowUserState (
 WindowRef window,
 const Rect *rect
);

Parameters
window

The window whose user zoom rectangle is to be set.

rect
On input, a pointer to a rectangle (in global coordinates) representing the user zoom rectangle that
is to be set. The window’s user zoom rectangle is the window content bounds when the window is
zoomed back in.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

SetWRefCon
Sets the refCon field of a window.

void SetWRefCon (
 WindowRef window,
 SRefCon data
);

Parameters
window

The window whose refCon field is to be set.

data
On input, the data to be placed in the refCon field.

Discussion
The SetWRefCon function places the specified data in the refCon field of the specified window structure.
The refCon field is available to your application for any window-related data it needs to store.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch
QTCarbonShell

Declared In
MacWindows.h

Functions 1955
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

SetWTitle
Specifies a window’s title. (Deprecated in Mac OS X v10.5. Use SetWindowTitleWithCFString (page 1953)
instead.)

void SetWTitle (
 WindowRef window,
 ConstStr255Param title
);

Parameters
window

On input, a pointer to the window structure.

title
On input, a Pascal string containing the window title. To suppress the title in a window with a title
bar, pass an empty string, not null.

Discussion
The SetWTitle function changes a window’s title to the specified string, both in the window structure and
on the screen, and redraws the window’s frame as necessary. Always use SetWTitle instead of changing
the title in a window structure.

When the user opens a previously saved document, you typically create a new (invisible) window with the
title “untitled” and then call SetWTitle to give the window the document’s name before displaying it. You
also call SetWTitle when the user saves a document under a new name.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

ShowFloatingWindows
Shows an application’s floating windows.

OSStatus ShowFloatingWindows (
 void
);

Return Value
A result code. For details, see “Window Manager Result Codes” (page 2051).

Discussion
When an application receives a suspend event, its floating windows are hidden automatically. When the
application receives a resume event, the floating windows are made visible automatically. Call this function
if you want to make your floating windows visible manually.

See also the function HideFloatingWindows (page 1871).

Special Considerations

TheShowFloatingWindows function operates only upon windows created with thekFloatingWindowClass
constant; see “Window Class Constants” (page 1988) for more details on this constant.

1956 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ShowHide
Sets a window’s visibility.

void ShowHide (
 WindowRef window,
 Boolean showFlag
);

Parameters
window

On input, a pointer to the window structure.

showFlag
On input, a Boolean value that specifies its visibility: true makes a window visible; false makes it
invisible.

Discussion
The ShowHide function sets a window’s visibility to the status specified by the showFlag parameter. If the
value of showFlag is true, ShowHide makes the window visible if it’s not already visible and has no effect
if it’s already visible. If the value of showFlag is false, ShowHide makes the window invisible if it’s not
already invisible and has no effect if it’s already invisible.

The ShowHide function never changes the highlighting or front-to-back ordering of windows and generates
no activate events.

Use ShowHide only where you need to manually control window activation. Otherwise, use ShowWindow or
HideWindow instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ShowHideWindowToolbar
Shows or hides the toolbar.

Functions 1957
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus ShowHideWindowToolbar (
 WindowRef inWindow,
 Boolean inShow,
 Boolean inAnimate
);

Parameters
inWindow

The window whose toolbar is to be shown or hidden.

inShow
Pass true to show the toolbar, false otherwise.

inAnimate
Pass true to animate the transition, pass false for no animation.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ShowSheetWindow
Shows a sheet window using appropriate visual effects.

OSStatus ShowSheetWindow (
 WindowRef inSheet,
 WindowRef inParentWindow
);

Parameters
inSheet

The window sheet that is to be shown.

inParentWindow
The parent of the window specified by inSheet.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

1958 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

ShowWindow
Makes an invisible window visible.

void ShowWindow (
 WindowRef window
);

Parameters
window

The window that is to be made visible.

Discussion
The ShowWindow function makes an invisible window visible. If the specified window is already visible,
ShowWindow has no effect. Your application typically creates a new window in an invisible state, performs
any necessary setup of the content region, and then calls ShowWindow to make the window visible.

When you call ShowWindow to display a window that is invisible, the Window Manager draws the window
frame and sends an event to request the application to draw the content region before the window becomes
visible. For compositing windows, the Window Manager sends a kEventControlDraw event to each HIView
in the window. For non-compositing windows, the Window Manager sends a kEventWindowDrawContent
event. If a non-compositing window does not handle the kEventWindowDrawContent, the Window Manager
shows the window and generates an update event to request your application to draw the content region.

If the newly visible window is the frontmost window, ShowWindow highlights it if it’s not already highlighted
and generates an activate event to make it active. The ShowWindow function does not activate a window
that is not frontmost on the desktop.

Because ShowWindow does not change the front-to-back ordering of windows, it is not the inverse of
HideWindow (page 1872). If you make the frontmost window invisible with HideWindow, andHideWindow
has activated another window, you must call both ShowWindow and SelectWindow (page 1929) to bring the
original window back to the front.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
BSDLLCTest
CarbonSketch
HID Config Save
HID Explorer
QTCarbonShell

Declared In
MacWindows.h

SizeWindow
Sets the size of a window.

Functions 1959
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

void SizeWindow (
 WindowRef window,
 short w,
 short h,
 Boolean fUpdate
);

Parameters
window

The window whose size is to be set.

w
On input, the new window width, in pixels.

h
On input, the new window height, in pixels.

fUpdate
On input, a Boolean value that specifies whether any newly created area of the content region is to
be accumulated into the update region (true) or not (false). You ordinarily pass a value of true to
ensure that the area is updated. If you pass false, you’re responsible for maintaining the update
region yourself. For a composited window, this parameter is ignored, and any views that intersect
the newly exposed area of the window are automatically invalidated. For more information on adding
rectangles to and removing rectangles from the update region, see InvalWindowRect (page 1898)
and ValidWindowRect (page 1969).

Discussion
The SizeWindow function changes the size of the window’s graphics port rectangle to the dimensions
specified by the w and h parameters, or does nothing if the values of w and h are both 0. The Window Manager
redraws the window in the new size, recentering the title and truncating it if necessary.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

StoreWindowIntoCollection
Stores data describing a window into a collection. (Deprecated in Mac OS X v10.5. Use
HIArchiveEncodeCFType (page 2314) to encode a window to an archive instead.)

OSStatus StoreWindowIntoCollection (
 WindowRef window,
 Collection collection
);

Parameters
window

The window to be stored.

1960 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

collection
A reference to the collection into which the window is to be stored. You pass a reference to a previously
created collection, such as that returned by the Collection Manager function NewCollection.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The StoreWindowIntoCollection function stores any window—including those not created by the
Window Manager calls—into the specified collection. The Window Manager does not empty the collection
beforehand, so any existing items in the collection remain.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacWindows.h

ToggleDrawer
Toggles the drawer state.

OSStatus ToggleDrawer (
 WindowRef inDrawerWindow
);

Parameters
inDrawerWindow

The drawer window whose drawer state is to be toggled.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
If the drawer is currently open or opening, this function closes the drawer. If the drawer is currently closed
or closing, this function opens the drawer.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

TrackBox
Tracks clicks in the collapse, close, size, and zoom boxes, and clicks of the toolbar button.

Functions 1961
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Boolean TrackBox (
 WindowRef window,
 Point thePt,
 WindowPartCode partCode
);

Parameters
window

The window in which the mouse button was pressed.

thePt
On input, the location of the cursor when the mouse button was pressed. Your application receives
this point from the where field in the event structure.

partCode
On input, the part code (inZoomIn, inZoomOut, inGoAway, inGrow, inCollapseBox, or
inToolbarButton) returned by FindWindow (page 1827); see “Part Identifier Constants” (page 2043).

Return Value
A Boolean whose value is true if the specified part was clicked; otherwise, false. If TrackBox returns true,
it also removes highlighting from the specified part.

Discussion
The TrackBox function tracks the cursor when the user presses the mouse button while the cursor is in the
specified part, retaining control until the mouse button is released. While the button is down, TrackBox
highlights the part while the cursor is in the part’s region.

When the mouse button is released, TrackBox removes the highlighting from the part and returns true if
the cursor is within the part’s region and false if it is not.

If TrackBox returns true after tracking the close box, your application should close the window. If TrackBox
returns true after tracking the grow box, your application should call ResizeWindow (page 1925). If TrackBox
returns true after tracking the collapse box, your application should call CollapseWindow (page 1810). When
tracking the toolbar button, your application should call ShowHideWindowToolbar (page 1957).

Your application calls the TrackBox function when it receives a result code of inZoomIn or inZoomOut
from the function FindWindow (page 1827). If TrackBox returns true, your application calculates the standard
state, if necessary, and calls the function ZoomWindow (page 1971) to zoom the window. If TrackBox returns
false, your application does nothing.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

TrackGoAway
Tracks the cursor when the user presses the mouse button while the cursor is in the close box.

1962 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Boolean TrackGoAway (
 WindowRef window,
 Point thePt
);

Parameters
window

On input, the window in which the mouse-down event occurred.

thePt
On input, the location of the cursor at the time the mouse button was pressed. Your application
receives this point from the where field of the event structure.

Return Value
When the mouse button is released, TrackGoAway removes the highlighting from the close box and returns
true if the cursor is within the close region and false if it is not.

Discussion
The TrackGoAway function tracks cursor activity when the user presses the mouse button while the cursor
is in the close box, retaining control until the user releases the mouse button. While the button is down,
TrackGoAway highlights the close box as long as the cursor is in the close region.

Your application calls the TrackGoAway function when it receives a result code of inGoAway from
FindWindow (page 1827). If TrackGoAway returns true, your application calls its own function for closing a
window, which can call DisposeWindow (page 1820) to remove the window from the screen. If TrackGoAway
returns false, your application does nothing.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HideMenuBar

Declared In
MacWindows.h

TrackWindowProxyDrag
Handles all aspects of the drag process when the user drags a proxy icon.

OSStatus TrackWindowProxyDrag (
 WindowRef window,
 Point startPt
);

Parameters
window

The window whose proxy icon is being dragged.

startPt
Set the Point structure to contain the point, specified in global coordinates, where the mouse-down
event that began the drag occurred. Your application may retrieve this value from the where field of
the event structure.

Functions 1963
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Return Value
A result code. See “Window Manager Result Codes” (page 2051). If you receive the error
errUserWantsToDragWindow (–5607), your application should respond by calling the Window Manager
function DragWindow. Errors are also returned from the Drag Manager, including userCanceledErr (–128).

Discussion
If your application uses proxy icons to represent a type of object (currently, file system entities such as files,
folders, and volumes) supported by the Window Manager, your application should call the
TrackWindowProxyDrag function, and the Window Manager can handle all aspects of the drag process for
you. If your application calls the TrackWindowProxyDrag function, it does not have to call the Drag Manager
function WaitMouseMoved before starting to track the drag, as the Window Manager handles this
automatically. However, if a proxy icon represents a type of data that the Window Manager does not support,
or if you want to implement custom dragging behavior, your application should call the function
TrackWindowProxyFromExistingDrag (page 1964).

Your application detects that a user is dragging one of its proxy icons when the function FindWindow (page
1827) returns the inProxyIcon result code; see “Window Part Code Constants” (page 2013) for more details.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowTrackProxyDrag (page 1897)

Declared In
MacWindows.h

TrackWindowProxyFromExistingDrag
Allows custom handling of the drag process when the user drags a proxy icon.

OSStatus TrackWindowProxyFromExistingDrag (
 WindowRef window,
 Point startPt,
 DragRef drag,
 RgnHandle inDragOutlineRgn
);

Parameters
window

The window whose proxy icon is being dragged.

startPt
Set the Point structure to contain the point, specified in global coordinates, where the mouse-down
event that began the drag occurred. Your application may retrieve this value from the where field of
the event structure.

drag
A value that refers to the current drag process. Pass in the value produced in the outNewDrag
parameter of the function BeginWindowProxyDrag (page 1802). If you are not using
BeginWindowProxyDrag in conjunction with TrackWindowProxyFromExistingDrag, you must
create the drag reference yourself with the Drag Manager function NewDrag.

1964 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inDragOutlineRgn
A region handle representing an outline of the icon being dragged. You may obtain a handle to this
region from the outDragOutlineRgn parameter of BeginWindowProxyDrag. If you are not using
BeginWindowProxyDrag in conjunction with TrackWindowProxyFromExistingDrag, you must
create the region yourself.

Return Value
A result code. See “Window Manager Result Codes” (page 2051). Errors are also returned from the Drag Manager,
including userCanceledErr (-128).

Discussion
Typically, if the proxy icon represents a type of object (currently, file system entities such as files, folders, and
volumes) supported by the Window Manager, the Window Manager can handle all aspects of the drag process
itself, and your application should call the function TrackWindowProxyDrag (page 1963). However, if the
proxy icon represents a type of data that the Window Manager does not support, or if you want to implement
custom dragging behavior, your application should call theTrackWindowProxyFromExistingDrag function.

The TrackWindowProxyFromExistingDrag function accepts an existing drag reference and adds file data
if the window contains a file proxy. If your application uses TrackWindowProxyFromExistingDrag, you
then have the choice of using this function in conjunction with the functions BeginWindowProxyDrag (page
1802) andEndWindowProxyDrag (page 1826) or simply callingTrackWindowProxyFromExistingDrag and
handling all aspects of creating and disposing of the drag yourself.

Your application detects a drag when the function FindWindow (page 1827) returns the inProxyIcon result
code; see “Window Part Code Constants” (page 2013) for more details.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

See Also
HIWindowTrackProxyDrag (page 1897)

Declared In
MacWindows.h

TransitionWindow
Shows, hides, moves, or resizes a window with appropriate animation and sound.

OSStatus TransitionWindow (
 WindowRef inWindow,
 WindowTransitionEffect inEffect,
 WindowTransitionAction inAction,
 const Rect *inRect
);

Parameters
inWindow

The window on which to act.

Functions 1965
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inEffect
The type of visual effect to use. TransitionWindow supports the Zoom, Slide, Fade, and Genie
transition effects. The Slide effect is supported in Mac OS X and in CarbonLib 1.5 and later. The Fade
and Genie effects are supported in Mac OS X v10.3 and later. See “Window Transition Effect
Constants” (page 2027) for constants and descriptions of these effects.

inAction
The action to take. TransitionWindow supports the Show, Hide, Move, and Resize actions. The Move
and Resize actions are supported in Mac OS X and in CarbonLib 1.5 and later. See “Window Transition
Action Constants” (page 2026) for possible values.

inRect
A screen rect in global coordinates, or NULL for some transition actions. The interpretation of the rect
is dependent on the transition action. For details, see the documentation for each action.

If you pass kWindowShowTransitionAction in the action parameter then, before calling
TransitionWindow, set the rectangle to specify the dimensions and position, in global coordinates,
of the area from which the zoom is to start. If you pass NULL, TransitionWindow uses the center of
the display screen as the source rectangle.

If you pass kWindowHideTransitionAction in the action parameter then, before calling
TransitionWindow, set the rectangle to specify the dimensions and position, in global coordinates,
of the area at which the zoom is to end.

If you pass NULL, TransitionWindow uses the center of the display screen as the destination rectangle.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The TransitionWindow function displays an animation of a window’s transition between the open and
closed states, such as that displayed by the Finder. TransitionWindow uses the rectangle specified in the
rect parameter for one end of the animation (the source or the destination of the zoom, depending upon
whether the window is being shown or hidden, respectively) and the window’s current size and position for
the other end of the animation. TransitionWindow also plays sounds appropriate to the current theme for
the opening and closing actions.

Your application may use TransitionWindow instead of the functions ShowWindow and HideWindow. Like
these pre–Mac OS 8.5 Window Manager functions, TransitionWindow generates the appropriate update
and active events when it shows and hides windows.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
MacWindows.h

TransitionWindowAndParent
Shows or hides a window, potentially also moving a second window, with animation and sound.

1966 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus TransitionWindowAndParent (
 WindowRef inWindow,
 WindowRef inParentWindow,
 WindowTransitionEffect inEffect,
 WindowTransitionAction inAction,
 const Rect *inRect
);

Parameters
inWindow

The window that is to be shown or hidden.

inParentWindow
The window to which inWindow is related. For the Sheet effect, this parameter must be a valid window
reference; for other effects, this parameter should be NULL.

inEffect
The type of visual effect to use. This function is most commonly used to perform the Sheet transition
effect, but it also supports the Zoom, Slide, Fade, and Genie effects. See “Window Transition Effect
Constants” (page 2027) for constants and descriptions of these effects.

inAction
The action to take on the window. The Show, Hide, Move, and Resize actions are supported. See
“Window Transition Action Constants” (page 2026) for the appropriate constants.

inRect
A screen rect in global coordinates. The interpretation of the rect is dependent on the transition
action; see the documentation for each action for details. May be NULL for some transition actions.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

TransitionWindowWithOptions
Transitions a window from one state to another with appropriate animation and sound.

OSStatus TransitionWindowWithOptions (
 WindowRef inWindow,
 WindowTransitionEffect inEffect,
 WindowTransitionAction inAction,
 const HIRect *inBounds,
 Boolean inAsync,
 TransitionWindowOptions *inOptions
);

Parameters
inWindow

The window to transition.

Functions 1967
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inEffect
The type of visual effect to use. For possible values, see “Window Transition Effect Constants” (page
2027) for a description of this value.

inAction
The action to take. For possible values, see “Window Transition Action Constants” (page 2026).

inBounds
A screen rect in global coordinates. The interpretation of the rect is dependent on the transition
action; see “Window Transition Action Constants” (page 2026) for the details of each action. This
parameter may be NULL for the Show and Hide actions for the Zoom and Sheet effects. This parameter
is ignored and must be NULL for the Show and Hide actions for the Fade effect.

inAsync
A Boolean whose value indicates whether the transition should run synchronously or asynchronously.
If inAsync is true, this function returns immediately, and the transition runs using an event loop
timer. You must run your event loop for the transition to occur. If inAsync is false, this function
blocks until the transition completes. In either case, the kEventWindowTransitionStarted and
kEventWindowTransitionCompleted Carbon events are sent to the transitioning window at the
start and end of the transition.

inOptions
Extra information that are required for some transitions. This parameter may be NULL if the specified
transition effect does not require extra information.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

UpdateCollapsedWindowDockTile
Updates the image of a window in the dock to the current contents of the window.

OSStatus UpdateCollapsedWindowDockTile (
 WindowRef inWindow
);

Parameters
inWindow

The window whose image is to be updated.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Use this function for periodic updates, not for animation purposes. If you want animation, use
CreateQDContextForCollapsedWindowDockTile (page 1816).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

1968 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

ValidWindowRect
Removes a rectangle from a window’s update region.

OSStatus ValidWindowRect (
 WindowRef window,
 const Rect *bounds
);

Parameters
window

The window containing the rectangle you want to remove from the update region.

bounds
Set this structure to specify, in local coordinates, a rectangle to be removed from the window’s update
region.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The ValidWindowRect function informs the Window Manager that an area of a window no longer needs
to be redrawn. The ValidWindowRect function is similar to the ValidRect function, but ValidWindowRect
allows the window that it operates upon to be explicitly specified, instead of operating on the current graphics
port, so ValidWindowRect does not require the graphics port to be set before its use.

See also the functions InvalWindowRect (page 1898) and ValidWindowRgn (page 1969).

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ValidWindowRgn
Removes a region from a window’s update region.

Functions 1969
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

OSStatus ValidWindowRgn (
 WindowRef window,
 RgnHandle region
);

Parameters
window

The window containing the region you want to remove from the update region.

region
Set this region to specify, in local coordinates, the area to be removed from the window’s update
region.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
The ValidWindowRgn function informs the Window Manager that an area of a window no longer needs to
be redrawn. The ValidWindowRgn function is similar to the ValidRgn function, but ValidWindowRgn
allows the window that it operates upon to be explicitly specified, instead of operating on the current graphics
port, so ValidWindowRgn does not require the graphics port to be set before its use.

See also the functions InvalWindowRgn (page 1899) and ValidWindowRect (page 1969).

Special Considerations

This function should not be used on composited windows. Modifying a composited window's update region
does not affect the area of the window to be drawn. A composited window does not use its window update
region to control drawing. Instead, a composited window determines what to draw by looking at the invalid
regions of the views contained in the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

WindowPathSelect
Displays a window path pop-up menu.

OSStatus WindowPathSelect (
 WindowRef window,
 MenuRef menu,
 SInt32 *outMenuResult
);

Parameters
window

The window for which a window path pop-up menu is to be displayed.

1970 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

menu
The menu to be displayed for the specified window or NULL. If you pass NULL in this parameter, the
Window Manager provides a default menu and sends a Reveal Object Apple event to the Finder if a
menu item is selected. Note that in order to pass NULL, a file must currently be associated with the
window [call HIWindowSetProxyFSRef (page 1894) to associate a file with the window]. If you pass
a menu, this menu supersedes the default window path pop-up menu. There does not have to be a
file currently associated with the window if you pass in your own menu.

outMenuResult
A pointer to a value that, on return, contains the menu and menu item the user chose. The high-order
word of the value produced contains the menu ID, and the low-order word contains the item number
of the menu item. If the user does not select a menu item, 0 is produced in the high-order word, and
the low-order word is undefined. For file menus that have not been overridden, 0 is always produced
in this parameter. Pass NULL in this parameter if you do not want this information.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Your application should call the WindowPathSelect function when it detects a Command-click in the title
of a window, that is, when theIsWindowPathSelectClick (page 1907) orIsWindowPathSelectEvent (page
1908) function returns a value of true. Calling WindowPathSelect causes the Window Manager to display a
window path pop-up menu for your window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ZoomWindow
Zooms the window when the user has pressed and released the mouse button with the cursor in the zoom
box.

void ZoomWindow (
 WindowRef window,
 WindowPartCode partCode,
 Boolean front
);

Parameters
window

The window that is to be zoomed.

partCode
On input, the part code (either inZoomIn or inZoomOut) returned by the FindWindow function; see
“Part Identifier Constants” (page 2043).

front
On return, a Boolean value that determines whether the window is to be brought to the front. If the
value of front is true, the window necessarily becomes the frontmost, active window. If the value
of front is false, the window’s position in the window list does not change. Note that if a window
was active before it was zoomed, it remains active even if the value of front is false.

Functions 1971
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
The ZoomWindow function zooms a window in or out, depending on the value of the partCode parameter.
Your application calls ZoomWindow, passing it the part code returned by FindWindow (page 1827), when it
receives a result of true from TrackBox. The ZoomWindow function then changes the window’s port rectangle
to either the user state (if the part code is inZoomIn) or the standard state (if the part code is inZoomOut),
as stored in the window state structure, described in the section WStateData (page 1987).

If the part code is inZoomOut, your application ordinarily calculates and sets the standard state before calling
ZoomWindow.

For best results, call the QuickDraw function EraseRect, passing the window’s graphics port as the port
rectangle, before calling ZoomWindow.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

ZoomWindowIdeal
Zooms a window in accordance with human interface guidelines.

OSStatus ZoomWindowIdeal (
 WindowRef inWindow,
 WindowPartCode inPartCode,
 Point *ioIdealSize
);

Parameters
inWindow

The window that is to be zoomed.

inPartCode
A value specifying the direction of the zoom being requested. Your application passes in the relevant
value (either the inZoomIn or the inZoomOut constant).

ioIdealSize
When you specify inZoomIn in the partCode parameter, you pass a pointer to the Point structure,
but do not fill the structure with data. On return, the Point structure contains the new height and
width of the window’s content region, and ZoomWindowIdeal restores the previous user state.

When you specify inZoomOut in the partCode parameter, you pass the ideal height and width of
the window’s content region in the Point structure. On return, the Point structure contains the new
height and width of the window’s content region. ZoomWindowIdeal saves the user state of the
window and zooms the window to its ideal size for the standard state.

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Applications should use the ZoomWindowIdeal function instead of the older function ZoomWindow. When
your application calls ZoomWindowIdeal, it automatically conforms to the human interface guidelines for
determining a window’s standard state.

1972 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

The ZoomWindowIdeal function calculates a window’s ideal standard state and updates a window’s ideal
user state independently of the WStateData structure. Previously, the window definition function was
responsible for updating the user state, but because it relies upon the WStateData structure, the window
definition function is unaware of the ideal standard state and can no longer track the window’s zoom state
reliably.

While the Window Manager is reliably aware of the window’s zoom state, it cannot record the current user
state in the WStateData structure, because the window definition function can overwrite that data. Therefore,
if your application uses ZoomWindowIdeal, the WStateData structure is superseded, and the result of the
FindWindow (page 1827) function should be ignored when determining whether a particular user click of the
zoom box is a request to zoom in or out. When you adopt ZoomWindowIdeal and your application receives
a result of either inZoomIn or inZoomOut from FindWindow, your application must use the function
IsWindowInStandardState (page 1905) to determine the appropriate part code to pass in the partCode
parameter.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
MacWindows.h

Callbacks

WindowDefProcPtr
Defines a pointer to a window definition callback function. Your window definition callback function determines
how a window looks and behaves.

typedef long (*WindowDefProcPtr) (
 short varCode,
 WindowRef window,
 short message,
 long param
);

If you name your function MyWindowDefProc, you would declare it like this:

long MyWindowDefProc (
 short varCode,
 WindowRef window,
 short message,
 long param
);

Parameters
varCode

The window’s variation code.

Callbacks 1973
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

window
A pointer to the window’s window structure.

message
A value indicating the task to be performed. The message parameter contains one of the values
defined in “Window Definition Message Constants” (page 2036). Other messages are reserved for internal
use by the system. The list in the discussion section that follows explains each of these tasks in detail.

param
Data associated with the task specified by the message parameter. If the task requires no data, this
parameter is ignored.

Return Value
Your window definition function should perform whatever task is specified by the message parameter and
return a function result, if appropriate. If the task performed requires no result code, return 0.

Discussion
Various Window Manager functions call a window definition function whenever they need to perform a
window-dependent action, such as drawing the window on the screen. If you want to define new, nonstandard
windows for your application, you must write a window definition function, compile it in your application,
and either use RegisterWindowDefinition (page 1920) to register it with the system or call
CreateCustomWindow (page 1814) to create the custom window directly.

Note that Carbon does not allow you to store custom window definitions in a 'WDEF' resource file as you
could in pre-Carbon systems.

If you use RegisterWindowDefinition (page 1920), the Window Manager calls the Resource Manager to
access your window definition function with the given resource ID; see “Pre-Appearance Window Definition
IDs” inWindow Manager Legacy Reference for a description of how window definition IDs are derived from
resource IDs and variation codes.

The Resource Manager reads your window definition function into memory and returns a handle to it. The
Window Manager stores this handle in the windowDefProc field of the window structure. Later, when it
needs to perform an action on the window, the Window Manager calls the window definition function and
passes it the variation code as a parameter.

Your window definition function is responsible for

 ■ drawing the window frame

 ■ reporting the region where mouse-down events occur

 ■ calculating the window’s structure region and content region

 ■ drawing the size box

 ■ resizing the window frame when the user drags the size box

 ■ reporting the window’s features or the location of a specific window region

 ■ performing any customized initialization or disposal tasks

The Window Manager defines the data type WindowDefUPP to identify the universal procedure pointer for
this application-defined function:

typedef UniversalProcPtr WindowDefUPP;

You typically use the NewWindowDefProc macro like this:

1974 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

WindowDefUPP myWindowDefUPP;
myWindowDefUPP = NewWindowDefProc(MyWindow);

You typically use the CallWindowDefProc macro like this:

CallWindowDefProc (myWindowDefUPP, varCode, theWindow, message, param);

The message parameter contains a value specifying the task to be performed by your window definition
function. These tasks are:

 ■ Drawing the Window Frame

When the Window Manager passes wDraw in the message parameter, your window definition function
should respond by drawing the window frame in the current graphics port (which is the Window Manager
port). The window part code to be drawn will be passed in the param parameter of your window definition
function. Your window definition function should perform the following steps:

 ❏ Change the current port from the WMgrPort to the WMgrCPort to allow the system to draw in the
full range of RGB colors.

 ❏ Update the pen attributes, text attributes, and bkPat fields in the WMgrCPort to the values of the
corresponding fields in the WMgrPort. The Window Manager automatically transfers the vis and
clip regions.

The parallelism of the WMgrPort and the WMgrCPort is maintained only by the window definition
functions. All window definition functions that draw in the WMgrPort should follow the steps listed
above even if the changed fields do not affect their operation.

You must make certain checks to determine exactly how to draw the frame. If the value of the visible
field in the window structure is false, you should do nothing; otherwise, you should examine the param
parameter and the status flags in the window structure:

 ❏ If the value of param is 0, draw the entire window frame (including the size box, if your window
definition function incorporates the size box into the frame).

 ❏ If the value of param is 0 and the hilited field in the window structure is true, highlight the frame
to show that the window is active. If the value of the goAwayFlag field in the window structure is
also true, draw a close box in the window frame. If the value of the spareFlag field in the window
structure is also true, draw a zoom box in the window frame.

 ❏ If the value of the param parameter is wInGoAway, redraw the window’s close box, with or without
highlighting as appropriate.

 ❏ If the value of the param parameter is wInZoom, redraw the window’s zoom box, with or without
highlighting as appropriate.

 ❏ If the value of the param parameter is wInCollapseBox, redraw the window’s collapse box, with
or without highlighting as appropriate.

You can call GetWindowWidgetHilite (page 1868) to determine whether the close, zoom, or collapse
box is currently highlighted. This function returns the part code of the currently highlighted part, or zero
if no part is highlighted. You should draw the indicated part with highlighting, and draw other parts
with no highlighting.

The window frame typically, but not necessarily, includes the window’s title, which should be displayed
in the system font and system font size. The Window Manager port is already set to use the system font
and system font size.

Nothing drawn outside the window’s structure region will be visible.

Callbacks 1975
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Your window definition function should return 0 as the function result for this message.

 ■ Reporting the Region of a Mouse-Down Event

When the Window Manager passes wHit in the message parameter, your window definition function
should respond by reporting the region of the specified mouse-down event. The mouse location (in
global coordinates) of the window frame will be passed into the param parameter of your window
definition function. The vertical coordinate is in the high-order word of the parameter, and the horizontal
coordinate is in the low-order word.

In response to the wHit message, your window definition function should return one of the constants
defined in “Window Definition Hit Test Result Code Constants” (page 2034).

In Mac OS 9, return the constantswInGrow,wInGoAway,wInZoomIn,wInZoomOut, andwInCollapseBox
only if the window is active—by convention, the size box, close box, zoom box, and collapse box aren’t
drawn if the window is inactive. In an inactive document window, for example, a mouse-down event in
the part of the title bar that would contain the close box if the window were active is reported as wInDrag.
In Mac OS X, your WDEF can return these part codes for inactive windows because these boxes are drawn
even if the window is inactive.

 ■ Calculating Regions

When the Window Manager passes wCalcRgns in the message parameter, your window definition
function should respond by calculating the window’s structure and content regions based on the current
graphics port’s port rectangle. These regions, whose handles are in the strucRgn and contRgn fields
of the window structure, are in global coordinates. The Window Manager requests this operation only
if the window is visible. The mouse location (in global coordinates) of the window frame will be passed
into the param parameter of your window definition function.

Your window definition function should call IsWindowCollapsed (page 1904) to determine its collapse
state. Then your window definition function can modify its structure and content regions as appropriate.
Typically, a window’s content region is empty in a collapsed state.

When you calculate regions for your own type of window, do not alter the clip region or the visible
region of the Window Manager port. The Window Manager and QuickDraw take care of this for you.
Altering the Window Manager port’s clip region or visible region may damage other windows.

Your window definition function should return 0 as the function result for this message.

 ■ Performing Additional Window Initialization

When the Window Manager passes wNew in the message parameter, your window definition function
should respond by performing any initialization that it may require. If the content region has an unusual
shape, for example, you might allocate memory for the region and store the region handle in the
dataHandle field of the window structure. The initialization function for a standard document window
creates the wStateData structure for storing zooming data.

Your window definition function should ignore the param parameter and return 0 as the function result
for this message.

 ■ Performing Additional Window Disposal Actions

When the Window Manager passes wDispose in the message parameter, your window definition
function should respond by performing any additional tasks necessary for disposing of a window. You
might, for example, release memory that was allocated by the initialization function. The dispose function
for a standard document window disposes of the wStateData structure.

Your window definition function should ignore the param parameter and return 0 as the function result
for this message.

 ■ Drawing the Window’s Grow Image

1976 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

When the Window Manager passes wGrow in the message parameter, your window definition function
should respond to being resized by drawing a dotted outline of the window in the current graphics port
in the pen pattern and mode. (The pen pattern and mode are set up—as gray and notPatXor—to
conform to Appearance-compliant human interface guidelines.)

A rectangle (in global coordinates) whose upper-left corner is aligned with the port rectangle of the
window’s graphics port is passed into the param parameter of your window definition function. Your
grow image should be sized appropriately for the specified rectangle. As the user drags the mouse, the
Window Manager sends repeated wGrow messages, so that you can change your grow image to match
the changing mouse location.

Your window definition function should return 0 as the function result for this message.

 ■ Drawing the Size Box

When the Window Manager passes wDrawGIcon in the message parameter, your window definition
function should respond by drawing the size box in the content region if the window is active. If the
window is inactive, your window definition function should draw whatever is appropriate to show that
the window cannot currently be sized. Your window definition function may also draw scroll bar delimiter
lines. Your window definition function should ignore the param parameter.

If the size box is located in the window frame, draw the size box in response to a wDraw message, not
a wDrawGIcon message.

Your window definition function should return 0 as the function result for this message.

 ■ Reporting Window Features

When the Window Manager passes kWindowMsgGetFeatures in the messageparameter, your window
definition function should respond by setting the param parameter to reflect the features that your
window supports. The value passed back in the param parameter should be comprised of one or more
of the values defined in “Window Feature Bits” (page 2011).

Your window definition function should return 1 as the function result for this message.

 ■ Returning the Location of Window Regions

When the Window Manager passes kWindowMsgGetRegion in the message parameter, your window
definition function should respond by returning the location (in global coordinates) of the specified
window region. A pointer to a window region structure will be passed in the param parameter.

The window region structure is a structure of type GetWindowRegionRec (page 1981). Your window
definition function should return an operating system status (OSStatus) message as the function result
for this message. The result code errWindowRegionCodeInvalid indicates that the window region
passed in was not valid.

Application-defined window definition functions are changed with Appearance Manager 1.0 to support
collapse boxes and feature reporting.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacWindows.h

Callbacks 1977
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

WindowPaintProcPtr
Defines a pointer to a custom content region painting function.

typedef OSStatus (*WindowPaintProcPtr) (
 GDHandle device,
 GrafPtr qdContext,
 WindowRef window,
 RgnHandle inClientPaintRgn,
 RgnHandle outSystemPaintRgn,
 void * refCon
);

If you name your function MyWindowPaintProc, you would declare it like this:

OSStatus MyWindowPaintProc (
 GDHandle device,
 GrafPtr qdContext,
 WindowRef window,
 RgnHandle inClientPaintRgn,
 RgnHandle outSystemPaintRgn,
 void * refCon
);

Parameters
device

The current graphics device (GDevice).

qdContext
The graphics port to draw into. Note that you should draw into this port, not the one associated with
the window; the painting region inClientPaintRgn is defined relative to this port. The port may
be an offscreen graphics world.

window
The window to paint in.

inClientPaintRgn
The region to be painted. Treat as a const. This region is clipped to the intersection of the current
graphics device and the clobberedRgn parameter passed to PaintBehind.

outSystemPaintRgn
The region for the system to paint. Initially empty. If your paint procedure sets this region before
returning, the Window Manager will erase this region using the system’s window content paint
function.

refCon
Application-defined data that you passed to InstallWindowContentPaintProc (page 1898).

Return Value
A result code. See “Window Manager Result Codes” (page 2051).

Discussion
Each window in the system contains a reference to a content paint proc. This proc is called to erase the
window’s content region during PaintBehind or PaintOne operations. The client application can override
the system paint proc by calling InstallWindowContentPaintProc (page 1898). A window may only have
one paint proc installed at any one time, and the paint proc cannot be retrieved by the client application.

1978 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

If your content region painting callback returns any value other than noErr, outSystemPaintRgn is ignored
and the entire area of inClientPaintRgn is painted using the system paint proc.

When a previously obscured portion of a window is exposed, the window manager will iterate over active
displays and call the window’s content paint proc once for each device intersecting the region.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

Data Types

BasicWindowDescription
Describes basic window characteristics for use in a collection item.

struct BasicWindowDescription {
 UInt32 descriptionSize
 Rect windowContentRect
 Rect windowZoomRect
 UInt32 windowRefCon
 UInt32 windowStateFlags
 WindowPositionMethod windowPositionMethod
 UInt32 windowDefinitionVersion
 union {
 struct {
 SInt16 windowDefProc;
 Boolean windowHasCloseBox;
 } versionOne;
 struct {
 WindowClass windowClass;
 WindowAttributes windowAttributes;
 } versionTwo;
 } windowDefinition;
};
typedef struct BasicWindowDescription BasicWindowDescription;

Fields
descriptionSize

A value specifying the size of the entire BasicWindowDescription structure.

windowContentRect
A structure of type Rect, specifying the initial size and screen location of the window’s content area.

windowZoomRect
Reserved.

windowRefCon
The window’s reference value field, which is simply storage space available to your application for
any purpose. The value contained in this field persists when the 'WIND' resource is stored, so you
should avoid saving pointers in this field, as they may become stale.

Data Types 1979
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

windowStateFlags
A 32-bit value whose bits you set to indicate the status of transient window states. See “Basic Window
Description State Constant” (page 2010) for possible values.

windowPositionMethod
The specification last used in the function RepositionWindow (page 1924) to position this window,
if any. See “Window Position Constants” (page 2017) for a description of possible values for this field.

windowDefinitionVersion
The version of the window definition used for the window. Set this field to a value of 1 if your
application is creating a pre–Mac OS 8.5 window, that is, a window lacking class and attribute
information. Set this field to a value of 2 if your application is creating a window using class and
attribute information. See “Basic Window Description Version Constants” (page 2023) for descriptions
of these values.

windowDefinition
A union of the versionOne and versionTwo structures. Your application must either specify the
window’s class and attributes, or it must supply a window definition ID and specify whether or not
the window has a close box. See “Window Class Constants” (page 1988) and “Window Attributes” (page
1998) for descriptions of class and attribute values.

Discussion
The BasicWindowDescription structure is a default collection item for a resource of type ‘wind’. You
use the BasicWindowDescription structure to describe the statically-sized base characteristics of a window.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

GetGrowImageRegionRec
Defines a region to be XOR’d during a window grow or resize operation.

struct GetGrowImageRegionRec {
 Rect growRect;
 RgnHandle growImageRegion;
};
typedef struct GetGrowImageRegionRec GetGrowImageRegionRec;

Fields
growRect

The window’s new bounds in global coordinates.

growImageRegion
The grow image region.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

1980 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

GetWindowRegionRec
Passed to window definitions in the kWindowMsgGetRegion message.

struct GetWindowRegionRec {
 RgnHandle winRgn;
 WindowRegionCode regionCode;
};
typedef struct GetWindowRegionRec GetWindowRegionRec;
typedef GetWindowRegionRec * GetWindowRegionPtr;

Fields
winRgn

A handle to a window region based on the value specified in the regionCode field. Modify this region.

regionCode
A value representing a given window region; see “Window Region Constants” (page 2021).

Special Considerations
Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

HIWindowRef
Represents a window.

typedef WindowRef HIWindowRef;

Availability
Available in Mac OS X v10.3 and later.

Declared In
MacWindows.h

MeasureWindowTitleRec
Defines specifications of the window title.

Data Types 1981
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

struct MeasureWindowTitleRec {
 SInt16 fullTitleWidth;
 SInt16 titleTextWidth;
 Boolean isUnicodeTitle;
 Boolean unused;
};
typedef struct MeasureWindowTitleRec MeasureWindowTitleRec;
typedef MeasureWindowTitleRec * MeasureWindowTitleRecPtr;

Fields
fullTitleWidth

Your window definition function sets this field to a value specifying the total width in pixels of the
window title text and any proxy icon that may be present, ignoring any compression or truncation
that might be required when the title is actually drawn. That is, the specified width should be the
ideal width that would be used if the window were sufficiently wide to draw the entire title along
with a proxy icon. You should measure the title width using the current system font. If no proxy icon
is present, this field should have the same value as the titleTextWidth field.

titleTextWidth
Your window definition function sets this field to a value specifying the width in pixels of the window
title text, ignoring any compression or truncation that might be required when the title is actually
drawn. That is, the specified width should be the ideal width that would be used if the window were
sufficiently wide to draw the entire title. You should measure the title width using the current system
font.

isUnicodeTitle
Your window definition function may ignore this field; it is reserved for future use.

unused
Your window definition function may ignore this field; it is reserved for future use.

Discussion
If you implement a custom window definition function, when the Window Manager passes the message
kWindowMsgMeasureTitle in your window definition function’s message parameter it also passes a pointer
to a structure of type MeasureWindowTitleRec in the param parameter. Your window definition function
is responsible for setting the contents of the MeasureWindowTitleRec structure to contain data describing
the ideal title width.

See “Window Definition Message Constants” (page 2036) and “Window Feature Bits” (page 2011) for more details
on the kWindowMsgMeasureTitle message and the corresponding kWindowCanMeasureTitle feature
flag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

PropertyCreator
Defines the creator of a window property.

typedef OSType PropertyCreator;

Availability
Available in Mac OS X v10.0 and later.

1982 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Declared In
MacWindows.h

PropertyTag
Defines a window property tag.

typedef OSType PropertyTag;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

PicHandle
Defines a picture handle.

typedef PicPtr * PicPatHandle;

PixPatHandle
Pixel pattern handle.

typedef PixPatPtr * PixPatHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

RGBColor
RGB color.

struct RGBColor {
 unsigned short red;
 unsigned short green;
 unsigned short blue;
};
typedef struct RGBColor;
typedef RGBColor * RGBColorPtr;

Fields
red

An unsigned short integer specifying the red value of the color.

green
An unsigned short integer specifying the green value of the color.

Data Types 1983
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

blue
An unsigned short integer specifying the red value of the color.

Availability
Available in Mac OS X v10.0 and later.

Declared In
IOMacOSTypes.h

RgnHandle
Region handle.

typedef struct OpaqueRgnHandle * RgnHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

SetupWindowProxyDragImageRec
Defines a window proxy drag image.

struct SetupWindowProxyDragImageRec {
 GWorldPtr imageGWorld;
 RgnHandle imageRgn;
 RgnHandle outlineRgn;
};
typedef struct SetupWindowProxyDragImageRec SetupWindowProxyDragImageRec;

Fields
imageGWorld

A pointer to the offscreen graphics world containing the drag image. The window definition function
must allocate the offscreen graphics world, since the Window Manager has no way of knowing the
appropriate size for the drag image. The Window Manager disposes of the offscreen graphics world.

imageRgn
A handle to a region containing the drag image. Only this portion of the offscreen graphics world
referred to by the imageGWorld field is actually drawn. The Window Manager allocates and disposes
of this region.

outlineRgn
A handle to a region containing an outline of the drag image, for use on monitors incapable of
displaying the drag image itself. The Window Manager allocates and disposes of this region.

Discussion
If you implement a custom window definition function, when the function TrackWindowProxyDrag (page
1963) is called, the Window Manager passes the messagekWindowMsgSetupProxyDragImage in your window
definition function’s message parameter and passes a pointer to a structure of type
SetupWindowProxyDragImageRec in the paramparameter. Your window definition function is responsible
for setting the contents of the SetupWindowProxyDragImageRec structure to contain data describing the
proxy icon’s drag image.

1984 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

See “Window Definition Message Constants” (page 2036)and “Window Feature Bits” (page 2011) for more details
on the kWindowMsgSetupProxyDragImage message and the corresponding
kWindowCanSetupProxyDragImage feature flag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

TransitionWindowOptions
Defines transition options used when calling TransitionWindowWithOptions.

struct TransitionWindowOptions {
 UInt32 version;
 EventTime duration;
 WindowRef window;
 void * userData;
};
typedef struct TransitionWindowOptions TransitionWindowOptions;

Fields
version

The structure version. You must put 0 in this field.

duration
The duration of the fade, in seconds. For use with the Sheet, Slide, Fade, and Genie transition effects;
ignored for other effects. You may pass 0 to use the default duration. The effect is not guaranteed to
last precisely this long, but should be a close approximation.

window
The parent window of the sheet; for use with kWindowSheetTransitionEffect.

userData
A value that is sent as the kEventParamUserData parameter for the
kEventWindowTransitionStarted and kEventWindowTransitionCompleted events.

Availability
Available in Mac OS X v10.3 and later.

Declared In
MacWindows.h

WindowDefSpec
Defines a window definition.

Data Types 1985
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

struct WindowDefSpec {
 WindowDefType defType
 union {
 WindowDefUPP defProc;
 void * classRef;
 short procID;
 void * rootView;
 } u;
};
typedef struct WindowDefSpec WindowDefSpec;
typedef WindowDefSpec * WindowDefSpecPtr;

Fields
defType

The window definition type. See “Window Definition Type Constants” (page 2033) for a list of possible
values.

u
A pointer to the window definition, depending on the constant passed into the defType field.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

WindowDefUPP
Defines a UPP to a specified window definition.

typedef WindowDefProcPtr WindowDefUPP;

Discussion
For more information, see WindowDefProcPtr (page 1973).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

WindowGroupRef
Represents a window group.

typedef struct OpaqueWindowGroupRef * WindowGroupRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

1986 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

WindowPaintUPP
Defines a UPP to the specified region painting callback.

typedef WindowPaintProcPtr WindowPaintUPP;

Discussion
For more information, see WindowPaintProcPtr (page 1978).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

WindowRef
An opaque type that represents a window.

typedef WindowPtr WindowRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
QuickdrawTypes.h

WStateData
Stores the user state and the standard state of a window.

struct WStateData {
 Rect userState;
 Rect stdState;
};
typedef struct WStateData WStateData;
typedef WStateData * WStateDataPtr;

Fields
userState

A rectangle that describes the window size and location established by the user.

The Window Manager initializes the user state to the size and location of the window when it is first
displayed, and then updates the userState field whenever the user resizes a window. Although the
user state specifies both the size and location of the window, the Window Manager updates the
window state data structure only when the user resizes a window—not when the user merely moves
a window.

stdState
The rectangle describing the window size and location that your application considers the most
convenient, considering the function and contents of the document, the screen space available, and
the position of the window in its user state. If your application does not define a standard state, the
Window Manager automatically sets the standard state to the entire gray region on the main screen,
minus a three-pixel border on all sides. The user cannot change a window’s standard state.

Data Types 1987
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
When the Appearance Manager is available, you should not extend the window state data structure. Instead
use the refCon field of the color window structure or extend the window record structure.

The zoom box allows the user to alternate quickly between two window positions and sizes: the user state
and the standard state. The Window Manager stores the user state and your application stores the standard
state in the window state data structure of type WStateData. The handle to this structure appears in the
dataHandle field of the window structure.

The ZoomWindow (page 1971) function changes the size of a window according to the values in the window
state data structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacWindows.h

Constants

Window Class Constants
Constants that specify the standard window classes.

1988 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

typedef UInt32 WindowClass;
enum {
 kAlertWindowClass = 1,
 kMovableAlertWindowClass = 2,
 kModalWindowClass = 3,
 kMovableModalWindowClass = 4,
 kFloatingWindowClass = 5,
 kDocumentWindowClass = 6,
 kUtilityWindowClass = 8,
 kHelpWindowClass = 10,
 kSheetWindowClass = 11,
 kToolbarWindowClass = 12,
 kPlainWindowClass = 13,
 kOverlayWindowClass = 14,
 kSheetAlertWindowClass = 15,
 kAltPlainWindowClass = 16,
 kDrawerWindowClass = 20,
 kAllWindowClasses = 0xFFFFFFFF
};

Constants
kAlertWindowClass

Identifies an alert box window. An alert window is used when the application needs the user's attention
immediately. On Mac OS 9 and earlier, a visible alert window will prevent the user from switching to
any other application. Use kThemeBrushAlertBackgroundActive to draw the background of alert
windows. Alert windows are initially placed in the modal window group, given a modality of
kWindowModalityAppModal, and given an activation scope of kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kMovableAlertWindowClass
Identifies a movable alert box window. Generally, you should use this window class rather than
kAlertWindowClass. Use kThemeBrushAlertBackgroundActive to draw the background of
alert windows. Alert windows are initially placed in the modal window group, given a modality of
kWindowModalityAppModal, and given an activation scope of kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kModalWindowClass
Identifies a modal dialog box window. Use kThemeBrushDialogBackgroundActive to draw the
background of modal dialog windows. Modal dialog windows are initially placed in the modal window
group, given a modality of kWindowModalityAppModal, and given an activation scope of
kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kMovableModalWindowClass
Identifies a movable modal dialog box window. In Mac OS X and CarbonLib 1.3 and later, use
kThemeBrushMovableModalBackground to draw the background of alert windows. Alert windows
are initially placed in the modal window group, given a modality of kWindowModalityAppModal,
and given an activation scope of kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 1989
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kFloatingWindowClass
Identifies a window that floats above all document windows. If your application assigns this constant
to a window, the Window Manager ensures that the window has the proper floating behavior. Use
kThemeBrushUtilityWindowBackgroundActiveorkThemeBrushDocumentWindowBackground
to draw the background of floating windows. Floating windows are initially placed in the floating
window group, given a modality of kWindowModalityNone, and given an activation scope of
kWindowActivationScopeIndependent.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kDocumentWindowClass
Identifies a document window or modeless dialog box window. Use
kThemeBrushDocumentWindowBackground or your own custom drawing to draw the background
of a document window. Document windows are initially placed in the document window group,
given a modality of kWindowModalityNone, and given an activation scope of
kWindowActivationScopeAll.The Window Manager assigns this class to pre–Mac OS 8.5 Window
Manager windows.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kUtilityWindowClass
Identifies a utility window. A utility window is similar to a floating window, but it floats above the
windows of all applications rather than just above the windows of the application that creates it. Use
kThemeBrushUtilityWindowBackgroundActiveorkThemeBrushDocumentWindowBackground
to draw the background of utility windows. Utility windows are initially placed in the utility window
group, given a modality of kWindowModalityNone, and given an activation scope of
kWindowActivationScopeIndependent.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kHelpWindowClass
Identifies a window used for help tags. It has no window frame. Typically you should use the Help
Manager to display help tags, rather than creating a help tag window yourself. Help windows are
initially placed in the help window group, given a modality of kWindowModalityNone, and given
an activation scope of kWindowActivationScopeNone.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kSheetWindowClass
Identifies a sheet. (Mac OS X only.) Use kThemeBrushSheetBackgroundOpaque to draw an opaque
background for sheet windows, or kThemeBrushSheetBackgroundTransparent to draw a
transparent background. Sheet windows are initially placed in the document window group, given
a modality of kWindowModalityNone, and given an activation scope of
kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

1990 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kToolbarWindowClass
Identifies a toolbar window, which is used to display a palette of controls. A toolbar window is similar
to a floating window, and like a floating window, is layered above all application windows except for
alert and modal windows, but is layered beneath floating windows. Toolbar windows are initially
placed in the toolbar window group, given a modality of kWindowModalityNone, and given an
activation scope of kWindowActivationScopeNone.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kPlainWindowClass
Identifies a plain window, which has a single-pixel window frame. Plain windows are initially placed
in the document window group, given a modality of kWindowModalityNone, and given an activation
scope of kWindowActivationScopeAll.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kOverlayWindowClass
Identifies an overlay window, which is a completely transparent window. Overlay windows are
positioned by default above all other windows, but you can group an overlay window with any other
window, at any z-order. Overlay windows are intended as a replacement for the pre-Carbon practice
of drawing directly into the Window Manager port. By creating a full-screen overlay window and
drawing into it, you can draw over any window in any application without disturbing the contents
of the windows beneath your drawing. Overlay windows have a default handler for
kEventWindowPaint that uses CGContextClearRect to clear the overlay window's alpha channel
to zero. This ensures the initial transparency of the window. You can install your own
kEventWindowPaint handler to do your own drawing; typically, you would call through to the
default handler with CallNextEventHandler first, and then use QDBeginCGContext to create your
own context for drawing. You can use either QuickDraw or Core Graphics to draw into an overlay
window, but you must use Core Graphics to draw if you need any of your drawing to be non-opaque,
since QuickDraw always sets the alpha channel of any pixels that it touches to 1.0. (QuickDraw is also
deprecated in Mac OS X v10.4 and later.) You can also use the standard window event handler together
with regular controls in an overlay window. When using the standard window event handler, you will
probably want your kEventWindowPaint handler to return eventNotHandledErr (after calling
the default handler with CallNextEventHandler first) so that after the Paint handler returns, the
Window Manager will send a kEventWindowDrawContent event which the standard window event
handler can respond to by drawing the controls in the window. Overlay windows are initially placed
in the overlay window group, given a modality of kWindowModalityNone, and given an activation
scope of kWindowActivationScopeNone.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kSheetAlertWindowClass
Identifies an alert sheet. Use kThemeBrushSheetBackgroundOpaque to draw an opaque background
for sheet alert windows, or kThemeBrushSheetBackgroundTransparent to draw a transparent
background. Sheet alert windows are initially placed in the document window group, given a modality
of kWindowModalityNone, and given an activation scope of kWindowActivationScopeAll.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Constants 1991
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kAltPlainWindowClass
Identifies an alternate plain window, which is similar to a plain window but has a solid black shadow
on its right and bottom sides. It is rarely used in modern Mac OS applications. Alternate plain windows
are initially placed in the document window group, given a modality of kWindowModalityNone,
and given an activation scope of kWindowActivationScopeAll.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kDrawerWindowClass
Identifies a drawer. Use kThemeBrushDrawerBackground or
kThemeBrushDocumentWindowBackground to draw the background of drawer windows. Drawer
windows are initially placed in the document window group, given a modality of
kWindowModalityNone, and given an activation scope of kWindowActivationScopeAll. Drawer
windows should always be created using the compositing window attribute.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kAllWindowClasses
Specifier used to designate all window classes. Used with GetFrontWindowOfClass,
FindWindowOfClass, and GetNextWindowOfClass to indicate that there should be no restriction
on the class of the returned window. Also used with GetWindowGroupOfClass to get the root
window group.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
The WindowClass constants categorize windows into groups of like types. The grouping of windows facilitates
the appropriate display (that is, both the look and the front-to-back ordering) and tracking of windows.

You can define a window’s class using the function CreateNewWindow (page 1815) and obtain a window’s
class using the function GetWindowClass (page 1844). You can change the class of certain windows by calling
HIWindowChangeClass (page 1876).

Window Attribute Identifiers
Constants that specify standard window attributes.

1992 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

enum {
 kHIWindowBitCloseBox = 1,
 kHIWindowBitZoomBox = 2,
 kHIWindowBitCollapseBox = 4,
 kHIWindowBitResizable = 5,
 kHIWindowBitSideTitlebar = 6,
 kHIWindowBitToolbarButton = 7,
 kHIWindowBitUnifiedTitleAndToolbar = 8,
 kHIWindowBitTextured = 9,
 kHIWindowBitNoTitleBar = 10,
 kHIWindowBitTexturedSquareCorners = 11,
 kHIWindowBitNoTexturedContentSeparator = 12,
 kHIWindowBitDoesNotCycle = 16,
 kHIWindowBitNoUpdates = 17,
 kHIWindowBitNoActivates = 18,
 kHIWindowBitOpaqueForEvents = 19,
 kHIWindowBitCompositing = 20,
 kHIWindowBitFrameworkScaled = 21,
 kHIWindowBitNoShadow = 22,
 kHIWindowBitCanBeVisibleWithoutLogin = 23,
 kHIWindowBitAsyncDrag = 24,
 kHIWindowBitHideOnSuspend = 25,
 kHIWindowBitStandardHandler = 26,
 kHIWindowBitHideOnFullScreen = 27,
 kHIWindowBitInWindowMenu = 28,
 kHIWindowBitLiveResize = 29,
 kHIWindowBitIgnoreClicks = 30,
 kHIWindowBitNoConstrain = 32,
 kHIWindowBitDoesNotHide = 33,
 kHIWindowBitAutoViewDragTracking = 34,
 kHIWindowBitDoesNotShowBadgeInDock = 35
};

Constants
kHIWindowBitCloseBox

The window has a close box. This attribute is available for windows of class
kDocumentWindowClass (page 1990), kFloatingWindowClass (page 1990), and
kUtilityWindowClass (page 1990).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitZoomBox
The window has a zoom box. This attribute is available for windows of class
kDocumentWindowClass (page 1990), kFloatingWindowClass (page 1990), and
kUtilityWindowClass (page 1990). When this attribute is set on a window, both the
kWindowHorizontalZoomAttribute and kWindowVerticalZoomAttribute bits are set
automatically.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

Constants 1993
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kHIWindowBitCollapseBox
The window has a collapse box. This attribute is available for windows of class
kDocumentWindowClass (page 1990), kFloatingWindowClass (page 1990), and
kUtilityWindowClass (page 1990). For floating and utility window classes, this attribute must be
added to the window after the window is created; it may not be added to the window at creation
time.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitResizable
The window has a resize tab or box and is resizable. This attribute is available for windows of class
kDocumentWindowClass (page 1990), kMovableModalWindowClass (page 1989),
kFloatingWindowClass (page 1990), kUtilityWindowClass (page 1990), and
kSheetWindowClass (page 1990).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitSideTitlebar
The window has a vertical title bar on the side of the window. This attribute is available for windows
of the kFloatingWindowClass (page 1990) and kUtilityWindowClass (page 1990) class.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitToolbarButton
The window has a toolbar button. This oblong clear button shows and hides the toolbar. This attribute
is available for windows of class kDocumentWindowClass (page 1990).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitUnifiedTitleAndToolbar
The window draws its window title and toolbar using a unified appearance that has no separator
between the two areas. A window may not have both this attribute and the kHIWindowBitTextured
attribute.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitTextured
The window uses the textured or brushed-metal appearance. Drawers can also be textured, but
dynamically adjust their appearance based on their parent window’s appearance; it is not necessary
to specify this attribute for a textured drawer. This attribute is available for windows of class
kDocumentWindowClass (page 1990) and kFloatingWindowClass (page 1990).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoTitleBar
The window’s title bar can be hidden. This attribute is available for windows of class
kDocumentWindowClass (page 1990), kFloatingWindowClass (page 1990), and
kUtilityWindowClass (page 1990).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

1994 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kHIWindowBitTexturedSquareCorners
Indicates that a textured window should have square corners. By default, a textured window has
round corners. When this attribute is set on a window, the window frame view automatically makes
the grow box view opaque, and when this attribute is cleared, the window frame view automatically
makes the grow box view transparent. You can change the grow box view transparency after modifying
this attribute with the function HIGrowBoxViewSetTransparent (page 2416). Relevant only for
textured windows; ignored in non-textured windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoTexturedContentSeparator
Indicates that no border is drawn between the toolbar and window content. This attribute is relevant
only in textured windows; it is ignored in non-textured windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitDoesNotCycle
The window does not participate in window cycling invoked by Command-~ or keyboard shortcuts
defined in the Keyboard & Mouse preference pane.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoUpdates
The window does not receive update events. This attribute is available for all windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoActivates
The window does not receive activate events. This attribute is available for all windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitOpaqueForEvents
The window receives mouse events even for areas of the window that are transparent (that is, have
an alpha channel component of zero).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitCompositing
The window uses HIView-based compositing, which means that the entire window is comprised of
HIViews, and can be treated thusly. This attribute must be specified at window creation; you may not
add this attribute after the window has been created.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

Constants 1995
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kHIWindowBitFrameworkScaled
The window’s content is scaled to match the display scale factor. This attribute can only be used when
kHIWindowBitCompositing is also enabled. When this attribute is enabled, you may not draw with
QuickDraw in the window. If this attribute is enabled and if the scale factor is something other than
1.0, the window’s scale mode is kHIWindowScaleModeFrameworkScaled. If you specify this attribute
and kHIWindowBitApplicationScaled, the kHIWindowBitApplicationScaled attribute is
ignored. You may only specify this attribute at window creation time.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoShadow
The window has no shadow. This attribute is available for all windows, and is given automatically to
windows of class kOverlayWindowClass (page 1991).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitCanBeVisibleWithoutLogin
The window can be made visible prior to user login. By default, in Mac OS X 10.5 and later no windows
can be visible before a user logs into the system; this protects the user against certain types of malicious
use of insecure applications. However, some software, such as input methods or other accessibility
software, may need to deliberately make windows available prior to user login. Such software should
add this window attribute to its windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitAsyncDrag
The window server drags the window automatically. Your application should not call
DragWindow (page 1824) for this window because this function would fight with the Window Server
for control. This attribute is ignored if the window is grouped with other windows in a window group
that has the kWindowGroupAttrMoveTogether attribute.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitHideOnSuspend
The window is hidden automatically on suspend and shown on resume. This attribute available for
all windows and is given automatically to windows of class kFloatingWindowClass (page 1990),
kHelpWindowClass (page 1990), and kToolbarWindowClass (page 1991).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitStandardHandler
The window supports the standard window event handler. The standard event handler provides
standard actions for common window events. See Carbon Event Manager Programming Guide for
details. This attribute is available for all windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

1996 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kHIWindowBitHideOnFullScreen
The window is automatically hidden during full-screen mode (when the menubar is invisible) and
shown afterwards. Available for all windows. This attribute is automatically given to windows of class
kUtilityWindowClass (page 1990).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitInWindowMenu
The window title appears in the system-generated Window menu. This attribute is only available for
windows of class kDocumentWindowClass (page 1990) and is automatically given to windows of that
class.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitLiveResize
The window supports live resizing. This attribute is available for all windows.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitIgnoreClicks
The window never receives mouse events, even in areas that are opaque. Instead, clicks on the window
are passed through to windows beneath it.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitNoConstrain
The window is not repositioned by the default kEventWindowConstrain handler in response to
changes in monitor size, Dock position, and so on.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitDoesNotHide
The window does not hide when the application is hidden.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitAutoViewDragTracking
The window automatically installs Drag Manager callbacks to detect drag actions, and automatically
sends HIView drag Carbon events. Setting this attribute is equivalent to calling the function
SetAutomaticControlDragTrackingEnabledForWindow (page 643) (and calling that function
will set this attribute).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowBitDoesNotShowBadgeInDock
Indicates that the Dock should not add a badge to this window's icon when the window is minimized
to the Dock.

Discussion
In Mac OS X version 10.5 and later, you may use these constants to set or test the attributes of a window.
For example, you may use them with the function HIWindowCreate (page 1880) to define the attributes of a
new window, the function HIWindowChangeAttributes (page 1874) to change a window’s attributes, and
the function HIWindowTestAttribute (page 1896) to test whether a window has a specific attribute.

Constants 1997
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Window Attributes
Bit masks that specify standard window attributes. In Mac OS X v10.5 and later, you may use “Window Attribute
Identifiers” (page 1992) instead.

typedef UInt32 WindowAttributes;
enum {
 kWindowNoAttributes = 0,
 kWindowCloseBoxAttribute = (1L << 0),
 kWindowHorizontalZoomAttribute = (1L << 1),
 kWindowVerticalZoomAttribute = (1L << 2),
 kWindowFullZoomAttribute = (kWindowVerticalZoomAttribute |
kWindowHorizontalZoomAttribute),
 kWindowCollapseBoxAttribute = (1L << 3),
 kWindowResizableAttribute = (1L << 4),
 kWindowSideTitlebarAttribute = (1L << 5),
 kWindowToolbarButtonAttribute = (1L << 6),
 kWindowUnifiedTitleAndToolbarAttribute = (1L << 7),
 kWindowMetalAttribute = (1L << 8),
 kWindowNoTitleBarAttribute = (1L << 9),
 kWindowTexturedSquareCornersAttribute = (1L << 10),
 kWindowMetalNoContentSeparatorAttribute = (1L << 11),
 kWindowDoesNotCycleAttribute = (1L << 15),
 kWindowNoUpdatesAttribute = (1L << 16),
 kWindowNoActivatesAttribute = (1L << 17),
 kWindowOpaqueForEventsAttribute = (1L << 18),
 kWindowCompositingAttribute = (1L << 19),
 kWindowFrameworkScaledAttribute = (1L << 20),
 kWindowNoShadowAttribute = (1L << 21),
 kWindowCanBeVisibleWithoutLoginAttribute = (1L << 22),
 kWindowAsyncDragAttribute = (1L << 23),
 kWindowHideOnSuspendAttribute = (1L << 24),
 kWindowStandardHandlerAttribute = (1L << 25),
 kWindowHideOnFullScreenAttribute = (1L << 26),
 kWindowInWindowMenuAttribute = (1L << 27),
 kWindowLiveResizeAttribute = (1L << 28),
 kWindowIgnoreClicksAttribute = (1L << 29),
 kWindowNoConstrainAttribute = (1L << 31),
 kWindowStandardDocumentAttributes = (kWindowCloseBoxAttribute |
kWindowFullZoomAttribute | kWindowCollapseBoxAttribute | kWindowResizableAttribute),
 kWindowStandardFloatingAttributes = (kWindowCloseBoxAttribute |
kWindowCollapseBoxAttribute)
};

Constants
kWindowNoAttributes

If no bits are set, the window has none of the standard attributes.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCloseBoxAttribute
If the bit specified by this mask is set, the window has a close box. See kHIWindowBitCloseBox (page
1993).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

1998 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowHorizontalZoomAttribute
If the bit specified by this mask is set, the window changes width when zooming. See
kHIWindowBitZoomBox (page 1993).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowVerticalZoomAttribute
If the bit specified by this mask is set, the window changes height when zooming. See
kHIWindowBitZoomBox (page 1993).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFullZoomAttribute
If the bits specified by this mask are set, the window changes both width and height when zooming.
See kHIWindowBitZoomBox (page 1993).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCollapseBoxAttribute
If the bit specified by this mask is set, the window has a collapse box. See
kHIWindowBitCollapseBox (page 1994).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowResizableAttribute
If the bit specified by this mask is set, the window has a resize tab or box and is resizable. See
kHIWindowBitResizable (page 1994).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSideTitlebarAttribute
If the bit specified by this mask is set, the window has a side title bar. See
kHIWindowBitSideTitlebar (page 1994).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowToolbarButtonAttribute
If the bit specified by this mask is set, the window has a toolbar button. See
kHIWindowBitToolbarButton (page 1994).

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowUnifiedTitleAndToolbarAttribute
If the bit specified by this mask is set, the window draws its window title and toolbar using a unified
appearance that has no separator between the two areas. A window may not have both this attribute
and the kWindowMetalAttribute attribute.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

Constants 1999
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowMetalAttribute
If the bit specified by this mask is set, the window has a textured or brushed-metal appearance. See
kHIWindowBitTextured (page 1994).

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowNoTitleBarAttribute
If the bit specified by this mask is set, the window’s title bar can be hidden. See
kHIWindowBitNoTitleBar (page 1994).

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kWindowTexturedSquareCornersAttribute
See kHIWindowBitTexturedSquareCorners (page 1995).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kWindowMetalNoContentSeparatorAttribute
If the bit specified by this mask is set, no border is drawn between the toolbar and window content.
See kHIWindowBitNoTexturedContentSeparator (page 1995).

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kWindowDoesNotCycleAttribute
If the bit specified by this mask is set, the window does not participate in window cycling. See
kHIWindowBitDoesNotCycle (page 1995).

Available in Mac OS X v10.3 and later.

Declared in MacWindows.h.

kWindowNoUpdatesAttribute
If the bit specified by this mask is set, the window does not receive update events. See
kHIWindowBitNoUpdates (page 1995).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowNoActivatesAttribute
If the bit specified by this mask is set, the window does not receive activate events. See
kHIWindowBitNoActivates (page 1995).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowOpaqueForEventsAttribute
If the bit specified by this mask is set, the window receives mouse events even for areas of the window
that are transparent. See kHIWindowBitOpaqueForEvents (page 1995).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCompositingAttribute
If the bit specified by this mask is set, the window uses HIView-based compositing. See
kHIWindowBitCompositing (page 1995).

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

2000 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowFrameworkScaledAttribute
If the bit specified by this mask is set, this window’s content is scaled to match the display scale factor.
See kHIWindowBitFrameworkScaled (page 1996).

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kWindowNoShadowAttribute
If the bit specified by this mask is set, the window has no shadow. See kHIWindowBitNoShadow (page
1996).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanBeVisibleWithoutLoginAttribute
If the bit specified by this mask is set, the window can be made visible prior to user login. See
kHIWindowBitCanBeVisibleWithoutLogin (page 1996).

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kWindowAsyncDragAttribute
If the bit specified by this mask is set, the window server drags the window automatically. See
kHIWindowBitAsyncDrag (page 1996).

Available in Mac OS X v10.3 and later.

Declared in MacWindows.h.

kWindowHideOnSuspendAttribute
If the bit specified by this mask is set, the window is hidden automatically on suspend and shown on
resume. See kHIWindowBitHideOnSuspend (page 1996).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowStandardHandlerAttribute
If the bit specified by this mask is set, the window supports the standard window event handler. See
kHIWindowBitStandardHandler (page 1996).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowHideOnFullScreenAttribute
If the bit specified by this mask is set, the window is automatically hidden during fullscreen mode
(when the menubar is invisible) and shown afterwards. See kHIWindowBitHideOnFullScreen (page
1997).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowInWindowMenuAttribute
If the bit specified by this mask is set, the window title appears in the system-generated Window
menu. See kHIWindowBitInWindowMenu (page 1997).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2001
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowLiveResizeAttribute
If the bit specified by this mask is set, the window supports live resizing. See
kHIWindowBitLiveResize (page 1997).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowIgnoreClicksAttribute
If the bit specified by this mask is set, the window never receives mouse events, even in areas that
are opaque. See kHIWindowBitIgnoreClicks (page 1997).

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowNoConstrainAttribute
If the bit specified by this mask is set, the window is not repositioned by the default
kEventWindowConstrain handler. See kHIWindowBitNoConstrain (page 1997).

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowStandardDocumentAttributes
If the bits specified by this mask are set, the window has the attributes of a standard document
window—that is, a close box, full zoom box, collapse box, and size box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowStandardFloatingAttributes
If the bits specified by this mask are set, the window has the attributes of a standard floating
window—that is, a close box and collapse box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
The WindowAttributes enumeration defines masks your application can use to set or test the bits in a
window attributes parameter. You can use these masks with the function CreateNewWindow (page 1815) to
define a window’s attributes, and with the function ChangeWindowAttributes (page 1805) to change a
window’s attributes. You can also use these masks to test the attributes parameter produced by the function
GetWindowAttributes (page 1842), thereby obtaining a window’s attributes.

User Focus Auto-Select Constant
Defines a constant that tells the system to pick the best user focus window.

#define kUserFocusAuto ((WindowRef)(-1))

Constants
kUserFocusAuto

Pass this constant to the function SetUserFocusWindow (page 1934) to have the system choose the
most appropriate window for user focus.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

2002 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Appearance-Compliant Window Resource IDs
Define window resources for Appearance-compliant applications.

enum {
 kWindowDocumentDefProcResID = 64,
 kWindowDialogDefProcResID = 65,
 kWindowUtilityDefProcResID = 66,
 kWindowUtilitySideTitleDefProcResID = 67,
 kWindowSheetDefProcResID = 68,
 kWindowSimpleDefProcResID = 69,
 kWindowSheetAlertDefProcResID = 70
};

Constants
kWindowDocumentDefProcResID

Defines Appearance-compliant standard document windows with a size box. Standard document
windows created with this resource ID can use variation codes to create windows with vertical and
horizontal zoom boxes.

Available with Appearance 1.0 and later.

Declared in MacWindows.h.

kWindowDialogDefProcResID
Defines Appearance-compliant dialog and alert boxes. Modal and movable modal dialog boxes created
with this resource ID are displayed with no space between their content and structure region. Alert
boxes created with this resource ID are displayed with a red-tinged border.

Declared in MacWindows.h.

Available with Appearance 1.0 and later.

kWindowUtilityDefProcResID
Defines Appearance-compliant utility (floating) windows with a top title bar and a size box.

Available with Appearance 1.0 and later.

Declared in MacWindows.h.

kWindowUtilitySideTitleDefProcResID
Defines Appearance-compliant utility (floating) windows with a side title bar and a size box.

Available with Appearance 1.0 and later.

Declared in MacWindows.h.

kWindowSheetDefProcResID
Defines a window sheet.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSimpleDefProcResID
Defines a simple window with no window frame.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSheetAlertDefProcResID
Defines a sheet window that is displayed as an alert (rather than a dialog) on Mac OS 9.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Constants 2003
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
Window resource IDs are changed with Appearance Manager 1.0. The Window Manager now provides many
new standard, Appearance-compliant window resource IDs for your application.

You can use a window resource ID constant to create a window definition ID; see “Pre-Appearance Window
Definition IDs” inWindow Manager Legacy Reference for more details.

Note that the standard Appearance-compliant resource ID constants kWindowDocumentDefProcResID,
kWindowUtilityDefProcResID, and kWindowUtilitySideTitleDefProcResID specify windows with
collapse boxes.

Resource IDs 0 through 127 are reserved for use by the system.

Appearance-Compliant Window Definition ID Constants
Define different window kinds.

2004 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

enum {
 kWindowDocumentProc = 1024,
 kWindowGrowDocumentProc = 1025,
 kWindowVertZoomDocumentProc = 1026,
 kWindowVertZoomGrowDocumentProc = 1027,
 kWindowHorizZoomDocumentProc = 1028,
 kWindowHorizZoomGrowDocumentProc = 1029,
 kWindowFullZoomDocumentProc = 1030,
 kWindowFullZoomGrowDocumentProc = 1031
};
enum {
 kWindowPlainDialogProc = 1040,
 kWindowShadowDialogProc = 1041,
 kWindowModalDialogProc = 1042,
 kWindowMovableModalDialogProc = 1043,
 kWindowAlertProc = 1044,
 kWindowMovableAlertProc = 1045
};
enum {
 kWindowMovableModalGrowProc = 1046
};
enum {
 kWindowFloatProc = 1057,
 kWindowFloatGrowProc = 1059,
 kWindowFloatVertZoomProc = 1061,
 kWindowFloatVertZoomGrowProc = 1063,
 kWindowFloatHorizZoomProc = 1065,
 kWindowFloatHorizZoomGrowProc = 1067,
 kWindowFloatFullZoomProc = 1069,
 kWindowFloatFullZoomGrowProc = 1071
};
enum {
 kWindowFloatSideProc = 1073,
 kWindowFloatSideGrowProc = 1075,
 kWindowFloatSideVertZoomProc = 1077,
 kWindowFloatSideVertZoomGrowProc = 1079,
 kWindowFloatSideHorizZoomProc = 1081,
 kWindowFloatSideHorizZoomGrowProc = 1083,
 kWindowFloatSideFullZoomProc = 1085,
 kWindowFloatSideFullZoomGrowProc = 1087
};
enum {
 kWindowSheetProc = 1088,
 kWindowSheetAlertProc = 1120
};
enum {
 kWindowSimpleProc = 1104,
 kWindowSimpleFrameProc = 1105
};

Constants
kWindowDocumentProc

Appearance-compliant movable window with no size box or zoom box. Available with Appearance
1.0 and later. The corresponding pre-Appearance window definition ID is noGrowDocProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2005
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowGrowDocumentProc
Appearance-compliant standard document window (movable window with size box). Available with
Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is documentProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowVertZoomDocumentProc
Appearance-compliant window with vertical zoom box and no size box. Available with Appearance
1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowVertZoomGrowDocumentProc
Appearance-compliant window with vertical zoom box and size box. Available with Appearance 1.0
and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowHorizZoomDocumentProc
Appearance-compliant window with horizontal zoom box and no size box. Available with Appearance
1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowHorizZoomGrowDocumentProc
Appearance-compliant window with horizontal zoom box and size box. Available with Appearance
1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFullZoomDocumentProc
Appearance-compliant window with full zoom box and no size box. Available with Appearance 1.0
and later. The corresponding pre-Appearance window definition ID is zoomNoGrow.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFullZoomGrowDocumentProc
Appearance-compliant window with full zoom box and size box. Available with Appearance 1.0 and
later. The corresponding pre-Appearance window definition ID is zoomDocProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowPlainDialogProc
Appearance-compliant modeless dialog box. Available with Appearance 1.0 and later. The
corresponding pre-Appearance window definition ID is plainDBox.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

2006 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowShadowDialogProc
Appearance-compliant modeless dialog box with shadow. Available with Appearance 1.0 and later.
The corresponding pre-Appearance window definition ID is altDBoxProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowModalDialogProc
Appearance-compliant modal dialog box. Available with Appearance 1.0 and later. The corresponding
pre-Appearance window definition ID is dBoxProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMovableModalDialogProc
Appearance-compliant movable modal dialog box. Available with Appearance 1.0 and later. The
corresponding pre-Appearance window definition ID is movableDBoxProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertProc
Appearance-compliant alert box. Available with Appearance 1.0 and later. There is no corresponding
pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMovableAlertProc
Appearance-compliant movable alert box. Available with Appearance 1.0 and later. There is no
corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMovableModalGrowProc
Appearance-compliant movable modal dialog box with size box. Available with Appearance 1.0.1 and
later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatProc
Appearance-compliant utility (floating) window with no size box or zoom box. Available with
Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is floatProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatGrowProc
Appearance-compliant utility (floating) window with a size box. Available with Appearance 1.0 and
later. The corresponding pre-Appearance window definition ID is floatGrowProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2007
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowFloatVertZoomProc
Appearance-compliant utility (floating) window with a vertical zoom box. Available with Appearance
1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatVertZoomGrowProc
Appearance-compliant utility (floating) window with a vertical zoom box and size box. Available with
Appearance 1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatHorizZoomProc
Appearance-compliant utility (floating) window with a horizontal zoom box. Available with Appearance
1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatHorizZoomGrowProc
Appearance-compliant utility (floating) window with a horizontal zoom box and size box. Available
with Appearance 1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatFullZoomProc
Appearance-compliant utility (floating) window with full zoom box. Available with Appearance 1.0
and later. The corresponding pre-Appearance window definition ID is floatZoomProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatFullZoomGrowProc
Appearance-compliant utility (floating) window with full zoom box and size box. Available with
Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is
floatZoomGrowProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideProc
Appearance-compliant utility (floating) window with side title bar. Available with Appearance 1.0 and
later. The corresponding pre-Appearance window definition ID is floatSideProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideGrowProc
Appearance-compliant utility (floating) window with side title bar and size box. Available with
Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is
floatSideGrowProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

2008 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowFloatSideVertZoomProc
Appearance-compliant utility (floating) window with side title bar and vertical zoom box. Available
with Appearance 1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideVertZoomGrowProc
Appearance-compliant utility (floating) window with side title bar, vertical zoom box, and size box.
Available with Appearance 1.0 and later. There is no corresponding pre-Appearance window definition
ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideHorizZoomProc
Appearance-compliant utility (floating) window with side title bar and horizontal zoom box. Available
with Appearance 1.0 and later. There is no corresponding pre-Appearance window definition ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideHorizZoomGrowProc
Appearance-compliant utility (floating) window with side title bar, horizontal zoom box, and size box.
Available with Appearance 1.0 and later. There is no corresponding pre-Appearance window definition
ID.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideFullZoomProc
Appearance-compliant utility (floating) window with side title bar and full zoom box. Available with
Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is
floatSideZoomProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFloatSideFullZoomGrowProc
Appearance-compliant utility (floating) window with side title bar, full zoom box, and size box. Available
with Appearance 1.0 and later. The corresponding pre-Appearance window definition ID is
floatSideZoomGrowProc.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSheetProc
A standard document sheet.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSheetAlertProc
An alert sheet.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Constants 2009
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowSimpleProc
A window that has no structure region; the content covers the entire window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSimpleFrameProc
A window that has a 1-pixel black frame as its structure.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Basic Window Description State Constant
Define the window description state constant.

enum {
 kWindowIsCollapsedState = (1 << 0L)
};

Constants
kWindowIsCollapsedState

If the bit specified by this mask is set, the window is currently collapsed.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
You can use this mask to set a bit in the windowStateFlags field of a structure of type
BasicWindowDescription (page 1979), thereby specifying a transient window state.

Window Frame View Part Codes
HIView part codes used by window frame views.

enum {
 kHIWindowTitleBarPart = 2,
 kHIWindowDragPart = 3,
 kHIWindowTitleProxyIconPart = 2
};

Constants
kHIWindowTitleBarPart

Identifies the title bar part of a window frame view. This part code is used by the functions
GetWindowBounds (page 1843) and GetWindowRegion (page 1864) when called with
kWindowTitleBarRgn.

Available in Mac OS X v10.5 and later.

Declared in HIWindowViews.h.

kHIWindowDragPart
Identifies the draggable part of a window frame view. This part code is used by
GetWindowBounds (page 1843) andGetWindowRegion (page 1864) when called withkWindowDragRgn.

Available in Mac OS X v10.5 and later.

Declared in HIWindowViews.h.

2010 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kHIWindowTitleProxyIconPart
Identifies the proxy icon part of a window frame title view. The title view is a subview of the window
frame view and is identified by an HIViewID of kHIViewWindowTitleID. This part code is not used
by the window frame view itself, but only by the title view. This part code is used by
GetWindowBounds (page 1843) and GetWindowRegion (page 1864) when called with
kWindowTitleProxyIconRgn.

Available in Mac OS X v10.5 and later.

Declared in HIWindowViews.h.

Discussion
These part codes are used by an HIView that implements the frame of a window. They may be used with the
standard document windows provided by the Window Manager. A custom window frame view may optionally
(but is not required to) implement these part codes in its event handlers for kEventControlGetPartRegion
and kEventControlGetPartBounds.

Window Feature Bits
Specify features available in a window.

enum {
 kWindowCanGrow = (1 << 0),
 kWindowCanZoom = (1 << 1),
 kWindowCanCollapse = (1 << 2),
 kWindowIsModal = (1 << 3),
 kWindowCanGetWindowRegion = (1 << 4),
 kWindowIsAlert = (1 << 5),
 kWindowHasTitleBar = (1 << 6),
 kWindowSupportsDragHilite = (1 << 7),
 kWindowSupportsModifiedBit = (1 << 8),
 kWindowCanDrawInCurrentPort = (1 << 9),
 kWindowCanSetupProxyDragImage = (1 << 10),
 kWindowCanMeasureTitle = (1 << 11),
 kWindowWantsDisposeAtProcessDeath = (1 << 12),
 kWindowSupportsGetGrowImageRegion = (1 << 13),
 kWindowIsOpaque = (1 << 14),
 kWindowDefSupportsColorGrafPort = 0x40000002
};

Constants
kWindowCanGrow

If this bit (bit 0) is set, the window has a grow box (may not be visible).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanZoom
If this bit (bit 1) is set, the window has a zoom box (may not be visible).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanCollapse
If this bit (bit 2) is set, the window has a collapse box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2011
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowIsModal
If this bit (bit 3) is set, the window should behave as modal.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanGetWindowRegion
If this bit (bit 4) is set, the window supports a call to GetWindowRegion (page 1864).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowIsAlert
If this bit (bit 5) is set, the window is an alert box (may be movable or not). When this constant is
added to kWindowIsModal, the user should be able to switch out of the application and move the
alert box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowHasTitleBar
If this bit (bit 6) is set, the window has a title bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSupportsDragHilite
If the bit specified by this mask is set, the window supports the kWindowMsgDragHilite message.
(Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSupportsModifiedBit
If the bit specified by this mask is set, the window supports the kWindowMsgModified message.
(Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanDrawInCurrentPort
If the bit specified by this mask is set, the window supports the kWindowMsgDrawInCurrentPort
message. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanSetupProxyDragImage
If the bit specified by this mask is set, the window supports the kWindowMsgSetupProxyDragImage
message. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCanMeasureTitle
If the bit specified by this mask is set, the window supports the kWindowMsgMeasureTitlemessage.
(Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

2012 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowWantsDisposeAtProcessDeath
If the bit specified by this mask is set, the window definition function wants to receive a wDispose
message for the window if it still exists when the application quits.

Previously, the Window Manager would send a wDispose message only if the application explicitly
closed the window with calls to the CloseWindow or DisposeWindow functions. The Window Manager
would delete a window that still existed when the application called ExitToShellwithout notifying
the window definition function, as part of the destruction of the process.

Note that if a window has the kWindowWantsDisposeAtProcessDeath feature bit set, the Window
Manager sends your window definition function a wDispose message for the window when the
application exits for any cause, including if your application crashes.

A window might want to set this feature flag if it allocates data when it is initialized that lives outside
of the application heap and that is not automatically disposed when the application quits. The
wDispose message is sent very early in the termination process, so it is still safe for the window
definition function to call the system back (for example, you may want to do this in order to dispose
of any auxiliary data). However, to ensure compatibility and to create the minimum performance
impact, the window definition function should try to do as little as possible after receiving a wDispose
message sent during the termination process. (Mac OS 8.5 and later.)

This feature is only available in Mac OS 8 and 9. It is not supported in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSupportsGetGrowImageRegion
(Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowIsOpaque
Indicates that the window is entirely opaque. If this feature bit is set, the window will use less memory
because no alpha channel information will be stored for the window's pixels.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowDefSupportsColorGrafPort
Indicates that the window definition does not require that the current port be the classic Window
Manager port. Not supported in Mac OS X.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
For descriptions of the messages that correspond to these feature flags, see “Window Definition Message
Constants” (page 2036).

Window Part Code Constants
Indicate which part of the window was hit.

Constants 2013
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

typedef SInt16 WindowPartCode;
enum {
 inDesk = 0,
 inNoWindow = 0,
 inMenuBar = 1,
 inSysWindow = 2,
 inContent = 3,
 inDrag = 4,
 inGrow = 5,
 inGoAway = 6,
 inZoomIn = 7,
 inZoomOut = 8,
 inCollapseBox = 11,
 inProxyIcon = 12,
 inToolbarButton = 13,
 inStructure = 15
};

Constants
inDesk

The cursor is in the desktop region, not in the menu bar, a driver window, or any window that belongs
to your application. When FindWindow (page 1827) returns inDesk, your application doesn’t need to
do anything.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inNoWindow
The cursor is not in a window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inMenuBar
The user has pressed the mouse button while the cursor is in the menu bar. When FindWindow
returns inMenuBar, your application typically adjusts its menus and then calls the Menu Manager
function MenuSelect to let the user choose menu items.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inSysWindow
Not supported by Carbon.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inContent
The user has pressed the mouse button while the cursor is in the content area (excluding the size
box in an active window) of one of your application’s windows. When FindWindow returns inContent,
your application determines how to handle clicks in the content region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

2014 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inDrag
The user has pressed the mouse button while the cursor is in the drag region of a window. When
FindWindow returns inDrag, your application typically calls DragWindow to let the user drag the
window to a new location.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inGrow
The user has pressed the mouse button while the cursor is in an active window’s size box. When
FindWindow returns inGrow, your application typically calls ResizeWindow (page 1925).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inGoAway
The user has pressed the mouse button while the cursor is in an active window’s close box. When
FindWindow returns inGoAway, your application typically callsTrackGoAway (page 1962) to track
mouse activity while the button is down and then calls its own function for closing a window if the
user releases the button while the cursor is in the close box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inZoomIn
The user has pressed the mouse button while the cursor is in the zoom box of an active window that
is currently in the standard state. When FindWindow returns inZoomIn, your application typically
calls TrackBox to track mouse activity while the button is down and then calls its own function for
zooming a window if the user releases the button while the cursor is in the zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inZoomOut
The user has pressed the mouse button while the cursor is in the zoom box of an active window that
is currently in the user state. When FindWindow returns inZoomOut, your application typically calls
the function TrackBox to track mouse activity while the button is down. Your application then calls
its own function for zooming a window if the user releases the button while the cursor is in the zoom
box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inCollapseBox
The user has pressed the mouse button while the cursor is in an active window’s collapse box. When
FindWindow returns inCollapseBox, your application typically does nothing, because the system
will collapse your window for you.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

inProxyIcon
The user has pressed the mouse button while the cursor is in the proxy icon of a window. When
FindWindow returns inProxyIcon, your application typically calls the function
TrackWindowProxyDrag (page 1963).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2015
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

inToolbarButton
The user has pressed the mouse button while the cursor is in the toolbar button. (Mac OS X only.)

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

inStructure
The user has pressed the mouse button while the cursor is in the window’s structure region.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Discussion
When your application receives a mouse-down event, you typically call FindWindow (page 1827), which returns
an integer that specifies the location, in global coordinates, of the cursor at the time the user pressed the
mouse button.

Window Modality Options
Specify the modality of a window.

typedef UInt32 WindowModality;
enum {
 kWindowModalityNone = 0,
 kWindowModalitySystemModal = 1,
 kWindowModalityAppModal = 2,
 kWindowModalityWindowModal = 3
};

Constants
kWindowModalityNone

A window does not prevent interaction with any other window in the system.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowModalitySystemModal
The window is system-modal. In Mac OS 9 and earlier, the user cannot perform any other action until
the window is dismissed. In Mac OS X, this constant produces the same behavior as
kWindowModalityAppModal, so there is no way to prevent the user from interacting with windows
from other applications.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowModalityAppModal
The window is application-modal; that is the user cannot perform any other action within the
application until the window is dismissed. The user can switch to other applications, however.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

2016 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowModalityWindowModal
The window is document-modal; the user cannot perform any other action within the current document
window until the modal window associated with it is dismissed. The user can switch to other windows
or applications, however. Sheets are document-modal.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Position Constants
Define where to place a window.

typedef UInt32 WindowPositionMethod;
enum {
 kWindowCenterOnMainScreen = 1,
 kWindowCenterOnParentWindow = 2,
 kWindowCenterOnParentWindowScreen = 3,
 kWindowCascadeOnMainScreen = 4,
 kWindowCascadeOnParentWindow = 5,
 kWindowCascadeOnParentWindowScreen = 6,
 kWindowCascadeStartAtParentWindowScreen = 10,
 kWindowAlertPositionOnMainScreen = 7,
 kWindowAlertPositionOnParentWindow = 8,
 kWindowAlertPositionOnParentWindowScreen = 9
};

Constants
kWindowCenterOnMainScreen

Center the window, both horizontally and vertically, on the screen that contains the menu bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCenterOnParentWindow
Center the window, both horizontally and vertically, on the parent window. If the window to be
centered is wider than the parent window, its left edge is aligned with the parent window’s left edge.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCenterOnParentWindowScreen
Center the window, both horizontally and vertically, on the screen containing the parent window. In
Mac OS X v10.3 and later, the parent window may be the same as the positioned window. In CarbonLib
and earlier versions of Mac OS X, the parent window must be different from the positioned window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCascadeOnMainScreen
Place the window just below the menu bar at the left edge of the main screen. Subsequent windows
are placed on the screen relative to the first window, such that the frame of the preceding window
remains visible behind the current window. The exact amount by which windows are offset depends
upon the dimensions of the window frame under a given appearance.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2017
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowCascadeOnParentWindow
Place the window a distance below and to the right of the upper-left corner of the parent window
such that the frame of the parent window remains visible behind the current window. The exact
amount by which windows are offset depends upon the dimensions of the window frame under a
given appearance.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCascadeOnParentWindowScreen
Place the window just below the menu bar at the left edge of the screen containing the parent
window. Subsequent windows are placed on the screen relative to the first window, such that the
frame of the preceding window remains visible behind the current window. The exact amount by
which windows are offset depends upon the dimensions of the window frame under a given
appearance. In Mac OS X v10.3 and later, the parent window may be the same as the positioned
window. In CarbonLib and earlier versions of Mac OS X, the parent window must be different from
the positioned window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCascadeStartAtParentWindowScreen
Cascade the window on the screen containing the largest portion of its parent window, starting below
and to the right of its parent window. The parent window must be different from the positioned
window. (Available in Mac OS X v10.2 and CarbonLib 1.6 and later.)

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowAlertPositionOnMainScreen
Center the window horizontally and position it vertically on the screen that contains the menu bar,
such that about one-fifth of the screen is above it. In Mac OS X v10.3 and later, the parent window
may be the same as the positioned window. In CarbonLib and earlier versions of Mac OS X, the parent
window must be different from the positioned window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertPositionOnParentWindow
Center the window horizontally and position it vertically such that about one-fifth of the parent
window is above it.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertPositionOnParentWindowScreen
Center the window horizontally and position it vertically such that about one-fifth of the screen
containing the parent window is above it.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
To specify the factors that determine how a window should be positioned, you supply one of these
WindowPositionMethod constants to the function RepositionWindow (page 1924) or in the
BasicWindowDescription structure of a resource of type ‘wind’. Do not confuse the
WindowPositionMethod constants with the pre–Mac OS 8.5 Window Manager window positioning constants
or use the WindowPositionMethod constants where the older constants are required (such as in the
StandardAlert function or in 'WIND', 'DLOG', or 'ALRT' resources).

2018 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

System 7 Window Positioning Constants
Define window positioning constants used in 'WIND', 'DLOG', or 'ALRT' resources, as well as the
StandardAlert function.

enum {
 kWindowNoPosition = 0x0000,
 kWindowDefaultPosition = 0x0000,
 kWindowCenterMainScreen = 0x280A,
 kWindowAlertPositionMainScreen = 0x300A,
 kWindowStaggerMainScreen = 0x380A,
 kWindowCenterParentWindow = 0xA80A,
 kWindowAlertPositionParentWindow = 0xB00A,
 kWindowStaggerParentWindow = 0xB80A,
 kWindowCenterParentWindowScreen = 0x680A,
 kWindowAlertPositionParentWindowScreen = 0x700A,
 kWindowStaggerParentWindowScreen = 0x780A
};

Constants
kWindowNoPosition

No position.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDefaultPosition
Use the initial location.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCenterMainScreen
Center the window on the main screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertPositionMainScreen
Place the window in the alert position on the main screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowStaggerMainScreen
Stagger the window on the main screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCenterParentWindow
Center the window on the parent window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertPositionParentWindow
Place the window in the alert position on the parent window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2019
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowStaggerParentWindow
Stagger the window relative to the parent window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCenterParentWindowScreen
Center the window on the parent window screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowAlertPositionParentWindowScreen
Place the window in the alert position on the parent window screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowStaggerParentWindowScreen
Stagger the window on the parent window screen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
You can use these constants in the optional positioning specification field of the window resource and in
the dialog resource to override the window position established by the rectangle specified for the window
or dialog. These positioning constants are convenient when the user is creating new documents or when
you are handling your own dialog boxes and alert boxes.

These constants are passed into the StandardAlert function and are used in' WIND', 'DLOG’, and 'ALRT'
templates. StandardAlert uses zero to specify the default position. Other calls use zero to specify “no
position”.

Do not pass these constants to theRepositionWindow function or store these constants in the
BasicWindowDescription structure of a 'WIND' resource.

The meaning of the terms used in the window positioning constant descriptions are as follows:

 ■ center

Centered both horizontally and vertically, relative either to a screen or to another window (if a window
to be centered relative to another window is wider than the window that preceded it, it is pinned to the
left edge; a narrower window is centered)

 ■ stagger

Located 20 pixels to the right and 20 pixels below the upper-left corner of the last window (in the case
of staggering relative to a screen, the first window is placed just below the menu bar at the left edge of
the screen, and subsequent windows are placed on that screen relative to the first window)

 ■ alert position

Centered horizontally and placed in the “alert position” vertically, that is, with about one-fifth of the
window or screen above the new window and the rest below

 ■ parent window

Place in the position of the window in which the user was last working based on the frontmost window
before the new window comes up.

2020 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Window Region Constants
Define various window regions.

typedef UInt16 WindowRegionCode;
enum {
 kWindowTitleBarRgn = 0,
 kWindowTitleTextRgn = 1,
 kWindowCloseBoxRgn = 2,
 kWindowZoomBoxRgn = 3,
 kWindowDragRgn = 5,
 kWindowGrowRgn = 6,
 kWindowCollapseBoxRgn = 7,
 kWindowTitleProxyIconRgn = 8,
 kWindowStructureRgn = 32,
 kWindowContentRgn = 33,
 kWindowUpdateRgn = 34,
 kWindowOpaqueRgn = 35,
 kWindowGlobalPortRgn = 40,
 kWindowToolbarButtonRgn = 41
};

Constants
kWindowTitleBarRgn

The entire area occupied by a window’s title bar, including the title text region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowTitleTextRgn
That portion of a window’s title bar that is occupied by the name of the window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowCloseBoxRgn
The area occupied by a window’s close box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowZoomBoxRgn
The area occupied by a window’s zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDragRgn
The draggable area of the window frame; this area includes the title bar and window outline and
excludes the size box, close box, zoom box, and collapse box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGrowRgn
The area occupied by a window’s size box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2021
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowCollapseBoxRgn
The area occupied by a window’s collapse box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowTitleProxyIconRgn
Specifies the region in the window’s title area that contains the proxy icon. The proxy icon region is
always located within the window’s title text region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowStructureRgn
The entire area occupied by a window, including the frame and content region; the window may be
partially off-screen but its structure region does not change.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowContentRgn
The window’s content region—the part of a window in which your application displays the contents
of the window or dialog, including the size box and any controls.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowUpdateRgn
The window’s update region––the part of the window that needs to be redrawn.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowOpaqueRgn
Area of window considered to be opaque. Only valid for windows with alpha channels. (Mac OS X
only)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGlobalPortRgn
Bounds of the window’s port in global coordinates; not affected by CollapseWindow (page 1810).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowToolbarButtonRgn
Bounds of the toolbar button area.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

Discussion
You can pass constants of type WindowRegionCode in the inRegionCode parameter of
GetWindowRegion (page 1864) to obtain a handle to a specific window region. The WindowRegionCode
constants are available with Appearance Manager 1.0 and later.

Version Notes
With the Window Manager in Mac OS 8.5 and later, you may pass the kWindowTitleProxyIconRgn,
kWindowStructureRgn, and kWindowContentRgn constants to the function GetWindowRegion (page
1864).

2022 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Window Latent Visibility Constants
Defines window latent visibility constants.

typedef UInt32 WindowLatentVisibility;
enum {
 kWindowLatentVisibleFloater = 1 << 0,
 kWindowLatentVisibleSuspend = 1 << 1,
 kWindowLatentVisibleFullScreen = 1 << 2,
 kWindowLatentVisibleAppHidden = 1 << 3,
 kWindowLatentVisibleCollapsedOwner = 1 << 4,
 kWindowLatentVisibleCollapsedGroup = 1 << 5
};

Constants
kWindowLatentVisibleFloater

The window is a floating window, and floating windows are hidden.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowLatentVisibleSuspend
The window has kWindowHideOnSuspendAttribute set and the application is suspended.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowLatentVisibleFullScreen
The window has kWindowHideOnFullScreenAttribute set and the mode is full-screen.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowLatentVisibleAppHidden
The window’s process is hidden.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowLatentVisibleCollapsedOwner
The window is in an owned group, and the owner was collapsed.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowLatentVisibleCollapsedGroup
The window is in a group for which kWindowGroupAttrHideOnCollapse is set, and another window
in the group was collapsed.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Basic Window Description Version Constants
Describe different Mac OS window versions.

Constants 2023
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

enum {
 kWindowDefinitionVersionOne = 1,
 kWindowDefinitionVersionTwo = 2
};

Constants
kWindowDefinitionVersionOne

Specifies a pre–Mac OS 8.5 Window Manager window. Windows of this version are created using a
window definition ID and a Boolean value indicating whether or not the window has a close box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDefinitionVersionTwo
Specifies a Mac OS 8.5 Window Manager window. Windows of this version are created using class
and attribute information. For details on classes and attributes, see “Window Class Constants” (page
1988) and “Window Attributes” (page 1998) respectively.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
You may supply one of these values in the windowDefinitionVersion field of a structure of type
BasicWindowDescription (page 1979) to specify the version of the window definition used for a window.

Window Property Persistent Constant
Define the window property persistent constant.

enum {
 kWindowPropertyPersistent = 0x00000001
};

Constants
kWindowPropertyPersistent

Indicates this property gets saved when the window is archived. Note, however, that window properties
are not archived at all in Mac OS X v10.4.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Variant Constants
Specify window variants.

2024 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

enum {
 kDocumentWindowVariantCode = 0,
 kModalDialogVariantCode = 1,
 kPlainDialogVariantCode = 2,
 kShadowDialogVariantCode = 3,
 kMovableModalDialogVariantCode = 5,
 kAlertVariantCode = 7,
 kMovableAlertVariantCode = 9,
 kSideFloaterVariantCode = 8
};

Constants
kDocumentWindowVariantCode

Variation code for a document window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kModalDialogVariantCode
Variation code for modal dialog boxes. The code can be added to 16 x the resource ID constant
kStandardWindowDefinition to create a standard, pre-Appearance modal dialog box window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kPlainDialogVariantCode
Variation code for a plain dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kShadowDialogVariantCode
Variation code for a shadow dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kMovableModalDialogVariantCode
Variation code for movable modal dialog boxes. The code can be added to 16 x the resource ID
constant kStandardWindowDefinition to create a standard, pre-Appearance movable modal
dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kAlertVariantCode
Variation code for a standard alert box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kMovableAlertVariantCode
Variation code for a movable alert box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2025
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kSideFloaterVariantCode
Variation code for utility (floating) windows with a side title bar. The code can be added to 16 x the
resource ID constant kFloatingWindowDefinition to create a standard, pre-Appearance utility
(floating) window with a side title bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Transition Action Constants
Specify the type of window action taking place.

typedef UInt32 WindowTransitionAction;
enum {
 kWindowShowTransitionAction = 1,
 kWindowHideTransitionAction = 2,
 kWindowMoveTransitionAction = 3,
 kWindowResizeTransitionAction = 4
};

Constants
kWindowShowTransitionAction

Specifies that the animation display the window opening, that is, transitioning from a closed to an
open state.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowHideTransitionAction
Specifies that the animation display the window closing, that is, transitioning from an open to a closed
state.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMoveTransitionAction
Moves the window. Use with the Slide transition effect. The inRect parameter contains the global
coordinates of the window’s new structure bounds and cannot be NULL. (Available in Mac OS X, and
in CarbonLib 1.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowResizeTransitionAction
Resizes the window. Use with the Slide transition effect. The inRect parameter contains the global
coordinates of the window’s new structure bounds and cannot be NULL. (Available in Mac OS X and
in CarbonLib 1.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
You may pass these WindowTransitionAction constants to the function TransitionWindow (page 1965)
to specify the direction of the animation effect that is to be performed for a window.

2026 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Window Transition Effect Constants
Designate the type of transition effect to use to show or hide the window.

typedef UInt32 WindowTransitionEffect;
enum {
 kWindowZoomTransitionEffect = 1,
 kWindowSheetTransitionEffect = 2,
 kWindowSlideTransitionEffect = 3,
 kWindowFadeTransitionEffect = 4,
 kWindowGenieTransitionEffect = 5
};

Constants
kWindowZoomTransitionEffect

Specifies an animation that displays the window zooming between the open and closed states. The
direction of the animation, whether from open to closed, or closed to open, depends upon the
WindowTransitionAction constant specified in conjunction with the WindowTransitionEffect
constant; see“Window Transition Action Constants” (page 2026) for descriptions of possible values.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSheetTransitionEffect
Zoom in or out from the parent window. Use with TransitionWindowAndParent (page 1966) and
Show or Hide transition actions. (Available in Mac OS X, and in CarbonLib 1.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowSlideTransitionEffect
Slide the window into its new position. Use with TransitionWindow (page 1965) and Move or Resize
transition actions. (Available in Mac OS X and in CarbonLib 1.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowFadeTransitionEffect
Fade the window into or out of visibility. Use with the Show or Hide transition action. (Available in
Mac OS X v10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in MacWindows.h.

kWindowGenieTransitionEffect
Use the Genie effect that the Dock uses to minimize or maximize a window to show or hide the
window. Use with the Show or Hide transition action. (Available in Mac OS X v10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in MacWindows.h.

Discussion
You may pass this WindowTransitionEffect constant to the function TransitionWindow (page 1965) to
specify the type of animation effect that is to be performed for a window.

Window Activation Scope Constants
Defines window activation scope constants.

Constants 2027
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

typedef UInt32 WindowActivationScope;
enum {
 kWindowActivationScopeNone = 0,
 kWindowActivationScopeIndependent = 1,
 kWindowActivationScopeAll = 2
};

Constants
kWindowActivationScopeNone

Windows with this scope are never activated by the Window Manager. Use
kWindowActivationScopeNonewhen the window’s visual state does not change based on activation
(for example, tooltip windows), or when the client wants to manually control all activation. The window
owner is free to explicitly activate or deactivate a window by calling ActivateWindow (page 1800).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowActivationScopeIndependent
Windows with this scope are always active if visible and are unaffected by the activation state of other
windows. This activation scope is automatically used by floating windows.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowActivationScopeAll
Windows with this scope are activated relative to other windows with the same scope in the current
process. Only one window with this scope can be active in the entire process. This activation scope
is automatically used by document and dialog windows.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Constrain Options
Constrain options for window resize, growing, and so on.

typedef UInt32 WindowConstrainOptions;
enum {
 kWindowConstrainMayResize = (1L << 0),
 kWindowConstrainMoveRegardlessOfFit = (1L << 1),
 kWindowConstrainAllowPartial = (1L << 2),
 kWindowConstrainCalcOnly = (1L << 3),
 kWindowConstrainUseTransitionWindow = (1L << 4),
 kWindowConstrainMoveMinimum = 1 << 6,
 kWindowConstrainUseSpecifiedBounds = 1 << 8,
 kWindowConstrainStandardOptions = kWindowConstrainMoveRegardlessOfFit
};

Constants
kWindowConstrainMayResize

The window may be resized if necessary to make it fit onscreen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

2028 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowConstrainMoveRegardlessOfFit
The window may be moved even if it doesn’t fit entirely onscreen.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowConstrainAllowPartial
Allow partial intersection of the specified window region with the screen instead of requiring total
intersection.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowConstrainCalcOnly
Calculate the new window bounds but don’t actually move the window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowConstrainUseTransitionWindow
Use TransitionWindow (page 1965) with kWindowSlideTransitionEffect to move windows
onscreen.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowConstrainMoveMinimum
Move the window the minimum amount necessary to be onscreen. This option is only supported by
the function HIWindowConstrain (page 1877). This option applies if a partial fit is not allowed
(kWindowConstrainAllowPartial is not specified) or a partial fit is allowed, but the window is
not even partially visible. In either case, the window will be moved just enough to be slightly onscreen.
You may customize the minimum amount that is required to be visible by passing the desired
dimensions in the inMinimumSize parameter to HIWindowConstrain.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kWindowConstrainUseSpecifiedBounds
Use the specified bounds of the window region to be constrained. This option is only supported by
the functionHIWindowConstrain (page 1877). The bounds are specified using theioBoundsparameter,
allowing you to constrain a window to a hypothetical location. For example, if you plan to move your
window such that its content region is at a certain location, and you want to know in advance before
moving the window whether the window would be offscreen at that location, you can use this option.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kWindowConstrainStandardOptions
Use the most common options: don’t resize the window, move the window regardless of fit to the
screen, require total intersection of the specified window region with the screen, and move the
window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Kinds
Identify how a window was created.

Constants 2029
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

enum {
 dialogKind = 2,
 userKind = 8,
 kDialogWindowKind = 2,
 kApplicationWindowKind = 8
};

Constants
dialogKind

Obsolete equivalent to kDialogWindowKind.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

userKind
Obsolete equivalent to kApplicationWindowKind.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kDialogWindowKind
Identifies all dialog or alert windows, whether created by system software or, indirectly through the
Dialog Manager, by your application. The Dialog Manager uses this field to track dialog and alert
windows.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kApplicationWindowKind
Identifies a window created directly by your application.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
The Window Manager uses these constants in the windowKind field of a color window structure or window
structure. Your application can use any value greater than 7.

Window Group Selection Constants
Indicate which window group to select.

enum {
 kNextWindowGroup = true,
 kPreviousWindowGroup = false
};

Constants
kNextWindowGroup

Move to the next window group (in the z-order).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kPreviousWindowGroup
Move to the previous window group (in the z-order).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

2030 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Window Group Attributes
Define attributes for window groups.

typedef UInt32 WindowGroupAttributes;
enum {
 kWindowGroupAttrSelectAsLayer = 1 << 0,
 kWindowGroupAttrMoveTogether = 1 << 1,
 kWindowGroupAttrLayerTogether = 1 << 2,
 kWindowGroupAttrSharedActivation = 1 << 3,
 kWindowGroupAttrHideOnCollapse = 1 << 4,
 kWindowGroupAttrFixedLevel = 1 << 5
};

Constants
kWindowGroupAttrSelectAsLayer

Makes the group behave somewhat as a layer of windows that move together. When any window in
the group is brought to the front of the group, the entire group will also be brought to the front of
the containing group’s child hierarchy. Use of this constant is not recommended; its behavior is rarely
useful.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowGroupAttrMoveTogether
The positions of the contents of this group with respect to each other cannot be changed. When one
item moves, all other items are moved simultaneously. Note that if one window’s position is changed
by calling a Window Manager function in Mac OS X v10.4 and later, the positions of the other windows
in the group are updated asynchronously—that is, their bounds are not necessarily updated during
the function call itself, even though visually the windows move together.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowGroupAttrLayerTogether
The z-order of the contents of this group with respect to each other cannot be changed. When one
item changes z-order, all other items are moved simultaneously. For purposes of z-ordering, the group
and all its subgroups are effectively treated as if they were a single window in the parent group of
this group.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

kWindowGroupAttrSharedActivation
The active state of the windows in this group is shared. The windows in the group are activated or
deactivated according to the activation scope of the group, but when any window in the group
changes activation, all other windows change to match.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGroupAttrHideOnCollapse
When any window in this group is collapsed, all other windows in this group are hidden. All subgroups
of this group are also examined for this attribute, and any the windows of any subgroup with this
attribute are also hidden. All windows will be shown again when the collapsed window is expanded.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Constants 2031
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowGroupAttrFixedLevel
If this attribute is specified, this window group’s window level should be left unchanged. If this attribute
is not specified, this window group’s window level will be promoted to a value equal to the level of
the next fixed-level window group beneath it in the window group hierarchy. (Available in Mac OS
X v10.4 and later.)

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

Version Notes
In Mac OS X v10.2.4 and later, the HIToolbox framework improved its use of the window group API so that
showing a sheet on a window that was already grouped with another window would not break the existing
grouping. To make this change work properly, applications that create their own window groups using the
kWindowGroupAttrMoveTogether and kWindowGroupAttrLayerTogether attributes should also specify
the kWindowGroupAttrHideOnCollapse and kWindowGroupAttrSharedActivation attributes.

Obsolete Window Group Attributes
Define obsolete window group attribute names.

enum {
 kWindowGroupAttrSelectable = kWindowGroupAttrSelectAsLayer,
 kWindowGroupAttrPositionFixed = kWindowGroupAttrMoveTogether,
 kWindowGroupAttrZOrderFixed = kWindowGroupAttrLayerTogether
};

Constants
kWindowGroupAttrSelectable

Obsolete name for kWindowGroupAttrSelectAsLayer.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGroupAttrPositionFixed
Obsolete name; use kWindowGroupAttrMoveTogether instead.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGroupAttrZOrderFixed
Obsolete name; use kWindowGroupAttrLayerTogether instead.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Group Content Options
Window group counting options.

2032 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

typedef UInt32 WindowGroupContentOptions;
enum {
 kWindowGroupContentsReturnWindows = 1 << 0,
 kWindowGroupContentsRecurse = 1 << 1,
 kWindowGroupContentsVisible = 1 << 2
};

Constants
kWindowGroupContentsReturnWindows

Count only windows in the window group.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGroupContentsRecurse
Recursively count windows of any subgroups of windows in the specified window group.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowGroupContentsVisible
Counts only visible windows.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
You use these constants with the CountWindowGroupContents (page 1813) function.

Window Class Position Constants
Specify which window in the class to select.

enum {
 kFirstWindowOfClass = -1,
 kLastWindowOfClass = 0
};

Constants
kFirstWindowOfClass

Select the first window in the class.

kLastWindowOfClass
Select the last window in the class.

Discussion
These constants describe special cases for the “behind” parameter in window creation calls.

Window Definition Type Constants
Defines the type of custom window definition.

Constants 2033
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

typedef UInt32 WindowDefType;
enum {
 kWindowDefProcPtr = 0,
 kWindowDefObjectClass = 1,
 kWindowDefProcID = 2,
 kWindowDefHIView = 3
};

Constants
kWindowDefProcPtr

The definition is procedure pointer–based.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDefObjectClass
The definition is a toolbox object.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDefProcID
An ID that identifies a particular ‘WDEF’ and would typically be one of the constants described in
“Appearance-Compliant Window Definition ID Constants” (page 2004).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowDefHIView
The definition is an HIView-based object.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

Window Definition Procedure Constant
Define the window definition procedure constant.

enum {
 kWindowDefProcType = 'WDEF'
};

Constants
kWindowDefProcType

Window definition type.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Window Definition Hit Test Result Code Constants
Defines result constants to be used by window definition hit testing.

2034 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

typedef SInt16 WindowDefPartCode;
enum {
 wNoHit = 0,
 wInContent = 1,
 wInDrag = 2,
 wInGrow = 3,
 wInGoAway = 4,
 wInZoomIn = 5,
 wInZoomOut = 6,
 wInCollapseBox = 9,
 wInProxyIcon = 10,
 wInToolbarButton = 11,
 wInStructure = 13
};

Constants
wNoHit

The mouse-down event did not occur in the content region or the drag region of any active or inactive
window or in the close, size, zoom, or collapse box of an active window. The return value wNoHit
might also mean that the point isn’t in the window. The standard window definition functions, for
example, return wNoHit if the point is in the window frame but not in the title bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInContent
The mouse-down event occurred in the content region of an active or inactive window (with the
exception of the size box).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInDrag
The mouse-down event occurred in the drag region of an active or inactive window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInGrow
The mouse-down occurred in the size box of an active window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInGoAway
The mouse-down event occurred in the close box of an active window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInZoomIn
The mouse-down event occurred in the zoom box of an active window that is currently in the standard
state.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2035
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

wInZoomOut
The mouse-down event occurred in the zoom box of an active window that is currently in the user
state.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInCollapseBox
The mouse-down event occurred in the collapse box of an active window.

Available with Appearance Manager 1.0 and later.

Declared in MacWindows.h.

wInProxyIcon
The mouse-down event occurred in the proxy icon of a window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wInToolbarButton
The mouse-down event occurred in the toolbar button.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

wInStructure
The mouse-down event occurred in the window’s structure region.

Available in Mac OS X v10.1 and later.

Declared in MacWindows.h.

Discussion
In response to the wHit message, your window definition function should return one of these constants.

Return the constants wInGrow, wInGoAway, wInZoomIn, wInZoomOut, and wInCollapseBox only if the
window is active—by convention, the size box, close box, zoom box, and collapse box aren’t drawn if the
window is inactive. In an inactive document window, for example, a mouse-down event in the part of the
title bar that would contain the close box if the window were active is reported as wInDrag.

With the Mac OS 8.5 Window Manager and later, your window definition function may return the
wInProxyIcon constant to report that a mouse-down event occurred in your window’s proxy icon.

Window Definition Message Constants
Defines messages sent to non Carbon Event–based window definitions.

2036 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

enum {
 kWindowMsgDraw = 0,
 kWindowMsgHitTest = 1,
 kWindowMsgCalculateShape = 2,
 kWindowMsgInitialize = 3,
 kWindowMsgCleanUp = 4,
 kWindowMsgDrawGrowOutline = 5,
 kWindowMsgDrawGrowBox = 6
};
enum {
 kWindowMsgGetFeatures = 7,
 kWindowMsgGetRegion = 8
};
enum {
 kWindowMsgDragHilite = 9,
 kWindowMsgModified = 10,
 kWindowMsgDrawInCurrentPort = 11,
 kWindowMsgSetupProxyDragImage = 12,
 kWindowMsgStateChanged = 13,
 kWindowMsgMeasureTitle = 14
};
enum {
 kWindowMsgGetGrowImageRegion = 19
};

Constants
kWindowMsgDraw

Draw the window’s frame.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgHitTest
Report the location of a mouse-down event.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgCalculateShape
Calculate the structure region and the content region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgInitialize
Perform additional initialization.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgCleanUp
Perform additional disposal.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgDrawGrowOutline
Draw the dotted outline of the window that you see during a resizing operation.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2037
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowMsgDrawGrowBox
Draw the outlines for the size box and the scroll bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgGetFeatures
Report the window’s features.

Available with Appearance Manager 1.0 and later.

Declared in MacWindows.h.

kWindowMsgGetRegion
Report the location of a specific window region.

Available with Appearance Manager 1.0 and later.

Declared in MacWindows.h.

kWindowMsgDragHilite
Redraw the window’s structure region to reflect the window’s validity as a drag-and-drop destination.
The Window Manager passes an accompanying Boolean value in your window definition function’s
param parameter. If the value passed is true, this indicates that the window’s structure region should
be highlighted. If the value passed is false, the structure region should be unhighlighted. Your
window definition function should return 0 as the function result. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgModified
Track the window’s modification state. The Window Manager sends this message when the function
SetWindowModified (page 1946) is called. The Window Manager passes an accompanying Boolean
value in your window definition function’s param parameter. If the value passed is true, the document
contained in the window has been modified. If the value passed is false, the document has been
saved to disk. You should redraw the window’s structure region to reflect the new modification state,
if appropriate. For example, system-defined document windows dim the proxy icon to indicate that
the document has been modified by the user and cannot be moved at that time. Your window
definition function should return 0 as the function result. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgDrawInCurrentPort
Draw the window’s frame in the current graphics port. Other than restricting drawing to the current
port, this message is similar to the pre–Mac OS 8.5 Window Manager window definition message
constant wDraw. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

2038 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kWindowMsgSetupProxyDragImage
Create the image of the window’s proxy icon that the Drag Manager uses to represent the icon while
it is being dragged. When your application calls the function TrackWindowProxyDrag (page 1963),
the Window Manager passes this message in your window definition function’s message parameter
and an accompanying pointer to a structure of type SetupWindowProxyDragImageRec (page 1984)
in the param parameter. Your window definition function is responsible for setting the contents of
the structure to contain the data describing the proxy icon’s drag image. Your window definition
function should return 0 as the function result. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgStateChanged
Be informed that some aspect of the window’s public state has changed. The Window Manager passes
this message in your window definition function’s message parameter and an accompanying flag in
the param parameter that indicates what part of the window’s state has been altered. This message
is simply a notification message—no response by the window definition function is required. Your
window definition function should return 0 as the function result. The kWindowMsgStateChanged
message is sent after the window’s internal data has been updated, but before any redraw occurs
onscreen. A window definition function should not redraw the window frame in response to this
message. If it is necessary to redraw the window frame, the Window Manager notifies the window
definition function with a wDraw message. See “Window Definition State-Changed Constant” (page
2039) for descriptions of the values that the Window Manager can pass to specify the state change that
has occurred. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgMeasureTitle
Measure and return the ideal title width. The Window Manager passes this message in the window
definition function’s message parameter and an accompanying pointer to a structure of type
MeasureWindowTitleRec (page 1981) in the param parameter. Your window definition function is
responsible for setting the contents of the structure to contain data describing the title width. You
should return 0 as the function result. (Mac OS 8.5 and later.)

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kWindowMsgGetGrowImageRegion
Obtain a region to XOR with window during grow or resize. Alter the GetGrowImageRegionRec
structure passed with the message to the region to be XOR’d. (

Available in Carbon only.)

Declared in MacWindows.h.

Discussion
The Window Manager may pass one of these constants in the message parameter of your window definition
function to specify the action that your function must perform. For descriptions of the feature bits that
correspond to these messages, see “Window Feature Bits” (page 2011). Other messages are reserved for internal
use by the system.

Window Definition State-Changed Constant
Define the window definition state-changed constant.

Constants 2039
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

enum {
 kWindowStateTitleChanged = (1 << 0)
};

Constants
kWindowStateTitleChanged

If the bit specified by this mask is set, the window’s title has changed.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
If you implement a custom window definition function, when the Window Manager passes the
kWindowMsgStateChanged message in your window definition function’s message parameter it may also
pass a value in the param parameter with one or more bits set to indicate what part of the window’s state
has changed. You may use this mask to test this value. For a description of the kWindowMsgStateChanged
message, see “Window Definition Message Constants” (page 2036).

Special Considerations

Drawer State Constants
Define constants that indicate the current drawer state.

typedef UInt32 WindowDrawerState;
enum {
 kWindowDrawerOpening = 1,
 kWindowDrawerOpen = 2,
 kWindowDrawerClosing = 3,
 kWindowDrawerClosed = 4
};

Constants
kWindowDrawerOpening

The drawer is opening.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowDrawerOpen
The drawer is open.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowDrawerClosing
The drawer is closing.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowDrawerClosed
The drawer is closed.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

Version Notes
Introduced in Mac OS X v10.2.

2040 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Window Edge Constants
Specify the edge from which a drawer should appear.

enum {
 kWindowEdgeDefault = 0,
 kWindowEdgeTop = 1 << 0,
 kWindowEdgeLeft = 1 << 1,
 kWindowEdgeBottom = 1 << 2,
 kWindowEdgeRight = 1 << 3
};

Constants
kWindowEdgeDefault

The drawer should be opened on whatever edge of the parent window has previously been set as
the drawer’s preferred edge.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowEdgeTop
The drawer should slide out from the top edge.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowEdgeLeft
The drawer should slide out from the left edge.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowEdgeBottom
The drawer should slide out from the bottom edge.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

kWindowEdgeRight
The drawer should slide out from the right edge.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

Rotating Window Menu Item Constant
Indicates whether to add the rotating window item to the Window menu.

enum {
 kWindowMenuIncludeRotate = 1 << 0
};

Constants
kWindowMenuIncludeRotate

Requests that the standard window menu include a Rotate Windows menu item.

Available in Mac OS X v10.2 and later.

Declared in MacWindows.h.

Constants 2041
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
This constant is used with the function CreateStandardWindowMenu (page 1816).

Window Menu Item Property Constants
Constants used to access property data of items in the standard window menu.

enum {
 kHIWindowMenuCreator = 'wind',
 kHIWindowMenuWindowTag = 'wind'
};

Constants
kHIWindowMenuCreator

The property creator for accessing standard window menu item properties.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

kHIWindowMenuWindowTag
The property tag for accessing standard window menu item properties that hold windows (values of
type WindowRef). Menu items with the kHICommandSelectWindow command ID will have a property
with this tag that contains the window to be activated when that item is selected.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

Discussion
These constants are used with the Menu Manager functions GetMenuItemProperty (page 1281) and
SetMenuItemProperty (page 1341).

Toolbar View Background Tag
A tag used to inform a custom toolbar view whether to draw its background or leave its background
transparent.

enum {
 kHIToolbarViewDrawBackgroundTag = 'back'
};

Constants
kHIToolbarViewDrawBackgroundTag

A SetControlData (page 652) tag that is used by the standard window frame view to inform the
toolbar view whether the view should draw its background or leave its background transparent. The
data for this tag is a Boolean. If the data value is true, the toolbar view should draw its background
as it desires. If the data value is false, the toolbar view should leave its background transparent so
that the window's root view can show through the toolbar view. Currently, the toolbar view will be
asked to leave its background transparent for windows with the textured or unified appearance.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

2042 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Window Paint Callback Options
Define options to use with the window paint callback function.

typedef OptionBits WindowPaintProcOptions;
enum {
 kWindowPaintProcOptionsNone = 0
};

Constants
kWindowPaintProcOptionsNone

No options.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Part Identifier Constants
Used in the value field of the ColorSpec structure, define which part of the window the color affects.

enum {
 wContentColor = 0,
 wFrameColor = 1,
 wTextColor = 2,
 wHiliteColor = 3,
 wTitleBarColor = 4
};

Constants
wContentColor

Produces background color for content region of window.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wFrameColor
Produces color of window’s outline.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wTextColor
Produces color of window’s title and button text.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wHiliteColor
Reserved.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

wTitleBarColor
Reserved.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2043
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

Discussion
When the Appearance Manager is available and you are using standard windows, all the fields of the window
color table structure are ignored except the part identifier constant wContentColor in the value field of
the ColorSpec structure, which produces the background color for the window’s content region.

If you are creating your own custom windows, the window color table structure and all its part identifier
constants can still be used.

Desk Pattern Resource ID
The resource ID of the desktop pattern.

enum {
 deskPatID = 16
};

Constants
deskPatID

The resource ID of the desktop pattern.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
The Window Manager provides the desk pattern resource ID constants, which is the ID of Pattern and
PixPat resources that the operating system uses to draw the desktop. The operating system uses the
deskPatID constant while the desktop is being drawn. It looks for a resource with this ID and uses the
contents of the resource to draw the desktop.

Window Scrolling Options
Options for scrolling windows.

typedef UInt32 ScrollWindowOptions;
enum {
 kScrollWindowNoOptions = 0,
 kScrollWindowInvalidate = (1L << 0),
 kScrollWindowEraseToPortBackground = (1L << 1)
};

Constants
kScrollWindowNoOptions

No options.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kScrollWindowInvalidate
Add the exposed area to the window’s update region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

2044 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kScrollWindowEraseToPortBackground
Erase the exposed area using the background color/pattern of the window’s graphics port.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
Use these constants with theScrollWindowRect (page 1927) andScrollWindowRegion (page 1928) functions.

Availability
Available in Mac OS 8.1 and later.

'wind' Resource Default Collection Item Constants
Specify default collection items in a window ('wind') resource.

enum {
 kStoredWindowSystemTag = 'appl',
 kStoredBasicWindowDescriptionID = 'sbas',
 kStoredWindowPascalTitleID = 's255',
 kStoredWindowTitleCFStringID = 'cfst'
};

Constants
kStoredWindowSystemTag

This item tag specifies a system-defined collection item. Note that the 'appl' collection item tag is
reserved for use by Apple Computer, Inc. Do not define new collection items using this tag.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kStoredBasicWindowDescriptionID
In combination with kStoredWindowSystemTag, this item ID specifies an item of type
BasicWindowDescription. See BasicWindowDescription (page 1979) for details on this type.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kStoredWindowPascalTitleID
In combination with kStoredWindowSystemTag, this item ID specifies a Pascal title string.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kStoredWindowTitleCFStringID
This item tag specifies the CFString title string.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
These constants specify the tag and the IDs that identify the default collection items contained in a resource
of type ’wind’.

Window Resource IDs
Define standard resource IDs for windows.

Constants 2045
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

enum {
 kStandardWindowDefinition = 0,
 kRoundWindowDefinition = 1,
 kFloatingWindowDefinition = 124
};

Constants
kStandardWindowDefinition

Defines pre-Appearance standard document windows and dialog boxes. When mapping is enabled,
this resource ID is mapped to kWindowDocumentDefProcResID or kWindowDialogDefProcResID.
When mapped to kWindowDocumentDefProcResID, this produces an Appearance-compliant
standard document window with no size box and no vertical or horizontal zoom box. When mapped
to kWindowDialogDefProcResID, this produces an Appearance-compliant dialog box with no size
box and a 3-pixel space between the dialog box’s content and structure region.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kRoundWindowDefinition
Defines pre-Appearance standard desk-accessory style windows. This resource ID is not mapped to
any Appearance-compliant resource ID when mapping is enabled.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

kFloatingWindowDefinition
Defines pre-Appearance utility (floating) windows. When mapping is enabled, this resource ID is
mapped to kWindowUtilityDefProcResID or kWindowUtilitySideTitleDefProcResID.
When mapped to kWindowUtilityDefProcResID, this produces an Appearance-compliant utility
window. When mapped to kWindowUtilitySideTitleDefProcResID, it produces an
Appearance-compliant utility window with a side title bar.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
Window resource IDs are changed with Appearance Manager 1.0. The Window Manager now provides many
new standard, Appearance-compliant window resource IDs for your program. For a description of the
Appearance-compliant window resource IDs, see “Appearance-Compliant Window Resource IDs” (page 2003).

You can use a window resource ID constant to create a window definition ID; see “Pre-Appearance Window
Definition IDs” in Window Manager Legacy Reference for more details.

Resource IDs 0 through 127 are reserved for use by the system.

Window Availability Constants
Define window availability constants for Exposé and Spaces.

2046 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

typedef OptionBits HIWindowAvailability;
enum {
 kHIWindowExposeHidden = 1 << 0,
 kHIWindowVisibleInAllSpaces = 1 << 8
};

Constants
kHIWindowExposeHidden

If this bit is set, the window is hidden during the “All Windows” and “Application windows” modes
of Exposé. If this bit is not set, the window is visible during those modes.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kHIWindowVisibleInAllSpaces
If this bit is set, the window is visible in all Spaces workspaces. If this bit is not set, the window is only
visible in the workspace in which it was created.

Available in Mac OS X v10.5 and later.

Declared in MacWindows.h.

Discussion
These mask bits are used with the function HIWindowChangeAvailability (page 1875) to override the
default behavior of the Window Manager in determining whether a window is visible during Exposé or in all
Spaces workspaces. By default, newly created windows of class kDocumentWindowClass are given an
availability of 0 (meaning that they are available during Exposé), and windows from all other window classes
are given an availability of kHIWindowExposeHidden.

Window Scale Mode Constants
Define window scale mode constants.

typedef UInt32 HIWindowScaleMode;
enum {
 kHIWindowScaleModeUnscaled = 0,
 kHIWindowScaleModeMagnified = 1,
 kHIWindowScaleModeFrameworkScaled = 2
};

Constants
kHIWindowScaleModeUnscaled

The window is not scaled at all because the display scale factor is 1.0.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kHIWindowScaleModeMagnified
The window‘s backing store is being magnified by the Window Server because the display scale factor
is not equal to 1.0 and because the window was not created with the
kWindowFrameworkScaledAttribute.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

Constants 2047
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

kHIWindowScaleModeFrameworkScaled
The window‘s contents are scaled to match the display scale factor because the display scale factor
is not equal to 1.0 and because the window was created with kWindowFrameworkScaledAttribute.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

Discussion
A window’s scale mode indicates in which resolution-independent scale mode it is operating.

Window Group Level Constants
Define window group level constants.

enum {
kWindowGroupLevelActive = 1,
kWindowGroupLevelInactive = 2,
kWindowGroupLevelPromoted = 3,
};

Constants
kWindowGroupLevelActive

The window level that is nominally used for windows in the group when the application is active.
However, if a group with a higher window level is positioned below this group in the window group
hierarchy, this group’s active level will be promoted to match the level of the group in front of it. Use
kWindowGroupLevelPromoted to determine the actual window level in use for a group.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kWindowGroupLevelInactive
The window level for windows in the group when the application is inactive.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

kWindowGroupLevelPromoted
The window level that is actually used for windows in the group when the application is active. This
level is the same as the Active window level or is a larger value to match the level of a group below
this group. Setting the promoted window level explicitly is not recommended because the promoted
level is reset by the Window Manager whenever the window group hierarchy structure changes.
Therefore any changes that you make to the promoted level can be overwritten.

Available in Mac OS X v10.4 and later.

Declared in MacWindows.h.

Discussion
These constants are used when calling GetWindowGroupLevelOfType (page 1851) and
SetWindowGroupLevelOfType (page 1942).

Pre-Appearance Window Definition IDs
Older window definition IDs used before the introduction of the Appearance Manager.

2048 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

enum {
 documentProc = 0,
 dBoxProc = 1,
 plainDBox = 2,
 altDBoxProc = 3,
 noGrowDocProc = 4,
 movableDBoxProc = 5,
 zoomDocProc = 8,
 zoomNoGrow = 12,
 rDocProc = 16,
 floatProc = 1985,
 floatGrowProc = 1987,
 floatZoomProc = 1989,
 floatZoomGrowProc = 1991,
 floatSideProc = 1993,
 floatSideGrowProc = 1995,
 floatSideZoomProc = 1997,
 floatSideZoomGrowProc = 1999
};

Constants
documentProc

Pre-Appearance document window (movable window with size box).

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

dBoxProc
Pre-Appearance modal dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

plainDBox
Pre-Appearance modeless dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

altDBoxProc
Pre-Appearance modeless dialog box with shadow.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

noGrowDocProc
Pre-Appearance movable window with no size box or zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

movableDBoxProc
Pre-Appearance movable modal dialog box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Constants 2049
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

zoomDocProc
Pre-Appearance movable window with size box and full zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

zoomNoGrow
Pre-Appearance window with full zoom box and no size box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

rDocProc
Pre-Appearance rounded-corner window. You can control the diameter of curvature of a
rounded-corner window (window type rDocProc) by adding one of these integers to the rDocProc
constant:

rDocProc (diameters of curvature: 16, 16)

rDocProc + 2 (diameters of curvature: 4, 4)

rDocProc + 4 (diameters of curvature: 6, 6)

rDocProc + 6 (diameters of curvature: 10, 10)

Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared in MacWindows.h.

floatProc
Pre-Appearance utility (floating) window with no size box or zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatGrowProc
Pre-Appearance utility (floating) window with size box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatZoomProc
Pre-Appearance utility (floating) window with zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatZoomGrowProc
Pre-Appearance utility (floating) window with size box and zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatSideProc
Pre-Appearance utility (floating) window with side title bar and no size or zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatSideGrowProc
Pre-Appearance utility (floating) window with side title bar and size box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

2050 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

floatSideZoomProc
Pre-Appearance utility (floating) window with side title bar and zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

floatSideZoomGrowProc
Pre-Appearance utility (floating) window with side title bar, size box, and zoom box.

Available in Mac OS X v10.0 and later.

Declared in MacWindows.h.

Discussion
Note that window definition IDs are changed with Appearance Manager 1.0. The Window Manager now
provides many new, standard, Appearance-compliant window types.

Your application typically supplies a window definition ID to a resource of type ‘WIND’ or to a window-creation
function to specify which window definition function to use in creating the window. A variation code may
also be used to describe variations of the same basic window.

The window definition ID is an integer that contains the resource ID of the window definition function in its
upper 12 bits and a variation code in its lower 4 bits. For a given resource ID and variation code, the window
definition ID is derived as follows: window definition ID = (16 x resource ID) + variation code.

The window definition IDs for dialog boxes and utility (floating) windows pertain to the appearances of these
windows only, not their behaviors. For example, if you want a utility window to have the proper behavior,
that is, float, your application must provide for it.

When mapping is enabled, standard pre-Appearance window definition function IDs will be mapped to their
Appearance-compliant equivalents.

Result Codes

The table below lists result codes defined for the Window Manager.

DescriptionValueResult Code

The window is not valid.-5600errInvalidWindowRef

Available in Mac OS X v10.0 and later.

Attribute bits are inappropriate for the
specified window class.

-5601errUnsupportedWindowAttributesForClass

Available in Mac OS X v10.0 and later.

No proxy attached to window.-5602errWindowDoesNotHaveProxy

Available in Mac OS X v10.0 and later.

'appl' creator code not allowed.-5603errInvalidWindowProperty

Available in Mac OS X v10.0 and later.

Result Codes 2051
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

DescriptionValueResult Code

The window property does not exist.-5604errWindowPropertyNotFound

Available in Mac OS X v10.0 and later.

Unknown window class.-5605errUnrecognizedWindowClass

Available in Mac OS X v10.0 and later.

Incorrect size or version supplied in the
BasicWindowDescription structure.

-5606errCorruptWindowDescription

Available in Mac OS X v10.0 and later.

Entire window is being dragged, not proxy
icon.

-5607errUserWantsToDragWindow

Available in Mac OS X v10.0 and later.

Called InitFloatingWindows twice, or
called InitWindows and then
InitFloatingWindows.

-5608errWindowsAlreadyInitialized

Available in Mac OS X v10.0 and later.

Called HideFloatingWindows or
ShowFloatingWindows without calling
InitFloatingWindows.

-5609errFloatingWindowsNotInitialized

Available in Mac OS X v10.0 and later.

No window was found that satisfies the
search criteria.

-5610errWindowNotFound

Available in Mac OS X v10.0 and later.

The window does not fit on a single screen.-5611errWindowDoesNotFitOnscreen

Available in Mac OS X v10.0 and later.

Tried to change a window attribute that can’t
be changed after the window is created.

-5612windowAttributeImmutableErr

Available in Mac OS X v10.0 and later.

Passed two window attributes that are
mutually exclusive.

-5613windowAttributesConflictErr

Available in Mac OS X v10.0 and later.

Internal error in the Window Manager.-5614windowManagerInternalErr

Available in Mac OS X v10.0 and later.

The window state makes the current action
invalid.

-5615windowWrongStateErr

Available in Mac OS X v10.0 and later.

2052 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

DescriptionValueResult Code

The window group is not valid.-5616windowGroupInvalidErr

Available in Mac OS X v10.0 and later.

The window is already application modal.-5617windowAppModalStateAlreadyExistsErr

Available in Mac OS X v10.1 and later.

The window is not currently application
modal.

-5618windowNoAppModalStateErr

Available in Mac OS X v10.1 and later.

Not used.-30583errWindowDoesntSupportFocus

Available in Mac OS X v10.0 and later.

The window region code is not valid.-30593errWindowRegionCodeInvalid

Available in Mac OS X v10.0 and later.

Result Codes 2053
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

2054 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 24

Window Manager Reference

2055
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART II

Other References

2056
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

PART II

Other References

Framework: Carbon/Carbon.h

Declared in AppleHelp.h

Overview

Apple Help is an update and enhancement to previous versions of the Mac OS help system. It is available in
Mac OS 8.6 and later, including Mac OS X.

This reference describes the application programming interface (API) for registering help books and calling
the Help Viewer application.

Functions

AHGotoMainTOC
Tells the Help Viewer to load the specified main table-of-contents page. (Deprecated in Mac OS X v10.4. Use
AHGotoPage (page 2058) to jump to different books or anchors.)

OSStatus AHGotoMainTOC (
 AHTOCType toctype
);

Parameters
toctype

A value specifying which Help Center page should be loaded. If you pass the kAHTOCTypeUser
constant, for example, the Help Viewer loads the Help Center page.

Return Value
A result code. See “Apple Help Result Codes” (page 2061).

Discussion
This function is synchronous. Calling this function opens the Help Viewer application, if required, and loads
the specified Help Center page.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
AppleHelp.h

Overview 2057
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Apple Help Reference

AHGotoPage
Tells the Help Viewer to load the specified HTML page.

OSStatus AHGotoPage (
 CFStringRef bookname,
 CFStringRef path,
 CFStringRef anchor
);

Parameters
bookname

A string specifying the name of the help book that contains the page to be loaded. If the name of
the help book (as specified by the AppleTitle meta tag) is SurfWriter Help, for example, you pass
a string containing the value SurfWriter Help. You may pass NULL in this parameter.

path
A string specifying a path for the page to be loaded. Specify the path relative to the help book given
in the bookname parameter. If you pass NULL in this parameter, the Help Viewer opens to your help
book’s title page. If you pass NULL in the bookname parameter, you must specify the value passed in
the path parameter as a full URL in the form file://.

anchor
An optional string specifying an anchor to which the Help Viewer scrolls after loading the specified
page. If you do not specify an anchor, the Help Viewer scrolls to the top of the page.

Return Value
A result code. See “Apple Help Result Codes” (page 2061).

Discussion
This function is synchronous. Calling this function opens the Help Viewer application, if required, and loads
the specified HTML page.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleHelp.h

AHLookupAnchor
Tells the Help Viewer to search for a specified anchor and load it.

OSStatus AHLookupAnchor (
 CFStringRef bookname,
 CFStringRef anchor
);

Parameters
bookname

A string specifying the name of the help book to search for the desired anchor. If the name of the
help book (as specified by the AppleTitle meta tag) is SurfWriter Help, for example, you pass a
string containing the value SurfWriter Help. If you do not specify a value in this parameter, the
Help Viewer searches all available help books for the specified anchor.

2058 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Apple Help Reference

anchor
A string specifying an anchor to load. You should ensure that each anchor name in your help book
is unique. If you specify an anchor name that is not unique, the Help Viewer displays a list of links to
all the anchors with that name.

Return Value
A result code. See “Apple Help Result Codes” (page 2061).

Discussion
This function is synchronous. Calling this function opens the Help Viewer application, if required, and loads
the specified anchor or the list of links to multiple anchors, as appropriate. You must specify anchor indexing
when you index your help book to perform anchor lookup.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleHelp.h

AHRegisterHelpBook
Registers a help book.

OSStatus AHRegisterHelpBook (
 const FSRef *appBundleRef
);

Parameters
appBundleRef

A file system reference for the bundle containing the help book you wish to register.

Return Value
A result code. See “Apple Help Result Codes” (page 2061).

Discussion
Carbon applications must call this function in order to register a help book. If your Cocoa application provides
appropriate key/value pairs specifying a single help book in your application’s property list, as described in
Providing User Assistance with Apple Help, you only need to call AHRegisterHelpBook if you wish to call the
Apple Help functions to access your help content yourself. If you install an additional help book that is not
described in your property list, you must call the AHRegisterHelpBook function in order to have the new
book appear in the Help Center. If you call this function and specify a help book that is already registered,
the AHRegisterHelpBook function returns a result of noErr.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleHelp.h

AHSearch
Tells the Help Viewer to search for a specified string in a given help book.

Functions 2059
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Apple Help Reference

OSStatus AHSearch (
 CFStringRef bookname,
 CFStringRef query
);

Parameters
bookname

A string specifying the name of the help book to be searched. If the name of the help book (as specified
by the AppleTitle meta tag) is SurfWriter Help, for example, you pass a string containing the value
SurfWriter Help. If you pass NULL in this parameter, the Help Viewer searches all available help
books.

query
A string containing the text to search for.

Return Value
A result code. See “Apple Help Result Codes” (page 2061).

Discussion
This function is synchronous. Calling this function opens the Help Viewer application, if required, and displays
the results of the search.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleHelp.h

Constants

TOC Specification Constants
Passed to the AHGotoMainTOC function to identify the table of contents page to open.

typedef SInt16 AHTOCType;
enum {
 kAHTOCTypeUser = 0,
 kAHTOCTypeDeveloper = 1
};

Constants
kAHTOCTypeUser

Opens the Help Center.

Available in Mac OS X v10.0 and later.

Declared in AppleHelp.h.

kAHTOCTypeDeveloper
Opens the Developer Help Center.

Available in Mac OS X v10.0 and later.

Declared in AppleHelp.h.

2060 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Apple Help Reference

Result Codes

The most common result codes returned by Apple Help are listed below.

DescriptionValueResult Code

The requested operation could not be completed.-10790kAHInternalErr

Available in Mac OS X v10.0 and later.

There was an error while attempting to read Internet Config
settings.

-10791kAHInternetConfigPrefErr

Available in Mac OS X v10.0 and later.

Result Codes 2061
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Apple Help Reference

2062 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 25

Apple Help Reference

Framework: Carbon/Carbon.h

Declared in PMApplication.h
PMApplicationDeprecated.h

Companion guide Supporting Printing in Your Carbon Application

Overview

Carbon Printing is a C API used by Carbon applications to display a user interface for printing. Carbon Printing
provides functions to:

 ■ Display the Page Setup dialog, which allows a user to modify the page format of a document to be
printed

 ■ Display the Print dialog, which allows a user to modify the default settings for a print job

 ■ Execute a print loop that displays a printing status dialog

Carbon applications also need to use Core Printing to fully implement their printing features. For information
about Core Printing, see Core Printing Reference.

Note: Carbon Printing and the Carbon Human Interface Toolbox are not available to 64-bit applications. To
build a 64-bit application with a user interface, you must use Cocoa. For information about printing in Cocoa
applications, see Printing Programming Topics for Cocoa.

Functions by Task

Displaying the Page Setup and Print Dialogs

PMSessionUseSheets (page 2093)
Specifies that a printing dialog should be displayed as a sheet and specifies a function to call when
the user dismisses the printing dialog.

PMSessionPageSetupDialog (page 2088)
Displays the Page Setup dialog and records the user’s selections in a page format object.

PMSessionPrintDialog (page 2091)
Displays the Print dialog and records the user’s selections in a print settings object.

Overview 2063
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

PMShowPageSetupDialogAsSheet (page 2097)
Displays a Page Setup dialog as a sheet attached to a window.

PMShowPrintDialogWithOptions (page 2098)
Displays a Print dialog with a specified set of controls.

PMShowPrintDialogWithOptionsAsSheet (page 2099)
Displays a Print dialog with a specified set of controls as a sheet attached to a window.

PMSessionEnablePrinterPresets (page 2086)
Enables the use of printer presets in the Print dialog.

PMSessionDisablePrinterPresets (page 2086)
Disables the use of printer presets in the Print dialog.

Print Loop Functions

PMSessionBeginCGDocument (page 2082)
Begins a print job in which all drawing is to a Quartz graphics context. A printing status dialog informs
the user of the job’s progress.

PMSessionEndDocument (page 2087)
Ends a print job started by calling the function PMSessionBeginCGDocument (page 2082) or
PMSessionBeginDocument (page 2083).

PMSessionBeginPage (page 2084)
Starts a new page for printing in the specified printing session.

PMSessionEndPage (page 2087)
Indicates the end of drawing the current page for the specified printing session.

PMSessionBeginDocument (page 2083) Deprecated in Mac OS X v10.5
Begins a print job in which, by default, all drawing is to a QuickDraw graphics port. A printing status
dialog informs the user of the job’s progress. (Deprecated. Use PMSessionBeginCGDocument (page
2082) instead.)

Creating, Calling, and Deleting Universal Procedure Pointers

NewPMSheetDoneUPP (page 2072)
Creates a new universal procedure pointer (UPP) to a sheet-done callback.

InvokePMSheetDoneUPP (page 2070)
Calls a sheet-done callback.

DisposePMSheetDoneUPP (page 2068)
Disposes of a universal procedure pointer (UPP) to a sheet-done callback.

DisposePMItemUPP (page 2067) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a dialog item event handling callback. (Deprecated.
Use a printing dialog extension instead.)

DisposePMPageSetupDialogInitUPP (page 2067) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a Page Setup dialog initialization callback.
(Deprecated. Use a printing dialog extension instead.)

2064 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

DisposePMPrintDialogInitUPP (page 2068) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a Print dialog initialization callback function.
(Deprecated. Use a printing dialog extension instead.)

InvokePMItemUPP (page 2068) Deprecated in Mac OS X v10.4
Calls a dialog item event handling callback. (Deprecated. Use a printing dialog extension instead.)

InvokePMPageSetupDialogInitUPP (page 2069) Deprecated in Mac OS X v10.4
Calls a Page Setup dialog initialization callback. (Deprecated. Use a printing dialog extension instead.)

InvokePMPrintDialogInitUPP (page 2069) Deprecated in Mac OS X v10.4
Calls a Print dialog initialization callback. (Deprecated. Use a printing dialog extension instead.)

NewPMItemUPP (page 2070) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a dialog item event handling callback. (Deprecated.
Use a printing dialog extension instead.)

NewPMPageSetupDialogInitUPP (page 2071) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a Page Setup dialog initialization callback.
(Deprecated. Use a printing dialog extension instead.)

NewPMPrintDialogInitUPP (page 2071) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a Print dialog initialization callback. (Deprecated.
Use a printing dialog extension instead.)

Customizing the Page Setup and Print Dialogs
The functions in this section make it possible to extend a printing dialog using the so-called AppendDITL
method. Instead of using these functions, you should create a printing dialog extension. If you use these
functions to extend a printing dialog, you cannot use sheets.

PMGetDialogAccepted (page 2075) Deprecated in Mac OS X v10.4
Determines whether the user has confirmed a printing dialog. (Deprecated. Use a printing dialog
extension instead.)

PMGetDialogDone (page 2075) Deprecated in Mac OS X v10.4
Determines whether the user has finished with a dialog. (Deprecated. Use a printing dialog extension
instead.)

PMGetDialogPtr (page 2076) Deprecated in Mac OS X v10.4
Obtains the dialog reference for a dialog. (Deprecated. Use a printing dialog extension instead.)

PMGetItemProc (page 2076) Deprecated in Mac OS X v10.4
Obtains the item proc callback function for a custom dialog. (Deprecated. Use a printing dialog
extension instead.)

PMGetModalFilterProc (page 2077) Deprecated in Mac OS X v10.4
Obtains the event handling callback function for a modal dialog. (Deprecated. Use a printing dialog
extension instead.)

PMSessionPageSetupDialogInit (page 2089) Deprecated in Mac OS X v10.4
Initializes a custom Page Setup dialog. (Deprecated. Use a printing dialog extension instead.)

PMSessionPageSetupDialogMain (page 2090) Deprecated in Mac OS X v10.4
Displays your application’s custom Page Setup dialog. (Deprecated. Use a printing dialog extension
instead.)

PMSessionPrintDialogInit (page 2091) Deprecated in Mac OS X v10.4
Initializes a custom Print dialog. (Deprecated. Use a printing dialog extension instead.)

Functions by Task 2065
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

PMSessionPrintDialogMain (page 2092) Deprecated in Mac OS X v10.4
Displays your application’s custom Print dialog. (Deprecated. Use a printing dialog extension instead.)

PMSetDialogAccepted (page 2094) Deprecated in Mac OS X v10.4
Indicates that the user confirmed a custom dialog. (Deprecated. Use a printing dialog extension
instead.)

PMSetDialogDone (page 2095) Deprecated in Mac OS X v10.4
Indicates that the user finished with a custom dialog. (Deprecated. Use a printing dialog extension
instead.)

PMSetItemProc (page 2096) Deprecated in Mac OS X v10.4
Installs an item proc callback function for items in a custom dialog. (Deprecated. Use a printing dialog
extension instead.)

PMSetModalFilterProc (page 2096) Deprecated in Mac OS X v10.4
Installs an event handling callback function for a modal dialog. (Deprecated. Use a printing dialog
extension instead.)

Legacy Carbon Printing Functions
The functions in this section are deprecated and have been replaced by session-based functions that take a
PMPrintSession object. In some cases, the replacement function is also deprecated.

PMBeginDocument (page 2072) Deprecated in Mac OS X v10.4
Establishes a graphics context for imaging a document. This context is an opaque grafPort.
(Deprecated. Use PMSessionBeginCGDocument (page 2082) instead.)

PMBeginPage (page 2073) Deprecated in Mac OS X v10.4
Initializes a scaling rectangle for printing a page. (Deprecated. Use PMSessionBeginPage (page 2084)
instead.)

PMEndDocument (page 2074) Deprecated in Mac OS X v10.4
Closes the context created for imaging a document. (Deprecated. Use PMSessionEndDocument (page
2087) instead.)

PMEndPage (page 2074) Deprecated in Mac OS X v10.4
Finishes printing the current page. (Deprecated. Use PMSessionEndPage (page 2087) instead.)

PMPageSetupDialog (page 2078) Deprecated in Mac OS X v10.4
Displays the Page Setup dialog and records the user’s selections in a PMPageFormat object.
(Deprecated. Use PMSessionPageSetupDialog (page 2088) or
PMShowPageSetupDialogAsSheet (page 2097) instead.)

PMPageSetupDialogInit (page 2078) Deprecated in Mac OS X v10.4
Initializes a custom Page Setup dialog. (Deprecated. Use a printing dialog extension instead.)

PMPageSetupDialogMain (page 2079) Deprecated in Mac OS X v10.4
Displays your application’s customized Page Setup dialog. (Deprecated. Use a printing dialog extension
instead.)

PMPrintDialog (page 2080) Deprecated in Mac OS X v10.4
Displays the Print dialog and records the user’s selections in a PMPrintSettings object. (Deprecated.
Use PMSessionPrintDialog (page 2091), PMShowPrintDialogWithOptions (page 2098), or
PMShowPrintDialogWithOptionsAsSheet (page 2099) instead.)

PMPrintDialogInit (page 2080) Deprecated in Mac OS X v10.4
Initializes a custom Print dialog. (Deprecated. Use a printing dialog extension instead.)

2066 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

PMPrintDialogInitWithPageFormat (page 2081) Deprecated in Mac OS X v10.4
Initializes a custom Print dialog. (Deprecated. Use a printing dialog extension instead.)

PMPrintDialogMain (page 2082) Deprecated in Mac OS X v10.4
Displays your application’s custom Print dialog. (Deprecated. Use a printing dialog extension instead.)

Functions

DisposePMItemUPP
Disposes of a universal procedure pointer (UPP) to a dialog item event handling callback. (Deprecated in Mac
OS X v10.4. Use a printing dialog extension instead.)

void DisposePMItemUPP (
 PMItemUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the PMItemProcPtr (page 2100) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

DisposePMPageSetupDialogInitUPP
Disposes of a universal procedure pointer (UPP) to a Page Setup dialog initialization callback. (Deprecated
in Mac OS X v10.4. Use a printing dialog extension instead.)

void DisposePMPageSetupDialogInitUPP (
 PMPageSetupDialogInitUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the PMPageSetupDialogInitProcPtr (page 2101) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2067
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Declared In
PMApplicationDeprecated.h

DisposePMPrintDialogInitUPP
Disposes of a universal procedure pointer (UPP) to a Print dialog initialization callback function. (Deprecated
in Mac OS X v10.4. Use a printing dialog extension instead.)

void DisposePMPrintDialogInitUPP (
 PMPrintDialogInitUPP userUPP
);

Parameters
userUPP

The universal procedure pointer.

Discussion
See the PMPrintDialogInitProcPtr (page 2102) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

DisposePMSheetDoneUPP
Disposes of a universal procedure pointer (UPP) to a sheet-done callback.

void DisposePMSheetDoneUPP (
 PMSheetDoneUPP userUPP
);

Parameters
userUPP

A UPP to your sheet-done callback.

Discussion
See the callback PMSheetDoneProcPtr (page 2103) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMApplication.h

InvokePMItemUPP
Calls a dialog item event handling callback. (Deprecated in Mac OS X v10.4. Use a printing dialog extension
instead.)

2068 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

void InvokePMItemUPP (
 DialogRef theDialog,
 short item,
 PMItemUPP userUPP
);

Discussion
You should not need to use the function InvokePMInvokeUPP, as the printing system calls your item event
handling callback function for you. See the PMItemProcPtr (page 2100) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

InvokePMPageSetupDialogInitUPP
Calls a Page Setup dialog initialization callback. (Deprecated in Mac OS X v10.4. Use a printing dialog extension
instead.)

void InvokePMPageSetupDialogInitUPP (
 PMPageFormat pageFormat,
 PMDialog *theDialog,
 PMPageSetupDialogInitUPP userUPP
);

Discussion
You should not need to use the function InvokePMPageSetupDialogInitUPP, as the printing system calls
your Page Setup dialog initialization callback function for you. See the
PMPageSetupDialogInitProcPtr (page 2101) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

InvokePMPrintDialogInitUPP
Calls a Print dialog initialization callback. (Deprecated in Mac OS X v10.4. Use a printing dialog extension
instead.)

Functions 2069
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

void InvokePMPrintDialogInitUPP (
 PMPrintSettings printSettings,
 PMDialog *theDialog,
 PMPrintDialogInitUPP userUPP
);

Discussion
You should not need to use the function InvokePMPrintDialogInitUPP, as the printing system calls your
Print dialog initialization callback function for you. See the PMPrintDialogInitProcPtr (page 2102) callback
function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

InvokePMSheetDoneUPP
Calls a sheet-done callback.

void InvokePMSheetDoneUPP (
 PMPrintSession printSession,
 WindowRef documentWindow,
 Boolean accepted,
 PMSheetDoneUPP userUPP
);

Discussion
You should not need to use the function InvokePMSheetDoneUPP, as the printing system calls your
sheet-done callback function for you. See the callbackPMSheetDoneProcPtr (page 2103) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMApplication.h

NewPMItemUPP
Creates a new universal procedure pointer (UPP) to a dialog item event handling callback. (Deprecated in
Mac OS X v10.4. Use a printing dialog extension instead.)

PMItemUPP NewPMItemUPP (
 PMItemProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your dialog item event handling callback.

2070 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Return Value
On return, a UPP to the dialog item event handling callback.

Discussion
See the PMItemProcPtr (page 2100) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

NewPMPageSetupDialogInitUPP
Creates a new universal procedure pointer (UPP) to a Page Setup dialog initialization callback. (Deprecated
in Mac OS X v10.4. Use a printing dialog extension instead.)

PMPageSetupDialogInitUPP NewPMPageSetupDialogInitUPP (
 PMPageSetupDialogInitProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your Page Setup dialog initialization callback.

Return Value
On return, a UPP to the Page Setup dialog initialization callback.

Discussion
See the PMPageSetupDialogInitProcPtr (page 2101) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

NewPMPrintDialogInitUPP
Creates a new universal procedure pointer (UPP) to a Print dialog initialization callback. (Deprecated in Mac
OS X v10.4. Use a printing dialog extension instead.)

PMPrintDialogInitUPP NewPMPrintDialogInitUPP (
 PMPrintDialogInitProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your Print dialog initialization callback.

Functions 2071
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Return Value
On return, a UPP to the Print dialog initialization callback.

Discussion
See the PMPrintDialogInitProcPtr (page 2102) callback function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

NewPMSheetDoneUPP
Creates a new universal procedure pointer (UPP) to a sheet-done callback.

PMSheetDoneUPP NewPMSheetDoneUPP (
 PMSheetDoneProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your sheet-done callback.

Return Value
On return, a UPP to the sheet-done callback.

Discussion
See the callback PMSheetDoneProcPtr (page 2103) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMApplication.h

PMBeginDocument
Establishes a graphics context for imaging a document. This context is an opaque grafPort. (Deprecated
in Mac OS X v10.4. Use PMSessionBeginCGDocument (page 2082) instead.)

OSStatus PMBeginDocument (
 PMPrintSettings printSettings,
 PMPageFormat pageFormat,
 PMPrintContext *printContext
);

Parameters
printSettings

A PMPrintSettings object.

2072 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

pageFormat
A PMPageFormat object.

printContext
On return, an initialized PMPrintContext object.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid within a PMBegin/PMEnd block. You must balance a call to PMBeginDocument with a call to
PMEndDocument.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

PMBeginPage
Initializes a scaling rectangle for printing a page. (Deprecated in Mac OS X v10.4. Use
PMSessionBeginPage (page 2084) instead.)

OSStatus PMBeginPage (
 PMPrintContext printContext,
 const PMRect *pageFrame
);

Parameters
printContext

A PMPrintContext object.

pageFrame
A pointer to a bounding rectangle for drawing the page. This value is usually obtained from the
function PMGetAdjustedRect, but if no scaling is needed, pass NULL. In Mac OS X, this parameter
is ignored.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid after calling PMBegin and PMBeginDocument.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

Functions 2073
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

PMEndDocument
Closes the context created for imaging a document. (Deprecated in Mac OS X v10.4. Use
PMSessionEndDocument (page 2087) instead.)

OSStatus PMEndDocument (
 PMPrintContext printContext
);

Parameters
printContext

On return, an invalidated PMPrintContext object.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid after calling PMBegin and PMBeginDocument.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

PMEndPage
Finishes printing the current page. (Deprecated in Mac OS X v10.4. Use PMSessionEndPage (page 2087)
instead.)

OSStatus PMEndPage (
 PMPrintContext printContext
);

Parameters
printContext

A PMPrintContext object.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid after calling PMBegin, PMBeginDocument, and PMBeginPage.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

2074 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

PMGetDialogAccepted
Determines whether the user has confirmed a printing dialog. (Deprecated in Mac OS X v10.4. Use a printing
dialog extension instead.)

OSStatus PMGetDialogAccepted (
 PMDialog pmDialog,
 Boolean *process
);

Parameters
pmDialog

A PMDialog object representing your customized Page Setup or Print dialog.

process
Returns true if the user confirms the dialog. In the case of the Page Setup dialog, this means the user
clicked the OK button; in the case of the Print dialog, this means the user clicked the Print or Preview
button. Returns false if the user clicks the Cancel button.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMGetDialogAccepted is valid between the creation and release of a printing session and
while displaying your custom Page Setup or Print dialog.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMGetDialogDone
Determines whether the user has finished with a dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog
extension instead.)

OSStatus PMGetDialogDone (
 PMDialog pmDialog,
 Boolean *done
);

Parameters
pmDialog

A PMDialog object representing your customized Page Setup or Print dialog.

done
Returns true if the user clicked the OK, Print, or Cancel button; false if the user did not click any of
these buttons.

Return Value
A result code. See Core Printing Result Codes.

Functions 2075
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Discussion
The function PMGetDialogDone is valid between the creation and release of a printing session and while
displaying your Page Setup or Print dialog.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMGetDialogPtr
Obtains the dialog reference for a dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog extension
instead.)

OSStatus PMGetDialogPtr (
 PMDialog pmDialog,
 DialogRef *theDialog
);

Parameters
pmDialog

The PMDialog object from which you wish to extract the DialogRecord structure.

theDialog
On return, a pointer to a Dialog Manager DialogRef object.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMGetDialogPtr is valid between the creation and release of a printing session and after
calling PMSessionPageSetupDialogInit to initialize a Page Setup dialog, or calling
PMSessionPrintDialogInit to initialize a Print dialog.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMGetItemProc
Obtains the item proc callback function for a custom dialog. (Deprecated in Mac OS X v10.4. Use a printing
dialog extension instead.)

2076 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

OSStatus PMGetItemProc (
 PMDialog pmDialog,
 PMItemUPP *itemProc
);

Parameters
pmDialog

A PMDialog object representing the Page Setup or Print dialog for which you want to obtain the
item proc function.

itemProc
On return, a pointer to the current dialog item proc function.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMGetItemProc is valid only between the creation and release of a printing session. You can
call PMGetItemProc to get the existing item proc function before you replace it with a call to the function
PMSetItemProc. You should call this function only if you need to handle events in a custom dialog you
create using the AppendDITL method. In Mac OS X, you should create a custom dialog by writing a printing
dialog extension. If you use this function to extend a printing dialog in Mac OS X, you cannot use sheets.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMGetModalFilterProc
Obtains the event handling callback function for a modal dialog. (Deprecated in Mac OS X v10.4. Use a printing
dialog extension instead.)

OSStatus PMGetModalFilterProc (
 PMDialog pmDialog,
 ModalFilterUPP *filterProc
);

Parameters
pmDialog

A PMDialog object representing the Page Setup or Print dialog for which you want to obtain the
event handling function.

filterProc
On return, a pointer to the current dialog event handling function.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMGetModalFilterProc is valid only between the creation and release of a printing session.
You can call PMGetModalFilterProc to get the existing event handling function before you replace it with
a call to the function PMSetModalFilterProc. The event handling function is not called in Mac OS X.

Functions 2077
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

You should call the function PMGetModalFilterProc only if you create a custom dialog using the
AppendDITLmethod. In Mac OS X, you should create a custom dialog by writing a printing dialog extension.
If you use this function to extend a printing dialog in Mac OS X, you cannot use sheets.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMPageSetupDialog
Displays the Page Setup dialog and records the user’s selections in a PMPageFormat object. (Deprecated in
Mac OS X v10.4. UsePMSessionPageSetupDialog (page 2088) orPMShowPageSetupDialogAsSheet (page
2097) instead.)

OSStatus PMPageSetupDialog (
 PMPageFormat pageFormat,
 Boolean *accepted
);

Parameters
pageFormat

A PMPageFormat object.

accepted
Returns true if the user clicks the OK button, or false if the user clicks Cancel.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid after calling PMBegin and creating a page format object. Never call PMPageSetupDialog between
the pages of a document.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

PMPageSetupDialogInit
Initializes a custom Page Setup dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog extension instead.)

2078 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

OSStatus PMPageSetupDialogInit (
 PMPageFormat pageFormat,
 PMDialog *newDIalog
);

Parameters
pageFormat

A PMPageFormat object.

newDIalog
On return, a pointer to an initialized PMDialog object, ready for customization by your application.
Because the PMPageSetupDialogMain function does not include a parameter for passing this
PMDialog object to your dialog initialization callback function, your application should store this
pointer in a global variable or as extended data in the PMPageFormat object. See the discussion of
the PMPageSetupDialogInitProcPtr callback function for more information.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid after calling PMBegin and creating a page format object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

PMPageSetupDialogMain
Displays your application’s customized Page Setup dialog. (Deprecated in Mac OS X v10.4. Use a printing
dialog extension instead.)

OSStatus PMPageSetupDialogMain (
 PMPageFormat pageFormat,
 Boolean *accepted,
 PMPageSetupDialogInitUPP myInitProc
);

Parameters
pageFormat

A PMPageFormat object.

accepted
Returns true if the user clicks the OK button, or false if the user clicks Cancel.

myInitProc
A universal procedure pointer to your dialog initialization function. Your initialization function is
defined by the callback PMPageSetupDialogInitProcPtr.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid after calling PMBegin and creating a page format object

Functions 2079
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

PMPrintDialog
Displays the Print dialog and records the user’s selections in a PMPrintSettings object. (Deprecated in
Mac OS X v10.4. Use PMSessionPrintDialog (page 2091), PMShowPrintDialogWithOptions (page 2098),
or PMShowPrintDialogWithOptionsAsSheet (page 2099) instead.)

OSStatus PMPrintDialog (
 PMPrintSettings printSettings,
 PMPageFormat constPageFormat,
 Boolean *accepted
);

Parameters
printSettings

A PMPrintSettings object.

constPageFormat
A PMPageFormat object.

accepted
Returns true if the user clicks the OK button, or false if the user clicks Cancel.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid after calling PMBegin and creating a page format and print settings object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

PMPrintDialogInit
Initializes a custom Print dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog extension instead.)

OSStatus PMPrintDialogInit (
 PMPrintSettings printSettings,
 PMDialog *newDialog
);

Parameters
printSettings

A PMPrintSettings object.

2080 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

newDialog
On return, a pointer to an initialized PMDialog object, ready for customization by your application.
Because the PMPrintDialogMain function does not include a parameter for passing this PMDialog
object to your dialog initialization callback function, your application should store this pointer in a
global variable or as extended data in the PMPrintSettings object. See the discussion of the
PMPrintDialogInitProcPtr callback function for more information.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid after calling PMBegin and creating a page format and print settings object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

PMPrintDialogInitWithPageFormat
Initializes a custom Print dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog extension instead.)

OSStatus PMPrintDialogInitWithPageFormat (
 PMPrintSettings printSettings,
 PMPageFormat constPageFormat,
 PMDialog *newDialog
);

Parameters
printSettings

A PMPrintSettings object.

constPageFormat
A PMPageFormat object.

newDialog
On return, a pointer to an initialized PMDialog object, ready for customization by your application.
Because the PMPrintDialogMain function does not include a parameter for passing this PMDialog
object to your dialog initialization callback function, your application should store this pointer in a
global variable or as extended data in the PMPrintSettings object. See the discussion of the
PMPrintDialogInitProcPtr callback function for more information.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid after calling PMBegin and creating a page format and print settings object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

Functions 2081
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

PMPrintDialogMain
Displays your application’s custom Print dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog extension
instead.)

OSStatus PMPrintDialogMain (
 PMPrintSettings printSettings,
 PMPageFormat constPageFormat,
 Boolean *accepted,
 PMPrintDialogInitUPP myInitProc
);

Parameters
printSettings

A PMPrintSettings object.

constPageFormat
A PMPageFormat object.

accepted
Returns true if the user clicks the OK button, or false if the user clicks Cancel.

myInitProc
A universal procedure pointer to your dialog initialization function. Your initialization function is
defined by the callback PMPrintDialogIinitProcPtr.

Return Value
A result code. See Core Printing Result Codes.

Discussion
Valid after calling PMBegin and creating a page format and print settings object.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
PMApplicationDeprecated.h

PMSessionBeginCGDocument
Begins a print job in which all drawing is to a Quartz graphics context. A printing status dialog informs the
user of the job’s progress.

OSStatus PMSessionBeginCGDocument (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat pageFormat
);

Parameters
printSession

The printing session for the new print job.

printSettings
The print settings for the new print job.

2082 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

pageFormat
The page format for the new print job.

Return Value
A result code. See Core Printing Result Codes.

Discussion
This function starts a print job in which your application draws in a Quartz graphics context, and should be
called within your application’s print loop. This function is similar to the function
PMSessionBeginCGDocumentNoDialog except that the printing status dialog is displayed.

You must call this function between the creation and release of a printing session. See the function
PMCreateSession. If you present a printing dialog before you call this function, when calling this function
you should use the same PMPrintSession object you used to present the dialog.

Before you call PMSessionBeginCGDocument, you should call PMSessionValidatePrintSettings and
PMSessionValidatePageFormat to make sure the specified print settings and page format objects are
updated and valid. After you call PMSessionBeginCGDocument, if you call a function that changes the
specified print settings or page format object, the change is ignored for the current print job.

This function must be called before its corresponding End function (PMSessionEndDocument (page 2087)).
If the function PMSessionBeginCGDocument returns noErr, you must later call the End function, even if
errors occur within the scope of the Begin and End functions.

The printing system automatically handles printing multiple copies. Your application does not need to perform
any tasks other than specifying the number of copies in the printing session.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

See Also
PMSessionBeginCGDocumentNoDialog

Declared In
PMApplication.h

PMSessionBeginDocument
Begins a print job in which, by default, all drawing is to a QuickDraw graphics port. A printing status dialog
informs the user of the job’s progress. (Deprecated in Mac OS X v10.5. Use
PMSessionBeginCGDocument (page 2082) instead.)

OSStatus PMSessionBeginDocument (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat pageFormat
);

Parameters
printSession

The printing session for the new print job.

printSettings
The print settings for the new print job.

Functions 2083
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

pageFormat
The page format for the new print job.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMSessionBeginDocument starts a print job and should be called within your application’s
print loop. This function is similar to the function PMSessionBeginDocumentNoDialog except that the
printing status dialog is displayed.

You must call this function between the creation and release of a printing session. See the function
PMCreateSession. If you present a printing dialog before you call PMSessionBeginDocument, you should
use the same PMPrintSession object you used to present the dialog.

Before you call PMSessionBeginDocument, you should call PMSessionValidatePrintSettings and
PMSessionValidatePageFormat to make sure the specified print settings and page format objects are
updated and valid. After you call PMSessionBeginDocument, if you call a function that changes the specified
print settings or page format object, the change is ignored for the current print job.

This function must be called before its corresponding End function (PMSessionEndDocument (page 2087)).
If the function PMSessionBeginDocument function returns noErr, you must later call the End function,
even if errors occur within the scope of the Begin and End functions.

The printing system automatically handles printing multiple copies. Your application does not need to perform
any tasks other than specifying the number of copies in the printing session.

Special Considerations

In Mac OS X v10.4 and later, Apple recommends using the function PMSessionBeginCGDocument (page
2082) instead of this function. QuickDraw is deprecated and your application should be using Quartz 2D for
its rendering.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
PMApplicationDeprecated.h

PMSessionBeginPage
Starts a new page for printing in the specified printing session.

2084 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

OSStatus PMSessionBeginPage (
 PMPrintSession printSession,
 PMPageFormat pageFormat,
 const PMRect *pageFrame
);

Parameters
printSession

The printing session for the print job.

pageFormat
The page format for the new page. If you pass NULL, the printing system uses the page format you
passed to PMSessionBeginCGDocument (page 2082).

pageFrame
You should pass NULL, as this parameter is currently unsupported.

Return Value
A result code. If the user cancels the print job, this function returns kPMCancel.

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession. You must call the functions PMSessionBeginPage and PMSessionEndPage (page
2087) within the scope of calls to theBeginprint job function (PMSessionBeginCGDocument (page 2082)) and
the End print job function (PMSessionEndDocument (page 2087)).

You should call the function PMSessionError immediately before you call PMSessionBeginPage. If
PMSessionError returns an error, then you should not call the function PMSessionBeginPage. Because
PMSessionBeginPage also initializes the printing graphics context, your application should not make
assumptions about the state of the context (for example, the current font) between successive pages. After
each call to PMSessionBeginPage, your application should call PMSessionGetCGGraphicsContext to
obtain the current printing context.

If the function PMSessionBeginPage returns noErr, you must later call the function PMSessionEndPage,
even if errors occur within the scope of PMSessionBeginPage and PMSessionEndPage.

The printing system automatically handles printing multiple copies. Your application does not need to perform
any tasks other than specifying the number of copies in the printing session.

Special Considerations

Prior to Mac OS X v10.5, the pageFormat parameter is ignored. In Mac OS X v10.5 and later, the printing
system supports multiple orientations within a print job. When you call this function and supply a page
format, the orientation specified in the page format is used for the current page. Other settings in the page
format, such as paper size or scaling, are ignored.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
PMApplication.h

Functions 2085
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

PMSessionDisablePrinterPresets
Disables the use of printer presets in the Print dialog.

OSStatus PMSessionDisablePrinterPresets (
 PMPrintSession session
);

Parameters
session

The printing session you use to present the Print dialog.

Return Value
A result code. See Core Printing Result Codes.

Discussion
When you call this function with the specified printing session, the Print dialog for that session does not
show any printer presets. Presets are disabled by default.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

See Also
PMSessionEnablePrinterPresets (page 2086)

Declared In
PMApplication.h

PMSessionEnablePrinterPresets
Enables the use of printer presets in the Print dialog.

OSStatus PMSessionEnablePrinterPresets (
 PMPrintSession session,
 CFStringRef graphicsType
);

Parameters
session

The printing session you use to present the Print dialog.

graphicsType
The printer presets in the dialog should be suitable for rendering this type of graphic. Currently, the
only defined graphics type is "Photo".

Return Value
A result code. See Core Printing Result Codes.

Discussion
When you call this function with the specified printing session, the Print dialog shows the presets available
for the specified graphics type.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

2086 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

See Also
PMSessionDisablePrinterPresets (page 2086)

Declared In
PMApplication.h

PMSessionEndDocument
Ends a print job started by calling the function PMSessionBeginCGDocument (page 2082) or
PMSessionBeginDocument (page 2083).

OSStatus PMSessionEndDocument (
 PMPrintSession printSession
);

Parameters
printSession

The current printing session. On return, the printing session is no longer valid; however, you must
still call the function PMRelease to release the object.

Return Value
A result code. See Core Printing Result Codes.

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession. The function PMSessionEndDocument is used to end a print job, and it should be called
within your application’s print loop after the call to PMSessionEndPage and before releasing the printing
session.

This function must be called after its corresponding Begin function (PMSessionBeginCGDocument (page
2082) or PMSessionBeginDocument (page 2083)). If the Begin function returns noErr, the function
PMSessionEndDocument must be called, even if errors occur within the scope of the Begin and End
functions. You should not call PMSessionEndDocument if the Begin function returns an error.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
PMApplication.h

PMSessionEndPage
Indicates the end of drawing the current page for the specified printing session.

Functions 2087
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

OSStatus PMSessionEndPage (
 PMPrintSession printSession
);

Parameters
printSession

The printing session for the print job.

Return Value
A result code. See Core Printing Result Codes.

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession. You must call the functionsPMSessionBeginPage (page 2084) andPMSessionEndPage
within the scope of calls to the Begin print job function (PMSessionBeginCGDocument (page 2082)) and the
End print job function (PMSessionEndDocument (page 2087)).

If the function PMSessionBeginPage returns noErr, you must later call the function PMSessionEndPage,
even if errors occur within the scope of PMSessionBeginPage and PMSessionEndPage. You should not
call PMSessionEndPage if PMSessionBeginPage returns an error.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
PMApplication.h

PMSessionPageSetupDialog
Displays the Page Setup dialog and records the user’s selections in a page format object.

OSStatus PMSessionPageSetupDialog (
 PMPrintSession printSession,
 PMPageFormat pageFormat,
 Boolean *accepted
);

Parameters
printSession

The printing session for which you want to display the dialog.

pageFormat
The page format object in which the user’s selections are recorded.

accepted
A pointer to your Boolean variable. On return, true if the user clicks the OK button, or false if the
user clicks Cancel. If you are using a sheet dialog, you should ignore the value returned in this
parameter.

Return Value
A result code. See Core Printing Result Codes.

2088 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession. Before you call the function PMSessionPageSetupDialog you should call the function
PMSessionValidatePageFormat to make sure page format settings are updated and valid. You should
call the function PMSessionPageSetupDialog outside the scope of your print loop.

The Page Setup dialog shows the current settings contained in the page format object. If the user changes
these settings and clicks the OK button, the page format object is updated by the printing system with the
user’s selections. If the user clicks the Cancel button, the page format object is returned unchanged.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
PMApplication.h

PMSessionPageSetupDialogInit
Initializes a custom Page Setup dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog extension instead.)

OSStatus PMSessionPageSetupDialogInit (
 PMPrintSession printSession,
 PMPageFormat pageFormat,
 PMDialog *newDialog
);

Parameters
printSession

The current printing session.

pageFormat
A page format object.

newDialog
On return, a pointer to an initialized PMDialog object, ready for customization by your application.
Because the PMSessionPageSetupDialogMain (page 2090) function does not include a parameter
for passing this PMDialog object to your dialog initialization callback function, your application should
store this pointer in a global variable or as extended data in the PMPageFormat object.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMSessionPageSetupDialogInit is valid only between the creation and release of a printing
session and after creating a page format object. You should call this function only if you create a custom
dialog using the AppendDITL method. In Mac OS X, you should create a custom dialog by writing a printing
dialog extension. If you use this function to extend a printing dialog in Mac OS X, you cannot use sheets.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 2089
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMSessionPageSetupDialogMain
Displays your application’s custom Page Setup dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog
extension instead.)

OSStatus PMSessionPageSetupDialogMain (
 PMPrintSession printSession,
 PMPageFormat pageFormat,
 Boolean *accepted,
 PMPageSetupDialogInitUPP myInitProc
);

Parameters
printSession

The current printing session.

pageFormat
A page format object.

accepted
A pointer to your Boolean variable. On return, true if the user clicks the OK button, or false if the
user clicks Cancel.

myInitProc
A universal procedure pointer to your dialog initialization function. Your initialization function is
defined by the callback PMPageSetupDialogInitProcPtr.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMSessionPageSetupDialogMain is valid only between the creation and release of a printing
session and after calling the function PMSessionPageSetupDialogInit. You should call this function only
if you create a custom dialog using the AppendDITLmethod. In Mac OS X, you should create a custom dialog
by writing a printing dialog extension. If you use this function to extend a printing dialog in Mac OS X, you
cannot use sheets.

Your dialog initialization function is called before your custom Page Setup dialog is displayed. Your initialization
function can append items to the Page Setup dialog, and should install an item proc using the
PMSetItemProc (page 2096) function. You must pass the same page format object to each of the functions
PMSessionPageSetupDialogMain and PMSessionPageSetupDialogInit (page 2089).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

2090 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

PMSessionPrintDialog
Displays the Print dialog and records the user’s selections in a print settings object.

OSStatus PMSessionPrintDialog (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat constPageFormat,
 Boolean *accepted
);

Parameters
printSession

The printing session for which you want to display the dialog.

printSettings
The print settings object in which the user’s selections are recorded.

constPageFormat
The page format object for the specified printing session.

accepted
A pointer to your Boolean variable. On return, true if the user accepts the dialog or false if the user
cancels the dialog. If you are using a sheet dialog, you should ignore the value of this parameter.

Return Value
A result code. See Core Printing Result Codes.

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession. Before you call the function PMSessionPrintDialog you should call the function
PMSessionValidatePrintSettings to make sure print settings are updated and valid. You should call
the function PMSessionPrintDialog outside the scope of your print loop.

The Print dialog shows the current settings in the print settings object. If the user changes these settings
and accepts the dialog, the print settings object is updated by the printing system with the user’s selections.
If the user cancels the dialog, the print settings object is returned unchanged.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonSketch

Declared In
PMApplication.h

PMSessionPrintDialogInit
Initializes a custom Print dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog extension instead.)

Functions 2091
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

OSStatus PMSessionPrintDialogInit (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat constPageFormat,
 PMDialog *newDialog
);

Parameters
printSession

The current printing session.

printSettings
A print settings object.

constPageFormat
A page format object.

newDialog
On return, a pointer to an initialized PMDialog object, ready for customization by your application.
Because the PMSessionPrintDialogMain (page 2092) function does not include a parameter for
passing this PMDialog object to your dialog initialization callback function, your application should
store this pointer in a global variable or as extended data in the PMPrintSettings object. See the
discussion of the PMPrintDialogInitProcPtr (page 2102) callback function for more information.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMSessionPrintDialogInit is valid only between the creation and release of a printing
session and after creating a print settings object. You should call this function only if you create a custom
dialog using the AppendDITL method. In Mac OS X, you should create a custom dialog by writing a printing
dialog extension. If you use this function to extend a printing dialog in Mac OS X, you cannot use sheets.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMSessionPrintDialogMain
Displays your application’s custom Print dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog extension
instead.)

2092 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

OSStatus PMSessionPrintDialogMain (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat constPageFormat,
 Boolean *accepted,
 PMPrintDialogInitUPP myInitProc
);

Parameters
printSession

The current printing session.

printSettings
A print settings object.

constPageFormat
A page format object.

accepted
A pointer to your Boolean variable. On return, true if the user accepts the dialog or false if the user
cancels the dialog.

myInitProc
A universal procedure pointer to your dialog initialization function. Your initialization function is
defined by the callback PMPrintDialogInitProcPtr

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMSessionPrintDialogMain is valid only between the creation and release of a printing
session and after calling the function PMSessionPrintDialogInit. You should call this function only if
you create a custom dialog using the AppendDITL method. In Mac OS X, you should create a custom dialog
by writing a printing dialog extension. If you use this function to extend a printing dialog in Mac OS X, you
cannot use sheets.

Your dialog initialization function is called before your custom Print dialog is displayed. Your initialization
function can append items to the Print dialog, and should install an item proc using the PMSetItemProc (page
2096) function. You must pass the same page format and print settings objects to each of the functions
PMSessionPrintDialogMain and PMSessionPrintDialogInit (page 2091).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMSessionUseSheets
Specifies that a printing dialog should be displayed as a sheet and specifies a function to call when the user
dismisses the printing dialog.

Functions 2093
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

OSStatus PMSessionUseSheets (
 PMPrintSession printSession,
 WindowRef documentWindow,
 PMSheetDoneUPP sheetDoneProc
);

Parameters
printSession

The printing session for which you want to display the dialog.

documentWindow
The window to which the sheet dialog should be attached.

sheetDoneProc
A universal procedure pointer to your sheet-done function. The printing system calls this function
when the user dismisses the dialog. Your sheet-done function is defined by the callback type
PMSheetDoneProcPtr (page 2103).

Return Value
A result code. See Core Printing Result Codes.

Discussion
You must call this function between the creation and release of a printing session. See the function
PMCreateSession.

When a printing dialog is displayed as a sheet, calls to the functions PMSessionPageSetupDialog (page
2088) andPMSessionPrintDialog (page 2091) return control immediately to your application, with the value
of the accepted parameter undefined. The printing dialog sheet continues to be displayed until the user
dismisses the dialog, at which time the printing system calls your sheet-done function. The page format and
print settings objects associated with the dialog should not be used or changed until the sheet-done function
is called.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMApplication.h

PMSetDialogAccepted
Indicates that the user confirmed a custom dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog
extension instead.)

OSStatus PMSetDialogAccepted (
 PMDialog pmDialog,
 Boolean process
);

Parameters
pmDialog

A PMDialog object representing your customized Page Setup or Print dialog.

2094 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

process
Pass true if the user confirms the dialog. In the case of the Page Setup dialog, this means the user
clicked the OK button; in the case of the Print dialog, this means the user clicked the Print button.
Pass false if the user clicks the Cancel button.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMSetDialogAccepted is valid between the creation and release of a printing session and
while displaying your custom Page Setup or Print dialog.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMSetDialogDone
Indicates that the user finished with a custom dialog. (Deprecated in Mac OS X v10.4. Use a printing dialog
extension instead.)

OSStatus PMSetDialogDone (
 PMDialog pmDialog,
 Boolean done
);

Parameters
pmDialog

A PMDialog object representing your custom Page Setup or Print dialog.

done
Pass true when your callback function has finished with this dialog.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMSetDialogDone is valid between the creation and release of a printing session and while
displaying your custom Page Setup or Print dialog.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

Functions 2095
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

PMSetItemProc
Installs an item proc callback function for items in a custom dialog. (Deprecated in Mac OS X v10.4. Use a
printing dialog extension instead.)

OSStatus PMSetItemProc (
 PMDialog pmDialog,
 PMItemUPP itemProc
);

Parameters
pmDialog

A PMDialog object representing your custom Page Setup or Print dialog.

itemProc
A universal procedure pointer to your dialog item event handling function.

Return Value
A result code. See Core Printing Result Codes.

Discussion
The function PMSetItemProc is valid between the creation and release of a printing session and after creating
your custom Page Setup or Print dialog.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMSetModalFilterProc
Installs an event handling callback function for a modal dialog. (Deprecated in Mac OS X v10.4. Use a printing
dialog extension instead.)

OSStatus PMSetModalFilterProc (
 PMDialog pmDialog,
 ModalFilterUPP filterProc
);

Parameters
pmDialog

A PMDialog object representing the Page Setup or Print dialog for which you want to install an event
handling function.

filterProc
A universal procedure pointer to the event handling function you want called while the Page Setup
or Print dialog is displayed. In Mac OS X this function is not called.

Return Value
A result code. See Core Printing Result Codes.

2096 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Discussion
The function PMSetModalFilterProc is valid between the creation and release of a printing session. You
must install your filter procedure before calling PMSessionPageSetupDialogMain or
PMSessionPrintDialogMain.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMShowPageSetupDialogAsSheet
Displays a Page Setup dialog as a sheet attached to a window.

OSStatus PMShowPageSetupDialogAsSheet (
 PMPrintSession printSession,
 PMPageFormat pageFormat,
 WindowRef documentWindow,
 PMSheetDoneUPP sheetDoneProc
);

Parameters
printSession

The printing session for which you want to display the dialog.

pageFormat
The initial page format settings.

documentWindow
The window to which the Page Setup dialog sheet should be attached.

sheetDoneProc
A pointer to a sheet-done callback function that you provide. Your function is called when the user
dismisses the dialog. See PMSheetDoneProcPtr (page 2103) for information about how to implement
this callback.

Return Value
A result code. See Core Printing Result Codes.

Discussion
This function is asynchronous; it displays the dialog in a sheet and returns immediately. When the user
dismisses the dialog, the printing system calls the function specified in the sheetDoneProc parameter,
passing it a Boolean value that indicates whether the user pressed the OK button.

Special Considerations

In Mac OS X v10.5 and later, you should use this function if you want to display the Page Setup dialog as a
document-modal sheet. This function replaces the older method of calling PMSessionUseSheets (page
2093) and PMSessionPageSetupDialog (page 2088).

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Functions 2097
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Declared In
PMApplication.h

PMShowPrintDialogWithOptions
Displays a Print dialog with a specified set of controls.

OSStatus PMShowPrintDialogWithOptions (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat pageFormat,
 PMPrintDialogOptionFlags printDialogOptions,
 Boolean *accepted
);

Parameters
printSession

The printing session for which you want to display the dialog.

printSettings
The initial print settings for the Print dialog.

pageFormat
The initial page format settings for the Print dialog.

printDialogOptions
Flags that specify what controls are displayed in the expanded version of the Print dialog. See “Print
Dialog Options” (page 2106) for a description of the flags you can use to specify the dialog options.

accepted
A pointer to a Boolean value. On return, true if the user accepts the dialog or false if the user cancels
the dialog.

Return Value
A result code. See Core Printing Result Codes.

Discussion
In Mac OS X v10.5 and later, you can use this function to display the Print dialog with an optional set of
controls in the expanded version of the dialog. When the Print dialog is first displayed, the user sees a
simplified dialog with a disclosure button. If the button is pressed, the dialog expands and includes the
controls specified in the printDialogOptions parameter. This function only allows you to specify controls
for which flags are defined. The expanded dialog may also contain other controls that are not optional.

When you call this function, you should be prepared for the possibility that the page format settings may
change. The expanded Print dialog could allow the user to modify page format settings explicitly. Even if the
dialog is displayed with the default set of options, there may be other controls in the Print dialog that cause
the page format settings to change.

This function is synchronous; it doesn’t return until the user dismisses the dialog.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
PMApplication.h

2098 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

PMShowPrintDialogWithOptionsAsSheet
Displays a Print dialog with a specified set of controls as a sheet attached to a window.

OSStatus PMShowPrintDialogWithOptionsAsSheet (
 PMPrintSession printSession,
 PMPrintSettings printSettings,
 PMPageFormat pageFormat,
 PMPrintDialogOptionFlags printDialogOptions,
 WindowRef documentWindow,
 PMSheetDoneUPP sheetDoneProc
);

Parameters
printSession

The printing session for which you want to display the dialog.

printSettings
The initial print settings for the Print dialog.

pageFormat
The initial page format settings for the Print dialog.

printDialogOptions
Flags that specify what controls are displayed in the expanded version of the Print dialog. See “Print
Dialog Options” (page 2106) for a description of the flags you can use to specify dialog options.

documentWindow
The window to which the Print dialog sheet should be attached.

sheetDoneProc
A pointer to a sheet-done callback function that you provide. Your function is called when the user
dismisses the dialog. See PMSheetDoneProcPtr (page 2103) for information about how to implement
this callback.

Return Value
A result code. See Core Printing Result Codes.

Discussion
In Mac OS X v10.5 and later, you can use this function to display the Print dialog with an optional set of
controls in the expanded version of the dialog. When the Print dialog is first displayed, the user sees a
simplified dialog with a disclosure button. If the button is pressed, the dialog expands and includes the
controls specified in the printDialogOptions parameter. This function only allows you to specify controls
for which flags are defined. The expanded dialog may also contain other controls that are not optional.

When you call this function, you should be prepared for the possibility that the page format settings may
change. The expanded Print dialog could allow the user to modify page format settings explicitly. Even if the
dialog is displayed with the default set of options, there may be other controls in the Print dialog that cause
the page format settings to change.

This function is asynchronous; it displays the dialog in a sheet and returns immediately. When the user
dismisses the dialog, the printing system calls the function specified in the sheetDoneProc parameter,
passing it a Boolean value that indicates whether the user accepted or canceled the dialog.

Special Considerations

In Mac OS X v10.5 and later, you should use this function if you want to display the Print dialog as a
document-modal sheet. This function replaces the older method of calling PMSessionUseSheets (page
2093) and PMSessionPrintDialog (page 2091).

Functions 2099
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
PMApplication.h

Callbacks by Task

Sheet Dialog Callback

PMSheetDoneProcPtr (page 2103)
Defines a pointer to a sheet-done function. The function is called when the user dismisses a printing
dialog presented as a sheet.

Legacy Callbacks

PMPageSetupDialogInitProcPtr (page 2101)
Defines a pointer to a dialog initialization function for your custom Page Setup dialog. (Deprecated.
Use a printing dialog extension instead.)

PMPrintDialogInitProcPtr (page 2102)
Defines a pointer to a dialog initialization function for your custom Print dialog. (Deprecated. Use a
printing dialog extension instead.)

PMItemProcPtr (page 2100)
Defines a pointer to a dialog item proc function that handles items you add to your custom Page
Setup or Print dialog. (Deprecated. Use a printing dialog extension instead.)

Callbacks

PMItemProcPtr
Defines a pointer to a dialog item proc function that handles items you add to your custom Page Setup or
Print dialog. (Deprecated. Use a printing dialog extension instead.)

typedef void (*PMItemProcPtr) (
 DialogRef theDialog,
 SInt16 item
);

You would declare your event handling function like this if you were to name it MyPMItemCallback:

void MyPMItemCallback (
 DialogRef theDialog,
 SInt16 item
);

2100 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Parameters
theDialog

A reference to your customized Page Setup or Print dialog (PMDialog). You can use the function
PMGetDialogPtr to get a dialog reference.

item
The number of the dialog item.

Discussion
You should provide an item proc callback function if you add items to a custom dialog you create using the
AppendDITLmethod. In Mac OS X, you should create a custom dialog by writing a printing dialog extension.

Your function is called by the printing system after you create a custom Page Setup or Print dialog and register
your dialog item proc function by calling the function PMSetItemProc. In Mac OS X, your function is called
for items you add to your custom Page Setup or Print dialog. Your item proc function should call the function
PMSessionSetError if the user cancels, otherwise the printing system won’t know about the user
cancellation.

To provide a pointer to your item proc function, you create a universal procedure pointer (UPP) of type
PMItemUPP, using the function NewPMItemUPP. You can do so with code similar to the following:

PMItemUPP MyPMItemCallbackUPP;
MyPMItemCallbackUPP = NewPMPItemUPP (&MyPMItemCallback);

After you are finished with your item proc function, you can dispose of the UPP with the function
DisposePMItemUPP. However, if you will use the same event handling function for subsequent displays of
a printing dialog, you can reuse the same UPP, rather than dispose of it and later create a new UPP.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMPageSetupDialogInitProcPtr
Defines a pointer to a dialog initialization function for your custom Page Setup dialog. (Deprecated. Use a
printing dialog extension instead.)

typedef void (*PMPageSetupDialogInitProcPtr) (
 PMPageFormat pageFormat,
 PMDialog *theDialog
);

You would declare your dialog initialization function like this if you were to name it
MyPageSetupDialogInitCallback:

void MyPageSetupDialogInitCallback (
 PMPageFormat pageFormat,
 PMDialog *theDialog
);

Callbacks 2101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Parameters
pageFormat

A PMPageFormat object.

theDialog
A pointer to the PMDialog object representing your custom Page Setup dialog. You obtain this object
from the function PMSessionPageSetupDialogInit. Your application should store a pointer to
the dialog object in a global variable or as extended data in the PMPageFormat object, where it is
accessible by your initialization function.

Discussion
You should set up a dialog initialization callback only if you need to use a custom dialog you create using
the AppendDITL method. In Mac OS X, you should create a custom dialog by writing a printing dialog
extension. Your initialization function can append items to the Page Setup dialog. If you use this function to
extend a printing dialog in Mac OS X, you cannot use sheets.

You pass a pointer to your dialog initialization function as a parameter to the function
PMSessionPageSetupDialogMain. Your dialog initialization function is called before your custom Page
Setup dialog is displayed. Your initialization function can append items to the Page Setup dialog, and should
install an item proc using the function PMSetitemProc.

To provide a pointer to your dialog initialization function, you create a universal procedure pointer (UPP) of
type PMPageSetupDialogInitUPP, using the function NewPMPageSetupDialogInitUPP. You can do so
with code similar to the following:

PMPageSetupDialogInitUPP MyPageSetupDialogInitCallbackUPP;
MyPageSetupDialogInitCallbackUPP = NewPMPageSetupDialogInitUPP
(MyPageSetupDialogInitCallback);

After you are finished with your dialog initialization function, you can dispose of the UPP with the function
DisposePMPageSetupDialogInitUPP. However, if you plan to use the same dialog initialization function
for subsequent display of the Page Setup dialog, you can reuse the same UPP, rather than dispose of it and
later create a new UPP.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMPrintDialogInitProcPtr
Defines a pointer to a dialog initialization function for your custom Print dialog. (Deprecated. Use a printing
dialog extension instead.)

typedef void (*PMPrintDialogInitProcPtr) (
 PMPrintSettings printSettings,
 PMDialog *theDialog
);

You would declare your dialog initialization function like this if you were to name it
MyPrintDialogInitCallback:

void MyPrintDialogInitCallback (

2102 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

 PMPrintSettings printSettings,
 PMDialog *theDialog
);

Parameters
printSettings

A PMPrintSettings object.

theDialog
A pointer to the PMDialog object representing your custom Print dialog. You obtain this object from
the function PMSessionPrintDialogInit. Your application should store a pointer to the dialog
object in a global variable or as extended data in the PMPrintSettings object, where it is accessible
by your initialization function.

Discussion
You should set up a dialog initialization callback if you need to use a custom dialog you create using the
AppendDITLmethod. In Mac OS X, you should create a custom dialog by writing a printing dialog extension.
Your initialization function can append items to the Print dialog. If you use this function to extend a printing
dialog in Mac OS X, you cannot use sheets.

You pass a pointer to your dialog initialization function as a parameter to the function
PMSessionPrintDialogMain. Your dialog initialization function is called before your custom Print dialog
is displayed. Your initialization function can append items to the Print dialog, and should install an item proc
using the function PMSetitemProc.

To provide a pointer to your dialog initialization function, you create a universal procedure pointer (UPP) of
type PMPrintDialogInitUPP, using the function NewPMPrintDialogInitUPP. You can do so with code
similar to the following:

PMPrintDialogInitUPP MyPrintDialogInitCallbackUPP;
MyPrintDialogInitCallbackUPP = NewPMPrintDialogInitUPP
(&MyPrintDialogInitCallback);

After you are finished with your dialog initialization function, you can dispose of the UPP with the function
DisposePMPrintDialogInitUPP. However, if you will use the same dialog initialization function for
subsequent displays of the Print dialog, you can reuse the same UPP, rather than dispose of it and later create
a new UPP.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMSheetDoneProcPtr
Defines a pointer to a sheet-done function. The function is called when the user dismisses a printing dialog
presented as a sheet.

Callbacks 2103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

typedef void (*PMSheetDoneProcPtr) (
 PMPrintSession printSession,
 WindowRef documentWindow,
 Boolean accepted
);

You would declare your sheet-done function like this if you were to name it MyPrintSheetDoneCallback:

void MyPrintSheetDoneCallback (
 PMPrintSession printSession,
 WindowRef documentWindow,
 Boolean accepted
);

Parameters
printSession

The printing session object for the dialog.

documentWindow
The document window to which the sheet is attached.

accepted
A Boolean value indicating whether the user accepted (true) or canceled (false) the dialog.

Discussion
You pass a universal procedure pointer to your sheet-done callback function as a parameter to the functions
PMSessionUseSheets (page 2093), PMShowPrintDialogWithOptionsAsSheet (page 2099), and
PMShowPageSetupDialogAsSheet (page 2097). Your sheet-done function is called when the user dismisses
the dialog. If the user accepted the dialog, your function should take appropriate action depending on
whether the Page Setup or Print dialog is being shown.

To provide a pointer to your sheet-done function, you create a universal procedure pointer (UPP) of type
PMSheetDoneUPP, using the function NewPMSheetDoneUPP. You can do so with code similar to the following:

PMSheetDoneUPP gMyPrintSheetDoneUPP;
gMyPrintSheetDoneUPP = NewPMSheetDoneUPP (&MyPrintSheetDoneProc);

You should declare your universal procedure pointer as a global variable to allow for multiple windows, each
with a dialog available at one time.

When your print job is completed, you should use the function DisposePMSheetDoneUPP function to
dispose of the universal procedure pointer associated with your sheet-done function. However, if you plan
to use the same sheet-done function in subsequent print jobs, you can reuse the same UPP, rather than
dispose of it and later create a new UPP.

The sheet-done function does not have a parameter for application-supplied data. Instead, you can attach
any data your application needs to the window as a property using the Window Manager function
SetWindowProperty and retrieve the data using the function GetWindowProperty.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMApplication.h

2104 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Data Types

PMItemUPP
A type that defines a universal procedure pointer to an item proc callback.

typedef PMItemProcPtr PMItemUPP;

Discussion
This data type is used by functions that are deprecated. For more information, see the description of the
PMItemProcPtr (page 2100) callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMPageSetupDialogInitUPP
A type that defines a universal procedure pointer to a Page Setup dialog initialization callback.

typedef PMPageSetupDialogInitProcPtr PMPageSetupDialogInitUPP;

Discussion
This data type is used by functions that are deprecated. For more information, see the description of the
PMPageSetupDialogInitProcPtr (page 2101) callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMApplicationDeprecated.h

PMPrintDialogInitUPP
A type that defines a universal procedure pointer to a Print dialog initialization callback.

typedef PMPrintDialogInitProcPtr PMPrintDialogInitUPP;

Discussion
This data type is used by functions that are deprecated. For more information, see the description of the
PMPrintDialogInitProcPtr (page 2102) callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Data Types 2105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Declared In
PMApplicationDeprecated.h

PMSheetDoneUPP
A type that defines a universal procedure pointer to a sheet-done callback function.

typedef PMSheetDoneProcPtr PMSheetDoneUPP;

Discussion
For more information, see the description of the PMSheetDoneProcPtr (page 2103) callback function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMApplication.h

Constants

Print Dialog Options
Flags that specify items to show in the expanded Print dialog in Mac OS X v10.5 and later.

typedef OptionBits PMPrintDialogOptionFlags;
enum {
 kPMHideInlineItems = (0L << 0),
 kPMShowDefaultInlineItems = (1L << 15),
 kPMShowInlineCopies = (1L << 0),
 kPMShowInlinePageRange = (1L << 1),
 kPMShowInlinePageRangeWithSelection = (1L << 6),
 kPMShowInlinePaperSize = (1L << 2),
 kPMShowInlineOrientation = (1L << 3),
 kPMShowInlineScale = (1L << 7),
 kPMShowPageAttributesPDE = (1L << 8),
};

Constants
kPMHideInlineItems

Show nothing in the inline portion of the Print dialog.

Available in Mac OS X v10.5 and later.

Not available to 64-bit applications.

Declared in PMApplication.h.

kPMShowDefaultInlineItems
Show the default set of items (copies & page range) in the inline portion of the Print dialog.

Available in Mac OS X v10.5 and later.

Not available to 64-bit applications.

Declared in PMApplication.h.

2106 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

kPMShowInlineCopies
Show the copies edit-text field, the collated check box, and the two-sided check box (if the printer
supports it) in the top portion of the Print dialog.

Available in Mac OS X v10.5 and later.

Not available to 64-bit applications.

Declared in PMApplication.h.

kPMShowInlinePageRange
Show the page range radio buttons and the from & to page edit-text fields in the top portion of the
Print dialog.

Available in Mac OS X v10.5 and later.

Not available to 64-bit applications.

Declared in PMApplication.h.

kPMShowInlinePageRangeWithSelection
Show the page range radio buttons with the addition of a selection button and the From & To Page
edit-text fields in the top portion of the Print dialog.

Available in Mac OS X v10.5 and later.

Not available to 64-bit applications.

Declared in PMApplication.h.

kPMShowInlinePaperSize
Show the formatting paper size popup menu in the top portion of the Print dialog.

Available in Mac OS X v10.5 and later.

Not available to 64-bit applications.

Declared in PMApplication.h.

kPMShowInlineOrientation
Show the page orientation buttons in the top portion of the Print dialog.

Available in Mac OS X v10.5 and later.

Not available to 64-bit applications.

Declared in PMApplication.h.

kPMShowInlineScale
Show the scale edit-text field in the top portion of the Print dialog.

Available in Mac OS X v10.5 and later.

Not available to 64-bit applications.

Declared in PMApplication.h.

kPMShowPageAttributesPDE
Add a separate pane to the Print dialog that contains the Page Setup dialog information (paper size,
orientation, and scale).

Available in Mac OS X v10.5 and later.

Not available to 64-bit applications.

Declared in PMApplication.h.

Declared In
PMApplication.h

Constants 2107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

2108 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 26

Carbon Printing Reference

Framework: Carbon/Carbon.h

Declared in Controls.h
ControlDefinitions.h

Overview

The data browser application programming interface (API) provides a convenient way to present data for
browsing and to create easily customized lists whose columns can be sorted, moved, and resized. It supports
two presentation styles, each of which is derived from an abstract table-view base class:

 ■ List view, which lets you present items in multiple columns with the option to create hierarchical lists
whose contents can be disclosed by the user

 ■ Column view, which provides in-place browsing using fixed navigation columns

The data browser programming interface has some routines that apply to both views while others are unique
to one view. For functions that can be called for either, there may be differences in how the functions operate.
Such differences are noted in the documentation for individual functions.

These terms are essential to understanding the reference:

 ■ An item in a data browser refers to the data displayed at a particular row and column intersection. In
list view, two values identify each item—an item ID and a property ID. In column view, one value—the
item ID—uniquely identifies an item.

 ■ An item ID is a unique 32-bit ID number that your application uses to refer to data. When you ask the
data browser to display one or more items, you provide an item ID for each data item. You can store the
actual data in memory, on disk, or across a network. Item IDs must be greater than 0, which is used
internally by the data browser. Item IDs can be values such as pointer values, data file offsets, and 32-bit
TCP/IP host addresses.

 ■ A Property ID is a non-zero, 32-bit unsigned integer value that uniquely identifies a list view column.
Property IDs do not need to be ordered or sequential, but they cannot be values 0 through 1023 because
those values are reserved by Apple. A property ID is typically defined as a four-character sequence. For
example, a column that displays dates could be assigned the property ID DATE.

Columns in column view don’t use application-defined property IDs. Instead, columns in column view
have the predefined property kDataBrowserItemSelfIdentityProperty.

After you’ve created, formatted, and configured a data browser, most of the work of keeping the data browser
updated and responsive to user interaction happens through callbacks you provide. For example, all of the
functions that get and set item data are called from within an item-data callback provided by your application.
Your application has a wide latitude in what it can choose to handle through callbacks and the tasks it lets

Overview 2109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

the system perform. At the very least, your application must provide an item-data callback. Otherwise no
data will ever be written to the data browser user interface. Depending on the nature of your application,
you may also want to provide callbacks to handle drag-and-drop behavior, to support contextual menus,
and to perform custom drawing or some other custom behavior.

The data browser is available with CarbonLib 1.1 and later and in Mac OS X.

For conceptual information and instructions on how to write code that uses a data browser to display data,
see Data Browser Programming Guide.

Functions by Task

Creating and Configuring a Data Browser

CreateDataBrowserControl (page 2125)
Creates a data browser programmatically.

SetDataBrowserViewStyle (page 2230)
Sets the view style of the specified data browser.

GetDataBrowserViewStyle (page 2174)
Obtains the current view style for the specified data browser.

Manipulating Data Browser Attributes

GetDataBrowserUserState (page 2173)
Obtains the current view style settings for a list view.

SetDataBrowserUserState (page 2230)
Restores the view-style settings in list view to a previous state set by the user.

SetDataBrowserActiveItems (page 2199)
Sets what determines the active state of the items in a data browser.

GetDataBrowserActiveItems (page 2139)
Obtains what determines the active state of the items in a data browser.

SetDataBrowserScrollBarInset (page 2220)
Sets the inset values to use for the scroll bars of a data browser.

GetDataBrowserScrollBarInset (page 2162)
Obtains the inset rectangle used by a data browser to position the scroll bar.

SetDataBrowserTarget (page 2229)
Sets the target for a data browser.

GetDataBrowserTarget (page 2172)
Obtains the target for the data browser

SetDataBrowserSortOrder (page 2223)
Sets the sorting order for a list in list view.

GetDataBrowserSortOrder (page 2164)
Gets the sorting order of the list view column that’s currently set for sorting.

2110 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

SetDataBrowserScrollPosition (page 2221)
Scrolls a list to the specified position.

GetDataBrowserScrollPosition (page 2162)
Obtains the scrolling position of a list.

SetDataBrowserHasScrollBars (page 2206)
Sets the display state of horizontal and vertical scroll bars for a list view data browser.

GetDataBrowserHasScrollBars (page 2144)
Obtains the display state of horizontal and vertical scroll bars for a list view data browser.

SetDataBrowserSortProperty (page 2223)
Designates the list view column to use for sorting.

GetDataBrowserSortProperty (page 2165)
Obtains the property ID of the column currently used for sorting in list view.

SetDataBrowserSelectionFlags (page 2222)
Sets allowable selection behavior for a data browser.

GetDataBrowserSelectionFlags (page 2164)
Obtains the current selection behavior for a data browser.

SetDataBrowserPropertyFlags (page 2219)
Sets the appearance and behavior attributes for a column in list view.

GetDataBrowserPropertyFlags (page 2161)
Obtains the appearance and behavior attributes for a column.

SetDataBrowserEditText (page 2205)
Modifies the displayed contents of a text item while it is being edited.

CopyDataBrowserEditText (page 2125)
Copies the text being edited by the user.

GetDataBrowserEditText (page 2143)
Obtains the text being edited by the user.

SetDataBrowserEditItem (page 2204)
Programmatically starts or ends an editing session.

GetDataBrowserEditItem (page 2143)
Obtains the item ID and property ID values of the current editing session.

GetDataBrowserItemPartBounds (page 2156)
Obtains the bounds of a visual part of an item.

Setting Up and Installing Callbacks

InitDataBrowserCallbacks (page 2175)
Initializes a data browser callback structure in preparation for adding your own callbacks to the
structure.

SetDataBrowserCallbacks (page 2200)
Sets the callback routines to use with a data browser, replacing any previously installed callbacks.

GetDataBrowserCallbacks (page 2140)
Obtains the callback routines installed for notifying your application of changes to a data browser
and for providing the data to be displayed by the data browser.

Functions by Task 2111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

InitDataBrowserCustomCallbacks (page 2176)
Initializes the data browser custom callback structure in preparation for adding your own callbacks
for custom drawing or custom behavior to the structure.

SetDataBrowserCustomCallbacks (page 2203)
Sets the custom callback routines to use with a data browser, replacing any previously installed custom
callbacks.

GetDataBrowserCustomCallbacks (page 2142)
Obtains the callbacks installed to implement custom drawing and behavior for the content in a data
browser.

Formatting Table View
Table view is a base class from which list and column views are derived. Some functions in this group can
be used with both list and column views, while others are useful only in list view.

RemoveDataBrowserTableViewColumn (page 2198)
Removes a column from a list view data browser.

GetDataBrowserTableViewColumnCount (page 2166)
Obtains the number of columns in a data browser.

SetDataBrowserTableViewHiliteStyle (page 2226)
Sets the highlighting style to use for a list view data browser.

GetDataBrowserTableViewHiliteStyle (page 2169)
Obtains the highlighting style used for a list view data browser.

SetDataBrowserTableViewRowHeight (page 2228)
Sets the default row height for all rows in a data browser.

GetDataBrowserTableViewRowHeight (page 2172)
Obtains the default row height used for all rows in a data browser.

SetDataBrowserTableViewColumnWidth (page 2225)
Sets the default column width for all columns in a data browser.

GetDataBrowserTableViewColumnWidth (page 2167)
Obtains the default column width used for all columns in a data browser.

SetDataBrowserTableViewItemRowHeight (page 2227)
Sets the row height for a single row in a list view data browser.

GetDataBrowserTableViewItemRowHeight (page 2170)
Obtains the row height for a single row in a list view data browser.

SetDataBrowserTableViewNamedColumnWidth (page 2228)
Sets the column width for a single column in a list view data browser.

GetDataBrowserTableViewNamedColumnWidth (page 2171)
Obtains the column width for a single column in a data browser.

SetDataBrowserTableViewGeometry (page 2225)
Sets whether columns and rows can have variable widths in list view.

GetDataBrowserTableViewGeometry (page 2168)
Determines whether columns and rows are set to have variable widths.

GetDataBrowserTableViewItemID (page 2169)
Obtains the item ID for the item displayed in the specified row.

2112 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

SetDataBrowserTableViewItemRow (page 2226)
Changes the visual position for an item in a list view data browser.

GetDataBrowserTableViewItemRow (page 2170)
Obtains the visual position for the specified item in list view.

SetDataBrowserTableViewColumnPosition (page 2224)
Changes the visual position of a column in list view.

GetDataBrowserTableViewColumnPosition (page 2166)
Obtains the column position for an item in a data browser.

GetDataBrowserTableViewColumnProperty (page 2167)
Obtains the property ID for a column in a data browser.

Formatting List View

AutoSizeDataBrowserListViewColumns (page 2122)
Adjusts the size of columns displayed in list view to take best advantage of the available space.

AddDataBrowserListViewColumn (page 2121)
Adds a column to a data browser that uses list view.

GetDataBrowserListViewHeaderDesc (page 2160)
Obtains a header description for a column in list view.

SetDataBrowserListViewHeaderDesc (page 2218)
Provides a description for a column title in list view.

SetDataBrowserListViewHeaderBtnHeight (page 2217)
Sets the height of the rectangular area where the column title appears.

GetDataBrowserListViewHeaderBtnHeight (page 2159)
Obtains the height of the rectangular area where the column title appears.

SetDataBrowserListViewUsePlainBackground (page 2219)
Specifies whether list view uses a plain white background.

GetDataBrowserListViewUsePlainBackground (page 2160)
Determines whether list view is set to use a plain white background.

SetDataBrowserListViewDisclosureColumn (page 2216)
Specifies whether there is a column that has disclosure triangles and, if so, which column.

GetDataBrowserListViewDisclosureColumn (page 2158)
Obtains the property ID of the column whose items can display a disclosure triangle, and tells whether
a disclosed item expands the row or adds rows.

Formatting Column View

SetDataBrowserColumnViewPath (page 2202)
Sets a path for a column view.

GetDataBrowserColumnViewPath (page 2141)
Obtains the current path for a selection in column view.

GetDataBrowserColumnViewPathLength (page 2142)
Obtains the length of the current path for a column view.

Functions by Task 2113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

SetDataBrowserColumnViewDisplayType (page 2202)
Sets the display type for a data browser in column view.

GetDataBrowserColumnViewDisplayType (page 2140)
Obtains the display type for a column view.

Adding and Removing Data Items

AddDataBrowserItems (page 2120)
Adds one or more items to a data browser.

RemoveDataBrowserItems (page 2197)
Removes one or more items from a data browser.

UpdateDataBrowserItems (page 2232)
Requests a redraw of one or more items in a data browser.

Accessing and Operating on All Items

GetDataBrowserItems (page 2157)
Obtains a list of the items that match a specified state; operates on items in the root container or
traverses items in the data hierarchy.

GetDataBrowserItemCount (page 2145)
Obtains the number of items whose state matches the specified state.

ForEachDataBrowserItem (page 2138)
Applies an item-iterator callback routine to each data item that meets the specified criteria.

Accessing and Displaying Individual Items

IsDataBrowserItemSelected (page 2186)
Checks to see if a data item is selected.

GetDataBrowserItemState (page 2158)
Obtains the state of an item.

RevealDataBrowserItem (page 2199)
Scrolls an item into view, optionally bringing a particular part of that item into view.

Selecting and Editing Items

EnableDataBrowserEditCommand (page 2137)
Determines whether the data browser is currently able to process a given editing command.

ExecuteDataBrowserEditCommand (page 2138)
Executes an editing command.

GetDataBrowserSelectionAnchor (page 2163)
Obtains the first and last items in a selection.

MoveDataBrowserSelectionAnchor (page 2186)
Moves or extends the current selection.

2114 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

SetDataBrowserSelectedItems (page 2222)
Modifies the current selection by adding items, removing items, or toggling the selection state of
items.

Working With Attributes

DataBrowserGetAttributes (page 2127)
Gets the attributes of a data browser.

DataBrowserChangeAttributes (page 2127)
Sets the attributes for a data browser.

Working With Containers

OpenDataBrowserContainer (page 2196)
Opens a data browser container.

CloseDataBrowserContainer (page 2124)
Closes a data browser container.

SortDataBrowserContainer (page 2231)
Sorts a hierarchical list of items.

Working With Metrics

DataBrowserGetMetric (page 2128)
Gets the value of a specified data browser metric.

DataBrowserSetMetric (page 2129)
Sets the value of a specified data browser metric.

Getting and Setting Item Data
The functions in this section are called from within an item-data callback routine
(DataBrowserItemDataProcPtr) provided by your application. The data browser invokes your item-data
callback each time your application needs to provide data for the display. Your callback responds by calling
the appropriate function from this section.

SetDataBrowserItemDataIcon (page 2209)
Specifies the icon to draw.

GetDataBrowserItemDataIcon (page 2148)
Obtains the icon drawn for an item.

SetDataBrowserItemDataText (page 2214)
Specifies the text to draw.

GetDataBrowserItemDataText (page 2154)
Obtains the text entered by the user.

Functions by Task 2115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

SetDataBrowserItemDataValue (page 2215)
Sets the value of an item; useful for such display types as sliders, progress bars, relevance indicators,
and pop-up menus.

GetDataBrowserItemDataValue (page 2155)
Obtains the value of an item; useful for such display types as sliders, progress bars, relevance indicators,
and pop-up menus.

SetDataBrowserItemDataMinimum (page 2213)
Specifies the minimum integer value that can be displayed for an item; useful for such display types
as sliders, progress bars, relevance indicators, and pop-up menus.

GetDataBrowserItemDataMinimum (page 2152)
Obtains the minimum integer value that can be displayed for an item; useful for such display types
as sliders, progress bars, relevance indicators, and pop-up menus.

SetDataBrowserItemDataMaximum (page 2212)
Specifies the maximum integer value that can be displayed for an item; useful for such display types
as sliders, progress bars, relevance indicators, and pop-up menus.

GetDataBrowserItemDataMaximum (page 2151)
Obtains the maximum integer value that can be displayed; useful for such display types as sliders,
progress bars, relevance indicators, and pop-up menus.

SetDataBrowserItemDataBooleanValue (page 2206)
Specifies a Boolean value for an item.

GetDataBrowserItemDataBooleanValue (page 2145)
Obtains the Boolean value for an item.

SetDataBrowserItemDataMenuRef (page 2213)
Sets the pop-up menu to display.

GetDataBrowserItemDataMenuRef (page 2152)
Obtains the pop-up menu displayed.

SetDataBrowserItemDataRGBColor (page 2214)
Specifies a color to use when drawing an item.

GetDataBrowserItemDataRGBColor (page 2154)
Obtains the color used to draw an item.

SetDataBrowserItemDataDrawState (page 2208)
Specifies whether to draw a checkbox in the active or inactive state.

GetDataBrowserItemDataDrawState (page 2148)
Determines whether a checkbox is in the active or inactive state.

SetDataBrowserItemDataButtonValue (page 2207)
Specifies a checkbox value.

GetDataBrowserItemDataButtonValue (page 2146)
Obtains the value for a checkbox.

SetDataBrowserItemDataIconTransform (page 2210)
Specifies a transformation to apply to an icon when it is drawn.

GetDataBrowserItemDataIconTransform (page 2149)
Obtains the transformation currently used to display an icon.

SetDataBrowserItemDataDateTime (page 2208)
Specifies, as a 32-bit value, a date and time value to display.

2116 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

GetDataBrowserItemDataDateTime (page 2147)
Obtains, as a 32-bit value, the date and time value displayed.

SetDataBrowserItemDataLongDateTime (page 2211)
Specifies, as a 64-bit value, a date and time value to display.

GetDataBrowserItemDataLongDateTime (page 2150)
Obtains, as a 64-bit value, the date and time value displayed.

SetDataBrowserItemDataItemID (page 2210)
Communicates a property of an item when that property is another item’s ID.

GetDataBrowserItemDataItemID (page 2150)
Obtains the item ID for an item whose property is another item’s ID.

GetDataBrowserItemDataProperty (page 2153)
Obtains the column property ID for the column in which an item resides.

Working With Universal Procedure Pointers
The functions in this section create and dispose of universal procedure pointers (UPPs) to the callbacks you
provide to the data browser. For each callback, there is a New, Dispose, and Invoke function. You don’t need
to use an Invoke function, because the data browser invokes callbacks for you.

The documentation for the UPP functions in this section is boilerplate text—quite repetitive and you can
likely skip over it. The more interesting documentation is for the callbacks themselves, which you can find
in the section “Data Browser Callbacks” (page 2233).

NewDataBrowserItemUPP (page 2194)
Creates a universal procedure pointer to an item-iterator callback function.

InvokeDataBrowserItemUPP (page 2183)
Calls an item-iterator callback function.

DisposeDataBrowserItemUPP (page 2135)
Disposes of a universal procedure pointer to an item-iterator callback function.

NewDataBrowserItemDataUPP (page 2191)
Creates a universal procedure pointer to an item-data callback function.

InvokeDataBrowserItemDataUPP (page 2180)
Calls an item-data callback function.

DisposeDataBrowserItemDataUPP (page 2133)
Disposes of a universal procedure pointer to an item-data callback function.

NewDataBrowserItemCompareUPP (page 2190)
Creates a universal procedure pointer to an item-comparison callback function.

InvokeDataBrowserItemCompareUPP (page 2180)
Calls an item-comparison callback function.

DisposeDataBrowserItemCompareUPP (page 2132)
Disposes of a universal procedure pointer to an item-comparison callback function.

NewDataBrowserItemNotificationUPP (page 2192)
Creates a universal procedure pointer to an item-notification callback function.

InvokeDataBrowserItemNotificationUPP (page 2182)
Calls an item-notification callback function.

Functions by Task 2117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DisposeDataBrowserItemNotificationUPP (page 2134)
Disposes of a universal procedure pointer to an item-notification callback function.

NewDataBrowserItemNotificationWithItemUPP (page 2193)
Creates a universal procedure pointer to an item-notification-with-data callback function.

InvokeDataBrowserItemNotificationWithItemUPP (page 2182)
Calls an item-notification-with-data callback function.

DisposeDataBrowserItemNotificationWithItemUPP (page 2134)
Disposes of a universal procedure pointer to an item-notification-with-data callback function.

NewDataBrowserAddDragItemUPP (page 2188)
Creates a universal procedure pointer to an add-drag-item callback function.

InvokeDataBrowserAddDragItemUPP (page 2177)
Calls an add-drag-item callback function.

DisposeDataBrowserAddDragItemUPP (page 2130)
Disposes of a universal procedure pointer to an add-drag-item callback function.

NewDataBrowserAcceptDragUPP (page 2187)
Creates a universal procedure pointer to an accept-drag callback function.

InvokeDataBrowserAcceptDragUPP (page 2177)
Calls an accept-drag callback function.

DisposeDataBrowserAcceptDragUPP (page 2129)
Disposes of a universal procedure pointer to an accept-drag callback function.

NewDataBrowserReceiveDragUPP (page 2195)
Creates a universal procedure pointer to a receive-drag callback function.

InvokeDataBrowserReceiveDragUPP (page 2184)
Calls a receive-drag callback function.

DisposeDataBrowserReceiveDragUPP (page 2136)
Disposes of a universal procedure pointer to a receive-drag callback function.

NewDataBrowserPostProcessDragUPP (page 2194)
Creates a universal procedure pointer to a postprocess-drag callback function.

InvokeDataBrowserPostProcessDragUPP (page 2184)
Calls a postprocess-drag callback function.

DisposeDataBrowserPostProcessDragUPP (page 2135)
Disposes of a universal procedure pointer to a postprocess-drag callback function.

NewDataBrowserGetContextualMenuUPP (page 2189)
Creates a universal procedure pointer to a get-contextual-menu callback function.

InvokeDataBrowserGetContextualMenuUPP (page 2178)
Calls a get-contextual-menu callback function.

DisposeDataBrowserGetContextualMenuUPP (page 2131)
Disposes of a universal procedure pointer to a get-contextual-menu callback function.

NewDataBrowserSelectContextualMenuUPP (page 2195)
Creates a universal procedure pointer to a select-contextual-menu callback function.

InvokeDataBrowserSelectContextualMenuUPP (page 2185)
Calls a select-contextual-menu callback function.

DisposeDataBrowserSelectContextualMenuUPP (page 2136)
Disposes of a universal procedure pointer to a select-contextual-menu callback function.

2118 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

NewDataBrowserItemHelpContentUPP (page 2192)
Creates a universal procedure pointer to an item-help-content callback function.

InvokeDataBrowserItemHelpContentUPP (page 2181)
Calls an item-help-content callback function.

DisposeDataBrowserItemHelpContentUPP (page 2133)
Disposes of a universal procedure pointer to an item-help-content callback function.

NewDataBrowserDrawItemUPP (page 2188)
Creates a universal procedure pointer to a draw-item callback function.

InvokeDataBrowserDrawItemUPP (page 2177)
Calls a draw-item callback function.

DisposeDataBrowserDrawItemUPP (page 2130)
Disposes of a universal procedure pointer to a draw-item callback function.

NewDataBrowserEditItemUPP (page 2188)
Creates a universal procedure pointer to an edit-item callback function.

InvokeDataBrowserEditItemUPP (page 2178)
Calls an edit-item callback function.

DisposeDataBrowserEditItemUPP (page 2131)
Disposes of a universal procedure pointer to an edit-item callback function.

NewDataBrowserHitTestUPP (page 2189)
Creates a universal procedure pointer to a hit-test callback function.

InvokeDataBrowserHitTestUPP (page 2179)
Calls a hit-test callback function.

DisposeDataBrowserHitTestUPP (page 2131)
Disposes of a universal procedure pointer to a hit-test callback function.

NewDataBrowserTrackingUPP (page 2196)
Creates a universal procedure pointer to a tracking callback function.

InvokeDataBrowserTrackingUPP (page 2185)
Calls a tracking callback function.

DisposeDataBrowserTrackingUPP (page 2137)
Disposes of a universal procedure pointer to a tracking callback function.

NewDataBrowserItemDragRgnUPP (page 2191)
Creates a universal procedure pointer to an item-drag-region callback function.

InvokeDataBrowserItemDragRgnUPP (page 2181)
Calls an item-drag-region callback function.

DisposeDataBrowserItemDragRgnUPP (page 2133)
Disposes of a universal procedure pointer to an item-drag-region callback function.

NewDataBrowserItemAcceptDragUPP (page 2190)
Creates a universal procedure pointer to an item-accept-drag callback function.

InvokeDataBrowserItemAcceptDragUPP (page 2179)
Calls an item-accept-drag callback function.

DisposeDataBrowserItemAcceptDragUPP (page 2132)
Disposes of a universal procedure pointer to an item-accept-drag callback function.

NewDataBrowserItemReceiveDragUPP (page 2193)
Creates a universal procedure pointer to an item-receive-drag callback function.

Functions by Task 2119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

InvokeDataBrowserItemReceiveDragUPP (page 2183)
Calls an item-receive-drag callback function.

DisposeDataBrowserItemReceiveDragUPP (page 2135)
Disposes of a universal procedure pointer to an item-receive-drag callback function.

Working With AXUIElement References

AXUIElementCreateWithDataBrowserAndItemInfo (page 2123)
Creates an AXUIElementRef that represents some part of a data browser accessibility hierarchy.

AXUIElementGetDataBrowserItemInfo (page 2123)
Obtains a description of the part of a data browser represented by an AXUIElementRef.

Functions

AddDataBrowserItems
Adds one or more items to a data browser.

OSStatus AddDataBrowserItems (
 ControlRef browser,
 DataBrowserItemID container,
 ItemCount numItems,
 const DataBrowserItemID *items,
 DataBrowserPropertyID preSortProperty
);

Parameters
browser

A data browser.

container
An item ID or the constant kDataBrowserNoItem. Pass the item ID that uniquely identifies the
container to which you want to add items. Adding one or more items to an existing container opens
the container. If you a pass kDataBrowserNoItem, the items are added to the root container.

numItems
The number of items in the array pointed to by the items parameter.

items
A pointer to an array of item ID values for the items you want to add to the data browser. You supply
item ID values based on your own identification scheme. If you pass NULL, each time you call
AddDataBrowserItems the data browser generates item ID values starting at 1. Calling the function
in this way clears whatever items are in the container. Because of this clearing behavior, passing NULL
is not recommended unless your application uses a data browser to display a simple list that is
populated only once with data.

preSortProperty
The property ID of the column whose sorting order matches the sorting order of the items array. A
property ID is a four-character sequence that you assign to represent a column in list view. Pass
kDataBrowserItemNoProperty if the items array is not sorted or if you don’t know the sorting
order of your data. You’ll get the best performance from this function if you provide a sorting order.

2120 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Return Value
A result code. If the item ID specified by the container parameter is not classified as a container, returns
errDataBrowserItemNotAdded if you attempt to add subitems to it. See “Data Browser Result Codes” (page
2298).

Discussion
Hierarchical lists are constructed in a top-down fashion. Your application must install all the top-level, or
parent, item IDs in the data browser before it associates a list of item ID values as subitems. You can add
items to a parent item only after the parent item is classified as a container. A container is an item for which
the property kDataBrowserItemIsContainerProperty is set to true.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

AddDataBrowserListViewColumn
Adds a column to a data browser that uses list view.

OSStatus AddDataBrowserListViewColumn (
 ControlRef browser,
 DataBrowserListViewColumnDesc *columnDesc,
 DataBrowserTableViewColumnIndex position
);

Parameters
browser

A data browser.

columnDesc
A pointer to the list view column description data structure that you have filled out with data that
specifies the column property and display information for the column heading.

position
The position, among the columns already installed in the data browser, to insert this column. To insert
this column to the right of all other columns, pass kDataBrowserListViewAppendColumn. The
value 0 means the leftmost column.

Return Value
A result code; paramErr is returned if the columnDesc parameter is not properly initialized. See “Data
Browser Result Codes” (page 2298).

Discussion
Typically you use the function AddDataBrowserListViewColumn in these cases:

 ■ When you create a data browser programmatically. If you use Interface Builder to design and lay out the
data browser, you do not need to call the function AddDataBrowserListViewColumn. Interface Builder
lets you position a column graphically and then specify the column description in the column pane of
the Info window.

Functions 2121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

 ■ When you switch from column view to list view. Regardless of how you first create a data browser, if
your application allows the user to switch between views, you need to add list view columns each time
the view switches from column to list view.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

AutoSizeDataBrowserListViewColumns
Adjusts the size of columns displayed in list view to take best advantage of the available space.

OSStatus AutoSizeDataBrowserListViewColumns (
 ControlRef browser
);

Parameters
browser

A data browser.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
When you call the function AutoSizeDataBrowserListViewColumns, it first calculates whether there is
extra space or not enough space in the data browser. Then, the columns are resized using the following rules:

 ■ If there is extra space, the data browser gives as much of the extra space as possible to the first column
(that is, the leftmost column) without exceeding the maximum width for the column. If there is still space
available, the data browser gives as much of the remaining space as possible to the second column
without exceeding the maximum width for the column. The data browser continues to disburse space
in this manner until there is no more extra space. Thus, it is possible for the first column to get all the
extra space.

 ■ If space is needed to fit all the columns, the data browser takes as much of the needed space as possible
from the rightmost column (that is, the last column) without letting the column width fall below the
minimum width for the column. If more space is needed, the data browser takes as much of the needed
space as possible from the next-to-the-last column without letting the column width fall below the
minimum width for the column. The data browser continues to adjust space in this manner until all the
columns fit within the data browser.

The function AutoSizeDataBrowserListViewColumns resizes only if the horizontal scroll bar is turned
off. Your application can call the function SetDataBrowserHasScrollBars (page 2206) to turn off the
horizontal scroll bar.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

2122 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Declared In
HIDataBrowser.h

AXUIElementCreateWithDataBrowserAndItemInfo
Creates an AXUIElementRef that represents some part of a data browser accessibility hierarchy.

AXUIElementRef AXUIElementCreateWithDataBrowserAndItemInfo (
 ControlRef inDataBrowser,
 const DataBrowserAccessibilityItemInfo *inInfo
);

Parameters
inDataBrowser

A data browser.

inInfo
A DataBrowserAccessibilityItemInfo (page 2260) structure describing the part of the data
browser for which you want to create an AXUIElementRef.

Return Value
An AXUIElementRef representing the part, or NULL if an AXUIElementRef cannot be created to represent
the part you specified.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

AXUIElementGetDataBrowserItemInfo
Obtains a description of the part of a data browser represented by an AXUIElementRef.

OSStatus AXUIElementGetDataBrowserItemInfo (
 AXUIElementRef inElement,
 ControlRef inDataBrowser,
 UInt32 inDesiredInfoVersion,
 DataBrowserAccessibilityItemInfo *outInfo
);

Parameters
inElement

An AXUIElementRef representing part of a data browser.

inDataBrowser
A data browser.

inDesiredInfoVersion
The version ofDataBrowserAccessibilityItemInfo (page 2260) structure you want to get. Currently,
the only supported version is zero, so you must pass 0 or 1 as the value of this parameter.

Functions 2123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

outInfo
On input, a pointer to a DataBrowserAccessibilityItemInfo (page 2260) structure. On return,
the structure is filled in with a description of the part of the data browser that the AXUIElementRef
specified by inElement represents.

Return Value
A result code. See “Data Browser Result Codes” (page 2298). The function returnsnoErr if it was able to generate
a description of the AXUIElementRef. If the AXUIElementRef does not represent the data browser you
passed in, the function returns paramErr. If the AXUIElementRef represents some non-item part of the
data browser, the function returns errDataBrowserItemNotFound.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

CloseDataBrowserContainer
Closes a data browser container.

OSStatus CloseDataBrowserContainer (
 ControlRef browser,
 DataBrowserItemID container
);

Parameters
browser

A data browser.

container
The item ID of the container you want to close.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Normally the user navigates through a data hierarchy by clicking the disclosure triangle next to a container
item in list view, or the container item (such as a folder icon) in column view. In either of these cases, the
system automatically opens or closes the container. Under some circumstances your application may need
to open or close a container programmatically, such as when you are restoring a display to its last known
state. In such cases, you can call the function OpenDataBrowserContainer (page 2196) to disclose items in
a container or the function CloseDataBrowserContainer to hide items in a container.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

2124 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

CopyDataBrowserEditText
Copies the text being edited by the user.

OSStatus CopyDataBrowserEditText (
 ControlRef browser,
 CFStringRef *text
);

Parameters
browser

A data browser.

text
On input, a CFStringRef variable initialized to anything other than NULL. See the Special
Considerations for details. On return, a CFString object that contains a copy of the text edited by the
user. You are responsible for releasing the string when you no longer need it.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function is useful only if an edit session is in progress for an item. You can check whether an edit session
is open by calling the function GetDataBrowserEditItem (page 2143).

Special Considerations

For versions of Mac OS X prior to v10.4, the text parameter must be set to any value other than NULL. Do
not allocate the CFStringRef, otherwise your application will leak memory. Instead provide code similar to
the following to initialize the variable:

CFStringRef myText = 0XFFFFFFFF;

Availability
Available in CarbonLib 1.5 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

CreateDataBrowserControl
Creates a data browser programmatically.

OSStatus CreateDataBrowserControl (
 WindowRef window,
 const Rect *boundsRect,
 DataBrowserViewStyle style,
 ControlRef *outControl
);

Parameters
window

The window in which to place the data browser.

Functions 2125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

boundsRect
A pointer to a rectangle that specifies the location where you want the control to appear in the
window.

style
The view style to use. Pass the constant kDataBrowserListView to draw the data browser using
list view or kDataBrowserColumnView draw the data browser using column view. See “View
Styles” (page 2298) for more information on these constants.

outControl
On input, a pointer to a control reference. On return, this is set to the newly created data browser.
When you no longer need the data browser, call the Control Manager function DisposeControl to
release it. When you dispose of the control, deallocate any universal procedure pointers you allocated
for use with the control.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function creates a data browser programmatically. If you create a data browser using Interface Builder,
you don’t need to call CreateDataBrowserControl. Instead, you call the function GetControlByID to
obtain a control reference that points to your data browser.

After you create a data browser by calling CreateDataBrowserControl, you can set such attributes as
sorting order, scroll bars, and scroll position. See “Manipulating Data Browser Attributes” (page 2110) for the
functions you can use to set data browser attributes.

You need to set up the display characteristics of the data browser by calling the appropriate functions. See
“Formatting Table View” (page 2112), “Formatting List View” (page 2113), and “Formatting Column View” (page
2113) for information on the formatting functions you can call.

You need to call the functions InitDataBrowserCallbacks (page 2175) and
SetDataBrowserCallbacks (page 2200) to install the callbacks needed for your data browser. At the very
least, you must provide an item-data callback to add or change data items; you must do so regardless of the
content your data browser displays—noncustom or custom. Otherwise, your data browser will be empty.
See DataBrowserItemDataProcPtr (page 2245) for more information. If you present hierarchical data in list
view, or use column view for browsing data, you must provide a callback to handle item notifications. See
DataBrowserItemNotificationProcPtr (page 2250) and
DataBrowserItemNotificationWithItemProcPtr (page 2251).

You can optionally provide callbacks to:

 ■ Perform sorting. See DataBrowserItemCompareProcPtr (page 2243).

 ■ Handle drag-and-drop behavior. See DataBrowserAddDragItemProcPtr (page 2234),
DataBrowserAcceptDragProcPtr (page 2233),DataBrowserReceiveDragProcPtr (page 2256), and
DataBrowserPostProcessDragProcPtr (page 2255).

 ■ Provide contextual menus. See DataBrowserGetContextualMenuProcPtr (page 2238) and
DataBrowserSelectContextualMenuProcPtr (page 2257).

 ■ Display help tags. See DataBrowserItemHelpContentProcPtr (page 2248).

If your data browser uses a list whose columns require custom drawing or behavior, you must also provide
callbacks to handle the custom tasks. See InitDataBrowserCustomCallbacks (page 2176) and
SetDataBrowserCustomCallbacks (page 2203) for more information on initializing and installing callbacks
for custom behavior. The custom tasks you can handle in list view include:

2126 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

 ■ Drawing custom content. See DataBrowserDrawItemProcPtr (page 2235).

 ■ Supporting editing of custom content. See DataBrowserEditItemProcPtr (page 2237). Note that
editing is built-in for noncustom content.

 ■ Performing hit-testing and tracking. See DataBrowserHitTestProcPtr (page 2240) and
DataBrowserTrackingProcPtr (page 2259).

 ■ Handling drag-and-drop behavior. See DataBrowserItemDragRgnProcPtr (page 2246),
DataBrowserItemAcceptDragProcPtr (page 2242), and
DataBrowserItemReceiveDragProcPtr (page 2254).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

DataBrowserChangeAttributes
Sets the attributes for a data browser.

OSStatus DataBrowserChangeAttributes (
 ControlRef inDataBrowser,
 OptionBits inAttributesToSet,
 OptionBits inAttributesToClear
);

Parameters
inDataBrowser

A data browser.

inAttributesToSet
The attributes to set. For possible values, see “Data Browser Attributes” (page 2273).

inAttributesToClear
The attributes to clear. For possible values, see “Data Browser Attributes” (page 2273).

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

DataBrowserGetAttributes
Gets the attributes of a data browser.

Functions 2127
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus DataBrowserGetAttributes (
 ControlRef inDataBrowser,
 OptionBits *outAttributes
);

Parameters
inDataBrowser

A data browser.

outAttributes
The attributes to get. This parameter cannot be NULL. For possible values, see “Data Browser
Attributes” (page 2273).

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

DataBrowserGetMetric
Gets the value of a specified data browser metric.

OSStatus DataBrowserGetMetric (
 ControlRef inDataBrowser,
 DataBrowserMetric inMetric,
 Boolean *outUsingDefaultValue,
 CGFloat *outValue
);

Parameters
inDataBrowser

A data browser.

inMetric
The data browser metric value to get. For possible values, see“Data Browser Metric Values” (page 2274).

outUsingDefaultValue
On return, a Boolean whose value indicates whether the metric’s value is determined by the data
browser’s default values. Pass NULL if you don’t want this information.

outValue
On return, the value of the metric.

Return Value
A result code. See “Data Browser Result Codes” (page 2298). If the inDataBrowser is not an instance of a data
browser or if the value specified by inMetric is not known, DataBrowserGetMetric returns paramErr.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

2128 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Declared In
HIDataBrowser.h

DataBrowserSetMetric
Sets the value of a specified data browser metric.

OSStatus DataBrowserSetMetric (
 ControlRef inDataBrowser,
 DataBrowserMetric inMetric,
 Boolean inUseDefaultValue,
 CGFloat inValue
);

Parameters
inDataBrowser

A data browser.

inMetric
The data browser metric whose value is to be set. For possible values, see “Data Browser Metric
Values” (page 2274).

inUsingDefaultValue
A Boolean whose value indicates whether you want the data browser to revert to the default value
for the metric. If you pass true, inValue is ignored and a suitable default value is used. If you pass
false, inValue is set as the value of the metric.

inValue
The value to set for the metric (if the value of inUsingDefaultValue is false).

Return Value
A result code. See “Data Browser Result Codes” (page 2298). If the inDataBrowser is not an instance of a data
browser or if the value specified by inMetric is not known, DataBrowserSetMetric returns paramErr.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

DisposeDataBrowserAcceptDragUPP
Disposes of a universal procedure pointer to an accept-drag callback function.

void DisposeDataBrowserAcceptDragUPP (
 DataBrowserAcceptDragUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserAcceptDragProcPtr (page 2233) callback function.

Functions 2129
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserAddDragItemUPP
Disposes of a universal procedure pointer to an add-drag-item callback function.

void DisposeDataBrowserAddDragItemUPP (
 DataBrowserAddDragItemUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserAddDragItemProcPtr (page 2234) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserDrawItemUPP
Disposes of a universal procedure pointer to a draw-item callback function.

void DisposeDataBrowserDrawItemUPP (
 DataBrowserDrawItemUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserDrawItemProcPtr (page 2235) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

2130 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DisposeDataBrowserEditItemUPP
Disposes of a universal procedure pointer to an edit-item callback function.

void DisposeDataBrowserEditItemUPP (
 DataBrowserEditItemUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserEditItemProcPtr (page 2237) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserGetContextualMenuUPP
Disposes of a universal procedure pointer to a get-contextual-menu callback function.

void DisposeDataBrowserGetContextualMenuUPP (
 DataBrowserGetContextualMenuUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserGetContextualMenuProcPtr (page 2238) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserHitTestUPP
Disposes of a universal procedure pointer to a hit-test callback function.

void DisposeDataBrowserHitTestUPP (
 DataBrowserHitTestUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Functions 2131
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
See the DataBrowserHitTestProcPtr (page 2240) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserItemAcceptDragUPP
Disposes of a universal procedure pointer to an item-accept-drag callback function.

void DisposeDataBrowserItemAcceptDragUPP (
 DataBrowserItemAcceptDragUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserItemAcceptDragProcPtr (page 2242) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserItemCompareUPP
Disposes of a universal procedure pointer to an item-comparison callback function.

void DisposeDataBrowserItemCompareUPP (
 DataBrowserItemCompareUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserItemCompareProcPtr (page 2243) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

2132 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DisposeDataBrowserItemDataUPP
Disposes of a universal procedure pointer to an item-data callback function.

void DisposeDataBrowserItemDataUPP (
 DataBrowserItemDataUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserItemDataProcPtr (page 2245) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserItemDragRgnUPP
Disposes of a universal procedure pointer to an item-drag-region callback function.

void DisposeDataBrowserItemDragRgnUPP (
 DataBrowserItemDragRgnUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserItemDragRgnProcPtr (page 2246) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserItemHelpContentUPP
Disposes of a universal procedure pointer to an item-help-content callback function.

void DisposeDataBrowserItemHelpContentUPP (
 DataBrowserItemHelpContentUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Functions 2133
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
See the DataBrowserItemHelpContentProcPtr (page 2248) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserItemNotificationUPP
Disposes of a universal procedure pointer to an item-notification callback function.

void DisposeDataBrowserItemNotificationUPP (
 DataBrowserItemNotificationUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserItemNotificationProcPtr (page 2250) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserItemNotificationWithItemUPP
Disposes of a universal procedure pointer to an item-notification-with-data callback function.

void DisposeDataBrowserItemNotificationWithItemUPP (
 DataBrowserItemNotificationWithItemUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserItemNotificationWithItemProcPtr (page 2251) callback function.

Availability
Available in CarbonLib 1.5 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

2134 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DisposeDataBrowserItemReceiveDragUPP
Disposes of a universal procedure pointer to an item-receive-drag callback function.

void DisposeDataBrowserItemReceiveDragUPP (
 DataBrowserItemReceiveDragUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserItemReceiveDragProcPtr (page 2254) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserItemUPP
Disposes of a universal procedure pointer to an item-iterator callback function.

void DisposeDataBrowserItemUPP (
 DataBrowserItemUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserItemProcPtr (page 2253) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserPostProcessDragUPP
Disposes of a universal procedure pointer to a postprocess-drag callback function.

void DisposeDataBrowserPostProcessDragUPP (
 DataBrowserPostProcessDragUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Functions 2135
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
See the DataBrowserPostProcessDragProcPtr (page 2255) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserReceiveDragUPP
Disposes of a universal procedure pointer to a receive-drag callback function.

void DisposeDataBrowserReceiveDragUPP (
 DataBrowserReceiveDragUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserReceiveDragProcPtr (page 2256) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

DisposeDataBrowserSelectContextualMenuUPP
Disposes of a universal procedure pointer to a select-contextual-menu callback function.

void DisposeDataBrowserSelectContextualMenuUPP (
 DataBrowserSelectContextualMenuUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserSelectContextualMenuProcPtr (page 2257) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

2136 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DisposeDataBrowserTrackingUPP
Disposes of a universal procedure pointer to a tracking callback function.

void DisposeDataBrowserTrackingUPP (
 DataBrowserTrackingUPP userUPP
);

Parameters
userUPP

The universal procedure pointer to dispose of.

Discussion
See the DataBrowserTrackingProcPtr (page 2259) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

EnableDataBrowserEditCommand
Determines whether the data browser is currently able to process a given editing command.

Boolean EnableDataBrowserEditCommand (
 ControlRef browser,
 DataBrowserEditCommand command
);

Parameters
browser

A data browser.

command
The editing command you want to enable. You can pass any of the constants described in “Editing
Commands” (page 2277).

Return Value
A value of true if the requested editing command can be performed by the data browser at this time.

Discussion
Editing commands (Cut, Paste, Copy, and so on) can be enabled for an editable text field that is open and
selected and for which the data browser is currently able to process the given command. For example, the
data browser can process a Paste command only if there is text available on the Clipboard.

Editing commands are also available for a custom display type when the callbacks you install for the custom
display indicate editing is available. Your application can call the function EnableDataBrowserEditCommand
to discover if a specific editing command can be enabled. To execute an editing command, call the function
ExecuteDataBrowserEditCommand (page 2138).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Functions 2137
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Declared In
HIDataBrowser.h

ExecuteDataBrowserEditCommand
Executes an editing command.

OSStatus ExecuteDataBrowserEditCommand (
 ControlRef browser,
 DataBrowserEditCommand command
);

Parameters
browser

A data browser.

command
The editing command you want to execute. You can pass any of the constants described in “Editing
Commands” (page 2277).

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Editing commands can be executed for an editable text field that is open and selected. Your application can
check to see if the editing command is enabled by first calling the function
EnableDataBrowserEditCommand (page 2137).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

ForEachDataBrowserItem
Applies an item-iterator callback routine to each data item that meets the specified criteria.

OSStatus ForEachDataBrowserItem (
 ControlRef browser,
 DataBrowserItemID container,
 Boolean recurse,
 DataBrowserItemState state,
 DataBrowserItemUPP callback,
 void *clientData
);

Parameters
browser

A data browser.

2138 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

container
An item ID or the constant kDataBrowserNoItem. To iterate through items that are organized as
subitems of a container item, pass the item ID for the container. To iterate through all items displayed
at the root of the data browser, pass the constant kDataBrowserNoItem.

recurse
A value that indicates whether or not to traverse the entire item hierarchy when applying the callback
specified by the callback parameter. Pass true to apply the callback to all items in the hierarchy.
Pass false if you want to apply the callback only to those items at the top level of the container or
data browser.

state
A value that specifies the state of the items to which to apply the callback. Pass 0 if you want to apply
the callback to all items, regardless of state. Otherwise, pass one of the constants described in “Item
States” (page 2280).

callback
A universal procedure pointer to your item-iterator callback routine. This routine is called for every
item ID that matches the specified criteria. See DataBrowserItemProcPtr (page 2253) for more
information on the callback routine to supply.

clientData
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application and needed by your callback routine.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
The function ForEachDataBrowserItem is useful for enumerating and performing an operation on a set
of item IDs.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserActiveItems
Obtains what determines the active state of the items in a data browser.

OSStatus GetDataBrowserActiveItems (
 ControlRef browser,
 Boolean *active
);

Parameters
browser

A data browser.

Functions 2139
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

active
On input, a pointer to a Boolean variable. On return, the variable is set to true if the active state of
each item in the list is determined by the item property kDataBrowserItemIsActiveProperty.
Otherwise, the variable is set to false to indicate that all items are inactive.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserCallbacks
Obtains the callback routines installed for notifying your application of changes to a data browser and for
providing the data to be displayed by the data browser.

OSStatus GetDataBrowserCallbacks (
 ControlRef browser,
 DataBrowserCallbacks *callbacks
);

Parameters
browser

The data browser whose callback routines you want to obtain.

callbacks
On input, a pointer to a DataBrowserCallbacks structure. On return, the structure contains universal
procedure pointers to the callback routines installed for the data browser.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
When GetDataBrowserCallacks is used in conjunction with the function
SetDataBrowserCallbacks (page 2200), your application can override or replace one or more callbacks
used by a data browser to notify your application of changes.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserColumnViewDisplayType
Obtains the display type for a column view.

2140 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserColumnViewDisplayType (
 ControlRef browser,
 DataBrowserPropertyType *propertyType
);

Parameters
browser

A data browser.

propertyType
On input, a pointer to a display type variable. On return, the variable is set to the data type or control
that is displayed in the data browser. No display types other than kDataBrowserIconAndTextType
are currently supported in column view. See “Display Types” (page 2275) for more information.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserColumnViewPath
Obtains the current path for a selection in column view.

OSStatus GetDataBrowserColumnViewPath (
 ControlRef browser,
 Handle path
);

Parameters
browser

A data browser.

path
On input, a handle. On return, the handle contains an array of item ID values that specify the current
path. Array element 0 is the root; array element N-1 is the target. You must allocate the handle before
calling this function, and you are responsible for disposing of it.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

Functions 2141
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

GetDataBrowserColumnViewPathLength
Obtains the length of the current path for a column view.

OSStatus GetDataBrowserColumnViewPathLength (
 ControlRef browser,
 UInt32 *pathLength
);

Parameters
browser

A data browser.

pathLength
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the number of levels
in the path for the currently selected item.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserCustomCallbacks
Obtains the callbacks installed to implement custom drawing and behavior for the content in a data browser.

OSStatus GetDataBrowserCustomCallbacks (
 ControlRef browser,
 DataBrowserCustomCallbacks *callbacks
);

Parameters
browser

A data browser.

callbacks
On input, a pointer to a DataBrowserCustomCallbacks structure. On return, the structure contains
universal procedure pointers to the custom callback routines installed for the data browser.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
When GetDataBrowserCustomCallbacks is used in conjunction with the function
SetDataBrowserCustomCallbacks (page 2203), your application can temporarily override or replace one
or more callbacks used by a data browser to support custom drawing and custom behavior.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

2142 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserEditItem
Obtains the item ID and property ID values of the current editing session.

OSStatus GetDataBrowserEditItem (
 ControlRef browser,
 DataBrowserItemID *item,
 DataBrowserPropertyID *property
);

Parameters
browser

A data browser.

item
On input, a pointer to an item ID variable. On return, the variable is set to the item ID of the item that
is being edited. If there is no editing session in progress, this parameter is set to kDataBrowserNoItem.

property
On input, a pointer to a property ID variable. On return, the variable is set to the property ID of the
item that is being edited. If there is no editing session in progress, this parameter is set to 0.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserEditText
Obtains the text being edited by the user.

Not Recommended

OSStatus GetDataBrowserEditText (
 ControlRef browser,
 CFMutableStringRef text
);

Parameters
browser

A data browser.

Functions 2143
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

text
On return, the CFMutableString object is set to the text being edited by the user. Your application
must allocate this object and pass it to the data browser. The data browser sets its contents to the
current contents of the edit session text field. You must release this object when you no longer need
it.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function does not work. Instead use CopyDataBrowserEditText (page 2125).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserHasScrollBars
Obtains the display state of horizontal and vertical scroll bars for a list view data browser.

OSStatus GetDataBrowserHasScrollBars (
 ControlRef browser,
 Boolean *horiz,
 Boolean *vert
);

Parameters
browser

A list view data browser.

horiz
On input, a pointer to a Boolean variable. On return, the variable is set to true if the browser control
has a horizontal scroll bar.

vert
On input, a pointer to a Boolean variable. On return, the variable is set to true if the browser control
has a vertical scroll bar.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
The function GetDataBrowserHasScrollBars is useful for determining if the browser control currently
has scroll bars. For example, you would call the function AutoSizeDataBrowserListViewColumns (page
2122) only after you have determined the data browser does not have a horizontal scroll bar.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

2144 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Declared In
HIDataBrowser.h

GetDataBrowserItemCount
Obtains the number of items whose state matches the specified state.

OSStatus GetDataBrowserItemCount (
 ControlRef browser,
 DataBrowserItemID container,
 Boolean recurse,
 DataBrowserItemState state,
 ItemCount *numItems
);

Parameters
browser

A data browser.

container
An item ID or the constant kDataBrowserNoItem. To obtain the number of items that are organized
as subitems of a container item, pass the item ID for the container. To obtain the number of items
displayed at the root of the data browser, provide the constant kDataBrowserNoItem.

recurse
A value that indicates whether or not to traverse the entire item hierarchy when counting. Pass true
to obtain a count for all items in the hierarchy. Pass false if you want to count only those items at
the top level of the container or data browser.

state
A value that specifies the state of the items to obtain. Only items that have this state are counted.
Pass kDataBrowserItemAnyState if you want to count all items regardless of state. Otherwise, pass
one of the constants described in “Item States” (page 2280).

numItems
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the number of items
in the container that have the specified state.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataBooleanValue
Obtains the Boolean value for an item.

Functions 2145
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserItemDataBooleanValue (
 DataBrowserItemDataRef itemData,
 Boolean *theData
);

Parameters
itemData

The item data reference for the item whose Boolean value you want to obtain. The item data reference
is passed to the callback routine from which you are calling the function
GetDataBrowserItemDataBooleanValue.

theData
On input, a pointer to a Boolean variable. On return, the variable is set to the Boolean value.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
You can obtain Boolean values for the following properties:

 ■ kDataBrowserItemIsActiveProperty

 ■ kDataBrowserItemIsSelectableProperty

 ■ kDataBrowserItemIsEditableProperty

 ■ kDataBrowserItemIsContainerProperty

 ■ kDataBrowserItemIsOpenableProperty

 ■ kDataBrowserItemIsClosableProperty

 ■ kDataBrowserItemIsSortableProperty

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataButtonValue
Obtains the value for a checkbox.

OSStatus GetDataBrowserItemDataButtonValue (
 DataBrowserItemDataRef itemData,
 ThemeButtonValue *theData
);

Parameters
itemData

The item data reference for the item whose checkbox setting you want to obtain. The item data
reference is passed to the callback routine from which you are calling the function
GetDataBrowserItemDataButtonValue.

2146 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

theData
On input, a pointer to a theme button value variable. On return, the variable is set to the checkbox
setting. The value can be one of the following theme button value constants defined by the Appearance
Manager,:

 ■ kThemeButtonOff indicates a checkbox that is not selected.

 ■ kThemeButtonOn indicates a checkbox that is selected.

 ■ kThemeButtonMixed draws a checkbox that in a mixed state, indicating that a setting is on for
some items in a selection and off for others.

See Appearance Manager Reference for more information.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Your item-data callback calls this function in response to a set-data request for items that have the display
type kDataBrowserCheckboxType.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataDateTime
Obtains, as a 32-bit value, the date and time value displayed.

OSStatus GetDataBrowserItemDataDateTime (
 DataBrowserItemDataRef itemData,
 SInt32 *theData
);

Parameters
itemData

The item data reference for the item whose date and time value you want to obtain. The item data
reference is passed to the callback routine from which you are calling the function
GetDataBrowserItemDataDateTime.

theData
On input, a 32-bit value. On return, the value is set to the number of elapsed seconds since midnight,
January 1, 1904. For more information about date and time encodings used in the Mac OS, see Date,
Time, and Measurement Utilities Reference in Carbon Text & International Documentation.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function works only with items that have the property kDataBrowserDateTimeType. If the column
has the property kDataBrowserRelativeDateTime, the date is displayed relative to the current time for
the computer. For example, a time 24 hours prior to the current time is displayed as “Yesterday.” Other
examples of relative date and time values are “Today, 1:45 PM” and “Yesterday, 7:30 AM.”

Functions 2147
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataDrawState
Determines whether a checkbox is in the active or inactive state.

OSStatus GetDataBrowserItemDataDrawState (
 DataBrowserItemDataRef itemData,
 ThemeDrawState *theData
);

Parameters
itemData

The item data reference for the checkbox whose drawing state you want to obtain. This value is passed
to the callback routine from which you are calling the functionGetDataBrowserItemDataDrawState.

theData
On input, a pointer to a theme draw state variable. On return, the variable is set to the drawing state
for the item, either kThemeStateInactive or kThemeStateActive. See Appearance Manager
Reference for more information on these constants.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Your item-data callback calls this function in response to a get-data request for items that have display type
kDataBrowserCheckboxType.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataIcon
Obtains the icon drawn for an item.

2148 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserItemDataIcon (
 DataBrowserItemDataRef itemData,
 IconRef *theData
);

Parameters
itemData

The item data reference for the item whose icon you want to obtain. This value is passed to the
callback routine from which you are calling the function GetDataBrowserItemDataIcon.

theData
On input, a pointer to an IconRef variable. On return, the variable is set to the icon that is displayed.
You are responsible for disposing of the IconRef.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
You call the function GetDataBrowserItemDataIcon from within a DataBrowserItemDataProcPtr (page
2245) callback routine to obtain the icon drawn in a column that has the kDataBrowserIconType display
type or the kDataBrowserIconAndTextType display type.

Availability
Available in CarbonLib 1.5 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataIconTransform
Obtains the transformation currently used to display an icon.

OSStatus GetDataBrowserItemDataIconTransform (
 DataBrowserItemDataRef itemData,
 IconTransformType *theData
);

Parameters
itemData

The item data reference for the item whose icon transformation you want to obtain. This value is
passed to the callback routine from which you are calling the function
GetDataBrowserItemDataIconTransform.

theData
On input, an icon transformation type variable. On return, the variable is set to an icon transformation
type. This value can be any of the icon transformation constants defined by Icon Services and Utilities.
See Icon Services and Utilities Reference for more information.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function works only with items that have either the property kDataBrowserIconAndTextType or
kDataBrowserIconType.

Functions 2149
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataItemID
Obtains the item ID for an item whose property is another item’s ID.

OSStatus GetDataBrowserItemDataItemID (
 DataBrowserItemDataRef itemData,
 DataBrowserItemID *theData
);

Parameters
itemData

The item data reference passed to your item-data callback.

theData
On input, a pointer to an item ID variable. On return, the variable is set to the item ID associated with
the itemData parameter.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Typically you do not need to call this function. This function is used for item properties
kDataBrowserParentContainerProperty or kDataBrowserContainerAliasIDProperty.

Availability
Available in CarbonLib 1.5 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataLongDateTime
Obtains, as a 64-bit value, the date and time value displayed.

2150 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserItemDataLongDateTime (
 DataBrowserItemDataRef itemData,
 LongDateTime *theData
);

Parameters
itemData

The item data reference for the item whose long date and time value you want to obtain. The item
data reference is passed to the callback routine from which you are calling the function
GetDataBrowserItemDataLongDateTime.

theData
On input, a 64-bit value. On return, the value is set to the number of seconds elapsed since midnight,
January 1, 1904. For more information about date and time encodings used in the Mac OS, see Date,
Time, and Measurement Utilities Reference in Carbon Text & International Documentation.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function works only with items that have the property kDataBrowserDateTimeType. If the column
has the property kDataBrowserRelativeDateTime, the date is displayed relative to the current time for
the computer. For example, a time 24 hours prior to the current time is displayed as “Yesterday.” Other
examples of relative date and time values are “Today, 1:45 PM” and “Yesterday, 7:30 AM.”

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataMaximum
Obtains the maximum integer value that can be displayed; useful for such display types as sliders, progress
bars, relevance indicators, and pop-up menus.

OSStatus GetDataBrowserItemDataMaximum (
 DataBrowserItemDataRef itemData,
 SInt32 *theData
);

Parameters
itemData

The item data reference for the item whose maximum value you want to obtain. The item data
reference is passed to the callback routine from which you are calling the function
GetDataBrowserItemDataMaximum.

theData
On input, a pointer to a signed 32-bit integer. On return, this value is set to the maximum value that
can be displayed for the item.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Functions 2151
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataMenuRef
Obtains the pop-up menu displayed.

OSStatus GetDataBrowserItemDataMenuRef (
 DataBrowserItemDataRef itemData,
 MenuRef *theData
);

Parameters
itemData

The item data reference for the item whose pop-up menu you want to obtain. The item data reference
is passed to the callback routine from which you are calling the function
GetDataBrowserItemDataMenuRef.

theData
On input, a pointer to a menu reference. On return, this is set to the currently displayed pop-up menu.
The system retains the menu reference that you pass; you must release it when you no longer need
it.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Your item-data callback calls this function in response to a get-data request for items that have the display
type kDataBrowserPopupMenuType.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataMinimum
Obtains the minimum integer value that can be displayed for an item; useful for such display types as sliders,
progress bars, relevance indicators, and pop-up menus.

2152 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserItemDataMinimum (
 DataBrowserItemDataRef itemData,
 SInt32 *theData
);

Parameters
itemData

The item data reference for the item whose minimum value you want to obtain. The item data reference
is passed to the callback routine from which you are calling the function
GetDataBrowserItemDataMinimum.

theData
On input, a pointer to a signed 32-bit integer. On return, this value is set to the minimum value that
can be displayed for the item.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataProperty
Obtains the column property ID for the column in which an item resides.

OSStatus GetDataBrowserItemDataProperty (
 DataBrowserItemDataRef itemData,
 DataBrowserPropertyID *theData
);

Parameters
itemData

The item data reference for the item whose property ID you want to obtain. This value is passed to
the callback routine from which you are calling the function GetDataBrowserItemDataProperty.

theData
On input, a pointer to a property ID variable. On return, the variable is set to the property ID for the
item.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
When your item-data callback is invoked for an item that has the property
kDataBrowserItemIsEditableProperty, you call the function GetDataBrowserItemDataProperty
to obtain the column property ID. Then, your callback can use the column property ID to determine whether
the item is in a column whose data can be edited.

For example, consider a list view data browser whose columns are titled “Name” and “Date Modified.” Let’s
say Name can be modified by the user, but the Date Modified column cannot. If the user clicks an item in
one of the columns, your item-data callback is called to find out whether the clicked column is editable. Your

Functions 2153
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

callback needs to find out which column the “is editable” request is being made for by calling the function
GetDataBrowserItemDataProperty. In this example, after you obtain the property ID, you would check
whether the column is the Date Modified column or the Name column. You’d allow editing only if the item
is in the Name column.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataRGBColor
Obtains the color used to draw an item.

OSStatus GetDataBrowserItemDataRGBColor (
 DataBrowserItemDataRef itemData,
 RGBColor *theData
);

Parameters
itemData

The item data reference for the item whose color you want to obtain. This value is passed to the
callback routine from which you are calling the function GetDataBrowserItemDataRGBColor.

theData
On input, an RGB color variable. On return, the variable is set to the RGB values that specify the color
of the item.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Your item-data callback calls this function in response to a get-data request for items that have the display
type kDataBrowserIconType or kDataBrowserIconAndTextType.

As of Mac OS X 10.3, this function does nothing.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataText
Obtains the text entered by the user.

2154 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserItemDataText (
 DataBrowserItemDataRef itemData,
 CFStringRef *theData
);

Parameters
itemData

The item data reference for the item whose text you want to obtain. This value is passed to the callback
routine from which you are calling the function GetDataBrowserItemDataText.

theData
On input, a CFStringRef variable. On return, a CFString object that contains the text. Your application
must release the CFString object when it is no longer needed.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
You can call the function GetDataBrowserItemDataText from inside an item-data callback routine when
the callback’s setValue parameter is true. A value of true indicates that the displayed text has been
modified by the user. In that case, your application calls GetDataBrowserItemDataText to retrieve the
modified text.

Note that a column is editable only if the kDataBrowserPropertyIsEditable flag is set for the column.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemDataValue
Obtains the value of an item; useful for such display types as sliders, progress bars, relevance indicators, and
pop-up menus.

OSStatus GetDataBrowserItemDataValue (
 DataBrowserItemDataRef itemData,
 SInt32 *theData
);

Parameters
itemData

The item data reference for the item whose integer value you want to obtain. The item data reference
is passed to the callback routine from which you are calling the function
GetDataBrowserItemDataValue.

theData
On input, a pointer to a signed 32-bit integer. On return, it is set to the displayed value.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Functions 2155
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
Your application calls the function GetDataBrowserItemDataValue to obtain a new value for a display
type when your item-data callback routine is called with the setValue parameter set to true.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserItemPartBounds
Obtains the bounds of a visual part of an item.

OSStatus GetDataBrowserItemPartBounds (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 DataBrowserPropertyPart part,
 Rect *bounds
);

Parameters
browser

A data browser.

item
The item ID that identifies the row.

property
The property ID that identifies the column.

part
The part for which you want to obtain information. The information requested depends on the type
of information displayed in the column. It is up to your application to ensure it requests the appropriate
information. See “Property Parts” (page 2291) for a list of the constants you can provide in this parameter.

bounds
On input, a pointer to a rectangle. On return, the rectangle contains the bounds for the specified part.

Return Value
A result code. If the item is not visible (scrolled off the screen), returns the result ItemNotFound. See “Data
Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

2156 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

GetDataBrowserItems
Obtains a list of the items that match a specified state; operates on items in the root container or traverses
items in the data hierarchy.

OSStatus GetDataBrowserItems (
 ControlRef browser,
 DataBrowserItemID container,
 Boolean recurse,
 DataBrowserItemState state,
 Handle items
);

Parameters
browser

A data browser.

container
An item ID or the constant kDataBrowserNoItem. To obtain a list of items that are organized as
subitems of a container, pass the item ID of the container item. To obtain a list of items displayed in
the root container, pass the constant kDataBrowserNoItem.

recurse
A value that indicates whether or not to traverse the entire item hierarchy when obtaining item IDs.
Pass true to obtain item IDs for all items in the hierarchy. Pass false if you want to count only those
item IDs at the top level of the container. If you pass true, you obtain a flattened list of item IDs. The
list reflects the hierarchy maintained internally by the data browser and might not reflect the order
of the items as they appear onscreen to the user.

state
The state of the items to obtain. Only items that have this state are returned in the items parameter.
Pass 0 if you want to obtain all items regardless of state. Otherwise, pass one of the constants described
in “Item States” (page 2280).

items
On return, the contents of the handle contain an array of item ID values for the matching items. You
must allocate and dispose of the handle. To determine the number of items in the array, call the
function GetHandleSize and divide by the size of DataBrowserItemID. Note that the handle
contents are completely replaced by the returned array.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
The function GetDataBrowserItems is a powerful routine for gathering information about the items
displayed in a data browser. For example, to obtain a list of all the items the user has selected in a list, call
the function with the state parameter set to kDataBrowserItemIsSelected. If your application is
interested only in determining the number of items in a selection (and not the item IDs of those items), call
the function GetDataBrowserItemCount (page 2145).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

Functions 2157
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

GetDataBrowserItemState
Obtains the state of an item.

OSStatus GetDataBrowserItemState (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserItemState *state
);

Parameters
browser

A data browser.

item
The item ID of the item whose state you want to check.

state
On input, a pointer to an item state variable. On return, the variable is set to a value that specifies the
state of the item. See “Item States” (page 2280) for a description of the values that can be returned.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserListViewDisclosureColumn
Obtains the property ID of the column whose items can display a disclosure triangle, and tells whether a
disclosed item expands the row or adds rows.

OSStatus GetDataBrowserListViewDisclosureColumn (
 ControlRef browser,
 DataBrowserTableViewColumnID *column,
 Boolean *expandableRows
);

Parameters
browser

A data browser.

column
On input, a pointer to a column ID variable. On return, the variable is set to the property ID of the
currently selected column. If there is no disclosure column, the variable is set to
kDataBrowserItemNoProperty. The DataBrowserTableViewColumnID data type is the same
as the DataBrowserPropertyID data type.

2158 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

expandableRows
On input, a pointer to a Boolean variable. On return, the variable specifies how a disclosed row behaves.
The value true means that a container opens as a single row with an expanded height. The value
false means a container opens to expose individual rows. See the Discussion for more details on
expandable rows.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
When the expandableRows variable is set to true:

 ■ Disclosure triangles are drawn top-justified in the row.

 ■ Custom row height, if any, for that row is respected only while the row is disclosed. At other times, the
default row height is used.

When the expandableRows variable is set to false:

 ■ Disclosure triangles are centered vertically in the row.

 ■ Custom row height, if any, for that row is always respected.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserListViewHeaderBtnHeight
Obtains the height of the rectangular area where the column title appears.

OSStatus GetDataBrowserListViewHeaderBtnHeight (
 ControlRef browser,
 UInt16 *height
);

Parameters
browser

A data browser.

height
On input, a pointer to an unsigned 16-bit integer. On return, this value is set to the height of the
rectangular area where the column title appears. You can save this value if you plan to call the function
SetDataBrowserListViewHeaderBtnHeight (page 2217) to turn off header button display. You
can then use the value later to turn on header button display.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.

Functions 2159
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserListViewHeaderDesc
Obtains a header description for a column in list view.

OSStatus GetDataBrowserListViewHeaderDesc (
 ControlRef browser,
 DataBrowserTableViewColumnID column,
 DataBrowserListViewHeaderDesc *desc
);

Parameters
browser

A data browser.

column
The property ID for the column whose list view header description you want to obtain. The
DataBrowserTableViewColumnID data type is the same as the DataBrowserPropertyID data
type.

desc
On input, a pointer to a list view header description data structure. On return, the structure contains
the header description for the specified column in list view.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
If your application allows the user to switch between column and list views, you can call this function to
obtain the current header description and then save the description before you switch from list to column
view. When you switch from column to list view, you can restore the list view header information by calling
the function SetDataBrowserListViewHeaderDesc (page 2218) passing the header information you saved.

Availability
Available in CarbonLib 1.5 and later.
Available in Mac OS X version 10.2 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserListViewUsePlainBackground
Determines whether list view is set to use a plain white background.

2160 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserListViewUsePlainBackground (
 ControlRef browser,
 Boolean *usePlainBackground
);

Parameters
browser

A data browser.

usePlainBackground
On input, a pointer to a Boolean variable. On return, the variable is true if list view is set to use a
plain white background. Regardless of the value that is returned, Mac OS X supports only a plain white
background. Mac OS 9 supports a plain white background as well as a shaded background.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserPropertyFlags
Obtains the appearance and behavior attributes for a column.

OSStatus GetDataBrowserPropertyFlags (
 ControlRef browser,
 DataBrowserPropertyID property,
 DataBrowserPropertyFlags *flags
);

Parameters
browser

A data browser.

property
The property ID of the column whose properties you want to obtain.

flags
On input, a data browser property flags variable. On return, the variable is set to the property flags
that specify the appearance and behavior attributes for a column. A DataBrowserPropertyFlags
value is a 32-bit value that is divided into four parts as follows:

 ■ Bits 0–7 specify properties applied to the data browser as a whole—see “Property Flags:
Universal” (page 2284)

 ■ Bits 8–15 modify display behavior—see “Property Flags: Modifiers” (page 2285)

 ■ Bits 16–23 are properties specific to list view—see “Property Flags: Offset and Mask for List View
Properties” (page 2288) and “Property Flags: List View Column Behavior” (page 2289)

 ■ Bits 24–31 can be defined by your application—see “Property Flags: Offset and Mask for
Client-Defined Properties” (page 2290)

Functions 2161
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserScrollBarInset
Obtains the inset rectangle used by a data browser to position the scroll bar.

OSStatus GetDataBrowserScrollBarInset (
 ControlRef browser,
 Rect *insetRect
);

Parameters
browser

A data browser.

insetRect
On input, a pointer to a rectangle structure. On return, the rectangle contains the current inset settings
for the data browser scroll bars. The left and right fields contain the horizontal inset values for
the horizontal scroll bar, and the top and bottom fields contain the vertical inset values for the vertical
scroll bar.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Your application can call the functions GetDataBrowserScrollBarInset and
SetDataBrowserScrollBarInset (page 2220) if you want to place placards or controls beside the horizontal
scroll bars or above the vertical ones. To do so, first call GetDataBrowserScrollBarInset to obtain the
current settings. After modifying the current inset settings to provide space for the placard or control, call
SetDataBrowserScrollBarInset with the new values.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserScrollPosition
Obtains the scrolling position of a list.

2162 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserScrollPosition (
 ControlRef browser,
 UInt32 *top,
 UInt32 *left
);

Parameters
browser

A data browser.

top
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the current vertical
scrolling position.

left
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the current horizontal
scrolling position.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Normally, you use the function GetDataBrowserScrollPosition in conjunction with
SetDataBrowserScrollPosition (page 2221) to save and restore the scrolling position of a list to the user’s
last scrolling position. These functions should not be used to scroll particular cells into the view. For that, call
the function RevealDataBrowserItem.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserSelectionAnchor
Obtains the first and last items in a selection.

OSStatus GetDataBrowserSelectionAnchor (
 ControlRef browser,
 DataBrowserItemID *first,
 DataBrowserItemID *last
);

Parameters
browser

A data browser.

first
On input, a pointer to an item ID variable. On return, the variable is set to the item ID of the first item
in the selection.

last
On input, a pointer to an item ID variable. On return, the variable is set to the item ID of the last item
in the selection.

Functions 2163
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserSelectionFlags
Obtains the current selection behavior for a data browser.

OSStatus GetDataBrowserSelectionFlags (
 ControlRef browser,
 DataBrowserSelectionFlags *selectionFlags
);

Parameters
browser

A data browser.

selectionFlags
On input, a data browser selection flags variable. On return, the variable is set to the current selection
flags. See “User Selection Flags” (page 2296) for a list of the flags that can be returned.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Selection flags specify the selection behavior available to the user, such as whether the user can select
discontinuous items.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserSortOrder
Gets the sorting order of the list view column that’s currently set for sorting.

2164 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserSortOrder (
 ControlRef browser,
 DataBrowserSortOrder *order
);

Parameters
browser

A data browser.

order
On input, a pointer to a sorting order variable. On return, the variable is set to the sorting order of
the current sort column in list view. See “Sorting Orders” (page 2294) for a list of the values that can be
returned.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserSortProperty
Obtains the property ID of the column currently used for sorting in list view.

OSStatus GetDataBrowserSortProperty (
 ControlRef browser,
 DataBrowserPropertyID *property
);

Parameters
browser

A data browser.

property
On input, a pointer to a property ID variable. On return, the variable is set to the property ID of the
column used for sorting.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
You can call the function GetDataBrowserSortProperty to discover the property ID of the column currently
used for sorting. To designate another column for the sorting operation, call the function
SetDataBrowserSortProperty (page 2223).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Functions 2165
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Declared In
HIDataBrowser.h

GetDataBrowserTableViewColumnCount
Obtains the number of columns in a data browser.

OSStatus GetDataBrowserTableViewColumnCount (
 ControlRef browser,
 UInt32 *numColumns
);

Parameters
browser

A data browser.

numColumns
On input, a pointer to an unsigned 32-bit integer. On return, this value is set to the number of columns
in the data browser.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserTableViewColumnPosition
Obtains the column position for an item in a data browser.

OSStatus GetDataBrowserTableViewColumnPosition (
 ControlRef browser,
 DataBrowserTableViewColumnID column,
 DataBrowserTableViewColumnIndex *position
);

Parameters
browser

A data browser.

column
The property ID for the list view column for which you want to obtain the position. The
DataBrowserTableViewColumnID data type is the same as the DataBrowserPropertyID data
type.

position
On input, a pointer to a column index variable. On return, the variable is set to the column index for
the item; 0 is the leftmost column.

2166 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserTableViewColumnProperty
Obtains the property ID for a column in a data browser.

OSStatus GetDataBrowserTableViewColumnProperty (
 ControlRef browser,
 DataBrowserTableViewColumnIndex column,
 DataBrowserTableViewColumnID *property
);

Parameters
browser

A data browser.

column
The column index of the column whose property ID you want to obtain.

property
On input, a pointer to a column ID variable. On return, the variable is set to the property ID for the
column. The DataBrowserTableViewColumnID data type is the same as the
DataBrowserPropertyID data type.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserTableViewColumnWidth
Obtains the default column width used for all columns in a data browser.

Functions 2167
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserTableViewColumnWidth (
 ControlRef browser,
 UInt16 *width
);

Parameters
browser

A data browser.

width
On input, a pointer to an unsigned 16-bit integer. On return, this value is set to the column width, in
pixels.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserTableViewGeometry
Determines whether columns and rows are set to have variable widths.

OSStatus GetDataBrowserTableViewGeometry (
 ControlRef browser,
 Boolean *variableWidthColumns,
 Boolean *variableHeightRows
);

Parameters
browser

A data browser.

variableWidthColumns
On input, a pointer to a Boolean variable. On return, the variable is set to true if column widths can
be changed or false if they cannot be changed.

variableHeightRows
On input, a pointer to a Boolean variable. On return, the variable is set to true if row heights can be
changed or false if they cannot be changed.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

2168 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

GetDataBrowserTableViewHiliteStyle
Obtains the highlighting style used for a list view data browser.

OSStatus GetDataBrowserTableViewHiliteStyle (
 ControlRef browser,
 DataBrowserTableViewHiliteStyle *hiliteStyle
);

Parameters
browser

A list view data browser.

hiliteStyle
On input, a pointer to a highlighting style variable. On return, the variable is set to the highlighting
style in use. See “Table View Highlighting Styles” (page 2294) for a description of the values that can
be returned.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserTableViewItemID
Obtains the item ID for the item displayed in the specified row.

OSStatus GetDataBrowserTableViewItemID (
 ControlRef browser,
 DataBrowserTableViewRowIndex row,
 DataBrowserItemID *item
);

Parameters
browser

A data browser.

row
The row index for the item. The row index is the visual order of rows in the table onscreen. Rows are
numbered starting at the top of the table, with the value 0, and proceeding sequentially to the bottom
of the table.

item
On input, a pointer to an item ID variable. On return, the variable is set to the item ID of the data
displayed in the row.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Functions 2169
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
This function is useful only in edge case situations for which you need to know what item ID is displayed in
a particular row. For example, if you are performing some fairly involved and complex custom hit-testing,
you might need to call this function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserTableViewItemRow
Obtains the visual position for the specified item in list view.

OSStatus GetDataBrowserTableViewItemRow (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserTableViewRowIndex *row
);

Parameters
browser

A data browser.

item
The item ID for the item whose row index you want to obtain.

row
On input, a pointer to a row index variable. On return, the variable is set to the row index for the item.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
You can use this function for items in list view. It is the inverse of the function
GetDataBrowserTableViewItemID (page 2169).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserTableViewItemRowHeight
Obtains the row height for a single row in a list view data browser.

2170 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus GetDataBrowserTableViewItemRowHeight (
 ControlRef browser,
 DataBrowserItemID item,
 UInt16 *height
);

Parameters
browser

A data browser.

item
The item ID of the item whose row height you want to obtain.

height
On input, a pointer to an unsigned 16-bit integer. On return, this value is set to the row height, in
pixels.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserTableViewNamedColumnWidth
Obtains the column width for a single column in a data browser.

OSStatus GetDataBrowserTableViewNamedColumnWidth (
 ControlRef browser,
 DataBrowserTableViewColumnID column,
 UInt16 *width
);

Parameters
browser

A data browser.

column
The property ID for the list view column whose width you want to obtain. The
DataBrowserTableViewColumnID data type is the same as the DataBrowserPropertyID data
type.

width
On input, a pointer to an unsigned 16-bit integer. On return, this value is set to the width of the
column, in pixels.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Functions 2171
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserTableViewRowHeight
Obtains the default row height used for all rows in a data browser.

OSStatus GetDataBrowserTableViewRowHeight (
 ControlRef browser,
 UInt16 *height
);

Parameters
browser

A data browser.

height
On input, a pointer to an unsigned 16-bit integer. On return, this value is set to the row height, in
pixels.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserTarget
Obtains the target for the data browser

OSStatus GetDataBrowserTarget (
 ControlRef browser,
 DataBrowserItemID *target
);

Parameters
browser

A data browser.

target
On input, a pointer to an item ID variable. On return, the variable is set to the item ID for the currently
assigned target.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

2172 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
In column view, the target is the rightmost column. In list view, the target can be thought of as the root
container.

Your application can call the function SetDataBrowserTarget (page 2229) to set an item ID to use as a target
if you do not want to use the default target set by the data browser.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserUserState
Obtains the current view style settings for a list view.

OSStatus GetDataBrowserUserState (
 ControlRef browser,
 CFDictionaryRef *stateInfo
);

Parameters
browser

A data browser.

stateInfo
On input, a pointer to a CFDictionaryRef. On return, a CFDictionary object that contains the current
view style settings. You must release the object when you no longer need it by calling the function
CFRelease. Note that although this parameter is typed as a CFData object, you must treat the result
as a CFDictionary object because that is what the system fills out and returns to you.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
You typically use this function to obtain the current user settings for the data browser so that you can save
the settings to a preferences file. User settings include data such as sorting order, sorting column, and column
widths. Later, you can restore the settings by calling the function SetDataBrowserUserState (page 2230).

If you want to save the user settings to disk, you need to determine the length of the user-settings data in
bytes. The following code shows how to calculate this length. First you need to convert the CFDictionary
object you obtain from the function GetDataBrowserUserState to a property list. Then you can call the
function CFDataGetLength to obtain the length, in bytes, of the property list.

CFDataRef myUserState = NULL;
OSStatus status;

ControlRef browser = GetDataBrowserFromWindow (window);
status = GetDataBrowserUserState (browser, &myUserState);

if (noErr == status)
{

Functions 2173
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

 CFDataRef myTempDataRef = NULL;
 CFIndex index;

 if (myUserState != NULL)
 {
 // Convert the user state dictionary to a property list.
 myTempDataRef = CFPropertyListCreateXMLData (NULL,
 (CFPropertyListRef) myUserState);
 if (myTempDataRef != NULL)
 {
 // Get the length, in bytes
 index = CFDataGetLength (myTempDataRef);
 // Call your function to save the data
 // You need to release the CFDataRef you created
 CFRelease (myTempDataRef);
 }
 }
 CFRelease (myUserState);
}

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

GetDataBrowserViewStyle
Obtains the current view style for the specified data browser.

OSStatus GetDataBrowserViewStyle (
 ControlRef browser,
 DataBrowserViewStyle *style
);

Parameters
browser

A data browser.

style
On input, a pointer to a view style variable. On return, the variable is set to the current view style for
the specified data browser; can be either list view (kDataBrowserListView) or column view
(kDataBrowserColumnView). See “View Styles” (page 2298) for more information on these constants.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

2174 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

InitDataBrowserCallbacks
Initializes a data browser callback structure in preparation for adding your own callbacks to the structure.

OSStatus InitDataBrowserCallbacks (
 DataBrowserCallbacks *callbacks
);

Parameters
callbacks

A pointer to a DataBrowserCallbacks structure. Before calling the function
InitDataBrowserCallbacks, set the version field of this structure to
kDataBrowserLatestCallbacks. On return, the fields in this structure are set to NULL.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
After you call this function, set the appropriate fields in the DataBrowserCallbacks structure to your
callbacks. The DataBrowserCallbacks structure contains fields for the following:

 ■ DataBrowserItemDataProcPtr (page 2245)

 ■ DataBrowserItemCompareProcPtr (page 2243)

 ■ DataBrowserItemNotificationProcPtr (page 2250) or
DataBrowserItemNotificationWithItemProcPtr (page 2251) (Mac OS X only)

 ■ DataBrowserAddDragItemProcPtr (page 2234)

 ■ DataBrowserAcceptDragProcPtr (page 2233)

 ■ DataBrowserReceiveDragProcPtr (page 2256)

 ■ DataBrowserPostProcessDragProcPtr (page 2255)

 ■ DataBrowserGetContextualMenuProcPtr (page 2238)

 ■ DataBrowserSelectContextualMenuProcPtr (page 2257)

 ■ DataBrowserItemHelpContentProcPtr (page 2248)

After you assign your callbacks to the appropriate field, call the function SetDataBrowserCallbacks (page
2200).

Note that this is a different set of callbacks from those that are assigned to fields in the
DataBrowserCustomCallbacks data structure.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

Functions 2175
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

InitDataBrowserCustomCallbacks
Initializes the data browser custom callback structure in preparation for adding your own callbacks for custom
drawing or custom behavior to the structure.

OSStatus InitDataBrowserCustomCallbacks (
 DataBrowserCustomCallbacks *callbacks
);

Parameters
callbacks

A pointer to a DataBrowserCustomCallbacks structure. Before calling the function
InitDataBrowserCustomCallbacks, set the version field of this structure to
kDataBrowserLatestCustomCallbacks. On return, the fields in this structure are set to NULL.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Custom callbacks refer to those callback routines that are used to implement custom drawing or custom
behavior in your data browser. The data browser API supports a limited set of built-in display types: text,
icon and text, checkboxes, and so forth. If you want to display something else, you install custom callbacks
to perform drawing and handle user interaction.

After you call the function InitDataBrowserCustomCallbacks, set the appropriate fields in the
DataBrowserCustomCallbacks structure to your callbacks. The DataBrowserCustomCallbacks structure
contains fields for the following:

 ■ DataBrowserDrawItemProcPtr (page 2235)

 ■ DataBrowserEditItemProcPtr (page 2237)

 ■ DataBrowserHitTestProcPtr (page 2240)

 ■ DataBrowserTrackingProcPtr (page 2259)

 ■ DataBrowserItemDragRgnProcPtr (page 2246)

 ■ DataBrowserItemAcceptDragProcPtr (page 2242)

 ■ DataBrowserItemReceiveDragProcPtr (page 2254)

After you assign your custom callbacks to the appropriate field, call the function
SetDataBrowserCustomCallbacks (page 2203).

Note that this is a different set of callbacks from those that are assigned to fields in the
DataBrowserCallbacks data structure.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

2176 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

InvokeDataBrowserAcceptDragUPP
Calls an accept-drag callback function.

Boolean InvokeDataBrowserAcceptDragUPP (
 ControlRef browser,
 DragReference theDrag,
 DataBrowserItemID item,
 DataBrowserAcceptDragUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserAcceptDragProcPtr (page 2233) callback function for more information and for
a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserAddDragItemUPP
Calls an add-drag-item callback function.

Boolean InvokeDataBrowserAddDragItemUPP (
 ControlRef browser,
 DragReference theDrag,
 DataBrowserItemID item,
 ItemReference *itemRef,
 DataBrowserAddDragItemUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserAddDragItemProcPtr (page 2234) callback function for more information and
for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserDrawItemUPP
Calls a draw-item callback function.

Functions 2177
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

void InvokeDataBrowserDrawItemUPP (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 DataBrowserItemState itemState,
 const Rect *theRect,
 SInt16 gdDepth,
 Boolean colorDevice,
 DataBrowserDrawItemUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserDrawItemProcPtr (page 2235) callback function for more information and for a
description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserEditItemUPP
Calls an edit-item callback function.

Boolean InvokeDataBrowserEditItemUPP (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 CFStringRef theString,
 Rect *maxEditTextRect,
 Boolean *shrinkToFit,
 DataBrowserEditItemUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserEditItemProcPtr (page 2237) callback function for more information and for a
description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserGetContextualMenuUPP
Calls a get-contextual-menu callback function.

2178 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

void InvokeDataBrowserGetContextualMenuUPP (
 ControlRef browser,
 MenuRef *menu,
 UInt32 *helpType,
 CFStringRef *helpItemString,
 AEDesc *selection,
 DataBrowserGetContextualMenuUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserGetContextualMenuProcPtr (page 2238) callback function for more information
and for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserHitTestUPP
Calls a hit-test callback function.

Boolean InvokeDataBrowserHitTestUPP (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 const Rect *mouseRect,
 DataBrowserHitTestUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserHitTestProcPtr (page 2240) callback function for more information and for a
description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserItemAcceptDragUPP
Calls an item-accept-drag callback function.

Functions 2179
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserDragFlags InvokeDataBrowserItemAcceptDragUPP (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 DragReference theDrag,
 DataBrowserItemAcceptDragUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserItemAcceptDragProcPtr (page 2242) callback function for more information
and for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserItemCompareUPP
Calls an item-comparison callback function.

Boolean InvokeDataBrowserItemCompareUPP (
 ControlRef browser,
 DataBrowserItemID itemOne,
 DataBrowserItemID itemTwo,
 DataBrowserPropertyID sortProperty,
 DataBrowserItemCompareUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserItemCompareProcPtr (page 2243) callback function for more information and
for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserItemDataUPP
Calls an item-data callback function.

2180 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus InvokeDataBrowserItemDataUPP (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 DataBrowserItemDataRef itemData,
 Boolean setValue,
 DataBrowserItemDataUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserItemDataProcPtr (page 2245) callback function for more information and for a
description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserItemDragRgnUPP
Calls an item-drag-region callback function.

void InvokeDataBrowserItemDragRgnUPP (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 RgnHandle dragRgn,
 DataBrowserItemDragRgnUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserItemDragRgnProcPtr (page 2246) callback function for more information and
for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserItemHelpContentUPP
Calls an item-help-content callback function.

Functions 2181
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

void InvokeDataBrowserItemHelpContentUPP (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentRec *ioHelpContent,
 DataBrowserItemHelpContentUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserItemHelpContentProcPtr (page 2248) callback function for more information
and for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserItemNotificationUPP
Calls an item-notification callback function.

void InvokeDataBrowserItemNotificationUPP (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserItemNotification message,
 DataBrowserItemNotificationUPP userUPP
);

Discussion
In most cases you don’t need to use this function, because the system invokes your callback function for you.
See the DataBrowserItemNotificationProcPtr (page 2250) callback function for more information and
for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserItemNotificationWithItemUPP
Calls an item-notification-with-data callback function.

2182 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

void InvokeDataBrowserItemNotificationWithItemUPP (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserItemNotification message,
 DataBrowserItemDataRef itemData,
 DataBrowserItemNotificationWithItemUPP userUPP
);

Discussion
In most cases you don’t need to use this function, because the system invokes your callback function for you.
See the DataBrowserItemNotificationWithItemProcPtr (page 2251) callback function for more
information and for a description of the parameters.

Availability
Available in CarbonLib 1.5 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserItemReceiveDragUPP
Calls an item-receive-drag callback function.

Boolean InvokeDataBrowserItemReceiveDragUPP (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 DataBrowserDragFlags dragFlags,
 DragReference theDrag,
 DataBrowserItemReceiveDragUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserItemReceiveDragProcPtr (page 2254) callback function for more information
and for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserItemUPP
Calls an item-iterator callback function.

Functions 2183
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

void InvokeDataBrowserItemUPP (
 DataBrowserItemID item,
 DataBrowserItemState state,
 void *clientData,
 DataBrowserItemUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserItemProcPtr (page 2253) callback function for more information and for a
description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserPostProcessDragUPP
Calls a postprocess-drag callback function.

void InvokeDataBrowserPostProcessDragUPP (
 ControlRef browser,
 DragReference theDrag,
 OSStatus trackDragResult,
 DataBrowserPostProcessDragUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserPostProcessDragProcPtr (page 2255) callback function for more information
and for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserReceiveDragUPP
Calls a receive-drag callback function.

2184 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Boolean InvokeDataBrowserReceiveDragUPP (
 ControlRef browser,
 DragReference theDrag,
 DataBrowserItemID item,
 DataBrowserReceiveDragUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserReceiveDragProcPtr (page 2256) callback function for more information and
for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserSelectContextualMenuUPP
Calls a select-contextual-menu callback function.

void InvokeDataBrowserSelectContextualMenuUPP (
 ControlRef browser,
 MenuRef menu,
 UInt32 selectionType,
 SInt16 menuID,
 MenuItemIndex menuItem,
 DataBrowserSelectContextualMenuUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserSelectContextualMenuProcPtr (page 2257) callback function for more
information and for a description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

InvokeDataBrowserTrackingUPP
Calls a tracking callback function.

Functions 2185
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserTrackingResult InvokeDataBrowserTrackingUPP (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 Point startPt,
 EventModifiers modifiers,
 DataBrowserTrackingUPP userUPP
);

Discussion
In most cases you do not need to use this function, because the system invokes your callback function for
you. See the DataBrowserTrackingProcPtr (page 2259) callback function for more information and for a
description of the parameters.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

IsDataBrowserItemSelected
Checks to see if a data item is selected.

Boolean IsDataBrowserItemSelected (
 ControlRef browser,
 DataBrowserItemID item
);

Parameters
browser

A data browser.

item
The item ID of the item to check.

Return Value
A value of true if the item is a member of the current selection.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

MoveDataBrowserSelectionAnchor
Moves or extends the current selection.

2186 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus MoveDataBrowserSelectionAnchor (
 ControlRef browser,
 DataBrowserSelectionAnchorDirection direction,
 Boolean extendSelection
);

Parameters
browser

A data browser.

direction
The direction to move or extend the current selection. You can pass any one of the constants described
in “Selection Anchor Directions” (page 2293).

extendSelection
On input, a value that specifies whether to extend the current selection (true) or move the selection
(false).

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

NewDataBrowserAcceptDragUPP
Creates a universal procedure pointer to an accept-drag callback function.

DataBrowserAcceptDragUPP NewDataBrowserAcceptDragUPP (
 DataBrowserAcceptDragProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your accept-drag callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserAcceptDragProcPtr (page 2233) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

Functions 2187
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

NewDataBrowserAddDragItemUPP
Creates a universal procedure pointer to an add-drag-item callback function.

DataBrowserAddDragItemUPP NewDataBrowserAddDragItemUPP (
 DataBrowserAddDragItemProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your add-drag-item callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserAddDragItemProcPtr (page 2234) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

NewDataBrowserDrawItemUPP
Creates a universal procedure pointer to a draw-item callback function.

DataBrowserDrawItemUPP NewDataBrowserDrawItemUPP (
 DataBrowserDrawItemProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your draw-item callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserDrawItemProcPtr (page 2235) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

NewDataBrowserEditItemUPP
Creates a universal procedure pointer to an edit-item callback function.

2188 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserEditItemUPP NewDataBrowserEditItemUPP (
 DataBrowserEditItemProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your edit-item callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserEditItemProcPtr (page 2237) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

NewDataBrowserGetContextualMenuUPP
Creates a universal procedure pointer to a get-contextual-menu callback function.

DataBrowserGetContextualMenuUPP NewDataBrowserGetContextualMenuUPP (
 DataBrowserGetContextualMenuProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your get-contextual-menu callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserGetContextualMenuProcPtr (page 2238) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

NewDataBrowserHitTestUPP
Creates a universal procedure pointer to a hit-test callback function.

Functions 2189
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserHitTestUPP NewDataBrowserHitTestUPP (
 DataBrowserHitTestProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your hit-test callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserHitTestProcPtr (page 2240) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

NewDataBrowserItemAcceptDragUPP
Creates a universal procedure pointer to an item-accept-drag callback function.

DataBrowserItemAcceptDragUPP NewDataBrowserItemAcceptDragUPP (
 DataBrowserItemAcceptDragProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your item-accept-drag callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserItemAcceptDragProcPtr (page 2242) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

NewDataBrowserItemCompareUPP
Creates a universal procedure pointer to an item-comparison callback function.

2190 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserItemCompareUPP NewDataBrowserItemCompareUPP (
 DataBrowserItemCompareProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your item-comparison callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserItemCompareProcPtr (page 2243) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

NewDataBrowserItemDataUPP
Creates a universal procedure pointer to an item-data callback function.

DataBrowserItemDataUPP NewDataBrowserItemDataUPP (
 DataBrowserItemDataProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your item-data callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserItemDataProcPtr (page 2245) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

NewDataBrowserItemDragRgnUPP
Creates a universal procedure pointer to an item-drag-region callback function.

Functions 2191
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserItemDragRgnUPP NewDataBrowserItemDragRgnUPP (
 DataBrowserItemDragRgnProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your item-drag-region callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserItemDragRgnProcPtr (page 2246) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

NewDataBrowserItemHelpContentUPP
Creates a universal procedure pointer to an item-help-content callback function.

DataBrowserItemHelpContentUPP NewDataBrowserItemHelpContentUPP (
 DataBrowserItemHelpContentProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your item-help-content callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserItemHelpContentProcPtr (page 2248) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

NewDataBrowserItemNotificationUPP
Creates a universal procedure pointer to an item-notification callback function.

2192 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserItemNotificationUPP NewDataBrowserItemNotificationUPP (
 DataBrowserItemNotificationProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your item-notification callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserItemNotificationProcPtr (page 2250) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

NewDataBrowserItemNotificationWithItemUPP
Creates a universal procedure pointer to an item-notification-with-data callback function.

DataBrowserItemNotificationWithItemUPP NewDataBrowserItemNotificationWithItemUPP
(
 DataBrowserItemNotificationWithItemProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your item-notification-with-data callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserItemNotificationWithItemProcPtr (page 2251) callback function.

Availability
Available in CarbonLib 1.5 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

NewDataBrowserItemReceiveDragUPP
Creates a universal procedure pointer to an item-receive-drag callback function.

Functions 2193
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserItemReceiveDragUPP NewDataBrowserItemReceiveDragUPP (
 DataBrowserItemReceiveDragProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your item-receive-drag callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserItemReceiveDragProcPtr (page 2254) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

NewDataBrowserItemUPP
Creates a universal procedure pointer to an item-iterator callback function.

DataBrowserItemUPP NewDataBrowserItemUPP (
 DataBrowserItemProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your item-iterator callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserItemProcPtr (page 2253) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

NewDataBrowserPostProcessDragUPP
Creates a universal procedure pointer to a postprocess-drag callback function.

2194 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserPostProcessDragUPP NewDataBrowserPostProcessDragUPP (
 DataBrowserPostProcessDragProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your postprocess-drag callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserPostProcessDragProcPtr (page 2255) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

NewDataBrowserReceiveDragUPP
Creates a universal procedure pointer to a receive-drag callback function.

DataBrowserReceiveDragUPP NewDataBrowserReceiveDragUPP (
 DataBrowserReceiveDragProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your receive-drag callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserReceiveDragProcPtr (page 2256) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

NewDataBrowserSelectContextualMenuUPP
Creates a universal procedure pointer to a select-contextual-menu callback function.

Functions 2195
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserSelectContextualMenuUPP NewDataBrowserSelectContextualMenuUPP (
 DataBrowserSelectContextualMenuProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your select-contextual-menu callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserSelectContextualMenuProcPtr (page 2257) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

NewDataBrowserTrackingUPP
Creates a universal procedure pointer to a tracking callback function.

DataBrowserTrackingUPP NewDataBrowserTrackingUPP (
 DataBrowserTrackingProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your tracking callback function.

Return Value
The universal procedure pointer.

Discussion
See the DataBrowserTrackingProcPtr (page 2259) callback function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.1 and later.

Declared In
HIDataBrowser.h

OpenDataBrowserContainer
Opens a data browser container.

2196 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus OpenDataBrowserContainer (
 ControlRef browser,
 DataBrowserItemID container
);

Parameters
browser

A data browser.

container
The item ID of the container to open.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Normally the user navigates through a data hierarchy by clicking the disclosure triangle next to a container
item in list view, or the container item (such as a folder icon) in column view. In either of these cases, the
system automatically opens or closes the container. Under some circumstances your application may need
to open or close a container programmatically, such as when you are restoring a display to its last known
state. In such cases, you can call the function OpenDataBrowserContainer to disclose items in a container
or the function CloseDataBrowserContainer (page 2124) to hide items in a container.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

RemoveDataBrowserItems
Removes one or more items from a data browser.

OSStatus RemoveDataBrowserItems (
 ControlRef browser,
 DataBrowserItemID container,
 ItemCount numItems,
 const DataBrowserItemID *items,
 DataBrowserPropertyID preSortProperty
);

Parameters
browser

A data browser.

container
An item ID or the constant kDataBrowserNoItem. Pass the item ID that uniquely identifies the
container from which you want to remove items. Pass kDataBrowserNoItem to remove items from
the root container.

numItems
The number of items in the array pointed to by the items parameter. To remove all items pass 0 and
also pass NULL in the items parameter.

Functions 2197
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

items
A pointer to an array of item ID values for the items you want to remove from the data browser. You
can delete an arbitrary list of items from a container. To remove all items, pass NULL, and also pass 0
in the numItems parameter.

preSortProperty
The property ID of the column whose sorting order is the same as the sorting order of the items
array. A property ID is a value that identifies a column independent of its position in a data browser.
Pass kDataBrowserItemNoProperty if the items array is not sorted or if you don’t know the sorting
order. You’ll get the best performance from this function if you provide a sorting order.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

RemoveDataBrowserTableViewColumn
Removes a column from a list view data browser.

OSStatus RemoveDataBrowserTableViewColumn (
 ControlRef browser,
 DataBrowserTableViewColumnID column
);

Parameters
browser

A data browser.

column
The property ID for the list view column you want to remove. The DataBrowserTableViewColumnID
data type is the same as the DataBrowserPropertyID data type.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function works only for list view.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

2198 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

RevealDataBrowserItem
Scrolls an item into view, optionally bringing a particular part of that item into view.

OSStatus RevealDataBrowserItem (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID propertyID,
 DataBrowserRevealOptions options
);

Parameters
browser

A data browser.

item
The item ID of the item to scroll into view.

propertyID
The property ID of the column to scroll into view. A property ID is a four-character sequence that you
assign to represent a column in list view. For column view, pass kDataBrowserNoItem.

options
A value that specifies how to position the item in the data browser. See “Reveal Options” (page 2292)
for a list of the constants you can supply.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
In most cases the system takes care of scrolling for you. However, this function is useful if your application
supports type-select and you want to scroll a matching item into view.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserActiveItems
Sets what determines the active state of the items in a data browser.

OSStatus SetDataBrowserActiveItems (
 ControlRef browser,
 Boolean active
);

Parameters
browser

A data browser.

Functions 2199
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

active
A value that specifies the new active state for the items displayed in the list. Pass true to make the
active state of each item determined by what your callback reports for each item’s
kDataBrowserItemIsActiveProperty property, or false to make all items inactive. Inactive
items appear dimmed.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Passing true for the active parameter does not make all the items active. Instead it sets the active state
of each individual item according to the value associated with the kDataBrowserItemIsActiveProperty
property for that item. This means if the active property for an item is set to false, and you pass true for
the active parameter, then the item is inactive.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserCallbacks
Sets the callback routines to use with a data browser, replacing any previously installed callbacks.

OSStatus SetDataBrowserCallbacks (
 ControlRef browser,
 const DataBrowserCallbacks *callbacks
);

Parameters
browser

A data browser.

callbacks
A pointer to a DataBrowserCallbacks structure that is filled out with universal procedure pointers
(UPPs) to the callback routines your application provides. At a minimum, you need to provide a UPP
to an item-data callback (DataBrowserItemDataProcPtr (page 2245)).

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Before calling the function SetDataBrowserCallbacks you must first call
InitDataBrowserCallbacks (page 2175) to initialize the data browser callback structure. Calling
SetDataBrowserCallbacks replaces any callback routines you installed previously by calling this function.

You can supply the following callbacks. If you don’t supply callbacks in cases for which it’s optional, you get
the default behavior provided by the data browser API.

2200 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

 ■ DataBrowserItemDataProcPtr (page 2245). You must provide this callback because communicates
the text, icons, or other data to display in list view. It also communicates the metadata that defines how
data is displayed, such as whether or not an item is a container or has a parent. If you set up your data
browser to allow the user to edit, this callback informs your application when the user makes a change.

 ■ DataBrowserItemCompareProcPtr (page 2243). You must provide a sorting callback if you want users
to be able to sort the items in a column. If you want containers in a hierarchical list to be sorted
independently, then you must provide a sorting callback that handles the hierarchical lists appropriately.

 ■ DataBrowserItemNotificationProcPtr (page 2250). You must provide this (or the next) callback if
you have hierarchical data in a list, or if you use column view.

 ■ DataBrowserItemNotificationWithItemProcPtr (page 2251) (Mac OS X only)

 ■ DataBrowserAddDragItemProcPtr (page 2234). You can provide this callback to allow dragging out
of your data browser.

 ■ DataBrowserAcceptDragProcPtr (page 2233). You can provide this callback to allow dragging into
your data browser; use this to accept a drag item.

 ■ DataBrowserReceiveDragProcPtr (page 2256). You can provide this callback to allow dragging into
your data browser; use this to receive a drag item.

 ■ DataBrowserPostProcessDragProcPtr (page 2255). If you provide callbacks to allow dragging into
your data browser, you can optionally provide a postprocess-drag callback to perform cleanup tasks.

 ■ DataBrowserGetContextualMenuProcPtr (page 2238). You can optionally support a contextual menu.
If so, you’ll need to provide the next callback too.

 ■ DataBrowserSelectContextualMenuProcPtr (page 2257)

 ■ DataBrowserItemHelpContentProcPtr (page 2248). You can optionally provide help tags.

Note that this function sets a different set of callbacks from those that are set by calling the function
SetDataBrowserCustomCallbacks (page 2203).

To replace a callback, you first need to get the current set of callbacks by calling the function
GetDataBrowserCallbacks (page 2140). Set the appropriate fields in theDataBrowserCallbacks structure
to your callback. Then you call the function SetDataBrowserCallbacks. Your application can set as many
callbacks as appropriate.

The following code shows how to assign UPPs to the callbacks structure and then call the function
SetDataBrowserCallbacks. The code assumes you have already called the function
InitDataBrowserCallbacks (page 2175) to initialize the data browser callback structure.

myCallbacks.u.v1.itemNotificationCallback =
 NewDataBrowserItemNotificationUPP (MyItemNotificationCallback);

myCallbacks.u.v1.acceptDragCallback =
 NewDataBrowserAcceptDragUPP (MyAcceptDragCallback);
myCallbacks.u.v1.receiveDragCallback =
 NewDataBrowserReceiveDragUPP (MyReceiveDragCallback);
myCallbacks.u.v1.addDragItemCallback =
 NewDataBrowserAddDragItemUPP (MyAddDragItemCallback);
myCallbacks.u.v1.itemHelpContentCallback =
 NewDataBrowserItemHelpContentUPP (MyItemHelpContentCallback);
myCallbacks.u.v1.getContextualMenuCallback =
 NewDataBrowserGetContextualMenuUPP (MyGetContextualMenuCallback);
myCallbacks.u.v1.selectContextualMenuCallback =

Functions 2201
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

 NewDataBrowserSelectContextualMenuUPP (
 MySelectContextualMenuCallback);
SetDataBrowserCallbacks (browser, &myCallbacks);

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserColumnViewDisplayType
Sets the display type for a data browser in column view.

OSStatus SetDataBrowserColumnViewDisplayType (
 ControlRef browser,
 DataBrowserPropertyType propertyType
);

Parameters
browser

A data browser.

propertyType
The data type to be displayed in the data browser. The default is kDataBrowserIconAndTextType.
Currently this is the only value you can supply for column view.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function is effectively not functional because no display types other than
kDataBrowserIconAndTextType are currently supported. Note that the rightmost column can have the
attribute kDataBrowserColumnViewPreviewProperty as long as you provide a callback to display the
appropriate icon and text information in the preview column.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserColumnViewPath
Sets a path for a column view.

2202 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus SetDataBrowserColumnViewPath (
 ControlRef browser,
 UInt32 length,
 const DataBrowserItemID *path
);

Parameters
browser

A data browser.

length
The number of items in the array passed in the path parameter.

path
The address to the first item in the array of item ID values that specifies the path. Array element 0 is
the root; array element N - 1 is the target.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserCustomCallbacks
Sets the custom callback routines to use with a data browser, replacing any previously installed custom
callbacks.

OSStatus SetDataBrowserCustomCallbacks (
 ControlRef browser,
 const DataBrowserCustomCallbacks *callbacks
);

Parameters
browser

A data browser.

callbacks
A pointer to a DataBrowserCustomCallbacks structure that is filled out with universal procedure
pointers (UPPs) to the custom callback routines your application provides.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Before calling the function SetDataBrowserCustomCallbacks you must first call
InitDataBrowserCustomCallbacks (page 2176) to initialize the data browser custom callback structure.
Calling SetDataBrowserCustomCallbacks replaces any callback routines you installed previously by
calling this function.

You can supply the following custom callback routines.

Functions 2203
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

 ■ DataBrowserDrawItemProcPtr (page 2235). This callback is invoked by the data browser whenever
your content needs to be drawn. You must supply this callback for data whose display type is
kDataBrowserCustomType.

 ■ DataBrowserEditItemProcPtr (page 2237). Supply this callback when you want to support editing of
your content.

 ■ DataBrowserHitTestProcPtr (page 2240). You can provide this callback to determine if the pointer is
over content that can be selected or dragged.

 ■ DataBrowserTrackingProcPtr (page 2259). This callback implements custom tracking behavior.

 ■ DataBrowserItemDragRgnProcPtr (page 2246). You can supply this callback when you need to determine
which part of an item to use to create a transparent image for a dragged item.

 ■ DataBrowserItemAcceptDragProcPtr (page 2242). This callback determines if an item can accept a
drag object.

 ■ DataBrowserItemReceiveDragProcPtr (page 2254). This callback receives a drop over an item.

Note that this is a different set of callbacks from those that are installed by calling the function
SetDataBrowserCallbacks (page 2200).

To replace a callback, you first need to set the appropriate fields in the DataBrowserCustomCallbacks
structure to your callbacks. Then you call the function SetDataBrowserCustomCallbacks. The following
code shows how to set custom callbacks. It assumes you have already called the function
InitDataBrowserCustomCallbacks (page 2176) to initialize the data browser custom callback structure.
Your application can set as many callbacks as appropriate.

myCustomCallbacks.u.v1.drawItemCallback =
 NewDataBrowserDrawItemUPP (MyDataBrowserDrawItemCallback);
myCustomCallbacks.u.v1.editItemCallback =
 NewDataBrowserEditItemUPP (MyDataBrowserEditItemCallback);
SetDataBrowserCustomCallbacks (browser,&myCustomCallbacks);

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserEditItem
Programmatically starts or ends an editing session.

OSStatus SetDataBrowserEditItem (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property
);

Parameters
browser

A data browser.

2204 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

item
The item ID of the item to make editable.

property
The property ID of the item to make editable.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
You can call the function SetDataBrowserEditItem to begin or end an editing session programmatically
for a text item. To begin an editing session for a text item, specify its item ID and property ID. To end an
editing session, provide the constant kDataBrowserNoItem as the item ID number.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserEditText
Modifies the displayed contents of a text item while it is being edited.

OSStatus SetDataBrowserEditText (
 ControlRef browser,
 CFStringRef text
);

Parameters
browser

A data browser.

text
A CFString object that specifies the text to edit. The data browser makes its own copy of this object
so it is safe to release your own reference after you call this function.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
You can use this function to programmatically change the text. For example, to paste data in response to a
Paste command. This function is useful only if an edit session is in progress for an item. You can check whether
can get session is open by calling the function GetDataBrowserEditItem (page 2143).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

Functions 2205
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

SetDataBrowserHasScrollBars
Sets the display state of horizontal and vertical scroll bars for a list view data browser.

OSStatus SetDataBrowserHasScrollBars (
 ControlRef browser,
 Boolean horiz,
 Boolean vert
);

Parameters
browser

A list view data browser.

horiz
A value that specifies whether to display the browser control with (true) or without (false) a
horizontal scroll bar.

vert
A value that specifies whether to display the browser control with (true) or without (false) a vertical
scroll bar.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
If the list your application displays is small and its coordinates do not extend beyond the bounds of the area
used to display the list, then you can call SetDataBrowserHasScrollBars to turn off the display of scroll
bars.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataBooleanValue
Specifies a Boolean value for an item.

OSStatus SetDataBrowserItemDataBooleanValue (
 DataBrowserItemDataRef itemData,
 Boolean theData
);

Parameters
itemData

The item data reference for the item whose Boolean value you want to set. The item data reference
is passed to the callback routine from which you are calling the function
SetDataBrowserItemDataBooleanValue.

theData
The value to display.

2206 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Your item-data callback calls this function in response to an inquiry for the following properties:

 ■ kDataBrowserItemIsActiveProperty

 ■ kDataBrowserItemIsSelectableProperty

 ■ kDataBrowserItemIsEditableProperty

 ■ kDataBrowserItemIsContainerProperty

 ■ kDataBrowserItemIsOpenableProperty

 ■ kDataBrowserItemIsClosableProperty

 ■ kDataBrowserItemIsSortableProperty

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataButtonValue
Specifies a checkbox value.

OSStatus SetDataBrowserItemDataButtonValue (
 DataBrowserItemDataRef itemData,
 ThemeButtonValue theData
);

Parameters
itemData

The item data reference for the item whose checkbox value you want to set. The item data reference
is passed to the callback routine from which you are calling the function
SetDataBrowserItemDataButtonValue.

theData
The checkbox setting. You can supply any of the following theme button value constants defined by
the Appearance Manager:

 ■ kThemeButtonOff draws a checkbox that is not selected.

 ■ kThemeButtonOn draws a checkbox that is selected.

 ■ kThemeButtonMixed draws a checkbox that in a mixed state, indicating that a setting is on for
some items in a selection and off for others.

See Appearance Manager Reference for more information.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Functions 2207
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
Your item-data callback calls this function in response to a set-data request for items that have the display
type kDataBrowserCheckboxType.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataDateTime
Specifies, as a 32-bit value, a date and time value to display.

OSStatus SetDataBrowserItemDataDateTime (
 DataBrowserItemDataRef itemData,
 SInt32 theData
);

Parameters
itemData

The item data reference for the item whose date and time value you want to set. The item data
reference is passed to the callback routine from which you are calling the function
SetDataBrowserItemDataDateTime.

theData
A 32-bit value that represents the number of elapsed seconds since midnight, January 1, 1904. For
more information about date and time encodings used in the Mac OS, seeDate, Time, andMeasurement
Utilities Reference.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function works only with items that have the property kDataBrowserDateTimeType. If the column
has the property kDataBrowserRelativeDateTime, the date is displayed relative to the current time for
the computer. For example, a time 24 hours before the current time is displayed as “Yesterday.” Other
examples of relative date and time values are “Today, 1:45 PM” and “Yesterday, 7:30 AM.”

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataDrawState
Specifies whether to draw a checkbox in the active or inactive state.

2208 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus SetDataBrowserItemDataDrawState (
 DataBrowserItemDataRef itemData,
 ThemeDrawState theData
);

Parameters
itemData

The item data reference for the item whose drawing state you want to set. This value is passed to the
callback routine from which you are calling the function SetDataBrowserItemDataDrawState.

theData
The drawing state to use for the checkbox item. You can supply the following theme drawing state
constants:

 ■ kThemeStateInactive draws the item in the inactive state.

 ■ kThemeStateActive draws the item in the active state.

See Appearance Manager Reference for more information on these constants.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Your item-data callback calls this function in response to a set-data request for items that have the display
type kDataBrowserCheckboxType.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataIcon
Specifies the icon to draw.

OSStatus SetDataBrowserItemDataIcon (
 DataBrowserItemDataRef itemData,
 IconRef theData
);

Parameters
itemData

The item data reference for the item whose icon you want to set. This value is passed to the callback
routine from which you are calling the function SetDataBrowserItemDataIcon.

theData
The icon to display. The data browser retains the icon, so you may release the IconRef after the
function returns.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Functions 2209
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
You call the function SetDataBrowserItemDataIcon from within a DataBrowserItemDataProcPtr (page
2245) callback routine to specify an icon to draw. You can specify an icon for any column that has the
kDataBrowserIconType display type or the kDataBrowserIconAndTextType display type.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataIconTransform
Specifies a transformation to apply to an icon when it is drawn.

OSStatus SetDataBrowserItemDataIconTransform (
 DataBrowserItemDataRef itemData,
 IconTransformType theData
);

Parameters
itemData

The item data reference for the item whose icon transformation you want to set. This value is passed
to the callback routine from which you are calling the function
SetDataBrowserItemDataIconTransform.

theData
An icon transformation type that specifies how to modify the appearance of the icon. You can pass
any of the icon transformation constants defined by Icon Services and Utilities. See Icon Services and
Utilities Reference for more information.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function works only with items that either have the property kDataBrowserIconAndTextType or
kDataBrowserIconType.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataItemID
Communicates a property of an item when that property is another item’s ID.

2210 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus SetDataBrowserItemDataItemID (
 DataBrowserItemDataRef itemData,
 DataBrowserItemID theData
);

Parameters
itemData

The item data reference passed to your item-data callback.

theData
The item ID to set.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
To display hierarchical data correctly the data browser needs to know whether an item is a container and
whether the item is in a container (has a parent). So it sends a get-data request for the properties
kDataBrowserParentContainerProperty and kDataBrowserContainerAliasIDProperty to your
item-data callback.

The property kDataBrowserContainerAliasIDProperty is sent to your item-data callback to provide
your application with a chance to follow an alias that the item might represent. If the incoming item is an
alias to another item, you can call SetDataBrowserItemDataItemID to inform the data browser which
other item the incoming item points to.

The propertykDataBrowserParentContainerProperty is sent to your item-data callback to check whether
an item has a parent. If it does, you call SetDataBrowserItemDataItemID, supplying the item ID of the
parent in the parameter theData. If the item has no parent, set theData to 0.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataLongDateTime
Specifies, as a 64-bit value, a date and time value to display.

OSStatus SetDataBrowserItemDataLongDateTime (
 DataBrowserItemDataRef itemData,
 const LongDateTime *theData
);

Parameters
itemData

The item data reference for the item whose long date and time value you want to set. The item data
reference is passed to the callback routine from which you are calling the function
SetDataBrowserItemDataLongDateTime.

Functions 2211
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

theData
A pointer to a 64-bit value that represents the time as the number of elapsed seconds since midnight,
January 1, 1904. For more information about date and time encodings used in the Mac OS, see Date,
Time, and Measurement Utilities Reference in Carbon Text & International Documentation.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function works only with items that have the property kDataBrowserDateTimeType. If the column
has the property kDataBrowserRelativeDateTime, the date is displayed relative to the current time for
the computer. For example, a time 24 hours before the current time is displayed as “Yesterday.” Other
examples of relative date and time values are “Today, 1:45 PM” and “Yesterday, 7:30 AM.”

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataMaximum
Specifies the maximum integer value that can be displayed for an item; useful for such display types as sliders,
progress bars, relevance indicators, and pop-up menus.

OSStatus SetDataBrowserItemDataMaximum (
 DataBrowserItemDataRef itemData,
 SInt32 theData
);

Parameters
itemData

The item data reference for the item whose maximum value you want to set. The item data reference
is passed to the callback routine from which you are calling the function
SetDataBrowserItemDataMaximum.

theData
The maximum setting for content displayed for the item.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

2212 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

SetDataBrowserItemDataMenuRef
Sets the pop-up menu to display.

OSStatus SetDataBrowserItemDataMenuRef (
 DataBrowserItemDataRef itemData,
 MenuRef theData
);

Parameters
itemData

The item data reference for the item whose pop-up menu value you want to set. The item data
reference is passed to the callback routine from which you are calling the function
SetDataBrowserItemDataMenuRef.

theData
The pop-up menu set to the value you want to display. The system retains the menu reference that
you pass; you must release it when you no longer need it. Pass NULL if you no longer want a menu.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Your item-data callback calls this function in response to a set-data request for an item whose display type
is kDataBrowserPopupMenuType.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataMinimum
Specifies the minimum integer value that can be displayed for an item; useful for such display types as sliders,
progress bars, relevance indicators, and pop-up menus.

OSStatus SetDataBrowserItemDataMinimum (
 DataBrowserItemDataRef itemData,
 SInt32 theData
);

Parameters
itemData

The item data reference for the item whose minimum value you want to set. The item data reference
is passed to the callback routine from which you are calling the function
SetDataBrowserItemDataMinimum.

theData
The minimum setting for the displayed content.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Functions 2213
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataRGBColor
Specifies a color to use when drawing an item.

OSStatus SetDataBrowserItemDataRGBColor (
 DataBrowserItemDataRef itemData,
 const RGBColor *theData
);

Parameters
itemData

The item data reference for the item whose color you want to set. This value is passed to the callback
routine from which you are calling the function SetDataBrowserItemDataRGBColor.

theData
A pointer to the RGB values that specify the color to use.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Typically this function is used to set the color for an item that is an icon type. Your item-data callback calls
this function in response to a set-data request for items that have display type kDataBrowserIconType or
kDataBrowserIconAndTextType.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataText
Specifies the text to draw.

2214 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus SetDataBrowserItemDataText (
 DataBrowserItemDataRef itemData,
 CFStringRef theData
);

Parameters
itemData

The item data reference for the item whose text you want to set. This value is passed to the callback
routine from which you are calling the function SetDataBrowserItemDataText.

theData
The CFString object that contains the text you want to draw. You are responsible for releasing the
CFString object.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
You call the function SetDataBrowserItemDataText from inside a data callback routine when the item
being drawn is inside a column that has the kDataBrowserTextType display type or the
kDataBrowserIconAndTextType display type.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserItemDataValue
Sets the value of an item; useful for such display types as sliders, progress bars, relevance indicators, and
pop-up menus.

OSStatus SetDataBrowserItemDataValue (
 DataBrowserItemDataRef itemData,
 SInt32 theData
);

Parameters
itemData

The item data reference for the item whose integer value you want to set. The item data reference is
passed to the callback routine from which you are calling the function
SetDataBrowserItemDataValue.

theData
The value to display. The value must be between the minimum and maximum values specified by
calling the functions SetDataBrowserItemDataMinimum (page 2213) and
SetDataBrowserItemDataMaximum (page 2212). Values displayed by a progress bar can vary between
the minimum and maximum values, inclusive.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Functions 2215
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
Your application calls the function SetDataBrowserItemDataValue to set a new value for a display type
when your item-data callback routine is called with the setValue parameter set to false.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserListViewDisclosureColumn
Specifies whether there is a column that has disclosure triangles and, if so, which column.

OSStatus SetDataBrowserListViewDisclosureColumn (
 ControlRef browser,
 DataBrowserTableViewColumnID column,
 Boolean expandableRows
);

Parameters
browser

A data browser.

column
The property ID for the column for which you want to set as disclosure column. Only one column in
list view can be designated as a disclosure column. Pass kDataBrowserNoItemProperty if you do
not want a disclosure column. The DataBrowserTableViewColumnID data type is the same as the
DataBrowserPropertyID data type.

expandableRows
A value that specifies how a disclosed row behaves. Pass true to have a container open as a single
row with an expanded height. Pass false to have a container opens to expose other rows. See the
Discussion for more details on expandable rows.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
A disclosure triangle next to an item denotes the item is a container. You can use the expandableRows
parameter to specify whether an opened container displays its items in individual rows, as shown in the top
of Figure 27-1 or increases its row height to accommodate the contained information, as shown in the bottom
of the figure.

2216 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Figure 27-1 A container can open to more rows or expand to show more information

Paper types

Paper types
	 Plain	 Letter
	 Photo Glossy	 8 X 10 Borderless

Layout

Layout
	 Pages per sheet	 2
	 Layout direction	 Left to right
	 Order	 Back to front

When the expandableRows parameter is set to true:

 ■ Disclosure triangles are drawn top-justified in the row.

 ■ Custom row height, if any, for that row is respected only while the row is disclosed. At other times, the
default row height is used.

When the expandableRows parameter is set to false:

 ■ Disclosure triangles are centered vertically in the row.

 ■ Custom row height, if any, for that row is always respected.

When a disclosure triangle is clicked by the user, your application receives the same notifications regardless
of whether expandableRows is set to true or false. When your application receives a notification that an
expandable row is toggled to open, call the function SetDataBrowserTableViewItemRowHeight (page
2227) to set the row to the appropriate height.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserListViewHeaderBtnHeight
Sets the height of the rectangular area where the column title appears.

Functions 2217
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus SetDataBrowserListViewHeaderBtnHeight (
 ControlRef browser,
 UInt16 height
);

Parameters
browser

A data browser.

height
The height, in pixels, to use for the rectangular area where the column title appears. Pass 0 to turn
off header button display. To turn on header button display, pass the value previously obtained from
the functionGetDataBrowserListViewHeaderBtnHeight (page 2159). The default height is currently
17 pixels.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserListViewHeaderDesc
Provides a description for a column title in list view.

OSStatus SetDataBrowserListViewHeaderDesc (
 ControlRef browser,
 DataBrowserTableViewColumnID column,
 DataBrowserListViewHeaderDesc *desc
);

Parameters
browser

A data browser.

column
The property ID for the column in list view whose title description you want to set. The
DataBrowserTableViewColumnID data type is the same as the DataBrowserPropertyID data
type.

desc
The list view header description structure that you have filled out with data that describes the
appearance of a column title in list view.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This functions allows you to change the behavior or appearance of a column title. Typically you call this
function if your application:

2218 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

 ■ Supports switching between list and column views, and you need to restore previously saved list view
title information.

 ■ Creates a list view data browser programmatically and the columns have titles.

Availability
Available in CarbonLib 1.5 and later.
Available in Mac OS X version 10.2 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserListViewUsePlainBackground
Specifies whether list view uses a plain white background.

OSStatus SetDataBrowserListViewUsePlainBackground (
 ControlRef browser,
 Boolean usePlainBackground
);

Parameters
browser

A data browser.

usePlainBackground
A value that specifies whether to use a plain background (true) or not to use a plain background
(false). A plain background is an all-white background. In Mac OS X, passing false currently does
nothing, as Mac OS X supports only a plain white background. However, pass true if you want a plain
white background just in case the API changes in the future. In Mac OS 9, passing false causes the
data browser to use a shaded background.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
A list view that does not use a plain background can use colors or patterns to distinguish one column from
another. For example, you could specify a color to designate a column as the sorted column.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserPropertyFlags
Sets the appearance and behavior attributes for a column in list view.

Functions 2219
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus SetDataBrowserPropertyFlags (
 ControlRef browser,
 DataBrowserPropertyID property,
 DataBrowserPropertyFlags flags
);

Parameters
browser

A data browser.

property
The property ID of the column whose appearance and behavior you want to set.

flags
The property flags to apply. A DataBrowserPropertyFlags value is a 32-bit value that is divided
into four parts as follows:

 ■ Bits 0–7 specify properties applied to the data browser as a whole—see “Property Flags:
Universal” (page 2284)

 ■ Bits 8–15 modify display behavior—see “Property Flags: Modifiers” (page 2285)

 ■ Bits 16–23 are properties specific to list view—see “Property Flags: Offset and Mask for List View
Properties” (page 2288) and “Property Flags: List View Column Behavior” (page 2289)

 ■ Bits 24–31 can be defined by your application—see “Property Flags: Offset and Mask for
Client-Defined Properties” (page 2290)

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserScrollBarInset
Sets the inset values to use for the scroll bars of a data browser.

OSStatus SetDataBrowserScrollBarInset (
 ControlRef browser,
 Rect *insetRect
);

Parameters
browser

A data browser.

insetRect
A pointer to a rectangle that specifies the inset values you want the data browser to use. The left and
right fields contain the horizontal inset values for the horizontal scroll bar, and the top and bottom
fields contain the vertical inset values for the vertical scroll bar.

2220 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Your application can call the functions GetDataBrowserScrollBarInset (page 2162) and
SetDataBrowserScrollBarInset if you want to place placards or controls beside the horizontal scroll
bars or above the vertical ones. To do so, first call GetDataBrowserScrollBarInset to obtain the current
settings. After modifying the current inset settings to provide space for the placard or control, call
SetDataBrowserScrollBarInset with the new values.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserScrollPosition
Scrolls a list to the specified position.

OSStatus SetDataBrowserScrollPosition (
 ControlRef browser,
 UInt32 top,
 UInt32 left
);

Parameters
browser

A data browser.

top
The vertical scrolling position to use.

left
The horizontal scrolling position to use.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
The scrolling position (0,0) represents the home position, and is located at the top left of the data browser.
Horizontal and vertical units are relative to the home position.

You can call this function to scroll a list to any arbitrary scrolling position. Normally, you use the function
GetDataBrowserScrollPosition (page 2162) in conjunction with SetDataBrowserScrollPosition to
save and restore the scrolling position of a list to the user’s last scrolling position. These functions should
not be used to scroll particular cells into the view. For that, call the function RevealDataBrowserItem.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Functions 2221
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Declared In
HIDataBrowser.h

SetDataBrowserSelectedItems
Modifies the current selection by adding items, removing items, or toggling the selection state of items.

OSStatus SetDataBrowserSelectedItems (
 ControlRef browser,
 ItemCount numItems,
 const DataBrowserItemID *items,
 DataBrowserSetOption operation
);

Parameters
browser

A data browser.

numItems
The number of item ID values stored in the array pointed to by the items parameter.

items
A pointer to an array of the item IDs to modify the selection with.

operation
The operation you want to perform on the current selection. You can add, assign, toggle, or remove
the items specified by the items parameter. See “Selection State Options” (page 2293) for a list of the
constants you can supply and a complete description of what each constant does.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserSelectionFlags
Sets allowable selection behavior for a data browser.

OSStatus SetDataBrowserSelectionFlags (
 ControlRef browser,
 DataBrowserSelectionFlags selectionFlags
);

Parameters
browser

A data browser.

2222 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

selectionFlags
Flags that specify the selection behavior you want to allow in the data browser. The flags control such
things as whether discontinuous selections are allowed by the user. See “User Selection Flags” (page
2296) for detailed descriptions of these flags.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserSortOrder
Sets the sorting order for a list in list view.

OSStatus SetDataBrowserSortOrder (
 ControlRef browser,
 DataBrowserSortOrder order
);

Parameters
browser

A data browser.

order
The sorting order. See “Sorting Orders” (page 2294) for a list of the constants you can supply.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
List view tracks the sorting order by column. In Mac OS X, setting the sorting order only affects the sorting
order of the column currently set for sorting.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserSortProperty
Designates the list view column to use for sorting.

Functions 2223
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus SetDataBrowserSortProperty (
 ControlRef browser,
 DataBrowserPropertyID property
);

Parameters
browser

A data browser.

property
The property ID of the column to use for sorting.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
If the list is not currently sorted, or if the list is currently sorted with a different column, then the list is sorted
and redrawn. You can all the function GetDataBrowserSortProperty to obtain the property ID of the
column currently used for sorting.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserTableViewColumnPosition
Changes the visual position of a column in list view.

OSStatus SetDataBrowserTableViewColumnPosition (
 ControlRef browser,
 DataBrowserTableViewColumnID column,
 DataBrowserTableViewColumnIndex position
);

Parameters
browser

A data browser.

column
The property ID for the list view column you want to move. The DataBrowserTableViewColumnID
data type is the same as the DataBrowserPropertyID data type.

position
The position you want to move the column to.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
If you set your list to have the property kDataBrowserListViewMovableColumn, the user can rearrange
columns by dragging. The function SetDataBrowserTableViewColumnPosition provides a way for your
application to rearrange columns programmatically.

2224 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserTableViewColumnWidth
Sets the default column width for all columns in a data browser.

OSStatus SetDataBrowserTableViewColumnWidth (
 ControlRef browser,
 UInt16 width
);

Parameters
browser

A data browser.

width
The column width, in pixels.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
You can override the default width for an individual list view column by calling the function
SetDataBrowserTableViewNamedColumnWidth (page 2228).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserTableViewGeometry
Sets whether columns and rows can have variable widths in list view.

OSStatus SetDataBrowserTableViewGeometry (
 ControlRef browser,
 Boolean variableWidthColumns,
 Boolean variableHeightRows
);

Parameters
browser

A data browser.

Functions 2225
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

variableWidthColumns
A Boolean value that specifies whether column widths can be variable (true) or not (false).

variableHeightRows
A Boolean value that specifies whether row heights can be variable (true) or not (false).

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
After you call the function SetDataBrowserTableViewGeometry to set up variable row heights or columns
widths in list view, you can modify individual row heights or columns widths in list view by calling the
appropriate function—either SetDataBrowserTableViewItemRowHeight (page 2227) or
SetDataBrowserTableViewNamedColumnWidth (page 2228).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserTableViewHiliteStyle
Sets the highlighting style to use for a list view data browser.

OSStatus SetDataBrowserTableViewHiliteStyle (
 ControlRef browser,
 DataBrowserTableViewHiliteStyle hiliteStyle
);

Parameters
browser

A list view data browser.

hiliteStyle
The highlighting style you want to use. See “Table View Highlighting Styles” (page 2294) for a description
of the constants you can supply.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserTableViewItemRow
Changes the visual position for an item in a list view data browser.

2226 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus SetDataBrowserTableViewItemRow (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserTableViewRowIndex row
);

Parameters
browser

A data browser.

item
The item ID for the item whose row you want to set.

row
The row index for the row you want to move the item to.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserTableViewItemRowHeight
Sets the row height for a single row in a list view data browser.

OSStatus SetDataBrowserTableViewItemRowHeight (
 ControlRef browser,
 DataBrowserItemID item,
 UInt16 height
);

Parameters
browser

A data browser.

item
The item ID for the item whose row height you want to set.

height
The row height, in pixels.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Before calling this function, you must call the function SetDataBrowserTableViewGeometry (page 2225)
to set up variable row heights.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Functions 2227
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserTableViewNamedColumnWidth
Sets the column width for a single column in a list view data browser.

OSStatus SetDataBrowserTableViewNamedColumnWidth (
 ControlRef browser,
 DataBrowserTableViewColumnID column,
 UInt16 width
);

Parameters
browser

A data browser.

column
The property ID for the list view column whose width you want to set. The
DataBrowserTableViewColumnID data type is the same as the DataBrowserPropertyID data
type.

width
The width of the column, in pixels.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Before calling this function, you must call the function SetDataBrowserTableViewGeometry (page 2225)
to set up variable column widths.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserTableViewRowHeight
Sets the default row height for all rows in a data browser.

OSStatus SetDataBrowserTableViewRowHeight (
 ControlRef browser,
 UInt16 height
);

Parameters
browser

A data browser.

2228 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

height
The row height, in pixels.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
This function sets the default row height for all rows. You override the default row height for an individual
row by calling the function SetDataBrowserTableViewItemRowHeight (page 2227).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserTarget
Sets the target for a data browser.

OSStatus SetDataBrowserTarget (
 ControlRef browser,
 DataBrowserItemID target
);

Parameters
browser

A data browser.

target
The item ID to assign as the target for the browser control.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Your application can set an item ID to use as a target if you do not want to use the default target set by the
data browser. By default, the target is a container whose ID is kDataBrowserNoItem. For the list view, the
target can be thought of as the root container. For the column view, the target is the rightmost column.
When an item is dragged over a data browser but not dropped over any particular item, the target becomes
the destination.

SetDataBrowserTarget changes the container that the data browser displays, thereby populating the
data browser with items. If you use the function in column view, you must make sure your item-data callback
responds to the property kDataBrowserItemParentContainerProperty by providing the item ID of the
target’s parent. This allows the function SetDataBrowserColumnViewPath (page 2202) to process the data
properly. The target is the leaf node item whose contents you want to display. However, unlike
GetDataBrowserColumnViewPathLength (page 2142), the functionSetDataBrowserTargetdoesn’t offer
a way for you to communicate the item IDs of the rest of the column containers, so SetDataBrowserTarget
asks for them explicitly by requesting the item’s parent, then the parent of the item’s parent, and so on.

Functions 2229
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

You can pass a noncontainer item to this function in either list or column views. If you do, you must also
respond to the property kDataBrowserItemParentContainerProperty. The data browser requests the
parent of the target so it knows which container to display the contents of in the list view.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserUserState
Restores the view-style settings in list view to a previous state set by the user.

OSStatus SetDataBrowserUserState (
 ControlRef browser,
 CFDictionaryRef stateInfo
);

Parameters
browser

A data browser.

stateInfo
A CFDictionary object that specifies the view-style settings that you want to restore. Note that although
this parameter is typed as a CFData object, you must supply a CFDictionary object because that is the
form of the data the system expects.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Typically you use this function to restore the user state you previously obtained by calling the function
GetDataBrowserUserState (page 2173).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SetDataBrowserViewStyle
Sets the view style of the specified data browser.

2230 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

OSStatus SetDataBrowserViewStyle (
 ControlRef browser,
 DataBrowserViewStyle style
);

Parameters
browser

A data browser.

style
The view style to use. Pass the constant kDataBrowserListView to draw the data browser using
list view or kDataBrowserColumnView to use column view. See “View Styles” (page 2298) for more
information on these constants.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
Although you specify a view style when you call the function CreateDataBrowserControl (page 2125), you
can call SetDataBrowserViewStyle to change the style. Use SetDataBrowserViewStyle when you
provide users the option of changing between list and column views.

After calling SetDataBrowserViewStyle, you need to perform the necessary tasks to configure the data
browser for the view style you switched to. If you switch to list view, you need to set up list view header and
column descriptions and call the function AddDataBrowserListViewColumn (page 2121). You might also
need to call other functions such as SetDataBrowserListViewDisclosureColumn (page 2216) (for
hierarchical lists).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

SortDataBrowserContainer
Sorts a hierarchical list of items.

OSStatus SortDataBrowserContainer (
 ControlRef browser,
 DataBrowserItemID container,
 Boolean sortChildren
);

Parameters
browser

A data browser.

container
An item ID or the constant kDataBrowserNoItem. To sort all of the items that are organized as
subitems of a container item, pass the item ID for the container item. To sort all of the items displayed
at the top level of the data browser, pass the constant kDataBrowserNoItem.

Functions 2231
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

sortChildren
A value that indicates whether to sort all items in the container hierarchy. Pass true to sort all items
in the container hierarchy and false to sort just the immediate children of the container.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

UpdateDataBrowserItems
Requests a redraw of one or more items in a data browser.

OSStatus UpdateDataBrowserItems (
 ControlRef browser,
 DataBrowserItemID container,
 ItemCount numItems,
 const DataBrowserItemID *items,
 DataBrowserPropertyID preSortProperty,
 DataBrowserPropertyID propertyID
);

Parameters
browser

A data browser.

container
An item ID or the constant kDataBrowserNoItem. Pass the item ID that uniquely identifies the
container. If you are updating one or more items that are in the root container, pass
kDataBrowserNoItem.

numItems
The number of items in the array pointed to by the items parameter.

items
A pointer to an array of item ID values for the items you want to update. If you pass NULL or if the
value kDataBrowserNoItem is an element in this array, then all rows are updated.

preSortProperty
The property ID of the column whose sorting order is the same as the sorting order of the items
array. A property ID is a four-character sequence that you assign to represent a column in list view.
Pass kDataBrowserItemNoProperty if the items array is not sorted of if you don’t know the sorting
order.

propertyID
The property ID of the column that must be updated. To update all columns associated with the items
in the items array, pass kDataBrowserNoItem.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

2232 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
After your application makes changes to any of the data items in a data browser you must update the display
by calling the function UpdateDataBrowserItems. Calling this function also updates any internal caches
allocated by the data browser.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
HIDataBrowser.h

Callbacks

DataBrowserAcceptDragProcPtr
Defines a pointer to an accept-drag callback function that determines whether your application can accept
a drag object in the specified location.

typedef Boolean (*DataBrowserAcceptDragProcPtr) (
 ControlRef browser,
 DragRef theDrag,
 DataBrowserItemID item
);

You would declare an accept-drag callback function named MyDataBrowserAcceptDragCallback like
this:

Boolean MyDataBrowserAcceptDragCallback (
 ControlRef browser,
 DragRef theDrag,
 DataBrowserItemID item
);

Parameters
browser

A data browser.

theDrag
The drag reference provided by the data browser to your callback.

item
The item ID of the item the drag object is held over. If the drag object is over the data browser but
not over any specific item, the item parameter contains the item ID that represents one of the
following:

 ■ In list view, the target. (See SetDataBrowserTarget (page 2229).)

 ■ In column view, the item ID of the column the drag object is over

Callbacks 2233
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Return Value
Your callback returns true if it is capable of accepting the drag object in the location designated by the item
parameter. Otherwise, your callback returns false.

Discussion
The accept-drag callback is called by the data browser when your application needs to determine if it can
accept a drag object in a particular location.

To provide a pointer to your accept-drag callback, you create a universal procedure pointer (UPP) of type
DataBrowserAcceptDragUPP, using the functionNewDataBrowserAcceptDragUPP (page 2187). You can
do so with code similar to the following:

DataBrowserAcceptDragUPP MyDataBrowserAcceptDragUPP;
MyDataBrowserAcceptDragUPP = NewDataBrowserAcceptDragUPP
 (&MyDataBrowserAcceptDragCallback);

You can then assign MyDataBrowserAcceptDragUPP to the acceptDragCallback field of the structure
DataBrowserCallbacks (page 2264). You install your data browser callbacks using the function
SetDataBrowserCallbacks (page 2200).

When you no longer need the UPP, remove it using the DisposeDataBrowserAcceptDragUPP (page 2129)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserAddDragItemProcPtr
Defines a pointer to an add-drag-item callback function that adds an item to a drag reference.

typedef Boolean (*DataBrowserAddDragItemProcPtr) (
 ControlRef browser,
 DragRef theDrag,
 DataBrowserItemID item,
 ItemReference *itemRef
);

You would declare an add-drag-item callback function named MyDataBrowserAddDragItemCallback like
this:

Boolean MyDataBrowserAddDragItemCallback (
 ControlRef browser,
 DragRef theDrag,
 DataBrowserItemID item,
 ItemRef *itemRef
);

Parameters
browser

A data browser.

2234 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

theDrag
The drag reference provided by the data browser to your callback.

item
The item ID of the item to add to the drag object.

itemRef
A pointer to a drag item reference variable. Your callback must set this to the DragItemRef value
that it passes to the Drag Manager function AddDragItemFlavor.

Return Value
Your callback returns true to indicate the item should be or is part of the drag object. Your callback returns
false if the item isn’t part of the drag object.

Discussion
The add-drag-item callback is called by the data browser when a drag operation needs to be started. The
data browser iterates through the selected items, invoking your callback for each item. Your callback is called
after the drag reference is created by the data browser but before the function TrackDrag is called by the
system.

Your callback adds an item to the drag reference calling the function AddDragItemFlavor. When you call
AddDragItemFlavor, you must provide a unique drag item reference (DragItemRef) for each data browser
item that you add to the drag. You must also provide the data type of the added item (drag flavor type) and
set the appropriate drag flavor flags.

The data browser handles imaging and adds transparency for you. As a result, you do not need to create or
add your own transparency information to the drag reference.

To provide a pointer to your add-drag-item callback, you create a universal procedure pointer (UPP) of type
DataBrowserAddDragItemUPP, using the function NewDataBrowserAddDragItemUPP (page 2188). You
can do so with code similar to the following:

DataBrowserAddDragItemUPP MyDataBrowserAddDragItemUPP;
MyDataBrowserAddDragItemUPP = NewDataBrowserAddDragItemUPP
 (&MyDataBrowserAddDragItemCallback);

You can then assign MyDataBrowserAddDragItemUPP to the addDragItemCallback field of the structure
DataBrowserCallbacks (page 2264). You install your data browser callbacks using the function
SetDataBrowserCallbacks (page 2200).

When you no longer need the UPP, remove it using the DisposeDataBrowserAddDragItemUPP (page 2130)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserDrawItemProcPtr
Defines a pointer to a draw-item callback function that draws a custom item.

Callbacks 2235
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

typedef void (*DataBrowserDrawItemProcPtr) (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 DataBrowserItemState itemState,
 const Rect *theRect,
 SInt16 gdDepth,
 Boolean colorDevice
);

You would declare a draw-item callback function named MyDataBrowserDrawItemCallback like this:

void MyDataBrowserDrawItemCallback (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 DataBrowserItemState itemState,
 const Rect *theRect,
 SInt16 gdDepth,
 Boolean colorDevice
);

Parameters
browser

A data browser.

item
The item ID for the item to draw.

property
The property ID for the item. In list view, this is the four-character sequence that you previously
assigned to the column. In column view, this is the property
kDataBrowserItemSelfIdentityProperty.

itemState
The state to use when drawing the item. See “Item States” (page 2280) for a description of the constants
that can be provided to your callback.

theRect
A pointer to the bounding rectangle (in local coordinates, relative to the port) that specifies where
to draw the item. This rectangle is the content rectangle, not the enclosing rectangle.

gdDepth
The bit depth of the current QuickDraw graphics port. The data browser sets the current QuickDraw
port to the port that you draw into. This may not always be the port of the data browser’s own window.

colorDevice
A value that specifies whether the current QuickDraw port is a color device (true) or is not (false).

Discussion
The draw-item callback is called by the data browser when an item whose display type is
kDataBrowserCustomType needs to be drawn. Your application draws the item so it reflects the state
specified by the itemState parameter.

To provide a pointer to your draw-item callback, you create a universal procedure pointer (UPP) of type
DataBrowserDrawItemUPP, using the function NewDataBrowserDrawItemUPP (page 2188). You can do so
with code similar to the following:

DataBrowserDrawItemUPP MyDataBrowserDrawItemUPP;

2236 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

MyDataBrowserDrawItemUPP = NewDataBrowserDrawItemUPP
 (&MyDataBrowserDrawItemCallback);

You can then assign MyDataBrowserDrawItemUPP to the drawItemCallback field of the structure
DataBrowserCustomCallbacks (page 2265). You install your data browser custom callbacks using the
function SetDataBrowserCustomCallbacks (page 2203).

When you no longer need the UPP, remove it using the DisposeDataBrowserDrawItemUPP (page 2130)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserEditItemProcPtr
Defines a pointer to an edit-item callback function that determines if the data browser should start an edit
session for a custom item.

Not Recommended

typedef Boolean (*DataBrowserEditItemProcPtr) (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 CFStringRef theString,
 Rect *maxEditTextRect,
 Boolean *shrinkToFit
);

You would declare an edit-item callback function named MyDataBrowserEditItemCallback like this:

Boolean MyDataBrowserEditItemCallback (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 CFStringRef theString,
 Rect *maxEditTextRect,
 Boolean *shrinkToFit
);

Parameters
browser

A data browser.

item
The item ID number for the item.

property
The property ID for the item. In list view, this is the four-character sequence that you previously
assigned to the column. In column view, this is the property
kDataBrowserItemSelfIdentityProperty.

Callbacks 2237
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

theString
The string to be edited. See Special Considerations for more information.

maxEditTextRect
On input, a pointer to a rectangle structure. On return, set the rectangle to the largest size the edit
field can grow to. If the text grows beyond the size of the edit field, the text scrolls as the user types.
This parameter is used only if the parameter shrinkToFit is true. Otherwise, the current size of
the text editing field is used.

shrinkToFit
On input, a pointer to a Boolean variable. On return, set this variable to true if you want the data
browser to expand or shrink the text editing field to match the width of the text in the edit field. Note
that this parameter is currently ignored; shrinkToFit is always true by default.

Return Value
A value that indicates whether or not you want to start an edit operation for the given property of the item.
If your application performs the editing operation, your callback returns true. Otherwise, your callback
returns false.

Discussion
The edit-item callback is called by the data browser for an item whose property is kDataBrowserCustomType.
Your callback must determine whether an editing session should be started and, if so, set the string to be
edited, set the size of the edit rectangle, and specify whether the text editing field can adjust to match the
width of the text in the edit field.

To provide a pointer to your edit-item callback, you create a universal procedure pointer (UPP) of type
DataBrowserEditItemUPP, using the function NewDataBrowserEditItemUPP (page 2188). You can do so
with code similar to the following:

DataBrowserEditItemUPP MyDataBrowserEditItemUPP;
MyDataBrowserEditItemUPP = NewDataBrowserEditItemUPP
 (&MyDataBrowserEditItemCallback);

You can then assign MyDataBrowserEditItemUPP to the editItemCallback field of the structure
DataBrowserCustomCallbacks (page 2265). You install your data browser custom callbacks using the
function SetDataBrowserCustomCallbacks (page 2203).

When you no longer need the UPP, remove it using the DisposeDataBrowserEditItemUPP (page 2131)
function.

Special Considerations

This callback does not work properly. The theString parameter is an immutable sting, which means it is
not possible for the callback to set the string to the text that is to be edited.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserGetContextualMenuProcPtr
Defines a pointer to a get-contextual-menu callback function that obtains a menu and information about
the menu.

2238 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

typedef void (*DataBrowserGetContextualMenuProcPtr) (
 ControlRef browser,
 MenuRef *menu,
 UInt32 *helpType,
 CFStringRef *helpItemString,
 AEDesc *selection
);

You would declare a get-contextual-menu callback function named
MyDataBrowserGetContextualMenuCallback like this:

void MyDataBrowserGetContextualMenuCallback (
 ControlRef browser,
 MenuRef *menu,
 UInt32 *helpType,
 CFStringRef *helpItemString,
 AEDesc *selection
);

Parameters
browser

A data browser.

menu
On input, a pointer to a menu. Your callback must set the pointer to the menu that you want to have
displayed for the given item. Your application is responsible for disposing of the menu; you typically
perform this task in the callback DataBrowserSelectContextualMenuProcPtr (page 2257).

helpType
On input, a pointer to an unsigned 32-bit integer. On return, this value specifies the type of help
available for this item. This value is then passed by the data browser to the Menu Manager function
ContextualMenuSelect. You can provide one of the following values:

 ■ kCMHelpItemNoHelp if your application does not support help. The Menu Manager inserts an
appropriate string into the menu and then disables the associated help item.

 ■ kCMHelpItemAppleGuide if your application supports Apple Guide help. The Menu Manager
inserts the name of the main Apple Guide file into the menu and enables the associated help
item. You can pass this in Mac OS 9. Apple Guide is not supported in Mac OS X. In Mac OS X, this
value is ignored; a generic, but inactive, help item is displayed.

 ■ kCMHelpItemOtherHelp if your application supports some other form of help. In this case, your
application must pass a valid string in the helpItemString parameter. The Menu Manager
inserts the string in the menu and enables the associated help item.

See Menu Manager Reference for more information about these constants.

helpItemString
On input, a CFStringRef variable. On return, a CFString object that contains the name of the item
to display in the contextual menu. This is the first item that appears in the contextual menu. If you
pass NULL, the default string (“Help”) is displayed. Data Browser does not retain the string; it releases
it.

selection
On input, a pointer to an empty AEDesc data structure. On return, the structure contains the data
supplied by your callback. The data browser passes this structure to the function
ContextualMenuSelect.

Callbacks 2239
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
The get-contextual-menu callback is called by the data browser when the user Control-clicks in the data
browser. You application provides a menu and information about help that is (or is not) available for the data
browser. You can determine what to provide for the content of the menu and what information to put in
the AEDesc structure by calling the function GetDataBrowserItems with the state parameter set to
kDataBrowserItemIsSelected. This tells you what items are selected, which you can then use to choose
the appropriate information to supply.

To provide a pointer to your get-contextual-menu callback, you create a universal procedure pointer (UPP)
of type DataBrowserGetContextualMenuUPP, using the function
NewDataBrowserGetContextualMenuUPP (page 2189). You can do so with code similar to the following:

DataBrowserGetContextualMenuUPP MyDataBrowserGetContextualMenuUPP;
MyDataBrowserGetContextualMenuUPP = NewDataBrowserGetContextualMenuUPP
 (&MyDataBrowserGetContextualMenuCallback);

You can then assign MyDataBrowserGetContextualMenuUPP to the getContextualMenuCallback field
of the structure DataBrowserCallbacks (page 2264). You install your data browser callbacks using the
function SetDataBrowserCallbacks (page 2200).

When you no longer need the UPP, remove it using theDisposeDataBrowserGetContextualMenuUPP (page
2131) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserHitTestProcPtr
Defines a pointer to a hit-test callback function that determines if the pointer is over content that can be
selected or dragged.

typedef Boolean (*DataBrowserHitTestProcPtr) (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 const Rect *mouseRect
);

You would declare a hit-test callback function named MyDataBrowserHitTestCallback like this:

Boolean MyDataBrowserHitTestCallback (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 const Rect *mouseRect
);

2240 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Parameters
browser

A data browser.

itemID
The item ID number for the item over which the pointer is located.

property
The property ID for the column in which the pointer is located. In list view, this is the four-character
sequence that you previously assigned to the column. In column view, this is the property
kDataBrowserItemSelfIdentityProperty.

theRect
A pointer to the bounding rectangle, in local coordinates, of the item.

mouseRect
A pointer to a rectangle structure that contains the local coordinates of the selection. If the top-left
and bottom-right coordinates of this rectangle are identical, then a single point is being tested. If
they differ, then the data browser is testing to see whether your custom item is inside of the bounding
rectangle of a selection.

Return Value
Your application returns a true value for either of the following conditions:

 ■ The pointer is located over the part of the item that can be selected or dragged.

 ■ The rectangle provided in the parameter mouseRect intersects with the content area of the item that
can be selected or dragged.

Discussion
The hit-test callback is called by the data browser when the user hovers the pointer over, clicks the mouse
within, or drags within an item whose display type is kDataBrowserCustomType. Your callback can use the
functions SetRect or SectRgn to determine if the selectable content of the custom item is part of the
selection. Figure 27-2 illustrates a situation for which the selectable or draggable content area differs from
the background area in which the item is displayed.

Figure 27-2 Differentiation between the selectable content and background

Selectable or draggable
content area

Bounding rectangle

Background area

To provide a pointer to your hit-test callback, you create a universal procedure pointer (UPP) of type
DataBrowserHitTestItemUPP, using the function NewDataBrowserHitTestUPP (page 2189). You can do
so with code similar to the following:

DataBrowserHitTestUPP MyDataBrowserHitTestUPP;
MyDataBrowserHitTestUPP = NewDataBrowserHitTestUPP
 (&MyDataBrowserHitTestCallback);

Callbacks 2241
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

You can then assign MyDataBrowserHitTestUPP to the hitTestCallback field of the structure
DataBrowserCustomCallbacks (page 2265). You install your data browser custom callbacks using the
function SetDataBrowserCustomCallbacks (page 2203).

When you no longer need the UPP, remove it using the DisposeDataBrowserHitTestUPP (page 2131)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserItemAcceptDragProcPtr
Defines a pointer to an item-accept-drag callback function that determines if a custom item can accept a
drag object.

typedef DataBrowserDragFlags (*DataBrowserItemAcceptDragProcPtr) (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 DragRef theDrag
);

You would declare an item-accept-drag callback function namedMyDataBrowserItemAcceptDragCallback
like this:

DataBrowserDragFlags MyDataBrowserItemAcceptDragCallback (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 DragRef theDrag
);

Parameters
browser

A data browser.

itemID
The item ID number for the item the drag object is held over. If the drag object is over the data browser
but not over any specific item, the item parameter contains the item ID that represents one of the
following:

 ■ The target in list view. (See SetDataBrowserTarget (page 2229).)

 ■ The column the drag object is over in column view

property
The property ID of the column the dragged object is over. In list view, this is the four-character
sequence that you previously assigned to the column. In column view, this is the property
kDataBrowserItemSelfIdentityProperty.

2242 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

theRect
A pointer to the bounding rectangle of the item, in local coordinates relative to the current port.

theDrag
The drag reference provided by the data browser to your callback.

Return Value
If your callback determines the drag object can be accepted, return a nonzero value that has the bit
kDataBrowserItemIsDragTarget set. Otherwise return kDataBrowserItemNoState. The return value
is then passed to your item-receive-drag callback in the dragFlags parameter.

Discussion
The item-accept-drag callback is called by the data browser for an item whose display type is
kDataBrowserCustomTypewhen a drag object is moved over the item. Your application determines whether
or not the associated item can accept the drag object. If the item cannot accept the drag object, return 0.
Otherwise, if the item is an acceptable drop location for the drag object, return a nonzero value.

If the drag object was acceptable and the drop occurs over that same item ID and property ID pair, the
DataBrowserDragFlags values you returned from your item-accept-drag callback are passed in the
dragFlags parameter to your item-receive-drag callback. This allows you to generate state information
during drag tracking that can be communicated to you at drop time.

Do not call the function SetOrigin in this or any of the other drag processing callbacks.

To provide a pointer to your item-accept-drag callback, you create a universal procedure pointer (UPP) of
type DataBrowserItemAcceptDragUPP, using the function NewDataBrowserItemAcceptDragUPP (page
2190). You can do so with code similar to the following:

DataBrowserItemAcceptDragUPP MyDataBrowserItemAcceptDragUPP;
MyDataBrowserItemAcceptDragUPP = NewDataBrowserItemAcceptDragUPP
 (&MyDataBrowserItemAcceptDragCallback);

You can then assign MyDataBrowserItemAcceptDragUPP to the itemAcceptDragCallback field of the
structure DataBrowserCustomCallbacks (page 2265). You install your data browser custom callbacks using
the function SetDataBrowserCustomCallbacks (page 2203).

When you no longer need the UPP, remove it using the DisposeDataBrowserItemAcceptDragUPP (page
2132) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserItemCompareProcPtr
Defines a pointer to an item-comparison callback function that orders the values displayed in a column.

Callbacks 2243
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

typedef Boolean (*DataBrowserItemCompareProcPtr) (
 ControlRef browser,
 DataBrowserItemID itemOne,
 DataBrowserItemID itemTwo,
 DataBrowserPropertyID sortProperty
);

You would declare an item-comparison callback function named MyDataBrowserItemCompareCallback
like this:

Boolean MyDataBrowserItemCompareCallback (
 ControlRef browser,
 DataBrowserItemID itemOne,
 DataBrowserItemID itemTwo,
 DataBrowserPropertyID sortProperty
);

Parameters
browser

A data browser.

itemOne
The item ID of the first item to use in the comparison.

itemTwo
The item ID of the second item to use in the comparison.

sortProperty
The property ID for the column to sort. In list view, this is the four-character sequence that you
previously assigned to the column. In column view, this is the property
kDataBrowserItemSelfIdentityProperty.

Return Value
Your callback returns true if the value of the data referenced by itemOne is less than the value of the data
referenced by itemTwo. It returns false if the value of the data referenced by itemOne is greater than or
equal to the value of the data referenced by itemTwo.

Discussion
The item-comparison callback is called by the data browser when it needs to order the values displayed in
a column. Your callback determines the display type of the data, then carries out the appropriate comparison
for that data.

If you want your callback to use secondary and tertiary sorting, your application must keep track of previous
sorting operations. Then you must make sure that each time a user clicks a column, the column is sorted,
but the associated sorting orders for secondary and tertiary items in the column are preserved.

To provide a pointer to your item-comparison callback, you create a universal procedure pointer (UPP) of
type DataBrowserItemCompareUPP, using the function NewDataBrowserItemCompareUPP (page 2190).
You can do so with code similar to the following:

DataBrowserItemCompareUPP MyDataBrowserItemCompareUPP;
MyDataBrowserItemCompareUPP = NewDataBrowserItemCompareUPP
 (&MyDataBrowserItemCompareCallback);

You can then assign MyDataBrowserItemCompareUPP to the itemCompareCallback field of the structure
DataBrowserCallbacks (page 2264). You install your data browser callbacks using the function
SetDataBrowserCallbacks (page 2200).

2244 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

When you no longer need the UPP, remove it using the DisposeDataBrowserItemCompareUPP (page 2132)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserItemDataProcPtr
Defines a pointer to an item-data callback function that gets and sets properties for individual items in a data
browser.

typedef OSStatus (*DataBrowserItemDataProcPtr) (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 DataBrowserItemDataRef itemData,
 Boolean setValue
);

You would declare an item-data callback function named MyDataBrowserItemDataCallback like this:

OSStatus MyDataBrowserItemDataCallback (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 DataBrowserItemDataRef itemData,
 Boolean setValue
);

Parameters
browser

The data browser.

item
The item ID of the item whose data is set or obtained.

property
A property ID. This value can be any of the following:

 ■ A four-character sequence that you assign to represent a column in list view.

 ■ Any of the API-defined properties, such as kDataBrowserItemSelfIdentityProperty for a
column in column view or kDataBrowserItemIsContainerProperty for an item in list or
column view that has children. See “Properties” (page 2282) for a complete list and more information
on the API-defined properties.

itemData
The data buffer that either contains the data to set or receives the data to obtain.

Callbacks 2245
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

setValue
A value that indicates whether data is to be obtained or set. This value is false if your application
needs to set the value of the item by calling one of the set functions described in the section “Getting
and Setting Item Data” (page 2115). This value is true if the value of the item has changed. In this case,
you should call the appropriate get function, passing the item data reference provided to you in the
itemData parameter.

Return Value
A result code. See “Data Browser Result Codes” (page 2298).

Discussion
The item-data callback communicates data between the data browser and your application. When the data
browser needs to display a value for an item, it invokes your callback to request the data. If the user changes
the value, the data browser invokes your callback with a new copy of the data that you can use to replace
your application’s internal copy. Your application must supply an item-data callback; otherwise, your data
browser will not contain any data.

Your callback determines the kind of data is associated with an item and whether data needs to be obtained
or set. Then, your callback takes the appropriate action by calling one of the functions listed in “Getting and
Setting Item Data” (page 2115).

To provide a pointer to your item-data callback, you create a universal procedure pointer (UPP) of type
DataBrowserItemDataUPP, using the function NewDataBrowserItemDataUPP (page 2191). You can do so
with code similar to the following:

DataBrowserItemDataUPP MyDataBrowserItemDataUPP;
MyDataBrowserItemDataUPP = NewDataBrowserItemDataUPP
 (&MyDataBrowserItemDataCallback);

You can then assign MyDataBrowserItemDataUPP to the itemDataCallback field of the structure
DataBrowserCallbacks (page 2264). You install your data browser callbacks using the function
SetDataBrowserCallbacks (page 2200).

When you no longer need the UPP, remove it using the DisposeDataBrowserItemDataUPP (page 2133)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserItemDragRgnProcPtr
Defines a pointer to an item-drag-region callback function that determines which part of the item rectangle
to use when creating a transparent image for a dragged custom item.

2246 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

typedef void (*DataBrowserItemDragRgnProcPtr) (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 RgnHandle dragRgn
);

You would declare an item-drag-region callback function named MyDataBrowserItemDragRgnCallback
like this:

void MyDataBrowserItemDragRgnCallback (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 RgnHandle dragRgn
);

Parameters
browser

A data browser.

itemID
The item ID number for the row for which the drag image is generated.

property
The property ID for the column for which the drag image is generated. In list view, this is the
four-character sequence that you previously assigned to the column. In column view, this is the
property kDataBrowserItemSelfIdentityProperty.

theRect
A pointer to the bounding rectangle of the item, in local coordinates.

dragRgn
On return, the drag region set to the portion of the rectangle to use for the transparent drag image.
Typically this is the boundary of the content area inside your custom item. This region is used as a
mask when passed to your custom draw-item callback.

Discussion
The item-drag-region callback is called by the data browser for an item whose display type is
kDataBrowserCustomType when a drag is about to begin. Your application determines which part of the
item rectangle to use when creating the transparent image that appears during a drag operation. The data
browser uses this area as a clipping region when it invokes your draw-item callback.

Do not call the function SetOrigin in this or any of the other drag processing callbacks.

To provide a pointer to your item-drag-region callback, you create a universal procedure pointer (UPP) of
type DataBrowserItemDragRgnUPP, using the function NewDataBrowserItemDragRgnUPP (page 2191).
You can do so with code similar to the following:

DataBrowserItemDragRgnUPP MyDataBrowserItemDragRgnUPP;
MyDataBrowserItemDragRgnUPP = NewDataBrowserItemDragRgnUPP
 (&MyDataBrowserItemDragRgnCallback);

You can then assign MyDataBrowserItemDragRgnUPP to the itemDragRgnCallback field of the structure
DataBrowserCustomCallbacks (page 2265). You install your data browser custom callbacks using the
function SetDataBrowserCustomCallbacks (page 2203).

Callbacks 2247
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

When you no longer need the UPP, remove it using the DisposeDataBrowserItemDragRgnUPP (page 2133)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserItemHelpContentProcPtr
Defines a pointer to an item-help-content callback function that provides help tag content for an item.

typedef void (*DataBrowserItemHelpContentProcPtr) (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent
);

You would declare an item-help-content callback function named
MyDataBrowserItemHelpContentCallback like this:

void DataBrowserItemHelpContentCallback (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserPropertyID property,
 HMContentRequest inRequest,
 HMContentProvidedType *outContentProvided,
 HMHelpContentPtr ioHelpContent
);

Parameters
browser

A data browser.

item
The item ID of the item to provide help for.

property
The property ID of the column to provide help for. In list view, this is the four-character sequence that
you previously assigned to the column. In column view, this is the property
kDataBrowserItemSelfIdentityProperty.

2248 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

inRequest
On input, a value that indicates the nature of the help tag content request. Your callback is passed
one of the following constants:

 ■ kHMSupplyContent indicates your callback needs to supply help content.

 ■ kHMDisposeContent indicates your callback must dispose of help content.

outContentProvided
On input, a help-content-type variable. On return, the variable is set to one of the following constants
that indicate whether your item-help callback was able to fulfill the request specified in the inRequest
parameter:

 ■ kHMContentProvided indicates help content is provided in the ioHelpContent parameter.

 ■ kHMContentNotProvided indicates help content is not provided. When your callback returns
this constant, the Carbon Help Manager consults other help content providers in the hierarchy
until the request for help tag content is fulfilled, the top of the hierarchy is reached, or a help tag
callback notifies the Carbon Help Manager to stop propagating the request.

 ■ kHMContentNotProvidedDontPropagate indicates help content is not provided. When your
callback returns this constant, the Carbon Help Manager assumes that there is no help content
for the data browser item and does not propagate the request.

See Carbon Help Manager Reference for more information on these constants.

ioHelpContent
A help tag structure that describes the help tag for the item. On input, the data browser passes a
value in the version field. If the value of the inRequest parameter is kHMSupplyContent, your
callback must fill in the remaining fields of the structure or specify that it is unable to fulfill the help
tag content request.

Discussion
The item-help-content callback is called by the data browser when the user hovers the pointer over an item
in a data browser for which you’ve registered a help tag callback. Your application fills in the help tag structure
pointed to by the ioHelpContent parameter.

When the help tag for the item is no longer needed, the data browser invokes your callback with a
kHMDisposeContent request. When you receive this request, free any memory allocated for the help tag
content and perform any other cleanup tasks that are necessary.

To provide a pointer to your item-help-content callback, you create a universal procedure pointer (UPP) of
typeDataBrowserItemHelpContentUPP, using the functionNewDataBrowserItemHelpContentUPP (page
2192). You can do so with code similar to the following:

DataBrowserItemHelpContentUPP MyDataBrowserItemHelpContentUPP;
MyDataBrowserItemHelpContentUPP = NewDataBrowserItemHelpContentUPP
 (&MyDataBrowserItemHelpContentCallback);

You can then assign MyDataBrowserItemHelpContentUPP to the itemHelpContentCallback field of
the structure DataBrowserCallbacks (page 2264). You install your data browser callbacks using the function
SetDataBrowserCallbacks (page 2200).

When you no longer need the UPP, remove it using the DisposeDataBrowserItemHelpContentUPP (page
2133) function.

Availability
Available in Mac OS X v10.0 and later.

Callbacks 2249
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Declared In
HIDataBrowser.h

DataBrowserItemNotificationProcPtr
Defines a pointer to an item-notification callback function that notifies your application of changes in the
data browser.

typedef void (*DataBrowserItemNotificationProcPtr) (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserItemNotification message
);

You would declare an item-notification callback function named
MyDataBrowserItemNotificationCallback like this:

void MyDataBrowserItemNotificationCallback (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserItemNotification message
);

Parameters
browser

A data browser.

item
The item ID of the item that generated the notification.

message
A notification. See “Item Notifications” (page 2278) for a description of the values that can be provided
to your callback.

Discussion
The item-notification callback is called by the data browser to notify your application of actions taken by the
user (such as editing started, container opened, container closed) or any other condition that your application
might choose to respond to. Your item-notification callback can evaluate the notification and take appropriate
action.

To provide a pointer to your item-notification callback, you create a universal procedure pointer (UPP) of
type DataBrowserItemNotificationUPP, using the function
NewDataBrowserItemNotificationUPP (page 2192). You can do so with code similar to the following:

DataBrowserItemNotificationUPP MyDataBrowserItemNotificationUPP;
MyDataBrowserItemNotificationUPP = NewDataBrowserItemNotificationUPP
 (&MyDataBrowserItemNotificationCallback);

You can then assign MyDataBrowserItemNotificationUPP to the itemNotificationCallback field
of the structure DataBrowserCallbacks (page 2264). You install your data browser callbacks using the
function SetDataBrowserCallbacks (page 2200).

When you no longer need the UPP, remove it using the DisposeDataBrowserItemNotificationUPP (page
2134) function.

2250 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Special Considerations

In CarbonLib the item-notification callback is invoked with the three parameters shown in
DataBrowserItemNotificationProcPtr (page 2250). The four-parameter
version—DataBrowserItemNotificationWithItemProcPtr (page 2251)—does not provide valid data in
the fourth parameter. Any attempt to use the invalid data in a CarbonLib application may result in a crash.

In Mac OS X, the item-notification callback is invoked with the four parameters shown in
DataBrowserItemNotificationWithItemProcPtr (page 2251). In Mac OS X you have the option of using
the DataBrowserItemNotificationProcPtr (page 2250) or the
DataBrowserItemNotificationWithItemProcPtr (page 2251). Which one you choose depends on whether
your application needs to use the data passed to your callback in the fourth parameter (the itemData
parameter).

Availability
Available in Mac OS X v10.1 and later.

Declared In
HIDataBrowser.h

DataBrowserItemNotificationWithItemProcPtr
Defines a pointer to an item-notification-with-data callback function that notifies your application of changes
in the data browser and supplies any data associated with the changes.

typedef void (*DataBrowserItemNotificationWithItemProcPtr) (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserItemNotification message,
 DataBrowserItemDataRef itemData
);

You would declare an item-notification-with-data callback function named
MyDataBrowserItemNotificationWithItemCallback like this:

void MyDataBrowserItemNotificationWithItemCallback (
 ControlRef browser,
 DataBrowserItemID item,
 DataBrowserItemNotification message,
 DataBrowserItemDataRef itemData
);

Parameters
browser

A data browser.

item
The item ID of the item that generated the notification.

message
A notification. See “Item Notifications” (page 2278) for a description of the values that can be provided
to your callback.

Callbacks 2251
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

itemData
The data associated with the changes in the data browser that caused this callback to be invoked.
You pass this data to functions that get and set item data (such as
SetDataBrowserItemDataIcon (page 2209), SetDataBrowserItemDataText (page 2214),
GetDataBrowserItemDataIcon (page 2148), andGetDataBrowserItemDataText (page 2154)). See
“Getting and Setting Item Data” (page 2115) for a list of all the function that can use item data.

Discussion
The item-notification-with-data callback is called by the data browser to notify your application of actions
taken by the user (such as editing started, container opened, container closed) or any other condition that
your application might choose to respond to. Your item-notification-with-data callback can evaluate the
notification and take appropriate action. Unlike the callbackDataBrowserItemNotificationProcPtr (page
2250), the callbackDataBrowserItemNotificationWithItemProcPtr (page 2251) provides a fourth parameter
that contains any data associated with the item from which the notification is generated. This data is available
only to Mac OS X applications. See Special Considerations for more details.

To provide a pointer to your item-notification-with-data callback, you create a universal procedure pointer
(UPP) of type DataBrowserItemNotificationWithItemUPP, using the function
NewDataBrowserItemNotificationWithItemUPP (page 2193). You can do so with code similar to the
following:

DataBrowserItemNotificationWithItemUPP
 MyDataBrowserItemNotificationWithItemUPP;
MyDataBrowserItemNotificationWithItemUPP =
 NewDataBrowserItemNotificationWithItemUPP
 (&MyDataBrowserItemNotificationWithItemCallback);

You can then assignMyDataBrowserItemNotificationWithItemUPP to theitemNotificationCallback
field of the structure DataBrowserCallbacks (page 2264). You install your data browser callbacks using the
function SetDataBrowserCallbacks (page 2200).

When you no longer need the UPP, remove it using the
DisposeDataBrowserItemNotificationWithItemUPP (page 2134) function.

Special Considerations

In CarbonLib the item-notification callback is invoked with the three parameters shown in
DataBrowserItemNotificationProcPtr (page 2250). The four-parameter version
(DataBrowserItemNotificationWithItemProcPtr (page 2251)) does not provide valid data in the fourth
parameter. Any attempt to use the invalid data in a CarbonLib application may result in a crash.

In Mac OS X, the item-notification callback is invoked with the four parameters shown in
DataBrowserItemNotificationWithItemProcPtr (page 2251). In Mac OS X you have the option of using
the DataBrowserItemNotificationProcPtr (page 2250) or the
DataBrowserItemNotificationWithItemProcPtr (page 2251). Which one you choose depends on whether
your application needs to use the data passed to your callback in the fourth parameter (itemData).

Availability
Available in Mac OS X v10.1 and later.

Declared In
HIDataBrowser.h

2252 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserItemProcPtr
Defines a pointer to an item-iterator callback function that is applied by the function
ForEachDataBrowserItem to each item in a data browser.

typedef void (*DataBrowserItemProcPtr) (
 DataBrowserItemID item,
 DataBrowserItemState state,
 void *clientData
);

You would declare an item-iterator callback function named MyDataBrowserItemCallback like this:

void MyDataBrowserItemCallback (
 DataBrowserItemID item,
 DataBrowserItemState state,
 void *clientData
);

Parameters
item

The item ID of the item to operate on.

state
The state of the item. See “Item States” (page 2280) for a description of possible states. If the
functionForEachDataBrowserItem (page 2138) is set up to operate on items of a specified state,
then the state passed to your callback includes the state specified as a parameter to
ForEachDataBrowserItem.

clientData
A pointer to a buffer, local variable, or other storage location created and disposed of by your
application, and supplied to the data browser with a previous call to ForEachDataBrowserItem.

Discussion
An item-iterator callback is supplied as a parameter to the function ForEachDataBrowserItem. The function
applies your callback to each data item that meets the criteria specified by the function
ForEachDataBrowserItem.

To provide a pointer to your item-iterator callback, you create a universal procedure pointer (UPP) of type
DataBrowserItemUPP, using the function NewDataBrowserItemUPP (page 2194). You can do so with code
similar to the following:

DataBrowserItemUPP MyDataBrowserItemUPP;
MyDataBrowserItemUPP = NewDataBrowserItemUPP
 (&MyDataBrowserItemCallback);

You can then pass MyDataBrowserItemUPP in the callback parameter of the function
ForEachDataBrowserItem. When you no longer need the UPP, remove it using the
DisposeDataBrowserItemUPP (page 2135) function.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X version 10.0 and later.

Declared In
HIDataBrowser.h

Callbacks 2253
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserItemReceiveDragProcPtr
Defines a pointer to an item-receive-drag callback function that receives a drop over a custom item.

typedef Boolean (*DataBrowserItemReceiveDragProcPtr) (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 DataBrowserDragFlags dragFlags,
 DragRef theDrag
);

You would declare an item-receive-drag callback function named
MyDataBrowserItemReceiveDragCallback like this:

Boolean MyDataBrowserItemReceiveDragCallback (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 DataBrowserDragFlags dragFlags,
 DragRef theDrag
);

Parameters
browser

A data browser.

itemID
The item ID number for the item over which the drop occurred.

property
The property ID for the column in which the drop occurred. In list view, this is the four-character
sequence that you previously assigned to the column. In column view, this is the property
kDataBrowserItemSelfIdentityProperty.

dragFlags
A drag flag. This value is kDataBrowserItemIsDragTarget if your item-accept-drag callback
determined the drag object can be accepted.

theDrag
The drag reference provided by the data browser to your callback.

Return Value
A value that indicates whether the drop is received. Your callback returns true if it successfully receives the
drag object. If it returns false, zoom-back animation occurs.

Discussion
After your item-accept-drag callback has determined that a location can accept a drag object and after a
drop operation occurs, the data browser calls your item-receive-drag callback. Your application takes whatever
actions necessary to add the dropped data to the data browser.

Do not call the function SetOrigin in this or any of the drag processing callbacks.

To provide a pointer to your item-receive-drag callback, you create a universal procedure pointer (UPP) of
typeDataBrowserItemReceiveDragUPP, using the functionNewDataBrowserItemReceiveDragUPP (page
2193). You can do so with code similar to the following:

DataBrowserItemReceiveDragUPP MyDataBrowserItemReceiveDragUPP;

2254 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

MyDataBrowserItemReceiveDragUPP = NewDataBrowserItemReceiveDragUPP
 (&MyDataBrowserItemReceiveDragCallback);

You can then assign MyDataBrowserItemReceiveDragUPP to the itemReceiveDragCallback field of
the structure DataBrowserCustomCallbacks (page 2265). You install your data browser custom callbacks
using the function SetDataBrowserCustomCallbacks (page 2203).

When you no longer need the UPP, remove it using the DisposeDataBrowserItemReceiveDragUPP (page
2135) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserPostProcessDragProcPtr
Defines a pointer to a postprocess-drag callback function that performs necessary cleanup tasks, such as
deallocating resources that were allocated by your other drag processing callbacks.

typedef void (*DataBrowserPostProcessDragProcPtr) (
 ControlRef browser,
 DragRef theDrag,
 OSStatus trackDragResult
);

You would declare a postprocess-drag callback function namedMyDataBrowserPostProcessDragCallback
like this:

void MyDataBrowserPostProcessDragCallback (
 ControlRef browser,
 DragRef theDrag,
 OSStatus trackDragResult
);

Parameters
browser

A data browser.

theDrag
The drag reference provided by the data browser to your callback.

trackDragResult
The result returned by the function TrackDrag and passed to your callback by the data browser.

Discussion
This callback is called after starting a drag from within the data browser. It is not called if the drag originated
from somewhere else.

The postprocess-drag callback is called by the data browser after a drag process is complete and any drag
processing callback routines you installed (add drag, accept drag, or receive drag callbacks) were called
during the drag operation. Your postprocess-drag callback deallocates any resources that were allocated by

Callbacks 2255
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

your other drag-processing callbacks. Your postprocess-drag callback is called immediately before the drag
reference is deallocated by the data browser so your application should not assume the drag reference exists
after your callback completes.

To provide a pointer to your postprocess-drag callback, you create a universal procedure pointer (UPP) of
typeDataBrowserPostProcessDragUPP, using the functionNewDataBrowserPostProcessDragUPP (page
2194). You can do so with code similar to the following:

DataBrowserPostProcessDragUPP MyDataBrowserPostProcessDragUPP;
MyDataBrowserPostProcessDragUPP = NewDataBrowserPostProcessDragUPP
 (&MyDataBrowserPostProcessDragCallback);

You can then assign MyDataBrowserPostProcessDragUPP to the postProcessDragCallback field of
the structure DataBrowserCallbacks (page 2264). You install your data browser callbacks using the function
SetDataBrowserCallbacks (page 2200).

When you no longer need the UPP, remove it using the DisposeDataBrowserPostProcessDragUPP (page
2135) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserReceiveDragProcPtr
Defines a pointer to a receive-drag callback function that extract items from a drag object and handles the
drag item appropriately.

typedef Boolean (*DataBrowserReceiveDragProcPtr) (
 ControlRef browser,
 DragRef theDrag,
 DataBrowserItemID item
);

You would declare a receive-drag callback function named MyDataBrowserReceiveDragCallback like
this:

Boolean MyDataBrowserReceiveDragCallback (
 ControlRef browser,
 DragRef theDrag,
 DataBrowserItemID item
);

Parameters
browser

A data browser.

theDrag
The drag reference provided by the data browser to your callback.

2256 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

item
The item ID of the item over which the drop operation occurred. If the drag object is over the data
browser, but not over any specific item, the item parameter contains the item ID that represents one
of the following:

 ■ In list view, the target. (See SetDataBrowserTarget (page 2229).)

 ■ In column view, the item ID that represents the column the drag object is over

Return Value
Your callback returns true if it successfully processes the information in the drag object. Otherwise, your
callback returns false to have zoom-back animation occur for the drag object, thereby indicating to the
user that the drag operation was not successful.

Discussion
The receive-drag callback is called by the data browser when your application needs to receive a drag object.
Your application extracts the items it needs from the drag object and processes them appropriately.

To provide a pointer to your receive-drag callback, you create a universal procedure pointer (UPP) of type
DataBrowserReceiveDragUPP, using the function NewDataBrowserReceiveDragUPP (page 2195). You
can do so with code similar to the following:

DataBrowserReceiveDragUPP MyDataBrowserReceiveDragUPP;
MyDataBrowserReceiveDragUPP = NewDataBrowserReceiveDragUPP
 (&MyDataBrowserReceiveDragCallback);

You can then assign MyDataBrowserReceiveDragUPP to the receiveDragCallback field of the structure
DataBrowserCallbacks (page 2264). You install your data browser callbacks using the function
SetDataBrowserCallbacks (page 2200).

When you no longer need the UPP, remove it using the DisposeDataBrowserReceiveDragUPP (page 2136)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserSelectContextualMenuProcPtr
Defines a pointer to a select-contextual-menu callback function that processes a contextual menu selection.

typedef void (*DataBrowserSelectContextualMenuProcPtr) (
 ControlRef browser,
 MenuRef menu,
 UInt32 selectionType,
 SInt16 menuID,
 MenuItemIndex menuItem
);

You would declare a select-contextual-menu callback function named
MyDataBrowserSelectContextualMenuCallback like this:

void MyDataBrowserSelectContextualMenuCallback (
 ControlRef browser,

Callbacks 2257
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

 MenuRef menu,
 UInt32 selectionType,
 SInt16 menuID,
 MenuItemIndex menuItem
);

Parameters
browser

A data browser.

menu
On input, the menu reference your application provided to the data browser in the callback
DataBrowserGetContextualMenuProcPtr (page 2238).

selectionType
On input, the selection type provided to the data browser from the Menu Manager function
ContextualMenuSelect.

menuID
On input, the menu ID of the menu selected. This value is 0 if no selection was made.

menuItem
The menu item index of the item selected.

Discussion
The select-contextual-menu callback is called by the data browser when the user finishes interacting with a
contextual menu. Your callback needs to:

 ■ Check whether the user chose an item from the menu. If so, process the selection appropriately. Note
that your callback is invoked even if the user does not choose an item from the menu.

 ■ Optionally dispose of the menu you allocated in your get-contextual-menu callback, and that is passed
to your select-contextual-menu callback in the menu parameter.

To provide a pointer to your select-contextual-menu callback, you create a universal procedure pointer (UPP)
of type DataBrowserSelectContextualMenuUPP, using the function
NewDataBrowserSelectContextualMenuUPP (page 2195). You can do so with code similar to the following:

DataBrowserSelectContextualMenuUPP MyDataBrowserSelectContextualMenuUPP;
MyDataBrowserSelectContextualMenuUPP =
 NewDataBrowserSelectContextualMenuUPP
 (&MyDataBrowserSelectContextualMenuCallback);

You can then assignMyDataBrowserSelectContextualMenuUPP to theselectContextualMenuCallback
field of the structure DataBrowserCallbacks (page 2264). You install your data browser callbacks using the
function SetDataBrowserCallbacks (page 2200).

When you no longer need the UPP, remove it using the
DisposeDataBrowserSelectContextualMenuUPP (page 2136) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

2258 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DataBrowserTrackingProcPtr
Defines a pointer to a tracking callback function that implements tracking behavior for such tasks as
highlighting a button or providing animation when the user clicks a custom item.

typedef DataBrowserTrackingResult (*DataBrowserTrackingProcPtr) (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 Point startPt,
 EventModifiers modifiers
);

You would declare a tracking callback function named MyDataBrowserTrackingCallback like this:

DataBrowserTrackingResult MyDataBrowserTrackingCallback (
 ControlRef browser,
 DataBrowserItemID itemID,
 DataBrowserPropertyID property,
 const Rect *theRect,
 Point startPt,
 EventModifiers modifiers
);

Parameters
browser

A data browser.

itemID
The item ID number for the item the user clicked.

property
The property ID for the column in which the pointer is located. In list view, this is the four-character
sequence that you previously assigned to the column. In column view, this is the property
kDataBrowserItemSelfIdentityProperty.

theRect
A pointer to the bounding rectangle of the item, in local coordinates relative to the current port.

startPt
The location of the pointer at the start of the click.

modifiers
The state of the modifier keys. See Carbon Event Manager Reference in Carbon Events & Other Input
Documentation for a list of the constants that can be passed to your callback.

Return Value
A tracking result that indicates whether further processing is required by the data browser. Your callback
returns kDataBrowserStopTracking, kDataBrowserContentHit, or kDataBrowserNothingHit. See
the Discussion for more details.

Discussion
The tracking callback is called by the data browser for an item whose display type is
kDataBrowserCustomTypewhen a mouse click is inside the content area of the item. Your tracking callback
is called only for mouse-down events and only after your DataBrowserHitTestProcPtr (page 2240) callback
returns true. Your tracking callback performs one of following tasks:

Callbacks 2259
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

 ■ Provides its own custom tracking behavior and animation and returns the result
kDataBrowserStopTracking. This result informs the data browser that your application handled the
click and no further processing is required. The data browser does not attempt to display a contextual
menu, start a drag operation, process a double-click, or draw a selection rectangle. You are responsible
for all facets of click handling if you return kDataBrowserStopTracking.

 ■ Returns the value kDataBrowserNothingHit to indicate a negative hit and no further processing needs
to take place. This result indicates that a nonselectable portion—whitespace—was hit. The data browser
won’t select the item, but it could, for example, start a selection rectangle.

 ■ Returns the value kDataBrowserContentHit to request that the data browser continues to process
the click. This result indicates that a selectable portion of the item is hit. The data browser selects the
item and takes other appropriate actions.

To provide a pointer to your tracking callback, you create a universal procedure pointer (UPP) of type
DataBrowserTrackingUPP, using the function NewDataBrowserTrackingUPP (page 2196). You can do so
with code similar to the following:

DataBrowserTrackingUPP MyDataBrowserTrackingUPP;
MyDataBrowserTrackingUPP = NewDataBrowserTrackingUPP
 (&MyDataBrowserTrackingCallback);

You can then assign MyDataBrowserTrackingUPP to the trackingCallback field of the structure
DataBrowserCustomCallbacks (page 2265). You install your data browser custom callbacks using the
function SetDataBrowserCustomCallbacks (page 2203).

When you no longer need the UPP, remove it using the DisposeDataBrowserTrackingUPP (page 2137)
function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

Data Types

DataBrowserAccessibilityItemInfo
Contains a structure that describes data browser accessibility item information.

2260 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

struct DataBrowserAccessibilityItemInfo {
 UInt32 version;
 union {
 DataBrowserAccessibilityItemInfoV0 v0;
 DataBrowserAccessibilityItemInfoV1 v1;
 } u;
typedef struct DataBrowserAccessibilityItemInfoV0 v0;
typedef struct DataBrowserAccessibilityItemInfoV1 v1;

Fields
version

Identifies how to interpret the following union. Set this field to 0 if you fill out the union’s data in the
form of a DataBrowserAccessibilityItemInfoV0 structure. Set this field to 1 if you fill out the
union’s data in the form of a DataBrowserAccessibilityItemInfoV1 structure.

u.v0
A DataBrowserAccessibilityItemInfoV0 (page 2261) structure.

u.v1
A DataBrowserAccessibilityItemInfoV1 (page 2262) structure.

DataBrowserAccessibilityItemInfoV0
Contains a description of data browser accessibility item information.

struct DataBrowserAccessibilityItemInfoV0 {
 DataBrowserItemID container;
 DataBrowserItemID item;
 DataBrowserPropertyID columnProperty;
 DataBrowserPropertyPart propertyPart;
 }
typedef struct DataBrowserAccessibilityItemInfoV0 DataBrowserAccessibilityInfoV0;

Fields
container

The DataBrowserItemID of the container the AXUIElementRef represents or lives within. Even
kDataBrowserNoItemmight be meaningful, since it is the root container ID if you haven’t overridden
it via SetDataBrowserTarget (page 2229). In list view, the container helps narrow down the
AXUIElementRef to either a disclosed child of another row, or the list as a whole. In column view,
the container helps narrow down the AXUIElementRef to a column. See also the description of the
columnProperty field.

item
The DataBrowserItemID of the item the AXUIElementRef represents or lives within. If item is
kDataBrowserNoItem, the AXUIElementRef represents just the container. In list view, item helps
narrow down the AXUIElementRef to a row or the root container as a whole. In column view, item
helps narrow down the AXUIElementRef to a cell or a column as a whole. See also the description
of the columnProperty field.

Data Types 2261
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

columnProperty
The DataBrowserPropertyID of the column the AXUIElementRef represents or lives within. If
columnProperty is kDataBrowserItemNoProperty and item is not kDataBrowserNoItem, the
AXUIElementRef represents a whole row. In list view, this field helps narrow down the
AXUIElementRef to a cell or a row as a whole. In column view, columnProperty must always be
set to kDataBrowserItemNoProperty unless the AXUIElementRef represents the preview column.
When the AXUIElementRef represents the preview column, columnProperty must always be set
to kDataBrowserColumnViewPreviewProperty and the other fields of this structure must be set
to 0 or the equivalent constant.

propertyPart
The DataBrowserPropertyPart of the sub-cell part the AXUIElementRef represents. Examples
include the disclosure triangle in a cell, the text in a cell, and the check box in a cell. If propertyPart
is kDataBrowserPropertyEnclosingPart and columnProperty is not
kDataBrowserItemNoProperty, the AXUIElementRef represents the cell as a whole. In both list
view and column view, this field helps narrow down the AXUIElementRef to either a sub-cell part
or a cell as a whole. For column view, see also the description of the columnProperty field.

DataBrowserAccessibilityItemInfoV1
Contains a description of data browser accessibility item information that includes a row and a column index.

struct DataBrowserAccessibilityItemInfoV1 {
 DataBrowserItemID container;
 DataBrowserItemID item;
 DataBrowserPropertyID columnProperty;
 DataBrowserPropertyPart propertyPart;
 DataBrowserTableViewRowIndex rowIndex;
 DataBrowserTableViewColumnIndex columnIndex;
 }
typedef struct DataBrowserAccessibilityItemInfoV1 DataBrowserAccessibilityInfoV1;

Fields
container

The DataBrowserItemID of the container the AXUIElementRef represents or lives within. Even
kDataBrowserNoItemmight be meaningful, since it is the root container ID if you haven’t overridden
it via SetDataBrowserTarget (page 2229). In list view, the container helps narrow down the
AXUIElementRef to either a disclosed child of another row, or the list as a whole. In column view,
the container helps narrow down the AXUIElementRef to a column. See also the description of the
columnProperty field.

item
The DataBrowserItemID of the item the AXUIElementRef represents or lives within. If item is
kDataBrowserNoItem, the AXUIElementRef represents just the container. In list view, item helps
narrow down the AXUIElementRef to a row or the root container as a whole. In column view, item
helps narrow down the AXUIElementRef to a cell or a column as a whole. See also the description
of the columnProperty field.

2262 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

columnProperty
The DataBrowserPropertyID of the column the AXUIElementRef represents or lives within. If
columnProperty is kDataBrowserItemNoProperty and item is not kDataBrowserNoItem, the
AXUIElementRef represents a whole row. In list view, this field helps narrow down the
AXUIElementRef to a cell or a row as a whole. In column view, columnProperty must always be
set to kDataBrowserItemNoProperty unless the AXUIElementRef represents the preview column.
When the AXUIElementRef represents the preview column, columnProperty must always be set
to kDataBrowserColumnViewPreviewProperty and the other fields of this structure must be set
to 0 or the equivalent constant.

propertyPart
The DataBrowserPropertyPart of the sub-cell part the AXUIElementRef represents. Examples
include the disclosure triangle in a cell, the text in a cell, and the check box in a cell. If propertyPart
is kDataBrowserPropertyEnclosingPart and columnProperty is not
kDataBrowserItemNoProperty, the AXUIElementRef represents the cell as a whole. In both list
view and column view, this field helps narrow down the AXUIElementRef to either a sub-cell part
or a cell as a whole. For column view, see also the description of the columnProperty field.

rowIndex
The zero-based DataBrowserTableViewRowIndex of the row specified by the other parts of this
structure. If the other parts of this structure do not specify a row or a part thereof, this field must be
set to 0. Because this field is zero based, you must test the other parts of this structure to see whether
this field is meaningful. In list view, when the other parts of this structure specify an item or part
thereof, this field must be set to the row index at which the specified item can be found. In column
view, when the other parts of this structure specify a cell or part thereof, this field must be set to the
row index at which the specified cell can be found.

propertyPart
The zero-based DataBrowserTableViewColumnIndex of the column specified by the other parts
of this structure. If the other parts of this structure do not specify a column or a part thereof, this field
must be set to zero. Because this field is zero based, you must test the other parts this structure to
see whether this field is meaningful. In list view, when the other parts of this structure specify a cell
or part thereof, this field must be set to the column index at which the specified cell can be found.
In column view, when the other parts of this structure specify a column or part thereof, this field must
be set to the column index at which the specified cell can be found.

DataBrowserPropertyDesc
Contains property and display information for a list view column.

struct DataBrowserPropertyDesc {
 DataBrowserPropertyID propertyID;
 DataBrowserPropertyType propertyType;
 DataBrowserPropertyFlags propertyFlags;
};
typedef struct DataBrowserPropertyDesc DataBrowserPropertyDesc;

Fields
propertyID

A four-character sequence that uniquely identifies the column. If you use Interface Builder to design
the data browser, this is the unique value you enter in the Property ID field in the column paned of
the Info window for a list view column. (For example, mTxt or BLUE). The four-character sequence
must have at least one uppercase letter in it because sequences that are all lowercase are reserved
for Apple.

Data Types 2263
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

propertyType
The data type or control type to be displayed in the column. See “Display Types” (page 2275) for a list
of the possible values for this field.

propertyFlags
A value that contains property flags that control the display or interaction provided by the column.
This is a 32-bit value that is divided into four parts as follows:

 ■ Bits 0–7 specify properties applied to the data browser as a whole—see “Property Flags:
Universal” (page 2284)

 ■ Bits 8–15 modify display behavior—see “Property Flags: Modifiers” (page 2285)

 ■ Bits 16–23 are properties specific to list view—see “Property Flags: Offset and Mask for List View
Properties” (page 2288) and “Property Flags: List View Column Behavior” (page 2289)

 ■ Bits 24–31 can be defined by your application—see “Property Flags: Offset and Mask for
Client-Defined Properties” (page 2290)

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserCallbacks
Contains universal procedure pointers (UPPs) to callback functions used to obtain information from your
application or notify your application of changes to the data browser.

struct DataBrowserCallbacks {
 UInt32 version
 union {
 struct {
 DataBrowserItemDataUPP itemDataCallback;
 DataBrowserItemCompareUPP itemCompareCallback;
 DataBrowserItemNotificationUPP itemNotificationCallback;
 DataBrowserAddDragItemUPP addDragItemCallback;
 DataBrowserAcceptDragUPP acceptDragCallback;
 DataBrowserReceiveDragUPP receiveDragCallback;
 DataBrowserPostProcessDragUPP postProcessDragCallback;
 DataBrowserItemHelpContentUPP itemHelpContentCallback;
 DataBrowserGetContextualMenuUPP getContextualMenuCallback;
 DataBrowserSelectContextualMenuUPP selectContextualMenuCallback;
 } v1;
 } u;
};
typedef struct DataBrowserCallbacks DataBrowserCallbacks;

Fields
version

The version of the custom callbacks structure. Set this field to the constant
kDataBrowserLatestCallbacks.

u.v1.itemDataCallback
A universal procedure pointer to an item-data callback.

2264 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

u.v1.itemCompareCallback
A universal procedure pointer to an item-compare callback.

u.v1.itemNotificationCallback
A universal procedure pointer to an item-notification callback or item-notification-with-data callback.

u.v1.addDragItemCallback
A universal procedure pointer to an add-drag-item callback.

u.v1.acceptDragCallback
A universal procedure pointer to an accept-drag callback.

u.v1.receiveDragCallback
A universal procedure pointer to a receive-drag callback.

u.v1.postProcessDragCallback
A universal procedure pointer to a postprocess-drag callback.

u.v1.itemHelpContentCallback
A universal procedure pointer to an item-help-content callback.

u.v1.getContextualMenuCallback
A universal procedure pointer to a get-contextual-menu callback.

u.v1.selectContextualMenuCallback
A universal procedure pointer to a select-contextual-menu callback.

Discussion
Your application does not need to fill out the entire data structure. It must provide a UPP to an item-data
callback. You provide UPPs only for the other tasks your application wants to handle. For more information
on installing callbacks, see the functions InitDataBrowserCallbacks (page 2175) and
SetDataBrowserCallbacks (page 2200).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserCustomCallbacks
Contains universal procedure pointers (UPPs) to callback functions that implement custom drawing and user
interaction for columns that have the display type kDataBrowserCustomType.

Data Types 2265
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

struct DataBrowserCustomCallbacks {
 UInt32 version
 union {
 struct {
 DataBrowserDrawItemUPP drawItemCallback;
 DataBrowserEditItemUPP editTextCallback;
 DataBrowserHitTestUPP hitTestCallback;
 DataBrowserTrackingUPP trackingCallback;
 DataBrowserItemDragRgnUPP dragRegionCallback;
 DataBrowserItemAcceptDragUPP acceptDragCallback;
 DataBrowserItemReceiveDragUPP receiveDragCallback;
 } v1;
 } u;
};
typedef struct DataBrowserCustomCallbacks DataBrowserCustomCallbacks;

Fields
version

The version of the custom callbacks structure. Use kDataBrowserLatestCustomCallbacks.

u.v1.drawItemCallback
A universal procedure pointer to a draw-item callback.

u.v1.editTextCallback
A universal procedure pointer to an edit-text callback.

u.v1.hitTestCallback
A universal procedure pointer to a hit-test callback

u.v1.trackingCallback
A universal procedure pointer to a tracking callback.

u.v1.dragRegionCallback
A universal procedure pointer to an item-drag-region callback.

u.v1.acceptDragCallback
A universal procedure pointer to an item-accept-drag callback.

u.v1.receiveDragCallback
A universal procedure pointer to an item-receive-drag callback.

Discussion
Your application can use the DataBrowserCustomCallbacks structure to provide callbacks that control
the presentation of user interface elements displayed inside a data browser. Your application does not need
to fill out the entire data structure. You need to provide UPPs only for tasks your application wants to handle.
For more information on installing callbacks, see the functions InitDataBrowserCustomCallbacks (page
2176) and SetDataBrowserCustomCallbacks (page 2203).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserDragFlags
Defines a data type for values used in drag callbacks.

2266 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

typedef unsigned long DataBrowserDragFlags;

Discussion
This data type is used as a return value for the item-accept-drag callback
(DataBrowserItemAcceptDragProcPtr (page 2242)) and as a parameter to the item-receive-drag callback
(DataBrowserItemReceiveDragProcPtr (page 2254)). The values associated with this data type are
kDataBrowserItemIsDragTarget and kDataBrowserItemNoState. See “Item States” (page 2280) for
more information on these constants.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserItemDataRef
Defines a data type for a pointer that specifies an item.

typedef void *DataBrowserItemDataRef;

Discussion
Functions listed in “Getting and Setting Item Data” (page 2115) are called from within a data browser item-data
callback routine (DataBrowserItemDataProcPtr (page 2245)). Each of these functions use a
DataBrowserItemDataRef data type to specify the item to get or set data for.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserItemID
Defines a data type for a value that identifies an item independent of its position in a data browser.

typedef UInt32 DataBrowserItemID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserPropertyFlags
Defines a data type for a value that specifies the behavior and look of a data browser.

typedef unsigned long DataBrowserPropertyFlags;

Discussion
These constants in the following sections are DataBrowserPropertyFlags data types:

Data Types 2267
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

 ■ “Property Flags: Universal” (page 2284). Bits 0–7 modify the appearance or behavior of display properties.

 ■ “Property Flags: Modifiers” (page 2285). Bits 8–15 specify how the data associated with a display type is
displayed.

 ■ “Property Flags: Offset and Mask for List View Properties” (page 2288). Specify an offset and mask for bits
16–23.

 ■ “Property Flags: List View Column Behavior” (page 2289). Bits 16–23 specify behaviors for columns in list
view.

 ■ “Property Flags: Offset and Mask for Client-Defined Properties” (page 2290). Specify an offset and mask
for bits 24–31.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserPropertyID
Defines a data type for a value that identifies a column independent of its position in a data browser.

typedef UInt32 DataBrowserPropertyID;

Discussion
Typically, this is a four-character sequence that you assign to represent a column in list view. For example, a
column that displays song titles could be assigned a property ID of SONG and you’d assign it to a constant
in your application using code similar to the following:

kSongColumn = SONG;

Then, each time call a function that requires a parameter of type DataBrowserPropertyID, supply the
appropriate application-defined constant.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserTableViewRowIndex
Defines a data type for a value that specifies a row position in a table view.

typedef UInt32 DataBrowserTableViewRowIndex;

Discussion
Row indices are zero based.

Availability
Available in Mac OS X v10.0 and later.

2268 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Declared In
HIDataBrowser.h

DataBrowserTableViewColumnIndex
Defines a data type for a value that specifies column position in a table view.

typedef UInt32 DataBrowserTableViewColumnIndex;

Discussion
This data type is typically used for table-view formatting. Column indices are zero based.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserTableViewColumnID
Defines a data type for a value that identifies a column independent of its position in a data browser.

typedef DataBrowserPropertyID DataBrowserTableViewColumnID;

Discussion
For details on using this data type, see DataBrowserPropertyID (page 2268).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserTableViewColumnDesc
Defines a data type for a table view column description.

typedef DataBrowserPropertyDesc DataBrowserTableViewColumnDesc;

Discussion
See the DataBrowserPropertyDesc (page 2263) data structure for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserListViewHeaderDesc
Describes the appearance of a column title in list view.

Data Types 2269
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

struct DataBrowserListViewHeaderDesc {
 UInt32 version;
 UInt16 minimumWidth;
 UInt16 maximumWidth;
 SInt16 titleOffset;
 CFStringRef titleString;
 DataBrowserSortOrder initialOrder;
 ControlFontStyleRec btnFontStyle;
 ControlButtonContentInfo btnContentInfo;
};
typedef struct DataBrowserListViewHeaderDesc DataBrowserListViewHeaderDesc;

Fields
version

The format of the structure. Set this field to the value kDataBrowserListViewLatestHeaderDesc.

minimumWidth
For resizable columns, the smallest width to which the column can be resized. If the column is not
resizable, set this to the same value as the maximumWidth field.

maximumWidth
For resizable columns, the largest width to which the column can be resized. If the column is not
resizable, set this to the same value as the minimumWidth field.

titleOffset
An offset, in pixels, from the left side of the column that specifies where the title text will be drawn.
The title alignment (set in the just field of the btnFontStyle parameter) and the titleOffset
values dictate the alignment and offset (inset by default) of the content of the column when displaying
one of he predefined display types. Typically the title offset is set to 0.

titleString
The text to use for the column title. Set the string to NULL if you do not want to display a title.

initialOrder
The initial sorting order to use for the column when the column is the current sort column. After the
data browser is visible, the user can change the sorting order. You can assign one of the following
values:

 ■ kDataBrowserOrderIncreasing means this column sorts in ascending order.

 ■ kDataBrowserOrderDecreasing means this column sorts in descending order.

btnFontStyle
A structure that describes the contents of the column heading and how to draw them. This allows
you to customize the font that the column title is drawn with, which is independent of the font used
to draw the data in the column.

btnContentInfo
A structure that defines the icon, if any, to use for the column heading.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

DataBrowserListViewColumnDesc
Contains property information for a list view column and specifies display information for the column title.

2270 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

struct DataBrowserListViewColumnDesc {
 DataBrowserTableViewColumnDesc propertyDesc;
 DataBrowserListViewHeaderDesc headerBtnDesc;
};
typedef struct DataBrowserListViewColumnDesc DataBrowserListViewColumnDesc;

Fields
propertyDesc

A structure that contains property and display information for a column. See
DataBrowserTableViewColumnDesc (page 2269) for more information.

headerBtnDesc
A structure that contains display information for the column title. See
DataBrowserListViewHeaderDesc (page 2269) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HIDataBrowser.h

kHIDataBrowserClassID
Defines the HIObject class ID for the HIDataBrowser class.

#define kHIDataBrowserClassID CFSTR("com.apple.HIDataBrowser");

Availability
Available in Mac OS X v10.4 and later.

Constants

Callback Data Structure Version
Specifies the version of the latest standard callback data structure.

enum {
 kDataBrowserLatestCallbacks = 0
};

Constants
kDataBrowserLatestCallbacks

A convenience constant used in the DataBrowserCallbacks (page 2264) data structure to specify
the version of the structure.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Constants 2271
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Control Data Tags
Define data-browser-specific tags for use with the Control Manager functions GetControlData and
SetControlData.

enum {
 kControlDataBrowserIncludesFrameAndFocusTag = 'brdr',
 kControlDataBrowserKeyFilterTag = kControlEditTextKeyFilterTag,
 kControlDataBrowserEditTextKeyFilterTag =
 kControlDataBrowserKeyFilterTag,
 kControlDataBrowserEditTextValidationProcTag =
 kControlEditTextValidationProcTag
};

Constants
kControlDataBrowserIncludesFrameAndFocusTag

Include the frame and user focus. The associated data is of type Boolean.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kControlDataBrowserKeyFilterTag
Use a filter. The associated data is a universal procedure pointer to a ControlKeyFilterProcPtr
callback. This callback is invoked when the user edits an item.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kControlDataBrowserEditTextKeyFilterTag
Use a text filter. This is a duplicate of kControlDataBrowserKeyFilterTag.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kControlDataBrowserEditTextValidationProcTag
Use a callback to validate the text. The associated data is a universal procedure pointer to a
ControlEditTextValidataionProcPtr callback. This callback is invoked when the user finishes
editing an item.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
You can use these options with the Control Manger functions GetControlData and SetControlData.

Custom Callback Data Structure Version
Specifies the version of the latest custom callback data structure.

2272 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

enum {
 kDataBrowserLatestCustomCallbacks = 0
};

Constants
kDataBrowserLatestCustomCallbacks

A convenience constant used in the DataBrowserCustomCallbacks (page 2265) data structure to
specify the version of the structure.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Data Browser Attributes
Specifies data browser attribute constants.

enum {
kDataBrowserAttributeNone = 0,
kDataBrowserAttributeColumnViewResizeWindow = (1 << 0),
kDataBrowserAttributeListViewAlternatingRowColors = (1 <<
1)
kDataBrowserAttributeListViewDrawColumnDividers = (1 << 2)
};

Constants
kDataBrowserAttributeNone

The data browser has no attributes.

Available in Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

kDataBrowserAttributeColumnViewResizeWindow
In column view, this data browser is allowed to resize the owning window whenever necessary. This
includes, but is not necessarily limited to, situations where column resize operations need more visible
space in the window. If you turn this attribute on, your window must tolerate being resized behind
your application’s back. If your window needs to react to bounds changes, use a
kEventWindowBoundsChanged event handler. If you need to constrain your window’s minimum
and maximum bounds, use the kEventWindowGetMinimumSize and
kEventWindowGetMaximumSize handlers, the SetWindowResizeLimits function, or something
similar.

Available in Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

kDataBrowserAttributeListViewAlternatingRowColors
In list view, this data browser should draw alternating row background colors. However, note that
this attribute does not work with variable row heights as of Mac OS X v10.4.

Available in Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

kDataBrowserAttributeListViewDrawColumnDividers
In list view, this data browser should draw a vertical line between the columns.

Available in Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

Constants 2273
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
Use these constants in conjunction with DataBrowserGetAttributes (page 2127) and
DataBrowserChangeAttributes (page 2127).

Availability
Available in Mac OS X v10.4 and later.

Data Browser Control Kind Tag
Specifies the control type is a data browser.

enum {
kControlKindDataBrowser = 'datb'
};

Constants
kControlKindDataBrowser

The data browser control type.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
When you call the function GetControlKind with a control reference that represents a data browser, you
obtain the data browser tag kControlKindDataBrowser as the control type.

Data Browser Metric Values
Specifies constants used by DataBrowserSetMetric.

enum {
kDataBrowserMetricCellContentInset = 1,
kDataBrowserMetricIconAndTextGap = 2,
kDataBrowserMetricDisclosureColumnEdgeInset = 3,
kDataBrowserMetricDisclosureTriangleAndContentGap = 4,
kDataBrowserMetricDisclosureColumnPerDepthGap = 5,
kDataBrowserMetricLast = kDataBrowserMetricDisclosureColumnPerDepthGap
};
typedef UInt32 DataBrowserMetric;

Constants
kDataBrowserMetricCellContentInset

The content (icon, text, etc.) within a cell is drawn a certain amount in from the left and right edges
of the cell. This metric governs the amount of inset.

Available in Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

kDataBrowserMetricIconAndTextGap
This metric controls the space between the icon and text within a column of type
kDataBrowserIconAndTextType.

Available in Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

2274 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserMetricDisclosureColumnEdgeInset
In list view only, this metric is used instead of (not in addition to)
DataBrowserMetricCellContentInset for the side of the cell in the disclosure column that
displays the disclosure triangle.

Available in Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

kDataBrowserMetricDisclosureTriangleAndContentGap
In list view only, this metric controls the amount of space between the disclosure triangle and the
cell’s content.

Available in Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

kDataBrowserMetricDisclosureColumnPerDepthGap
In list view only, this metric controls the amount of space in the disclosure column for each level of
indentation in progressively deeper hierarchies of disclosed items.

Available in Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

kDataBrowserMetricLast
Same as kDataBrowserMetricDisclosureColumnPerDepthGap.

Available in Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

Display Types
Specify a data type or control to display in a column.

typedef OSType DataBrowserPropertyType;
enum {
 kDataBrowserCustomType = 0x3F3F3F3F,
 kDataBrowserIconType = 'icnr',
 kDataBrowserTextType = 'text',
 kDataBrowserDateTimeType = 'date',
 kDataBrowserSliderType = 'sldr',
 kDataBrowserCheckboxType = 'chbx',
 kDataBrowserProgressBarType = 'prog',
 kDataBrowserRelevanceRankType = 'rank',
 kDataBrowserPopupMenuType = 'menu',
 kDataBrowserIconAndTextType = 'ticn'
};

Constants
kDataBrowserCustomType

Displays custom data defined by your application. You must install callbacks to handle items of this
type. Use custom types with caution. In some cases custom types do not display properly or exhibit
the appropriate behavior.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Constants 2275
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserIconType
Displays icons. The associated data for the icon can be of type IconRef, IconTransformType, and
RGBColor.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserTextType
Displays text. The associated data is a CFString object.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserDateTimeType
Displays date and time information. The associated data can be of type DateTime or LongDateTime.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserSliderType
Displays slider controls. The associated data are values that define the minimum and maximum values
and the current value for the slider. Avoid using slider controls in a data browser because, in some
cases, they do not display properly onscreen.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserCheckboxType
Displays checkbox controls. The associated data is the current value of the checkbox and a
ThemeButtonValue value. Avoid using checkbox controls in a data browser because, in some cases,
they do not display properly onscreen.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserProgressBarType
Displays progress bar controls. The associated data are values that define the minimum and maximum
values and the current setting for the progress bar.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserRelevanceRankType
Displays relevance indicators. The associated data are values that define the minimum and maximum
values and the current setting for the relevance indicator. Avoid using relevance indicators in a data
browser because, in some cases, they do not display properly onscreen.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPopupMenuType
Displays pop-up menus. The associated data is a MenuRef data type, a menu item ID, and the value
of the pop-up menu, which indicates the item of the menu to draw in the pop-up menu. Avoid using
pop-up menu controls in a data browser because, in some cases, they do not display properly onscreen.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

2276 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserIconAndTextType
Displays icon and text data. The associated data can be of any data type used for icons or text, such
as an IconRef data type and a CFString object.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
You can use these constants to define what is displayed in a column. Each constant defines a presentation
style and implies a specific set of primitive types or data structures.

Editing Commands
Specifies editing actions to apply to a data browser item.

typedef UInt32 DataBrowserEditCommand;
enum {
 kDataBrowserEditMsgUndo = kHICommandUndo,
 kDataBrowserEditMsgRedo = kHICommandRedo,
 kDataBrowserEditMsgCut = kHICommandCut,
 kDataBrowserEditMsgCopy = kHICommandCopy,
 kDataBrowserEditMsgPaste = kHICommandPaste,
 kDataBrowserEditMsgClear = kHICommandClear,
 kDataBrowserEditMsgSelectAll = kHICommandSelectAll
};

Constants
kDataBrowserEditMsgUndo

Undo the last editing operation.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserEditMsgRedo
Redo the last editing operation that was undone.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserEditMsgCut
Cut the contents of the selection to the Clipboard.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserEditMsgCopy
Copy the contents of the selection o the Clipboard.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserEditMsgPaste
Replace the contents of the selection with the contents of the Clipboard.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Constants 2277
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserEditMsgClear
Remove the contents of the selection.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserEditMsgSelectAll
Select all of the text inside of the current edit session.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
These options are for use with the functions EnableDataBrowserEditCommand (page 2137) and
ExecuteDataBrowserEditCommand (page 2138).

Item Notifications
Specify notifications provided by the data browser to your application.

typedef UInt32 DataBrowserItemNotification;
enum {
 kDataBrowserItemAdded = 1,
 kDataBrowserItemRemoved = 2,
 kDataBrowserEditStarted = 3,
 kDataBrowserEditStopped = 4,
 kDataBrowserItemSelected = 5,
 kDataBrowserItemDeselected = 6,
 kDataBrowserItemDoubleClicked = 7,
 kDataBrowserContainerOpened = 8,
 kDataBrowserContainerClosing = 9,
 kDataBrowserContainerClosed = 10,
 kDataBrowserContainerSorting = 11,
 kDataBrowserContainerSorted = 12,
 kDataBrowserUserStateChanged = 13,
 kDataBrowserSelectionSetChanged = 14,
 kDataBrowserTargetChanged = 15,
 kDataBrowserUserToggledContainer = 16
};

Constants
kDataBrowserItemAdded

The specified item has been added to a container in the data browser.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemRemoved
The specified item has been removed from a container in the data browser.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserEditStarted
An text editing session has started for the specified item.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

2278 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserEditStopped
An text editing session has stopped for the specified item.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemSelected
An item has been added to the selection set.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemDeselected
An item has been removed from the selection set.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemDoubleClicked
The user double-clicked an item.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserContainerOpened
A container has been opened.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserContainerClosing
A container is about to close. This notification is sent at the start of the close operation. The container
still contains its child items and it is still valid to pass them to data browser functions. The data browser
handles closing automatically, so typically applications do not look for this notification. You’d use this
only if you are interested in fetching information on the items before the close actually happens.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserContainerClosed
A container has been closed. This notification is sent after the close operation, so it is no longer valid
to pass child items to data browser functions.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserContainerSorting
A container is about to be sorted.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserContainerSorted
A container has been sorted.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Constants 2279
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserUserStateChanged
The user has reformatted the view for the target. For example, the user changed a sorting order or a
column width.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserSelectionSetChanged
The selection set has been modified.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserTargetChanged
The target has changed to the specified item.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserUserToggledContainer
The user has toggled opened or closed a container by clicking a disclosure triangle.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
These notifications are used with the callbacks DataBrowserItemNotificationProcPtr (page 2250) and
DataBrowserItemNotificationWithItemProcPtr (page 2251). Notifications sent for containers are the
same regardless of whether the container opens to an expandable row or to individual rows for each item
in the container.

Item States
Indicate the current state of an item in the data browser.

typedef UInt32 DataBrowserItemState;
enum {
 kDataBrowserItemNoState = 0,
 kDataBrowserItemAnyState = (unsigned long) (-1),
 kDataBrowserItemIsSelected = 1 << 0,
 kDataBrowserContainerIsOpen = 1 << 1,
 kDataBrowserItemIsDragTarget = 1 << 2
};

Constants
kDataBrowserItemNoState

The state is undefined.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemAnyState
Any state is acceptable.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

2280 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserItemIsSelected
The item is selected.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserContainerIsOpen
The item container is open. This state applies to:

 ■ A parent item in a hierarchical list in list view

 ■ An item in column view if the item’s contents are displayed in the next column

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemIsDragTarget
The item is a drag target.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

List View Header Description Version
Defines the version of the list view header description data structure.

enum {
 kDataBrowserListViewLatestHeaderDesc = 0
};

Constants
kDataBrowserListViewLatestHeaderDesc

A convenience constant that specifies the version of the list view header description data structure.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

List View Append Column
Defines the last column as the column to use for an append operation.

enum {
 kDataBrowserListViewAppendColumn = kDataBrowserTableViewLastColumn
};

Constants
kDataBrowserListViewAppendColumn

The column to use for an append operation.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

No Item Constant
Specifies that there is no item to provide or obtain.

Constants 2281
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

enum {
 kDataBrowserNoItem = 0L
};

Constants
kDataBrowserNoItem

A convenience constant used when there is no item to provide or obtain. This value is of type
DataBrowserItemID.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Properties
Specify attributes for items, containers, and columns.

enum {
 kDataBrowserItemNoProperty = 0L,
 kDataBrowserItemIsActiveProperty = 1L,
 kDataBrowserItemIsSelectableProperty = 2L,
 kDataBrowserItemIsEditableProperty = 3L,
 kDataBrowserItemIsContainerProperty = 4L,
 kDataBrowserContainerIsOpenableProperty = 5L,
 kDataBrowserContainerIsClosableProperty = 6L,
 kDataBrowserContainerIsSortableProperty = 7L,
 kDataBrowserItemSelfIdentityProperty = 8L,
 kDataBrowserContainerAliasIDProperty = 9L,
 kDataBrowserColumnViewPreviewProperty = 10L,
 kDataBrowserItemParentContainerProperty = 11L
};

Constants
kDataBrowserItemNoProperty

No property; no associated data.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemIsActiveProperty
The active state of the item. The associated data is of type Boolean. The default value true indicates
the item is active.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemIsSelectableProperty
The selection capability of the item. The associated data is of type Boolean. The default value true
indicates the item can be selected.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemIsEditableProperty
The editing capability of the item. The associated data is of type Boolean. The default value false
indicates the item cannot be edited.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

2282 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserItemIsContainerProperty
The container attribute for an item. The associated data is of type Boolean. The default value false
indicates the item cannot contain other items.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserContainerIsOpenableProperty
The opening capability of a container item. The associated data is of type Boolean. The default value
true indicates the container can be opened.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserContainerIsClosableProperty
The closing capability of a container item. The associated data is of type Boolean. The default value
true indicates the container can be closed.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserContainerIsSortableProperty
The sorting capability of container item. The associated data is of type Boolean. The default value
true indicates the items in the container can be sorted.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemSelfIdentityProperty
This property is used only in column view for the item-data and item-compare callbacks. You should
not use this property for anything else. It is passed to your item-data callback when the data browser
needs to know the data to draw to represent the item. It is your responsibility to provide the data to
display for that item in whatever format would be appropriate for the column view display type,
which is kDataBrowserIconAndTextType.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserContainerAliasIDProperty
An alias or symbolic link from an item to a container item. The associated data is of type
DataBrowserItemID. This property is sent to your item-data callback to provide your application
with a chance to follow an alias that the item might represent. If the incoming item is an alias to
another item, you can call the function SetDataBrowserItemDataItemID to inform the data browser
which other item the incoming item points to.

This property is sent only from column view. Your support for it is optional. Your response allows the
data browser to be a bit more memory efficient with its internal storage. If a given item is an alias to
an item whose contents are already displayed in one column of the column view, the contents can
be shared between those two columns.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Constants 2283
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserColumnViewPreviewProperty
The column displays a preview. There is no associated data. Available only in column view. This
property is sent to your draw-item callback to indicate the need for you to draw a preview of the
given item. It can be sent to other callbacks to provide an opportunity for your application to draw
or track in the preview column.

You can also pass this in the propertyID parameter of the function RevealDataBrowserItem
(along with the appropriate item ID of the item whose preview is displayed) to make sure the preview
column is visible to the user.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemParentContainerProperty
Designates the parent of the specified item. The associated data is of type DataBrowserItemID.
This is sent to your item-data callback when the data browser needs to know the parent container
item for a given item.

In column view, this allows the function SetDataBrowserTarget (page 2229) to process the data
properly. The target is the leaf node item whose contents you want to display, which is the rightmost
column in column view. However, unlike SetDataBrowserColumnViewPath, the function
SetDataBrowserTarget doesn’t offer a way for you to communicate the item IDs of the rest of the
column containers, so SetDataBrowserTarget asks for them explicitly by requesting the item’s
parent, then the parent of the item’s parent, and so on. (Your item-data callback might be called with
the parent container property at times other than an explicit call to SetDataBrowserTarget, so
your item-data callback should support this property.)

In list view, this property allows you to pass a non-container to SetDataBrowserTarget. In this
case, the data browser requests the parent of the target so it knows which container to display the
contents of in the list view. (Again, your item-data callback might be called with the parent container
property at times other than an explicit call to SetDataBrowserTarget, so your item-data callback
should be sure to support this property.)

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
You can use these constants along with the appropriate value to manage the attributes of items in a data
browser. Typically your item-data callback responds to inquires about these properties by calling the
appropriate accessor function from within the callback. See DataBrowserItemDataProcPtr (page 2245) for
more information on the item-data callback. “Getting and Setting Item Data” (page 2115) describes the accessor
functions.

Property Flags: Universal
Modify the appearance or behavior of display properties.

2284 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

enum {
 kDataBrowserUniversalPropertyFlagsMask = 0xFF,
 kDataBrowserPropertyIsMutable = 1 << 0,
 kDataBrowserDefaultPropertyFlags = 0 << 0,
 kDataBrowserUniversalPropertyFlags = kDataBrowserUniversalPropertyFlagsMask,
 kDataBrowserPropertyIsEditable = kDataBrowserPropertyIsMutable
};

Constants
kDataBrowserUniversalPropertyFlagsMask

Test for universal property flags. This constant is used by the data browser; your application doesn’t
need to use it.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertyIsMutable
The property is mutable. You can assign this flag to the propertyFlags field of the
DataBrowserPropertyDesc structure. You must set this flag is you want to allow editing of the
text part of the property.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserDefaultPropertyFlags
The default properties. You can assign this flag to the propertyFlags field of the
DataBrowserPropertyDesc structure if all you need is the default behavior. The default is for all
flags to be off.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserUniversalPropertyFlags
Universal property flags. This constant is used by the data browser; your application doesn’t need to
use it.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertyIsEditable
The data can be edited. You must set this flag if you want to allow editing of the text part of the
property. This flag can be set if the values displayed in the column can be changed. If your application
specifies this flag, then it must also provide a callback that allows the data browser to retrieve and
store data values displayed in this column. You can assign this flag to the propertyFlags field of
the DataBrowserPropertyDesc structure.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
These constants reside in bits 0–7 of the DataBrowserPropertyFlags data type.

Property Flags: Modifiers
Specify how to display the data associated with a display type.

Constants 2285
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

enum {
 kDataBrowserPropertyFlagsOffset = 8,
 kDataBrowserPropertyFlagsMask =
 0xFF << kDataBrowserPropertyFlagsOffset,
 kDataBrowserCheckboxTriState =
 1 << kDataBrowserPropertyFlagsOffset,
 kDataBrowserDateTimeRelative =
 1 << (kDataBrowserPropertyFlagsOffset),
 kDataBrowserDateTimeDateOnly =
 1 << (kDataBrowserPropertyFlagsOffset + 1),
 kDataBrowserDateTimeTimeOnly =
 1 << (kDataBrowserPropertyFlagsOffset + 2),
 kDataBrowserDateTimeSecondsToo =
 1 << (kDataBrowserPropertyFlagsOffset + 3),
 kDataBrowserSliderPlainThumb =
 kThemeThumbPlain << kDataBrowserPropertyFlagsOffset,
 kDataBrowserSliderUpwardThumb =
 kThemeThumbUpward << kDataBrowserPropertyFlagsOffset,
 kDataBrowserSliderDownwardThumb =
 kThemeThumbDownward << kDataBrowserPropertyFlagsOffset,
 kDataBrowserDoNotTruncateText =
 3 << kDataBrowserPropertyFlagsOffset,
 kDataBrowserTruncateTextAtEnd =
 2 << kDataBrowserPropertyFlagsOffset,
 kDataBrowserTruncateTextMiddle =
 0 << kDataBrowserPropertyFlagsOffset,
 kDataBrowserTruncateTextAtStart =
 1 << kDataBrowserPropertyFlagsOffset,
 kDataBrowserPopupMenuButtonless =
 1 << kDataBrowserPropertyFlagsOffset,
 kDataBrowserPropertyModificationFlags =
 kDataBrowserPropertyFlagsMask,
 kDataBrowserRelativeDateTime = kDataBrowserDateTimeRelative
};

Constants
kDataBrowserPropertyFlagsOffset

The offset value for this set of property flags.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertyFlagsMask
Use to set or test for property modifier flags.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserCheckboxTriState
Modifies the kDataBrowserCheckboxType display type to display a checkbox that can have on, off,
and mixed-mode states instead of just on and off states.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserDateTimeRelative
Modifies the kDataBrowserDateTimeType display type to display relative date and time.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

2286 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserDateTimeDateOnly
Modifies the kDataBrowserDateTimeType display type to display only the date.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserDateTimeTimeOnly
Modifies the kDataBrowserDateTimeType display type to display only the time.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserDateTimeSecondsToo
Modifies the kDataBrowserDateTimeType display type to display the time with seconds.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserSliderPlainThumb
Modifies the kDataBrowserSliderType display type to display a round thumb.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserSliderUpwardThumb
Modifies the kDataBrowserSliderType display type to display a directional thumb that points up.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserSliderDownwardThumb
Modifies the kDataBrowserSliderType display type to display a directional thumb that points
down.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserDoNotTruncateText
Modifies the kDataBrowserTextType and the kDataBrowserIconAndTextType display types so
they do not truncate text.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserTruncateTextAtEnd
Modifies the kDataBrowserTextType and the kDataBrowserIconAndTextType display types so
they truncate text, if needed, at the end of the text string.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserTruncateTextMiddle
Modifies the kDataBrowserTextType and the kDataBrowserIconAndTextType display types so
they truncate text, if needed, in the middle of the text string.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Constants 2287
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserTruncateTextAtStart
Modifies the kDataBrowserTextType and the kDataBrowserIconAndTextType display type so
they truncate text, if needed, at the beginning of the text string.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPopupMenuButtonless
This flag is only for use with columns of type kDataBrowserPopupMenuType and indicates that the
popup is to be drawn in a sleek buttonless fashion. The text is drawn next to a popup glyph, and the
whole cell is clickable.

Available on Mac OS X v10.4 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertyModificationFlags
Old name. Instead use kDataBrowserPropertyFlagsMask.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserRelativeDateTime
Old name. Instead use kDataBrowserDateTimeRelative.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
These constants reside in bits 8–15 of the DataBrowserPropertyFlags data type.

Property Flags: Offset and Mask for List View Properties
Specify an offset and mask for bits 16–23 of the DataBrowserPropertyFlag data type.

enum {
 kDataBrowserViewSpecificFlagsOffset = 16,
 kDataBrowserViewSpecificFlagsMask =
 0xFF << kDataBrowserViewSpecificFlagsOffset,
 kDataBrowserViewSpecificPropertyFlags =
 kDataBrowserViewSpecificFlagsMask
};

Constants
kDataBrowserViewSpecificFlagsOffset

The offset value for this set of property flags.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserViewSpecificFlagsMask
Use to set or test for view-specific property flags.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

2288 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserViewSpecificPropertyFlags
Old name. Instead use kDataBrowserViewSpecificFlagsMask.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
See also “Property Flags: List View Column Behavior” (page 2289).

Property Flags: List View Column Behavior
Specify behaviors for columns in list view.

typedef DataBrowserPropertyFlags DataBrowserListViewPropertyFlags;
enum {
 kDataBrowserListViewSelectionColumn =
 kDataBrowserTableViewSelectionColumn,
 kDataBrowserListViewMovableColumn =
 1 << (kDataBrowserViewSpecificFlagsOffset + 1),
 kDataBrowserListViewSortableColumn =
 1 << (kDataBrowserViewSpecificFlagsOffset + 2),
 kDataBrowserListViewTypeSelectColumn =
 1 << (kDataBrowserViewSpecificFlagsOffset + 3),
 kDataBrowserListViewNoGapForIconInHeaderButton =
 1 << (kDataBrowserViewSpecificFlagsOffset + 4),
 kDataBrowserListViewDefaultColumnFlags =
 kDataBrowserListViewMovableColumn +
 kDataBrowserListViewSortableColumn
};

Constants
kDataBrowserListViewSelectionColumn

If you are using a minimally highlighted list, this indicates to draw the contents of this column as
highlighted when the item is selected. (Minimal highlighting is the highlighting used by the Finder
for list view prior to Mac OS X version 10.3.)

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserListViewMovableColumn
The column is movable.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserListViewSortableColumn
The column can be sorted.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Constants 2289
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserListViewTypeSelectColumn
The column is capable of being selected and having text entered. If one or more of your list view
columns are marked as type-selectable, the data browser handles type-selection for you automatically.
You can use this flag with columns whose display type is kDataBrowserTextType,
kDataBrowserIconAndTextType, or kDataBrowserDateTimeType. If you set this flag for a column
of another type, the type-select behavior is undefined. Turning on this flag causes the data browser
to obtain keyboard input using a Carbon event handler instead of relying on calls to the function
HandleControlKey.

Declared in HIDataBrowser.h.

Available in Mac OS X 10.3 and later.

kDataBrowserListViewNoGapForIconInHeaderButton
Normally the text in a header button for a column of type kDataBrowserIconAndTextType is
aligned as though it has an icon next to it even if no icon is specified for the header button. This flag
indicates that space should not be reserved for an icon if no icon is provided for the header button.
This flag allows a client to justify the left edge of the text in a header button to the left edge of the
icon in the cells beneath it.

Declared in HIDataBrowser.h.

Available in Mac OS X v10.4 and later.

kDataBrowserListViewDefaultColumnFlags
The default properties. You can assign this flag to the propertyFlags field of the
DataBrowserPropertyDesc structure if all you need is the default behavior for list view.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
These constants reside in bits 16–23 of the DataBrowserPropertyFlags data type and are specific to a
list view.

Property Flags: Offset and Mask for Client-Defined Properties
Specify an offset and mask for the high 8 bits of the DataBrowserPropertyFlag data type.

enum {
 kDataBrowserClientPropertyFlagsOffset = 24,
 kDataBrowserClientPropertyFlagsMask = (unsigned long)
 (0xFF << kDataBrowserClientPropertyFlagsOffset)
};

Constants
kDataBrowserClientPropertyFlagsOffset

The offset value for this set of property flags.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserClientPropertyFlagsMask
The mask value for this set of property flags.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

2290 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Discussion
Bits 24–31 of the DataBrowserPropertyFlags data type are reserved for use by your application. You can
set and query them for your own purposes.

Property Parts
Specify the visual components of a data type or control displayed in a column.

typedef OSType DataBrowserPropertyPart;
enum {
 kDataBrowserPropertyEnclosingPart = 0,
 kDataBrowserPropertyContentPart = '----',
 kDataBrowserPropertyDisclosurePart = 'disc',
 kDataBrowserPropertyTextPart = kDataBrowserTextType,
 kDataBrowserPropertyIconPart = kDataBrowserIconType,
 kDataBrowserPropertySliderPart = kDataBrowserSliderType,
 kDataBrowserPropertyCheckboxPart = kDataBrowserCheckboxType,
 kDataBrowserPropertyProgressBarPart = kDataBrowserProgressBarType,
 kDataBrowserPropertyRelevanceRankPart =
 kDataBrowserRelevanceRankType
};

Constants
kDataBrowserPropertyEnclosingPart

The outer boundary of an item.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertyContentPart
The content of an item.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertyDisclosurePart
The location of a disclosure rectangle.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertyTextPart
The location where text is drawn.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertyIconPart
The location where an icon is displayed.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertySliderPart
The location of a slider.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Constants 2291
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserPropertyCheckboxPart
The location of a checkbox.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertyProgressBarPart
The location of a progress bar.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserPropertyRelevanceRankPart
The location of a relevance indicator.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
You can pass these constants as a parameter to the function GetDataBrowserItemPartBounds (page 2156)
to obtain a rectangle that contains the bounds for the specified part.

Reveal Options
Specify how to position an item in a data browser.

typedef UInt8 DataBrowserRevealOptions;
enum {
 kDataBrowserRevealOnly = 0,
 kDataBrowserRevealAndCenterInView = 1 << 0,
 kDataBrowserRevealWithoutSelecting = 1 << 1
};

Constants
kDataBrowserRevealOnly

Move the content of the data browser as little as possible to make the item visible, and show the item
in a selected state.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserRevealAndCenterInView
Reveal the item so that, if possible, the item is centered in the data browser.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserRevealWithoutSelecting
Reveal the item but do not select it.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
You can pass reveal options as a parameter to the function RevealDataBrowserItem (page 2199). You can
pass more than one at a time for combined functionality.

2292 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Selection Anchor Directions
Specify an anchor direction to apply when the user drags a data selection.

typedef UInt32 DataBrowserSelectionAnchorDirection;
enum {
 kDataBrowserSelectionAnchorUp = 0,
 kDataBrowserSelectionAnchorDown = 1,
 kDataBrowserSelectionAnchorLeft = 2,
 kDataBrowserSelectionAnchorRight = 3
};

Constants
kDataBrowserSelectionAnchorUp

Apply the anchor direction at the top of the selection set.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserSelectionAnchorDown
Apply the anchor direction at the bottom of the selection set.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserSelectionAnchorLeft
Apply the anchor direction at the left of the selection set.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserSelectionAnchorRight
Apply the anchor direction at the right of the selection set.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
These options are for use with the function MoveDataBrowserSelectionAnchor (page 2186).

Selection State Options
Specify how the selection state should be affected by a given list of items.

typedef UInt32 DataBrowserSetOption;
enum {
 kDataBrowserItemsAdd = 0,
 kDataBrowserItemsAssign = 1,
 kDataBrowserItemsToggle = 2,
 kDataBrowserItemsRemove = 3
};

Constants
kDataBrowserItemsAdd

Add specified items to the existing set or selection.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Constants 2293
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

kDataBrowserItemsAssign
Assign the destination set to the specified item and redraw the list appropriately.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemsToggle
Toggle the membership state of the specified items. Any of the items in the current selection are
removed from the selection, and those items that are not in the selection are added to the selection.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserItemsRemove
Remove specified items from the existing set and redraw the items so they are not highlighted.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
These options are for use with the function SetDataBrowserSelectedItems (page 2222).

Sorting Orders
Specify the order in which to sort data.

typedef UInt16 DataBrowserSortOrder;
enum {
 kDataBrowserOrderUndefined = 0,
 kDataBrowserOrderIncreasing = 1,
 kDataBrowserOrderDecreasing = 2
};

Constants
kDataBrowserOrderUndefined

This constant has no meaning in the context of your application; don’t use it.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserOrderIncreasing
Sort in increasing order.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserOrderDecreasing
Sort in decreasing order.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Table View Highlighting Styles
Specify a highlighting style to use in list view.

2294 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

typedef UInt32 DataBrowserTableViewHiliteStyle;
enum {
 kDataBrowserTableViewMinimalHilite = 0,
 kDataBrowserTableViewFillHilite = 1
};

Constants
kDataBrowserTableViewMinimalHilite

Use minimal highlighting. This is the highlighting used by the Finder for list view prior to Mac OS X
v. 10.3. For this style, the highlight color for active items is kThemeBrushPrimaryHighlightColor
and for inactive items the color is kThemeBrushSecondaryHighlightColor.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserTableViewFillHilite
Use full-row highlighting. This is the highlighting used by the Finder for list view in Mac OS X v. 10.3.
For this style, the highlight color in Mac OS X v. 10.3 for active items is
kThemeBrushAlternatePrimaryHighlightColor and for inactive items the color is
kThemeBrushSecondaryHighlightColor. Prior to Mac OS X v. 10.3 the highlight color for active
and inactive items is kThemeBrushPrimaryHighlightColor.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Table View Last Column Value
Specifies the last column position.

enum {
 kDataBrowserTableViewLastColumn = -1
};

Constants
kDataBrowserTableViewLastColumn

The last column position.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Table View Property Flag
Specifies a table view property.

typedef UInt32 DataBrowserTableViewPropertyFlags;
enum {
 kDataBrowserTableViewSelectionColumn = 1 << kDataBrowserViewSpecificFlagsOffset
};

Constants
kDataBrowserTableViewSelectionColumn

The column can be selected.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Constants 2295
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Tracking Results
Specify the outcome of tracking a drag operation.

typedef SInt16 DataBrowserTrackingResult;
enum {
 kDataBrowserContentHit = 1,
 kDataBrowserNothingHit = 0,
 kDataBrowserStopTracking = -1
};

Constants
kDataBrowserContentHit

Indicates that a selectable portion of the item was hit. The data browser will select the item and do
other relevant actions as appropriate.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserNothingHit
Indicates that a nonselectable portion—whitespace—was hit. The data browser won’t select the item,
but it could, for example, start a selection rectangle.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserStopTracking
Indicates the callback handled the click completely. The data browser will not attempt to display a
contextual menu, start a drag, process a double-click, or draw a selection rectangle. The callback is
responsible for all facets of click handling if it returns this value.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
These constants are returned from the custom tracking callback, DataBrowserTrackingProcPtr (page
2259).

User Selection Flags
Specify allowable selection behavior.

2296 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

typedef UInt32 DataBrowserSelectionFlags;
enum {
 kDataBrowserDragSelect = 1 << 0,
 kDataBrowserSelectOnlyOne = 1 << 1,
 kDataBrowserResetSelection = 1 << 2,
 kDataBrowserCmdTogglesSelection = 1 << 3,
 kDataBrowserNoDisjointSelection = 1 << 4,
 kDataBrowserAlwaysExtendSelection = 1 << 5,
 kDataBrowserNeverEmptySelectionSet = 1 << 6
};

Constants
kDataBrowserDragSelect

Allows items to be selected by dragging. If the user to clicks the mouse to select a nondraggable item
and drags the mouse, any item the pointer moves over is selected. This is on by default.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserSelectOnlyOne
Only one item can be selected at a time. If you use this flag in conjunction with the flag
kDataBrowserDragSelect, then as the user drags, previous items are deselected as each new item
is dragged over.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserResetSelection
Clears all selected items before processing the next selection. This is off by default.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserCmdTogglesSelection
Enables use of a command to toggle items in and out of a selection. This is on by default.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserNoDisjointSelection
Prevents a discontinuous selection.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserAlwaysExtendSelection
Multiple items can be selected without holding down a modifier key.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserNeverEmptySelectionSet
There must always be at least one selected item; the user cannot deselect the last selected item.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Discussion
You can use one or more of these flags together.

Constants 2297
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

View Styles
Specify a style to use when displaying data in a data browser.

typedef OSType DataBrowserViewStyle;
enum {
 kDataBrowserNoView = '????',
 kDataBrowserListView = 'lstv',
 kDataBrowserColumnView = 'clmv'
};

Constants
kDataBrowserNoView

There is no view.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserListView
Display data in a list. Lists can be hierarchical.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

kDataBrowserColumnView
Display data in columns that can be browsed.

Available in Mac OS X v10.0 and later.

Declared in HIDataBrowser.h.

Result Codes

The most common result codes returned by the data browser are listed here.

DescriptionValueResult Code

The data browser is not properly configured.-4970errDataBrowserNotConfigured

Available in Mac OS X v10.0 and later.

The item is not in the data browser.-4971errDataBrowserItemNotFound

Available in Mac OS X v10.0 and later.

The property is not in the data browser.-4972errDataBrowserPropertyNotFound

Available in Mac OS X v10.0 and later.

The property part is not valid.-4973errDataBrowserInvalidPropertyPart

Available in Mac OS X v10.0 and later.

The property data is not valid.-4974errDataBrowserInvalidPropertyData

Available in Mac OS X v10.0 and later.

2298 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

DescriptionValueResult Code

The item was not added to the data browser.-4975errDataBrowserItemNotAdded

Available in Mac OS X v10.0 and later.

The property is not supported in the data browser.-4979errDataBrowserPropertyNotSupported

Available in Mac OS X v10.0 and later.

Result Codes 2299
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

2300 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 27

Data Browser Reference

Framework: CommonPanels.framework

Declared in FontPanel.h

Overview

The Fonts Panel programming interface is a collection of functions and data types that support the use of a
Fonts panel in a Carbon application. The Fonts panel is the preferred user interface for fonts in Mac OS X.

Functions

FPIsFontPanelVisible
Checks whether the Fonts panel is visible.

Boolean FPIsFontPanelVisible (
 void
);

Return Value
Returns true if the Fonts panel is visible; false otherwise. See the Mac Types documentation for a description
of the Boolean data type.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X version 10.2.

Declared In
FontPanel.h

FPShowHideFontPanel
Shows or hides the Fonts panel.

OSStatus FPShowHideFontPanel (
 void
);

Return Value
A result code. See “Fonts Panel Results Codes” (page 2308).

Overview 2301
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Fonts Panel Reference

Discussion
The function FPShowHideFontPanel shows the Fonts panel if the panel is not visible and hides the Fonts
panel if the panel is visible.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X version 10.2.

Declared In
FontPanel.h

SetFontInfoForSelection
Sets the selections that appear in the Fonts panel.

OSStatus SetFontInfoForSelection (
 OSType iStyleType,
 UInt32 iNumStyles,
 void *iStyles,
 EventTargetRef iFPEventTarget
);

Parameters
iStyleType

The type of style data you are passing to the Fonts panel. Pass kFontSelectionQDType if you supply
a FontSelectionQDStyle data structure in the iStyles parameter. Pass
kFontSelectionATSUIType if you supply ATSUStyle data in the iStyles parameter.

iNumStyles
The number of styles passed in the iStyles parameter.

iStyles
A pointer to an array of data structures that correspond to the style type specified by the iStyleType
parameter.

iFPEventTarget
The event target you want to receive the Carbon event kEventFontSelection that is associated
with the Fonts panel. You typically specify the event target for the window that is sending the style
selection to the Fonts panel.

Return Value
A result code. See “Fonts Panel Results Codes” (page 2308).

Discussion
You can programmatically set a selection in the Fonts panel by calling the function
SetFontInfoForSelection. You can call this function even when the Fonts panel is not open or visible.
When the Fonts panel becomes visible later, the style information specified in the most recent call to
SetFontInfoForSelection is selected in the panel.

Availability
Not available in CarbonLib 1.x.
Available in Mac OS X version 10.2.

Declared In
FontPanel.h

2302 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Fonts Panel Reference

Data Types

FontSelectionQDStyle
Contains QuickDraw style font information.

struct FontSelectionQDStyle {
 UInt32 version;
 FMFontFamilyInstance instance;
 FMFontSize size;
 Boolean hasColor;
 UInt8 reserved;
 RGBColor color;
};
typedef struct FontSelectionQDStyle FontSelectionQDStyle;
typedef FontSelectionQDStyle * FontSelectionQDStylePtr;

Fields
version

Specifies the version number of the data structure.

instance
Specifies a font family instance.

size
Specifies the font size in points.

hasColor
Specifies whether the font has a color other than black.

reserved
Reserved for future use.

color
Specifies the font color.

Discussion
You should use this data structure to specify QuickDraw-style font information when you call the function
SetFontInfoForSelection (page 2302). When you use this data structure, you must pass the constant
kFontSelectionQDType in the iStyleType parameter of the function.

Availability
Available in Mac OS X v10.2 and later.

Declared In
FontPanel.h

FontSelectionQDStylePtr
A pointer to a data structure that contains QuickDraw style font information.

typedef FontSelectionQDStyle * FontSelectionQDStylePtr;

Discussion
See FontSelectionQDStyle (page 2303) for more information.

Data Types 2303
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Fonts Panel Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
FontPanel.h

Constants

Font Event Class
Specifies a Carbon event related to font selection or handling.

enum {
 kEventClassFont = 'font'
};

Constants
kEventClassFont

Specifies a Carbon event related to font selection or handling.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

Declared In
FontPanel.h

Fonts Panel Events
Specify a Fonts panel Carbon event.

enum {
 kEventFontPanelClosed = 1,
 kEventFontSelection = 2
};

Constants
kEventFontPanelClosed

Specifies a close event in the Fonts panel. Your application should update the user interface as
necessary. For example, you may need to change a Hide Fonts Panel menu command to Show Fonts
Panel.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

kEventFontSelection
Specifies a selection event in the Fonts panel. Your application can obtain the selections from the
event parameters associated with this event. Your application must check for all those parameters it
handles and apply the selections to the text.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

2304 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Fonts Panel Reference

Discussion
When the user closes the Fonts panel, the action generates the Carbon event kEventWindowClosed. You
can then update any menu items or other controls whose state may need to change. The event
kEventWindowClosed has no parameters. However, when the user selects an item in the Fonts panel, the
system sends the Carbon event kEventFontSelection to the event target you specified when your
application called the Fonts Panel function SetFontInfoForSelection (page 2302). The event
kEventFontSelection has parameters that reflect the current Fonts panel selection.

Declared In
FontPanel.h

Font Information Types
Specify the type of font information.

enum {
 kFontSelectionATSUIType = 'astl',
 kFontSelectionQDType = 'qstl'
};

Constants
kFontSelectionATSUIType

Specifies ATSUI data (ATSUStyle).

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

kFontSelectionQDType
Specifies QuickDraw data (FontSelectionQDStyle).

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

Discussion
These constants specify the type of font information passed to the function
SetFontInfoForSelection (page 2302).

Declared In
FontPanel.h

Font Information Versions
Specify the supported versions of the FontSelectionQDStyle data structure.

enum {
 kFontSelectionQDStyleVersionZero = 0
};

Constants
kFontSelectionQDStyleVersionZero

Specifies version 0 of a QuickDraw font selection.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

Constants 2305
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Fonts Panel Reference

Discussion
You should always set the version field in the FontSelectionQDStyle data structure to this constant

Declared In
FontPanel.h

Fonts Panel Command
Specifies the four-character code for the show/hide Fonts panel command.

enum {
 kHICommandShowHideFontPanel = 'shfp'
};

Constants
kHICommandShowHideFontPanel

Specifies the four-character code for the show/hide Fonts panel command.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

Discussion
If the user closes the Fonts panel directly, your application receives a kEventFontPanelClosed Carbon
event. You can then call the Carbon Event Manager function GetEventParameter to extract the HI command
from the event.

Declared In
FontPanel.h

Font Parameters and Data Types
Specify font event parameters and their associated data types.

enum {
 typeATSUFontID = typeUInt32,
 typeATSUSize = typeFixed,
 typeFMFontFamily = typeSInt16,
 typeFMFontStyle = typeSInt16,
 typeFMFontSize = typeSInt16,
 typeFontColor = typeRGBColor,
 kEventParamATSUFontID = 'auid',
 kEventParamATSUFontSize = 'ausz',
 kEventParamFMFontFamily = 'fmfm',
 kEventParamFMFontStyle = 'fmst',
 kEventParamFMFontSize = 'fmsz',
 kEventParamFontColor = 'fclr'
};

Constants
typeATSUFontID

Specifies that an ATSUFontID is of type UInt32.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

2306 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Fonts Panel Reference

typeATSUSize
Specifies that an ATSUSize is of type Fixed.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

typeFMFontFamily
Specifies that an FMFontFamily is of type SInt16.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

typeFMFontStyle
Specifies that an FMFontStyle is of type SInt16.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

typeFMFontSize
Specifies that an FMFontSize is of type SInt16.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

typeFontColor
Specifies that a font color is of type RGBColor.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

kEventParamATSUFontID
Specifies the four-character code associated with an ATSUFontID selection in the Fonts panel.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

kEventParamATSUFontSize
Specifies the four-character code associated with an ATSUFontSize selection in the Fonts panel.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

kEventParamFMFontFamily
Specifies the four-character code associated with an FMFontFamily selection in the Fonts panel.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

kEventParamFMFontStyle
Specifies the four-character code associated with an FMFontStyle selection in the Fonts panel.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

kEventParamFMFontSize
Specifies the four-character code associated with an FMFontSize selection in the Fonts panel.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

Constants 2307
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Fonts Panel Reference

kEventParamFontColor
Specifies the four-character code associated with a font color selection in the Fonts panel.

Available in Mac OS X v10.2 and later.

Declared in FontPanel.h.

Discussion
Table 28-1 (page 2308) lists the parameters and data types associated with the Carbon event
kEventFontSelection.

Table 28-1 Parameters and parameter data types for a font selection event.

Data typeParameter

typeATSUFontIDkEventParamATSUFontID

typeATSUFontSizekEventParamATSUFontSize

typeFMFontFamilykEventParamFMFontFamily

typeFMFontStylekEventParamFMFontStyle

typeFMFontSizekEventParamFMFontSize

typeFontColorkEventParamFontColor

Declared In
FontPanel.h

Result Codes

The most common result codes returned by the Fonts Panel programming interface are listed below.

DescriptionValueResult Code

The Fonts panel could not be opened.-8880fontPanelShowErr

Available in Mac OS X v10.2 and later.

Your application specified an invalid style
type in the iStyleType parameter of the
SetFontInfoForSelection (page 2302)
function.

-8881fontPanelSelectionStyleErr

Available in Mac OS X v10.2 and later.

Your application specified an invalid version
in the version field of the
FontSelectionQDStyle data structure.

-8882fontPanelFontSelectionQDStyleVersionErr

Available in Mac OS X v10.2 and later.

2308 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 28

Fonts Panel Reference

Framework: Carbon/Carbon.h

Declared in HIArchive.h

Overview

HIArchive provides a convenient and standardized mechanism for flattening data objects so they can be
stored in memory or on disk. Applications can use these archives whenever they need to package complex
data. For example, you can use archives to:

 ■ Store document data

 ■ Transfer data using pasteboards, drag-and-drop, streams, or Apple events

 ■ Store localization strings and user interface elements in the same package

HIArchive encodes archives in the binary property list format. You can convert archives to a text XML format
using the plutil property list tool accessible from Terminal. HIArchive is comparable to (and uses the same
underlying mechanism as) the Cocoa NSKeyedArchiver/Unarchiver classes.

For details about using HIArchive, see HIArchive Programming Guide.

HIArchive is available in Mac OS X version 10.4 and later.

Functions by Task

Storing Objects in an Archive

HIArchiveCreateForEncoding (page 2312)
Creates an HIArchive object to store objects.

HIArchiveEncodeBoolean (page 2314)
Stores a Boolean value in an archive.

HIArchiveEncodeNumber (page 2315)
Stores a number in an archive.

HIArchiveEncodeCFType (page 2314)
Stores a CFType object in an archive.

HIArchiveCopyEncodedData (page 2311)
Compresses an archive for storage.

Overview 2309
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

HIArchive Reference

Retrieving Objects from an Archive

HIArchiveCreateForDecoding (page 2311)
Creates an HIArchive object to retrieve objects.

HIArchiveDecodeBoolean (page 2312)
Retrieves a Boolean value from an archive.

HIArchiveDecodeNumber (page 2313)
Retrieves a number from an archive.

HIArchiveCopyDecodedCFType (page 2310)
Retrieves a CFType object from an archive.

Miscellaneous Function

HIArchiveGetTypeID (page 2316)
Obtains the CFType ID for HIArchive objects.

Functions

HIArchiveCopyDecodedCFType
Retrieves a CFType object from an archive.

OSStatus HIArchiveCopyDecodedCFType (
 HIArchiveRef inDecoder,
 CFStringRef inKey,
 CFTypeRef *outCFType
);

Parameters
inDecoder

The archive holding the CFType object to retrieve.

inKey
A Core Foundation string key identifying the CFType object to retrieve.

outCFType
On return, outCFType points to the retrieved CFType object.

Return Value
A result code.

Discussion
You also use this function for retrieving HIObjects and objects subclassed from HIObject.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIArchive.h

2310 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

HIArchive Reference

HIArchiveCopyEncodedData
Compresses an archive for storage.

OSStatus HIArchiveCopyEncodedData (
 HIArchiveRef inEncoder,
 CFDataRef *outData
);

Parameters
inEncoder

The archive to compress.

outData
On return, outData points to the compressed archive.

Return Value
A result code.

Discussion
When you have finished adding data to an archive, calling HIArchiveCopyEncodedData compresses the
data and returns it to you as a CFData object. You can use the returned data reference to store or transfer
the data as you choose, for example writing it to a file or copying it to a pasteboard.

After compression, you can release the original HIArchive reference by calling CFRelease.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIArchive.h

HIArchiveCreateForDecoding
Creates an HIArchive object to retrieve objects.

OSStatus HIArchiveCreateForDecoding (
 CFDataRef inData,
 OptionBits inOptions,
 HIArchiveRef *outDecoder
);

Parameters
inData

A CFData reference pointing to archived data. This archive was originally written to a data stream
using HIArchiveCopyEncodedData (page 2311). This data reference does not have to be the one
originally returned by HIArchiveCopyEncodedData (page 2311), but it must contain a copy of the
same data.

inOptions
Any decoding options. Currently the only option is
kHIArchiveDecodeSuperclassForUnregisteredObjects.

outDecoder
On return, outDecoder points to the newly created HIArchive object.

Functions 2311
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

HIArchive Reference

Return Value
A result code.

Discussion
You use this function when you want to retrieve data from an existing HIArchive.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIArchive.h

HIArchiveCreateForEncoding
Creates an HIArchive object to store objects.

OSStatus HIArchiveCreateForEncoding (
 HIArchiveRef *outEncoder
);

Parameters
outEncoder

On return, outEncoder points to the newly created HIArchive object.

Return Value
A result code.

Discussion
Before you can archive any objects, you must create an HIArchive object in which to store them.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIArchive.h

HIArchiveDecodeBoolean
Retrieves a Boolean value from an archive.

OSStatus HIArchiveDecodeBoolean (
 HIArchiveRef inDecoder,
 CFStringRef inKey,
 Boolean *outBoolean
);

Parameters
inDecoder

The archive holding the Boolean value.

inKey
A Core Foundation string key identifying the Boolean to retrieve.

2312 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

HIArchive Reference

outBoolean
On return, outBoolean points to the retrieved Boolean value.

Return Value
A result code.

Discussion
This function is a convenience wrapper that calls HIArchiveCopyDecodedCFType (page 2310) to obtain a
CFBoolean value.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIArchive.h

HIArchiveDecodeNumber
Retrieves a number from an archive.

OSStatus HIArchiveDecodeNumber (
 HIArchiveRef inDecoder,
 CFStringRef inKey,
 CFNumberType inNumberType,
 void *outNumberValue
);

Parameters
inDecoder

The archive holding the number to retrieve.

inKey
A Core Foundation string key identifying the number to retrieve.

inNumberType
A CFNumber type identifying the type of number value to be retrieved. For example,
kCFNumberSInt32Type. See CFNumber Reference in Core Foundation Reference Documentation
for additional possible values.

outNumberValue
Before calling, outNumberValue must point to a number variable of the type and size you specified
in inNumberType. On return, outNumberValue points to the retrieved number.

Return Value
A result code.

Discussion
This function is a convenience wrapper that calls HIArchiveCopyDecodedCFType (page 2310) to obtain a
CFNumber value.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIArchive.h

Functions 2313
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

HIArchive Reference

HIArchiveEncodeBoolean
Stores a Boolean value in an archive.

OSStatus HIArchiveEncodeBoolean (
 HIArchiveRef inEncoder,
 CFStringRef inKey,
 Boolean inBoolean
);

Parameters
inEncoder

The archive to store the Boolean value.

inKey
A Core Foundation string key identifying the Boolean value.

inBoolean
The Boolean value.

Return Value
A result code.

Discussion
This function is a convenience wrapper that calls HIArchiveEncodeCFType (page 2314) with a CFBoolean
value.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIArchive.h

HIArchiveEncodeCFType
Stores a CFType object in an archive.

OSStatus HIArchiveEncodeCFType (
 HIArchiveRef inEncoder,
 CFStringRef inKey,
 CFTypeRef inCFType
);

Parameters
inEncoder

The archive to store the CFType object.

inKey
A Core Foundation string key identifying the CFType object.

inCFType
The CFType object to store in the archive.

Return Value
A result code.

2314 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

HIArchive Reference

Discussion
You can only encode base CFType objects that correspond to archivable NSFoundation objects. For example,
type CFStringRef is supported, but type HIShapeRef is not.

You also use this function for storing HIObjects and objects subclassed from HIObject. Currently only the
following HIObject subclass types support archiving:

 ■ HIObjectRef

 ■ HIViewRef

 ■ WindowRef

 ■ ControlRef

 ■ MenuRef

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIArchive.h

HIArchiveEncodeNumber
Stores a number in an archive.

OSStatus HIArchiveEncodeNumber (
 HIArchiveRef inEncoder,
 CFStringRef inKey,
 CFNumberType inNumberType,
 const void *inNumberValue
);

Parameters
inEncoder

The archive to store the number.

inKey
A Core Foundation string key identifying the number.

inNumberType
A CFNumber type identifying the type of number value to be stored, for example,
kCFNumberSInt32Type. See CFNumber Reference in Core Foundation Reference Documentation
for additional possible values.

inNumberValue
A pointer to the number value.

Return Value
A result code.

Discussion
This function is a convenience wrapper that calls HIArchiveEncodeCFType (page 2314) with a CFNumber
value.

Functions 2315
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

HIArchive Reference

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIArchive.h

HIArchiveGetTypeID
Obtains the CFType ID for HIArchive objects.

CFTypeID HIArchiveGetTypeID (
 void
);

Return Value
The Core Foundation type ID for the HIArchive object type.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIArchive.h

Data Types

HIArchiveRef
Defines an uncompressed archive object.

typedef struct OpaqueHIArchiveRef* HIArchiveRef;

Discussion
The structure pointed to by this reference is opaque. HIArchiveRef is a CFType, and therefore responds to
CFRetain and CFRelease calls.

Availability
Available in Mac OS X v10.4 and later.

Declared In
HIArchive.h

Constants

Archive Decoding Option Constant
Defines options available when calling HIArchiveCreateForDecoding (page 2311).

2316 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

HIArchive Reference

enum {

 kHIArchiveDecodeSuperclassForUnregisteredObjects = (1 << 0)
};

Constants
kHIArchiveDecodeSuperclassForUnregisteredObjects

If the class of the HIObject you are attempting to decode is not a registered subclass, this option
allows HIArchiveCopyDecodedCFType (page 2310) to instantiate the object as its superclass, if it
exists. For example, if your application has not yet registered com.myCorp.mycustomView before
attempting to unarchive an instance of that HIView, HIArchive instantiates the data as class
com.apple.hiview. Only data written to the superclass is decoded; any data unique to the
unregistered subclass is ignored. Specifying this option also signals the HIObject to load its custom
archive data so you can access it by calling HIObjectCopyCustomArchiveData.

This option can be useful when creating an archive editor that doesn’t implement all the objects
contained in a client archive.

Available in Mac OS X v10.4 and later.

Declared in HIArchive.h.

Result Codes

DescriptionValueResult Code

No error.0noErr

Available in Mac OS X v10.0 and later.

The encoding or decoding archive was passed
into a noncorresponding function. (For example,
an archive created for encoding was passed into
a decoding function.)

-6780hiArchiveTypeMismatchErr

Available in Mac OS X v10.4 and later.

The requested key does not exist in the specified
archive.

-6781hiArchiveKeyNotAvailableErr

Available in Mac OS X v10.4 and later.

HIArchiveCopyEncodedData (page 2311) was
called on this archive, so no more data can be
added.

-6782hiArchiveEncodingCompleteErr

Available in Mac OS X v10.4 and later.

The HIObject you wanted to encode does not
support the HIArchive protocol.

-6783hiArchiveHIObjectIgnoresArchivingErr

Available in Mac OS X v10.4 and later.

Result Codes 2317
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

HIArchive Reference

2318 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 29

HIArchive Reference

Framework: Carbon/Carbon.h

Declared in HIGeometry.h

Overview

HIGeometry is a Quartz-compatible API for describing and manipulating basic geometric objects such as
points, rectangles, and sizes. HIGeometry expresses all coordinates using floating-point numbers. This API
provides functions to convert an object’s coordinates into a different coordinate space. These functions
support resolution independence mode drawing by taking into account the scale factor of your application’s
user interface.

Functions by Task

Getting the Scale Factor

HIGetScaleFactor (page 2320)
Returns the scale factor of an application’s user interface.

Converting Coordinates
These functions allow conversion between global pixel coordinates, global virtual (72-dpi) coordinates,
window coordinates, and view coordinates.

HIPointConvert (page 2320)
Converts a point from one coordinate space to another.

HIRectConvert (page 2321)
Converts a rectangle from one coordinate space to another.

HISizeConvert (page 2322)
Converts a size structure from one coordinate space to another.

Overview 2319
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

HIGeometry Reference

Functions

HIGetScaleFactor
Returns the scale factor of an application’s user interface.

float HIGetScaleFactor (
 void
);

Return Value
A positive number that represents the scale factor of your application.

Discussion
The scale factor of your application’s user interface is the ratio between device space units and user space
units. For example, if the scale factor is 2.0 and you draw a horizontal line with a length of 10 units, the
graphics system will display a line with a length of 20 pixels.

The scale factor is initialized when your application launches. In Mac OS X v10.4, the scale factor is always
1.0 (unless you use the Quartz Debug application to change it). In future versions of Mac OS X, the scale factor
may vary based on user preference or the resolution of the main display.

Application frameworks such as Cocoa and Carbon use the scale factor to adjust the size of your application’s
user interface so that it has the appropriately scaled appearance when viewed on the main display.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

See Also
HIWindowGetScaleMode (page 1889)

Declared In
HIGeometry.h

HIPointConvert
Converts a point from one coordinate space to another.

void HIPointConvert (
 HIPoint *ioPoint,
 HICoordinateSpace inSourceSpace,
 void *inSourceObject,
 HICoordinateSpace inDestinationSpace,
 void *inDestinationObject
);

Parameters
ioPoint

A pointer to the point to convert. On output, the point contains the destination coordinates.

2320 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

HIGeometry Reference

inSourceSpace
A constant specifying the source coordinate space from which the point is to be converted. Some
coordinate spaces require the caller to pass extra information in the inSourceObject parameter.

inSourceObject
A pointer to an object defining the source coordinate space from which the point is to be converted.
You may pass an object of type WindowRef (page 1987) or HIViewRef (page 2497). If no object is
necessary, you must pass NULL. See “Coordinate Space Constants” (page 2324) for details on which
coordinate spaces require objects.

inDestinationSpace
A constant specifying the destination coordinate space to which the point is to be converted. Some
coordinate spaces require the caller to pass extra information in the inDestinationObject
parameter.

inDestinationObject
A pointer to an object defining the destination coordinate space to which the point is to be converted.
You may pass an object of type WindowRef (page 1987) or HIViewRef (page 2497). If no object is
necessary, you must pass NULL. See “Coordinate Space Constants” (page 2324) for details on which
coordinate spaces require objects.

Discussion
When converting a point from one coordinate space to another, this function takes into account the scale
factor of your application’s user interface. If the source or destination object is a view, the view should already
be embedded in a window. If both the source and destination objects are views, the views are not required
to be embedded in the same window.

Availability
Available in Mac OS X v10.4 and later.

Declared In
HIGeometry.h

HIRectConvert
Converts a rectangle from one coordinate space to another.

void HIRectConvert (
 HIRect *ioRect,
 HICoordinateSpace inSourceSpace,
 void *inSourceObject,
 HICoordinateSpace inDestinationSpace,
 void *inDestinationObject
);

Parameters
ioRect

A pointer to the rectangle to convert. On output, the rectangle contains the destination origin and
size.

inSourceSpace
A constant specifying the source coordinate space from which the rectangle is to be converted. Some
coordinate spaces require the caller to pass extra information in the inSourceObject parameter.

Functions 2321
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

HIGeometry Reference

inSourceObject
A pointer to an object defining the source coordinate space from which the rectangle is to be
converted. You may pass an object of type WindowRef (page 1987) or HIViewRef (page 2497). If no
object is necessary, you must pass NULL. See “Coordinate Space Constants” (page 2324) for details on
which coordinate spaces require objects.

inDestinationSpace
A constant specifying the destination coordinate space to which the rectangle is to be converted.
Some coordinate spaces require the caller to pass extra information in the inDestinationObject
parameter.

inDestinationObject
A pointer to an object defining the destination coordinate space to which the rectangle is to be
converted. You may pass an object of type WindowRef (page 1987) or HIViewRef (page 2497). If no
object is necessary, you must pass NULL. See “Coordinate Space Constants” (page 2324) for details on
which coordinate spaces require objects.

Discussion
When converting a rectangle from one coordinate space to another, this function takes into account the
scale factor of your application’s user interface. If the source or destination object is a view, the view should
already be embedded in a window. If both the source and destination objects are views, the views are not
required to be embedded in the same window.

Availability
Available in Mac OS X v10.4 and later.

Declared In
HIGeometry.h

HISizeConvert
Converts a size structure from one coordinate space to another.

void HISizeConvert (
 HISize *ioSize,
 HICoordinateSpace inSourceSpace,
 void *inSourceObject,
 HICoordinateSpace inDestinationSpace,
 void *inDestinationObject
);

Parameters
ioSize

A pointer to the size structure to convert. On output, the structure contains the destination size.

inSourceSpace
A constant specifying the source coordinate space from which the size is to be converted. Some
coordinate spaces require the caller to pass extra information in the inSourceObject parameter.

inSourceObject
A pointer to an object defining the source coordinate space from which the size is to be converted.
You may pass an object of type WindowRef (page 1987) or HIViewRef (page 2497). If no object is
necessary, you must pass NULL. See “Coordinate Space Constants” (page 2324) for details on which
coordinate spaces require objects.

2322 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

HIGeometry Reference

inDestinationSpace
A constant specifying the destination coordinate space to which the size is to be converted. Some
coordinate spaces require the caller to pass extra information in the inDestinationObject
parameter.

inDestinationObject
A pointer to an object defining the destination coordinate space to which the size is to be converted.
You may pass an object of type WindowRef (page 1987) or HIViewRef (page 2497). If no object is
necessary, you must pass NULL. See “Coordinate Space Constants” (page 2324) for details on which
coordinate spaces require objects.

Discussion
When converting a size structure (width and height) from one coordinate space to another, this function
takes into account the scale factor of your application’s user interface. If the source or destination object is
a view, the view should already be embedded in a window. If both the source and destination objects are
views, the views are not required to be embedded in the same window.

Availability
Available in Mac OS X v10.4 and later.

Declared In
HIGeometry.h

Data Types

HIPoint
Defines the position of a point using floating-point coordinates.

typedef CGPoint HIPoint;

Discussion
The HIPoint type is a data structure that defines the position of a point (x,y) in a floating-point coordinate
space. When you obtain a point of type HIPoint from an HIToolbox function or a Carbon event, typically
the y-axis of the drawing coordinate space is inverted with the origin (0,0) in the upper-left corner of the
main display. Note that although it replaces the QuickDraw Point data structure, the HIPoint data structure
does not contain the same fields.

Availability
Available in Mac OS X v10.1 and later.

Declared In
HIGeometry.h

HISize
Defines the width and height of an object using floating-point coordinates.

typedef CGSize HISize;

Availability
Available in Mac OS X v10.2 and later.

Data Types 2323
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

HIGeometry Reference

Declared In
HIGeometry.h

HIRect
Defines the position and size of a rectangle using floating-point coordinates.

typedef CGRect HIRect;

Discussion
The HIRect type is a data structure that defines the position and size (width and height) of a rectangle in a
floating-point coordinate space. When you obtain a rectangle of type HIRect from an HIToolbox function
or a Carbon event, typically the y-axis of the drawing coordinate space is inverted with the origin (0,0) in the
upper-left corner of the main display. In this case, the position or origin of the rectangle is its upper-left
corner. Note that although it replaces the QuickDraw Rect data structure, the HIRect data structure does
not contain the same fields.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIGeometry.h

Constants

Coordinate Space Constants
Specify coordinate spaces used in HIToolbox.

typedef UInt32 HICoordinateSpace;
enum {
 kHICoordSpace72DPIGlobal = 1,
 kHICoordSpaceScreenPixel = 2,
 kHICoordSpaceWindow = 3,
 kHICoordSpaceView = 4
};

Constants
kHICoordSpace72DPIGlobal

Specifies a global coordinate space that has been adjusted by the scale factor of your application’s
user interface. For example, if a user interface object is 125 x 100 pixels on the screen and the scale
factor is 1.25, the size of the object in this coordinate space is 100 x 80. The origin of this coordinate
space is the upper-left corner of the main display, and the y-axis is inverted. This is the compatibility
coordinate space; Carbon functions that do not take an explicit HICoordinateSpace parameter,
such as existing Window Manager, QuickDraw, and Display Manager functions, assume that coordinate
parameters are expressed in this space. When the scale factor is 1.0, this coordinate space and
kHICoordSpaceScreenPixel are the same.

Available in Mac OS X v10.4 and later.

Declared in HIGeometry.h.

2324 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

HIGeometry Reference

kHICoordSpaceScreenPixel
Specifies a coordinate space defined by the screen size in pixels. The origin of this coordinate space
is the upper-left corner of the main display, and the y-axis is inverted. When the scale factor of your
application’s user interface is 1.0, this coordinate space and kHICoordSpace72DPIGlobal are the
same.

Available in Mac OS X v10.4 and later.

Declared in HIGeometry.h.

kHICoordSpaceWindow
Specifies the coordinate space of a window of typeWindowRef (page 1987). The origin of this coordinate
space is the upper-left corner of the window’s structure region, and the y-axis is inverted. When this
constant is passed to a function as a source or destination coordinate space, you must also pass a
window as a source or destination object.

Available in Mac OS X v10.4 and later.

Declared in HIGeometry.h.

kHICoordSpaceView
Specifies the coordinate space of a view of type HIViewRef (page 2497). The origin of this coordinate
space is the upper-left corner of the view’s bounds, and the y-axis is inverted. When this constant is
passed to a function as a source or destination coordinate space, you must also pass a view as a source
or destination object.

Available in Mac OS X v10.4 and later.

Declared in HIGeometry.h.

Declared In
HIGeometry.h

Constants 2325
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

HIGeometry Reference

2326 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 30

HIGeometry Reference

Framework: Carbon/Carbon.h

Declared in HIObject.h

Overview

HIObject is the base class for various objects in the HIToolbox. In Mac OS X v10.2 and later, most common
user interface objects (controls, windows, menus, toolbars, and toolbar items) are derived from HIObject.
Code that is external to HIToolbox can also create its own subclasses of these objects using the routines
contained in this API. There are also polymorphic functions one can use on any HIObject for getting the class
ID, and so on.

HIObjects are actually Core Foundation CF types under the hood. This means that they can be put into CF
collections and you can retain/release them.

An HIObject is essentially a very basic building-block object which contains an event target. You can create
these objects to use as your own Carbon Event receptors in your application, or you can subclass existing
HIToolbox objects to suit your needs.

You register your subclasses with HIObjectRegisterSubclass (page 2335), passing your class ID, the parent
class, and an event handler. You also pass a list of events the handler is interested in.

To create an object of your subclass, you call HIObjectCreate (page 2330), passing the class reference you
registered, as well as an initialization event.

Construction is two-phase: first the basic construction of the object is done, then initialization is performed.
The HIToolbox sends construction events bottom-up, as you would expect in C++ or the like. Here is the list
of what goes on to create an object:

1) The HIToolbox creates the base HIObject

2) It then installs the event handler you specified when you registered your subclass. Your handler must listen
for kEventHIObjectConstruct and kEventHIObjectDestruct events. If it does not, the class cannot
be registered (you will get a paramErr).

3) Next, the HIToolbox directly calls your handler with an kEventHIObjectConstruct event. When called
like this, you are not really being called in the context of a handler stack, so you cannot do things like
CallNextEventHandler. The userData parameter is what you specified when you registered the class.
Typically, during construction you will allocate memory yourself to store your own instance data; this allocation
might be as simple as calling malloc or NewPtr, or it might involve creating your own C++ object. In the
construct event, you are passed the base HIObjectRef of the object being created. Typically you would
store this HIObjectRef in your own instance data for later use. When handling this construct event, you
should be sure to use SetEventParameter to set the kEventParamHIObjectInstance parameter in the
construction event with your own instance data. You must use typeVoidPtr as the type.

Overview 2327
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

4) The HIToolbox looks for your instance of typeVoidPtr after you handle the construct event. It then takes
that data and stores it off with the object and also sets the user data of the event handler it installed to be
this instance data. This means that following the construct event, all calls to your event handler will have the
instance data you returned to us.

5) Once construction has completed successfully, we will send your object the initialize event passed into
HIObjectCreate. At this point, all events are now sent to your object using standard Carbon event
mechanisms (it is only the construct event which is special). When we send the initialization event to your
subclass, you should pass the event to your superclass before proceeding. You do this with
CallNextEventHandler. Once back from that call, you should verify that the result is noErr, indicating that
the superclass did in fact initialize properly. If it did not, your should return the error that
CallNextEventHandler returned from your handler as well. The object will be destroyed by the HIToolbox.
Your object should be able to be destroyed in a partially initialized state such as this. This stage is optional,
i.e. an object does not need to respond to the initialize event unless it is expecting certain parameters to be
passed to it at creation time. This is where those parameters can be fetched.

6) Once initialization is successful, the HIObjectRef is returned to the caller of HIObjectCreate.

When someone has called CFRelease enough such that the reference count of the object drops to zero,
the object is destroyed. The HIToolbox will send a kEventHIObjectDestruct event to your object. Do not
call CallNextEventHandler. Just clean up and return from your handler.

For more information about HIObjects and the HIView subclass, see HIView Programming Guide.

Functions by Task

Registering and Creating HIObjects

HIObjectRegisterSubclass (page 2335)
Registers an HIObject subclass.

HIObjectCreate (page 2330)
Creates an object derived from HIObject.

HIObjectCreateFromBundle (page 2331)
Obtains the HIObject for the given bundle.

HIObjectUnregisterClass (page 2340)
Unregisters a previously registered subclass of HIObject.

HIObject Utility Functions

HIObjectCopyClassID (page 2329)
Obtains the class ID of a given HIObject.

HIObjectIsOfClass (page 2333)
Determines whether an object is of a certain class.

HIObjectDynamicCast (page 2331)
Obtains the instance data for a specific class of an HIObject.

2328 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

HIObjectGetEventTarget (page 2332)
Obtains the event target of an HIObjectRef.

Accessibility Functions

HIObjectSetAccessibilityIgnored (page 2337)
Marks an HIObject as ignored (or not) for the purposes of the accessibility APIs.

HIObjectIsAccessibilityIgnored (page 2332)
Reports whether the given HIObject is marked as ignored for accessibility.

HIObjectSetAuxiliaryAccessibilityAttribute (page 2338)
Associates an additional accessibility attribute with an HIObject.

HIObjectOverrideAccessibilityContainment (page 2334)
Overrides the AXUIElement references supplied by an HIObject.

Archiving Functions

HIObjectIsArchivingIgnored (page 2333)
Obtains a Boolean value indicating whether an HIObject is marked as ignored for archiving.

HIObjectSetArchivingIgnored (page 2337)
Changes the state of archiving for an HIObject.

HIObjectCopyCustomArchiveData (page 2330)
Copies custom archive data that is associated with an HIObject.

HIObjectSetCustomArchiveData (page 2339)
Associates custom archive data with an HIObject.

Miscellaneous Functions

HIObjectPrintDebugInfo (page 2335)
Prints the internal information of an HIObject for debugging purposes.

Functions

HIObjectCopyClassID
Obtains the class ID of a given HIObject.

CFStringRef HIObjectCopyClassID (
 HIObjectRef inObject
);

Parameters
inObject

The object whose class ID you want.

Functions 2329
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

Return Value
A reference to the object’s class ID.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIObject.h

HIObjectCopyCustomArchiveData
Copies custom archive data that is associated with an HIObject.

OSStatus HIObjectCopyCustomArchiveData (
 HIObjectRef inObject,
 CFDictionaryRef *outCustomData
);

Parameters
inObject

The HIObject whose custom archive data you want to retrieve.

outCustomData
On return, a pointer to the custom data, or NULL if no custom archive data is associated with the
specified object. The caller is responsible for releasing the dictionary when it is no longer needed.

Return Value
An operating system result code.

Discussion
This function would be used by an archive editor to get custom archive data associated with an HIObject so
that the data can be edited.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIObject.h

HIObjectCreate
Creates an object derived from HIObject.

OSStatus HIObjectCreate (
 CFStringRef inClassID,
 EventRef inConstructData,
 HIObjectRef *outObject
);

Parameters
inClassID

The class ID of the class of object you want to instantiate.

2330 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

inConstructData
If your class (or any class you derive from) accepts creation parameters, you need to pass an event
into this parameter. The class must be kEventClassHIObject, and the kind should be
kEventHIObjectInitialize. Any other parameters should be added as necessary. Specific subclasses
of HIObject which require initialization parameters will specify those parameters in the appropriate
headers.

outObject
The instance of the object you create.

Return Value
A result code. See “HIObject Result Codes” (page 2345).

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIObject.h

HIObjectCreateFromBundle
Obtains the HIObject for the given bundle.

OSStatus HIObjectCreateFromBundle (
 CFBundleRef inBundle,
 HIObjectRef *outObject
);

Parameters
inBundle

The bundle with which you want to communicate.

outObject
The HIObject associated with the bundle.

Return Value
A result code. See “HIObject Result Codes” (page 2345). If the bundle’s HIObject creation function cannot be
found, cfragNoSymbolErr will be returned.

Discussion
A bundle can be designed to communicate with an application through an HIObject. The bundle must be
designed to create an HIObject and have a defined suite of Carbon Events that clients can use to communicate
with the bundle’s HIObject. Given a CFBundleRef, this API will tell the bundle to create the HIObject and
return it to the caller.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIObject.h

HIObjectDynamicCast
Obtains the instance data for a specific class of an HIObject.

Functions 2331
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

void * HIObjectDynamicCast (
 HIObjectRef inObject,
 CFStringRef inClassID
);

Parameters
inObject

The object whose class ID you want to check.

inClassID
The class ID to get the instance data for.

Return Value
A void * result containing the instance data for the object, or NULL if the object is not an instance of the class.

Discussion
The instance data returned is the same instance data the class’s construction event handler returns in the
instance data parameter. This is stored off with the class reference so that it can be fetched later for use by
this function. It allows your subclass to easily get at the data it created, if your subclass needs that data
outside of an event handler. (Inside an event handler, your subclass can get at its instance data via the
userData parameter to the event handler.)

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIObject.h

HIObjectGetEventTarget
Obtains the event target of an HIObjectRef.

EventTargetRef HIObjectGetEventTarget (
 HIObjectRef inObject
);

Parameters
inObject

The object whose target you want.

Return Value
An EventTargetRef.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIObject.h

HIObjectIsAccessibilityIgnored
Reports whether the given HIObject is marked as ignored for accessibility.

2332 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

Boolean HIObjectIsAccessibilityIgnored (
 HIObjectRef inObject
);

Parameters
inObject

The object whose accessibility ignored state you want to query.

Return Value
A Boolean whose value is true if the object is marked as ignored or false if the object is not marked as
ignored.

Discussion
See the discussion of HIObjectSetAccessibilityIgnored (page 2337) for details on what it means to be
accessibility ignored.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

HIObjectIsArchivingIgnored
Obtains a Boolean value indicating whether an HIObject is marked as ignored for archiving.

Boolean HIObjectIsArchivingIgnored (
 HIObjectRef inObject
);

Parameters
inObject

The HIObject whose archiving-ignored state is to be queried.

Return Value
A Boolean whose value is true if the specified HIObject is ignored for archiving; otherwise, false.

Discussion
By default, HIObjects are marked as ignored for archiving, which indicates that the HIObject does not support
the archiving protocol.

Availability
Available in Mac OS X v10.4.

Declared In
HIObject.h

HIObjectIsOfClass
Determines whether an object is of a certain class.

Functions 2333
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

Boolean HIObjectIsOfClass (
 HIObjectRef inObject,
 CFStringRef inObjectClassID
);

Parameters
inObject

The object whose class ID you want to check.

inObjectClassID
The class ID in question.

Return Value
A Boolean whose value is true if the object is of the specified class; otherwise, false.

Discussion
You can use this to see whether an object you have derives from an expected superclass.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIObject.h

HIObjectOverrideAccessibilityContainment
Overrides the AXUIElement references supplied by an HIObject.

OSStatus HIObjectOverrideAccessibilityContainment (
 HIObjectRef inHIObject,
 AXUIElementRef inDesiredParent,
 AXUIElementRef inDesiredWindow,
 AXUIElementRef inDesiredTopLevelUIElement
);

Parameters
inHIObject

The object whose parent attribute you want to override.

inDesiredParent
The UI element value you want the HIObject to supply for the parent attribute. This function makes
a copy of the AXUIElementRef, so you must release inDesiredParent when this function returns.
Pass NULL if you want the specified HIObject to supply its normal parent.

inDesiredWindow
The UI element value you want the HIObject to supply for the window attribute. This function makes
a copy of the AXUIElementRef, so you must release this parameter when this function returns. Pass
NULL if you want the specified HIObject to supply its normal window, if any.

inDesiredTopLevelUIElement
The UI element you want the HIObject to supply for the top-level element attribute. This function
makes a copy of the AXUIElementRef, so you must release this parameter when this function returns.
Passing NULL indicates that you want the HIObject to supply is normal top-level element, if any.

Return Value
An operating system result code.

2334 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

Discussion
Use this function to change the parent that an HIObject would normally supply in the accessibility hierarchy.
For example, a pop-up control would call this function on its menu so that the menu supplies the pop-up
control as the menu’s parent instead of the application, which would normally be supplied as the menu’s
parent. You can also use this function to change the window and the top-level element that an HIObject
would normally supply.

If the specified HIObject is a standard HIToolbox construct, for example, an HIView or a menu, the specified
HIObject is not added as an accessibility child of its normal parent. If it is not a standard construct, the caller
is responsible for ensuring that the specified HIObject is not added as an accessibility child of its normal
parent.

If the desired AXUIElementRef parent represents an HIView, menu, or window, the specified HIObject is
automatically added as an accessibility child of the specified parent. In all other cases, it is the caller’s
responsibility to add the specified HIObject manually as a child of the specified parent. To represent an
HIView, menu, or window, an AXUIElementRef object must contain the appropriate HIObjectRef value
and an identifier value of 0.

Currently, containment overrides are only supported by HIObjects that are of type HIView, Menu, or Window.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

HIObjectPrintDebugInfo
Prints the internal information of an HIObject for debugging purposes.

void HIObjectPrintDebugInfo (
 HIObjectRef inObject
);

Parameters
inObject

The object to inspect.

Discussion
This function sends the information to stdout.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIObject.h

HIObjectRegisterSubclass
Registers an HIObject subclass.

Functions 2335
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

OSStatus HIObjectRegisterSubclass (
 CFStringRef inClassID,
 CFStringRef inBaseClassID,
 OptionBits inOptions,
 EventHandlerUPP inConstructProc,
 ItemCount inNumEvents,
 const EventTypeSpec *inEventList,
 void *inConstructData,
 HIObjectClassRef *outClassRef
);

Parameters
inClassID

The class ID of your class. It should be unique. We recommend using Java-style com.company.foo
naming conventions to avoid collisions.

inBaseClassID
The class ID of the class you derive from. Passing NULL indicates you want to subclass HIObject (the
base class) directly.

inOptions
Any special options for your class. Currently you must pass 0 for this parameter.

inConstructProc
A universal procedure pointer to the event handler for this subclass. You pass the address of an event
handler into this parameter. This handler is called directly, rather than through the normal
event-dispatching mechanism. This means that the EventHandlerCallRef passed in will be NULL, and
you cannot use it for calls like CallNextEventHandler. Other than that, you should return a result
as usual. After your object is constructed, this procedure is installed as the event handler for the
remaining events specified in the inEventList parameter. In Mac OS X v10.4 and later, passing NULL
creates an “abstract class” that cannot be instantiated but can still be used as a base class for subclasses.
If you pass NULL, HIObjectCreate on the class ID will return hiObjectClassIsAbstractErr.

inNumEvents
The number of events you are installing.

inEventList
The events your handler wants to receive. You must handle the kEventHIObjectConstruct and
kEventHIObjectDestruct event. If these events are not specified, an error is returned.

inConstructData
Pass any info you want passed into your event handler here. For a C++ hierarchy based on HIObjects,
you might actually pass a static method to construct your object here, and the base class event handler
to do construction as your event handler.

outClassRef
The newly created class reference. Pass NULL if you don’t care.

Return Value
A result code. See “HIObject Result Codes” (page 2345).

Availability
Available in Mac OS X version 10.2 (v10.2) and later.

Declared In
HIObject.h

2336 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

HIObjectSetAccessibilityIgnored
Marks an HIObject as ignored (or not) for the purposes of the accessibility APIs.

OSStatus HIObjectSetAccessibilityIgnored (
 HIObjectRef inObject,
 Boolean inIgnored
);

Parameters
inObject

The object whose accessibility ignored state you want to change.

inIgnored
A Boolean whose value is true to mark the object as ignored or false to mark the object as not
ignored.

Return Value
An operating system result code.

Discussion
An HIObject that is ignored for accessibility will never be shown to an assistive application that uses the
accessibility APIs to examine an interface. Your application’s accessibility implementation can (and should)
still report an ignored HIObject as usual. Carbon’s accessibility engine will automatically prune any ignored
HIObjects out of the data that is shown to an assistive application.

By default, an HIObject is not accessibility-ignored.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

HIObjectSetArchivingIgnored
Changes the state of archiving for an HIObject.

OSStatus HIObjectSetArchivingIgnored (
 HIObjectRef inObject,
 Boolean inIgnored
);

Parameters
inObject

The HIObject whose archiving ignored state is to be changed.

inIgnored
A Boolean whose value is true to indicate that the specified HIObject does not support the archiving
protocol and should be ignored; otherwise, false.

Return Value
An operating system result code.

Functions 2337
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

Discussion
Call this function to mark or unmark an HIObject as ignored for archiving. By default, HIObjects are marked
as ignored for archiving. HIObject subclasses supporting archiving with the kEventHIObjectInitialize
and kEventHIObjectEncode events must set their archiving ignored state to false in order to receive
archiving requests from clients. A client may still reset the archive ignored state to true on a particular object.
An HIObject marked as ignored for archiving will never be requested to encode itself into an archive.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIObject.h

HIObjectSetAuxiliaryAccessibilityAttribute
Associates an additional accessibility attribute with an HIObject.

OSStatus HIObjectSetAuxiliaryAccessibilityAttribute (
 HIObjectRef inHIObject,
 UInt64 inIdentifier,
 CFStringRef inAttributeName,
 CFTypeRef inAttributeData
);

Parameters
inHIObject

The part of the object-identifier pair that is to be associated with attribute data.

inIdentifier
The part of the object-identifier pair with which the attribute data is to be associated. Pass 0 if you
want to associate the attribute data to the HIObject as a whole. For example, pass 0 if you want to
associate a description attribute to a push button.

inAttributeName
The name of the attribute that is to be associated with the object-identifier pair. This string is retained
before it is added to the auxiliary attribute store.

inAttributeData
The data that is to become the attribute’s value. This data is retained before it is added to the auxiliary
attribute store. You should release inAttributeData after
HIObjectSetAuxiliaryAccessibilityAttribute returns. Pass NULL to indicate that the named
auxiliary attribute should no longer be associated with the object-identifier pair. When you pass NULL,
any named attribute data that was previously associated with the object-identifier pair is released.

Return Value
An operating system result code.

Discussion
Use this function to provide the name and data for an accessibility attribute you want to add to the UIElement
representing an HIObject-identifier pair. Normally, Carbon events are used to supply accessibility attributes
dynamically, but HIObjectSetAuxiliaryAccessibilityAttribute allows you to supply them statically.

This function is particularly useful for supplying values for the kAXDescriptionAttribute,
kAXTitleUIElementAttribute, kAXServesAsTitleUIElementAttribute,
kAXLinkedUIElementsAttribute, and other attributes whose values are specific to the layout and usage

2338 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

of your application. Note, however, that this function can associate only attributes whose values do not
change. If you need to supply attributes whose values are determined dynamically or whose values can be
set, you must install the normal accessibility Carbon event handlers for normal accessibility.

When an accessibility attribute Carbon event is handled by the HIObject with a given identifier, the HIToolbox
automatically supplies the names and values of any auxiliary attributes associated with the HIObject-identifier
pair.

The auxiliary attribute store is consulted during the HIObject’s default handling of accessibility attribute
Carbon events. This means that any programmatic handling of a given accessibility attribute is able to override
or block consultation of the store. In general, if the HIToolbox or a Carbon event handler can provide the
attribute value in some other way, the store is not consulted.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIAccessibility.h

HIObjectSetCustomArchiveData
Associates custom archive data with an HIObject.

OSStatus HIObjectSetCustomArchiveData (
 HIObjectRef inObject,
 CFDictionaryRef inCustomData
);

Parameters
inObject

The HIObject with which custom archive data is to be associated.

inCustomData
A CFDictionaryRef containing the custom archive data that is to be associated with the specified
HIObject. Associating the custom archive data replaces any data that was previously associated. To
archive, the dictionary’s keys and values must use CFType callbacks. Pass NULL to clear any custom
archive data that was previously associated.

Return Value
An operating system result code.

Discussion
This function might be used by an archive editor to associate custom archive data that it has edited with an
HIObject.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIObject.h

Functions 2339
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

HIObjectUnregisterClass
Unregisters a previously registered subclass of HIObject.

OSStatus HIObjectUnregisterClass (
 HIObjectClassRef inClassRef
);

Parameters
inClassRef

The class reference of the object class you want to unregister.

Discussion
You receive an error if there are subclasses of your class or existing instances of it. All instances and subclasses
must be disposed of and unregistered first.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIObject.h

Constants

Standard Custom Archive Data Dictionary Keys for Custom Initialize Events
Define standard custom archive dictionary keys for custom initialize events.

const CFStringRef kHIObjectCustomDataParameterNamesKey;
const CFStringRef kHIObjectCustomDataParameterTypesKey;
const CFStringRef kHIObjectCustomDataParameterValuesKey;

Constants
kHIObjectCustomDataParameterNamesKey

The value of this key is an array of strings. Each CFStringRef contains an OSType that is a Carbon
event parameter name.

kHIObjectCustomDataParameterTypesKey
The value of this key is an array of strings. Each CFStringRef contains an OSType that is a Carbon
event parameter type.

kHIObjectCustomDataParameterValuesKey
The value of this key is an array of strings. Each CFStringRef contains a representation of the value.

Discussion
The value for each of these constants is a CFArrayRef containing CFStringRefs. For a given dictionary, the
names, types, and values arrays should each have the same number of CFStrings. The name-type-value triple
at the given index in each array represents a Carbon event parameter in the initialization event for the
HIObject.

The current supported set of Carbon event parameter types consists of 'cfst', 'TEXT', 'bool', 'cfrn',
'doub', 'osst', 'long', 'magn', 'hipt', 'hisz', and 'hirc'.

Availability
Available in Mac OS v10.4 and later.

2340 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

Standard Custom Archive Data Dictionary Class and SuperClass Keys
Define standard custom archive data dictionary keys for classes and superclasses.

const CFStringRef kHIObjectCustomDataClassIDKey;
const CFStringRef kHIObjectCustomDataSuperClassIDKey;

Constants
kHIObjectCustomDataClassIDKey

The class ID.

kHIObjectCustomDataSuperClassIDKey
The super-class ID key.

Discussion
These keys define a class and superclass for clients that do not implement the object’s true class. Each keyed
value is an HIObject class ID.

Availability
Available in Mac OS v10.4 and later.

Standard Custom Archive Data Dictionary Key for ProcPointer-Based CDEFs
Define a standard custom archive data dictionary key for ProcPointer-based CDEFs.

const CFStringRef kHIObjectCustomDataCDEFProcIDKey;

Constants
kHIObjectCustomDataCDEFProcIDKey

The standard custom archive data dictionary key for ProcPointer-based CDEFs.

Discussion
The key value is a CFStringRef-based signed 16-bit integer. Use CFStringGetIntValue in CFString.h
to convert CFStringRef to SInt16 and to convert SInt16 to CFStringRef.

Availability
Available in Mac OS v10.4 and later.

HIObject Base Class Events
Define the base-class functionality of HIObjects.

Constants 2341
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

enum{
 kEventClassHIObject = 'hiob',
 kEventHIObjectConstruct = 1,
 kEventHIObjectInitialize = 2,
 kEventHIObjectDestruct = 3,
 kEventHIObjectIsEqual = 4,
 kEventHIObjectPrintDebugInfo = 5,
 kEventHIObjectEncode = 6
};

Constants
kEventClassHIObject

The event class for HIObject events.

Available in Mac OS X v10.2 and later.

Declared in HIObject.h.

kEventHIObjectConstruct
Your object is being constructed. When your event handler is called with this event, it is being called
directly and not through the normal event dispatching mechanism. This means that the
EventHandlerCallRef passed to your handler is NULL and CallNextEventHandler does not
work. You are passed the actual HIObjectRef of your base class for you to record in your instance
data. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIObject.h.

kEventHIObjectInitialize
Your object is being initialized. Your handler should pass this onto the superclass first before handling
this event. This is done by calling CallNextEventHandler with the event. When that function
returns, you should make sure the result is noErr. If not, you should not continue to initialize your
object. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIObject.h.

kEventHIObjectDestruct
Your object is being destroyed. This is your chance to dispose of anything you might have allocated
for your object. Do not call through with CallNextEventHandler. (Available in Mac OS X v10.2 and
later.)

Available in Mac OS X v10.2 and later.

Declared in HIObject.h.

kEventHIObjectIsEqual
HIObjectIsEqual has been called, and you are being asked to determine whether your object is
equivalent to the one being passed to your handler. If your object is equivalent, you should place
true in the kEventParamResult parameter in the event; if your object is not equivalent, place
false in the kEventParamResult parameter. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIObject.h.

2342 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

kEventHIObjectPrintDebugInfo
HIObjectPrintDebugInfo has been called, and you are being asked to print your information to
stdout. This event is sent to all handlers and you should not call CallNextEventHandler. (Available
in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIObject.h.

kEventHIObjectEncode
HIArchiveEncodeHIObject has been called on your HIObject, and you are being asked to encode
your object into an archive. Before handling this event, your handler should pass this event to the
superclass by calling CallNextEventHandlerwith the event. If CallNextEventHandler does not
return noErr, you should not continue to encode your instance data. (Available in Mac OS X v10.4
and later.)

Available in Mac OS X v10.4 and later.

Declared in HIObject.h.

Discussion
You only need to be aware of these events if you are implementing a subclass.

Table 31-1 Parameter names and types for HIObject base class events

Parameter typeParameter nameEvent kind

typeHIObjectRefkEventParamHIObjectInstancekEventHIObjectConstruct

typeCFTypeRefkEventParamHIArchivekEventHIObjectInitialize

kEventHIObjectDestruct

typeHIObjectRefkEventParamDirectObjectkEventHIObjectIsEqual

typeBooleankEventParamResult

kEventHIObjectPrintDebugInfo

typeCFTypeRefkEventParamHIArchivekEventHIObjectEncode

HIObject Base Class Event Parameters
Define constants for HIObject base class event parameters.

Constants 2343
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

enum {
 kEventParamHIObjectInstance = 'hioi',
 kEventParamHIArchive = 'hiac',
 typeHIObjectRef = 'hiob'
};

Constants
kEventParamHIObjectInstance

On entry, the HIObject reference for your object. This parameter is currently only used for the
kEventHIObjectConstruct event. Typically, you read this parameter from the event and store it
in your instance data so that when your instance needs to call HIObject APIs, your instance can use
this HIObjectRef. On exit, the value of this parameter is typeVoidPtr and is a pointer to the instance
data you have written into the event using SetEventParameter. After your event handler returns,
the HIToolbox reads your instance data pointer from the event, and installs the event handlers that
were passed to HIObjectRegisterClassSubclass on the new object. The HIToolbox uses the
instance data pointer as the refcon for the event handlers it installed so that your event handlers can
retrieve your instance data pointer from the reference constant (the third parameter to an
EventHandlerProcPtr).(Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIObject.h.

kEventParamHIArchive
An HIArchive used to store or retrieve the HIObject. This parameter is passed in the following cases:

 ■ In the kEventHIObjectInitialize event when the HIObject is requested to initialize itself
from a decoded archive. If the HIObject is to be initialized normally (that is, not from an archive),
the initialize event does not contain kEventParamHIArchive .

 ■ In the kEventHIObjectEncode event, which is sent to request that the HIObject encode itself
within an archive.

(Available in Mac OS X v10.4 and later.)

Available in Mac OS X v10.4 and later.

Declared in HIObject.h.

Result Codes

DescriptionValueResult Code

You are trying to register a class ID that already exists.-22080hiObjectClassExistsErr

Available in Mac OS X v10.2 and later.

You are trying to unregister a class which has instances
that still exist.

-22081hiObjectClassHasInstancesErr

Available in Mac OS X v10.2 and later.

You are trying to unregister a class which has subclasses
registered. They must be unregistered before this class
can be unregistered.

-22082hiObjectClassHasSubclassesErr

Available in Mac OS X v10.2 and later.

2344 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

DescriptionValueResult Code

You are trying to create an HIObject class that is defined
as being abstract. You must subclass it instead.

-22083hiObjectClassIsAbstractErr

Available in Mac OS X v10.2 and later.

Result Codes 2345
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

2346 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 31

HIObject Reference

Framework: Carbon/Carbon.h

Declared in HIShape.h

Overview

HIShape is an abstract shape object that replaces the old QuickDraw region handle. HIShape objects are the
preferred way to describe regions in HIView views that use Quartz.

One advantage of HIShape objects is that they can be mutable or immutable. Using immutable (that is, fixed)
shapes improves performance because copying it simply requires incrementing the reference count, avoiding
the handle-to-handle copies required with the older region handles.

Currently, HIShape objects cannot handle floating point–based shape descriptions. Therefore, any coordinates
you specify when defining shapes must end on integer boundaries. The purpose of the shape often dictates
whether rounding fractional values up or down will give you the best results. For example, shapes that
describe a maximum alllowable area, such as the structure region of a window, should be rounded up (or
outward) to the nearest integer. Shapes describing a minimum allowable area, such as the opaque region,
should be rounded down (or inward). By default, any fractional coordinate values are truncated.

Typical shapes are rectangular, but you can build more complex shapes by combining them with other shapes
using the union, intersection, or difference functions. The Quartz-savvy HITheme APIs also let you obtain
shapes for various standard control elements.

In most cases, applications will obtain or set shapes in response to a Carbon event using GetEventParameter
or SetEventParameter with the typeHIShapeRef parameter type.

The following functions also take HIShape references as parameters:

 ■ HIViewNewTrackingArea and HIViewChangeTrackingArea, which let you set or change an
HIShape-based tracking area in a view (comparable to window tracking regions).

 ■ HIViewSetNeedsDisplayInShape, which is the HIShape-compatible version of
HIViewSetNeedsDisplayInRegion.

Except where noted, HIShape functions return only the result codes noErr or paramErr.

HIShape objects are available in Mac OS X version 10.2 and later. However, many of the functions that take
HIShape parameters are available only in Mac OS X version 10.4 and later.

Overview 2347
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

Functions by Task

Creating Immutable Shapes

HIShapeCreateWithQDRgn (page 2352)
Creates an immutable shape from a QuickDraw region.

HIShapeCreateWithRect (page 2353)
Creates an immutable shape from a Quartz rectangle.

HIShapeCreateEmpty (page 2350)
Creates an empty immutable shape.

HIShapeCreateCopy (page 2350)
Creates an immutable copy of a mutable or immutable shape.

HIShapeCreateIntersection (page 2351)
Creates an immutable shape that is the intersection of two shapes.

HIShapeCreateDifference (page 2350)
Creates an immutable shape that is the difference of two shapes.

HIShapeCreateUnion (page 2352) Deprecated in Mac OS X v10.4
Creates an immutable shape that is the union of two shapes.

Creating Mutable Shapes

HIShapeCreateMutable (page 2351)
Creates an empty mutable shape.

HIShapeCreateMutableCopy (page 2352)
Creates a mutable copy of an existing shape.

HIShapeSetEmpty (page 2358)
Sets the specified mutable shape to be empty.

HIShapeDifference (page 2353)
Sets a shape to be the difference of two other shapes.

HIShapeUnion (page 2359)
Sets a shape to be the union of two other shapes.

HIShapeOffset (page 2357)
Moves a shape by a specified offset.

HIShapeIntersect (page 2355) Deprecated in Mac OS X v10.4
Sets a shape to be the intersection of two other shapes.

Querying Shapes

HIShapeIsEmpty (page 2356)
Determines whether a given shape is empty.

HIShapeIsRectangular (page 2357)
Determines whether a given shape is rectangular.

2348 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

HIShapeContainsPoint (page 2349)
Determines whether a shape contains the given point.

Manipulating Shapes

HIShapeGetTypeID (page 2355)
Obtains the Core Foundation type ID for the HIShape class.

HIShapeGetBounds (page 2355)
Obtains the bounding rectangle for the given shape.

HIShapeIntersectsRect (page 2356)
Determines whether a given shape intersects a given rectangle.

HIShapeGetAsQDRgn (page 2354)
Creates a QuickDraw region with the same shape as the specified HIShape.

HIShapeReplacePathInCGContext (page 2358)
Make the current path in a graphics context match a shape.

HIShapeSetQDClip (page 2359)
Sets the clip region in the current QuickDraw port to be the specified shape.

Functions

HIShapeContainsPoint
Determines whether a shape contains the given point.

Boolean HIShapeContainsPoint (
 HIShapeRef inShape,
 const CGPoint *inPoint
);

Parameters
inShape

The shape to test.

inPoint
The point to test.

Return Value
True if the shape contains the point, False otherwise.

Discussion
This function is comparable to the old QuickDraw function PtInRgn.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

Functions 2349
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

HIShapeCreateCopy
Creates an immutable copy of a mutable or immutable shape.

HIShapeRef HIShapeCreateCopy (
 HIShapeRef inShape
);

Parameters
inShape

The shape you want to copy.

Return Value
The newly-created copy.

Discussion
Copying an immutable shape simply increments its reference count. Copying a mutable shape actually
duplicates it in memory.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeCreateDifference
Creates an immutable shape that is the difference of two shapes.

HIShapeRef HIShapeCreateDifference (
 HIShapeRef inShape1,
 HIShapeRef inShape2
);

Parameters
inShape1

The first shape.

inShape2
The shape to subtract from the first shape.

Return Value
The newly-created difference shape.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeCreateEmpty
Creates an empty immutable shape.

2350 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

HIShapeRef HIShapeCreateEmpty (
 void
);

Return Value
The newly-created empty shape.

Availability
Available in Mac OS X v10.4 and later.

Declared In
HIShape.h

HIShapeCreateIntersection
Creates an immutable shape that is the intersection of two shapes.

HIShapeRef HIShapeCreateIntersection (
 HIShapeRef inShape1,
 HIShapeRef inShape2
);

Parameters
inShape1

An existing shape.

inShape2
Another existing shape.

Return Value
The newly-created intersection shape.

Discussion
If the two shapes do not intersect, the shape returned is empty.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeCreateMutable
Creates an empty mutable shape.

HIMutableShapeRef HIShapeCreateMutable (
 void
);

Return Value
An empty, mutable shape.

Availability
Available in Mac OS X v10.2 and later.

Functions 2351
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

Declared In
HIShape.h

HIShapeCreateMutableCopy
Creates a mutable copy of an existing shape.

HIMutableShapeRef HIShapeCreateMutableCopy (
 HIShapeRef inOrig
);

Parameters
inOrig

The shape to copy.

Return Value
The newly-created copy.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeCreateUnion
Creates an immutable shape that is the union of two shapes.

HIShapeRef HIShapeCreateUnion (
 HIShapeRef inShape1,
 HIShapeRef inShape2
);

Parameters
inShape1

An existing shape.

inShape2
Another existing shape.

Return Value
The newly-created union shape.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeCreateWithQDRgn
Creates an immutable shape from a QuickDraw region.

2352 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

HIShapeRef HIShapeCreateWithQDRgn (
 RgnHandle inRgn
);

Parameters
inRgn

The region to convert to an immutable shape.

Return Value
The newly created shape.

Discussion
You can use this function to convert handle-based regions to HIShape objects. However, you should be
judicious about how often you convert, as this function does require memory allocation.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeCreateWithRect
Creates an immutable shape from a Quartz rectangle.

HIShapeRef HIShapeCreateWithRect (
 const CGRect *inRect
);

Parameters
inRect

The Quartz-based rectangle to convert.

Return Value
The newly-created shape.

Discussion
This function is comparable to the old QuickDraw function RectRgn.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeDifference
Sets a shape to be the difference of two other shapes.

Functions 2353
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

OSStatus HIShapeDifference (
 HIShapeRef inShape1,
 HIShapeRef inShape2,
 HIMutableShapeRef outResult
);

Parameters
inShape1

The first shape.

inShape2
The shape to subtract from the first.

outResult
The shape to hold the difference of the two shapes. This parameter can be one of the source shapes.

Return Value
A result code.

Discussion
This function is comparable to the old QuickDraw function DiffRgn.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeGetAsQDRgn
Creates a QuickDraw region with the same shape as the specified HIShape.

OSStatus HIShapeGetAsQDRgn (
 HIShapeRef inShape,
 RgnHandle outRgn
);

Parameters
inShape

The shape to convert.

outRgn
A valid region handle. You must obtain this handle by calling NewRgn before calling this function.

Return Value
A result code.

Discussion
You can use this function to create a handle-based region from an HIShape object. This conversion requires
memory allocation, so you should convert only when necessary.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

2354 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

HIShapeGetBounds
Obtains the bounding rectangle for the given shape.

CGRect * HIShapeGetBounds (
 HIShapeRef inShape,
 CGRect *outRect
);

Parameters
inShape

The shape whose bounds you want to obtain.

inRect
A pointer to the HIRect structure you want filled with the shape bounds.

Return Value
A pointer to the rectangle you passed in the inRect parameter, now set to the shape’s bounding rectangle.

Discussion
The function result is a pointer to the HIRect structure you passed in the inRect parameter.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeGetTypeID
Obtains the Core Foundation type ID for the HIShape class.

CFTypeID HIShapeGetTypeID (
 void
);

Return Value
The type ID for the HIShape class.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeIntersect
Sets a shape to be the intersection of two other shapes.

Functions 2355
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

OSStatus HIShapeIntersect (
 HIShapeRef inShape1,
 HIShapeRef inShape2,
 HIMutableShapeRef outResult
);

Parameters
inShape1

The first shape.

inShape2
The second shape.

outResult
The shape to hold the intersection of the two shapes. This parameter can be one of the source shapes.

Return Value
A result code.

Discussion
This function is comparable to the old QuickDraw function SectRgn.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeIntersectsRect
Determines whether a given shape intersects a given rectangle.

Boolean HIShapeIntersectsRect (
 HIShapeRef inShape,
 const CGRect *inRect
);

Parameters
inShape

The shape to test.

inRect
The rectangle to test against.

Return Value
Returns True if the area of the shape intersects the rectangle, False otherwise.

Availability
Available in Mac OS X v10.4 and later.

Declared In
HIShape.h

HIShapeIsEmpty
Determines whether a given shape is empty.

2356 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

Boolean HIShapeIsEmpty (
 HIShapeRef inShape
);

Parameters
inShape

The shape to test.

Return Value
True if the shape’s area is empty, False otherwise.

Discussion
This function is comparable to the old QuickDraw function EmptyRgn.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeIsRectangular
Determines whether a given shape is rectangular.

Boolean HIShapeIsRectangular (
 HIShapeRef inShape
);

Parameters
inShape

The shape to test.

Return Value
True if the shape’s area is rectangular, False otherwise.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeOffset
Moves a shape by a specified offset.

OSStatus HIShapeOffset (
 HIMutableShapeRef inShape,
 CGFloat inDX,
 CGFloat inDY
);

Parameters
inShape

The shape to offset.

Functions 2357
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

inDx
The desired x-coordinate offset.

inDy
The desired y-coordinate offset.

Return Value
A result code.

Discussion
This function is comparable to the old QuickDraw function OffsetRgn.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeReplacePathInCGContext
Make the current path in a graphics context match a shape.

OSStatus HIShapeReplacePathInCGContext (
 HIShapeRef inShape,
 CGContextRef inContext
);

Parameters
inShape

The shape to apply to the path.

inContext
The context to apply the shape to.

Return Value
A result code.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeSetEmpty
Sets the specified mutable shape to be empty.

OSStatus HIShapeSetEmpty (
 HIMutableShapeRef inShape
);

Parameters
inShape

The shape to empty.

2358 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

Return Value
A result code.

Discussion
This function is comparable to the old QuickDraw function SetEmptyRgn.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIShapeSetQDClip
Sets the clip region in the current QuickDraw port to be the specified shape.

OSStatus HIShapeSetQDClip (
 HIShapeRef inShape,
 CGrafPtr inPort
);

Parameters
inShape

The shape to apply to the clip region.

inPort
The clip region to apply the shape to.

Return Value
A result code. If HIShapeSetQDClip cannot allocate a QuickDraw region, it returns memFullErr.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIShape.h

HIShapeUnion
Sets a shape to be the union of two other shapes.

OSStatus HIShapeUnion (
 HIShapeRef inShape1,
 HIShapeRef inShape2,
 HIMutableShapeRef outResult
);

Parameters
inShape1

An existing shape.

inShape2
Another existing shape.

Functions 2359
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

outResult
The shape to hold the union of the two shapes. This parameter can be one of the source shapes.

Return Value
A result code.

Discussion
This function is comparable to the old QuickDraw function UnionRgn.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

Data Types

HIShapeRef
Defines a shape object.

typedef const struct __HIShape *HIShapeRef;

Discussion
The structure pointed to by this reference is opaque.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

HIMutableShapeRef
Defines a mutable shape object.

typedef struct __HIShape *HIMutableShapeRef;

Discussion
The structure pointed to by this reference is opaque.

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIShape.h

2360 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 32

HIShape Reference

Framework: Carbon/Carbon.h

Declared in HIToolbar.h

Overview

HIToolbar is the Carbon equivalent of the Cocoa toolbar (specifically, the NSToolbar and NSToolbarItem
classes). The toolbar object and the items associated with a toolbar are both subclassed from HIObject.
Toolbar items can have HIViews associated with them.

For more information, see Using HIToolbar.

Functions by Task

Creating Toolbars

HIToolbarCreate (page 2365)
Creates a toolbar.

Manipulating Toolbars

HIToolbarChangeAttributes (page 2364)
Changes the attributes of a toolbar.

HIToolbarCopyIdentifier (page 2364)
Obtains the identifier for a toolbar.

HIToolbarCopyItems (page 2365)
Obtains the array of toolbar items for a toolbar.

HIToolbarGetAttributes (page 2367)
Obtains the attributes for the given toolbar.

HIToolbarGetDelegate (page 2367)
Returns the current delegate in use by a toolbar.

HIToolbarSetDelegate (page 2382)
Sets the delegate object for a toolbar.

HIToolbarGetDisplayMode (page 2367)
Obtains the current display mode of a toolbar.

Overview 2361
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

HIToolbarSetDisplayMode (page 2383)
Sets the current display mode of a toolbar.

HIToolbarGetDisplaySize (page 2368)
Obtains the current display size of a toolbar.

HIToolbarSetDisplaySize (page 2383)
Sets the current display size of a toolbar.

Creating and Adding Toolbar Items

HIToolbarCreateItemWithIdentifier (page 2366)
Creates a toolbar item.

HIToolbarAppendItem (page 2363)
Appends an item to the toolbar.

HIToolbarInsertItemAtIndex (page 2369)
Inserts a toolbar item at a given index into a toolbar.

HIToolbarRemoveItemAtIndex (page 2382)
Removes an item at a given index from a toolbar.

HIToolbarItemCreate (page 2375)
Creates a toolbar item.

HIToolbarSetItemsWithIdentifiers (page 2384)
Sets a toolbar’s items all at once.

Manipulating Toolbar Items

HIToolbarGetSelectedItemInWindow (page 2368)
Obtains the toolbar item that is selected in a window.

HIToolbarItemGetToolbar (page 2377)
Obtains the toolbar associated with a toolbar item.

HIToolbarItemGetAttributes (page 2375)
Obtains the attributes of a toolbar item.

HIToolbarItemGetAttributesInWindow (page 2376)
Obtains the attributes of a toolbar item in the specified window.

HIToolbarItemChangeAttributes (page 2370)
Changes the attributes of a toolbar item.

HIToolbarItemChangeAttributesInWindow (page 2370)
Changes the attributes of a toolbar item in a specific window.

HIToolbarItemCopyHelpText (page 2372)
Obtains the help tag text for a toolbar item.

HIToolbarItemSetHelpText (page 2379)
Sets the help tag text for a toolbar item.

HIToolbarItemCopyIdentifier (page 2373)
Obtains the identifier for a given toolbar item.

2362 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

HIToolbarItemCopyImage (page 2373)
Obtains the image for a toolbar item.

HIToolbarItemSetImage (page 2380)
Sets the image for a toolbar item.

HIToolbarItemCopyLabel (page 2374)
Obtains the label for a toolbar item.

HIToolbarItemSetLabel (page 2381)
Sets the label of a toolbar item.

HIToolbarItemCopyMenu (page 2374)
Obtains the submenu for a toolbar item.

HIToolbarItemSetMenu (page 2381)
Sets the submenu for a toolbar item.

HIToolbarItemGetCommandID (page 2377)
Gets the command ID of a toolbar item.

HIToolbarItemSetCommandID (page 2378)
Sets the command ID of a toolbar item.

HIToolbarItemIsEnabled (page 2378)
Determines if a toolbar item is enabled.

HIToolbarItemSetEnabled (page 2378)
Enables or disables a toolbar item.

HIToolbarItemSetIconRef (page 2380)
Sets the icon for a toolbar item.

HIToolbarItemConfigDataChanged (page 2372)
Tells the toolbar that the configuration for a toolbar item has changed.

Functions

HIToolbarAppendItem
Appends an item to the toolbar.

OSStatus HIToolbarAppendItem (
 HIToolbarRef inToolbar,
 HIToolbarItemRef inItem
);

Parameters
inToolbar

The toolbar to receive the new item.

inItem
The item reference of the toolbar item you are adding.

Return Value
An operating system result code.

Functions 2363
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Discussion
This function appends an item to the end of a toolbar. Generally, you should always add items via identifier,
and not with this routine.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarChangeAttributes
Changes the attributes of a toolbar.

OSStatus HIToolbarChangeAttributes (
 HIToolbarRef inToolbar,
 OptionBits inAttrsToSet,
 OptionBits inAttrsToClear
);

Parameters
inToolbar

The toolbar whose attributes you want to change.

inAttrsToSet
The attributes you want to set. For possible values, see “Toolbar Attributes” (page 2384).

inAttrsToClear
The attributes you want to clear. For possible values, see “Toolbar Attributes” (page 2384).

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarCopyIdentifier
Obtains the identifier for a toolbar.

OSStatus HIToolbarCopyIdentifier (
 HIToolbarRef inToolbar,
 CFStringRef *outIdentifier
);

Parameters
inToolbar

The toolbar whose identifier you want to obtain.

2364 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

outIdentifier
The identifier. You must release it when you are finished with it.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarCopyItems
Obtains the array of toolbar items for a toolbar.

OSStatus HIToolbarCopyItems (
 HIToolbarRef inToolbar,
 CFArrayRef *outItems
);

Parameters
inToolbar

The toolbar whose items you want to receive.

outItems
The array of toolbar items owned by the toolbar. You must release the array when you are finished
with it.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarCreate
Creates a toolbar.

OSStatus HIToolbarCreate (
 CFStringRef inIdentifier,
 OptionBits inAttributes,
 HIToolbarRef *outToolbar
);

Parameters
inIdentifier

The identifier of the toolbar. If you specify that the toolbar auto-saves its configuration, this identifier
is used to mark the config info in your application’s preferences. You must specify an identifier.

Functions 2365
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

inAttributes
Any attributes you want to set. For possible values, see “Toolbar Attributes” (page 2384).

outToolbar
The toolbar reference to your new toolbar.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarCreateItemWithIdentifier
Creates a toolbar item.

OSStatus HIToolbarCreateItemWithIdentifier (
 HIToolbarRef inToolbar,
 CFStringRef inIdentifier,
 CFTypeRef inConfigData,
 HIToolbarItemRef *outItem
);

Parameters
inToolbar

The toolbar you are adding to.

inIdentifier
The identifier of the item you want to add.

inConfigData
Any config data required by the item to safely construct. Standard items do not require any extra
data, so NULL can be passed.

outItem
The newly created toolbar item.

Return Value
An operating system result code.

Discussion
This function creates an item specified by a particular identifier. Using this function allows you to create any
item a delegate supports by naming its identifier. It also allows you to create standard items supplied by the
Toolbox, such as the separator item.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

2366 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

HIToolbarGetAttributes
Obtains the attributes for the given toolbar.

OSStatus HIToolbarGetAttributes (
 HIToolbarRef inToolbar,
 OptionBits *outAttributes
);

Parameters
inToolbar

The toolbar whose attributes you desire.

outAttributes
The toolbar’s attributes. For details, see “Toolbar Attributes” (page 2384).

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarGetDelegate
Returns the current delegate in use by a toolbar.

HIObjectRef HIToolbarGetDelegate (
 HIToolbarRef inToolbar
);

Parameters
inToolbar

The toolbar you want the delegate from.

Return Value
An HIObjectRef.

Discussion
The delegate handles the event processing for the toolbar.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarGetDisplayMode
Obtains the current display mode of a toolbar.

Functions 2367
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

OSStatus HIToolbarGetDisplayMode (
 HIToolbarRef inToolbar,
 HIToolbarDisplayMode *outDisplayMode
);

Parameters
inToolbar

The toolbar whose display mode you want to receive.

outDisplayMode
The display mode.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarGetDisplaySize
Obtains the current display size of a toolbar.

OSStatus HIToolbarGetDisplaySize (
 HIToolbarRef inToolbar,
 HIToolbarDisplaySize *outSize
);

Parameters
inToolbar

The toolbar whose display size you want to get.

outSize
The display size.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarGetSelectedItemInWindow
Obtains the toolbar item that is selected in a window.

2368 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

OSStatus HIToolbarGetSelectedItemInWindow (
 HIToolbarRef inToolbar,
 WindowRef inWindow,
 HIToolbarItemRef *outItem
);

Parameters
inToolbar

The toolbar in question.

inWindow
A window containing the toolbar.

outItem
On return, the toolbar item that is selected in the specified window, or NULL if no item is selected.

Return Value
An operating system result code.

Discussion
Each window that shares a toolbar may have a different selected item. The
HIToolbarGetSelectedItemInWindow function returns the selected item in a particular window.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarInsertItemAtIndex
Inserts a toolbar item at a given index into a toolbar.

OSStatus HIToolbarInsertItemAtIndex (
 HIToolbarRef inToolbar,
 HIToolbarItemRef inItem,
 CFIndex inIndex
);

Parameters
inToolbar

The toolbar to receive the new item.

inItem
The item reference of the toolbar item you are adding.

inIndex
The index at which you want to add the item. This index is zero-based.

Return Value
An operating system result code.

Discussion
Generally, you should always add items via identifier, and not with this routine.

Availability
Available in Mac OS X v10.2 and later.

Functions 2369
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemChangeAttributes
Changes the attributes of a toolbar item.

OSStatus HIToolbarItemChangeAttributes (
 HIToolbarItemRef inItem,
 OptionBits inAttrsToSet,
 OptionBits inAttrsToClear
);

Parameters
inItem

The item in question.

inAttrsToSet
The attributes to set on the item. For possible attributes, see “Toolbar Item Attributes” (page 2391). Use
kHIToolbarItemNoAttributes if you are clearing attributes.

inAttrsToClear
The attributes to clear on the item. This value can be kHIToolbarItemNoAttributes if you are
setting attributes.

Return Value
An operating system result code.

Discussion
Only those attributes defined by the kHIToolbarItemMutableAttrs constant can be passed into this
function.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemChangeAttributesInWindow
Changes the attributes of a toolbar item in a specific window.

2370 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

OSStatus HIToolbarItemChangeAttributesInWindow (
 HIToolbarItemRef inItem,
 WindowRef inWindow,
 OptionBits inAttrsToSet,
 OptionBits inAttrsToClear,
 OptionBits inAttrsToNoLongerOverride
);

Parameters
inItem

The item in question.

inWindow
The window containing the item in question.

inAttrsToSet
The attributes to set on the item. For possible attributes, see “Toolbar Item Attributes” (page 2391). Use
kHIToolbarItemNoAttributes if you are clearing attributes and have no attributes to set.

inAttrsToClear
The attributes to clear on the item. This value can be kHIToolbarItemNoAttributes if you are
setting attributes and have no attributes to clear.

inAttrsToNoLongerOverride
The attributes that are to no longer be overridden. Calling this function causes the attributes to be
removed from the override mask for the toolbar item in the specified window. Their effective values
revert to their non-window-specific attribute values.

Return Value
An operating system result code.

Discussion
This function allows the attributes of a toolbar item in the specified window to be overridden. The attributes
used to draw the view of a toolbar item in a particular window are determined by combining the
non-window-specific attributes for the item set by HIToolbarItemChangeAttributes (page 2370) with the
window-specific attributes set by this function. As a result, your application can have a toolbar that is shared
across several windows with a toolbar item that is enabled in one window and disabled in another window.

When HIToolbarItemChangeAttributesInWindow is called to set or clear attributes, the toolbar item
adds the changed attributes to a bitmask of attributes, thereby recording which attributes are overridden
for a particular window. Once an attribute is overridden for a window (regardless of whether the attribute
is set or cleared), the attribute remains overridden for that window until
HIToolbarItemChangeAttributesInWindow is called with that attribute specified in the
inAttrsToNoLongerOverride parameter.

Only those attributes defined by the kHIToolbarItemMutableAttrs constant can be passed into this
function. For details, see “Toolbar Item Attributes” (page 2391).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

Functions 2371
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

HIToolbarItemConfigDataChanged
Tells the toolbar that the configuration for a toolbar item has changed.

OSStatus HIToolbarItemConfigDataChanged (
 HIToolbarItemRef inItem
);

Parameters
inItem

The item whose configuration changed.

Return Value
An operating system result code.

Discussion
This function tells the toolbar that the config data for a toolbar item has changed and should be written to
the toolbar configuration preferences. This function is used when a custom toolbar item has extra configuration
data that has changed (for example, you’ve changed an alias that a toolbar item points to). This function
does nothing if the toolbar is not set to auto-save its configuration.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemCopyHelpText
Obtains the help tag text for a toolbar item.

OSStatus HIToolbarItemCopyHelpText (
 HIToolbarItemRef inItem,
 CFStringRef *outShortText,
 CFStringRef *outLongText
);

Parameters
inItem

The item in question.

outShortText
The short help text. This is what is displayed normally by the help tag system when the user hovers
over the toolbar item with the mouse. You should release this string when you are finished with it. If
you do not want to receive the short help text, pass NULL for this parameter.

outLongText
The long help text. This is what is displayed by the help tag system when the user hovers over the
toolbar item with the mouse and holds the command key down. You should release this string when
you are finished with it. If you do not want to receive the long help text, pass NULL for this parameter.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.

2372 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemCopyIdentifier
Obtains the identifier for a given toolbar item.

OSStatus HIToolbarItemCopyIdentifier (
 HIToolbarItemRef inItem,
 CFStringRef *outIdentifier
);

Parameters
inItem

The item in question.

outIdentifier
The identifier of the item. You should release this string when you are finished with it.

Return Value
An operating system result code.

Discussion
The toolbar uses this identifier when writing the config information to the preferences (if set up for
auto-config).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemCopyImage
Obtains the image for a toolbar item.

OSStatus HIToolbarItemCopyImage (
 HIToolbarItemRef inItem,
 CGImageRef *outImage
);

Parameters
inItem

The item in question.

outImage
The retained image. You should release it when finished with it.

Return Value
An operating system result code.

Functions 2373
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Discussion
This image is already retained by the time you receive it, so you can release it when you are done with it.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemCopyLabel
Obtains the label for a toolbar item.

OSStatus HIToolbarItemCopyLabel (
 HIToolbarItemRef inItem,
 CFStringRef *outLabel
);

Parameters
inItem

The item in question.

outLabel
The label of the item. You should release this when you are finished with it.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemCopyMenu
Obtains the submenu for a toolbar item.

OSStatus HIToolbarItemCopyMenu (
 HIToolbarItemRef inItem,
 MenuRef *outMenu
);

Parameters
inItem

The item in question.

outMenu
The retained menu. You should release it when you are finished with it.

Return Value
An operating system result code.

2374 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemCreate
Creates a toolbar item.

OSStatus HIToolbarItemCreate (
 CFStringRef inIdentifier,
 OptionBits inOptions,
 HIToolbarItemRef *outItem
);

Parameters
inIdentifier

The identifier of the item in question.

inOptions
Any options for the item.

outItem
The item you created.

Return Value
An operating system result code.

Discussion
This function creates a toolbar item for use in a toolbar. Typically, you call HIToolbarItemCreate from
inside your delegate when your delegate is asked to create a toolbar item.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemGetAttributes
Obtains the attributes of a toolbar item.

OSStatus HIToolbarItemGetAttributes (
 HIToolbarItemRef inItem,
 OptionBits *outAttributes
);

Parameters
inItem

The item in question.

Functions 2375
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

outAttributes
The attributes of the item. For details, see “Toolbar Item Attributes” (page 2391).

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemGetAttributesInWindow
Obtains the attributes of a toolbar item in the specified window.

OSStatus HIToolbarItemGetAttributesInWindow (
 HIToolbarItemRef inItem,
 WindowRef inWindow,
 OptionBits *outOverriddenAttributes,
 OptionBits *outCombinedAttributes
);

Parameters
inItem

The item in question.

inWindow
The window containing inItem. Passing NULL is the same as calling
HIToolbarItemGetAttributes (page 2375), which obtains the non-window-specific attributes for
the item.

outOverriddenAttributes
On return, a bitmask indicating the attributes for the item that are overridden in the specified window.
If you don’t need this information, pass NULL. For details on this bitmask, see “Toolbar Item
Attributes” (page 2391).

outCombinedAttributes
On return, a bitmask indicating the effective attributes for the item in the specified window. The
bitmask is produced by combining the non-window-specific attributes for the item with the overridden
attributes for this window. If you don’t need this information, pass NULL. For details on this bitmask,
see “Toolbar Item Attributes” (page 2391).

Return Value
An operating system result code.

Discussion
In addition to obtaining the attributes of the given item in a given window,
HIToolbarItemGetAttributesInWindow obtains information about which attributes are overridden for
that window.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

2376 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Declared In
HIToolbar.h

HIToolbarItemGetCommandID
Gets the command ID of a toolbar item.

OSStatus HIToolbarItemGetCommandID (
 HIToolbarItemRef inItem,
 MenuCommand *outCommandID
);

Parameters
inItem

The item whose command ID is to be obtained.

outCommandID
On return, the item’s command ID.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemGetToolbar
Obtains the toolbar associated with a toolbar item.

HIToolbarRef HIToolbarItemGetToolbar (
 HIToolbarItemRef inItem
);

Parameters
inItem

The item in question.

Return Value
The toolbar item reference of the toolbar this item is bound to, or NULL if this toolbar item is not attached
to any toolbar.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

Functions 2377
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

HIToolbarItemIsEnabled
Determines if a toolbar item is enabled.

Boolean HIToolbarItemIsEnabled (
 HIToolbarItemRef inItem
);

Parameters
inItem

The item in question.

Return Value
A Boolean result indicating whether the item is enabled.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemSetCommandID
Sets the command ID of a toolbar item.

OSStatus HIToolbarItemSetCommandID (
 HIToolbarItemRef inItem,
 MenuCommand inCommandID
);

Parameters
inItem

The item whose command ID is to be set.

inCommandID
The command ID to set.

Return Value
An operating system result code.

Discussion
When an toolbar item is clicked, the default behavior is to send out the command assigned to the item. This
function lets you to set that command ID. The command is sent out via the ProcessHICommand API.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemSetEnabled
Enables or disables a toolbar item.

2378 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

OSStatus HIToolbarItemSetEnabled (
 HIToolbarItemRef inItem,
 Boolean inEnabled
);

Parameters
inItem

The item in question.

inEnabled
The new enabled state.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemSetHelpText
Sets the help tag text for a toolbar item.

OSStatus HIToolbarItemSetHelpText (
 HIToolbarItemRef inItem,
 CFStringRef inShortText,
 CFStringRef inLongText
);

Parameters
inItem

The item in question.

inShortText
The short help text. This is what is displayed normally by the help tag system when the user hovers
over the toolbar item with the mouse.

inLongText
The long help text. This is what is displayed by the help tag system when the user hovers over the
toolbar item with the mouse and holds the command key down. This parameter is optional, you may
pass NULL.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

Functions 2379
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

HIToolbarItemSetIconRef
Sets the icon for a toolbar item.

OSStatus HIToolbarItemSetIconRef (
 HIToolbarItemRef inItem,
 IconRef inIcon
);

Parameters
inItem

The item in question.

inIcon
The icon reference. The IconRef is retained by the toolbar item. You can release the reference for this
icon when HIToolbarItemSetIconRef returns.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemSetImage
Sets the image for a toolbar item.

OSStatus HIToolbarItemSetImage (
 HIToolbarItemRef inItem,
 CGImageRef inImage
);

Parameters
inItem

The item in question.

inImage
The image. This image is retained by the toolbar item. You should release the image when you are
finished with it.

Return Value
An operating system result code.

Discussion
Currently, the image should be no higher than 32 pixels. This image is used both in the toolbar as well as
the configuration sheet, if the toolbar is configurable.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

2380 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

HIToolbarItemSetLabel
Sets the label of a toolbar item.

OSStatus HIToolbarItemSetLabel (
 HIToolbarItemRef inItem,
 CFStringRef inLabel
);

Parameters
inItem

The item in question.

inLabel
The label. The toolbox will copy the string passed in.

Return Value
An operating system result code.

Discussion
This is what the toolbar view will display underneath the image. It is also used in the configuration palette
for configurable toolbars.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarItemSetMenu
Sets the submenu for a toolbar item.

OSStatus HIToolbarItemSetMenu (
 HIToolbarItemRef inItem,
 MenuRef inMenu
);

Parameters
inItem

The item in question.

inMenu
The menu. It is retained by the toolbar item, so you can safely release it after calling this API. On Mac
OS X v10.3 and later, you can pass NULL for this parameter to remove and release any menu that
might be attached.

Return Value
An operating system result code.

Discussion
Normally, items do not have a submenu. You can attach one with this API. The submenu will, by default,
show up both in the ‘more items’ indicator popup attached to the item name. It will also appear if the toolbar
is in text only mode and the label is clicked. You should attach a Carbon Event handler to the menu to handle
updating the menu items as appropriate before the menu is displayed.

Functions 2381
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Availability
Available in Mac OS X v10.2 and later
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarRemoveItemAtIndex
Removes an item at a given index from a toolbar.

OSStatus HIToolbarRemoveItemAtIndex (
 HIToolbarRef inToolbar,
 CFIndex inIndex
);

Parameters
inToolbar

The toolbar you are removing the item from.

inIndex
The index of the item to remove. This index is zero-based.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarSetDelegate
Sets the delegate object for a toolbar.

OSStatus HIToolbarSetDelegate (
 HIToolbarRef inToolbar,
 HIObjectRef inDelegate
);

Parameters
inToolbar

The toolbar whose delegate you want to set.

inDelegate
The HIObjectRef to act as the delegate.

Return Value
An operating system result code.

2382 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Discussion
If a toolbar has custom toolbar items, a delegate is required for the toolbar to work properly. The delegate
is asked to create the toolbar items. If the delegate does not respond, the toolbar attempts to create the
toolbar items, but it can only create standard items.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarSetDisplayMode
Sets the current display mode of a toolbar.

OSStatus HIToolbarSetDisplayMode (
 HIToolbarRef inToolbar,
 HIToolbarDisplayMode inDisplayMode
);

Parameters
inToolbar

The toolbar whose display mode you want to set.

inDisplayMode
The display mode. If the toolbar is visible, it will be redrawn as necessary.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarSetDisplaySize
Sets the current display size of a toolbar.

OSStatus HIToolbarSetDisplaySize (
 HIToolbarRef inToolbar,
 HIToolbarDisplaySize inSize
);

Parameters
inToolbar

The toolbar whose display size you want to set.

inSize
The display size. If the toolbar is visible, it will be redrawn as necessary.

Functions 2383
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

HIToolbarSetItemsWithIdentifiers
Sets a toolbar’s items all at once.

OSStatus HIToolbarSetItemsWithIdentifiers (
 HIToolbarRef inToolbar,
 CFArrayRef inArray
);

Parameters
inToolbar

The toolbar whose items you want to set.

inArray
The array of toolbar items to create.

Return Value
An operating system result code.

Discussion
This function allows you to set a toolbar’s items all at once. The entries in the array inArray must be either
CFStringRefs or CFDictionaryRefs. You do not need to use the same type for all entries; different entries can
be of different types. If an array entry is a CFStringRef, the string must contain a toolbar item identifier. If an
array entry is a CFDictionaryRef, the dictionary must contain a CFStringRef specifying a toolbar item identifier
and may optionally contain a CFTypeRef specifying the toolbar item’s configuration data, if the item requires
it. The key for the identifier string is kHIToolbarIdentifierKey and the key for the configuration data
string is kHIToolbarDataKey.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIToolbar.h

Constants

Toolbar Attributes
Specify constants for toolbar attributes.

2384 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

enum {
 kHIToolbarNoAttributes = 0,
 kHIToolbarAutoSavesConfig = (1 << 0),
 kHIToolbarIsConfigurable = (1 << 1),
 kHIToolbarValidAttrs = kHIToolbarAutoSavesConfig | kHIToolbarIsConfigurable
};

Constants
kHIToolbarNoAttributes

Pass this to indicate no attributes at all.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarAutoSavesConfig
Pass this attribute to allow the toolbar to save its configuration automatically to your application’s
preferences. You must make sure to synchronize the preferences at some point to ensure it gets
written to disk. The toolbar will also read its configuration from the preferences if this attribute is set.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarIsConfigurable
This attribute indicates that the toolbar is configurable, that is, the user can drag items around and
bring up the configuration palette, etc.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarValidAttrs
The set of all valid toolbar attributes.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

Toolbar Command ID Constants
Specify constants for toolbar Command IDs.

enum {
 kHICommandCustomizeToolbar = 'tcfg',
 kHICommandShowToolbar = 'tbsh',
 kHICommandHideToolbar = 'tbhd',
 kHIToolbarCommandPressAction = 'tbpr'
};

Constants
kHICommandCustomizeToolbar

When sent to a window with a toolbar, this command causes the configuration sheet to appear. You
can set a menu item’s command to this command ID and it will be handled and updated automatically
for you. (Available in Mac OX X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

Constants 2385
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

kHICommandShowToolbar
Sending this command causes a window’s toolbar to be shown. You can set a menu item’s command
to this ID and it will be handled and updated automatically for you. (Available in Mac OX X v10.2 and
later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHICommandHideToolbar
Sending this command causes a window’s toolbar to be hidden. You can set a menu item’s command
to this ID and it will be handled and updated automatically for you. (Available in Mac OX X v10.2 and
later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarCommandPressAction
This command, when specified as a toolbar’s command ID, causes a
kEventToolbarItemPerformAction event to be generated when the toolbar item’s menu item
in the toolbar overflow menu is selected. If the item has any other command ID, a
kEventCommandProcess event, containing the item’s command ID, is generated instead. (Available
in Mac OX X v10.2.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

Toolbar Display Mode Constants
Specify constants for toolbar display modes.

enum {
 kHIToolbarDisplayModeDefault = 0,
 kHIToolbarDisplayModeIconAndLabel = 1,
 kHIToolbarDisplayModeIconOnly = 2,
 kHIToolbarDisplayModeLabelOnly = 3
};

Constants
kHIToolbarDisplayModeDefault

Use the default display mode. Currently, this is defined as being both icon and label, but could change
in the future.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarDisplayModeIconAndLabel
Display the image as well as the label of the toolbar items.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarDisplayModeIconOnly
Display only the image.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

2386 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

kHIToolbarDisplayModeLabelOnly
Display only the label.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

Toolbar Display Size Constants
Specify constants for the display size of items in the toolbar.

enum {
 kHIToolbarDisplaySizeDefault = 0,
 kHIToolbarDisplaySizeNormal = 1,
 kHIToolbarDisplaySizeSmall = 2
};

Constants
kHIToolbarDisplaySizeDefault

This indicates to use the default display size. Currently, this is defined as using 32 x 32 icons (“normal”
size).

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarDisplaySizeNormal
This size uses a larger text and icon size.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarDisplaySizeSmall
This size uses a smaller text and icon size.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

Toolbar Events
Specify toolbar Carbon event constants.

Constants 2387
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

enum {
 kEventToolbarGetDefaultIdentifiers = 1,
 kEventToolbarGetAllowedIdentifiers = 2,
 kEventToolbarCreateItemWithIdentifier = 3,
 kEventToolbarCreateItemFromDrag = 4,
 kEventToolbarItemAdded = 5,
 kEventToolbarItemRemoved = 6,
 kEventToolbarDisplayModeChanged = 7,
 kEventToolbarDisplaySizeChanged = 8,
 kEventToolbarLayoutChanged = 9,
 kEventToolbarGetSelectableIdentifiers = 10,
 kEventToolbarBeginMultiChange = 12,
 kEventToolbarEndMultiChange = 13
};

Constants
kEventToolbarGetDefaultIdentifiers

This event is sent to the delegate to get a list of all of the default item identifiers that should be created
for a toolbar. You are passed a mutable array to fill in with the identifiers. (

Available in Mac OS X v10.2.)

Declared in HIToolbar.h.

kEventToolbarGetAllowedIdentifiers
This event is sent to the delegate to get a list of all the items which could possibly be added to the
toolbar. This is sent out when the configuration sheet is about to be displayed.You are passed a
mutable array to fill in with the identifiers. (

Available in Mac OS X v10.2.)

Declared in HIToolbar.h.

kEventToolbarCreateItemWithIdentifier
This event is sent to the delegate to when the toolbar needs to create an item from an identifier. (

Available in Mac OS X v10.2.)

Declared in HIToolbar.h.

kEventToolbarCreateItemFromDrag
This event is sent to the delegate to when the toolbar needs to create an item from a drag. This allows
you to be able to drag items into a toolbar that aren’t normal toolbar items. You might use this to
allow your toolbar to accept file system items, for example. (

Declared in HIToolbar.h.

Available in Mac OS X v10.2.)

kEventToolbarItemAdded
This event is sent when an item is added to the toolbar. The toolbar object sends this event to itself,
so you need to install a handler on the toolbar to receive this event. (Available in Mac OS X v10.2 and
later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventToolbarItemRemoved
This event is sent when an item is removed from toolbar. It is called after the item has already been
removed. The toolbar object sends this event to itself, so you need to install a handler on the toolbar
to receive this event. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

2388 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

kEventToolbarDisplayModeChanged
This event is sent when the display mode is changed for a toolbar. The toolbar object sends this event
to itself, so you need to install a handler on the toolbar to receive this event. (Available in Mac OS X
v10.2 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventToolbarDisplaySizeChanged
This event is sent when the display size is changed for a toolbar. The toolbar object sends this event
to itself, so you need to install a handler on the toolbar to receive this event. (Available in Mac OS X
v10.2 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventToolbarLayoutChanged
Sent when the layout of a toolbar changes (either an item has been moved, or the entire contents
have been replaced). Basically it is sent for changes that would require a total resync with the current
state of things. The toolbar object sends this event to itself, so you must install a handler on the
toolbar to receive this event. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventToolbarBeginMultiChange
This event is sent when multiple attributes are going to be changed at the same time. For example,
the display mode and size can change at the same time. When this happens, instead of reacting twice
(once for a display mode change and once for a display size change), you can listen to see if more
than one attribute is about to change and wait to redraw the toolbar until you receive the
kEventToolbarEndMultiChange event. The toolbar object sends this event to itself, so you need
to install a handler on the toolbar to receive this event. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventToolbarEndMultiChange
This event is sent when multiple changes in the toolbar have been made. For details, see the description
of kEventToolbarBeginMultiChange. The toolbar object sends this event to itself, so you need
to install a handler on the toolbar to receive this event. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventToolbarGetSelectableIdentifiers
This event is sent to the delegate after the user clicks a toolbar item in order to get a list of all the
items that can acquire a selection highlight when clicked. You are passed a mutable array to fill in
with the identifiers. If you pass back a non-empty array and the clicked item’s identifier matches one
of the identifiers that is in the list, the toolbar automatically draws that item with a selected highlight
and removes highlighting from the previously selected item. Note that the selection only changes in
the clicked window — it does not change in other windows that share the same toolbar. To share
the selection across all windows that use the same toolbar, you need to manually change the
kHIToolbarItemSelected attribute for the clicked item using
HIToolbarItemChangeAttributes (page 2370). In this case, you should not handle the
kEventToolbarGetSelectableIdentifiers event. (Available in Mac OS X v10.4 and later.)

Available in Mac OS X v10.4 and later.

Declared in HIToolbar.h.

Constants 2389
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Discussion
Table 33-1 lists the parameters and types for toolbar events.

Table 33-1 Parameter names and types for toolbar events

Parameter typeParameter nameEvent kind

typeHIToolbarRefkEventParamToolbarkEventToolbarGet-
DefaultIdentifiers

typeCFMutableArrayRefkEventParamMutableArray

typeHIToolbarRefkEventParamToolbarkEventToolbarGet-
AllowedIdentifiers

typeCFMutableArrayRefkEventParamMutableArray

typeHIToolbarRefkEventParamToolbarkEventToolbarGetSelectable-
Identifiers

typeCFMutableArrayRefkEventParamMutableArray

typeHIToolbarRefkEventParamToolbarkEventToolbarCreate-
ItemWithIdentifier

typeCFStringRefkEventParamToolbar-
ItemIdentifier

typeCFTypeRefkEventParamToolbar-
ItemConfigData

typeHIToolbarItemRefkEventParamToolbarItem

typeDragRefkEventParamDragRefkEventToolbarCreate-
ItemFromDrag

typeHIToolbarItemRefkEventParamToolbarItem

typeHIToolbarItemRefkEventParamToolbarItemkEventToolbarItemAdded

typeCFIndexkEventParamIndex

typeHIToolbarItemRefkEventParamToolbarItemkEventToolbarItemRemoved

NonekEventToolbarDisplay-
ModeChanged

NonekEventToolbarDisplay-
SizeChanged

NonekEventToolbarLayoutChanged

NonekEventToolbarBeginMultiChange

NonekEventToolbarEndMultiChange

2390 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Toolbar Event Parameters and Types
Specify constants for toolbar event parameters and types.

enum {
 kEventParamToolbar = 'tbar',
 kEventParamToolbarItem = 'tbit',
 kEventParamToolbarItemIdentifier = 'tbii',
 kEventParamToolbarItemConfigData = 'tbid',
 typeHIToolbarRef = 'tbar',
 typeHIToolbarItemRef = 'tbit'
};

Constants
kEventParamToolbar

The toolbar to which an event was sent.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventParamToolbarItem
The toolbar item to which an event was sent.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventParamToolbarItemIdentifier
The toolbar item’s identifier.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventParamToolbarItemConfigData
The toolbar item’s configuration information.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

typeHIToolbarRef
HIToolbarRef

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

typeHIToolbarItemRef
HIToolbarItemRef

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

Toolbar Item Attributes
Specify constants for toolbar item attributes.

Constants 2391
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

enum {
 kHIToolbarItemNoAttributes = 0,
 kHIToolbarItemAllowDuplicates = (1 << 0),
 kHIToolbarItemCantBeRemoved = (1 << 1),
 kHIToolbarItemAnchoredLeft = (1 << 2),
 kHIToolbarItemIsSeparator = (1 << 3),
 kHIToolbarItemSendCmdToUserFocus = (1 << 4),
 kHIToolbarItemLabelDisabled = (1 << 5),
 kHIToolbarItemDisabled = (1 << 6),
 kHIToolbarItemSelected = (1 << 7),

 kHIToolbarItemValidAttrs = kHIToolbarItemAllowDuplicates |
kHIToolbarItemIsSeparator | kHIToolbarItemCantBeRemoved |
kHIToolbarItemAnchoredLeft | kHIToolbarItemSendCmdToUserFocus |
kHIToolbarItemLabelDisabled | kHIToolbarItemDisabled | kHIToolbarItemSelected,
 kHIToolbarItemMutableAttrs = kHIToolbarItemCantBeRemoved |
kHIToolbarItemAnchoredLeft | kHIToolbarItemLabelDisabled | kHIToolbarItemDisabled
 | kHIToolbarItemSelected
};

Constants
kHIToolbarItemNoAttributes

Pass this to indicate no attributes at all.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarItemAllowDuplicates
This indicates that an item can have more than one instance of itself in the toolbar. If this is not set,
only one can be present. By default, the determining factor for what determines if two items are
identical is the toolbar identifier.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarItemCantBeRemoved
This item can be rearranged, but it cannot be removed from the toolbar by the user.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarItemAnchoredLeft
This item cannot be moved at all by the user. It is anchored to the left of the toolbar. It is important
that there not be any unanchored items to the left of this item, else dragging items around will be a
bit wacky. You are responsible for making sure that anchored items are all on the left. This allows you
to do toolbars like the one in the System Preferences app, where the first couple of items are stuck
in place.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarItemIsSeparator
This indicates the item acts as a separator. This means two things at present. First, it means that it
automatically shows up as a divider line in a menu representation of the toolbar, and second it means
the view that represents this item can draw in the full top to bottom space that the toolbar item
occupies in the toolbar.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

2392 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

kHIToolbarItemSendCmdToUserFocus
If this attribute bit is set, the command that gets sent out will be directed at the user focus instead
of at the window the toolbar is attached to.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarItemLabelDisabled
If this attribute bit is set, clicking on the label of an item does nothing. This attribute is only considered
when a custom view is present. When set, this attribute makes the toolbar item view unresponsive
to clicks while still allowing clicks to be sent to the custom view. When the toolbar is in text-only
mode and this attribute is set, the label is displayed in a disabled (grayed) appearance. You might
want to change this attribute when switching between display modes. For example, the view switcher
in the Finder does not respond to clicks on the label when in icon and text mode, but it does respond
to clicks when in text-only mode. To change this behavior on the fly, listen for
kEventToolbarItemViewConfigForMode in your custom view and adjust this attribute as you
want. (Available in Mac OS X 10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kHIToolbarItemDisabled
If this attribute bit is set, the item is disabled. Setting this attribute is the same as calling
HIToolbarItemSetEnabled (page 2378) on the item with the inEnabled parameter set to false.
(Available in Mac OS X v10.4 and later.)

Available in Mac OS X v10.4 and later.

Declared in HIToolbar.h.

kHIToolbarItemSelected
If this attribute bit is set, the item is drawn with a selected appearance. (Available in Mac OS X v10.4
and later.)

Available in Mac OS X v10.4 and later.

Declared in HIToolbar.h.

kHIToolbarItemValidAttrs
The set of all valid toolbar item attributes.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kHIToolbarItemMutableAttrs
The set of toolbar item attributes that can be changed by HIToolbarItemChangeAttributes (page
2370) and HIToolbarItemChangeAttributesInWindow (page 2370). Any other attribute must be
specified when it is created.

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

Toolbar Item Events
Specify constants for toolbar item events.

Constants 2393
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

enum {
 kEventToolbarItemImageChanged = 1,
 kEventToolbarItemLabelChanged = 2,
 kEventToolbarItemHelpTextChanged = 3,
 kEventToolbarItemCommandIDChanged = 4,
 kEventToolbarItemGetPersistentData = 5,
 kEventToolbarItemCreateCustomView = 6,
 kEventToolbarItemEnabledStateChanged = 7,
 kEventToolbarItemPerformAction = 8,
 kEventToolbarItemWouldAcceptDrop = 10,
 kEventToolbarItemAcceptDrop = 11,
 kEventToolbarItemSelectedStateChanged = 12
};

Constants
kEventToolbarItemImageChanged

This event is sent to the item when the image changes. Any interested parties can install handlers on
the toolbar item to receive notifications. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventToolbarItemLabelChanged
This event is sent to the item when the label changes. Any interested parties can install handlers on
the toolbar item to receive notifications. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventToolbarItemHelpTextChanged
This event is sent to the item when the help text changes. Any interested parties can install handlers
on the toolbar item to receive notifications. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventToolbarItemCommandIDChanged
This event is sent to the item when the command ID changes. Any interested parties can install
handlers on the toolbar item to receive notifications. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventToolbarItemGetPersistentData
This event is sent to the item when the toolbar is going to write out the configuration information
for the item. Any custom items can listen for this event and add any extra information to what is
written out into the config so that it can be reanimated later on from the same config data. Typically,
you do not need to handle this event. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventToolbarItemCreateCustomView
This event is sent to the toolbar item when it is time to create a view for it to display its contents.
Implementors of custom toolbar items can install a handler for this event to create their own custom
views for their items. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

2394 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

kEventToolbarItemEnabledStateChanged
This event is sent to the item when the enabled state changes. Any interested parties can install
handlers on the toolbar item to receive notifications. (Available in Mac OS X v10.3 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventToolbarItemPerformAction
This event is sent when a toolbar item is clicked. Subclasses of toolbar items can choose to do special
actions by overriding this event. If this event is unhandled, the default action of sending a command
event will occur. (Available in Mac OS X v10.2 and later.)

Available in Mac OS X v10.2 and later.

Declared in HIToolbar.h.

kEventToolbarItemWouldAcceptDrop
This event is sent when a toolbar item is clicked. Subclasses of toolbar items can choose to do special
actions by overriding this event. If this event is unhandled, the default action of sending a command
event will occur. (Available in Mac OS X v10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventToolbarItemAcceptDrop
This event is sent when a drag enters a toolbar item. If the toolbar item wants to accept drags, it
should respond to this event and return true in the kEventParamResult parameter. The toolbar
item will be highlighted appropriately. If you are using a custom view, you do not need to respond
to this event because the view system provides full drag and drop capability in order to support
custom items that use the standard view. (Available in Mac OS X v10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventToolbarItemSelectedStateChanged
This event is sent to the item itself when the selected state changes. Any interested parties can install
handlers on the toolbar item to receive notifications. (Available in Mac OS X v10.4 and later.)

Available in Mac OS X v10.4 and later.

Declared in HIToolbar.h.

Discussion
Table 33-2 lists the parameters and types for toolbar item events.

Table 33-2 Parameter names and types for toolbar item events

Parameter typeParameter nameEvent kind

NonekEventToolbarItemImageChanged

NonekEventToolbarItemLabelChanged

NonekEventToolbarItemHelpTextChanged

NonekEventToolbarItemCommandIDChanged

typeCFTypeRefkEventParamToolbar-
ItemConfigData

kEventToolbarItemGetPersistentData

typeControlRefkEventParamControlRefkEventToolbarItemCreateCustomView

Constants 2395
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

typeWindowRefkEventParamWindowRef
(Optional)

kEventToolbarItemEnabledStateChanged

NonekEventToolbarItemPerformAction

typeDragRefkEventParamDragRefkEventToolbarItemWouldAcceptDrop

typeBooleankEventParamResult

typeDragRefkEventParamDragRefkEventToolbarItemAcceptDrop

typeWindowRefkEventParamWindowRef
(Optional)

kEventToolbarItemSelectedStateChanged

Toolbar Item View Events
Specify constants for toolbar item view events.

enum {
 kEventToolbarItemViewConfigForMode = 3,
 kEventToolbarItemViewConfigForSize = 4,
 kEventToolbarItemViewEnterConfigMode = 5,
 kEventToolbarItemViewExitConfigMode = 6
};

Constants
kEventToolbarItemViewConfigForMode

This event notifies a toolbar item view that the toolbar’s display mode has changed. A custom toolbar
item view can respond in any way it sees fit. Usually, responding to this is not necessary; for example,
when the toolbar goes from icon to text only the view is automatically hidden, so there is not much
to do. This event is for informational purposes only. (Available in Mac OS X v10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventToolbarItemViewConfigForSize
This event notifies a toolbar item view that the toolbar’s display size has changed. A custom toolbar
item view can respond to this in any way it sees fit. Usually, responding to this is not necessary. Some
custom views might need to flush metrics caches when the display size changes. (Available in Mac
OS X v10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventToolbarItemViewEnterConfigMode
This event notifies a toolbar item view that configure mode has been entered. A custom toolbar item
view can respond to this in any way it sees fit. For example, the space and flexible space mark
themselves to draw a rectangle and merely invalidate so they get redrawn so they can be seen during
configuration. (Available in Mac OS X v10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

2396 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

kEventToolbarItemViewExitConfigMode
This event notifies a toolbar item view that configure mode has been exited. A custom toolbar item
view can respond to this event in any way it sees fit. (Available in Mac OS X v10.3 and later.)

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

Discussion
Table 33-3 lists the parameters and types for toolbar item view events.

Table 33-3 Parameter names and types for toolbar item view events

Parameter typeParameter nameEvent kind

typeHIToolbar-
DisplayMode

kEventParamToolbar-
DisplayMode

kEventToolbarItemViewConfigForMode

typeHIToolbar-
DisplaySize

kEventParamToolbar-
DisplaySize

kEventToolbarItemViewConfigForSize

NonekEventToolbarItem-
ViewEnterConfigMode

NonekEventToolbarItem-
ViewExitConfigMode

Toolbar View Display Event Parameters and Types
Specify constants for toolbar display event parameters and types.

enum {
 kEventParamToolbarDisplayMode = 'tbdm',
 kEventParamToolbarDisplaySize = 'tbds',
 typeHIToolbarDisplayMode = 'tbdm',
 typeHIToolbarDisplaySize = 'tbds'
};

Constants
kEventParamToolbarDisplayMode

Indicates that the display mode changed.

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

kEventParamToolbarDisplaySize
Indicates that the display size changed.

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

typeHIToolbarDisplayMode
HIToolbarDisplayMode.

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

Constants 2397
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

typeHIToolbarDisplaySize
HIToolbarDisplaySize.

Available in Mac OS X v10.3 and later.

Declared in HIToolbar.h.

2398 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 33

HIToolbar Reference

Framework: Carbon/Carbon.h

Declared in HIView.h
HICocoaView.h
HIImageView.h
HISegmentedView.h

Companion guide HIView Programming Guide

Overview

HIView is an object-oriented view system subclassed from HIObject. All controls are implemented as HIView
objects (“views”). You can easily subclass HIView classes, making it easy to implement custom controls. Over
time, the HIView API will replace the current Control Manager. Using the HIView model, every item within a
window is a view: the root control, controls, and even the standard window “widgets” (close, zoom, and
minimize buttons, resize control, and so on). Current Control Manager function calls are layered on top of
this HIView model.

Additional benefits of the HIView model include the following:

 ■ Quartz is the native drawing system, but you can still use QuickDraw if desired.

 ■ Modern coordinate system not bounded by the 16-bit space of QuickDraw.

 ■ Simplified coordinate system for view bounds and the position of a view within its parent.

 ■ Views can be ordered within a hierarchy layer; that is, it is easy to place controls in front of or behind
other controls.

For additional information about using HIViews, see HIView Programming Guide.

Functions by Task

Obtaining and Placing Views

HIViewGetRoot (page 2463)
Obtains the root view for a window.

HIViewFindByID (page 2451)
Obtains a view by its ID.

Overview 2399
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewGetSuperview (page 2464)
Returns a view’s parent view.

HIViewPlaceInSuperviewAt (page 2473)
Places a view at an absolute location within its parent.

HIViewGetNextView (page 2460)
Returns the view behind the specified view.

HIViewGetPreviousView (page 2462)
Returns the view above the specified view.

Working With Subviews

HIViewAddSubview (page 2442)
Adds a subview to the given parent view.

HIViewRemoveFromSuperview (page 2475)
Removes a view from its parent.

HIViewGetFirstSubview (page 2455)
Returns the first subview of a parent view.

HIViewGetLastSubview (page 2458)
Returns the last subview in a parent view.

HIViewCountSubviews (page 2449)
Returns the number of subviews embedded in a view.

HIViewGetIndexedSubview (page 2457)
Obtains the subview of a view by index.

Manipulating Views

HIViewSetVisible (page 2490)
Hides or shows a view.

HIViewIsVisible (page 2471)
Determines whether a view is visible.

HIViewIsLatentlyVisible (page 2470)
Determines whether a view is latently visible.

HIViewSetHilite (page 2481)
Sets highlighting on a view.

HIViewIsActive (page 2467)
Determines whether a view is active.

HIViewSetActivated (page 2477)
Sets a view to be active or inactive.

HIViewIsEnabled (page 2469)
Determines whether a view is enabled.

HIViewSetEnabled (page 2480)
Enables or disables a view.

2400 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewIsCompositingEnabled (page 2468)
Determines whether compositing is enabled for a view.

HIViewSetText (page 2488)
Sets the text of a view to the specified string.

HIViewCopyText (page 2448)
Copies the text of a view.

HIViewGetValue (page 2465)
Obtains the value of a view.

HIViewSetValue (page 2489)
Sets the value of a view.

HIViewGetMinimum (page 2459)
Obtains the minimum value of a view.

HIViewSetMinimum (page 2484)
Sets a view’s minimum value.

HIViewGetMaximum (page 2459)
Obtains a view’s maximum value.

HIViewSetMaximum (page 2484)
Sets a view’s maximum value.

HIViewGetViewSize (page 2467)
Obtains the view size of a view.

HIViewSetViewSize (page 2489)
Sets the view size of a view.

HIViewIsValid (page 2471)
Determines whether the specified view is known to the HIToolbox.

HIViewGetID (page 2457)
Obtains the HIViewID of a view.

HIViewSetID (page 2482)
Sets the HIViewID of a view.

HIViewGetCommandID (page 2453)
Obtains the command ID of a view.

HIViewSetCommandID (page 2479)
Sets the command ID of a view.

HIViewGetKind (page 2458)
Obtains the signature and kind of a view.

HIViewGetAttributes (page 2452)
Obtains the attributes for a view.

HIViewChangeAttributes (page 2444)
Changes the attributes of a view.

HIViewGetNeedsDisplay (page 2460)
Determines whether a view needs to be redrawn.

HIViewSetNeedsDisplay (page 2485)
Marks a view as needing or not needing to be redrawn.

HIViewSetNeedsDisplayInRect (page 2485)
Uses an HIRect to mark a portion of a view as needing or not needing to be redrawn.

Functions by Task 2401
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewSetNeedsDisplayInShape (page 2487)
Uses a shape to mark a portion of a view as needing or not needing to be redrawn.

HIViewSetNeedsDisplayInRegion (page 2486)
Uses a region to mark a portion of a view as needing or not needing to be redrawn.

HIViewRender (page 2475)
Renders the invalid portions of a view.

HIViewGetSizeConstraints (page 2463)
Returns the minimum and maximum size for a control.

HIViewIsDrawingEnabled (page 2469)
Determines if drawing is currently enabled for a view.

HIViewSetDrawingEnabled (page 2479)
Turns control drawing on or off.

HIViewScrollRect (page 2477)
Scrolls a view’s contents, or a portion thereof.

HIViewSetZOrder (page 2490)
Changes the front-to-back ordering of sibling views.

HIViewReshapeStructure (page 2476)
Informs the system that the structure region of the given view has changed shape.

HIViewRegionChanged (page 2474)
Informs the system that a region of the view has changed.

HIViewCopyShape (page 2448)
Copies the shape of a part of a view.

HIViewGetOptimalBounds (page 2461)
Obtains the optimal size and text placement of a view.

HIViewFlashDirtyArea (page 2452)
Flashes a window’s dirty area.

HIViewGetWindow (page 2467)
Obtains a reference to the window to which the specified view is bound.

HIViewGetFeatures (page 2454)
Obtains the features of the specified view.

HIViewChangeFeatures (page 2444)
Changes the features of a view.

HIViewGetEventTarget (page 2454)
Returns the EventTargetRef for the specified view.

Managing Focus

HIViewGetFocusPart (page 2455)
Obtains the part in the specified view that currently has focus.

HIViewSetNextFocus (page 2487)
Sets the view that is to receive keyboard focus when keyboard focus advances from the specified
view.

HIViewAdvanceFocus (page 2442)
Advances the keyboard focus to the next most appropriate view.

2402 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewSubtreeContainsFocus (page 2492)
Determines whether a view or any subviews have keyboard focus.

HIViewSetFirstSubViewFocus (page 2480)
Sets the subview that is first to receive keyboard focus.

Processing Events and Hit-Testing for Views

HIViewClick (page 2445)
Passes a mouse-down event to a view.

HIViewSimulateClick (page 2491)
Simulates a mouse click on a given view.

HIViewGetPartHit (page 2462)
Determines the part hit for a given point.

HIViewGetViewForMouseEvent (page 2466)
Returns the appropriate view to handle a mouse event.

HIViewGetSubviewHit (page 2464)
Returns the child of the given view hit by the point passed in.

Manipulating View Coordinates

HIViewGetBounds (page 2453)
Obtains the local bounds of a view.

HIViewSetBoundsOrigin (page 2478)
Sets the origin of the view.

HIViewGetFrame (page 2456)
Obtains the frame bounds of a view.

HIViewSetFrame (page 2481)
Sets the frame of a view.

HIViewMoveBy (page 2472)
Move a view by the specified distance relative to its current location.

HIViewConvertPoint (page 2446)
Converts a point’s coordinates from one view to another.

HIViewConvertRect (page 2447)
Converts a rectangle from one view to another.

HIViewConvertRegion (page 2447)
Converts a region from one view to another.

Creating and Manipulating Combo Boxes

HIComboBoxCreate (page 2411)
Creates a combo box control.

HIComboBoxGetAttributes (page 2412)
Gets the attributes of a combo box.

Functions by Task 2403
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIComboBoxChangeAttributes (page 2410)
Changes the attributes of a combo box.

HIComboBoxAppendTextItem (page 2410)
Appends a text item to the combo box disclosure list.

HIComboBoxCopyTextItemAtIndex (page 2411)
Copy a text item from a combo box disclosure list

HIComboBoxGetItemCount (page 2413)
Gets the number of items in the combo box disclosure list.

HIComboBoxInsertTextItemAtIndex (page 2413)
Inserts a CFString in a combo box disclosure list.

HIComboBoxRemoveItemAtIndex (page 2414)
Removes an item from a combo box disclosure list.

HIComboBoxIsListVisible (page 2414)
Determines whether a combo box disclosure list is visible.

HIComboBoxSetListVisible (page 2415)
Hides or shows a combo box disclosure list.

Creating and Manipulating Image Views

HIImageViewCreate (page 2417)
Creates an image view.

HIImageViewCopyImage (page 2417)
Obtains the image for an image view.

HIImageViewSetImage (page 2419)
Sets the image to display in an image view.

HIImageViewGetAlpha (page 2418)
Obtains the alpha value for a view.

HIImageViewSetAlpha (page 2419)
Sets the alpha value for an image view.

HIImageViewGetScaleToFit (page 2418)
Determines whether an image will scale or clip to the view bounds.

HIImageViewSetScaleToFit (page 2421)
Specifies whether an image should scale or clip to the view’s bounds.

HIImageViewIsOpaque (page 2419)
Determines whether an image view is opaque.

HIImageViewSetOpaque (page 2420)
Sets the opacity of an image view.

Creating and Manipulating Scroll Views

HIScrollViewCreate (page 2423)
Creates a scroll view.

2404 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIScrollViewGetScrollBarAutoHide (page 2424)
Obtains current setting of a scroll view’s scroll bar auto-hide setting.

HIScrollViewSetScrollBarAutoHide (page 2425)
Sets a scroll view’s auto-hide setting.

HIScrollViewCanNavigate (page 2423)
Determines whether it is possible to navigate in a scroll view.

HIScrollViewNavigate (page 2424)
Changes the portion of a view’s target.

Creating and Manipulating Layouts

HIViewGetLayoutInfo (page 2459)
Obtains the layout information of an view.

HIViewSetLayoutInfo (page 2482)
Sets the layout information of an HIView.

HIViewApplyLayout (page 2443)
Applies the current layout to the specified view.

HIViewSuspendLayout (page 2492)
Suspends layout handling for a view and its children.

HIViewResumeLayout (page 2476)
Resumes layout handling for a view and its children.

HIViewIsLayoutActive (page 2470)
Determines whether layout handling is active or suspended.

HIViewIsLayoutLatentlyActive (page 2471)
Determines whether layout handling is latently active or suspended.

Manipulating Tracking Areas

HIViewNewTrackingArea (page 2473)
Creates a new tracking area for a view.

HIViewChangeTrackingArea (page 2445)
Changes the shape of a tracking area.

HIViewGetTrackingAreaID (page 2465)
Obtains the ID of a tracking area.

HIViewDisposeTrackingArea (page 2450)
Disposes of an existing tracking area.

Creating and Manipulating Search Fields

HISearchFieldCreate (page 2427)
Creates a Search field control.

HISearchFieldSetSearchMenu (page 2429)
Sets the search menu associated with a search field view.

Functions by Task 2405
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HISearchFieldGetSearchMenu (page 2428)
Obtains the search menu associated with a search field.

HISearchFieldChangeAttributes (page 2425)
Sets the attributes of a search field.

HISearchFieldGetAttributes (page 2428)
Obtains the attributes for a search field.

HISearchFieldSetDescriptiveText (page 2429)
Sets the description of the search action for a search field.

HISearchFieldCopyDescriptiveText (page 2426)
Obtains the description associated with a search field.

Manipulating Menus

HIMenuViewGetMenu (page 2422)
Returns the MenuRef associated with a view that is a subclass of HIMenuView.

HIMenuGetContentView (page 2421)
Obtains an HIViewRef that can be used to draw menu content for a menu.

Manipulating Segmented Views

HISegmentedViewCreate (page 2432)
Creates a segmented view.

HISegmentedViewSetSegmentCount (page 2439)
Sets the number of segments for a segmented view.

HISegmentedViewGetSegmentCount (page 2435)
Obtains the number of segments for a segmented view.

HISegmentedViewSetSegmentBehavior (page 2437)
Changes the behavior of an individual segment of a segmented view.

HISegmentedViewGetSegmentBehavior (page 2433)
Obtains the behavior of an individual segment of a segmented view.

HISegmentedViewChangeSegmentAttributes (page 2430)
Changes the attributes of an individual segment of a segmented view.

HISegmentedViewGetSegmentAttributes (page 2433)
Returns the attributes of an individual segment of a segmented view.

HISegmentedViewSetSegmentValue (page 2441)
Changes the value of an individual segment of a segmented view.

HISegmentedViewGetSegmentValue (page 2436)
Returns the value of an individual segment of a segmented view.

HISegmentedViewSetSegmentEnabled (page 2439)
Enables or disables an individual segment of a segmented view.

HISegmentedViewIsSegmentEnabled (page 2436)
Determines whether an individual segment of a segmented view is enabled.

2406 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HISegmentedViewSetSegmentCommand (page 2437)
Sets the command ID for a segment.

HISegmentedViewGetSegmentCommand (page 2434)
Obtains the command ID associated with a segment.

HISegmentedViewSetSegmentLabel (page 2440)
Sets the label string for a segment.

HISegmentedViewCopySegmentLabel (page 2431)
Obtains a copy of the label string associated with a segment.

HISegmentedViewSetSegmentContentWidth (page 2438)
Specifies how the content width of segment is to be calculated.

HISegmentedViewGetSegmentContentWidth (page 2434)
Obtains the content width of a segment.

HISegmentedViewSetSegmentImage (page 2440)
Sets or clears the image associated with a segment.

HISegmentedViewGetSegmentImageContentType (page 2435)
Obtains the type of image content drawn by a segment.

HISegmentedViewCopySegmentImage (page 2430)
Copies the image drawn by a segment.

Working with Core Graphics Images

HICreateTransformedCGImage (page 2415)
Creates a new Core Graphics image with the standard selected or disabled appearance.

HIViewCreateOffscreenImage (page 2449)
Creates a Core Graphics offscreen image of a view.

HIViewDrawCGImage (page 2450)
Draws a Core Graphics image appropriately for a view.

Working with Grow Boxes

HIGrowBoxViewIsTransparent (page 2416)
Determines whether a grow box view is transparent.

HIGrowBoxViewSetTransparent (page 2416)
Makes a grow box view transparent or opaque.

Using Cocoa Views in Carbon Windows

HICocoaViewCreate (page 2408)
Creates a Carbon view that serves as a wrapper for a Cocoa view.

HICocoaViewSetView (page 2409)
Associates a Cocoa view with a HICocoaView wrapper view.

HICocoaViewGetView (page 2409)
Returns the Cocoa view associated with an existing Carbon wrapper view.

Functions by Task 2407
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Functions

HICocoaViewCreate
Creates a Carbon view that serves as a wrapper for a Cocoa view.

OSStatus HICocoaViewCreate (
 NSView *inNSView,
 OptionBits inOptions,
 HIViewRef *outHIView
);

Parameters
inNSView

A pointer to the Cocoa view you want to wrap. This function retains the Cocoa view you pass in; on
output, you may safely release the view. If you want to create an empty Carbon wrapper view, you
may pass NULL. An empty wrapper view does not draw or respond to user interaction; you can
associate it with a Cocoa view at a later time using the function HICocoaViewSetView (page 2409).

inOptions
Options for the new Carbon wrapper view. Currently this parameter must be 0.

outHIView
A pointer to a variable of type HIViewRef (page 2497). On output, your variable contains a new Carbon
view that serves as a wrapper for the Cocoa view specified in the inNSView parameter. You are
responsible for releasing the wrapper view when you no longer need it. Note that if you embed the
wrapper view in a Carbon window, the view (along with its associated Cocoa view) will be released
automatically when the window is destroyed.

Return Value
An operating system result code. This function returns paramErr whenever the inOptions parameter is
not 0 or the outHIView parameter is NULL.

Discussion
This function creates an HIView-based wrapper for a Cocoa view. You can embed the new wrapper view in
a Carbon window and use standard HIView functions to manipulate the view. HICocoaView is supported only
in compositing windows.

The following example shows how to use this function to create a wrapped Cocoa view that can be embedded
in a Carbon window:

NSView *myCocoaView = [[SomeNSView alloc] init];
HIViewRef myHICocoaView;
HICocoaViewCreate (myCocoaView, 0, &myHICocoaView);
[myCocoaView release];

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
HICocoaView.h

2408 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HICocoaViewGetView
Returns the Cocoa view associated with an existing Carbon wrapper view.

NSView * HICocoaViewGetView (
 HIViewRef inHIView
);

Parameters
inHIView

A wrapper view that has an associated Cocoa view.

Return Value
The Cocoa view associated with the specified wrapper view, or NULL if the wrapper view is empty or invalid.
If you need to save the Cocoa view for later use, you should retain it.

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
HICocoaView.h

HICocoaViewSetView
Associates a Cocoa view with a HICocoaView wrapper view.

OSStatus HICocoaViewSetView (
 HIViewRef inHIView,
 NSView *inNSView
);

Parameters
inHIView

An existing HICocoaView wrapper view.

inNSView
A pointer to a Cocoa view. This function retains the Cocoa view you pass in; on output, you may safely
release this view. If the HICocoaView wrapper view specified in the inHIView parameter already
wraps a Cocoa view, this function releases the wrapped view and replaces it with the Cocoa view you
pass in.

Return Value
An operating system result code. This function returns paramErr if either parameter is NULL or invalid.

Discussion
Typically you’ll use this function after you instantiate a nib-based Carbon window that contains an empty
HICocoaView wrapper view. The empty wrapper view serves as a placeholder until you call this function to
associate a Cocoa view with it. HICocoaView is supported only in compositing windows.

The following example shows how to use this function to associate a Cocoa view with an existing wrapper
view:

NSView *myCocoaView = [[SomeNSView alloc] init];
HICocoaViewSetView (myHICocoaView, myCocoaView);
[myCocoaView release];

Functions 2409
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Availability
Available in Mac OS X v10.5 and later.
Not available to 64-bit applications.

Declared In
HICocoaView.h

HIComboBoxAppendTextItem
Appends a text item to the combo box disclosure list.

OSStatus HIComboBoxAppendTextItem (
 HIViewRef inComboBox,
 CFStringRef inText,
 CFIndex *outIndex
);

Parameters
inComboBox

The combo box having the disclosure list to which the text is to be appended.

inText
The text item to be appended to the combo box disclosure list.

outIndex
On exit, the index of the new item. Can be NULL if you don’t want this information.

Return Value
An operating system status code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIComboBox.h

HIComboBoxChangeAttributes
Changes the attributes of a combo box.

OSStatus HIComboBoxChangeAttributes (
 HIViewRef inComboBox,
 OptionBits inAttributesToSet,
 OptionBits inAttributesToClear
);

Parameters
inComboBox

The combo box whose attributes you want to change.

inAttributesToSet
The attributes to set. For possible values, see “Combo Box Attributes” (page 2500).

2410 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

inAttributesToClear
The attributes to clear. For possible values, see “Combo Box Attributes” (page 2500).

Return Value
An operating system status code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIComboBox.h

HIComboBoxCopyTextItemAtIndex
Copy a text item from a combo box disclosure list

OSStatus HIComboBoxCopyTextItemAtIndex (
 HIViewRef inComboBox,
 CFIndex inIndex,
 CFStringRef *outString
);

Parameters
inComboBox

The combo box that contains the text item you want to copy.

inIndex
The index of the text item. This function returns paramErr if the index is out of the bounds of the
combo box disclosure list.

outString
A copy of the string at the specified index. You are responsible for releasing the string.

Return Value
An operating system status code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIComboBox.h

HIComboBoxCreate
Creates a combo box control.

Functions 2411
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HIComboBoxCreate (
 const HIRect *boundsRect,
 CFStringRef text,
 const ControlFontStyleRec *style,
 CFArrayRef list,
 OptionBits inAttributes,
 HIViewRef *outComboBox
);

Parameters
boundsRect

The bounding box of the control.

text
The default text in the editable portion of the control. Can be NULL.

style
The font style of the both editable text and the text in the disclosure list. Can be NULL.

list
The default values available in the disclosure list. Can be NULL.

inAttributes
The default attributes of the combo box. For possible values, see “Combo Box Attributes” (page 2500).

outComboBox
On exit, a pointer to a reference for the new control.

Discussion
The combo box can be used in compositing mode, as well as traditional Control Manager mode. When
created, this view is invisible. To see the view, you must show the view by calling HIViewSetVisible (page
2490).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIComboBox.h

HIComboBoxGetAttributes
Gets the attributes of a combo box.

OSStatus HIComboBoxGetAttributes (
 HIViewRef inComboBox,
 OptionBits *outAttributes
);

Parameters
inComboBox

The combo box whose attributes you want to obtain.

outAttributes
The attributes of the combo box. For possible values, see “Combo Box Attributes” (page 2500).

Return Value
An operating system status code.

2412 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIComboBox.h

HIComboBoxGetItemCount
Gets the number of items in the combo box disclosure list.

ItemCount HIComboBoxGetItemCount (
 HIViewRef inComboBox
);

Parameters
inComboBox

The combo box.

Return Value
The number of items in the combo box disclosure list.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIComboBox.h

HIComboBoxInsertTextItemAtIndex
Inserts a CFString in a combo box disclosure list.

OSStatus HIComboBoxInsertTextItemAtIndex (
 HIViewRef inComboBox,
 CFIndex inIndex,
 CFStringRef inText
);

Parameters
inComboBox

The combo box having the disclosure list in which the text is to be inserted.

inIndex
The index at which the text should be inserted. If the index does not fall within the number of items
in the combo box list, the text is appended to the end of the list.

inText
The text item to be inserted in the combo box disclosure list.

Return Value
An operating system status code.

Availability
Available in Mac OS X v10.2 and later.

Functions 2413
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Not available to 64-bit applications.

Declared In
HIComboBox.h

HIComboBoxIsListVisible
Determines whether a combo box disclosure list is visible.

Boolean HIComboBoxIsListVisible (
 HIViewRef inComboBox
);

Parameters
inComboBox

The Combo box whose disclosure list visibility is to be queried.

Return Value
A Boolean whose value is true if the combo box disclosure list is visible; otherwise, false to indicate that
the combo box disclosure list is hidden.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIComboBox.h

HIComboBoxRemoveItemAtIndex
Removes an item from a combo box disclosure list.

OSStatus HIComboBoxRemoveItemAtIndex (
 HIViewRef inComboBox,
 CFIndex inIndex
);

Parameters
inComboBox

The combo box having the disclosure list that from which you want to remove an item.

inIndex
The index of the item to remove.

Return Value
An operating system status code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIComboBox.h

2414 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIComboBoxSetListVisible
Hides or shows a combo box disclosure list.

OSStatus HIComboBoxSetListVisible (
 HIViewRef inComboBox,
 Boolean inVisible
);

Parameters
inComboBox

The combo box.

inVisible
A Boolean whose value is true to make the combo box disclosure list visible or false to hide the
combo box list.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIComboBox.h

HICreateTransformedCGImage
Creates a new Core Graphics image with the standard selected or disabled appearance.

OSStatus HICreateTransformedCGImage (
 CGImageRef inImage,
 OptionBits inTransform,
 CGImageRef *outImage
);

Parameters
inImage

The original image.

inTransform
The transformation to apply to the image. For possible values, see “Transformation Constants” (page
2525).

outImage
A pointer to a value of type CGImageRef that, on return, contains the new image. You are responsible
for releasing the image.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Functions 2415
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Declared In
HIView.h

HIGrowBoxViewIsTransparent
Determines whether a grow box view is transparent.

Boolean HIGrowBoxViewIsTransparent (
 HIViewRef inGrowBoxView
);

Parameters
inGrowBoxView

The grow box view reference to query.

Return Value
A Boolean value that is true if the grow box view is transparent; otherwise, false which indicates the grow
box view is an opaque white square with grow lines.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIWindowViews.h

HIGrowBoxViewSetTransparent
Makes a grow box view transparent or opaque.

OSStatus HIGrowBoxViewSetTransparent (
 HIViewRef inGrowBoxView,
 Boolean inTransparent
);

Parameters
inGrowBoxView

The grow box view reference.

inTransparent
Pass true to make the grow box view use its transparent look or false to make the grow box view
use its opaque appearance.

Return Value
An operating system result code.

Discussion
This function sets a grow box view to be transparent, meaning the grow box lines are drawn over any content
under it. When not transparent, the grow box is an opaque white square with the grow lines.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

2416 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Declared In
HIWindowViews.h

HIImageViewCopyImage
Obtains the image for an image view.

CGImageRef HIImageViewCopyImage (
 HIViewRef inView
);

Parameters
inView

The image view to query.

Return Value
A Core Graphics (Quartz) image reference, or NULL if there is no image set on the view or if the view ref is
invalid.

Discussion
The image is retained, so you should release it when you are finished with it.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

HIImageViewCreate
Creates an image view.

OSStatus HIImageViewCreate (
 CGImageRef inImage,
 HIViewRef *outView
);

Parameters
inImage

An initial image, or NULL. You can use SetControlData to set the image later.

outControl
The new image view.

Return Value
An operating system result code.

Discussion
The view responds to the scrollable interface and can be used in a scrolling view. You can pass an image
initially, or set one later.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Functions 2417
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Declared In
HIImageViews.h

HIImageViewGetAlpha
Obtains the alpha value for a view.

CGFloat HIImageViewGetAlpha (
 HIViewRef inView
);

Parameters
inView

The image view to query.

Return Value
A floating point number representing the alpha from 0.0 through 1.0.

Discussion
An alpha of 1.0 means that the view is fully opaque, and alpha of 0.0 is means the view is fully transparent.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

HIImageViewGetScaleToFit
Determines whether an image will scale or clip to the view bounds.

Boolean HIImageViewGetScaleToFit (
 HIViewRef inView
);

Parameters
inView

The image view to query.

Return Value
A Boolean whose value is true if the image scales or false if the image clips.

Discussion
This function determines whether an image view will scale the image it displays to the view bounds or merely
clip to the view bounds.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

2418 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIImageViewIsOpaque
Determines whether an image view is opaque.

Boolean HIImageViewIsOpaque (
 HIViewRef inView
);

Parameters
inView

The image view to query.

Return Value
A Boolean whose value is true if the image view is opaque; otherwise, false.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

HIImageViewSetAlpha
Sets the alpha value for an image view.

OSStatus HIImageViewSetAlpha (
 HIViewRef inView,
 CGFloat inAlpha
);

Parameters
inView

The image view to affect.

inAlpha
The new alpha value.

Return Value
An operating system result code.

Discussion
Allows you to set the alpha for an image, making it more or less transparent. An alpha of 1.0 is fully opaque,
and an alpha of 0.0 is fully transparent. The default alpha for an image is 1.0.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

HIImageViewSetImage
Sets the image to display in an image view.

Functions 2419
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HIImageViewSetImage (
 HIViewRef inView,
 CGImageRef inImage
);

Parameters
inView

The image view to affect.

inImage
The image to set.

Return Value
An operating system status code.

Discussion
The image passed in is retained by the view, so you may release the image after calling this function if you
no longer need to reference it.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
HIImageViews.h

HIImageViewSetOpaque
Sets the opacity of an image view.

OSStatus HIImageViewSetOpaque (
 HIViewRef inView,
 Boolean inOpaque
);

Parameters
inView

The image view to set.

inOpaque
A Boolean whose value is true to make the image view opaque or false to disable the opacity
setting.

Return Value
An operating system result code.

Discussion
When opacity is enabled, the image view can make certain optimizations for compositing and scrolling. The
alpha-related image view APIs are rendered useless when opacity is enabled. An image view, when created,
is opaque by default. You must pass false to this function in order to change the alpha, etc. or if your image
does not fill the full bounds of the view.

Availability
Available in Mac OS X v10.2 and later.

2420 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
HIImageViews.h

HIImageViewSetScaleToFit
Specifies whether an image should scale or clip to the view’s bounds.

OSStatus HIImageViewSetScaleToFit (
 HIViewRef inView,
 Boolean inScaleToFit
);

Parameters
inView

The image view.

inScaleToFit
A Boolean whose value is true to indicate that the image should be scaled to fit the view bounds or
false to indicate that the image should clip to the view’s bounds.

Return Value
An operating system status code.

Discussion
Normally, an image view clips to the view’s bounds. Use this function to tell the image view to size the image
to fit into the view’s bounds.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIImageViews.h

HIMenuGetContentView
Obtains an HIViewRef that can be used to draw menu content for a menu.

OSStatus HIMenuGetContentView (
 MenuRef inMenu,
 ThemeMenuType inMenuType,
 HIViewRef *outView
);

Parameters
inMenu

The menu for which an HIViewRef is to be obtained.

Functions 2421
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

inMenuType
The type of menu for which the menu content view is to be returned. The same MenuRef may have
multiple content views, depending on the menu type being displayed.

outView
A pointer to a value of type HIViewRef that, on return, represents the view, or NULL if the menu
does not use an HIView to draw its content. The caller should not release this view.

Return Value
An operating system result code. If the menu uses an MDEF instead of a view to draw its content, this function
sets outView to NULL and returns noErr.

Discussion
If the content view has not yet been created, the Menu Manager will create the content view using the view
class ID and initialization event associated with the menu. Note that the menu content view is not the same
as the window content view; the menu content view is embedded inside the window content view.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
Menus.h

HIMenuViewGetMenu
Returns the MenuRef associated with a view that is a subclass of HIMenuView.

MenuRef HIMenuViewGetMenu (
 HIViewRef inView
);

Parameters
inView

The view whose menu is to be returned.

Return Value
The MenuRef associated with the specified view, or NULL if a view is passed that is not a subclass of
HIMenuView.

Discussion
An HIMenuView subclass might use call this function to determine the menu it should draw.

Special Considerations

Prior to Mac OS X v10.5, this function returns NULL if passed an instance of the standard menu view. In Mac
OS X v10.5 and later, this function correctly returns the owning menu of an instance of the standard menu
view.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIMenuView.h

2422 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIScrollViewCanNavigate
Determines whether it is possible to navigate in a scroll view.

Boolean HIScrollViewCanNavigate (
 HIViewRef inView,
 HIScrollViewAction inAction
);

Parameters
inView

The view to query.

inAction
The navigation action to test. For possible values, see “Scroll View Action Constants” (page 2515).

Return Value
A Boolean whose value is true if the navigation specified by inAction is possible; otherwise, false.

Discussion
Use this function to determine whether it is possible to perform a particular navigation within a scroll view.
For example, if a scroll view is already at the top of the scrollable content, it is not possible to navigate upward,
so the home and page up actions would not be possible. You might use this function to help you update
the state of menu items.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIScrollView.h

HIScrollViewCreate
Creates a scroll view.

OSStatus HIScrollViewCreate (
 OptionBits inOptions,
 HIViewRef *outView
);

Parameters
inOptions

Options for our scroll view. You must specify either a horizontal or a vertical scroll bar. If neither is
passed, an error is returned. For possible values, see “Scroll View Constants” (page 2514).

outView
The new scroll view.

Return Value
An operating system result code.

Discussion
This view has three parts. It can have a horizontal scroll bar, a vertical scroll bar, and a view to be scrolled
that must be added by calling HIViewAddSubview (page 2442). The added scroll view integrates itself
automatically and appropriately.

Functions 2423
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIScrollView.h

HIScrollViewGetScrollBarAutoHide
Obtains current setting of a scroll view’s scroll bar auto-hide setting.

Boolean HIScrollViewGetScrollBarAutoHide (
 HIViewRef inView
);

Parameters
inView

The view to query.

Return Value
A Boolean whose value is true if the auto-hide setting is enabled; otherwise, false.

Discussion
When the auto-hide setting is enabled, a scroll view’s scroll bars are hidden when the entire scrollable view
can be fully displayed in the scroll view’s bounds. This is similar to the behavior of the Preview application.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIScrollView.h

HIScrollViewNavigate
Changes the portion of a view’s target.

OSStatus HIScrollViewNavigate (
 HIViewRef inView,
 HIScrollViewAction inAction
);

Parameters
inView

The view to scroll.

inAction
The action to take.

Return Value
An operating system result code.

2424 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Discussion
Use this function to programmatically change the portion of a scroll view’s target. For example, you can call
this function to move to the beginning or end of a document. You can also page up, down, left and right. In
general, you should not call this function from embedded content, that is, the scrollable view inside the scroll
view. Instead, for those cases, you should position yourself appropriately and tell the scroll view you changed
via the kEventScrollableInfoChanged Carbon event. This function is merely a programmatic way to
scroll as one would by hand using the scroll bars.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIScrollView.h

HIScrollViewSetScrollBarAutoHide
Sets a scroll view’s auto-hide setting.

OSStatus HIScrollViewSetScrollBarAutoHide (
 HIViewRef inView,
 Boolean inAutoHide
);

Parameters
inView

The view to affect.

inAutoHide
A Boolean whose value is true to enable auto-hide and false to disable auto-hide.

Return Value
An operating system result code.

Discussion
When the auto-hide setting is enabled, a scroll view’s scroll bars are hidden when the entire scrollable view
can be fully displayed in the scroll view’s bounds. This is similar to the behavior of the Preview application.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIScrollView.h

HISearchFieldChangeAttributes
Sets the attributes of a search field.

Functions 2425
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HISearchFieldChangeAttributes (
 HIViewRef inSearchField,
 OptionBits inAttributesToSet,
 OptionBits inAttributesToClear
);

Parameters
inSearchField

The search field whose attributes are to be changed.

inAttributesToSet
The attributes to set. For possible values, see “Search Field Attribute Constants” (page 2519).

inAttributesToClear
The attributes to clear. For possible values, see “Search Field Attribute Constants” (page 2519).

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISearchField.h

HISearchFieldCopyDescriptiveText
Obtains the description associated with a search field.

OSStatus HISearchFieldCopyDescriptiveText (
 HIViewRef inSearchField,
 CFStringRef *outDescription
);

Parameters
inSearchField

The search field whose descriptive text is to be obtained.

outDescription
A pointer to a value of type CFStringRef that, on return, represents the description that is associated
with the search field specified by inSearchField. This parameter cannot be NULL. If no description
is associated with the search field, on return, outDescription is set to NULL. If there is a description,
a CFStringRef is created for you; you are responsible for releasing the CFStringRef when you no
longer need it.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISearchField.h

2426 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HISearchFieldCreate
Creates a Search field control.

OSStatus HISearchFieldCreate (
 const HIRect *inBounds,
 OptionBits inAttributes,
 MenuRef inSearchMenu,
 CFStringRef inDescriptiveText,
 HIViewRef *outRef
);

Parameters
inBounds

The initial bounds of the view, or NULL. If this parameter is NULL, the view is created with empty
bounds (0, 0, 0, 0).

inAttributes
The initial attributes of the search field. Indicates whether the field should contain the Cancel icon.
For possible values, see “Search Field Attribute Constants” (page 2519).

inSearchMenu
The menu to be associated with this search field, or NULL. If inSearchMenu is non-NULL, the menu
will be retained by the search field and the Search icon will be enabled in the left side of the text field.
If this parameter is NULL, the view will not display the Search icon in the left portion of the text field.
You are expected to install handlers on this menu to handle the visual appearance of the menu (for
example, to draw check marks or enable items when the menu receives the kEventMenuEnableItems
Carbon event), and to keep track of what action should be performed by associating HICommands
with each menu item and installing a handler for thekEventClassCommand /kEventCommandProcess
Carbon event.

inDescriptiveText
The text to be displayed in the text field when the field does not have focus and contains no
user-entered text, or NULL. This text should indicate the search criteria. For example, you may want
to identify to the user that the search will cover the “Subject” or “Contents” of a selected range of
items. If inDescriptiveText is non-NULL, the text will be retained by the search field.

outRef
On return, a reference for the new view.

Return Value
An operating system result code.

Discussion
This view is designed to be used by applications that provide searching functionality. Visually, it is a standard
text field optionally adorned with a Search icon on the left and a Cancel image on the right. The new control
is initially invisible.

When the user accepts the text by pressing the Return or Enter key, a Carbon event of
kEventClassTextField / kEventTextAccepted is sent to the control to indicate that the search should
begin. This control also responds to all of the standard control tags used by the EditUnicodeText control.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISearchField.h

Functions 2427
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HISearchFieldGetAttributes
Obtains the attributes for a search field.

OSStatus HISearchFieldGetAttributes (
 HIViewRef inSearchField,
 OptionBits *outAttributes
);

Parameters
inSearchField

The search field whose attributes are to be obtained.

outAttributes
A pointer to a value of type OptionBits that, on return, contains the attributes of the Search field
specified by inSearchField. This parameter cannot be NULL. For possible values, see “Search Field
Attribute Constants” (page 2519).

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISearchField.h

HISearchFieldGetSearchMenu
Obtains the search menu associated with a search field.

OSStatus HISearchFieldGetSearchMenu (
 HIViewRef inSearchField,
 MenuRef *outSearchMenu
);

Parameters
inSearchField

The search field for which you want to obtain the search menu.

outSearchMenu
A pointer to a value of type MenuRef that, on return, represents the menu associated with the search
field. The menu is not retained on output, and this parameter cannot be NULL.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISearchField.h

2428 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HISearchFieldSetDescriptiveText
Sets the description of the search action for a search field.

OSStatus HISearchFieldSetDescriptiveText (
 HIViewRef inSearchField,
 CFStringRef inDescription
);

Parameters
inSearchField

The search field whose descriptive text is to be set.

inDescription
The new description for the search field. If the search field already has a description, it will be released.
If this parameter is non-NULL, it will be retained by the search field. If this parameter is NULL, upon
return, no description is associated with the search field.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISearchField.h

HISearchFieldSetSearchMenu
Sets the search menu associated with a search field view.

OSStatus HISearchFieldSetSearchMenu (
 HIViewRef inSearchField,
 MenuRef inSearchMenu
);

Parameters
inSearchField

The Search field with which to associate the search menu.

inSearchMenu
The menu to associate with the Search field, or NULL. If a menu is already associated with the Search
field, that menu is released. If inSearchMenu is non-NULL, it will be retained by the Search field and
the Search icon will be enabled in the left side of the text field. You are expected to install handlers
on this menu to handle the visual appearance of the menu (for example, to draw check marks or
enable items when the menu receives the kEventMenuEnableItems Carbon event). You are also
expected to keep track of the actions that should be performed by associating HICommands with
each menu item and installing a handler for the kEventClassCommand /kEventCommandProcess
Carbon event. If inSearchMenu is NULL, the Search icon is removed from the left side of the text
field and no menu is associated with the Search field.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.

Functions 2429
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Not available to 64-bit applications.

Declared In
HISearchField.h

HISegmentedViewChangeSegmentAttributes
Changes the attributes of an individual segment of a segmented view.

OSStatus HISegmentedViewChangeSegmentAttributes (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 OptionBits inAttributesToSet,
 OptionBits inAttributesToClear
);

Parameters
inSegmentedView

The segmented view that owns the segment whose attributes you want to change.

inSegmentIndexOneBased
The one-based index of the segment whose attributes you want to change. This must be a non-zero
value that is no higher than the segmented view’s current segment count.

inAttributesToSet
The attribute bits you want to set for the segment. For possible values, see “Segment Attribute
Constants” (page 2520).

inAttributesToClear
The attribute bits you want to clear for the segment.

Return Value
An operating system result code.

Discussion
By default, a segment has no attributes.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewCopySegmentImage
Copies the image drawn by a segment.

2430 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HISegmentedViewCopySegmentImage (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 HIViewImageContentInfo *ioImage
);

Parameters
inSegmentedView

The segmented view that owns the segment whose image you want to copy.

inSegmentIndexOneBased
The one-based index of the segment whose image you want to set. This must be a non-zero value
that is no higher than the segmented view’s current segment count.

ioImage
A pointer to a HIViewImageContentInfo structure whose contentType field specifies the type of
image you want to copy. If the segment uses the type of image you specified, on return, the appropriate
field of the union contains a copy of the image. If the segment index is an illegal value, the result is
undefined. You are responsible for releasing the image.

Return Value
An operating system result code.

Discussion
Call HISegmentedViewGetSegmentImageContentType (page 2435) to get the image type.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewCopySegmentLabel
Obtains a copy of the label string associated with a segment.

OSStatus HISegmentedViewCopySegmentLabel (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 CFStringRef *outLabel
);

Parameters
inSegmentedView

The segmented view that owns the segment whose label you want to copy.

inSegmentIndexOneBased
The one-based index of the segment whose label is to be copied. This must be a non-zero value that
is no higher than the segmented view’s current segment count.

outLabel
A pointer to a CFStringRef that represents the copy of the label associated with the segment. You
are responsible for releasing the the string containing the copy of the label. If no label is associated
with the specified segment, outLabel is set to NULL.

Functions 2431
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewCreate
Creates a segmented view.

OSStatus HISegmentedViewCreate (
 const HIRect *inBounds,
 HIViewRef *outRef
);

Parameters
inBounds

The bounds of the view to be created, or NULL. If NULL, the view is created with CGRectZero bounds.

outRef
A valid pointer to an HIViewRef that, on return, represents the newly created view.

Return Value
An operating system result code.

Discussion
You can use a segmented view to implement the icon/column/list view switcher as seen in the Finder. After
creating a segmented view, set the number of segments by calling
HISegmentedViewSetSegmentCount (page 2439). Each segment can be configured independently by calling
other HISegmentedView APIs. Changing the number of segments and configuring each segment changes
the appearance of the segmented view. After configuring the view, you may want to call
HIViewGetOptimalBounds (page 2461) on the view and resize it so the content fits optimally.

The value of the whole segmented view corresponds to the index of the currently selected segment with
the radio behavior. If you set the value of the whole segmented view to n by calling HIViewSetValue (page
2489), the value of each radio-behavior segment is set to zero except for the segment at index n. If segment
n also has radio behavior, its value will be set to one. When a radio-behavior segment is clicked, the value of
the whole segmented view is set to the segment’s index.

Segmented views work in both compositing and non-compositing modes.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

2432 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HISegmentedViewGetSegmentAttributes
Returns the attributes of an individual segment of a segmented view.

OptionBits HISegmentedViewGetSegmentAttributes (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased
);

Parameters
inSegmentedView

The segmented view that owns the segment to query.

inSegmentIndexOneBased
The one-based index of the segment whose attributes you want to query. This must be a non-zero
value that is no higher than the segmented view’s current segment count.

Return Value
The attribute bits that are set for the specified segment. For possible values, see “Segment Attribute
Constants” (page 2520). If the segment index is an illegal value, the result is undefined.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewGetSegmentBehavior
Obtains the behavior of an individual segment of a segmented view.

HISegmentBehavior HISegmentedViewGetSegmentBehavior (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased
);

Parameters
inSegmentedView

The segmented view that owns the segment whose behavior is to be obtained.

inSegmentIndexOneBased
The one-based index of the segment whose behavior you want to obtain. This must be a non-zero
value that is no higher than the segmented view’s current segment count.

Return Value
A value of type HISegmentBehavior describing the behavior of the given segment. For possible values,
see “Segment Behavior Constants” (page 2521). If the segment index is an illegal value, the result is undefined.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

Functions 2433
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HISegmentedViewGetSegmentCommand
Obtains the command ID associated with a segment.

UInt32 HISegmentedViewGetSegmentCommand (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased
);

Parameters
inSegmentedView

The segmented view that owns the segment for which the command ID is to be obtained.

inSegmentIndexOneBased
The one-based index of the segment for which the command ID is to be obtained. This must be a
non-zero value that is no higher than the segmented view’s current segment count.

Return Value
The command ID associated with the specified segment. If the segment index is an illegal value, the result
is undefined.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewGetSegmentContentWidth
Obtains the content width of a segment.

CGFloat HISegmentedViewGetSegmentContentWidth (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 Boolean *outAutoCalculated
);

Parameters
inSegmentedView

The segmented view that owns the segment whose content width is to be obtained.

inSegmentIndexOneBased
The one-based index of the segment. This must be a non-zero value that is no higher than the
segmented view’s current segment count.

outAutoCalculateWidth
A pointer to a Boolean whose value, on return, is true if the segment calculates its own width
automatically; otherwise, false. Pass NULL if you don’t want this information.

Return Value
The width of the content for the given segment. If the segment index is an illegal value, the result is undefined.

Discussion
The content width is the horizontal area taken up by a segment’s label (if any) and image (if any).

2434 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewGetSegmentCount
Obtains the number of segments for a segmented view.

UInt32 HISegmentedViewGetSegmentCount (
 HIViewRef inSegmentedView
);

Parameters
inSegmentedView

The segmented view for which the number of segments is to be obtained.

Return Value
A UInt32 whose value is the number of segments in the segmented view specified by inSegmentedView.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewGetSegmentImageContentType
Obtains the type of image content drawn by a segment.

HIViewImageContentType HISegmentedViewGetSegmentImageContentType (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased
);

Parameters
inSegmentedView

The segmented view that owns the segment whose image content type you want to obtain.

inSegmentIndexOneBased
The one-based index of the segment whose image you want to set. This must be a non-zero value
that is no higher than the segmented view’s current segment count.

Return Value
The image content type of the image drawn by the specified segment. If the segment index is an illegal value,
the result is undefined.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Functions 2435
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Declared In
HISegmentedView.h

HISegmentedViewGetSegmentValue
Returns the value of an individual segment of a segmented view.

SInt32 HISegmentedViewGetSegmentValue (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased
);

Parameters
inSegmentedView

The segmented view that owns the segment to query.

inSegmentIndexOneBased
The one-based index of the segment whose value you want to obtain. This must be a non-zero value
that is no higher than the segmented view’s current segment count.

Return Value
An SInt32 containing the value of the specified segment. Zero means that the segment is unpressed or
unselected, and one means the segment is pressed or selected.

Discussion
Getting a segment value is only meaningful for segments with the sticky, toggles, or radio behaviors. The
value of segments that have the momentary behavior is undefined.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewIsSegmentEnabled
Determines whether an individual segment of a segmented view is enabled.

Boolean HISegmentedViewIsSegmentEnabled (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased
);

Parameters
inSegmentedView

The segmented view that owns the segment to query.

inSegmentIndexOneBased
The one-based index of the segment to query. This must be a non-zero value that is no higher than
the segmented view’s current segment count.

Return Value
A Boolean whose value is true if the segment is enabled or false if the segment is not enabled.

2436 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewSetSegmentBehavior
Changes the behavior of an individual segment of a segmented view.

OSStatus HISegmentedViewSetSegmentBehavior (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 HISegmentBehavior inBehavior
);

Parameters
inSegmentedView

The segmented view that owns the segment whose behavior is to be set.

inSegmentIndexOneBased
The one-based index of the segment whose behavior you want to set. This must be a non-zero value
that is no higher than the segmented view’s current segment count.

inBehavior
The behavior you want the segment to have. For possible values, see “Segment Behavior
Constants” (page 2521).

Return Value
An operating system result code.

Discussion
By default, a segment has the kHISegmentBehaviorMomentary behavior.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewSetSegmentCommand
Sets the command ID for a segment.

OSStatus HISegmentedViewSetSegmentCommand (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 UInt32 inCommand
);

Parameters
inSegmentedView

The segmented view that owns the segment for which the command ID is to be set.

Functions 2437
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

inSegmentIndexOneBased
The one-based index of the segment for which the command ID is to be set. This must be a non-zero
value that is no higher than the segmented view’s current segment count.

inCommand
The command ID you want to associate with the segment. When the command ID is 0 for a segment,
the kEventCommandProcess event is not sent when the segment is clicked.

Return Value
An operating system result code.

Discussion
When any non-zero command ID is set, the segmented view sends an HICommand whenever the segment
is clicked. By default, the command is sent to the segmented view and up the containment hierarchy. If you
want the command to start at the user focus instead, set the kHISegmentCmdToUserFocus attribute for
the segment.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewSetSegmentContentWidth
Specifies how the content width of segment is to be calculated.

OSStatus HISegmentedViewSetSegmentContentWidth (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 Boolean inAutoCalculateWidth,
 CGFloat inWidth
);

Parameters
inSegmentedView

The segmented view that owns the segment whose method of calculating content width you want
to specify.

inSegmentIndexOneBased
The one-based index of the segment. This must be a non-zero value that is no higher than the
segmented view’s current segment count.

inAutoCalculateWidth
A Boolean whose value is true if you want the segment to calculate its own width automatically (in
which case, the inWidth parameter is ignored), or false if you want the value of the inWidth
parameter to be associated with the segment.

inWidth
The width in pixels.

Return Value
An operating system result code.

Discussion
The content width is the horizontal area taken up by a segment’s label (if any) and image (if any).

2438 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewSetSegmentCount
Sets the number of segments for a segmented view.

OSStatus HISegmentedViewSetSegmentCount (
 HIViewRef inSegmentedView,
 UInt32 inSegmentCount
);

Parameters
inSegmentedView

The segmented menu for which the number of segments is to be set.

inSegmentCount
A positive integer specifying the number of segments the view is to have.

Return Value
An operating system result code.

Discussion
The content for any previous segments beyond the new count is released. All new segments beyond the
previous count are initialized with basic settings: Momentary, no attributes, zero value, enabled, no command,
no label, no content, and auto-calculated content width. You should configure any new segments to match
your needs.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewSetSegmentEnabled
Enables or disables an individual segment of a segmented view.

OSStatus HISegmentedViewSetSegmentEnabled (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 Boolean inEnabled
);

Parameters
inSegmentedView

The segmented view that owns the segment that is to be enabled or disabled.

Functions 2439
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

inSegmentIndexOneBased
The one-based index of the segment to enable or disable. This must be a non-zero value that is no
higher than the segmented view’s current segment count.

inEnabled
A Boolean whose value is true to enable the segment or false to disable the segment.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewSetSegmentImage
Sets or clears the image associated with a segment.

OSStatus HISegmentedViewSetSegmentImage (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 const HIViewImageContentInfo *inImage
);

Parameters
inSegmentedView

The segmented view that owns the segment whose image you want to set.

inSegmentIndexOneBased
The one-based index of the segment whose image you want to set. This must be a non-zero value
that is no higher than the segmented view’s current segment count.

inImage
A pointer to an HIViewImageContentInfo structure with the image information for the specified
segment. Segments support three types of image content: kControlNoContent,
kControlContentIconRef, and kControlContentCGImageRef.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewSetSegmentLabel
Sets the label string for a segment.

2440 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HISegmentedViewSetSegmentLabel (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 CFStringRef inLabel
);

Parameters
inSegmentedView

The segmented view that owns the segment whose label you want to sets.

inSegmentIndexOneBased
The one-based index of the segment whose label is to be set. This must be a non-zero value that is
no higher than the segmented view’s current segment count.

inLabel
A CFStringRef with the text of the label. The segmented view will copy the string you passed in.
To eliminate the label from the segment, pass NULL or an empty CFStringRef.

Return Value
An operating system result code.

Discussion
By default, a segment has no label string.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HISegmentedViewSetSegmentValue
Changes the value of an individual segment of a segmented view.

OSStatus HISegmentedViewSetSegmentValue (
 HIViewRef inSegmentedView,
 UInt32 inSegmentIndexOneBased,
 SInt32 inValue
);

Parameters
inSegmentedView

The segmented view that owns the segment to query.

inSegmentIndexOneBased
The one-based index of the segment whose value you want to change. This must be a non-zero value
that is no higher than the segmented view’s current segment count.

inValue
The value you want to set. Zero means that the segment is unpressed or unselected, and one means
the segment is pressed or selected. Setting any other value will result in an undefined behavior.

Return Value
An operating system result code.

Functions 2441
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Discussion
Setting a segment value is only meaningful for segments with the sticky, toggles, or radio behaviors. Setting
the value of segments that have the momentary behavior to something other than zero results in a behavior
that is undefined.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HISegmentedView.h

HIViewAddSubview
Adds a subview to the given parent view.

OSStatus HIViewAddSubview (
 HIViewRef inParent,
 HIViewRef inNewChild
);

Parameters
inParent

The view that will receive the new subview.

inNewChild
The subview being added.

Return Value
An operating system result code. The result code errNeedsCompositedWindow is returned if you try to
embed into the content view in a non-compositing window; you can only embed into the content view in
a compositing window.

Discussion
The new subview is added to the front of the list of subviews (that is, it is made topmost). The subview being
added is not retained by the new parent view. Do not release the view after adding it, or it will cease to exist.
All views in a window are released automatically when the window is destroyed.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIView.h

HIViewAdvanceFocus
Advances the keyboard focus to the next most appropriate view.

2442 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HIViewAdvanceFocus (
 HIViewRef inRootForFocus,
 EventModifiers inModifiers
);

Parameters
inRootForFocus

The subtree to manipulate. The focus does not leave inRootToFocus. Typically, you would pass the
content of the window or the root. If focused on the toolbar, for example, the focus is limited to the
toolbar only. In this case, for example, the Toolbox passes the toolbar view in as the focus root.

inModifiers
The keyboard event modifiers that caused HIViewAdvanceFocus (page 2442) to be called. These
modifiers are used to determine the focus direction as well as other alternate focusing behaviors.

Return Value
An operating system result code.

Discussion
Unless overridden in some fashion (either by overriding certain Carbon events or by calling the
HIViewSetNextFocus (page 2487), the Toolbox uses a spatially determinant method of focusing, attempting
to focus left to right and top to bottom in a window, taking groups of controls into account.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewApplyLayout
Applies the current layout to the specified view.

OSStatus HIViewApplyLayout (
 HIViewRef inView
);

Parameters
inView

The view to which the layout is to be applied.

Return Value
An operating system result code.

Discussion
Side bindings have no effect, but positioning and scaling are applied, in that order.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIView.h

Functions 2443
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewChangeAttributes
Changes the attributes of a view.

OSStatus HIViewChangeAttributes (
 HIViewRef inView,
 OptionBits inAttrsToSet,
 OptionBits inAttrsToClear
);

Parameters
inView

The view whose attributes you want to change.

inAttrsToSet
The attributes you want to change. For possible values, see “HIView Attributes” (page 2508).

inAttrsToClear
The attributes you want to clear. For possible values, see “HIView Attributes” (page 2508).

Return Value
An operating system result code.

Discussion
You can set and clear attributes simultaneously.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewChangeFeatures
Changes the features of a view.

OSStatus HIViewChangeFeatures (
 HIViewRef inView,
 HIViewFeatures inFeaturesToSet,
 HIViewFeatures inFeaturesToClear
);

Parameters
inView

The view whose features are to be changed.

inFeaturesToSet
The features that are to be set. For details, see “HIView Feature Constants” (page 2509).

inFeaturesToClear
The features that are to be cleared. For details, see “HIView Feature Constants” (page 2509).

Return Value
An operating system result code.

2444 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Discussion
The view itself typically controls its features. For example, the view might decide that under some situations
it is opaque and in others it is transparent. In general entities outside of the view itself should not call this
function. The only exception might be user-interface building tools that want to make sure a view always
responds to clicks, for example, so it could override mouse tracking to drag items.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIView.h

HIViewChangeTrackingArea
Changes the shape of a tracking area.

OSStatus HIViewChangeTrackingArea (
 HIViewTrackingAreaRef inArea,
 HIShapeRef inShape
);

Parameters
inArea

The tracking area to change.

inShape
The shape to use. Pass NULL to use the entire structure region of the view.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewClick
Passes a mouse-down event to a view.

OSStatus HIViewClick (
 HIViewRef inView,
 EventRef inEvent
);

Parameters
inView

The view to handle the event.

Functions 2445
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

inEvent
The mouse event to handle.

Return Value
An operating system result code.

Discussion
After a successful call to HIViewGetViewForMouseEvent for a mouse down event, you should call this
function to have the view handle the click. In general we recommend using the Standard Window Handler
instead of calling this function yourself.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewConvertPoint
Converts a point’s coordinates from one view to another.

OSStatus HIViewConvertPoint (
 HIPoint *ioPoint,
 HIViewRef inSourceView,
 HIViewRef inDestView
);

Parameters
ioPoint

The point to convert.

inSourceView
The view whose coordinate system ioPoint is starting out in. You can pass NULL to indicate that
ioPoint is a window-relative point.

inDestView
The view whose coordinate system ioPoint should end up in. You can pass NULL to indicate that
ioPoint is a window-relative point.

Return Value
An operating system result code.

Discussion
Both views must have a common ancestor, that is, they must both be in the same window.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

2446 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewConvertRect
Converts a rectangle from one view to another.

OSStatus HIViewConvertRect (
 HIRect *ioRect,
 HIViewRef inSourceView,
 HIViewRef inDestView
);

Parameters
ioRect

The rectangle to convert.

inSourceView
The view whose coordinate system ioRect is starting out in. You can pass NULL to indicate that
ioRect is a window-relative rectangle.

inDestView
The view whose coordinate system ioRect should end up in. You can pass NULL to indicate that
ioRect is a window-relative rectangle.

Return Value
An operating system result code.

Discussion
Both views must have a common ancestor, that is, they must both be in the same window.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewConvertRegion
Converts a region from one view to another.

OSStatus HIViewConvertRegion (
 RgnHandle ioRgn,
 HIViewRef inSourceView,
 HIViewRef inDestView
);

Parameters
ioRgn

The region to convert.

inSourceView
The view whose coordinate system ioRgn is starting out in. You can pass NULL to indicate that ioRgn
is a window-relative region.

inDestView
The view whose coordinate system ioRgn should end up in. You can pass NULL to indicate that ioRgn
is a window-relative region.

Functions 2447
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Return Value
An operating system result code.

Discussion
Both views must have a common ancestor, that is, they must both be in the same window.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewCopyShape
Copies the shape of a part of a view.

OSStatus HIViewCopyShape (
 HIViewRef inView,
 HIViewPartCode inPart,
 HIShapeRef *outShape
);

Parameters
inView

The view having a part whose shape is to be copied.

inPart
The part of the view whose shape is to be copied. For possible values, see “HIViewPartCode
Constants” (page 2513).

outShape
On exit, the newly created shape. You are responsible for releasing the copied shape.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewCopyText
Copies the text of a view.

CFStringRef HIViewCopyText (
 HIViewRef inView
);

Parameters
inView

The view whose text is to be copied.

2448 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Return Value
A CFString containing a copy of the view’s text. The caller is responsible for releasing the CFString.

Discussion
This function attempts to copy the text that is displayed when drawing the view and is generally successful
on views that handle the kControlEditTextCFStringTag GetControlData tag. If this function can’t
copy that text, it copies the text in the view’s title instead.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewCountSubviews
Returns the number of subviews embedded in a view.

CFIndex HIViewCountSubviews (
 HIViewRef inView
);

Parameters
inView

The view whose subviews are to be counted.

Return Value
The number of subviews for the specified view.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewCreateOffscreenImage
Creates a Core Graphics offscreen image of a view.

OSStatus HIViewCreateOffscreenImage (
 HIViewRef inView,
 OptionBits inOptions,
 HIRect *outFrame,
 CGImageRef *outImage
);

Parameters
inView

The view you want to create an image of.

inOptions
Options. Currently you must pass zero.

Functions 2449
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

outFrame
The frame of the view within the resultant image. It is in the coordinate system of the image, where
0,0 is the top left corner of the image. This is so you can know exactly where the control is in the
image when the control draws outside its bounds for things such as shadows.

outImage
The image of the view, including anything that would be drawn outside the view’s frame.

Return Value
An operating system status code.

Discussion
This function creates an CGImageRef for the specified view. The view and any of its children are rendered
in the resultant image.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewDisposeTrackingArea
Disposes of an existing tracking area.

OSStatus HIViewDisposeTrackingArea (
 HIViewTrackingAreaRef inArea
);

Parameters
inArea

The tracking area that is to be disposed of.

Return Value
An operating system result code.

Discussion
All tracking areas attached to a view are automatically disposed of when the view is disposed of, so you don’t
need to dispose of a tracking area explicitly unless you want to remove it from a view before the view is
disposed of.

After you call this function, the reference is invalid.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewDrawCGImage
Draws a Core Graphics image appropriately for a view.

2450 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HIViewDrawCGImage (
 CGContextRef inContext,
 const HIRect *inBounds,
 CGImageRef inImage
);

Parameters
inContext

The context to draw in.

inBounds
The bounds to draw the image into.

inImage
The image to draw.

Return Value
An operating system status code.

Discussion
This function is similar to CGContextDrawImage, but it flips the context so that the image is drawn correctly.
The origin of a view is at the top left corner, so you are really drawing upside-down. This call insulates you
from that fact.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewFindByID
Obtains a view by its ID.

OSStatus HIViewFindByID (
 HIViewRef inStartView,
 HIViewID inID,
 HIViewRef *outView
);

Parameters
inStartView

The view to start searching at.

inID
The ID of the view you are looking for.

outControl
Receives the control if found.

Return Value
An operating system result code.

Discussion
Allows you to find a particular view by its ID. The HIViewID type used by this function is identical to the
ControlID type used by the Control Manager.

Functions 2451
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor
HID Calibrator
HID Config Save
QTCarbonShell
QTMetaData

Declared In
HIView.h

HIViewFlashDirtyArea
Flashes a window’s dirty area.

OSStatus HIViewFlashDirtyArea (
 WindowRef inWindow
);

Parameters
inWindow

The window whose dirty area is to be flashed.

Return Value
An operating system result code.

Discussion
As a debugging aid, this function flashes the area for an entire window that will be redrawn at the next draw
time.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIToolboxDebugging.h

HIViewGetAttributes
Obtains the attributes for a view.

OSStatus HIViewGetAttributes (
 HIViewRef inView,
 OptionBits *outAttrs
);

Parameters
inView

The view to inspect.

2452 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

outAttrs
The attributes of the view. For possible values, see “HIView Attributes” (page 2508).

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetBounds
Obtains the local bounds of a view.

OSStatus HIViewGetBounds (
 HIViewRef inView,
 HIRect *outRect
);

Parameters
inView

The view whose local bounds are to be obtained.

outRect
The local bounds of the view.

Return Value
An operating system result code.

Discussion
The local bounds are the coordinate system that is completely view-relative. A view’s top left coordinate
starts out at 0, 0. Most operations use local coordinates. Note, however, that the frame is used to move a
view, not local coordinates.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Config Save

Declared In
HIView.h

HIViewGetCommandID
Obtains the command ID of a view.

Functions 2453
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HIViewGetCommandID (
 HIViewRef inView,
 UInt32 *outCommandID
);

Parameters
inView

The view whose command ID is to be obtained.

outID
A pointer to a value of type UInt32 that, on return, contains the view’s command ID.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetEventTarget
Returns the EventTargetRef for the specified view.

EventTargetRef HIViewGetEventTarget (
 HIViewRef inView
);

Parameters
inImage

The view for which the EventTargetRef should be returned.

Return Value
The EventTargetRef.

Discussion
Once you obtain this reference, you can install an event handler and send events to the target.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetFeatures
Obtains the features of the specified view.

2454 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HIViewGetFeatures (
 HIViewRef inView,
 HIViewFeatures *outFeatures
);

Parameters
inView

The view to query.

outFeatures
A pointer to a value of the HIViewFeatures that, on return, contains the view’s features. For more
information, see “HIView Feature Constants” (page 2509).

Return Value
An operating system result code.

Discussion
This function returns feature bits for the view but does not return older Control Manager features, such as
kControlSupportsDataAccess.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetFirstSubview
Returns the first subview of a parent view.

HIViewRef HIViewGetFirstSubview (
 HIViewRef inView
);

Parameters
inView

The view whose subview you are fetching.

Return Value
An HIView reference, or NULL if this view has no subviews or is invalid.

Discussion
Returns the first subview of a container. The first subview is the topmost subview in z-order.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetFocusPart
Obtains the part in the specified view that currently has focus.

Functions 2455
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HIViewGetFocusPart (
 HIViewRef inView,
 HIViewPartCode *outFocusPart
);

Parameters
inView

The view to inquire about.

outFocusPart
The part that currently has focus. For more information, see “HIViewPartCode Constants” (page 2513).

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetFrame
Obtains the frame bounds of a view.

OSStatus HIViewGetFrame (
 HIViewRef inView,
 HIRect *outRect
);

Parameters
inView

The view whose frame you want to obtain.

outRect
The frame of the view.

Return Value
An operating system result code.

Discussion
The frame bounds is the bounds of a view relative to its parent’s local coordinate system.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIView.h

2456 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewGetID
Obtains the HIViewID of a view.

OSStatus HIViewGetID (
 HIViewRef inView,
 HIViewID *outID
);

Parameters
inView

The view whose validity is to be checked.

outID
A pointer to a value of type HIViewID that, on return, contains the view’s HIViewID.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetIndexedSubview
Obtains the subview of a view by index.

OSStatus HIViewGetIndexedSubview (
 HIViewRef inView,
 CFIndex inSubviewIndex,
 HIViewRef *outSubview
);

Parameters
inView

The view whose indexed subview is being requested.

inSubviewIndex
The index of the requested subview.

outSubview
A pointer to an HIViewRef that, on return, represents the indexed subview.

Return Value
The number of subviews for the specified view.

Discussion
Instead of calling HIViewGetIndexedSubview repeatedly, it may be more efficient to iterate through the
subviews of a view with calls toHIViewGetFirstSubview (page 2455) andHIViewGetNextView (page 2460).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Functions 2457
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Declared In
HIView.h

HIViewGetKind
Obtains the signature and kind of a view.

OSStatus HIViewGetKind (
 HIViewRef inView,
 HIViewKind *outViewKind
);

Parameters
inView

The view whose signature and kind is to be obtained.

outViewKind
A pointer to a HIViewKind structure that, on return, contains the view’s signature and kind. For
details, see HIViewKind (page 2497).

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetLastSubview
Returns the last subview in a parent view.

HIViewRef HIViewGetLastSubview (
 HIViewRef inView
);

Parameters
inView

The view whose subview you are fetching.

Return Value
An HIView reference, or NULL if this view has no subviews or is invalid.

Discussion
Returns the last subview of a container. The last subview is the bottommost subview in z-order.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

2458 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewGetLayoutInfo
Obtains the layout information of an view.

OSStatus HIViewGetLayoutInfo (
 HIViewRef inView,
 HILayoutInfo *outLayoutInfo
);

Parameters
inOptions

The view whose layout information is to be obtained.

outLayoutInfo
A pointer to an HILayoutInfo (page 2493) into which to copy the view’s layout information. If the
version field of this structure is not valid, the call will fail.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIView.h

HIViewGetMaximum
Obtains a view’s maximum value.

SInt32 HIViewGetMaximum (
 HIViewRef inView
);

Parameters
inView

The view whose maximum value is to be obtained.

Return Value
The maximum value of the specified view.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetMinimum
Obtains the minimum value of a view.

Functions 2459
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

SInt32 HIViewGetMinimum (
 HIViewRef inView
);

Parameters
inView

The view whose minimum value is to be obtained.

Return Value
The minimum value of the specified view.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetNeedsDisplay
Determines whether a view needs to be redrawn.

Boolean HIViewGetNeedsDisplay (
 HIViewRef inView
);

Parameters
inView

The view to inspect.

Return Value
A Boolean whose value is true if the view passed in or any of its subviews require redrawing; otherwise,
false.

Discussion
A view or subview requires redrawing if any part of the view or subview has been invalidated.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetNextView
Returns the view behind the specified view.

2460 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewRef HIViewGetNextView (
 HIViewRef inView
);

Parameters
inView

The view to use as reference.

Return Value
An HIView reference, or NULL if this view has no view behind it or is invalid.

Discussion
Returns the view after the specified view, in z-order.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetOptimalBounds
Obtains the optimal size and text placement of a view.

OSStatus HIViewGetOptimalBounds (
 HIViewRef inView,
 HIRect *outBounds,
 CGFloat *outBaseLineOffset
);

Parameters
inView

The view whose optimal size and text placement are to be obtained.

outBounds
A pointer to a value of type HIRect that, on return, contains the view’s optimal bounds. Pass NULL
if you don’t need this information.

outBaseLineOffset
A pointer to a value of type float that, on return, contains the view’s optimal text placement. Pass
NULL if you don’t need this information.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

Functions 2461
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewGetPartHit
Determines the part hit for a given point.

OSStatus HIViewGetPartHit (
 HIViewRef inView,
 const HIPoint *inPoint,
 HIViewPartCode *outPart
);

Parameters
inView

The view to test the part hit.

inPoint
The view-relative point to use.

outPart
The part hit by inPoint.

Return Value
An operating system result code.

Discussion
Given a view, and a view-relative point, this function returns the part code hit as determined by the view.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetPreviousView
Returns the view above the specified view.

HIViewRef HIViewGetPreviousView (
 HIViewRef inView
);

Parameters
inView

The view to use as reference.

Return Value
An HIView reference, or NULL if this view has no view in front of it or is invalid.

Discussion
Returns the view before the specified view, in z-order.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

2462 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewGetRoot
Obtains the root view for a window.

HIViewRef HIViewGetRoot (
 WindowRef inWindow
);

Parameters
inWindow

The window to get the root for.

Return Value
The root view for the window, or NULL if an invalid window is passed.

Discussion
Note that the root view is not the same as the Control Manager root control.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor
HID Calibrator
HID Config Save
QTCarbonShell
QTMetaData

Declared In
HIView.h

HIViewGetSizeConstraints
Returns the minimum and maximum size for a control.

OSStatus HIViewGetSizeConstraints (
 HIViewRef inView,
 HISize *outMinSize,
 HISize *outMaxSize
);

Parameters
inView

The view to inspect.

outMinSize
The minimum size the view can be.

outMaxSize
The maximum size the view can be.

Return Value
An operating system result code.

Functions 2463
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Discussion
These sizes can, for example, be used to help auto-position subviews. To get meaningful results, the control
must respond to the kEventControlGetSizeContraints event.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetSubviewHit
Returns the child of the given view hit by the point passed in.

OSStatus HIViewGetSubviewHit (
 HIViewRef inView,
 const HIPoint *inPoint,
 Boolean inDeep,
 HIViewRef *outView
);

Parameters
inView

The view you wish to position.

inPoint
The mouse coordinate to use. This is passed in the local coordinate system of inView.

inDeep
Pass true to find the deepest child hit, false to go only one level deep (just check direct children of
inView).

outView
The view hit by inPoint, or NULL if no subview was hit.

Return Value
An operating system result code.

Discussion
This function is more primitive than using HIViewGetViewForMouseEvent (page 2466), and should be used
only in non-event-handling cases.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetSuperview
Returns a view’s parent view.

2464 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewRef HIViewGetSuperview (
 HIViewRef inView
);

Parameters
inView

The view whose parent you are interested in getting.

Return Value
An HIView reference, or NULL if this view has no parent or is invalid.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetTrackingAreaID
Obtains the ID of a tracking area.

OSStatus HIViewGetTrackingAreaID (
 HIViewTrackingAreaRef inArea,
 HIViewTrackingAreaID *outID
);

Parameters
inArea

The tracking area whose ID is to be obtained.

outID
On return, the ID for the tracking area specified by inArea.

Return Value
An operating system result code.

Discussion
The tracking area ID that is obtained is the value that was specified when HIViewNewTrackingArea (page
2473) was called to create the tracking area.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetValue
Obtains the value of a view.

Functions 2465
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

SInt32 HIViewGetValue (
 HIViewRef inView
);

Parameters
inView

The view whose value is to be obtained.

Return Value
The view’s value.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetViewForMouseEvent
Returns the appropriate view to handle a mouse event.

OSStatus HIViewGetViewForMouseEvent (
 HIViewRef inView,
 EventRef inEvent,
 HIViewRef *outView
);

Parameters
inView

The view to start from. You should pass the window’s root view.

inEvent
The mouse event in question.

outView
The view that the mouse event should be sent to.

Return Value
An operating system result code.

Discussion
This function is a little higher-level than HIViewGetSubviewHit (page 2464). This function finds the deepest
view that should handle the mouse event. It also sends a Carbon event to each view asking it to return the
appropriate subview, which allows parent views to catch clicks on their subviews. This function is the
recommended function to use before processing mouse events. Using one of the more primitive functions
may result in an undefined behavior.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

2466 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewGetViewSize
Obtains the view size of a view.

SInt32 HIViewGetViewSize (
 HIViewRef inView
);

Parameters
inView

The view whose view size is to be obtained.

Return Value
The view size.

Discussion
The view size is the size of the content to which a view’s display is proportioned. The view size is commonly
used to set the proportional size of a scroll bar’s thumb indicator.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewGetWindow
Obtains a reference to the window to which the specified view is bound.

WindowRef HIViewGetWindow (
 HIViewRef inView
);

Parameters
inView

The view to query.

Return Value
An operating system result code, or NULL if the view reference specified by inView is invalid or if the view
is not bound to any window.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewIsActive
Determines whether a view is active.

Functions 2467
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Boolean HIViewIsActive (
 HIViewRef inView,
 Boolean *outIsLatentActive
);

Parameters
inView

The view that is to be queried.

outIsLatentActive
A pointer to a Boolean that, on return, is set to true if the view is latently active or false if the view
is not latently active. Pass NULL if you don’t need this information.

Return Value
A Boolean whose value indicates whether the view is active (true) or not (false).

Discussion
A view’s active state is affected by the active state of its parents. If HIViewIsActive finds that any parent
view is inactive, it returns false to indicate that the view specified by inView is considered to be inactive
too. In addition, HIViewIsActive can optionally check to see if a view is latently active, even if the view’s
parents are inactive.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewIsCompositingEnabled
Determines whether compositing is enabled for a view.

Boolean HIViewIsCompositingEnabled (
 HIViewRef inView
);

Parameters
inView

The view that is to be queried.

Return Value
A Boolean whose value indicates whether compositing is enabled (true) or not (false).

Discussion
Checking a window’s kWindowCompositingAttribute attribute is not sufficient for determining whether
a view is in compositing or non-compositing mode because some of a window’s views can be in either mode
at the same time. Call this function to determine the current compositing mode of a view.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

2468 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewIsDrawingEnabled
Determines if drawing is currently enabled for a view.

Boolean HIViewIsDrawingEnabled (
 HIViewRef inView
);

Parameters
inView

The view to get the drawing state for.

Return Value
A Boolean value indicating that drawing is on (true) or off (false).

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewIsEnabled
Determines whether a view is enabled.

Boolean HIViewIsEnabled (
 HIViewRef inView,
 Boolean *outIsLatentEnabled
);

Parameters
inView

The view to query.

outIsLatentEnabled
A pointer to a Boolean that, on return, is set to true if the view is latently enabled or false if the
view is not latently enabled. Pass NULL if you don’t need this information.

Return Value
A Boolean whose value indicates whether the view is enabled (true) or not (false).

Discussion
A view’s enabled state is affected by the enabled state of its parents. If HIViewIsEnabled finds that any
parent view is disabled, it returns false to indicate that the view specified by inView is considered to be
disabled too. In addition, HIViewIsEnabled can optionally check to see if a view is latently enabled, even
if its parents are disabled.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

Functions 2469
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewIsLatentlyVisible
Determines whether a view is latently visible.

Boolean HIViewIsLatentlyVisible (
 HIViewRef inView
);

Parameters
inView

The view whose latent visibility is to be queried.

Return Value
A Boolean value indicating whether the view is latently visible (true) or hidden (false).

Discussion
A view’s visibility is affected by the visibility of its parents. If any parent view is invisible, the view specified
by inView is considered to be invisible too. HIViewIsLatentlyVisible returns whether a view is latently
visible, even if its parents are invisible.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewIsLayoutActive
Determines whether layout handling is active or suspended.

Boolean HIViewIsLayoutActive (
 HIViewRef inView
);

Parameters
inView

The view for which the status of layout handling is to be determined.

Return Value
A Boolean whose value is true if the view would respond to any linked relative’s changes; otherwise false.

Discussion
A view’s layout active state is also affected by the layout active state of its parents. If a parent view has an
inactive layout, this view is also considered to have an inactive layout. To determine the latent active state
of a view, see HIViewIsLayoutLatentlyActive (page 2471).

Note that this function does not determine whether the view’s layout is valid.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIView.h

2470 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewIsLayoutLatentlyActive
Determines whether layout handling is latently active or suspended.

Boolean HIViewIsLayoutLatentlyActive (
 HIViewRef inView
);

Parameters
inView

The view for which the status of layout handling is to be determined.

Return Value
A Boolean whose value is true if the view would latently respond to any linked relative’s changes; otherwise
false.

Discussion
This function determines whether a view’s layout is latently active, even if one of its parent’s layouts is not
active.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewIsValid
Determines whether the specified view is known to the HIToolbox.

Boolean HIViewIsValid (
 HIViewRef inView
);

Parameters
inView

The view to check.

Return Value
A Boolean whose value is true if the view is known to the HIToolbox; otherwise, false.

Discussion
This function does not check the data in the view for validity.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewIsVisible
Determines whether a view is visible.

Functions 2471
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Boolean HIViewIsVisible (
 HIViewRef inView
);

Parameters
inView

The view whose visibility you want to determine.

Return Value
A Boolean value indicating whether the view is visible (true) or hidden (false).

Discussion
HIViewIsVisible returns the effective visibility of a view, which is determined both by the view’s own
visibility and the visibility of its parent views. If a parent view is invisible, this view is considered to be invisible
too.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewMoveBy
Move a view by the specified distance relative to its current location.

OSStatus HIViewMoveBy (
 HIViewRef inView,
 CGFloat inDX,
 CGFloat inDY
);

Parameters
inView

The view you want to move.

inDX
The horizontal distance to move the view. Negative values move the view to the left, positive values
to the right.

inDY
The vertical distance to move the view. Negative values move the view up, positive values down.

Return Value
An operating system result code.

Discussion
This function affects the view’s frame but does not affect the view’s bounds.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

2472 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewNewTrackingArea
Creates a new tracking area for a view.

OSStatus HIViewNewTrackingArea (
 HIViewRef inView,
 HIShapeRef inShape,
 HIViewTrackingAreaID inID,
 HIViewTrackingAreaRef *outRef
);

Parameters
inView

The view for which a new tracking area is to be created.

inShape
The shape to use. Pass NULL to use the entire structure region of the view. On return, you may safely
release the shape.

inID
An identifier for the new tracking area. You can specify any value you want, or zero if you don’t want
to associate an identifier with the new tracking area.

outRef
On return, a reference to the new tracking area. In Mac OS X v10.5 and later, you may pass NULL if
you don't need this information. The new tracking area is automatically destroyed when the view is
released; you do not need to dispose of the tracking area yourself unless you remove it from the view
before the view is released.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor

Declared In
HIView.h

HIViewPlaceInSuperviewAt
Places a view at an absolute location within its parent.

OSStatus HIViewPlaceInSuperviewAt (
 HIViewRef inView,
 CGFloat inX,
 CGFloat inY
);

Parameters
inView

The view you want to position.

Functions 2473
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

inX
The absolute horizontal coordinate at which to position the view.

inY
The absolute vertical coordinate at which to position the view.

Return Value
An operating system result code.

Discussion
This function affects the view’s frame but does not affect the view’s bounds.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewRegionChanged
Informs the system that a region of the view has changed.

OSStatus HIViewRegionChanged (
 HIViewRef inView,
 HIViewPartCode inRegionCode
);

Parameters
inView

The view whose region changed.

inView
The region that changed. At present, the region can only be the structure, opaque, and clickable
regions. For possible constants, see “HIView Meta-Parts Constants” (page 2511).

Return Value
An operating system result code.

Discussion
The view system may respond to the information provided by this function in some way. For example, if a
view’s clickable region changes, call this function to tell the Toolbox to resynchronize the region it uses for
asynchronous window dragging (if enabled). Likewise, if a view’s opaque region changes, call this function
to adjust the window’s opaque shape.

You don’t need to call this function when a view is moved or resized because the HIToolbox automatically
handles those kinds of changes.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIView.h

2474 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewRemoveFromSuperview
Removes a view from its parent.

OSStatus HIViewRemoveFromSuperview (
 HIViewRef inView
);

Parameters
inView

The view to remove.

Return Value
An operating system result code.

Discussion
The subview that is removed from the parent is not released and still exists.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
QTCarbonShell

Declared In
HIView.h

HIViewRender
Renders the invalid portions of a view.

OSStatus HIViewRender (
 HIViewRef inView
);

Parameters
inView

The view that is to be rendered.

Return Value
An operating system result code.

Discussion
Normally, areas are redrawn at event loop time, but there might be times when an immediate redraw is
needed. You should call this function sparingly because it does a fully composited redraw for the area of the
view. That is, all other views that intersect the area of the specified view are also redrawn. Calling this function
for several views at a particular level of a hierarchy would be costly, so you should only pass the root view
of a window to this function.

The behavior of this function when passed a non-root view changed in Mac OS X v10.4. In Mac OS X v10.3,
when called on a non-root view, this function validated all of the views in the window that intersect the
specified view, including portions that did not intersect the specified view. Consequently, all of the views
were not actually redrawn. In Mac OS X v10.4, when called on a non-root view, this function only validates
those portions of each view that intersect the specified view.

Functions 2475
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewReshapeStructure
Informs the system that the structure region of the given view has changed shape.

OSStatus HIViewReshapeStructure (
 HIViewRef inView
);

Parameters
inView

The view to reshape and invalidate.

Return Value
An operating system result code.

Discussion
This function is used by custom views. If a view decides that its structure will change shape, it should call
this function. This tells the toolbox to recalculate and invalidate as appropriate. You might, for example, call
this function when gaining or losing a focus ring.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewResumeLayout
Resumes layout handling for a view and its children.

OSStatus HIViewResumeLayout (
 HIViewRef inView
);

Parameters
inView

The view for which layout handling is to be resumed.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

2476 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Declared In
HIView.h

HIViewScrollRect
Scrolls a view’s contents, or a portion thereof.

OSStatus HIViewScrollRect (
 HIViewRef inView,
 const HIRect *inRect,
 CGFloat inDX,
 CGFloat inDY
);

Parameters
inView

The view to scroll.

inRect
The rect to scroll. Pass NULL to mean the entire view. The rect passed cannot be bigger than the view's
bounds. It must be in the local coordinate system of the view.

inDX
The horizontal distance to scroll. Positive values shift to the right, negative values shift to the left.

inDY
The vertical distance to scroll. Positive values shift downward, negative values shift upward.

Return Value
An operating system result code.

Discussion
This function blits the contents of the view as appropriate to scroll and then invalidates those portions that
need to be redrawn. Be warned that this is a raw bit scroll. Anything that overlaps the target view will be
scrolled as well.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetActivated
Sets a view to be active or inactive.

OSStatus HIViewSetActivated (
 HIViewRef inView,
 Boolean inSetActivated
);

Parameters
inView

The view that is to be set.

Functions 2477
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

inSetActivated
A Boolean whose value is true to set the view to be active or false to set the view to be inactive.

Return Value
An operating system result code.

Discussion
This function affects the effective activation of a view, which affects the effective activation of the view’s
children. If the view is being set to inactive, all children become inactive as well, but their latent activation
does not change. If the children are latently inactive and the view is made active, the children remain latently
inactive.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetBoundsOrigin
Sets the origin of the view.

OSStatus HIViewSetBoundsOrigin (
 HIViewRef inView,
 CGFloat inX,
 CGFloat inY
);

Parameters
inView

The view whose origin you wish to adjust.

inX
The X coordinate.

inY
The Y coordinate.

Return Value
An operating system result code.

Discussion
This effectively also moves all subcontrols of a view as well. This call will not invalidate the view, in case you
might want to move the contents with HIViewScrollRect instead of redrawing the complete content.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIView.h

2478 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewSetCommandID
Sets the command ID of a view.

OSStatus HIViewSetCommandID (
 HIViewRef inView,
 UInt32 inCommandID
);

Parameters
inView

The view whose command ID is to be set.

inID
The command ID to set.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetDrawingEnabled
Turns control drawing on or off.

OSStatus HIViewSetDrawingEnabled (
 HIViewRef inView,
 Boolean inEnabled
);

Parameters
inView

The view to enable or disable drawing for.

inEnabled
A Boolean value indicating whether drawing should be on (true) or off (false).

Return Value
An operating system result code.

Discussion
You can use this function to ensure that no drawing events are sent to the specified control. Functions such
as Draw1Control and HIViewSetNeedsDisplay cannot draw when control drawing is off.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

Functions 2479
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewSetEnabled
Enables or disables a view.

OSStatus HIViewSetEnabled (
 HIViewRef inView,
 Boolean inSetEnabled
);

Parameters
inView

The view that is to be set.

inSetEnabled
A Boolean whose value is true to enable the view or false to disable the view.

Return Value
An operating system result code.

Discussion
Any subviews of the view specified by inView become enabled or disabled in accordance with the value of
inSetEnabled.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetFirstSubViewFocus
Sets the subview that is first to receive keyboard focus.

OSStatus HIViewSetFirstSubViewFocus (
 HIViewRef inParent,
 HIViewRef inSubView
);

Parameters
inParent

The parent view.

inSubView
The first subview that is to receive keyboard focus. Pass NULL to tell the view system to use the default
rules.

Return Value
An operating system result code.

Discussion
This function sets the first subview to shift focus to whenever the keyboard focus is advanced and the
container view is entered.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

2480 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Declared In
HIView.h

HIViewSetFrame
Sets the frame of a view.

OSStatus HIViewSetFrame (
 HIViewRef inView,
 const HIRect *inRect
);

Parameters
inView

The view whose frame is to be set.

inRect
The new frame to set.

Return Value
An operating system result code.

Discussion
This function effectively moves the view within its parent. It also marks the view (and anything that was
exposed behind it) to be redrawn.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIView.h

HIViewSetHilite
Sets highlighting on a view.

OSStatus HIViewSetHilite (
 HIViewRef inView,
 HIViewPartCode inHilitePart
);

Parameters
inView

The view for which highlighting is to be set.

inHilitePart
The part of the view whose highlighting is to be set. For possible values, see “HIViewPartCode
Constants” (page 2513).

Return Value
An operating system result code.

Functions 2481
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetID
Sets the HIViewID of a view.

OSStatus HIViewSetID (
 HIViewRef inView,
 HIViewID inID
);

Parameters
inView

The view whose HIViewID is to be set.

inID
The HIViewID to set.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetLayoutInfo
Sets the layout information of an HIView.

OSStatus HIViewSetLayoutInfo (
 HIViewRef inView,
 const HILayoutInfo *inLayoutInfo
);

Parameters
inView

The view whose layout information is to be set.

inLayoutInfo
A pointer to an HILayoutInfo (page 2493) structure containing the layout values that are to be set.

Return Value
An operating system result code.

Discussion
Layouts are used to automatically change the size and positioning of a view when another view changes
size or position. Layout changes only take effect in two cases:

2482 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

 ■ When HIViewApplyLayout (page 2443) is called after the view’s layout has been set by calling
HIViewSetLayoutInfo. The HIViewApplyLayout function is most useful when first applying a scaling
or positioning layout to a view in order to set up the view’s initial position and size relative to the view
referenced in the layout.

 ■ When the related view changes its size or position.

A layout allows a view’s size or position to be modified in three ways: side binding, axial scaling, and axial
positioning. In the following examples, View A initially has a left side of 100 and a right side of 150, and is
placed inside a parent view that has a width of 275.

 ■ Bindings — Setting up a binding relationship between two views specifies that one edge of a view is to
change by an amount equal to the change in an edge of another view. If View A has a right-side binding
to its parent’s maximum (or right) side, when the parent’s right side changes, View A’s right side changes
by the same amount. If the parent view resizes to be 325 units wide (50 units wider than before), View
A is resized so that its left side changes to 150 units and its right side changes to 200, which is 50 units
more to the right than before. You can think of bindings as a way to maintain distance. An edge bound
to another view’s edge always maintains its offset from that related edge. In other view systems, this
concept is often referred to as “springs and rods.” Note that a binding does not cause one side of the
view to exactly align with the side of another view; a binding merely causes one side of the view to
change by the same amount as another view changes. To align one edge of a view to another view’s
edge, use positioning. Bindings depend on changes in size or position of the related view. As a result,
calling HIViewApplyLayout does not activate side bindings, as no changes have occurred. Bindings
are implemented using theHIBinding (page 2493) structure and oneHISideBinding (page 2494) structure
per view edge.

 ■ Scaling — Setting up a scaling relationship between two views specifies that the axial size (that is, the
width or height) of a view is to be a specified ratio of the size of another view when that other view
moves or resizes. If View A has an x-axis scaling for its parent view with a ratio of 0.8, when the parent
view’s width changes, View A’s width changes to be the parent’s width multiplied by 0.8. If the parent
view resizes to be 325 units wide, View A resizes so that its left side stays at 100 and its right side changes
to 360 (100 + 325 * 0.8). Note that when a scaling layout is first set up on a view with
HIViewSetLayoutInfo, no scaling is applied to the view because scaling only occurs when the related
view resizes. If scaling is required at initial setup, call HIViewSetLayoutInfo and then
HIViewApplyLayout (page 2443). Scaling is implemented using theHIScaling (page 2494) structure and
one HIAxisScale (page 2494) structure per view axis.

 ■ Positioning — Setting up a positioning relationship between two views specifies that the axial position
(i.e., vertical or horizontal) of a view is to change so that the view aligns with the minimum, maximum,
or center of another view when that other view resizes. If View A has an x-axis position with its parent
view with center positioning specified, when the parent view changes size, View A moves so that it is
centered horizontally relative to its parent. If the parent view resizes to be 300 units wide, View A
repositions so that its left side is at 125 and its right side is at 175, centered in the parent view. Positioning
is implemented using the HIPositioning (page 2495) structure and one HIAxisPosition (page 2495)
per view axis.

The HIView layout engine applies transformations to a view sequentially. First, bindings are applied. Then
scaling is applied, which could override some of the previously applied bindings. Then positioning is applied,
which could also override some of the previously applied bindings. The bindings are applied recursively to
a container’s subviews, which requires care on your part to avoid infinite recursion, especially when applying
inter-relational bindings. For example, if View A’s x axis is scaled relative to View B and View B’s x-axis is scaled
to View A, your application could hang when the layouts are applied because View A would affect View B,
which would affect View A, and so on.

Functions 2483
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

For more information on using the layout engine, see HIView Programming Guide.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator

Declared In
HIView.h

HIViewSetMaximum
Sets a view’s maximum value.

OSStatus HIViewSetMaximum (
 HIViewRef inView,
 SInt32 inMaximum
);

Parameters
inView

The view whose maximum value is to be set.

inView
The maximum value to set.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetMinimum
Sets a view’s minimum value.

OSStatus HIViewSetMinimum (
 HIViewRef inView,
 SInt32 inMinimum
);

Parameters
inView

The view whose minimum value is to be set.

inMinimum
The value to set as the view’s minimum value.

2484 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetNeedsDisplay
Marks a view as needing or not needing to be redrawn.

OSStatus HIViewSetNeedsDisplay (
 HIViewRef inView,
 Boolean inNeedsDisplay
);

Parameters
inView

The view to mark as dirty (needing to be redrawn) or clean (not needing to be redrawn).

inNeedsDisplay
A Boolean whose value is true to mark the view as dirty or false to mark it as clean.

Return Value
An operating system result code.

Discussion
If the view is not visible or is obscured completely by other views, no action is taken.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
HID Calibrator
HID Config Save
HID Explorer

Declared In
HIView.h

HIViewSetNeedsDisplayInRect
Uses an HIRect to mark a portion of a view as needing or not needing to be redrawn.

Functions 2485
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HIViewSetNeedsDisplayInRect (
 HIViewRef inView,
 const HIRect *inRect,
 Boolean inNeedsDisplay
);

Parameters
inView

The view having a region that is to be marked as dirty (needs to be redrawn) or clean (valid and not
needing to be redrawn).

inRect
The area, in view-relative coordinates, that is to be marked.

inNeedsDisplay
A Boolean whose value is true to mark the area described by inRect as dirty or false to mark it
as clean.

Return Value
An operating system result code.

Discussion
If the view is not visible or is obscured completely by other views, no action is taken. The area specified by
inRect is intersected with the view’s visible region.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetNeedsDisplayInRegion
Uses a region to mark a portion of a view as needing or not needing to be redrawn.

OSStatus HIViewSetNeedsDisplayInRegion (
 HIViewRef inView,
 RgnHandle inRgn,
 Boolean inNeedsDisplay
);

Parameters
inView

The view having a region that is to be marked as dirty (needs to be redrawn) or clean (valid and not
needing to be redrawn).

inRgn
The region, in view-relative coordinates, to mark as dirty or clean.

inNeedsDisplay
A Boolean whose value is true to mark the region described by inRgn as dirty or false to mark it
as clean.

Return Value
An operating system result code.

2486 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Discussion
If the view is not visible or is obscured completely by other views, no action is taken. The specified region is
effectively intersected with the view’s visible region.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetNeedsDisplayInShape
Uses a shape to mark a portion of a view as needing or not needing to be redrawn.

OSStatus HIViewSetNeedsDisplayInShape (
 HIViewRef inView,
 HIShapeRef inArea,
 Boolean inNeedsDisplay
);

Parameters
inView

The view having a shape that is to be marked as dirty (needs to be redrawn) or clean (valid and not
needing to be redrawn).

inArea
The area, in view-relative coordinates, that is to be marked.

inNeedsDisplay
A Boolean whose value is true to mark the area described by inArea as dirty or false to mark it
as clean.

Return Value
An operating system result code.

Discussion
If the view is not visible or is obscured completely by other views, no action is taken. The area specified by
inArea is intersected with the view’s visible region.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetNextFocus
Sets the view that is to receive keyboard focus when keyboard focus advances from the specified view.

Functions 2487
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

OSStatus HIViewSetNextFocus (
 HIViewRef inView,
 HIViewRef inNextFocus
);

Parameters
inView

The view.

inNextFocus
The view that is to receive keyboard focus when focus is advanced from the view specified by inView.
The view must have the same parent as the view specified by inView. Pass NULL to tell the view
system to use the default rules.

Return Value
An operating system result code.

Discussion
This function sets the view to which keyboard focus is to be shifted the next time keyboard focus is advanced
from the view specified by inView.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetText
Sets the text of a view to the specified string.

OSStatus HIViewSetText (
 HIViewRef inView,
 CFStringRef inText
);

Parameters
inView

The view whose text is to be set.

inText
The text that is to be set.

Return Value
An operating system result code.

Discussion
This function attempts to set the text that is displayed when drawing the view and is generally successful
on views that handle the kControlEditTextCFStringTag SetControlData tag. If this function can’t set
that text, it sets the text in the view’s title instead.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

2488 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Related Sample Code
HID Explorer

Declared In
HIView.h

HIViewSetValue
Sets the value of a view.

OSStatus HIViewSetValue (
 HIViewRef inView,
 SInt32 inValue
);

Parameters
inView

The view whose value is to be set.

inValue
The value to set.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetViewSize
Sets the view size of a view.

OSStatus HIViewSetViewSize (
 HIViewRef inView,
 SInt32 inViewSize
);

Parameters
inView

The view whose view size is to be set.

inViewSize
The view size that is to be set.

Return Value
An operating system result code.

Discussion
The view size is the size of the content to which a view’s display is proportioned. The view size is commonly
used to set the proportional size of a scroll bar’s thumb indicator.

Functions 2489
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSetVisible
Hides or shows a view.

OSStatus HIViewSetVisible (
 HIViewRef inView,
 Boolean inVisible
);

Parameters
inView

The view to hide or show.

inVisible
A Boolean value that indicates whether you want to hide the view (false) or show the view (true).

Return Value
An operating system result code.

Discussion
Marks the area the view will occupy or previously occupied as needing to be redrawn later.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Related Sample Code
CarbonCocoa_PictureCursor
HID Calibrator

Declared In
HIView.h

HIViewSetZOrder
Changes the front-to-back ordering of sibling views.

OSStatus HIViewSetZOrder (
 HIViewRef inView,
 HIViewZOrderOp inOp,
 HIViewRef inOther
);

Parameters
inView

The view whose Z-order you want to change.

2490 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

inOp
Causes inView to be ordered above or below inOther. For possible values, see “HIView Z-Ordering
Constants” (page 2511).

inOther
Another optional view to use as a reference. Pass NULL to indicate an absolute position.

Return Value
An operating system result code.

Discussion
For example, passing kHIViewZOrderAbove as the value on inOp and NULL as the value of inOthermoves
a view to the front of all of its siblings. Passing kHIViewZOrderBelow as the value of inOp and NULL as the
value of inOther moves a view to the back of all its siblings.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSimulateClick
Simulates a mouse click on a given view.

OSStatus HIViewSimulateClick (
 HIViewRef inView,
 HIViewPartCode inPartToClick,
 UInt32 inModifiers,
 HIViewPartCode *outPartClicked
);

Parameters
inView

The view to test the part hit.

inPartToClick
The part the view should consider to be clicked.

inModifiers
The modifiers the view can consider for its click action.

outPartClicked
The part that was hit; can be kHIViewNoPart if no action occurred. For possible values, see
“HIViewPartCode Constants” (page 2513). Pass NULL if you don’t need the part code returned.

Return Value
An operating system result code.

Discussion
This function is used to simulate a mouse click on a given view. It sends a kEventControlSimulateHit
event to the specified view and also sends kEventControlHit and (if the Hit event is not handled)
kEventCommandProcess events.

Functions 2491
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Note that not all windows respond to the events that this API sends. A fully Carbon-event-based window
most likely responds exactly as if the user had really clicked in the view. A window that uses Classic event
record-based APIs (WaitNextEvent or ModalDialog) typically does not respond at all. To simulate a click
in such a window, you may need to post a mouse-down/mouse-up pair or use a Dialog Manager event filter
proc to simulate a hit in a dialog item.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSubtreeContainsFocus
Determines whether a view or any subviews have keyboard focus.

Boolean HIViewSubtreeContainsFocus (
 HIViewRef inSubtreeStart
);

Parameters
inSubtreeStart

The view to query.

Return Value
A Boolean whose value is true if the view or any of its children have keyboard focus; otherwise, false.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
HIView.h

HIViewSuspendLayout
Suspends layout handling for a view and its children.

OSStatus HIViewSuspendLayout (
 HIViewRef inView
);

Parameters
inView

The view for which layout handling is to be suspended.

Return Value
An operating system result code.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

2492 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Declared In
HIView.h

Data Types

HILayoutInfo
Structure that stores the layout of an HIView.

struct HILayoutInfo {
 UInt32 version;
 HIBinding binding;
 HIScaling scale;
 HIPositioning position;
};

Fields
version

The version of this structure. The current version is kHILayoutInfoVersionZero.

binding
An HIBinding structure describing the bindings to apply to the sides of an HIView.

scale
An HIScaling structure describing the axial scaling to apply to an HIView.

position
An HIPositioning structure describing the positioning to apply to an HIView.

Discussion
This structure is provided as a parameter to HIViewGetLayoutInfo (page 2459) and
HIViewSetLayoutInfo (page 2482).

HIBinding
Represents a set of top, left, bottom, and right bindings for an view.

struct HIBinding {
 HISideBinding top;
 HISideBinding left;
 HISideBinding bottom;
 HISideBinding right;
};

Fields
top

The top side bindings.

left
The left side bindings.

bottom
The bottom side bindings.

Data Types 2493
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

right
The right side bindings.

Discussion
These constants are used in conjunction with the HIView layout engine.

HISideBinding
Structure for storing the binding for the side of a view.

struct HISideBinding {
 HIViewRef toView;
 HIBindingKind kind;
 float offset;
};

Fields
toView

An HIViewRef to the view to which this side is bound. This field can be NULL, which indicates that
the side is bound to its parent view.

kind
The bind kind. For possible values, see “HILayout Binding Kind Constants” (page 2505).

offset
Reserved; must be set to zero.

Discussion
The layout engine can automatically reposition and resize views for which relationships have been set up.
(Call HIViewSetLayoutInfo (page 2482) to establish these relationships.) A side binding is entirely related
to the change of the parent’s position or size but only as the size affects the maximum edge position. A side
binding doesn’t mean “move to where my relative’s side is” but rather “move as my relative’s side has moved.”

HIScaling
A set of scaling descriptions for the axes of a view.

struct HIScaling {
 HIAxisScale x;
 HIAxisScale y;
};

Fields
x

The horizontal scaling for a view.

x
The vertical scaling for a view.

HIAxisScale
Represents a scale description for an axis of a view.

2494 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

struct HIAxisScale {
 HIViewRef toView;
 HIScaleKind kind;
 float ratio;
};

Fields
toView

An HIViewRef to the view to which this axis is scaled. This field can be NULL, which indicates that
the axis is scaled relative to its parent’s view.

kind
The type of scaling. Currently, this field must be kHILayoutScaleAbsolute.

ratio
A value that indicates how much to scale the view. Zero indicates no scaling. A value of one indicates
that the view is to always have the same axial size.

HIPositioning
A positioning description for an HIView.

struct HIPositioning {
 HIAxisPosition x;
 HIAxisPosition y;
};

Fields
x

The X axis.

y
The Y axis.

HIAxisPosition
An axial position description for an HIView.

struct HIAxisPosition {
 HIViewRef toView;
 HIPositionKind kind;
 float offset;
};

Fields
toView

An HIViewRef to the view relative to which a view positioned. This field can be NULL, which indicates
that the axis is positioned relative to its parent’s view.

kind
The type of positioning. For possible values, see “HIPositionKind Constants” (page 2506).

offset
After the position kind has been applied, the origin component that corresponds to the positioning
axis is offset by this value. For example, left aligned + 10.

Data Types 2495
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewContentInfo
Describes the content of a view.

struct HIViewContentInfo {
 HIViewContentType contentType;
 union {
 IconSuiteRef iconSuite;
 IconRef iconRef;
 CGImageRef imageRef;
 } u;
};
typedef struct HIViewContentInfo HIViewContentInfo;
typedef HIViewContentInfo * HIViewContentInfoPtr;

Fields
contentType

The type of content in the union. For possible values, see “HIViewContentType Constants” (page 2512).

Availability
Available in Mac OS X v10.4 and later.

Declared In
HIView.h

HIViewID
Defines the HIView ID.

typedef ControlID HIViewID;

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIView.h

HIViewFrameMetrics
Describes the offsets from the structure to the content area of a view.

struct HIViewFrameMetrics {
 float top;
 float left;
 float bottom;
 float right;
};

Fields
top

Height of the top of the structure area.

left
Width of the left of the structure area.

2496 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

bottom
Height of the bottom of the structure area.

right
Width of the right of the structure area.

Discussion
The top metric is the difference between the vertical coordinate of the top edge of the view’s structure region
and the vertical coordinate of the top edge of the view’s content region. This structure is returned by a view
in response to a kEventControlGetFrameMetrics event.

HIViewKind
Represents the signature and kind of the view.

struct HIViewKind {
 OSType signature;
 OSType kind;
}

Fields
signature

The signature of the view. Apple reserves all signatures made up of only lowercase characters.

kind
The kind of the view. Apple reserves all kinds made up of only lowercase characters.

HIViewRef
Define an HIView reference.

typedef ControlRef HIViewRef;

Availability
Available in Mac OS X v10.2 and later.

Declared In
HIObject.h

HIViewTrackingAreaRef
Define an HIView tracking area reference.

typedef struct OpaqueHIViewTrackingAreaRef HIViewTrackingAreaRef;

Availability
Available in Mac OS X v10.4 and later.

Declared In
HIView.h

Data Types 2497
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIViewTrackingAreaID
Define an HIView tracking area ID.

typedef UInt64 HIViewTrackingAreaID;

Availability
Available in Mac OS X v10.4 and later.

Declared In
HIView.h

Constants

Class ID Constants
Specify class identifiers for view-related subclasses of HIObject.

#define kHIViewClassID CFSTR("com.apple.hiview")
#define kHIGrowBoxViewClassID CFSTR("com.apple.higrowboxview")
#define kHIImageViewClassID CFSTR("com.apple.HIImageView")
#define kHIMenuViewClassID CFSTR("com.apple.HIMenuView")
#define kHIStandardMenuViewClassID CFSTR("com.apple.HIStandardMenuView")
#define kHISegmentedViewClassID CFSTR("com.apple.HISegmentedView")
#define kHIScrollViewClassID CFSTR("com.apple.HIScrollView")
#define kHIComboBoxClassID CFSTR("com.apple.HIComboBox")
#define kHISearchFieldClassID CFSTR("com.apple.HISearchField")
#define kHICocoaViewClassID CFSTR("com.apple.HICocoaView")

Constants
kHIViewClassID

Class identifier for the HIView class.

Available in Mac OS X v10.2 and later.

Declared in HIView.h.

kHIGrowBoxViewClassID
Class identifier for the HIGrowBoxView class.

Available in Mac OS X v10.2 and later.

Declared in HIWindowViews.h.

kHIImageViewClassID
Class identifier for the HIImageView class.

Available in Mac OS X v10.3 and later.

Declared in HIImageViews.h.

kHIMenuViewClassID
Class identifier for the HIMenuView class.

Available in Mac OS X v10.3 and later.

Declared in HIMenuView.h.

2498 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

kHIStandardMenuViewClassID
Class identifier for the HIStandardMenuView class.

Available in Mac OS X v10.3 and later.

Declared in HIMenuView.h.

kHISegmentedViewClassID
Class identifier for the HISegmentedView class.

Available in Mac OS X v10.3 and later.

Declared in HISegmentedView.h.

kHIScrollViewClassID
Class identifier for the HIScrollView class.

Available in Mac OS X v10.3 and later.

Declared in HIScrollView.h.

kHIComboBoxClassID
Class identifier for the HIComboBox class.

Available in Mac OS X v10.3 and later.

Declared in HIComboBox.h.

kHISearchFieldClassID
Class identifier for the HISearchField class.

Available in Mac OS X v10.3 and later.

Declared in HISearchField.h.

kHICocoaViewClassID
Class identifier for the HICocoaView class.

Available in Mac OS X v10.5 and later.

Declared in HICocoaView.h.

Clock Event Constant
Specify the constant for changes in date or time in the clock control (kEventClassClockView).

enum {
 kEventClockDateOrTimeChanged = 1
};

Constants
kEventClockDateOrTimeChanged

An event sent by the clock control when the user changes the date or time. Clients can register for
this notification in order to update state based on the date or time in the clock. This event is sent to
the view only; it is not propagated. The event is sent to all handlers installed on the control.

Available in Mac OS X v10.4 and later.

Declared in HIClockView.h.

Discussion
Table 34-1 shows the event parameters associated with this event.

Table 34-1 Parameter names and types for date or time change events

Parameter typeParameter nameEvent kind

Constants 2499
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

typeControlRefkEventParamDirectObjectkEventClockDateOrTimeChanged

Combo Box Attributes
Specify constants for combo box attributes.

enum {
 kHIComboBoxNoAttributes = 0L,
 kHIComboBoxAutoCompletionAttribute = (1L << 0),
 kHIComboBoxAutoDisclosureAttribute = (1L << 1),
 kHIComboBoxAutoSortAttribute = (1L << 2),
 kHIComboBoxAutoSizeListAttribute = (1L << 3),
 kHIComboBoxStandardAttributes = (kHIComboBoxAutoCompletionAttribute |
kHIComboBoxAutoDisclosureAttribute | kHIComboBoxAutoSizeListAttribute)
};

Constants
kHIComboBoxNoAttributes

Indicates the lack of any attributes.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

kHIComboBoxAutoCompletionAttribute
The control will attempt to auto complete the text the user is typing with an item in the combo box
list that is the closest appropriate match.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

kHIComboBoxAutoDisclosureAttribute
The control will disclose the combo box list after the user enters text.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

kHIComboBoxAutoSortAttribute
The items in the combo box list will be automatically sorted in alphabetical order.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

kHIComboBoxAutoSizeListAttribute
The combo box list will be automatically sized to fit the Human Interface Guidelines.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

kHIComboBoxStandardAttributes
The minimum set of commonly used combo box attributes.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

2500 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Combo Box Data Tags
Specify constants for combo box data tags.

enum {
 kHIComboBoxListTag = 'cbls',
 kHIComboBoxListPixelWidthTag = 'cblw',
 kHIComboBoxListPixelHeightTag = 'cblh',
 kHIComboBoxNumVisibleItemsTag = 'cbni'
};

Constants
kHIComboBoxListTag

Extract the contents of the combo box list as a CFArray. The CFArray is retained; if you get the array,
you own it and must release it. If you set it by calling SetControlData, the toolbox makes a copy
of it, and you are free to release your reference. The reference count is bumped on get/retains on set.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

kHIComboBoxListPixelWidthTag
A UInt32 containing the width of the combo box list. The width can be customized. This tag disables
the auto size attribute.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

kHIComboBoxListPixelHeightTag
A UInt32 containing the height of the combo box list. The height can be customized. This tag disables
the auto size attribute.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

kHIComboBoxNumVisibleItemsTag
A UInt32 containing the number of visible items in the combo box list. The number can be customized.
This tag disables the auto size attribute.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

Discussion
The combo box view also supports these tags previously defined for the EditUnicodeText control. These
tags are available through GetControlData and SetControlData with a ControlPartCode of
kHIComboBoxEditTextPart:

 ■ kControlFontStyleTag

 ■ kControlEditTextFixedTextTag

 ■ kControlEditTextTextTag

 ■ kControlEditTextKeyFilterTag

 ■ kControlEditTextValidationProcTag

 ■ kControlEditUnicodeTextPostUpdateProcTag

 ■ kControlEditTextSelectionTag

 ■ kControlEditTextKeyScriptBehaviorTag

Constants 2501
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

 ■ kControlEditTextCharCount

 ■ kControlEditTextCFStringTag

Combo Box List Item Event Constants
Specify a constant for combo box list item events (kEventClassHIComboBox).

enum {
 kEventComboBoxListItemSelected = 1,
 kEventParamComboBoxListSelectedItemIndex = 'cbli'
};

Constants
kEventComboBoxListItemSelected

This event is sent as a notification when an item in the combo box disclosure list has been selected.
This event is sent to all handlers installed on the control. This does not imply that the selection has
been accepted; for that you will need to register for the
kEventClassTextField/kEventTextAccepted event.

Available in Mac OS X v10.4 and later.

Declared in HIComboBox.h.

kEventParamComboBoxListSelectedItemIndex
Indicates the index of a selected combo box list item.

Available in Mac OS X v10.4 and later.

Declared in HIComboBox.h.

Discussion
Table 34-2 shows the event parameters associated with these events.

Table 34-2 Parameter names and types for combo box events

Parameter typeParameter nameEvent kind

typeControlRefkEventParamDirectObjectkEventComboBoxList-
ItemSelected

typeCFIndexkEventParamComboBoxListItemSelected-
ItemIndex

Combo Box Part Constants
Specify constants for combo box part codes.

2502 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

enum {
 kHIComboBoxEditTextPart = 5,
 kHIComboBoxDisclosurePart = 28
};

Constants
kHIComboBoxEditTextPart

Edit text part.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

kHIComboBoxDisclosurePart
Disclosure part.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

Discussion
Combo box part code constants are used when calling HIViewSetHilite (page 2481),
HIViewCopyShape (page 2448) and are returned by HIViewRegionChanged (page 2474),
HIViewGetFocusPart (page 2455). They are also used by the hit testing functions,
HIViewSimulateClick (page 2491) and HIViewGetPartHit (page 2462).

Control Kind Constants
Specify constants for control kinds.

enum {
 kControlKindHIScrollView = 'scrl',
 kControlKindHIImageView = 'imag',
 kControlKindHIComboBox = 'cbbx',
 kControlKindHISearchField = 'srfd',
 kControlKindHIMenuView = 'menu',
 kControlKindHIStandardMenuView = 'smnu',
 kHISegmentedViewKind = 'sgmt',
 kControlKindHIGrowBoxView = 'grow',
 kControlKindHICocoaView = 'hins'
};

Constants
kControlKindHIScrollView

Control kind for a scroll view.

Available in Mac OS X v10.4 and later.

Declared in HIScrollView.h.

kControlKindHIImageView
Control kind for an image view.

Available in Mac OS X v10.4 and later.

Declared in HIImageViews.h.

kControlKindHIComboBox
Control kind for a combo box.

Available in Mac OS X v10.2 and later.

Declared in HIComboBox.h.

Constants 2503
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

kControlKindHISearchField
Control kind for a search field.

Available in Mac OS X v10.3 and later.

Declared in HISearchField.h.

kControlKindHIMenuView
Control kind for a menu view.

Available in Mac OS X v10.4 and later.

Declared in HIMenuView.h.

kControlKindHIStandardMenuView
Control kind for a standard menu view.

Available in Mac OS X v10.4 and later.

Declared in HIMenuView.h.

kHISegmentedViewKind
Control kind for a segmented view.

Available in Mac OS X v10.3 and later.

Declared in HISegmentedView.h.

kControlKindHIGrowBoxView
Control kind for a grow box view.

Available in Mac OS X v10.4 and later.

Declared in HIWindowViews.h.

kControlKindHICocoaView
Control kind for a view that wraps a Cocoa view.

Available in Mac OS X v10.5 and later.

Declared in HICocoaView.h.

Discussion
These constants are returned by HIViewGetKind (page 2458) and GetControlKind (page 598).

Event Class Constants
Specify event class constants.

enum {
 kEventClassClockView = 'cloc',
 kEventClassScrollable = 'scrl',
 kEventClassHIComboBox = 'hicb',
 kEventClassSearchField = 'srfd',
 kEventClassTextField = 'txfd'
};

Constants
kEventClassClockView

Event class for events related to a clock view.

Available in Mac OS X v10.4 and later.

Declared in HIClockView.h.

2504 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

kEventClassScrollable
Event class for events related to a scrollable view.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

kEventClassHIComboBox
Event class for events related to a combo box view.

Available in Mac OS X v10.4 and later.

Declared in HIComboBox.h.

kEventClassSearchField
Event calls for events related to a search field view.

Available in Mac OS X v10.3 and later.

Declared in HISearchField.h.

kEventClassTextField
Event class for events related to text field views.

Available in Mac OS X v10.3 and later.

Declared in HITextViews.h.

HILayout Binding Kind Constants
Specify binding constants used by the HIView layout engine.

enum {
 kHILayoutBindNone = 0,
 kHILayoutBindMin = 1,
 kHILayoutBindMax= 2,
 kHILayoutBindLeft = kHILayoutBindMin,
 kHILayoutBindRight = kHILayoutBindMax,
 kHILayoutBindTop = kHILayoutBindMin,
 kHILayoutBindBottom = kHILayoutBindMax
};
typedef UInt16 HIBindingKind;

Constants
kHILayoutBindNone

No binding is to occur.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutBindMin
Bind to the minimum of the axis.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutBindMax
Bind to the maximum of the axis.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

Constants 2505
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

kHILayoutBindLeft
Synonym for kHILayoutBindMin.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutBindRight
Synonym for kHILayoutBindMax.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutBindTop
Synonym for kHILayoutBindMin.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutBindBottom
Synonym for kHILayoutBindMax.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

Discussion
Mac OS X v10.3 provides a layout engine for HIViews that allows applications to specify the layout relationships
between multiple views. When necessary, the layout engine automatically repositions and resizes views that
have layout information. For more information on how to use the layout engine, see
HIViewSetLayoutInfo (page 2482).

Horizontal and vertical bindings are very similar in application, but along different axes, so the binding kinds
have been abstracted to minimum and maximum. Synonyms are provided for convenience, and you are
encouraged to use them.

HILayoutInfoVersion Constant
Specify version 0 of the HILayoutInfo structure

enum {
 kHILayoutInfoVersionZero = 0
};

Constants
kHILayoutInfoVersionZero

The version of the HILayoutInfo structure is 0.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

HIPositionKind Constants
Specify position constants used by the HIView layout engine.

2506 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

enum {
 kHILayoutPositionNone = 0,
 kHILayoutPositionCenter = 1,
 kHILayoutPositionMin = 2,
 kHILayoutPositionMax = 3,
 kHILayoutPositionLeft = kHILayoutPositionMin,
 kHILayoutPositionRight = kHILayoutPositionMax,
 kHILayoutPositionTop = kHILayoutPositionMin,
 kHILayoutPositionBottom = kHILayoutPositionMax
};
typedef UInt16 HIPositionKind;

Constants
kHILayoutPositionNone

No positioning is to occur.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutPositionCenter
Bind to the center.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutPositionMin
Bind to the minimum of the axis.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutPositionMax
Bind to the maximum of the axis.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutPositionLeft
Synonym for kHILayoutPositionMin.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutPositionRight
Synonym for kHILayoutPositionMax.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutPositionTop
Synonym for kHILayoutPositiondMin.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

kHILayoutPositionBottom
Synonym for kHILayoutPositionMax.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

Constants 2507
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIScaleKind Constant
Specify a constant that indicates the scale is determined from the axis size.

enum {
 kHILayoutScaleAbsolute = 0
};
typedef UInt16 HIScaleKind;

Constants
kHILayoutScaleAbsolute

Indicates that the scale is determined from the axis size.

Available in Mac OS X v10.3 and later.

Declared in HIView.h.

Discussion
This constant is used in conjunction with the HIView layout engine.

HIView Attributes
Specify constants that change the behavior of controls.

enum {
 kHIViewAttributeSendCommandToUserFocus = 1 << 0,
 kHIViewAttributeIsFieldEditor = 1 << 1,
 kHIViewSendCommandToUserFocus = kHIViewAttributeSendCommandToUserFocus
};

Constants
kHIViewAttributeSendCommandToUserFocus

When set, the control sends the command it generates to the user focus; the command propagates
as it would naturally from there. (The default is to send the command to itself and then to its parent
and so forth.) You may want to use this setting for views that are not typically in a focused window.
For example, a push button in a toolbar window might use this setting to cause its command to be
sent to the focused window rather than to the toolbar window.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewAttributeIsFieldEditor
Indicates that text editing controls should behave appropriately for editing fields in a dialog; specifically,
the control should ignore the Return, Enter, Escape, and Tab keys, and allow them to be processed
by other participants in the event flow.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewSendCommandToUserFocus
Legacy constant. Use kHIViewAttributeSendCommandToUserFocus instead.

Available in Mac OS X v10.2 and later.

Declared in HIView.h.

Discussion
These constants are used by HIViewGetAttributes (page 2452) to get a view’s attributes and by
HIViewChangeAttributes (page 2444) to set or change a view’s attributes.

2508 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

HIView Feature Constants
Specify constants for view features.

enum {
 kHIViewFeatureSupportsGhosting = 1 << 0,
 kHIViewFeatureAllowsSubviews = 1 << 1,
 kHIViewFeatureGetsFocusOnClick = 1 << 8,
 kHIViewFeatureSupportsLiveFeedback = 1 << 10,
 kHIViewFeatureSupportsRadioBehavior = 1 << 11,
 kHIViewFeatureAutoToggles = 1 << 14,
 kHIViewFeatureIdlesWithTimer = 1 << 23,
 kHIViewFeatureInvertsUpDownValueMeaning = 1 << 24,
 kHIViewFeatureIsOpaque = 1 << 25,
 kHIViewFeatureDoesNotDraw = 1 << 27,
 kHIViewFeatureDoesNotUseSpecialParts = 1 << 28,
 kHIViewFeatureIgnoresClicks = 1 << 29
};
typedef UInt64 HIViewFeatures;

Constants
kHIViewFeatureSupportsGhosting

This view supports using the ghosting protocol when live tracking is not enabled. Use this constant
instead of the legacy constant, kHIViewSupportsGhosting.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewFeatureAllowsSubviews
This view allows subviews to be embedded within it. Use this constant instead of the legacy constant,
kHIViewAllowsSubviews.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewFeatureGetsFocusOnClick
If this view is clicked, the keyboard focus should be set to this view automatically; used primarily for
edit text controls. Use this constant instead of the legacy constant, kHIViewGetsFocusOnClick.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewFeatureSupportsLiveFeedback
This view supports the live feedback protocol, which is necessary for implementing live scroll bar
tracking. Clients of a view should never disable this bit. Use this constant instead of the legacy constant,
kHIViewSupportsLiveFeedback.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewFeatureSupportsRadioBehavior
This view can be placed in a radio group. Radio buttons and bevel buttons report this behavior. Use
this constant instead of the legacy constant, kHIViewSupportsRadioBehavior.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

Constants 2509
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

kHIViewFeatureAutoToggles
This view supports the auto-toggle protocol and should at the very least auto-toggle between off
and on. The view can support a Carbon event for more advanced auto-toggling of its value. The tab
view supports this, for example, so that when a tab is clicked its value changes automatically. Use this
constant instead of the legacy constant, kHIViewAutoToggles.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewFeatureIdlesWithTimer
An informational bit. Turning this bit off would not necessarily disable any timer a view might be
using, but a timer could obey this bit if desired. Use this constant instead of the legacy constant,
kHIViewIdlesWithTimer.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewFeatureInvertsUpDownValueMeaning
This bit tells the Control Manager that when the Up button part of the control is clicked, the value of
the control should increase. A Scroll bar, conversely, decreases in value when its Up button is clicked.
Use this constant instead of the legacy constant, kHIViewInvertsUpDownValueMeaning.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewFeatureIsOpaque
When set, the view’s structure region is used to determine the view’s opaque region, and calling the
view can usually be avoided. Use this constant instead of the legacy constant, kHIViewIsOpaque.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewFeatureDoesNotDraw
This bit is an optimization that tells the Control Manager that a view is transparent and does not do
any drawing, so the Control Manager doesn’t have to invalidate the view and instead should invalidate
views behind this view. For example, on a metal window, the content view is actually fully transparent,
so invalidating it is unnecessary. Use this constant instead of the legacy constant,
kHIViewDoesNotDraw.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewFeatureDoesNotUseSpecialParts
Indicates to the Control Manager that this view doesn’t use the special part codes for indicator, inactive,
and disabled. Use this constant instead of the legacy constant, kHIViewDoesNotUseSpecialParts.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewFeatureIgnoresClicks
When set, this bit tells the Control Manager that it does not need to ask the control for it’s clickable
region. A view such as the visual separator would set this bit, and metal windows set this bit when
doing asynchronous window dragging. This bit is typically set in conjunction with the
kHIViewFeatureDoesNotDrawBit. Use this constant instead of the legacy constant,
kHIViewIgnoresClicks.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

2510 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Discussion
View feature flags are generally determined by the view itself and are not typically changed by clients of the
view. Call HIViewGetFeatures (page 2454) to obtain a view’s features, and HIViewChangeFeatures (page
2444) to set and clear a view’s features.

HIView Meta-Parts Constants
Specify meta-parts constants used when calling HIViewCopyShape.

enum {
 kHIViewStructureMetaPart = -1,
 kHIViewContentMetaPart = -2,
 kHIViewOpaqueMetaPart = -3,
 kHIViewClickableMetaPart = -4
};

Constants
kHIViewStructureMetaPart

The structure region is the total area over which the view draws.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewContentMetaPart
The content region is only defined by views that can embed other views. It is the area that embedded
content can live.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewOpaqueMetaPart
The portion of the view that is opaque. No views behind this portion of the view will be asked to draw
because their drawing would be completely overwritten by this view’s drawing.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewClickableMetaPart
Used for asynchronous window dragging only. The default is the structure region.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

Discussion
Meta-parts are used when calling HIViewCopyShape (page 2448). Meta-parts define a region of a view and
they might be defined by a view. Along with these parts, you can also pass in normal part codes to get the
regions of those parts. Not all views fully support this feature.

HIView Z-Ordering Constants
Specify constants that set a view’s z-order.

Constants 2511
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

enum {
 kHIViewZOrderAbove = 1,
 kHIViewZOrderBelow = 2,
};
typedef UInt32 HIViewZOrderOp;

Constants
kHIViewZOrderAbove

Order the view above another view.

Available in Mac OS X v10.2 and later.

Declared in HIView.h.

kHIViewZOrderBelow
Order the view below another view.

Available in Mac OS X v10.2 and later.

Declared in HIView.h.

Discussion
These constants are used when calling HIViewSetZOrder (page 2490).

HIViewContentType Constants
Specify constants that describe a view’s content.

enum {
 kHIViewContentTextOnly = 0,
 kHIViewContentNone = 0,
 kHIViewContentIconSuiteRef = 129,
 kHIViewContentIconRef = 132,
 kHIViewContentCGImageRef = 134
};

Constants
kHIViewContentTextOnly

The view has no content other than text.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewContentNone
The view has no content.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewContentIconSuiteRef
The view’s content is an IconSuiteRef.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewContentIconRef
The view’s content is an IconRef.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

2512 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

kHIViewContentCGImageRef
The view’s content is an CGImageRef.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

Discussion
These constants are used in the HIViewContentInfo structure. For information on that structure, see
HIViewContentInfo (page 2496).

HIViewPartCode Constants
Specify view parts constants.

enum {
 kHIViewNoPart = 0,
 kHIViewIndicatorPart = 129,
 kHIViewDisabledPart = 254,
 kHIViewInactivePart = 255,
 kHIViewEntireView = kHIViewNoPart
};
typedef ControlPartCode HIViewPartCode;

Constants
kHIViewNoPart

The entire view; used when not referring to a specific part.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewIndicatorPart
Indicator part.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewDisabledPart
Disabled part.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewInactivePart
Inactive part.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHIViewEntireView
The entire view; used when not referring to a specific part.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

Discussion
These constants are used when calling HIViewSetHilite (page 2481), HIViewRegionChanged (page 2474),
HIViewCopyShape (page 2448),HIViewSimulateClick (page 2491),HIViewGetPartHit (page 2462), and
HIViewGetFocusPart (page 2455). These constants are also used with variouskEventClassControlCarbon
events.

Constants 2513
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Mouse Tracking Area Event Constants
Specify constants for mouse tracking area events (kEventClassControl).

enum {
 kEventControlTrackingAreaEntered = 23,
 kEventControlTrackingAreaExited = 24,
 kEventParamHIViewTrackingArea = 'ctra',
 typeHIViewTrackingAreaRef = 'ctra'
};

Constants
kEventControlTrackingAreaEntered

If you installed a mouse tracking area in your view, you will receive this event when the mouse enters
that area. The tracking area reference is sent with the event.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kEventControlTrackingAreaExited
If you installed a mouse tracking area in your view, you will receive this event when the mouse leaves
that area. The tracking area reference is sent with the event.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kEventParamHIViewTrackingArea
An HIViewTrackingAreaRef for the tracking area that was entered.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

Discussion
Table 34-3 shows the event parameters associated with these events.

Table 34-3 Parameter names and types for mouse tracking area events

Parameter typeParameter nameEvent kind

typeHIViewTrackingAreaRefkEventParamHIViewTrackingAreakEventControl-
TrackingAreaEntered

typeUInt32kEventParamKeyModifiers

typeHIPointkEventParamMouseLocation

typeHIViewTrackingAreaRefkEventParamHIViewTrackingAreakEventControl-
TrackingAreaExited

typeUInt32kEventParamKeyModifiers

typeHIPointkEventParamMouseLocation

Scroll View Constants
Specify constants for scroll view options.

2514 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

enum {
 kHIScrollViewOptionsVertScroll = (1 << 0),
 kHIScrollViewOptionsHorizScroll = (1 << 1),
 kHIScrollViewOptionsAllowGrow = (1 << 2),
 kHIScrollViewValidOptions = (kHIScrollViewOptionsVertScroll |
kHIScrollViewOptionsHorizScroll | kHIScrollViewOptionsAllowGrow)
};

Constants
kHIScrollViewOptionsVertScroll

Indicates that a vertical scroll bar is desired.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

kHIScrollViewOptionsHorizScroll
Indicates that a horizontal scroll bar is desired.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

kHIScrollViewOptionsAllowGrow
Indicates that space for a grow box should be taken into account when laying out scroll bars. In Mac
OS X v10.3 and earlier, if both horizontal and vertical scroll bars are requested, this attribute is assumed.
In Mac OS X v10.4 and later, this attribute is not assumed; this allows the scroll view to support
independent auto-hiding of the two scroll bars in Mac OS X v10.4 and later. If you want to preserve
space for the grow box on all systems, specify this option bit.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

kHIScrollViewValidOptions
All valid scroll view options.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

Discussion
These constants are used in conjunction with HIScrollViewCreate (page 2423).

Scroll View Action Constants
Specify constants for scroll view navigation actions.

Constants 2515
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

enum {
 kHIScrollViewScrollToTop = (1 << 0),
 kHIScrollViewScrollToBottom = (1 << 1),
 kHIScrollViewScrollToLeft = (1 << 2),
 kHIScrollViewScrollToRight = (1 << 3),
 kHIScrollViewPageUp = (1 << 4),
 kHIScrollViewPageDown = (1 << 5),
 kHIScrollViewPageLeft = (1 << 6),
 kHIScrollViewPageRight = (1 << 7)
};
typedef UInt32 HIScrollViewAction;

Constants
kHIScrollViewScrollToTop

The scroll view should move to the top of the content.

Available in Mac OS X v10.3 and later.

Declared in HIScrollView.h.

kHIScrollViewScrollToBottom
The scroll view should move to the bottom of the content.

Available in Mac OS X v10.3 and later.

Declared in HIScrollView.h.

kHIScrollViewScrollToLeft
The scroll view should move to the left of the content.

Available in Mac OS X v10.3 and later.

Declared in HIScrollView.h.

kHIScrollViewScrollToRight
The scroll view should move to the right of the content.

Available in Mac OS X v10.3 and later.

Declared in HIScrollView.h.

kHIScrollViewPageUp
The scroll view should page up.

Available in Mac OS X v10.3 and later.

Declared in HIScrollView.h.

kHIScrollViewPageDown
The scroll view should page down.

Available in Mac OS X v10.3 and later.

Declared in HIScrollView.h.

kHIScrollViewPageLeft
The scroll view should page left.

Available in Mac OS X v10.3 and later.

Declared in HIScrollView.h.

kHIScrollViewPageRight
The scroll view should page right.

Available in Mac OS X v10.3 and later.

Declared in HIScrollView.h.

2516 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Discussion
These constants are used in conjunction with HIScrollViewNavigate (page 2424) and
HIScrollViewCanNavigate (page 2423).

Scrollable Event Constants
Specify constants for scrollable events (kEventClassScrollable).

enum {
 kEventScrollableGetInfo = 1,
 kEventScrollableInfoChanged = 2,
 kEventScrollableScrollTo = 10
};

Constants
kEventScrollableGetInfo

This event is sent by an HIScrollView to its scrollable view to determine the current size and origin of
the scrollable view. A scrollable view must implement this event in order to scroll properly inside an
HIScrollView.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

kEventScrollableInfoChanged
This event is not sent by an HIScrollView itself. Instead, it may be sent to an instance of HIScrollView
to notify the scroll view that the size or origin of its scrollable view has changed. The HIScrollView
responds to this event by sending a kEventScrollableGetInfo event to its scrollable view. It then
updates the scroll bars appropriately to reflect the changes. It does notmove the origin of the scrollable
view at all. This event is just a notification to allow the scroll view to sync up with its scrollable view.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

kEventScrollableScrollTo
This event is sent by an HIScrollView to its scrollable view to request that the scrollable view update
its current origin and redraw. Typically, a scrollable view scrolls its content by setting its bounds origin
using HIViewSetBoundsOrigin (page 2478) or by offsetting its drawing by the scroll origin. If the
view embeds other views, it must use HIViewSetBoundsOrigin to allow the embedded views to
scroll along with their containing view. A view that uses HIViewSetBoundsOrigin should call that
API in response to this event. A view that offsets its drawing by the scroll origin should update its
current origin in its own instance data in response to this event. A scrollable view should also use
HIViewScrollRect (page 2477) to scroll its content orHIViewSetNeedsDisplay (page 2485) to cause
itself to redraw using the new origin point. A scrollable view must implement this event in order to
scroll properly inside an HIScrollView.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

Discussion
Table 34-4 shows the event parameters associated with these events.

Table 34-4 Parameter names and types for scrollable events

Parameter typeParameter nameEvent kind

typeHISizekEventParamImageSizekEventScrollableGetInfo

Constants 2517
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

typeHISizekEventParamViewSize

typeHISizekEventParamLineSize

typeHIPointkEventParamOrigin

typeHIPointkEventParamOriginkEventScrollableInfoChanged

typeHIPointkEventParamOriginkEventScrollableScrollTo

Scrollable Event Parameter Constants
Specify scrollable event parameter constants.

enum {
 kEventParamImageSize = 'imsz',
 kEventParamViewSize = 'vwsz',
 kEventParamLineSize = 'lnsz',
 kEventParamOrigin = 'orgn'
};

Constants
kEventParamImageSize

A value of type typeHISize representing the image size. The image size is the total size of the
scrollable view, including any parts of the view that are not currently visible. For example, a scrollable
view that displays a hundred page document would return an image size equal to one hundred times
the height of the page.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

kEventParamViewSize
A value of type typeHISize representing the view size. The view size is the current size of the
scrollable view. Typically, this is the same as the view’s bounds and can be acquired by calling
HIViewGetBounds (page 2453).

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

kEventParamLineSize
A value of type typeHISize representing the line size. The line size is the distance that the HIScrollView
should scroll its subview when the user clicks a scroll bar arrow. For example, this might be 10 pixels
vertically and 20 pixels horizontally.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

2518 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

kEventParamOrigin
A value of type typeHIPoint representing the origin. The origin is the current view-relative origin
within the total scrollable image that is displayed at the top left corner of the view. These coordinates
should always be greater than or equal to zero and less than or equal to the view’s image size minus
its view size. Typically, a view that implements the kEventScrollableScrollTo event by calling
HIViewSetBoundsOrigin (page 2478) returns the current bounds origin for this parameter, and a
view implements the ScrollTo event by storing the origin in its instance data returns its stored
origin for this parameter. For example, a scrollable view that currently is displaying page ten of a
hundred page document would return a horizontal origin of zero and a vertical origin equal to ten
times the height of the page.

Available in Mac OS X v10.2 and later.

Declared in HIScrollView.h.

Search Field Attribute Constants
Specify constants for search field attributes.

enum {
 kHISearchFieldNoAttributes = 0,
 kHISearchFieldAttributesCancel = (1 << 0),
 kHISearchFieldAttributesSearchIcon = (1 << 1)
};

Constants
kHISearchFieldNoAttributes

Indicates that this view does not have any attributes.

Available in Mac OS X v10.3 and later.

Declared in HISearchField.h.

kHISearchFieldAttributesCancel
Indicates that this view contains a Cancel button.

Available in Mac OS X v10.3 and later.

Declared in HISearchField.h.

kHISearchFieldAttributesSearchIcon
Indicates that this view contains the Search icon in the text field. If a menu is associated with the
search field, this attribute is implicitly set and the Search icon will display with a menu disclosure
badge.

Available in Mac OS X v10.4 and later.

Declared in HISearchField.h.

Discussion
These constants are used when calling HISearchFieldCreate (page 2427),
HISearchFieldGetAttributes (page 2428), and HISearchFieldChangeAttributes (page 2425).

Search Field Data Tags
Specify constants for search field data tags.

Constants 2519
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Discussion
Search field views support these tags previously defined for the EditUnicodeText control. These tags are
available through GetControlData and SetControlData with a ControlPartCode of
kControlEditTextPart:

 ■ kControlFontStyleTag

 ■ kControlEditTextFixedTextTag

 ■ kControlEditTextTextTag

 ■ kControlEditTextKeyFilterTag

 ■ kControlEditTextValidationProcTag

 ■ kControlEditUnicodeTextPostUpdateProcTag

 ■ kControlEditTextSelectionTag

 ■ kControlEditTextKeyScriptBehaviorTag

 ■ kControlEditTextCharCount

 ■ kControlEditTextCFStringTag

Availability
Available in Mac OS X v10.3 and later.

Search Field Part Code Constants
Specify constants for search field part codes.

enum {
 kControlSearchFieldCancelPart = 30,
 kControlSearchFieldMenuPart = 31
};

Constants
kControlSearchFieldCancelPart

Cancel part.

Available in Mac OS X v10.3 and later.

Declared in HISearchField.h.

kControlSearchFieldMenuPart
Menu part.

Available in Mac OS X v10.3 and later.

Declared in HISearchField.h.

Segment Attribute Constants
Specify segment attribute constants.

2520 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

enum {
 kHISegmentNoAttributes = 0,
 kHISegmentSendCmdToUserFocus = (1 << 0)
};

Constants
kHISegmentNoAttributes

Indicates no attributes.

Available in Mac OS X v10.3 and later.

Declared in HISegmentedView.h.

kHISegmentSendCmdToUserFocus
If this attribute bit is set, the command that is sent when the segment is clicked will be directed at
the user focus instead of up the segmented view’s containment hierarchy.

Available in Mac OS X v10.3 and later.

Declared in HISegmentedView.h.

Discussion
These constants are used when calling HISegmentedViewCreate (page 2432) and
HISegmentedViewChangeSegmentAttributes (page 2430).

Segment Behavior Constants
Specify segment behavior constants.

enum {
 kHISegmentBehaviorMomentary = 1,
 kHISegmentBehaviorRadio = 2,
 kHISegmentBehaviorToggles = 3,
 kHISegmentBehaviorSticky = 4
};

Constants
kHISegmentBehaviorMomentary

Pops back up after being pressed, just like a push button.

Available in Mac OS X v10.3 and later.

Declared in HISegmentedView.h.

kHISegmentBehaviorRadio
Stays pressed until another segment with the radio behavior is pressed. This makes the segment
behave like a radio button. After this segment is clicked, the segmented view’s value is changed to
this segment’s one-based index.

Available in Mac OS X v10.3 and later.

Declared in HISegmentedView.h.

kHISegmentBehaviorToggles
Behaves like a check box. When clicked, it toggles back and forth between checked and unchecked
states. Currently, this constant should not be used; if you use it, you get the same effect as if you used
kHISegmentBehaviorMomentary.

Available in Mac OS X v10.3 and later.

Declared in HISegmentedView.h.

Constants 2521
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

kHISegmentBehaviorSticky
After being pressed, this type of segment stays pressed until it is unpressed programmatically. Currently,
this constant should not be used; if you use it, you get the same effect as if you used
kHISegmentBehaviorMomentary.

Available in Mac OS X v10.3 and later.

Declared in HISegmentedView.h.

Discussion
These constants are used in conjunction with HISegmentedViewSetSegmentBehavior (page 2437) and
HISegmentedViewGetSegmentBehavior (page 2433).

Standard View Constants
Specify IDs of views that are commonly used.

const HIViewID kHIViewWindowContentID;
const HIViewID kHIViewWindowGrowBoxID;
const HIViewID kHIViewMenuContentID;

Constants
kHIViewWindowContentID

The standard view ID for the content view of a window.

Available in Mac OS X v10.2 and later.

Declared in HIWindowViews.h.

kHIViewWindowGrowBoxID
The standard view ID for the grow box view of a window. Not all windows have grow boxes, so you
might not find this view if you look for it.

Available in Mac OS X v10.2 and later.

Declared in HIWindowViews.h.

kHIViewMenuContentID
The standard view ID for the content view of a menu. The Menu Manager assigns this view ID to all
menu content views.

Available in Mac OS X v10.3 and later.

Declared in HIMenuView.h.

Text Field Event Constants
Specify constants for text field events (kEventClassTextField).

2522 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

enum {
 kEventTextAccepted = 1,
 kEventTextShouldChangeInRange = 2,
 kEventTextDidChange = 3
};

Constants
kEventTextAccepted

This event is sent as a notification when the text contained in a control’s editable text field has been
accepted by the user. Text is accepted when the user presses Return or Enter on the keyboard for the
EditUnicodeText, HIComboBox, and HISearchField controls, or when the text has changed in
the field and the field loses focus for the EditUnicodeText, HIComboBox, HISearchField and
HITextView controls. This event is sent to the control containing the text field only, it is not
propagated. It is sent to all handlers installed on the control containing the text field.

Available in Mac OS X v10.3 and later.

Declared in HITextViews.h.

kEventTextShouldChangeInRange
This event is sent whenever the text is about to be modified in text field, either by user input or in
other scenarios such as a paste from the clipboard, spell-checking word correction, or Mac OS X Service
operation. You can change the text that is inserted by providing a replacement string as a parameter
to this event. This event is only sent for Unicode text controls; it is not sent for the Classic non-Unicode
EditText control. This event is not sent prior to programmatic modification of the text field contents
using SetControlData. This event is not sent while an active inline editing session is in progress.
Once the inline text has been confirmed, this event is sent prior to the confirmed text being inserted
into the text field. If you need control over keystrokes during an inline editing session, you can use
the kEventTextInputFilterText event. This event is sent to the control containing the text field
only; it does not propagate.

Available in Mac OS X v10.4 and later.

Declared in HITextViews.h.

kEventTextDidChange
This event is sent to indicate that the contents of an editable text field have changed. This event is
sent by all of the Unicode-based editable text views: HIComboBox, HISearchField, HITextView
and EditUnicodeText. This event is not sent for the Classic non-Unicode EditText control. Note
that this event is sent after inline editing operations, such as pressing a dead key, or using a input
method that creates an inline editing hole. Most clients of this event should ignore the event during
inline editing, and only respond to changes to the text after inline editing completes. A client can
check for the presence of the kEventParamUnconfirmedRange parameter to determine whether
inline editing is currently active; if this parameter is present, the client may wish to ignore the event.
This event is not sent after programmatic modification of the text field contents using
SetControlData. This event is sent only to the control containing the text field; it does not propagate.
It is sent to all handlers registered for it.

Available in Mac OS X v10.4 and later.

Declared in HITextViews.h.

Discussion
Table 34-5 shows the event parameters associated with these events.

Table 34-5 Parameter names and types for text field events

Parameter typeParameter nameEvent kind

typeControlRefkEventParamDirectObjectkEventTextAccepted

Constants 2523
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

typeCFRangekEventParamTextSelectionkEventTextShouldChangeInRange

typeCFStringRefkEventParamCandidateText

typeCFStringRefkEventParamReplacementText (Optional)

typeCFRangekEventParamUnconfirmedRangekEventTextDidChange

typeCFStringRefkEventParamUnconfirmedText

Text Field Event Parameter Constants
Specify constants for text field event parameters.

enum {
 kEventParamTextSelection = 'txsl',
 kEventParamCandidateText = 'tstx',
 kEventParamReplacementText = 'trtx',
 kEventParamUnconfirmedRange = 'tunr',
 kEventParamUnconfirmedText = 'txun'
};

Constants
kEventParamTextSelection

The range of the selection that is about to be changed. The units of the selection are in the same
units that are returned in a EditTextSelectionRec, when called with GetControlData using
kControlEditTextSelectionTag.

Available in Mac OS X v10.4 and later.

Declared in HITextViews.h.

kEventParamCandidateText
The text that is to replace the selection. Note that this string was originally created with
CFStringCreateWithCharactersNoCopy, and the original text has a limited life span. If for some
reason you need to retain the text past the end of your event handler, you should extract the characters
from the string with CFStringGetCharacters, and then store those characters or create a new
CFString from them.

Available in Mac OS X v10.4 and later.

Declared in HITextViews.h.

kEventParamReplacementText
Optional replacement text.

Available in Mac OS X v10.4 and later.

Declared in HITextViews.h.

kEventParamUnconfirmedRange
If the text field currently has an open inline hole, this parameter contains the range of text inside the
hole. This parameter is optional and is only present during inline editing.

Available in Mac OS X v10.4 and later.

Declared in HITextViews.h.

2524 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

kEventParamUnconfirmedText
If the text field currently has an open inline hole, this parameter contains the non-confirmed text
currently being edited inside the hole. This parameter is optional and is only present during inline
editing. Note that this string was originally created with CFStringCreateWithCharactersNoCopy,
and the original text has a limited life span. If for some reason you need to retain the text past the
end of your event handler, you should extract the characters from the string with
CFStringGetCharacters, and then store those characters or create a new CFString from them.

Available in Mac OS X v10.4 and later.

Declared in HITextViews.h.

Transformation Constants
Specify transformation constants.

enum {
 kHITransformNone = 0x00,
 kHITransformDisabled = 0x01,
 kHITransformSelected = 0x4000
};

Constants
kHITransformNone

No visual transformation should be applied.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHITransformDisabled
The image should be transformed to use a disabled appearance. This transformation should not be
combined with any other transformations.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

kHITransformSelected
The image should be transformed to use a selected appearance. This transformation should not be
combined with any other transformations.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

Discussion
These constants are used when calling HICreateTransformedCGImage (page 2415).

kHIViewKindSignatureApple
Specify the signature of all HIToolbox views.

Constants 2525
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

enum {
 kHIViewKindSignatureApple = 'appl'
};

Constants
kHIViewKindSignatureApple

Signature of all toolbox views.

Available in Mac OS X v10.4 and later.

Declared in HIView.h.

Result Codes

This table lists the result codes defined in HIView.

DescriptionValueResult Code

This result code is returned by an HIView or a Control Manager
function when an action that requires a compositing window
is attempted on a non-compositing window. It may also be
returned when the value of a parameter is not valid for the
requested action, even though the window is a compositing
window.

-30598errNeedsCompositedWindow

Available in Mac OS X v10.3 and later.

2526 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 34

HIView Reference

Framework: Carbon/Carbon.h

Declared in HTMLRendering.h

Overview

Important: The HTML Rendering Library is deprecated as of Mac OS X v10.4. A much more complete solution
for displaying HTML and web content in your application is provided by the Web Kit. See WebKit Objective-C
Programming Guide for guidelines on using the Web Kit.

Whereas the HTML Rendering Library takes a specified HTML file and draws text and images in a window,
the Web Kit inserts a browser window into your document. The user can specify any URL and follow links in
the Web Kit view window. Because the Web Kit takes a completely different approach to displaying HTML
and web content from that used by the HTML Rendering Library, you cannot make a one-to-one substitution
of Web Kit methods for HTML Rendering Library functions. However, the basic features of the Web Kit can
be implemented very quickly, and Web Kit offers much greater capability than the HTML Rendering Library.
With the Web Kit, your application can include anything from an HTML viewing window to a full-featured
web browser.

Although the Web Kit is an Objective-C interface, you can call it from a Carbon application. See Accessing
the Web Kit From Carbon Applications for details.

The HTML Rendering Library gives your application the ability to draw text and images in a window, as
specified by HTML data. Note that this API does not include other features of HTML browsers, such as history
tracking or plug-in support. The kinds of tasks you can perform with the HTML Rendering Library include

 ■ formatting and updating the rendering area with such elements as borders, scroll bars, and size boxes
in scroll bars

 ■ setting such graphics and display options as screen depth and graphics ports

 ■ working with events

 ■ drawing pages from HTML data

 ■ obtaining information about pages

 ■ converting URL and file system specification data

Overview 2527
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not
Recommended)

Functions by Task

Identifying The HTML Rendering Library

HRHTMLRenderingLibAvailable (page 2559)
Reports whether the HTML Rendering Library is available. (Deprecated. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

HRGetHTMLRenderingLibVersion (page 2545) Deprecated in Mac OS X v10.4
Identifies which version of the HTML Rendering Library is available. (Deprecated. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

Handling Newly Visited Links

DisposeHRNewURLUPP (page 2534) Deprecated in Mac OS X v10.4
Disposes of a previously obtained UPP. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRRegisterNewURLUPP (page 2563) Deprecated in Mac OS X v10.4
Registers an application-defined function that handles newly visited links. (Deprecated. Use Web Kit
instead; see WebKit Objective-C Programming Guide.)

HRUnregisterNewURLUPP (page 2574) Deprecated in Mac OS X v10.4
Unregisters a previously registered application-defined function. (Deprecated. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

NewHRNewURLUPP (page 2586) Deprecated in Mac OS X v10.4
Obtains a UPP for an application-defined function that handles newly visited links. (Deprecated. Use
Web Kit instead; see WebKit Objective-C Programming Guide.)

Handling Previously Visited Links

DisposeHRWasURLVisitedUPP (page 2536) Deprecated in Mac OS X v10.4
Disposes of a previously obtained UPP. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRRegisterWasURLVisitedUPP (page 2565) Deprecated in Mac OS X v10.4
Registers an application-defined function that handles previously visited links. (Deprecated. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

HRUnregisterWasURLVisitedUPP (page 2577) Deprecated in Mac OS X v10.4
Unregisters a previously registered application-defined function. (Deprecated. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

NewHRWasURLVisitedUPP (page 2588) Deprecated in Mac OS X v10.4
Obtains a UPP for an application-defined function that handles previously visited links. (Deprecated.
Use Web Kit instead; see WebKit Objective-C Programming Guide.)

2528 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Obtaining and Disposing of HRReference Values

HRDisposeReference (page 2538) Deprecated in Mac OS X v10.4
Disposes of a previously obtained HRReference. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

HRNewReference (page 2561) Deprecated in Mac OS X v10.4
Obtains a new HRReference. (Deprecated. Use Web Kit instead; see WebKit Objective-C Programming
Guide.)

HRNewReferenceInWindow (page 2561) Deprecated in Mac OS X v10.4
Obtains a new HRReference. (Deprecated. Use Web Kit instead; see WebKit Objective-C Programming
Guide.)

Formatting the Rendering Area

HRSetDrawBorder (page 2568) Deprecated in Mac OS X v10.4
Specifies whether to draw a border around the rendering area. (Deprecated. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

HRSetGrowboxCutout (page 2571) Deprecated in Mac OS X v10.4
Specifies whether to allow for a size box when drawing scrollbars. (Deprecated. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

HRSetScrollbarState (page 2572) Deprecated in Mac OS X v10.4
Specifies how scrollbars are drawn. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

Intercepting and Redirecting URL’s

DisposeHRURLToFSSpecUPP (page 2535) Deprecated in Mac OS X v10.4
Disposes of a previously obtained UPP. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRRegisterURLToFSSpecUPP (page 2564) Deprecated in Mac OS X v10.4
Registers an application-defined function that handles previously visited links. (Deprecated. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

HRUnregisterURLToFSSpecUPP (page 2576) Deprecated in Mac OS X v10.4
Unregisters a previously registered application-defined function. (Deprecated. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

NewHRURLToFSSpecUPP (page 2587) Deprecated in Mac OS X v10.4
Obtains a UPP for an application-defined function that intercepts URL’s. (Deprecated. Use Web Kit
instead; see WebKit Objective-C Programming Guide.)

Setting and Updating the Rendering Area

HRDraw (page 2539) Deprecated in Mac OS X v10.4
Updates a specified region for a given HRReference. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

Functions by Task 2529
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRDrawInPort (page 2540) Deprecated in Mac OS X v10.4
Updates a specified region for a given HRReference. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

HRGetRenderedImageSize (page 2547) Deprecated in Mac OS X v10.4
Reports the size of the rendered image. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGetRenderedImageSize32 (page 2548) Deprecated in Mac OS X v10.4
Reports the size of the rendered image. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRScrollToImageLocation32 (page 2567) Deprecated in Mac OS X v10.4
Scrolls to a specified view of the HTML rendering area. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

HRScrollToLocation (page 2568) Deprecated in Mac OS X v10.4
Scrolls to a specified view of the HTML rendering area. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

HRSetRenderingRect (page 2571) Deprecated in Mac OS X v10.4
Specifies the boundaries of the HTML rendering area. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

Setting Graphics and Display Options

HRForceQuickdraw (page 2540) Deprecated in Mac OS X v10.4
Forces all images to be drawn with QuickDraw. (Deprecated. Use Web Kit instead; seeWebKitObjective-C
Programming Guide.)

HRFreeMemory (page 2541) Deprecated in Mac OS X v10.4
Attempts to release cache memory for use by your application. (Deprecated. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

HRScreenConfigurationChanged (page 2566) Deprecated in Mac OS X v10.4
Informs the HTML Rendering Library that the screen depth has changed. (Deprecated. Use Web Kit
instead; see WebKit Objective-C Programming Guide.)

HRSetGrafPtr (page 2570) Deprecated in Mac OS X v10.4
Sets a new GrafPort for a given HRReference. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

Working With Events

HRActivate (page 2537) Deprecated in Mac OS X v10.4
Activates the window associated with a given HRReference. (Deprecated. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

HRDeactivate (page 2537) Deprecated in Mac OS X v10.4
Deactivates the window associated with a given HRReference. (Deprecated. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

HRIsHREvent (page 2560) Deprecated in Mac OS X v10.4
Gives the HTML Rendering Library an opportunity to handle events. (Deprecated. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

2530 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Navigating HTML Pages

HRGoToAnchor (page 2552) Deprecated in Mac OS X v10.4
Specifies an HTML anchor to scroll into view. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGoToAnchorCFString (page 2553) Deprecated in Mac OS X v10.4
Specifies an HTML anchor to scroll into view. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGoToCFURL (page 2553) Deprecated in Mac OS X v10.4
Renders a local file specified as a URL. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGoToData (page 2554) Deprecated in Mac OS X v10.4
Specifies HTML data for rendering. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGoToFile (page 2555) Deprecated in Mac OS X v10.4
Specifies an HTML file for rendering. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGoToFSRef (page 2556) Deprecated in Mac OS X v10.4
Renders a set of HTML data from a specified buffer. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

HRGoToPtr (page 2557) Deprecated in Mac OS X v10.4
Renders a set of HTML data from a specified buffer. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

HRGoToURL (page 2558) Deprecated in Mac OS X v10.4
Renders a local file specified as a URL. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

Obtaining Information About Pages

HRGetBaseURL (page 2542) Deprecated in Mac OS X v10.4
Obtains the base URL of a given HTML page. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGetBaseURLAsCFString (page 2543) Deprecated in Mac OS X v10.4
Obtains the base URL of a given HTML page. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGetHTMLFile (page 2543) Deprecated in Mac OS X v10.4
Obtains a file system specification record for a given HTML page. (Deprecated. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

HRGetHTMLFileAsFSRef (page 2544) Deprecated in Mac OS X v10.4
Obtains an FSRef for a given HTML page. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGetHTMLURL (page 2546) Deprecated in Mac OS X v10.4
Obtains the URL for a given HTML page. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

Functions by Task 2531
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRGetHTMLURLAsCFURL (page 2546) Deprecated in Mac OS X v10.4
Obtains the URL for a given HTML page. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGetRootURL (page 2549) Deprecated in Mac OS X v10.4
Obtains the root URL for all relative links on a given HTML page. (Deprecated. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

HRGetRootURLAsCFString (page 2549) Deprecated in Mac OS X v10.4
Obtains the root URL for all relative links on a given HTML page. (Deprecated. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

HRGetTitle (page 2550) Deprecated in Mac OS X v10.4
Obtains the title of a given HTML page. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRGetTitleAsCFString (page 2551) Deprecated in Mac OS X v10.4
Obtains the title of a given HTML page. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

Converting URL and FSSpec Data

HRUtilCreateFullCFURL (page 2577) Deprecated in Mac OS X v10.4
Obtains a full URL from a given set of relative URLs. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

HRUtilCreateFullURL (page 2578) Deprecated in Mac OS X v10.4
Obtains a full URL from a given set of relative URLs. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

HRUtilGetFSRefFromURL (page 2579) Deprecated in Mac OS X v10.4
Obtains a FSRef from a given set of relative URL’s. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

HRUtilGetFSSpecFromURL (page 2580) Deprecated in Mac OS X v10.4
Obtains a FSSpec from a given set of relative URL’s. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

HRUtilGetURLFromFSRef (page 2581) Deprecated in Mac OS X v10.4
Obtains a full URL from a given FSRef. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

HRUtilGetURLFromFSSpec (page 2581) Deprecated in Mac OS X v10.4
Obtains a full URL from a given FSSpec. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

Working With Universal Procedure Pointers

DisposeHRNewCFURLUPP (page 2534) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

DisposeHRURLToFSRefUPP (page 2535) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

DisposeHRWasCFURLVisitedUPP (page 2536) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

2532 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRRegisterNewCFURLUPP (page 2562) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

HRRegisterURLToFSRefUPP (page 2564) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

HRRegisterWasCFURLVisitedUPP (page 2565) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

HRUnregisterNewCFURLUPP (page 2574) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

HRUnregisterURLToFSRefUPP (page 2575) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

HRUnregisterWasCFURLVisitedUPP (page 2576) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

InvokeHRNewCFURLUPP (page 2582) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

InvokeHRNewURLUPP (page 2583) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

InvokeHRURLToFSRefUPP (page 2583) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

InvokeHRURLToFSSpecUPP (page 2584) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

InvokeHRWasCFURLVisitedUPP (page 2584) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

InvokeHRWasURLVisitedUPP (page 2585) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

NewHRNewCFURLUPP (page 2585) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

NewHRURLToFSRefUPP (page 2586) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

NewHRWasCFURLVisitedUPP (page 2587) Deprecated in Mac OS X v10.4
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

Miscellaneous

HRSetEmbeddingControl (page 2569) Deprecated in Mac OS X v10.4
Sets the ControlRef for embedding controls. (Deprecated. Use Web Kit instead; seeWebKitObjective-C
Programming Guide.)

HRSetWindowRef (page 2573) Deprecated in Mac OS X v10.4
Sets the controlling window. (Deprecated. Use Web Kit instead; see WebKit Objective-C Programming
Guide.)

Functions by Task 2533
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Functions

DisposeHRNewCFURLUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void DisposeHRNewCFURLUPP (
 HRNewCFURLUPP userUPP
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

DisposeHRNewURLUPP
Disposes of a previously obtained UPP. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

void DisposeHRNewURLUPP (
 HRNewURLUPP userUPP
);

Parameters
userUPP

A Universal Procedure Pointer (UPP) that you previously obtained by calling the function
NewHRNewURLUPP (page 2586).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.

2534 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

DisposeHRURLToFSRefUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void DisposeHRURLToFSRefUPP (
 HRURLToFSRefUPP userUPP
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

DisposeHRURLToFSSpecUPP
Disposes of a previously obtained UPP. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

void DisposeHRURLToFSSpecUPP (
 HRURLToFSSpecUPP userUPP
);

Parameters
userUPP

A Universal Procedure Pointer (UPP) that you previously obtained by calling the function
NewHRURLToFSSpecUPP (page 2587).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later.

Functions 2535
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

DisposeHRWasCFURLVisitedUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void DisposeHRWasCFURLVisitedUPP (
 HRWasCFURLVisitedUPP userUPP
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

DisposeHRWasURLVisitedUPP
Disposes of a previously obtained UPP. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

void DisposeHRWasURLVisitedUPP (
 HRWasURLVisitedUPP userUPP
);

Parameters
userUPP

A Universal Procedure Pointer (UPP) that you previously obtained by calling the function
NewHRWasURLVisitedUPP (page 2588).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

2536 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRActivate
Activates the window associated with a given HRReference. (Deprecated in Mac OS X v10.4. Use Web Kit
instead; see WebKit Objective-C Programming Guide.)

OSStatus HRActivate (
 HRReference hrRef
);

Parameters
hrRef

An HRReference value previously obtained by your application.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Call this function whenever the window associated with a given HRReference becomes active. This allows
the HTML Rendering Library to activate scrollbars and handle events as appropriate.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRDeactivate
Deactivates the window associated with a given HRReference. (Deprecated in Mac OS X v10.4. Use Web Kit
instead; see WebKit Objective-C Programming Guide.)

Functions 2537
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRDeactivate (
 HRReference hrRef
);

Parameters
hrRef

An HRReference value previously obtained by your application.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Call this function whenever the window associated with a given HRReference becomes inactive.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRDisposeReference
Disposes of a previously obtained HRReference. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

OSStatus HRDisposeReference (
 HRReference hrRef
);

Parameters
hrRef

An HRReference value previously obtained by your application.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

2538 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRDraw
Updates a specified region for a given HRReference. (Deprecated in Mac OS X v10.4. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

OSStatus HRDraw (
 HRReference hrRef,
 RgnHandle updateRgnH
);

Parameters
hrRef

An HRReference value previously obtained by your application.

updateRgnH
A handle of type RgnHandle. This handle specifies the region that you want the HTML Rendering
Library to update. Specify the region in the GrafPort’s local coordinates. If you pass NULL, the HTML
Rendering Library updates the entire rectangle you previously specified with the function
HRSetRenderingRect (page 2571).

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Be sure to specify the dimensions of the rendering area by calling the function HRSetRenderingRect (page
2571) at least once before you call the HRDraw function.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

Functions 2539
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRDrawInPort
Updates a specified region for a given HRReference. (Deprecated in Mac OS X v10.4. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

OSStatus HRDrawInPort (
 HRReference hrRef,
 RgnHandle updateRgnH,
 CGrafPtr grafPtr
);

Parameters
hrRef

A reference to the renderer object.

updateRgnH
The region to be updated.

grafPtr
A graf pointer to render HTML into.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
All the drawing will now happen in the specified port. This is the API you want to use to draw in an offscreen
port, for example when printing. You could also use this API to draw in an on screen port.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRForceQuickdraw
Forces all images to be drawn with QuickDraw. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

2540 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRForceQuickdraw (
 HRReference hrRef,
 Boolean forceQuickdraw
);

Parameters
hrRef

An HRReference value previously obtained by your application.

forceQuickdraw
Pass a value of true in this parameter to force all images to be drawn with QuickDraw.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
This function may be useful when working with print drivers that require QuickDraw for image capturing.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRFreeMemory
Attempts to release cache memory for use by your application. (Deprecated in Mac OS X v10.4. Use Web Kit
instead; see WebKit Objective-C Programming Guide.)

SInt32 HRFreeMemory (
 Size inBytesNeeded
);

Parameters
inBytesNeeded

A value indicating how many bytes of cache memory your application desires to obtain.

Return Value
A value indicating how many bytes of cache memory the HTML Rendering Library makes available to your
application.

Discussion
Call the HRFreeMemory function to flush images and movies from the HTML Rendering Library cache. Be
sure to check the function result to determine whether sufficient memory was made available to your
application.

Functions 2541
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetBaseURL
Obtains the base URL of a given HTML page. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGetBaseURL (
 HRReference hrRef,
 Handle baseURLH
);

Parameters
hrRef

A HRReference value previously obtained by your application.

baseURLH
A handle. Make sure you allocate a valid handle with the NewHandle function. On return, this handle
(which may be resized) references a C string containing the root URL of the given file. If the current
page does not contain a BASE tag, the handle is empty.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
The URL returned by this function begins with 'file:///'.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

2542 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Declared In
HTMLRendering.h

HRGetBaseURLAsCFString
Obtains the base URL of a given HTML page. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGetBaseURLAsCFString (
 HRReference hrRef,
 CFStringRef *baseString
);

Parameters
hrRef

A HRReference value previously obtained by your application.

baseString
On return, this handle references a CFString containing the root URL of the given file.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use these API from a Carbon application instead of using HRGetRootURL (page 2549), HRGetBaseURL (page
2542),HRGetHTMLURL (page 2546),HRGetTitle (page 2550)andHRGetHTMLFile (page 2543). TheseAPIsaresame
in behavior with their old counter parts. The only difference is that they take CFString, CFURLRef, and
FSRef as parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetHTMLFile
Obtains a file system specification record for a given HTML page. (Deprecated in Mac OS X v10.4. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

Functions 2543
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRGetHTMLFile (
 HRReference hrRef,
 FSSpec *fsspec
);

Parameters
hrRef

An HRReference value previously obtained by your application.

fsspec
A pointer to a file system specification record (FSSpec). On return, the FSSpec contains file specification
data for the page specified in the hrRef parameter.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetHTMLFileAsFSRef
Obtains an FSRef for a given HTML page. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGetHTMLFileAsFSRef (
 HRReference hrRef,
 FSRef *fref
);

Parameters
hrRef

An HRReference value previously obtained by your application.

fref
A pointer to an (FSRef). On return, the FSRef contains file specification data for the page specified
in the hrRef parameter.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

2544 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Discussion
Use these API from a Carbon application instead of using HRGetRootURL (page 2549), HRGetBaseURL (page
2542),HRGetHTMLURL (page 2546),HRGetTitle (page 2550)andHRGetHTMLFile (page 2543). TheseAPIsaresame
in behavior with their old counter parts. The only difference is that they take CFString, CFURLRef, and
FSRef as parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetHTMLRenderingLibVersion
Identifies which version of the HTML Rendering Library is available. (Deprecated in Mac OS X v10.4. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

OSStatus HRGetHTMLRenderingLibVersion (
 NumVersion *returnVers
);

Parameters
returnVers

A pointer to a NumVersion structure. On return, this structure contains a value identifying the installed
version of the HTML Rendering Library.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 2545
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Declared In
HTMLRendering.h

HRGetHTMLURL
Obtains the URL for a given HTML page. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGetHTMLURL (
 HRReference hrRef,
 Handle HTMLURLH
);

Parameters
hrRef

An HRReference value previously obtained by your application.

HTMLURLH
A handle. Make sure you allocate a valid handle with the NewHandle function. On return, this handle
(which may be resized) references a C string containing the URL of the given file.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetHTMLURLAsCFURL
Obtains the URL for a given HTML page. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGetHTMLURLAsCFURL (
 HRReference hrRef,
 CFURLRef *theURL
);

Parameters
hrRef

An HRReference value previously obtained by your application.

2546 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

theURL
On return, this references a CFURL containing the URL of the given file.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use these API from a Carbon application instead of using HRGetRootURL (page 2549), HRGetBaseURL (page
2542),HRGetHTMLURL (page 2546),HRGetTitle (page 2550)andHRGetHTMLFile (page 2543). TheseAPIsaresame
in behavior with their old counter parts. The only difference is that they take CFString, CFURLRef, and
FSRef as parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetRenderedImageSize
Reports the size of the rendered image. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGetRenderedImageSize (
 HRReference hrRef,
 Point *renderingSize
);

Parameters
hrRef

An HRReference value previously obtained by your application.

renderingSize
A pointer to a value of type Point. On return, the HTML Rendering Library uses this value to report
the size of the entire HTML page; that is, the smallest rectangle that fully encloses the entire rendered
page (as drawn without scrollbars).

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
The HTML Rendering Library attempts to limit the width of the rendered page to the width of the rectangle
you specify by calling the function HRSetRenderingRect (page 2571). The length of the page is calculated
based on the resulting width.

Functions 2547
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetRenderedImageSize32
Reports the size of the rendered image. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGetRenderedImageSize32 (
 HRReference hrRef,
 UInt32 *height,
 UInt32 *width
);

Parameters
hrRef

A reference to the renderer object.

height
On return, the height of the image.

width
On return, the width of the image.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use this API when the rendered image could have coordinates larger than what SInt16 can hold.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.

2548 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetRootURL
Obtains the root URL for all relative links on a given HTML page. (Deprecated in Mac OS X v10.4. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

OSStatus HRGetRootURL (
 HRReference hrRef,
 Handle rootURLH
);

Parameters
hrRef

An HRReference value previously obtained by your application.

rootURLH
A handle. Make sure you allocate a valid handle with the NewHandle function. On return, this handle
(which may be resized) references a C string containing the root URL of the given file.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
The root URL is normally the URL of the page specified in the hrRef parameter, unless the page contains a
<BASE> tag specifying a different root URL.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetRootURLAsCFString
Obtains the root URL for all relative links on a given HTML page. (Deprecated in Mac OS X v10.4. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

Functions 2549
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRGetRootURLAsCFString (
 HRReference hrRef,
 CFStringRef *rootString
);

Parameters
hrRef

An HRReference value previously obtained by your application.

rootString
On return, this references a CFString containing the root URL of the given file.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use these API from a Carbon application instead of using HRGetRootURL (page 2549), HRGetBaseURL (page
2542),HRGetHTMLURL (page 2546),HRGetTitle (page 2550)andHRGetHTMLFile (page 2543). TheseAPIsaresame
in behavior with their old counter parts. The only difference is that they take CFString, CFURLRef, and
FSRef as parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetTitle
Obtains the title of a given HTML page. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGetTitle (
 HRReference hrRef,
 StringPtr title
);

Parameters
hrRef

An HRReference value previously obtained by your application.

title
A StringPtr. On return, the HTML Rendering Library stores the contents of the TITLE tag of the
given page in the referenced string.

2550 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
This function converts any HTML entities into Mac OS characters before storing them in the string specified
in the title parameter.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGetTitleAsCFString
Obtains the title of a given HTML page. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGetTitleAsCFString (
 HRReference hrRef,
 CFStringRef *title
);

Parameters
hrRef

An HRReference value previously obtained by your application.

title
A CFStringRef. On return, the HTML Rendering Library stores the contents of the TITLE tag of the
given page in the referenced string.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use these API from a Carbon application instead of using HRGetRootURL (page 2549), HRGetBaseURL (page
2542),HRGetHTMLURL (page 2546),HRGetTitle (page 2550)andHRGetHTMLFile (page 2543). TheseAPIsaresame
in behavior with their old counter parts. The only difference is that they take CFString, CFURLRef, and
FSRef as parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very

Functions 2551
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGoToAnchor
Specifies an HTML anchor to scroll into view. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGoToAnchor (
 HRReference hrRef,
 const char *anchorName
);

Parameters
hrRef

An HRReference value previously obtained by your application.

anchorName
A pointer to a C string containing the name of an anchor on the current HTML page.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Note that anchors are case sensitive.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

2552 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRGoToAnchorCFString
Specifies an HTML anchor to scroll into view. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRGoToAnchorCFString (
 HRReference hrRef,
 CFStringRef anchorName
);

Parameters
hrRef

A reference to the renderer object.

anchorName
The name of the anchor to display.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use these functions instead of using the functions HRGoToFile (page 2555), HRGoToURL (page 2558),
HRGoToAnchor (page 2552)and HRGoToPtr (page 2557). These functions are the same in behavior with their
old counter parts. The only difference is that they take FSRef, CFURLRef, CFString, and CFData as
parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGoToCFURL
Renders a local file specified as a URL. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

Functions 2553
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRGoToCFURL (
 HRReference hrRef,
 CFURLRef url,
 Boolean addToHistory,
 Boolean forceRefresh
);

Parameters
hrRef

A reference to the renderer object.

url
A reference to the URL to render.

addToHistory
Pass true if this file URL should be added to the history.

forceRefresh
Pass true if the rendering area should be refreshed.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use these functions instead of using the functions HRGoToFile (page 2555), HRGoToURL (page 2558),
HRGoToAnchor (page 2552)and HRGoToPtr (page 2557). These functions are the same in behavior with their
old counter parts. The only difference is that they take FSRef, CFURLRef, CFString, and CFData as
parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGoToData
Specifies HTML data for rendering. (Deprecated in Mac OS X v10.4. Use Web Kit instead; seeWebKitObjective-C
Programming Guide.)

2554 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRGoToData (
 HRReference hrRef,
 CFDataRef data,
 Boolean addToHistory,
 Boolean forceRefresh
);

Parameters
hrRef

A reference to the renderer object.

data
A reference to data in the memory to render.

addToHistory
Pass true if this file URL should be added to the history.

forceRefresh
Pass true if the rendering area should be refreshed.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use these functions instead of using the functions HRGoToFile (page 2555), HRGoToURL (page 2558),
HRGoToAnchor (page 2552)and HRGoToPtr (page 2557). These functions are the same in behavior with their
old counter parts. The only difference is that they take FSRef, CFURLRef, CFString, and CFData as
parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGoToFile
Specifies an HTML file for rendering. (Deprecated in Mac OS X v10.4. Use Web Kit instead; seeWebKitObjective-C
Programming Guide.)

Functions 2555
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRGoToFile (
 HRReference hrRef,
 const FSSpec *fsspec,
 Boolean addToHistory,
 Boolean forceRefresh
);

Parameters
hrRef

An HRReference value previously obtained by your application.

fsspec
A pointer to a file system specification record (FSSpec) for the HTML file that you wish to have rendered
by the HTML Rendering Library.

addToHistory
Pass true in this parameter if you wish to have this file added to the list of visited links.

forceRefresh
Pass true in this parameter if you wish to force a screen update.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Note that the HTML Rendering Library calls your HRNewURLProcPtr (page 2589) application-defined function
(if you use one) with this FSSpec. If you need to pass a URL instead of an FSSpec, use the function
HRGoToURL (page 2558).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGoToFSRef
Renders a set of HTML data from a specified buffer. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

2556 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRGoToFSRef (
 HRReference hrRef,
 const FSRef *fref,
 Boolean addToHistory,
 Boolean forceRefresh
);

Parameters
hrRef

A reference to the renderer object.

fref
A reference to the HTML file that is to be opened and rendered.

addToHistory
Pass true if this file URL should be added to the history.

forceRefresh
Pass true if the rendering area should be refreshed.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use these functions instead of using the functions HRGoToFile (page 2555), HRGoToURL (page 2558),
HRGoToAnchor (page 2552)and HRGoToPtr (page 2557). These functions are the same in behavior with their
old counter parts. The only difference is that they take FSRef, CFURLRef, CFString, and CFData as
parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGoToPtr
Renders a set of HTML data from a specified buffer. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

Functions 2557
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRGoToPtr (
 HRReference hrRef,
 char *buffer,
 UInt32 bufferSize,
 Boolean addToHistory,
 Boolean forceRefresh
);

Parameters
hrRef

An HRReference value previously obtained by your application.

buffer
A pointer to a buffer containing HTML data.

bufferSize
A value specifying the number of bytes in the buffer.

addToHistory
Pass true in this parameter if you wish to have this data added to the list of visited links.

forceRefresh
Pass true in this parameter if you wish to force a screen update.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
The HTML Rendering Library displays the HTML source data pointed to by the handle. It does not copy the
handle, so you should not dispose of it until you are sure you no longer need it. Note that any relative links
you specify in the HTML data are relative to your application, as the HTML data has no associated URL.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRGoToURL
Renders a local file specified as a URL. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

2558 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRGoToURL (
 HRReference hrRef,
 const char *url,
 Boolean addToHistory,
 Boolean forceRefresh
);

Parameters
hrRef

An HRReference value previously obtained by your application.

url
A pointer to a C string containing a Universal Resource Locator (URL).

addToHistory
Pass true in this parameter if you wish to have this file added to the list of visited links.

forceRefresh
Pass true in this parameter if you wish to force a screen update.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use this function for rendering local files. The URL should begin with 'file:///'. Note that the HTML
Rendering Library calls your HRNewURLProcPtr (page 2589) application-defined function (if you use one) with
this URL. If you need to pass an FSSpec instead of a URL, use the function HRGoToURL (page 2558).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRHTMLRenderingLibAvailable
Reports whether the HTML Rendering Library is available. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

pascal Boolean HRHTMLRenderingLibAvailable

Return Value
Returns true if the HTML Rendering Library is available; returns false otherwise.

Functions 2559
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRIsHREvent
Gives the HTML Rendering Library an opportunity to handle events. (Deprecated in Mac OS X v10.4. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

Boolean HRIsHREvent (
 const EventRecord *eventRecord
);

Parameters
eventRecord

A pointer to an EventRecord.

Return Value
Returns true if the HTML Rendering Library handles the specified event; returns false otherwise.

Discussion
Call the HRIsHREvent function with every event received by your application. This ensures that the HTML
Rendering Library has an opportunity to handle user clicks and cursor changes.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

2560 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRNewReference
Obtains a new HRReference. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

OSStatus HRNewReference (
 HRReference *hrRef,
 OSType rendererType,
 GrafPtr grafPtr
);

Parameters
hrRef

A pointer to a HRReference value. On return, your application uses this value to call other functions
in the HTML Rendering Library.

rendererType
A value of type OSType identifying the type of HTML renderer available. Currently, the constant
kHRRendererHTML32Type is the only value you may pass in this parameter.

grafPtr
A pointer to a valid GrafPort.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
When your application has no further need for a particular HRReference, dispose of it by calling the function
HRDisposeReference (page 2538).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRNewReferenceInWindow
Obtains a new HRReference. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

Functions 2561
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRNewReferenceInWindow (
 HRReference *hrRef,
 OSType rendererType,
 WindowRef inWindowRef
);

Parameters
hrRef

A pointer to the new reference created and returned by the renderer.

rendererType
The type of the renderer—for example kHRRendererHTML32Type. Only this type is supported for
now.

inWindowRef
A reference to the window for which rendering area will be specified.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
All the controls created by the HTML renderer will be embedded in the root control of the window specified
by the window reference.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRRegisterNewCFURLUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void HRRegisterNewCFURLUPP (
 HRNewCFURLUPP inURLUPP,
 HRReference hrRef,
 void *inRefCon
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very

2562 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRRegisterNewURLUPP
Registers an application-defined function that handles newly visited links. (Deprecated in Mac OS X v10.4.
Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void HRRegisterNewURLUPP (
 HRNewURLUPP inNewURLUPP,
 HRReference hrRef,
 void *inRefCon
);

Parameters
inNewURLUPP

A Universal Procedure Pointer (UPP). You obtain this UPP by calling the function
NewHRNewURLUPP (page 2586).

hrRef
An HRReference value previously obtained by your application.

inRefCon
An arbitrary value set by your application. This value is passed by your application when you call the
HRRegisterNewURLUPP function and passed back when the HTML Rendering Library calls your
function HRNewURLProcPtr (page 2589). You may find this value useful for referring to an object
instance or a structure, for example.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

Functions 2563
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRRegisterURLToFSRefUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void HRRegisterURLToFSRefUPP (
 HRURLToFSRefUPP inURLToFSRefUPP,
 HRReference hrRef,
 void *inRefCon
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRRegisterURLToFSSpecUPP
Registers an application-defined function that handles previously visited links. (Deprecated in Mac OS X v10.4.
Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void HRRegisterURLToFSSpecUPP (
 HRURLToFSSpecUPP inURLToFSSpecUPP,
 HRReference hrRef,
 void *inRefCon
);

Parameters
inURLToFSSpecUPP

A Universal Procedure Pointer (UPP). You obtain this UPP by calling the function
NewHRURLToFSSpecUPP (page 2587).

hrRef
An HRReference value previously obtained by your application.

inRefCon
An arbitrary value set by your application. This value is passed by your application when you call the
HRRegisterURLToFSSpecUPP function and passed back when the HTML Rendering Library calls
your function HRURLToFSSpecProcPtr (page 2591). You may find this value useful for referring to an
object instance or a structure, for example.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very

2564 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRRegisterWasCFURLVisitedUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void HRRegisterWasCFURLVisitedUPP (
 HRWasCFURLVisitedUPP inWasCFURLVisitedUPP,
 HRReference hrRef,
 void *inRefCon
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRRegisterWasURLVisitedUPP
Registers an application-defined function that handles previously visited links. (Deprecated in Mac OS X v10.4.
Use Web Kit instead; see WebKit Objective-C Programming Guide.)

Functions 2565
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

void HRRegisterWasURLVisitedUPP (
 HRWasURLVisitedUPP inWasURLVisitedUPP,
 HRReference hrRef,
 void *inRefCon
);

Parameters
inWasURLVisitedUPP

A Universal Procedure Pointer (UPP). You obtain this UPP by calling the function
NewHRWasURLVisitedUPP (page 2588).

hrRef
An HRReference value previously obtained by your application.

inRefCon
An arbitrary value set by your application. This value is passed by your application when you call the
function and passed back when the HTML Rendering Library calls your MyHRWasURLVisitedProc
function. You may find this value useful for referring to an object instance or a structure, for example.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRScreenConfigurationChanged
Informs the HTML Rendering Library that the screen depth has changed. (Deprecated in Mac OS X v10.4. Use
Web Kit instead; see WebKit Objective-C Programming Guide.)

void HRScreenConfigurationChanged (
 void
);

Discussion
Call the HRScreenConfigurationChanged function every time the screen depth changes or the user’s
monitor configuration changes. This allows the HTML Rendering Library to redraw correctly.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

2566 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRScrollToImageLocation32
Scrolls to a specified view of the HTML rendering area. (Deprecated in Mac OS X v10.4. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

OSStatus HRScrollToImageLocation32 (
 HRReference hrRef,
 SInt32 h,
 SInt32 v
);

Parameters
hrRef

A reference to the renderer object.

h
The horizontal location.

v
The vertical location.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use this API when specifying a location to scroll to. Location is specified in image space.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

Functions 2567
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRScrollToLocation
Scrolls to a specified view of the HTML rendering area. (Deprecated in Mac OS X v10.4. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

OSStatus HRScrollToLocation (
 HRReference hrRef,
 Point *location
);

Parameters
hrRef

An HRReference value previously obtained by your application.

location
A pointer to a value of type Point. Your application uses this value to specify the upper left corner
of the visible portion of the rendering area.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
The HTML Rendering Library limits scrolling to the available rendering area.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRSetDrawBorder
Specifies whether to draw a border around the rendering area. (Deprecated in Mac OS X v10.4. Use Web Kit
instead; see WebKit Objective-C Programming Guide.)

OSStatus HRSetDrawBorder (
 HRReference hrRef,
 Boolean drawBorder
);

Parameters
hrRef

An HRReference value previously obtained by your application.

2568 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

drawBorder
If you pass true, the HTML Rendering Library draws a border around the rendering area. If you pass
false, the HTML Rendering Library draws the rendering area without a border. The default setting
is false.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
You may use this optional function to specify whether a border is drawn around the rendering area. This
might be useful when you specify a rendering area in a window containing other elements, for example. The
default setting is to render without a border.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRSetEmbeddingControl
Sets the ControlRef for embedding controls. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

OSStatus HRSetEmbeddingControl (
 HRReference hrRef,
 ControlRef controlRef
);

Parameters
hrRef

A reference to the renderer object.

controlRef
All the future controls created by renderer are embedded in this controlRef.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use this API to tell the HTML Renderer to embed all the controls it has created so far and the new controls
it creates after this call in the given control. This is particularly useful if you wish to have HTML displayed
within your dialog. For example, Software Update needs this.

Functions 2569
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRSetGrafPtr
Sets a new GrafPort for a given HRReference. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

OSStatus HRSetGrafPtr (
 HRReference hrRef,
 GrafPtr grafPtr
);

Parameters
hrRef

An HRReference value previously obtained by your application.

grafPtr
A pointer to a valid GrafPort. This value replaces any GrafPort previously specified for the given
HRReference.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Call this function whenever the GrafPort changes for a given HRReference, as occurs during printing, for
example. Be sure to call the HRSetGrafPtr function again to reset the original GrafPort when necessary.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

2570 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Declared In
HTMLRendering.h

HRSetGrowboxCutout
Specifies whether to allow for a size box when drawing scrollbars. (Deprecated in Mac OS X v10.4. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

OSStatus HRSetGrowboxCutout (
 HRReference hrRef,
 Boolean allowCutout
);

Parameters
hrRef

An HRReference value previously obtained by your application.

allowCutout
If you pass true in this parameter, the HTML Rendering Library draws scroll bars that provide space
for a size box. If you pass false in this parameter, the HTML Rendering Library draws scroll bars that
extend all the way to the bottom right corner of the rendering area. The default setting is false.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
You may find it useful to specify a cutout for a size box if the HTML rendering area you specify extends to
the lower right corner of a window. The default setting is to draw scrollbars without leaving room for a size
box.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRSetRenderingRect
Specifies the boundaries of the HTML rendering area. (Deprecated in Mac OS X v10.4. Use Web Kit instead;
see WebKit Objective-C Programming Guide.)

Functions 2571
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRSetRenderingRect (
 HRReference hrRef,
 const Rect *renderingRect
);

Parameters
hrRef

An HRReference value previously obtained by your application.

renderingRect
A pointer to a value of type Rect. This value specifies the boundaries of the HTML rendering area.
Specify the boundaries in the GrafPort’s port coordinates.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
The HTML Rendering Library draws all elements, including scroll bars, inside the area you specify with the
function HRSetRenderingRect (page 2571).

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRSetScrollbarState
Specifies how scrollbars are drawn. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKitObjective-C
Programming Guide.)

OSStatus HRSetScrollbarState (
 HRReference hrRef,
 HRScrollbarState hScrollbarState,
 HRScrollbarState vScrollbarState
);

Parameters
hrRef

An HRReference value previously obtained by your application.

hScrollbarState
A value of type HRScrollbarState. See Scrollbar State (page 2596) for a list of the constants you may
pass in this parameter.

2572 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

vScrollbarState
A value of type HRScrollbarState. See Scrollbar State (page 2596) for a list of the constants you may
pass in this parameter.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
You can specify one of three values for scrollbars:

 ■ eHRScrollbarOn tells the HTML Rendering Library to draw scrollbars at all times. If the data does not
fill the current view, the scroll bars are inactive.

 ■ eHRScrollbarOff tells the HTML Rendering Library never to draw scrollbars. You may find this option
useful if the HTML rendering area you specify does not extend to the edge of a window.

 ■ eHRScrollbarAuto tells the HTML Rendering Library to draw scrollbars as needed. This is the default
setting.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRSetWindowRef
Sets the controlling window. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

OSStatus HRSetWindowRef (
 HRReference hrRef,
 WindowRef windowRef
);

Parameters
hrRef

A reference to the renderer object.

windowRef
A new reference to the window to be attached to the hrRef.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Functions 2573
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Discussion
All the controls created by the HTML renderer will be moved in the root control of the window specified by
the window reference. All the drawing will now happen in the specified window.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRUnregisterNewCFURLUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void HRUnregisterNewCFURLUPP (
 HRReference hrRef
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRUnregisterNewURLUPP
Unregisters a previously registered application-defined function. (Deprecated in Mac OS X v10.4. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

2574 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

void HRUnregisterNewURLUPP (
 HRReference hrRef
);

Parameters
hrRef

An HRReference value. You pass the same HRReference value that you passed to register the
application-defined function.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRUnregisterURLToFSRefUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void HRUnregisterURLToFSRefUPP (
 HRReference hrRef
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

Functions 2575
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRUnregisterURLToFSSpecUPP
Unregisters a previously registered application-defined function. (Deprecated in Mac OS X v10.4. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

void HRUnregisterURLToFSSpecUPP (
 HRReference hrRef
);

Parameters
hrRef

An HRReference value. You pass the same HRReference value that you passed to register the
application-defined function.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRUnregisterWasCFURLVisitedUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

void HRUnregisterWasCFURLVisitedUPP (
 HRReference hrRef
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

2576 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRUnregisterWasURLVisitedUPP
Unregisters a previously registered application-defined function. (Deprecated in Mac OS X v10.4. Use Web
Kit instead; see WebKit Objective-C Programming Guide.)

void HRUnregisterWasURLVisitedUPP (
 HRReference hrRef
);

Parameters
hrRef

An HRReference value. You pass the same HRReference value that you passed to register the
application-defined function.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRUtilCreateFullCFURL
Obtains a full URL from a given set of relative URLs. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

OSStatus HRUtilCreateFullCFURL (
 CFStringRef rootString,
 CFStringRef linkString,
 CFURLRef *url
);

Parameters
rootString

A CFStringRef that refers to a CFString containing the root URL that the HTML Rendering Library
will use to create the full URL. The root URL typically identifies an HTML source page.

linkString
A CFStringRef that refers to a CFString containing the link URL that the HTML Rendering Library
will use to create the full URL. The link URL typically identifies a link being clicked on.

url
A CFURLRef. On return, this handle references a full URL created from the specified root URL and the
specified link URL.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Functions 2577
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Discussion
Use these API from a Carbon application instead of using HRUtilCreateFullURL (page 2578),
HRUtilGetFSSpecFromURL (page 2580), and HRUtilGetURLFromFSSpec (page 2581). These APIs are same
in behavior with their old counter parts. The only difference is that they take CFURLRef, and FSRef as
parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRUtilCreateFullURL
Obtains a full URL from a given set of relative URLs. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

OSStatus HRUtilCreateFullURL (
 const char *rootURL,
 const char *linkURL,
 Handle fullURLH
);

Parameters
rootURL

A pointer to a C string containing the root URL that the HTML Rendering Library will use to create the
full URL. The root URL typically identifies an HTML source page.

linkURL
A pointer to a C string containing the link URL that the HTML Rendering Library will use to create the
full URL. The link URL typically identifies a link being clicked on.

fullURLH
A handle. On return, this handle references a full URL created from the specified root URL and the
specified link URL. You must allocate this handle with the function NewHandle before calling
HRUtilCreateFullURL. The HTML Rendering Library resizes the handle and terminates the C string
with a NULL character.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
This function allows you to obtain a full URL to use when a relative URL is inappropriate. This might be useful
when you need to pass a URL to another application, for example.

2578 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRUtilGetFSRefFromURL
Obtains a FSRef from a given set of relative URL’s. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

OSStatus HRUtilGetFSRefFromURL (
 CFStringRef rootString,
 CFStringRef linkString,
 FSRef *destRef
);

Parameters
rootString

A reference to a CFString containing the root URL that the HTML Rendering Library will use to create
the full URL. The root URL typically identifies an HTML source page.

linkString
A reference to a CFString containing the link URL that the HTML Rendering Library will use to create
the full URL. The link URL typically identifies a link being clicked on.

destRef
A pointer to a FSRef. On return, this points to the FSRef of the full URL calculated from the specified
root url and the specified link URL.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use these API from a Carbon application instead of using HRUtilCreateFullURL (page 2578),
HRUtilGetFSSpecFromURL (page 2580), and HRUtilGetURLFromFSSpec (page 2581). These APIs are same
in behavior with their old counter parts. The only difference is that they take CFURLRef, and FSRef as
parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very

Functions 2579
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRUtilGetFSSpecFromURL
Obtains a FSSpec from a given set of relative URL’s. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see
WebKit Objective-C Programming Guide.)

OSStatus HRUtilGetFSSpecFromURL (
 const char *rootURL,
 const char *linkURL,
 FSSpec *destSpec
);

Parameters
rootURL

A pointer to a C string containing the root URL that the HTML Rendering Library will use to create the
full URL. The root URL typically identifies an HTML source page.

linkURL
A pointer to a C string containing the link URL that the HTML Rendering Library will use to create the
full URL. The link URL typically identifies a link being clicked on.

destSpec
A pointer to a file system specification record (FSSpec). On return, this points to the FSSPec of the
full URL calculated from the specified root url and the specified link URL.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
This function allows you to obtain an FSSpec to use when a relative URL is inappropriate. This might be
useful for Apple events, for example

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

2580 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Declared In
HTMLRendering.h

HRUtilGetURLFromFSRef
Obtains a full URL from a given FSRef. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

OSStatus HRUtilGetURLFromFSRef (
 const FSRef *fileRef,
 CFURLRef *url
);

Parameters
fileRef

A pointer to an existing FSRef.

url
A pointer to a CFURLRef. On return, the CFURL contains the URL of the given FSSpec.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
Use these API from a Carbon application instead of using HRUtilCreateFullURL (page 2578),
HRUtilGetFSSpecFromURL (page 2580), and HRUtilGetURLFromFSSpec (page 2581). These APIs are same
in behavior with their old counter parts. The only difference is that they take CFURLRef, and FSRef as
parameters.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

HRUtilGetURLFromFSSpec
Obtains a full URL from a given FSSpec. (Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

Functions 2581
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

OSStatus HRUtilGetURLFromFSSpec (
 const FSSpec *fsspec,
 Handle urlHandle
);

Parameters
fsspec

A pointer to an existing file system specification record (FSSpec).

urlHandle
A handle to a C string. On return, this C string contains the URL of the given FSSpec. You must allocate
this handle with the function NewHandle before calling HRUtilGetURLFromFSSpec. The HTML
Rendering Library resizes the handle and terminates the C string with a NULL character.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
This function allows you to obtain a URL from a given FSSpec. This might be useful when you have previously
obtained an FSSpec and need to pass it to an application that requires URL data, for example.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later when running Mac OS 9 or later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

InvokeHRNewCFURLUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

OSStatus InvokeHRNewCFURLUPP (
 CFURLRef url,
 CFStringRef targetString,
 Boolean addToHistory,
 void *refCon,
 HRNewCFURLUPP userUPP
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very

2582 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

InvokeHRNewURLUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

OSStatus InvokeHRNewURLUPP (
 const char *url,
 const char *targetFrame,
 Boolean addToHistory,
 void *refCon,
 HRNewURLUPP userUPP
);

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

InvokeHRURLToFSRefUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

OSStatus InvokeHRURLToFSRefUPP (
 CFStringRef rootString,
 CFStringRef linkString,
 FSRef *fref,
 URLSourceType urlSourceType,
 void *refCon,
 HRURLToFSRefUPP userUPP
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Functions 2583
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

InvokeHRURLToFSSpecUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

OSStatus InvokeHRURLToFSSpecUPP (
 const char *rootURL,
 const char *linkURL,
 FSSpec *fsspec,
 URLSourceType urlSourceType,
 void *refCon,
 HRURLToFSSpecUPP userUPP
);

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

InvokeHRWasCFURLVisitedUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

Boolean InvokeHRWasCFURLVisitedUPP (
 CFURLRef url,
 void *refCon,
 HRWasCFURLVisitedUPP userUPP
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

2584 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Declared In
HTMLRendering.h

InvokeHRWasURLVisitedUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

Boolean InvokeHRWasURLVisitedUPP (
 const char *url,
 void *refCon,
 HRWasURLVisitedUPP userUPP
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

NewHRNewCFURLUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

HRNewCFURLUPP NewHRNewCFURLUPP (
 HRNewCFURLProcPtr userRoutine
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

Functions 2585
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

NewHRNewURLUPP
Obtains a UPP for an application-defined function that handles newly visited links. (Deprecated in Mac OS X
v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

HRNewURLUPP NewHRNewURLUPP (
 HRNewURLProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function that handles newly visited links. For more information,
see HRNewURLProcPtr (page 2589).

Return Value
A Universal Procedure Pointer. You pass this pointer to the function HRRegisterNewURLUPP (page 2563). See
the description of the HRNewURLUPP data type.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

NewHRURLToFSRefUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

HRURLToFSRefUPP NewHRURLToFSRefUPP (
 HRURLToFSRefProcPtr userRoutine
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

2586 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Declared In
HTMLRendering.h

NewHRURLToFSSpecUPP
Obtains a UPP for an application-defined function that intercepts URL’s. (Deprecated in Mac OS X v10.4. Use
Web Kit instead; see WebKit Objective-C Programming Guide.)

HRURLToFSSpecUPP NewHRURLToFSSpecUPP (
 HRURLToFSSpecProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function that intercepts URL’s. For more information, see the
function HRURLToFSSpecProcPtr (page 2591).

Return Value
A Universal Procedure Pointer. You pass this pointer to the function HRRegisterURLToFSSpecUPP (page
2564). See the description of the HRURLToFSSpecUPP data type.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

NewHRWasCFURLVisitedUPP
(Deprecated in Mac OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

HRWasCFURLVisitedUPP NewHRWasCFURLVisitedUPP (
 HRWasCFURLVisitedProcPtr userRoutine
);

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Functions 2587
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Availability
Available in CarbonLib 1.3 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

NewHRWasURLVisitedUPP
Obtains a UPP for an application-defined function that handles previously visited links. (Deprecated in Mac
OS X v10.4. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

HRWasURLVisitedUPP NewHRWasURLVisitedUPP (
 HRWasURLVisitedProcPtr userRoutine
);

Parameters
userRoutine

A pointer to your application-defined function that handles visited links. For more information, see
the function HRWasURLVisitedProcPtr (page 2593).

Return Value
A Universal Procedure Pointer. You pass this pointer to the function HRRegisterWasURLVisitedUPP (page
2565). See the description of the HRWasURLVisitedUPP data type.

Special Considerations

Because the Web Kit takes a completely different approach to displaying HTML and web content from that
used by the HTML Rendering Library, you cannot make a one-to-one substitution of Web Kit methods for
HTML Rendering Library functions. However, the basic features of the Web Kit can be implemented very
quickly, and Web Kit offers much greater capability than the HTML Rendering Library. Although the Web Kit
is an Objective-C interface, you can call it from a Carbon application. See Accessing the Web Kit From Carbon
Applications for details.

Availability
Available in CarbonLib 1.1 and later.
Available in Mac OS X 10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
HTMLRendering.h

Callbacks

HRNewCFURLProcPtr
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

2588 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

typedef OSStatus (*HRNewCFURLProcPtr)
(
 CFURLRef url,
 CFStringRef targetString,
 Boolean addToHistory,
 void * refCon
);

If you name your function MyHRNewCFURLProc, you would declare it like this:

OSStatus MyHRNewCFURLProc (
 CFURLRef url,
 CFStringRef targetString,
 Boolean addToHistory,
 void * refCon
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRNewURLProcPtr
An application-defined function that tracks newly visited links. (Deprecated. Use Web Kit instead; see WebKit
Objective-C Programming Guide.)

typedef OSStatus (*HRNewURLProcPtr) (
 const char * url,
 const char * targetFrame,
 Boolean addToHistory,
 void * refCon
);

If you name your function MyHRNewURLProc, you would declare it like this:

OSStatus MyHRNewURLProc (
 const char * url,
 const char * targetFrame,
 Boolean addToHistory,
 void * refCon
);

Parameters
url

A pointer to a C string containing the URL of the link.

targetFrame
A pointer to a C string containing the name of the target frame.

addToHistory
The HTML Rendering Library passes true in this parameter to indicate that you should add this link
to a link-tracking history. It is up to your application to do any link-tracking.

Callbacks 2589
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

refCon
An arbitrary value set by your application. This value is passed by your application when you call the
function HRRegisterNewURLUPP (page 2563) and passed back when the HTML Rendering Library calls
your MyNewURLProc function. You may find this value useful for referring to an object instance or a
structure, for example.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
You may find this function useful for maintaining a history list, for example. The sequence of steps required
to implement an application-defined function to track visited links is as follows:

1. Obtain a UPP for your application-defined function by calling the function NewHRNewURLUPP (page 2586).

2. Register your application-defined function by passing the UPP to the function
HRRegisterNewURLUPP (page 2563).

3. When the HTML Rendering Library calls your application-defined function, take note of the URL being
visited.

When you are done using your application-defined function:

1. Unregister your application-defined function by calling the function HRUnregisterNewURLUPP (page
2574).

2. Dispose of the UPP by calling the function DisposeHRNewURLUPP (page 2534).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRURLToFSRefProcPtr
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

typedef OSStatus (*HRURLToFSRefProcPtr)
(
 CFStringRef rootString,
 CFStringRef linkString,
 FSRef * fref,
 URLSourceType urlSourceType,
 void * refCon
);

If you name your function MyHRURLToFSRefProc, you would declare it like this:

OSStatus MyHRURLToFSRefProc (
 CFStringRef rootString,
 CFStringRef linkString,
 FSRef * fref,
 URLSourceType urlSourceType,

2590 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

 void * refCon
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRURLToFSSpecProcPtr
Converts URL data to a file system specification. (Deprecated. Use Web Kit instead; see WebKit Objective-C
Programming Guide.)

typedef OSStatus (*HRURLToFSSpecProcPtr)
(
 const char * rootURL,
 const char * linkURL,
 FSSpec * fsspec,
 URLSourceType urlSourceType,
 void * refCon
);

If you name your function MyHRURLToFSSpecProc, you would declare it like this:

OSStatus MyHRURLToFSSpecProc (
 const char * rootURL,
 const char * linkURL,
 FSSpec * fsspec,
 URLSourceType urlSourceType,
 void * refCon
);

Parameters
rootURL

A pointer to a C string containing the root URL of the file to be loaded.

linkURL
A pointer to a C string containing the link URL of the file to be loaded.

fsspec
A pointer to a file system specification record (FSSpec) that you use to specify the file to which the
HTML Rendering Library redirects the user.

Callbacks 2591
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

urlSourceType
The HTML Rendering Library passes one of the following constants to indicate the type of file being
searched for:

 ■ kHRLookingForHTMLSource indicates that the file is an HTML source document.

 ■ kHRLookingForImage indicates that the file is an image.

 ■ kHRLookingForEmbedded indicates that the file is an embedded object, such as a QuickTime
movie.

 ■ kHRLookingForImageMap indicates that the file is an HTML image map.

 ■ kHRLookingForFrame indicates that the file is an HTML frameset.

refCon
An arbitrary value set by your application. This value is passed by your application when you call the
function and passed back when the HTML Rendering Library calls your MyHRURLToFSSpecProc
function. You may find this value useful for referring to an object instance or a structure, for example.

Return Value
A result code. See “HTML Rendering Library Result Codes” (page 2597).

Discussion
This function may be useful if you want to redirect certain URL’s to application-specific files, for example. The
sequence of steps required to implement an application-defined function to intercept URL’s is as follows:

1. Obtain a UPP for your application-defined function by calling the function NewHRURLToFSSpecUPP (page
2587).

2. Register your application-defined function by passing the UPP to the function
HRRegisterURLToFSSpecUPP (page 2564).

3. Respond when the HTML Rendering Library calls your application-defined function.

When you are done with your application-defined function:

1. Unregister your application-defined function by calling the function
HRUnregisterURLToFSSpecUPP (page 2576).

2. Dispose of the UPP by calling the function DisposeHRURLToFSSpecUPP (page 2535).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRWasCFURLVisitedProcPtr
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

2592 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

typedef Boolean (*HRWasCFURLVisitedProcPtr)
(
 CFURLRef url,
 void * refCon
);

If you name your function MyHRWasCFURLVisitedProc, you would declare it like this:

Boolean MyHRWasCFURLVisitedProc (
 CFURLRef url,
 void * refCon
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRWasURLVisitedProcPtr
Keeps track of whether a given URL has been previously visited. (Deprecated. Use Web Kit instead; seeWebKit
Objective-C Programming Guide.)

typedef Boolean (*HRWasURLVisitedProcPtr)
(
 const char * url,
 void * refCon
);

If you name your function MyHRWasURLVisitedProc, you would declare it like this:

Boolean MyHRWasURLVisitedProc (
 const char * url,
 void * refCon
);

Parameters
url

A pointer to a C string containing the URL of the link.

refCon
An arbitrary value set by your application. This value is passed by your application when you call the
function and passed back when the HTML Rendering Library calls your MyHRWasURLVisitedProc
function. You may find this value useful for referring to an object instance or a structure, for example.

Return Value
If the given URL was previously visited, your application-defined function should return true. If the given
URL was not previously visited, your application-defined function should return false.

Discussion
The sequence of steps required to implement an application-defined function to handle previously visited
links is as follows:

Callbacks 2593
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

1. Obtain a UPP for your application-defined function by calling the function
NewHRWasURLVisitedUPP (page 2588).

2. Register your application-defined function by passing the UPP to the function
HRRegisterWasURLVisitedUPP (page 2565).

3. Respond when the HTML Rendering Library calls your application-defined function.

When you are done using your application-defined function:

1. Unregister your application-defined function by calling the function
HRUnregisterWasURLVisitedUPP (page 2577).

2. Dispose of the UPP by calling the function DisposeHRWasURLVisitedUPP (page 2536).

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

Data Types

HRNewCFURLUPP
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

typedef HRNewCFURLProcPtr HRNewCFURLUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRNewURLUPP
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

typedef HRNewURLProcPtr HRNewURLUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

2594 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

HRReference
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

typedef struct OpaqueHRReference * HRReference;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRURLToFSRefUPP
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

typedef HRURLToFSRefProcPtr HRURLToFSRefUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRURLToFSSpecUPP
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

typedef HRURLToFSSpecProcPtr HRURLToFSSpecUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRWasCFURLVisitedUPP
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

typedef HRWasCFURLVisitedProcPtr HRWasCFURLVisitedUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

HRWasURLVisitedUPP
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

Data Types 2595
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

typedef HRWasURLVisitedProcPtr HRWasURLVisitedUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
HTMLRendering.h

Constants

Scrollbar State
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

typedef SInt16 HRScrollbarState;
enum {
 eHRScrollbarOn = 0,
 eHRScrollbarOff = 1,
 eHRScrollbarAuto = 2
};

Constants
eHRScrollbarOn

Tells the HTML Rendering Library to draw scrollbars at all times. If the data does not fill the current
view, the scroll bars are inactive.

Available in Mac OS X v10.0 and later.

Declared in HTMLRendering.h.

eHRScrollbarOff
Tells the HTML Rendering Library never to draw scrollbars. You may find this option useful if the HTML
rendering area you specify does not extend to the edge of a window.

Available in Mac OS X v10.0 and later.

Declared in HTMLRendering.h.

eHRScrollbarAuto
Tells the HTML Rendering Library to draw scrollbars as needed. This is the default setting.

Available in Mac OS X v10.0 and later.

Declared in HTMLRendering.h.

Renderer HTML Type
(Deprecated. Use Web Kit instead; see WebKit Objective-C Programming Guide.)

2596 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

enum {
 kHRRendererHTML32Type = 'ht32'
};

URL Source Type
(Deprecated. Use Web Kit instead; seeWebKitObjective-CProgrammingGuide.Use Web Kit instead; seeWebKit
Objective-C Programming Guide.)

typedef UInt16 URLSourceType;
enum {
 kHRLookingForHTMLSource = 1,
 kHRLookingForImage = 2,
 kHRLookingForEmbedded = 3,
 kHRLookingForImageMap = 4,
 kHRLookingForFrame = 5
};

Constants
kHRLookingForHTMLSource

Indicates that the file is an HTML source document.

Available in Mac OS X v10.0 and later.

Declared in HTMLRendering.h.

kHRLookingForImage
Indicates that the file is an image.

Available in Mac OS X v10.0 and later.

Declared in HTMLRendering.h.

kHRLookingForEmbedded
Indicates that the file is an embedded object, such as a QuickTime movie.

Available in Mac OS X v10.0 and later.

Declared in HTMLRendering.h.

kHRLookingForImageMap
Indicates that the file is an HTML image map.

Available in Mac OS X v10.0 and later.

Declared in HTMLRendering.h.

kHRLookingForFrame
Indicates that the file is an HTML frameset.

Available in Mac OS X v10.0 and later.

Declared in HTMLRendering.h.

Result Codes

The most common result codes returned by HTML Rendering Library are listed in the table below. HTML
Rendering Library may also return codes noErr (0), and paramErr (-50).

Result Codes 2597
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

DescriptionValueResult Code

The HTML Rendering Library is not available.-5360hrHTMLRenderingLibNotInstalledErr

Available in Mac OS X v10.0 and later.

An unexpected exception occurred.-5361hrMiscellaneousExceptionErr

Available in Mac OS X v10.0 and later.

Unable to resize a handle to the required size.-5362hrUnableToResizeHandleErr

Available in Mac OS X v10.0 and later.

2598 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 35

HTML Rendering Library Reference (Not Recommended)

Framework: Carbon/Carbon.h

Declared in MacTextEditor.h

Overview

Multilingual Text Engine (MLTE) is an API that allows your application to provide Carbon-compliant Unicode
text editing. This document is relevant for anyone who is writing an application that needs to display static
Unicode text or provide Unicode-compliant text editing fields. You can also use MLTE if your application
provides text editing support within a full-size window. For more information about basic text processing
and using MLTE, see the document “Handling Unicode Text Editing with MLTE.”

Carbon fully supports the Multilingual Text Engine, and Apple recommends that you adopt Multilingual Text
Engine as a replacement for TextEdit.

Functions by Task

Displaying Static Text

TXNDrawUnicodeTextBox (page 2639)
Draws a Unicode string in the specified rectangle.

TXNDrawCFStringTextBox (page 2637)
Draws text from a Core Foundation string (CFString) in the specified rectangle.

Initializing and Terminating MLTE

TXNInitTextension (page 2662)
Initializes MLTE.

TXNVersionInformation (page 2698)
Gets the version number of MLTE and the set of features in this version.

Overview 2599
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Working With MLTE Objects

TXNCreateObject (page 2630)
Creates a new MLTE text object which is an opaque structure that handles text formatting at the
document level.

TXNGetAccessibilityHIObject (page 2645)
Obtains an HIObjectRef representing the MLTE object for accessibility purposes.

TXNDeleteObject (page 2632)
Deletes a previously allocated text object.

TXNDataSize (page 2632)
Reports the amount of memory used to hold the text in a given text object.

TXNAttachObjectToWindowRef (page 2620)
Attaches a text object to a window.

TXNGetWindowRef (page 2660)
Returns a reference to the window to which the specified text object is attached.

Responding to Events

TXNGetEventTarget (page 2651)
Obtains the current event target for a TXNObject.

TXNSetEventTarget (page 2686)
Sets a Carbon Event target for MLTE Carbon Event handlers.

TXNGetCommandEventSupport (page 2647)
Obtains the command event support that is currently set for an MLTE object.

TXNSetCommandEventSupport (page 2681)
Enables and disables support for menu commands in MLTE.

TXNAdjustCursor (page 2619)
Obtains the current cursor position and draws the cursor in a form appropriate to the content over
which it is placed.

TXNClick (page 2626)
Processes a mouse-down event in a window’s content area.

TXNEchoMode (page 2640)
Determines whether a specified character is drawn instead of the glyph associated with the input
character.

TXNFocus (page 2644)
Changes the focus of a text object.

TXNForceUpdate (page 2644)
Forces an update of the view rectangle and the scroll bars.

TXNGetSleepTicks (page 2658)
Reports the appropriate amount of time to allot to background processes, depending on the state of
the window.

TXNIdle (page 2662)
Does idle time processing, such as flashing the cursor.

2600 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNKeyDown (page 2666)
Processes a key-down event.

TXNUpdate (page 2698)
Redraws everything in a frame in response to an update event.

TXNScroll (page 2679)
Scrolls the text within a view rectangle of the specified text object.

TXNRegisterScrollInfoProc (page 2675)
Installs or uninstalls a scrolling callback function on a text object.

Working With HITextView

HITextViewCreate (page 2610)
Creates an HITextView that is initially invisible.

HITextViewGetTXNObject (page 2611)
Obtains the text object associated with an HITextView.

HITextViewCopyBackgroundColor (page 2610)
Obtains the background color of the view.

HITextViewSetBackgroundColor (page 2612)
Sets the background color of the view.

Editing Data

TXNDrawObject (page 2638)
Draws a text object in the last window set by your application.

TXNClear (page 2624)
Deletes the current selection.

TXNCopy (page 2628)
Copies the current selection to the private MLTE scrap.

TXNCut (page 2631)
Deletes the current selection and copies it to the private MLTE scrap.

TXNIsScrapPastable (page 2665)
Tests whether the Clipboard contains data that is supported by MLTE.

TXNPaste (page 2671)
Pastes the contents of the private MLTE scrap into the text object.

TXNGetData (page 2649)
Copies a range of data.

TXNGetDataEncoded (page 2650)
Copies the text in a specified range, and if necessary, translates the text to match your application’s
preferred encoding.

TXNSetData (page 2683)
Replaces a range of data (text, graphics, and so forth).

TXNCanRedoAction (page 2622)
Indicates whether an action can be redone.

Functions by Task 2601
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNRedo (page 2675)
Redoes the last command.

TXNCanUndoAction (page 2624)
Indicates whether an action can be undone.

TXNUndo (page 2697)
Undoes the last command.

Managing Fonts and Font Menus

TXNCountRunsInRange (page 2629)
Obtains a count of the style runs in a range of data.

TXNGetIndexedRunInfoFromRange (page 2654)
Gets information about a run in a range of data.

TXNSetTypeAttributes (page 2694)
Sets text attributes (such as size and style) for the current selection or the text defined by a range you
specify.

TXNGetContinuousTypeAttributes (page 2648)
Checks to see if the attributes of the current selection are continuous.

TXNDisposeFontMenuObject (page 2633) Deprecated in Mac OS X v10.5
Disposes of a Font menu object.

TXNDoFontMenuSelection (page 2633) Deprecated in Mac OS X v10.5
Changes the font of the current selection.

TXNGetFontMenuHandle (page 2653) Deprecated in Mac OS X v10.5
Gets the Font menu handle that belongs to a Font menu object.

TXNNewFontMenuObject (page 2666) Deprecated in Mac OS X v10.5
Creates a new Font menu object.

TXNPrepareFontMenu (page 2672) Deprecated in Mac OS X v10.5
Prepares a Font menu for display.

TXNGetFontDefaults (page 2652) Deprecated in Mac OS X v10.4
Makes a copy of the font descriptions for a given text object.

TXNSetFontDefaults (page 2688) Deprecated in Mac OS X v10.4
Specifies the font descriptions for each script used in a text object.

Managing Layout and Formatting

TXNRecalcTextLayout (page 2675)
Recalculates the text layout based on new view and destination rectangles.

TXNSetTXNObjectControls (page 2693)
Sets formatting and privileges attributes (such as justification, line direction, tab values, and read-only
status) that apply to the entire text object.

TXNGetTXNObjectControls (page 2659)
Gets the current formatting and privileges attributes (such as justification, line direction, tab values,
and read-only status) for a text object.

2602 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNGetLineCount (page 2656)
Gets the total number of lines in a text object.

TXNGetLineMetrics (page 2656)
Gets information about line width and height for a specified line of data in a text object.

TXNHIPointToOffset (page 2661)
Gets the offset value that corresponds to a point in local coordinates.

TXNOffsetToHIPoint (page 2670)
Obtains the local coordinates of the point that corresponds to a specified offset of a text object.

Managing Selections

TXNGetSelection (page 2658)
Gets the absolute offsets of the current selection.

TXNIsSelectionEmpty (page 2665)
Determines whether the current selection is empty.

TXNSelectAll (page 2680)
Selects all data in the frame of a text object.

TXNSetSelection (page 2692)
Specifies the selection range or the position of the insertion point.

TXNShowSelection (page 2696)
Scrolls the current selection into view.

Controlling the Frame and Window

TXNGetViewRect (page 2660)
Gets the rectangle that describes the current view of the document.

TXNGrowWindow (page 2661)
Adjusts the size of a window in response to mouse-down events in the size region of the window.

TXNResizeFrame (page 2676)
Resizes the view and destination rectangles.

TXNSetBackground (page 2681)
Sets the background on which the text object’s data is drawn.

TXNSetFrameBounds (page 2688)
Changes the boundaries of a text object’s frame.

TXNZoomWindow (page 2700)
Increases the size of the data displayed in a window in response to a click in the zoom box.

TXNSetHIRectBounds (page 2689)
Sets the view rectangle and/or the destination rectangle.

TXNGetHIRect (page 2653)
Obtains the values for the current view, destination, or text rectangle.

TXNSetScrollbarState (page 2691)
Sets the state of the scroll bars so they are drawn correctly in response to activate events.

Functions by Task 2603
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Searching

TXNFind (page 2641)
Finds a piece of text or a graphics, sound, or movie object.

Managing Files

TXNFlattenObjectToCFDataRef (page 2643)
Flattens a text object so it can be saved to disk or embedded with other data.

TXNRevert (page 2677)
Reverts to the last saved version of a document.

TXNReadFromCFURL (page 2673)
Reads data from a CFURLRef into a TXNObject.

TXNCopyTypeIdentifiersForRange (page 2628)
Obtains an array of universal type identifiers for a TXNObject.

TXNWriteRangeToCFURL (page 2699)
Writes a range of a text object to a file or to a special file bundle.

Printing

TXNPageSetup (page 2671)
Displays the Page Setup dialog for the current default printer and manages changes, such as
reformatting the text, in response to page layout changes.

TXNPrint (page 2673)
Prints the document so it is formatted to fit the page size selected for the printer.

Supporting Drag and Drop

TXNDragReceiver (page 2634)
Handles dragged data in a text object for which a custom drag handler is already in place.

TXNDragTracker (page 2635)
Handles tracking a drag event in a text object for which a custom drag handler is already in place.

Keeping Track of User Actions

TXNGetChangeCount (page 2647)
Retrieves the number of times a document has been changed.

TXNGetCountForActionType (page 2649)
Gets the number of times a given type of action has occurred.

TXNClearCountForActionType (page 2626)
Sets the counter for the specified action type to zero.

TXNBeginActionGroup (page 2621)
Starts an action group.

2604 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNEndActionGroup (page 2641)
Ends an action group.

TXNSetActionNameMapper (page 2680)
Sets a callback that MLTE uses to obtain the localized string representing an action or an action group.

Managing Spell Checking As You Type

TXNGetSpellCheckAsYouType (page 2659)
Determines whether the “Spell Check as You Type” feature is enabled.

TXNSetSpellCheckAsYouType (page 2693)
Enables and disables the “Spell Check as You Type” feature.

Working with the Contextual Menu

TXNSetContextualMenuSetup (page 2682)
Provides a callback function that is called before MLTE displays its contextual menu.

Working With UPP Pointers for MLTE Callback Functions

NewTXNActionNameMapperUPP (page 2616)
Creates a new universal procedure pointer (UPP) to an action name mapper callback function.

InvokeTXNActionNameMapperUPP (page 2613)
Calls your action name mapper callback function.

DisposeTXNActionNameMapperUPP (page 2608)
Disposes of the universal procedure pointer (UPP) to your action name mapper callback function.

NewTXNContextualMenuSetupUPP (page 2616)
Creates a new universal procedure pointer (UPP) to a contextual menu setup callback function.

InvokeTXNContextualMenuSetupUPP (page 2614)
Calls your contextual menu setup callback function.

DisposeTXNContextualMenuSetupUPP (page 2608)
Disposes of the universal procedure pointer (UPP) to your contextual menu setup callback function.

NewTXNFindUPP (page 2617)
Creates a new universal procedure pointer (UPP) to a find callback function that uses your criteria for
matching.

InvokeTXNFindUPP (page 2614)
Calls your find callback function.

DisposeTXNFindUPP (page 2609)
Disposes of the universal procedure pointer (UPP) to your find callback function.

NewTXNScrollInfoUPP (page 2617)
Creates a new universal procedure pointer (UPP) to a scrolling callback function.

InvokeTXNScrollInfoUPP (page 2615)
Calls your scrolling callback function.

Functions by Task 2605
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

DisposeTXNScrollInfoUPP (page 2609)
Disposes of the universal procedure pointer (UPP) to your scrolling callback function.

Not Recommended
This section lists functions that are not recommended and you should no longer use. The Carbon Porting
Notes for each function provide information on what you should do in place of using the function.

TXNActivate (page 2618) Deprecated in Mac OS X v10.3
Sets the state of the scroll bars so they are drawn correctly in response to activate events. (Deprecated.
Use TXNSetScrollbarState (page 2691) instead.)

TXNAttachObjectToWindow (page 2620) Deprecated in Mac OS X v10.3
Attaches a text object to a window. (Deprecated. Use TXNAttachObjectToWindowRef (page 2620)
instead.)

TXNConvertFromPublicScrap (page 2627) Deprecated in Mac OS X v10.3
Converts the Clipboard content to the private MLTE scrap. (Deprecated. This function isn't needed in
Mac OS X.)

TXNConvertToPublicScrap (page 2627) Deprecated in Mac OS X v10.3
Converts the private MLTE scrap content to the Clipboard. (Deprecated. This function isn't needed in
Mac OS X.)

TXNDraw (page 2636) Deprecated in Mac OS X v10.3
Redraws the text area, including any scroll bars associated with the text frame. (Deprecated. Use the
TXNDrawObject (page 2638).)

TXNGetRectBounds (page 2657) Deprecated in Mac OS X v10.3
Obtains the values for the current view, destination, and text rectangles. (Deprecated. Use
TXNGetHIRect (page 2653) instead.)

TXNIsObjectAttachedToSpecificWindow (page 2663) Deprecated in Mac OS X v10.3
Determines whether a text object is attached to a specified window. (Deprecated. Use
TXNGetWindowRef (page 2660) instead.)

TXNIsObjectAttachedToWindow (page 2664) Deprecated in Mac OS X v10.3
Checks to see if a text object is attached to a window. (Deprecated. Use TXNGetWindowRef (page
2660) instead.)

TXNNewObject (page 2667) Deprecated in Mac OS X v10.3
Creates a new MLTE text object which is an opaque structure that handles text formatting at the
document level. (Deprecated. Use TXNCreateObject (page 2630) instead.)

TXNOffsetToPoint (page 2670) Deprecated in Mac OS X v10.3
Gets the local coordinates of the point that corresponds to a specified offset of a text object.
(Deprecated. Use TXNOffsetToHIPoint (page 2670) instead.)

TXNPointToOffset (page 2672) Deprecated in Mac OS X v10.3
Gets the offset value that corresponds to a point in local coordinates. (Deprecated. Use
TXNHIPointToOffset (page 2661) instead.)

TXNSetDataFromFile (page 2685) Deprecated in Mac OS X v10.3
Replaces a range of data with the contents of a file. (Deprecated. Use
TXNSetDataFromCFURLRef (page 2684) instead.)

TXNSetRectBounds (page 2690) Deprecated in Mac OS X v10.3
Set the view rectangle and/or the destination rectangle. (Deprecated. UseTXNSetHIRectBounds (page
2689) instead.)

2606 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNTerminateTextension (page 2696) Deprecated in Mac OS X v10.3
Closes the MLTE library. (Deprecated. This function is no longer needed.)

TXNSetViewRect (page 2695) Deprecated in Mac OS X v10.2
Sets the rectangle that describes the current view into the document; changes the amount of text
that is viewable. (Deprecated. Use TXNSetFrameBounds (page 2688) or TXNSetRectBounds (page
2690) instead.)

DisposeTXNActionKeyMapperUPP (page 2608) Deprecated in Mac OS X v10.4
Disposes of the universal procedure pointer (UPP) to your action key mapping callback function.
(Deprecated. Use TXNActionNameMapperProcPtr instead.)

InvokeTXNActionKeyMapperUPP (page 2613) Deprecated in Mac OS X v10.4
Calls your action key mapping callback function. (Deprecated. Use TXNActionNameMapperProcPtr
instead.)

NewTXNActionKeyMapperUPP (page 2616) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a callback function that uses your criteria for
mapping actions. (Deprecated. Use TXNActionNameMapperProcPtr instead.)

TXNCanRedo (page 2622) Deprecated in Mac OS X v10.4
Returns whether the most recently undone action is redoable and indicates the type of action that
can be redone. (Deprecated. Use TXNCanRedoAction (page 2622) instead.)

TXNCanUndo (page 2623) Deprecated in Mac OS X v10.4
Returns whether the most recent action is undoable and provides a value that indicates the type of
action than can be undone. (Deprecated. Use TXNCanUndoAction (page 2624) instead.)

TXNClearActionChangeCount (page 2625) Deprecated in Mac OS X v10.4
Resets the specified action counters to zero. (Deprecated. Use TXNClearCountForActionType (page
2626) instead.)

TXNGetActionChangeCount (page 2646) Deprecated in Mac OS X v10.4
Retrieves the number of times the specified action or actions have occurred since the count was
initialized or cleared. (Deprecated. Use TXNGetCountForActionType (page 2649) instead.)

TXNSave (page 2677) Deprecated in Mac OS X v10.4
Saves the contents of the document as the file type you specify. (Deprecated. Use
TXNWriteRangeToCFURL (page 2699) instead.)

TXNSetDataFromCFURLRef (page 2684) Deprecated in Mac OS X v10.4
Replaces a range of data with the contents of a file. (Deprecated. Use TXNReadFromCFURL (page 2673)
instead.)

Unsupported Functions
This section lists functions that are not supported and cannot be called in Mac OS X.

TXNTSMCheck (page 2697)
Checks to see if the Text Services Manager (TSM) is active.

Functions by Task 2607
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Functions

DisposeTXNActionKeyMapperUPP
Disposes of the universal procedure pointer (UPP) to your action key mapping callback function. (Deprecated
in Mac OS X v10.4. Use TXNActionNameMapperProcPtr instead.)

Not recommended.

void DisposeTXNActionKeyMapperUPP (
 TXNActionKeyMapperUPP userUPP
);

Discussion
See the callback TXNActionKeyMapperProcPtr (page 2700) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
MacTextEditor.h

DisposeTXNActionNameMapperUPP
Disposes of the universal procedure pointer (UPP) to your action name mapper callback function.

void DisposeTXNActionNameMapperUPP (
 TXNActionNameMapperUPP userUPP
);

Parameters
userUPP

The TXNActionNameMapperUPP that is to be disposed of.

Discussion
See the callback TXNActionNameMapperProcPtr (page 2702) for more information.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacTextEditor.h

DisposeTXNContextualMenuSetupUPP
Disposes of the universal procedure pointer (UPP) to your contextual menu setup callback function.

2608 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

void DisposeTXNContextualMenuSetupUPP (
 TXNContextualMenuSetupUPP userUPP
);

Parameters
userUPP

The TXNContextualMenuSetupUPP that is to be disposed of.

Discussion
See the callback TXNContextualMenuSetupProcPtr (page 2702) for more information.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacTextEditor.h

DisposeTXNFindUPP
Disposes of the universal procedure pointer (UPP) to your find callback function.

void DisposeTXNFindUPP (
 TXNFindUPP userUPP
);

Discussion
See the callback TXNFindProcPtr (page 2703) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

DisposeTXNScrollInfoUPP
Disposes of the universal procedure pointer (UPP) to your scrolling callback function.

void DisposeTXNScrollInfoUPP (
 TXNScrollInfoUPP userUPP
);

Discussion
See the callback TXNScrollInfoProcPtr (page 2705) for more information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MacTextEditor.h

Functions 2609
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

HITextViewCopyBackgroundColor
Obtains the background color of the view.

OSStatus HITextViewCopyBackgroundColor (
 HIViewRef inTextView,
 CGColorRef *outColor
);

Parameters
inTextView

The HITextView associated with the text object whose background color you want to copy.

outColor
A CGColorRef representing the color or pattern that is used for drawing the background of the text
view. If the returned CGColorRef is not NULL, it is retained on return. You are responsible for releasing
this CGColorRefwhen you are no longer referencing it. If the returned value is NULL, the background
is not drawn.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
HITextViews.h

HITextViewCreate
Creates an HITextView that is initially invisible.

OSStatus HITextViewCreate (
 const HIRect *inBoundsRect,
 OptionBits inOptions,
 TXNFrameOptions inTXNFrameOptions,
 HIViewRef *outTextView
);

Parameters
inBoundsRect

The bounding box of the view. Pass NULL, if you want to initialize the bounds of the view to 0.

inOptions
Reserved for future use; you must pass 0.

inTXNFrameOptions
The frame options you want to set for the text view.

outTextView
On output, points to the newly-created text view.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

2610 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
An HITextView is an MLTE text view that can be embedded in the HIView hierarchy. The view can be embedded
in an HIScrollView if you want scroll bars and can also be used in a composited window. For more information
on HIView, see the document IntroducingHIView, available from the Apple Developer Documentation website.

When you call the function HITextViewCreate to create a text view, an MLTE text object (TXNObject) is
allocated and attached to the text view. You can extract the text object by calling the function
HITextViewGetTXNObject. You can supply the extracted text object as a parameter to many of the MLTE
functions that take a text object as a parameter. However, not all MLTE functions that take a text object can
operate on an MLTE object that comes from an HITextView. In general, you cannot use MLTE functions that
may alter the geometry of the object or explicitly invoke drawing. If you do, the function returns the result
code kTXNDisabledFunctionalityErr.

The following MLTE functions return an error if you pass a text object that comes from an HITextView:

 ■ TXNAttachObjectToWindowRef

 ■ TXNGetWindowRef

 ■ TXNDrawObject

 ■ TXNSetScrollbarState

 ■ TXNGrowWindow

 ■ TXNZoomWindow

 ■ TXNResizeFrame

 ■ TXNSetFrameBounds

 ■ TXNSetViewRect

 ■ TXNDraw

 ■ TXNFocus

 ■ TXNUpdate

 ■ TXNForceUpdate

 ■ TXNPageSetup

 ■ TXNPrint

 ■ TXNIdle

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
HITextViews.h

HITextViewGetTXNObject
Obtains the text object associated with an HITextView.

Functions 2611
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

http://developer.apple.com/documentation/

TXNObject HITextViewGetTXNObject (
 HIViewRef inTextView
);

Parameters
inTextView

The HITextView associated with the text object you want to retrieve.

Return Value
Returns the text object associated with the given view.

Discussion
You can supply the extracted text object as a parameter to many of the MLTE functions that take a text object
as a parameter. However, not all MLTE functions that take a text object can operate on an MLTE object that
comes from an HITextView. In general, you cannot use MLTE functions that may alter the geometry of the
object or explicitly invoke drawing. If you do, the function returns the result code
kTXNDisabledFunctionalityErr. SeeHITextViewCreate (page 2610) for a list of the functions that return
an error if you pass a text object that comes from an HITextView.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Related Sample Code
QTMetaData

Declared In
HITextViews.h

HITextViewSetBackgroundColor
Sets the background color of the view.

OSStatus HITextViewSetBackgroundColor (
 HIViewRef inTextView,
 CGColorRef inColor
);

Parameters
inTextView

The HITextView whose background color is to be set.

inColor
A CGColorRef representing the color or pattern that is to fill the background of the text view. The
CGColorRef is retained by this function. If the text view already contains a background color, it is
released prior to the new color being retained. If inColor is NULL, the background of the text view
will not draw.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
This function allows you to provide alpha.

Availability
Available in Mac OS X v10.4 and later.

2612 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Not available to 64-bit applications.

Declared In
HITextViews.h

InvokeTXNActionKeyMapperUPP
Calls your action key mapping callback function. (Deprecated in Mac OS X v10.4. Use
TXNActionNameMapperProcPtr instead.)

Not recommended.

CFStringRef InvokeTXNActionKeyMapperUPP (
 TXNActionKey actionKey,
 UInt32 commandID,
 TXNActionKeyMapperUPP userUPP
);

Return Value
See the Base Services documentation for a description of the CFStringRef data type.

Discussion
See the callback TXNActionKeyMapperProcPtr (page 2700) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
MacTextEditor.h

InvokeTXNActionNameMapperUPP
Calls your action name mapper callback function.

CFStringRef InvokeTXNActionNameMapperUPP (
 CFStringRef actionName,
 UInt32 commandID,
 void *inUserData,
 TXNActionNameMapperUPP userUPP
);

Parameters
actionName

The action name.

commandID
The command ID of the menu item that is to be mapped.

iUserData
A pointer to user-defined data that will be passed to your action name mapper callback.

userUPP
The callback function that is to be called. For more information, see
NewTXNActionNameMapperUPP (page 2616).

Functions 2613
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Return Value
A CFStringRef.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacTextEditor.h

InvokeTXNContextualMenuSetupUPP
Calls your contextual menu setup callback function.

void InvokeTXNContextualMenuSetupUPP (
 MenuRef iContextualMenu,
 TXNObject object,
 void *inUserData,
 TXNContextualMenuSetupUPP userUPP
);

Parameters
iContextualMenu

The contextual menu.

object
The TXNObject for which the contextual menu is to be displayed.

iUserData
A pointer to user-defined data that will be passed to your contextual menu setup callback.

userUPP
The callback function that is to be called. For more information, see
NewTXNContextualMenuSetupUPP (page 2616).

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacTextEditor.h

InvokeTXNFindUPP
Calls your find callback function.

2614 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus InvokeTXNFindUPP (
 const TXNMatchTextRecord *matchData,
 TXNDataType iDataType,
 TXNMatchOptions iMatchOptions,
 const void *iSearchTextPtr,
 TextEncoding encoding,
 TXNOffset absStartOffset,
 ByteCount searchTextLength,
 TXNOffset *oStartMatch,
 TXNOffset *oEndMatch,
 Boolean *ofound,
 URefCon refCon,
 TXNFindUPP userUPP
);

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You can call an invoke function rather than calling your routine directly if you want to support code portability
across compiler targets. See the callback TXNFindProcPtr (page 2703) for parameter descriptions and other
information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

InvokeTXNScrollInfoUPP
Calls your scrolling callback function.

void InvokeTXNScrollInfoUPP (
 SInt32 iValue,
 SInt32 iMaximumValue,
 TXNScrollBarOrientation iScrollBarOrientation,
 SRefCon iRefCon,
 TXNScrollInfoUPP userUPP
);

Discussion
You can call an invoke function rather than calling your routine directly if you want to support code portability
across compiler targets. See the callback TXNScrollInfoProcPtr (page 2705) for parameter descriptions
and other information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MacTextEditor.h

Functions 2615
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

NewTXNActionKeyMapperUPP
Creates a new universal procedure pointer (UPP) to a callback function that uses your criteria for mapping
actions. (Deprecated in Mac OS X v10.4. Use TXNActionNameMapperProcPtr instead.)

Not recommended.

TXNActionKeyMapperUPP NewTXNActionKeyMapperUPP (
 TXNActionKeyMapperProcPtr userRoutine
);

Return Value
A universal procedure pointer.

Discussion
See the callback TXNActionKeyMapperProcPtr (page 2700) for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
MacTextEditor.h

NewTXNActionNameMapperUPP
Creates a new universal procedure pointer (UPP) to an action name mapper callback function.

TXNActionNameMapperUPP NewTXNActionNameMapperUPP (
 TXNActionNameMapperProcPtr userRoutine
);

Parameters
userRoutine

The action name mapper callback function for which a UPP is to be created.

Return Value
A universal procedure pointer.

Discussion
See the callback TXNActionNameMapperProcPtr (page 2702) for more information.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacTextEditor.h

NewTXNContextualMenuSetupUPP
Creates a new universal procedure pointer (UPP) to a contextual menu setup callback function.

2616 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNContextualMenuSetupUPP NewTXNContextualMenuSetupUPP (
 TXNContextualMenuSetupProcPtr userRoutine
);

Parameters
userRoutine

The contextual menu setup callback function for which a UPP is to be created.

Return Value
A universal procedure pointer.

Discussion
For more information, see the callback TXNContextualMenuSetupProcPtr (page 2702).

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacTextEditor.h

NewTXNFindUPP
Creates a new universal procedure pointer (UPP) to a find callback function that uses your criteria for matching.

TXNFindUPP NewTXNFindUPP (
 TXNFindProcPtr userRoutine
);

Return Value
A universal procedure pointer.

Discussion
See the callback TXNFindProcPtr (page 2703) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

NewTXNScrollInfoUPP
Creates a new universal procedure pointer (UPP) to a scrolling callback function.

TXNScrollInfoUPP NewTXNScrollInfoUPP (
 TXNScrollInfoProcPtr userRoutine
);

Return Value
A universal procedure pointer.

Discussion
See the callback TXNScrollInfoProcPtr (page 2705) for more information.

Functions 2617
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
MacTextEditor.h

TXNActivate
Sets the state of the scroll bars so they are drawn correctly in response to activate events. (Deprecated in
Mac OS X v10.3. Use TXNSetScrollbarState (page 2691) instead.)

Not recommended.

OSStatus TXNActivate (
 TXNObject iTXNObject,
 TXNFrameID iTXNFrameID,
 TXNScrollBarState iActiveState
);

Parameters
iTXNObject

The text object that identifies the document to be activated.

iTXNFrameID
The frame ID of the document that is to be activated. You obtain a frame ID from TXNNewObject (page
2667) when you create a text object.

iActiveState
A value that indicates the state of the scroll bars. See Scroll Bar States (page 2760) for a description of
possible values. If you pass the kScrollBarsAlwaysActive constant, the scroll bars are always
active, whether or not the frame’s text area currently has keyboard focus. Passing
kScrollBarsAlwaysActive can be useful for a window such as a dialog box that may contain
multiple text areas, each of which may have a scrollable frame. If you pass
kScrollBarsSyncWithFocus, MLTE synchronizes the activity state of the scroll bars with the focus
state of the frame. Therefore, only when the frame has keyboard focus does it have active scroll bars.
A value of kScrollBarsSyncWithFocus is the default and is typically recommended if you have
only one frame per window.

Return Value
A result code. See “MLTE Result Codes” (page 2773). TXNActivate returns a parameter error if you pass an
invalid text object or frame ID.

Discussion
You typically call TXNActivate in response to an activate event. If the text object was previously inactive,
TXNActivate removes any visual indication of its prior inactive state (such as a dimmed or framed selection
area or inactive scroll bars). Before you call the TXNActivate function, you should make sure that the window
belongs to your application.

The TXNActivate function does not change the keyboard focus. This means your application can have a
text area that is not focused, but in which the scroll bars are active. This lets application users scroll the
inactive text without changing the focus from another text area.

2618 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

If you want to display a text area that has both keyboard focus and active scroll bars, you must call the
TXNFocus (page 2644) function immediately before you call the TXNActivate function. Note that MLTE does
not retain information about keyboard focus. So if, for example, you set the keyboard focus on a text area
and the window containing the text area becomes deactivated, you must call the TXNFocus (page 2644)
function when the window becomes activated again.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNAdjustCursor
Obtains the current cursor position and draws the cursor in a form appropriate to the content over which it
is placed.

void TXNAdjustCursor (
 TXNObject iTXNObject,
 RgnHandle ioCursorRgn
);

Parameters
iTXNObject

The text object that identifies the text area for which MLTE should adjust the cursor.

ioCursorRgn
A handle to a region created by your application. Pass NULL if you do not want TXNAdjustCursor
to provide information about the cursor position to your application. If you do want to obtain the
cursor’s current position, pass a valid region handle in this parameter. If you pass a valid region handle
and the cursor is over the text area or its scroll bars, on return TXNAdjustCursor sets the region to
a 2-pixel by 2-pixel square, centered on the cursor’s hot spot. If the cursor is not over the text area or
its scroll bars, or if you have passed NULL, TXNAdjustCursor does not adjust the input value.

Discussion
If the cursor is over a text area, TXNAdjustCursor sets the cursor to an I-beam. If the cursor is over graphics,
a sound file, a movie, a scroll bar, or outside of a window, TXNAdjustCursor sets the cursor to an arrow.
Before you call the TXNAdjustCursor function, you should make sure that the window belongs to your
application.

You can pass the region handle returned by the TXNAdjustCursor function in the ioCursorRgn parameter
to the WaitNextEvent function; this ensures that you receive mouse-moved events if the cursor moves
outside that region. If you then receive a mouse-moved event, you can call TXNAdjustCursor again to
ensure that the cursor type is appropriate to its new position. Alternately, to ensure that the cursor is adjusted
correctly, you can simply call TXNAdjustCursor with every event that your application receives.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

Functions 2619
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNAttachObjectToWindow
Attaches a text object to a window. (Deprecated in Mac OS X v10.3. Use
TXNAttachObjectToWindowRef (page 2620) instead.)

Not recommended.

OSStatus TXNAttachObjectToWindow (
 TXNObject iTXNObject,
 GWorldPtr iWindow,
 Boolean iIsActualWindow
);

Parameters
iTXNObject

The text object with which you want to associate the window.

iWindow
A pointer to the graphics port to which the object should be attached. The graphics port may be a
window (WindowRef) or a generic graphics port (CGrafPtr, GWorldPtr). If it is a window, note that
you must typecast the window reference to a GWorldPtr data type.

iIsActualWindow
A Boolean value. Pass true if the iWindow parameter you passed refers to a Window Manager
window (WindowRef), not a generic graphics port. Pass false if the iWindow parameter you passed
does not refer to a window. If you pass false, MLTE never calls window-specific functions such as
InvalRect or BeginUpdate for this text object, and it is your program’s responsibility to handle
any window-related functionality.

Return Value
A result code. See “MLTE Result Codes” (page 2773). TXNAttachObjectToWindow returns paramErr if the
text object that you pass is invalid.

Discussion
You may create a text object without an associated window pointer by passing NULL in the iWindow parameter
of the TXNNewObject (page 2667) function. However, if you do so, you must call the
TXNAttachObjectToWindow function to associate a window with that object before you call any other
MLTE function.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNAttachObjectToWindowRef
Attaches a text object to a window.

2620 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNAttachObjectToWindowRef (
 TXNObject iTXNObject,
 WindowRef iWindowRef
);

Parameters
iTXNObject

The text object with which you want to associate the window. You can call the function
TXNCreateObject to allocate a text object.

iWindowRef
A WindowRef that specifies the window to which you want to attach the text object.

Return Value
A result code. See “MLTE Result Codes” (page 2773). Returns paramErr if the text object that you pass is invalid.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNBeginActionGroup
Starts an action group.

OSStatus TXNBeginActionGroup (
 TXNObject iTXNObject,
 CFStringRef iActionGroupName
);

Parameters
iTXNObject

The text object for which an action group is to be started.

iActionGroupName
A client-supplied string that is to be used to describe the action group.

Return Value
A result code. See “MLTE Result Codes” (page 2773). The error kTXNOperationNotAllowedErr is returned
if an undo action group has already been started but has not yet terminated.

Discussion
Every supported edit action after TXNBeginActionGroup is called is added to the group
untilTXNCanUndoAction (page 2624) is called. When MLTE receives an undo or redo command, it treats all
actions added to the group as a single operation to undo or redo. Nesting of groups is not allowed. Calling
TXNBeginActionGroup twice without calling TXNCanUndoAction in between results in an error. If an
action group is active, TXNCanUndoAction (page 2624) and TXNCanRedoAction (page 2622) return false.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

Functions 2621
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNCanRedo
Returns whether the most recently undone action is redoable and indicates the type of action that can be
redone. (Deprecated in Mac OS X v10.4. Use TXNCanRedoAction (page 2622) instead.)

Not recommended.

Boolean TXNCanRedo (
 TXNObject iTXNObject,
 TXNActionKey *oTXNActionKey
);

Parameters
iTXNObject

The text object for the document you want to examine.

oTXNActionKey
A pointer to a value of type TXNActionKey. On return, this value specifies the action that can be
redone. See Action Constants (page 2719) for a description of possible values. You can use this
information to customize the Redo menu item for the specific action to be redone. For example, if
the value obtained by TXNCanRedo is kTXNTypingAction, you can map that value to a string that
reads “Redo Typing” on a system localized for U.S. English. MLTE does not perform the mapping your
program is responsible for mapping the key to the appropriate localized string you want displayed
to the user. Pass NULL if you do not want to obtain this information.

Return Value
A Boolean value. If true, the last command is redoable; otherwise the last command cannot be redone.

Discussion
You can call the TXNCanRedo function to determine whether the Redo item in the Edit menu should be
enabled.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNCanRedoAction
Indicates whether an action can be redone.

Boolean TXNCanRedoAction (
 TXNObject iTXNObject,
 CFStringRef *oActionName
);

Parameters
iTXNObject

The text object having an action that is to be queried.

2622 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

oActionName
On input, a pointer a CFStringRef that, on return, contains the name of the action that can be
redone, if there is one. The returned string is either a string defined by MLTE or the string that you
passed to TXNBeginActionGroup (page 2621) to create a new action group. You are responsible for
retaining and releasing the string. Pass NULL if you don’t want to receive the name of the action.

Return Value
A Boolean whose value is true if the last action can be redone; you should enable the Redo item in the Edit
menu, if there is one. If this function returns false, the last action cannot be redone and you should not
enable the Redo item in the Edit menu.

Discussion
This function tells the client whether the current item on the undo stack is redoable and is usually used to
determine whether the Redo item in the Edit menu should be enabled. This function optionally obtains the
action name that should be used in the Redo item. When the current undo item is an action group, the string
used to name the group is returned. For information on action groups, see TXNBeginActionGroup (page
2621) and TXNEndActionGroup (page 2641).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNCanUndo
Returns whether the most recent action is undoable and provides a value that indicates the type of action
than can be undone. (Deprecated in Mac OS X v10.4. Use TXNCanUndoAction (page 2624) instead.)

Not recommended.

Boolean TXNCanUndo (
 TXNObject iTXNObject,
 TXNActionKey *oTXNActionKey
);

Parameters
iTXNObject

The text object for the document you want to examine.

oTXNActionKey
A pointer to a value of type TXNActionKey. On return, this value identifies the action that can be
undone. See Action Constants (page 2719) for a description of possible values. You can use this
information to customize the Undo menu item for the specific action to be undone. For example, if
the value obtained by TXNCanUndo is kTXNTypingAction, you can map that value to a string that
reads “Undo Typing” on a system localized for U.S. English. MLTE does not perform such a mapping
your program is responsible for mapping the key to the appropriate localized string you want displayed
to the user. Pass NULL if you do not wish to obtain this information.

Return Value
A Boolean value. If true, the last command is undoable; otherwise the last command cannot be undone.

Discussion
You can call TXNCanUndo to determine whether the Undo item in the Edit menu should be enabled.

Functions 2623
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNCanUndoAction
Indicates whether an action can be undone.

Boolean TXNCanUndoAction (
 TXNObject iTXNObject,
 CFStringRef *oActionName
);

Parameters
iTXNObject

The text object having an action that is to be queried.

oActionName
On input, a pointer a CFStringRef that, on return contains the name of the action that can be
undone, if there is one. The returned string is either a string defined by MLTE or the string that you
passed to TXNBeginActionGroup (page 2621) to create a new action group. You are responsible for
retaining and releasing the string. Pass NULL if you don’t want to receive the name of the action.

Return Value
A Boolean whose value is true if the last action can be undone; you should enable the Undo item in the Edit
menu, if there is one. If this function returns false, the last action cannot be undone and you should not
enable the Undo item in the Edit menu.

Discussion
This function is usually used to determine whether the Undo item in the Edit menu should be enabled and
to obtain the action name that should be used in that item. When the last action is an action group, the
string used to name the group is returned.

If you have asked MLTE to handle updating for the Redo and Undo commands in the Edit menu, you should
call TXNSetActionNameMapper (page 2680) after calling TXNCanUndoAction so that MLTE can call back to
get the correct strings for those items.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNClear
Deletes the current selection.

2624 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNClear (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for the current text area.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
To remove a selected object from a text area, a user can either press the Delete key or choose Clear from the
Edit menu. Before you call the TXNClear function, you can use the TXNIsSelectionEmpty (page 2665)
function to determine whether any text is selected. Unlike the function TXNCut (page 2631), the TXNClear
function does not add the deleted selection to the private MLTE scrap.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNClearActionChangeCount
Resets the specified action counters to zero. (Deprecated in Mac OS X v10.4. Use
TXNClearCountForActionType (page 2626) instead.)

Not recommended.

OSStatus TXNClearActionChangeCount (
 TXNObject iTXNObject,
 TXNCountOptions iOptions
);

Parameters
iTXNObject

The text object whose action counter you want to reset.

iOptions
The TXNCountOptions to use when resetting the count. See Action Count Masks (page 2721) for
information on the options you can supply.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You can use this function to clear the action counters as needed for your application.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2625
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNClearCountForActionType
Sets the counter for the specified action type to zero.

OSStatus TXNClearCountForActionType (
 TXNObject iTXNObject,
 CFStringRef iActionTypeName
);

Parameters
iTXNObject

The text object having one or more counters that are to be set to zero.

iActionTypeName
The action type for which the counter is to be set to zero. This parameter can be a string that was
passed to TXNBeginActionGroup (page 2621) or one of the constants described inAction
Constants (page 2719).

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNClick
Processes a mouse-down event in a window’s content area.

void TXNClick (
 TXNObject iTXNObject,
 const EventRecord *iEvent
);

Parameters
iTXNObject

The text object in which the mouse-down event occurred.

iEvent
A pointer to the event record that contains the mouse-down event to process.

Discussion
When you pass the event to the TXNClick function, it responds to the user’s action by scrolling, selecting
text, playing a sound or movie, handling a drag–and-drop operation, or responding to a double- or triple-click,
as appropriate. Before you call TXNClick, you should make sure that the front window belongs to your
application.

Availability
Available in Mac OS X v10.0 and later.

2626 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNConvertFromPublicScrap
Converts the Clipboard content to the private MLTE scrap. (Deprecated in Mac OS X v10.3. This function isn't
needed in Mac OS X.)

Not recommended.

OSStatus TXNConvertFromPublicScrap (
 void
);

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You should call the TXNConvertFromPublicScrap function after another application has modified the
contents of the Clipboard. Calling the TXNConvertFromPublicScrap function ensures that the contents
of the system Clipboard are available to your application. Typically, when you receive a resume event, you
call the Scrap Manager function GetCurrentScrap to determine whether the Clipboard content has been
modified. If so, you should then call TXNConvertFromPublicScrap.

Special Considerations

The function TXNConvertFromPublicScrap is no longer needed in Mac OS X version 10.2 and later. Calling
the function TXNPaste automatically handles conversion from public scrap.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNConvertToPublicScrap
Converts the private MLTE scrap content to the Clipboard. (Deprecated in Mac OS X v10.3. This function isn't
needed in Mac OS X.)

Not recommended.

OSStatus TXNConvertToPublicScrap (
 void
);

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Functions 2627
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNCopy
Copies the current selection to the private MLTE scrap.

OSStatus TXNCopy (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for the current text area.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You can use the TXNCopy function to respond to a user-requested copy action. Before you call TXNCopy,
you can use the TXNIsSelectionEmpty (page 2665) function to determine whether any text is selected.

The TXNCopy function copies the current selection to the MLTE scrap. In a Carbon application, the Scrap
Manager automatically converts your application’s private scrap to the Clipboard so it is available to other
applications. In a Classic application, you must call the function TXNConvertToPublicScrap (page 2627)
after you call TXNCopy.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNCopyTypeIdentifiersForRange
Obtains an array of universal type identifiers for a TXNObject.

OSStatus TXNCopyTypeIdentifiersForRange (
 TXNObject iTXNObject,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset,
 CFArrayRef *oTypeIdentifiersForRange
);

Parameters
iTXNObject

The text object.

2628 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iStartOffset
The starting offset in iTXNObject.

iEndOffset
The ending offset in iTXNObject.

oTypeIdentifiersForRange
A pointer to a CFArrayRef. On return, the array contains the list of universal type identifiers that
MLTE supports. Each entry in the array is a CFStringRef.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
Some file formats support limited embedding of data when writing to disk, and use attachments, such as
Rich Text Format (RTF), instead.

Use this function to get a list of universal type identifiers that can be used when calling
TXNWriteRangeToCFURL (page 2699) to write the object out to disk with no data loss. Note that support for
new document formats could be added in the future.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNCountRunsInRange
Obtains a count of the style runs in a range of data.

OSStatus TXNCountRunsInRange (
 TXNObject iTXNObject,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset,
 ItemCount *oRunCount
);

Parameters
iTXNObject

The text object for the current text area.

iStartOffset
The beginning offset of the range of data in the document that you want to examine. Note that this
offset is a generic counter of elements (such as characters, pictures, and movies), not an offset into
memory.

iEndOffset
The ending offset of the range of data in the document that you want to examine. Note that this
offset is a generic counter of elements, not an offset into memory.

oRunCount
On return, a pointer to the number of style runs in the specified range.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Functions 2629
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
Given a range of data in a document that is specified by a starting and ending offset, you can use the
TXNCountRunsInRange function to obtain a count of the changes in text styles, graphics, movies, or sounds
in that range. Once you have a run count, you can supply this information to the function
TXNGetIndexedRunInfoFromRange (page 2654) in order to obtain information about the runs themselves.

Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNCreateObject
Creates a new MLTE text object which is an opaque structure that handles text formatting at the document
level.

OSStatus TXNCreateObject (
 const HIRect *iFrameRect,
 TXNFrameOptions iFrameOptions,
 TXNObject *oTXNObject
);

Parameters
iFrameRect

A pointer to a rectangle used to specify the destination and view rectangles for the text object. Pass
NULL if you want to use the window port rectangle as the view and destination rectangles when the
object is attached later to a window. See the function TXNAttachObjectToWindowRef.

iFrameOptions
A value that specifies the options you want the frame to support. See Frame Option Masks (page 2749)
for a description of possible values.

oTXNObject
On input, a pointer to a structure of type TXNObject. On output, points to the opaque text object
data structure allocated by the function. You need to pass this object to most MLTE functions.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
For each document, a new text object is allocated by the TXNCreateObject function and returned in the
oTXNObject parameter. The object is allocated only if no errors occur. If there is an error during the allocation
process, MLTE frees the text object.

If you are writing a text editing application, you may want to call the TXNCreateObject function when the
application launches (a new document will be displayed) and whenever the user selects New from the File
menu. In addition, many MLTE functions require you to pass a text object.

If you want to create a read-only document, you need to pass the option kTXNReadOnlyMask in the
iFrameOptions parameter. Note that this option puts the text object into a state that does not allow user
input. However, your application can put data into the text object by calling the function TXNSetData. If

2630 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

you want the text object set into a more restrictive read-only state that does not allow user input or your
application to put data into the text object programmatically, you need to call the function
TXNSetTXNObjectControls, passing the tag kTXNIOPrivilegesTag. If you choose to set the text object
into this restrictive state, you will get an error if you try to call the function TXNSetData on the text object.
(In this case, you can change the text object to a less restrictive state by calling TXNSetTXNObjectControls,
passing the tag kTXNNoUserIOTag.)

Because of how MLTE uses Carbon events internally, the window in which the document is displayed must
have the standard event handlers installed. You can install standard event handlers in one of the following
ways:

 ■ When you create the window, add the attribute kWindowStandardHandlerAttribute to the window.
See Window Manager Reference for more information.

 ■ Call the Carbon Event Manager function InstallStandardEventHandler on the window's event
target. See Handling Carbon Events for more information.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNCut
Deletes the current selection and copies it to the private MLTE scrap.

OSStatus TXNCut (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for the current text area.

Return Value
A result code. See “MLTE Result Codes” (page 2773).TXNCut also returns Scrap Manager errors.

Discussion
You can use the TXNCut function to respond to a user-requested cut action. Before you call TXNCut, you
can use the TXNIsSelectionEmpty (page 2665) function to determine whether any text is selected. The
TXNCut function deletes the current selection and then copies it to the private MLTE scrap. In a Carbon
application, the Scrap Manager automatically converts your application’s private scrap to the Clipboard so
it is available to other applications. In a Classic application, you must call the function
TXNConvertToPublicScrap (page 2627) after you call TXNCut to move the selection to the Clipboard.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

Functions 2631
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNDataSize
Reports the amount of memory used to hold the text in a given text object.

ByteCount TXNDataSize (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object that you want to examine.

Return Value
The number of bytes required to hold the characters.

Discussion
You can use this function to determine how large a handle should be if, for example, you copy text. Note
that because every individual sound, picture, or movie in a text object is represented by a single character
in the text buffer, the TXNDataSize function returns a value that does not necessarily represent the true
size of any non-text data.

If you are using Unicode and you want to know the number of characters, divide the returned ByteCount
value by sizeof(UniChar) or 2, since MLTE uses the 16-bit Unicode Transformation Format (UTF-16).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNDeleteObject
Deletes a previously allocated text object.

void TXNDeleteObject (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object you want to delete.

Discussion
You should call the TXNDeleteObject function when you close the window associated with a text object.
The function TXNDeleteObject releases the specified text object and all associated data structures from
memory. If the object has multiple frames, all frames are deleted.

Version Notes
Multiple frames are not yet implemented in MLTE.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

2632 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNDisposeFontMenuObject
Disposes of a Font menu object. (Deprecated in Mac OS X v10.5.)

OSStatus TXNDisposeFontMenuObject (
 TXNFontMenuObject iTXNFontMenuObject
);

Parameters
iTXNFontMenuObject

The Font menu object which you want to dispose of.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
The TXNDisposeFontMenuObject function releases the specified Font menu object from memory. Note
that TXNDisposeFontMenuObject does not dispose of the main Font menu handle that is associated with
the Font menu object. You are responsible for disposing of the Font menu handle after calling
TXNDisposeFontMenuObject. However, TXNDisposeFontMenuObject does dispose of any submenus
that MLTE creates to support Apple Type Services for Unicode Imaging (ATSUI) fonts.

A good time to call the TXNDisposeFontMenuObject function is when your application quits (that is usually
when your application no longer needs the Font menu). You can dispose of the Font menu object as part of
a “terminate” function you create to do cleanup and termination tasks.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNDoFontMenuSelection
Changes the font of the current selection. (Deprecated in Mac OS X v10.5.)

OSStatus TXNDoFontMenuSelection (
 TXNObject iTXNObject,
 TXNFontMenuObject iTXNFontMenuObject,
 SInt16 iMenuID,
 SInt16 iMenuItem
);

Parameters
iTXNObject

The text object that contains the current selection.

iTXNFontMenuObject
The Font menu object that identifies the current Font menu.

Functions 2633
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

menuID
The menu ID of the selected menu. You should supply the high 16 bits of the long word obtained
from the Menu Manager function MenuSelect. You must pass the menu ID because the Font menu
may have hierarchical submenus.

menuItem
A value that identifies the selected menu item. You should supply the low 16 bits of the long word
obtained from the Menu Manager function MenuSelect.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
When you receive a mouse-down event in a menu used in your application, you typically call the Menu
Manager function MenuSelect to determine which menu and menu item the user has chosen. After calling
the MenuSelect function, you should check whether the mouse-down event occurred in a menu specific
to your application, other than the standard menus such as File, Edit, and Font. If the mouse-down event did
not occur in a menu specific to your application, you should pass the IDs of the menu and menu item to the
TXNDoFontMenuSelection function. If the value you supply in the iMenuID parameter identifies the Font
menu or one of its submenus, TXNDoFontMenuSelection changes the font of the currently selected text
to the font that the user selects.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNDragReceiver
Handles dragged data in a text object for which a custom drag handler is already in place.

OSErr TXNDragReceiver (
 TXNObject iTXNObject,
 TXNFrameID iTXNFrameID,
 WindowRef iWindow,
 DragReference iDragReference,
 Boolean iDifferentObjectSameWindow
);

Parameters
iTXNObject

The text object that is receiving the dragged data.

iTXNFrameID
The frame ID of the text object that is receiving the dragged data. You obtain a TXNFrameID when
you create a text object with the TXNNewObject (page 2667) function.

iWindow
A pointer to the window containing the text object that is receiving the dragged data. You obtain
this pointer from the appropriate Drag Manager function.

2634 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iDragReference
The drag reference you want MLTE to handle. You obtain a drag reference by calling the appropriate
Drag Manager function.

iDifferentObjectSameWindow
A Boolean value. Pass true if the drag operation is in the same window that it started in, but in a
different text object within that window. If there is only one text object in a window, you should
always pass false. You should also pass false if the drag operation has moved into a different
window than the one in which it originated. You can determine whether the drag operation has left
the originating window by calling the Drag Manager function GetDragAttributes.

Return Value
A result code. See “MLTE Result Codes” (page 2773). A Drag Manager result code.

Discussion
You would not typically use the TXNDragReceiver function, because MLTE provides basic drag management
for you.

However, you might call TXNDragReceiver if your application needs to examine the dragged data prior to
MLTE handling it, or if you have multiple text objects in a window, or if you have your own drag management
infrastructure that you want to use.

You must inform MLTE that you wish to handle some aspect of the drag process by passing the
TXNFrameOptions value kTXNDoNotInstallDragProcsMask in the iFrameOptions parameter of
TXNNewObject (page 2667). If you do so, you are responsible for calling the drag handlers for the drag operation.
Then, you should call TXNDragReceiver when your drag receiver is called and you want MLTE to take over
control of the drag reception process.

When you call TXNDragReceiver, MLTE takes over the drag operation and handles everything from that
point onward. This includes determining whether the text object is a valid drop target and if the dragged
data is an MLTE-supported type, as well as managing the addition of the dragged data to the text object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNDragTracker
Handles tracking a drag event in a text object for which a custom drag handler is already in place.

OSErr TXNDragTracker (
 TXNObject iTXNObject,
 TXNFrameID iTXNFrameID,
 DragTrackingMessage iMessage,
 WindowRef iWindow,
 DragReference iDragReference,
 Boolean iDifferentObjectSameWindow
);

Parameters
iTXNObject

The text object in which you need to track a drag event.

Functions 2635
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iTXNFrameID
The frame ID of the text object in which you need to track a drag event. You obtain a TXNFrameID
when you create a text object with the TXNNewObject (page 2667) function.

iMessage
A drag message obtained from the appropriate Drag Manager function.

iWindow
A pointer to the window containing the text object in which you need to track a drag event. You
obtain this pointer from the appropriate Drag Manager function.

iDragReference
The drag reference that you want MLTE to handle. You obtain a drag reference by calling the
appropriate Drag Manager function.

iDifferentObjectSameWindow
A value of type Boolean. If your application displays more than one text object per window, pass
truewhen the drag operation moves out of one object’s view rectangle and into another text object’s
view rectangle.

Return Value
A result code. See “MLTE Result Codes” (page 2773). A Drag Manager result code.

Discussion
You would not typically use the TXNDragTracker function, because MLTE provides basic drag management
for you.

However, you might call TXNDragTracker if your application needs to examine the dragged data prior to
MLTE handling it, or if you have multiple text objects in a window, or if you have your own drag management
infrastructure that you want to use.

You must inform MLTE that you wish to handle some aspect of the drag process by passing the
TXNFrameOptions value kTXNDoNotInstallDragProcsMask in the iFrameOptions parameter of
TXNNewObject (page 2667). If you do so, you are responsible for calling the drag handlers for the drag operation.
Then, you should call TXNDragTracker when your drag tracker is called and you want MLTE to take over
control of the drag tracking process.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNDraw
Redraws the text area, including any scroll bars associated with the text frame. (Deprecated in Mac OS X
v10.3. Use the TXNDrawObject (page 2638).)

Not recommended.

2636 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

void TXNDraw (
 TXNObject iTXNObject,
 GWorldPtr iDrawPort
);

Parameters
iTXNObject

The text object whose text is to be redrawn.

iDrawPort
A value of type GWorldPtr. Pass a valid pointer or NULL. If you pass NULL, the TXNDraw function
redraws the text area into the port that is currently associated with the text object. If you pass a valid
pointer instead of NULL, TXNDraw redraws the text area into the specified port, and does not update
the selection. You should pass NULL if you want to draw on the screen but pass a valid pointer if you
want to take a snapshot of the screen to save or print.

Discussion
You can call the TXNDraw function in response to an update event for a window that contains multiple text
objects or other graphic elements. If necessary, your application is also responsible for calling the Window
Manager functions BeginUpdate and EndUpdate in response to the update event.

If there is nothing in your window except a single MLTE text object, you should call the TXNUpdate (page
2698) function to redraw the area instead of calling TXNDraw. The TXNUpdate f unction draws everything in
the frame, and you do not have to call the Window Manager functions BeginUpdate and EndUpdate
yourself.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNDrawCFStringTextBox
Draws text from a Core Foundation string (CFString) in the specified rectangle.

OSStatus TXNDrawCFStringTextBox (
 CFStringRef iText,
 Rect *ioBox,
 ATSUStyle iStyle,
 const TXNTextBoxOptionsData *iOptions
);

Parameters
iText

A reference to the Core Foundation string you want drawn in the text box. A Core Foundation string
is an array of Unicode characters along with a count of the number of characters in the string. A
CFString object is stored as efficiently as possible, so the memory required to store the string is often
less than that required to store a simple array of Unicode characters.

Functions 2637
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

ioBox
On input, a pointer to the rectangle that specifies the text box in which the text is to be displayed.
On return, MLTE updates the rectangle to reflect the minimum bounding rectangle that encloses the
text. If you pass the constant kTXNDontUpdateBoxRectMask in the ioOptions parameter then the
rectangle is not updated. If the rectangle already has text displayed in it, you should call the QuickDraw
function EraseRect before you call the TXNDrawUnicodeTextBox function. The drawing is clipped
to the rectangle unless you specify a rotation as one of the text options you set with the ioOptions
parameter.

iStyle
An ATSUI style to use to display the text. This parameter is optional. If you pass NULL, MLTE creates
an ATSUI style based on the information (text size, type face, color, and so forth) associated with the
current graphics port. See the Apple Type Services for Unicode Imaging documentation for a description
of the ATSUStyle data type.

iOptions
A pointer to a TXNTextBoxOptionsData structure associated with this text object. This is optional.
If you pass NULL, MLTE uses the settings for the current graphics port. You can use the
TXNTextBoxOptionsData structure to specify a number of options, such as text orientation (vertical
or horizontal), justification, alignment, and font substitution for text that cannot be rendered using
the specified font. See Text Box Options Masks (page 2770) for a description of the options you can
specify.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You can use the TXNDrawCFStringTextBox function to display mono-style Unicode text. You do not need
to initialize MLTE to use this function because it uses Apple Type Services for Unicode Imaging (ATSUI) directly.

If you display text justified, it is justified in the direction of the display. Horizontal text is justified horizontally,
but not vertically. Vertical text is justified vertically, but not horizontally.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNDrawObject
Draws a text object in the last window set by your application.

OSStatus TXNDrawObject (
 TXNObject iTXNObject,
 const HIRect *iClipRect,
 TXNDrawItems iDrawItems
);

Parameters
iTXNObject

The text object you want to draw. You can call the function TXNCreateObject to allocate a text
object.

2638 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iClipRect
A pointer to an HIRect data structure. If the rectangle is NULL MLTE uses the view rectangle when
drawing. Otherwise, MLTE uses the rectangle that is the intersection of the iClipRect rectangle and
the view rectangle.

iDrawItems
A Draw Items Masks (page 2737) value that specifies which elements are drawn. Pass
kTXNDrawItemScrollbarsMask if you want the scroll bars drawn; kTXNDrawItemTextMask to
render the text; kTXNDrawItemTextAndSelectionMask to render the text and the current selection,
and kTXNDrawItemAllMask to draw the scroll bars, text, and the current selection.

Discussion
This function has no effect for text objects that have the visibility tag set to false.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNDrawUnicodeTextBox
Draws a Unicode string in the specified rectangle.

OSStatus TXNDrawUnicodeTextBox (
 const UniChar iText[],
 UniCharCount iLen,
 Rect *ioBox,
 ATSUStyle iStyle,
 const TXNTextBoxOptionsData *iOptions
);

Parameters
iText

The Unicode string you want drawn in the text box. The string should be in 16-bit Unicode
Transformation Format (UTF-16).

iLen
The number of Unicode characters contained in the Unicode string.

ioBox
On input, a pointer to the rectangle, in local coordinates, that specifies the text box in which the text
is to be displayed. On return, MLTE updates the rectangle to reflect the minimum bounding rectangle
that encloses the text. If you pass the constant kTXNDontUpdateBoxRectMask in the ioOptions
parameter, the rectangle is not updated. If the rectangle already has text displayed in it, you should
call the QuickDraw function EraseRect before you call the TXNDrawUnicodeTextBox function. The
drawing is clipped to the rectangle unless you specify a rotation as one of the text options you set
with the ioOptions parameter.

iStyle
An ATSUI style to use to display the text. This parameter is optional. If you pass NULL, MLTE creates
an ATSUI style based on the information (text size, type face, color, and so forth) associated with the
current graphics port. See the Apple Type Services for Unicode Imaging documentation for a description
of the ATSUStyle data type.

Functions 2639
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

ioOptions
A pointer to a TXNTextBoxOptionsData structure associated with this text object. This is optional.
If you pass NULL, MLTE uses the settings for the current graphics port. You can use the
TXNTextBoxOptionsData structure to specify a number of options, such as text orientation (vertical
or horizontal), justification, alignment, and font substitution for text that cannot be rendered using
the specified font. See Text Box Options Masks (page 2770) for a description of the options you can
specify.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You can use the TXNDrawUnicodeTextBox function to display mono-style Unicode text. You do not need
to initialize MLTE to use this function because it uses Apple Type Services for Unicode Imaging (ATSUI) directly.

If you display text justified, it is justified in the direction of the display. Horizontal text is justified horizontally,
but not vertically. Vertical text is justified vertically, but not horizontally.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNEchoMode
Determines whether a specified character is drawn instead of the glyph associated with the input character.

OSStatus TXNEchoMode (
 TXNObject iTXNObject,
 UniChar iEchoCharacter,
 TextEncoding iEncoding,
 Boolean iOn
);

Parameters
iTXNObject

The text object for the current text area.

iEchoCharacter
A value that specifies the substitute character.

iEncoding
The text encoding from which the substitute character is drawn. See the Text Encoding Conversion
Manager reference documentation for a discussion of the text encoding data type and of possible
text encoding values.

iOn
A Boolean value. Pass true to turn on character substitution. Pass false to turn it off. When you
enable character substitution for a text object, all characters in the text area have the character
specified by the iEchoCharacter parameter substituted for the actual glyph when MLTE draws the
text.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

2640 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
You can use the TXNEchoMode function when you want to hide what the user types, such as a password in
a login dialog box.

The substitution character is a UniChar data type to facilitate passing any 2-byte character. The encoding
parameter actually determines the encoding MLTE uses to locate a font and display a character. Thus if you
want to display the diamond character from the Shift-JIS encoding for Mac OS, you would pass the value
0x86A6 for the character, but pass an encoding value that represents Mac OS Japanese encoding.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNEndActionGroup
Ends an action group.

OSStatus TXNEndActionGroup (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for which an action group is to be ended.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
The call is ignored if there is no active action group.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNFind
Finds a piece of text or a graphics, sound, or movie object.

Functions 2641
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNFind (
 TXNObject iTXNObject,
 const TXNMatchTextRecord *iMatchTextDataPtr,
 TXNDataType iDataType,
 TXNMatchOptions iMatchOptions,
 TXNOffset iStartSearchOffset,
 TXNOffset iEndSearchOffset,
 TXNFindUPP iFindProc,
 SRefCon iRefCon,
 TXNOffset *oStartMatchOffset,
 TXNOffset *oEndMatchOffset
);

Parameters
iTXNObject

The text object to be searched.

iMatchTextDataPtr
A pointer to a data structure that contains the text to match, the length of that text, and the text’s
encoding. Pass NULL if you are looking for a graphics, sound, or movie object.

iDataType
The type of data for which you want to search. See Supported Data Types (page 2765) for a description
of possible values. If the data type is kTXNPictureFile, kTXNMovieFile, or kTXNSoundFile, the
default behavior is to match on any nontext object. If you want to find a specific data type, you can
provide a custom find callback or ignore types that do not match what you want to find.

iMatchOptions
The matching rules to use in the find operation. See Search Criteria Masks (page 2762) for a description
of possible values.

iStartSearchOffset
The offset at which the search should begin. You can use kTXNStartOffset if you want to search
from the start of the object’s data.

iEndSearchOffset
The offset at which the search should end. You can use kTXNEndOffset if you want to search to the
end of the object’s data.

iFindProc
The custom callback you want used in place of the default matching behavior. You can pass NULL if
you want to use the default matching behavior.

iRefCon
An signed 32-bit integer. You can use this for whatever your application needs. It is passed to the
custom callback specified by iFindProc.

oStartMatchOffset
On return, a pointer to the absolute offset that identifies the start of the match. It is set to a value of
kTXNUseCurrentSelection if there is no match.

oEndMatchOffset
On return, a pointer to the absolute offset that identifies the end of the match. It is set to a value of
kTXNUseCurrentSelection if there is no match.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

2642 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
By default, text is matched on the basis of a binary comparison. If you set the iMatchOptions variable to
ignore case, the characters to be searched are duplicated and case neutralized. If the want to search a large
amount of text, a case insensitive search can fail due to insufficient memory.

If you set the iMatchOptions variable to find an entire word, then once a match is found, the matched text
is tested to see if it is a word. If the kTXNUseEncodingWordRulesBit is set, then the Script Manager
FindWord function is called to make this determination. If the text being searched is Unicode text, then the
ATSUI word-determining functions are used to test for a word.

If the application is looking for a nontext type, then each nontext type in the document is returned. The
iFindProcparameter lets you provide a more elaborate search engine (such as a regular expression processor)
should you need one.

Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNFlattenObjectToCFDataRef
Flattens a text object so it can be saved to disk or embedded with other data.

OSStatus TXNFlattenObjectToCFDataRef (
 TXNObject iTXNObject,
 TXNDataType iTXNDataType,
 CFDataRef *oDataRef
);

Parameters
iTXNObject

The text object that identifies the document you want to flatten. You can either call the function
TXNCreateObject to allocate a text object or you can call the function
HITextViewGetTXNObject (page 2611) to obtain the text object associated with an HITextView.

iTXNDataType
A value that specifies the format in which the data is written out.

oDataRef
On input, points to a structure of type CFDataRef. On output, points to a flattened version of the
text object in the format specified by the iTXNDataType parameter. You are responsible to retain
the returned CFDataRef.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
This function supports the following data types:

 ■ kTXNTextData, for text data.

 ■ kTXNUnicodeTextData, for plain UTF-16.

Functions 2643
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

 ■ kTXNTextAndMultimediaData, for data in MLTE format.

 ■ kTXNRichTextFormatData, for data in RTF format.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNFocus
Changes the focus of a text object.

void TXNFocus (
 TXNObject iTXNObject,
 Boolean iBecomingFocused
);

Parameters
iTXNObject

The text object whose focus you want to change.

iBecomingFocused
If you pass true, the text object receives focus. This means the current selection or insertion point is
active, text input appears at the insertion point, and the keyboard and font are synchronized. (Note
that the font and keyboard are synchronized only if keyboard synchronization is enabled. See Keyboard
Synchronization Settings (page 2756).) If the scroll bars are not already active, they are activated. If you
pass false, the text object’s current selection or insertion point is inactive.

Discussion
You should use theTXNActivate (page 2618) function to make scroll bars active while text input is not focused.
This behavior is often desirable for windows with multiple text areas that are scrollable.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNForceUpdate
Forces an update of the view rectangle and the scroll bars.

void TXNForceUpdate (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object you want to update.

2644 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
This function operates similarly to the Window Manager functions InvalRect and InvalRgn. For example,
when the user increases the size of a window that contains text from a text object, the TXNForceUpdate
function adds the new region (including two rectangles formerly occupied by the scroll bars in the smaller
content area) to the update region.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetAccessibilityHIObject
Obtains an HIObjectRef representing the MLTE object for accessibility purposes.

OSStatus TXNGetAccessibilityHIObject (
 TXNObject iTXNObject,
 HIObjectRef *oHIObjectRef
);

Parameters
iTXNObject

The text object.

oHIObjectRef
On input, a pointer an HIObjectRef that, on return, represents the text object specified by
iTXNObject as an accessible object.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
For each MLTE object that a view creates, the view needs to call this function to get an HIObjectRef that
can be used to represent the MLTE object as an accessible object.

After the view gets this HIObjectRef, it must add the HIObjectRef as a child of itself. The accessibility
engine then routes events to MLTE accessible objects automatically.

The view must install Carbon Event handlers for kEventAccessibleGetAllAttributeNames and
kEventAccessibleGetNamedAttribute, using the HIObjectRef as the target, to provide information
for at least the following required attributes:

 ■ kAXRoleAttribute

 ■ kAXRoleDescriptionAttribute

 ■ kAXWindowAttribute

 ■ kAXPositionAttribute

 ■ kAXSizeAttribute

Functions 2645
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

MLTE also installs handlers for kEventAccessibleGetAllAttributeNames and
kEventAccessibleGetNamedAttribute. Note that these handlers are not called unless the client-installed
handlers return eventNotHandledErr. These handlers return information for the following attributes:

 ■ kAXEnabledAttribute

 ■ kAXFocusedAttribute

 ■ kAXValueAttribute

 ■ kAXSelectedTextAttribute

 ■ kAXSelectedTextRangeAttribute

 ■ kAXNumberOfCharactersAttribute

 ■ kAXLineForIndexParameterizedAttribute

 ■ kAXRangeForLineParameterizedAttribute

 ■ kAXStringForRangeParameterizedAttribute

 ■ kAXRangeForPositionParameterizedAttribute

 ■ kAXRangeForIndexParameterizedAttribute

 ■ kAXBoundsForRangeParameterizedAttribute

 ■ kAXStyleRangeForIndexParameterizedAttribute

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetActionChangeCount
Retrieves the number of times the specified action or actions have occurred since the count was initialized
or cleared. (Deprecated in Mac OS X v10.4. Use TXNGetCountForActionType (page 2649) instead.)

Not recommended.

OSStatus TXNGetActionChangeCount (
 TXNObject iTXNObject,
 TXNCountOptions iOptions,
 ItemCount *oCount
);

Parameters
iTXNObject

The text object whose action count you want to retrieve.

iOptions
The TXNCountOptions to use when retrieving the count. See Action Count Masks (page 2721) for
information on the options you can supply.

oCount
On return, a pointer to the action count.

2646 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetChangeCount
Retrieves the number of times a document has been changed.

ItemCount TXNGetChangeCount (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object whose changes you want to count.

Return Value
The total number of changes since the document was last saved. If the document is new, the number of
changes since it was created.

Discussion
The change count increments for every executed command such as Cut or Copy. An uninterrupted sequence
of key-down events increments the count by 1. The count is cleared each time the text object is saved. You
can use this function to determine if your application should make the Save item in the File menu active.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetCommandEventSupport
Obtains the command event support that is currently set for an MLTE object.

OSStatus TXNGetCommandEventSupport (
 TXNObject iTXNObject,
 TXNCommandEventSupportOptions *oOptions
);

Parameters
iTXNObject

The text object.

Functions 2647
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

oOptions
A pointer to a value of type TXNCommandEventSupportOptions that, on return, contains the option
settings for the text object specified by iTXNObject. For possible values, see Command Event Support
Options (page 2729).

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetContinuousTypeAttributes
Checks to see if the attributes of the current selection are continuous.

OSStatus TXNGetContinuousTypeAttributes (
 TXNObject iTXNObject,
 TXNContinuousFlags *oContinuousFlags,
 ItemCount iCount,
 TXNTypeAttributes ioTypeAttributes[]
);

Parameters
iTXNObject

The text object that contains the current selection.

oContinuousFlags
On return, a pointer to a value that specifies whether text attributes are continuous. See Continuous
Style Information Masks (page 2731) for a description of possible values. If a particular bit is set and if
your application has passed a tag value in a TXNTypeAttributes structure in the array that
corresponds to the bit, then your application should display a check mark next to the appropriate
menu item.

ioCount
The number of TXNTypeAttributes structures in the ioTypeAttributes array.

ioTypeAttributes
An array of TXNTypeAttributes structures. The tag values in this array indicate the text attributes
in which the application is interested. It cannot be NULL. If you are using ATSUI and you want to know
the ATSUI font ID, you should set the tag field to kATSUFontTag, which is a constant in
ATSUnicode.h. If you are using ATSUI and you set the tag field to a QuickDraw font ID, then the
QuickDraw font to which the ATSUI font maps is returned. Note that this is not always the same font
since many ATSUI fonts are not supported by QuickDraw.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You can use this function to determine whether your application should display check marks in the Font,
Style, Size, and Color menus. If these are the only attributes in which you are interested, you can use this
function on systems that use QuickDraw or Apple Type Services for Unicode Imaging (ATSUI).

2648 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetCountForActionType
Gets the number of times a given type of action has occurred.

OSStatus TXNGetCountForActionType (
 TXNObject iTXNObject,
 CFStringRef iActionTypeName,
 ItemCount *oCount
);

Parameters
iTXNObject

The text object to query.

iActionTypeName
The action type that is to be included when retrieving the count. This parameter can be the string
that was passed to TXNBeginActionGroup (page 2621) or one of the constants described in Action
Constants (page 2719).

oCount
On return, the number of times the action specified by iActionTypeName has occurred.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
Call TXNClearCountForActionType (page 2626) to reset the counters.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetData
Copies a range of data.

Functions 2649
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNGetData (
 TXNObject iTXNObject,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset,
 Handle *oDataHandle
);

Parameters
iTXNObject

The text object that contains the data you want to copy.

iStartOffset
The absolute offset from which data copying should begin. Make sure the iStartOffset and
iEndOffset parameters do not specify a range that includes text and nontext data (that is, crosses
a data type boundary). You can use the TXNGetSelection (page 2658) function to get the absolute
offsets of the current selection.

iEndOffset
The absolute offset at which data copying should end. You can use the TXNGetSelection function
to get the absolute offsets of the current selection.

oDataHandle
A pointer to a handle. On return, the handle points to the requested data. TXNGetData allocates the
handle as necessary. Your application must dispose of the handle.

Return Value
A result code. See “MLTE Result Codes” (page 2773). The iStartOffset and iEndOffset parameters can
specify a range that crosses a style run boundary but not a range that crosses a data type boundary. If the
range includes text and nontext data, the TXNGetData function returns the error code
kTXNIllegalToCrossDataBoundariesErr.

Discussion
You first need to use the TXNCountRunsInRange (page 2629) function to find the number of data runs in a
given range. Then you can examine each run’s type and text attributes with the
TXNGetIndexedRunInfoFromRange (page 2654) function. Finally, use the TXNGetData function to examine
data for each run of interest to you. The function does not check to see that the copied data aligns on a word
boundary; data is simply copied as specified by the offset values.

Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetDataEncoded
Copies the text in a specified range, and if necessary, translates the text to match your application’s preferred
encoding.

2650 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNGetDataEncoded (
 TXNObject iTXNObject,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset,
 Handle *oDataHandle,
 TXNDataType iEncoding
);

Parameters
iTXNObject

The text object that contains the data you want to copy.

iStartOffset
The absolute offset from which data copying should begin. You can use the TXNGetSelection (page
2658) function to get the absolute offsets of the current selection.

iEndOffset
The absolute offset at which data copying should end. You can use the TXNGetSelection (page
2658) function to get the absolute offsets of the current selection.

oDataHandle
A pointer to a handle. On return, a handle to the requested data. TXNGetDataEncoded allocates the
handle as necessary. Your application must dispose of the handle. If there is no text in the range
specified, the returned handle is NULL, and the function returns noErr.

encoding
The type of data to be encoded. See Supported Data Types (page 2765) for a full description of possible
values. You should specify either the kTXNTextData or kTXNUnicodeTextData constant. If the
iEncoding parameter specifies an encoding different from that used to store the text data internally,
the Conversion Manager translates the data to the specified type (text or Unicode). If the iEncoding
parameter is not recognized, the data is returned in the current encoding. On systems that do not
use ATSUI version 1.1 or later, the current encoding is the Mac OS encoding. Otherwise, the current
encoding is Unicode.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetEventTarget
Obtains the current event target for a TXNObject.

Functions 2651
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNGetEventTarget (
 TXNObject iTXNObject,
 HIObjectRef *oEventTarget
);

Parameters
iTXNObject

The text object.

oEventTarget
A pointer to an HIObjectRef that, on return, points to the current event target for the TXNObject
specified by iTXNObject.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
This function obtains the current event target for the TXNObject specified by iTXNObject. Use this function
to obtain the target and then install your own handlers.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetFontDefaults
Makes a copy of the font descriptions for a given text object. (Deprecated in Mac OS X v10.4.)

OSStatus TXNGetFontDefaults (
 TXNObject iTXNObject,
 ItemCount *ioCount,
 TXNMacOSPreferredFontDescription oFontDefaults[]
);

Parameters
iTXNObject

The text object for the document whose default font settings you want to copy.

ioCount
A pointer to a value of type ItemCount. You need to call the TXNGetFontDefaults function twice
(see Discussion). The first time you call the function, pass NULL. On return, the ioCount parameter
specifies the number of font descriptions associated with the text object. The second time you call
TXNGetFontDefaults, on return the ioCount parameter points to the number of font descriptions
in the iFontDefaults array.

iFontDefaults
An array of TXNMacOSPreferredFontDescription structures to be filled. You need to call the
TXNGetFontDefaults function twice (see Discussion). The first time you call the function pass NULL.
The second time you call TXNGetFontDefaults, you can initialize the iFontDefaults array to have
the number of elements specified by the ioCount parameter. Then on return, the iFontDefaults
parameter contains the font descriptions for the text object.

2652 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You need to call this function twice: once to get the number of font default descriptions (returned in the
ioCount parameter), and the second time to get the font default data.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetFontMenuHandle
Gets the Font menu handle that belongs to a Font menu object. (Deprecated in Mac OS X v10.5.)

OSStatus TXNGetFontMenuHandle (
 TXNFontMenuObject iTXNFontMenuObject,
 MenuRef *oFontMenuHandle
);

Parameters
iTXNFontMenuObject

A Font menu object.

fontMenuHandle
A pointer to a menu handle. On return, a pointer to the Font menu created when the Font menu
object was created. MLTE makes a copy of the menu handle. Your application should not dispose of
the menu handle until it disposes of the Font menu object by calling the
TXNDisposeFontMenuObject (page 2633).

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetHIRect
Obtains the values for the current view, destination, or text rectangle.

Functions 2653
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNGetHIRect (
 TXNObject iTXNObject,
 TXNRectKey iTXNRectKey,
 HIRect *oRectangle
);

Parameters
iTXNObject

The text object for the current text area. You can either call the function TXNCreateObject to allocate
a text object or you can call the function HITextViewGetTXNObject (page 2611) to obtain the text
object associated with an HITextView.

iTXNRectKey
A value that specifies the rectangle you want the function to obtain. See Rectangle Keys (page
2759) for a list of the constants you can supply.

oRectangle
On output, points to the HIRect data structure that contains the coordinates for the requested
rectangle.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetIndexedRunInfoFromRange
Gets information about a run in a range of data.

OSStatus TXNGetIndexedRunInfoFromRange (
 TXNObject iTXNObject,
 ItemCount iIndex,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset,
 TXNOffset *oRunStartOffset,
 TXNOffset *oRunEndOffset,
 TXNDataType *oRunDataType,
 ItemCount iTypeAttributeCount,
 TXNTypeAttributes *ioTypeAttributes
);

Parameters
iTXNObject

The text object for the current text area.

iIndex
The value that corresponds to the run for which you want to get information. You call the
TXNCountRunsInRange (page 2629) function to get the number of runs in a range. The iIndex
parameter is zero-based, so its possible values are from 0 to the number of runs in a range minus 1.
Note that the index is relative to the first run in the range specified by the iStartOffset and
iEndOffset parameters, not for the entire document.

2654 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iStartOffset
The offset at which you want to start to obtain run information. This value must be the same value
that you passed previously to the function TXNCountRunsInRange.

iEndOffset
The offset at which you want run information to end. This value must be the same value that you
passed previously to the function TXNCountRunsInRange.

oRunStartOffset
On return, a pointer to a value that identifies the start of run relative to the beginning of the text, not
the beginning of the range you specified in the iStartOffset parameter.

oRunEndOffset
On return, a pointer to a value that identifies the end of the run relative to the beginning of the text,
not the beginning of the range you specified in the iStartOffset parameter.

oRunDataType
On return, a pointer to a value that identifies the type of data in the run. See Supported Data
Types (page 2765) for a description of possible values.

iTypeAttributeCount
The number of font attributes.

ioTypeAttributes
A pointer to a structure of type TXNTypeAttributes. On input, you specify the attribute (such as
size) in the tag field and the attribute size in the size field. You can pass NULL for the data field
only if the size of the returned value <= 4. Otherwise a pointer to an appropriately sized block of data
must be placed in one of the other members of the ioTypeAttributes union, such as, dataPtr,
atsuFeatures, atsuVariations. On return, the data field contains the attribute data. The data
field is a union that serves either as a 32-bit integer or a 32-bit pointer, depending on the size field.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You should first call the TXNCountRunsInRange function to get the count. The TXNTypeAttributes
structure must specify the text attribute in which the application is interested. In other words, the tag and
size fields must be set.

Offsets in MLTE are always character offsets.

If a tag specified in the ioTypeAttributes parameter is not recognized by MLTE—that is, the tag isn’t a
TXTNTag value, a TXNTypeRunAttributes value, or a valid style run attribute tag
(ATSUAttributeTag)—then the constant kTXNAttributeTagInvalidForRunErr is returned in the
ioTypeAttributes->data.dataValue field for that particular tag. The function continues to process the
remaining tags, but returns the result code kTXNSomeOrAllTagsInvalidForRunErr. Both of these values
(kTXNAttributeTagInvalidForRunErr and kTXNSomeOrAllTagsInvalidForRunErr) are used either
when a tag is not recognized or a tag is recognized but some error occurred in trying to obtain the attribute.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

Functions 2655
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNGetLineCount
Gets the total number of lines in a text object.

OSStatus TXNGetLineCount (
 TXNObject iTXNObject,
 ItemCount *oLineTotal
);

Parameters
iTXNObject

The text object that identifies the document whose line count you want to get.

oLineTotal
On return, a pointer to the number of lines in the text object.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetLineMetrics
Gets information about line width and height for a specified line of data in a text object.

OSStatus TXNGetLineMetrics (
 TXNObject iTXNObject,
 unsigned long iLineNumber,
 Fixed *oLineWidth,
 Fixed *oLineHeight
);

Parameters
iTXNObject

The text object that identifies the document whose line metrics you want to get.

iLineNumber
A value that specifies the line whose metrics you want to retrieve. You should use the
TXNGetLineCount (page 2656) function to determine how many lines are in the text object so that
you specify a valid line number. Line numbers start at 0.

oLineWidth
On return, a pointer to the width of the line, in pixels.

oLineHeight
On return, a pointer to the height of the line, in pixels.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You can use height and width information to adjust the size of the text object’s frame.

2656 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetRectBounds
Obtains the values for the current view, destination, and text rectangles. (Deprecated in Mac OS X v10.3. Use
TXNGetHIRect (page 2653) instead.)

Not recommended.

OSStatus TXNGetRectBounds (
 TXNObject iTXNObject,
 Rect *oViewRect,
 TXNLongRect *oDestinationRect,
 TXNLongRect *oTextRect
);

Parameters
iTXNObject

The text object for the current text area.

oViewRect
On output, a pointer to the Rect data structure that contains the coordinates for the view rectangle.
If you do not want to obtain this structure, pass NULL. The view rectangle specifies the area of the
text you see. Scroll bars are drawn inside the view rectangle.

oDestinationRect
On output, a pointer to the TXNLongRect data structure that contains the coordinates for the
destination rectangle. If you do not want to obtain this structure, pass NULL. The destination rectangle
controls how text is laid out.

oTextRect
On output, a pointer to the TXNLongRect data structure that contains the coordinates for the text
rectangle. If you do not want to obtain this structure, pass NULL. The text rectangle is the smallest
rectangle needed to contain the current text. MLTE calculates the text rectangle by measuring each
line of text. So this can be slow performance. The width of the text rectangle is the width of the longest
line in the text.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You need only to pass pointers for the rectangles for which you want to obtain coordinates.

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

Functions 2657
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNGetSelection
Gets the absolute offsets of the current selection.

void TXNGetSelection (
 TXNObject iTXNObject,
 TXNOffset *oStartOffset,
 TXNOffset *oEndOffset
);

Parameters
iTXNObject

The text object for the current text area.

oStartOffset
On return, a pointer to the absolute starting offset of the current selection.

oEndOffset
On return, a pointer to the absolute ending offset of current selection.

Discussion
Offsets in MLTE are always character offsets. Each embedded graphics or sound object is counted as one
character.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTMetaData

Declared In
MacTextEditor.h

TXNGetSleepTicks
Reports the appropriate amount of time to allot to background processes, depending on the state of the
window.

UInt32 TXNGetSleepTicks (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object that identifies the current document.

Return Value
The appropriate wait time, in ticks. You pass this value to the WaitNextEvent function.

Discussion
In a cooperative processing environment, your application must determine how much time to give to
background processes. A tick is 1/60 of a second.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

2658 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNGetSpellCheckAsYouType
Determines whether the “Spell Check as You Type” feature is enabled.

Boolean TXNGetSpellCheckAsYouType (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object to query.

Return Value
A Boolean whose value is true if the “Spell Check as You Type” feature is enabled; otherwise, false.

Discussion
Call TXNSetSpellCheckAsYouType (page 2693) to enable or disable the “Spell Check as You Type” feature.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetTXNObjectControls
Gets the current formatting and privileges attributes (such as justification, line direction, tab values, and
read-only status) for a text object.

OSStatus TXNGetTXNObjectControls (
 TXNObject iTXNObject,
 ItemCount iControlCount,
 const TXNControlTag iControlTags[],
 TXNControlData oControlData[]
);

Parameters
iTXNObject

The text object that identifies the document to be activated.

iControlCount
The number of items in the iControlTags array.

iControlTags
An array of values that specify the kind of formatting information you want returned in the
oControlData array. See Formatting and Privileges Settings (page 2742) for a description of possible
values.

Functions 2659
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

oControlData
An array of TXNControlData (page 2711) unions. On return, the array contains the information that
was requested through the iControlTags array. Your application must allocate the oControlData
array.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetViewRect
Gets the rectangle that describes the current view of the document.

void TXNGetViewRect (
 TXNObject iTXNObject,
 Rect *oViewRect
);

Parameters
iTXNObject

The text object for the current text area.

oViewRect
On return, a pointer to a rectangle that describes the view of the document. The area described by
the oViewRect parameter does not include the area that encloses the scroll bars. The coordinates
of this rectangle are local to the window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGetWindowRef
Returns a reference to the window to which the specified text object is attached.

WindowRef TXNGetWindowRef (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for which you want to obtain a window reference. You can call the function
TXNCreateObject to allocate a text object.

Return Value
The window to which the text object is attached. Returns NULL if no window is attached.

2660 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNGrowWindow
Adjusts the size of a window in response to mouse-down events in the size region of the window.

void TXNGrowWindow (
 TXNObject iTXNObject,
 const EventRecord *iEvent
);

Parameters
iTXNObject

The text object for the current text area.

iEvent
A pointer to the event record that contains the mouse-down event you want to apply to the window.

Discussion
The text object must be contained in a window and not a subframe of the window; otherwise the function
does not adjust the size of the window. Before you call TXNGrowWindow, you should make sure that the front
window belongs to your application.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNHIPointToOffset
Gets the offset value that corresponds to a point in local coordinates.

OSStatus TXNHIPointToOffset (
 TXNObject iTXNObject,
 const HIPoint *iHIPoint,
 TXNOffset *oOffset
);

Parameters
iTXNObject

The text object for which you want to obtain an offset value. You can either call the function
TXNCreateObject to allocate a text object or you can call the function
HITextViewGetTXNObject (page 2611) to obtain the text object associated with an HITextView.

iHIPoint
The local coordinates of the point for which you want to obtain the offset value.

Functions 2661
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

oOffset
On output, a pointer to the offset that corresponds to the value of the iHIPoint parameter.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNIdle
Does idle time processing, such as flashing the cursor.

void TXNIdle (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object that identifies the current document.

Discussion
Before you call the TXNIdle function, you should make sure that the front window belongs to your application.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNInitTextension
Initializes MLTE.

2662 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNInitTextension (
 const TXNMacOSPreferredFontDescription iDefaultFonts[],
 ItemCount iCountDefaultFonts,
 TXNInitOptions iUsageFlags
);

Parameters
iDefaultFonts

An array of TXNMacOSPreferredFontDescription structures. You use this to specify a table of
font information that includes the font family ID, point size, style, and script code. The table can be
NULL or can have an entry for any script for which you would like to designate a default font. To
designate that MLTE should use the default settings for a specified script, you need to supply a valid
script code value in the TextEncoding field of the font description structure and a value of
kTXNUseScriptDefaultValue in all other fields of the structure. In Mac OS X, the default settings
are read from the Theme settings. In Mac OS 9, the default settings are read from the Script Manager.

iCountDefaultFonts
The number of scripts for which you are designating a default font in the iDefaultFonts array.

iUsageFlags
A value that specifies whether embedded objects should be supported. You can also specify whether
MLTE should use QuickDraw as the imaging system and whether temporary memory should be used.
See Initialization Option Masks (page 2754) for a description of possible values.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
For systems prior to Mac OS X v10.3, you should call this function along with any other initialization calls you
make when your application starts up. If you call this function a second time, it has no effect; the defaults
you set up the first time you called the TXNInitTextension function are in effect until you call the
TXNTerminateTextension (page 2696) function.

For Mac OS X v10.3 and later, you do not have to call this function. However, you may want to call this function
to set default fonts that are different from the system default font or to enable multimedia support.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNIsObjectAttachedToSpecificWindow
Determines whether a text object is attached to a specified window. (Deprecated in Mac OS X v10.3. Use
TXNGetWindowRef (page 2660) instead.)

Not recommended.

Functions 2663
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNIsObjectAttachedToSpecificWindow (
 TXNObject iTXNObject,
 WindowRef iWindow,
 Boolean *oAttached
);

Parameters
iTXNObject

The text object that identifies the document you want to check.

iWindow
A reference to the window against which to check attachment.

oAttached
On output, true if the text object is attached to the specified window; false otherwise.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNIsObjectAttachedToWindow
Checks to see if a text object is attached to a window. (Deprecated in Mac OS X v10.3. Use
TXNGetWindowRef (page 2660) instead.)

Not recommended.

Boolean TXNIsObjectAttachedToWindow (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object that identifies the document you want to check.

Return Value
A Boolean value; returns true if the object is attached.

Discussion
You can call this before you call the TXNAttachObjectToWindow (page 2620) function to make sure the text
object is not already attached to a window. If you pass NULL in the iWindow parameter of
TXNNewObject (page 2667) you create a text object without an associated window pointer.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

2664 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNIsScrapPastable
Tests whether the Clipboard contains data that is supported by MLTE.

Boolean TXNIsScrapPastable (
 void
);

Return Value
Returns true if the data type on the Clipboard is supported.

Discussion
You can call the TXNIsScrapPastable function to determine if the Paste item in the Edit menu should be
active.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNIsSelectionEmpty
Determines whether the current selection is empty.

Boolean TXNIsSelectionEmpty (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for the current text area.

Return Value
A Boolean value. It is true if the current selection is empty.

Discussion
You can use the TXNIsSelectionEmpty function to determine whether your application should enable the
Cut, Copy, and Clear items in the Edit menu.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

Functions 2665
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNKeyDown
Processes a key-down event.

void TXNKeyDown (
 TXNObject iTXNObject,
 const EventRecord *iEvent
);

Parameters
iTXNObject

The text object that identifies the active document.

iEvent
A pointer to the event record that contains the key-down event you want handled. You cannot pass
NULL.

Discussion
Before you call the TXNKeyDown function, you should make sure that the front window belongs to your
application. Text input occurs in the text object’s window. This is always the case unless the application has
requested text input through a bottom-line window (a small window that appears at the bottom of the
screen) or has turned off the Text Services Manager (TSM).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNNewFontMenuObject
Creates a new Font menu object. (Deprecated in Mac OS X v10.5.)

OSStatus TXNNewFontMenuObject (
 MenuRef iFontMenuHandle,
 SInt16 iMenuID,
 SInt16 iStartHierMenuID,
 TXNFontMenuObject *oTXNFontMenuObject
);

Parameters
iFontMenuHandle

A value of type MenuRef obtained by calling the Menu Manager functions CreateNewMenu, NewMenu,
CreateMenuFromNib, or GetMenu. Before calling TXNNewFontMenuObject, initialize the menuData
field of the handle to specify the menu title, in Pascal string format. You must make sure the string
is localized appropriately.

iMenuID
The menu ID of the Font menu.

2666 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iStartHierMenuID
The first MenuID to use if any hierarchical menus need to be created. This function calls
SetMenuItemHierarchicalID to create hierarchical menus, so the value of this parameter must
follow the rules for that function. On systems less than Mac OS 8.5, the submenuID must be less than
255. For systems after Mac OS 8.5, the range can be as large as large 32767. However, it is important
to remember that TXNNewFontMenuObject only uses iStartHierMenuID as a starting ID when
adding hierarchical menus. Therefore provide plenty of room to increment this value. For example,
on a system less than Mac OS 8.5, start at 175. On systems after than Mac OS 8.5, do not use a value
more than 32000.

oTXNFontMenuObject
A pointer to a structure of type TXNFontMenuObject (page 2712). On return, a new Font menu object.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
A good time to call the TXNNewFontMenuObject function is when you are preparing to display your menu
bar. This function fills the Font menu with font names. Later, you can pass the Font menu object along with
a text object to the TXNDoFontMenuSelection function which handles all aspects of user interaction with
the Font menu.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNNewObject
Creates a new MLTE text object which is an opaque structure that handles text formatting at the document
level. (Deprecated in Mac OS X v10.3. Use TXNCreateObject (page 2630) instead.)

Not recommended.

Functions 2667
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNNewObject (
 const FSSpec *iFileSpec,
 WindowRef iWindow,
 const Rect *iFrame,
 TXNFrameOptions iFrameOptions,
 TXNFrameType iFrameType,
 TXNFileType iFileType,
 TXNPermanentTextEncodingType iPermanentEncoding,
 TXNObject *oTXNObject,
 TXNFrameID *oTXNFrameID,
 TXNObjectRefcon iRefCon
);

Parameters
iFileSpec

A pointer to a variable of type FSSpec. If you pass NULL you start with an empty document. Otherwise,
the contents of the file to which iFileSpec points are read into the object. The referenced file must
consist entirely of data that MLTE can read ('TEXT', 'RTF ', 'utxt', or 'txtn'). If the referenced
file contains your application’s private data and data that MLTE can read, you should call the
TXNNewObject function with the iFileSpec parameter set to NULL. Once TXNNewObject creates
the text object, your application can read the private data into the text object by calling the
TXNSetDataFromFile (page 2685) function.

iWindow
A reference to the window in which the document will be displayed. This parameter can be NULL. If
it is NULL, you must attach a window or graphics port to the text object by using the
TXNAttachObjectToWindow (page 2620) function.

iFrame
A pointer to a variable of type Rect. If you pass NULL, the window’s portRect rectangle is used as
the frame. If you do not want to fill the entire window, you use the iFrame parameter to specify the
area to fill.

iFrameOptions
A value that specifies the options you want the frame to support. See Frame Option Masks (page 2749)
for a description of possible values.

If you want to create a read-only document, you need to pass the option kTXNReadOnlyMask. Note
that this option puts the text object into a state that does not allow user input. However, your
application can put data into the text object by calling the function TXNSetData. If you want the
text object set into a more restrictive read-only state that does not allow user input or your application
to put data into the text object programmatically, you need to call the function
TXNSetTXNObjectControls, passing the tag kTXNIOPrivilegesTag. If you choose to set the text
object into this restrictive state, you will get an error if you try to call the function TXNSetData on
the text object. (In this case, you can change the text object to a less restrictive state by calling
TXNSetTXNObjectControls, passing the tag kTXNNoUserIOTag.)

iFrameType
A value that specifies the frame type of the text object. See Supported Frame Types (page 2767) for a
description of possible values.

2668 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iFileType
A value that specifies the file type of the text object. See Supported File Types (page 2766) for a
description of possible values. You should specify the primary file type. If you use the
kTXNTextensionFile constant, files are saved in a custom format. If you want saved files to be plain
text files, you should specify the kTXNTextFile constant, then use the iframeOptions parameter
to specify whether the plain text files should be saved with
kTXNSingleStylePerTextDocumentResTypeorkTXNMultipleStylesPerTextDocumentResType
resources.

iPermanentEncoding
A value that specifies the encoding in which the document is saved. See Text Encoding
Preferences (page 2772) for a description of possible values.

oTXNObject
A pointer to a structure of type TXNObject. On return, this points to the opaque text object data
structure allocated by the function. You need to pass this object to most MLTE functions.

oTXNFrameID
On return, a pointer to the unique ID for the text object’s frame. However, in MLTE version 1.1 and
earlier, the frame ID is always set to 0.

iRefCon
A value of type TXNObjectRefcon. You can define how to use this for your application. You can set
this to any value and retrieve it later.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
For each document, a new text object is allocated by the TXNNewObject function and returned in the
oTXNObject parameter. The object is allocated only if no errors occur, including errors that may occur when
reading a file. If there is an error during the allocation process, MLTE frees the text object.

If you are writing a text editing application, you may want to call the TXNNewObject function when the
application launches (a new document will be displayed) and whenever the user selects New from the File
menu.

Many MLTE functions require you to pass a text object; some functions also require the frame ID supplied
back to your application in the oTXNFrameID parameter of TXNNewObject.

Because of how MLTE uses Carbon events internally, the window in which the document is displayed must
have the standard event handlers installed. You can do this in one of the following ways:

 ■ When you create the window, add the attribute kWindowStandardHandlerAttribute to the window.
See Inside Mac OS X: Window Manager Reference for more information.

 ■ Call the Carbon Event Manager function InstallStandardEventHandler on the window's event
target. See Inside Mac OS X: Handling Carbon Events for more information.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

Functions 2669
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNOffsetToHIPoint
Obtains the local coordinates of the point that corresponds to a specified offset of a text object.

OSStatus TXNOffsetToHIPoint (
 TXNObject iTXNObject,
 TXNOffset iOffset,
 HIPoint *oHIPoint
);

Parameters
iTXNObject

The text object for which you want to obtain the local coordinates of a point. You can either call the
function TXNCreateObject to allocate a text object or you can call the function
HITextViewGetTXNObject (page 2611) to obtain the text object associated with an HITextView.

iOffset
The offset value of the point for which you want to obtain the local coordinates.

oPoint
On output, a pointer to the local coordinates of the point that corresponds to the value of the iOffset
parameter.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNOffsetToPoint
Gets the local coordinates of the point that corresponds to a specified offset of a text object. (Deprecated in
Mac OS X v10.3. Use TXNOffsetToHIPoint (page 2670) instead.)

Not recommended.

OSStatus TXNOffsetToPoint (
 TXNObject iTXNObject,
 TXNOffset iOffset,
 Point *oPoint
);

Parameters
iTXNObject

The text object for which you want to obtain the local coordinates of a point.

iOffset
An offset value.

2670 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

oPoint
On return, a pointer to the local coordinates of the point that corresponds to the value of the iOffset
parameter.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNPageSetup
Displays the Page Setup dialog for the current default printer and manages changes, such as reformatting
the text, in response to page layout changes.

OSStatus TXNPageSetup (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for the active document.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNPaste
Pastes the contents of the private MLTE scrap into the text object.

OSStatus TXNPaste (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object that identifies the current document.

Functions 2671
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
Before you call TXNPaste, you can call the TXNIsScrapPastable (page 2665) function to determine if the
current scrap contains data supported by MLTE.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNPointToOffset
Gets the offset value that corresponds to a point in local coordinates. (Deprecated in Mac OS X v10.3. Use
TXNHIPointToOffset (page 2661) instead.)

Not recommended.

OSStatus TXNPointToOffset (
 TXNObject iTXNObject,
 Point iPoint,
 TXNOffset *oOffset
);

Parameters
iTXNObject

The text object for which you want to obtain an offset value.

iPoint
The local coordinates of a point.

oOffset
On return, a pointer to the offset that corresponds to the value of the iPoint parameter.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNPrepareFontMenu
Prepares a Font menu for display. (Deprecated in Mac OS X v10.5.)

2672 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNPrepareFontMenu (
 TXNObject iTXNObject,
 TXNFontMenuObject iTXNFontMenuObject
);

Parameters
iTXNObject

The text object that identifies the document with the Font menu you want to prepare. Pass NULL to
display an inactive menu (dimmed).

iTXNFontMenuObject
A Font menu object.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You should call the TXNPrepareFontMenu function just before your application opens the Font menu for
your user. If the text object’s current selection is a single font, MLTE places a check mark next to the menu
item for that font.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNPrint
Prints the document so it is formatted to fit the page size selected for the printer.

OSStatus TXNPrint (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object that identifies the document you want to print.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNReadFromCFURL
Reads data from a CFURLRef into a TXNObject.

Functions 2673
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNReadFromCFURL (
 TXNObject iTXNObject,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset,
 CFDictionaryRef iDataOptions,
 CFURLRef iFileURL,
 CFDictionaryRef *oDocumentAttributes
);

Parameters
iTXNObject

The text object into which data read from iFileURL is to be added.

iStartOffset
The offset in iTXNObject at which to start placing data read from iFileURL.

iEndOffset
The offset in iTXNObject at which to stop placing data read from iFileURL.

iDataOptions
Options for reading the data. See Data Option Key Value Constants (page 2733) for a list of the supported
options. If this parameter is NULL, the data is read in using MLTE’s native format.

iFileURL
A CFURLRef to the data that is to be added to the text object specified by inTXNObject.

oDocumentAttributes
A value of type CFDictionary that, on return, contains the document attributes present in the data
stream, if the file format supports them; otherwise this parameter is NULL. The native MLTE file format
and RTF support embedded document attributes. See Document Attribute Keys (page 2735) for a list
of supported attributes. If this parameter is NULL, no document attributes are written out.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
This function reads data from a file or a special file bundle (directory) into a text object. Offset parameters
are used to specify whether the new data is inserted, appended or replaces an existing data range in the text
object. Clients can specify the document format and encoding of the data using the iDataOptionsparameter.
This functions also returns the document attributes present in the data stream. Document attributes are
supported only for the rich text file formats supported by MLTE, which are RTF and MLTE native file format.

If the caller passes a pointer to a CFDictionaryRef, this function returns a reference to a dictionary of
attributes, if there is one, that the caller is responsible for releasing. In all other cases, this function sets the
reference to NULL. Here is some sample code:

CFDictionaryRef oDocumentAttributes = NULL;
status = TXNReadFromCFURL (....,&oDocumentAttributes);
if (oDocumentAttributes != NULL) ::CFRelease(oDocumentAttributes);

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

2674 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNRecalcTextLayout
Recalculates the text layout based on new view and destination rectangles.

void TXNRecalcTextLayout (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object whose layout you want to recalculate.

Discussion
You can call the function TXNRecalcTextLayout if you call the function TXNSetRectBounds (page 2690)
with the iUpdate parameter set to false. TXNRecalcTextLayout recalculates the text layout as well as
where the scroll bars, if any, should be placed. When you call TXNRecalcTextLayout, MLTE generates an
update event to redraw the text object.

Availability
Available in Mac OS X v10.1 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNRedo
Redoes the last command.

void TXNRedo (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for the document you want to examine.

Discussion
If the user undoes an action and then undoes it again, the second undo is the same as a redo.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNRegisterScrollInfoProc
Installs or uninstalls a scrolling callback function on a text object.

Functions 2675
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

void TXNRegisterScrollInfoProc (
 TXNObject iTXNObject,
 TXNScrollInfoUPP iTXNScrollInfoUPP,
 SRefCon iRefCon
);

Parameters
iTXNObject

The text object on which you want to install a callback to scroll text.

iTXNScrollInfoUPP
A universal procedure pointer to the callback function you want MLTE to call whenever a scroll bar
for the text object must be updated.

iRefCon
A 32-bit value that is passed to your callback.

Discussion
You can call the function TXNRegisterScrollInfoProc to install a text-scrolling callback on a text object.
This is useful if your application draws and handles its own scrolling widgets. Once you register your callback
(TXNScrollInfoUPP), MLTE invokes your callback each time it is necessary to update the values and maximum
values of your scrolling widget. For example when the user presses the Return key to add a new line, MLTE
calculates a new maximum value for the text object. Your callback is then called with the newly-calculated
maximum value. To turn off your callback call the function TXNRegisterScrollInfoProc with a value of
NULL for the iTXNScrollInfoUPP parameter.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNResizeFrame
Resizes the view and destination rectangles.

void TXNResizeFrame (
 TXNObject iTXNObject,
 UInt32 iWidth,
 UInt32 iHeight,
 TXNFrameID iTXNFrameID
);

Parameters
iTXNObject

The text object for the current text area.

iWidth
The new width of the view and destination rectangles in pixels.

iHeight
The new height of the view and destination rectangles in pixels.

iTXNFrameID
The frame ID of the frame associated with the view and destination rectangles you want to resize.
You obtain the frame ID when you call the TXNNewObject (page 2667) function.

2676 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
You need to call the function TXNSetFrameBounds (page 2688) if you want to reset the frame bounds.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNRevert
Reverts to the last saved version of a document.

OSStatus TXNRevert (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for the active document.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You can use the TXNRevert function with files that contain only text as well as files that were created using
MLTE. If the file was not previously saved, the document reverts to an empty document. To revert to data
that is embedded in a private file type, use the TXNSetSelection (page 2692) function to select all of the
current data and then use the TXNSetDataFromFile (page 2685) function to read in the old data.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSave
Saves the contents of the document as the file type you specify. (Deprecated in Mac OS X v10.4. Use
TXNWriteRangeToCFURL (page 2699) instead.)

Not recommended.

Functions 2677
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNSave (
 TXNObject iTXNObject,
 TXNFileType iType,
 OSType iResType,
 TXNPermanentTextEncodingType iPermanentEncoding,
 const FSSpec *iFileSpecification,
 SInt16 iDataReference,
 SInt16 iResourceReference
);

Parameters
iTXNObject

The text object for the active document.

iType
The file type to which the text object should be saved. The type must be kTXNTextensionFile,
kTXNTextFile, orkTXNUnicodeTextData. See Supported File Types (page 2766) for more information
on file type constants.

iResType
The type of resource that should be used to save the style information if the file is being saved as
plain text. This parameter is ignored for file types that are not plain text.

iPermanentEncoding
The encoding in which to save the document. If the internal encoding used by MLTE does not match
the requested encoding type, the text is translated by the Conversion Manager.

iFileSpecification
A pointer to a variable that specifies the location of the file. This parameter is retained and used in
calls to theTXNRevert (page 2677) function. It is not retained once the text object is deleted or disposed
of.

iDataReference
The data fork reference number of the open file.

iResourceReference
The resource fork reference number of the open file. This parameter is ignored if the file type is not
kTXNTextFile. You can save text without style information by passing -1 for this parameter.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You must first open the file to which you want to save the document. If you are saving the file as plain text
and the application has specified a resource type in which to save style attributes, then you must also open
the file’s resource fork.

MLTE does not move the marker before writing the file. You must make sure the file marker of the opened
file is at the position where you want data to be written. Typically, this is position 0, but you can specify any
valid file position. This behavior lets you write private data, followed by data that is written by MLTE, which
can subsequently be followed by more private data or even another MLTE file.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

2678 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNScroll
Scrolls the text within a view rectangle of the specified text object.

OSStatus TXNScroll (
 TXNObject iTXNObject,
 TXNScrollUnit iVerticalScrollUnit,
 TXNScrollUnit iHorizontalScrollUnit,
 long *ioVerticalDelta,
 long *ioHorizontalDelta
);

Parameters
iTXNObject

The text object whose text you want to scroll.

iVerticalScrollUnit
Specifies the units to use for the ioVerticalDelta parameter. Pass kTXNScrollUnitsInPixels
to specify pixels, pass kTXNScrollUnitsInLines to specify a count of lines, and pass
kTXNScrollUnitsInViewRects to specify the height of the current view rectangle (viewRect).
Note that scrolling in line units is the slowest because each line must be measured by MLTE before
the text scrolls. See Scroll Units (page 2761) for more information.

iHorizontalScrollUnit
Specifies the units to use for the ioHorizontalDelta parameter. Pass kTXNScrollUnitsInPixels
to specify pixels, pass kTXNScrollUnitsInLines to specify a count of lines, and pass
kTXNScrollUnitsInViewRects to specify the height of the current view rectangle (viewRect).
Note that scrolling in line units is the slowest because each line must be measured by MLTE before
the text scrolls. See Scroll Units (page 2761) for more information.

ioVerticalDelta
On input, the number of units by which to scroll in the vertical direction. You specify the units in the
iVerticalScollUnit parameter. On output, the number of units actually scrolled in the vertical
direction. A positive value indicates to move the text in a downward direction.

ioHorizontalDelta
On input, the number of units by which to scroll in the horizontal direction. You specify the units in
the iHorizontalScrollUnit parameter. On output, the number of units actually scrolled in the
horizontal direction. A positive value indicates to move the text to the right.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
The function TXNScroll moves the text within the view rectangle of the specified text object by the
designated number of units. You can use this function to scroll the text in a text object in response to user
input in a control other than the standard scroll bars that MLTE supplies.

Availability
Available in Mac OS X v10.2 and later.
Not available to 64-bit applications.

Functions 2679
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNSelectAll
Selects all data in the frame of a text object.

void TXNSelectAll (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for the current text area.

Discussion
You can check whether your application should enable the Select All menu item by calling the
TXNDataSize (page 2632) function to check if the text object contains any data.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetActionNameMapper
Sets a callback that MLTE uses to obtain the localized string representing an action or an action group.

OSStatus TXNSetActionNameMapper (
 TXNObject iTXNObject,
 TXNActionNameMapperUPP iStringForKeyProc,
 const void *iUserData
);

Parameters
iTXNObject

The text object for which the callback is to be set.

iStringForKeyProc
The callback.

iUserData
A pointer to user-defined data that will help you map the action key to a string.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
If you have asked MLTE to handle updating for the Redo and Undo commands in the Edit menu, you should
call this function so that MLTE can call your callback, which provides the correct string for each of those
commands.

2680 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

When MLTE’s handler for kEventClassCommand/kEventCommandUpdateStatus is called for the Redo or
Undo command, MLTE checks to see if a TXNActionNameMapperProc has been installed. If a
TXNActionNameMapperProc is installed, it is called to get the correct string for updating the menu item.
The client can used the action name and the command ID to determine the appropriate string.

For information on a TXNActionNameMapperProc, see TXNActionNameMapperProcPtr (page 2702).

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetBackground
Sets the background on which the text object’s data is drawn.

OSStatus TXNSetBackground (
 TXNObject iTXNObject,
 const TXNBackground *iBackgroundInfo
);

Parameters
iTXNObject

The text object that identifies the document to be activated.

iBackgroundInfo
A pointer to a structure that describes the background.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Version Notes
MLTE supports only color as the background.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetCommandEventSupport
Enables and disables support for menu commands in MLTE.

Functions 2681
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

OSStatus TXNSetCommandEventSupport (
 TXNObject iTXNObject,
 TXNCommandEventSupportOptions iOptions
);

Parameters
iTXNObject

The TXNObject.

iOptions
The menu commands for which support is to be enabled or disabled. For possible values, see Command
Event Support Options (page 2729).

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
WhenTXNAttachObjectToWindow (page 2620) orTXNSetEventTarget (page 2686) is called to associate an
MLTE object with an HIObject that can serve as an event target, most handlers are installed and activated
immediately.

However, when the handlers for the kEventClassCommand class are installed, they are not activated. Call this
function to activate the handlers for this class, which provide support for the menu commands. This approach
means that an application can install handlers on top of these and be sure that enabling or disabling the
MLTE handlers does not change the order of the handler chain.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetContextualMenuSetup
Provides a callback function that is called before MLTE displays its contextual menu.

OSStatus TXNSetContextualMenuSetup (
 TXNObject iTXNObject,
 TXNContextualMenuSetupUPP iMenuSetupProc,
 const void *iUserData
);

Parameters
iTXNObject

The text object.

iMenuSetupProc
The callback. For more information, see NewTXNContextualMenuSetupUPP (page 2616).

iUserData
A pointer to user-defined data that will be passed to the callback specified by the iMenuSetupProc
parameter.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

2682 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
The callback function specified by iMenuSetupProc is called just before MLTE displays its contextual menu.
The menu that is passed to the callback contains MLTE-specific items only. The client items and handlers
should be installed each time the callback is called.

When the callback is called, MLTE has selected the word the user clicked with the Option key pressed. For
convenience, the TXNObject associated with the callback is passed to the callback as well as the data specified
by iUserData.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetData
Replaces a range of data (text, graphics, and so forth).

OSStatus TXNSetData (
 TXNObject iTXNObject,
 TXNDataType iDataType,
 const void *iDataPtr,
 ByteCount iDataSize,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset
);

Parameters
iTXNObject

The text object that identifies the document in which you want to replace data.

iDataType
The type of the replacement data. See Supported Data Types (page 2765) for a description of possible
values.

iDataPtr
A pointer to the data that will replace the data that is in the range specified by the iStartOffset
and iEndOffset parameters.

iDataSize
The size of the data (in bytes) to which iDataPtr points.

iStartOffset
The beginning of the range of data to replace. You can use the TXNGetSelection (page 2658) function
to get the absolute offsets of the current selection.

iEndOffset
The end of the range to replace. You can use the TXNGetSelection (page 2658) function to get the
absolute offsets of the current selection. If you want to insert text, the ending and starting offsets
should be the same value.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Functions 2683
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
If you have a text object that has word wrap disabled, and you want to avoid horizontal scrolling, you can
try the following. After you call the function TXNSetData, call TXNSetSelection (page 2692) with the value
of the ending offset set to what it was before you called TXNSetData. Then, call the function
TXNShowSelection (page 2696) to scroll the text back into view.

Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Related Sample Code
QTMetaData

Declared In
MacTextEditor.h

TXNSetDataFromCFURLRef
Replaces a range of data with the contents of a file. (Deprecated in Mac OS X v10.4. Use
TXNReadFromCFURL (page 2673) instead.)

Not recommended.

OSStatus TXNSetDataFromCFURLRef (
 TXNObject iTXNObject,
 CFURLRef iURL,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset
);

Parameters
iTXNObject

The text object that identifies the document in which you want to replace data. You can either call
the function TXNCreateObject to allocate a text object or you can call the function
HITextViewGetTXNObject (page 2611) to obtain the text object associated with an HITextView.

iURL
A reference to the Core Foundation URL that specifies the file which contains the data you want to
add to the object.

iStartOffset
The starting position at which to insert the file into the document. If you want to replace the current
selection, set the iStartOffset parameter to kTXNUseCurrentSelection. If you want to replace
the entire document, set the iStartOffset parameter to 0. Offsets in MLTE are always character
offsets.

iEndOffset
The ending position of the range being replaced by the file. You can use the TXNGetSelection
function to get the absolute offsets of the current selection. Offsets in MLTE are always character
offsets.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

2684 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
Your application must open the file and set the iStartOffset parameter to the appropriate value before
you call the TXNSetDataFromCFURLRef function. If you want to embed MLTE data within private data or
other MLTE data, you must set the file position to the appropriate position.

In the (now deprecated) function TXNNewObject your could pass a file reference and MLTE supported
functionality to revert back to the original file reference. When you call the function
TXNSetDataFromCFURLRef, MLTE saves the CFURLRef. If you change the contents of the text object and
then call the function TXNRevert, the document reverts to the contents specified by the saved CFURLRef.

Availability
Available in Mac OS X v10.3 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetDataFromFile
Replaces a range of data with the contents of a file. (Deprecated in Mac OS X v10.3. Use
TXNSetDataFromCFURLRef (page 2684) instead.)

Not recommended.

OSStatus TXNSetDataFromFile (
 TXNObject iTXNObject,
 SInt16 iFileRefNum,
 OSType iFileType,
 ByteCount iFileLength,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset
);

Parameters
iTXNObject

The text object that identifies the document in which you want to replace data.

iFileRefNum
The file reference obtained when you opened the file.

iFileType
The file type of the file from which you are getting data. MLTE supports 'RTF ' as well as the file
types specified by the constants described in Supported File Types (page 2766).

iFileLength
A value that specifies how much data should be read. This parameter is ignored if the file type is the
custom file format (represented by the constant kTXNTextensionFile) that MLTE supports. This
parameter is useful when your application uses MLTE to read data that is embedded in your
application’s private file. If you want MLTE to deal with the entire file, set the iFileLength parameter
to a value of kTXNEndOffset.

iStartOffset
The starting position at which to insert the file into the document. You can use the TXNGetSelection
function to get the absolute offsets of the current selection. If you want to replace the entire document,
then set the iStartOffset parameter to 0.

Functions 2685
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iEndOffset
The ending position of the range being replaced by the file. You can use the TXNGetSelection
function to get the absolute offsets of the current selection.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
Your application must open the data fork of the file and set the iStartOffset parameter to the appropriate
value before you call the TXNSetDataFromFile function. If you want to embed MLTE data within private
data or other MLTE data, you must set the file position to the appropriate position.

Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetEventTarget
Sets a Carbon Event target for MLTE Carbon Event handlers.

OSStatus TXNSetEventTarget (
 TXNObject iTXNObject,
 HIObjectRef iEventTarget
);

Parameters
iTXNObject

The TXNObject.

iEventTarget
The HIObjectRef that is to be set as the event target for all of the Carbon Event handlers of the
TXNObject specified by iTXNObject.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
The default target for a TXNObject that is not contained in an HITextView is the window of the TXNObject.
Call this function when you want to override or set the Carbon Event target for a TXNObject.

Note that if the TXNObject already has a default target when this function is called, the handlers are removed
from the old target before the new handlers are installed.

When this function returns, these handlers for Carbon Events are installed and active for the
kEventClassTextInput class:

 ■ kEventTextInputUpdateActiveInputArea

 ■ kEventTextInputUnicodeForKeyEvent

 ■ kEventTextInputUnicodeText

2686 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

 ■ kEventTextInputOffsetToPos

 ■ kEventTextInputPosToOffset

 ■ kEventTextInputGetSelectedText

When this function returns, these handlers for Carbon Events are installed and active for the
kEventClassTSMDocumentAccess class:

 ■ kEventTSMDocumentAccessGetLength

 ■ kEventTSMDocumentAccessGetSelectedRange

 ■ kEventTSMDocumentAccessGetCharactersPtr

 ■ kEventTSMDocumentAccessGetCharactersPtrForLargestBuffer

 ■ kEventTSMDocumentAccessGetCharacters

 ■ kEventTSMDocumentAccessGetFont

 ■ kEventTSMDocumentAccessGetGlyphInfo

When this function returns, these handlers for Carbon Events are installed and active for the kEventClassFont
class:

 ■ kEventFontPanelClosed

 ■ kEventFontSelection

When this function returns, these handlers for Carbon Events are installed and inactive by default for the
kEventClassCommand class:

 ■ kEventProcessCommand

 ■ kEventCommandUpdateStatus

The kEventClassCommand handlers support the following commands:

 ■ kHICommandUndo

 ■ kHICommandRedo

 ■ kHICommandSelectAll

 ■ kHICommandCut

 ■ kHICommandCopy

 ■ kHICommandPaste

 ■ kHICommandClear

 ■ kHICommandShowSpellingPanel

 ■ kHICommandCheckSpelling

 ■ kHICommandChangeSpelling

 ■ kHICommandCheckSpellingAsYouType

 ■ kHICommandIgnoreSpelling

Functions 2687
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

 ■ kHICommandLearnWord

Activate command support by calling TXNSetCommandEventSupport (page 2681) with the appropriate
options.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetFontDefaults
Specifies the font descriptions for each script used in a text object. (Deprecated in Mac OS X v10.4.)

OSStatus TXNSetFontDefaults (
 TXNObject iTXNObject,
 ItemCount iCount,
 const TXNMacOSPreferredFontDescription iFontDefaults[]
);

Parameters
iTXNObject

The text object for the document whose fonts you want to specify.

iCount
The number of font descriptions in the iFontDefaults array.

iFontDefaults
An array of TXNMacOSPreferredFontDescription structures that contain the font description
you want to use for each script.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetFrameBounds
Changes the boundaries of a text object’s frame.

2688 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

void TXNSetFrameBounds (
 TXNObject iTXNObject,
 SInt32 iTop,
 SInt32 iLeft,
 SInt32 iBottom,
 SInt32 iRight,
 TXNFrameID iTXNFrameID
);

Parameters
iTXNObject

The text object for the current text area.

iTop
The top boundary of the rectangle.

iLeft
The left boundary of the rectangle.

iBottom
The bottom boundary of the rectangle.

iRight
The right boundary of the rectangle.

iTXNFrameID
The frame ID of the frame you want to move. You obtain a frame ID when you call the
TXNNewObject (page 2667) function.

Discussion
If you want to change the view and destination rectangles, you should call the TXNResizeFrame (page 2676)
function.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetHIRectBounds
Sets the view rectangle and/or the destination rectangle.

void TXNSetHIRectBounds (
 TXNObject iTXNObject,
 const HIRect *iViewRect,
 const HIRect *iDestinationRect,
 Boolean iUpdate
);

Parameters
iTXNObject

The text object for the current text area. You can call the function TXNCreateObject to allocate a
text object.

Functions 2689
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iViewRect
A pointer to rectangle that contains the new coordinates for the view rectangle. If you do not want
to change the view rectangle pass NULL. You cannot set the view rectangle for text objects into an
HITextView, you can only set the destination rectangle.

iDestinationRect
A pointer to a rectangle that contains the new coordinates for the destination rectangle. If you do
not want to change the destination rectangle pass NULL.

iUpdate
A value that specifies whether you want the text and scroll bars recalculated and redrawn. Pass true
to recalculate and redraw; otherwise pass false. You must pass false for text objects into an
HITextView.

Discussion
The view rectangle controls the text you see. The destination rectangle controls how text is laid out. You can
specify coordinates for one or both rectangles. Scroll bars are drawn inside the view rectangle.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetRectBounds
Set the view rectangle and/or the destination rectangle. (Deprecated in Mac OS X v10.3. Use
TXNSetHIRectBounds (page 2689) instead.)

Not recommended.

void TXNSetRectBounds (
 TXNObject iTXNObject,
 const Rect *iViewRect,
 const TXNLongRect *iDestinationRect,
 Boolean iUpdate
);

Parameters
iTXNObject

The text object for the current text area.

iViewRect
A pointer to a Rect data structure that contains the new coordinates for the view rectangle. If you
do not want to change the view rectangle pass NULL.

iDestinationRect
A pointer to a TXNLongRect data structure that contains the new coordinates for the destination
rectangle. If you do not want to change the destination rectangle pass NULL.

iUpdate
Pass true if you want the text and location of the scroll bars recalculated and redrawn; otherwise
pass false.

2690 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
You can specify coordinates for one or both rectangles. The view rectangle controls the text you see. The
destination rectangle controls how text is laid out. Scroll bars are drawn inside the view rectangle.

If you set the iViewRect parameter to a location not currently represented by the scroll bar and you pass
NULL for the iDestinationRect parameter, it becomes impossible to scroll to the left bounds of the
destination rectangle. If you want to position the view rectangle inside the destination rectangle, you should
supply a custom scrolling callback. See TXNScrollInfoProcPtr (page 2705).

Availability
Available in Mac OS X v10.1 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetScrollbarState
Sets the state of the scroll bars so they are drawn correctly in response to activate events.

OSStatus TXNSetScrollbarState (
 TXNObject iTXNObject,
 TXNScrollBarState iActiveState
);

Parameters
iTXNObject

The text object that identifies the document you want activated. You can call the function
TXNCreateObject to allocate a text object.

iActiveState
A value that indicates the state of the scroll bars. See Scroll Bar States (page 2760) for a description of
possible values. If you pass the kScrollBarsAlwaysActive constant, the scroll bars are always
active, whether or not the frame text area currently has keyboard focus. Passing
kScrollBarsAlwaysActive can be useful for a window such as a dialog that may contain multiple
text areas, each of which may have a scrollable frame. If you pass kScrollBarsSyncWithFocus,
MLTE synchronizes the activity state of the scroll bars with the focus state of the frame. Therefore,
only when the frame has keyboard focus does it have active scroll bars. A value of
kScrollBarsSyncWithFocus is the default and is typically recommended if you have only one
frame per window.

Return Value
A result code. See “MLTE Result Codes” (page 2773). This function returns an error if the text object is in an
HITextView.

Discussion
This function is a macro that calls the function TXNActivate with the TXNFrameID parameter set to 0. You
typically call TXNSetScrollbarState in response to an activate event. If the text object was previously
inactive, TXNSetScrollbarState removes any visual indication of its prior inactive state (such as a dimmed
or framed selection area or inactive scroll bars). Before you call the TXNSetScrollbarState function, you
should make sure that the window belongs to your application.

Functions 2691
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

The TXNSetScrollbarState function does not change the keyboard focus. This means your application
can have a text area that is not focused, but in which the scroll bars are active. This lets application users
scroll the inactive text without changing the focus from another text area.

If you want to display a text area that has both keyboard focus and active scroll bars, you must call the
TXNFocus (page 2644) function immediately before you call the TXNSetScrollbarState function. Note that
MLTE does not retain information about keyboard focus. So if, for example, you set the keyboard focus on a
text area and the window containing the text area becomes deactivated, you must call the TXNFocus (page
2644) function when the window becomes activated again.

Availability
Available in Mac OS X v10.3 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetSelection
Specifies the selection range or the position of the insertion point.

OSStatus TXNSetSelection (
 TXNObject iTXNObject,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset
);

Parameters
iTXNObject

The text object that identifies the document for which you want to set the selection range or insertion
point position.

iStartOffset
The new starting offset. Offset values are character offsets.

iEndOffset
The new ending offset. Offset values are character offsets.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You can use the TXNSetSelection function to highlight an initial default value in a document, such as a
data-entry form, or to position the insertion point at the start of the field where you want the user to enter
a value. To position the insertion point, specify the same value for the iStartOffset and iEndOffset
parameters.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

2692 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNSetSpellCheckAsYouType
Enables and disables the “Spell Check as You Type” feature.

OSStatus TXNSetSpellCheckAsYouType (
 TXNObject iTXNObject,
 Boolean iActivate
);

Parameters
iTXNObject

The text object for which the “Spell Check as You Type” feature is to be enabled or disabled.

iActivate
A Boolean whose value is true to enable the “Spell Check as You Type” feature or false to disable
it.

Return Value
A result code. See “MLTE Result Codes” (page 2773). IfTXNSetCommandEventSupport (page 2681) has not been
called to enable the event handler for spell checking, an error is returned.

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetTXNObjectControls
Sets formatting and privileges attributes (such as justification, line direction, tab values, and read-only status)
that apply to the entire text object.

OSStatus TXNSetTXNObjectControls (
 TXNObject iTXNObject,
 Boolean iClearAll,
 ItemCount iControlCount,
 const TXNControlTag iControlTags[],
 const TXNControlData iControlData[]
);

Parameters
iTXNObject

The text object that identifies the document for which you want to set formatting and privileges
attributes.

iClearAll
A Boolean value. If you set this to true, all formatting and privileges attributes are reset to their
default value. That is, true clears existing tags and resets each to its default value.

iControlCount
The number of items in the iControlTags array.

Functions 2693
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iControlTags
An array of values that specifies kind of data that is passed in the iControlData parameter. See
Formatting and Privileges Settings (page 2742) for a description of possible values. On systems that
use Apple Type Services for Unicode Imaging (ATSUI), you can also pass any of the following ATSUI
attribute tag constants:

 ■ kATSULineDirectionTag

 ■ kATSULineJustificationFactorTag

 ■ kATSULineFlushFactorTag

 ■ kATSULineBaselineValuesTag

 ■ kATSULineLayoutOptionsTag

 ■ kATSUCGContextTag

See the ATSUI documentation for a description of these ATSUI constants.

iControlData
An array of TXNControlData (page 2711) unions that contain the information your application wants
to set. The value you supply to the iControlTags parameter specifies how the union of type
TXNControlData is treated. You must make sure that the value you assign to the iControlData
parameter is the appropriate type implied by the value you passed in the iControlTags parameter.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
On systems that use Apple Type Services for Unicode Imaging (ATSUI), the ATSUI line control attribute tags
can be passed to this function in the iControlTag parameter. This is the case for all the ATSUI tags except
kATSULineRotationTag. ATSUI tags are applied to the entire text object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetTypeAttributes
Sets text attributes (such as size and style) for the current selection or the text defined by a range you specify.

OSStatus TXNSetTypeAttributes (
 TXNObject iTXNObject,
 ItemCount iAttrCount,
 const TXNTypeAttributes iAttributes[],
 TXNOffset iStartOffset,
 TXNOffset iEndOffset
);

Parameters
iTXNObject

The text object that contains the current selection.

iAttrCount
The number of font attributes in the iAttributes array.

2694 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

iAttributes
An array of TXNTypeAttributes structures in which you specify the attributes you want to set.
Values passed in the iAttributes array that are less than or equal to sizeof(UInt32) are passed
by value. Values greater than sizeof(UInt32) are passed as a pointer. That is, the third field of the
TXNTypeAttributes structure is a union that serves as either a 32-bit integer or a 32-bit pointer.

iStartOffset
The starting offset at which you want the application to begin setting attributes. If you want to use
the current selection, set iStartOffset to kTXNUseCurrentSelection.

iEndOffset
The offset at which you want the application to stop setting attributes. If you want to use the current
selection, set iEndOffset to kTXNUseCurrentSelection.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You can use this function to clear ATSUI font features and ATSUI font variations. To clear either the features
or the variations, you must OR the kTXNClearTheseFontFeatures constant with the current ATSUI font
feature or font variation setting. See Clearance Settings (page 2729) for more information.

Offsets in MLTE are always character offsets.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNSetViewRect
Sets the rectangle that describes the current view into the document; changes the amount of text that is
viewable. (Deprecated in Mac OS X v10.2. UseTXNSetFrameBounds (page 2688) orTXNSetRectBounds (page
2690) instead.)

Not recommended.

void TXNSetViewRect (
 TXNObject iTXNObject,
 const Rect *iViewRect
);

Parameters
iTXNObject

The text object for the current text area.

iViewRect
On input, points to a rectangle that describes the new view of the document.

Discussion
The TXNSetViewRect function does not change where a line of text wraps. Line wrapping is controlled by
the TXNSetFrameBounds (page 2688) function.

Availability
Available in Mac OS X v10.0 and later.

Functions 2695
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Deprecated in Mac OS X v10.2.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNShowSelection
Scrolls the current selection into view.

void TXNShowSelection (
 TXNObject iTXNObject,
 Boolean iShowEnd
);

Parameters
iTXNObject

The text object for the current text area.

iShowEnd
A Boolean value. If you set this to true, the end of the selection is scrolled into view. Otherwise, the
beginning of the selection is scrolled into view.

Discussion
You can use this to scroll text into view after you have called the TXNFind (page 2641) function and the
matching text is not in the current view of the text object.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNTerminateTextension
Closes the MLTE library. (Deprecated in Mac OS X v10.3. This function is no longer needed.)

Not recommended.

void TXNTerminateTextension (
 void
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.3.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

2696 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNTSMCheck
Checks to see if the Text Services Manager (TSM) is active.

Not Supported

Boolean TXNTSMCheck (
 TXNObject iTXNObject,
 EventRecord *iEvent
);

Parameters
iTXNObject

The text object that identifies the current document. Pass NULL when there is no active text object
and you want to check for TSM activity.

iEvent
A pointer to an event record structure. This can be NULL.

Return Value
A Boolean value. It is true if TSM is active and false if TSM is not active.

Discussion
The purpose of this function is to ensure input methods have enough time to respond. Call this when the
WaitNextEvent function returns false or there is no active text object. For a Unicode application, if the
event is a key-down event, TXNTSMCheck will also process the event and set the event to NULL.

Declared In
MacTextEditor.h

TXNUndo
Undoes the last command.

void TXNUndo (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object for the document you want to examine.

Discussion
The undo stack is 32 levels deep. That is, undoable actions are tracked until the total count is 32. If a user
undoes two actions, the Redo command must be used twice to get back to the original state. If more than
32 actions are performed, the oldest actions are forgotten as each new action takes place.

If the user performs a new action after choosing Redo from the Edit menu, the redone action is no longer
available to be undone. For example, a user performs the following actions: types some text, cuts some text,
pastes some text, types some text; undoes the last typing action, and undoes the paste operation; redoes
the paste; types some new text. After the new text has been typed, the undo stack contains the first text that
was typed, the cut action, and the new text that was just typed.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Functions 2697
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNUpdate
Redraws everything in a frame in response to an update event.

void TXNUpdate (
 TXNObject iTXNObject
);

Parameters
iTXNObject

The text object that identifies the document to be updated.

Discussion
This function calls the Window Manager BeginUpdate and EndUpdate functions for the window that you
pass to the TXNNewObject function. You shouldn’t use it for windows that contain something else besides
the text object. If the window contains something in addition to the text object, you should use the
TXNDraw (page 2636) function instead of the TXNUpdate function.

Before you call TXNUpdate, you should make sure that the window belongs to your application. The
TXNUpdate function redraws any content that needs updating regardless of the layer in which your window
is located.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNVersionInformation
Gets the version number of MLTE and the set of features in this version.

TXNVersionValue TXNVersionInformation (
 TXNFeatureBits *oFeatureFlags
);

Parameters
oFeatureFlags

On return, a pointer to a value that indicates the set of features in use in this version. See Frame Option
Bits (page 2746) and ATSUI Feature Masks (page 2726) for a description of possible values.

Return Value
A value that specifies the version of MLTE. See the description of the TXNVersionValue data type.

Discussion
If the bit kTXNWillDefaultToATSUIBit is set, then by default MLTE uses ATSUI to image and measure text
and uses Unicode to store characters. If the bit kTXNWillDefaultToCarbonEventBit is set, then, by default,
MLTE uses Carbon events and Apple events are not supported.

2698 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNWriteRangeToCFURL
Writes a range of a text object to a file or to a special file bundle.

OSStatus TXNWriteRangeToCFURL (
 TXNObject iTXNObject,
 TXNOffset iStartOffset,
 TXNOffset iEndOffset,
 CFDictionaryRef iDataOptions,
 CFDictionaryRef iDocumentAttributes,
 CFURLRef iFileURL
);

Parameters
iTXNObject

The text object having a range that is to be written.

iStartOffset
The offset in iTXNObject at which to start writing data to iFileURL.

iEndOffset
The offset in iTXNObject at which to stop writing data to iFileURL.

iDataOptions
A CFDictionaryRef that specifies options for writing out the data. See Data Option Key Value
Constants (page 2733) for a list of the supported options. If this parameter is NULL, the data is written
out using MLTE’s native format.

iDocumentAttributes
The document attributes that are to be embedded in the data stream. This parameter is only supported
when writing out the data using one of the following formats: RTF and MLTE native format. Only the
key / values defined in Document Attribute Keys (page 2735) are written out. The content of the
dictionary is ignored for any other format. If the dictionary is NULL, no attributes are added to the
data stream.

iFileURL
CFURLRef for an existing file or directory, whichever is appropriate for the file type. On return,
iFileURL contains a copy of the data in the given range for the iTXNObject with the format and
encoding specified by iDataOptions.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
This function writes a range of a text object to a file or a special file bundle (directory). It supports several
document formats and encodings, which can be specified in the data options dictionary. Clients can specify
additional document attributes when data is written out using a file format, such as RTF and native MLTE file
format) that supports such attributes.

Functions 2699
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Availability
Available in Mac OS X v10.4 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNZoomWindow
Increases the size of the data displayed in a window in response to a click in the zoom box.

void TXNZoomWindow (
 TXNObject iTXNObject,
 SInt16 iPart
);

Parameters
iTXNObject

The text object for the current text area.

iPart
The location, in global coordinates, of the cursor at the time the user pressed the mouse button. You
obtain this value from the Window Manager function FindWindow.

Discussion
Before you call the TXNZoomWindow function, you should make sure that the window belongs to your
application. You should use the TXNZoomWindow function only when a text object has a viewable area that
occupies the entire window; for example, if you passed NULL for the iFrame parameter when you called the
TXNNewObject (page 2667) function to create the text object. You cannot use TXNZoomWindow if the text
object is contained in a subframe of a window.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

Callbacks

TXNActionKeyMapperProcPtr
Defines a pointer to an action key mapping function that customizes the Redo and Undo menu items with
the specific action that can be redone or undone. (Deprecated. Use TXNActionNameMapperProcPtr (page
2702) instead.)

2700 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

typedef CFStringRef(* TXNActionKeyMapperProcPtr)
(
 TXNActionKey actionKey,
 UInt32 commandID
);

You would declare your function like this if you were to name it MyTXNActionKeyMapperFunction:

CFStringRef MyTXNActionKeyMapperCallback
(
 TXNActionKey actionKey,
 UInt32 commandID
);

Parameters
actionKey

A value of type TXNActionKey that indicates an editing action taken by the user.

commandID
The command ID of menu command chosen by the user.

Return Value
The localized string you want to map to the TXNActionKey.

Discussion
Your callback is invoked each time you ask MLTE to handle command updates for the Edit menu. MLTE calls
your callback whenever it receives a Carbon event of class kEventClassCommand and event kind
kEventComandUpdateStatus for the command ID kHICommandUndo. In other words, whenever the
undo-command item in the menu needs to be updated. Your callback should examine the actionKey
parameter and return an appropriately localized CFStringRef that describes the undo action. MLTE calls
the function SetMenuItemWithCFString to update the menu item’s text. You are responsible for releasing
the CFString; MLTE does not call the function CFRelease on the string.

You provide a pointer to your action key mapping callback function when you build a dictionary to support
Carbon events in MLTE. The pointer should be the value associated with the dictionary key
kTXNActionKeyMapperKey. You then assign the dictionary to a TXNCarbonEventInfo (page 2709) data
structure. You treat the data structure as an object control. That is, you associate the TXNCarbonEventInfo
data structure with a text object by calling the function TXNSetTXNObjectControls (page 2693), supplying
kTXNUseCarbonEvents in the iControlsTags parameter and the TXNCarbonEventInfo data structure
in the iControlData parameter.

To provide a pointer to your action key mapping callback function, you use the NewTXNActionKeyMapperUPP
function to create a universal procedure pointer (UPP) of type TXNActionKeyMapperUPP. You can do so
with code similar to the following:

TXNActionKeyMapperUPP MyTXNActionKeyMapperUPP;
MyTXNActionKeyMapperUPP = NewTXNActionKeyMapperUPP
 (&MyActionKeyMapperFunction);

When you are finished with your action key mapper callback function, you should use the
DisposeTXNActionKeyMapperUPP function to dispose of the UPP associated with it. However, if you plan
to use the same action key mapper callback later in your application, you can reuse the same UPP, rather
than dispose of it and later create a new UPP.

Availability
Available in Mac OS X v10.0 and later.

Callbacks 2701
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNActionNameMapperProcPtr
Defines a pointer to an action name mapping function that customizes the Redo and Undo menu items with
the specific action that can be redone or undone.

typedef CFStringRef TXNActionNameMapperProcPtr (
 CFStringRef actionName,
 UInt32 commandID,
 void * inUserData
);

If you name your function MyTXNActionNameMapperProc, you would declare it like this:

CFStringRef MyTXNActionNameMapperProc (
 CFStringRef actionName,
 UInt32 commandID,
 void * inUserData
);

Parameters
actionName

The name of the action.

commandID
The command ID of the menu command.

inUserData
User-defined data that was provided in the inUserData parameter when
InvokeTXNActionNameMapperUPP (page 2613) was called.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacTextEditor.h

TXNContextualMenuSetupProcPtr
Defines a pointer to a contextual menu setup function.

typedef void TXNContextualMenuSetupProcPtr (
 MenuRef iContextualMenu,
 TXNObject object,
 void * inUserData
);

If you name your function MyTXNContextualMenuSetupProc, you would declare it like this:

void MyTXNContextualMenuSetupProc (
 MenuRef iContextualMenu,
 TXNObject object,
 void * inUserData

2702 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

);

Parameters
iContextualMenu

The MLTE contextual menu.

TXNObject
The TXNObject for which MyTXNContextualMenuSetupProc was called.

inUserData
User-defined data that was passed to TXNSetContextualMenuSetup (page 2682).

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacTextEditor.h

TXNFindProcPtr
Defines a pointer to a find function that customizes a search tailored to your application’s needs.

typedef OSStatus (*TXNFindProcPtr) (
 const TXNMatchTextRecord * matchData,
 TXNDataType iDataType,
 TXNMatchOptions iMatchOptions,
 const void * iSearchTextPtr,
 TextEncoding encoding,
 TXNOffset absStartOffset,
 ByteCount searchTextLength,
 TXNOffset * oStartMatch,
 TXNOffset * oEndMatch,
 Boolean * ofound,
 UInt32 refCon
);

If you name your function MyTXNFindProc, you would declare it like this:

OSStatus TXNFindProcPtr (
 const TXNMatchTextRecord * matchData,
 TXNDataType iDataType,
 TXNMatchOptions iMatchOptions,
 const void * iSearchTextPtr,
 TextEncoding encoding,
 TXNOffset absStartOffset,
 ByteCount searchTextLength,
 TXNOffset * oStartMatch,
 TXNOffset * oEndMatch,
 Boolean * ofound,
 UInt32 refCon
);

Callbacks 2703
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Parameters
matchData

A pointer to a TXNMatchTextRecord structure containing the text to match, the length of that text,
and the text’s encoding. Pass NULL if you are looking for a graphics, sound, or movie object.

iDataType
The type of data for which you want to search. See Supported Data Types (page 2765) for a description
of possible values.

iMatchOptions
A value that specifies the matching rules to use in the find operation. See Search Criteria Masks (page
2762) for a description of possible values.

iSearchTextPtr
A pointer to the text to search.

encoding
The encoding of the text to search.

absStartOffset
The offset at which the search should begin. The constant kTXNStartOffset specifies the start of
the object’s data.

searchTextLength
The length, in bytes, of the text to search.

oStartMatch
On return, a pointer to the absolute offset that identifies the start of the match. Your function should
set this to kTXNUseCurrentSelection if there is no match.

oEndMatch
On return, a pointer to the absolute offset that identifies the end of the match. Your function should
set this to kTXNUseCurrentSelection if there is no match.

ofound
On return, a pointer to a Boolean value; true if a match is found.

refCon
An unsigned 32-bit integer your application can use as needed.

Return Value
A result code. See “MLTE Result Codes” (page 2773).

Discussion
You pass a pointer to your find callback function as a parameter to the TXNFind (page 2641) function. To
provide a pointer to your find callback function, you use the NewTXNFindUPP (page 2617) function to create
a universal procedure pointer (UPP) of type TXNFindUPP. You can do so with code similar to the following:

 TXNFindUPP MyTXNFindUPP;
MyTXNFindUPP = NewTXNFindUPP (&MyFindCallback)

When you are finished with your find callback function, you should use the DisposeTXNFindUPP (page 2609)
function to dispose of the UPP associated with it. However, if you plan to use the same find callback function
in subsequent calls to the TXNFind function, you can reuse the same UPP, rather than dispose of it and later
create a new UPP.

Availability
Available in Mac OS X v10.0 and later.

2704 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNScrollInfoProcPtr
Defines a pointer to a customized scrolling function.

typedef void TXNScrollInfoProcPtr (
 SInt32 iValue,
 SInt32 iMaximumValue,
 TXNScrollBarOrientation iScrollBarOrientation,
 SInt32 iRefCon
);

If you name your function MyTXNScrollInfoProc, you would declare it like this:

void MyTXNScrollInfoProc (
 SInt32 iValue,
 SInt32 iMaximumValue,
 TXNScrollBarOrientation iScrollBarOrientation,
 SInt32 iRefCon
);

Parameters
iValue

The scroll bar value.

iMaximumValue
The scroll bar maximum value.

iScrollBarOrientation
The orientation of the scroll bar. See Scroll Bar Orientation (page 2760) for more information.

iRefCon
An unsigned 32-bit integer your application can use as needed. This is set and used by your application
as needed.

Discussion
You can create a callback to handle and draw your own scroll bar. MLTE calls your callback each time the
scroll bar value and the maximum value of the scroll bar needs to be updated. You install a text-scrolling
callback on an MLTE text object by calling the function TXNRegisterScrollInfoProc (page 2675). When
you no longer want the text-scrolling callback invoked on the text object, you can call the function
TXNRegisterScrollInfoProc with the iTXNScrollInfoUPP set to NULL.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MacTextEditor.h

Callbacks 2705
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Data Types

TXNActionNameMapperUPP
Defines a universal procedure pointer to an action name mapper callback function.

typedef TXNScrollActionNameProcPtr TXNActionNameMapperUPP;

Discussion
See TXNActionNameMapperProcPtr (page 2702) for more information.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacTextEditor.h

TXNActionKeyMapperUPP
Defines a universal procedure pointer to an action key mapping callback function.

typedef TXNActionKeyMapperProcPtr TXNActionKeyMapperUPP;

Discussion
See TXNActionKeyMapperProcPtr (page 2700) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNATSUIFeatures
Contains information about ATSUI font features.

struct TXNATSUIFeatures {
 ItemCount featureCount;
 ATSUFontFeatureType * featureTypes;
 ATSUFontFeatureSelector * featureSelectors;
};
typedef struct TXNATSUIFeatures TXNATSUIFeatures;

Fields
featureCount

The number of features described in this structure.

featureTypes
A pointer to a variable of type ATSUFontFeatureType. The ATSUFontFeatureType type represents
the attributes of a particular font feature, such as the presence of ligatures in a font.

2706 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

featureSelectors
A pointer to a variable of type ATSUFontFeatureSelector. The ATSUFontFeatureSelector type
represents the state of a feature (on or off).

Discussion
Used in the TXNAttributeData (page 2707) union.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNATSUIVariations
Contains information about ATSUI variations.

struct TXNATSUIVariations {
 ItemCount variationCount;
 ATSUFontVariationAxis * variationAxis;
 ATSUFontVariationValue * variationValues;
};
typedef struct TXNATSUIVariations TXNATSUIVariations;

Fields
variationCount

The number of variables described in this structure.

variationAxis
A pointer to a variable of type ATSUFontVariationAxis. The ATSUFontVariationAxis type
represents a stylistic attribute and the range of values used to express this attribute for a font.

variationValues
A pointer to a variable of type ATSUFontVariationValue. The ATSUFontVariationValue type
represents the range of values that a font can use for a particular font variation.

Discussion
Used in the TXNAttributeData (page 2707) union.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNAttributeData
Contains information about text attributes in a text object.

Data Types 2707
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

union TXNAttributeData {
 void * dataPtr;
 UInt32 dataValue;
 TXNATSUIFeatures *atsuFeatures;
 TXNATSUIVariations *atsuVariations;
 CFURLRef urlReference;
};
typedef union TXNAttributeData TXNAttributeData;

Fields
dataPtr

A pointer to attribute data. For example, a pointer to a font name.

dataValue
A value that specifies a text attribute. For example, a value that specifies a font style.

atsuFeatures
A pointer to a TXNATSUIFeatures (page 2706) structure. For example, a structure that contains
information about the ligatures in a font.

atsuVariations
A pointer to a TXNATSUIVariations (page 2707) structure. For example, a structure that contains
information about the range of values used to express a particular stylistic attribute.

urlReference
A URL that specifies the location of attribute data.

Discussion
Used in the TXNTypeAttributes (page 2718) structure. The data contained in the union is determined by
the value in the size field of the TXNTypeAttributes structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNBackground
Specifies the background for text and other data in a text object.

struct TXNBackground {
 TXNBackgroundType bgType;
 TXNBackgroundData bg;
};
typedef struct TXNBackground TXNBackground;

Fields
bgType

Defines the type of data. See TXNBackgroundType data type.

bg
Specifies the data MLTE should use as a background.

Discussion
Used in the TXNSetBackground (page 2681) function.

Version Notes
MLTE 1.1 and earlier supports only color.

2708 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNBackgroundData
Represents background data used in the TXNBackground structure.

union TXNBackgroundData {
 RGBColor color;
};
typedef union TXNBackgroundData TXNBackgroundData;

Fields
color

A value that specifies the background color on which data is displayed. Color is the only background
data that is currently supported.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNCarbonEventInfo
Contains information needed for MLTE to support Carbon events.

struct TXNCarbonEventInfo {
 Boolean useCarbonEvents;
 UInt8 filler;
 UInt16 flags;
 CFDictionaryRef fDictionary;
};
typedef struct TXNCarbonEventInfo TXNCarbonEventInfo;

Fields
useCarbonEvents

Pass true to specify a Carbon event, otherwise Apple events will be used by the system to handle
MLTE events.

filler
Padding you don’t need to pass anything.

flags
There are currently two flags defined: kTXNNoAppleEventHandlersMask and
kTXNRestartAppleEventHandlersMask. When you request Carbon event support for text input
events, it’s best to specify the kTXNNoAppleEventHandlersMask mask.

Data Types 2709
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

fDictionary
A reference to a Core Foundation dictionary. (A dictionary is a collection of key-value pairs.) For MLTE
to support Carbon events, you need to build a dictionary whose keys are strings that represent the
events you want handled (such as “TextInput” or “WindowResize”) and whose values are event target
references associated with the events. See “Dictionary Keys” for a list of the predefined keys you can
use to build the dictionary.

Discussion
You set up MLTE to support Carbon events by passing the TXNCarbonEventInfo structure when you call
the function TXNSetTXNObjectControls (page 2693). Note that MLTE does not handle subclass Carbon
events dispatched by the standard handler unless you install the standard handler on the window by calling
the Carbon Event Manager function InstallStandardEventHandler or by writing code that performs
the tasks done by InstallStandardEventHandler.

MLTE supports four classes of Carbon events:

 ■ kEventClassTextInput

 ■ kEventClassWindow

 ■ kEventClassCommand

 ■ kEventClassMenu

The event kinds supported within each class are listed in Table 36-1. You don’t need to specify event kinds
to MLTE; the table is provided so you can see the kind of events that MLTE supports. When you set up support
for Carbon events, MLTE handles all the calls to the Carbon Event Manager that actually install and set up
the handlers that take care of the Carbon events for a text object. See InsideMacOS X: Handling Carbon Events
and the Carbon Event Manager Reference for more information on Carbon events and for the most recent list
of event classes and kinds supported by MLTE.

Table 36-1 Event classes and kinds supported by MLTE

MeansEvent KindEvent Class

Text characters produced by a keyboardkEventUnicodeForKeyEventkEventClassTextInput

Map character index to screen positionkEventOffsetToPos

Map screen position to character indexkEventPosToOffset

Determine currently selected textkEventGetSelectedText

Manage contents of an inline input
session

kEventUpdateActiveInputArea

Window activated (brought to front)kEventWindowActivatedkEventClassWindow

Window deactivated (sent behind)kEventWindowDeactivated

Draw window’s contents on screenkEventWindowDrawContent

Mouse click in content regionkEventWindowClickContentRgn

Menu item chosen or a control with a
command has been pressed

kEventCommandProcesskEventClassCommand

2710 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Determine enabled or disabled status of
command

kEventCommandUpdateStatus

Font selected from a Font menukEventMenuEnableItemskEventClassMenu

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNContextualMenuSetupUPP
Defines a universal procedure pointer to a contextual menu setup callback function.

typedef TXNContextualMenuSetupProcPtr TXNContextualMenuSetupUPP;

Discussion
See TXNContextualMenuSetupProcPtr (page 2702) for more information.

Availability
Available in Mac OS X v10.4 and later.

Declared In
MacTextEditor.h

TXNControlData
Contains information about formatting and other settings that control how a text object is displayed or
behaves.

union TXNControlData {
 UInt32 uValue;
 SInt32 sValue;
 TXNTab tabValue;
 TXNMargins *marginsPtr;
};
typedef union TXNControlData TXNControlData;

Fields
uValue

A control setting. You should use this field for control settings, except tab and margins, whose value
is unsigned.

sValue
A control setting. You should use this only for control settings, except tab and margins, whose value
is signed. There currently are no control settings whose value is signed.

tabValue
A structure that contains tab distance and tab type settings.

marginsPtr
A pointer to a TXNMargins (page 2714) structure that specifies the top, left, and right margin settings.

Data Types 2711
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
The TXNControlData data type is a parameter in the TXNSetTXNObjectControls (page 2693) and
TXNGetTXNObjectControls (page 2659) functions. The data contained in the union is determined by the
iControlData parameter of those functions.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNErrors
Defines result codes. (Deprecated. Use OSStatus instead.)

typedef OSStatus TXNErrors;

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNFindUPP
Defines a universal procedure pointer to a find callback function.

typedef TXNFindProcPtr TXNFindUPP;

Discussion
See TXNFindProcPtr (page 2703) for more information.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNFontMenuObject
Contains private variables necessary to represent an MLTE Font menu.

typedef struct OpaqueTXNFontMenuObject * TXNFontMenuObject;

Discussion
Used in the functions TXNNewFontMenuObject (page 2666), TXNPrepareFontMenu (page 2672),
TXNGetFontMenuHandle (page 2653), TXNDoFontMenuSelection (page 2633), and
TXNDisposeFontMenuObject (page 2633).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

2712 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNFrameID
Represents the text frame to which actions should be applied.

typedef UInt32 TXNFrameID;

Discussion
Used in the functions TXNNewObject (page 2667), TXNActivate (page 2618), TXNResizeFrame (page 2676),
TXNSetFrameBounds (page 2688), TXNDragReceiver (page 2634), and TXNDragTracker (page 2635).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNLongRect
Contains coordinates for a view or text rectangle. (Deprecated. No longer needed.)

struct TXNLongRect {
 SInt32 top;
 SInt32 left;
 SInt32 bottom;
 SInt32 right;
};
typedef struct TXNLongRect TXNLongRect;

Fields
top

The top coordinate of the rectangle.

left
The left-side coordinate of the rectangle.

bottom
The bottom coordinate of the rectangle.

right
The right-side coordinate of the rectangle.

Special Considerations

The TXNLongRect data structure is passed as a parameter to the functions TXNSetRectBounds (page 2690)
and TXNGetRectBounds (page 2657), which are deprecated. You should instead use the functions
TXNSetHIRectBounds (page 2689) and TXNGetHIRect (page 2653), which take an HIRect data structure as
a parameter instead of a TXNLongRect data structure

Availability
Available in Mac OS X v10.1 and later.

Declared In
MacTextEditor.h

Data Types 2713
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNMacOSPreferredFontDescription
Contains information about the preferred font, font size, and style for a given text encoding.

struct TXNMacOSPreferredFontDescription {
 UInt32 fontID;
 Fixed pointSize;
 TextEncoding encoding;
 Style fontStyle;
};
typedef struct TXNMacOSPreferredFontDescription TXNMacOSPreferredFontDescription;

Fields
fontID

The ID of the preferred font.

pointSize
The point size of the preferred font.

encoding
The text encoding of the preferred font.

fontStyle
The font style of the preferred font.

Discussion
Used in the functions TXNInitTextension (page 2662), TXNSetFontDefaults (page 2688), and
TXNGetFontDefaults (page 2652).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

TXNMargins
Contains the margin values of a text object.

struct TXNMargins {
 SInt16 topMargin;
 SInt16 leftMargin;
 SInt16 bottomMargin;
 SInt16 rightMargin;
};
typedef struct TXNMargins TXNMargins;

Fields
topMargin

The location of the top margin. Available in MLTE version 1.2 and later.

leftMargin
The location of the left margin. Available in MLTE version 1.2 and later.

bottomMargin
The location of the bottom margin. This is a placeholder; it is currently not possible to set the bottom
margin.

2714 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

rightMargin
The location of the right margin. Available in MLTE version 1.2 and later.

Discussion
This structure is used as a field in the TXNControlData (page 2711) union.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNMatchTextRecord
Contains information about the text to be matched in a find operation.

struct TXNMatchTextRecord {
 const void * iTextPtr;
 SInt32 iTextToMatchLength;
 TextEncoding iTextEncoding;
};
typedef struct TXNMatchTextRecord TXNMatchTextRecord;

Fields
iTextPtr

A pointer to the text to be matched.

iTextToMatchLength
The length of text to which the iTextPtr parameter points.

iTextEncoding
The encoding used by the text to be matched.

Discussion
Used in the TXNFind (page 2641) function and the callback TXNFindProcPtr (page 2703).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNObject
Contains private variables and functions necessary to represent text and handle text formatting at a document
level.

typedef struct OpaqueTXNObject * TXNObject;

Discussion
You obtain a structure of type TXNObject from the TXNNewObject (page 2667) function.

Availability
Available in Mac OS X v10.0 and later.

Data Types 2715
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

TXNObjectRefCon
Contains data specific to your application. (Deprecated. Used only in the TXNNewObject (page 2667) function,
which is deprecated.)

typedef void * TXNObjectRefCon;

Declared In
MacTextEditor.h

TXNScrollInfoUPP
Defines a universal procedure pointer to a scroll callback function.

typedef TXNScrollInfoProcPtr TXNScrollInfoUPP;

Discussion
See TXNScrollInfoProcPtr (page 2705) for more information.

Availability
Available in Mac OS X v10.2 and later.

Declared In
MacTextEditor.h

TXNTab
Contains tab information for a text object.

struct TXNTab {
 SInt16 value;
 TXNTabType tabType;
 UInt8 filler;
};
typedef struct TXNTab TXNTab;

Fields
value

The distance between tabs.

tabType
The type of tab settings, such as right or left. See Tab Types (page 2767) for a description of possible
values.

filler
An unsigned 8-bit integer that exists only to make the structure exactly 4 bytes in size.

2716 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
Passed in the iControlData parameter of the TXNSetTXNObjectControls (page 2693) function when the
value of theiControlTagsparameter iskTXNTabSettingsTag, or returned in theoControlDataparameter
of the TXNGetTXNObjectControls (page 2659) function when the value of the iControlTags parameter
is kTXNTabSettingsTag.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNTextBoxOptionsData
Contains information about how text appears in a Unicode text box.

struct TXNTextBoxOptionsData {
 TXNTextBoxOptions optionTags;
 Fract flushness;
 Fract justification;
 Fixed rotation;
 void * options;
};
typedef struct TXNTextBoxOptionsData TXNTextBoxOptionsData;

Fields
optionTags

Specifies the field in this structure at which MLTE should look. See Text Box Options Masks (page 2770)
for a description of possible values. You must supply the data associated with this tag in the appropriate
field. For example, if you set the value of the optionTags field to kTXNSetJustificationMask,
you must specify the type of justification in the justification field.

flushness
Indicates whether text should be displayed flush left, flush right, or centered in the text box. You
should use one of the line justification constants defined in ATSUnicode.h. The possible values are
kATSUStartAlignment, kATSUEndAlignment, and kATSUCenterAlignment.

justification
The type of justification to use in the text box. You should use one of the line justification constants
defined in ATSUnicode.h. The possible values are kATSUNoJustification and
kATSUFullJustification.

rotation
The angle of rotation for text in the text box.

options
Reserved for future use. This should be set to NULL.

Discussion
Used in the TXNDrawUnicodeTextBox (page 2639) and TXNDrawCFStringTextBox (page 2637) functions.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
MacTextEditor.h

Data Types 2717
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

TXNTypeAttributes
Contains information about attributes for a text object.

struct TXNTypeAttributes {
 TXTNTag tag;
 ByteCount size;
 TXNAttributeData data;
};
typedef struct TXNTypeAttributes TXNTypeAttributes;

Fields
tag

A value that specifies the type of information contained in the data field. See Font Run Attributes (page
2739) for a description of possible values.

size
The size of the attribute. See Font Run Attribute Sizes (page 2740) for a description of possible values.

data
A union that serves either as a 32-bit integer or a 32-bit pointer, depending on the size field.

Discussion
Used in the functions TXNSetTypeAttributes (page 2694), TXNGetContinuousTypeAttributes (page
2648), and TXNGetIndexedRunInfoFromRange (page 2654).

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXNVersionValue
Specifies the version of MLTE in use.

typedef UInt32 TXNVersionValue;

Discussion
Returned by the TXNVersionInformation (page 2698) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
MacTextEditor.h

TXTNTag
Specifies the type of information you want passed in the data field of the TXNTypeAttributes structure.
(Deprecated. Use TXNTypeRunAttributes (page 2739).)

typedef FourCharCode TXTNTag;

Availability
Available in Mac OS X v10.0 and later.

2718 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

Constants

Action Constants
Specify constants for actions used when callingTXNCanUndoAction (page 2624) andTXNCanRedoAction (page
2622).

const CFStringRef kTXNActionTyping;
const CFStringRef kTXNActionCut;
const CFStringRef kTXNActionPaste;
const CFStringRef kTXNActionClear;
const CFStringRef kTXNActionChangeFont;
const CFStringRef kTXNActionChangeColor;
const CFStringRef kTXNActionChangeSize;
const CFStringRef kTXNActionChangeStyle;
const CFStringRef kTXNActionAlignLeft;
const CFStringRef kTXNActionAlignCenter;
const CFStringRef kTXNActionAlignRight;
const CFStringRef kTXNActionDrop;
const CFStringRef kTXNActionMove;
const CFStringRef kTXNActionChangeFontFeature;
const CFStringRef kTXNActionChangeFontVariation;
const CFStringRef kTXNActionChangeGlyphVariation;
const CFStringRef kTXNActionChangeTextPosition;
const CFStringRef kTXNActionUndoLast;

Constants
kTXNActionTyping

A typing action.

kTXNActionCut
A cut action.

kTXNActionPaste
A paste action.

kTXNActionClear
A clear action.

kTXNActionChangeFont
A font change action.

kTXNActionChangeColor
A color change action.

kTXNActionChangeSize
A size change action.

kTXNActionChangeStyle
A change in style action.

kTXNActionAlignLeft
An align left action.

Constants 2719
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNActionAlignCenter
An align center action.

kTXNActionAlignRight
An align right action.

kTXNActionDrop
A drop action.

kTXNActionMove
A move action.

kTXNActionChangeFontFeature
A change font feature action.

kTXNActionChangeFontVariation
A change in font variation action.

kTXNActionChangeGlyphVariation
A change glyph variation action.

kTXNActionChangeTextPosition
A change text position action; includes changing the space before and after characters and shifting
the text’s baseline.

kTXNActionUndoLast
Used in undo and redo functions if none of the other constants apply.

Discussion
Use these constants when calling the TXNCanUndoAction (page 2624) and TXNCanRedoAction (page 2622)
functions.

Declared In
MacTextEditor.h

Action Count Constants
Represent action types use by TXNGetCountForActionType (page 2649) and
TXNClearCountForActionType (page 2626).

const CFStringRef kTXNActionCountOfTextChanges;
const CFStringRef kTXNActionCountOfStyleChanges;
const CFStringRef kTXNActionCountOfAllChanges;

Constants
kTXNActionCountOfTextChanges

Count of text changes. All text changes other than style changes and custom defined actions are
included in this action count. Includes key presses, inline sessions, cut, copy, and paste, and drop.
Undo and redo events of these kinds are also included in this action count.

kTXNActionCountOfStyleChanges
Count of text style changes. Style changes include changing font, font face, font size, font feature,
font variation, font color, glyph variation, and text position. Undo or redo events of these kinds are
also included in this action count.

kTXNActionCountOfAllChanges
Total count of actions including all text and style changes, as well as custom defined actions.

Declared In
MacTextEditor.h

2720 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Action Count Bits
Specify actions to be included in an action count when calling TXNGetActionChangeCount (page 2646) and
TXNClearActionChangeCount (page 2625). (Deprecated. See Action Count Constants (page 2720).)

enum {
 kTXNTextInputCountBit = 0,
 kTXNRunCountBit = 1
};

Constants
kTXNTextInputCountBit

When this bit is set, general text input events that affect the content of the document are included
in the action count. General text input events include key presses, inline sessions, pasting, cutting,
dropping, and other editing events. Undo or redo events of text input events are also included in the
action count.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

kTXNRunCountBit
When this bit is set, general style changes to the text are included in the action count. Style changes
include changes to the text face, font, font size and so forth. Undo and redo events of style changes
are also included in the action count.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Action Count Masks
Set or test action count bits for use with TXNGetActionChangeCount (page 2646) and
TXNClearActionChangeCount (page 2625). (Deprecated. See Action Count Constants (page 2720).)

typedef OptionBits TXNCountOptions;
enum {
 kTXNTextInputCountMask = 1L << kTXNTextInputCountBit,
 kTXNRunCountMask = 1L << kTXNRunCountBit,
 kTXNAllCountMask = kTXNTextInputCountMask | kTXNRunCountMask
};

Constants
kTXNTextInputCountMask

Use to set or test for the kTXNTextInputCountBit.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

kTXNRunCountMask
Used to set or test for the kTXNRunCountBit.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

Constants 2721
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNAllCountMask
Use to set or text for both kTXNTextInputCountBit and kTXNRunCountBit.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Action Types
Specify constants for editing actions taken by the user in versions of Mac OS X prior to Mac OS X v10.4.
(Deprecated. These constants were used in theTXNCanUndo (page 2623) andTXNCanRedo (page 2622) functions,
which are deprecated in Mac OS X v10.4. Use the TXNCanUndoAction (page 2624) and
TXNCanRedoAction (page 2622) functions instead.)

typedef UInt32 TXNActionKey;
enum {
 kTXNTypingAction = 0,
 kTXNCutAction = 1,
 kTXNPasteAction = 2,
 kTXNClearAction = 3,
 kTXNChangeFontAction = 4,
 kTXNChangeFontColorAction = 5,
 kTXNChangeFontSizeAction = 6,
 kTXNChangeStyleAction = 7,
 kTXNAlignLeftAction = 8,
 kTXNAlignCenterAction = 9,
 kTXNAlignRightAction = 10,
 kTXNDropAction = 11,
 kTXNMoveAction = 12,
 kTXNFontFeatureAction = 13,
 kTXNFontVariationAction = 14,
 kTXNUndoLastAction = 1024
};

Constants
kTXNTypingAction

A typing action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNCutAction
A cut action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNPasteAction
A paste action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

2722 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNClearAction
A clear action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNChangeFontAction
A font change action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNChangeFontColorAction
A change in font color action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNChangeFontSizeAction
A change in font size action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNChangeStyleAction
A change in font style action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNAlignLeftAction
An align left action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNAlignCenterAction
An align center action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNAlignRightAction
An align right action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDropAction
A drop action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNMoveAction
A move selection action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Constants 2723
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNFontFeatureAction
A change in font feature action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNFontVariationAction
A change in font variation action.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNUndoLastAction
Use this if none of the other constants apply.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Apple Event Handler Bits
Specify whether Apple events should be used.

enum {
 kTXNNoAppleEventHandlersBit = 0,
 kTXNRestartAppleEventHandlersBit = 1
};

Constants
kTXNNoAppleEventHandlersBit

When this bit is set, Apple event handlers are not used. (Deprecated. There is no replacement.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNRestartAppleEventHandlersBit

When this bit is set, Apple event handlers are started up. (Deprecated. There is no replacement.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Special Considerations

MLTE does not support Apple events in Mac OS X version 10.1 and later.

Declared In
MacTextEditor.h

Apple Event Handler Masks
Set or test Apple event handler bits.

2724 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

enum {
 kTXNNoAppleEventHandlersMask = 1 << kTXNNoAppleEventHandlersBit,
 kTXNRestartAppleEventHandlersMask = 1 << kTXNRestartAppleEventHandlersBit
};

Constants
kTXNNoAppleEventHandlersMask

Use to set or test for the kTXNNoAppleEventHandlersBit. Use this if you want Apple event handlers
removed. (Deprecated. There is no replacement.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNRestartAppleEventHandlersMask

Used to set or test for the kTXNRestartAppleEventHandlersBit. Use this if you want to
subsequently restart Apple event handlers after removing your own text handlers. (Deprecated. There
is no replacement.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
These constants are currently the only settings for the flags field of TXNCarbonEventInfo.

Special Considerations

MLTE does not support Apple events in Mac OS X version 10.1 and later

Declared In
MacTextEditor.h

ATSUI Feature Bits
Specify the default imaging system.

enum {
 kTXNWillDefaultToATSUIBit = 0,
 kTXNWillDefaultToCarbonEventBit = 1
};

Constants
kTXNWillDefaultToATSUIBit

When this bit is set, indicates ATSUI is the default imaging system.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNWillDefaultToCarbonEventBit
When this bit is set, indicates MLTE uses Carbon events by default.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Constants 2725
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

ATSUI Feature Masks
Specifies new features and represents the default imaging system.

typedef OptionBits TXNFeatureBits;
enum {
 kTXNWillDefaultToATSUIMask = 1L << kTXNWillDefaultToATSUIBit,
 kTXNWillDefaultToCarbonEventMask = 1L << kTXNWillDefaultToCarbonEventBit
};

Constants
kTXNWillDefaultToATSUIMask

Test for ATSUI as the default imaging system.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNWillDefaultToCarbonEventMask
Test for Carbon events as the default event handling mechanism.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

Discussion
You can use this to test for bit 0 in the oFeatureFlags parameter returned by the
TXNVersionInformation (page 2698) function.

Declared In
MacTextEditor.h

Automatic Indentation Settings
Specify the automatic indentation setting for a text object.

enum {
 kTXNAutoIndentOff = false,
 kTXNAutoIndentOn = true
};

Constants
kTXNAutoIndentOff

Automatic indenting is not enabled.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNAutoIndentOn
Automatic indenting is enabled. You can enable this feature only if automatic word wrapping is not
enabled.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Passed in the iControlData parameter of the TXNSetTXNObjectControls (page 2693) function when the
value of the iControlTags parameter is kTXNAutoIndentStateTag, or returned in the oControlData
parameter of the TXNGetTXNObjectControls (page 2659) function when the value of the iControlTags
parameter is kTXNAutoIndentStateTag.

2726 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

Automatic Scrolling Behavior
Specify automatic scrolling behavior for a text object.

enum {
 kTXNAutoScrollInsertionIntoView = 0,
 kTXNAutoScrollNever = 1,
 kTXNAutoScrollWhenInsertionVisible = 2
};
typedef UInt32 TXNAutoScrollBehavior;

Constants
kTXNAutoScrollInsertionIntoView

The default auto scrolling behavior. When text is inserted, the document is scrolled to show the new
insertion. This was the only type of autoscrolling prior to Mac OS X v10.4.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

kTXNAutoScrollNever
Never autoscroll, even when dragging the mouse or inserting text. The only way to scroll the document
is for the user to use the scrollbar or to scroll programatically.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

kTXNAutoScrollWhenInsertionVisible
Autoscrolling only happens when the insertion offset is currently in the user’s view. If the user is
looking at the first page of a ten page document and text is inserted at the end of the document, no
autoscrolling occurs. However, if the user was looking at page ten and text is inserted there, the
document would scroll. This type of autoscrolling is best for implementing terminal or log windows.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Carbon Event Dictionary Keys
Specify Carbon events to be handled by MLTE.

Constants 2727
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

 #define kTXNTextHandlerKey CFSTR("TextInput")
 #define kTXNWindowEventHandlerKey CFSTR("WindowEvent")
 #define kTXNWindowResizeEventHandlerKey CFSTR("WindowResize")
 #define kTXNCommandTargetKey CFSTR("CommandTarget")
 #define kTXNCommandUpdateKey CFSTR("CommandUpdate")
 #define kTXNFontMenuObjectKey CFSTR("FontMenuObject")
 #define kTXNActionNameMapperKey CFSTR("ActionNameMapper")
 #define kTXNWheelMouseEventHandlerKey CFSTR("WheelMouseEvent")
 #define kTXNTSMDocumentAccessHandlerKey CFSTR("TSMDocumentAccess")
 #define kTXNFontPanelEventHandlerKey CFSTR("FontPanel")
 #define kTXNFontMenuRefKey CFSTR("FontMenuRef")
 #define kTXNActionKeyMapperKey CFSTR("ActionKeyMapper")

Constants
kTXNTextHandlerKey

Indicates the Carbon event class kEventClassTextInput and the event kinds
kEventTextInputUpdateActiveInputArea, kEventTextInputUnicodeForKeyEvent,
kEventTextInputOffsetToPos, kEventTextInputPosToOffset, and
kEventTextInputGetSelectedText.

kTXNWindowEventHandlerKey
Indicates the Carbon event classkEventClassWindow and the event kindskEventWindowActivated,
kEventWindowDeactivated, kEventWindowDrawContent, and
kEventWindowClickContentRegion.

kTXNWindowResizeEventHandlerKey
Indicates the Carbon event class kEventClassWindow and a window resizing event.

kTXNCommandTargetKey
Indicates the Carbon event class kEventClassCommand and the event kind kEventCommandProcess.

kTXNCommandUpdateKey
Indicates the Carbon event class kEventClassCommand and the event kind kEventCommandUpdate.

kTXNFontMenuObjectKey
Indicates the Carbon event class kEventClassMenu and the event kind kEventMenuEnableItems.

kTXNActionNameMapperKey
Indicates an action key mapper callback function. Available in Mac OS X v10.4; use instead of
kTXNActionKeyMapperKey.

kTXNWheelMouseEventHandlerKey
Indicates the handler for wheel mouse events.

kTXNTSMDocumentAccessHandlerKey
Indicates the handler for TSM document access events.

kTXNFontPanelEventHandlerKey
Indicates the handler for Font Panel events.

kTXNFontMenuRefKey
Indicates the Carbon event class kEventClassMenu.

kTXNActionKeyMapperKey

Indicates an action key mapper callback function. (Deprecated. Use kTXNActionNameMapperKey
instead.)

Declared In
MacTextEditor.h

2728 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Clearance Settings
Clear formatting and privileges settings.

enum {
 kTXNClearThisControl = 0xFFFFFFFF,
 kTXNClearTheseFontFeatures = 0x80000000
};

Constants
kTXNClearThisControl

Clears control settings. If you want to clear a setting associated with a control tag, you can call the
TXNSetTXNObjectControls (page 2693) function with the value of the iControlData parameter
set to kTXNClearThisControl. MLTE resets the value of the control specified in the iControlTag
parameter of the TXNSetTXNObjectControls (page 2693) function to the default value for that
control.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNClearTheseFontFeatures
Clears font feature settings. You can use this constant when you call the
TXNSetTypeAttributes (page 2694) function to clear all of the ATSUI font features or ATSUI font
variations.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Command Event Support Options
Specify options for enabling support for command events in a TXNObject.

enum {
 kTXNSupportEditCommandProcessing = 1 << 0,
 kTXNSupportEditCommandUpdating = 1 << 1,
 kTXNSupportSpellCheckCommandProcessing = 1 << 2,
 kTXNSupportSpellCheckCommandUpdating = 1 << 3,
 kTXNSupportFontCommandProcessing = 1 << 4,
 kTXNSupportFontCommandUpdating = 1 << 5
};
typedef UInt32 TXNCommandEventSupportOptions;

Constants
kTXNSupportEditCommandProcessing

Setting this bit when calling TXNSetTXNObjectControls (page 2693) enables support for processing
the menu item associated with kHICommandUndo, kHICommandRedo, kHICommandCut,
kHICommandCopy, kHICommandPaste, kHICommandClear, and kHICommandSelectAll. If this bit
is not set when TXNSetTXNObjectControls (page 2693) is called, support is disabled.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

Constants 2729
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNSupportEditCommandUpdating
Setting this bit when calling TXNSetTXNObjectControls (page 2693) enables support for updating
the menu item associated with kHICommandUndo, kHICommandRedo, kHICommandCut,
kHICommandCopy, kHICommandPaste, kHICommandClear, and kHICommandSelectAll. For Undo,
the item is enabled if there are any undoable actions in MLTE’s command stack, and, if you have
installed an action key mapper proc, it is called to get the appropriate string for the Undo item. For
Redo, the item is enabled if there are any redoable actions; if you have installed an action key mapper
callback, it is called to get the appropriate string for the Redo item. For Cut and Clear, the item is
enabled if there is current selection that is not empty; otherwise, these items are disabled. For Paste,
the item is enabled if the clipboard is not empty; it is disabled if the clipboard is empty or contains
data that MLTE cannot parse. For Select All, the item is always updated. If this bit is not set when
TXNSetTXNObjectControls (page 2693) is called, support is disabled.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

kTXNSupportSpellCheckCommandProcessing
Setting this bit when calling TXNSetTXNObjectControls (page 2693) enables support for spell
checking. The spell checking commands supported are: Show Spelling Panel ('shsp'), Check Spelling
('cksp'), Change Spelling ('chsp'), enable check spelling as you type ('aspc'), ignore spelling
('igsp'), and learn spelling ('lrwd'). If this bit is not set when TXNSetTXNObjectControls (page
2693) is called, support is disabled.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

kTXNSupportSpellCheckCommandUpdating
Enables support for updating the menu item associated with a given spell checking command. Once
kTXNSupportSpellCheckCommandUpdating is enabled, the Show Spelling and Check Spelling
items are always enabled. The Change Spelling item is included in a spelling menu only if the current
selection is a misspelled word; it is disabled if the current selection is empty or not a misspelled word.
The Check Spelling as You Type item is always enabled. It is checked if this feature has been enabled.
By default when you turn on spell checking, this item is enabled. If this feature has been disabled,
the item is not checked. Ignore Spelling usually does not have a corresponding menu item. If a menu
does have this item, Ignore Spelling is disabled if the current selection is empty or is not a misspelled
word. It is enabled if the current selection is a misspelled word. Learn Spelling typically does not have
a corresponding menu item. If a menu does have this item, Learn Spelling is disabled if the current
selection is empty or is not a misspelled word. It is enabled if the current selection is a misspelled
word. If this bit is not set when TXNSetTXNObjectControls (page 2693) is called, support is disabled.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

kTXNSupportFontCommandProcessing
Setting this bit enables Carbon Font Panel support. Once enabled, MLTE handles the following Carbon
Events defined in FontPanel.h: kHICommandShowHideFontPanel and kEventFontPanelClosed
to show and hide the Carbon font panel, kEventFontSelection event to update the document
after the selection of a new font, size, style, color, or any feature settings from the Typography Panel.
If this bit is not set when TXNSetTXNObjectControls (page 2693) is called, support is disabled.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

2730 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNSupportFontCommandUpdating
Setting this bit enables support for updating the selection in Carbon Font Panel when the current
selection in an MLTE document is changed. When this bit is set,
kTXNSupportFontCommandProcessing must also be set. If this bit is not set when
TXNSetTXNObjectControls (page 2693) is called, support is disabled.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Continuous Style Information Bits
Specify whether font information is continuous.

enum {
 kTXNFontContinuousBit = 0,
 kTXNSizeContinuousBit = 1,
 kTXNStyleContinuousBit = 2,
 kTXNColorContinuousBit = 3
};

Constants
kTXNFontContinuousBit

When this bit is set, the font is continuous in a text run.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNSizeContinuousBit
When this bit is set, the font size is continuous in a text run.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNStyleContinuousBit
When this bit is set, the font style is continuous in a text run.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNColorContinuousBit
When this bit is set, the font color is continuous in a text run.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Continuous Style Information Masks
Represents continuous style information needed by your application.

Constants 2731
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

typedef OptionBits TXNContinuousFlags;
enum {
 kTXNFontContinuousMask = 1L << kTXNFontContinuousBit,
 kTXNSizeContinuousMask = 1L << kTXNSizeContinuousBit,
 kTXNStyleContinuousMask = 1L << kTXNStyleContinuousBit,
 kTXNColorContinuousMask = 1L << kTXNColorContinuousBit
};

Constants
kTXNFontContinuousMask

Use to test for continuous font information in a text run.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNSizeContinuousMask
Use to test for continuous size information in a text run.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNStyleContinuousMask
Use to test for continuous style information in a text run.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNColorContinuousMask
Use to test for continuous color information in a text run.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Used in the TXNGetContinuousTypeAttributes (page 2648) function.

Declared In
MacTextEditor.h

Data Offsets
Specifies offsets to use when manipulating data in a text object. Offsets in MLTE are always character offsets.

typedef UInt32 TXNOffset;
enum {
 kTXNUseCurrentSelection = 0xFFFFFFFF,
 kTXNStartOffset = 0,
 kTXNEndOffset = 0x7FFFFFFF
};

Constants
kTXNUseCurrentSelection

Use the current selection.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

2732 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNStartOffset
The first offset of the text in a text object.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNEndOffset
The last offset of the text in a text object.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
These constants can be passed and returned in functions that have the parameter of type TXNOffset.

Declared In
MacTextEditor.h

Data Option Key Value Constants
Specifies constants used as key values in Data Option dictionaries.

 const CFStringRef kTXNPlainTextDocumentType
 const CFStringRef kTXNMLTEDocumentType
 const CFStringRef kTXNRTFDocumentType
 const CFStringRef kTXNQuickTimeDocumentType

Constants
kTXNPlainTextDocumentType

Plain text document.

kTXNMLTEDocumentType
Native MLTE document type.

kTXNRTFDocumentType
Rich text format (RTF) document type.

kTXNQuickTimeDocumentType
Multimedia file that can be opened by QuickTime importers. This document type is only supported
for reading data, not for writing data.

Discussion
These constants are passed in Data Option dictionary keys to TXNReadFromCFURL (page 2673) and
TXNWriteRangeToCFURL (page 2699) to specify options that are to be used when reading data into a TXNObject
and when writing data from a TXNObject to a file or special file bundle (directory).

Declared In
MacTextEditor.h

Data Option Key Constants
Specifies keys for use in dictionaries passed as parameters to TXNReadFromCFURL (page 2673) and
TXNWriteRangeToCFURL (page 2699).

Constants 2733
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

 const CFStringRef kTXNDataOptionDocumentTypeKey
 const CFStringRef kTXNDataOptionCharacterEncodingKey

Constants
kTXNDataOptionDocumentTypeKey

CFString specifying the document format. The following constants are supported:
kTXNPlainTextDocumentType, kTXNMLTEDocumentType, kTXNRTFDocumentType, and
kTXNQuickTimeDocumentType. For information on these constants, see Data Option Key Value
Constants (page 2733).

kTXNDataOptionCharacterEncodingKey
CFNumber of type kCFNumberSInt32Type containing the character encoding as specified in
CFString.h and CFStringEncodingExt.h.

Discussion
Data options are used to specify options for reading in and writing out data.

Declared In
MacTextEditor.h

Default Font Name
Specifies the default font name.

enum {
 kTXNDefaultFontName = 0
};

Constants
kTXNDefaultFontName

The default font name.

Discussion
MLTE used these constants in an earlier version in which only a single font was allowed. You can now specify
an array of font descriptions by using the TXNMacOSPreferredFontDescription (page 2714) structure. See
the function TXNInitTextension (page 2662) for a description of how to specify defaults for a font.

Declared In
MacTextEditor.h

Default Font Size
Specifies the default font size.

enum {
 kTXNDefaultFontSize = 0x000C0000
};

Constants
kTXNDefaultFontSize

Sets default font size.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

2734 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

Default Font Style
Specifies the default font style.

enum {
 kTXNDefaultFontStyle = normal
};

Constants
kTXNDefaultFontStyle

Sets default font style.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Document Attribute Keys
Specify dictionary keys for document attribute dictionaries used by TXNWriteRangeToCFURL (page 2699) and
TXNReadFromCFURL (page 2673).

const CFStringRef kTXNDocumentAttributeTitleKey;
const CFStringRef kTXNDocumentAttributeCompanyNameKey;
const CFStringRef kTXNDocumentAttributeSubjectKey;
const CFStringRef kTXNDocumentAttributeAuthorKey;
const CFStringRef kTXNDocumentAttributeKeywordsKey;
const CFStringRef kTXNDocumentAttributeCommentKey;
const CFStringRef kTXNDocumentAttributeEditorKey;
const CFStringRef kTXNDocumentAttributeCreationTimeKey;
const CFStringRef kTXNDocumentAttributeModificationTimeKey;
const CFStringRef kTXNDocumentAttributeCopyrightKey;

Constants
kTXNDocumentAttributeTitleKey

CFString containing the document’s title.

kTXNDocumentAttributeCompanyNameKey
CFString containing the company name.

kTXNDocumentAttributeSubjectKey
CFString containing the document’s subject.

kTXNDocumentAttributeAuthorKey
CFString containing the name of the document’s author.

kTXNDocumentAttributeKeywordsKey
CFArray of values of type CFString containing keywords.

kTXNDocumentAttributeCommentKey
CFString containing comments.

Constants 2735
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNDocumentAttributeEditorKey
CFString containing the name of the person who last edited the document.

kTXNDocumentAttributeCreationTimeKey
CFAbsoluteTime containing document comments; note that this is not the file system creation date
of the file, but of the document, as it is stored in the document.

kTXNDocumentAttributeModificationTimeKey
CFAbsoluteTime containing the last modification date of the document contents.

kTXNDocumentAttributeCopyrightKey
CFString containing the copyright of the document.

Discussion
Use these constants when working with document attribute dictionaries that are passed to
TXNWriteRangeToCFURL (page 2699) and TXNReadFromCFURL (page 2673).

When writing data out, document attributes are embedded into the data stream for document formats that
support them (i.e. MLTE native format and RTF). When reading data in, document attributes are extracted
from the data stream if the document format supports them.

Declared In
MacTextEditor.h

Drag and Drop Constants
Specify whether or not drag and drop is enabled.

enum {
 kTXNEnableDragAndDrop = false,
 kTXNDisableDragAndDrop = true
};

Constants
kTXNEnableDragAndDrop

Enables drag and drop when passed as a parameter to the functionTXNSetTXNObjectControls (page
2693). Indicates drag and drop is disabled when returned from the function
TXNGetTXNObjectControls (page 2659).

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

kTXNDisableDragAndDrop
Disables drag and drop when passed as a parameter to the function
TXNSetTXNObjectControls (page 2693). Indicates drag and drop is enabled when returned from
the function TXNGetTXNObjectControls (page 2659).

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Draw Items Bits
Specify which elements of the text object to render.

2736 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

enum {
 kTXNDrawItemScrollbarsBit= 0,
 kTXNDrawItemTextBit= 1,
 kTXNDrawItemTextAndSelectionBit = 2
};

Constants
kTXNDrawItemScrollbarsBit

Specifies to draw the scroll bars.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

kTXNDrawItemTextBit
Specifies to render the text.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

kTXNDrawItemTextAndSelectionBit
Specifies to render the text and the current selection.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

Discussion
See Draw Items Masks (page 2737).

Declared In
MacTextEditor.h

Draw Items Masks
Test for draw-items bits.

enum {
 kTXNDrawItemScrollbarsMask = 1UL << kTXNDrawItemScrollbarsBit,
 kTXNDrawItemTextMask = 1UL << kTXNDrawItemTextBit,
 kTXNDrawItemTextAndSelectionMask = 1UL <<
kTXNDrawItemTextAndSelectionBit,
 kTXNDrawItemAllMask = 0xFFFFFFFF
};
typedef OptionBits TXNDrawItems;

Constants
kTXNDrawItemScrollbarsMask

Use to set or test for the kTXNDrawItemScrollbarsBit.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

kTXNDrawItemTextMask
Used to set or test for the kTXNDrawItemTextBit.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

Constants 2737
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNDrawItemTextAndSelectionMask
Use to set or text for the kTXNDrawItemTextAndSelectionBit.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

kTXNDrawItemAllMask
Used to set all draw-items bits or test to see whether all draw-items bits are set. Setting all bits specifies
to draw the scroll bars, text, and the current selection.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

Discussion
These constants can be passed as parameters to the function TXNDrawObject (page 2638).

Declared In
MacTextEditor.h

Font Defaults
Specify a variety of font settings.

enum {
 kTXNDontCareTypeSize = 0xFFFFFFFF,
 kTXNDontCareTypeStyle = 0xFF,
 kTXNIncrementTypeSize = 0x00000001,
 kTXNDecrementTypeSize = 0x80000000,
 kTXNUseScriptDefaultValue = -1,
 kTXNNoFontVariations = 0x7FFF
};

Constants
kTXNDontCareTypeSize

Use the application default font size.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDontCareTypeStyle
Use “normal” should as the font style.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNIncrementTypeSize
Increase the font size should by one point.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDecrementTypeSize
Decrease the font size by one point.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

2738 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
These constants can be used as parameters in a variety of functions that control font attributes, such as the
TXNSetFontDefaults (page 2688) and TXNSetTypeAttributes (page 2694) functions.

Declared In
MacTextEditor.h

Font Run Attributes
Specifies a font attribute (font family, size, style, and so forth) for a text run in a text object.

typedef FourCharCode TXNTypeRunAttributes;
enum {
 kTXNQDFontNameAttribute = 'fntn',
 kTXNQDFontFamilyIDAttribute = 'font',
 kTXNQDFontSizeAttribute = 'size',
 kTXNQDFontStyleAttribute = 'face',
 kTXNQDFontColorAttribute = 'klor',
 kTXNTextEncodingAttribute = 'encd',
 kTXNATSUIFontFeaturesAttribute = 'atfe',
 kTXNATSUIFontVariationsAttribute = 'atva',
 kTXNURLAttribute = 'urla'
 kTXNATSUIStyle = 'astl'
};

Constants
kTXNQDFontNameAttribute

Specifies that the data field of the TXNTypeAttributes (page 2718) structure contains a font name.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNQDFontFamilyIDAttribute
Specifies that the data field of the TXNTypeAttributes (page 2718) structure contains a font family
ID.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNQDFontSizeAttribute

Specifies that the data field of the TXNTypeAttributes (page 2718) structure contains a font size.
Obsolete; incorrect font sizes are always returned as a fixed value. (Deprecated. Use
kTXNFontSizeAttribute instead.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNQDFontStyleAttribute
Specifies that the data field of the TXNTypeAttributes (page 2718) structure contains a font style.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Constants 2739
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNQDFontColorAttribute
Specifies that the data field of the TXNTypeAttributes (page 2718) structure contains a font color.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNTextEncodingAttribute
Specifies that thedata field of theTXNTypeAttributes (page 2718) structure contains a text encoding.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNATSUIFontFeaturesAttribute
Specifies that the data field of the TXNTypeAttributes (page 2718) structure contains ATSUI font
features.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNURLAttribute
Specifies that the data field of the TXNTypeAttributes (page 2718) structure contains a URL.

Available in Mac OS X v10.2 and later.

Declared in MacTextEditor.h.

kTXNATSUIStyle
Specifies that the data field of the TXNTypeAttributes (page 2718) structure contains an ATSUI style.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

Discussion
You pass these constants in thetag field of theTXNTypeAttributes (page 2718) structure. You can supplement
these with the style attributes defined for ATSUI.

Declared In
MacTextEditor.h

Font Run Attribute Sizes
Describes the size of a font attribute.

2740 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

typedef ByteCount TXNTypeRunAttributeSizes;
enum {
 kTXNQDFontNameAttributeSize = sizeof(Str255),
 kTXNQDFontFamilyIDAttributeSize = sizeof(SInt16),
 kTXNQDFontSizeAttributeSize = sizeof(SInt16),
 kTXNQDFontStyleAttributeSize = sizeof(Style),
 kTXNQDFontColorAttributeSize = sizeof(RGBColor),
 kTXNTextEncodingAttributeSize = sizeof(TextEncoding),
 kTXNFontSizeAttributeSize = sizeof(Fixed),
 kTXNATSUIStyleSize = sizeof(ATSUStyle)
};

Constants
kTXNQDFontNameAttributeSize

The size of a QuickDraw font name.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNQDFontFamilyIDAttributeSize
The size of a font family ID attribute.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNQDFontSizeAttributeSize

Obsolete don’t use. (Deprecated. Instead, use kTXNFontSizeAttributeSize.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNQDFontStyleAttributeSize
The size of font style attribute.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNQDFontColorAttributeSize
The size of a font color attribute.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNTextEncodingAttributeSize
The size of text encoding attribute.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNFontSizeAttributeSize
The size of the font size attribute. Use this instead of the kTXNQDFontSizeAttributeSize constant.
Font sizes are always returned as a Fixed value.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNATSUIStyleSize
The size of the ATSUI style attribute.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

Constants 2741
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
You pass these constants in the size field of the TXNTypeAttributes (page 2718) structure.

Declared In
MacTextEditor.h

Formatting and Privileges Settings
Specifies the formatting and privileges information to get from or set for a text object.

typedef FourCharCode TXNControlTag;
enum {
 kTXNLineDirectionTag = 'lndr',
 kTXNJustificationTag = 'just',
 kTXNIOPrivilegesTag = 'iopv',
 kTXNSelectionStateTag = 'slst',
 kTXNInlineStateTag = 'inst',
 kTXNWordWrapStateTag = 'wwrs',
 kTXNKeyboardSyncStateTag = 'kbsy',
 kTXNAutoIndentStateTag = 'auin',
 kTXNTabSettingsTag = 'tabs',
 kTXNRefConTag = 'rfcn',
 kTXNMarginsTag = 'marg',
 kTXNFlattenMoviesTag = 'flat',
 kTXNDoFontSubstitution = 'fSub',
 kTXNNoUserIOTag = 'nuio',
 kTXNUseCarbonEvents = 'cbcb',
 kTXNDrawCaretWhenInactiveTag = 'dcrt',
 kTXNDrawSelectionWhenInactiveTag = 'dsln',
 kTXNDisableDragAndDropTag = 'drag',
 kTXNSingleLevelUndoTag = 'undo',
 kTXNVisibilityTag = 'visb'
 kTXNDisableLayoutAndDrawTag = kTXNVisibilityTag,
 kTXNAutoScrollBehaviorTag = ‘sbev’
};

Constants
kTXNLineDirectionTag

Specifies a setting for the direction text is written on the line. If you pass this constant in the
iControlTags parameter of the TXNSetTXNObjectControls (page 2693) function, you must also
pass a value that specifies the line direction in the iControlData parameter. See Line Direction
Settings (page 2757) for a description of possible values.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNJustificationTag
Specifies a justification setting. If you pass this constant in the iControlTags parameter of the
TXNSetTXNObjectControls (page 2693) function, you must also pass a value that specifies a
justification setting in the iControlData parameter. See Justification Settings (page 2755) for a
description of possible values.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

2742 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNIOPrivilegesTag
Indicates a privileges setting. If you pass this constant in the iControlTags parameter of the
TXNSetTXNObjectControls (page 2693) function, you must also pass a value that specifies a privileges
setting in the iControlData parameter. See Read and Write Privileges Settings (page 2758) for a
description of possible values.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNSelectionStateTag
Specifies a selection state; that is, whether MLTE displays a cursor and allows selections in a read-only
document. If you pass this constant in the iControlTags parameter of the
TXNSetTXNObjectControls (page 2693) function, you must also pass a value that specifies the
selection state in theiControlDataparameter. See Selection State Settings (page 2764) for a description
of possible values.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNInlineStateTag
Specifies an inline state that is, whether text is input through the document’s window (inline) or
through a small floating window that appears at the bottom of the screen. If you pass this constant
in the iControlTags parameter of the TXNSetTXNObjectControls (page 2693) function, you must
also pass a value that specifies the inline state in the iControlData parameter. See Inline State
Settings (page 2755) for a description of possible values.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNWordWrapStateTag
Specifies a word-wrap setting. If you pass this constant in the iControlTags parameter of the
TXNSetTXNObjectControls (page 2693) function, you must also pass a value that specifies the
line-wrapping state in the iControlData parameter. See Line Wrapping Settings (page 2758) for a
description of possible values.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNKeyboardSyncStateTag
Specifies whether to synchronize the keyboard with the font setting. If you pass this constant in the
iControlTags parameter of the TXNSetTXNObjectControls (page 2693) function, you must also
pass a value that specifies the keyboard synchronization state in the iControlData parameter. See
Keyboard Synchronization Settings (page 2756) for a description of possible values.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNAutoIndentStateTag
Specifies an automatic indentation setting. This is available only when word warp is turned off. If you
pass this constant in the iControlTags parameter of the TXNSetTXNObjectControls (page 2693)
function, you must also pass a value that specifies the indentation state in the iControlData
parameter. See Automatic Indentation Settings (page 2726) for a description of possible values.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Constants 2743
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNTabSettingsTag
Specifies a tab width setting. If you pass this constant in the iControlTags parameter of the
TXNSetTXNObjectControls (page 2693) function, you must also pass aTXNTab (page 2716) structure
in the iControlData parameter.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNRefConTag
An application-specific constant you define.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNMarginsTag
Specifies margin settings. If you pass this constant in the iControlTags parameter of the
TXNSetTXNObjectControls (page 2693) function, you must also pass a pointer to a TXNMargins
structure in the iControlData parameter. You use this structure to specify the top, left, and right
margin settings.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNFlattenMoviesTag
Specifies whether to flattens movies. A flattened movie is self-contained. If you don’t flatten a movie,
it can’t be played unless any external files (such as audio or image files) on which it depends are
available. If you pass this constant in the iControlTags parameter of the
TXNSetTXNObjectControls (page 2693) function, you must also pass a Boolean value in the
iControlData parameter that specifies whether to enable (true) or disable (false) movie flattening.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDoFontSubstitution
Specifies a font substitution setting. If you pass this constant in the iControlTags parameter of the
TXNSetTXNObjectControls (page 2693) function, you must also pass a Boolean value in the
iControlData parameter that specifies whether to enable (true) or disable (false) font substitution.
For best performance, don’t enable font substitution.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNNoUserIOTag
Specifies an input setting; that is, whether to prevent input typed by the user, but allows your
application to use theTXNSetData (page 2683) function. Text objects could have read-only with respect
to the application user, but have read-and-write privileges with respect to the application. If you pass
this constant in theiControlTagsparameter of theTXNSetTXNObjectControls (page 2693) function,
you must also pass a value that specifies a read-write setting in the iControlData parameter. See
Read and Write Privileges Settings (page 2758) for a description of possible values.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

2744 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNUseCarbonEvents

Specifies settings for using Carbon events. (Deprecated. Use TXNGetEventTarget (page 2651) and
TXNSetEventTarget (page 2686).)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDrawCaretWhenInactiveTag

Specifies settings for drawing the caret when the text object does not have focus. (Deprecated. In
Mac OS Xv10.4 and later, MLTE never draws the caret when the text object does not have focus.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDrawSelectionWhenInactiveTag
Specifies settings for drawing the selection when the text object does not have focus.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDisableDragAndDropTag
Specifies settings for drag and drop support.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

kTXNSingleLevelUndoTag
Specifies to use a single level of undo.

Available in Mac OS X v10.2 and later.

Declared in MacTextEditor.h.

kTXNVisibilityTag
Specifies visibility.

Available in Mac OS X v10.2 and later.

Declared in MacTextEditor.h.

kTXNDisableLayoutAndDrawTag
Specifies visibility. Equivalent to kTXNVisibilityTag. Available in Mac OS X v10.4 and later. Use
this tag to disable and re-enable layout and drawing. It optimizes performance when adding data
incrementally to a text object.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

kTXNAutoScrollBehaviorTag
Specifies autoscroll behavior. Available in Mac OS X v10.4 and later. For constants that represent the
various types of autoscrolling, see Automatic Scrolling Behavior (page 2727).

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

Discussion
You pass formatting and privileges settings in the iControlTags parameter of the
TXNSetTXNObjectControls (page 2693) orTXNGetTXNObjectControls (page 2659) functions. If you want
to clear a setting associated with a control tag, you can set the value of the iControlData parameter to
Clearance Settings (page 2729).

Constants 2745
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

Frame Option Bits
Specify frame options for a text object.

enum {
 kTXNDrawGrowIconBit = 0,
 kTXNShowWindowBit = 1,
 kTXNWantHScrollBarBit = 2,
 kTXNWantVScrollBarBit = 3,
 kTXNNoTSMEverBit = 4,
 kTXNReadOnlyBit = 5,
 kTXNNoKeyboardSyncBit = 6,
 kTXNNoSelectionBit = 7,
 kTXNSaveStylesAsSTYLResourceBit = 8,
 kOutputTextInUnicodeEncodingBit = 9,
 kTXNDoNotInstallDragProcsBit = 10,
 kTXNAlwaysWrapAtViewEdgeBit = 11,
 kTXNDontDrawCaretWhenInactiveBit = 12,
 kTXNDontDrawSelectionWhenInactiveBit = 13,
 kTXNSingleLineOnlyBit = 14,
 kTXNDisableDragAndDropBit = 15,
 kTXNUseQDforImagingBit = 16,
 kTXNMonostyledTextBit = 17
};

Constants
kTXNDrawGrowIconBit

When this bit is set, it indicates the frame will have a size box. The presence of a size box in the lower
right corner of an MLTE pane is only useful for resizing an MLTE pane if the MLTE pane occupies the
entire window (a full-window MLTE object). In this case your application would look for a mouse-down
event in the size box and call the function TXNGrowWindow as appropriate. Note that the size box is
not supported as a means of resizing MLTE panes using TXNGrowWindow for MLTE pane objects.

Passing the kTXNDrawGrowIconMask constant to the function TXNNewObject only causes a size
box to be drawn in the lower right corner of the MLTE pane. Passing this constant does not create a
size box control in the window. The window will not contain an actual size box control. This means
the window will not receive events that indicate a mouse-down event in the grow region. For this to
happen, when you create the window that contains the MLTE pane, you must create the window to
have a size box.

In summary, although you may pass the constants kTXNDrawGrowIconMask to the function
TXNNewObject when you create an MLTE object in a window, this action only causes the visual
appearance of a size box in the lower right corner of the MLTE pane. If you want to detect mouse-down
events in the size box, you must also provide a size box in the window through the appropriate
Window Manager functions or other tools.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

2746 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNShowWindowBit
When this bit is set, it indicates MLTE should display a window when a text object is created. If this
bit is set, your application no longer needs to call the ShowWindow function from the Window Manager;
MLTE will do this for you.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNWantHScrollBarBit
When this bit is set, it indicates the frame should have a horizontal scroll bar.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNWantVScrollBarBit
When this bit is set, it indicates the frame should have a vertical scroll bar.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNNoTSMEverBit

When this bit is set, it indicates not to use Text Services Manager. You cannot use this bit when your
application accepts Unicode input. (Deprecated. You can no longer set this because in Mac OS X,
MLTE always uses the Text Services Manager.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNReadOnlyBit
When this bit is set, it indicates the text object is read-only. If you set this bit when you call the function
TXNNewObject, the text object is put into a state that does not allow user input. However, your
application can put data into the text object by calling the function TXNSetData. If you want the
text object set into a more restrictive read-only state that does not allow user input or your application
to put data into the text object programmatically you need to call the function
TXNSetTXNObjectControls, passing the tag kTXNIOPrivilegesTag.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNNoKeyboardSyncBit
When this bit is set, it indicates no keyboard synchronization.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNNoSelectionBit
When this bit is set, it indicates MLTE should not show the insertion point.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Constants 2747
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNSaveStylesAsSTYLResourceBit
When this bit is set, it indicates text style should be saved as a
kTXNMultipleStylesPerTextDocumentResType resource. You can set this to assure compatibility
with SimpleText. If you use kTXNMultipleStylesPerTextDocumentResType resources to save
style info, your documents can have as many styles as you’d like. However tabs are not saved. If you
don’t set this bit, plain text files are saved as kTXNSingleStylePerTextDocumentResType resources,
and only the first style in the document is saved. (Your application is expected to apply all style
changes to the entire document.) If you save files with a
kTXNSingleStylePerTextDocumentResType resource, their output is similar to those output by
CodeWarrior, BBEdit, and MPW.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kOutputTextInUnicodeEncodingBit
When this bit is set, it indicates plain text should be saved as Unicode.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDoNotInstallDragProcsBit
When this bit is set, it indicates you want to call your own drag handlers.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNAlwaysWrapAtViewEdgeBit
When this bit is set, it indicates line wrap at the edge of the view rectangle.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDontDrawCaretWhenInactiveBit

When this bit is set, it indicates the caret should not be drawn when the object does not have focus.
(Deprecated. In Mac OS X v10.4, MLTE never draws the caret when the text object does not have
focus.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDontDrawSelectionWhenInactiveBit
When this bit is set, it indicates the selection should not be drawn when the object does not have
focus.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNSingleLineOnlyBit
When this bit is set, it indicates that the text object will not scroll vertically. Horizontal scrolling will
stop when the end of the text is visible, and there will be no limit to the width of the text. In addition,
a line break character typed, pasted, or dropped into the text object will be translated into a hyphen
(-).

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

2748 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNDisableDragAndDropBit
When this bit is set, it indicates that drag and drop will not be allowed in the text object.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

kTXNUseQDforImagingBit

When this bit is set, it indicates that QuickDraw will be used for imaging instead of Quartz, which is
the default. Available in Mac OS X only. (Deprecated. You can no longer set the imaging system to
use; MLTE always uses Quartz imaging.)

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

kTXNMonostyledTextBit
When this bit is set, it indicates that the text object will have a single style no matter what kind of
changes are made to the object.

Available in Mac OS X v10.2 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Frame Option Masks
Represents information about frame behavior (such as whether there are scroll bars and a size box).

Constants 2749
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

typedef OptionBits TXNFrameOptions;
enum {
 kTXNDrawGrowIconMask = 1L << kTXNDrawGrowIconBit,
 kTXNShowWindowMask = 1L << kTXNShowWindowBit,
 kTXNWantHScrollBarMask = 1L << kTXNWantHScrollBarBit,
 kTXNWantVScrollBarMask = 1L << kTXNWantVScrollBarBit,
 kTXNNoTSMEverMask = 1L << kTXNNoTSMEverBit,
 kTXNReadOnlyMask = 1L << kTXNReadOnlyBit,
 kTXNNoKeyboardSyncMask = 1L << kTXNNoKeyboardSyncBit,
 kTXNNoSelectionMask = 1L << kTXNNoSelectionBit,
 kTXNSaveStylesAsSTYLResourceMask = 1L <<
kTXNSaveStylesAsSTYLResourceBit,
 kOutputTextInUnicodeEncodingMask = 1L <<
kOutputTextInUnicodeEncodingBit,
 kTXNDoNotInstallDragProcsMask = 1L << kTXNDoNotInstallDragProcsBit,
 kTXNAlwaysWrapAtViewEdgeMask = 1L << kTXNAlwaysWrapAtViewEdgeBit,
 kTXNDontDrawCaretWhenInactiveMask = 1L <<
kTXNDontDrawCaretWhenInactiveBit,
 kTXNDontDrawSelectionWhenInactiveMask = 1L <<
kTXNDontDrawSelectionWhenInactiveBit,
 kTXNSingleLineOnlyMask = 1L << kTXNSingleLineOnlyBit,
 kTXNDisableDragAndDropMask = 1L << kTXNDisableDragAndDropBit,
 kTXNUseQDforImagingMask = 1L << kTXNUseQDforImagingBit,
 kTXNMonostyledTextMask = 1L << kTXNMonostyledTextBit
};

Constants
kTXNDrawGrowIconMask

Use to set or test for the kTXNDrawGrowIconBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNShowWindowMask
Use to set or test for the kTXNShowWindowBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNWantHScrollBarMask
Use to set or test for the kTXNWantHScrollBarBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNWantVScrollBarMask
Use to set or test for the kTXNWantVScrollBarBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNNoTSMEverMask

Use to set or test for the kTXNNoTSMEverBit bit. (Deprecated. You can no longer set this because
in Mac OS X, MLTE always uses the Text Services Manager.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

2750 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNReadOnlyMask
Use to set or test for the kTXNReadOnlyBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNNoKeyboardSyncMask
Use to set or test for the kTXNNoKeyboardSyncBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNNoSelectionMask
Use to set or test for the kTXNNoSelectionBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNSaveStylesAsSTYLResourceMask
Use to set or test for the kTXNSaveStylesAsSTYLResourceBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kOutputTextInUnicodeEncodingMask
Use to set or test for the kOutputTextInUnicodeEncodingBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDoNotInstallDragProcsMask
Use to set or test for the kTXNDoNotInstallDragProcsBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNAlwaysWrapAtViewEdgeMask
Use to set or test for the kTXNAlwaysWrapAtViewEdgeBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDontDrawCaretWhenInactiveMask

Use to set or test for the kTXNDontDrawCaretWhenInactiveBitbit. (Deprecated. In Mac OS Xv10.4
and later, MLTE never draws the caret when the text object does not have focus.)

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNDontDrawSelectionWhenInactiveMask
Use to set or test for the kTXNDontDrawSelectionWhenInactiveBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNSingleLineOnlyMask
Use to set or test for the kTXNSingleLineOnlyBit bit.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

Constants 2751
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNDisableDragAndDropMask
Use to set or test for the kTXNDisableDragAndDropBit bit.

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

kTXNUseQDforImagingMask

Use to set or test for the kTXNUseQDforImagingBit bit. (Deprecated. You can no longer set the
imaging system; MLTE always uses Quartz imaging.)

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

kTXNMonostyledTextMask
Use to set or test for the kTXNMonostyledTextBit bit.

Available in Mac OS X v10.2 and later.

Declared in MacTextEditor.h.

Discussion
See Frame Option Bits (page 2746).

Declared In
MacTextEditor.h

HIObject Class ID
Specifies the HIObject class ID for the HITextView class.

#define kHITextViewClassID CFSTR("com.apple.HITextView")

Constants
kHITextViewClassID

The class ID for the HITextView class.

Discussion
For more information on HIView, see the document Introducing HIView, available from the Apple Developer
Documentation website.

Declared In
MacTextEditor.h

HIObject Control Kind
Specifies the HIObject control kind for the HITextView class.

enum {
 kControlKindHITextView = 'hitx'
};

Constants
kControlKindHITextView

The control kind for the HITextView class.

Available in Mac OS X v10.3 and later.

Declared in HITextViews.h.

2752 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

http://developer.apple.com/documentation/Carbon/Conceptual/HIViewDoc/index.html
http://developer.apple.com/documentation/Carbon/Conceptual/HIViewDoc/index.html

Discussion
For more information on HIView, see the document Introducing HIView, available from the Apple Developer
Documentation website.

Declared In
MacTextEditor.h

Initialization Option Bits
Specify initialization options for MLTE.

enum {
 kTXNWantMoviesBit = 0,
 kTXNWantSoundBit = 1,
 kTXNWantGraphicsBit = 2,
 kTXNAlwaysUseQuickDrawTextBit = 3,
 kTXNUseTemporaryMemoryBit = 4
};

Constants
kTXNWantMoviesBit

When this bit is set, it specifies that movie data is supported in a text object.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNWantSoundBit
When this bit is set, it specifies that sound data is supported in a text object.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNWantGraphicsBit
When this bit is set, it specifies that graphics data is supported in a text object.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNAlwaysUseQuickDrawTextBit
When this bit is set, it specifies that MLTE should use QuickDraw for imaging even if ATSUI is available.
This is often the best choice for applications that need speed and efficient memory usage.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNUseTemporaryMemoryBit
When this bit is set, it specifies that MLTE should use temporary memory for all memory allocations.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

Constants 2753
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

http://developer.apple.com/documentation/Carbon/Conceptual/HIViewDoc/index.html
http://developer.apple.com/documentation/Carbon/Conceptual/HIViewDoc/index.html

Declared In
MacTextEditor.h

Initialization Option Masks
Represents MLTE initialization options.

typedef OptionBits TXNInitOptions;
enum {
 kTXNWantMoviesMask = 1L << kTXNWantMoviesBit,
 kTXNWantSoundMask = 1L << kTXNWantSoundBit,
 kTXNWantGraphicsMask = 1L << kTXNWantGraphicsBit,
 kTXNAlwaysUseQuickDrawTextMask = 1L << kTXNAlwaysUseQuickDrawTextBit,
 kTXNUseTemporaryMemoryMask = 1L << kTXNUseTemporaryMemoryBit
};

Constants
kTXNWantMoviesMask

Use to set or test for the kTXNWantMoviesBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNWantSoundMask
Use to set or test for the kTXNWantSoundBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNWantGraphicsMask
Use to set or test for the kTXNWantGraphicsBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNAlwaysUseQuickDrawTextMask
Use to set or test for the kTXNAlwaysUseQuickDrawTextBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNUseTemporaryMemoryMask
Use to set or test for the kTXNUseTemporaryMemoryBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

Discussion
Used in the iUsageFlags parameter of the TXNInitTextension (page 2662) function.

Declared In
MacTextEditor.h

2754 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Inline State Settings
Specify the inline state for a text object.

enum {
 kTXNUseInline = false,
 kTXNUseBottomline = true
};

Constants
kTXNUseInline

Text is entered at the caret insertion point in the text object’s window.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNUseBottomline
Text is entered in a bottom-line window (a small floating window that appears at the bottom of the
screen).

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Passed in the iControlData parameter of the TXNSetTXNObjectControls (page 2693) function when the
value of theiControlTagsparameter iskTXNInlineStateTag, or returned in theoControlDataparameter
of the TXNGetTXNObjectControls (page 2659) function when the value of the iControlTags parameter
is kTXNInlineStateTag.

Declared In
MacTextEditor.h

Justification Settings
Specify the justification setting.

enum {
 kTXNFlushDefault = 0,
 kTXNFlushLeft = 1,
 kTXNFlushRight = 2,
 kTXNCenter = 4,
 kTXNFullJust = 8,
 kTXNForceFullJust = 16
};

Constants
kTXNFlushDefault

Justification is flush according to the line direction.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNFlushLeft
Justification is flush left.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Constants 2755
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNFlushRight
Justification is flush right.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNCenter
Justification is centered.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNFullJust
Justification is flush left and right for all lines except the last line in a paragraph.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNForceFullJust
Justification is flush left and right for all lines.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Passed in the iControlData parameter of the TXNSetTXNObjectControls (page 2693) function when the
value of the iControlTags parameter is kTXNJustificationTag, or returned in the oControlData
parameter of the TXNGetTXNObjectControls (page 2659) function when the value of the iControlTags
parameter is kTXNJustificationTag.

Declared In
MacTextEditor.h

Keyboard Synchronization Settings
Specify the keyboard synchronization setting for a text object.

enum {
 kTXNSyncKeyboard = false,
 kTXNNoSyncKeyboard = true
};

Constants
kTXNSyncKeyboard

Keyboard synchronization is enabled.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNNoSyncKeyboard
Keyboard synchronization is not enabled.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

2756 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
These constants are passed in the iControlData parameter of the TXNSetTXNObjectControls (page
2693) function when the value of the iControlTags parameter is kTXNKeyboardSyncStateTag. They are
also returned in the oControlData parameter of the TXNGetTXNObjectControls (page 2659) function
when the value of the iControlTags parameter is kTXNKeyboardSyncStateTag.

Declared In
MacTextEditor.h

Layout and Draw Constants
Specify the layout and draw setting for a text object.

enum {
 kTXNEnableLayoutAndDraw = false,
 kTXNDisableLayoutAndDraw = true
};

Constants
kTXNEnableLayoutAndDraw

Layout and draw is enabled.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

kTXNDisableLayoutAndDraw
Layout and draw is disabled.

Available in Mac OS X v10.4 and later.

Declared in MacTextEditor.h.

Discussion
These constants are passed in the iControlData parameter of the TXNSetTXNObjectControls (page
2693) function when the value of the iControlTags parameter is kTXNDisableLayoutAndDrawTag. They
are also are returned in the oControlData parameter of the TXNGetTXNObjectControls (page 2659)
function when the value of the iControlTags parameter is kTXNDisableLayoutAndDrawTag.

Declared In
MacTextEditor.h

Line Direction Settings
Specify the line direction setting.

enum {
 kTXNLeftToRight = 0,
 kTXNRightToLeft = 1
};

Constants
kTXNLeftToRight

Line direction flows from left to right.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Constants 2757
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNRightToLeft
Line direction flows from right to left.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Passed in the iControlData parameter of the TXNSetTXNObjectControls (page 2693) function when the
value of the iControlTags parameter is kTXNLineDirectionTag, or returned in the oControlData
parameter of the TXNGetTXNObjectControls (page 2659) function when the value of the iControlTags
parameter is kTXNLineDirectionTag.

Declared In
MacTextEditor.h

Line Wrapping Settings
Specify the line-wrap setting for a text object.

enum {
 kTXNAutoWrap = false,
 kTXNNoAutoWrap = true
};

Constants
kTXNAutoWrap

Automatic line wrapping is enabled.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNNoAutoWrap
Automatic line wrapping is not enabled.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Passed in the iControlData parameter of the TXNSetTXNObjectControls (page 2693) function when the
value of the iControlTags parameter is kTXNWordWrapStateTag, or returned in the oControlData
parameter of the TXNGetTXNObjectControls (page 2659) function when the value of the iControlTags
parameter is kTXNWordWrapStateTag.

Declared In
MacTextEditor.h

Read and Write Privileges Settings
Specify the privileges setting for a text object.

2758 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

enum {
 kTXNReadWrite = false,
 kTXNReadOnly = true
};

Constants
kTXNReadWrite

The document has read and write privileges.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNReadOnly
The document is read-only.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Passed in the iControlData parameter of the TXNSetTXNObjectControls (page 2693) function when the
value of the iControlTags parameter is kTXNIOPrivilegesTag, or returned in the oControlData
parameter of the TXNGetTXNObjectControls (page 2659) function when the value of the iControlTags
parameter is kTXNIOPrivilegesTag.

Declared In
MacTextEditor.h

Rectangle Keys
Specifies the bounds to use for a text object.

typedef UInt32 TXNRectKey;
enum {
 kTXNViewRectKey = 0,
 kTXNDestinationRectKey = 1,
 kTXNTextRectKey = 2,
 kTXNVerticalScrollBarRectKey = 3,
 kTXNHorizontalScrollBarRectKey = 4
};

Constants
kTXNViewRectKey

Specifies to use the view rectangle.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

kTXNDestinationRectKey
Specifies to use the destination rectangle.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

kTXNTextRectKey
Specifies to use the text rectangle.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

Constants 2759
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNVerticalScrollBarRectKey
Specifies to include the vertical scroll bar in the rectangle.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

kTXNHorizontalScrollBarRectKey
Specifies to include the horizontal scroll bar in the rectangle.

Available in Mac OS X v10.3 and later.

Declared in MacTextEditor.h.

Discussion
You can pass a rectangle key to the function TXNGetHIRect (page 2653).

Declared In
MacTextEditor.h

Scroll Bar Orientation
Specifies the orientation of a text window’s scroll bar.

typedef UInt32 TXNScrollBarOrientation;
enum {
 kTXNHorizontal = 0,
 kTXNVertical = 1
};

Constants
kTXNHorizontal

Specifies a horizontal scroll bar.

Available in Mac OS X v10.2 and later.

Declared in MacTextEditor.h.

kTXNVertical
Specifies a vertical scroll bar.

Available in Mac OS X v10.2 and later.

Declared in MacTextEditor.h.

Discussion
You use these constants in your TXNScrollInfoProcPtr (page 2705) callback function.

Declared In
MacTextEditor.h

Scroll Bar States
Represents the scroll bar state for the window attached to a text object.

2760 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

typedef Boolean TXNScrollBarState;
enum {
 kScrollBarsAlwaysActive = true,
 kScrollBarsSyncWithFocus = false
};

Constants
kScrollBarsAlwaysActive

Indicates that scroll bars should always appear in the active state even then the text area does not
have focus.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kScrollBarsSyncWithFocus
Indicates that scroll bars should be active only if the frame in which they are enclosed is focused.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Used in the TXNActivate (page 2618) function.

Declared In
MacTextEditor.h

Scroll Units
Specify the unit by which scrolling should occur.

typedef UInt32 TXNScrollUnit;
enum {
 kTXNScrollUnitsInPixels = 0,
 kTXNScrollUnitsInLines = 1,
 kTXNScrollUnitsInViewRects = 2
};

Constants
kTXNScrollUnitsInPixels

Specifies pixels as the scrolling unit.

Available in Mac OS X v10.2 and later.

Declared in MacTextEditor.h.

kTXNScrollUnitsInLines
Specifies line count as the scrolling unit. Scrolling is slower when you use this unit because each line
must be measured by MLTE before the text scrolls.

Available in Mac OS X v10.2 and later.

Declared in MacTextEditor.h.

kTXNScrollUnitsInViewRects
Specifies the height of the current view rectangle as the scrolling unit.

Available in Mac OS X v10.2 and later.

Declared in MacTextEditor.h.

Constants 2761
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Discussion
These constants are supplied as the iVerticalScrollUnit and iHorizontalScrollUnit parameters
to the TXNScroll (page 2679) function. They specifies the units used for each of these parameters.

Declared In
MacTextEditor.h

Search Criteria Bits
Specify matching rules to use when searching.

enum {
 kTXNIgnoreCaseBit = 0,
 kTXNEntireWordBit = 1,
 kTXNUseEncodingWordRulesBit = 31
};

Constants
kTXNIgnoreCaseBit

When this bit is set, indicates that case should be ignored.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNEntireWordBit
When this bit is set, indicates that the entire word must match.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNUseEncodingWordRulesBit
When this bit is set, indicates that Unicode Utilities should be used to find a word boundary. You need
to set this bit if your applications uses 2-byte scripts in which words are not separated by a space.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Search Criteria Masks
Represents the matching rules to be used in a find operation.

2762 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

typedef OptionBits TXNMatchOptions;
enum {
 kTXNIgnoreCaseMask = 1L << kTXNIgnoreCaseBit,
 kTXNEntireWordMask = 1L << kTXNEntireWordBit,
 kTXNUseEncodingWordRulesMask = 1L << kTXNUseEncodingWordRulesBit
};

Constants
kTXNIgnoreCaseMask

Use to set or test for the kTXNIgnoreCaseBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNEntireWordMask
Use to set or test for the kTXNEntireWordBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNUseEncodingWordRulesMask
Use to set or test for the kTXNEntireWordBit bit.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
These constants can be passed in the iMatchOptions parameter of the TXNFind (page 2641) function or the
callback TXNFindProcPtr (page 2703).

Declared In
MacTextEditor.h

Selection Display Settings
Specify whether the text object should scroll to show the beginning or the end of the selection.

enum {
 kTXNShowStart = false,
 kTXNShowEnd = true
};

Constants
kTXNShowStart

The start of the selection should be shown. The selection scrolls to show the start if necessary.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNShowEnd
The end of the selection should be shown. The selection scrolls to show the end if necessary.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Constants 2763
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Selection State Settings
Specify whether or not MLTE displays a caret and allows selections in text that is read-only.

enum {
 kTXNSelectionOn = true,
 kTXNSelectionOff = false
};

Constants
kTXNSelectionOn

Display a caret and allow a selection in text that is read-only.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNSelectionOff
Do not display a caret or allow a selection in text that is read-only.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Passed in the iControlData parameter of the TXNSetTXNObjectControls (page 2693) function when the
value of the iControlTags parameter is kTXNSelectionStateTag, or returned in the oControlData
parameter of the TXNGetTXNObjectControls (page 2659) function when the value of the iControlTags
parameter is kTXNSelectionStateTag.

Declared In
MacTextEditor.h

Style Resource Types
Specify the resource type to use to save style information for a plain text document.

enum {
 kTXNSingleStylePerTextDocumentResType = 'MPSR',
 kTXNMultipleStylesPerTextDocumentResType = 'styl'
};

Constants
kTXNSingleStylePerTextDocumentResType

User for a document that contains a single style and should be treated as a BBEdit, MPW, or CodeWarrior
document.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNMultipleStylesPerTextDocumentResType
Use for a document that contains multiple styles and should be treated as a SimpleText document.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Used in the TXNNewObject (page 2667) function.

2764 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Declared In
MacTextEditor.h

Supported Data Types
Specifies the type of data being requested from or passed to an MLTE function.

typedef OSType TXNDataType;
enum {
 kTXNTextData = 'TEXT',
 kTXNPictureData = 'PICT',
 kTXNMovieData = 'moov',
 kTXNSoundData = 'snd ',
 kTXNUnicodeTextData = 'utxt'
};

Constants
kTXNTextData

Text data.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNPictureData
Graphics (PICT) data.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNMovieData
Movie or sound data.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNSoundData
Sound data.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNUnicodeTextData
Unicode text data.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Used in the TXNGetDataEncoded (page 2650) function.

Declared In
MacTextEditor.h

Constants 2765
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Supported File Types
Represents a file type.

typedef OSType TXNFileType;
enum {
 kTXNTextensionFile = 'txtn',
 kTXNTextFile = 'TEXT',
 kTXNPictureFile = 'PICT',
 kTXNMovieFile = 'MooV',
 kTXNSoundFile = 'sfil',
 kTXNAIFFFile = 'AIFF',
 kTXNUnicodeTextFile = 'utxt'
};

Constants
kTXNTextensionFile

A file that contains Unicode or Mac OS text. By default, it contains Unicode text. Files are saved in a
private format.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNTextFile
A file that contains plain text data.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNPictureFile
A file that contains graphics data in PICT format.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNMovieFile
A file that contains movie data in 'MooV' format.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNSoundFile
A file that contains sound data in 'sfil' format.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNAIFFFile
A file that contains sound data in 'aiff' format.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

2766 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNUnicodeTextFile
A file that contains Unicode text data.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Supported Frame Types
Represents a frame type. (Deprecated. No longer needed.)

typedef UInt32 TXNFrameType;
enum {
 kTXNTextEditStyleFrameType = 1,
 kTXNPageFrameType = 2,
 kTXNMultipleFrameType = 3
};

Constants
kTXNTextEditStyleFrameType

A single rectangle that allows text to scroll if the rectangle fills. Although you can pass this as a
parameter to the function TXNNewObject (page 2667), you should instead use the function
TXNCreateObject (page 2630), which does not require a frame type.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNPageFrameType
A single rectangle with a bottom. That is, text moves to a new page if the frame is full. This constant
is not supported in Mac OS X version 10.3 and later.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNMultipleFrameType
Multiple frames. This constant is not supported in Mac OS X version 10.3 and later.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Special Considerations

This data type is used only by the TXNNewObject function, which is deprecated.

Declared In
MacTextEditor.h

Tab Types
Defines the tab settings for a text object.

Constants 2767
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

typedef SInt8 TXNTabType;
enum {
 kTXNRightTab = -1,
 kTXNLeftTab = 0,
 kTXNCenterTab = 1
};

Constants
kTXNRightTab

Right tabs are active.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNLeftTab
Left tabs are active; not available in MLTE version 1.0.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNCenterTab
Center tabs are active; not available in MLTE version 1.0.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Used in the TXNTab (page 2716) structure.

Declared In
MacTextEditor.h

Text Background Types
Represents a background data type used in the TXNBackground structure.

typedef UInt32 TXNBackgroundType;
enum {
 kTXNBackgroundTypeRGB = 1
};

Constants
kTXNBackgroundTypeRGB

Indicates color.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
Used in the TXNBackground (page 2708) structure. MLTE supports only color as the background type.

Declared In
MacTextEditor.h

Text Box Options Bits
Specify how text should be displayed in a Unicode text box.

2768 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

enum {
 kTXNSetFlushnessBit = 0,
 kTXNSetJustificationBit = 1,
 kTXNUseFontFallBackBit = 2,
 kTXNRotateTextBit = 3,
 kTXNUseVerticalTextBit = 4,
 kTXNDontUpdateBoxRectBit = 5,
 kTXNDontDrawTextBit = 6,
 kTXNUseCGContextRefBit = 7,
 kTXNImageWithQDBit = 8,
 kTXNDontWrapTextBit = 9
};

Constants
kTXNSetFlushnessBit

When this bit is set, indicates MLTE should display text flush according to the line direction.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNSetJustificationBit
When this bit is set, indicates justification. Text is justified in the direction of the display. Horizontal
text is justified horizontally, but not vertically. Vertical text is justified vertically, but not horizontally.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNUseFontFallBackBit
When this bit is set, indicates MLTE should use ATSUI transient font matching that searches for a font
that has a matching character.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNRotateTextBit
When this bit is set, indicates MLTE should display text rotated clockwise.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNUseVerticalTextBit
When this bit is set, indicates MLTE should display text vertically from top to bottom.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

Constants 2769
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNDontUpdateBoxRectBit
When this bit is set, indicates MLTE should not update the specified rectangle. If you set this bit when
you call the TXNDrawUnicodeTextBox (page 2639) function, the function does not update the right
coordinates of the specified rectangle to accommodate the longest line for text.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNDontDrawTextBit
When this bit is set, indicates MLTE should return the size of the text but should not draw the text
box.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNUseCGContextRefBit
When this bit is set, indicates MLTE should the Quartz context (CGContext) you provide instead of
the temporary CGContextRef created internally by MLTE. To do so, you must set the
kTXNUseCGContextRefBit bit in TXNTextBoxOptions and pass a CGContextRef in the options
field of the TXNTextBoxOptionsData structure.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNImageWithQDBit

When this bit is set, indicates MLTE should use QuickDraw for imaging text. (Deprecated. You can
no longer set the imaging system; MLTE always uses Quartz imaging.)

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

kTXNDontWrapTextBit
When this bit is set, indicates MLTE should not wrap text.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

Declared In
MacTextEditor.h

Text Box Options Masks
Defines how text appears in a text box.

2770 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

typedef OptionBits TXNTextBoxOptions;
enum {
 kTXNSetFlushnessMask = 1L << kTXNSetFlushnessBit,
 kTXNSetJustificationMask = 1L << kTXNSetJustificationBit,
 kTXNUseFontFallBackMask = 1L << kTXNUseFontFallBackBit,
 kTXNRotateTextMask = 1L << kTXNRotateTextBit,
 kTXNUseVerticalTextMask = 1L << kTXNUseVerticalTextBit,
 kTXNDontUpdateBoxRectMask = 1L << kTXNDontUpdateBoxRectBit,
 kTXNDontDrawTextMask = 1L << kTXNDontDrawTextBit,
 kTXNUseCGContextRefMask = 1L << kTXNUseCGContextRefBit,
 kTXNImageWithQDMask = 1L << kTXNImageWithQDBit,
 kTXNDontWrapTextMask = 1L << kTXNDontWrapTextBit
};

Constants
kTXNSetFlushnessMask

Use to set or test for the kTXNSetFlushnessBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNSetJustificationMask
Use to set or test for the kTXNSetJustificationBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNUseFontFallBackMask
Use to set or test for the kTXNUseFontFallBackBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNRotateTextMask
Use to set or test for the kTXNRotateTextBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNUseVerticalTextMask
Use to set or test for the kTXNUseVerticalTextBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNDontUpdateBoxRectMask
Use to set or test for the kTXNDontUpdateBoxRectBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

Constants 2771
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNDontDrawTextMask
Use to set or test for the kTXNDontDrawTextBit bit.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNUseCGContextRefMask
Use to set or test for kTXNUseCGContextRefBit bit.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

kTXNImageWithQDMask

Use to set or test for kTXNImageWithQDBit bit. (Deprecated. You can no longer set the imaging
system; MLTE always uses Quartz imaging.)

Available in Mac OS X v10.1 and later.

Declared in MacTextEditor.h.

kTXNDontWrapTextMask
Use to set or test for kTXNDontWrapTextBit bit.

Available in Mac OS X v10.1 and later.

Not available to 64-bit applications.

Declared in MacTextEditor.h.

Discussion
Used in the TXNDrawUnicodeTextBox (page 2639) and TXNDrawCFStringTextBox (page 2637) functions.

Declared In
MacTextEditor.h

Text Encoding Preferences
Represents how to encode text for your application.

typedef UInt32 TXNPermanentTextEncodingType;
enum {
 kTXNSystemDefaultEncoding = 0,
 kTXNMacOSEncoding = 1,
 kTXNUnicodeEncoding = 2
};

Constants
kTXNSystemDefaultEncoding

Use the encoding that is used internally by MLTE and the system. The preferred encoding is Unicode
for a system that has ATSUI.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

2772 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

kTXNMacOSEncoding
Incoming and outgoing text should be in traditional Mac OS script system encodings even if MLTE
uses another format internally. MLTE will use the Text Encoding Convertor (TEC) to convert text and
offsets to match your application’s preference.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

kTXNUnicodeEncoding
Incoming and outgoing text should be in Unicode even on systems that do not have ATSUI. MLTE
will use the Text Encoding Convertor (TEC) to convert text and offsets to match the applications
preference.

Available in Mac OS X v10.0 and later.

Declared in MacTextEditor.h.

Discussion
These convenience constants can be used in the functions TXNNewObject (page 2667) and TXNSave (page
2677).

Declared In
MacTextEditor.h

Result Codes

The most common result codes returned by MLTE are listed below.

DescriptionValueResult Code

Function was not able to iterate through
the data contained by a text object.

-22000kTXNEndIterationErr

Available in Mac OS X v10.0 and later.

Frame was not added. The multiple-frame
feature is currently not available in MLTE, so
this error is returned any time you try to
define an object with multiple frames.

-22001kTXNCannotAddFrameErr

Available in Mac OS X v10.0 and later.

The frame ID is invalid.-22002kTXNInvalidFrameIDErr

Available in Mac OS X v10.0 and later.

Offsets specify a range that crosses a data
type boundary.

-22003kTXNIllegalToCrossDataBoundariesErr

Available in Mac OS X v10.0 and later.

A user canceled an operation before your
application completed processing it.

-22004kTXNUserCanceledOperationErr

Available in Mac OS X v10.0 and later.

Result Codes 2773
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

DescriptionValueResult Code

Text file is not in the format you specified.-22005kTXNBadDefaultFileTypeWarning

Available in Mac OS X v10.0 and later.

Automatic indenting could not be
enabled—the document has word wrapping
enabled and you tried to enable auto
indentation.

-22006kTXNCannotSetAutoIndentErr

Available in Mac OS X v10.0 and later.

An index you supplied to a function is out
of bounds.

-22007kTXNRunIndexOutofBoundsErr

Available in Mac OS X v10.0 and later.

Returned by TXNFind (page 2641) when a
match is not found.

-22008kTXNNoMatchErr

Available in Mac OS X v10.0 and later.

Tag for a specific run is not valid.-22009kTXNAttributeTagInvalidForRunErr

Available in Mac OS X v10.0 and later.

Tags supplied to a function are not valid.-22010kTXNSomeOrAllTagsInvalidForRunErr

Available in Mac OS X v10.0 and later.

Index is out of range for that run.-22011kTXNInvalidRunIndex

Available in Mac OS X v10.0 and later.

You already called the
TXNInitTextension (page 2662) function.

-22012kTXNAlreadyInitializedErr

Available in Mac OS X v10.0 and later.

Your application tried to turn off the Text
Services Manager while MLTE was set to
process Unicode.

-22013kTXNCannotTurnTSMOffWhenUsingUnicodeErr

Available in Mac OS X v10.0 and later.

Your application tried to copy text that was
in echo mode.

-22014kTXNCopyNotAllowedInEchoModeErr

Available in Mac OS X v10.0 and later.

Your applications specifies a data type that
MTLE does not allow.

-22015kTXNDataTypeNotAllowedErr

Available in Mac OS X v10.0 and later.

Indicates ATSUI is not installed on the
system.

-22016kTXNATSUIIsNotInstalledErr

Available in Mac OS X v10.0 and later.

2774 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

DescriptionValueResult Code

Indicates a value that is beyond the length
of the line.

-22017kTXNOutsideOfLineErr

Available in Mac OS X v10.0 and later.

Indicates a value that is outside of the text
object’s frame.

-22018kTXNOutsideOfFrameErr

Available in Mac OS X v10.0 and later.

Indicates the function has been disabled.-22019kTXNDisabledFunctionalityErr

Available in Mac OS X v10.3 and later.

Indicates that the function cannot be called
in this context.

-22020kTXNOperationNotAllowedErr

Available in Mac OS X v10.4 and later.

Result Codes 2775
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

2776 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 36

Multilingual Text Engine Reference

Framework: Carbon/Carbon.h

Declared in ASDebugging.h
AppleScript.h
ASRegistry.h
OSAComp.h
OSA.h
OSAGeneric.h

Overview

The Open Scripting Architecture (OSA) provides a standard and extensible mechanism for interapplication
communication in Mac OS X. It provides support for creating scriptable applications and for writing scripting
components to implement scripting languages. Every Mac OS X system includes the AppleScript component,
which implements AppleScript, the standard scripting language defined by Apple. However, developers can
write scripting components for additional scripting languages. For conceptual information on the OSA, see
“Open Scripting Architecture” in AppleScript Overview.

You need to use this reference if you are writing a scripting component or if your application needs to interact
with scripting components to manipulate and execute scripts. The API described in this document is
implemented by the OpenScripting framework, a subframework of the Carbon framework. For information
about working with components, see Scripting Components in Inside Macintosh: Interapplication Communi-
cation.

Important: Do not rely on the API descriptions in Interapplication Communication—OpenScriptingArchitecture
Reference provides the current API documentation.

The Apple Event Manager, another part of the OSA, is implemented primarily by the AE framework, a
subframework of the Application Services framework, and is documented in Apple Event Manager Reference
and Apple Events Programming Guide. Applications use the Apple Event Manager to send and respond to
Apple events and to make their operations and data available to AppleScript scripts.

Functions by Task

Saving and Loading Script Data

OSALoad (page 2832)
Loads script data.

Overview 2777
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

http://developer.apple.com/documentation/mac/IAC/IAC-331.html#HEADING331-0
http://developer.apple.com/documentation/mac/IAC/IAC-2.html
http://developer.apple.com/documentation/mac/IAC/IAC-2.html
http://developer.apple.com/documentation/mac/IAC/IAC-2.html

OSALoadFile (page 2835)
Loads a script from the specified file into the specified scripting component, compiling the script if
the file is a text file.

OSAStore (page 2850)
Gets a handle to script data in the form of a storage descriptor record.

OSAStoreFile (page 2851)
Stores a script into the specified file.

Executing and Disposing of Scripts
To execute a script, your application must first obtain a valid script ID for a compiled script or script context.
You can use either the OSALoad function or the optional OSACompile function to obtain a script ID.

OSAExecute (page 2816)
Executes a compiled script or a script context.

OSAScriptError (page 2839)
Gets information about errors that occur during script execution.

OSADispose (page 2811)
Reclaims the memory occupied by script data.

Setting and Getting Script Information

OSASetScriptInfo (page 2846)
Sets information about script data according to the value you pass in the selector parameter.

OSAGetScriptInfo (page 2827)
Obtains information about script data according to the value you pass in the selector parameter.

Manipulating the Active Function

OSASetActiveProc (page 2840)
Sets the active function that a scripting component calls periodically while executing a script.

OSAGetActiveProc (page 2819)
Gets a pointer to the active function that a scripting component is currently using.

Compiling Scripts
Scripting components can provide three optional functions that get the name of a scripting component,
compile a script, and update a script ID. A scripting component that supports the functions in this section
has the kOSASupportsCompiling bit set in the componentFlags field of its component description record.

OSAScriptingComponentName (page 2840)
Gets the name of a scripting component.

OSACompile (page 2799)
Compiles the source data for a script and obtain a script ID for a compiled script or a script context.

2778 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSACopyID (page 2802)
Updates script data after editing or recording and to perform undo or revert operations on script
data.

Getting Source Data

OSAGetSource (page 2830)
Decompiles the script data identified by a script ID and obtains the equivalent source data.

OSADisplay (page 2810)
Converts a script value to text. Your application can then use its own functions to display this text to
the user.

OSACopyDisplayString (page 2801)
Converts a script value to an attributed Unicode text string, which your application can display to the
user.

OSACopySourceString (page 2804)
Decompiles the script data for the specified script and returns a copy of the equivalent source data
as an attributed Unicode text string.

Coercing Script Values
Scripting components can provide support for two optional functions which coerce data in a descriptor
record to a script value and coerce a script value to data in a descriptor record. A scripting component that
supports the functions in this section has the kOSASupportsAECoercion bit set in the componentFlags
field of its component description record.

OSACoerceFromDesc (page 2798)
Obtains the script ID for a script value that corresponds to the data in a descriptor record.

OSACoerceToDesc (page 2798)
Coerces a script value to a descriptor record of a desired descriptor type.

Manipulating the Create and Send Functions
Some scripting components provide functions that allow your application to set or get pointers to the create
and send functions used by the scripting component when it sends and creates Apple events during script
execution. If you do not set the pointers that specify these functions, the scripting component uses the
standard AECreateAppleEvent and AESend functions with default parameters. A scripting component
that supports the functions described in this section has the kOSASupportsAESending bit set in the
componentFlags field of its component description record.

OSASetCreateProc (page 2841)
Specifies a create function that a scripting component should use instead of the Apple Event Manager’s
AECreateAppleEvent function when creating Apple events.

OSAGetCreateProc (page 2820)
Gets a pointer to the create function that a scripting component is currently using to create Apple
events.

Functions by Task 2779
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSASetSendProc (page 2847)
Specifies a send function that a scripting component should use instead of the Apple Event Manger’s
AESend function when sending Apple events.

OSAGetSendProc (page 2829)
Gets a pointer to the send function that a scripting component is currently using.

OSASetDefaultTarget (page 2843)
Sets the default target application for Apple events.

Recording Scripts
Script editors use these functions to allow users to control recording. Any application can use these functions
to provide its own script-recording interface. A scripting component that supports the functions described
in this section has the kOSASupportsRecording bit set in the componentFlags field of its component
description record.

OSAStartRecording (page 2848)
Turns on Apple event recording and records subsequent Apple events in a compiled script.

OSAStopRecording (page 2849)
Turns off Apple event recording.

Executing Scripts in One Step
You can use these functions if you know that the script data to be executed will be executed only once. A
scripting component that supports the functions described in this section has thekOSASupportsConvenience
bit set in the componentFlags field of its component description record.

OSACompileExecute (page 2800)
Compiles and executes a script in a single step rather than calling OSACompile and OSAExecute.

OSADoScript (page 2813)
Compiles and executes a script and converts the resulting script value to text in a single step rather
than calling OSACompile, OSAExecute, and OSADisplay.

OSADoScriptFile (page 2815)
Loads a script from the specified file, compiles the script if the file is a text file, executes the script,
converts the resulting script value to text, and stores the script back into the file if the script has
persistent properties and the file is not a text file.

OSALoadExecute (page 2833)
Loads and executes a script in a single step rather than calling OSALoad and OSAExecute.

OSALoadExecuteFile (page 2834)
Loads a script from the specified file into the specified scripting component, compiles the script if
the file is a text file, and executes the script.

Copying a Scripting Dictionary as a Scripting Definition File

OSACopyScriptingDefinition (page 2803)
Creates a copy of a scripting definition (sdef) from the specified file or bundle.

2780 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Manipulating Dialects
Scripting components that provide several dialects may provide five functions that allow you to switch
between dialects dynamically and get information about currently available dialects. The codes for specific
dialects are provided by the scripting component. A scripting component that supports the functions described
in this section has the kOSASupportsDialects bit set in the componentFlags field of its component
description record.

OSASetCurrentDialect (page 2842)
Sets the current dialect for a scripting component.

OSAGetCurrentDialect (page 2821)
Gets the dialect code for the dialect currently being used by a scripting component.

OSAAvailableDialectCodeList (page 2796)
Obtains a descriptor list containing dialect codes for each of a scripting component’s currently available
dialects.

OSAGetDialectInfo (page 2822)
Gets information about a specified dialect provided by a specified scripting component.

OSAAvailableDialects (page 2797)
Obtains a descriptor list containing information about each of the currently available dialects for a
scripting component.

Using Script Contexts to Handle Apple Events
The optional functions described in this section allow your application to use script contexts to handle Apple
events. One way to do this is to install a general Apple event handler in your application’s special handler
dispatch table. The general Apple event handler provides initial handling for every Apple event received by
your application. A scripting component that supports the functions described in this section has the
kOSASupportsEventHandling bit set in the componentFlags field of its component description record.

OSASetResumeDispatchProc (page 2845)
Sets the resume dispatch function called by a scripting component during execution of an AppleScript
continue statement or its equivalent.

OSAGetResumeDispatchProc (page 2826)
Gets the resume dispatch function currently being used by a scripting component instance during
execution of an AppleScript continue statement or its equivalent

OSAExecuteEvent (page 2817)
Handles an Apple event with the aid of a script context and obtains a script ID for the resulting script
value.

OSADoEvent (page 2812)
Handles an Apple event with the aid of a script context and obtains a reply event.

OSAMakeContext (page 2836)
Gets a script ID for a new script context.

Initializing AppleScript

ASInit (page 2788)
Initializes the AppleScript component.

Functions by Task 2781
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Getting and Setting Styles for Source Data

ASCopySourceAttributes (page 2785)
Gets the current text style attributes AppleScript uses to display script text.

ASSetSourceAttributes (page 2791)
Sets the text style attributes used by the AppleScript component to display scripts.

ASGetSourceStyleNames (page 2787)
Obtains a list of style names that are each formatted according to the script format styles currently
used by the AppleScript component.

Getting and Setting the Default Scripting Component
The default scripting component for any instance of the generic scripting component is initially AppleScript,
but you can change it if necessary.

OSAGetDefaultScriptingComponent (page 2822)
Gets the subtype code for the default scripting component associated with an instance of the generic
scripting component.

OSASetDefaultScriptingComponent (page 2842)
Sets the default scripting component associated with an instance of the generic scripting component.

Using Component-Specific Routines
You can’t use the generic scripting component to call a component-specific routine. Instead, you must use
an instance of the specific scripting component that supports the routine.

To facilitate the use of component-specific routines, the generic scripting component allows you to identify
the scripting component that created stored script data, get an instance of a specified scripting component,
and convert between generic script IDs and component-specific script IDs.

OSAGetScriptingComponentFromStored (page 2829)
Gets the subtype code for a scripting component that created a storage descriptor record.

OSAGetScriptingComponent (page 2828)
Gets the instance of a scripting component for a specified subtype.

OSAGenericToRealID (page 2818)
Converts a generic script ID to the corresponding component-specific script ID.

OSARealToGenericID (page 2837)
Converts a component-specific script ID to the corresponding generic script ID.

Manipulating Trailers for Generic Storage Descriptor Records
All scripting components must use the OSAGetStorageType, OSAAddStorageType, and
OSARemoveStorageType functions described in this section to add, remove, and inspect the trailers appended
to script data in generic storage descriptor records.

OSAGetStorageType (page 2831)
Retrieves the scripting component subtype from the script trailer appended to the script data in a
generic storage descriptor record.

2782 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAAddStorageType (page 2796)
Adds a trailer to the script data in a generic storage descriptor record.

OSARemoveStorageType (page 2838)
Removes a trailer from the script data in a generic storage descriptor record

Miscellaneous

ASGetAppTerminology (page 2786)
Deprecated. Use OSAGetAppTerminology (page 2820) instead.

ASGetHandler (page 2786)
Deprecated. Use OSAGetHandler (page 2823) instead.

ASGetProperty (page 2787)
Deprecated. Use OSAGetProperty (page 2825) instead.

ASSetHandler (page 2790)
Deprecated. Use OSASetHandler (page 2843) instead.

ASSetProperty (page 2790)
Deprecated. Use OSASetProperty (page 2844) instead.

OSAGetHandler (page 2823)
Gets a script ID for the specified script handler from the specified script.

OSAGetHandlerNames (page 2824)
Gets a list of all handler names in the specified script as an AEDescList of descriptors of type
typeChar.

OSAGetProperty (page 2825)
Gets the value of a specified script property from a specified script.

OSAGetPropertyNames (page 2825)
Gets a list of all property names from the specified script.

OSAGetSysTerminology (page 2832)
Gets one or more scripting terminology resources from the OSA system.

OSASetHandler (page 2843)
Sets a specified script handler in the specified script to the supplied handler.

OSASetProperty (page 2844)
Sets the value of a script property in a specified script, creating the property if it does not already
exist.

OSAGetAppTerminology (page 2820) Deprecated in Mac OS X v10.5
Gets one or more scripting terminology resources from the specified file. (Deprecated. Use
OSACopyScriptingDefinition (page 2803) instead.)

Creating, Invoking and Disposing Universal Procedure Pointers

NewOSAActiveUPP (page 2795)
Creates a new universal procedure pointer to an application-defined active function.

NewOSACreateAppleEventUPP (page 2795)
Creates a new universal procedure pointer to an application-defined Apple event creation function.

Functions by Task 2783
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

NewOSASendUPP (page 2795)
Creates a new universal procedure pointer to an application-defined send function.

DisposeOSAActiveUPP (page 2792)
Disposes of a universal procedure pointer to an application-defined active function.

DisposeOSACreateAppleEventUPP (page 2793)
Disposes of a universal procedure pointer to an application-defined Apple event create function.

DisposeOSASendUPP (page 2793)
Disposes of a universal procedure pointer to an application-defined send function.

InvokeOSAActiveUPP (page 2793)
Invokes an application-defined active function.

InvokeOSACreateAppleEventUPP (page 2794)
Invokes an application-defined Apple event creation function.

InvokeOSASendUPP (page 2794)
Invokes an application-defined send function.

Deprecated Functions

Warning: Do not use the OSA debugging functions listed here. They were were not intended for public
use, they do not work, and they will return an error.

OSADebuggerCreateSession (page 2805)
Do not use.

OSADebuggerDisposeCallFrame (page 2805)
Do not use.

OSADebuggerDisposeSession (page 2805)
Do not use.

OSADebuggerGetBreakpoint (page 2806)
Do not use.

OSADebuggerGetCallFrameState (page 2806)
Do not use.

OSADebuggerGetCurrentCallFrame (page 2807)
Do not use.

OSADebuggerGetDefaultBreakpoint (page 2807)
Do not use.

OSADebuggerGetPreviousCallFrame (page 2807)
Do not use.

OSADebuggerGetSessionState (page 2808)
Do not use.

OSADebuggerGetStatementRanges (page 2808)
Do not use.

OSADebuggerGetVariable (page 2809)
Do not use.

2784 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSADebuggerSessionStep (page 2809)
Do not use.

OSADebuggerSetBreakpoint (page 2809)
Do not use.

OSADebuggerSetVariable (page 2810)
Do not use.

ASGetSourceStyles (page 2788) Deprecated in Mac OS X v10.5
Gets the script format styles currently used by the AppleScript component to display scripts.
(Deprecated. Use ASGetSourceStyleNames (page 2787) instead.)

ASSetSourceStyles (page 2792) Deprecated in Mac OS X v10.5
Sets the script format styles used by the AppleScript component to display scripts. (Deprecated. Use
ASSetSourceAttributes (page 2791) instead.)

Functions

ASCopySourceAttributes
Gets the current text style attributes AppleScript uses to display script text.

OSAError ASCopySourceAttributes (
 ComponentInstance scriptingComponent,
 CFArrayRef *resultingSourceAttributes
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingSourceAttributes
If successful, returns a reference to an array (of type CFArray) of dictionaries (of type CFDictionary)
of text style attributes; otherwise, returns nil.

The order of elements in the array corresponds to the constants defined in “Source Style
Constants” (page 2882), and therefore also to the names returned by ASGetSourceStyleNames (page
2787). For example, the first dictionary in the array (at position kASSourceStyleUncompiledText)
describes the style for uncompiled text. However, you should not rely on there being any specific
number of dictionaries in the returned array—instead, count the number of items in the array before
accessing any of them.

This array is a copy and the caller is responsible for releasing it, according to the rules described in
Ownership Policy in Memory Management Programming Guide for Core Foundation.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
A text style attribute is typically something that is meaningful to a CFAttributedString, such as the one
returned by OSACopyDisplayString (page 2801) or OSACopySourceString (page 2804). However, clients
may add other attributes using ASSetSourceAttributes (page 2791).

Functions 2785
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
AppleScript.h

ASGetAppTerminology
Deprecated. Use OSAGetAppTerminology (page 2820) instead.

OSAError ASGetAppTerminology (
 ComponentInstance scriptingComponent,
 FSSpec *fileSpec,
 short terminologID,
 Boolean *didLaunch,
 AEDesc *terminologyList
);

Return Value
A result code. See “Result Codes” (page 2885).

Version Notes
Provided for backward compatibility only. Use OSAGetAppTerminology (page 2820) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ASDebugging.h

ASGetHandler
Deprecated. Use OSAGetHandler (page 2823) instead.

OSAError ASGetHandler (
 ComponentInstance scriptingComponent,
 OSAID contextID,
 const AEDesc *handlerName,
 OSAID *resultingCompiledScriptID
);

Return Value
A result code. See “Result Codes” (page 2885).

Version Notes
Provided for backward compatibility only. Use OSAGetHandler (page 2823) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ASDebugging.h

2786 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

ASGetProperty
Deprecated. Use OSAGetProperty (page 2825) instead.

OSAError ASGetProperty (
 ComponentInstance scriptingComponent,
 OSAID contextID,
 const AEDesc *variableName,
 OSAID *resultingScriptValueID
);

Return Value
A result code. See “Result Codes” (page 2885).

Version Notes
Provided for backward compatibility only. Use OSAGetProperty (page 2825) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ASDebugging.h

ASGetSourceStyleNames
Obtains a list of style names that are each formatted according to the script format styles currently used by
the AppleScript component.

OSAError ASGetSourceStyleNames (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 AEDescList *resultingSourceStyleNamesList
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

modeFlags
Reserved for future use. Set to kOSAModeNull.

resultingSourceStyleNames
A pointer to a list of style names (for example, “Uncompiled Text,” “Normal Text”) that are each
formatted according to the current script format styles. The order of the names corresponds to the
order of the source style constants listed in “Source Style Constants” (page 2882). For example, the first
name in the list (at position kASSourceStyleUncompiledText) is formatted according to the style
for uncompiled text.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Functions 2787
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
AppleScript.h

ASGetSourceStyles
Gets the script format styles currently used by the AppleScript component to display scripts. (Deprecated in
Mac OS X v10.5. Use ASGetSourceStyleNames (page 2787) instead.)

OSAError ASGetSourceStyles (
 ComponentInstance scriptingComponent,
 STHandle *resultingSourceStyles
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingSourceStyles
A pointer to a handle to a style element array defined by the TextEdit data type TEStyleTable that
defines the styles used for different kinds of AppleScript terms.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The ASGetSourceStyles function returns a style element array that defines the styles used for AppleScript
terms. You can use the index constants described in “Source Style Constants” (page 2882) to identify individual
styles returned in the resultingSourceStyles parameter. Other AppleScript dialects may define additional
styles. When you have finished using the style element array, you must dispose of it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
AppleScript.h

ASInit
Initializes the AppleScript component.

2788 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError ASInit (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 UInt32 minStackSize,
 UInt32 preferredStackSize,
 UInt32 maxStackSize,
 UInt32 minHeapSize,
 UInt32 preferredHeapSize,
 UInt32 maxHeapSize
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

modeFlags
Reserved for future use. Set to kOSAModeNull.

minStackSize
The minimum size for the portion of the application’s heap used by the AppleScript component’s
application-specific stack.

preferredStackSize
The preferred size for the portion of the application’s heap used by the AppleScript component’s
application-specific stack.

maxStackSize
The maximum size for the portion of the application’s heap used by the AppleScript component’s
application-specific stack.

minHeapSize
The minimum size for the portion of the application’s heap used by the AppleScript component’s
application-specific heap. (See Version Notes section.)

preferredHeapSize
The preferred size for the portion of the application’s heap used by the AppleScript component’s
application-specific heap. (See Version Notes section.)

maxHeapSize
The maximum size for the portion of the application’s heap used by the AppleScript component’s
application-specific heap. (See Version Notes section.)

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
Your application should set the modeFlags parameter to kOSAModeNull. You can use the other parameters
to specify memory sizes for the portion of your application’s heap used by the AppleScript component for
its application-specific heap and stack. If your application sets any of these parameters to 0, the AppleScript
component uses the corresponding value in your application’s 'scsz' resource. If that value is also set to
0, the AppleScript component uses the default values described in “Default Initialization Values” (page 2863).

If your application doesn’t call ASInit explicitly, the AppleScript component initializes itself using the values
specified in your application’s 'scsz' resource when your application first calls any scripting component
routine. If any of these values are set to 0, the AppleScript component uses the corresponding default value.

Functions 2789
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

If your application doesn’t call ASInit explicitly and doesn’t call any scripting component routines, the
AppleScript component will not be initialized. For example, if your application opens and closes the AppleScript
component or calls Component Manager functions such asOpenDefaultComponentorFindNextComponent
but doesn’t call any scripting component routines, the AppleScript component is not initialized.

When the AppleScript component is initialized, it uses your application’s high memory to create the blocks
that it locks for its own use. If you expect to lock any portion of high memory for a shorter time than you
expect the AppleScript component to be available, you should call ASInit explicitly.

Version Notes
Starting in Mac OS X version 10.5, heap size parameter values are ignored—AppleScript's heap will grow as
large as needed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
AppleScript.h

ASSetHandler
Deprecated. Use OSASetHandler (page 2843) instead.

OSAError ASSetHandler (
 ComponentInstance scriptingComponent,
 OSAID contextID,
 const AEDesc *handlerName,
 OSAID compiledScriptID
);

Return Value
A result code. See “Result Codes” (page 2885).

Version Notes
Provided for backward compatibility only. Use OSASetHandler (page 2843) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ASDebugging.h

ASSetProperty
Deprecated. Use OSASetProperty (page 2844) instead.

2790 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError ASSetProperty (
 ComponentInstance scriptingComponent,
 OSAID contextID,
 const AEDesc *variableName,
 OSAID scriptValueID
);

Return Value
A result code. See “Result Codes” (page 2885).

Version Notes
Provided for backward compatibility only. Use OSASetProperty (page 2844) instead.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
ASDebugging.h

ASSetSourceAttributes
Sets the text style attributes used by the AppleScript component to display scripts.

OSAError ASSetSourceAttributes (
 ComponentInstance scriptingComponent,
 CFArrayRef sourceAttributes
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sourceAttributes
A reference to an array (of type CFArray) of dictionaries (of type CFDictionary) of text style
attributes.

You can pass a nil reference for this parameter if you want the AppleScript component to display
script text using its default styles.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
A text style attribute is typically something that is meaningful to a CFAttributedString, such as the one
returned by OSACopyDisplayString (page 2801) or OSACopySourceString (page 2804). However, clients
may add any attributes they like. Because of this, you should generally call ASSetSourceAttributes with
a modified copy of the result from ASCopySourceAttributes (page 2785), not a built-from-scratch set of
attributes.

The order of elements in the array should correspond to the constants defined in “Source Style
Constants” (page 2882), and therefore also to the names returned by ASGetSourceStyleNames (page 2787).
After calling ASSetSourceAttributes, you must dispose of the style element array you used to specify
the text style attributes.

Functions 2791
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
AppleScript.h

ASSetSourceStyles
Sets the script format styles used by the AppleScript component to display scripts. (Deprecated in Mac OS
X v10.5. Use ASSetSourceAttributes (page 2791) instead.)

OSAError ASSetSourceStyles (
 ComponentInstance scriptingComponent,
 STHandle sourceStyles
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sourceStyles
A handle to a style element array defined by the TextEdit data type TEStyleTable that defines the
styles used for different kinds of AppleScript terms. The style for each kind of term should be identified
according to the index constants listed in “Source Style Constants” (page 2882).

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The ASSetSourceStyles function sets the script format styles used to display scripts. If you pass a NULL
handle in the sourceStyles parameter, the AppleScript component uses its default styles.

After you have set the script format styles, you must dispose of the style element array you used to specify
them.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.

Declared In
AppleScript.h

DisposeOSAActiveUPP
Disposes of a universal procedure pointer to an application-defined active function.

void DisposeOSAActiveUPP (
 OSAActiveUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

2792 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

DisposeOSACreateAppleEventUPP
Disposes of a universal procedure pointer to an application-defined Apple event create function.

void DisposeOSACreateAppleEventUPP (
 OSACreateAppleEventUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

DisposeOSASendUPP
Disposes of a universal procedure pointer to an application-defined send function.

void DisposeOSASendUPP (
 OSASendUPP userUPP
);

Parameters
userUPP

The UPP to dispose of.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

InvokeOSAActiveUPP
Invokes an application-defined active function.

OSErr InvokeOSAActiveUPP (
 SRefCon refCon,
 OSAActiveUPP userUPP
);

Return Value
A result code. See “Result Codes” (page 2885).

Functions 2793
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

InvokeOSACreateAppleEventUPP
Invokes an application-defined Apple event creation function.

OSErr InvokeOSACreateAppleEventUPP (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 const AEAddressDesc *target,
 short returnID,
 SInt32 transactionID,
 AppleEvent *result,
 SRefCon refCon,
 OSACreateAppleEventUPP userUPP
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

InvokeOSASendUPP
Invokes an application-defined send function.

OSErr InvokeOSASendUPP (
 const AppleEvent *theAppleEvent,
 AppleEvent *reply,
 AESendMode sendMode,
 AESendPriority sendPriority,
 SInt32 timeOutInTicks,
 AEIdleUPP idleProc,
 AEFilterUPP filterProc,
 SRefCon refCon,
 OSASendUPP userUPP
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

2794 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

NewOSAActiveUPP
Creates a new universal procedure pointer to an application-defined active function.

OSAActiveUPP NewOSAActiveUPP (
 OSAActiveProcPtr userRoutine
);

Parameters
userRoutine

A pointer to the active function.

Return Value
The new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

NewOSACreateAppleEventUPP
Creates a new universal procedure pointer to an application-defined Apple event creation function.

OSACreateAppleEventUPP NewOSACreateAppleEventUPP (
 OSACreateAppleEventProcPtr userRoutine
);

Parameters
userRoutine

A pointer to the creation function.

Return Value
The new UPP.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

NewOSASendUPP
Creates a new universal procedure pointer to an application-defined send function.

OSASendUPP NewOSASendUPP (
 OSASendProcPtr userRoutine
);

Parameters
userRoutine

A pointer to the send function.

Return Value
The new UPP.

Functions 2795
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAAddStorageType
Adds a trailer to the script data in a generic storage descriptor record.

OSErr OSAAddStorageType (
 AEDataStorage scriptData,
 DescType dscType
);

Parameters
scriptData

A handle to the script data.

dscType
The descriptor type to be specified in the trailer added to the script data.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSAAddStorageType function attaches a trailer to a handle (consequently expanding the data to which
the handle refers) or updates an existing trailer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAComp.h

OSAAvailableDialectCodeList
Obtains a descriptor list containing dialect codes for each of a scripting component’s currently available
dialects.

OSAError OSAAvailableDialectCodeList (
 ComponentInstance scriptingComponent,
 AEDesc *resultingDialectCodeList
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingDialectCodeList
A pointer to the returned descriptor list.

Return Value
A result code. See “Result Codes” (page 2885).

2796 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Discussion
Each item in the descriptor list returned by OSAAvailableDialectCodeList is a descriptor record of
descriptor type typeInteger containing a dialect code for one of the specified scripting component’s
currently available dialects. Dialect codes are defined by individual scripting components.

You can pass any dialect code you obtain using OSAAvailableDialectCodeList to OSAGetDialectInfo
to get information about the corresponding dialect.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAAvailableDialects
Obtains a descriptor list containing information about each of the currently available dialects for a scripting
component.

OSAError OSAAvailableDialects (
 ComponentInstance scriptingComponent,
 AEDesc *resultingDialectInfoList
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingDialectInfoList
A pointer to the returned descriptor list.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
Each item in the list returned by OSAAvailableDialects is an AE record of descriptor type
typeOSADialectInfo. Each descriptor record in the descriptor list contains, at a minimum, four
keyword-specified descriptor records with the keywords described in “Dialect Descriptor Constants” (page
2865).

Rather than callingOSAAvailableDialects to obtain complete dialect information for a scripting component,
it is usually more convenient to call OSAAvailableDialectCodeList to get a list of codes for a scripting
component’s dialects, then call OSAGetDialectInfo to get information about the specific dialect you’re
interested in.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

Functions 2797
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSACoerceFromDesc
Obtains the script ID for a script value that corresponds to the data in a descriptor record.

OSAError OSACoerceFromDesc (
 ComponentInstance scriptingComponent,
 const AEDesc *scriptData,
 SInt32 modeFlags,
 OSAID *resultingScriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptData
A pointer to a descriptor record containing the script data to be coerced.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. If the scriptData parameter contains an Apple event, you can use any of the mode
flags listed in “Mode Flags” (page 2873).

resultingScriptValueID
A pointer to the resulting script ID for a script value. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSACoerceFromDesc function coerces the descriptor record in the scriptData parameter to the
equivalent script value and returns a script ID for that value.

If you pass OSACoerceFromDesc an Apple event in the scriptData parameter, it returns a script ID for the
equivalent compiled script in the resultingScriptValueID parameter. In this case you can specify any
of the modeFlags values used by OSACompile to control the way the compiled script is executed.

If you call OSACoerceFromDesc using an instance of the generic scripting component, the generic scripting
component uses the default scripting component to perform the coercion.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACoerceToDesc
Coerces a script value to a descriptor record of a desired descriptor type.

2798 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSACoerceToDesc (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 DescType desiredType,
 SInt32 modeFlags,
 AEDesc *result
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script value to coerce. See the OSAID (page 2855) data type.

desiredType
The desired descriptor type of the resulting descriptor record.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull.

result
A pointer to the resulting descriptor record.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSACoerceToDesc function coerces the script value identified by scriptValueID to a descriptor record
of the type specified by the desiredType parameter, if possible. Valid types include all the standard descriptor
types, plus any special types supported by the scripting component.

If you want the descriptor type of the descriptor record returned in the result parameter to be the same as
the descriptor type returned by a scripting component, use OSACoerceToDesc and specify typeWildCard
as the desired type. If you want to get a script value in a form that you can display for humans to read, use
OSADisplay.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACompile
Compiles the source data for a script and obtain a script ID for a compiled script or a script context.

Functions 2799
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSACompile (
 ComponentInstance scriptingComponent,
 const AEDesc *sourceData,
 SInt32 modeFlags,
 OSAID *previousAndResultingScriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sourceData
A pointer to a descriptor record containing suitable source data for the specified scripting component.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 2873).

previousAndResultingScriptID
A pointer to the script ID for the resulting compiled script. If the value of this parameter on input is
kOSANullScript, OSACompile returns a new script ID for the compiled script data. If the value of
this parameter on input is an existing script ID, OSACompile updates the script ID so that it refers to
the newly compiled script data. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
You can pass a descriptor record containing source data suitable for a specific scripting component (usually
text) to the OSACompile function to obtain a script ID for the equivalent compiled script or script context.
To compile the source data as a script context for use with OSAExecuteEvent or OSADoEvent, you must
set the kOSAModeCompileIntoContext flag, and the source data should include appropriate handlers.

After you have successfully compiled the script, you can use the returned script ID to refer to the compiled
script when you call OSAExecute and other scripting component routines.

If you use OSACompile with an instance of the generic scripting component and pass kOSANullScript in
the previousAndResultingScriptID parameter, the generic scripting component uses the default
scripting component to compile the script.

If you’re recompiling a script, specify the original script ID in the previousAndResultingScriptID
parameter. The generic scripting component uses the script ID to determine which scripting component it
should use to compile the script.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACompileExecute
Compiles and executes a script in a single step rather than calling OSACompile and OSAExecute.

2800 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSACompileExecute (
 ComponentInstance scriptingComponent,
 const AEDesc *sourceData,
 OSAID contextID,
 SInt32 modeFlags,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sourceData
A pointer to a descriptor record identifying suitable source data for the specified scripting component.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 2855) data type.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 2873).

resultingScriptValueID
A pointer to the script ID for the script value returned.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSACompileExecute function compiles source data and executes the resulting compiled script, using
the script context identified by the contextID parameter to maintain state information such as the binding
of variables. After successfully executing the script, OSACompileExecute disposes of the compiled script
and returns either the script ID for the resulting script value or, if execution does not result in a value, the
constant kOSANullScript.

If the result c ode returned by OSACompileExecute is a general result code, there was some problem in
arranging for the script to be run. If the result code is errOSAScriptError, an error occurred during script
execution. In this case, you can obtain more detailed error information by calling OSAScriptError.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACopyDisplayString
Converts a script value to an attributed Unicode text string, which your application can display to the user.

Functions 2801
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSACopyDisplayString (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 SInt32 modeFlags,
 CFAttributedStringRef *result
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script value to display. See the OSAID (page 2855) data type.

modeFlags
Information used by individual scripting components. To avoid setting any mode flags, specify
kOSAModeNull. To make the resulting text readable by humans only, so that it can’t be recompiled,
specify kOSAModeDisplayForHumans.

result
If successful, a reference to the script data as an attributed Unicode text string; otherwise not defined.

Because the result parameter returns a copy, the caller is responsible for releasing this string object,
according to the rules described in Ownership Policy in Memory Management Programming Guide for
Core Foundation.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSACopyDisplayString function is analogous to OSADisplay (page 2810), except that it returns the
script text as an attributed Unicode text string. An instance of CFAttributedString manages a character
string and an associated set of attributes that apply to characters or ranges of characters in the string. You
can call ASCopySourceAttributes (page 2785) to get the current AppleScript source style attributes.

Availability
Available in Mac OS X v10.5 and later.

Declared In
OSA.h

OSACopyID
Updates script data after editing or recording and to perform undo or revert operations on script data.

OSAError OSACopyID (
 ComponentInstance scriptingComponent,
 OSAID fromID,
 OSAID *toID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

2802 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

fromID
The script ID for script data that you want to be associated with the script ID in the toID parameter.
See the OSAID (page 2855) data type.

toID
A pointer to the script ID for the script data to be replaced. If the value of this parameter is
kOSANullScript, the OSACopyID function returns a new script ID. See the OSAID (page 2855) data
type.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSACopyID function replaces the script data identified by the script ID in the toID parameter with the
script data identified by the script ID in the fromID parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACopyScriptingDefinition
Creates a copy of a scripting definition (sdef) from the specified file or bundle.

OSAError OSACopyScriptingDefinition (
 const FSRef *ref,
 SInt32 modeFlags,
 CFDataRef *sdef
);

Parameters
ref

A file reference to the application file or bundle from which to copy the scripting definition.

modeFlags
Reserved for future use. Set to kOSAModeNull.

sdef
On return, the resulting scripting definition, as XML data.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
If the target application does not have a true scripting definition (sdef) but does have an 'aete' resource
or a Cocoa script suite, this function translates the existing information to an sdef. As a result,
OSACopyScriptingDefinition works for any scriptable application.

To provide a scripting definition in your application:

1. Put the sdef file in the Resources folder of the application bundle.

2. Add an entry to your information property list (Info.plist) file:

 ■ key: “OSAScriptingDefinition”

Functions 2803
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

 ■ value: “MyApplication.sdef” (the name of the sdef)

For an introduction to scripting definitions, see “Specifying Scripting Terminology” in AppleScript Overview.
See the man page for sdef(5) for details of the sdef format.

Availability
Available in Mac OS X v10.4 and later.

Declared In
ASDebugging.h

OSACopySourceString
Decompiles the script data for the specified script and returns a copy of the equivalent source data as an
attributed Unicode text string.

OSAError OSACopySourceString (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 SInt32 modeFlags,
 CFAttributedStringRef *result
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script data to decompile. If you pass kOSANullScript in this parameter,
OSACopySourceString returns a null source description (such as an empty text string). See the
OSAID (page 2855) data type.

modeFlags
No mode information is currently supported, so you should specify kOSAModeNull for this parameter.

result
If successful, a reference to the script data as an attributed Unicode text string; otherwise not defined.

Because the result parameter returns a copy, the caller is responsible for releasing this string object,
according to the rules described in Ownership Policy in Memory Management Programming Guide for
Core Foundation.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSACopySourceString function is analogous to OSAGetSource (page 2830), except that it returns the
decompiled script data as an attributed Unicode text string (a Core Foundation attributed string object). This
data can be displayed to the user or compiled and executed. You can call ASCopySourceAttributes (page
2785) to get the current AppleScript source style attributes.

Availability
Available in Mac OS X v10.5 and later.

2804 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
OSA.h

OSADebuggerCreateSession
Do not use.

Unsupported

OSAError OSADebuggerCreateSession (
 ComponentInstance scriptingComponent,
 OSAID inScript,
 OSAID inContext,
 OSADebugSessionRef *outSession
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerDisposeCallFrame
Do not use.

Unsupported

OSAError OSADebuggerDisposeCallFrame (
 ComponentInstance scriptingComponent,
 OSADebugCallFrameRef inCallFrame
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerDisposeSession
Do not use.

Unsupported

Functions 2805
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSADebuggerDisposeSession (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetBreakpoint
Do not use.

Unsupported

OSAError OSADebuggerGetBreakpoint (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 UInt32 inSrcOffset,
 OSAID *outBreakpoint
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetCallFrameState
Do not use.

Unsupported

OSAError OSADebuggerGetCallFrameState (
 ComponentInstance scriptingComponent,
 OSADebugCallFrameRef inCallFrame,
 AERecord *outState
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

2806 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
OSA.h

OSADebuggerGetCurrentCallFrame
Do not use.

Unsupported

OSAError OSADebuggerGetCurrentCallFrame (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 OSADebugCallFrameRef *outCallFrame
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetDefaultBreakpoint
Do not use.

Unsupported

OSAError OSADebuggerGetDefaultBreakpoint (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 OSAID *outBreakpoint
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetPreviousCallFrame
Do not use.

Unsupported

Functions 2807
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSADebuggerGetPreviousCallFrame (
 ComponentInstance scriptingComponent,
 OSADebugCallFrameRef inCurrentFrame,
 OSADebugCallFrameRef *outPrevFrame
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetSessionState
Do not use.

Unsupported

OSAError OSADebuggerGetSessionState (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 AERecord *outState
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerGetStatementRanges
Do not use.

Unsupported

OSAError OSADebuggerGetStatementRanges (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 AEDescList *outStatementRangeArray
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

2808 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
OSA.h

OSADebuggerGetVariable
Do not use.

Unsupported

OSAError OSADebuggerGetVariable (
 ComponentInstance scriptingComponent,
 OSADebugCallFrameRef inCallFrame,
 const AEDesc *inVariableName,
 OSAID *outVariable
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerSessionStep
Do not use.

Unsupported

OSAError OSADebuggerSessionStep (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 OSADebugStepKind inKind
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerSetBreakpoint
Do not use.

Unsupported

Functions 2809
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSADebuggerSetBreakpoint (
 ComponentInstance scriptingComponent,
 OSADebugSessionRef inSession,
 UInt32 inSrcOffset,
 OSAID inBreakpoint
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADebuggerSetVariable
Do not use.

Unsupported

OSAError OSADebuggerSetVariable (
 ComponentInstance scriptingComponent,
 OSADebugCallFrameRef inCallFrame,
 const AEDesc *inVariableName,
 OSAID inVariable
);

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

OSADisplay
Converts a script value to text. Your application can then use its own functions to display this text to the
user.

2810 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSADisplay (
 ComponentInstance scriptingComponent,
 OSAID scriptValueID,
 DescType desiredType,
 SInt32 modeFlags,
 AEDesc *resultingText
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptValueID
The script ID for the script value to coerce. See the OSAID (page 2855) data type.

desiredType
The desired text descriptor type, such as typeChar, for the resulting descriptor record.

modeFlags
Information used by individual scripting components. To avoid setting any mode flags, specify
kOSAModeNull. To make the resulting text readable by humans only, so that it can’t be recompiled,
specify kOSAModeDisplayForHumans.

resultingText
A pointer to the resulting descriptor record.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSADisplay function coerces the script value identified by scriptValueID to a descriptor record of
the text type specified by the desiredType parameter, if possible. Valid types include the standard text
descriptor types, plus any special types supported by the scripting component.

UnlikeOSAGetSource (page 2830),OSADisplay can coerce only script values and always produces a descriptor
record of a text descriptor type. In addition, if you specify the mode flag kOSAModeDisplayForHumans, the
resulting text cannot be recompiled.

If you want to get a script value in a form that you can display for humans to read, use OSADisplay. If you
want the descriptor type of the descriptor record returned in the resultingText parameter to be the same
as the descriptor type returned by a scripting component, use OSACoerceToDesc and specify typeWildCard
as the desired type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSADispose
Reclaims the memory occupied by script data.

Functions 2811
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSADispose (
 ComponentInstance scriptingComponent,
 OSAID scriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script data to be disposed of. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSADispose function releases the memory assigned to the script data identified by the scriptID
parameter. The script ID passed to the OSADispose function is no longer valid if the function returns
successfully. A scripting component can then reuse that script ID for other script data.

A call to OSADispose returns noErr if the script ID is kOSANullScript, although it does not dispose of
anything.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSADoEvent
Handles an Apple event with the aid of a script context and obtains a reply event.

OSAError OSADoEvent (
 ComponentInstance scriptingComponent,
 const AppleEvent *theAppleEvent,
 OSAID contextID,
 SInt32 modeFlags,
 AppleEvent *reply
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

theAppleEvent
A pointer to the Apple event to be handled.

contextID
The script ID for the script context to be used to handle the Apple event. See the OSAID (page 2855)
data type.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 2873).

2812 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

reply
A pointer to the reply Apple event.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSADoEvent function resembles both OSADoScript and OSAExecuteEvent. However, unlike
OSADoScript, the script OSADoEvent executes must be in the form of a script context, and execution is
initiated by an Apple event. Unlike OSAExecuteEvent, OSADoEvent returns a reply Apple event rather than
the script ID of the resulting script value.

The OSADoEvent function, like OSAExecuteEvent, attempts to use the script context specified by the
contextID parameter to handle the Apple event specified by the theAppleEvent parameter. If the scripting
component determines that the script context can’t handle the event (for example, if a script written in an
AppleScript dialect doesn’t include statements that handle the event), OSADoEvent immediately returns
errAEEventNotHandled rather than errOSAScriptError. This causes the Apple Event Manager to look
for an appropriate handler in the application’s Apple event dispatch table or elsewhere, using standard Apple
event dispatching.

If the scripting component determines that the script context can handle the event, OSADoEvent executes
the script context’s handler for the event and returns the resulting script ID.

The OSADoEvent function returns a reply event that contains either the resulting script value or, if an error
occurred during script execution, information about the error. If the error errOSAScriptError occurs during
script execution, OSADoEvent calls OSAScriptError and returns the appropriate error information in the
reply. The OSADoEvent function never returns errOSAScriptError.

If the script context specifies that the Apple event should be passed to the application’s standard handler
for that event (for example, with an AppleScript continue statement), OSADoEvent passes the event to the
resume dispatch function currently being used by the scripting component. The resume dispatch function
dispatches the event directly to the application’s standard handler for that event (that is, without calling
OSADoEvent again). If the contextID parameter is kOSANullScript, the OSADoEvent function passes
the event directly to the resume dispatch function. If the call to the resume dispatch function is successful,
execution of the script context proceeds from the point at which the resume dispatch function was called.

Special Considerations

Like OSAExecuteEvent, OSADoEvent can generate the result code errAEEventNotHandled in at least
two ways. If the scripting component determines that a script context doesn’t declare a handler for a particular
event, OSADoEvent immediately returns errAEEventNotHandled. If a scripting component calls its resume
dispatch function during script execution and the application’s standard handler for the event fails to handle
it, OSADoEvent returns errAEEventNotHandled in the reply Apple event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSADoScript
Compiles and executes a script and converts the resulting script value to text in a single step rather than
calling OSACompile, OSAExecute, and OSADisplay.

Functions 2813
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSADoScript (
 ComponentInstance scriptingComponent,
 const AEDesc *sourceData,
 OSAID contextID,
 DescType desiredType,
 SInt32 modeFlags,
 AEDesc *resultingText
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sourceData
A pointer to a descriptor record identifying suitable source data for the specified scripting component.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 2855) data type.

desiredType
The desired text descriptor type, such as typeChar, for the resulting descriptor record.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 2873).

resultingText
A pointer to the resulting descriptor record.

Return Value
A result code.

If the result code returned by OSADoScript is a general result code, there was some problem in arranging
for the script to be run. If an error occurs during script execution, the error message of the error is stored in
resultingText, and the function returns errOSAScriptError. You can use OSAScriptError (page 2839)
to obtain more information about the particular error.

For additional information on result codes, see “Result Codes” (page 2885).

Discussion
Calling the OSADoScript function is equivalent to calling OSACompile followed by OSAExecute and
OSADisplay. After compiling the source data, executing the compiled script using the script context identified
by the contextID parameter, and returning the text equivalent of the resulting script value in the
resultingText parameter, OSADoScript disposes of both the compiled script and the resulting script
value.

Special Considerations

Prior to Mac OS X version 10.5, if an error occurred during script execution, the error message of the error
was not returned in resultingText.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

2814 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSADoScriptFile
Loads a script from the specified file, compiles the script if the file is a text file, executes the script, converts
the resulting script value to text, and stores the script back into the file if the script has persistent properties
and the file is not a text file.

OSAError OSADoScriptFile (
 ComponentInstance scriptingComponent,
 const FSRef *scriptFile,
 OSAID contextID,
 DescType desiredType,
 SInt32 modeFlags,
 AEDesc *resultingText
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent. See the Component Manager documentation for a
description of the ComponentInstance data type.

scriptFile
Identifies the file to load the script from and to save the script back to (if the script has persistent
properties and the file is not a text file). See the File Manager documentation for a description of the
FSRef data type.

File format is determined by inspection. If the file is a text file, OSADoScriptFile uses the following
steps to determine the text encoding:

 ■ If a Unicode BOM is present, that determines the encoding—one of UTF-16BE, UTF-16LE, or UTF-8

 ■ Otherwise, if the file is valid UTF-8, it is assumed to be UTF-8.

 ■ Otherwise, it is assumed to be in the primary encoding.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 2855) data type.

desiredType
The desired text descriptor type, such as typeChar, for the resulting descriptor record.

modeFlags
Information for use by the scripting component. Can include any of the mode flags that would normally
be sent to the OSACompile (page 2799) (if the file is a text file), OSADisplay (page 2810),
OSAExecute (page 2816), and OSALoad (page 2832) functions. For descriptions of the mode flag usage
of those functions, see the chapter “Scripting Components” in “Interapplication Communication” at
http://developer.apple.com/documentation/mac/IAC/IAC-2.html.

resultingText
The descriptor record for the resulting script value. The AEDesc data type is described in Apple Event
Manager Reference.

Return Value
A result code. See “Result Codes” (page 2885).

Functions 2815
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

http://developer.apple.com/documentation/mac/IAC/IAC-2.html

Discussion
This routine is effectively equivalent to calling OSALoadFile (page 2835), followed by OSAExecute (page
2816),OSADisplay (page 2810), and thenOSAStoreFile (page 2851) if the script has persistent properties. After
execution, the compiled source and the resulting value are disposed. Only the resultingText descriptor
is retained. If an error occurs during script execution, the error message of the error is stored in
resultingText, and the function returns errOSAScriptError. You can use OSAScriptError (page 2839)
to obtain more information about the particular error.

Special Considerations

Prior to Mac OS X version 10.5, if an error occurred during script execution, the error message of the error
was not returned in resultingText.

Availability
Available in Mac OS X v10.3 and later.

Declared In
OSA.h

OSAExecute
Executes a compiled script or a script context.

OSAError OSAExecute (
 ComponentInstance scriptingComponent,
 OSAID compiledScriptID,
 OSAID contextID,
 SInt32 modeFlags,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

compiledScriptID
The script ID for the compiled script to be executed. See the OSAID (page 2855) data type.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 2855) data type.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in the description that follows.

resultingScriptValueID
A pointer to the script ID for the script value returned. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885). If the result code returned by OSAExecute is a general result
code, there was some problem in arranging for the script to be run. If the result code is errOSAScriptError,
an error occurred during script execution. In this case, you can obtain more detailed error information by
calling OSAScriptError.

2816 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Discussion
The OSAExecute function executes the compiled script identified by the compiledScriptID parameter,
using the script context identified by the contextID parameter to maintain state information, such as the
binding of variables, for the compiled script. After successfully executing a script, OSAExecute returns the
script ID for a resulting script value, or, if execution does not result in a value, the constant kOSANullScript.
You can use the OSACoerceToDesc function to coerce the resulting script value to a descriptor record of a
desired descriptor type, or the OSADisplay (page 2810) function to obtain the equivalent source data for the
script value. You can control the way in which the scripting component executes a script by adding any of
the flags described in “Mode Flags” (page 2873).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAExecuteEvent
Handles an Apple event with the aid of a script context and obtains a script ID for the resulting script value.

OSAError OSAExecuteEvent (
 ComponentInstance scriptingComponent,
 const AppleEvent *theAppleEvent,
 OSAID contextID,
 SInt32 modeFlags,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

theAppleEvent
A pointer to the Apple event to be handled.

contextID
The script ID for the script context to be used to handle the Apple event. See the OSAID (page 2855)
data type.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 2873).

resultingScriptValueID
A pointer to the script ID for the resulting script value.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSAExecuteEvent function attempts to use the script context specified by the contextID parameter
to handle the Apple event specified by the theAppleEvent parameter. If the scripting component determines
that the script context can’t handle the event (for example, if a script written in AppleScript doesn’t include

Functions 2817
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

statements that handle the event), OSAExecuteEvent immediately returns errAEEventNotHandled rather
than errOSAScriptError. This causes the Apple Event Manager to look for an appropriate handler in the
application’s Apple event dispatch table or elsewhere, using standard Apple event dispatching.

If the scripting component determines that the script context can handle the event, OSAExecuteEvent
executes the script context’s handler and returns the resulting script ID. If execution of the script context’s
handler for the event generates an error, OSAExecuteEvent returns errOSAScriptError, and you can
get more detailed error information by calling the OSAScriptError function.

If the script context identified by the contextID parameter specifies that the Apple event should be passed
to the application’s default handler for that event (for example, with an AppleScript continue statement),
OSAExecuteEvent passes the event to the resume dispatch function currently being used by the scripting
component. The resume dispatch function dispatches the event directly to the application’s standard handler
for that event (that is, without calling OSAExecuteEvent again). If the contextID parameter is
kOSANullScript, the OSAExecuteEvent function passes the event directly to the resume dispatch function.
If a call to the resume dispatch function is successful, execution of the script context proceeds from the point
at which the resume dispatch function was called.

Special Considerations

The OSAExecuteEvent function can generate the result code errAEEventNotHandled in at least two
ways. If the scripting component determines that a script context doesn’t declare a handler for a particular
event, OSAExecuteEvent immediately returns errAEEventNotHandled. If a scripting component calls its
resume dispatch function during script execution and the application’s standard handler for the event fails
to handle it, OSAExecuteEvent returns errOSAScriptError and a call to OSAScriptError with
kOSAErrorNumber in the selector parameter returns errAEEventNotHandled as the resulting error
description.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGenericToRealID
Converts a generic script ID to the corresponding component-specific script ID.

OSAError OSAGenericToRealID (
 ComponentInstance genericScriptingComponent,
 OSAID *theScriptID,
 ComponentInstance *theExactComponent
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

theScriptID
A pointer to the generic script ID that you want to convert. The OSAGenericToRealID function
returns, in this parameter, the component-specific script ID that corresponds to the generic script ID
that you pass in this parameter. See the OSAID (page 2855) data type.

2818 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

theExactComponent
On return, a pointer to the component instance that created the script ID returned in the theScriptID
parameter.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
You can’t use the generic scripting component and a generic script ID with component-specific routines.
Instead, you can use the component instance and script ID returned by OSAGenericToRealID.

Given a generic script ID (that is, a script ID returned by a call to a standard component routine via the generic
scripting component), the OSAGenericToRealID function returns the equivalent component-specific script
ID and the component instance that created that script ID. The OSAGenericToRealID function modifies
the script ID in place, changing the generic script ID you pass in the theScriptID parameter to the
corresponding component-specific script ID.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSAGetActiveProc
Gets a pointer to the active function that a scripting component is currently using.

OSAError OSAGetActiveProc (
 ComponentInstance scriptingComponent,
 OSAActiveUPP *activeProc,
 SRefCon *refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

activeProc
On return, a pointer a UPP to the active function currently set for the specified scripting component.

refCon
On return, a pointer to the reference constant associated with the active function for the specified
scripting component.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

Functions 2819
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAGetAppTerminology
Gets one or more scripting terminology resources from the specified file. (Deprecated in Mac OS X v10.5. Use
OSACopyScriptingDefinition (page 2803) instead.)

OSAError OSAGetAppTerminology (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 FSSpec *fileSpec,
 short terminologyID,
 Boolean *didLaunch,
 AEDesc *terminologyList
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

fileSpec
Specifies the file to search. See the File Manager documentation for a description of the FSSpec data
type.

terminologyID
A dialect code obtained from a previous call to the OSAGetDialectInfo function or the
OSAGetCurrentDialect function.

didLaunch
On return, has the value true if the application's scripting size resource or plist flags indicate that it
has a dynamic terminology (in which case, the application will have been launched).

terminologyList
On return, a descriptor list containing zero or more terminology resources. See Apple Event Manager
Reference for a description of the AEDesc data type.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.5.
Not available to 64-bit applications.

Declared In
ASDebugging.h

OSAGetCreateProc
Gets a pointer to the create function that a scripting component is currently using to create Apple events.

2820 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSAGetCreateProc (
 ComponentInstance scriptingComponent,
 OSACreateAppleEventUPP *createProc,
 SRefCon *refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

createProc
On return, a pointer to the UPP to the create function currently set for the specified scripting
component.

refCon
On return, a pointer to the reference constant associated with the create function for the specified
scripting component.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetCurrentDialect
Gets the dialect code for the dialect currently being used by a scripting component.

OSAError OSAGetCurrentDialect (
 ComponentInstance scriptingComponent,
 short *resultingDialectCode
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingDialectCode
On return, a pointer to the code for the current dialect of the specified scripting component.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

Functions 2821
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAGetDefaultScriptingComponent
Gets the subtype code for the default scripting component associated with an instance of the generic scripting
component.

OSAError OSAGetDefaultScriptingComponent (
 ComponentInstance genericScriptingComponent,
 ScriptingComponentSelector *scriptingSubType
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

scriptingSubType
On return, a pointer to the subtype code for the default scripting component associated with the
instance of the generic scripting component specified in the genericScriptingComponent
parameter.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSAGetDefaultScriptingComponent function returns the subtype code for the default scripting
component. This is the scripting component that will be used by OSAStartRecording, OSACompile, or
OSACompileExecute if no existing script ID is specified. From the user’s point of view, the default scripting
component corresponds to the scripting language selected in the Script Editor application when the user
first creates a new script.

Each instance of the generic scripting component has its own default scripting component, which is initially
AppleScript. You can use OSASetDefaultScriptingComponent to change the default scripting component.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSAGetDialectInfo
Gets information about a specified dialect provided by a specified scripting component.

OSAError OSAGetDialectInfo (
 ComponentInstance scriptingComponent,
 short dialectCode,
 OSType selector,
 AEDesc *resultingDialectInfo
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

2822 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

dialectCode
A code for the dialect about which you want information. You can obtain a list of a scripting
component’s dialect codes by calling OSAAvailableDialectCodeList.

selector
A constant that indicates what kind of information you want OSAGetDialectInfo to return in the
result parameter. This constant determines the descriptor type for the descriptor record returned.
See the description in “Dialect Descriptor Constants” (page 2865) for a list of the standard constants
you can specify in this parameter.

resultingDialectInfo
A pointer to a descriptor record containing the requested information. The descriptor record’s descriptor
type corresponds to the constant specified in the selector parameter.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
After you obtain a list of dialect codes by calling OSAAvailableDialectCodeList, you can pass any of
those codes to OSAGetDialectInfo to get information about the corresponding dialect. The descriptor
type of the descriptor record returned by OSAGetDialectInfo depends on the constant specified in the
selectorparameter. All scripting components support the “Dialect Descriptor Constants” (page 2865) constants
for this parameter. Individual scripting components may allow you to specify additional constants.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetHandler
Gets a script ID for the specified script handler from the specified script.

OSAError OSAGetHandler (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 const AEDesc *handlerName,
 OSAID *resultingCompiledScriptID
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

contextID
Specifies the script to get the script handler for. See the OSAID (page 2855) data type.

Functions 2823
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

handlerName
A descriptor record that specifies the name of the handler to get. The descriptor must be of type
typeChar, or of a type that can be coerced to typeChar. The handler name is case-sensitive and
must exactly match the case of the handler name as supplied by the OSAGetHandlerNames function
or the OSAGetSource (page 2830) function. See Apple Event Manager Reference for a description of
the AEDesc data type.

resultingCompiledScriptID
On return, the OSAID for the specified handler, or kOSANullScript if the handler does not exist. If
the handler has no input parameters, it may be executed by calling OSAExecute; if it requires input
parameters, you can create an Apple event that supplies the handler parameters and execute it with
OSAExecuteEvent. You may also copy it to another script with the OSASetHandler function or get
its source code with the OSAGetSource function. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSAGetHandlerNames
Gets a list of all handler names in the specified script as an AEDescList of descriptors of type typeChar.

OSAError OSAGetHandlerNames (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 AEDescList *resultingHandlerNames
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

contextID
See the OSAID (page 2855) data type.

resultingHandlerNames
On return, a list of all handler names, as an AEDescList of descriptors of type typeChar. See Apple
Event Manager Reference for a description of the AEDescList data type.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

2824 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
ASDebugging.h

OSAGetProperty
Gets the value of a specified script property from a specified script.

OSAError OSAGetProperty (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 const AEDesc *variableName,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

contextID
Specifies the script to get the script property from. See the OSAID (page 2855) data type.

variableName
A descriptor record that specifies the name of the property to get. The descriptor must be of type
typeChar, or of a type that can be coerced to typeChar. The variable name is case-sensitive and
must exactly match the case of the variable name as supplied by the OSAGetPropertyNames function
or the OSAGetSource (page 2830) function. See Apple Event Manager Reference for a description of
the AEDesc data type.

resultingScriptValueID
On return, a script ID whose associated data supplies the value for the property specified by the
variableName parameter. Note that the value is returned as an OSAID, not an AEDesc. To get it as
an AEDesc, use the OSACoerceToDesc function; to get it as user-readable text, use OSADisplay (page
2810). See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSAGetPropertyNames
Gets a list of all property names from the specified script.

Functions 2825
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSAGetPropertyNames (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 AEDescList *resultingPropertyNames
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

contextID
Specifies the script to get the property names from. See the OSAID (page 2855) data type.

resultingPropertyNames
On return, a list of all property names, as an AEDescList of descriptors of type typeChar. You can
extract these descriptors from the list and use them as input values to the OSAGetProperty function
or the OSASetProperty (page 2844) function. See Apple Event Manager Reference for a description
of the AEDescList data type.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSAGetResumeDispatchProc
Gets the resume dispatch function currently being used by a scripting component instance during execution
of an AppleScript continue statement or its equivalent

OSAError OSAGetResumeDispatchProc (
 ComponentInstance scriptingComponent,
 AEEventHandlerUPP *resumeDispatchProc,
 SRefCon *refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resumeDispatchProc
On return, a pointer to a UPP to the resume dispatch function for the specified scripting component.
If no resume dispatch function has been registered, OSAGetResumeDispatchProc returns
kOSAUseStandardDispatch (the default).

refCon
On return, a pointer to the reference constant associated with the resume dispatch function.

2826 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetScriptInfo
Obtains information about script data according to the value you pass in the selector parameter.

OSAError OSAGetScriptInfo (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 OSType selector,
 long *result
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script data about which to obtain information. See the OSAID (page 2855) data
type.

selector
A value that determines what kind of information OSAGetScriptInfo returns. The value can be one
of the constants described in “Script Information Selectors” (page 2880). In addition to the standard
constants, the AppleScript component also supports the kASHasOpenHandler constant. For additional
information, see the Version Notes section below.

result
On return, a pointer to the requested information, which you can coerce to the appropriate descriptor
type for the value specified in the selector parameter.

Return Value
A result code. See “Result Codes” (page 2885).

Version Notes
In Mac OS X, if you specify kOSAScriptIsModified for the value of the selector parameter,
OSAGetScriptInfo returns true if the script has been modified and false if it has not.

The following information describes the behavior of OSAGetScriptInfo in versions of the Mac OS prior to
Mac OS X: Although you can specify kOSAScriptIsModifiedwhen you are using the AppleScript component
without generating an error, the current version of AppleScript interprets this request conservatively. The
AppleScript component stores script data in a network of interlocking structures, and running a script can
cause any of these structures to be modified. If you pass a script ID is to OSAGetScriptInfo with
kOSAScriptIsModified as the value of the selector parameter, the AppleScript component returns 1 if
there is any possibility that the script data or related structures may have been modified, and 0 if there is no
possibility that they have been modified.

Functions 2827
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetScriptingComponent
Gets the instance of a scripting component for a specified subtype.

OSAError OSAGetScriptingComponent (
 ComponentInstance genericScriptingComponent,
 ScriptingComponentSelector scriptingSubType,
 ComponentInstance *scriptingInstance
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

scriptingSubType
A subtype code for a scripting component.

scriptingInstance
On return, a pointer to a component instance for the scripting component identified by the
scriptingSubType parameter.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
You can’t use the generic scripting component with component-specific routines. Instead, use an instance
of the specific scripting component, which you can obtain with OSAGetScriptingComponent.

The OSAGetScriptingComponent function returns, in the scriptingInstance parameter, an instance
of the scripting component identified by the scriptingSubType parameter. Each instance of the generic
scripting component keeps track of a single instance of each component subtype, so
OSAGetScriptingComponent always returns the same instance of a specified scripting component that
the generic scripting component uses for standard scripting component routines.

For example, you can use OSAGetScriptingComponent to get the subtype code for the default scripting
component (that is, the scripting component used by the generic scripting component for new scripts). You
can then get an instance of the default scripting component by passing its subtype code to
OSAGetScriptingComponent. Finally, you can pass that instance to OSAScriptingComponentName to
obtain the default scripting component’s name so you can display it to the user.

Similarly, you can pass kAppleScriptSubtype in the scriptingSubType parameter to obtain an instance
of the AppleScript component. This is necessary, for example, to call AppleScript-specific routines such as
ASGetSourceStyles (which is deprecated in Mac OS X version 10.5 in favor of
ASCopySourceAttributes (page 2785)).

Availability
Available in Mac OS X v10.0 and later.

2828 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
OSAGeneric.h

OSAGetScriptingComponentFromStored
Gets the subtype code for a scripting component that created a storage descriptor record.

OSAError OSAGetScriptingComponentFromStored (
 ComponentInstance genericScriptingComponent,
 const AEDesc *scriptData,
 ScriptingComponentSelector *scriptingSubType
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

scriptData
A pointer to either a generic storage descriptor record or a component-specific storage descriptor
record.

scriptingSubType
On return, a pointer to a subtype code identifying the scripting component that created the descriptor
record specified by the scriptData parameter.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSAGetScriptingComponentFromStored function returns, in the scriptingSubType parameter,
the subtype code for the scripting component that created the script data specified by the scriptData
parameter.

The generic scripting component automatically identifies the appropriate scripting component for you when
you use it to call OSALoad. By calling OSAGetScriptingComponentFromStored, you can determine, without
loading a script, which scripting component created the script data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSAGetSendProc
Gets a pointer to the send function that a scripting component is currently using.

Functions 2829
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSAGetSendProc (
 ComponentInstance scriptingComponent,
 OSASendUPP *sendProc,
 SRefCon *refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sendProc
On return, a pointer to the UPP to the send function currently set for the specified scripting component.

refCon
On return, a pointer to the reference constant associated with the send function for the specified
scripting component.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetSource
Decompiles the script data identified by a script ID and obtains the equivalent source data.

OSAError OSAGetSource (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 DescType desiredType,
 AEDesc *resultingSourceData
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent

scriptID
The script ID for the script data to decompile. If you pass kOSANullScript in this parameter,
OSAGetSource returns a null source description (such as an empty text string). See the OSAID (page
2855) data type.

desiredType
The desired descriptor type of the resulting descriptor record, or typeBest if any type will do.

resultingSourceData
A pointer to the resulting descriptor record.

Return Value
A result code. See “Result Codes” (page 2885).

2830 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Discussion
The OSAGetSource function decompiles the script data identified by the specified script ID and returns a
descriptor record containing the equivalent source data. The source data returned need not be exactly the
same as the source data originally passed to OSACompile—for example, white space and formatting might
be different—but it should be a reasonable equivalent suitable for user viewing and editing.

The difference between OSACoerceToDesc and OSAGetSource is that OSAGetSource creates source data
that can be displayed to a user or compiled and executed to generate an appropriate value, whereas
OSACoerceToDesc actually returns the value. For example, if you call OSAGetSource and specify a string
value, it returns the text surrounded by quotation marks (so that it can be properly compiled). If you call
OSACoerceToDesc and specify a string value, it simply returns the text.

The main difference between OSADisplay and OSAGetSource is that OSAGetSource can coerce any form
of script data using a variety of descriptor types, whereas OSADisplay can coerce only script values and
always produces a descriptor record of a text descriptor type.

A scripting component that supports the OSAGetSource function has the kOSASupportsGetSource bit
set in the componentFlags field of its component description record.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAGetStorageType
Retrieves the scripting component subtype from the script trailer appended to the script data in a generic
storage descriptor record.

OSErr OSAGetStorageType (
 AEDataStorage scriptData,
 DescType *dscType
);

Parameters
scriptData

A handle to the script data.

dscType
A pointer to the descriptor type specified in the script data trailer.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSAGetStorageType function retrieves the scripting component subtype from the trailer. If no trailer
can be found, OSAGetStorageType returns the error errOSABadStorageType.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAComp.h

Functions 2831
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAGetSysTerminology
Gets one or more scripting terminology resources from the OSA system.

OSAError OSAGetSysTerminology (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 short terminologyID,
 AEDesc *terminologyList
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. No mode flags are applicable for this function, so
pass the value kOSAModeNull.

terminologyID
terminologyList

On return, one or more terminology resources from the OSA system. These include the built-in
terminology for AppleScript as well as the standard suites, but not the terminology for installed
scripting additions. The terminology may be returned as a single AEDesc of type typeAEUT or as a
list of such descriptors. The internal format of the typeAEUT descriptor is the resource format described
in AEUserTermTypes.r. See Apple Event Manager Reference Apple Event Manager Reference for a
description of the AEDesc data type.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSALoad
Loads script data.

OSAError OSALoad (
 ComponentInstance scriptingComponent,
 const AEDesc *scriptData,
 SInt32 modeFlags,
 OSAID *resultingScriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptData
A pointer to the descriptor record containing the script data to be loaded.

2832 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

modeFlags
Information used by individual scripting components. To avoid setting any mode flags, specify
kOSAModeNull. To indicate that only the minimum script data required to run the script should be
loaded, pass kOSAModePreventGetSource in this parameter.

resultingScriptID
On return, a pointer to the script ID for the compiled script. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSALoad function loads script data and returns a script ID. The generic scripting component uses the
descriptor record in the scriptData parameter to determine which scripting component should load the
script. If the descriptor record is of type typeOSAGenericStorage, the generic scripting component uses
the trailer at the end of the script data to identify the scripting component. If the descriptor record’s type is
the subtype value for another scripting component, the generic scripting component uses the descriptor
type to identify the scripting component.

If you want the script ID returned by OSALoad to identify only the minimum script data required to run the
script and you are sure that you won’t need to display the source data to the user, specify the
kOSAModePreventGetSource flag in the modeFlags parameter.

Scripting components other than the generic scripting component can load script data only if it has been
saved in a descriptor record whose descriptor type matches the scripting component’s subtype.

Script data may change after it has been loaded—for example, if your application allows the user to edit a
script’s source data. To test whether script data has been modified, pass its script ID to OSAGetScriptInfo.
If it has changed, you can call OSAStore again to obtain a handle to the modified script data and save it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSALoadExecute
Loads and executes a script in a single step rather than calling OSALoad and OSAExecute.

OSAError OSALoadExecute (
 ComponentInstance scriptingComponent,
 const AEDesc *scriptData,
 OSAID contextID,
 SInt32 modeFlags,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptData
A pointer to the descriptor record identifying the script data to be loaded and executed.

Functions 2833
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 2855) data type.

modeFlags
Information used by individual scripting components. To avoid setting mode flag values, specify
kOSAModeNull. Other possible mode flags are listed in “Mode Flags” (page 2873).

resultingScriptValueID
A pointer to the script ID for the script value returned. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSALoadExecute function loads script data and executes the resulting compiled script, using the script
context identified by the contextID parameter to maintain state information such as the binding of variables.
After successfully executing the script, OSALoadExecute disposes of the compiled script and returns either
the script ID for the resulting script value or, if execution does not result in a value, the constant
kOSANullScript.

You can control the way in which the scripting component executes a script by adding any of the “Mode
Flags” (page 2873) flags to the modeFlags parameter.

If the result code returned by OSALoadExecute is a general result code, there was some problem in arranging
for the script to be run. If the result code is errOSAScriptError, an error occurred during script execution.
In this case, you can obtain more detailed error information by calling OSAScriptError.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSALoadExecuteFile
Loads a script from the specified file into the specified scripting component, compiles the script if the file is
a text file, and executes the script.

OSAError OSALoadExecuteFile (
 ComponentInstance scriptingComponent,
 const FSRef *scriptFile,
 OSAID contextID,
 SInt32 modeFlags,
 OSAID *resultingScriptValueID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent. See the Component Manager documentation for a
description of the ComponentInstance data type.

2834 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

scriptFile
Identifies the file to load the script from. See the File Manager documentation for a description of the
FSRef data type.

File format is determined by inspection. If the file is a text file, OSALoadExecuteFile uses the
following steps to determine the text encoding:

 ■ If a Unicode BOM is present, that determines the encoding—one of UTF-16BE, UTF-16LE, or UTF-8

 ■ Otherwise, if the file is valid UTF-8, it is presumed to be UTF-8.

 ■ Otherwise, it is assumed to be in the primary encoding.

contextID
The script ID for the context to be used during script execution. The constant kOSANullScript in
this parameter indicates that the scripting component should use its default context. See the
OSAID (page 2855) data type.

modeFlags
Information for use by the scripting component. Can include any of the mode flags that would normally
be sent to the OSACompileExecute (page 2800) (if the file is a text file) and OSALoadExecute (page
2833) functions. For descriptions of the mode flag usage of those functions, see the chapter “Scripting
Components” in “Interapplication Communication” at http://developer.apple.com/documenta-
tion/mac/IAC/IAC-2.html.

resultingScriptValueID
The script ID for the resulting script value. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
This routine is effectively equivalent to callingOSALoadFile (page 2835) followed byOSAExecute (page 2816).
After execution, the compiled source is disposed. Only the resulting value ID is retained.

Availability
Available in Mac OS X v10.3 and later.

Declared In
OSA.h

OSALoadFile
Loads a script from the specified file into the specified scripting component, compiling the script if the file
is a text file.

Functions 2835
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

http://developer.apple.com/documentation/mac/IAC/IAC-2.html
http://developer.apple.com/documentation/mac/IAC/IAC-2.html

OSAError OSALoadFile (
 ComponentInstance scriptingComponent,
 const FSRef *scriptFile,
 Boolean *storable,
 SInt32 modeFlags,
 OSAID *resultingScriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent. See the Component Manager documentation for a
description of the ComponentInstance data type.

scriptFile
Identifies the file to load the script from. See the File Manager documentation for a description of the
FSRef data type.

File format is determined by inspection. If the file is a text file, OSALoadFile uses the following steps
to determine the text encoding:

 ■ If a Unicode BOM is present, that determines the encoding—one of UTF-16BE, UTF-16LE, or UTF-8

 ■ Otherwise, if the file is valid UTF-8, it is presumed to be UTF-8.

 ■ Otherwise, it is assumed to be in the primary encoding.

storable
If storable is not NULL, on return it is set to indicate whether a compiled script can be stored into
the script file using OSAStoreFile (page 2851).

modeFlags
Information for use by the scripting component. Can include any of the mode flags that would normally
be sent to the OSACompile (page 2799) (if the file is a text file) and OSALoad (page 2832) functions. For
descriptions of the mode flag usage of those functions, see the chapter “Scripting Components” in
“Interapplication Communication” at http://developer.apple.com/documentation/mac/IAC/IAC-2.html.

resultingScriptID
The returned script ID for the compiled script. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.3 and later.

Declared In
OSA.h

OSAMakeContext
Gets a script ID for a new script context.

2836 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

http://developer.apple.com/documentation/mac/IAC/IAC-2.html

OSAError OSAMakeContext (
 ComponentInstance scriptingComponent,
 const AEDesc *contextName,
 OSAID parentContext,
 OSAID *resultingContextID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

contextName
A pointer to the name of the new context. Some scripting components may use context names for
semantic purposes. If the value of this parameter is typeNull, OSAMakeContext creates an unnamed
context.

parentContext
The existing context from which the new context inherits bindings. If the value of this parameter is
kOSANullScript, the new context does not inherit bindings from any other context.

resultingContextID
A pointer to the script ID for the resulting script context. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSAMakeContext function creates a new script context that you may pass to OSAExecute or
OSAExecuteEvent. The new script context inherits the bindings of the script context specified in the
parentContext parameter.

If you call OSAMakeContext using an instance of the generic scripting component, the generic scripting
component uses the default scripting component to create the new script context.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSARealToGenericID
Converts a component-specific script ID to the corresponding generic script ID.

OSAError OSARealToGenericID (
 ComponentInstance genericScriptingComponent,
 OSAID *theScriptID,
 ComponentInstance theExactComponent
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

Functions 2837
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

theScriptID
A pointer to the component-specific script ID that you want to convert. You must have obtained this
script ID from the scripting component instance passed in the theExactComponent parameter. The
OSARealToGenericID function returns, in this parameter, the generic script ID that corresponds to
the component-specific script ID that you pass in this parameter. See the OSAID (page 2855) data type.

theExactComponent
A scripting component instance returned by a generic scripting component routine.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSARealToGenericID function performs the reverse of the task performed by OSAGenericToRealID.
Given a component-specific script ID and an exact scripting component instance (that is, the component
instance that created the component-specific script ID), the OSARealToGenericID function returns the
corresponding generic script ID. The OSARealToGenericID function modifies the script ID in place, changing
the component-specific script ID passed in the theScriptID parameter to the corresponding generic script
ID.

You’ll need to do this if you have obtained a component-specific script ID using an exact scripting component
instance and you want to refer to the same script in calls that use an instance of the generic scripting
component. You can’t use a component-specific script ID with the generic scripting component.

The script ID you pass in the theScriptID parameter must be a component-specific script ID obtained from
a scripting component instance known to the generic scripting component. You can obtain such an instance
by calling either OSAGetScriptingComponent or OSAGenericToRealID.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSARemoveStorageType
Removes a trailer from the script data in a generic storage descriptor record

OSErr OSARemoveStorageType (
 AEDataStorage scriptData
);

Parameters
scriptData

A handle to the script data.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSARemoveStorageType function removes an existing trailer (reducing the handle's size). If no trailer
can be found, then the handle is not modified, and noErr is returned.

Availability
Available in Mac OS X v10.0 and later.

2838 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
OSAComp.h

OSAScriptError
Gets information about errors that occur during script execution.

OSAError OSAScriptError (
 ComponentInstance scriptingComponent,
 OSType selector,
 DescType desiredType,
 AEDesc *resultingErrorDescription
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

selector
A value that determines what OSAScriptError returns. The value can be one of the constants
described in “OSAScriptError Selectors” (page 2877).

desiredType
The desired descriptor type of the resulting descriptor record. The description that follows explains
how this is determined by the value passed in the selector parameter.

resultingErrorDescription
On return, a pointer to the resulting descriptor record.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
Whenever the OSAExecute function returns the error errOSAScriptError, you can use the
OSAScriptError function to get more specific information about the error from the scripting component
that encountered it. (This information remains available only until the next call to the same scripting
component.) The information returned by OSAScriptError depends on the value passed in the selector
parameter, which also determines the descriptor type you should specify in the desiredType parameter.

Every scripting component should support calls to OSAScriptError that pass kOSAErrorNumber,
kOSAErrorMessage, or kOSAErrorPartialResult in the selector parameter.

Some scripting components may also support calls that pass other values in the selector parameter, including
kOSAErrorRange, which provides start and end positions delimiting the errant expression in the source
data. If the value of the selector parameter is kOSAErrorRange, the value of desiredType must be
typeOSAErrorRange.

If the value of the selector parameter is kOSAErrorNumber, scripting components may return, in the
resultingErrorDescription parameter, one of the general error codes described in “Result Codes” (page
2885).

If you call OSAScriptError using an instance of the generic scripting component, the generic scripting
component uses the same instance of a scripting component that it used for the previous call.

Functions 2839
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAScriptingComponentName
Gets the name of a scripting component.

OSAError OSAScriptingComponentName (
 ComponentInstance scriptingComponent,
 AEDesc *resultingScriptingComponentName
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resultingScriptingComponentName
On return, a pointer to the name of the scripting component; or, if the component is the generic
scripting component, the name of the default scripting component.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSAScriptingComponentName function returns a descriptor record that you can coerce to a text
descriptor type such as typeChar. This can be useful if you want to display the name of the scripting language
in which the user should write a new script.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetActiveProc
Sets the active function that a scripting component calls periodically while executing a script.

OSAError OSASetActiveProc (
 ComponentInstance scriptingComponent,
 OSAActiveUPP activeProc,
 SRefCon refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

2840 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

activeProc
A pointer to the active function to set. If the value of this parameter is NULL, OSASetActiveProc
sets the scripting component’s default active function.

refCon
A reference constant to be associated with the active function. This parameter can be used for many
purposes; for example, it could contain a handle to data used by the active function.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSASetActiveProc function allows your application to set a pointer to the active function called
periodically by the scripting component during script execution. To get time periodically during script
execution for its own purposes, your application can substitute its own active function for use by the scripting
component. If you do not specify an active function, the scripting component uses its default active function,
which allows a user to cancel script execution.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetCreateProc
Specifies a create function that a scripting component should use instead of the Apple Event Manager’s
AECreateAppleEvent function when creating Apple events.

OSAError OSASetCreateProc (
 ComponentInstance scriptingComponent,
 OSACreateAppleEventUPP createProc,
 SRefCon refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

createProc
A universal procedure pointer to the create function to set.

refCon
A reference constant.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
To gain control over the creation and addressing of Apple events, your application can provide its own create
function for use by scripting components. To set a new create function, call the OSASetCreateProc function;
to get the current create function, call OSAGetCreateProc.

Availability
Available in Mac OS X v10.0 and later.

Functions 2841
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
OSA.h

OSASetCurrentDialect
Sets the current dialect for a scripting component.

OSAError OSASetCurrentDialect (
 ComponentInstance scriptingComponent,
 short dialectCode
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

dialectCode
The code for the dialect to be set.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetDefaultScriptingComponent
Sets the default scripting component associated with an instance of the generic scripting component.

OSAError OSASetDefaultScriptingComponent (
 ComponentInstance genericScriptingComponent,
 ScriptingComponentSelector scriptingSubType
);

Parameters
genericScriptingComponent

A component instance for the generic scripting component, created by a prior call to the Component
Manager function OpenDefaultComponent or OpenComponent.

scriptingSubType
The subtype code for the scripting component you want to set as the default.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSASetDefaultScriptingComponent function sets the default scripting component for the specified
instance of the generic scripting component to the scripting component identified by the scriptingSubType
parameter.

2842 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Each instance of the generic scripting component has its own default scripting component, which is initially
AppleScript. You can use OSAGetDefaultScriptingComponent to get the current default scripting
component for an instance of the generic scripting component.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSASetDefaultTarget
Sets the default target application for Apple events.

OSAError OSASetDefaultTarget (
 ComponentInstance scriptingComponent,
 const AEAddressDesc *target
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

target
The address of the application that is being made the default application. If you pass a null descriptor
record in this parameter, the scripting component treats the current process as the default target.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
Scripting components that support manipulation of the create and send functions also support the
OSASetDefaultTarget function. The OSASetDefaultTarget function establishes the default target
application for Apple event sending and the default application from which the scripting component should
obtain terminology information. For example, AppleScript statements that refer to the default application
do not need to be enclosed in tell/end tell statements.

If your application doesn’t call this function, or if you pass a null descriptor record in the target parameter,
the scripting component treats the current process (that is, the application that calls OSAExecute or related
functions) as the default target application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetHandler
Sets a specified script handler in the specified script to the supplied handler.

Functions 2843
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSASetHandler (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 const AEDesc *handlerName,
 OSAID compiledScriptID
);

Parameters
scriptingComponent

Identifies the current scripting component. See the Component Manager documentation for a
description of the ComponentInstance data type.

modeFlags
Information for use by the scripting component. Pass the value kOSAModeDontDefine to prevent a
handler from being created if it doesn't already exist. Otherwise, pass kOSAModeNull to avoid setting
mode flag values (no other flags are applicable for this function).

contextID
Specifies the script to set the script handler for. See OSAID (page 2855) for a description of the OSAID
data type.

handlerName
A descriptor record that specifies the handler to set. The descriptor must be of type typeChar, or of
a type that can be coerced to typeChar. If the handler does not already exist, it is created, unless
you pass the value kOSAModeDontDefine for the modeFlags parameter. The handler name is
case-sensitive and must exactly match the case of the handler name as supplied by the
OSAGetHandlerNames function or theOSAGetSource (page 2830) function. See Apple Event Manager
Reference for a description of the AEDesc data type.

compiledScriptID
The OSAID value to set the handler to, normally obtained by a previous call to OSAGetHandler. Any
other value will return an error value of errOSAInvalidID. Note that a script compiled by OSACompile
is not itself a handler. See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSASetProperty
Sets the value of a script property in a specified script, creating the property if it does not already exist.

2844 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSASetProperty (
 ComponentInstance scriptingComponent,
 SInt32 modeFlags,
 OSAID contextID,
 const AEDesc *variableName,
 OSAID scriptValueID
);

Parameters
scriptingComponent

See the Component Manager documentation for a description of the ComponentInstance data
type.

modeFlags
Information for use by the scripting component. Pass the value kOSAModeDontDefine to prevent a
property from being created if it doesn't already exist in the specified script. Otherwise, pass
kOSAModeNull to avoid setting mode flag values (no other flags are applicable for this function).

contextID
Specifies the script to set the script property for. See the OSAID (page 2855) data type.

variableName
A descriptor record that specifies the name of the property to set. The descriptor must be of type
typeChar, or of a type that can be coerced to typeChar. The variable name is case-sensitive and
must exactly match the case of the variable name as supplied by the OSAGetPropertyNames function
or the OSAGetSource (page 2830) function. See Apple Event Manager Reference for a description of
the AEDesc data type.

scriptValueID
A script ID whose associated data should be used to set the value for the property specified by
variableName. Note that the value is specified by an OSAID, not an AEDesc. You can set a property
to a value returned from script execution (from the OSAExecute function), extracted from another
property (with the OSAGetProperty function), or converted from an AEDesc (by the
OSACoerceFromDesc function). See the OSAID (page 2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.0 and later.

Declared In
ASDebugging.h

OSASetResumeDispatchProc
Sets the resume dispatch function called by a scripting component during execution of an AppleScript
continue statement or its equivalent.

Functions 2845
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSASetResumeDispatchProc (
 ComponentInstance scriptingComponent,
 AEEventHandlerUPP resumeDispatchProc,
 SRefCon refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

resumeDispatchProc
A UPP to the resume dispatch function. You can specify one of the following in this parameter:

 ■ a pointer to a resume dispatch function

 ■ the kOSAUseStandardDispatch constant, which causes the Apple Event Manager to dispatch
the event using standard Apple event dispatching (the handler registered in the application with
AEInstallEventHandler is used)

 ■ the kOSANoDispatch constant, which tells the Apple Event Manager that the processing of the
Apple event is complete and that no dispatching should occur

refCon
A reference constant. You can pass the constant kOSADontUsePhac in this parameter, as described
in the Discussion section below.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSASetResumeDispatchProc function sets the resume dispatch function that the specified instance
of a scripting component calls during execution of an AppleScript continue statement or its equivalent. The
resume dispatch function should dispatch the event to the application’s standard handler for that event.

If you are using a general handler for preliminary processing of Apple events, and if you can rely on standard
Apple event dispatching to dispatch the event correctly, you don’t need to provide a resume dispatch function.
Instead, you can specify kOSAUseStandardDispatch as the value of the resumeDispatchProc parameter
and the constant kOSADontUsePhac as the value of the refCon parameter. This causes the Apple Event
Manager to use standard Apple event dispatching except that it bypasses your application’s special handler
dispatch table and thus won’t call your predispatch Apple event handler recursively. (A predispatch handler
is called immediately before the Apple Event Manager dispatches an event.)

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetScriptInfo
Sets information about script data according to the value you pass in the selector parameter.

2846 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSASetScriptInfo (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 OSType selector,
 long value
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script data whose information is to be set. See the OSAID (page 2855) data type.

selector
A value that determines which information OSASetScriptInfo sets.

The value can be one of the constants described in “Script Information Selectors” (page 2880). For more
information, see the Version Notes section below.

In Mac OS X, the AppleScript component does not set a value.

value
The value to set.

In Mac OS X, the AppleScript component does not set a value.

Return Value
A result code. See “Result Codes” (page 2885).

Version Notes
In Mac OS X, if you specify kOSAScriptIsModified for the value of the selector parameter, it is ignored,
and no value is set.

The following information describes the behavior of OSASetScriptInfo in versions of the Mac OS prior to
Mac OS X: The OSASetScriptInfo function sets script information according to the value you pass in the
selector parameter. If you use the kOSAScriptIsModified constant, OSASetScriptInfo sets a value
that indicates whether the script data has been modified since it was created or passed to OSALoad. Some
scripting components may provide additional constants.

For related information, see the OSAGetScriptInfo (page 2827) function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASetSendProc
Specifies a send function that a scripting component should use instead of the Apple Event Manger’s AESend
function when sending Apple events.

Functions 2847
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAError OSASetSendProc (
 ComponentInstance scriptingComponent,
 OSASendUPP sendProc,
 SRefCon refCon
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

sendProc
A universal procedure pointer (UPP) to the send function to set.

refCon
A reference constant.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The send function provided by your application can perform almost any action instead of or in addition to
sending Apple events; for example, it can be used to facilitate concurrent script execution. To set a new send
function, call the OSASetSendProc function; to get the current send function, call OSAGetSendProc.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAStartRecording
Turns on Apple event recording and records subsequent Apple events in a compiled script.

OSAError OSAStartRecording (
 ComponentInstance scriptingComponent,
 OSAID *compiledScriptToModifyID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

compiledScriptToModifyID
A pointer to the script ID for the compiled script in which to record. See the OSAID (page 2855) data
type.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSAStartRecording function turns on Apple event recording. Subsequent Apple events are recorded
(that is, appended to any existing statements) in the compiled script specified by the
compiledScriptToModifyID parameter. If the source data for the compiled script is currently displayed
in a script editor’s window, the script editor’s handler for the Recorded Text event should display each new

2848 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

statement in the window as it is recorded. Users should not be able to change a script that is open in a script
editor window while it is being recorded into. Recording continues until a call to OSAStopRecording turns
recording off.

To record into a new compiled script, pass the constant kOSANullScript in the
compiledScriptToModifyID parameter. The scripting component should respond by creating a new
compiled script and recording into that.

The generic scripting component uses its default scripting component to create and record into a new
compiled script.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSAStopRecording
Turns off Apple event recording.

OSAError OSAStopRecording (
 ComponentInstance scriptingComponent,
 OSAID compiledScriptID
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

compiledScriptID
A script ID for the compiled script into which Apple events are being recorded. See the OSAID (page
2855) data type.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSAStopRecording function turns off recording. If the script is not currently open in a script editor
window, the compiledScriptToModifyID parameter supplied to OSAStartRecording is then augmented
to contain the newly recorded statements. If the script is currently open in a script editor window, the script
data that corresponds to the compiledScriptToModifyID parameter supplied to OSAStartRecording
is updated continuously until the client application calls OSAStopRecording.

If the compiled script identified by the script ID in the compiledScriptID parameter is not being recorded
into or recording is not currently on, OSAStopRecording returns noErr.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

Functions 2849
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSAStore
Gets a handle to script data in the form of a storage descriptor record.

OSAError OSAStore (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 DescType desiredType,
 SInt32 modeFlags,
 AEDesc *resultingScriptData
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent.

scriptID
The script ID for the script data for which to obtain a data handle.

desiredType
The desired type of the descriptor record to be returned. If you want to store the script data in the
form used by a generic storage descriptor record, specify typeOSAGenericStorage.

modeFlags
Information used by individual scripting components. To avoid setting any mode flags, specify
kOSAModeNull. To indicate that only the minimum script data required to run the script should be
returned, pass kOSAModePreventGetSource in this parameter. (In this case the script data returned
is not identical to the compiled script data and can’t be used to generate source data.) If the scriptID
parameter identifies a script context, you can pass kOSAModeDontStoreParent in this parameter
to store the script context without storing its parent context.

resultingScriptData
On return, a pointer to the resulting descriptor record.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
The OSAStore function writes script data to a descriptor record so that the data can later be saved in a
resource or written to the data fork of a document. You can then reload the data for the descriptor record
as a compiled script (although possibly with a different script ID) by passing the descriptor record to OSALoad.

If you want the returned script data to be as small as possible and you are sure that you won’t need to display
the source data to the user, specify the kOSAModePreventGetSource flag in the modeFlags parameter. If
the scriptID parameter identifies a script context and you don’t want the returned script data to include
the associated parent context, specify the kOSAModeDontStoreParent flag in the modeFlags parameter.

The desired type is either typeOSAGenericStorage (for a generic storage descriptor record) or a specific
scripting component subtype value (for a component-specific storage descriptor record).

To store either a generic storage descriptor record or a component-specific storage descriptor record with
your application’s resources, use 'scpt' as the resource type. The generic scripting component subtype,
the generic storage descriptor type, and the resource type for stored script data all have the same value,
though they serve different purposes.

Availability
Available in Mac OS X v10.0 and later.

2850 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
OSA.h

OSAStoreFile
Stores a script into the specified file.

OSAError OSAStoreFile (
 ComponentInstance scriptingComponent,
 OSAID scriptID,
 DescType desiredType,
 SInt32 modeFlags,
 const FSRef *scriptFile
);

Parameters
scriptingComponent

A component instance created by a prior call to the Component Manager function
OpenDefaultComponent or OpenComponent. See the Component Manager documentation for a
description of the ComponentInstance data type.

scriptID
Specifies the script to store. See the OSAID (page 2855) data type.

desiredType
Specifies how the script should be stored. The desired type is either typeOSAGenericStorage (for
a generic storage descriptor record) or a specific scripting component subtype value (for a
component-specific storage descriptor record).

modeFlags
Information used by individual scripting components. To avoid setting any mode flags, specify
kOSAModeNull. To indicate that only the minimum script data required to run the script should be
stored, pass kOSAModePreventGetSource in this parameter. (In this case the stored script data is
not identical to the compiled script data and can't be used to generate source data.) If the scriptID
parameter identifies a script context, you can pass kOSAModeDontStoreParent in this parameter
to store the script context without storing its parent context.

scriptFile
Identifies the file to store the script into. See the File Manager documentation for a description of the
FSRef data type.

Return Value
A result code. See “Result Codes” (page 2885).

Availability
Available in Mac OS X v10.3 and later.

Declared In
OSA.h

Functions 2851
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Callbacks

Your application can provide alternative active, send, and create functions for use by scripting components
during script execution. All scripting components support routines that allow you to set and get the current
active function called periodically by the scripting component during script execution. Some scripting
components also support routines that allow you to set and get the current send and create functions used
by the scripting component when it creates and sends Apple events during script execution.

OSAActiveProcPtr
Defines a pointer to an application-defined active function that performs periodic tasks during script
compilation such as checking for Command-period, spinning the cursor, and checking for system-level errors.

typedef OSErr (*OSAActiveProcPtr) (
 long refCon
);

If you name your function MyOSAActiveProc, you would declare it like this:

OSErr MyOSAActiveProc (
 long refCon
);

Parameters
refCon

A reference constant.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
Every scripting component calls an active function periodically during script compilation and execution and
provides routines that allow your application to set or get the pointer to the active function.

If you don’t set an alternative active function for a scripting component, it uses its own default active function.
A scripting component’s default active function allows a user to cancel script execution by pressing
Command-period and calls WaitNextEvent to give other processes time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACreateAppleEventProcPtr
Defines a pointer to an application-defined create function that allows you to gain control over the creation
and addressing of Apple events.

2852 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

typedef OSErr (*OSACreateAppleEventProcPtr)
(
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 const AEAddressDesc * target,
 short returnID,
 long transactionID,
 AppleEvent * result,
 long refCon
);

If you name your function MyOSACreateAppleEventProc, you would declare it like this:

OSErr MyOSACreateAppleEventProc (
 AEEventClass theAEEventClass,
 AEEventID theAEEventID,
 const AEAddressDesc * target,
 short returnID,
 long transactionID,
 AppleEvent * result,
 long refCon
);

Parameters
theAEEventClass

The event class of the Apple event to create.

theAEEventID
The event ID of the Apple event to create.

target
A pointer to an address descriptor. This descriptor identifies the target (or server) application for the
Apple event.

returnID
The return ID for the created Apple event.

transactionID
The transaction ID for this Apple event. A transaction is a series of Apple events that are sent back
and forth between the client and server applications, beginning with the client’s initial request for a
service. All Apple events that are part of a transaction must have the same transaction ID. The constant
kAnyTransactionID specifies that the Apple event is not one of a series of interdependent Apple
events.

result
A pointer to an Apple event. On successful return, this parameter should point to the new Apple
event. On error, this should be a NULL descriptor.

refCon
A reference constant.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
Every scripting component calls a create function whenever it creates an Apple event during script execution
and provides routines that allow you to set or get the pointer to the create function.

Callbacks 2853
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Providing your own create function can be useful, for example, if your application needs to add its own
transaction code to the event. An alternative create function takes the same parameters as the
AECreateAppleEvent function plus a reference constant.

If you don’t set an alternative create function for a scripting component, it uses the standard Apple Event
Manager function AECreateAppleEvent, which it calls with its own default parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASendProcPtr
Defines a pointer to an application-defined send function that performs almost any action instead of or in
addition to sending Apple events.

typedef OSErr (*OSASendProcPtr) (
 const AppleEvent * theAppleEvent,
 AppleEvent * reply,
 AESendMode sendMode,
 AESendPriority sendPriority,
 long timeOutInTicks,
 AEIdleUPP idleProc,
 AEFilterUPP filterProc,
 long refCon
);

If you name your function MyOSASendProc, you would declare it like this:

OSErr MyOSASendProc (
 const AppleEvent * theAppleEvent,
 AppleEvent * reply,
 AESendMode sendMode,
 AESendPriority sendPriority,
 long timeOutInTicks,
 AEIdleUPP idleProc,
 AEFilterUPP filterProc,
 long refCon
);

Parameters
theAppleEvent

A pointer to the Apple event.

reply
A pointer to a reply Apple event.

sendMode
Specifies various options for how the Apple event should be handled.

sendPriority
A value that specifies the priority for processing the Apple event.

2854 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

timeOutInTicks
If the reply mode specified in the sendMode parameter is kAEWaitReply, or if a return receipt is
requested, this parameter specifies the length of time (in ticks) that the client application is willing
to wait for the reply or return receipt before timing out. If this parameter is kNoTimeOut, the Apple
event never times out.

idleProc
A universal procedure pointer to a function that handles events (such as update, operating-system,
activate, and null events) received while waiting for a reply.

filterProc
A universal procedure pointer to a function that determines which incoming Apple events should be
received while the handler waits for a reply or a return receipt. This parameter may be NULL.

refCon
A reference constant.

Return Value
A result code. See “Result Codes” (page 2885).

Discussion
Every scripting component calls a send function whenever it sends an Apple event during script execution
and provides routines that allow you to set or get the pointer to the send function.

For example, before sending an Apple event, an alternative send function can modify the event or save a
copy of the event. An alternative send function takes the same parameters as the AESend function plus a
reference constant.

If you don’t set an alternative send function for a scripting component, it uses the standard Apple Event
Manager function AESend, which it calls with its own default parameters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

Data Types

OSAID
Used by a scripting component to keep track of script data in memory.

typedef unsigned long OSAID;

Discussion
A scripting component assigns a script ID when it creates the associated script data (that is, a compiled script,
a script value, a script context, or other kinds of script data supported by a scripting component) or loads it
into memory. The scripting routines that create, load, compile, and execute scripts all return script IDs, and
your application must pass valid script IDs to the other routines that manipulate scripts. A script ID remains
valid until a client application calls OSADispose to reclaim the memory used for the corresponding script
data.

Data Types 2855
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

GenericID
Represents the ID for generic scripting components.

typedef OSAID GenericID;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

OSAError
Represents an OSA result code.

typedef ComponentResult OSAError;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

ScriptingComponentSelector
typedef OSType ScriptingComponentSelector;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSAGeneric.h

StatementRange
struct StatementRange {
 unsigned long startPos;
 unsigned long endPos;
};
typedef struct StatementRange StatementRange;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

2856 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
OSA.h

OSAActiveUPP
Defines a universal procedure pointer (UPP) to an application-defined active function.

typedef OSAActiveProcPtr OSAActiveUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSACreateAppleEventUPP
Defines a universal procedure pointer (UPP) to an application-defined Apple event creation function.

typedef OSACreateAppleEventProcPtr OSACreateAppleEventUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSASendUPP
Defines a universal procedure pointer (UPP) to an application-defined send function.

typedef OSASendProcPtr OSASendUPP;

Availability
Available in Mac OS X v10.0 and later.

Declared In
OSA.h

OSADebugCallFrameRef
typedef OSAID OSADebugCallFrameRef;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

Data Types 2857
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

OSADebugSessionRef
typedef OSAID OSADebugSessionRef;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
OSA.h

2858 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Constants

cClosure
enum {
 cClosure = 'clsr',
 cRawData = 'rdat',
 cStringClass = typeChar,
 cNumber = 'nmbr',
 cListElement = 'celm',
 cListOrRecord = 'lr ',
 cListOrString = 'ls ',
 cListRecordOrString = 'lrs ',
 cNumberOrString = 'ns ',
 cNumberOrDateTime = 'nd ',
 cNumberDateTimeOrString = 'nds ',
 cAliasOrString = 'sf ',
 cSeconds = 'scnd',
 typeSound = 'snd ',
 enumBooleanValues = 'boov',
 kAETrue = typeTrue,
 kAEFalse = typeFalse,
 enumMiscValues = 'misc',
 kASCurrentApplication = 'cura',
 formUserPropertyID = 'usrp'
};

cCoercion
enum {
 cCoercion = 'coec',
 cCoerceUpperCase = 'txup',
 cCoerceLowerCase = 'txlo',
 cCoerceRemoveDiacriticals = 'txdc',
 cCoerceRemovePunctuation = 'txpc',
 cCoerceRemoveHyphens = 'txhy',
 cCoerceOneByteToTwoByte = 'txex',
 cCoerceRemoveWhiteSpace = 'txws',
 cCoerceSmallKana = 'txsk',
 cCoerceZenkakuhankaku = 'txze',
 cCoerceKataHiragana = 'txkh',
 cZone = 'zone',
 cMachine = 'mach',
 cAddress = 'addr',
 cRunningAddress = 'radd',
 cStorage = 'stor'
};

cHandleBreakpoint
enum {
 cHandleBreakpoint = 'brak'

Constants 2859
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

};

Component Flags
Indicate which features a scripting component supports.

enum {
 kOSASupportsCompiling = 0x0002,
 kOSASupportsGetSource = 0x0004,
 kOSASupportsAECoercion = 0x0008,
 kOSASupportsAESending = 0x0010,
 kOSASupportsRecording = 0x0020,
 kOSASupportsConvenience = 0x0040,
 kOSASupportsDialects = 0x0080,
 kOSASupportsEventHandling = 0x0100
};

Constants
kOSASupportsCompiling

Set if the scripting component supports the functions described in “Compiling Scripts” (page 2778).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsGetSource
Set if the scripting component supports the OSAGetSource function.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsAECoercion
Set if the scripting component supports the OSACoerceFromDesc and OSACoerceToDesc functions.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsAESending
Set if the scripting component supports the functions described in “Manipulating the Create and
Send Functions” (page 2779).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsRecording
Set if the scripting component supports the OSAStartRecording (page 2848)and
OSAStopRecording (page 2849) functions.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsConvenience
Set if the script component supports the OSALoadExecute (page 2833), OSACompileExecute (page
2800), and OSADoScript (page 2813) functions.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

2860 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

kOSASupportsDialects
Set if the scripting component supports the OSASetCurrentDialect (page 2842),
OSAGetCurrentDialect (page 2821), OSAAvailableDialectCodeList (page 2796),
OSAGetDialectInfo (page 2822), and OSAAvailableDialects (page 2797) functions.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASupportsEventHandling
Set if the scripting component supports the event handling functions described in “Using Script
Contexts to Handle Apple Events” (page 2781).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Discussion
Your application can use the Component Manager to find a scripting component that supports a specific
group of functions or to determine whether a particular scripting component supports a specific group of
functions. Each of these flags identifies one of these groups of functions. To specify one or more groups of
functions for the Component Manager, use these constants to set the equivalent bits in the componentFlags
field of a component description record.

Declared In
OSA.h

Considerations Flags
enum {
 kAECase = 'case',
 kAEDiacritic = 'diac',
 kAEWhiteSpace = 'whit',
 kAEHyphens = 'hyph',
 kAEExpansion = 'expa',
 kAEPunctuation = 'punc',
 kAEZenkakuHankaku = 'zkhk',
 kAESmallKana = 'skna',
 kAEKataHiragana = 'hika',
 kASConsiderReplies = 'rmte',
 kASNumericStrings = 'nume',
 enumConsiderations = 'cons'
};

Constants
kASNumericStrings

Should strings be considered as numbers?

Available in Mac OS X v10.4 and later.

Declared in ASRegistry.h.

Version Notes
The constant kASNumericStrings is available starting with Mac OS X version 10.4.

Declared In
ASRegistry.h

Constants 2861
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Considerations Bit Masks
Specify settings for string comparisons.

enum {
 kAECaseConsiderMask = 0x00000001,
 kAEDiacriticConsiderMask = 0x00000002,
 kAEWhiteSpaceConsiderMask = 0x00000004,
 kAEHyphensConsiderMask = 0x00000008,
 kAEExpansionConsiderMask = 0x00000010,
 kAEPunctuationConsiderMask = 0x00000020,
 kASConsiderRepliesConsiderMask = 0x00000040,
 kASNumericStringsConsiderMask = 0x00000080,
 kAECaseIgnoreMask = 0x00010000,
 kAEDiacriticIgnoreMask = 0x00020000,
 kAEWhiteSpaceIgnoreMask = 0x00040000,
 kAEHyphensIgnoreMask = 0x00080000,
 kAEExpansionIgnoreMask = 0x00100000,
 kAEPunctuationIgnoreMask = 0x00200000,
 kASConsiderRepliesIgnoreMask = 0x00400000,
 kASNumericStringsIgnoreMask = 0x00800000,
 enumConsidsAndIgnores = 'csig'
};

Constants
kASNumericStringsConsiderMask

If bit at this position is set, consider strings to represent numerical values for comparison. For example,
compare the string “1.01” as if it were the number 1.01.

Available in Mac OS X v10.4 and later.

Declared in ASRegistry.h.

kASNumericStringsIgnoreMask
If bit at this position is set, do not compare strings as numeric values.

Available in Mac OS X v10.4 and later.

Declared in ASRegistry.h.

Discussion
AppleScript has various settings for string comparisons, such as whether to consider or ignore capitalization.
When your application receives an Apple event from AppleScript, it contains an attribute with the keyword
enumConsidsAndIgnores. You can extract the consideration bit information from that attribute as
typeSInt32, then use the bit masks in this enum to determine which considering and ignoring flags are
currently set. You can use that information to conduct comparisons with the same criteria currently in use
by AppleScript.

Version Notes
The constants kASNumericStringsConsiderMask and kASNumericStringsIgnoreMask are available
starting with Mac OS X version 10.4.

Declared In
ASRegistry.h

2862 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

cString
enum {
 cString = cStringClass
};

Current Dialect Constants
enum {
 kOSASelectSetCurrentDialect = 0x0701,
 kOSASelectGetCurrentDialect = 0x0702,
 kOSASelectAvailableDialects = 0x0703,
 kOSASelectGetDialectInfo = 0x0704,
 kOSASelectAvailableDialectCodeList = 0x0705
};

Discussion
AppleScript is designed so that scripts can be displayed in different dialects, which are representations of
AppleScript that resemble human languages or programming languages. While dialects are supported, they
are not particularly useful because no currently available OSA language supports dialects other than English.

Date and Time Constants
enum {
 pASWeekday = 'wkdy',
 pASMonth = 'mnth',
 pASDay = 'day ',
 pASYear = 'year',
 pASTime = 'time',
 pASDateString = 'dstr',
 pASTimeString = 'tstr',
 cMonth = pASMonth,
 cJanuary = 'jan ',
 cFebruary = 'feb ',
 cMarch = 'mar ',
 cApril = 'apr ',
 cMay = 'may ',
 cJune = 'jun ',
 cJuly = 'jul ',
 cAugust = 'aug ',
 cSeptember = 'sep ',
 cOctober = 'oct ',
 cNovember = 'nov ',
 cDecember = 'dec '
};

Default Initialization Values
Initialization constants passed to ASInit function.

Constants 2863
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

enum {
 kASDefaultMinStackSize = 4 * 1024,
 kASDefaultPreferredStackSize = 16 * 1024,
 kASDefaultMaxStackSize = 16 * 1024,
 kASDefaultMinHeapSize = 4 * 1024,
 kASDefaultPreferredHeapSize = 16 * 1024,
 kASDefaultMaxHeapSize = 32L * 1024 * 1024
};

Constants
kASDefaultMinStackSize

Represents the default value for the minimum size for the portion of the application’s heap used by
the AppleScript component’s application-specific stack.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASDefaultPreferredStackSize
Represents the default value for the preferred size for the portion of the application’s heap used by
the AppleScript component’s application-specific stack.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASDefaultMaxStackSize
Represents the default value for the maximum size for the portion of the application’s heap used by
the AppleScript component’s application-specific stack.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASDefaultMinHeapSize
Represents the default value for the minimum size for the portion of the application’s heap used by
the AppleScript component’s application-specific heap. (See Version Notes section.)

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASDefaultPreferredHeapSize
Represents the default value for the preferred size for the portion of the application’s heap used by
the AppleScript component’s application-specific heap. (See Version Notes section.)

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASDefaultMaxHeapSize
Represents the default value for the maximum size for the portion of the application’s heap used by
the AppleScript component’s application-specific heap. (See Version Notes section.)

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

Discussion
You can pass these constants to the ASInit (page 2788) function to use the default values when initializing
the AppleScript component. These values are also used if ASInit is not called explicitly, or if any of ASInit's
parameters are zero.

Version Notes
Starting in Mac OS X version 10.5, heap size parameter values are ignored—AppleScript's heap will grow as
large as needed.

2864 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Declared In
AppleScript.h

Dialect Descriptor Constants
Define the descriptor type and keywords for descriptor records describing the dialects supported by a scripting
component.

enum {
 typeOSADialectInfo = 'difo',
 keyOSADialectName = 'dnam',
 keyOSADialectCode = 'dcod',
 keyOSADialectLangCode = 'dlcd',
 keyOSADialectScriptCode = 'dscd'
};

Constants
typeOSADialectInfo

The descriptor type for each item in list returned by OSAAvailableDialects.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

keyOSADialectName
Used with a descriptor record of any text type, such as type typeChar.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

keyOSADialectCode
Used with a descriptor record of type typeShortInteger.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

keyOSADialectLangCode
Used with a descriptor record of type typeShortInteger.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

keyOSADialectScriptCode
Used with a descriptor record of type typeShortInteger.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Discussion
These constants define the descriptor type for each item in the list returned by OSAAvailableDialects
and the keywords for descriptor records of that type. The keyword constants can also be used in the selector
parameter of OSAGetDialectInfo to obtain information about the dialects supported by a scripting
component.

Constants 2865
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Generic Scripting Component Selectors
enum {
 kGSSSelectGetDefaultScriptingComponent = 0x1001,
 kGSSSelectSetDefaultScriptingComponent = 0x1002,
 kGSSSelectGetScriptingComponent = 0x1003,
 kGSSSelectGetScriptingComponentFromStored = 0x1004,
 kGSSSelectGenericToRealID = 0x1005,
 kGSSSelectRealToGenericID = 0x1006,
 kGSSSelectOutOfRange = 0x1007
};

Global Properties
enum {
 pASIt = 'it ',
 pASMe = 'me ',
 pASResult = 'rslt',
 pASSpace = 'spac',
 pASReturn = 'ret ',
 pASTab = 'tab ',
 pASPi = 'pi ',
 pASParent = 'pare',
 kASInitializeEventCode = 'init',
 pASPrintLength = 'prln',
 pASPrintDepth = 'prdp',
 pASTopLevelScript = 'ascr'
};

kASAdd
enum {
 kASAdd = '+ ',
 kASSubtract = '- ',
 kASMultiply = '* ',
 kASDivide = '/ ',
 kASQuotient = 'div ',
 kASRemainder = 'mod ',
 kASPower = '^ ',
 kASEqual = kAEEquals,
 kASNotEqual = ' ',
 kASGreaterThan = kAEGreaterThan,
 kASGreaterThanOrEqual = kAEGreaterThanEquals,
 kASLessThan = kAELessThan,
 kASLessThanOrEqual = kAELessThanEquals,
 kASComesBefore = 'cbfr',
 kASComesAfter = 'cafr',
 kASConcatenate = 'ccat',
 kASStartsWith = kAEBeginsWith,
 kASEndsWith = kAEEndsWith,
 kASContains = kAEContains
};

2866 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

kASAnd
enum {
 kASAnd = kAEAND,
 kASOr = kAEOR,
 kASNot = kAENOT,
 kASNegate = 'neg ',
 keyASArg = 'arg '
};

kASErrorEventCode
enum {
 kASErrorEventCode = 'err ',
 kOSAErrorArgs = 'erra',
 keyAEErrorObject = 'erob',
 pLength = 'leng',
 pReverse = 'rvse',
 pRest = 'rest',
 pInherits = 'c@#^',
 pProperties = 'pALL',
 keyASUserRecordFields = 'usrf',
 typeUserRecordFields = typeAEList
};

kASStartLogEvent
enum {
 kASStartLogEvent = 'log1',
 kASStopLogEvent = 'log0',
 kASCommentEvent = 'cmnt'
};

kDialectBundleResType
enum {
 kDialectBundleResType = 'Dbdl',
 cConstant = typeEnumerated,
 cClassIdentifier = pClass,
 cObjectBeingExamined = typeObjectBeingExamined,
 cList = typeAEList,
 cSmallReal = typeSMFloat,
 cReal = typeFloat,
 cRecord = typeAERecord,
 cReference = cObjectSpecifier,
 cUndefined = 'undf',
 cMissingValue = 'msng',
 cSymbol = 'symb',
 cLinkedList = 'llst',
 cVector = 'vect',
 cEventIdentifier = 'evnt',
 cKeyIdentifier = 'kyid',
 cUserIdentifier = 'uid ',

Constants 2867
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

 cPreposition = 'prep',
 cKeyForm = enumKeyForm,
 cScript = 'scpt',
 cHandler = 'hand',
 cProcedure = 'proc'
};

keyAETarget
enum {
 keyAETarget = 'targ',
 keySubjectAttr = 'subj',
 keyASReturning = 'Krtn',
 kASAppleScriptSuite = 'ascr',
 kASScriptEditorSuite = 'ToyS',
 kASTypeNamesSuite = 'tpnm',
 typeAETE = 'aete',
 typeAEUT = 'aeut',
 kGetAETE = 'gdte',
 kGetAEUT = 'gdut',
 kUpdateAEUT = 'udut',
 kUpdateAETE = 'udte',
 kCleanUpAEUT = 'cdut',
 kASComment = 'cmnt',
 kASLaunchEvent = 'noop',
 keyScszResource = 'scsz',
 typeScszResource = 'scsz',
 kASSubroutineEvent = 'psbr',
 keyASSubroutineName = 'snam',
 kASPrepositionalSubroutine = 'psbr',
 keyASPositionalArgs = 'parg'
};

keyAppHandledCoercion
enum {
 keyAppHandledCoercion = 'idas'
};

keyASPrepositionAt
enum {
 keyASPrepositionAt = 'at ',
 keyASPrepositionIn = 'in ',
 keyASPrepositionFrom = 'from',
 keyASPrepositionFor = 'for ',
 keyASPrepositionTo = 'to ',
 keyASPrepositionThru = 'thru',
 keyASPrepositionThrough = 'thgh',
 keyASPrepositionBy = 'by ',
 keyASPrepositionOn = 'on ',
 keyASPrepositionInto = 'into',
 keyASPrepositionOnto = 'onto',

2868 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

 keyASPrepositionBetween = 'btwn',
 keyASPrepositionAgainst = 'agst',
 keyASPrepositionOutOf = 'outo',
 keyASPrepositionInsteadOf = 'isto',
 keyASPrepositionAsideFrom = 'asdf',
 keyASPrepositionAround = 'arnd',
 keyASPrepositionBeside = 'bsid',
 keyASPrepositionBeneath = 'bnth',
 keyASPrepositionUnder = 'undr'
};

keyASPrepositionOver
enum {
 keyASPrepositionOver = 'over',
 keyASPrepositionAbove = 'abve',
 keyASPrepositionBelow = 'belw',
 keyASPrepositionApartFrom = 'aprt',
 keyASPrepositionGiven = 'givn',
 keyASPrepositionWith = 'with',
 keyASPrepositionWithout = 'wout',
 keyASPrepositionAbout = 'abou',
 keyASPrepositionSince = 'snce',
 keyASPrepositionUntil = 'till'
};

keyOSASourceEnd
Specifies the end of an error range.

enum {
 keyOSASourceEnd = 'srce'
};

Constants
keyOSASourceEnd

Field of a typeOSAErrorRange record of typeShortInteger. This field specifies the end of the
error range.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Declared In
OSA.h

keyOSASourceStart
Specifies the start of an error range.

Constants 2869
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

enum {
 keyOSASourceStart = 'srcs'
};

Constants
keyOSASourceStart

Field of a typeOSAErrorRange record of typeShortInteger. This field specifies the start of the
error range.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Declared In
OSA.h

keyProcedureName
enum {
 keyProcedureName = 'dfnm',
 keyStatementRange = 'dfsr',
 keyLocalsNames = 'dfln',
 keyGlobalsNames = 'dfgn',
 keyParamsNames = 'dfpn'
};

keyProgramState
enum {
 keyProgramState = 'dsps'
};

kGenericComponentVersion
Specifies the generic component version.

enum {
 kGenericComponentVersion = 0x0100
};

Constants
kGenericComponentVersion

Indicates the component version this header file describes.

Available in Mac OS X v10.0 and later.

Declared in OSAGeneric.h.

Declared In
OSAGeneric.h

2870 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

kOSAComponentType
Defines the Component Manager type code for components that support the standard scripting component
routines.

enum {
 kOSAComponentType = 'osa '
};

Constants
kOSAComponentType

Specifies the standard OSA component type.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Declared In
OSA.h

kOSAGenericScriptingComponentSubtype
Defines the subtype code for the generic scripting component.

enum {
 kOSAGenericScriptingComponentSubtype = 'scpt'
};

kOSAModeDontDefine
enum {
 kOSAModeDontDefine = 0x0001
};

Constants
kOSAModeDontDefine

This mode flag can be passed toOSASetProperty (page 2844) orOSASetHandler (page 2843) and will
prevent properties or handlers from being defined in a context that doesn't already have bindings
for them. An error is returned if a current binding doesn't already exist.

Available in Mac OS X v10.0 and later.

Declared in ASDebugging.h.

kOSANullScript
Defines a null script ID.

Constants 2871
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

enum {
 kOSANullScript = 0
};

Discussion
If the execution of a script does not result in a value, OSAExecute returns the constant kOSANullScript
as the script ID. If a client application passes kOSANullScript to the OSAGetSource function instead of a
valid script ID, the scripting component should display a null source description (possibly an empty text
string). If a client application passes kOSANullScript to OSAStartRecording, the scripting component
creates a new compiled script for editing or recording.

kOSARecordedText
Defines the event code for the Recorded Text event.

enum {
 kOSARecordedText = 'recd'
};

kOSAScriptResourceType
Defines the resource type for stored script data.

enum {
 kOSAScriptResourceType = kOSAGenericScriptingComponentSubtype
};

Constants
kOSAScriptResourceType

Resource type for scripts.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSASelectComponentSpecificStart
enum {
 kOSASelectComponentSpecificStart = 0x1001
};

Constants
kOSASelectComponentSpecificStart

Scripting component specific selectors are added beginning with this value.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

2872 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

kOSASelectCopyScript
enum {
 kOSASelectCopyScript = 0x0105
};

kOSASuite
Defines the suite for the Recorded Text event.

enum {
 kOSASuite = 'ascr'
};

Mode Flags
Specify information used by the scripting component.

Constants 2873
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

enum {
 kOSAModePreventGetSource = 0x00000001
};
enum {
 kOSAModeNeverInteract = kAENeverInteract,
 kOSAModeCanInteract = kAECanInteract,
 kOSAModeAlwaysInteract = kAEAlwaysInteract,
 kOSAModeDontReconnect = kAEDontReconnect
};
enum {
 kOSAModeCantSwitchLayer = 0x00000040
};
enum {
 kOSAModeDoRecord = 0x00001000
};
enum {
 kOSAModeCompileIntoContext = 0x00000002
};
enum {
 kOSAModeAugmentContext = 0x00000004
};
enum {
 kOSAModeDisplayForHumans = 0x00000008
};
enum {
 kOSAModeDontStoreParent = 0x00010000
};
enum {
 kOSAModeDispatchToDirectObject = 0x00020000
};
enum {
 kOSAModeDontGetDataForArguments = 0x00040000
};
enum {
kOSAModeFullyQualifyDescriptors = 0x00080000
};

Constants
kOSAModePreventGetSource

This mode flag may be passed to OSALoad (page 2832), OSAStore (page 2850), or OSACompile (page
2799) to instruct the scripting component to not retain the “source” of an expression. This will cause a
call to OSAGetSource (page 2830) to return the error errOSASourceNotAvailable if used. However,
some scripting components may not retain the source anyway. This is mainly used when either space
efficiency is desired, or a script is to be "locked" so that its implementation may not be viewed.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeNeverInteract
This mode flag may be passed to the functions OSACompile (page 2799), OSAExecute (page 2816),
OSALoadExecute (page 2833), OSACompileExecute (page 2800), OSADoScriptFile (page 2815),
OSAExecuteEvent (page 2817), andOSADoEvent (page 2812) to indicate whether or not the script may
interact with the user if necessary. Adds kAENeverInteract to the sendMode parameter of AESend
for events sent when the script is executed.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

2874 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

kOSAModeCanInteract
This mode flag may be passed to the functions OSACompile (page 2799), OSAExecute (page 2816),
OSALoadExecute (page 2833), OSACompileExecute (page 2800), OSADoScriptFile (page 2815),
OSAExecuteEvent (page 2817), andOSADoEvent (page 2812) to indicate whether or not the script may
interact with the user. Adds kAECanInteract to the sendMode parameter of AESend for events sent
when the script is executed.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeAlwaysInteract
This mode flag may be passed to the functions OSACompile (page 2799), OSAExecute (page 2816),
OSALoadExecute (page 2833), OSACompileExecute (page 2800), OSADoScriptFile (page 2815),
OSAExecuteEvent (page 2817), andOSADoEvent (page 2812) to indicate whether or not the script may
interact with the user. Adds kAEAlwaysInteract to the sendMode parameter of AESend for events
sent when the script is executed.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDontReconnect
This mode flag may be passed to the functions OSACompile (page 2799), OSAExecute (page 2816),
OSALoadExecute (page 2833), OSACompileExecute (page 2800), OSADoScriptFile (page 2815),
OSAExecuteEvent (page 2817), andOSADoEvent (page 2812) to indicate whether or not the script may
reconnect if necessary. Adds kAEDontReconnect to the sendMode parameter of AESend for events
sent when the script is executed.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeCantSwitchLayer
This mode flag may be passed to the functions OSACompile (page 2799), OSAExecute (page 2816),
OSALoadExecute (page 2833), OSACompileExecute (page 2800), OSADoScriptFile (page 2815),
OSAExecuteEvent (page 2817), andOSADoEvent (page 2812) to indicate whether Apple events should
be sent with the kAECanSwitchLayer mode flag sent. This flag is exactly the opposite of the Apple
event flag kAECanSwitchLayer. This is to provide a more convenient default, such as not supplying
any mode (see kOSANullMode in the “Null Mode Flags” (page 2877)) means to send events with
kAECanSwitchLayer. Supplying the kOSAModeCantSwitchLayer mode flag will cause AESend to
be called without kAECanSwitchLayer.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDoRecord
This mode flag may be passed to the functions OSACompile (page 2799), OSAExecute (page 2816),
OSALoadExecute (page 2833), OSACompileExecute (page 2800), OSADoScriptFile (page 2815),
OSAExecuteEvent (page 2817), andOSADoEvent (page 2812) to indicate whether Apple events should
be sent with the kAEDontRecord mode flag. This flag is exactly the opposite the Apple event flag
kAEDontRecord. This is to provide a more convenient default, such as not supplying any mode (see
kOSANullMode in the “Null Mode Flags” (page 2877)) means to send events with kAEDontRecord.
Supplying the kOSAModeDoRecord mode flag will causeAESend to be called withoutkAEDontRecord.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Constants 2875
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

kOSAModeCompileIntoContext
This is a mode flag for OSACompile (page 2799) that indicates that a context should be created as the
result of compilation. All handler definitions are inserted into the new context, and variables are
initialized by evaluating their initial values in a null context (for example, they must be constant
expressions).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeAugmentContext
This is a mode flag for OSACompile (page 2799) that indicates that the previous script ID (input to
OSACompile) should be augmented with any new definitions in the sourceData parameter rather
than replaced with a new script. This means that the previous script ID must designate a context. The
presence of this flag causes the kOSAModeCompileIntoContext flag to be implicitly used, causing
any new definitions to be initialized in a null context.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDisplayForHumans
This mode flag may be passed toOSADisplay (page 2810) orOSADoScriptFile (page 2815) to indicate
that output only need be human-readable, not re-compilable by OSACompile (page 2799). If used,
output may be arbitrarily "beautified", for example, quotes may be left off of string values, and long
lists may have ellipses.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDontStoreParent
This mode flag may be passed to OSAStore (page 2850) in the case where the scriptID parameter
is a context. This causes the context to be saved, but not the context's parent context. When the
stored context is loaded back in, the parent will be kOSANullMode (see the “Null Mode Flags” (page
2877)).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDispatchToDirectObject
This mode flag may be passed to OSAExecuteEvent (page 2817) to cause the event to be dispatched
to the direct object of the event. The direct object (or subject attribute if the direct object is a
non-object specifier) will be resolved, and the resulting script object will be the recipient of the
message. The context argument to OSAExecuteEventwill serve as the root of the lookup/resolution
process.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAModeDontGetDataForArguments
This mode flag may be passed to OSAExecuteEvent (page 2817) to indicate that components do not
have to get the data of object specifier arguments.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

2876 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

kOSAModeFullyQualifyDescriptors
This mode flag may be passed toOSACoerceToDesc (page 2798) to indicate that the resulting descriptor
should be fully qualified (i.e. should include the root application reference).

Available in Mac OS X v10.3 and later.

Declared in OSA.h.

Null Mode Flags
Indicate a function’s default mode settings are to be used.

enum {
 kOSANullMode = 0,
 kOSAModeNull = 0
};

OSADebugStepKind
typedef UInt32 OSADebugStepKind;
enum {
 eStepOver = 0,
 eStepIn = 1,
 eStepOut = 2,
 eRun = 3
};

OSAProgramState
typedef UInt32 OSAProgramState;
enum {
 eNotStarted = 0,
 eRunnable = 1,
 eRunning = 2,
 eStopped = 3,
 eTerminated = 4
};

OSAScriptError Selectors
Define selectors used to retrieve information about script errors from the OSAScriptError function.

Constants 2877
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

enum {
 kOSAErrorNumber = keyErrorNumber
};
enum {
 kOSAErrorMessage = keyErrorString
};
enum {
 kOSAErrorBriefMessage = 'errb'
};
enum {
 kOSAErrorApp = 'erap'
};
enum {
 kOSAErrorPartialResult = 'ptlr'
};
enum {
 kOSAErrorOffendingObject = 'erob'
};
enum {
 kOSAErrorExpectedType = 'errt'
};
enum {
 kOSAErrorRange = 'erng'
};

Constants
kOSAErrorNumber

This selector is used to determine the error number of a script error. These error numbers may be
either system error numbers, or error numbers that are scripting component specific. The value of
desiredType must be typeShortInteger.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorMessage
This selector is used to determine the full error message associated with the error number. It should
include the name of the application which caused the error, as well as the specific error that occurred.
This selector is sufficient for simple error reporting (but see kOSAErrorBriefMessage). The value of
desiredType must be typeChar or another text descriptor type.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorBriefMessage
This selector is used to determine a brief error message associated with the error number. This message
should not mention the name of the application which caused the error, any partial results or offending
object (see kOSAErrorApp, kOSAErrorPartialResult , and kOSAErrorOffendingObject). The value of
desiredType must be typeChar or another text descriptor type.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorApp
This selector is used to determine which application actually got the error (if it was the result of an
AESend). The value of desiredType must be typeProcessSerialNumber (for the PSN) or a text
descriptor type such as typeChar (for the name).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

2878 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

kOSAErrorPartialResult
This selector is used to determine any partial result returned by an operation. If an AESend call failed,
but a partial result was returned, then the partial result may be returned as an AEDesc. The value of
desiredType must be typeBest (for the best type) or typeWildCard (for the default type).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorOffendingObject
This selector is used to determine any object which caused the error that may have been indicated
by an application. The result is an AEDesc. The value of desiredType must be
typeObjectSpecifier, typeBest, or typeWildCard. For some scripting components, including
AppleScript, these three values are equivalent.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorRange
This selector is used to determine the source text range (start and end positions) of where the error
occurred. The value of desiredType must be typeOSAErrorRange.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAErrorExpectedType
This selector is used to determine the type expected by a coercion operation if a type error occurred.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Recording Constants
enum {
 kOSASelectStartRecording = 0x0501,
 kOSASelectStopRecording = 0x0502
};

Resume Dispatch Function Constants
Define constants used with the OSASetResumeDispatchProc function.

Constants 2879
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

enum {
 kOSAUseStandardDispatch = kAEUseStandardDispatch
};
enum {
 kOSANoDispatch = kAENoDispatch
};
enum {
 kOSADontUsePhac = 0x0001
};

Constants
kOSAUseStandardDispatch

Used in the resumeDispatchProc parameter of OSASetResumeDispatchProc (page 2845) and
OSAGetResumeDispatchProc (page 2826) to indicate that the event is dispatched using standard
Apple event dispatching (the handler registered in the application with AEInstallEventHandler
should be used).

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSANoDispatch
Used in the resumeDispatchProc parameter of OSASetResumeDispatchProc (page 2845) to tell
the Apple Event Manager that the processing of the Apple event is complete and that no dispatching
should occur.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSADontUsePhac
Used in the refCon parameter of OSASetResumeDispatchProc (page 2845) to dispatch the event
using standard Apple event dispatching, except that the predispatch handler should not be called.
Used only in conjunction with kOSAUseStandardDispatch. This is useful when the predispatch
handler is used to lookup a context associated with an event's direct parameter and call
OSAExecuteEvent (page 2817) or OSADoEvent (page 2812). Failure to bypass the predispatch handler
when resuming an event in this case would result in an infinite loop. (A predispatch handler is called
immediately before the Apple Event Manager dispatches an event.)

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Declared In
OSA.h

Script Document File Type
Defines the file type of script document files.

enum {
 kOSAFileType = 'osas'
};

Script Information Selectors
Specify which script information is set or returned.

2880 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

enum {
 kOSAScriptIsModified = 'modi'
};
enum {
 kOSAScriptIsTypeCompiledScript = 'cscr'
};
enum {
 kOSAScriptIsTypeScriptValue = 'valu'
};
enum {
 kOSAScriptIsTypeScriptContext = 'cntx'
};
enum {
 kOSAScriptBestType = 'best'
};
enum {
 kOSACanGetSource = 'gsrc'
};
enum {
 kASHasOpenHandler = 'hsod'
};

Constants
kOSAScriptIsModified

This selector is used to determine whether there have been any changes since the script data was
loaded or created. In Mac OS X, the AppleScript component returns a value of false if no changes
have been made, and a value of true if changes may have been made. For more information, see
the Version Notes section for the OSAGetScriptInfo (page 2827) function.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAScriptIsTypeCompiledScript
This selector is used to determine whether or not the script data is a compiled script. The selector
returns a boolean.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAScriptIsTypeScriptValue
This selector is used to determine whether or not the script data is a script value. The selector returns
a boolean.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAScriptIsTypeScriptContext
This selector is used to determine whether or not the script data is a script context. The selector returns
a boolean.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kOSAScriptBestType
A descriptor type that you can pass to OSACoerceToDesc.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Constants 2881
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

kOSACanGetSource
This selector is used to determine whether a script has source associated with it that when given to
OSAGetSource, the call will not fail. The selector returns a boolean.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

kASHasOpenHandler
This selector is used to query a context as to whether it contains a handler for the kAEOpenDocuments
event. This allows "applets" to be distinguished from "droplets." OSAGetScriptInfo (page 2827)
returns false if there is no kAEOpenDocuments handler, and returns the error value
errOSAInvalidAccess if the input is not a context.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

Source Constants
enum {
 kOSASelectGetSource = 0x0201
};

Source Style Constants
Identify script format styles used by the AppleScript component to display scripts.

enum {
 kASSourceStyleUncompiledText = 0,
 kASSourceStyleNormalText = 1,
 kASSourceStyleLanguageKeyword = 2,
 kASSourceStyleApplicationKeyword = 3,
 kASSourceStyleComment = 4,
 kASSourceStyleLiteral = 5,
 kASSourceStyleUserSymbol = 6,
 kASSourceStyleObjectSpecifier = 7,
 kASNumberOfSourceStyles = 8
};

Constants
kASSourceStyleUncompiledText

Script format style for uncompiled text.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleNormalText
Script format style for normal text.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleLanguageKeyword
Script format style for keywords of the AppleScript Language.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

2882 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

kASSourceStyleApplicationKeyword
Script format style for keywords of a scriptable application.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleComment
Script format style for comment text.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleLiteral
Script format style for literal text.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleUserSymbol
A user-defined symbol, such as a variable or custom handler name.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASSourceStyleObjectSpecifier
Deprecated.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

kASNumberOfSourceStyles
Deprecated. (The number of different format styles available.)

See the Discussion section for why you should not use this constant.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

Discussion
These constants are used to access specific styles in the style information used by the
ASCopySourceAttributes (page 2785), ASSetSourceAttributes (page 2791), and
ASGetSourceStyleNames (page 2787) functions (and the deprecated functions ASGetSourceStyles (page
2788) and ASSetSourceStyles (page 2792)).

The order of the style information corresponds to the order of the constants. For example, the first dictionary
in the array returned by ASCopySourceAttributes (page 2785) (at position
kASSourceStyleUncompiledText) describes the style for uncompiled text. However, you should not rely
on there being any specific number of dictionaries (such as kASNumberOfSourceStyles) in the returned
array—instead, count the number of items in the array before accessing any of them.

Declared In
AppleScript.h

typeAppleScript
Define descriptor types for the AppleScript instance of the Open Scripting Architecture type.

Constants 2883
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

enum {
 typeAppleScript = 'ascr',
 kAppleScriptSubtype = typeAppleScript,
 typeASStorage = typeAppleScript
};

Constants
kAppleScriptSubtype

Defines the Component Manager subtype for the AppleScript component.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

typeASStorage
Defines the AppleScript constant for storage descriptor records.

Available in Mac OS X v10.0 and later.

Declared in AppleScript.h.

typeOSAErrorRange
Defines the descriptor type for an error range.

enum {
 typeOSAErrorRange = 'erng'
};

typeOSAGenericStorage
Defines the descriptor type for generic storage descriptor records.

enum {
 typeOSAGenericStorage = kOSAScriptResourceType
};

Constants
typeOSAGenericStorage

Default type given to OSAStore (page 2850), which creates "generic" loadable script data descriptors.

Available in Mac OS X v10.0 and later.

Declared in OSA.h.

Declared In
OSA.h

2884 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

typeStatementRange
enum {
 typeStatementRange = 'srng'
};

Weekdays
enum {
 cWeekday = pASWeekday,
 cSunday = 'sun ',
 cMonday = 'mon ',
 cTuesday = 'tue ',
 cWednesday = 'wed ',
 cThursday = 'thu ',
 cFriday = 'fri ',
 cSaturday = 'sat ',
 pASQuote = 'quot',
 pASSeconds = 'secs',
 pASMinutes = 'min ',
 pASHours = 'hour',
 pASDays = 'days',
 pASWeeks = 'week',
 cWritingCodeInfo = 'citl',
 pScriptCode = 'pscd',
 pLangCode = 'plcd',
 kASMagicTellEvent = 'tell',
 kASMagicEndTellEvent = 'tend'
};

Result Codes

The most common result codes returned by Open Scripting Architecture are listed in Table 1-1. Open Scripting
Architecture may also return the result codes noErr (0), and badComponentInstance (-2147450879).

DescriptionValueResult Code

A value can't be coerced to the desired type.-1700errOSACantCoerce

Available in Mac OS X v10.0 and later.

A parameter is missing for a function invocation.-1701OSAMissingParameter

Available in Mac OS X v10.0 and later.

Some data could not be read.-1702errOSACorruptData

Available in Mac OS X v10.0 and later.

Same as errAEWrongDataType; wrong descriptor
type.

-1703errOSATypeError

Available in Mac OS X v10.0 and later.

Result Codes 2885
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

DescriptionValueResult Code

A message was sent to an object that didn't handle it.-1708OSAMessageNotUnderstood

Available in Mac OS X v10.0 and later.

A function to be returned doesn't exist.-1717OSAUndefinedHandler

Available in Mac OS X v10.0 and later.

An index was out of range. Specialization of
errOSACantAccess.

-1719OSAIllegalIndex

Available in Mac OS X v10.0 and later.

The specified range is illegal. Specialization of
errOSACantAccess.

-1720OSAIllegalRange

Available in Mac OS X v10.0 and later.

The wrong number of parameters were passed to the
function, or a parameter pattern cannot be matched.

-1721OSAParameterMismatch

Available in Mac OS X v10.0 and later.

A container can not have the requested object.-1723OSAIllegalAccess

Available in Mac OS X v10.0 and later.

An object is not found in a container.-1728errOSACantAccess

Available in Mac OS X v10.0 and later.

Recording is already on.-1732errOSARecordingIsAlreadyOn

Available in Mac OS X v10.0 and later.

Scripting component error.-1750errOSASystemError

Available in Mac OS X v10.0 and later.

Invalid script id.-1751errOSAInvalidID

Available in Mac OS X v10.0 and later.

Script doesn’t seem to belong to AppleScript.-1752errOSABadStorageType

Available in Mac OS X v10.0 and later.

Script error.-1753errOSAScriptError

Available in Mac OS X v10.0 and later.

Invalid selector given.-1754errOSABadSelector

Available in Mac OS X v10.0 and later.

Invalid access.-1756errOSASourceNotAvailable

Available in Mac OS X v10.0 and later.

2886 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

DescriptionValueResult Code

Source not available.-1757errOSANoSuchDialect

Available in Mac OS X v10.0 and later.

No such dialect.-1758errOSADataFormatObsolete

Available in Mac OS X v10.0 and later.

Data couldn’t be read because its format is obsolete.-1759errOSADataFormatTooNew

Available in Mac OS X v10.0 and later.

Parameters are from two different components.-1761errOSAComponentMismatch

Available in Mac OS X v10.0 and later.

Can't connect to system with that ID.-1762errOSACantOpenComponent

Available in Mac OS X v10.0 and later.

No actual error code is to be returned.-2700errOSAGeneralError

Available in Mac OS X v10.0 and later.

An attempt to divide by zero was made.-2701errOSADivideByZero

Available in Mac OS X v10.0 and later.

An integer or real value is too large to be represented.-2702errOSANumericOverflow

Available in Mac OS X v10.0 and later.

An application can't be launched, or when it is, remote
and program linking is not enabled.

-2703errOSACantLaunch

Available in Mac OS X v10.0 and later.

An application can't respond to Apple events.-2704errOSAAppNotHighLevelEventAware

Available in Mac OS X v10.0 and later.

An application's terminology resource is not readable.-2705errOSACorruptTerminology

Available in Mac OS X v10.0 and later.

The runtime stack overflowed.-2706errOSAStackOverflow

Available in Mac OS X v10.0 and later.

A runtime internal data structure overflowed.-2707errOSAInternalTableOverflow

Available in Mac OS X v10.0 and later.

An intrinsic limitation is exceeded for the size of a value
or data structure.

-2708errOSADataBlockTooLarge

Available in Mac OS X v10.0 and later.

Can’t get the event dictionary.-2709errOSACantGetTerminology

Available in Mac OS X v10.0 and later.

Result Codes 2887
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

DescriptionValueResult Code

Can't make class <class identifier>.-2710errOSACantCreate

Available in Mac OS X v10.0 and later.

A syntax error occurred.-2740OSASyntaxError

Available in Mac OS X v10.0 and later.

Another form of syntax was expected.-2741OSASyntaxTypeError

Available in Mac OS X v10.0 and later.

A name or number is too long to be parsed.-2742OSATokenTooLong

Available in Mac OS X v10.0 and later.

A formal parameter, local variable, or instance variable
is specified more than once.

-2750OSADuplicateParameter

Available in Mac OS X v10.0 and later.

A formal parameter, local variable, or instance variable
is specified more than once.

-2751OSADuplicateProperty

Available in Mac OS X v10.0 and later.

More than one handler is defined with the same name
in a scope where the language doesn't allow it.

-2752OSADuplicateHandler

Available in Mac OS X v10.0 and later.

A variable is accessed that has no value.-2753OSAUndefinedVariable

Available in Mac OS X v10.0 and later.

A variable is declared inconsistently in the same scope,
such as both local and global.

-2754OSAInconsistentDeclarations

Available in Mac OS X v10.0 and later.

An illegal control flow occurs in an application. For
example, there is no catcher for the throw, or there
was a non-lexical loop exit.

-2755OSAControlFlowError

Available in Mac OS X v10.0 and later.

An object can never be set in a container-10003OSAIllegalAssign

Available in Mac OS X v10.0 and later.

An object cannot be set in a container.-10006errOSACantAssign

Available in Mac OS X v10.0 and later.

2888 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 37

Open Scripting Architecture Reference

Framework: ApplicationServices/ApplicationServices.h, Carbon/Carbon.h

Declared in PMIOModule.h
PMPluginHeader.h
PMPrinterBrowsers.h
PMPrinterModule.h
PMPrintingDialogExtensions.h

Overview

As printer vendors and application developers extend the printing capabilities of their hardware and software
products, they need a way to extend the Mac OS X printing system to make new printing features available
to their customers. To address this need, Mac OS X has introduced the printing plug-in —a component
architecture based on Core Foundation Plug-in Services. There are four types of printing plug-ins in Mac OS
X:

 ■ I/O modules are used by the printing system to communicate with a printer using a standard
transport-layer interface, such as AppleTalk or TCP/IP.

 ■ Printer browsers provide a way for people to discover available local and network printers.

 ■ Printer modules are used by the printing system to convert the graphics content in a print job for output
to a specific printer or family of printers.

 ■ Printing dialog extensions provide a way for people to view and change the settings for a set of related
printing features. The user interface of a printing dialog extension is a pane in one of the printing dialogs.

This reference document is relevant for anyone writing a plug-in that provides support for printing.

If you’re writing a printing dialog extension, you should refer to this document as you implement the required
callback functions. For conceptual information about printing dialog extensions, see ExtendingPrintingDialogs.

Functions

PMCreateLocalizedPaperSizeCFString
Returns a text description of the physical dimensions of the paper specified in a paper information ticket.
The unit of measure is based on the current language and script system.

Overview 2889
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

CFStringRef PMCreateLocalizedPaperSizeCFString (
 PMTicketRef listofPaperTickets,
 UInt16 paperToUse
);

Parameters
listofPaperTickets

A ticket that contains a list of paper information tickets. Typically you would obtain this list ticket
from a printer module template ticket.

paperToUse
A one-based index that specifies an entry in a list ticket.Upon entering, this parameter should specify
a valid entry in listofPaperTickets.

Return Value
A text description of the physical dimensions of the paper specified in a paper information ticket. Numeric
values are localized to English or metric measure, based on the current language and script system. The caller
assumes ownership of the string and is responsible for releasing it. The return value NULL indicates that the
function failed to create the string.

Discussion
The name PMCreateLocalizedPaperSizeCFString suggests that this function does some additional
localization, but that is misleading. This function takes an array of paper information tickets and an index,
finds the desired paper information ticket, and simply calls PMCreatePaperSizeCFString to get the
physical paper size.

Availability
Available in Mac OS X version 10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrintingDialogExtensionsDeprecated.h

PMCreatePaperSizeCFString
Returns a text description of the physical dimensions of the paper specified in a paper information ticket.
The unit of measure is based on the current language and script system.

CFStringRef PMCreatePaperSizeCFString (
 PMTicketRef selectedPaper
);

Parameters
selectedPaper

A paper information ticket. Typically you would obtain this ticket from a page format ticket, or possibly
from a printer module template ticket.

Return Value
A text description of the physical dimensions of the paper specified in a paper information ticket. Numeric
values are localized to English or metric measure, based on the current language and script system. The caller
assumes ownership of the string, and is responsible for releasing it. The return value NULL indicates that the
function failed to create the string.

Availability
Available in Mac OS X version 10.0 and later.

2890 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

Not available to 64-bit applications.

Declared In
PMPrintingDialogExtensionsDeprecated.h

Callbacks by Task

Printing Plug-in Callbacks
The three callback functions described in this section are used by the printing system to manage a printing
plug-in after it is loaded. Printing plug-ins (except for printer browsers) are required to implement these
functions.

PMPluginRetainProcPtr (page 2916)

PMPluginReleaseProcPtr (page 2915)
Defines a pointer to the retain function in a printing plug-in interface. Your custom retain function
increments the reference count of an instance of one of these interfaces.

PMPluginGetAPIVersionProcPtr (page 2915)

Printing Dialog Extension Callbacks
The callback functions described in this section must be implemented by all printing dialog extensions.

PMPDEPrologueProcPtr (page 2911)

PMPDEInitializeProcPtr (page 2909)

PMPDESyncProcPtr (page 2913)

PMPDEGetSummaryTextProcPtr (page 2908)

PMPDEOpenProcPtr (page 2911)

PMPDECloseProcPtr (page 2908)

PMPDETerminateProcPtr (page 2914)

Printer Module Callbacks
The callback functions described in this section must be implemented by all printer modules.

Callbacks by Task 2891
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

GetConnInfoProcPtr (page 2894)

PMBeginJobProcPtr (page 2895)

PMCancelJobProcPtr (page 2895)

PMCreatePrinterBrowserModuleInfoProcPtr (page 2896)

PMCreatePrinterTicketsProcPtr (page 2897)

PMCreatePrintingDialogExtensionsPathsProcPtr (page 2897)

PMEndJobProcPtr (page 2897)

PMImageAccessProcPtr (page 2898)

PMInitializeProcPtr (page 2898)

PMIOCloseProcPtr (page 2898)

PMIOGetAttributeProcPtr (page 2899)

PMIOOpenProcPtr (page 2903)

PMIOReadProcPtr (page 2903)

PMIOSetAttributeProcPtr (page 2904)

PMIOStatusProcPtr (page 2904)

PMIOWriteProcPtr (page 2905)

PMJobStreamGetNextBandProcPtr (page 2905)

PMJobStreamGetPosProcPtr (page 2906)

PMJobStreamOpenProcPtr (page 2906)

PMJobStreamReadWriteProcPtr (page 2906)

PMJobStreamSetPosProcPtr (page 2907)

PMNotificationProcPtr (page 2907)

2892 Callbacks by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMPrintJobProcPtr (page 2921)

PMPrintPageProcPtr (page 2921)

PMTerminateProcPtr (page 2922)

Printer Browser Module Callbacks
The callback functions described in this section must be implemented by all printer browser modules.

PMCOMAddRefProcPtr (page 2895)

PMCOMQueryInterfaceProcPtr (page 2896)

PMCOMReleaseProcPtr (page 2896)

PMPrBrowserAPIVersionProcPtr (page 2916)

PMPrBrowserGetLookupSpecProcPtr (page 2916)

PMPrBrowserGetSelectedPrintersProcPtr (page 2917)

PMPrBrowserInitializeProcPtr (page 2917)

PMPrBrowserPrologueProcPtr (page 2918)

PMPrBrowserResizeProcPtr (page 2918)

PMPrBrowserSelectionStatusProcPtr (page 2919)

PMPrBrowserSyncProcPtr (page 2919)

PMPrBrowserSyncRequestProcPtr (page 2920)

PMPrBrowserTerminateProcPtr (page 2920)

PMPrBrowserWorksetPrintersProcPtr (page 2920)

I/O Module Callbacks
The callback functions described in this section must be implemented by all I/O modules.

Callbacks by Task 2893
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMIOModuleCloseProcPtr (page 2899)

PMIOModuleGetAttributeProcPtr (page 2900)

PMIOModuleGetConnectionInfoProcPtr (page 2900)

PMIOModuleInitializeProcPtr (page 2900)

PMIOModuleOpenProcPtr (page 2901)

PMIOModuleReadProcPtr (page 2901)

PMIOModuleSetAttributeProcPtr (page 2901)

PMIOModuleStatusProcPtr (page 2902)

PMIOModuleTerminateProcPtr (page 2902)

PMIOModuleWriteProcPtr (page 2902)

Callbacks

GetConnInfoProcPtr

typedef OSStatus(* GetConnInfoProcPtr) (
 const void *jobContext,
 CFStringRef *connectionType,
 CFStringRef *pbmPath
);

If you name your function MyGetConnInfoCallback, you would declare it like this:

OSStatus MyGetConnInfoCallback (
 const void *jobContext,
 CFStringRef *connectionType,
 CFStringRef *pbmPath
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

2894 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMBeginJobProcPtr

typedef OSStatus(* PMBeginJobProcPtr) (
 PMContext printerModuleContext,
 const void *jobContext,
 PMTicketRef jobTicket,
 PMTicketRef *converterSetup
);

If you name your function MyPMBeginJobCallback, you would declare it like this:

OSStatus MyPMBeginJobCallback (
 PMContext printerModuleContext,
 const void *jobContext,
 PMTicketRef jobTicket,
 PMTicketRef *converterSetup
);

PMCancelJobProcPtr

typedef OSStatus(* PMCancelJobProcPtr) (
 PMContext printerModuleContext,
 const void *jobContext
);

If you name your function MyPMCancelJobCallback, you would declare it like this:

OSStatus MyPMCancelJobCallback (
 PMContext printerModuleContext,
 const void *jobContext
);

PMCOMAddRefProcPtr

typedef UInt32(* PMCOMAddRefProcPtr) (
 void *thisPointer
);

If you name your function MyPMCOMAddRefCallback, you would declare it like this:

UInt32 MyPMCOMAddRefCallback (
void *thisPointer
);

Callbacks 2895
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMCOMQueryInterfaceProcPtr

typedef SInt32(* PMCOMQueryInterfaceProcPtr) (
 void *thisPointer,
 CFUUIDBytes iid,
 void **ppv
);

If you name your function MyPMCOMQueryInterfaceCallback, you would declare it like this:

SInt32 MyPMCOMQueryInterfaceCallback (
void *thisPointer,
CFUUIDBytes iid,
void **ppv
);

PMCOMReleaseProcPtr

typedef UInt32(* PMCOMReleaseProcPtr) (
 void *thisPointer
);

If you name your function MyPMCOMReleaseCallback, you would declare it like this:

UInt32 MyPMCOMReleaseCallback (
void *thisPointer
);

PMCreatePrinterBrowserModuleInfoProcPtr

typedef OSStatus(* PMCreatePrinterBrowserModuleInfoProcPtr) (
 CFStringRef connectionType,
 CFArrayRef *printerBrowserInfo
);

If you name your function MyPMCreatePrinterBrowserModuleInfoCallback, you would declare it like
this:

OSStatus MyPMCreatePrinterBrowserModuleInfoCallback (
 CFStringRef connectionType,
 CFArrayRef *printerBrowserInfo
);

2896 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMCreatePrinterTicketsProcPtr

typedef OSStatus(* PMCreatePrinterTicketsProcPtr) (
 PMContext printerModuleContext,
 PMTicketRef *printerInfo,
 PMTemplateRef *jobTemplate
);

If you name your function MyPMCreatePrinterTicketsCallback, you would declare it like this:

OSStatus MyPMCreatePrinterTicketsCallback (
 PMContext printerModuleContext,
 PMTicketRef *printerInfo,
 PMTemplateRef *jobTemplate
);

PMCreatePrintingDialogExtensionsPathsProcPtr

typedef OSStatus(* PMCreatePrintingDialogExtensionsPathsProcPtr) (
 PMContext printerModuleContext,
 CFArrayRef *pdePaths
);

If you name your function MyPMCreatePrintingDialogExtensionsPathsCallback, you would declare
it like this:

OSStatus MyPMCreatePrintingDialogExtensionsPathsCallback (
 PMContext printerModuleContext,
 CFArrayRef *pdePaths
);

PMEndJobProcPtr

typedef OSStatus(* PMEndJobProcPtr) (
 PMContext printerModuleContext,
 const void *jobContext
);

If you name your function MyPMEndJobCallback, you would declare it like this:

OSStatus MyPMEndJobCallback (
 PMContext printerModuleContext,
 const void *jobContext
);

Callbacks 2897
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMImageAccessProcPtr

typedef OSStatus(* PMImageAccessProcPtr) (
 PMContext printerModuleContext,
 const void *jobContext,
 CFStringRef grafBase,
 PMDrawingCtx drawingCtx,
 PMImageRef imageRef,
 PMImageRef *outImageRefPtr
);

If you name your function MyPMImageAccessCallback, you would declare it like this:

OSStatus MyPMImageAccessCallback (
 PMContext printerModuleContext,
 const void *jobContext,
 CFStringRef grafBase,
 PMDrawingCtx drawingCtx,
 PMImageRef imageRef,
 PMImageRef *outImageRefPtr
);

PMInitializeProcPtr

typedef OSStatus(* PMInitializeProcPtr) (
 CFDataRef printerAddress,
 const void *jobContext,
 const PMIOProcs *pmIOProcs,
 const PMNotificationProcPtr pmNotificationProc,
 PMContext *printerModuleContext
);

If you name your function MyPMInitializeCallback, you would declare it like this:

OSStatus MyPMInitializeCallback (
 CFDataRef printerAddress,
 const void *jobContext,
 const PMIOProcs *pmIOProcs,
 const PMNotificationProcPtr pmNotificationProc,
 PMContext *printerModuleContext
);

PMIOCloseProcPtr

typedef OSStatus(* PMIOCloseProcPtr) (
 const void *jobContext
);

If you name your function MyPMIOCloseCallback, you would declare it like this:

OSStatus MyPMIOCloseCallback (
 const void *jobContext

2898 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMIOGetAttributeProcPtr

typedef OSStatus(* PMIOGetAttributeProcPtr) (
 const void *jobContext,
 CFStringRef attribute,
 CFTypeRef *result
);

If you name your function MyPMIOGetAttributeCallback, you would declare it like this:

OSStatus MyPMIOGetAttributeCallback (
 const void *jobContext,
 CFStringRef attribute,
 CFTypeRef *result
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMIOModuleCloseProcPtr

typedef OSStatus(* PMIOModuleCloseProcPtr) (
 IOMContext ioModuleContext,
 Boolean abort
);

If you name your function MyCallback, you would declare it like this:

OSStatus MyCallback (
IOMContext ioModuleContext,
Boolean abort
);

Callbacks 2899
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMIOModuleGetAttributeProcPtr

typedef OSStatus(* PMIOModuleGetAttributeProcPtr) (
 IOMContext ioModuleContext,
 CFStringRef attribute,
 CFTypeRef *result
);

If you name your function MyCallback, you would declare it like this:

OSStatus MyCallback (
IOMContext ioModuleContext,
CFStringRef attribute,
CFTypeRef *result
);

PMIOModuleGetConnectionInfoProcPtr

typedef OSStatus(* PMIOModuleGetConnectionInfoProcPtr) (
 CFStringRef *connectionType,
 CFStringRef *pbmPath
);

If you name your function MyCallback, you would declare it like this:

OSStatus MyCallback (
CFStringRef *connectionType,
CFStringRef *pbmPath
);

PMIOModuleInitializeProcPtr

typedef OSStatus(* PMIOModuleInitializeProcPtr) (
 CFDataRef printerAddress,
 IOMContext *ioModuleContextPtr
);

If you name your function MyCallback, you would declare it like this:

OSStatus MyCallback (
CFDataRef printerAddress,
IOMContext *ioModuleContextPtr
);

2900 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMIOModuleOpenProcPtr

typedef OSStatus(* PMIOModuleOpenProcPtr) (
 IOMContext ioModuleContext,
 PMTicketRef jobTicket,
 UInt32 *bufferSize
);

If you name your function MyCallback, you would declare it like this:

OSStatus MyCallback (
IOMContext ioModuleContext,
PMTicketRef jobTicket,
UInt32 *bufferSize
);

PMIOModuleReadProcPtr

typedef OSStatus(* PMIOModuleReadProcPtr) (
 IOMContext ioModuleContext,
 Ptr buffer,
 UInt32 *size,
 Boolean *eoj
);

If you name your function MyCallback, you would declare it like this:

OSStatus MyCallback (
IOMContext ioModuleContext,
Ptr buffer,
UInt32 *size,
Boolean *eoj
);

PMIOModuleSetAttributeProcPtr

typedef OSStatus(* PMIOModuleSetAttributeProcPtr) (
 IOMContext ioModuleContext,
 CFStringRef attribute,
 CFTypeRef data
);

If you name your function MyCallback, you would declare it like this:

OSStatus MyCallback (
IOMContext ioModuleContext,
CFStringRef attribute,
CFTypeRef data
);

Callbacks 2901
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMIOModuleStatusProcPtr

typedef OSStatus(* PMIOModuleStatusProcPtr) (
 IOMContext ioModuleContext,
 CFStringRef *status
);

If you name your function MyCallback, you would declare it like this:

OSStatus MyCallback (
IOMContext ioModuleContext,
CFStringRef *status
);

PMIOModuleTerminateProcPtr

typedef OSStatus(* PMIOModuleTerminateProcPtr) (
 IOMContext *ioModuleContextPtr
);

If you name your function MyCallback, you would declare it like this:

OSStatus MyCallback (
IOMContext *ioModuleContextPtr
);

PMIOModuleWriteProcPtr

typedef OSStatus(* PMIOModuleWriteProcPtr) (
 IOMContext ioModuleContext,
 Ptr buffer,
 UInt32 *size,
 Boolean eoj
);

If you name your function MyCallback, you would declare it like this:

OSStatus MyCallback (
IOMContext ioModuleContext,
Ptr buffer,
UInt32 *size,
Boolean eoj
);

2902 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMIOOpenProcPtr

typedef OSStatus(* PMIOOpenProcPtr) (
 const void *jobContext
);

If you name your function MyPMIOOpenCallback, you would declare it like this:

OSStatus MyPMIOOpenCallback (
 const void *jobContext
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMIOReadProcPtr

typedef OSStatus(* PMIOReadProcPtr) (
 const void *jobContext,
 Ptr buffer,
 UInt32 *size,
 Boolean *eoj
);

If you name your function MyPMIOReadCallback, you would declare it like this:

OSStatus MyPMIOReadCallback (
 const void *jobContext,
 Ptr buffer,
 UInt32 *size,
 Boolean *eoj
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

Callbacks 2903
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMIOSetAttributeProcPtr

typedef OSStatus(* PMIOSetAttributeProcPtr) (
 const void *jobContext,
 CFStringRef attribute,
 CFTypeRef data
);

If you name your function MyPMIOSetAttributeCallback, you would declare it like this:

OSStatus MyPMIOSetAttributeCallback (
 const void *jobContext,
 CFStringRef attribute,
 CFTypeRef data
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMIOStatusProcPtr

typedef OSStatus(* PMIOStatusProcPtr) (
 const void *jobContext,
 CFStringRef *status
);

If you name your function MyPMIOStatusCallback, you would declare it like this:

OSStatus MyPMIOStatusCallback (
 const void *jobContext,
 CFStringRef *status
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

2904 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMIOWriteProcPtr

typedef OSStatus(* PMIOWriteProcPtr) (
 const void *jobContext,
 Ptr buffer,
 UInt32 *size,
 Boolean eoj
);

If you name your function MyPMIOWriteCallback, you would declare it like this:

OSStatus MyPMIOWriteCallback (
 const void *jobContext,
 Ptr buffer,
 UInt32 *size,
 Boolean eoj
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMJobStreamGetNextBandProcPtr

typedef OSStatus(* PMJobStreamGetNextBandProcPtr) (
 const void *jobContext,
 PMRasterBand *pmRasterBand
);

If you name your function MyPMJobStreamGetNextBandCallback, you would declare it like this:

OSStatus MyPMJobStreamGetNextBandCallback (
 const void *jobContext,
 PMRasterBand *pmRasterBand
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

Callbacks 2905
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMJobStreamGetPosProcPtr

typedef OSStatus(* PMJobStreamGetPosProcPtr) (
 const void *jobContext,
 UInt32 *markerPos
);

If you name your function MyPMJobStreamGetPosCallback, you would declare it like this:

OSStatus MyPMJobStreamGetPosCallback (
 const void *jobContext,
 UInt32 *markerPos
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMJobStreamOpenProcPtr

typedef OSStatus(* PMJobStreamOpenProcPtr) (
 const void *jobContext
);

If you name your function MyPMJobStreamOpenCallback, you would declare it like this:

OSStatus MyPMJobStreamOpenCallback (
 const void *jobContext
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMJobStreamReadWriteProcPtr

typedef OSStatus(* PMJobStreamReadWriteProcPtr) (
 const void *jobContext,
 void *buffPtr,
 UInt32 *size
);

If you name your function MyPMJobStreamReadWriteCallback, you would declare it like this:

OSStatus MyPMJobStreamReadWriteCallback (

2906 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

 const void *jobContext,
 void *buffPtr,
 UInt32 *size
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMJobStreamSetPosProcPtr

typedef OSStatus(* PMJobStreamSetPosProcPtr) (
 const void *jobContext,
 SInt16 posMode,
 UInt32 markerPos
);

If you name your function MyPMJobStreamSetPosCallback, you would declare it like this:

OSStatus MyPMJobStreamSetPosCallback (
 const void *jobContext,
 SInt16 posMode,
 UInt32 markerPos
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMNotificationProcPtr

typedef OSStatus(* PMNotificationProcPtr) (
 const void *jobContext,
 CFDictionaryRef notificationDict,
 CFDictionaryRef *notificationReplyDict
);

If you name your function MyPMNotificationCallback, you would declare it like this:

OSStatus MyPMNotificationCallback (
 const void *jobContext,
 CFDictionaryRef notificationDict,
 CFDictionaryRef *notificationReplyDict
);

Callbacks 2907
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMPDECloseProcPtr
typedef OSStatus(* PMPDECloseProcPtr) (
 PMPDEContext context
);

If you name your function MyPMPDEClose, you would declare it like this:

OSStatus MyPMPDEClose (
 PMPDEContext context
);

Parameters
context

A pointer to a custom data structure that contains state information shared among the functions in
a printing dialog extension. This is the same context defined by the prologue function—see
PMPDEPrologueProcPtr (page 2911).

Return Value
A result code.

Discussion
If your pane is visible, your close function is called when the user

 ■ switches to another pane (including the Summary pane)

 ■ changes printers

 ■ dismisses the dialog by clicking Preview, Print, or Save

If your pane is visible and the user cancels the dialog, your close function is not called. The close function is
not required to provide any services, and does not return any information to the caller.

PMPDEGetSummaryTextProcPtr
typedef OSStatus(* PMPDEGetSummaryTextProcPtr) (
 PMPDEContext context,
 CFArrayRef *titleArray,
 CFArrayRef *summaryArray
);

If you name your function MyPMPDEGetSummary, you would declare it like this:

OSStatus MyPMPDEGetSummary (
 PMPDEContext context,
 CFArrayRef *titleArray,
 CFArrayRef *summaryArray

2908 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

);

Parameters
context

A pointer to a custom data structure that contains state information shared among the functions in
a printing dialog extension. This is the same context defined by the prologue function—see
PMPDEPrologueProcPtr (page 2911).

titleArray
A pointer to an array of strings that contain brief, localized descriptions of the settings in your user
interface. The array and strings must be Core Foundation types.

On entry, the array is undefined. Before returning, you should assign an array of type CFArrayRef.
The printing system assumes ownership of the array and is responsible for releasing it.

If your printing dialog extension does not supply summary text—or your user interface does not have
any settings—you should assign NULL before returning.

summaryArray
A pointer to an array of strings that contain brief, localized descriptions of the current values of the
settings in your user interface. The array and strings must be Core Foundation types.

On entry, the array is undefined. Before returning, you should assign an array of type CFArrayRef.
The printing system assumes ownership of the array and is responsible for releasing it.

If your printing dialog extension does not supply summary text—or your user interface does not have
any settings—you should assign NULL before returning.

Return Value
A result code.

Discussion
Whenever a user switches to the Summary pane in a printing dialog, the printing system calls the summary
function of each active printing dialog extension.

The printing system expects titleArray and summaryArray to be in a one-to-one correspondence. Here’s
a formal description of what that means. Your user interface has associated with it n pairs of strings, each
pair consisting of textual descriptions of a single setting and its current value. The two arrays are in a
one-to-one correspondence if for all k from 0 to n-1, the strings titleArray[k] and summaryArray[k] form a valid
pair.

PMPDEInitializeProcPtr
typedef OSStatus(* PMPDEInitializeProcPtr) (
 PMPDEContext context,
 PMPDEFlags *flags,
 PMPDERef ref,
 ControlRef embedderUserPane,
 PMPrintSession printSession
);

If you name your function MyPMPDEInitialize, you would declare it like this:

OSStatus MyPMPDEInitialize (
 PMPDEContext context,
 PMPDEFlags *flags,
 PMPDERef ref,

Callbacks 2909
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

 ControlRef embedderUserPane,
 PMPrintSession printSession
);

Parameters
context

A pointer to a custom data structure that contains state information shared among the functions in
a printing dialog extension. This is the same context defined by the prologue function—see
PMPDEPrologueProcPtr (page 2911).

flags
A pointer to an integer flag that provides information about the capabilities of your printing dialog
extension. On entry, the flag is undefined. Before returning, your initialization function should assign
a valid feature request flag. For information about the defined flags, see “PDE Feature Flags” (page
2933).

ref
Reserved for future use.

embedderUserPane
The control provided by the printing system to host the user interface of your printing dialog extension.
This parameter is a standard Carbon user pane—a root control into which your printing dialog
extension embeds the various controls and other elements in your user interface.

Before returning, your initialization function should create static user interface elements—such as
controls, icons, and images—and embed them in the user pane provided by the printing system. You
should position the user interface elements with respect to the coordinate system of the dialog
window, and make them visible. You should also set the initial values of your controls, based on either
your default settings or previous settings saved by the user. Do not modify the user pane itself.

If any user interface elements require special handling, you can install Carbon event handlers for
them. For example, the Duplex pane in the Print dialog uses an event handler to enable or disable
the two binding selection buttons, based on the current checkbox setting.

Do not do any custom drawing at this time, since the user pane is still invisible. If the user decides to
display your user interface, the printing system makes it visible and the Control Manager automatically
draws your static elements.

printSession
A pointer to a print session object. This is the same print session created by the application prior to
displaying the dialog. You can use this parameter to gain access to one of the specialized printing
tickets, such as page format or print settings.

Return Value
A result code.

Discussion
If the printing system calls your initialization function, you can safely assume that your prologue function
was called first.

If your initialization function returns a nonzero status code, the printing system does not call your summary
function.

2910 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMPDEOpenProcPtr
typedef OSStatus(* PMPDEOpenProcPtr) (
 PMPDEContext context
);

If you name your function MyPMPDEOpen, you would declare it like this:

OSStatus MyPMPDEOpen (
 PMPDEContext context
);

Parameters
context

A pointer to a custom data structure that contains state information shared among the functions in
a printing dialog extension. This is the same context defined by the prologue function—see
PMPDEPrologueProcPtr (page 2911).

Return Value
A result code.

Discussion
If the user selects your pane for display in the dialog, your open function is called immediately before the
pane is made visible.

An open function is not required to provide any services, and does not return any information to the caller.

PMPDEPrologueProcPtr
typedef OSStatus(* PMPDEPrologueProcPtr) (
 PMPDEContext *context,
 OSType *creator,
 CFStringRef *userOptionKind,
 CFStringRef *title,
 UInt32 *maxH,
 UInt32 *maxV
);

If you name your function MyPMPDEPrologue, you would declare it like this:

OSStatus MyPMPDEPrologue (
 PMPDEContext *context,
 OSType *creator,
 CFStringRef *userOptionKind,
 CFStringRef *title,
 UInt32 *maxH,
 UInt32 *maxV
);

Callbacks 2911
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

Parameters
context

A pointer to a custom data structure that contains state information shared among the functions in
a printing dialog extension. On entry, the caller’s PMPDEContext variable is undefined. Before returning,
your prologue function should assign a new context, or NULL to indicate that no context exists.

The printing system does not assume ownership of memory used for a context, so your printing dialog
extension should release it when it is no longer needed. Typically this is done in your termination
function.

creator
Reserved for future use.

userOptionKind
A pointer to a string that contains a unique identifier for the pane implemented by your printing
dialog extension. The printing system uses this identifier to determine whether your printing dialog
extension implements an Apple-defined pane, or a custom pane defined by you. On entry, the string
is undefined. Before returning, your prologue function should assign the appropriate identifier.

If your printing dialog extension implements or overrides an Apple-defined pane, assign one of the
identifiers listed in “PDE Pane Kind Identifiers” (page 2935). If your printing dialog extension implements
a custom pane, assign a Core Foundation string that contains your own custom identifier.

By convention, a custom identifier takes the form <domain>.print.pde.<signature>, where
<domain> is your vendor-specific domain and <signature> is a short name or signature for the
pane you are implementing.

The printing system does not assume ownership of this string, so your printing dialog extension
should release it when it is no longer needed.

title
A pointer to a string that contains the localized title of the pane implemented by your printing dialog
extension. The printing system displays this title in two places—the pane selection pop-up menu and
the Summary pane.

On entry, the string is undefined. Before returning, your prologue function should assign a Core
Foundation string containing the localized title.

If you are implementing an Apple-defined pane, the printing system may ignore your localized title
and use an Apple-defined title instead.

Your printing dialog extension retains ownership of the string, and you should release it when it is
no longer needed. Typically this is done in your terminate function.

maxH
A pointer to a value that represents the maximum number of horizontal pixels your user interface
requires. When your user interface is made visible, the printing system might use this value to adjust
the width of the dialog.

On entry, the value is undefined. Before returning, your prologue function should assign the maximum
horizontal extent of your user interface in pixels.

maxV
A pointer to a value that represents the maximum number of vertical pixels your user interface requires.
When your user interface is made visible, the printing system uses this value to adjust the height of
the dialog.

On entry, the value is undefined. Before returning, your prologue function should assign the maximum
vertical extent of your user interface in pixels.

Return Value
A result code.

2912 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

Discussion
When the printing system displays a printing dialog, it calls the prologue function for each registered dialog
extension.

If your prologue function returns a nonzero status code, the printing system does not include your pane in
the dialog, and does not call your terminate function. In this circumstance, your prologue function should
release any allocated memory or resources before exiting.

While the dialog is open, if some user action causes the printing system to scan for plug-ins again—choosing
a different printer, for example—then your prologue function is called again.

PMPDESyncProcPtr
typedef OSStatus(* PMPDESyncProcPtr) (
 PMPDEContext context,
 PMPrintSession printSession,
 Boolean reinitializePlugIn
);

If you name your function MyPMPDESync, you would declare it like this:

OSStatus MyPMPDESync (
 PMPDEContext context,
 PMPrintSession printSession,
 Boolean reinitializePlugIn
);

Parameters
context

A pointer to a custom data structure that contains state information shared among the functions in
a printing dialog extension. This is the same context defined by the prologue function—see
PMPDEPrologueProcPtr (page 2911).

printSession
A pointer to a printing session object. Your synchronization function should use this parameter to
gain access to the job ticket its uses to save user interface settings. These settings are stored as
extended data in either the print settings ticket (for Print dialog extensions) or the page format ticket
(for Page Setup dialog extensions).

reinitializePlugIn
A Boolean value that indicates which synchronization operation to perform. If the value is true, you
should locate and retrieve the ticket settings and use them to update your user interface settings. If
the value is false, you should use your current user interface settings to update the ticket settings.

Return Value
A result code.

Discussion
The printing system calls your synchronization function at certain times—in response to user actions—to
update either the user interface or the ticket. Also, your printing dialog extension can call your synchronization
function directly. For example, your initialization function may need to synchronize your user interface to its
default settings.

Here are some calling conditions where the reinitializePlugin parameter might be true:

Callbacks 2913
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

 ■ Your own intialization function wants to synchronize your user interface to its default settings.

 ■ The printing system wants you to initialize your user interface from the print settings ticket associated
with a different printer.

Here are some calling conditions where the reinitializePlugin parameter might be false:

 ■ Your user interface is visible, and the user tries to switch to another pane.

 ■ The user saves the current dialog settings.

 ■ The user clicks the Preview button or the Print button.

You may want to check the validity of the current settings in your pane at this time, to avoid recording invalid
or inconsistent settings in a job ticket. To prevent the user from switching to another pane until a problem
is corrected, return the result code kPMDontSwitchPDEError.

PMPDETerminateProcPtr
typedef OSStatus(* PMPDETerminateProcPtr) (
 PMPDEContext context,
 OSStatus status
);

If you name your function MyPMPDETerminate, you would declare it like this:

OSStatus MyPMPDETerminate (
 PMPDEContext context,
 OSStatus status
);

Parameters
context

A pointer to a custom data structure that contains state information shared among the functions in
a printing dialog extension. This is the same context defined by the prologue function—see
PMPDEPrologueProcPtr (page 2911).

status
Reserved for future use to indicate the conditions under which the user dismissed the dialog.

Return Value
A result code.

Discussion
The printing system calls your termination function when the printing system decides to tear down or rebuild
the dialog, or when your pane is no longer needed.

Unless your prologue function returns a nonzero status code, your termination function is always called when
the user dismisses the dialog.

Your termination function is also called if your printing feature is no longer relevant—for example, if your
feature applies only to postscript printers and the user switches to a raster printer from within the dialog.

Your termination function should release Core Foundation objects, deallocate your context block, and perform
any other actions necessary before your user interface is reinitialized or unloaded.

2914 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMPluginGetAPIVersionProcPtr
typedef OSStatus(* PMPluginGetAPIVersionProcPtr) (
 PMPlugInHeaderInterface *obj,
 PMPlugInAPIVersion *versionPtr
);

If you name your function MyPMPluginGetAPIVersion, you would declare it like this:

OSStatus MyPMPluginGetAPIVersion (
 PMPlugInHeaderInterface *obj,
 PMPlugInAPIVersion *versionPtr
);

Parameters
obj

A pointer to a generic instance of a plug-in interface. You may ignore this parameter, as it isn’t useful
here.

versionPtr
A pointer to a data structure supplied by the caller for version information about your printing plug-in.
Before returning, you should provide the correct version information for your plug-in by assigning
version constants to the fields in this structure.

Return Value
A result code.

PMPluginReleaseProcPtr
Defines a pointer to the retain function in a printing plug-in interface. Your custom retain function increments
the reference count of an instance of one of these interfaces.

typedef OSStatus (*PMPluginReleaseProcPtr) (
 PMPlugInHeaderInterface **objPtr
);

If you name your function MyPMPluginRelease, you would declare it like this:

OSStatus MyPMPluginRelease (
 PMPlugInHeaderInterface **objPtr
);

Parameters
objPtr

The address of a pointer to a generic instance of a plug-in interface. Before returning, your retain
function should decrement the reference count of the instance, and assign NULL to the pointer whose
address is provided by this parameter. If the reference count reaches zero, you should delete the
instance and any related storage.

Return Value
A result code.

Callbacks 2915
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMPluginRetainProcPtr
typedef OSStatus (*PMPluginRetainProcPtr) (
 PMPlugInHeaderInterface *obj
);

If you name your function MyPMPluginRetain, you would declare it like this:

OSStatus MyPMPluginRetain (
 PMPlugInHeaderInterface *obj
);

Parameters
obj

A pointer to a generic instance of a plug-in interface. Before returning, your retain function should
increment the reference count of the instance.

Return Value
A result code.

PMPrBrowserAPIVersionProcPtr

typedef UInt32(* PMPrBrowserAPIVersionProcPtr) ();

If you name your function MyPMPrBrowserAPIVersionCallback, you would declare it like this:

UInt32 MyPMPrBrowserAPIVersionCallback ();

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserGetLookupSpecProcPtr

typedef OSStatus(* PMPrBrowserGetLookupSpecProcPtr) (
 PMPrBrowserRef ref,
 UInt32 specIndex,
 CFDictionaryRef *lookupSpec
);

If you name your function MyPMPrBrowserGetLookupSpecCallback, you would declare it like this:

OSStatus MyPMPrBrowserGetLookupSpecCallback) (
 PMPrBrowserRef ref,
 UInt32 specIndex,
 CFDictionaryRef *lookupSpec
);

2916 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserGetSelectedPrintersProcPtr

typedef OSStatus(* PMPrBrowserGetSelectedPrintersProcPtr) (
 PMPrBrowserContext context,
 CFArrayRef *printers
);

If you name your function MyPMPrBrowserGetSelectedPrintersCallback, you would declare it like
this:

OSStatus MyPMPrBrowserGetSelectedPrintersCallback (
PMPrBrowserContext context,
CFArrayRef *printers
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserInitializeProcPtr

typedef OSStatus(* PMPrBrowserInitializeProcPtr) (
 PMPrBrowserContext context,
 PMPrBrowserRef ref,
 PMPrBrowserCallbacks *callbacks,
 ControlRef pbUserPaneCtlHdl,
 UInt32 numLookupSpecs
);

If you name your function MyPMPrBrowserInitializeCallback, you would declare it like this:

OSStatus MyPMPrBrowserInitializeCallback (
PMPrBrowserContext context,
PMPrBrowserRef ref,
PMPrBrowserCallbacks *callbacks,
ControlRef pbUserPaneCtlHdl,
UInt32 numLookupSpecs
);

Availability
Available in Mac OS X v10.0 and later.

Callbacks 2917
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserPrologueProcPtr

typedef OSStatus(* PMPrBrowserPrologueProcPtr) (
 PMPrBrowserContext *context,
 PMPrBrowserFlags prologueFlags,
 CFStringRef *title,
 UInt32 *minH,
 UInt32 *minV,
 UInt32 *maxH,
 UInt32 *maxV
);

If you name your function MyPMPrBrowserPrologueCallback, you would declare it like this:

OSStatus MyPMPrBrowserPrologueCallback (
PMPrBrowserContext *context,
PMPrBrowserFlags prologueFlags,
CFStringRef *title,
UInt32 *minH,
UInt32 *minV,
UInt32 *maxH,
UInt32 *maxV
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserResizeProcPtr

typedef OSStatus(* PMPrBrowserResizeProcPtr) (
 PMPrBrowserContext context,
 const Rect *frameRect
);

If you name your function MyPMPrBrowserResizeCallback, you would declare it like this:

OSStatus MyPMPrBrowserResizeCallback (
PMPrBrowserContext context,
const Rect *frameRect
);

Availability
Available in Mac OS X v10.0 and later.

2918 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserSelectionStatusProcPtr

typedef OSStatus(* PMPrBrowserSelectionStatusProcPtr) (
 PMPrBrowserRef ref,
 Boolean selected,
 Boolean addNow
);

If you name your function MyPMPrBrowserSelectionStatusCallback, you would declare it like this:

OSStatus MyPMPrBrowserSelectionStatusCallback (
PMPrBrowserRef ref,
Boolean selected,
Boolean addNow
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserSyncProcPtr

typedef OSStatus(* PMPrBrowserSyncProcPtr) (
 PMPrBrowserContext context
);

If you name your function MyPMPrBrowserSyncCallback, you would declare it like this:

OSStatus MyPMPrBrowserSyncCallback (
PMPrBrowserContext context
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

Callbacks 2919
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMPrBrowserSyncRequestProcPtr

typedef OSStatus(* PMPrBrowserSyncRequestProcPtr) (
 PMPrBrowserRef ref
);

If you name your function MyPMPrBrowserSyncRequestCallback, you would declare it like this:

OSStatus MyPMPrBrowserSyncRequestCallback (
PMPrBrowserRef ref
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserTerminateProcPtr

typedef OSStatus(* PMPrBrowserTerminateProcPtr) (
 PMPrBrowserContext context,
 OSStatus status
);

If you name your function MyPMPrBrowserTerminateCallback, you would declare it like this:

OSStatus MyPMPrBrowserTerminateCallback (
PMPrBrowserContext context,
OSStatus status
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserWorksetPrintersProcPtr

typedef OSStatus(* PMPrBrowserWorksetPrintersProcPtr) (
 PMPrBrowserContext context,
 CFArrayRef printers
);

If you name your function MyPMPrBrowserWorksetPrintersCallback, you would declare it like this:

OSStatus MyPMPrBrowserWorksetPrintersCallback (
PMPrBrowserContext context,

2920 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

CFArrayRef printers
);

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrintJobProcPtr

typedef OSStatus(* PMPrintJobProcPtr) (
 PMContext printerModuleContext,
 const void *jobContext,
 PMTicketRef jobTicket,
 const PMJobStreamProcs *inDataProcs
);

If you name your function MyPMPrintJobCallback, you would declare it like this:

OSStatus MyPMPrintJobCallback (
 PMContext printerModuleContext,
 const void *jobContext,
 PMTicketRef jobTicket,
 const PMJobStreamProcs *inDataProcs
);

PMPrintPageProcPtr

typedef OSStatus(* PMPrintPageProcPtr) (
 PMContext printerModuleContext,
 const void *jobContext,
 PMTicketRef jobTicket,
 const PMJobStreamGetNextBandProcPtr pmJobStreamGetNextBandProc
);

If you name your function MyPMPrintPageCallback, you would declare it like this:

OSStatus MyPMPrintPageCallback (
 PMContext printerModuleContext,
 const void *jobContext,
 PMTicketRef jobTicket,
 const PMJobStreamGetNextBandProcPtr pmJobStreamGetNextBandProc
);

Callbacks 2921
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMTerminateProcPtr

typedef OSStatus(* PMTerminateProcPtr) (
 PMContext *printerModuleContext,
 const void *jobContext
);

If you name your function MyPMTerminateCallback, you would declare it like this:

OSStatus MyPMTerminateCallback (
 PMContext *printerModuleContext,
 const void *jobContext
);

Data Types

Printing Plug-in Data Types

PMPlugInHeader
Defines the table of callback functions in the printing plug-in interface.

struct PMPlugInHeader
{
 OSStatus (*Retain) (
 PMPlugInHeaderInterface *obj
);

 OSStatus (*Release) (
 PMPlugInHeaderInterface **objPtr
);

 OSStatus (*GetAPIVersion) (
 PMPlugInHeaderInterface *obj,
 PMPlugInAPIVersion *versionPtr
);
};
typedef struct PMPlugInHeader PMPlugInHeader;

Fields
Retain

A pointer to a function that satisfies the requirements for a printing plug-in retain function, as described
in PMPluginRetainProcPtr (page 2916).

Release
A pointer to a function that satisfies the requirements for a printing plug-in release function, as
described in PMPluginReleaseProcPtr (page 2915).

GetAPIVersion
A pointer to a function that satisfies the requirements for a printing plug-in version function, as
described in PMPluginGetAPIVersionProcPtr (page 2915).

2922 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMPluginHeader.h

PMPlugInHeaderInterface
Defines a generic instance of the PMPlugInHeader interface—the printing system passes a parameter of
this type when calling the three interface functions.

struct PMPlugInHeaderInterface {
 const PMPlugInHeader *vtable;
};
typedef struct PMPlugInHeaderInterface PMPlugInHeaderInterface;

Fields
vtable

A pointer to the function table for an implementation of the PMPlugInHeader interface.

Discussion
When the printing system calls one of the three functions in the PMPlugInHeader interface, a pointer to
this generic data type is supplied as a parameter. It’s really the address of the plug-in instance supplied by
your query interface function (see Core Foundation Plug-in Services).

To gain access to your instance data—including the field that holds the reference count—you need to cast
this pointer to the actual instance type defined in your plug-in.

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMPluginHeader.h

PMPlugInAPIVersion
Contains PMPlugInHeader interface version information that printing plug-ins must provide to the printing
system.

struct PMPlugInAPIVersion {
 UInt32 buildVersionMajor;
 UInt32 buildVersionMinor;
 UInt32 baseVersionMajor;
 UInt32 baseVersionMinor;
};

Fields
buildVersionMajor

An integer value that specifies the major component of the API version with which the plug-in was
compiled.

buildVersionMinor
An integer value that specifies the minor component of the API version with which the plug-in was
compiled.

Data Types 2923
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

baseVersionMajor
An integer value that specifies the major component of the base API version with which this plug-in
is forward compatible.

baseVersionMinor
An integer value that specifies the minor component of the base API version with which this plug-in
is forward compatible.

Printing Dialog Extension Data Types

PlugInIntfVTable
Defines the table of callback functions in the printing dialog extension plug-in interface.

struct PlugInIntfVTable
{
 PMPlugInHeader plugInHeader;

 OSStatus (*Prologue) (
 PMPDEContext *context,
 OSType *creator,
 CFStringRef *userOptionKind,
 CFStringRef *title,
 UInt32 *maxH,
 UInt32 *maxV
);

 OSStatus (*Initialize) (
 PMPDEContext context,
 PMPDEFlags *flags,
 PMPDERef ref,
 ControlRef embedderUserPane,
 PMPrintSession printSession
);

 OSStatus (*Sync) (
 PMPDEContext context,
 PMPrintSession printSession,
 Boolean reinitializePlugIn
);

 OSStatus (*GetSummaryText) (
 PMPDEContext context,
 CFArrayRef *titleArray,
 CFArrayRef *summaryArray
);

 OSStatus (*Open) (
 PMPDEContext context
);

 OSStatus (*Close) (
 PMPDEContext context
);

2924 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

 OSStatus (*Terminate) (
 PMPDEContext context,
 OSStatus status
);
};
typedef struct PlugInIntfVTable PlugInIntfVTable;

Fields
plugInHeader

A table of pointers to the three functions in the printing plug-in interface.

Prologue
A pointer to a function that satisfies the requirements for the prologue function in a printing dialog
extension, as described in PMPDEPrologueProcPtr (page 2911).

Initialize
A pointer to a function that satisfies the requirements for the initialization function in a printing dialog
extension, as described in PMPDEInitializeProcPtr (page 2909).

Sync
A pointer to a function that satisfies the requirements for the synchronization function in a printing
dialog extension, as described in PMPDESyncProcPtr (page 2913).

GetSummaryText
A pointer to a function that satisfies the requirements for the summary function in a printing dialog
extension, as described in PMPDEGetSummaryTextProcPtr (page 2908).

Open
A pointer to a function that satisfies the requirements for the open function in a printing dialog
extension, as described in PMPDEOpenProcPtr (page 2911).

Close
A pointer to a function that satisfies the requirements for the close function in a printing dialog
extension, as described in PMPDECloseProcPtr (page 2908).

Terminate
A pointer to a function that satisfies the requirements for the termination function in a printing dialog
extension, as described in PMPDETerminateProcPtr (page 2914).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrintingDialogExtensionsDeprecated.h

PlugInIntf
Defines a generic instance of the printing dialog extension plug-in interface.

struct PlugInIntf {
 PlugInIntfVTable *vtable;
};

Fields
vtable

A pointer to the table of callback functions in a printing dialog extension.

Data Types 2925
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMPDEContext
Defines a generic private context for a printing dialog extension—the printing system passes a parameter
of this type when calling functions in the PlugInIntfVTable interface.

typedef struct OpaquePMPDEContext* PMPDEContext;

Discussion
A context is a pointer to a custom data structure shared by the functions in a printing dialog extension. In
Mac OS X, Carbon applications can open the same printing dialog in several document windows concurrently.
Printing dialog extensions must support this possibility, which means they must be reentrant.

To ensure reentrancy, your printing dialog extension uses dynamically allocated memory for state information
specific to one dialog window. Your prologue function allocates this memory and supplies its address—called
a context—to the printing system. The printing system makes sure that the context associated with the
current session (the active dialog) is passed in to your other functions as a calling parameter.

The context you provide is a generic pointer of type PMPDEContext. You can gain access to your actual
context data by casting this parameter to the actual context type defined in your printing dialog extension.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrintingDialogExtensionsDeprecated.h

PMPDEFlags
Defines an integer flag that provides additional information about a printing dialog extension to the printing
system. A value of this data type is passed back to the printing system by the initialize function.

typedef UInt32 PMPDEFlags;
enum {
 kPMPDENoFlags = 0,
 kPMPDENoSummary = 1,
 kPMPDEAllFlags = -1
};

Discussion
The printing system examines this integer flag to learn more about its capabilities. For a description of the
initialize function, see PMPDEInitializeProcPtr (page 2909).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrintingDialogExtensionsDeprecated.h

PMPDERef
Defines a generic instance of the printing dialog extension plug-in interface.

2926 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

typedef struct OpaquePMPDERef* PMPDERef;

Discussion
A value of this type is passed to the initialize function. For a description of the initialize function, see
PMPDEInitializeProcPtr (page 2909).

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrintingDialogExtensionsDeprecated.h

Printer Module Data Types

PMProcs
Defines the table of callback functions in the printer module plug-in interface.

struct PMProcs
{
 PMPlugInHeader pluginHeader;
 PMCreatePBMInfoProcPtr CreatePBMInfo;
 PMInitializeProcPtr Initialize;
 PMCreatePDEPathsProcPtr CreatePDEPaths;
 PMCreatePrinterTicketsProcPtr CreatePrinterTickets;
 PMBeginJobProcPtr BeginJob;
 PMPrintJobProcPtr PrintJob;
 PMPrintPageProcPtr PrintPage;
 PMImageAccessProcPtr ImageAccess;
 PMCancelJobProcPtr CancelJob;
 PMEndJobProcPtr EndJob;
 PMTerminateProcPtr Terminate;
};

PMInterface
Defines a generic instance of the printer module plug-in interface.

struct PMInterface {
 const PMProcs *vtable;
};
typedef struct PMInterface PMInterface;

Fields
vtable

A pointer to the table of callback functions in a printer module.

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Data Types 2927
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

Declared In
PMPrinterModuleDeprecated.h

PMInterfaceRef
Defines a pointer to a generic instance of the printer module plug-in interface.

typedef PMInterface* PMInterfaceRef;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMIOProcs
Defines the table of callback functions in the PMIOProcs interface.

struct PMIOProcs
{
 CFIndex version;
 GetConnInfoProcPtr GetConnInfoProc;
 PMIOOpenProcPtr PMIOOpenProc;
 PMIOReadProcPtr PMIOReadProc;
 PMIOWriteProcPtr PMIOWriteProc;
 PMIOStatusProcPtr PMIOStatusProc;
 PMIOGetAttributeProcPtr PMIOGetAttributeProc;
 PMIOSetAttributeProcPtr PMIOSetAttributeProc;
 PMIOCloseProcPtr PMIOCloseProc;
};

PMJobStreamProcs
Defines the table of callback functions in the printer module data access interface.

struct PMJobStreamProcs
{
 CFIndex version;
 PMJobStreamOpenProcPtr PMJobStreamOpenProc;
 PMJobStreamReadWriteProcPtr PMJobStreamReadProc;
 PMJobStreamReadWriteProcPtr PMJobStreamWriteProc;
 PMJobStreamGetPosProcPtr PMJobStreamGetPosProc;
 PMJobStreamSetPosProcPtr PMJobStreamSetPosProc;
 PMJobStreamGetPosProcPtr PMJobStreamGetEOFProc;
};

PMContext
Defines an opaque type for a private context in a printer module.

2928 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

typedef struct OpaquePMContext* PMContext;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMDrawingCtx
Defines an opaque type for a drawing context in a printer module.

typedef struct OpaquePMDrawingCtx* PMDrawingCtx;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

PMImageRef
Defines an opaque type for an image in a printer module.

typedef struct OpaquePMImageRef* PMImageRef;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterModuleDeprecated.h

Printer Browser Module Data Types

PMInterfacePrBrowser
Defines the table of callback functions in the printer browser module plug-in interface.

Data Types 2929
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

struct PMInterfacePrBrowser
{
 IUnknownVTbl u;
 PMPrBrowserGetSelectedPrintersProcPtr getSelectedPrinters;
 PMPrBrowserInitializeProcPtr initialize;
 PMPrBrowserPrologueProcPtr prologue;
 PMPrBrowserResizeProcPtr resize;
 PMPrBrowserSyncProcPtr sync;
 PMPrBrowserTerminateProcPtr terminate;
 PMPrBrowserWorksetPrintersProcPtr worksetPrinters;
};

PMInterfacePrBrowserPtr
Defines a pointer to a function table for the PMInterfacePrBrowser interface.

typedef PMInterfacePrBrowser* PMInterfacePrBrowserPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserCallbacks
Defines the table of Print Center callback routines for printer browser modules.

struct PMPrBrowserCallbacks
{
 CFIndex version;
 PMPrBrowserGetLookupSpecProcPtr getLookupSpec;
 PMPrBrowserSyncRequestProcPtr syncRequest;
 PMPrBrowserSelectionStatusProcPtr selStatus;
};

PMPrBrowserCallbacksPtr
Defines a pointer to a table of Print Center callbacks for printer browser modules.

typedef PMPrBrowserCallbacks* PMPrBrowserCallbacksPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

2930 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

PMPrBrowserContext
Defines an opaque type for a private context in a printer browser module.

typedef struct OpaquePMPrBrowserContext* PMPrBrowserContext;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserFlags
Defines an integer flag that provides additional information about a printer browser module to the printing
system.

typedef UInt32 PMPrBrowserFlags;
enum {
 kPMPrBrowserPCNoFlags = 0,
 kPMPrBrowserPCNoUI = 1,
 kPMPrBrowserPCAllFlags = -1
};

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMPrBrowserRef
Defines an opaque type for an instance of the printer browser module plug-in interface.

typedef struct OpaquePMPrBrowserRef* PMPrBrowserRef;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

PMInterfaceAPIVersion
Defines the table of callback functions in the PMInterfaceAPIVersion interface.

Data Types 2931
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

struct PMInterfaceAPIVersion
{
 IUnknownVTbl u;
 PMPrBrowserAPIVersionProcPtr apiVersion;
};

PMInterfaceAPIVersionPtr
Defines a pointer to a function table for the PMInterfaceAPIVersion interface.

typedef PMInterfaceAPIVersion* PMInterfaceAPIVersionPtr;

Availability
Available in Mac OS X v10.0 and later.
Not available to 64-bit applications.

Declared In
PMPrinterBrowsers.h

I/O Module Data Types

IOMContext
Defines an opaque type for a private context in an I/O module.

typedef struct OpaqueIOMContext* IOMContext;

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMIOModule.h

IOMInterface
Defines a generic instance of the I/O module plug-in interface.

struct IOMInterface {
 const IOMProcs *vtable;
};

Fields
vtable

A pointer to the table of callback functions in an I/O module.

IOMInterfaceRef
Defines a pointer to a generic instance of the I/O module plug-in interface.

2932 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

typedef const IOMInterface* IOMInterfaceRef;

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMIOModule.h

IOMProcs
Defines the table of callback functions in the I/O module plug-in interface.

struct IOMProcs
{
 PMPlugInHeader pluginHeader;

 PMIOModuleGetConnectionInfoProcPtr GetConnectionInfo;
 PMIOModuleInitializeProcPtr Initialize;
 PMIOModuleOpenProcPtr Open;
 PMIOModuleReadProcPtr Read;
 PMIOModuleWriteProcPtr Write;
 PMIOModuleStatusProcPtr Status;
 PMIOModuleGetAttributeProcPtr GetAttribute;
 PMIOModuleSetAttributeProcPtr SetAttribute;
 PMIOModuleCloseProcPtr Close;
 PMIOModuleTerminateProcPtr Terminate;
};
typedef struct IOMProcs IOMProcs;

Availability
Available in Mac OS X v10.0 and later.

Declared In
PMIOModule.h

Constants

PDE Feature Flags
Specify the flags returned by a printing dialog extension in its initialization function.

Constants 2933
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

typedef UInt32 PMPDEFlags;
enum {
 kPMPDENoFlags = 0,
 kPMPDENoSummary = 1,
 kPMPDEAllFlags = -1
};

Constants
kPMPDENoFlags

Specifies that a printing dialog extension does not have any special capabilities to report to the
printing system.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMPrintingDialogExtensionsDeprecated.h.

kPMPDENoSummary
Specifies that a printing dialog extension does not provide summary information. Your initialization
function can indicate this to the printing system by using the flags parameter to pass back this
constant. For more information about the initialization function, see PMPDEInitializeProcPtr (page
2909). For more information about providing summary information, see
PMPDEGetSummaryTextProcPtr (page 2908).

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMPrintingDialogExtensionsDeprecated.h.

kPMPDEAllFlags
Not used.

Available in Mac OS X v10.0 and later.

Not available to 64-bit applications.

Declared in PMPrintingDialogExtensionsDeprecated.h.

PDE Interface Identifier
Specifies the unique identifier for the printing dialog extension plug-in interface.

#define kDialogExtensionIntfIDStr
CFSTR("A996FD7E-B738-11D3-8519-0050E4603277")

Constants
kDialogExtensionIntfIDStr

A UUID that a printing dialog extension should use in its query interface function to verify that the
caller wants an instance of a printing dialog extension plug-in interface, and not some other plug-in
interface.

Discussion
For more information about the query interface function, see Core Foundation Plug-in Services..

PDE Interface Version
Specify the major and minor components of the version numbers for the interface supported by your printing
dialog extension.

2934 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

#define kPDEBuildVersionMajor 1
#define kPDEBuildVersionMinor 0
#define kPDEBaseVersionMajor 1
#define kPDEBaseVersionMinor 0

Constants
kPDEBuildVersionMajor

Specifies that Apple has designated the current release of the printing dialog extension plug-in
interface to be major version 1, as in 1.0.

kPDEBuildVersionMinor
Specifies that Apple has designated the current release of the printing dialog extension plug-in
interface to be minor version 0, as in 1.0.

kPDEBaseVersionMajor
Specifies that Apple has designated the first release of the printing dialog extension plug-in interface
to be major version 1, as in 1.0.

kPDEBaseVersionMinor
Specifies that Apple has designated the first release of the printing dialog extension plug-in interface
to be minor version 0, as in 1.0.

PDE Pane Kind Identifiers
Identifiers associated with the Apple-defined panes in a printing dialog.

#define kPMColorPDEKindID CFSTR("com.apple.print.pde.ColorKind")
#define kPMCopiesAndPagesPDEKindID
CFSTR("com.apple.print.pde.CopiesAndPagesKind")
#define kPMCoverPagePDEKindID
CFSTR("com.apple.print.pde.CoverPageKind")
#define kPMDuplexPDEKindID CFSTR("com.apple.print.pde.DuplexKind")
#define kPMLayoutPDEKindID
CFSTR("com.apple.print.pde.LayoutUserOptionKind")
#define kPMOutputOptionsPDEKindID
CFSTR("com.apple.print.pde.OutputOptionsKind")
#define kPMPageAttributesKindID
CFSTR("com.apple.print.pde.PageAttributesKind")
#define kPMPaperFeedPDEKindID
CFSTR("com.apple.print.pde.PaperFeedKind")
#define kPMPriorityPDEKindID
CFSTR("com.apple.print.pde.PriorityKind")
#define kPMRotationScalingPDEKindID
CFSTR("com.apple.print.pde.RotationScalingKind")

Constants
kPMColorPDEKindID

Identifies the Print dialog pane named Color Option.

kPMCopiesAndPagesPDEKindID
Identifies the Print dialog pane named Copies & Pages.

kPMCoverPagePDEKindID
Identifies the Print dialog pane named Cover Page.

kPMDuplexPDEKindID
Identifies the Print dialog pane named Duplex.

Constants 2935
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

kPMLayoutPDEKindID
Identifies the Print dialog pane named Layout.

kPMOutputOptionsPDEKindID
Identifies the Print dialog pane named Output Options.

kPMPageAttributesKindID
Identifies the Page Setup dialog pane named Page Attributes.

kPMPaperFeedPDEKindID
Identifies the Print dialog pane named Paper Feed.

kPMPriorityPDEKindID
Identifies the Print dialog pane named Priority.

kPMRotationScalingPDEKindID
Identifies the Print dialog pane named Rotation & Scaling.

PDE Ticket Identifiers
Specify the types of printing job tickets used by printing dialog extensions.

#define kPDE_PMPrintSettingsRef CFSTR("PMPrintSettingsTicket")
#define kPDE_PMPageFormatRef CFSTR("PMPageFormatTicket")
#define kPDE_PMJobTemplateRef CFSTR("PMJobTemplateTicket")
#define kPDE_PMPrinterInfoRef CFSTR("PMPrinterInfoTicket")

Constants
kPDE_PMPrintSettingsRef

Specifies a print settings ticket.

kPDE_PMPageFormatRef
Specifies a page format ticket.

kPDE_PMJobTemplateRef
Specifies a job template ticket.

kPDE_PMPrinterInfoRef
Specifies a printer info ticket.

PDE Type Identifiers
Specify the different types of printing dialog extensions.

#define kAppPageSetupDialogTypeIDStr
CFSTR("B9A0DA98-E57F-11D3-9E83-0050E4603277")
#define kAppPrintDialogTypeIDStr
CFSTR("BCB07250-E57F-11D3-8CA6-0050E4603277")
#define kPrinterModuleTypeIDStr
CFSTR("BDB091F4-E57F-11D3-B5CC-0050E4603277")

Constants
kAppPageSetupDialogTypeIDStr

The identifier for a Page Setup dialog extension supplied with an application.

kAppPrintDialogTypeIDStr
The identifier for a Print dialog extension supplied with an application.

2936 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

kPrinterModuleTypeIDStr
The identifier for a Print dialog extension supplied with a printer module.

Discussion
Apple associates each type of printing dialog extension with a UUID, represented as a constant Core Foundation
string.

One or more of these constants is used in the CFPlugInTypes property list entry of a printing dialog
extension, to declare a supported type and associate the type with a factory function that implements it.

For more information about factory functions, see Core Foundation Plug-in Services.

I/O Module Interface Version
Specify the major and minor components of the version numbers for the interface supported by your I/O
module.

enum {
 kIOMBuildVersionMajor = 1,
 kIOMBuildVersionMinor = 0,
 kIOMBaseVersionMajor = 1,
 kIOMBaseVersionMinor = 0
};

Printer Module Interface Version
Specify the major and minor components of the version numbers for the interface supported by your printer
module.

enum {
 kPMBuildVersionMajor = 1,
 kPMBuildVersionMinor = 0,
 kPMBaseVersionMajor = 1,
 kPMBaseVersionMinor = 0
};

Printer Module Status Codes
Specify the status and error event codes and keys reported by the printer module (used in PMNotificationProc).

enum {
 kPMEventPrinterStatus = 4000,
 kPMEventErrorOccurred = 4001,
 kPMEventRecoverableErrorOccurred = 4002,
 kPMEventRecoverableErrorCleared = 4003
};

Other Printer Module Constants
Defined in PMPrinterModule.h.

Constants 2937
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

enum {
 kPMBrowserInfoNumValues = 4
};

Print Center Feature Flags
Specify the flags returned by Print Center in its prologue function.

typedef UInt32 PMPrBrowserFlags;
enum {
 kPMPrBrowserPCNoFlags = 0,
 kPMPrBrowserPCNoUI = 1,
 kPMPrBrowserPCAllFlags = -1
};

Print Center Signatures
Specify the Print Center creator code and icon signatures.

enum {
 kPMPrBrowserPCCreator = 'pctr',
 kPMPrBrowserWorksetPrinterIconType = 'wspr',
 kPMPrBrowserUnknownPrinterIconType = '?ptr'
};

Result Codes

The table below lists the result codes defined in the Carbon Printing Manager for functions in the printing
plug-in interfaces.

DescriptionValueResult Code

A file or connection could not be closed.-9785kPMCloseFailed

Available in Mac OS X v10.0 and later.

Tells the printing system not to switch out of the current pane.-9531kPMDontSwitchPDEError

Available in Mac OS X v10.0 and later.

Error handling request to update Edit menu.-9544kPMEditRequestFailed

Available in Mac OS X v10.0 and later.

Error retrieving lookup specification.-9542kPMInvalidLookupSpec

Available in Mac OS X v10.0 and later.

Invalid printer browser module.-9540kPMInvalidPBMRef

Available in Mac OS X v10.0 and later.

2938 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

DescriptionValueResult Code

Invalid printing dialog extension context.-9530kPMInvalidPDEContext

Available in Mac OS X v10.0 and later.

Invalid printer address. NetInfo printcap entry not found.Unable
to open USB interface.

-9780kPMInvalidPrinterAddress

Available in Mac OS X v10.0 and later.

I/O attribute not available on current connection type.-9787kPMIOAttrNotAvailable

Available in Mac OS X v10.0 and later.

No selected printers or error getting selection.-9541kPMNoSelectedPrinters

Available in Mac OS X v10.0 and later.

A file or connection could not be opened.-9781kPMOpenFailed

Available in Mac OS X v10.0 and later.

User interface function call with no user interface present.-9545kPMPrBrowserNoUI

Available in Mac OS X v10.0 and later.

A file or connection read operation failed.-9782kPMReadFailed

Available in Mac OS X v10.0 and later.

A file or connection read operation returned no data.-9788kPMReadGotZeroData

Available in Mac OS X v10.1 and later.

Connection status failed.-9784kPMStatusFailed

Available in Mac OS X v10.0 and later.

Error handling sync request.-9543kPMSyncRequestFailed

Available in Mac OS X v10.0 and later.

Connection type not supported.-9786kPMUnsupportedConnection

Available in Mac OS X v10.0 and later.

A file or connection write operation failed.-9783kPMWriteFailed

Available in Mac OS X v10.0 and later.

Result Codes 2939
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

2940 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 38

Printing Plug-in Interfaces Reference

Framework: Carbon/Carbon.h

Declared in TextEdit.h
TSMTE.h

Important: The information in this document is obsolete and should not be used for new development.

Overview

TextEdit was originally designed to handle editable text items in dialog boxes and other parts of the Mac OS
system software. Although TextEdit was enhanced to provide more text-handling support, especially in its
handling of multi-script text, it retained some of its original limitations. TextEdit was never intended to
manipulate lengthy documents or text requiring more than rudimentary formatting.

TextEdit has been deprecated for deployment targets Mac OS X version 10.4 and later. The replacement API
is Multilingual Text Engine (MLTE). MLTE offers additional features such as Unicode text editing, document-wide
tabs, full justification of text, support for more than 32 KB of text, built-in scroll bar handling, built-in printing
support, support for inline input, support for the advanced font features of Apple Type Services for Unicode
Imaging (ATSUI), and support for multiple levels of undo.

You should use MLTE to replace TextEdit functions in your existing applications. With MLTE, you can
significantly reduce the number of lines in your code because MLTE handles most of the low-level tasks you
had to code in the past. MLTE provides a quick and easy solution for static display of Unicode text and for
creating Unicode-compliant text-editing fields within an application. For more information, see Handling
Unicode Text Editing With MLTE.

Functions by Task

Activating and Deactivating an Edit Structure

TEActivate (page 2968) Deprecated in Mac OS X v10.4
Activates the specified edit structure. (Deprecated. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

TEDeactivate (page 2974) Deprecated in Mac OS X v10.4
Deactivates the specified edit structure. (Deprecated. Use Multilingual Text Engine instead; seeHandling
Unicode Text Editing With MLTE.)

Overview 2941
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Using Additional TextEdit Features

TEFeatureFlag (page 2976) Deprecated in Mac OS X v10.4
Turns a specified feature on or off or returns the current status of that feature. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Checking, Setting, and Replacing Styles

TEContinuousStyle (page 2970) Deprecated in Mac OS X v10.4
Determines whether a given character attribute is continuous over the current selection range.
(Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEGetStyle (page 2981) Deprecated in Mac OS X v10.4
Gets character attributes for the specified text. (Deprecated. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

TEGetStyleScrapHandle (page 2983) Deprecated in Mac OS X v10.4
Creates a style scrap structure, copies the character attributes associated with the current selection
range into it, and returns a handle to it. (Deprecated. Use Multilingual Text Engine instead; seeHandling
Unicode Text Editing With MLTE.)

TENumStyles (page 2987) Deprecated in Mac OS X v10.4
Returns the number of character attribute changes contained in the specified range, counting one
for the start of the range. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

TEReplaceStyle (page 2989) Deprecated in Mac OS X v10.4
Replaces any character attributes in the current selection range that match the specified existing
character attributes with the specified new character attributes. (Deprecated. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

TESetStyle (page 2996) Deprecated in Mac OS X v10.4
Sets new character attributes, in the specified edit structure, for the current selection range.
(Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEStyleInsert (page 2998) Deprecated in Mac OS X v10.4
Inserts the specified text immediately before the selection range or the insertion point in the edit
structure’s text and applies the specified character attributes to the text, redrawing the text if necessary.
(Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEUseStyleScrap (page 3002) Deprecated in Mac OS X v10.4
Assigns new character attributes to the specified range of text in the designated edit structure.
(Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Customizing TextEdit

TECustomHook (page 2972) Deprecated in Mac OS X v10.4
Replaces a default TextEdit hook function with a customized function and returns the address of the
replaced function. (Deprecated. Use Multilingual Text Engine instead; see HandlingUnicode Text Editing
With MLTE.)

TEGetDoTextHook (page 2977) Deprecated in Mac OS X v10.4
Obtains a universal procedure pointer to your do-text-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

2942 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TEGetFindWordHook (page 2977) Deprecated in Mac OS X v10.4
Obtains a universal procedure pointer to your set-find-word-hook callback. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEGetRecalcHook (page 2980) Deprecated in Mac OS X v10.4
Obtains a universal procedure pointer to your recalculation callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TESetClickLoop (page 2992) Deprecated in Mac OS X v10.4
Installs the address of the application-supplied click loop function in the clikLoop field of the edit
structure. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With
MLTE.)

TESetDoTextHook (page 2993) Deprecated in Mac OS X v10.4
Sets your do-text-hook callback to be used by TextEdit. (Deprecated. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

TESetFindWordHook (page 2993) Deprecated in Mac OS X v10.4
Sets your set-find-word-hook callback to be used by TextEdit. (Deprecated. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

TESetRecalcHook (page 2994) Deprecated in Mac OS X v10.4
Sets your recalculation callback to be used by TextEdit. (Deprecated. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

Displaying and Scrolling Text

TEAutoView (page 2968) Deprecated in Mac OS X v10.4
Enables and disables automatic scrolling of the text in the specified edit structure. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TECalText (page 2969) Deprecated in Mac OS X v10.4
Recalculates the beginnings of all lines of text in the specified edit structure. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEGetHeight (page 2978) Deprecated in Mac OS X v10.4
Returns the total height of all of the lines in the text between and including the specified starting
and ending lines. (Deprecated. Use Multilingual Text Engine instead; see HandlingUnicode Text Editing
With MLTE.)

TEPinScroll (page 2988) Deprecated in Mac OS X v10.4
Scrolls the text within the view rectangle of the specified edit structure by the designated number
of pixels. Scrolling stops when the last line of text is scrolled into view. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEScroll (page 2990) Deprecated in Mac OS X v10.4
Scrolls the text within the view rectangle of the specified edit structure by the designated number
of pixels. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With
MLTE.)

TESelView (page 2991) Deprecated in Mac OS X v10.4
Ensures, once automatic scrolling has been enabled by a call to the TEAutoView function or through
the TEFeatureFlag function, that the selection range is visible, scrolling it into the view rectangle
if necessary. (Deprecated. Use Multilingual Text Engine instead; see HandlingUnicode Text EditingWith
MLTE.)

Functions by Task 2943
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TESetAlignment (page 2992) Deprecated in Mac OS X v10.4
Sets the alignment of the specified text in an edit structure so that it is centered, right aligned, or left
aligned, or aligned according to the line direction. (Deprecated. Use Multilingual Text Engine instead;
see Handling Unicode Text Editing With MLTE.)

TETextBox (page 3000) Deprecated in Mac OS X v10.4
Draws the indicated text in a given rectangle, with the specified alignment. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEUpdate (page 3002) Deprecated in Mac OS X v10.4
Draws the specified text within a given update rectangle. (Deprecated. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

Initializing TextEdit, Creating an Edit Structure, and Disposing of an Edit
Structure

TEDispose (page 2975) Deprecated in Mac OS X v10.4
Removes a specified edit structure and releases all memory associated with it. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TENew (page 2986) Deprecated in Mac OS X v10.4
Creates and initializes a monostyled edit structure and allocates a handle to it. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEStyleNew (page 2999) Deprecated in Mac OS X v10.4
Creates a multistyled edit structure and allocates a handle to it. (Deprecated. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

Managing the TextEdit Private Scrap

TEGetScrapHandle (page 2980) Deprecated in Mac OS X v10.4
Returns a handle to the TextEdit private scrap. (Deprecated. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

TEGetScrapLength (page 2981) Deprecated in Mac OS X v10.4
Returns the size of the TextEdit private scrap, in bytes. (Deprecated. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

TEScrapHandle (page 2990) Deprecated in Mac OS X v10.4
Returns a handle to the TextEdit private scrap. (Deprecated. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

TESetScrapHandle (page 2994) Deprecated in Mac OS X v10.4
Sets a handle to the TextEdit private scrap. (Deprecated. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

TESetScrapLength (page 2994) Deprecated in Mac OS X v10.4
Sets the size of the TextEdit private scrap to the specified number of bytes. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

2944 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Modifying the Text of an Edit Structure

TECopy (page 2971) Deprecated in Mac OS X v10.4
Copies the text selection range from the edit structure, leaving the selection range intact. (Deprecated.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TECut (page 2973) Deprecated in Mac OS X v10.4
Removes the current selection range from the text of the designated edit structure, redrawing the
text as necessary. (Deprecated. Use Multilingual Text Engine instead; see HandlingUnicode Text Editing
With MLTE.)

TEDelete (page 2974) Deprecated in Mac OS X v10.4
Removes the selected range of text from the designated edit structure, redrawing the remaining text
as necessary. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text Editing
With MLTE.)

TEFromScrap (page 2976) Deprecated in Mac OS X v10.4
Copies the contents of the desk scrap to the TextEdit private scrap. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEInsert (page 2985) Deprecated in Mac OS X v10.4
Inserts the specified text immediately before the selection range or the insertion point in the text of
the designated edit structure, redrawing the text as necessary. (Deprecated. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

TEPaste (page 2988) Deprecated in Mac OS X v10.4
Replaces the edit structure’s selected text with the contents of the private scrap and leaves an insertion
point after the inserted text. If the selection range is an insertion point, TEPaste inserts the contents
of the private scrap there. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

TEStylePaste (page 3000) Deprecated in Mac OS X v10.4
Pastes text and its associated character attribute information from the desk scrap into the edit
structure’s text at the insertion point—if the current selection range is an insertion point—or it replaces
the current selection range. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

TEToScrap (page 3001) Deprecated in Mac OS X v10.4
Copies the contents of the TextEdit private scrap to the desk scrap. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Setting and Getting an Edit Structure’s Text and Character Attribute
Information

TEGetStyleHandle (page 2982) Deprecated in Mac OS X v10.4
Returns the style handle stored in the designated edit structure’s txFont and txFace fields. The
style handle points to the associated style structure, not to a copy of it. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEGetText (page 2983) Deprecated in Mac OS X v10.4
Returns a handle to the text of the specified edit structure. (Deprecated. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

Functions by Task 2945
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TEKey (page 2985) Deprecated in Mac OS X v10.4
Replaces the selection range in the text of the specified edit structure with the input character and
positions the insertion point just past the inserted character. (Deprecated. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

TESetStyleHandle (page 2997) Deprecated in Mac OS X v10.4
Sets an edit structure’s style handle, which is stored in the txFont and txFace fields. (Deprecated.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TESetText (page 2997) Deprecated in Mac OS X v10.4
Incorporates a copy of the specified text into the designated edit structure. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Setting the Caret and Selection Range

TEClick (page 2969) Deprecated in Mac OS X v10.4
Controls placement and highlighting of the selection range as determined by mouse events.
(Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEGetHiliteRgn (page 2978) Deprecated in Mac OS X v10.4
Obtains the highlight region for the specified edit structure. (Deprecated. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

TEIdle (page 2984) Deprecated in Mac OS X v10.4
When called repeatedly, displays a blinking caret at the insertion point, if any exists, in the text of the
specified edit structure of an active window. (Deprecated. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

TESetSelect (page 2995) Deprecated in Mac OS X v10.4
Sets the selection range (or denotes the insertion point) within the text of the specified edit structure.
(Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Using Byte Offsets and Corresponding Points

TEGetOffset (page 2979) Deprecated in Mac OS X v10.4
Finds the byte offset of a character in an edit structure’s text that corresponds to the specified point.
(Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEGetPoint (page 2979) Deprecated in Mac OS X v10.4
Determines the point that corresponds to the specified byte offset of a character and returns the
coordinates of that point. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

Handling TSM Dialogs

GetTSMTEDialogDocumentID (page 2954) Deprecated in Mac OS X v10.4
Returns a TSM document ID for the specified dialog. (Deprecated. Use Multilingual Text Engine instead;
see Handling Unicode Text Editing With MLTE.)

GetTSMTEDialogTSMTERecHandle (page 2954) Deprecated in Mac OS X v10.4
Returns a handle to a TSM record for the specified dialog. (Deprecated. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

2946 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

IsTSMTEDialog (page 2961) Deprecated in Mac OS X v10.4
Checks to see if the specified dialog is a TSMTE dialog. (Deprecated. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

SetTSMTEDialogDocumentID (page 2967) Deprecated in Mac OS X v10.4
Sets the document ID for the specified dialog. (Deprecated. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

SetTSMTEDialogTSMTERecHandle (page 2967) Deprecated in Mac OS X v10.4
Sets a handle to a TSMTE record for the specified dialog. (Deprecated. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

Working With UPPs for TextEdit Callback Functions

DisposeCaretHookUPP (page 2950) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a caret-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeDrawHookUPP (page 2950) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a draw-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeEOLHookUPP (page 2950) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to an EOL-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeHighHookUPP (page 2951) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a high-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeHitTestHookUPP (page 2951) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a hit-test hook callback. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeNWidthHookUPP (page 2951) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a width-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeTEClickLoopUPP (page 2952) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a click-loop callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeTEDoTextUPP (page 2952) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a do-text callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeTEFindWordUPP (page 2952) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a find-word callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeTERecalcUPP (page 2952) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a recaluclation callback. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeTextWidthHookUPP (page 2953) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a text-width-hook callback. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Functions by Task 2947
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

DisposeTSMTEPostUpdateUPP (page 2953) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a post-update callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeTSMTEPreUpdateUPP (page 2953) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a pre-update callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DisposeWidthHookUPP (page 2954) Deprecated in Mac OS X v10.4
Disposes of a universal procedure pointer (UPP) to a width-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

InvokeCaretHookUPP (page 2955) Deprecated in Mac OS X v10.4
Calls a caret-hook callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

InvokeDrawHookUPP (page 2955) Deprecated in Mac OS X v10.4
Calls a draw-hook callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

InvokeEOLHookUPP (page 2956) Deprecated in Mac OS X v10.4
Calls an EOL-hook callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

InvokeHighHookUPP (page 2956) Deprecated in Mac OS X v10.4
Calls a high-hook callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

InvokeHitTestHookUPP (page 2957) Deprecated in Mac OS X v10.4
Calls a hit-test hook callback. (Deprecated. Use Multilingual Text Engine instead; see HandlingUnicode
Text Editing With MLTE.)

InvokeNWidthHookUPP (page 2957) Deprecated in Mac OS X v10.4
Calls a width-hook callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

InvokeTEClickLoopUPP (page 2958) Deprecated in Mac OS X v10.4
Calls a click-loop callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

InvokeTEDoTextUPP (page 2958) Deprecated in Mac OS X v10.4
Calls a do-text callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode Text
Editing With MLTE.)

InvokeTEFindWordUPP (page 2959) Deprecated in Mac OS X v10.4
Calls a find-word callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

InvokeTERecalcUPP (page 2959) Deprecated in Mac OS X v10.4
Calls a recalculation callback. (Deprecated. Use Multilingual Text Engine instead; see HandlingUnicode
Text Editing With MLTE.)

InvokeTextWidthHookUPP (page 2959) Deprecated in Mac OS X v10.4
Calls a text-width-hook callback. (Deprecated. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

InvokeTSMTEPostUpdateUPP (page 2960) Deprecated in Mac OS X v10.4
Calls a post-update callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

2948 Functions by Task
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

InvokeTSMTEPreUpdateUPP (page 2960) Deprecated in Mac OS X v10.4
Calls a pre-update callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

InvokeWidthHookUPP (page 2961) Deprecated in Mac OS X v10.4
Calls a width-hook callback. (Deprecated. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

NewCaretHookUPP (page 2962) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a caret-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewDrawHookUPP (page 2962) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a draw-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewEOLHookUPP (page 2962) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to an EOL-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewHighHookUPP (page 2963) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a high-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewHitTestHookUPP (page 2963) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a hit-test hook callback. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewNWidthHookUPP (page 2964) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a width-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewTEClickLoopUPP (page 2964) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a click-loop callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewTEDoTextUPP (page 2964) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a do-text callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewTEFindWordUPP (page 2965) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a find-word callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewTERecalcUPP (page 2965) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a recalculation callback. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewTextWidthHookUPP (page 2965) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a text-width-hook callback. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewTSMTEPostUpdateUPP (page 2966) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a post-update callback. (Deprecated. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NewTSMTEPreUpdateUPP (page 2966) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a pre-update callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Functions by Task 2949
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

NewWidthHookUPP (page 2966) Deprecated in Mac OS X v10.4
Creates a new universal procedure pointer (UPP) to a width-hook callback. (Deprecated. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Functions

DisposeCaretHookUPP
Disposes of a universal procedure pointer (UPP) to a caret-hook callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeCaretHookUPP (
 CaretHookUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

DisposeDrawHookUPP
Disposes of a universal procedure pointer (UPP) to a draw-hook callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeDrawHookUPP (
 DrawHookUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

DisposeEOLHookUPP
Disposes of a universal procedure pointer (UPP) to an EOL-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeEOLHookUPP (
 EOLHookUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

2950 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Declared In
TextEdit.h

DisposeHighHookUPP
Disposes of a universal procedure pointer (UPP) to a high-hook callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeHighHookUPP (
 HighHookUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

DisposeHitTestHookUPP
Disposes of a universal procedure pointer (UPP) to a hit-test hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeHitTestHookUPP (
 HitTestHookUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

DisposeNWidthHookUPP
Disposes of a universal procedure pointer (UPP) to a width-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeNWidthHookUPP (
 NWidthHookUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

Functions 2951
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

DisposeTEClickLoopUPP
Disposes of a universal procedure pointer (UPP) to a click-loop callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeTEClickLoopUPP (
 TEClickLoopUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

DisposeTEDoTextUPP
Disposes of a universal procedure pointer (UPP) to a do-text callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeTEDoTextUPP (
 TEDoTextUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

DisposeTEFindWordUPP
Disposes of a universal procedure pointer (UPP) to a find-word callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeTEFindWordUPP (
 TEFindWordUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

DisposeTERecalcUPP
Disposes of a universal procedure pointer (UPP) to a recaluclation callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

2952 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

void DisposeTERecalcUPP (
 TERecalcUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

DisposeTextWidthHookUPP
Disposes of a universal procedure pointer (UPP) to a text-width-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeTextWidthHookUPP (
 TextWidthHookUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

DisposeTSMTEPostUpdateUPP
Disposes of a universal procedure pointer (UPP) to a post-update callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeTSMTEPostUpdateUPP (
 TSMTEPostUpdateUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TSMTE.h

DisposeTSMTEPreUpdateUPP
Disposes of a universal procedure pointer (UPP) to a pre-update callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Functions 2953
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

void DisposeTSMTEPreUpdateUPP (
 TSMTEPreUpdateUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TSMTE.h

DisposeWidthHookUPP
Disposes of a universal procedure pointer (UPP) to a width-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void DisposeWidthHookUPP (
 WidthHookUPP userUPP
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

GetTSMTEDialogDocumentID
Returns a TSM document ID for the specified dialog. (Deprecated in Mac OS X v10.4. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

TSMDocumentID GetTSMTEDialogDocumentID (
 DialogRef dialog
);

Return Value
See the Text Services Manager documentation for a description of the TSMDocumentID data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TSMTE.h

GetTSMTEDialogTSMTERecHandle
Returns a handle to a TSM record for the specified dialog. (Deprecated in Mac OS X v10.4. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

2954 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TSMTERecHandle GetTSMTEDialogTSMTERecHandle (
 DialogRef dialog
);

Return Value
See the description of the TSMTERecHandle data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TSMTE.h

InvokeCaretHookUPP
Calls a caret-hook callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

void InvokeCaretHookUPP (
 const Rect *r,
 TEPtr pTE,
 CaretHookUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

InvokeDrawHookUPP
Calls a draw-hook callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

void InvokeDrawHookUPP (
 unsigned short textOffset,
 unsigned short drawLen,
 void *textBufferPtr,
 TEPtr pTE,
 TEHandle hTE,
 DrawHookUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Functions 2955
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

InvokeEOLHookUPP
Calls an EOL-hook callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; seeHandling
Unicode Text Editing With MLTE.)

Boolean InvokeEOLHookUPP (
 char theChar,
 TEPtr pTE,
 TEHandle hTE,
 EOLHookUPP userUPP
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

InvokeHighHookUPP
Calls a high-hook callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

void InvokeHighHookUPP (
 const Rect *r,
 TEPtr pTE,
 HighHookUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

2956 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

InvokeHitTestHookUPP
Calls a hit-test hook callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

Boolean InvokeHitTestHookUPP (
 unsigned short styleRunLen,
 unsigned short styleRunOffset,
 unsigned short slop,
 void *textBufferPtr,
 TEPtr pTE,
 TEHandle hTE,
 unsigned short *pixelWidth,
 unsigned short *charOffset,
 Boolean *pixelInChar,
 HitTestHookUPP userUPP
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

InvokeNWidthHookUPP
Calls a width-hook callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

unsigned short InvokeNWidthHookUPP (
 unsigned short styleRunLen,
 unsigned short styleRunOffset,
 short slop,
 short direction,
 void *textBufferPtr,
 short *lineStart,
 TEPtr pTE,
 TEHandle hTE,
 NWidthHookUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 2957
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Declared In
TextEdit.h

InvokeTEClickLoopUPP
Calls a click-loop callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

Boolean InvokeTEClickLoopUPP (
 TEPtr pTE,
 TEClickLoopUPP userUPP
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

InvokeTEDoTextUPP
Calls a do-text callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

void InvokeTEDoTextUPP (
 TEPtr pTE,
 unsigned short firstChar,
 unsigned short lastChar,
 short selector,
 GrafPtr *currentGrafPort,
 short *charPosition,
 TEDoTextUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

2958 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

InvokeTEFindWordUPP
Calls a find-word callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

void InvokeTEFindWordUPP (
 unsigned short currentPos,
 short caller,
 TEPtr pTE,
 TEHandle hTE,
 unsigned short *wordStart,
 unsigned short *wordEnd,
 TEFindWordUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

InvokeTERecalcUPP
Calls a recalculation callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

void InvokeTERecalcUPP (
 TEPtr pTE,
 unsigned short changeLength,
 unsigned short *lineStart,
 unsigned short *firstChar,
 unsigned short *lastChar,
 TERecalcUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

InvokeTextWidthHookUPP
Calls a text-width-hook callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

Functions 2959
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

unsigned short InvokeTextWidthHookUPP (
 unsigned short textLen,
 unsigned short textOffset,
 void *textBufferPtr,
 TEPtr pTE,
 TEHandle hTE,
 TextWidthHookUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

InvokeTSMTEPostUpdateUPP
Calls a post-update callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; seeHandling
Unicode Text Editing With MLTE.)

void InvokeTSMTEPostUpdateUPP (
 TEHandle textH,
 long fixLen,
 long inputAreaStart,
 long inputAreaEnd,
 long pinStart,
 long pinEnd,
 long refCon,
 TSMTEPostUpdateUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TSMTE.h

InvokeTSMTEPreUpdateUPP
Calls a pre-update callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

2960 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

void InvokeTSMTEPreUpdateUPP (
 TEHandle textH,
 long refCon,
 TSMTEPreUpdateUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TSMTE.h

InvokeWidthHookUPP
Calls a width-hook callback. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling
Unicode Text Editing With MLTE.)

unsigned short InvokeWidthHookUPP (
 unsigned short textLen,
 unsigned short textOffset,
 void *textBufferPtr,
 TEPtr pTE,
 TEHandle hTE,
 WidthHookUPP userUPP
);

Discussion
You should not need to use this function, as the system invokes your callback for you.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

IsTSMTEDialog
Checks to see if the specified dialog is a TSMTE dialog. (Deprecated in Mac OS X v10.4. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

Boolean IsTSMTEDialog (
 DialogRef dialog
);

Return Value
See the Mac Types documentation for a description of the Boolean data type.

Availability
Available in Mac OS X v10.0 and later.

Functions 2961
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TSMTE.h

NewCaretHookUPP
Creates a new universal procedure pointer (UPP) to a caret-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

CaretHookUPP NewCaretHookUPP (
 CaretHookProcPtr userRoutine
);

Return Value
See the description of the CaretHookUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

NewDrawHookUPP
Creates a new universal procedure pointer (UPP) to a draw-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

DrawHookUPP NewDrawHookUPP (
 DrawHookProcPtr userRoutine
);

Return Value
See the description of the DrawHookUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

NewEOLHookUPP
Creates a new universal procedure pointer (UPP) to an EOL-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

2962 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

EOLHookUPP NewEOLHookUPP (
 EOLHookProcPtr userRoutine
);

Return Value
See the description of the EOLHookUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

NewHighHookUPP
Creates a new universal procedure pointer (UPP) to a high-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

HighHookUPP NewHighHookUPP (
 HighHookProcPtr userRoutine
);

Return Value
See the description of the HighHookUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

NewHitTestHookUPP
Creates a new universal procedure pointer (UPP) to a hit-test hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

HitTestHookUPP NewHitTestHookUPP (
 HitTestHookProcPtr userRoutine
);

Return Value
See the description of the HitTestHookUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

Functions 2963
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

NewNWidthHookUPP
Creates a new universal procedure pointer (UPP) to a width-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

NWidthHookUPP NewNWidthHookUPP (
 NWidthHookProcPtr userRoutine
);

Return Value
See the description of the NWidthHookUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

NewTEClickLoopUPP
Creates a new universal procedure pointer (UPP) to a click-loop callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEClickLoopUPP NewTEClickLoopUPP (
 TEClickLoopProcPtr userRoutine
);

Return Value
See the description of the TEClickLoopUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

NewTEDoTextUPP
Creates a new universal procedure pointer (UPP) to a do-text callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEDoTextUPP NewTEDoTextUPP (
 TEDoTextProcPtr userRoutine
);

Return Value
See the description of the TEDoTextUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

2964 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Declared In
TextEdit.h

NewTEFindWordUPP
Creates a new universal procedure pointer (UPP) to a find-word callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEFindWordUPP NewTEFindWordUPP (
 TEFindWordProcPtr userRoutine
);

Return Value
See TEFindWordUPP (page 3020) for a description of the TEFindWordUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

NewTERecalcUPP
Creates a new universal procedure pointer (UPP) to a recalculation callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TERecalcUPP NewTERecalcUPP (
 TERecalcProcPtr userRoutine
);

Return Value
See the description of the TERecalcUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

NewTextWidthHookUPP
Creates a new universal procedure pointer (UPP) to a text-width-hook callback. (Deprecated in Mac OS X
v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TextWidthHookUPP NewTextWidthHookUPP (
 TextWidthHookProcPtr userRoutine
);

Return Value
See the description of the TextWidthHookUPP data type.

Functions 2965
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

NewTSMTEPostUpdateUPP
Creates a new universal procedure pointer (UPP) to a post-update callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TSMTEPostUpdateUPP NewTSMTEPostUpdateUPP (
 TSMTEPostUpdateProcPtr userRoutine
);

Return Value
See TSMTEPostUpdateUPP (page 3029) for a description of the TSMTEPostUpdateUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TSMTE.h

NewTSMTEPreUpdateUPP
Creates a new universal procedure pointer (UPP) to a pre-update callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TSMTEPreUpdateUPP NewTSMTEPreUpdateUPP (
 TSMTEPreUpdateProcPtr userRoutine
);

Return Value
See the description of the TSMTEPreUpdateUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TSMTE.h

NewWidthHookUPP
Creates a new universal procedure pointer (UPP) to a width-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

2966 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

WidthHookUPP NewWidthHookUPP (
 WidthHookProcPtr userRoutine
);

Return Value
See the description of the WidthHookUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Declared In
TextEdit.h

SetTSMTEDialogDocumentID
Sets the document ID for the specified dialog. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

void SetTSMTEDialogDocumentID (
 DialogRef dialog,
 TSMDocumentID documentID
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TSMTE.h

SetTSMTEDialogTSMTERecHandle
Sets a handle to a TSMTE record for the specified dialog. (Deprecated in Mac OS X v10.4. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void SetTSMTEDialogTSMTERecHandle (
 DialogRef dialog,
 TSMTERecHandle tsmteRecHandle
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TSMTE.h

Functions 2967
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TEActivate
Activates the specified edit structure. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead;
see Handling Unicode Text Editing With MLTE.)

void TEActivate (
 TEHandle hTE
);

Parameters
hTE

A handle to the specified edit structure.

Discussion
When your application receives notification of an activate event, it can call the TEActivate function, which
activates an edit structure and highlights the selection range. If the selection range is an insertion point,
TEActivate simply displays a caret there. Call this function every time the Event Manager function
WaitNextEvent reports that the window containing the edit structure has become active.

If you do not call TEActivate before you call TEClick, TEIdle, or TESetSelect, the selection range is
not highlighted, or, if the selection range is set to an insertion point, a caret is not displayed at the insertion
point. However, if you have turned on outline highlighting through the TEFeatureFlag function for the
edit structure, the text of the selection range is framed or a dimmed or an unblinking caret is displayed at
the insertion point.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEAutoView
Enables and disables automatic scrolling of the text in the specified edit structure. (Deprecated in Mac OS X
v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TEAutoView (
 Boolean fAuto,
 TEHandle hTE
);

Parameters
fAuto

A flag indicating whether to enable or disable automatic scrolling. A value of TRUE enables automatic
scrolling; a value of FALSE disables automatic scrolling.

hTE
A handle to the edit structure for which automatic scrolling is to be enabled or disabled.

Discussion
The TEAutoView function does not actually scroll the text automatically: TESelView does. However, when
fAuto is set to FALSE , a call to TESelView has no effect.

2968 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

If there is a scroll bar associated with the edit structure, your application must manage scrolling of it. You
can replace the default click loop function, which scrolls the text only, with a customized version that also
updates the scroll bar.

You can also enable or disable automatic scrolling for an edit structure through the teFAutoScroll feature
of the TEFeatureFlag function. For more information, see TEFeatureFlag (page 2976).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TECalText
Recalculates the beginnings of all lines of text in the specified edit structure. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TECalText (
 TEHandle hTE
);

Parameters
hTE

A handle to the edit structure whose text lines are to be recalculated.

Discussion
The TECalText function updates elements of the lineStarts array in an edit structure. Call TECalText
if you’ve changed the destination rectangle, the hText field, or any other property of the edit structure that
pertains to line breaks and the number of characters per line—for example, font, size, style, and so on.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEClick
Controls placement and highlighting of the selection range as determined by mouse events. (Deprecated in
Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Functions 2969
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

void TEClick (
 Point pt,
 Boolean fExtend,
 TEHandle h
);

Parameters
pt

The mouse location in local coordinates at the time the mouse button was pressed, obtainable from
the event structure (in global coordinates).

fExtend
A flag denoting the state of the Shift key at the time of the click as indicated by the Event Manager.
If the Shift key was held down at the time of the click to extend the selection, pass a value of TRUE.

h
A handle to the edit structure whose text is displayed in the view rectangle where the click occurred.

Discussion
Call TEClick whenever a mouse-down event occurs in the view rectangle of the edit structure and the
window associated with that edit structure is active. The TEClick function keeps control until the mouse
button is released. Use the QuickDraw function GlobalToLocal to convert the global coordinates of the
mouse location given in the event structure to the local coordinate system for pt.

The TEClick function removes highlighting of the old selection range unless the selection range is being
extended. If the mouse moves, meaning that a drag is occurring, TEClick expands or shortens the selection
range accordingly a character at a time. In the case of a double-click, the word where the cursor is positioned
becomes the selection range.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEContinuousStyle
Determines whether a given character attribute is continuous over the current selection range. (Deprecated
in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Boolean TEContinuousStyle (
 short *mode,
 TextStyle *aStyle,
 TEHandle hTE
);

Parameters
mode

On input, a pointer to a selector specifying the attributes to be checked. On output, mode identifies
only those attributes determined to be continuous over the selection range. Possible values for the
mode parameter are defined in “Text Styling Constants” (page 3036).

2970 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

aStyle
On input, a pointer to a text style structure. On output, this structure contains the values for the mode
attributes determined to be continuous over the selection.

hTE
A handle to the edit structure containing the selected text whose attributes are to be checked. If the
value of hTE is a handle to a monostyled edit structure, TEContinuousStyle returns the set of
character attributes that are consistent for the entire structure.

Return Value
TRUE if all of the attributes to be checked are continuous; FALSE if none or some are continuous. See the
Mac Types documentation for a description of the Boolean data type.

Discussion
This function does not modify the text selection. If the current selection range is an insertion point,
TEContinuousStyle first checks the null scrap. If the null scrap contains character attributes, then they are
used based on the value of the mode parameter. Otherwise, if the null scrap is empty, TEContinuousStyle
returns the attributes of the character preceding the insertion point. The TEContinuousStyle function
always returns TRUE in this case, and each field of the text style structure is set if the corresponding bit in
the mode parameter is set.

Note that fields in the text style structure specified by aStyle are only valid if the corresponding bits are set
in the mode variable.

How the tsFace field of the aStyle structure is used requires some consideration. For example, if
TEContinuousStyle returns a mode parameter that contains doFace and the text style structure tsFace
field is bold, it means that the selected text is all bold, but may contain other text styles, such as italic, as
well. Italic does not apply to all of the selected text, or it would have been included in the tsFace field. If
the tsFace field is an empty set, then all of the selected text is plain.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TECopy
Copies the text selection range from the edit structure, leaving the selection range intact. (Deprecated in
Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TECopy (
 TEHandle hTE
);

Parameters
hTE

A handle to the edit structure containing the text to be copied.

Functions 2971
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Discussion
The TECopy function copies the text to the private scrap. For text of a monostyled edit structure, the text is
written to the private scrap only. For text of a multistyled edit structure, the text is written to the TextEdit
private scrap, the character attribute information is written to the TextEdit style scrap, and both are written
to the Scrap Manager’s desk scrap. Anything previously in the private scrap is deleted before the copied text
is written to it.

For both multistyled and monostyled text, if the selection range is an insertion point, TECopy empties the
TextEdit private scrap. When the selection range is an insertion point and the text is multistyled, TECopy has
no effect on the null scrap, the style scrap, or the Scrap Manager’s desk scrap.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TECustomHook
Replaces a default TextEdit hook function with a customized function and returns the address of the replaced
function. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text
Editing With MLTE.)

void TECustomHook (
 TEIntHook which,
 UniversalProcPtr *addr,
 TEHandle hTE
);

Parameters
which

The hook whose default function is to be replaced.

addr
On input, the address of your customized function.

On output, the addr parameter contains the address of the function that was previously installed in
the field identified by the which parameter. This address is returned so that you can daisy-chain
functions.

hTE
A handle to the edit structure to be modified.

Discussion
The TECustomHook function lets you alter the behavior of TextEdit to better suit your application’s
requirements and those of the script systems installed. If you replace a default hook function with a customized
version that you write in a high-level language, such as Pascal or C, you need to provide assembly-language
glue code that utilizes the registers for your high-level language function.

The end-of-line hook, width measurement hook, new width measurement hook, text width measurement
hook, draw hook, and hit test hook fields are hook fields in the TextEdit dispatch structure. The which
parameter identifies the hook whose default function is to be replaced. You use the constants described in
“Text Custom Hook Constants” (page 3033) to specify a value for this parameter.

2972 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Certain precautions are critical in replacing default functions. Before placing the address of your function in
the TextEdit dispatch structure, strip the addresses, using the Operating System Utilities StripAddress
function, to guarantee that your application is 32-bit clean.

Before replacing a TextEdit function with a customized one, determine whether more than one script system
is installed, and if so, ensure that your customized function accommodates all of the installed script systems.
This avoids the problem of your customized function producing results that are incompatible with the Script
Manager.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TECut
Removes the current selection range from the text of the designated edit structure, redrawing the text as
necessary. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text
Editing With MLTE.)

void TECut (
 TEHandle hTE
);

Parameters
hTE

A handle to the edit structure containing the text to be cut.

Discussion
For monostyled text, the TECut function writes the cut text to the private scrap.

For multistyled text, TECut writes the cut text to the private scrap and its character attributes to the style
scrap it also writes both to the Scrap Manager’s desk scrap. For multistyled text, the TECut function removes
the character attributes from the style structure’s style table when the text is cut.

For both monostyled and multistyled text, if the selection range is an insertion point, TextEdit deletes
everything from the private scrap. When the selection range is an insertion point and the text is multistyled,
TECut has no effect on the style scrap or the Scrap Manager’s desk scrap.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

Functions 2973
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TEDeactivate
Deactivates the specified edit structure. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead;
see Handling Unicode Text Editing With MLTE.)

void TEDeactivate (
 TEHandle hTE
);

Parameters
hTE

A handle to the specified edit structure.

Discussion
When the activate event flag is set to deactivate the window, your application can call the TEDeactivate
function, which changes an edit structure’s status from active to inactive and removes the selection range
highlighting or the caret.

However, if you turned on outline highlighting through the TEFeatureFlag function for the edit structure,
the text of the selection range is framed or a dimmed or an unblinking caret is displayed at the insertion
point when the structure is deactivated.

Call this function every time the Event Manager function WaitNextEvent reports that the window containing
the edit structure has become inactive.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEDelete
Removes the selected range of text from the designated edit structure, redrawing the remaining text as
necessary. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text
Editing With MLTE.)

void TEDelete (
 TEHandle hTE
);

Parameters
hTE

A handle to the edit structure containing the text to be deleted.

Discussion
When the TEDelete function deletes a selected range of text, it does not transfer the text to either the
private scrap or the Scrap Manager’s desk scrap.

2974 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

For multistyled structures, when you use TEDelete to delete a selected range of text, the associated character
attributes are saved in the null scrap to be applied to characters entered after the text is deleted. When the
user clicks in some other area of the text, the character attributes are removed from the null scrap. You can
use TEDelete to implement the Clear command. The TEDelete function recalculates line starts and line
heights.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEDispose
Removes a specified edit structure and releases all memory associated with it. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TEDispose (
 TEHandle hTE
);

Parameters
hTE

A handle to the edit structure for which the allocated memory should be released.

Discussion
Call the TEDispose function only when you’re completely through with an edit structure.

Note that if your program retains a handle to text associated with the edit structure that you are destroying
with TEDispose , the handle becomes invalid because the TEDispose function disposes of it, as well as the
dispatch structure handle. If the structure is multistyled, TEDispose also disposes all of the style-related
handles: STHandle, LHHandle, STScrpHandle, nullSTHandle, and TEStyleHandle.

To continue to refer to the text after you’ve destroyed the edit structure, you need to make a copy of the
handle in the hText field of the edit structure using the Operating System Utilities HandToHand function
before you call TEDispose.

In addition to disposing of the edit structure, the edit structure handle, and the dispatch structure handle,
the TEDispose function destroys the null scrap associated with the edit structure and releases the memory
used for it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

Functions 2975
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TEFeatureFlag
Turns a specified feature on or off or returns the current status of that feature. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

short TEFeatureFlag (
 short feature,
 short action,
 TEHandle hTE
);

Parameters
feature

The feature for which the action is to be performed. See “Text Feature Constants” (page 3035) for a
description of the available values.

action
A selector stipulating that the feature, specified by the feature parameter, is to be turned on or off,
or that the current status of the feature is to be returned. See “Text Feature Action Constants” (page
3034) for a description of the available values.

hTE
A handle to the edit structure for which the action should be performed.

Return Value
The status of the specified feature (if the selector is set to teBitTest).

Discussion
You can use the TEFeatureFlag function to check the status of additional TextEdit features—automatic
scrolling, outline highlighting, and text buffering—and to enable or disable the feature. You can also use
this function to disable inline input in a particular edit structure and to enable several features that have
been provided so that inline input works correctly with TextEdit.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEFromScrap
Copies the contents of the desk scrap to the TextEdit private scrap. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

OSErr TEFromScrap (
 void
);

Return Value
A result code. See “TextEdit Result Codes” (page 3037).

Discussion
You use this function to move monostyled text across applications or between an application and a desk
accessory.

2976 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetDoTextHook
Obtains a universal procedure pointer to your do-text-hook callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEDoTextUPP TEGetDoTextHook (
 void
);

Return Value
See the description of the TEDoTextUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetFindWordHook
Obtains a universal procedure pointer to your set-find-word-hook callback. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEFindWordUPP TEGetFindWordHook (
 void
);

Return Value
See the description of the TEFindWordUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

Functions 2977
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TEGetHeight
Returns the total height of all of the lines in the text between and including the specified starting and ending
lines. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing
With MLTE.)

long TEGetHeight (
 long endLine,
 long startLine,
 TEHandle hTE
);

Parameters
endLine

The number of the last line of text whose height is to be included in the total height. You can specify
a value that is greater than or equal to 1 for this parameter.

startLine
The number of the first line of text whose height is to be included in the total height. You can specify
a value that is greater than or equal to 1 for this parameter.

hTE
A handle to the edit structure containing the lines of text whose height is to be returned.

Return Value
The total height of all of the designated text lines.

Discussion
For monostyled text, the TEGetHeight function uses the value of the edit structure’s lineHeight field. For
multistyled text, it uses the line height element (LHElement) of the line height table (LHTable). Note that
TEGetHeight does not take into account the height of any blank lines at the end of the text. You need to
consider this when scrolling text.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetHiliteRgn
Obtains the highlight region for the specified edit structure. (Deprecated in Mac OS X v10.4. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

OSErr TEGetHiliteRgn (
 RgnHandle region,
 TEHandle hTE
);

Return Value
A result code. See “TextEdit Result Codes” (page 3037).

Availability
Available in Mac OS X v10.0 and later.

2978 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetOffset
Finds the byte offset of a character in an edit structure’s text that corresponds to the specified point.
(Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With
MLTE.)

short TEGetOffset (
 Point pt,
 TEHandle hTE
);

Parameters
pt

A point in the displayed text of the specified edit structure.

hTE
A handle to the edit structure containing the text.

Return Value
The byte offset of the character at the specified point. In the case of a 2-byte character, the function returns
the byte offset of the first byte.

Discussion
The TEGetOffset function works for both monostyled and multistyled edit structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetPoint
Determines the point that corresponds to the specified byte offset of a character and returns the coordinates
of that point. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text
Editing With MLTE.)

Point TEGetPoint (
 short offset,
 TEHandle hTE
);

Parameters
offset

A byte offset into the text buffer of an edit structure.

Functions 2979
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

hTE
A handle to the edit structure containing the text.

Return Value
The coordinates of the point that corresponds to the specified byte offset. The TEGetPoint function returns
a valid result even when the edit structure does not contain any text. The point returned is based on the
values in the structure’s destination rectangle.

In the case of an offset being equal to a line end, which is also the start of the next line, TEGetPoint returns
a point corresponding to the line start of the next line. In the case of a dual caret, the primary caret position,
the one corresponding to the primary line direction, is returned.

See the Mac Types documentation for a description of the Point data type.

Discussion
The line height, taken either from the lineHeight field for a monostyled edit structure or from the line-height
array, LHElement , for a multistyled edit structure, is also used to determine the vertical component. Both
the text direction and the primary line direction are used to determine the horizontal component.

The TEGetPoint function works for both monostyled and multistyled edit structures.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetRecalcHook
Obtains a universal procedure pointer to your recalculation callback. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TERecalcUPP TEGetRecalcHook (
 void
);

Return Value
See the description of the TERecalcUPP data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetScrapHandle
Returns a handle to the TextEdit private scrap. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

2980 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Handle TEGetScrapHandle (
 void
);

Return Value
See the Mac Types documentation for a description of the Handle data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetScrapLength
Returns the size of the TextEdit private scrap, in bytes. (Deprecated in Mac OS X v10.4. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

long TEGetScrapLength (
 void
);

Return Value
The size of the TextEdit private scrap, in bytes.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetStyle
Gets character attributes for the specified text. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

void TEGetStyle (
 short offset,
 TextStyle *theStyle,
 short *lineHeight,
 short *fontAscent,
 TEHandle hTE
);

Parameters
offset

The offset to the text whose character attributes you want to obtain.

Functions 2981
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

theStyle
On output, points to a structure of type TextStyle that contains the character attributes for the current
selection range.

lineHeight
A pointer to a value that specifies the line height.

fontAscent
A pointer to a value that specifies the font ascent.

hTE
A handle to the multistyled edit structure containing the text whose character attributes you want
to obtain.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetStyleHandle
Returns the style handle stored in the designated edit structure’s txFont and txFace fields. The style handle
points to the associated style structure, not to a copy of it. (Deprecated in Mac OS X v10.4. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEStyleHandle TEGetStyleHandle (
 TEHandle hTE
);

Parameters
hTE

A handle to the multistyled edit structure containing the style handle to be returned.

Return Value
A handle to the style structure contained in the specified edit structure (of type TEStyleRec). Because only
multistyled edit structures have style structures, TEGetStyleHandle returns NULL when used with a
monostyled edit structure. See the description of the TEStyleHandle data type.

Discussion
To ensure future compatibility, your application should always use this function rather than manipulate the
fields of the edit structure directly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

2982 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TEGetStyleScrapHandle
Creates a style scrap structure, copies the character attributes associated with the current selection range
into it, and returns a handle to it. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

StScrpHandle TEGetStyleScrapHandle (
 TEHandle hTE
);

Parameters
hTE

The handle to the edit structure containing the text selection range whose character attributes are
to be copied.

Return Value
A handle to the created style scrap structure, or NULL if called with a handle to a monostyled structure. See
the description of the StScrpHandle data type.

Discussion
The TEGetStyleScrapHandle function creates a style scrap structure of type StScrpRec and copies the
character attributes associated with the current selection range of the designated edit structure into it. If the
current selection range is an insertion point, TEGetStyleScrapHandle first checks the null scrap. If the null
scrap contains character attributes, they are written to the newly created style scrap structure. If the null
scrap is empty, the attributes associated with the character preceding the insertion point are copied to the
style scrap structure.

The TEGetStyleScrapHandle function has no impact on the Scrap Manager’s desk scrap.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEGetText
Returns a handle to the text of the specified edit structure. (Deprecated in Mac OS X v10.4. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

CharsHandle TEGetText (
 TEHandle hTE
);

Parameters
hTE

A handle to the edit structure containing the text whose handle you want returned. You pass this
handle as an input parameter.

Return Value
A handle to the text contained in the specified edit structure. See page 82 for a description of the CharsHandle
data type.

Functions 2983
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Discussion
Given an edit structure that contains text, you can use the TEGetText function to get a handle to the text
itself. The TEGetText function doesn’t make a copy of the text. Rather, it returns the handle to the text which
is stored as a packed array of characters. (This handle belongs to TextEdit your application must not destroy
it.) The teLength field of the edit structure contains the length of the text whose handle is returned.

The handle of type CharsHandle that is returned by TEGetText corresponds to the hText field of
the TERec (page 3021) structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEIdle
When called repeatedly, displays a blinking caret at the insertion point, if any exists, in the text of the specified
edit structure of an active window. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see
Handling Unicode Text Editing With MLTE.)

void TEIdle (
 TEHandle hTE
);

Parameters
hTE

A handle to the edit structure.

Discussion
You need to call TEIdle only when the window containing the text is active; the caret is blinked only then.
TextEdit observes a minimum blink interval, initially set to 32 ticks. No matter how often you call TEIdle,
the time between blinks is never less than the minimum interval. (The user can adjust the minimum interval
setting with the General Controls control panel.)

To maintain a constant frequency of blinking, you need to call TEIdle at least once each time through your
main event loop. Call it more than once if your application does an unusually large amount of processing
each time through the loop.

Call the Event Manager’s GetCaretTime function to get the blink rate.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

2984 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TEInsert
Inserts the specified text immediately before the selection range or the insertion point in the text of the
designated edit structure, redrawing the text as necessary. (Deprecated in Mac OS X v10.4. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TEInsert (
 const void *text,
 long length,
 TEHandle hTE
);

Parameters
text

A pointer to the text to be inserted.

length
The number of characters to be inserted.

hTE
A handle to the edit structure containing the text buffer into which the new text is to be inserted.

Discussion
When you call the TEInsert function and a range of text is selected, TEInsert doesn’t affect the selection
range. The TEInsert function does not check for a 32 KB limit, so your application must ensure that the
inserted text does not exceed this text size limit of 32 KB. The TEInsert function recalculates line starts and
line heights to adjust for the inserted text.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEKey
Replaces the selection range in the text of the specified edit structure with the input character and positions
the insertion point just past the inserted character. (Deprecated in Mac OS X v10.4. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

void TEKey (
 CharParameter key,
 TEHandle hTE
);

Parameters
key

The input character.

hTE
A handle to the edit structure in whose text the character is to be entered.

Functions 2985
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Discussion
The TextEdit function TEKey allows you to handle key-down events and enter text input through the keyboard.
If the selection range is an insertion point, TEKey inserts the character. (Two-byte characters are passed one
byte at a time.)

If the key parameter contains a backspace character, the selection range or the character immediately before
the insertion point is deleted. When the primary line direction is right-to-left, the character to the right of
the insertion point is deleted. When the primary line direction is left-to-right, the character to the left of the
insertion point is deleted.

When the user deletes text up to the beginning of a set of character attributes, TEKey saves the attributes
in the null scrap’s style scrap structure. The attributes are saved temporarily to be applied to characters
inserted after the deletion. As soon as the user clicks in another area of the text, TEKey removes the attributes.
TEKey redraws the text as necessary.

Call TEKey every time the Event Manager function WaitNextEvent reports a keyboard event that your
application determines should be handled by TextEdit.

Because TEKey inserts every character passed in the key parameter, your application must filter all characters
which aren’t actual text, such as keys typed in conjunction with the Command key.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TENew
Creates and initializes a monostyled edit structure and allocates a handle to it. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEHandle TENew (
 const Rect *destRect,
 const Rect *viewRect
);

Parameters
destRect

A pointer to the destination rectangle for the new edit structure, specified in the local coordinates of
the current graphics port. This is the area in which text is laid out.

viewRect
A pointer to the view, or visible, rectangle for the new edit structure, specified in the local coordinates
of the current graphics port. This is the area of the window in which text is actually displayed.

Return Value
A handle to the newly created edit structure. Your application needs to store the handle to the edit structure
that is returned; many functions require it as an input parameter. See the description of the TEHandle data
type.

2986 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Discussion
A monostyled edit structure is one in which all text is restricted to a single font, size, and style. Use the TENew
function when the text is to be rendered in attributes that are consistent from character to character. Otherwise,
use the TEStyleNew (page 2999) function.

Call TENew once for every edit structure you want allocated. Your application should store the handle to the
edit structure that is returned; many functions require it as an input parameter. The edit structure assumes
the drawing environment of the graphics port.

If your application contains more than one window where text editing occurs, you need to create an edit
structure for each window.

Before this function is called, the window must be in the current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TENumStyles
Returns the number of character attribute changes contained in the specified range, counting one for the
start of the range. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

long TENumStyles (
 long rangeStart,
 long rangeEnd,
 TEHandle hTE
);

Parameters
rangeStart

The beginning of the range of text for which the number of style runs (sets of character attributes)
or changes is counted and returned.

rangeEnd
The end of the range of text for which the number of style runs (sets of character attributes) or changes
is counted and returned.

hTE
A handle to the edit structure containing the range of text.

Return Value
The number of character attribute changes contained in the specified range. This does not necessarily
represent the number of unique sets of attributes for the range, because some sets of attributes may be
repeated. For monostyled edit structures, TENumStyles always returns 1.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2987
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Declared In
TextEdit.h

TEPaste
Replaces the edit structure’s selected text with the contents of the private scrap and leaves an insertion point
after the inserted text. If the selection range is an insertion point, TEPaste inserts the contents of the private
scrap there. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text
Editing With MLTE.)

void TEPaste (
 TEHandle hTE
);

Parameters
hTE

A handle to the edit structure into which the text is to be pasted.

Discussion
When you call TEPaste, after it pastes the text from the private scrap, it redraws all of the text as necessary.
If the private scrap is empty, TEPaste deletes the selection range. If you call TEPaste for a multistyled edit
structure, it pastes only the text in the private scrap. In this case, TEPaste ignores any associated character
attribute information stored in the style scrap; instead, it applies the character attributes of the first character
of the selection range being replaced to the text. If the selection range is an insertion point, TEPaste applies
the character attributes of the character preceding the insertion point.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEPinScroll
Scrolls the text within the view rectangle of the specified edit structure by the designated number of pixels.
Scrolling stops when the last line of text is scrolled into view. (Deprecated in Mac OS X v10.4. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TEPinScroll (
 short dh,
 short dv,
 TEHandle hTE
);

Parameters
dh

The distance in pixels that the text is to be scrolled horizontally. A positive value moves the text to
the right; a negative value moves the text to the left.

2988 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

dv
The distance in pixels that the text is to be scrolled vertically. A positive value moves the text down;
a negative value moves the text up.

hTE
A handle to the edit structure whose text is to be scrolled.

Discussion
The TEPinScroll function updates the text on the screen automatically to reflect the new scroll position,
as does the TEScroll function. The destination rectangle is offset by the amount scrolled. When the edit
structure is longer than the text it contains, TEPinScroll displays up to the last line of text inclusive, and
not beyond it.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEReplaceStyle
Replaces any character attributes in the current selection range that match the specified existing character
attributes with the specified new character attributes. (Deprecated in Mac OS X v10.4. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

void TEReplaceStyle (
 short mode,
 const TextStyle *oldStyle,
 const TextStyle *newStyle,
 Boolean fRedraw,
 TEHandle hTE
);

Parameters
mode

A selector that specifies which attributes to replace. It corresponds to any additive combination of
the “Text Styling Constants” (page 3036) for font, character style, type size, color, and so forth.

oldStyle
A pointer to a text style structure that specifies the current character attributes to search for in the
selected text.

newStyle
A pointer to a text style structure that specifies the new attributes to be set. This structure contains
the character attributes to be applied to the current selection range based on the value of mode.

fRedraw
A flag that specifies whether or not TextEdit should immediately redraw the text to reflect the attribute
changes. A value of FALSE delays redrawing until another event forces the update. A value of TRUE
causes the text to be redrawn immediately using the new character attributes.

hTE
A handle to the multistyled edit structure containing the text selection whose character attributes
are to be changed.

Functions 2989
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Discussion
The TEReplaceStyle function replaces any attribute in the current selection range that matches the attribute
specified by oldStyle with that given by newStyle. Only the character attributes specified by mode are
affected.

Attribute changes are made directly to the style elements (STElement) within the style table itself
(TEStyleTable). If you specify the value doAll for the mode parameter, newStyle replaces oldStyle
outright. The TEReplaceStyle function has no effect on a monostyled edit structure.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEScrapHandle
Returns a handle to the TextEdit private scrap. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

Handle TEScrapHandle (
 void
);

Return Value
A handle to the TextEdit private scrap. See the Mac Types documentation for a description of the Handle
data type.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEScroll
Scrolls the text within the view rectangle of the specified edit structure by the designated number of pixels.
(Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With
MLTE.)

2990 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

void TEScroll (
 short dh,
 short dv,
 TEHandle hTE
);

Parameters
dh

The distance in pixels that the text is to be scrolled horizontally. A positive value moves the text to
the right; a negative value moves the text to the left.

dv
The distance in pixels that the text is to be scrolled vertically. A positive value moves the text down;
a negative value moves the text up.

hTE
A handle to the edit structure whose text is to be scrolled.

Discussion
The TEScroll function updates the text on the screen automatically to reflect the new scroll position. The
destination rectangle is offset by the amount scrolled. The TEScroll and TEPinScroll functions behave
the same, except that TEPinScroll stops scrolling when the last line of text is scrolled into view.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TESelView
Ensures, once automatic scrolling has been enabled by a call to the TEAutoView function or through the
TEFeatureFlag function, that the selection range is visible, scrolling it into the view rectangle if necessary.
(Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With
MLTE.)

void TESelView (
 TEHandle hTE
);

Parameters
hTE

A handle to the edit structure containing the text selection range.

Discussion
The top left part of the selection range is scrolled into view. If the text is displayed in a rectangle that is not
high enough, automatic scrolling can cause text to appear to flicker. If automatic scrolling is disabled,
TESelView has no effect. For more information, see TEFeatureFlag (page 2976).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2991
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Declared In
TextEdit.h

TESetAlignment
Sets the alignment of the specified text in an edit structure so that it is centered, right aligned, or left aligned,
or aligned according to the line direction. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

void TESetAlignment (
 short just,
 TEHandle hTE
);

Parameters
just

The alignment for the specified text.The default value of the just field of the edit structure is
teFlushDefault. This means that text alignment is based on the primary line direction which is set
by default according to the system script.

For a description of the values you can use in this parameter, see “Text Alignment Constants” (page
3032).

hTE
A handle to the edit structure containing the text.

Discussion
For languages that are read from right to left, text is right aligned by default. For languages that are read
from left to right, text is left aligned by default. If you change the alignment, call the Window Manager
function InvalRect after TESetAlignment to redraw the text with the new alignment.

TextEdit does not support justified alignment. To draw justified text, use the QuickDraw Text functions.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TESetClickLoop
Installs the address of the application-supplied click loop function in the clikLoop field of the edit structure.
(Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With
MLTE.)

2992 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

void TESetClickLoop (
 TEClickLoopUPP clikProc,
 TEHandle hTE
);

Parameters
clikProc

A universal procedure pointer to the customized click loop function.

hTE
A handle to the edit structure whose clikLoop field is to be modified.

Discussion
The TESetClickLoop function lets you replace the default click loop function. The TEClick function
repeatedly calls the function that the click loop field points to as long as the user holds down the mouse
button within the text of the view rectangle. The default click loop function scrolls only the text. However,
you can provide a customized click loop function that scrolls the text and the scroll bars in tandem.

If automatic scrolling is enabled, the default click loop function checks to see if the mouse has been dragged
out of the view rectangle; if it has, the function scrolls the text using TEPinScroll (page 2988). The amount
by which TEPinScroll scrolls the text vertically is determined by the lineHeight field of the edit structure
for monostyled text and the LHTable for multistyled text.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TESetDoTextHook
Sets your do-text-hook callback to be used by TextEdit. (Deprecated in Mac OS X v10.4. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

void TESetDoTextHook (
 TEDoTextUPP value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TESetFindWordHook
Sets your set-find-word-hook callback to be used by TextEdit. (Deprecated in Mac OS X v10.4. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Functions 2993
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

void TESetFindWordHook (
 TEFindWordUPP value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TESetRecalcHook
Sets your recalculation callback to be used by TextEdit. (Deprecated in Mac OS X v10.4. Use Multilingual Text
Engine instead; see Handling Unicode Text Editing With MLTE.)

void TESetRecalcHook (
 TERecalcUPP value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TESetScrapHandle
Sets a handle to the TextEdit private scrap. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine
instead; see Handling Unicode Text Editing With MLTE.)

void TESetScrapHandle (
 Handle value
);

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TESetScrapLength
Sets the size of the TextEdit private scrap to the specified number of bytes. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

2994 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

void TESetScrapLength (
 long length
);

Parameters
length

The size of the private scrap, in bytes.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TESetSelect
Sets the selection range (or denotes the insertion point) within the text of the specified edit structure.
(Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With
MLTE.)

void TESetSelect (
 long selStart,
 long selEnd,
 TEHandle hTE
);

Parameters
selStart

The byte offset at the start of the text selection range. The selStart field can range from 0 to 32767.

If selStart equals selEnd, the new selection range is an insertion point, and a caret is displayed.
If selEnd is anywhere beyond the last character of the text, TESetSelect uses the first position past
the last character.

selEnd
The byte offset at the end of the text selection range. The selEnd field can range from 0 to 32767.

hTE
A handle to the edit structure.

Discussion
The TESetSelect function removes highlighting of the old selection range and highlights the new one.

When only the Roman script system is used, the selection range is always displayed and highlighted as a
continuous range of text. However, when one or more script systems requiring mixed-directional display of
text are installed, a continuous sequence of characters in memory may appear as a discontinuous selection
when displayed.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Functions 2995
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Declared In
TextEdit.h

TESetStyle
Sets new character attributes, in the specified edit structure, for the current selection range. (Deprecated in
Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TESetStyle (
 short mode,
 const TextStyle *newStyle,
 Boolean fRedraw,
 TEHandle hTE
);

Parameters
mode

A selector that specifies which character attributes are to be changed. The value for mode can be any
additive combination of the mode constants for font, style, type size, color, and so forth. It corresponds
to any additive combination of the “Text Styling Constants” (page 3036) for font, character style, type
size, color, and so forth.

The value of mode specifies which existing character attributes are to be changed to the new character
attributes specified by newStyle. If doToggle is specified along with doFace and if an attribute
specified in the given newStyle parameter exists across the entire selected range of text, then
TESetStyle removes that attribute. Otherwise, if the attribute doesn’t exist across the entire selection
range, all of the selected text is set to include that character attribute.

newStyle
A pointer to a structure of type TextStyle that specifies the new attributes to be set. This structure
contains the character attributes to be applied to the current selection range based on the value of
mode.

fRedraw
A flag that specifies whether or not TextEdit should immediately redraw the affected text to reflect
the new character attribute changes. A value of TRUE causes the text to be redrawn immediately.
Line breaks, line heights, and line ascents are recalculated. A value of FALSE delays redrawing until
another event forces the update.

If the fRedraw parameter is set to TRUE, TextEdit redraws the current selection range using the new
character attributes, recalculating line breaks, line heights, and line ascents.

If the fRedraw parameter is set to FALSE, TextEdit does not redraw the text or recalculate line breaks,
line heights, and line ascents. Consequently, when you call a function that uses any of this information,
such as TEGetHeight (which returns a total height between two specified lines), it does not reflect
the new character attributes set with TESetStyle. Instead, the function uses the information that
was available before TESetStyle was called. To update this information, call the TECalText (page
2969) function. To be certain that the new information is always reflected, call TESetStyle with the
fRedraw parameter set to TRUE.

hTE
A handle to the multistyled edit structure containing the selected text.

Discussion
The TESetStyle function has no effect on a monostyled structure.

2996 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

If you call the TESetStyle function when the value of the selStart field of an edit structure equals the
value of the selEnd field (specifying an insertion point), TextEdit stores the input character attributes in the
null scrap structure pointed to by the null style handle.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TESetStyleHandle
Sets an edit structure’s style handle, which is stored in the txFont and txFace fields. (Deprecated in Mac
OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TESetStyleHandle (
 TEStyleHandle theHandle,
 TEHandle hTE
);

Parameters
theHandle

The style handle to be set in the combined txFont and txFace fields of the specified edit structure.

hTE
A handle to the edit structure.

Discussion
The TESetStyleHandle function has no effect on monostyled edit structures.

Your application should always use TESetStyleHandle rather than manipulate the fields of the edit structure
directly.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TESetText
Incorporates a copy of the specified text into the designated edit structure. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

Functions 2997
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

void TESetText (
 const void *text,
 long length,
 TEHandle hTE
);

Parameters
text

A pointer to the text to be copied and incorporated.

length
The number of characters in the text to be incorporated.

hTE
A handle to the edit structure into which the text is to be copied.

Discussion
The function TESetText lets you incorporate existing text into the text buffer of an edit structure. The
function copies the specified text into the existing hText handle of the edit structure, resizing the buffer, if
necessary it doesn’t bring in the original text. The copied text is wrapped to the destination rectangle, and
its lineStarts and nLines fields are calculated accordingly. The selection range is set to an insertion point
at the end of the incorporated text. The TESetText function does not display the copied text on the screen.
To do this, call TEUpdate.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEStyleInsert
Inserts the specified text immediately before the selection range or the insertion point in the edit structure’s
text and applies the specified character attributes to the text, redrawing the text if necessary. (Deprecated
in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TEStyleInsert (
 const void *text,
 long length,
 StScrpHandle hST,
 TEHandle hTE
);

Parameters
text

A pointer to the text to be inserted.

length
The length, in bytes, of the text to be inserted.

hST
A handle to the style scrap structure containing the character attribute information to be applied to
the inserted text.

2998 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

hTE
A handle to the edit structure into which the text is to be inserted.

Discussion
You should create your own style scrap structure, specifying the character attributes to be inserted and
applied to the text, and pass its handle to TEStyleInsert as the value of the hST parameter. The character
attributes are copied directly into the style structure’s (TEStyleRec) style table.

The TEStyleInsert function does not affect the current selection range.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEStyleNew
Creates a multistyled edit structure and allocates a handle to it. (Deprecated in Mac OS X v10.4. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

TEHandle TEStyleNew (
 const Rect *destRect,
 const Rect *viewRect
);

Parameters
destRect

A pointer to the destination rectangle for the new edit structure, specified in the local coordinates of
the current graphics port. This is the area in which text is laid out.

viewRect
A pointer to the view rectangle for the new edit structure, specified in the local coordinates of the
current graphics port. This is the area of the window in which text is actually displayed.

Return Value
A handle to the newly created edit structure. Your application needs to store the handle to the edit structure
that is returned; many functions require it as an input parameter. See the description of the TEHandle data
type.

Discussion
A multistyled edit structure contains text whose attributes, including font, size, and style, can vary from
character to character. Always use the TEStyleNew function to create an edit structure for text that uses
varying character attributes. The TEStyleNew function sets the txSize, lineHeight, and fontAscent
fields of the edit structure to –1, allocates a style structure, and stores a handle to the style structure in the
txFont and txFace fields. The TEStyleNew function creates and initializes a null scrap that is used by
TextEdit functions throughout the life of the edit structure.

Call TEStyleNew once for every edit structure you want allocated. Your application needs to store the handle
to the edit structure that is returned; many functions require it as an input parameter.

If your application contains more than one window where text editing occurs, you need to create an edit
structure for each window.

Functions 2999
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Before this function is called, the window must be in the current graphics port.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEStylePaste
Pastes text and its associated character attribute information from the desk scrap into the edit structure’s
text at the insertion point—if the current selection range is an insertion point—or it replaces the current
selection range. (Deprecated in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode
Text Editing With MLTE.)

void TEStylePaste (
 TEHandle hTE
);

Parameters
hTE

A handle to the edit structure into which the text is to be pasted.

Discussion
When you call TEStylePaste and there is no character attribute information associated with text in the
desk scrap, TEStylePaste first checks the null scrap. If the null scrap contains character attribute information,
this is used. If the null scrap is empty, TEStylePaste gives the text the same attributes as those of the first
character of the replaced selection range or that of the preceding character if the selection is an insertion
point.

For a monostyled edit structure, TEStylePaste pastes the text only; there is no associated character attribute
information because all the text uses the same attributes.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TETextBox
Draws the indicated text in a given rectangle, with the specified alignment. (Deprecated in Mac OS X v10.4.
Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

3000 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

void TETextBox (
 const void *text,
 long length,
 const Rect *box,
 short just
);

Parameters
text

A pointer to the text to be drawn.

length
The number of bytes comprising the text.

box
A pointer to the rectangle where the text is to be drawn. The rectangle is specified in local coordinates
(of the current graphics port) and must be at least as wide as the first character drawn. (A good rule
of thumb is to make the rectangle at least 20 pixels wide.

just
The kind of justification (alignment) used for the specified text.

Discussion
The TETextBox function provides you with an easy way to display static text to a user. It creates its own
monostyled edit structure, which it deletes when finished with it, so you cannot edit the text it draws. The
TETextBox function breaks a line of text correctly. You can specify how text is aligned in the box using any
of the “Text Alignment Constants” (page 3032).

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEToScrap
Copies the contents of the TextEdit private scrap to the desk scrap. (Deprecated in Mac OS X v10.4. Use
Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

OSErr TEToScrap (
 void
);

Return Value
A result code. See “TextEdit Result Codes” (page 3037).

Discussion
You use the TEToScrap function to move monostyled text across applications or between an application
and a desk accessory. Call the Scrap Manager function ZeroScrap to initialize the desk scrap or clear its
contents before calling TEToScrap.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.

Functions 3001
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Not available to 64-bit applications.

Declared In
TextEdit.h

TEUpdate
Draws the specified text within a given update rectangle. (Deprecated in Mac OS X v10.4. Use Multilingual
Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TEUpdate (
 const Rect *rUpdate,
 TEHandle hTE
);

Parameters
rUpdate

The update rectangle, given in the coordinates of the current graphics port, where the specified text
is to be drawn.

hTE
A handle to the edit structure containing the text to be drawn.

Discussion
Call TEUpdate every time the Event Manager function WaitNextEvent reports an update event for a text
editing window—after you call the Window Manager function BeginUpdate , and before you call the
EndUpdate function. You also need to erase the update region with the EraseRect function. If you don’t,
the caret can sometimes remain visible when the window is deactivated.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

TEUseStyleScrap
Assigns new character attributes to the specified range of text in the designated edit structure. (Deprecated
in Mac OS X v10.4. Use Multilingual Text Engine instead; see Handling Unicode Text Editing With MLTE.)

void TEUseStyleScrap (
 long rangeStart,
 long rangeEnd,
 StScrpHandle newStyles,
 Boolean fRedraw,
 TEHandle hTE
);

Parameters
rangeStart

The offset of the first character in the text of the edit structure to which the character attributes are
to be applied.

3002 Functions
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

rangeEnd
The offset of the last character in the text of the edit structure to which the character attributes are
to be applied.

newStyles
A handle to a style scrap structure. The style scrap structure contains the attributes to be applied to
the specified range of text. If the value of newStyles is NULL, no action is performed. Each element
in the style scrap structure contains a field that is the offset of the beginning of the element’s character
attributes. This field (scrpStartChar) defines the boundaries for the scrap’s style runs.

Depending on the requirements of your application, you can create a style scrap structure directly
and pass its handle to TEUseStyleScrap as the value of newStyles or you can use a style scrap
structure created by TEGetStyleScrapHandle.

fRedraw
A flag that specifies whether TextEdit should immediately redraw the selection range using the new
character attributes. If the fRedraw parameter is set to TRUE, the attributes are applied immediately
to the specified range of text, and line breaks, line heights, and line ascents are recalculated. If fRedraw
is set to FALSE, the new character attributes are not reflected in the view rectangle until the next
update event occurs.

hTE
A handle to the edit structure containing the range of text to which the character attributes are to
be applied. If the handle points to a monostyled edit structure (created using TENew), no action is
performed.

Discussion
The TEUseStyleScrap function writes the character attribute information into the style structure’s style
table and updates the style run table.

Regardless of whether the text is redrawn, the current selection range is not changed; if characters are
highlighted before TEUseStyleScrap is called, they remain highlighted after it is called. However, if characters
within the current selection range also fall within the specified range of text, they are rendered in the new
character attributes when the text is redrawn.

The TEUseStyleScrap function applies the first element’s attributes to the characters from rangeStart
up to the scrpStartChar field of the next element. The function terminates without error if it prematurely
reaches the end of the range or if there are not enough scrap style elements to cover the whole range. In
the latter case, the function applies the last set of character attributes in the style scrap structure to the
remainder of the range.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.4.
Not available to 64-bit applications.

Declared In
TextEdit.h

Functions 3003
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Callbacks

CaretHookProcPtr
Defines a pointer to a caret-hook callback.

typedef void (*CaretHookProcPtr) (
 const Rect * r,
 TEPtr pTE
);

If you name your function MyCaretHookProc, you would declare it like this:

void CaretHookProcPtr (
 const Rect * r,
 TEPtr pTE
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

DrawHookProcPtr
Defines a pointer to a draw-hook callback.

typedef void (*DrawHookProcPtr) (
 unsigned short textOffset,
 unsigned short drawLen,
 void * textBufferPtr,
 TEPtr pTE,
 TEHandle hTE
);

If you name your function MyDrawHookProc, you would declare it like this:

void DrawHookProcPtr (
 unsigned short textOffset,
 unsigned short drawLen,
 void * textBufferPtr,
 TEPtr pTE,
 TEHandle hTE
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

3004 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

EOLHookProcPtr
Defines a pointer to an EOL-hook callback.

typedef Boolean (*EOLHookProcPtr) (
 char theChar,
 TEPtr pTE,
 TEHandle hTE
);

If you name your function MyEOLHookProc, you would declare it like this:

Boolean EOLHookProcPtr (
 char theChar,
 TEPtr pTE,
 TEHandle hTE
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

HighHookProcPtr
Defines a pointer to a high-hook callback.

typedef void (*HighHookProcPtr) (
 const Rect * r,
 TEPtr pTE
);

If you name your function MyHighHookProc, you would declare it like this:

void HighHookProcPtr (
 const Rect * r,
 TEPtr pTE
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

HitTestHookProcPtr
Defines a pointer to a hit-test hook callback.

Callbacks 3005
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

typedef Boolean (*HitTestHookProcPtr) (
 unsigned short styleRunLen,
 unsigned short styleRunOffset,
 unsigned short slop,
 void * textBufferPtr,
 TEPtr pTE,
 TEHandle hTE,
 unsigned short * pixelWidth,
 unsigned short * charOffset,
 Boolean * pixelInChar
);

If you name your function MyHitTestHookProc, you would declare it like this:

Boolean HitTestHookProcPtr (
 unsigned short styleRunLen,
 unsigned short styleRunOffset,
 unsigned short slop,
 void * textBufferPtr,
 TEPtr pTE,
 TEHandle hTE,
 unsigned short * pixelWidth,
 unsigned short * charOffset,
 Boolean * pixelInChar
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

NWidthHookProcPtr
Defines a pointer to a width-hook callback.

typedef unsigned short (*NWidthHookProcPtr) (
 unsigned short styleRunLen,
 unsigned short styleRunOffset,
 short slop,
 short direction,
 void * textBufferPtr,
 short * lineStart,
 TEPtr pTE,
 TEHandle hTE
);

If you name your function MyNWidthHookProc, you would declare it like this:

unsigned short NWidthHookProcPtr (
 unsigned short styleRunLen,
 unsigned short styleRunOffset,
 short slop,
 short direction,
 void * textBufferPtr,
 short * lineStart,

3006 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

 TEPtr pTE,
 TEHandle hTE
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TEClickLoopProcPtr
Defines a pointer to a click-loop callback.

typedef Boolean (*TEClickLoopProcPtr) (
 TEPtr pTE
);

If you name your function MyTEClickLoopProc, you would declare it like this:

Boolean TEClickLoopProcPtr (
 TEPtr pTE
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TEDoTextProcPtr
Defines a pointer to a do-text callback.

typedef void (*TEDoTextProcPtr) (
 TEPtr pTE,
 unsigned short firstChar,
 unsigned short lastChar,
 short selector,
 GrafPtr * currentGrafPort,
 short * charPosition
);

If you name your function MyTEDoTextProc, you would declare it like this:

void TEDoTextProcPtr (
 TEPtr pTE,
 unsigned short firstChar,
 unsigned short lastChar,
 short selector,
 GrafPtr * currentGrafPort,
 short * charPosition

Callbacks 3007
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TEFindWordProcPtr
Defines a pointer to a find-word callback.

typedef void (*TEFindWordProcPtr) (
 unsigned short currentPos,
 short caller,
 TEPtr pTE,
 TEHandle hTE,
 unsigned short * wordStart,
 unsigned short * wordEnd
);

If you name your function MyTEFindWordProc, you would declare it like this:

void TEFindWordProcPtr (
 unsigned short currentPos,
 short caller,
 TEPtr pTE,
 TEHandle hTE,
 unsigned short * wordStart,
 unsigned short * wordEnd
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TERecalcProcPtr
Defines a pointer to a recalculation callback.

typedef void (*TERecalcProcPtr) (
 TEPtr pTE,
 unsigned short changeLength,
 unsigned short * lineStart,
 unsigned short * firstChar,
 unsigned short * lastChar
);

If you name your function MyTERecalcProc, you would declare it like this:

void TERecalcProcPtr (

3008 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

 TEPtr pTE,
 unsigned short changeLength,
 unsigned short * lineStart,
 unsigned short * firstChar,
 unsigned short * lastChar
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TextWidthHookProcPtr
Defines a pointer to a width-hook callback.

typedef unsigned short (*TextWidthHookProcPtr) (
 unsigned short textLen,
 unsigned short textOffset,
 void * textBufferPtr,
 TEPtr pTE,
 TEHandle hTE
);

If you name your function MyTextWidthHookProc, you would declare it like this:

unsigned short TextWidthHookProcPtr (
 unsigned short textLen,
 unsigned short textOffset,
 void * textBufferPtr,
 TEPtr pTE,
 TEHandle hTE
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TSMTEPostUpdateProcPtr
Defines a pointer to a post-update callback.

Callbacks 3009
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

typedef void (*TSMTEPostUpdateProcPtr) (
 TEHandle textH,
 long fixLen,
 long inputAreaStart,
 long inputAreaEnd,
 long pinStart,
 long pinEnd,
 long refCon
);

If you name your function MyTSMTEPostUpdateProc, you would declare it like this:

void TSMTEPostUpdateProcPtr (
 TEHandle textH,
 long fixLen,
 long inputAreaStart,
 long inputAreaEnd,
 long pinStart,
 long pinEnd,
 long refCon
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TSMTE.h

TSMTEPreUpdateProcPtr
Defines a pointer to a pre-udate callback.

typedef void (*TSMTEPreUpdateProcPtr) (
 TEHandle textH,
 long refCon
);

If you name your function MyTSMTEPreUpdateProc, you would declare it like this:

void TSMTEPreUpdateProcPtr (
 TEHandle textH,
 long refCon
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TSMTE.h

WidthHookProcPtr
Defines a pointer to a width-hook callback.

3010 Callbacks
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

typedef unsigned short (*WidthHookProcPtr) (
 unsigned short textLen,
 unsigned short textOffset,
 void * textBufferPtr,
 TEPtr pTE,
 TEHandle hTE
);

If you name your function MyWidthHookProc, you would declare it like this:

unsigned short WidthHookProcPtr (
 unsigned short textLen,
 unsigned short textOffset,
 void * textBufferPtr,
 TEPtr pTE,
 TEHandle hTE
);

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

Data Types

CaretHookUPP
Defines a universal procedure pointer (UPP) to a caret-hook callback.

typedef CaretHookProcPtr CaretHookUPP;

Discussion
For more information, see the description of the CaretHookUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

Chars
Defines an array of characters.

typedef char Chars[32001];

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

Data Types 3011
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

CharsPtr
Defines a data type for a character pointer.

typedef char* CharsPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

CharsHandle
Defines a handle to a character pointer.

typedef CharsPtr* CharsHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

DrawHookUPP
Defines a universal procedure pointer (UPP) to a draw-hook callback.

typedef DrawHookProcPtr DrawHookUPP;

Discussion
For more information, see the description of the DrawHookUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

EOLHookUPP
Defines a universal procedure pointer (UPP) to an EOL-hook callback.

typedef EOLHookProcPtr EOLHookUPP;

Discussion
For more information, see the description of the EOLHookUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

3012 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

HighHookUPP
Defines a universal procedure pointer (UPP) to a high-hook callback.

typedef HighHookProcPtr HighHookUPP;

Discussion
For more information, see the description of the HighHookUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

HitTestHookUPP
Defines a universal procedure pointer (UPP) to a hit-test hook callback.

typedef HitTestHookProcPtr HitTestHookUPP;

Discussion
For more information, see the description of the HitTestHookUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

LHHandle
Defines a handle to a line-height table pointer.

typedef LHPtr * LHHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

LHElement
Contains height and ascent information.

Data Types 3013
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

struct LHElement {
 short lhHeight;
 short lhAscent;
};
typedef struct LHElement LHElement;
typedef LHElement * LHPtr;

Fields
lhHeight

The line height, in points. This is the maximum value for any individual character attribute in the line.

lhAscent
The font ascent, in points; this is the maximum value for any individual character attribute in a line.

Discussion
The line-height table, defined by the LHTable data type, provides an array of line heights to hold the vertical
spacing information for a given edit structure. It also contains line ascent information. The null style structure,
defined by the NullStRec data type, contains the null scrap which is used to store character attribute
information for a null selection.

The line height table holds vertical spacing information for the text of an edit structure. This table parallels
the lineStarts array in the edit structure itself. Its length equals the edit structure’s nLines field plus 1
for a dummy entry at the end, just as the lineStarts array ends with a dummy entry that has the same
value as the length of the text. The table’s contents are recalculated whenever the line starting values are
themselves recalculated with the TECalText function or whenever an editing action causes recalibration.

The line height table is used only if the lineHeight and fontAscent fields in the edit structure are negative;
positive values in those fields specify fixed vertical spacing, overriding the information in the table. The line
height table is of type LHTable, which is an array of elements of LHElement.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

LHTable
Defines an array of line-height elements.

typedef LHElement LHTable[8001];

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

NullStHandle
Defines a handle to a null scrap record pointer.

3014 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

typedef NullStPtr * NullStHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

NullStRec
Contains the null scrap.

struct NullStRec {
 long teReserved;
 StScrpHandle nullScrap;
};
typedef struct NullStRec NullStRec;
typedef NullStRec * NullStPtr;

Fields
teReserved

This field is reserved for future expansion.

nullScrap
A handle to the style scrap structure.

Discussion
The NullSTRec data type defines the null style structure.

The null style structure contains the null scrap, which is used to store the character attribute information for
a null selection (insertion point). A number of functions either write this character attribute information to
the null scrap or read it from this scrap (to be applied to inserted text). The null scrap is created and initialized
when an application calls TEStyleNew to create a multistyled edit structure. The null scrap is retained for
the life of the edit structure; it is destroyed when TEDispose destroys the edit structure and releases the
memory allocated for it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

NWidthHookUPP
Defines a universal procedure pointer (UPP) to a width-hook callback.

typedef NWidthHookProcPtr NWidthHookUPP;

Discussion
For more information, see the description of the NWidthHookUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Data Types 3015
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Declared In
TextEdit.h

ScrpSTElement
Contains the scrap style table.

struct ScrpSTElement {
 long scrpStartChar;
 short scrpHeight;
 short scrpAscent;
 short scrpFont;
 StyleField scrpFace;
 short scrpSize;
 RGBColor scrpColor;
};
typedef struct ScrpSTElement ScrpSTElement;
typedef ScrpSTElement ScrpSTTable[1601];

Fields
scrpStartChar

The offset to the beginning of a style structure in the scrap.

scrpHeight
The line height. You can determine the line height and the font ascent using the QuickDraw function
GetFontInfo.

scrpAscent
The font ascent. See scrpHeight.

scrpFont
The font family ID.

scrpFace
The character style (such as plain, bold, underline).

scrpSize
The size, in points.

scrpColor
The RGB (red, green, blue) color for the style scrap.

Discussion
The style scrap structure contains the scrap style table. Unlike the main style table for an edit structure, the
scrap style table may contain duplicate elements; the entries in the table correspond one-to-one with the
style runs in the text. The scrpStartChar field of each entry gives the starting position for the run.

The scrpStyleTab data type defines the scrap style table data structure, which is an array of scrap style
element structures. The ScrpSTElement data type defines each scrap style element structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

3016 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

ScrpSTTable
Contains an array of scrap style elements.

typedef ScrpSTElement ScrpSTTable[1601];

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

STElement
Contains one entry for each distinct set of character attributes used in the text of an edit structure.

struct STElement {
 short stCount;
 short stHeight;
 short stAscent;
 short stFont;
 StyleField stFace;
 short stSize;
 RGBColor stColor;
};
typedef struct STElement STElement;
typedef STElement * STPtr;

Fields
stCount

A reference count of character runs using this set of character attributes.

stHeight
The line height for this run, in points.

stAscent
The font ascent for this run, in points.

stFont
The font family ID.

stFace
The character style (bold, italic, and so forth). This field consists of two bytes. The low-order byte
contains the character style. TextEdit uses the high bit (bit 15) of the high-order byte to store the style
run direction: it uses 0 for left-to-right text, and 1 for right-to-left text.

stSize
The text size, in points.

stColor
The RGB (red, green, blue) color.

Discussion
The style table contains one entry for each distinct set of character attributes used in the text of an edit
structure. Each entry is defined in a style element structure. The size of the table is given by the nStyles
field of the style structure. There is no duplication; each set of character attributes appears exactly once in
the table. A reference count tells how many times each set of attributes is used in the table. The TEStyleTable
data type defines the style table. Th eSTElement data type defines the style element structure.

Data Types 3017
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

STHandle
Defines a handle to a style table pointer.

typedef STPtr * STHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

StScrpHandle
Defines a handle to a scrap style table pointer.

typedef StScrpPtr * StScrpHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

StScrpRec
Contains information used by functions to store character attribute information temporarily.

struct StScrpRec {
 short scrpNStyles;
 ScrpSTTable scrpStyleTab;
};
typedef struct StScrpRec StScrpRec;
typedef StScrpRec * StScrpPtr;

Fields
scrpNStyles

The number of style runs (sets of character attributes) used in the text. This determines the size of
the style table. When character attribute information is written to the null scrap, this field is set to 1;
when the character attribute information is removed, this field is set to 0.

scrpStyleTab
The scrap style table containing an element for each style run (set of character attributes).

3018 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Discussion
The style scrap structure, defined by the StScrpRec data type, is used by functions to store character attribute
information temporarily. The scrap style table, defined by the scrpStyleTab data type, is contained in the
style scrap structure. The scrap style element structure, defined by the ScrpSTElement data type, contains
the character attribute information for an element in the scrap style table. One scrap style element structure
exists for each sequential attribute change in the associated text.

The style scrap is used for storing character attribute information associated with the current text selection
or insertion point, character attribute information to be applied to text, or multistyled text that is cut or
copied. When multistyled text is cut or copied, the character attribute information is written to both the style
scrap and the desk scrap.

In most cases, the style scrap is created dynamically as needed by functions. However, a style scrap structure
can be created directly without using the TEGetStyleScrapHandle function; the character attribute
information written to it can be applied to inserted text through TEStyleInsert or to existing text through
TEUseStyleScrap.

The format of the style scrap is defined by a style scrap structure of type STScrpRec.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

StyleRun
Contains information for a style run.

struct StyleRun {
 short startChar;
 short styleIndex;
};
typedef struct StyleRun StyleRun;

Fields
startChar

The starting character position.

styleIndex
The run’s index in the style table.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TEClickLoopUPP
Defines a universal procedure pointer (UPP) to a click-loop callback.

Data Types 3019
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

typedef TEClickLoopProcPtr TEClickLoopUPP;

Discussion
For more information, see the description of the TEClickLoopUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TEDoTextUPP
Defines a universal procedure pointer (UPP) to a do-text callback.

typedef TEDoTextProcPtr TEDoTextUPP;

Discussion
For more information, see the description of the TEDoTextUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TEFindWordUPP
Defines a universal procedure pointer (UPP) to a find-word callback.

typedef TEFindWordProcPtr TEFindWordUPP;

Discussion
For more information, see the description of the TEFindWordUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TEHandle
Defines a handle to a TextEdit record pointer.

typedef TEPtr* TEHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

3020 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TEIntHook
Defines a data type for a TextEdit integer hook.

typedef short TEIntHook;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TEPtr
Defines a pointer to a TextEdit record.

typedef TTERec* TEPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TERec
Stores display and editing information for TextEdit.

Data Types 3021
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

struct TERec {
 Rect destRect;
 Rect viewRect;
 Rect selRect;
 short lineHeight;
 short fontAscent;
 Point selPoint;
 short selStart;
 short selEnd;
 short active;
 WordBreakUPP wordBreak;
 TEClickLoopUPP clickLoop;
 long clickTime;
 short clickLoc;
 long caretTime;
 short caretState;
 short just;
 short teLength;
 Handle hText;
 long hDispatchRec;
 short clikStuff;
 short crOnly;
 short txFont;
 StyleField txFace;
 short txMode;
 short txSize;
 GrafPtr inPort;
 HighHookUPP highHook;
 CaretHookUPP caretHook;
 short nLines;
 short lineStarts[16001];
};
typedef struct TERec TERec;
typedef TERec * TEPtr;

Fields
destRect

The destination rectangle, in local coordinates.

viewRect
The view rectangle, in local coordinates.

selRect
The selection rectangle, whose boundaries are defined in local coordinates. This value is the current
selection range or insertion point.

lineHeight
The vertical spacing of lines of text. Vertical spacing may be fixed or it may vary from line to line,
depending upon specific text attributes. If the value of lineHeight is greater than 0, this field specifies
the fixed vertical distance from the ascent line of one line of text down to the ascent line of the next.

If the value of lineHeight is less than 1, then this field specifies the vertical distance from the ascent
line of one line of text down to the ascent line of the next calculated independently for each line,
based on the maximum value for any individual character attribute on that line.

3022 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

fontAscent
The font ascent line. If the value of fontAscent is greater than 0, this field specifies how far above
the base line the pen is positioned to begin drawing the caret or highlighting.

For single-spaced text, this is the height of the text in pixels (the height of the tallest characters in
the font from the base line). If the value of fontAscent is less than 1, this field specifies the font
ascent calculated independently for each line, based on maximum value for any individual character
attribute on that line.

selPoint
The point selected with the mouse, in the local coordinates of the current graphics port. The
assembly-language offset for this field is named teSelPoint.

selStart
The byte offset of the beginning of a selection range. Note that byte offset 0 refers to the first byte
in the text buffer.

selEnd
The byte offset of the end of a selection range. To include that byte, this value must be 1 greater than
the position of the last byte offset of the text.

active
This field is used internally by TextEdit. It is set when an edit structure is activated through TEActivate
and then reset when the edit structure is rendered inactive through TEDeactivate. To ensure future
compatibility, use TEActivate or TEDeactivate to access this field.

wordBreak
A universal procedure pointer to the structure’s word selection break function. This function determines
the word that is highlighted when the user double-clicks in the text and the position at which text is
wrapped at the end of a line.

clickLoop
A universal procedure pointer to the click loop function.The specified click loop function is called
repeatedly by the TEClick function as long as the mouse button is held down within the text.

clickTime
This field is for internal use only.

clickLoc
This field is for internal use only.

caretTime
This field is for internal use only.

caretState
This field is for internal use only.

just
The type of text alignment: default (according to primary line direction), left, center, or right.

teLength
The number of bytes in the text to be edited. For two-byte systems, potentially twice the number of
characters. Initially set to zero. The maximum length is 32767 bytes.

hText
A handle to the text. Initially, it points to a zero-length block of text in the heap.

hDispatchRec
A handle to the TextEdit dispatch structure. This field is for internal use only; do not modify this field,
or copy it to another edit structure. Each edit structure has its own dispatch structure. Attempting to
use the dispatch structure of one edit structure with another edit structure can cause TextEdit to
crash.

Data Types 3023
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

clikStuff
This field is for internal use only. TextEdit sets this field to reflect whether the most recent mouse-down
event occurred on the leading or trailing edge of a glyph. TextEdit uses this value in determining a
caret position.

crOnly
A value specifying whether or not text wraps at the right edge of the destination rectangle. If crOnly
is positive, text does wrap. Otherwise, new lines are displayed only at Carriage Returns.

If crOnly is negative, new lines are specified explicitly by Return characters only; text does not wrap
at the edge of the destination rectangle. (This is useful in an application similar to a
programming-language editor, where you may not want a single line of code to be split onto two
lines.

txFont
The font of all the text in the edit structure, if the txSize field of this edit structure �0. If you change
this value, the entire text of this edit structure has the new characteristic when it is redrawn also
remember to change the lineHeight and fontAscent fields.

If the txSize field is –1, this field combines with txFace to hold a handle to the associated style
structure.

txFace
The character attributes of all the text in an edit structure, if the txSize field of this edit structure �
0. If you change this value, the entire text of this edit structure has the new characteristic when it is
redrawn also, remember to change the lineHeight and fontAscent fields as well.

If the txSize field is –1, this field combines with txFont to hold a handle to the associated style
structure.

txMode
The pen mode of all the text in the edit structure. If you change this value, the entire text of this edit
structure has the new characteristic when it is redrawn; also, remember to change the lineHeight
and fontAscent fields as well.

txSize
Depending on its value, txSize either contains the point size of all of the text or it acts as a flag
indicating whether or not there is associated character attribute information. If txSize �0, this is a
monostyled edit structure, that is, all text is set in a single font, size, and face, and the value of txSize
is the size of the text. If txSize is –1, the edit structure contains associated character attribute
information and the txFont and txFace fields combine to form a handle to the style structure.

inPort
A pointer to the graphics port associated with this edit structure.

highHook
A pointer to the function that deals with text highlighting. In assembly language, the highHook field
is located at the offset teHiHook.

caretHook
A pointer to the function that controls the appearance of the caret. In assembly language, the
caretHook field is located at the offset teCarHook.

nLines
The number of lines in the text.

3024 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

lineStarts
An array containing the character position of the first character in each line. It is declared to have
16001 elements to comply with Pascal range checking. This is a dynamic data structure, having only
as many elements as needed. TextEdit calculates these values internally, so do not change the elements
of the lineStarts array. Because this data structure grows and shrinks, the size of the edit structure
changes.

Discussion
The edit structure, defined by the TERec data type, stores the display and editing information for TextEdit.
Along with various subsidiary data structures, the style structure, defined by the TEStyleRec data type,
stores the character attribute information for the text of the edit structure.

The edit structure contains display, storage, styling, and other information. Although some fields are used
differently for multistyled edit structures and monostyled edit structures, the structure of an edit structure
is the same whether the text is multistyled or monostyled.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TERecalcUPP
Defines a universal procedure pointer (UPP) to a recalculation callback.

typedef TERecalcProcPtr TERecalcUPP;

Discussion
For more information, see the description of the TERecalcUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TEStyleRec
Stores the character attribute information for the text of a multistyled edit structure.

Data Types 3025
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

struct TEStyleRec {
 short nRuns;
 short nStyles;
 STHandle styleTab;
 LHHandle lhTab;
 long teRefCon;
 NullStHandle nullStyle;
 StyleRun runs[8001];
};
typedef struct TEStyleRec TEStyleRec;
typedef TEStyleRec * TEStylePtr;

Fields
nRuns

The number of style runs in the text.

nStyles
The number of distinct sets of character attributes used in the text; this forms the size of the style
table.

styleTab
A handle to the style table.

lhTab
A handle to the line height table.

teRefCon
A reference constant for use by applications. The application can use this 32-bit field to suit its needs.

nullStyle
A handle to the style scrap structure used to store the character attribute information for a null
selection.

runs
A table of style runs that is of indefinite length.

Discussion
The style structure stores the character attribute information for the text of a multistyled edit structure. If an
edit structure has associated character attribute information, its txFont and txFac e fields combine to hold
a style handle, of type TEStyleHandle, to its style structure. The text is divided into style runs, summarized
in the style run table, of type StyleRun, which is part of the style structure. Each entry in the style run table
gives the starting character position of a run and an index into the style table, of type TEStyleTable.

The style table element pointed to by the style run index describes the character attributes for that run.

To determine the length of a run, you subtract its start position from that of the next entry in the style run
table. A dummy entry at the end of the style run table delimits the length of the last run; its start position is
equal to the overall number of characters in the text, plus 1. The TEStyleRec data type defines the style
structure.

The style run table, defined by the StyleRun data type, is an array that contains the boundaries of each style
run and an index to its character attribute information in the style element array. The style table, defined by
the TEStyleTable data type, contains one entry for each distinct set of character attributes used in the text
of the edit structure.

Availability
Available in Mac OS X v10.0 and later.

3026 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Declared In
TextEdit.h

TEStyleTable
Defines and array of style elements.

typedef STElement TEStyleTable[1777];

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TextStyle
Contains text style information.

struct TextStyle {
 short tsFont;
 StyleField tsFace;
 short tsSize;
 RGBColor tsColor;
};
typedef struct TextStyle TextStyle;
typedef TextStyle * TextStylePtr;

Fields
tsFont

The font family number.

tsFace
The character style (bold, italic, plain, and so forth).

tsSize
The text size in points.

tsColor
The RGB (red, green, blue) color.

tsColor

Discussion
Text style structures, which are passed as variables or reference parameters, are used for communicating
character attribute information between the application and several TextEdit functions, such as
TEContinuousStyle and TEReplaceStyle. They carry the same information as the style element structures
in the style table, but without the reference count, line height, and font ascent.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

Data Types 3027
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TextWidthHookUPP
Defines a universal procedure pointer (UPP) to a width-hook callback.

typedef TextWidthHookProcPtr TextWidthHookUPP;

Discussion
For more information, see the description of the TextWidthHookUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

TSMDialogPeek
Defines a data type for a TSM dialog pointer.

typedef TSMDialogPtr TSMDialogPeek;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
TSMTE.h

TSMDialogPtr
Defines a pointer to a TSM dialog record.

typedef TSMDialogRecord* TSMDialogPtr;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

Declared In
TSMTE.h

TSMDialogRecord
Contains information for a TSM dialog record.

struct TSMDialogRecord {
 DialogRecord fDialog;
 TSMDocumentID fDocID;
 TSMTERecHandle fTSMTERecH;
 long fTSMTERsvd[3];
};
typedef struct TSMDialogRecord TSMDialogRecord;

Availability
Available in Mac OS X v10.0 through Mac OS X v10.4.

3028 Data Types
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Declared In
TSMTE.h

TSMTEPostUpdateUPP
Defines a universal procedure pointer (UPP) to a post-update callback.

typedef TSMTEPostUpdateProcPtr TSMTEPostUpdateUPP;

Discussion
For more information, see the description of the TSMTEPostUpdateUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TSMTE.h

TSMTEPreUpdateUPP
Defines a universal procedure pointer (UPP) to a pre-update callback.

typedef TSMTEPreUpdateProcPtr TSMTEPreUpdateUPP;

Discussion
For more information, see the description of the TSMTEPreUpdateUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TSMTE.h

TSMTERec
Defines a TSMTE record structure.

struct TSMTERec {
 TEHandle textH;
 TSMTEPreUpdateUPP preUpdateProc;
 TSMTEPostUpdateUPP postUpdateProc;
 long updateFlag;
 long refCon;
};
typedef struct TSMTERec TSMTERec;
typedef TSMTERec * TSMTERecPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TSMTE.h

Data Types 3029
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

TSMTERecHandle
Defines a handle to a TSMTE record pointer.

typedef TSMTERecPtr * TSMTERecHandle;

Availability
Available in Mac OS X v10.0 and later.

Declared In
TSMTE.h

WidthHookUPP
Defines a universal procedure pointer (UPP) to a width-hook callback.

typedef WidthHookProcPtr WidthHookUPP;

Discussion
For more information, see the description of the WidthHookUPP () callback function.

Availability
Available in Mac OS X v10.0 and later.

Declared In
TextEdit.h

Constants

Auto Idling Flag
Enables automatic idling in an event loop.

enum {
 teFIdleWithEventLoopTimer = 7
};

Auto Scroll Constant
Specifies automatic scrolling

enum {
 kTSMTEAutoScroll = 1
};

Do Text Selectors
Specify constants for identifying TEDoTextSelectors.

3030 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

enum {
 teFind = 0,
 teHighlight = 1,
 teDraw = -1,
 teCaret = -2
};

Find Word Identification Constants
Specify constants for identifying the routine that called FindWord.

enum {
 teWordSelect = 4,
 teWordDrag = 8,
 teFromFind = 12,
 teFromRecal = 16
};

Hook Constants
Specify offsets into the TEDispatchRec data structure.

enum {
 EOLHook = 0,
 DRAWHook = 4,
 WIDTHHook = 8,
 HITTESTHook = 12,
 nWIDTHHook = 24,
 TextWidthHook = 28
};

Inline Input Flag
Specifies to use inline input service.

enum {
 teFUseTextServices = 4
};

Constants
teFUseTextServices

Use inline input service. This flag is no longer in use.

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

Signature and Interface Constants
Specify a TSM TextEdit signature or interface.

Constants 3031
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

enum {
 kTSMTESignature = 'tmTE',
 kTSMTEInterfaceType = 'tmTE'
};

Style Mode Constants
Used to set and replace style modes.

enum {
 fontBit = 0,
 faceBit = 1,
 sizeBit = 2,
 clrBit = 3,
 addSizeBit = 4,
 toggleBit = 5
};

Text Alignment Constants
Specify justification (word alignment) styles.

enum {
 teJustLeft = 0,
 teJustCenter = 1,
 teJustRight = -1,
 teForceLeft = -2,
 teFlushDefault = 0,
 teCenter = 1,
 teFlushRight = -1,
 teFlushLeft = -2
};

Constants
teFlushDefault

Align according to primary line direction

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

teCenter
Centered for all scripts

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

teFlushRight
Right aligned for all scripts

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

teFlushLeft
Left aligned for all scripts

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

3032 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Discussion
You can use these constants to specify the text alignment through the align parameter of the
TESetAlignment (page 2992) and TETextBox (page 3000) functions. For compatibility, the previous names of
these constants (teJustLeft , teJustCenter , teJustRight , and teForceLeft) are still supported.

Text Custom Hook Constants
Specify a selector for a TextEdit hook function.

enum {
 intEOLHook = 0,
 intDrawHook = 1,
 intWidthHook = 2,
 intHitTestHook = 3,
 intNWidthHook = 6,
 intTextWidthHook = 7,
 intInlineInputTSMTEPreUpdateHook = 8,
 intInlineInputTSMTEPostUpdateHook = 9
};

Constants
intEOLHook

End-of-line hook

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

intDrawHook
Draw hook

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

intWidthHook
Width measurement hook

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

intHitTestHook
Hit test hook

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

intNWidthHook
New width measurement hook

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

intTextWidthHook
Text width measurement hook (low-memory global width measurement hook)

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

Constants 3033
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

intInlineInputTSMTEPreUpdateHook
Specifies a TSMTEPreUpdateProcPtr callback.

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

intInlineInputTSMTEPostUpdateHook
Specifies a TSMTEPostUpdateProcPtr callback.

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

Discussion
To specify a default TextEdit hook function with a customized function, you specify one of the following
constants as the value of the which parameter to the TECustomHook (page 2972) function.

Text Feature Action Constants
Specify the action to be performed on a feature.

enum {
 teBitClear = 0,
 teBitSet = 1,
 teBitTest = -1
};

Constants
teBitClear

Disables the specified feature

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

teBitSet
Enables the specified feature. If teBitTest returns teBitSet, the feature is enabled; if it returns
teBitClear, it is disabled.

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

teBitTest
Returns the current setting of the specified feature

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

Discussion
To specify the action to be performed on a feature, you specify one of these constants as the value of the
action parameter to the TEFeatureFlag (page 2976) function.

To test for the availability of these features, you can call the Gestalt function with the
gestaltTextEditVersion selector. A result of gestaltTE4 or greater returned in the response parameter
indicates that outline highlighting and text buffering are available. A result of gestaltTE5 or greater returned
in the response parameter indicates that the two inline input features are available.

Version Notes
The inline input features are also available on version 6.0.7 systems with non-Roman script systems installed.
However, there is no Gestalt constant that indicates this availability.

3034 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

Text Feature Constants
Specify feature or bit definitions for the function TEFeatureFlag.

enum {
 teFAutoScroll = 0,
 teFTextBuffering = 1,
 teFOutlineHilite = 2,
 teFInlineInput = 3,
 teFUseWhiteBackground = 4,
 teFUseInlineInput = 5,
 teFInlineInputAutoScroll = 6
};

Constants
teFAutoScroll

Automatic scrolling. You can use the TEFeatureFlag function to turn automatic scrolling on and
off as an alternative to calling TEAutoView. The effect is the same.

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

teFTextBuffering
Text buffering. The teFTextBuffering selector enables or disables text buffering for performance
improvements of 2-byte scripts. This is a global buffer, as opposed to the TEKey function’s internal
2-byte buffer, and it is used across all active edit structures.

Exercise care when you enable the text-buffering capability in more than one active structure;
otherwise, the bytes that are buffered from one edit structure may appear in another edit structure.

Ensure that buffering is not turned off in the middle of processing a 2-byte character. To guarantee
the integrity of your structure, it is important that you wait for an idle event before you disable
buffering or enable buffering in a second edit structure.

When text buffering is enabled, ensure that the TEIdle (page 2984) function is called before any pause
of more than a few ticks—for example, before the Event Manager function WaitNextEvent. A
possibility of a long delay before characters appear on the screen exists, especially in non-Roman
systems. If you do not call TEIdle, the characters can end up in the edit structure of another
application.

If text buffering is enabled on a non-Roman script system and the keyboard has changed, TextEdit
flushes the text of the current script from the buffer before bringing characters of the new script into
the buffer.

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

teFOutlineHilite
Outline highlighting. The teFOutlineHilite selector specifies outline highlighting as the feature
for which an action is to be performed. If a highlighted region exists in an edit structure and the
window is inactive, then the highlighted region is outlined or framed.

In the case that outline highlighting is enabled and the current selection range is an insertion point,
the caret is then drawn in a gray pattern so that it appears dimmed. To do the framing and caret
dimming, TextEdit temporarily replaces the current address in the highHook and caretHook fields
of the edit structure, redraws the caret or the highlighted region, and then immediately restores the
hooks to their previous addresses.

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

Constants 3035
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

teFInlineInput
Inline input. You must deactivate an edit structure (using TEDeactivate) before changing the state
of the feature bits or any fields in the edit structure.

In the future, other text services may use this same mechanism. If you follow the guidelines specified
here, your application should also work with future text services. When an inline edit session begins,
inline input also sets the teFInlineInput bit to provide the following features so that inline input
works correctly with TextEdit: disabling font and keyboard synchronization, forcing a multiple-line
selection to be highlighted line by line using a separate rectangle for each line rather than using a
minimum number of rectangles for optimization, and highlighting a line only to the edge of the text
rather than beyond the text to the edge of the view rectangle.

The teFInlineInput bit is cleared by inline input when an inline session ends. Use the
teFInlineInput constant in the feature parameter of TEFeatureFlag to include these features
in your application even when inline input is not installed. Be careful about changing the state of this
bit if the teFUseTextServices bit is set. Again, the edit structure should always be deactivated
before you change the state of the teFInlineInput bit. If you clear the teFUseTextServices bit
and you set the teFInlineInput bit, inline input is disabled, but your application retains the features
listed above.

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

Discussion
To identify or adjust a feature, you specify one of these constants as the value of the feature parameter to
the TEFeatureFlag (page 2976) function.

Text Styling Constants
Specify character attributes.

enum {
 doFont = 1,
 doFace = 2,
 doSize = 4,
 doColor = 8,
 doAll = 15,
 addSize = 16,
 doToggle = 32
};

Constants
doFont

Sets the font family ID

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

doFace
Sets the character style

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

3036 Constants
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

doSize
Sets the type size

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

doColor
Sets the color

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

doAll
Sets all attributes

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

addSize
Increases or decreases the current type size

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

doToggle
Modifies the mode

Available in Mac OS X v10.0 and later.

Declared in TextEdit.h.

Discussion
You can use these constants (singly or in combination) to specify character attributes, through the mode
parameter of the TEContinuousStyle (page 2970) , TESetStyle (page 2996) , and TEReplaceStyle (page
2989) functions.

Result Codes

In addition to noErr, the most common result code returned by TextEdit is listed below.

DescriptionValueResult Code

Scrap does not exist (not initalized).-100noScrapErr

Available in Mac OS X v10.0 and later.

Result Codes 3037
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

3038 Result Codes
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

CHAPTER 39

TextEdit Reference (Not Recommended)

This table describes the changes to Carbon Framework Reference.

NotesDate

Added three reference documents (HIGeometry, Carbon Printing, Control
Manager) and removed two (Carbon Printing Manager, ColorSync Manager).

2007-10-31

First publication of this content as a collection of previously published
documents.

2006-05-23

3039
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

3040
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

About Box Keys 233
AcquireFirstMatchingEventInQueue function 245
AcquireRootMenu function 1229
Action Constants 2719
Action Count Bits 2721
Action Count Constants 2720
Action Count Masks 2721
Action State Constants 1464
Action Types 2722
ActivateControl function 535
activateEvt constant 1022
ActivateTextService function 1577
ActivateTSMDocument function 1577
ActivateWindow function 1800
activeFlag constant 1012
activeFlagBit constant 1010
ActiveNonFloatingWindow function 1800
activMask constant 1019
adbAddrMask constant 1011
AddDataBrowserItems function 2120
AddDataBrowserListViewColumn function 2121
AddDragItemFlavor function (Deprecated in Mac OS X

v10.5) 923
AddEventTypesToHandler function 246
addSize constant 3037
AdvanceKeyboardFocus function 535
AFPServerSignature data type 1132
AHGotoMainTOC function (Deprecated in Mac OS X v10.4)

2057
AHGotoPage function 2058
AHLookupAnchor function 2058
AHRegisterHelpBook function 2059
AHSearch function 2059
Alert Button Constants 904
Alert Default Text Constants 904
Alert Feature Flag Constants 905
Alert function 834
Alert Icon Resource ID Constants 906
Alert Type Constants 907

AlertStdAlertParamRec structure 897
AlertStdCFStringAlertParamRec structure 898
AlertTemplate structure 899
AlertType data type 899
alphaLock constant 1013
alphaLockBit constant 1010
altDBoxProc constant 2049
Alternate Mouse Tracking Result Constants 396
Alternate Window Definition Event Constants 443
Alternates Menu Command IDs 1051
app1Evt constant 1020
app1Mask constant 1021
app2Evt constant 1020
app2Mask constant 1021
app3Evt constant 1020
app3Mask constant 1021
app4Evt constant 1020
app4Mask constant 1021
Appearance Manager Apple Events 120
Appearance Manager Event Parameter 337
Appearance Manager Events 336
Appearance Manager File Types 121
Appearance-Compliant Window Definition ID Constants

2004
Appearance-Compliant Window Resource IDs 2003
appearanceBadBrushIndexErr 213
Appearance–compliant Push Button, Radio Button, and

Checkbox Control Definition IDs 719
AppendDialogItemList function 835
AppendDITL function 836
appendDITLBottom constant 914
appendDITLRight constant 913
AppendMenu function (Deprecated in Mac OS X v10.5)

1229
AppendMenuItemText function (Deprecated in Mac OS

X v10.5) 1231
AppendMenuItemTextWithCFString function 1231
AppendResMenu function (Deprecated in Mac OS X v10.5)

1232
Apple Event Handler Bits 2724
Apple Event Handler Masks 2724
Apple Event Selectors 1555

3041
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

Index

AppleEvent Constant 335
Application Event Constants 337
Application Event Parameters 342
Application Modes 1046
ApplyThemeBackground function (Deprecated in Mac

OS X v10.5) 26
Archive Decoding Option Constant 2316
AreFloatingWindowsVisible function 1801
ASCopySourceAttributes function 2785
ASGetAppTerminology function 2786
ASGetHandler function 2786
ASGetProperty function 2787
ASGetSourceStyleNames function 2787
ASGetSourceStyles function (Deprecated in Mac OS X

v10.5) 2788
ASInit function 2788
ASSetHandler function 2790
ASSetProperty function 2790
ASSetSourceAttributes function 2791
ASSetSourceStyles function (Deprecated in Mac OS X

v10.5) 2792
Asynchronous Arrows Control Definition ID 721
ATSUI Feature Bits 2725
ATSUI Feature Masks 2726
Attribute Bits for TSM Document Access Carbon Events

1619
Attribute Masks for TSM Document Access Carbon Events

1619
Authentication Type Constant 1763
Authentication Type Constants 1136
Auto Idling Flag 3030
Auto Scroll Constant 3030
AutoEmbedControl function 536
autoKey constant 1022
autoKeyMask constant 1018
Automatic Indentation Settings 2726
Automatic Scrolling Behavior 2727
AutoSizeDataBrowserListViewColumns function

2122
AutoSizeDialog function 838
autoTrack constant 737
AuxCtlHandle data type 696
AuxCtlPtr data type 697
AuxCtlRec structure 697
AXUIElementCreateWithDataBrowserAndItemInfo

function 2123
AXUIElementGetDataBrowserItemInfo function 2123

B

badDragFlavorErr constant 986
badDragItemErr constant 986

badDragRefErr constant 986
badImageErr constant 986
badImageRgnErr constant 986
badProfileError constant 522
badScrapRefErr constant 1514
badTranslationSpecErr constant 1732
Basic Window Description State Constant 2010
Basic Window Description Version Constants 2023
BasicWindowDescription structure 1979
BeginAppModalStateForWindow function 247
BeginCGContextForApplicationDockTile function

221
BeginQDContextForApplicationDockTile function

(Deprecated in Mac OS X v10.5) 221
BeginThemeDragSound function 27
BeginUpdate function 1801
BeginWindowProxyDrag function 1802
Bevel Button Behavior Constants 721
Bevel Button Control Data Tag Constants 723
Bevel Button Control Definition IDs 725
Bevel Button Graphic Alignment Constants 726
Bevel Button Menu Constant 727
Bevel Button Menu Control Data Tag Constants 728
Bevel Button Size Constants 767
Bevel Button Text Alignment Constants 729
Bevel Button Text Placement Constants 730
bHandleAERecording constant 1630
bLanguageMask constant 1630
BreakTable structure 1692
BringToFront function 1803
bScriptLanguageMask constant 1631
bScriptMask constant 1630
bTakeActiveEvent constant 1630
btnCtrl constant 908
btnState constant 1012
btnStateBit constant 1010

C

C2PStr function (Deprecated in Mac OS X v10.4) 1654
c2pstr function (Deprecated in Mac OS X v10.4) 1654
c2pstrcpy function (Deprecated in Mac OS X v10.4) 1654
calcCntlRgn constant 737
calcCRgns constant 737
CalcMenuSize function 1234
calcThumbRgn constant 738
CalcVis function (Deprecated in Mac OS X v10.5) 1804
CalcVisBehind function (Deprecated in Mac OS X v10.5)

1804
Callback Data Structure Version 2271
CallInScrapPromises function (Deprecated in Mac OS

X v10.5) 1497

3042
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CallNextEventHandler function 247
cancel constant 916
CancelMenuTracking function 1234
CanDocBeOpened function (Deprecated in Mac OS X

v10.3) 1706
cantCreatePickerWindow constant 522
cantGetFlavorErr constant 986
cantLoadPackage constant 522
cantLoadPicker constant 522
Carbon Event Class for TSM Document Access 1620
Carbon Event Dictionary Keys 2727
Carbon Event Parameters for General TSM Events 1627
Carbon Event Parameters for TSM Document Access 1628
Carbon Events for TSM Document Access 1620
CaretHookProcPtr callback 3004
CaretHookUPP data type 3011
CautionAlert function 839
cautionIcon constant 907
cBodyColor constant 792
cClosure 2859
cCoercion 2859
Cell data type 1206
Certificate Search Options 1137
Certificate Usage Options 1138
Certificate Verification Criteria 1139
cFrameColor constant 792
cHandleBreakpoint 2859
ChangeControlPropertyAttributes function 537
ChangeDragBehaviors function 924
ChangeMenuAttributes function 1235
ChangeMenuItemAttributes function 1235
ChangeMenuItemPropertyAttributes function 1236
ChangeMouseTrackingRegion function (Deprecated in

Mac OS X v10.4) 248
ChangeWindowAttributes function 1805
ChangeWindowGroupAttributes function 1806
ChangeWindowPropertyAttributes function 1806
Character Codes 1013
charCodeMask 1011
charCodeMask constant 1011
Chars data type 3011
CharsHandle data type 3012
CharsPtr data type 3012
Checkbox and Radio Button AutoToggle Control Definition

IDs 731
Checkbox Value Constants 732
checkBoxProc constant 802
CheckEventQueueForUserCancel function 991
CheckMenuItem function 1237
CheckUpdate function (Deprecated in Mac OS X v10.5)

1807
chkCtrl constant 908
Class ID Constants 2498

Clearance Settings 2729
ClearCurrentScrap function (Deprecated in Mac OS X

v10.5) 1497
ClearKeyboardFocus function 537
ClearMenuBar function 1237
ClearScrap function (Deprecated in Mac OS X v10.5)

1498
Click Activation Constants 780
ClickActivationResult data type 697
ClipAbove function (Deprecated in Mac OS X v10.5) 1808
ClipMouseTrackingRegion function (Deprecated in

Mac OS X v10.4) 248
ClipWindowMouseTrackingRegions function

(Deprecated in Mac OS X v10.4) 249
Clock Control Data Tag Constants 732
Clock Control Definition IDs 733
Clock Event Constant 2499
Clock Value Flag Constants 734
CloneWindow function (Deprecated in Mac OS X v10.5)

1808
CloseDataBrowserContainer function 2124
CloseDialog function 840
CloseDrawer function 1809
CloseStandardSheet function 841
CloseTextService function (Deprecated in Mac OS X

v10.5) 1578
cmdKey constant 1012
cmdKeyBit constant 1010
CMPluginExamineContext function 1238
CMPluginHandleSelection function 1238
CMPluginPostMenuCleanup function 1239
CMY2RGB function 497
CMYColor structure 509
CollapseAllWindows function 1810
CollapseWindow function 1810
Collection Tags 1644
Color Picker Flags 518
ColorChangedProcPtr callback 507
ColorChangedUPP data type 510
ColorPickerInfo (Old) structure 510
colorSyncNotInstalled constant 522
Combo Box Attributes 2500
Combo Box Data Tags 2501
Combo Box List Item Event Constants 2502
Combo Box Part Constants 2502
Command Event Constants 342
Command Event Source Constants 350
Command Event Support Options 2729
CompareString function (Deprecated in Mac OS X v10.4)

1655
CompareText function (Deprecated in Mac OS X v10.4)

1656
Component Flags 1630, 2860

3043
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Considerations Bit Masks 2862
Considerations Flags 2861
Constraint Constants 792
ConstrainWindowToScreen function 1811
Content Provided Types 492
Content Request Types 487
Contextual Menu Gestalt Selector Constants 1368
Contextual Menu Help Type Constants 1369
Contextual Menu Item Content Constants 1371
Contextual Menu Selection Type Constants 1370
ContextualMenuSelect function 1239
Continuous Style Information Bits 2731
Continuous Style Information Masks 2731
Control Bevel Button Menu Placement Constants 753
Control Bevel Thickness Constants 753
Control Bounds Constants 364
Control Can Auto Invalidate Constant 767
Control Chasing Arrows Animating Tag Constant 767
Control Clock Type Constants 753
Control Collection Tag Constants 768
Control Collection Tag Subcontrols Constant 770
Control Content Type Constants 770
Control Data Browser Tag Constants 771
Control Data Tags 2272
Control Def Constants 771
Control Def Type Constants 772
Control Definition Message Constants 735
Control Disclosure Triangle Orientation Constants 753
Control Edit Unicode Text Post Update Proc Tag Constant

774
Control Edit Unicode Text Proc Constants 774
Control Entire Control Constant 774
Control Event Constants 351
Control Event Parameters 365
Control Features Constants 741
Control Focus Part Code Constants 743
Control Font Style and Key Filter Data Tag Constants 744
Control Font Style Flag Constants 745
Control Key Script Behavior Constants 747
Control Kind Bevel Button Constant 774
Control Kind Chasing Arrows Constant 774
Control Kind Clock Constant 774
Control Kind Constants 2503
Control Kind Data Browser Constant 774
Control Kind Disclosure Button Constant 774
Control Kind Disclosure Triangle Constant 775
Control Kind Edit Text Constant 775
Control Kind Edit Unicode Text Constant 775
Control Kind Group Box Constants 775
Control Kind Icon Constant 775
Control Kind Image Well Constant 775
Control Kind List Box Constant 775
Control Kind Picture Constant 776

Control Kind Placard Constant 776
Control Kind Pop-up Arrow Constant 776
Control Kind Pop-up Button Constant 776
Control Kind Progress Bar Constants 776
Control Kind Push and Radio Button Constants 776
Control Kind Radio Group Constant 776
Control Kind Round Button Constant 777
Control Kind Scroll Bar Constant 777
Control Kind Scrolling Text Box Constant 777
Control Kind Separator Constant 777
Control Kind Signature Apple Constant 777
Control Kind Slider Constant 778
Control Kind Static Text Constant 778
Control Kind Tabs Constant 778
Control Kind User Pane Constant 778
Control Kind Window Header Constant 778
Control Meta Part Code Constants 790
Control Notify Constants 753
Control Part Code Constants 748
Control Picture Handle Tag Constant 778
Control Pop-up Arrow Orientation Constants 778
Control Pop-up Arrow Size Constants 778
Control Pop-up Button Check Current Tag Constant 779
Control Property Persistent Constant 779
Control Push Button Icon Alignment Constants 753
Control Round Button Content and Size Tag Constants

779
Control Round Button Size Constants 754
Control Scrollbar Shows Arrows Tag Constant 779
Control Size Constants 779
Control Slider Orientation Constants 754
Control State Part Code Constants 751
Control Supports New Messages Constant 779
Control Tab Direction Constants 754
Control Tab Image Content Tag Constant 780
Control Tab Info Version Constants 780
Control Tab Size Constants 754
Control Tab Type Constants 780
Control Use Theme Font ID Mask Constant 780
Control Variant Constants 752
ControlActionProcPtr callback 675
ControlApplyTextColorRec structure 697
ControlBackgroundRec structure 698
ControlBevelButtonBehavior data type 698
ControlBevelButtonMenuBehavior data type 699
ControlButtonContentInfo structure 699
ControlCalcSizeRec structure 700
ControlCapabilities data type 700
ControlClickActivationRec structure 700
ControlCNTLToCollectionProcPtr callback 676
ControlColorProcPtr callback 677
ControlContentType data type 701
ControlContextualMenuClickRec structure 701

3044
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

ControlDataAccessRec structure 701
ControlDefProcMessage data type 702
ControlDefProcPtr callback 677
ControlDefSpec structure 702
ControlDefType data type 702
ControlEditTextSelectionRec structure 703
ControlEditTextValidationProcPtr callback 685
ControlFocusPart data type 703
ControlFontStyleRec structure 704
ControlGetRegionRec structure 705
ControlHandle data type 706
controlHandleInvalidErr constant 827
ControlID structure 706
ControlImageContentInfo data type 706
controlInvalidDataVersionErr constant 827
controlKey constant 1013
controlKeyBit constant 1010
ControlKeyDownRec structure 706
ControlKeyFilterProcPtr callback 686
ControlKeyFilterResult data type 707
ControlKeyScriptBehavior data type 707
ControlKind structure 707
ControlNotification data type 708
ControlNotificationUPP data type 708
ControlPartCode data type 708
ControlPopupArrowOrientation data type 708
ControlPopupArrowSize data type 708
controlPropertyInvalid constant 824
controlPropertyNotFoundErr constant 824
ControlPtr data type 708
ControlRecord structure 709
ControlRef data type 709
ControlSetCursorRec structure 709
ControlSize data type 710
ControlTabEntry structure 710
ControlTabInfoRec structure 710
ControlTabInfoRecV1 structure 711
ControlTemplate structure 711
ControlTrackingRec structure 712
ControlUserPaneActivateProcPtr callback 687
ControlUserPaneBackgroundProcPtr callback 688
ControlUserPaneDrawProcPtr callback 690
ControlUserPaneFocusProcPtr callback 691
ControlUserPaneHitTestProcPtr callback 692
ControlUserPaneIdleProcPtr callback 692
ControlUserPaneKeyDownProcPtr callback 693
ControlUserPaneTrackingProcPtr callback 695
ControlVariant data type 712
convertClipboardFlag 1011
convertClipboardFlag constant 1012
ConvertEventRefToEventRecord function 249
Coordinate Space Constants 2324
CopyControlTitleAsCFString function 538

CopyCStringToPascal function (Deprecated in Mac OS
X v10.4) 1657

CopyDataBrowserEditText function 2125
CopyEvent function 250
CopyEventAs function 250
CopyMenuItemData function 1241
CopyMenuItems function 1242
CopyMenuItemTextAsCFString function 1243
CopyMenuTitleAsCFString function 1243
CopyPascalStringToC function (Deprecated in Mac OS

X v10.4) 1657
CopyServicesMenuCommandKeys function 251
CopySymbolicHotKeys function 252
CopyTextServiceInputModeList function 1579
CopyThemeIdentifier function 28
CopyWindowAlternateTitle function 1812
CopyWindowGroupName function 1812
CopyWindowTitleAsCFString function 1813
Core Foundation Object Types 334
couldNotParseSourceFileErr constant 1732
CountDITL function 841
CountDragItemFlavors function (Deprecated in Mac

OS X v10.5) 925
CountDragItems function (Deprecated in Mac OS X

v10.5) 925
CountMenuItems function 1244
CountMenuItemsWithCommandID function 1244
CountSubControls function 538
CountWindowGroupContents function 1813
CreateBevelButtonControl function 539
CreateCGImageFromPixMaps function 222
CreateChasingArrowsControl function 540
CreateCheckBoxControl function 541
CreateCheckGroupBoxControl function 542
CreateClockControl function 542
CreateCustomControl function (Deprecated in Mac OS

X v10.5) 543
CreateCustomList function (Deprecated in Mac OS X

v10.5) 1163
CreateCustomMenu function 1245
CreateCustomWindow function 1814
CreateDataBrowserControl function 2125
CreateDisclosureButtonControl function 544
CreateDisclosureTriangleControl function 545
CreateEditTextControl function (Deprecated in Mac

OS X v10.4) 546
CreateEditUnicodeTextControl function 547
CreateEvent function 252
CreateGroupBoxControl function 548
CreateIconControl function 549
CreateImageWellControl function 549
CreateListBoxControl function 550
CreateLittleArrowsControl function 552

3045
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

CreateMenuBarFromNib function 1056
CreateMenuFromNib function 1056
CreateMouseTrackingRegion function (Deprecated in

Mac OS X v10.4) 253
CreateNewMenu function 1246
CreateNewWindow function 1815
CreateNibReference function 1057
CreateNibReferenceWithCFBundle function 1058
CreatePictureControl function 553
CreatePlacardControl function 554
CreatePopupArrowControl function 554
CreatePopupButtonControl function 555
CreatePopupGroupBoxControl function 556
CreateProgressBarControl function 558
CreatePushButtonControl function 558
CreatePushButtonWithIconControl function 559
CreateQDContextForCollapsedWindowDockTile

function (Deprecated in Mac OS X v10.5) 1816
CreateRadioButtonControl function 560
CreateRadioGroupControl function 561
CreateRelevanceBarControl function 561
CreateRootControl function 562
CreateRoundButtonControl function 564
CreateScrollBarControl function 564
CreateScrollingTextBoxControl function 566
CreateSeparatorControl function 567
CreateSliderControl function 567
CreateStandardAlert function 842
CreateStandardFontMenu function 1247
CreateStandardSheet function 842
CreateStandardWindowMenu function 1816
CreateStaticTextControl function 569
CreateTabsControl function 569
CreateTypeStringWithOSType function 255
CreateUserPaneControl function 571
CreateWindowFromCollection function (Deprecated

in Mac OS X v10.5) 1817
CreateWindowFromNib function 1059
CreateWindowFromResource function (Deprecated in

Mac OS X v10.5) 1818
CreateWindowGroup function 1818
CreateWindowHeaderControl function 571
cString 2863
cTextColor constant 792
cThumbColor constant 792
ctrlItem 908
ctrlItem constant 908
Current Dialect Constants 2863
currentCurLang constant 1703
currentDefLang constant 1703
Custom Callback Data Structure Version 2272
Custom Control Settings 1465
Custom Menu Definition Message Constants 1372

D

Data Browser Attributes 2273
Data Browser Control Kind Tag 2274
Data Browser Error Constants 759
Data Browser Metric Values 2274
Data Offsets 2732
Data Option Key Constants 2733
Data Option Key Value Constants 2733
Data Transfer Event Constants 1764
Data Transfer Event Mask Constants 1766
Data Transfer Options Mask Constants 1770
Data Transfer State Constants 1773
DataArray data type 1206
DataBrowserAcceptDragProcPtr callback 2233
DataBrowserAccessibilityItemInfo structure 2260
DataBrowserAccessibilityItemInfoV0 structure

2261
DataBrowserAccessibilityItemInfoV1 structure

2262
DataBrowserAddDragItemProcPtr callback 2234
DataBrowserCallbacks structure 713, 2264
DataBrowserChangeAttributes function 2127
DataBrowserCustomCallbacks structure 713, 2265
DataBrowserDragFlags data type 714, 2266
DataBrowserDrawItemProcPtr callback 2235
DataBrowserEditItemProcPtr callback 2237
DataBrowserGetAttributes function 2127
DataBrowserGetContextualMenuProcPtr callback

2238
DataBrowserGetMetric function 2128
DataBrowserHitTestProcPtr callback 2240
DataBrowserItemAcceptDragProcPtr callback 2242
DataBrowserItemCompareProcPtr callback 2243
DataBrowserItemDataProcPtr callback 2245
DataBrowserItemDataRef data type 2267
DataBrowserItemDragRgnProcPtr callback 2246
DataBrowserItemHelpContentProcPtr callback 2248
DataBrowserItemID data type 2267
DataBrowserItemNotificationProcPtr callback

2250
DataBrowserItemNotificationWithItemProcPtr

callback 2251
DataBrowserItemProcPtr callback 2253
DataBrowserItemReceiveDragProcPtr callback 2254
DataBrowserListViewColumnDesc structure 714, 2270
DataBrowserListViewHeaderDesc structure 714, 2269
DataBrowserPostProcessDragProcPtr callback 2255
DataBrowserPropertyDesc structure 715, 2263
DataBrowserPropertyFlags data type 715, 2267
DataBrowserPropertyID data type 2268
DataBrowserPropertyPart data type 715
DataBrowserPropertyType data type 715

3046
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DataBrowserReceiveDragProcPtr callback 2256
DataBrowserSelectContextualMenuProcPtr callback

2257
DataBrowserSetMetric function 2129
DataBrowserTableViewColumnDesc data type 716,

2269
DataBrowserTableViewColumnID data type 716, 2269
DataBrowserTableViewColumnIndex data type 716,

2269
DataBrowserTableViewRowIndex data type 716, 2268
DataBrowserTrackingProcPtr callback 2259
DataBrowserViewStyle data type 716
DataHandle data type 1206
DataPtr data type 1206
Date and Time Constants 2863
DBItemProcDataType data type 717
dBoxProc constant 2049
DBRevealItemDataType data type 717
DBSetSelectionDataType data type 717
DeactivateControl function 572
DeactivateTextService function 1580
DeactivateTSMDocument function 1581
DebugPrintAllWindowGroups function 1819
DebugPrintWindowGroup function 1819
Default Font Name 2734
Default Font Size 2734
Default Font Style 2735
Default Initialization Values 2863
Default Internet Port Constant 1140
Default Internet Protocol And Authentication Type

Constants 1140
Default Rejection Level 1557
DeleteMCEntries function (Deprecated in Mac OS X

v10.5) 1248
DeleteMenu function 1248
DeleteMenuItem function 1249
DeleteMenuItems function 1250
DeleteTSMDocument function 1582
Deprecated AppleEvent Event Constants 336
Deprecated Text Input Constants 408
DeselectTextService function (Deprecated in Mac OS

X v10.5) 1583
Desk Pattern Resource ID 2044
deskPatID constant 2044
Desktop Picture Alignments 212
DetachSheetWindow function 1819
Dialect Descriptor Constants 2865
Dialog Configuration Options 1471
Dialog Feature Flag Constants 909
Dialog Font Flag Constants 910
Dialog Item Constants 912
Dialog Item List Display Constants 913
Dialog Placement Constants 520

DialogCopy function 844
DialogCut function 844
DialogDelete function 845
DialogItemIndex data type 900
DialogItemIndexZeroBased data type 900
DialogItemType data type 900
dialogKind constant 2030
dialogNoTimeoutErr constant 916
DialogPaste function 845
DialogPeek data type 900
DialogRecord structure 901
DialogRef data type 901
DialogSelect function 845
DialogTemplate structure 902
Direct Object Parameter 327
DisableAllMenuItems function 1250
DisableControl function 573
DisableMenuCommand function 1251
DisableMenuItem function 1251
DisableMenuItemIcon function 1252
DisableScreenUpdates function 1820
DisableSecureEventInput function 255
Discard Changes Actions 1475
Disclosure Triangle Constants 772
diskEvt constant 1022
diskMask constant 1018
dispCntl constant 737
Display Types 2275
DisposeCaretHookUPP function (Deprecated in Mac OS

X v10.4) 2950
DisposeColorChangedUPP function 497
DisposeControl function 573
DisposeControlActionUPP function 574
DisposeControlCNTLToCollectionUPP function 574
DisposeControlColorUPP function 575
DisposeControlDefUPP function (Deprecated in Mac

OS X v10.5) 575
DisposeControlEditTextValidationUPP function

576
DisposeControlKeyFilterUPP function 576
DisposeControlUserPaneActivateUPP function 576
DisposeControlUserPaneBackgroundUPP function

577
DisposeControlUserPaneDrawUPP function 577
DisposeControlUserPaneFocusUPP function 577
DisposeControlUserPaneHitTestUPP function 578
DisposeControlUserPaneIdleUPP function 578
DisposeControlUserPaneKeyDownUPP function 578
DisposeControlUserPaneTrackingUPP function 579
DisposeDataBrowserAcceptDragUPP function 2129
DisposeDataBrowserAddDragItemUPP function 2130
DisposeDataBrowserDrawItemUPP function 2130
DisposeDataBrowserEditItemUPP function 2131

3047
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DisposeDataBrowserGetContextualMenuUPP function
2131

DisposeDataBrowserHitTestUPP function 2131
DisposeDataBrowserItemAcceptDragUPP function

2132
DisposeDataBrowserItemCompareUPP function 2132
DisposeDataBrowserItemDataUPP function 2133
DisposeDataBrowserItemDragRgnUPP function 2133
DisposeDataBrowserItemHelpContentUPP function

2133
DisposeDataBrowserItemNotificationUPP function

2134
DisposeDataBrowserItemNotificationWithItemUPP

function 2134
DisposeDataBrowserItemReceiveDragUPP function

2135
DisposeDataBrowserItemUPP function 2135
DisposeDataBrowserPostProcessDragUPP function

2135
DisposeDataBrowserReceiveDragUPP function 2136
DisposeDataBrowserSelectContextualMenuUPP

function 2136
DisposeDataBrowserTrackingUPP function 2137
DisposeDialog function 847
DisposeDrag function 926
DisposeDragDrawingUPP function (Deprecated in Mac

OS X v10.5) 926
DisposeDragInputUPP function 927
DisposeDragReceiveHandlerUPP function (Deprecated

in Mac OS X v10.5) 927
DisposeDragSendDataUPP function (Deprecated in Mac

OS X v10.5) 927
DisposeDragTrackingHandlerUPP function

(Deprecated in Mac OS X v10.5) 928
DisposeDrawHookUPP function (Deprecated in Mac OS

X v10.4) 2950
DisposeEditUnicodePostUpdateUPP function 579
DisposeEOLHookUPP function (Deprecated in Mac OS X

v10.4) 2950
DisposeEventComparatorUPP function 256
DisposeEventHandlerUPP function 256
DisposeEventLoopIdleTimerUPP function 257
DisposeEventLoopTimerUPP function 257
DisposeGetScrapDataUPP function (Deprecated in Mac

OS X v10.3) 1707
DisposeHighHookUPP function (Deprecated in Mac OS

X v10.4) 2951
DisposeHitTestHookUPP function (Deprecated in Mac

OS X v10.4) 2951
DisposeHMControlContentUPP function 457
DisposeHMMenuItemContentUPP function 458
DisposeHMMenuTitleContentUPP function 458
DisposeHMWindowContentUPP function 459

DisposeHRNewCFURLUPP function (Deprecated in Mac
OS X v10.4) 2534

DisposeHRNewURLUPP function (Deprecated in Mac OS
X v10.4) 2534

DisposeHRURLToFSRefUPP function (Deprecated in Mac
OS X v10.4) 2535

DisposeHRURLToFSSpecUPP function (Deprecated in
Mac OS X v10.4) 2535

DisposeHRWasCFURLVisitedUPP function (Deprecated
in Mac OS X v10.4) 2536

DisposeHRWasURLVisitedUPP function (Deprecated in
Mac OS X v10.4) 2536

DisposeIndexToStringUPP function (Deprecated in
Mac OS X v10.4) 1658

DisposeKCCallbackUPP function 1079
DisposeListClickLoopUPP function (Deprecated in

Mac OS X v10.5) 1164
DisposeListDefUPP function (Deprecated in Mac OS X

v10.5) 1165
DisposeListSearchUPP function (Deprecated in Mac

OS X v10.5) 1165
DisposeMCInfo function (Deprecated in Mac OS X v10.5)

1252
DisposeMenu function 1253
DisposeMenuBar function 1253
DisposeMenuDefUPP function (Deprecated in Mac OS X

v10.5) 1254
DisposeMenuItemDrawingUPP function (Deprecated in

Mac OS X v10.5) 28
DisposeMenuTitleDrawingUPP function (Deprecated

in Mac OS X v10.5) 29
DisposeModalFilterUPP function 848
DisposeModalFilterYDUPP function 848
DisposeNavEventUPP function 1404
DisposeNavObjectFilterUPP function 1405
DisposeNavPreviewUPP function 1405
DisposeNColorChangedUPP function 497
DisposeNibReference function 1060
DisposeNMUPP function 1490
DisposeNWidthHookUPP function (Deprecated in Mac

OS X v10.4) 2951
DisposeOSAActiveUPP function 2792
DisposeOSACreateAppleEventUPP function 2793
DisposeOSASendUPP function 2793
DisposePMItemUPP function (Deprecated in Mac OS X

v10.4) 2067
DisposePMPageSetupDialogInitUPP function

(Deprecated in Mac OS X v10.4) 2067
DisposePMPrintDialogInitUPP function (Deprecated

in Mac OS X v10.4) 2068
DisposePMSheetDoneUPP function 2068
DisposeScrapPromiseKeeperUPP function (Deprecated

in Mac OS X v10.5) 1498

3048
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

DisposeSRCallBackUPP function 1520
DisposeTEClickLoopUPP function (Deprecated in Mac

OS X v10.4) 2952
DisposeTEDoTextUPP function (Deprecated in Mac OS

X v10.4) 2952
DisposeTEFindWordUPP function (Deprecated in Mac

OS X v10.4) 2952
DisposeTERecalcUPP function (Deprecated in Mac OS

X v10.4) 2952
DisposeTextWidthHookUPP function (Deprecated in

Mac OS X v10.4) 2953
DisposeThemeButtonDrawUPP function (Deprecated in

Mac OS X v10.5) 29
DisposeThemeDrawingState function 29
DisposeThemeEraseUPP function (Deprecated in Mac

OS X v10.5) 30
DisposeThemeIteratorUPP function (Deprecated in

Mac OS X v10.5) 30
DisposeThemeTabTitleDrawUPP function (Deprecated

in Mac OS X v10.5) 31
DisposeTSMTEPostUpdateUPP function (Deprecated in

Mac OS X v10.4) 2953
DisposeTSMTEPreUpdateUPP function (Deprecated in

Mac OS X v10.4) 2953
DisposeTXNActionKeyMapperUPP function (Deprecated

in Mac OS X v10.4) 2608
DisposeTXNActionNameMapperUPP function 2608
DisposeTXNContextualMenuSetupUPP function 2608
DisposeTXNFindUPP function 2609
DisposeTXNScrollInfoUPP function 2609
DisposeURLNotifyUPP function (Deprecated in Mac OS

X v10.4) 1736
DisposeURLSystemEventUPP function (Deprecated in

Mac OS X v10.4) 1736
DisposeUserEventUPP function 498
DisposeUserItemUPP function 849
DisposeWidthHookUPP function (Deprecated in Mac OS

X v10.4) 2954
DisposeWindow function 1820
DisposeWindowDefUPP function (Deprecated in Mac OS

X v10.5) 1821
DisposeWindowPaintUPP function (Deprecated in Mac

OS X v10.5) 1822
DisposeWindowTitleDrawingUPP function (Deprecated

in Mac OS X v10.5) 31
Do Text Selectors 3030
doAll constant 3037
doColor constant 3037
DocOpenMethod 1731
Document Attribute Keys 2735
Document Property Tags 1631
documentProc constant 2049
doFace constant 3036

doFont constant 3036
DoGetFileTranslationListProcPtr callback 1717
DoGetScrapTranslationListProcPtr callback 1718
DoGetTranslatedFilenameProcPtr callback 1719
DoIdentifyFileProcPtr callback 1720
DoIdentifyScrapProcPtr callback 1721
domCannot constant 1731
domNative constant 1731
domTranslateFirst constant 1731
domWildcard constant 1731
doSize constant 3037
doToggle constant 3037
DoTranslateFileProcPtr callback 1723
DoTranslateScrapProcPtr callback 1724
Drag Actions 979
Drag and Drop Constants 2736
Drag Attributes 973
Drag Behaviors 974
Drag Control Constants 754
Drag Drawing Messages 975
Drag Image Flags 982
Drag Tracking Enter Control Constants 782
Drag Tracking Messages 976
dragCntl constant 737
DragControl function 579
DragDrawingProcPtr callback 963
DragDrawingUPP data type 972
DragGrayRgn function (Deprecated in Mac OS X v10.5)

1822
dragHasLeftSenderWindow 985
DragInputProcPtr callback 964
DragInputUPP data type 972
DragItemRef data type 970
dragNotAcceptedErr constant 986
DragPostScroll function (Deprecated in Mac OS X

v10.5) 928
DragPreScroll function (Deprecated in Mac OS X v10.5)

929
DragReceiveHandlerProcPtr callback 966
DragReceiveHandlerUPP data type 973
DragRef data type 969
dragRegionBegin 985
DragSendDataProcPtr callback 967
DragSendDataUPP data type 973
DragTheRgn function (Deprecated in Mac OS X v10.5)

1824
dragTrackingEnterHandler 985
DragTrackingHandlerProcPtr callback 968
DragTrackingHandlerUPP data type 973
DragWindow function 1824
Draw Items Bits 2736
Draw Items Masks 2737
Draw1Control function 580

3049
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

drawCntl constant 736
DrawControlInCurrentPort function 581
DrawControls function 581
DrawDialog function 849
Drawer State Constants 2040
DrawGrowIcon function (Deprecated in Mac OS X v10.5)

1825
DrawHookProcPtr callback 3004
DrawHookUPP data type 3012
Drawing Constants 755
Drawing Modes 1046
DrawMenuBar function 1255
DrawThemeButton function (Deprecated in Mac OS X

v10.5) 31
DrawThemeChasingArrows function (Deprecated in Mac

OS X v10.5) 33
DrawThemeEditTextFrame function (Deprecated in Mac

OS X v10.5) 34
DrawThemeFocusRect function (Deprecated in Mac OS

X v10.5) 34
DrawThemeFocusRegion function (Deprecated in Mac

OS X v10.5) 35
DrawThemeGenericWell function (Deprecated in Mac

OS X v10.5) 36
DrawThemeListBoxFrame function (Deprecated in Mac

OS X v10.5) 37
DrawThemeMenuBackground function (Deprecated in

Mac OS X v10.5) 37
DrawThemeMenuBarBackground function (Deprecated

in Mac OS X v10.5) 38
DrawThemeMenuItem function (Deprecated in Mac OS X

v10.5) 38
DrawThemeMenuSeparator function (Deprecated in Mac

OS X v10.5) 40
DrawThemeMenuTitle function (Deprecated in Mac OS

X v10.5) 40
DrawThemeModelessDialogFrame function (Deprecated

in Mac OS X v10.5) 42
DrawThemePlacard function (Deprecated in Mac OS X

v10.5) 42
DrawThemePopupArrow function (Deprecated in Mac OS

X v10.5) 43
DrawThemePrimaryGroup function (Deprecated in Mac

OS X v10.5) 44
DrawThemeScrollBarArrows function (Deprecated in

Mac OS X v10.5) 45
DrawThemeScrollBarDelimiters function (Deprecated

in Mac OS X v10.5) 46
DrawThemeSecondaryGroup function (Deprecated in

Mac OS X v10.5) 46
DrawThemeSeparator function (Deprecated in Mac OS

X v10.5) 47

DrawThemeStandaloneGrowBox function (Deprecated
in Mac OS X v10.5) 48

DrawThemeStandaloneNoGrowBox function (Deprecated
in Mac OS X v10.5) 49

DrawThemeTab function (Deprecated in Mac OS X v10.5)
50

DrawThemeTabPane function (Deprecated in Mac OS X
v10.5) 51

DrawThemeTextBox function (Deprecated in Mac OS X
v10.5) 51

DrawThemeTickMark function (Deprecated in Mac OS X
v10.5) 53

DrawThemeTitleBarWidget function (Deprecated in
Mac OS X v10.5) 54

DrawThemeTrack function (Deprecated in Mac OS X
v10.5) 55

DrawThemeTrackTickMarks function (Deprecated in
Mac OS X v10.5) 56

DrawThemeWindowFrame function (Deprecated in Mac
OS X v10.5) 57

DrawThemeWindowHeader function (Deprecated in Mac
OS X v10.5) 58

DrawThemeWindowListViewHeader function
(Deprecated in Mac OS X v10.5) 58

driverEvt constant 1020
driverMask constant 1020
DumpControlHierarchy function 582
duplicateFlavorErr constant 986
duplicateHandlerErr constant 986
DuplicateMenu function 1255
DuplicateMenuBar function 1256
duplicateScrapFlavorErr constant 1514

E

Editable Text Control Data Tag Constants 756
Editable Text Control Definition ID Constants 758
Editing Commands 2277
Editing Gestures 1049
editText constant 908
EditUnicodePostUpdateProcPtr callback 696
eHRScrollbarAuto constant 2596
eHRScrollbarOff constant 2596
eHRScrollbarOn constant 2596
EmbedControl function 583
EnableAllMenuItems function 1256
EnableControl function 584
EnableDataBrowserEditCommand function 2137
EnableMenuCommand function 1257
EnableMenuItem function 1257
EnableMenuItemIcon function 1258
EnableScreenUpdates function 1825

3050
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

EnableSecureEventInput function 257
EndAppModalStateForWindow function 258
EndCGContextForApplicationDockTile function 223
EndQDContextForApplicationDockTile function

(Deprecated in Mac OS X v10.5) 223
EndThemeDragSound function 59
EndUpdate function 1826
EndWindowProxyDrag function 1826
EOLHookProcPtr callback 3005
EOLHookUPP data type 3012
EqualString function (Deprecated in Mac OS X v10.4)

1658
EraseMenuBackground function (Deprecated in Mac OS

X v10.5) 1258
errCantEmbedIntoSelf constant 826
errCantEmbedRoot constant 826
errControlDoesntSupportFocus constant 825
errControlHiddenOrDisabled constant 826
errControlIsNotEmbedder constant 826
errControlsAlreadyExist constant 826
errCorruptWindowDescription constant 2052
errCouldntSetFocus constant 825
errDataBrowserInvalidPropertyData constant 2298
errDataBrowserInvalidPropertyPart constant 2298
errDataBrowserItemNotAdded constant 2299
errDataBrowserItemNotFound constant 2298
errDataBrowserNotConfigured constant 2298
errDataBrowserPropertyNotFound constant 2298
errDataBrowserPropertyNotSupported constant

2299
errDataNotSupported constant 825
errDataSizeMismatch constant 826
errFloatingWindowsNotInitialized constant 2052
errHMIllegalContentForMaximumState constant

494
errHMIllegalContentForMinimumState constant

494
errInvalidPartCode constant 826
errInvalidWindowProperty constant 2051
errInvalidWindowRef constant 2051
errItemNotControl constant 827
errKCAuthFailed constant 1154
errKCBufferTooSmall constant 1155
errKCCreateChainFailed constant 1157
errKCDataNotAvailable constant 1157
errKCDataNotModifiable constant 1157
errKCDataTooLarge constant 1155
errKCDuplicateCallback constant 1154
errKCDuplicateItem constant 1155
errKCDuplicateKeychain constant 1154
errKCInteractionNotAllowed constant 1156
errKCInteractionRequired constant 1157
errKCInvalidCallback constant 1155

errKCInvalidItemRef constant 1155
errKCInvalidKeychain constant 1154
errKCInvalidSearchRef constant 1156
errKCItemNotFound constant 1155
errKCKeySizeNotAllowed constant 1156
errKCNoCertificateModule constant 1156
errKCNoDefaultKeychain constant 1156
errKCNoPolicyModule constant 1157
errKCNoStorageModule constant 1156
errKCNoSuchAttr constant 1155
errKCNoSuchClass constant 1156
errKCNoSuchKeychain constant 1154
errKCNotAvailable constant 1154
errKCReadOnly constant 1154
errKCReadOnlyAttr constant 1156
errKCWrongKCVersion constant 1156
errMessageNotSupported constant 825
errNeedsCompositedWindow constant 2526
errNoRootControl constant 825
errOSAAppNotHighLevelEventAware constant 2887
errOSABadSelector constant 2886
errOSABadStorageType constant 2886
errOSACantAccess constant 2886
errOSACantAssign constant 2888
errOSACantCoerce constant 2885
errOSACantCreate constant 2888
errOSACantGetTerminology constant 2887
errOSACantLaunch constant 2887
errOSACantOpenComponent constant 2887
errOSAComponentMismatch constant 2887
errOSACorruptData constant 2885
errOSACorruptTerminology constant 2887
errOSADataBlockTooLarge constant 2887
errOSADataFormatObsolete constant 2887
errOSADataFormatTooNew constant 2887
errOSADivideByZero constant 2887
errOSAGeneralError constant 2887
errOSAInternalTableOverflow constant 2887
errOSAInvalidID constant 2886
errOSANoSuchDialect constant 2887
errOSANumericOverflow constant 2887
errOSARecordingIsAlreadyOn constant 2886
errOSAScriptError constant 2886
errOSASourceNotAvailable constant 2886
errOSAStackOverflow constant 2887
errOSASystemError constant 2886
errOSATypeError constant 2885
errRootAlreadyExists constant 826
errUnknownControl constant 825
errUnrecognizedWindowClass constant 2052
errUnsupportedWindowAttributesForClass

constant 2051
errUserWantsToDragWindow constant 2052

3051
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

errWindowDoesNotFitOnscreen constant 2052
errWindowDoesNotHaveProxy constant 2051
errWindowDoesntSupportFocus constant 825, 2053
errWindowNotFound constant 2052
errWindowPropertyNotFound constant 2052
errWindowRegionCodeInvalid constant 826, 2053
errWindowsAlreadyInitialized constant 2052
Event Attributes 325
Event Class Constants 322, 2504
Event Kind Constants 1021
Event Mask Constants 1017
Event Messages 1475
Event Modifier Bits 1012
Event Modifier Constants 1010
Event Priority Constants 326
Event Queue Constants 327
Event Target Parameter 328
Event Target Propagation Options 326
eventAlreadyPostedErr constant 452
EventAvail function 992
EventClassID data type 310
eventClassIncorrectErr constant 452
eventClassInvalidErr constant 452
EventComparatorProcPtr callback 307
EventComparatorUPP data type 311
eventHandlerAlreadyInstalledErr constant 452
EventHandlerCallRef data type 311
EventHandlerProcPtr callback 308
EventHandlerRef data type 312
EventHandlerUPP data type 311
eventHotKeyExistsErr constant 453
EventHotKeyID structure 312
eventHotKeyInvalidErr constant 453
EventHotKeyRef data type 312
eventInternalErr constant 453
eventKindIncorrectErr constant 453
EventLoopIdleTimerMessage data type 313
EventLoopIdleTimerProcPtr callback 309
EventLoopIdleTimerUPP data type 311
eventLoopQuitErr constant 453
EventLoopRef data type 313
eventLoopTimedOutErr constant 453
EventLoopTimerProcPtr callback 310
EventLoopTimerRef data type 313
EventLoopTimerUPP data type 311
eventNotHandledErr constant 453
eventNotInQueueErr constant 453
eventParameterNotFoundErr constant 453
EventParamName data type 314
EventParamType data type 314
EventQueueRef data type 314
EventRecord structure 1006
EventRef data type 315

eventTargetBusyErr constant 452
EventTargetRef data type 315
EventTime data type 315
EventTimeout data type 315
EventTimerInterval data type 316
EventType data type 316
EventTypeSpec structure 316
everyEvent constant 1019
EvQEl structure 1008
evtNotEnb constant 1023
ExecuteDataBrowserEditCommand function 2138
ExtendedToString function (Deprecated in Mac OS X

v10.4) 1659
ExtendFileTypeList function (Deprecated in Mac OS

X v10.3) 1707

F

fBadPartsTable constant 1701
fBestGuess constant 1700
Feedback and Listening Modes 1554
fEmptyFormatString constant 1701
fExtraDecimal constant 1700
fExtraExp constant 1701
fExtraPercent constant 1701
fExtraSeparator constant 1701
fFormatOK constant 1700
fFormatOverflow constant 1701
fFormStrIsNAN constant 1701
File Sorting Constants 1478
FileTranslationList structure 1727
FileTranslationSpec structure 1728
FileType data type 1728
FileTypeSpec structure 1728
Find Word Identification Constants 3031
FindControl function 585
FindControlUnderMouse function 586
FindDialogItem function 849
Finder Flavor Types 983
FindScriptRun function (Deprecated in Mac OS X v10.4)

1660
FindSpecificEventInQueue function 258
FindWindow function 1827
FindWindowOfClass function 1828
FindWordBreaks function (Deprecated in Mac OS X

v10.4) 1661
firstPickerError constant 522
Fix2SmallFract function 498
FixTextService function 1583
FixTSMDocument function 1584
FlashMenuBar function 1259
Flavor Flags 977

3052
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

flavorDataPromised constant 978
flavorNotSaved constant 978
flavorSenderOnly constant 977
flavorSenderTranslated constant 978
flavorSystemTranslated constant 978
FlavorType data type 970
flavorTypeDirectory 978
flavorTypeDirectory constant 978
flavorTypeHFS constant 980
flavorTypePromiseHFS constant 980
floatGrowProc constant 2050
floatProc constant 2050
floatSideGrowProc constant 2050
floatSideProc constant 2050
floatSideZoomGrowProc constant 2051
floatSideZoomProc constant 2051
floatZoomGrowProc constant 2050
floatZoomProc constant 2050
FlushEventQueue function 259
FlushEvents function 993
FlushEventsMatchingListFromQueue function 259
FlushSpecificEventsFromQueue function 260
fMissingDelimiter constant 1700
fMissingLiteral constant 1700
fNegative constant 1702
Font Defaults 2738
Font Event Class 2304
Font Information Types 2305
Font Information Versions 2305
Font Parameters and Data Types 2306
Font Run Attribute Sizes 2740
Font Run Attributes 2739
fontPanelFontSelectionQDStyleVersionErr

constant 2308
fontPanelSelectionStyleErr constant 2308
fontPanelShowErr constant 2308
Fonts Panel Command 2306
Fonts Panel Events 2304
FontSelectionQDStyle structure 2303
FontSelectionQDStylePtr structure 2303
ForEachDataBrowserItem function 2138
Format Result Types 1699
FormatClass data type 1693
FormatRecToString function (Deprecated in Mac OS X

v10.4) 1663
FormatStatus data type 1693
Formatting and Privileges Settings 2742
fOutOfSynch constant 1700
FPIsFontPanelVisible function 2301
fPositive constant 1702
FPShowHideFontPanel function 2301
Frame Option Bits 2746
Frame Option Masks 2749

FrontNonFloatingWindow function 1829
FrontWindow function (Deprecated in Mac OS X v10.5)

1830
fSpuriousChars constant 1700
FVector structure 1693
fZero constant 1702

G

Generic File Signature Constant 1479
Generic Scripting Component Selectors 2866
GenericID data type 2856
gestaltContextualMenuAttr constant 1369
gestaltContextualMenuHasAttributeAndModifierKeys

constant 1369
gestaltContextualMenuHasUnicodeSupport

constant 1369
gestaltContextualMenuTrapAvailable constant

1369
gestaltContextualMenuUnusedBit constant 1369
GetAlertStage function 850
GetApplicationDockTileMenu function 224
GetApplicationEventTarget function 260
GetApplicationScript function 224
GetApplicationTextEncoding function 225
GetAvailableWindowAttributes function 1830
GetAvailableWindowPositioningBounds function

1831
GetAvailableWindowPositioningRegion function

1832
GetBestControlRect function 587
GetBevelButtonContentInfo function 588
GetBevelButtonMenuHandle function 588
GetBevelButtonMenuValue function 589
GetCaretTime function 993
GetCFRunLoopFromEventLoop function 261
GetColor function 499
GetConnInfoProcPtr callback 2894
GetControl32BitMaximum function 589
GetControl32BitMinimum function 590
GetControl32BitValue function 590
GetControlAction function 591
GetControlBounds function 592
GetControlByID function 592
GetControlClickActivation function 593
GetControlCommandID function 594
GetControlData function 594
GetControlDataHandle function 595
GetControlDataSize function 596
GetControlEventTarget function 261
GetControlFeatures function 597
GetControlHilite function 597

3053
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

GetControlID function 598
GetControlKind function 598
GetControlMaximum function 599
GetControlMinimum function 600
GetControlOwner function 600
GetControlPopupMenuHandle function 601
GetControlPopupMenuID function 601
GetControlProperty function 602
GetControlPropertyAttributes function 603
GetControlPropertySize function 603
GetControlReference function 604
GetControlRegion function 605
GetControlTitle function (Deprecated in Mac OS X

v10.5) 605
GetControlValue function 606
GetControlVariant function 607
GetControlViewSize function 607
GetCurrentEventKeyModifiers function 262
GetCurrentEventLoop function 263
GetCurrentEventQueue function 263
GetCurrentEventTime function 263
GetCurrentKeyModifiers function 994
GetCurrentScrap function (Deprecated in Mac OS X

v10.5) 1499
GetDataBrowserActiveItems function 2139
GetDataBrowserCallbacks function 2140
GetDataBrowserColumnViewDisplayType function

2140
GetDataBrowserColumnViewPath function 2141
GetDataBrowserColumnViewPathLength function

2142
GetDataBrowserCustomCallbacks function 2142
GetDataBrowserEditItem function 2143
GetDataBrowserEditText function 2143
GetDataBrowserHasScrollBars function 2144
GetDataBrowserItemCount function 2145
GetDataBrowserItemDataBooleanValue function

2145
GetDataBrowserItemDataButtonValue function 2146
GetDataBrowserItemDataDateTime function 2147
GetDataBrowserItemDataDrawState function 2148
GetDataBrowserItemDataIcon function 2148
GetDataBrowserItemDataIconTransform function

2149
GetDataBrowserItemDataItemID function 2150
GetDataBrowserItemDataLongDateTime function

2150
GetDataBrowserItemDataMaximum function 2151
GetDataBrowserItemDataMenuRef function 2152
GetDataBrowserItemDataMinimum function 2152
GetDataBrowserItemDataProperty function 2153
GetDataBrowserItemDataRGBColor function 2154
GetDataBrowserItemDataText function 2154

GetDataBrowserItemDataValue function 2155
GetDataBrowserItemPartBounds function 2156
GetDataBrowserItems function 2157
GetDataBrowserItemState function 2158
GetDataBrowserListViewDisclosureColumn function

2158
GetDataBrowserListViewHeaderBtnHeight function

2159
GetDataBrowserListViewHeaderDesc function 2160
GetDataBrowserListViewUsePlainBackground

function 2160
GetDataBrowserPropertyFlags function 2161
GetDataBrowserScrollBarInset function 2162
GetDataBrowserScrollPosition function 2162
GetDataBrowserSelectionAnchor function 2163
GetDataBrowserSelectionFlags function 2164
GetDataBrowserSortOrder function 2164
GetDataBrowserSortProperty function 2165
GetDataBrowserTableViewColumnCount function

2166
GetDataBrowserTableViewColumnPosition function

2166
GetDataBrowserTableViewColumnProperty function

2167
GetDataBrowserTableViewColumnWidth function

2167
GetDataBrowserTableViewGeometry function 2168
GetDataBrowserTableViewHiliteStyle function

2169
GetDataBrowserTableViewItemID function 2169
GetDataBrowserTableViewItemRow function 2170
GetDataBrowserTableViewItemRowHeight function

2170
GetDataBrowserTableViewNamedColumnWidth

function 2171
GetDataBrowserTableViewRowHeight function 2172
GetDataBrowserTarget function 2172
GetDataBrowserUserState function 2173
GetDataBrowserViewStyle function 2174
GetDblTime function 994
GetDefaultInputMethod function (Deprecated in Mac

OS X v10.5) 1585
GetDefaultInputMethodOfClass function (Deprecated

in Mac OS X v10.5) 1586
GetDialogCancelItem function 851
GetDialogDefaultItem function 851
GetDialogFromWindow function 852
GetDialogItem function 852
GetDialogItemAsControl function 853
GetDialogItemText function 854
GetDialogKeyboardFocusItem function 854
GetDialogPort function 855
GetDialogTextEditHandle function 856

3054
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

GetDialogTimeout function 856
GetDialogWindow function 857
GetDocumentKindString function (Deprecated in Mac

OS X v10.3) 1708
GetDragAllowableActions function 929
GetDragAttributes function 930
GetDragDropAction function 931
GetDragHiliteColor function (Deprecated in Mac OS

X v10.5) 931
GetDragItemBounds function 932
GetDragItemReferenceNumber function (Deprecated

in Mac OS X v10.5) 933
GetDragModifiers function 933
GetDragMouse function 934
GetDragOrigin function 934
GetDrawerCurrentEdge function 1832
GetDrawerOffsets function 1833
GetDrawerParent function 1833
GetDrawerPreferredEdge function 1833
GetDrawerState function 1834
GetDropLocation function (Deprecated in Mac OS X

v10.5) 935
GetEventClass function 264
GetEventDispatcherTarget function 264
GetEventKind function 265
GetEventMonitorTarget function 266
GetEventParameter function 266
GetEventRetainCount function 268
GetEventTime function 268
GetFileTranslationPaths function (Deprecated in

Mac OS X v10.3) 1709
GetFileTypesThatAppCanNativelyOpen function

(Deprecated in Mac OS X v10.3) 1710
GetFlavorData function (Deprecated in Mac OS X v10.5)

936
GetFlavorDataSize function (Deprecated in Mac OS X

v10.5) 937
GetFlavorFlags function (Deprecated in Mac OS X

v10.5) 937
GetFlavorType function (Deprecated in Mac OS X v10.5)

938
GetFontFamilyFromMenuSelection function 1260
GetFrontWindowOfClass function 1834
GetGlobalMouse function 995
GetGrayRgn function (Deprecated in Mac OS X v10.5)

1835
GetGrowImageRegionRec structure 1980
GetImageWellContentInfo function 608
GetIndexedSubControl function 608
GetIndexedWindow function 1836
GetIndMenuItemWithCommandID function 1261
GetIndString function (Deprecated in Mac OS X v10.4)

1664

GetInputModePaletteMenu function (Deprecated in
Mac OS X v10.5) 1587

GetItemCmd function 1262
GetItemIcon function (Deprecated in Mac OS X v10.5)

1262
GetItemMark function 1263
GetItemStyle function 1264
GetKeyboardFocus function 609
GetKeys function 995
GetLastUserEventTime function 268
GetListActive function (Deprecated in Mac OS X v10.5)

1165
GetListCellIndent function (Deprecated in Mac OS X

v10.5) 1166
GetListCellSize function (Deprecated in Mac OS X

v10.5) 1166
GetListClickLocation function (Deprecated in Mac

OS X v10.5) 1167
GetListClickLoop function (Deprecated in Mac OS X

v10.5) 1167
GetListClickTime function (Deprecated in Mac OS X

v10.5) 1167
GetListDataBounds function (Deprecated in Mac OS X

v10.5) 1168
GetListDataHandle function (Deprecated in Mac OS X

v10.5) 1168
GetListDefinition function (Deprecated in Mac OS X

v10.5) 1169
GetListFlags function (Deprecated in Mac OS X v10.5)

1169
GetListHorizontalScrollBar function (Deprecated

in Mac OS X v10.5) 1169
GetListMouseLocation function (Deprecated in Mac

OS X v10.5) 1170
GetListPort function (Deprecated in Mac OS X v10.5)

1170
GetListRefCon function (Deprecated in Mac OS X v10.5)

1171
GetListSelectionFlags function (Deprecated in Mac

OS X v10.5) 1171
GetListUserHandle function (Deprecated in Mac OS X

v10.5) 1171
GetListVerticalScrollBar function (Deprecated in

Mac OS X v10.5) 1172
GetListViewBounds function (Deprecated in Mac OS X

v10.5) 1172
GetListVisibleCells function (Deprecated in Mac OS

X v10.5) 1173
GetMainEventLoop function 269
GetMainEventQueue function 269
GetMBarHeight function 1265
GetMCEntry function (Deprecated in Mac OS X v10.5)

1265

3055
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

GetMCInfo function (Deprecated in Mac OS X v10.5) 1266
GetMenu function 1266
GetMenuAttributes function 1268
GetMenuBar function 1268
GetMenuCommandMark function 1269
GetMenuCommandProperty function 1270
GetMenuCommandPropertySize function 1271
GetMenuDefinition function 1271
GetMenuEventTarget function 270
GetMenuExcludesMarkColumn function 1272
GetMenuFont function 1272
GetMenuHandle function 1273
GetMenuHeight function 1274
GetMenuID function 1274
GetMenuItemAttributes function 1275
GetMenuItemCommandID function 1275
GetMenuItemCommandKey function 1276
GetMenuItemFontID function 1277
GetMenuItemHierarchicalID function (Deprecated in

Mac OS X v10.5) 1277
GetMenuItemHierarchicalMenu function 1278
GetMenuItemIconHandle function 1279
GetMenuItemIndent function 1279
GetMenuItemKeyGlyph function 1280
GetMenuItemModifiers function 1281
GetMenuItemProperty function 1281
GetMenuItemPropertyAttributes function 1282
GetMenuItemPropertySize function 1283
GetMenuItemRefCon function 1284
GetMenuItemText function (Deprecated in Mac OS X

v10.5) 1285
GetMenuItemTextEncoding function (Deprecated in

Mac OS X v10.5) 1285
GetMenuRef function 1286
GetMenuRetainCount function (Deprecated in Mac OS

X v10.5) 1286
GetMenuTitle function (Deprecated in Mac OS X v10.5)

1287
GetMenuTitleIcon function 1288
GetMenuTrackingData function 1288
GetMenuType function 1289
GetMenuWidth function 1289
GetModalDialogEventMask function 857
GetMouseTrackingRegionID function (Deprecated in

Mac OS X v10.4) 270
GetMouseTrackingRegionRefCon function (Deprecated

in Mac OS X v10.4) 271
GetNewControl function 610
GetNewCWindow function (Deprecated in Mac OS X v10.5)

1836
GetNewDialog function 858
GetNewMBar function 1290

GetNewWindow function (Deprecated in Mac OS X v10.5)
1838

GetNextEvent function 996
GetNextWindow function 1839
GetNextWindowOfClass function 1839
GetNumEventsInQueue function 271
GetParamText function 859
GetPathFromTranslationDialog function (Deprecated

in Mac OS X v10.3) 1711
GetPreviousWindow function 1840
GetRootControl function 611
GetScrapByName function (Deprecated in Mac OS X

v10.5) 1499
GetScrapDataProcPtr callback 1726
GetScrapFlavorCount function (Deprecated in Mac OS

X v10.5) 1500
GetScrapFlavorData function (Deprecated in Mac OS

X v10.5) 1501
GetScrapFlavorFlags function (Deprecated in Mac OS

X v10.5) 1502
GetScrapFlavorInfoList function (Deprecated in Mac

OS X v10.5) 1502
GetScrapFlavorSize function (Deprecated in Mac OS

X v10.5) 1503
GetScriptLanguageSupport function (Deprecated in

Mac OS X v10.5) 1588
GetServiceList function (Deprecated in Mac OS X

v10.5) 1589
GetSheetWindowParent function 1841
GetStandardAlertDefaultParams function 860
GetStandardDropLocation function (Deprecated in

Mac OS X v10.5) 939
GetStdFilterProc function 860
GetString function (Deprecated in Mac OS X v10.4) 1665
GetSuperControl function 611
GetSymbolicHotKeyMode function 272
GetSystemUIMode function 225
GetTabContentRect function 612
GetTextServiceLanguage function (Deprecated in Mac

OS X v10.5) 1590
GetTextServiceMenu function 1590
GetTextServiceProperty function 1591
GetTheme function 59
GetThemeAccentColors function (Deprecated in Mac

OS X v10.5) 60
GetThemeBrushAsColor function 61
GetThemeButtonBackgroundBounds function

(Deprecated in Mac OS X v10.5) 62
GetThemeButtonContentBounds function (Deprecated

in Mac OS X v10.5) 62
GetThemeButtonRegion function (Deprecated in Mac

OS X v10.5) 63
GetThemeCheckBoxStyle function 64

3056
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

GetThemeDrawingState function 65
GetThemeFont function (Deprecated in Mac OS X v10.5)

65
GetThemeMenuBackgroundRegion function (Deprecated

in Mac OS X v10.5) 66
GetThemeMenuBarHeight function 67
GetThemeMenuItemExtra function 68
GetThemeMenuSeparatorHeight function 68
GetThemeMenuTitleExtra function 69
GetThemeMetric function 70
GetThemeScrollBarArrowStyle function 70
GetThemeScrollBarThumbStyle function 71
GetThemeScrollBarTrackRect function (Deprecated

in Mac OS X v10.5) 71
GetThemeStandaloneGrowBoxBounds function

(Deprecated in Mac OS X v10.5) 72
GetThemeTabRegion function (Deprecated in Mac OS X

v10.5) 73
GetThemeTextColor function 74
GetThemeTextDimensions function (Deprecated in Mac

OS X v10.5) 74
GetThemeTextShadowOutset function 76
GetThemeTrackBounds function (Deprecated in Mac OS

X v10.5) 76
GetThemeTrackDragRect function (Deprecated in Mac

OS X v10.5) 77
GetThemeTrackLiveValue function (Deprecated in Mac

OS X v10.5) 78
GetThemeTrackThumbPositionFromOffset function

(Deprecated in Mac OS X v10.5) 79
GetThemeTrackThumbPositionFromRegion function

(Deprecated in Mac OS X v10.5) 79
GetThemeTrackThumbRgn function (Deprecated in Mac

OS X v10.5) 80
GetThemeWindowRegion function (Deprecated in Mac

OS X v10.5) 81
GetThemeWindowRegionHit function (Deprecated in

Mac OS X v10.5) 82
GetTranslationExtensionName function (Deprecated

in Mac OS X v10.3) 1711
GetTSMTEDialogDocumentID function (Deprecated in

Mac OS X v10.4) 2954
GetTSMTEDialogTSMTERecHandle function (Deprecated

in Mac OS X v10.4) 2954
GetUserFocusEventTarget function 272
GetUserFocusWindow function 1841
GetWindowActivationScope function 1841
GetWindowAlpha function 1842
GetWindowAttributes function 1842
GetWindowBounds function 1843
GetWindowCancelButton function 1844
GetWindowClass function 1844
GetWindowContentColor function 1845

GetWindowContentPattern function 1846
GetWindowDefaultButton function 1846
GetWindowDockTileMenu function 1847
GetWindowEventTarget function 273
GetWindowFeatures function 1847
GetWindowFromPort function 1848
GetWindowGreatestAreaDevice function 1848
GetWindowGroup function 1849
GetWindowGroupAttributes function 1849
GetWindowGroupContents function 1850
GetWindowGroupLevel function 1851
GetWindowGroupLevelOfType function 1851
GetWindowGroupOfClass function 1852
GetWindowGroupOwner function 1853
GetWindowGroupParent function 1853
GetWindowGroupRetainCount function 1853
GetWindowGroupSibling function 1854
GetWindowIdealUserState function 1854
GetWindowIndex function 1855
GetWindowKind function 1856
GetWindowList function 1856
GetWindowModality function 1857
GetWindowOwnerCount function (Deprecated in Mac OS

X v10.5) 1857
GetWindowPic function (Deprecated in Mac OS X v10.5)

1858
GetWindowPort function 1858
GetWindowPortBounds function 1859
GetWindowProperty function 1859
GetWindowPropertyAttributes function 1860
GetWindowPropertySize function 1861
GetWindowProxyAlias function 1862
GetWindowProxyFSSpec function (Deprecated in Mac

OS X v10.5) 1862
GetWindowProxyIcon function 1863
GetWindowRegion function (Deprecated in Mac OS X

v10.5) 1864
GetWindowRegionRec structure 1981
GetWindowResizeLimits function 1865
GetWindowRetainCount function (Deprecated in Mac

OS X v10.5) 1865
GetWindowStandardState function 1866
GetWindowStructurePort function 1866
GetWindowStructureWidths function 1867
GetWindowToolbar function 1867
GetWindowUserState function 1868
GetWindowWidgetHilite function 1868
GetWRefCon function 1869
GetWTitle function (Deprecated in Mac OS X v10.5) 1869
GetWVariant function (Deprecated in Mac OS X v10.5)

1870
Global Properties 2866
Group Box Control Data Tag Constants 759

3057
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Group Box Control Definition ID Constants 760
GrowWindow function (Deprecated in Mac OS X v10.5)

1870

H

HandleControlClick function 613
HandleControlContextualMenuClick function 614
HandleControlDragReceive function 615
HandleControlDragTracking function 615
HandleControlKey function (Deprecated in Mac OS X

v10.5) 616
HandleControlSetCursor function 617
handlerNotFoundErr constant 986
Help Manager Version 487
Help Tag Content Indexes 493
Help Tag Content Types 488
Help Tag Display Locations 489
HFS Flavor Types 980
HFSFlavor structure 971
HIAboutBox function 226
HIApplicationCreateDockTileContext function 227
HIApplicationGetCurrent function 228
HIApplicationGetFocus function 228
HIArchiveCopyDecodedCFType function 2310
HIArchiveCopyEncodedData function 2311
HIArchiveCreateForDecoding function 2311
HIArchiveCreateForEncoding function 2312
HIArchiveDecodeBoolean function 2312
HIArchiveDecodeNumber function 2313
HIArchiveEncodeBoolean function 2314
HIArchiveEncodeCFType function 2314
HIArchiveEncodeNumber function 2315
hiArchiveEncodingCompleteErr constant 2317
HIArchiveGetTypeID function 2316
hiArchiveHIObjectIgnoresArchivingErr constant

2317
hiArchiveKeyNotAvailableErr constant 2317
HIArchiveRef data type 2316
hiArchiveTypeMismatchErr constant 2317
HIAxisPosition structure 2495
HIAxisScale structure 2494
HIBinding structure 2493
HICocoaViewCreate function 2408
HICocoaViewGetView function 2409
HICocoaViewSetView function 2409
HIComboBoxAppendTextItem function 2410
HIComboBoxChangeAttributes function 2410
HIComboBoxCopyTextItemAtIndex function 2411
HIComboBoxCreate function 2411
HIComboBoxGetAttributes function 2412
HIComboBoxGetItemCount function 2413

HIComboBoxInsertTextItemAtIndex function 2413
HIComboBoxIsListVisible function 2414
HIComboBoxRemoveItemAtIndex function 2414
HIComboBoxSetListVisible function 2415
HICommand structure 316
HICommandExtended structure 317
HICreateTransformedCGImage function 2415
HideControl function 618
HideDialogItem function 861
HideDragHilite function (Deprecated in Mac OS X

v10.5) 939
HideFloatingWindows function 1871
HideMenuBar function 1291
HidePaletteWindows function 1592
HideSheetWindow function 1872
HideWindow function 1872
Hierarchical Font Menu Option Constant 1375
hierMenu constant 1381
HIGetScaleFactor function 2320
HighHookProcPtr callback 3005
HighHookUPP data type 3013
highLevelEventMask constant 1019
HighLevelEventMsgClass 1013
HighLevelEventMsgClass constant 1013
HIGrowBoxViewIsTransparent function 2416
HIGrowBoxViewSetTransparent function 2416
HIImageViewCopyImage function 2417
HIImageViewCreate function 2417
HIImageViewGetAlpha function 2418
HIImageViewGetScaleToFit function 2418
HIImageViewIsOpaque function 2419
HIImageViewSetAlpha function 2419
HIImageViewSetImage function 2419
HIImageViewSetOpaque function 2420
HIImageViewSetScaleToFit function 2421
HILayout Binding Kind Constants 2505
HILayoutInfo structure 2493
HILayoutInfoVersion Constant 2506
HiliteControl function 619
HiliteMenu function 1291
HiliteWindow function 1873
HiliteWindowFrameForDrag function 1874
HIMenuGetContentView function 2421
HIMenuViewGetMenu function 2422
HIMouseTrackingGetParameters function 273
HIMutableShapeRef data type 2360
HIObject Base Class Event Parameters 2343
HIObject Base Class Events 2341
HIObject Class ID 2752
HIObject Control Kind 2752
hiObjectClassExistsErr constant 2344
hiObjectClassHasInstancesErr constant 2344
hiObjectClassHasSubclassesErr constant 2344

3058
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

hiObjectClassIsAbstractErr constant 2345
HIObjectCopyClassID function 2329
HIObjectCopyCustomArchiveData function 2330
HIObjectCreate function 2330
HIObjectCreateFromBundle function 2331
HIObjectDynamicCast function 2331
HIObjectGetEventTarget function 2332
HIObjectIsAccessibilityIgnored function 2332
HIObjectIsArchivingIgnored function 2333
HIObjectIsOfClass function 2333
HIObjectOverrideAccessibilityContainment

function 2334
HIObjectPrintDebugInfo function 2335
HIObjectRegisterSubclass function 2335
HIObjectSetAccessibilityIgnored function 2337
HIObjectSetArchivingIgnored function 2337
HIObjectSetAuxiliaryAccessibilityAttribute

function 2338
HIObjectSetCustomArchiveData function 2339
HIObjectUnregisterClass function 2340
HIPoint data type 2323
HIPointConvert function 2320
HIPositioning structure 2495
HIPositionKind Constants 2506
HIRect data type 2324
HIRectConvert function 2321
HIScaleKind Constant 2508
HIScaling structure 2494
HIScrollViewCanNavigate function 2423
HIScrollViewCreate function 2423
HIScrollViewGetScrollBarAutoHide function 2424
HIScrollViewNavigate function 2424
HIScrollViewSetScrollBarAutoHide function 2425
HISearchFieldChangeAttributes function 2425
HISearchFieldCopyDescriptiveText function 2426
HISearchFieldCreate function 2427
HISearchFieldGetAttributes function 2428
HISearchFieldGetSearchMenu function 2428
HISearchFieldSetDescriptiveText function 2429
HISearchFieldSetSearchMenu function 2429
HISearchWindowShow function 229
HISegmentedViewChangeSegmentAttributes function

2430
HISegmentedViewCopySegmentImage function 2430
HISegmentedViewCopySegmentLabel function 2431
HISegmentedViewCreate function 2432
HISegmentedViewGetSegmentAttributes function

2433
HISegmentedViewGetSegmentBehavior function 2433
HISegmentedViewGetSegmentCommand function 2434
HISegmentedViewGetSegmentContentWidth function

2434
HISegmentedViewGetSegmentCount function 2435

HISegmentedViewGetSegmentImageContentType
function 2435

HISegmentedViewGetSegmentValue function 2436
HISegmentedViewIsSegmentEnabled function 2436
HISegmentedViewSetSegmentBehavior function 2437
HISegmentedViewSetSegmentCommand function 2437
HISegmentedViewSetSegmentContentWidth function

2438
HISegmentedViewSetSegmentCount function 2439
HISegmentedViewSetSegmentEnabled function 2439
HISegmentedViewSetSegmentImage function 2440
HISegmentedViewSetSegmentLabel function 2440
HISegmentedViewSetSegmentValue function 2441
HIShapeContainsPoint function 2349
HIShapeCreateCopy function 2350
HIShapeCreateDifference function 2350
HIShapeCreateEmpty function 2350
HIShapeCreateIntersection function 2351
HIShapeCreateMutable function 2351
HIShapeCreateMutableCopy function 2352
HIShapeCreateUnion function 2352
HIShapeCreateWithQDRgn function 2352
HIShapeCreateWithRect function 2353
HIShapeDifference function 2353
HIShapeGetAsQDRgn function 2354
HIShapeGetBounds function 2355
HIShapeGetTypeID function 2355
HIShapeIntersect function 2355
HIShapeIntersectsRect function 2356
HIShapeIsEmpty function 2356
HIShapeIsRectangular function 2357
HIShapeOffset function 2357
HIShapeRef data type 2360
HIShapeReplacePathInCGContext function 2358
HIShapeSetEmpty function 2358
HIShapeSetQDClip function 2359
HIShapeUnion function 2359
HISideBinding structure 2494
HISize data type 2323
HISizeConvert function 2322
HITextViewCopyBackgroundColor function 2610
HITextViewCreate function 2610
HITextViewGetTXNObject function 2611
HITextViewSetBackgroundColor function 2612
HIToolbarAppendItem function 2363
HIToolbarChangeAttributes function 2364
HIToolbarCopyIdentifier function 2364
HIToolbarCopyItems function 2365
HIToolbarCreate function 2365
HIToolbarCreateItemWithIdentifier function 2366
HIToolbarGetAttributes function 2367
HIToolbarGetDelegate function 2367
HIToolbarGetDisplayMode function 2367

3059
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

HIToolbarGetDisplaySize function 2368
HIToolbarGetSelectedItemInWindow function 2368
HIToolbarInsertItemAtIndex function 2369
HIToolbarItemChangeAttributes function 2370
HIToolbarItemChangeAttributesInWindow function

2370
HIToolbarItemConfigDataChanged function 2372
HIToolbarItemCopyHelpText function 2372
HIToolbarItemCopyIdentifier function 2373
HIToolbarItemCopyImage function 2373
HIToolbarItemCopyLabel function 2374
HIToolbarItemCopyMenu function 2374
HIToolbarItemCreate function 2375
HIToolbarItemGetAttributes function 2375
HIToolbarItemGetAttributesInWindow function

2376
HIToolbarItemGetCommandID function 2377
HIToolbarItemGetToolbar function 2377
HIToolbarItemIsEnabled function 2378
HIToolbarItemSetCommandID function 2378
HIToolbarItemSetEnabled function 2378
HIToolbarItemSetHelpText function 2379
HIToolbarItemSetIconRef function 2380
HIToolbarItemSetImage function 2380
HIToolbarItemSetLabel function 2381
HIToolbarItemSetMenu function 2381
HIToolbarRemoveItemAtIndex function 2382
HIToolbarSetDelegate function 2382
HIToolbarSetDisplayMode function 2383
HIToolbarSetDisplaySize function 2383
HIToolbarSetItemsWithIdentifiers function 2384
HIToolbox Version Number 234
HitTestHookProcPtr callback 3005
HitTestHookUPP data type 3013
HitTestThemeScrollBarArrows function (Deprecated

in Mac OS X v10.5) 83
HitTestThemeTrack function (Deprecated in Mac OS X

v10.5) 84
HIView Attributes 2508
HIView Feature Constants 2509
HIView Meta-Parts Constants 2511
HIView Z-Ordering Constants 2511
HIViewAddSubview function 2442
HIViewAdvanceFocus function 2442
HIViewApplyLayout function 2443
HIViewChangeAttributes function 2444
HIViewChangeFeatures function 2444
HIViewChangeTrackingArea function 2445
HIViewClick function 2445
HIViewContentInfo structure 2496
HIViewContentType Constants 2512
HIViewConvertPoint function 2446
HIViewConvertRect function 2447

HIViewConvertRegion function 2447
HIViewCopyShape function 2448
HIViewCopyText function 2448
HIViewCountSubviews function 2449
HIViewCreateOffscreenImage function 2449
HIViewDisposeTrackingArea function 2450
HIViewDrawCGImage function 2450
HIViewFindByID function 2451
HIViewFlashDirtyArea function 2452
HIViewFrameMetrics structure 2496
HIViewGetAttributes function 2452
HIViewGetBounds function 2453
HIViewGetCommandID function 2453
HIViewGetEventTarget function 2454
HIViewGetFeatures function 2454
HIViewGetFirstSubview function 2455
HIViewGetFocusPart function 2455
HIViewGetFrame function 2456
HIViewGetID function 2457
HIViewGetIndexedSubview function 2457
HIViewGetKind function 2458
HIViewGetLastSubview function 2458
HIViewGetLayoutInfo function 2459
HIViewGetMaximum function 2459
HIViewGetMinimum function 2459
HIViewGetNeedsDisplay function 2460
HIViewGetNextView function 2460
HIViewGetOptimalBounds function 2461
HIViewGetPartHit function 2462
HIViewGetPreviousView function 2462
HIViewGetRoot function 2463
HIViewGetSizeConstraints function 2463
HIViewGetSubviewHit function 2464
HIViewGetSuperview function 2464
HIViewGetTrackingAreaID function 2465
HIViewGetValue function 2465
HIViewGetViewForMouseEvent function 2466
HIViewGetViewSize function 2467
HIViewGetWindow function 2467
HIViewID data type 2496
HIViewIsActive function 2467
HIViewIsCompositingEnabled function 2468
HIViewIsDrawingEnabled function 2469
HIViewIsEnabled function 2469
HIViewIsLatentlyVisible function 2470
HIViewIsLayoutActive function 2470
HIViewIsLayoutLatentlyActive function 2471
HIViewIsValid function 2471
HIViewIsVisible function 2471
HIViewKind structure 2497
HIViewMoveBy function 2472
HIViewNewTrackingArea function 2473
HIViewPartCode Constants 2513

3060
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

HIViewPlaceInSuperviewAt function 2473
HIViewRef data type 2497
HIViewRegionChanged function 2474
HIViewRemoveFromSuperview function 2475
HIViewRender function 2475
HIViewReshapeStructure function 2476
HIViewResumeLayout function 2476
HIViewScrollRect function 2477
HIViewSetActivated function 2477
HIViewSetBoundsOrigin function 2478
HIViewSetCommandID function 2479
HIViewSetDrawingEnabled function 2479
HIViewSetEnabled function 2480
HIViewSetFirstSubViewFocus function 2480
HIViewSetFrame function 2481
HIViewSetHilite function 2481
HIViewSetID function 2482
HIViewSetLayoutInfo function 2482
HIViewSetMaximum function 2484
HIViewSetMinimum function 2484
HIViewSetNeedsDisplay function 2485
HIViewSetNeedsDisplayInRect function 2485
HIViewSetNeedsDisplayInRegion function 2486
HIViewSetNeedsDisplayInShape function 2487
HIViewSetNextFocus function 2487
HIViewSetText function 2488
HIViewSetValue function 2489
HIViewSetViewSize function 2489
HIViewSetVisible function 2490
HIViewSetZOrder function 2490
HIViewSimulateClick function 2491
HIViewSubtreeContainsFocus function 2492
HIViewSuspendLayout function 2492
HIViewTrackingAreaID data type 2498
HIViewTrackingAreaRef structure 2497
HIWindowChangeAttributes function 1874
HIWindowChangeAvailability function 1875
HIWindowChangeClass function 1876
HIWindowChangeFeatures function 1877
HIWindowConstrain function 1877
HIWindowCopyAvailablePositioningShape function

1878
HIWindowCopyDrawers function 1879
HIWindowCopyShape function 1879
HIWindowCreate function 1880
HIWindowCreateCollapsedDockTileContext function

1881
HIWindowFindAtLocation function 1882
HIWindowFlush function 1883
HIWindowFromCGWindowID function 1884
HIWindowGetAvailability function 1884
HIWindowGetAvailablePositioningBounds function

1885

HIWindowGetBounds function 1885
HIWindowGetCGWindowID function 1886
HIWindowGetGreatestAreaDisplay function 1887
HIWindowGetIdealUserState function 1887
HIWindowGetProxyFSRef function 1888
HIWindowGetScaleMode function 1889
HIWindowGetThemeBackground function 1889
HIWindowInvalidateShadow function 1890
HIWindowIsAttributeAvailable function 1890
HIWindowIsDocumentModalTarget function 1891
HIWindowIsInStandardState function 1891
HIWindowRef data type 1981
HIWindowReleaseCollapsedDockTileContext

function 1892
HIWindowSetBounds function 1893
HIWindowSetIdealUserState function 1894
HIWindowSetProxyFSRef function 1894
HIWindowSetToolbarView function 1895
HIWindowShowsFocus function 1896
HIWindowTestAttribute function 1896
HIWindowTrackProxyDrag function 1897
HMAreHelpTagsDisplayed function 459
HMControlContentProcPtr callback 478
HMControlContentUPP data type 485
HMDisplayTag function 459
HMenuBarHeader structure 1354
HMenuBarMenu structure 1355
hMenuCmd constant 1381
HMGetControlContentCallback function 460
HMGetControlHelpContent function 460
HMGetHelpMenu function 461
HMGetMenuItemContentCallback function 462
HMGetMenuItemHelpContent function 462
HMGetMenuTitleContentCallback function 463
HMGetTagDelay function 463
HMGetWindowContentCallback function 464
HMGetWindowHelpContent function 464
HMHelpContent structure 484
HMHelpContentPtr data type 484
HMHelpContentRec structure 483
HMHideTag function 465
HMInstallControlContentCallback function 465
HMInstallMenuItemContentCallback function 466
HMInstallMenuTitleContentCallback function 467
HMInstallWindowContentCallback function 468
HMMenuItemContentProcPtr callback 479
HMMenuItemContentUPP data type 486
HMMenuTitleContentProcPtr callback 480
HMMenuTitleContentUPP data type 486
HMSetControlHelpContent function 468
HMSetHelpTagsDisplayed function 469
HMSetMenuItemHelpContent function 469
HMSetTagDelay function 470

3061
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

HMSetWindowHelpContent function 471
HMWindowContentProcPtr callback 482
HMWindowContentUPP data type 486
Hook Constants 3031
Hot Key Constants 376
HRActivate function (Deprecated in Mac OS X v10.4)

2537
HRDeactivate function (Deprecated in Mac OS X v10.4)

2537
HRDisposeReference function (Deprecated in Mac OS

X v10.4) 2538
HRDraw function (Deprecated in Mac OS X v10.4) 2539
HRDrawInPort function (Deprecated in Mac OS X v10.4)

2540
HRForceQuickdraw function (Deprecated in Mac OS X

v10.4) 2540
HRFreeMemory function (Deprecated in Mac OS X v10.4)

2541
HRGetBaseURL function (Deprecated in Mac OS X v10.4)

2542
HRGetBaseURLAsCFString function (Deprecated in Mac

OS X v10.4) 2543
HRGetHTMLFile function (Deprecated in Mac OS X v10.4)

2543
HRGetHTMLFileAsFSRef function (Deprecated in Mac

OS X v10.4) 2544
HRGetHTMLRenderingLibVersion function (Deprecated

in Mac OS X v10.4) 2545
HRGetHTMLURL function (Deprecated in Mac OS X v10.4)

2546
HRGetHTMLURLAsCFURL function (Deprecated in Mac OS

X v10.4) 2546
HRGetRenderedImageSize function (Deprecated in Mac

OS X v10.4) 2547
HRGetRenderedImageSize32 function (Deprecated in

Mac OS X v10.4) 2548
HRGetRootURL function (Deprecated in Mac OS X v10.4)

2549
HRGetRootURLAsCFString function (Deprecated in Mac

OS X v10.4) 2549
HRGetTitle function (Deprecated in Mac OS X v10.4)

2550
HRGetTitleAsCFString function (Deprecated in Mac

OS X v10.4) 2551
HRGoToAnchor function (Deprecated in Mac OS X v10.4)

2552
HRGoToAnchorCFString function (Deprecated in Mac

OS X v10.4) 2553
HRGoToCFURL function (Deprecated in Mac OS X v10.4)

2553
HRGoToData function (Deprecated in Mac OS X v10.4)

2554

HRGoToFile function (Deprecated in Mac OS X v10.4)
2555

HRGoToFSRef function (Deprecated in Mac OS X v10.4)
2556

HRGoToPtr function (Deprecated in Mac OS X v10.4) 2557
HRGoToURL function (Deprecated in Mac OS X v10.4) 2558
HRHTMLRenderingLibAvailable function 2559
hrHTMLRenderingLibNotInstalledErr constant 2598
HRIsHREvent function (Deprecated in Mac OS X v10.4)

2560
hrMiscellaneousExceptionErr constant 2598
HRNewCFURLProcPtr callback 2588
HRNewCFURLUPP data type 2594
HRNewReference function (Deprecated in Mac OS X

v10.4) 2561
HRNewReferenceInWindow function (Deprecated in Mac

OS X v10.4) 2561
HRNewURLProcPtr callback 2589
HRNewURLUPP data type 2594
HRReference data type 2595
HRRegisterNewCFURLUPP function (Deprecated in Mac

OS X v10.4) 2562
HRRegisterNewURLUPP function (Deprecated in Mac OS

X v10.4) 2563
HRRegisterURLToFSRefUPP function (Deprecated in

Mac OS X v10.4) 2564
HRRegisterURLToFSSpecUPP function (Deprecated in

Mac OS X v10.4) 2564
HRRegisterWasCFURLVisitedUPP function (Deprecated

in Mac OS X v10.4) 2565
HRRegisterWasURLVisitedUPP function (Deprecated

in Mac OS X v10.4) 2565
HRScreenConfigurationChanged function (Deprecated

in Mac OS X v10.4) 2566
HRScrollToImageLocation32 function (Deprecated in

Mac OS X v10.4) 2567
HRScrollToLocation function (Deprecated in Mac OS

X v10.4) 2568
HRSetDrawBorder function (Deprecated in Mac OS X

v10.4) 2568
HRSetEmbeddingControl function (Deprecated in Mac

OS X v10.4) 2569
HRSetGrafPtr function (Deprecated in Mac OS X v10.4)

2570
HRSetGrowboxCutout function (Deprecated in Mac OS

X v10.4) 2571
HRSetRenderingRect function (Deprecated in Mac OS

X v10.4) 2571
HRSetScrollbarState function (Deprecated in Mac OS

X v10.4) 2572
HRSetWindowRef function (Deprecated in Mac OS X

v10.4) 2573
hrUnableToResizeHandleErr constant 2598

3062
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

HRUnregisterNewCFURLUPP function (Deprecated in
Mac OS X v10.4) 2574

HRUnregisterNewURLUPP function (Deprecated in Mac
OS X v10.4) 2574

HRUnregisterURLToFSRefUPP function (Deprecated in
Mac OS X v10.4) 2575

HRUnregisterURLToFSSpecUPP function (Deprecated
in Mac OS X v10.4) 2576

HRUnregisterWasCFURLVisitedUPP function
(Deprecated in Mac OS X v10.4) 2576

HRUnregisterWasURLVisitedUPP function (Deprecated
in Mac OS X v10.4) 2577

HRURLToFSRefProcPtr callback 2590
HRURLToFSRefUPP data type 2595
HRURLToFSSpecProcPtr callback 2591
HRURLToFSSpecUPP data type 2595
HRUtilCreateFullCFURL function (Deprecated in Mac

OS X v10.4) 2577
HRUtilCreateFullURL function (Deprecated in Mac OS

X v10.4) 2578
HRUtilGetFSRefFromURL function (Deprecated in Mac

OS X v10.4) 2579
HRUtilGetFSSpecFromURL function (Deprecated in Mac

OS X v10.4) 2580
HRUtilGetURLFromFSRef function (Deprecated in Mac

OS X v10.4) 2581
HRUtilGetURLFromFSSpec function (Deprecated in Mac

OS X v10.4) 2581
HRWasCFURLVisitedProcPtr callback 2592
HRWasCFURLVisitedUPP data type 2595
HRWasURLVisitedProcPtr callback 2593
HRWasURLVisitedUPP data type 2595
HSL2RGB function 500
HSLColor structure 512
HSV2RGB function 500
HSVColor structure 512
HTTP and HTTPS URL Property Name Constants 1775

I

I/O Module Interface Version 2937
IBNibRef data type 1061
Icon Control Data Tag Constants 762
Icon Control Definition ID Constants 763
iconItem constant 908
IdenticalString function (Deprecated in Mac OS X

v10.4) 1666
IdenticalText function (Deprecated in Mac OS X v10.4)

1666
Idle Timer Event Constants 416
IdleControls function (Deprecated in Mac OS X v10.4)

620

illegalScrapFlavorFlagsErr constant 1515
illegalScrapFlavorSizeErr constant 1515
illegalScrapFlavorTypeErr constant 1515
Image Well Control Data Tag Constants 765
Image Well Control Definition ID 766
Implicit Language Codes 1702
In Control Part Constants 783
inCollapseBox constant 2015
inContent constant 2014
inDesk constant 2014
IndexToStringProcPtr callback 1691
IndexToStringUPP data type 1694
IndicatorDragConstraint structure 717
IndicatorDragConstraintHandle data type 718
Individual Input Mode Keys 1635
inDrag constant 2015
inGoAway constant 2015
inGrow constant 2015
initCntl constant 737
InitContextualMenus function (Deprecated in Mac OS

X v10.5) 1292
InitDataBrowserCallbacks function 2175
InitDataBrowserCustomCallbacks function 2176
Initialization Option Bits 2753
Initialization Option Masks 2754
InitiateTextService function 1593
Ink Event Constants 370
Ink Event Parameters 371
Ink Pen Constants 1053
Ink Source Types 1052
Ink Tablet Constants 1054
InkAddStrokeToCurrentPhrase function 1027
InkAlternateCount data type 1044
InkIsPhraseInProgress function 1028
InkPoint structure 1044
InkSetApplicationRecognitionMode function 1028
InkSetApplicationWritingMode function 1029
InkSetDrawingMode function 1030
InkSetPhraseTerminationMode function 1030
InkStrokeGetPointCount function 1031
InkStrokeGetPoints function 1032
InkStrokeGetTypeID function 1033
InkStrokeRef data type 1043
InkTerminateCurrentPhrase function 1033
InkTextAlternatesCount function 1034
InkTextBounds function 1034
InkTextCopy function 1035
InkTextCreateCFString function 1035
InkTextCreateFromCFData function 1036
InkTextDraw function 1036
InkTextFlatten function 1037
InkTextGetStroke function 1038
InkTextGetStrokeCount function 1039

3063
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

InkTextGetTypeID function 1040
InkTextInsertAlternatesInMenu function 1040
InkTextKeyModifiers function 1042
InkTextRef data type 1043
InkUserWritingMode function 1042
inLabel 767
Inline Input Flag 3031
Inline State Settings 2755
inMenuBar constant 2014
inNoWindow constant 2014
inProxyIcon constant 2015
Input Method Identifier 1633
Input Mode - Standard Tags 1645
Input Mode Dictionary Key 1633
Input Mode Palette Control Keys 1634
Input Mode Palette Menu Definition Keys 1633
Input Mode Variants 1644
InputModePaletteItemHit function (Deprecated in

Mac OS X v10.5) 1594
InsertDialogItem function 862
InsertFontResMenu function (Deprecated in Mac OS X

v10.5) 1293
InsertIntlResMenu function (Deprecated in Mac OS X

v10.5) 1293
InsertMenu function 1294
InsertMenuItem function (Deprecated in Mac OS X

v10.5) 1295
InsertMenuItemText function (Deprecated in Mac OS

X v10.5) 1296
InsertMenuItemTextWithCFString function 1296
InsertResMenu function (Deprecated in Mac OS X v10.5)

1297
InstallEventHandler function 274
InstallEventLoopIdleTimer function 275
InstallEventLoopTimer function 276
InstallReceiveHandler function (Deprecated in Mac

OS X v10.5) 940
InstallStandardEventHandler function 278
InstallTrackingHandler function (Deprecated in Mac

OS X v10.5) 941
InstallWindowContentPaintProc function

(Deprecated in Mac OS X v10.5) 1898
inStructure constant 2016
inSysWindow constant 2014
intDrawHook constant 3033
intEOLHook constant 3033
Interfaces 1635
InterfaceTypeList data type 1614
internalScrapErr constant 1514
intHitTestHook constant 3033
inThumb 767
intInlineInputTSMTEPostUpdateHook constant 3034
intInlineInputTSMTEPreUpdateHook constant 3034

intNWidthHook constant 3033
inToolbarButton constant 2016
intTextWidthHook constant 3033
intWidthHook constant 3033
Invalid Scrap Reference 1513
InvalidateMenuEnabling function 1299
InvalidateMenuItems function 1299
InvalidateMenuSize function 1300
invalidPickerType constant 522
invalidTranslationPathErr constant 1732
InvalMenuBar function 1301
InvalWindowRect function 1898
InvalWindowRgn function 1899
InvokeCaretHookUPP function (Deprecated in Mac OS

X v10.4) 2955
InvokeColorChangedUPP function 501
InvokeControlActionUPP function 620
InvokeControlCNTLToCollectionUPP function 621
InvokeControlColorUPP function 622
InvokeControlDefUPP function (Deprecated in Mac OS

X v10.5) 622
InvokeControlEditTextValidationUPP function 623
InvokeControlKeyFilterUPP function 624
InvokeControlUserPaneActivateUPP function 624
InvokeControlUserPaneBackgroundUPP function 625
InvokeControlUserPaneDrawUPP function 625
InvokeControlUserPaneFocusUPP function 626
InvokeControlUserPaneHitTestUPP function 626
InvokeControlUserPaneIdleUPP function 627
InvokeControlUserPaneKeyDownUPP function 627
InvokeControlUserPaneTrackingUPP function 628
InvokeDataBrowserAcceptDragUPP function 2177
InvokeDataBrowserAddDragItemUPP function 2177
InvokeDataBrowserDrawItemUPP function 2177
InvokeDataBrowserEditItemUPP function 2178
InvokeDataBrowserGetContextualMenuUPP function

2178
InvokeDataBrowserHitTestUPP function 2179
InvokeDataBrowserItemAcceptDragUPP function

2179
InvokeDataBrowserItemCompareUPP function 2180
InvokeDataBrowserItemDataUPP function 2180
InvokeDataBrowserItemDragRgnUPP function 2181
InvokeDataBrowserItemHelpContentUPP function

2181
InvokeDataBrowserItemNotificationUPP function

2182
InvokeDataBrowserItemNotificationWithItemUPP

function 2182
InvokeDataBrowserItemReceiveDragUPP function

2183
InvokeDataBrowserItemUPP function 2183

3064
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

InvokeDataBrowserPostProcessDragUPP function
2184

InvokeDataBrowserReceiveDragUPP function 2184
InvokeDataBrowserSelectContextualMenuUPP

function 2185
InvokeDataBrowserTrackingUPP function 2185
InvokeDragDrawingUPP function (Deprecated in Mac

OS X v10.5) 942
InvokeDragInputUPP function 942
InvokeDragReceiveHandlerUPP function (Deprecated

in Mac OS X v10.5) 943
InvokeDragSendDataUPP function (Deprecated in Mac

OS X v10.5) 943
InvokeDragTrackingHandlerUPP function (Deprecated

in Mac OS X v10.5) 944
InvokeDrawHookUPP function (Deprecated in Mac OS X

v10.4) 2955
InvokeEditUnicodePostUpdateUPP function 628
InvokeEOLHookUPP function (Deprecated in Mac OS X

v10.4) 2956
InvokeEventComparatorUPP function 278
InvokeEventHandlerUPP function 279
InvokeEventLoopIdleTimerUPP function 280
InvokeEventLoopTimerUPP function 280
InvokeGetScrapDataUPP function (Deprecated in Mac

OS X v10.3) 1712
InvokeHighHookUPP function (Deprecated in Mac OS X

v10.4) 2956
InvokeHitTestHookUPP function (Deprecated in Mac

OS X v10.4) 2957
InvokeHMControlContentUPP function 471
InvokeHMMenuItemContentUPP function 472
InvokeHMMenuTitleContentUPP function 473
InvokeHMWindowContentUPP function 474
InvokeHRNewCFURLUPP function (Deprecated in Mac OS

X v10.4) 2582
InvokeHRNewURLUPP function (Deprecated in Mac OS X

v10.4) 2583
InvokeHRURLToFSRefUPP function (Deprecated in Mac

OS X v10.4) 2583
InvokeHRURLToFSSpecUPP function (Deprecated in Mac

OS X v10.4) 2584
InvokeHRWasCFURLVisitedUPP function (Deprecated

in Mac OS X v10.4) 2584
InvokeHRWasURLVisitedUPP function (Deprecated in

Mac OS X v10.4) 2585
InvokeIndexToStringUPP function (Deprecated in Mac

OS X v10.4) 1667
InvokeKCCallbackUPP function 1079
InvokeListClickLoopUPP function (Deprecated in Mac

OS X v10.5) 1173
InvokeListDefUPP function (Deprecated in Mac OS X

v10.5) 1173

InvokeListSearchUPP function (Deprecated in Mac OS
X v10.5) 1174

InvokeMenuDefUPP function (Deprecated in Mac OS X
v10.5) 1301

InvokeMenuItemDrawingUPP function (Deprecated in
Mac OS X v10.5) 85

InvokeMenuTitleDrawingUPP function (Deprecated in
Mac OS X v10.5) 85

InvokeModalFilterUPP function 862
InvokeModalFilterYDUPP function 863
InvokeNavEventUPP function 1406
InvokeNavObjectFilterUPP function 1406
InvokeNavPreviewUPP function 1407
InvokeNColorChangedUPP function 501
InvokeNMUPP function 1490
InvokeNWidthHookUPP function (Deprecated in Mac OS

X v10.4) 2957
InvokeOSAActiveUPP function 2793
InvokeOSACreateAppleEventUPP function 2794
InvokeOSASendUPP function 2794
InvokePMItemUPP function (Deprecated in Mac OS X

v10.4) 2068
InvokePMPageSetupDialogInitUPP function

(Deprecated in Mac OS X v10.4) 2069
InvokePMPrintDialogInitUPP function (Deprecated

in Mac OS X v10.4) 2069
InvokePMSheetDoneUPP function 2070
InvokeScrapPromiseKeeperUPP function (Deprecated

in Mac OS X v10.5) 1504
InvokeSRCallBackUPP function 1520
InvokeTEClickLoopUPP function (Deprecated in Mac

OS X v10.4) 2958
InvokeTEDoTextUPP function (Deprecated in Mac OS X

v10.4) 2958
InvokeTEFindWordUPP function (Deprecated in Mac OS

X v10.4) 2959
InvokeTERecalcUPP function (Deprecated in Mac OS X

v10.4) 2959
InvokeTextWidthHookUPP function (Deprecated in Mac

OS X v10.4) 2959
InvokeThemeButtonDrawUPP function (Deprecated in

Mac OS X v10.5) 86
InvokeThemeEraseUPP function (Deprecated in Mac OS

X v10.5) 86
InvokeThemeIteratorUPP function (Deprecated in Mac

OS X v10.5) 87
InvokeThemeTabTitleDrawUPP function (Deprecated

in Mac OS X v10.5) 87
InvokeTSMTEPostUpdateUPP function (Deprecated in

Mac OS X v10.4) 2960
InvokeTSMTEPreUpdateUPP function (Deprecated in

Mac OS X v10.4) 2960

3065
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

InvokeTXNActionKeyMapperUPP function (Deprecated
in Mac OS X v10.4) 2613

InvokeTXNActionNameMapperUPP function 2613
InvokeTXNContextualMenuSetupUPP function 2614
InvokeTXNFindUPP function 2614
InvokeTXNScrollInfoUPP function 2615
InvokeURLNotifyUPP function (Deprecated in Mac OS

X v10.4) 1737
InvokeURLSystemEventUPP function (Deprecated in

Mac OS X v10.4) 1738
InvokeUserEventUPP function 501
InvokeUserItemUPP function 863
InvokeWidthHookUPP function (Deprecated in Mac OS

X v10.4) 2961
InvokeWindowDefUPP function (Deprecated in Mac OS

X v10.5) 1900
InvokeWindowPaintUPP function (Deprecated in Mac

OS X v10.5) 1901
InvokeWindowTitleDrawingUPP function (Deprecated

in Mac OS X v10.5) 88
inZoomIn constant 2015
inZoomOut constant 2015
IOMContext data type 2932
IOMInterface structure 2932
IOMInterfaceRef data type 2932
IOMProcs structure 2933
IsAppearanceClient function (Deprecated in Mac OS

X v10.5) 88
IsAutomaticControlDragTrackingEnabledForWindow

function 629
IsCmdChar function 997
IsControlActive function 629
IsControlDragTrackingEnabled function 630
IsControlEnabled function 631
IsControlHilited function 631
IsControlVisible function 631
IsDataBrowserItemSelected function 2186
IsDialogEvent function 863
IsEventInMask function 280
IsEventInQueue function 281
IsMenuBarInvalid function 1302
IsMenuBarVisible function 1303
IsMenuCommandEnabled function 1303
IsMenuItemEnabled function 1303
IsMenuItemIconEnabled function 1304
IsMenuItemInvalid function 1305
IsMenuKeyEvent function 1305
IsMenuSizeInvalid function 1306
IsMouseCoalescingEnabled function 281
IsSecureEventInputEnabled function 282
IsShowContextualMenuClick function 1306
IsShowContextualMenuEvent function 1307

IsTextServiceSelected function (Deprecated in Mac
OS X v10.5) 1595

IsThemeInColor function (Deprecated in Mac OS X
v10.5) 89

IsTSMTEDialog function (Deprecated in Mac OS X v10.4)
2961

IsUserCancelEventRef function 282
IsValidAppearanceFileType function (Deprecated in

Mac OS X v10.5) 90
IsValidControlHandle function 632
IsValidMenu function 1308
IsValidWindowClass function 1901
IsValidWindowPtr function 1902
IsWindowActive function 1902
IsWindowCollapsable function 1903
IsWindowCollapsed function 1904
IsWindowContainedInGroup function 1904
IsWindowHilited function 1905
IsWindowInStandardState function 1905
IsWindowLatentVisible function 1906
IsWindowModified function 1907
IsWindowPathSelectClick function (Deprecated in

Mac OS X v10.5) 1907
IsWindowPathSelectEvent function 1908
IsWindowToolbarVisible function 1909
IsWindowUpdatePending function 1909
IsWindowVisible function 1910
Item Notifications 2278
Item States 2280
itemDisable constant 909
IterateThemes function (Deprecated in Mac OS X v10.5)

91

J

Justification Settings 2755

K

kAccountKCItemAttr constant 1147
kActivateAndHandleClick constant 781
kActivateAndIgnoreClick constant 781
kAddKCEvent constant 1141
kAddKCEventMask constant 1143
kAddressKCItemAttr constant 1148
kAEAppearanceChanged constant 121
kAESmallSystemFontChanged constant 121
kAESpeechDetected constant 1556
kAESpeechDone constant 1556
kAESpeechSuite constant 1556

3066
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kAESystemFontChanged constant 121
kAEThemeSwitch 213
kAEViewsFontChanged constant 121
kAHInternalErr constant 2061
kAHInternetConfigPrefErr constant 2061
kAHTOCTypeDeveloper constant 2060
kAHTOCTypeUser constant 2060
kAlertCautionAlert constant 907
kAlertDefaultCancelText constant 905
kAlertDefaultOKText constant 905
kAlertDefaultOtherText constant 905
kAlertFlagsAlertIsMovable constant 906
kAlertFlagsUseControlHierarchy constant 906
kAlertFlagsUseThemeBackground constant 905
kAlertFlagsUseThemeControls constant 906
kAlertNoteAlert constant 907
kAlertPlainAlert constant 907
kAlertStdAlertCancelButton constant 904
kAlertStdAlertHelpButton constant 904
kAlertStdAlertOKButton constant 904
kAlertStdAlertOtherButton constant 904
kAlertStopAlert constant 907
kAlertVariantCode constant 2025
kAlertWindowClass constant 1989
kAllWindowClasses constant 1992
kAltPlainWindowClass constant 1992
kAnyAuthType constant 1140
kAnyPort constant 1140
kAnyProtocol constant 1140
kAppearanceEventClass constant 121
kAppleLogoCharCode constant 1015
kAppleLogoUnicode constant 1017
kAppleScriptSubtype constant 2884
kAppleSharePasswordKCItemClass constant 1151
kApplicationWindowKind constant 2030
kAppPageSetupDialogTypeIDStr constant 2936
kAppPrintDialogTypeIDStr constant 2936
kASAdd 2866
kASAnd 2866
kASDefaultMaxHeapSize constant 2864
kASDefaultMaxStackSize constant 2864
kASDefaultMinHeapSize constant 2864
kASDefaultMinStackSize constant 2864
kASDefaultPreferredHeapSize constant 2864
kASDefaultPreferredStackSize constant 2864
kASErrorEventCode 2867
kASHasOpenHandler constant 2882
kASNumberOfSourceStyles constant 2883
kASNumericStrings constant 2861
kASNumericStringsConsiderMask constant 2862
kASNumericStringsIgnoreMask constant 2862
kASSourceStyleApplicationKeyword constant 2883
kASSourceStyleComment constant 2883

kASSourceStyleLanguageKeyword constant 2882
kASSourceStyleLiteral constant 2883
kASSourceStyleNormalText constant 2882
kASSourceStyleObjectSpecifier constant 2883
kASSourceStyleUncompiledText constant 2882
kASSourceStyleUserSymbol constant 2883
kASStartLogEvent 2867
kAtSpecifiedOrigin constant 520
kAuthTypeKCItemAttr constant 1148
kBackspaceCharCode constant 1015
kBellCharCode constant 1014
KBGetLayoutType function 1064
kBulletCharCode constant 1016
kBulletUnicode constant 1017
kButtonDialogItem constant 912
KCAddAppleSharePassword function 1080
kcaddapplesharepassword function 1082
KCAddCallback function 1083
KCAddGenericPassword function 1084
kcaddgenericpassword function 1085
KCAddInternetPassword function 1086
kcaddinternetpassword function 1087
KCAddInternetPasswordWithPath function 1088
kcaddinternetpasswordwithpath function 1089
KCAddItem function 1090
kCancelItemIndex constant 914
KCAttribute data type 1132
KCAttributeList data type 1132
KCAttrType data type 1133
kCautionIcon constant 906
KCCallbackInfo structure 1133
KCCallbackProcPtr callback 1131
KCCallbackUPP data type 1134
KCChangeSettings function 1091
KCChooseCertificate function 1092
KCCopyItem function 1092
KCCountKeychains function 1093
KCCreateKeychain function 1094
kccreatekeychain function 1095
KCDeleteItem function 1096
kCenterOnMainScreen constant 520
kCenterOnScreen constant 213
kCertificateKCItemClass constant 1151
KCFindAppleSharePassword function 1096
kcfindapplesharepassword function 1098
KCFindFirstItem function 1099
KCFindGenericPassword function 1100
kcfindgenericpassword function 1102
KCFindInternetPassword function 1102
kcfindinternetpassword function 1104
KCFindInternetPasswordWithPath function 1105
kcfindinternetpasswordwithpath function 1107
KCFindNextItem function 1108

3067
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

KCFindX509Certificates function 1109
KCGetAttribute function 1109
KCGetData function 1111
KCGetDefaultKeychain function 1112
KCGetIndKeychain function 1112
KCGetKeychain function 1113
KCGetKeychainManagerVersion function 1114
KCGetKeychainName function 1115
kcgetkeychainname function 1115
KCGetStatus function 1116
kCharacterPaletteInputMethodClass constant 1639
kCheckBoxDialogItem constant 912
kCheckCharCode constant 1015
kCheckUnicode constant 1017
KCIsInteractionAllowed function 1117
KCItemRef data type 1134
kClassKCItemAttr constant 1145
kClearCharCode constant 1016
KCLock function 1117
kCMActivateTextService constant 1637
KCMakeAliasFromKCRef function 1118
KCMakeKCRefFromAlias function 1119
KCMakeKCRefFromFSSpec function (Deprecated in Mac

OS X v10.5) 1119
kCMDeactivateTextService constant 1637
kCMFixTextService constant 1637
kCMGetScriptLangSupport constant 1636
kCMGetTextServiceMenu constant 1637
kCMGetTextServiceProperty constant 1637
kCMHelpItemAppleGuide constant 1370
kCMHelpItemNoHelp constant 1370
kCMHelpItemOtherHelp constant 1370
kCMHelpItemRemoveHelp constant 1370
kCMHidePaletteWindows constant 1637
kCMInitiateTextService constant 1636
kCMMenuItemSelected constant 1371
kCMNothingSelected constant 1371
kCMSetTextServiceCursor constant 1637
kCMSetTextServiceProperty constant 1638
kCMShowHelpSelected constant 1371
kCMTerminateTextService constant 1637
kCMTextServiceEvent constant 1637
kCMTextServiceMenuSelect constant 1637
kCMUCTextServiceEvent constant 1638
KCNewItem function 1120
kColorPickerAppIsColorSyncAware constant 519
kColorPickerCallColorProcLive constant 520
kColorPickerCanAnimatePalette constant 519
kColorPickerCanModifyPalette constant 519
kColorPickerDetachedFromChoices constant 520
kColorPickerDialogIsModal constant 519
kColorPickerDialogIsMoveable constant 518
kColorPickerInApplicationDialog constant 519

kColorPickerInPickerDialog constant 519
kColorPickerInSystemDialog constant 519
kCommandCharCode constant 1015
kCommandUnicode constant 1017
kCommentKCItemAttr constant 1146
kCommonNameKCItemAttr constant 1149
kControlAddFontSizeMask constant 746
kControlAddToMetaFontMask constant 787
kControlAutoToggles constant 742
kControlBehaviorCommandMenu constant 727
kControlBehaviorMultiValueMenu constant 722
kControlBehaviorOffsetContents constant 722
kControlBehaviorPushbutton constant 721
kControlBehaviorSticky constant 722
kControlBehaviorToggles constant 722
kControlBevelButtonAlignBottom constant 727
kControlBevelButtonAlignBottomLeft constant

727
kControlBevelButtonAlignBottomRight constant

727
kControlBevelButtonAlignCenter constant 726
kControlBevelButtonAlignLeft constant 726
kControlBevelButtonAlignRight constant 726
kControlBevelButtonAlignSysDirection constant

726
kControlBevelButtonAlignTextCenter constant

729
kControlBevelButtonAlignTextFlushLeft constant

729
kControlBevelButtonAlignTextFlushRight

constant 729
kControlBevelButtonAlignTextSysDirection

constant 729
kControlBevelButtonAlignTop constant 727
kControlBevelButtonAlignTopLeft constant 727
kControlBevelButtonAlignTopRight constant 727
kControlBevelButtonCenterPopupGlyphTag

constant 724
kControlBevelButtonContentTag constant 723
kControlBevelButtonGraphicAlignTag constant

723
kControlBevelButtonGraphicOffsetTag constant

724
kControlBevelButtonLargeBevelProc constant 725
kControlBevelButtonLastMenuTag constant 728
kControlBevelButtonMenuDelayTag constant 728
kControlBevelButtonMenuHandleTag constant 724
kControlBevelButtonMenuValueTag constant 724
kControlBevelButtonMultiValueMenuTag constant

724
kControlBevelButtonNormalBevelProc constant

725
kControlBevelButtonOwnedMenuRefTag 767

3068
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kControlBevelButtonPlaceAboveGraphic constant
730

kControlBevelButtonPlaceBelowGraphic constant
730

kControlBevelButtonPlaceNormally constant 730
kControlBevelButtonPlaceSysDirection constant

730
kControlBevelButtonPlaceToLeftOfGraphic

constant 730
kControlBevelButtonPlaceToRightOfGraphic

constant 730
kControlBevelButtonScaleIconTag constant 786
kControlBevelButtonSmallBevelProc constant 725
kControlBevelButtonTextAlignTag constant 723
kControlBevelButtonTextOffsetTag constant 723
kControlBevelButtonTextPlaceTag constant 724
kControlBevelButtonTransformTag constant 723
kControlBoundsChangePositionChanged constant

365
kControlBoundsChangeSizeChanged constant 365
kControlButtonPart constant 749
kControlChasingArrowsProc constant 721
kControlCheckBoxAutoToggleProc constant 731
kControlCheckBoxCheckedValue constant 732
kControlCheckBoxMixedValue constant 732
kControlCheckBoxPart constant 749
kControlCheckBoxProc constant 719
kControlCheckBoxUncheckedValue constant 732
kControlClickableMetaPart constant 790
kControlClockAMPMPart constant 750
kControlClockDateProc constant 733
kControlClockHourDayPart constant 750
kControlClockIsDisplayOnly constant 734
kControlClockIsLive constant 735
kControlClockLongDateTag constant 732
kControlClockMinuteMonthPart constant 750
kControlClockMonthYearProc constant 734
kControlClockNoFlags constant 734
kControlClockPart constant 749
kControlClockSecondYearPart constant 750
kControlClockTimeProc constant 733
kControlClockTimeSecondsProc constant 733
kControlCollectionTagBounds constant 768
kControlCollectionTagCommand constant 769
kControlCollectionTagIDID constant 769
kControlCollectionTagIDSignature constant 769
kControlCollectionTagMaximum constant 768
kControlCollectionTagMinimum constant 768
kControlCollectionTagRefCon constant 769
kControlCollectionTagTitle constant 769
kControlCollectionTagUnicodeTitle constant 769
kControlCollectionTagValue constant 768
kControlCollectionTagVarCode constant 769

kControlCollectionTagViewSize constant 768
kControlCollectionTagVisibility constant 769
kControlContentCIconHandle constant 771
kControlContentCIconRes constant 770
kControlContentIconRef constant 771
kControlContentIconSuiteHandle constant 770
kControlContentIconSuiteRes constant 770
kControlContentMetaPart constant 790
kControlContentPictHandle constant 771
kControlContentPictRes constant 770
kControlContentTextOnly constant 770
kControlDataBrowserEditTextKeyFilterTag

constant 2272
kControlDataBrowserEditTextValidationProcTag

constant 2272
kControlDataBrowserIncludesFrameAndFocusTag

constant 2272
kControlDataBrowserKeyFilterTag constant 2272
kControlDefObjectClass constant 771
kControlDefProcPtr constant 771
kControlDialogItem constant 912
kControlDisabledPart constant 751
kControlDisclosureButtonClosed constant 772
kControlDisclosureButtonDisclosed constant 772
kControlDownButtonPart constant 750
kControlEditTextCFStringTag constant 757
kControlEditTextFixedTextTag constant 757
kControlEditTextInlineInputProc constant 787
kControlEditTextInlinePostUpdateProcTag

constant 757
kControlEditTextInlinePreUpdateProcTag

constant 757
kControlEditTextInsertCFStringRefTag constant

773
kControlEditTextInsertTextBufferTag constant

772
kControlEditTextKeyScriptBehaviorTag constant

756
kControlEditTextLockedTag constant 757
kControlEditTextPart constant 748
kControlEditTextPasswordCFStringTag constant

758
kControlEditTextPasswordProc constant 758
kControlEditTextProc constant 758
kControlEditTextSelectionTag constant 756
kControlEditTextSingleLineTag constant 772
kControlEditTextTEHandleTag constant 756
kControlEditTextTextTag constant 756
kControlEditTextValidationProcTag constant 757
kControlEditUnicodeTextPostUpdateProcTag

constant 773
kControlFocusNextPart constant 743
kControlFocusNoPart constant 743

3069
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kControlFocusPrevPart constant 744
kControlFontBigSystemFont constant 791
kControlFontSmallBoldSystemFont constant 791
kControlFontSmallSystemFont constant 791
kControlFontStyleTag constant 744
kControlGetsFocusOnClick constant 742
kControlGroupBoxCheckBoxProc constant 760
kControlGroupBoxFrameRectTag constant 760
kControlGroupBoxMenuHandleTag constant 759
kControlGroupBoxPopupButtonProc constant 761
kControlGroupBoxSecondaryCheckBoxProc constant

761
kControlGroupBoxSecondaryPopupButtonProc

constant 761
kControlGroupBoxSecondaryTextTitleProc

constant 761
kControlGroupBoxTextTitleProc constant 760
kControlGroupBoxTitleRectTag constant 788
kControlHandlesTracking constant 742
kControlHasRadioBehavior constant 742
kControlHasSpecialBackground constant 742
kControlIconAlignmentTag constant 762
kControlIconContentTag constant 789
kControlIconNoTrackProc constant 763
kControlIconPart constant 749
kControlIconProc constant 763
kControlIconRefNoTrackProc constant 764
kControlIconRefProc constant 764
kControlIconResourceIDTag constant 788
kControlIconSuiteNoTrackProc constant 763
kControlIconSuiteProc constant 763
kControlIconTransformTag constant 762
kControlImageWellContentTag constant 765
kControlImageWellPart constant 749
kControlImageWellProc constant 766
kControlImageWellTransformTag constant 765
kControlInactivePart constant 751
kControlIndicatorPart constant 751
kControlKeyFilterBlockKey constant 782
kControlKeyFilterPassKey constant 782
kControlKeyFilterTag constant 744
kControlKeyScriptBehaviorAllowAnyScript

constant 747
kControlKeyScriptBehaviorPrefersRoman constant

747
kControlKeyScriptBehaviorRequiresRoman

constant 747
kControlKindDataBrowser constant 2274
kControlKindHICocoaView constant 2504
kControlKindHIComboBox constant 2503
kControlKindHIGrowBoxView constant 2504
kControlKindHIImageView constant 2503
kControlKindHIMenuView constant 2504

kControlKindHIScrollView constant 2503
kControlKindHISearchField constant 2504
kControlKindHIStandardMenuView constant 2504
kControlKindHITextView constant 2752
kControlKindLittleArrows 775
kControlKindSignatureApple constant 777
kControlLabelPart constant 748
kControlListBoxAutoSizeProc constant 784
kControlListBoxDoubleClickPart constant 749
kControlListBoxDoubleClickTag constant 783
kControlListBoxLDEFTag constant 784
kControlListBoxListHandleTag constant 783
kControlListBoxPart constant 749
kControlListBoxProc constant 784
kControlLittleArrowsIncrementValueTag constant

786
kControlLittleArrowsProc constant 785
kControlMenuPart constant 748
kControlMsgActivate constant 739
kControlMsgApplyTextColor constant 740
kControlMsgCalcBestRect constant 738
kControlMsgCalcValueFromPos constant 739
kControlMsgDrawGhost constant 738
kControlMsgFocus constant 738
kControlMsgGetData constant 739
kControlMsgGetFeatures constant 738
kControlMsgGetRegion constant 740
kControlMsgHandleTracking constant 738
kControlMsgIdle constant 738
kControlMsgKeyDown constant 738
kControlMsgSetData constant 739
kControlMsgSetUpBackground constant 739
kControlMsgSubControlAdded constant 739
kControlMsgSubControlRemoved constant 740
kControlMsgSubValueChanged constant 739
kControlMsgTestNewMsgSupport constant 739
kControlNoPart constant 751
kControlNoVariant constant 752
kControlOpaqueMetaPart constant 790
kControlPageDownPart constant 750
kControlPageUpPart constant 750
kControlPictureNoTrackProc constant 793
kControlPicturePart constant 748
kControlPictureProc constant 793
kControlPlacardProc constant 794
kControlPopupArrowEastProc constant 797
kControlPopupArrowNorthProc constant 797
kControlPopupArrowSmallEastProc constant 797
kControlPopupArrowSmallNorthProc constant 798
kControlPopupArrowSmallSouthProc constant 798
kControlPopupArrowSmallWestProc constant 798
kControlPopupArrowSouthProc constant 797
kControlPopupArrowWestProc constant 797

3070
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kControlPopupButtonExtraHeightTag constant 789
kControlPopupButtonMenuHandleTag constant 799
kControlPopupButtonMenuIDTag constant 799
kControlPopupButtonMenuRefTag constant 799
kControlPopUpButtonOwnedMenuRefTag constant

789
kControlPopupButtonProc constant 800
kControlPopupFixedWidthVariant constant 800
kControlPopupUseAddResMenuVariant constant 800
kControlPopupUseWFontVariant constant 801
kControlPopupVariableWidthVariant constant 800
kControlProgressBarIndeterminateTag constant

804
kControlProgressBarProc constant 805
kControlPushButLeftIconProc constant 720
kControlPushButRightIconProc constant 720
kControlPushButtonCancelTag constant 806
kControlPushButtonDefaultTag constant 806
kControlPushButtonProc constant 719
kControlRadioButtonAutoToggleProc constant 731
kControlRadioButtonCheckedValue constant 806
kControlRadioButtonMixedValue constant 807
kControlRadioButtonPart constant 749
kControlRadioButtonProc constant 719
kControlRadioButtonUncheckedValue constant 806
kControlRadioGroupPart constant 749
kControlRadioGroupProc constant 807
kControlScrollBarLiveProc constant 808
kControlScrollBarProc constant 808
kControlScrollTextBoxAutoScrollAmountTag

constant 809
kControlScrollTextBoxAutoScrollProc constant

810
kControlScrollTextBoxContentsTag constant 809
kControlScrollTextBoxDelayBeforeAutoScrollTag

constant 809
kControlScrollTextBoxDelayBetweenAutoScrollTag

constant 809
kControlScrollTextBoxProc constant 810
kControlSearchFieldCancelPart constant 2520
kControlSearchFieldMenuPart constant 2520
kControlSeparatorLineProc constant 811
kControlSliderHasTickMarks constant 812
kControlSliderLiveFeedback constant 812
kControlSliderNonDirectional constant 813
kControlSliderProc constant 812
kControlSliderReverseDirection constant 812
kControlStaticTextCFStringTag constant 814
kControlStaticTextIsMultilineTag constant 814
kControlStaticTextProc constant 815
kControlStaticTextTextHeightTag constant 814
kControlStaticTextTextTag constant 813
kControlStaticTextTruncTag constant 814

kControlStructureMetaPart constant 790
kControlSupportsCalcBestRect constant 742
kControlSupportsDataAccess constant 742
kControlSupportsEmbedding constant 741
kControlSupportsFocus constant 741
kControlSupportsGetRegion constant 743
kControlSupportsGhosting constant 741
kControlSupportsLiveFeedback constant 742
kControlSupportsNewMessages constant 780
kControlTabContentRectTag constant 816
kControlTabEnabledFlagTag constant 816
kControlTabInfoTag constant 818
kControlTabLargeProc constant 817
kControlTabSmallProc constant 817
kControlTriangleAutoToggleProc constant 819
kControlTriangleLastValueTag constant 818
kControlTriangleLeftFacingAutoToggleProc

constant 819
kControlTriangleLeftFacingProc constant 819
kControlTrianglePart constant 748
kControlTriangleProc constant 819
kControlUnicode constant 1017
kControlUpButtonPart constant 749
kControlUseAllMask constant 746
kControlUseBackColorMask constant 746
kControlUseFaceMask constant 745
kControlUseFontMask constant 745
kControlUseForeColorMask constant 745
kControlUseJustMask constant 746
kControlUseModeMask constant 746
kControlUserItemDrawProcTag constant 820
kControlUserPaneActivateProcTag constant 821
kControlUserPaneBackgroundProcTag constant 822
kControlUserPaneDrawProcTag constant 820
kControlUserPaneFocusProcTag constant 821
kControlUserPaneHitTestProcTag constant 820
kControlUserPaneIdleProcTag constant 821
kControlUserPaneKeyDownProcTag constant 821
kControlUserPaneProc constant 822
kControlUserPaneTrackingProcTag constant 821
kControlUseSizeMask constant 745
kControlUsesOwningWindowsFontVariant constant

752
kControlWantsActivate constant 741
kControlWantsIdle constant 741
kControlWindowHeaderIsListHeaderTag constant

824
kControlWindowHeaderProc constant 823
kControlWindowListViewHeaderProc constant 823
KCPublicKeyHash data type 1135
kCreationDateKCItemAttr constant 1145
kCreatorKCItemAttr constant 1146
KCRef data type 1135

3071
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

KCReleaseItem function 1121
KCReleaseKeychain function 1122
KCReleaseSearch function 1122
KCRemoveCallback function 1123
KCSearchRef data type 1135
KCSetAttribute function 1124
KCSetData function 1125
KCSetDefaultKeychain function 1126
KCSetInteractionAllowed function 1127
KCStatus data type 1136
KCUnlock function 1127
kcunlock function 1129
KCUpdateItem function 1129
kCustomIconKCItemAttr constant 1147
kDataAccessKCEvent constant 1142
kDataAccessKCEventMask constant 1144
kDataBrowserAlwaysExtendSelection constant 2297
kDataBrowserAttributeColumnViewResizeWindow

constant 2273
kDataBrowserAttributeListViewAlternatingRowColors

constant 2273
kDataBrowserAttributeListViewDrawColumnDividers

constant 2273
kDataBrowserAttributeNone constant 2273
kDataBrowserCheckboxTriState constant 2286
kDataBrowserCheckboxType constant 2276
kDataBrowserClientPropertyFlagsMask constant

2290
kDataBrowserClientPropertyFlagsOffset constant

2290
kDataBrowserCmdTogglesSelection constant 2297
kDataBrowserColumnView constant 2298
kDataBrowserColumnViewPreviewProperty constant

2284
kDataBrowserContainerAliasIDProperty constant

2283
kDataBrowserContainerClosed constant 2279
kDataBrowserContainerClosing constant 2279
kDataBrowserContainerIsClosableProperty

constant 2283
kDataBrowserContainerIsOpen constant 2281
kDataBrowserContainerIsOpenableProperty

constant 2283
kDataBrowserContainerIsSortableProperty

constant 2283
kDataBrowserContainerOpened constant 2279
kDataBrowserContainerSorted constant 2279
kDataBrowserContainerSorting constant 2279
kDataBrowserContentHit constant 2296
kDataBrowserCustomType constant 2275
kDataBrowserDateTimeDateOnly constant 2287
kDataBrowserDateTimeRelative constant 2286
kDataBrowserDateTimeSecondsToo constant 2287

kDataBrowserDateTimeTimeOnly constant 2287
kDataBrowserDateTimeType constant 2276
kDataBrowserDefaultPropertyFlags constant 2285
kDataBrowserDoNotTruncateText constant 2287
kDataBrowserDragSelect constant 2297
kDataBrowserEditMsgClear constant 2278
kDataBrowserEditMsgCopy constant 2277
kDataBrowserEditMsgCut constant 2277
kDataBrowserEditMsgPaste constant 2277
kDataBrowserEditMsgRedo constant 2277
kDataBrowserEditMsgSelectAll constant 2278
kDataBrowserEditMsgUndo constant 2277
kDataBrowserEditStarted constant 2278
kDataBrowserEditStopped constant 2279
kDataBrowserIconAndTextType constant 2277
kDataBrowserIconType constant 2276
kDataBrowserItemAdded constant 2278
kDataBrowserItemAnyState constant 2280
kDataBrowserItemDeselected constant 2279
kDataBrowserItemDoubleClicked constant 2279
kDataBrowserItemIsActiveProperty constant 2282
kDataBrowserItemIsContainerProperty constant

2283
kDataBrowserItemIsDragTarget constant 2281
kDataBrowserItemIsEditableProperty constant

2282
kDataBrowserItemIsSelectableProperty constant

2282
kDataBrowserItemIsSelected constant 2281
kDataBrowserItemNoProperty constant 2282
kDataBrowserItemNoState constant 2280
kDataBrowserItemParentContainerProperty

constant 2284
kDataBrowserItemRemoved constant 2278
kDataBrowserItemsAdd constant 2293
kDataBrowserItemsAssign constant 2294
kDataBrowserItemSelected constant 2279
kDataBrowserItemSelfIdentityProperty constant

2283
kDataBrowserItemsRemove constant 2294
kDataBrowserItemsToggle constant 2294
kDataBrowserLatestCallbacks constant 2271
kDataBrowserLatestCustomCallbacks constant 2273
kDataBrowserListView constant 2298
kDataBrowserListViewAppendColumn constant 2281
kDataBrowserListViewDefaultColumnFlags

constant 2290
kDataBrowserListViewLatestHeaderDesc constant

2281
kDataBrowserListViewMovableColumn constant 2289
kDataBrowserListViewNoGapForIconInHeaderButton

constant 2290

3072
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kDataBrowserListViewSelectionColumn constant
2289

kDataBrowserListViewSortableColumn constant
2289

kDataBrowserListViewTypeSelectColumn constant
2290

kDataBrowserMetricCellContentInset constant
2274

kDataBrowserMetricDisclosureColumnEdgeInset
constant 2275

kDataBrowserMetricDisclosureColumnPerDepthGap
constant 2275

kDataBrowserMetricDisclosureTriangleAndContentGap
constant 2275

kDataBrowserMetricIconAndTextGap constant 2274
kDataBrowserMetricLast constant 2275
kDataBrowserNeverEmptySelectionSet constant

2297
kDataBrowserNoDisjointSelection constant 2297
kDataBrowserNoItem constant 2282
kDataBrowserNothingHit constant 2296
kDataBrowserNoView constant 2298
kDataBrowserOrderDecreasing constant 2294
kDataBrowserOrderIncreasing constant 2294
kDataBrowserOrderUndefined constant 2294
kDataBrowserPopupMenuButtonless constant 2288
kDataBrowserPopupMenuType constant 2276
kDataBrowserProgressBarType constant 2276
kDataBrowserPropertyCheckboxPart constant 2292
kDataBrowserPropertyContentPart constant 2291
kDataBrowserPropertyDisclosurePart constant

2291
kDataBrowserPropertyEnclosingPart constant 2291
kDataBrowserPropertyFlagsMask constant 2286
kDataBrowserPropertyFlagsOffset constant 2286
kDataBrowserPropertyIconPart constant 2291
kDataBrowserPropertyIsEditable constant 2285
kDataBrowserPropertyIsMutable constant 2285
kDataBrowserPropertyModificationFlags constant

2288
kDataBrowserPropertyProgressBarPart constant

2292
kDataBrowserPropertyRelevanceRankPart constant

2292
kDataBrowserPropertySliderPart constant 2291
kDataBrowserPropertyTextPart constant 2291
kDataBrowserRelativeDateTime constant 2288
kDataBrowserRelevanceRankType constant 2276
kDataBrowserResetSelection constant 2297
kDataBrowserRevealAndCenterInView constant 2292
kDataBrowserRevealOnly constant 2292
kDataBrowserRevealWithoutSelecting constant

2292

kDataBrowserSelectionAnchorDown constant 2293
kDataBrowserSelectionAnchorLeft constant 2293
kDataBrowserSelectionAnchorRight constant 2293
kDataBrowserSelectionAnchorUp constant 2293
kDataBrowserSelectionSetChanged constant 2280
kDataBrowserSelectOnlyOne constant 2297
kDataBrowserSliderDownwardThumb constant 2287
kDataBrowserSliderPlainThumb constant 2287
kDataBrowserSliderType constant 2276
kDataBrowserSliderUpwardThumb constant 2287
kDataBrowserStopTracking constant 2296
kDataBrowserTableViewFillHilite constant 2295
kDataBrowserTableViewLastColumn constant 2295
kDataBrowserTableViewMinimalHilite constant

2295
kDataBrowserTableViewSelectionColumn constant

2295
kDataBrowserTargetChanged constant 2280
kDataBrowserTextType constant 2276
kDataBrowserTruncateTextAtEnd constant 2287
kDataBrowserTruncateTextAtStart constant 2288
kDataBrowserTruncateTextMiddle constant 2287
kDataBrowserUniversalPropertyFlags constant

2285
kDataBrowserUniversalPropertyFlagsMask

constant 2285
kDataBrowserUserStateChanged constant 2280
kDataBrowserUserToggledContainer constant 2280
kDataBrowserViewSpecificFlagsMask constant 2288
kDataBrowserViewSpecificFlagsOffset constant

2288
kDataBrowserViewSpecificPropertyFlags constant

2289
kDecryptKCItemAttr constant 1149
kDeepestColorScreen constant 520
kDefaultChangedKCEvent constant 1142
kDefaultChangedKCEventMask constant 1143
kDefaultColorPickerHeight constant 521
kDefaultColorPickerWidth constant 521
kDeleteCharCode constant 1016
kDeleteKCEvent constant 1141
kDeleteKCEventMask constant 1143
kDescriptionKCItemAttr constant 1146
kDialectBundleResType 2867
kDialogExtensionIntfIDStr constant 2934
kDialogFlagsHandleMovableModal constant 909
kDialogFlagsUseControlHierarchy constant 909
kDialogFlagsUseThemeBackground constant 909
kDialogFlagsUseThemeControls constant 909
kDialogFontAddFontSizeMask constant 911
kDialogFontAddToMetaFontMask constant 911
kDialogFontNoFontStyle constant 910
kDialogFontUseAllMask constant 911

3073
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kDialogFontUseBackColorMask constant 910
kDialogFontUseFaceMask constant 910
kDialogFontUseFontMask constant 910
kDialogFontUseFontNameMask constant 911
kDialogFontUseForeColorMask constant 910
kDialogFontUseJustMask constant 911
kDialogFontUseModeMask constant 911
kDialogFontUseSizeMask constant 910
kDialogFontUseThemeFontIDMask 914
kDialogFontUseThemeFontIDMask constant 914
kDialogWindowKind constant 2030
kDiamondCharCode constant 1015
kDiamondUnicode constant 1017
kDocumentWindowClass constant 1990
kDocumentWindowVariantCode constant 2025
kDoNotActivateAndHandleClick constant 781
kDoNotActivateAndIgnoreClick constant 781
kDownArrowCharCode constant 1016
kDragActionAlias constant 979
kDragActionAll constant 980
kDragActionCopy constant 979
kDragActionDelete constant 979
kDragActionGeneric constant 979
kDragActionMove constant 979
kDragActionNothing constant 979
kDragActionPrivate constant 979
kDragBehaviorNone constant 974
kDragBehaviorZoomBackAnimation constant 974
kDragControlEntireControl constant 755
kDragControlIndicator constant 755
kDragDarkerTranslucency constant 983
kDragDarkTranslucency constant 983
kDragFlavorTypeHFS constant 980
kDragFlavorTypePromiseHFS constant 980
kDragHasLeftSenderWindow constant 974
kDragInsideSenderApplication constant 974
kDragInsideSenderWindow constant 974
kDragOpaqueTranslucency constant 983
kDragPromisedFlavor constant 981
kDragPromisedFlavorFindFile constant 981
kDragPseudoCreatorVolumeOrDirectory constant

981
kDragPseudoFileTypeDirectory constant 981
kDragPseudoFileTypeVolume constant 981
kDragRegionAndImage constant 982
kDragRegionBegin constant 975
kDragRegionDraw constant 975
kDragRegionEnd constant 976
kDragRegionHide constant 975
kDragRegionIdle constant 975
kDragStandardDropLocationTrash constant 982
kDragStandardDropLocationUnknown constant 982
kDragStandardImage 985

kDragStandardTranslucency constant 982
kDragTrackingEnterHandler constant 976
kDragTrackingEnterWindow constant 976
kDragTrackingInWindow constant 977
kDragTrackingLeaveHandler constant 977
kDragTrackingLeaveWindow constant 977
kDrawControlEntireControl constant 755
kDrawControlIndicatorOnly constant 755
kDrawerWindowClass constant 1992
kEditTextDialogItem constant 912
kEMailKCItemAttr constant 1149
kEncryptKCItemAttr constant 1149
kEndCharCode constant 1014
kEndDateKCItemAttr constant 1150
kEnterCharCode constant 1014
kEscapeCharCode constant 1015
kEventAppActivated constant 338
kEventAppActiveWindowChanged constant 341
kEventAppAvailableWindowBoundsChanged constant

340
kEventAppDeactivated constant 338
kEventAppearanceScrollBarVariantChanged

constant 337
kEventAppFocusDrawer constant 340
kEventAppFocusMenuBar constant 339
kEventAppFocusNextDocumentWindow constant 339
kEventAppFocusNextFloatingWindow constant 339
kEventAppFocusToolbar constant 339
kEventAppFrontSwitched constant 339
kEventAppGetDockTileMenu constant 340
kEventAppHidden constant 340
kEventAppIsEventInInstantMouser constant 340
kEventAppLaunched constant 338
kEventAppLaunchNotification constant 338
kEventAppleEvent constant 336
kEventAppQuit constant 338
kEventAppShown constant 340
kEventAppSystemUIModeChanged constant 340
kEventAppTerminated constant 338
kEventAttributeMonitored constant 325
kEventAttributeNone constant 325
kEventAttributeUserEvent constant 325
kEventClassAccessibility constant 325
kEventClassAppearance constant 324
kEventClassAppleEvent constant 323
kEventClassApplication constant 323
kEventClassClockView constant 2504
kEventClassCommand constant 324
kEventClassControl constant 324
kEventClassEPPC constant 336
kEventClassFont constant 2304
kEventClassHIComboBox constant 2505
kEventClassHIObject constant 2342

3074
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kEventClassInk constant 325
kEventClassKeyboard constant 323
kEventClassMenu constant 323
kEventClassMouse constant 323
kEventClassScrollable constant 2505
kEventClassSearchField constant 2505
kEventClassService constant 324
kEventClassSystem constant 325
kEventClassTablet constant 324
kEventClassTextField constant 2505
kEventClassTextInput constant 323
kEventClassToolbar constant 324
kEventClassToolbarItem constant 324
kEventClassToolbarItemView constant 324
kEventClassTSMDocumentAccess constant 325, 1620
kEventClassVolume constant 324
kEventClassWindow constant 324
kEventClockDateOrTimeChanged constant 2499
kEventComboBoxListItemSelected constant 2502
kEventCommandProcess constant 343
kEventCommandUpdateStatus constant 343
kEventControlActivate constant 354
kEventControlAddedSubControl constant 358
kEventControlApplyBackground constant 354
kEventControlApplyTextColor constant 354
kEventControlArbitraryMessage constant 359
kEventControlBoundsChanged constant 358
kEventControlClick constant 355
kEventControlContextualMenuClick constant 355
kEventControlDeactivate constant 354
kEventControlDefDispose constant 353
kEventControlDefInitialize constant 353
kEventControlDispose constant 353
kEventControlDragEnter constant 356
kEventControlDragLeave constant 356
kEventControlDragReceive constant 356
kEventControlDragWithin constant 356
kEventControlDraw constant 353
kEventControlEnabledStateChanged constant 359
kEventControlGetActionProcPart constant 357
kEventControlGetAutoToggleValue constant 355
kEventControlGetClickActivation constant 356
kEventControlGetData constant 358
kEventControlGetFocusPart constant 354
kEventControlGetIndicatorDragConstraint

constant 357
kEventControlGetNextFocusCandidate constant

355
kEventControlGetOptimalBounds constant 353
kEventControlGetPartBounds constant 357
kEventControlGetPartRegion constant 357
kEventControlGetScrollToHereStartPoint

constant 357

kEventControlGetSizeConstraints constant 358
kEventControlGhostingFinished constant 357
kEventControlHiliteChanged constant 359
kEventControlHit constant 353
kEventControlHitTest constant 353
kEventControlIndicatorMoved constant 357
kEventControlInitialize constant 352
kEventControlInterceptSubviewClick constant

355
kEventControlOwningWindowChanged constant 359
kEventControlRemovingSubControl constant 358
kEventControlSetCursor constant 354
kEventControlSetData constant 358
kEventControlSetFocusPart constant 354
kEventControlSimulateHit constant 353
kEventControlTitleChanged constant 358
kEventControlTrack constant 356
kEventControlTrackingAreaEntered constant 2514
kEventControlTrackingAreaExited constant 2514
kEventControlValueFieldChanged constant 358
kEventFontPanelClosed constant 2304
kEventFontSelection constant 2304
kEventGetSelectedText constant 409
kEventHighLevelEvent constant 336
kEventHIObjectConstruct constant 2342
kEventHIObjectDestruct constant 2342
kEventHIObjectEncode constant 2343
kEventHIObjectInitialize constant 2342
kEventHIObjectIsEqual constant 2342
kEventHIObjectPrintDebugInfo constant 2343
kEventHotKeyPressed constant 373
kEventHotKeyReleased constant 373
kEventInkGesture constant 371
kEventInkPoint constant 371
kEventInkText constant 371
kEventKeyModifierFnBit constant 375
kEventKeyModifierFnMask constant 374
kEventKeyModifierNumLockBit constant 375
kEventKeyModifierNumLockMask constant 374
kEventLeaveInQueue constant 327
kEventLoopIdleTimerIdling constant 416
kEventLoopIdleTimerStarted constant 416
kEventLoopIdleTimerStopped constant 416
kEventMenuBarHidden constant 383
kEventMenuBarShown constant 383
kEventMenuBecomeScrollable constant 382
kEventMenuBeginTracking constant 377
kEventMenuCalculateSize constant 382
kEventMenuCeaseToBeScrollable constant 383
kEventMenuChangeTrackingMode constant 378
kEventMenuClosed constant 378
kEventMenuCreateFrameView constant 382
kEventMenuDispose constant 382

3075
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kEventMenuDrawItem constant 381
kEventMenuDrawItemContent constant 381
kEventMenuEnableItems constant 380
kEventMenuEndTracking constant 378
kEventMenuGetFrameBounds constant 382
kEventMenuMatchKey constant 379
kEventMenuMeasureItemHeight constant 381
kEventMenuMeasureItemWidth constant 381
kEventMenuOpening constant 378
kEventMenuPopulate constant 380
kEventMenuTargetItem constant 378
kEventMouseButtonPrimary constant 394
kEventMouseButtonSecondary constant 394
kEventMouseButtonTertiary constant 394
kEventMouseDown constant 391
kEventMouseDragged constant 391
kEventMouseEntered constant 391
kEventMouseExited constant 391
kEventMouseMoved constant 391
kEventMouseUp constant 391
kEventMouseWheelAxisX constant 395
kEventMouseWheelAxisY constant 395
kEventMouseWheelMoved constant 391
kEventOffsetToPos constant 409
kEventParamAEEventClass constant 331
kEventParamAEEventID constant 330
kEventParamATSUFontID constant 2307
kEventParamATSUFontSize constant 2307
kEventParamAttributes constant 331
kEventParamAvailableBounds constant 330
kEventParamBounds constant 330
kEventParamCandidateText constant 2524
kEventParamCGContextRef constant 331
kEventParamClickActivation constant 448
kEventParamClickCount constant 397
kEventParamComboBoxListSelectedItemIndex

constant 2502
kEventParamControlAction constant 367
kEventParamControlClickActivationResult

constant 367
kEventParamControlCurrentOwningWindow constant

369
kEventParamControlCurrentPart constant 369
kEventParamControlDataBuffer constant 368
kEventParamControlDataBufferSize constant 368
kEventParamControlDataTag constant 368
kEventParamControlDrawDepth constant 368
kEventParamControlDrawInColor constant 368
kEventParamControlFeatures constant 368
kEventParamControlFocusEverything constant 369
kEventParamControlFrameMetrics constant 370
kEventParamControlHit constant 370

kEventParamControlIndicatorDragConstraint
constant 367

kEventParamControlIndicatorOffset constant 367
kEventParamControlIndicatorRegion constant 367
kEventParamControlInvalRgn constant 369
kEventParamControlIsGhosting constant 367
kEventParamControlMessage constant 367
kEventParamControlOptimalBaselineOffset

constant 368
kEventParamControlOptimalBounds constant 368
kEventParamControlOriginalOwningWindow

constant 369
kEventParamControlParam constant 367
kEventParamControlPart constant 366
kEventParamControlPartAutoRepeats constant 370
kEventParamControlPartBounds constant 368
kEventParamControlPrefersShape constant 370
kEventParamControlPreviousPart constant 369
kEventParamControlRef constant 330
kEventParamControlRegion constant 367
kEventParamControlResult constant 367
kEventParamControlSubControl constant 368
kEventParamControlSubview constant 369
kEventParamControlValue constant 369
kEventParamControlWouldAcceptDrop constant 370
kEventParamCurrentBounds constant 447
kEventParamCurrentDockDevice constant 449
kEventParamCurrentDockRect constant 449
kEventParamCurrentMenuTrackingMode constant

388
kEventParamDeviceColor constant 331
kEventParamDeviceDepth constant 331
kEventParamDimensions constant 330
kEventParamDirectObject constant 328
kEventParamDragRef constant 330
kEventParamEnabled constant 330
kEventParamEnableMenuForKeyEvent constant 389
kEventParamEventRef constant 330
kEventParamFMFontFamily constant 2307
kEventParamFMFontSize constant 2307
kEventParamFMFontStyle constant 2307
kEventParamFontColor constant 2308
kEventParamGDevice constant 332
kEventParamGrafPort constant 329
kEventParamHIArchive constant 2344
kEventParamHIObjectInstance constant 2344
kEventParamHIViewTrackingArea constant 2514
kEventParamImageSize constant 2518
kEventParamIndex constant 332
kEventParamInitCollection constant 366
kEventParamInkGestureBounds constant 372
kEventParamInkGestureHotspot constant 372
kEventParamInkGestureKind constant 372

3076
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kEventParamInkKeyboardShortcut constant 372
kEventParamInkTextRef constant 372
kEventParamKeyCode constant 375
kEventParamKeyMacCharCodes constant 375
kEventParamKeyModifiers constant 375
kEventParamKeyUnicodes constant 376
kEventParamLaunchErr constant 342
kEventParamLaunchRefCon constant 342
kEventParamLineSize constant 2518
kEventParamMaximumSize constant 331
kEventParamMenuCommand constant 389
kEventParamMenuEventOptions constant 389
kEventParamMenuFirstOpen constant 389
kEventParamMenuItemIndex constant 389
kEventParamMenuRef constant 330
kEventParamMinimumSize constant 331
kEventParamModalClickResult constant 451
kEventParamModalWindow constant 451
kEventParamMouseButton constant 396
kEventParamMouseChord constant 397
kEventParamMouseDelta constant 397
kEventParamMouseLocation constant 396
kEventParamMouseWheelAxis constant 397
kEventParamMouseWheelDelta constant 397
kEventParamMutableArray constant 331
kEventParamNewMenuTrackingMode constant 389
kEventParamNewScrollBarVariant constant 337
kEventParamNextControl constant 369
kEventParamOrigin constant 2519
kEventParamOriginalBounds constant 448
kEventParamPostTarget constant 328
kEventParamPreviousBounds constant 448
kEventParamPreviousDockDevice constant 449
kEventParamPreviousDockRect constant 449
kEventParamProcessID constant 342
kEventParamReason constant 331
kEventParamReplacementText constant 2524
kEventParamResult constant 331
kEventParamRgnHandle constant 330
kEventParamScrapRef constant 401
kEventParamServiceCopyTypes constant 401
kEventParamServiceMessageName constant 402
kEventParamServicePasteTypes constant 401
kEventParamServiceUserData constant 402
kEventParamShape constant 332
kEventParamStartControl constant 369
kEventParamSystemUIMode constant 342
kEventParamTabletPointerRec constant 403
kEventParamTabletPointRec constant 403
kEventParamTabletProximityRec constant 403
kEventParamTextInputReplyFMFont constant 412
kEventParamTextInputReplyFont constant 412

kEventParamTextInputReplyGlyphInfoArray
constant 413

kEventParamTextInputReplyLeadingEdge constant
411

kEventParamTextInputReplyLineAscent constant
413

kEventParamTextInputReplyLineHeight constant
412

kEventParamTextInputReplyPoint constant 412
kEventParamTextInputReplyPointSize constant

412
kEventParamTextInputReplyRegionClass constant

412
kEventParamTextInputReplyShowHide constant 413
kEventParamTextInputReplySLRec constant 411
kEventParamTextInputReplyText constant 411
kEventParamTextInputReplyTextAngle constant

413
kEventParamTextInputReplyTextOffset constant

412
kEventParamTextInputSendClauseRng constant 411
kEventParamTextInputSendComponentInstance

constant 410
kEventParamTextInputSendCurrentPoint constant

412
kEventParamTextInputSendDraggingMode constant

412
kEventParamTextInputSendFixLen constant 411
kEventParamTextInputSendHiliteRng constant 411
kEventParamTextInputSendKeyboardEvent constant

413
kEventParamTextInputSendLeadingEdge constant

411
kEventParamTextInputSendPinRng constant 411
kEventParamTextInputSendRefCon constant 410
kEventParamTextInputSendReplaceRange constant

413
kEventParamTextInputSendShowHide constant 413
kEventParamTextInputSendSLRec constant 410
kEventParamTextInputSendText constant 411
kEventParamTextInputSendTextOffset constant

412
kEventParamTextInputSendTextServiceEncoding

constant 413
kEventParamTextInputSendTextServiceMacEncoding

constant 413
kEventParamTextInputSendUpdateRng constant 411
kEventParamTextSelection constant 2524
kEventParamToolbar constant 417, 2391
kEventParamToolbarDisplayMode constant 2397
kEventParamToolbarDisplaySize constant 2397
kEventParamToolbarItem constant 417, 2391

3077
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kEventParamToolbarItemConfigData constant 417,
2391

kEventParamToolbarItemIdentifier constant 417,
2391

kEventParamTransactionID constant 332
kEventParamTSMDocAccessCharacterCount constant

414, 1628
kEventParamTSMDocAccessEffectiveRange constant

415, 1629
kEventParamTSMDocAccessLineBounds constant 415
kEventParamTSMDocAccessLockCount constant 415,

1629
kEventParamTSMDocAccessReplyATSFont constant

415, 1629
kEventParamTSMDocAccessReplyATSUGlyphSelector

constant 415, 1629
kEventParamTSMDocAccessReplyCharacterRange

constant 414, 1628
kEventParamTSMDocAccessReplyCharactersPtr

constant 414, 1629
kEventParamTSMDocAccessReplyFontSize constant

415, 1629
kEventParamTSMDocAccessRequestedCharacter-

Attributes constant 415, 1629
kEventParamTSMDocAccessSendCharacterIndex

constant 414, 1629
kEventParamTSMDocAccessSendCharacterRange

constant 1629
kEventParamTSMDocAccessSendCharactersPtr

constant 415, 1629
kEventParamTSMDocAccessSendComponentInstance

constant 414, 1628
kEventParamTSMDocAccessSendRefCon constant 414,

1628
kEventParamTSMSendComponentInstance constant

1627
kEventParamTSMSendRefCon constant 1627
kEventParamUnconfirmedRange constant 2524
kEventParamUnconfirmedText constant 2525
kEventParamUserData constant 332
kEventParamViewSize constant 2518
kEventParamWindowDefPart constant 447
kEventParamWindowDragHiliteFlag constant 448
kEventParamWindowFeatures constant 447
kEventParamWindowGrowRect constant 449
kEventParamWindowModality constant 451
kEventParamWindowModifiedFlag constant 448
kEventParamWindowPartCode constant 447
kEventParamWindowProxyGWorldPtr constant 448
kEventParamWindowProxyImageRgn constant 448
kEventParamWindowProxyOutlineRgn constant 448
kEventParamWindowRef constant 329
kEventParamWindowRegionCode constant 448

kEventParamWindowStateChangedFlags constant
448

kEventParamWindowTitleFullWidth constant 449
kEventParamWindowTitleTextWidth constant 449
kEventParamWindowTransitionAction constant 449
kEventParamWindowTransitionEffect constant 449
kEventPosToOffset constant 409
kEventPriorityHigh constant 326
kEventPriorityLow constant 326
kEventPriorityStandard constant 326
kEventProcessCommand constant 343
kEventRawKeyDown constant 373
kEventRawKeyModifiersChanged constant 373
kEventRawKeyRepeat constant 373
kEventRawKeyUp constant 373
kEventRemoveFromQueue constant 327
kEventScrollableGetInfo constant 2517
kEventScrollableInfoChanged constant 2517
kEventScrollableScrollTo constant 2517
kEventServiceCopy constant 399
kEventServiceGetTypes constant 400
kEventServicePaste constant 400
kEventServicePerform constant 400
kEventShowHideBottomWindow constant 409
kEventTabletPoint constant 402
kEventTabletPointer constant 402
kEventTabletProximity constant 402
kEventTargetDontPropagate constant 327
kEventTargetSendToAllHandlers constant 327
kEventTextAccepted constant 2523
kEventTextDidChange constant 2523
kEventTextInputFilterText constant 405
kEventTextInputGetSelectedText constant 405
kEventTextInputOffsetToPos constant 404
kEventTextInputPosToOffset constant 404
kEventTextInputShowHideBottomWindow constant

405
kEventTextInputUnicodeForKeyEvent constant 404
kEventTextInputUnicodeText constant 405
kEventTextInputUpdateActiveInputArea constant

404
kEventTextShouldChangeInRange constant 2523
kEventToolbarBeginMultiChange constant 2389
kEventToolbarCreateItemFromDrag constant 2388
kEventToolbarCreateItemWithIdentifier constant

2388
kEventToolbarDisplayModeChanged constant 2389
kEventToolbarDisplaySizeChanged constant 2389
kEventToolbarEndMultiChange constant 2389
kEventToolbarGetAllowedIdentifiers constant

2388
kEventToolbarGetDefaultIdentifiers constant

2388

3078
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kEventToolbarGetSelectableIdentifiers constant
2389

kEventToolbarItemAcceptDrop constant 2395
kEventToolbarItemAdded constant 2388
kEventToolbarItemCommandIDChanged constant 2394
kEventToolbarItemCreateCustomView constant 2394
kEventToolbarItemEnabledStateChanged constant

2395
kEventToolbarItemGetPersistentData constant

2394
kEventToolbarItemHelpTextChanged constant 2394
kEventToolbarItemImageChanged constant 2394
kEventToolbarItemLabelChanged constant 2394
kEventToolbarItemPerformAction constant 2395
kEventToolbarItemRemoved constant 2388
kEventToolbarItemSelectedStateChanged constant

2395
kEventToolbarItemViewConfigForMode constant

2396
kEventToolbarItemViewConfigForSize constant

2396
kEventToolbarItemViewEnterConfigMode constant

2396
kEventToolbarItemViewExitConfigMode constant

2397
kEventToolbarItemWouldAcceptDrop constant 2395
kEventToolbarLayoutChanged constant 2389
kEventTSMDocumentAccessGetCharacters constant

1623
kEventTSMDocumentAccessGetCharactersPtr

constant 1622
kEventTSMDocumentAccessGetCharactersPtrForLargest-

Buffer constant 1623
kEventTSMDocumentAccessGetFont constant 1624
kEventTSMDocumentAccessGetGlyphInfo constant

1625
kEventTSMDocumentAccessGetLength constant 1621
kEventTSMDocumentAccessGetSelectedRange

constant 1621
kEventTSMDocumentAccessLockDocument constant

1626
kEventTSMDocumentAccessUnlockDocument constant

1626
kEventUnicodeForKeyEvent constant 408
kEventUpdateActiveInputArea constant 408
kEventVolumeMounted constant 417
kEventVolumeUnmounted constant 418
kEventWindowActivated constant 425
kEventWindowBoundsChanged constant 432
kEventWindowBoundsChanging constant 432
kEventWindowClickCloseRgn constant 429
kEventWindowClickCollapseRgn constant 429
kEventWindowClickContentRgn constant 429

kEventWindowClickDragRgn constant 428
kEventWindowClickProxyIconRgn constant 429
kEventWindowClickResizeRgn constant 429
kEventWindowClickToolbarButtonRgn constant 429
kEventWindowClickZoomRgn constant 429
kEventWindowClose constant 420
kEventWindowCloseAll constant 420
kEventWindowClosed constant 433
kEventWindowCollapse constant 419
kEventWindowCollapseAll constant 419
kEventWindowCollapsed constant 431
kEventWindowCollapsing constant 431
kEventWindowConstrain constant 422
kEventWindowContextualMenuSelect constant 420
kEventWindowCursorChange constant 435
kEventWindowDeactivated constant 426
kEventWindowDefDispose constant 444
kEventWindowDefDragHilite constant 444
kEventWindowDefDrawFrame constant 444
kEventWindowDefDrawGrowBox constant 445
kEventWindowDefDrawPart constant 444
kEventWindowDefGetGrowImageRegion constant 445
kEventWindowDefGetRegion constant 444
kEventWindowDefHitTest constant 444
kEventWindowDefInit constant 444
kEventWindowDefMeasureTitle constant 445
kEventWindowDefModified constant 445
kEventWindowDefSetupProxyDragImage constant

445
kEventWindowDefStateChanged constant 445
kEventWindowDispose constant 441
kEventWindowDragCompleted constant 433
kEventWindowDragHilite constant 441
kEventWindowDragStarted constant 433
kEventWindowDrawContent constant 434
kEventWindowDrawerClosed constant 439
kEventWindowDrawerClosing constant 439
kEventWindowDrawerOpened constant 438
kEventWindowDrawerOpening constant 438
kEventWindowDrawFrame constant 440
kEventWindowDrawGrowBox constant 441
kEventWindowDrawPart constant 440
kEventWindowExpand constant 419
kEventWindowExpandAll constant 420
kEventWindowExpanded constant 431
kEventWindowExpanding constant 431
kEventWindowFocusAcquired constant 436
kEventWindowFocusContent constant 436
kEventWindowFocusDrawer constant 436
kEventWindowFocusRelinquish constant 436
kEventWindowFocusToolbar constant 436
kEventWindowGetClickActivation constant 426
kEventWindowGetClickModality constant 427

3079
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kEventWindowGetDockTileMenu constant 423
kEventWindowGetGrowImageRegion constant 442
kEventWindowGetIdealSize constant 421
kEventWindowGetMaximumSize constant 421
kEventWindowGetMinimumSize constant 421
kEventWindowGetRegion constant 440
kEventWindowHandleActivate constant 426
kEventWindowHandleContentClick constant 422
kEventWindowHandleDeactivate constant 426
kEventWindowHidden constant 431
kEventWindowHiding constant 430
kEventWindowHitTest constant 440
kEventWindowInit constant 440
kEventWindowMeasureTitle constant 441
kEventWindowModified constant 441
kEventWindowPaint constant 442
kEventWindowPathSelect constant 421
kEventWindowProxyBeginDrag constant 423
kEventWindowProxyEndDrag constant 423
kEventWindowResizeCompleted constant 432
kEventWindowResizeStarted constant 432
kEventWindowSetupProxyDragImage constant 441
kEventWindowSheetClosed constant 438
kEventWindowSheetClosing constant 438
kEventWindowSheetOpened constant 437
kEventWindowSheetOpening constant 437
kEventWindowShowing constant 430
kEventWindowShown constant 430
kEventWindowStateChanged constant 441
kEventWindowToolbarSwitchMode constant 423
kEventWindowTransitionCompleted constant 423
kEventWindowTransitionStarted constant 422
kEventWindowUpdate constant 434
kEventWindowZoom constant 420
kEventWindowZoomAll constant 420
kEventWindowZoomed constant 431
kEveryKCEventMask constant 1144
Key Filter Result Codes 782
Key Modifier Event Bits 374
Key Modifier Event Masks 374
keyAETarget 2868
keyAppHandledCoercion 2868
keyASPrepositionAt 2868
keyASPrepositionOver 2869
Keyboard Event Constants 372
Keyboard Event Parameters and Types 375
Keyboard Layout Formats 1070
Keyboard Layout Identifier 1069
Keyboard Layout Property Tag 1070
Keyboard Synchronization Settings 2756
KeyboardLayoutRef data type 1069
Keychain Events Constants 1140
Keychain Events Mask 1142

Keychain Item Attribute Tag Constants 1144
Keychain Item Type Constants 1150
Keychain Protocol Type Constants 1151
Keychain Status Constants 1153
keyCodeMask constant 1011
keyContextualMenuAttributes constant 1372
keyContextualMenuCommandID constant 1372
keyContextualMenuModifiers constant 1372
keyContextualMenuName constant 1371
keyContextualMenuSubmenu constant 1372
keyDown constant 1022
keyDownMask constant 1018
KeyMap data type 1009
KeyMapByteArray data type 1009
keyOSADialectCode constant 2865
keyOSADialectLangCode constant 2865
keyOSADialectName constant 2865
keyOSADialectScriptCode constant 2865
keyOSASourceEnd 2869
keyOSASourceEnd constant 2869
keyOSASourceStart 2869
keyOSASourceStart constant 2870
keyProcedureName 2870
keyProgramState 2870
KeyScript function (Deprecated in Mac OS X v10.5) 997
keySRRecognizer constant 1556
keySRSpeechResult constant 1556
keySRSpeechStatus constant 1556
KeyTranslate function 998
keyUp constant 1022
keyUpMask constant 1018
kFillScreen constant 213
kFirstFailKCStopOn constant 1139
kFirstPassKCStopOn constant 1139
kFirstWindowOfClass constant 2033
kFitToScreen constant 213
kFlavorTypeClippingFilename constant 983
kFlavorTypeClippingName constant 983
kFlavorTypeDragToTrashOnly constant 984
kFlavorTypeFinderNoTrackingBehavior constant

984
kFlavorTypeUnicodeClippingFilename constant

984
kFlavorTypeUnicodeClippingName constant 983
kFloatingWindowClass constant 1990
kFloatingWindowDefinition constant 2046
kFontSelectionATSUIType constant 2305
kFontSelectionQDStyleVersionZero constant 2305
kFontSelectionQDType constant 2305
kFormFeedCharCode constant 1015
kFunctionKeyCharCode constant 1015
kGenericComponentVersion 2870
kGenericComponentVersion constant 2870

3080
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kGenericKCItemAttr constant 1147
kGenericPasswordKCItemClass constant 1151
kHelpCharCode constant 1014
kHelpDialogItem constant 913
kHelpWindowClass constant 1990
kHIAboutBoxCopyrightKey constant 234
kHIAboutBoxDescriptionKey constant 234
kHIAboutBoxNameKey constant 234
kHIAboutBoxStringFileKey constant 234
kHIAboutBoxVersionKey constant 234
kHIArchiveDecodeSuperclassForUnregisteredObjects

constant 2317
kHICocoaViewClassID constant 2499
kHIComboBoxAutoCompletionAttribute constant

2500
kHIComboBoxAutoDisclosureAttribute constant

2500
kHIComboBoxAutoSizeListAttribute constant 2500
kHIComboBoxAutoSortAttribute constant 2500
kHIComboBoxClassID constant 2499
kHIComboBoxDisclosurePart constant 2503
kHIComboBoxEditTextPart constant 2503
kHIComboBoxListPixelHeightTag constant 2501
kHIComboBoxListPixelWidthTag constant 2501
kHIComboBoxListTag constant 2501
kHIComboBoxNoAttributes constant 2500
kHIComboBoxNumVisibleItemsTag constant 2501
kHIComboBoxStandardAttributes constant 2500
kHICommandAbout constant 348
kHICommandAppHelp constant 349
kHICommandArrangeInFront constant 346
kHICommandBringAllToFront constant 347
kHICommandCancel constant 345
kHICommandChangeSpelling constant 349
kHICommandCheckSpelling constant 349
kHICommandCheckSpellingAsYouType constant 350
kHICommandClear constant 345
kHICommandClose constant 348
kHICommandCopy constant 345
kHICommandCustomizeToolbar constant 2385
kHICommandCut constant 345
kHICommandFromControl constant 350
kHICommandFromMenu constant 350
kHICommandFromWindow constant 350
kHICommandHide constant 345
kHICommandHideOthers constant 346
kHICommandHideToolbar constant 2386
kHICommandIgnoreSpelling constant 350
kHICommandLearnWord constant 350
kHICommandMaximizeAll constant 346
kHICommandMaximizeWindow constant 346
kHICommandMinimizeAll constant 346
kHICommandMinimizeWindow constant 346

kHICommandNew constant 348
kHICommandOK constant 344
kHICommandOpen constant 348
kHICommandOther 914
kHICommandOther constant 914
kHICommandPageSetup constant 349
kHICommandPaste constant 345
kHICommandPreferences constant 346
kHICommandPrint constant 349
kHICommandQuit constant 345
kHICommandRedo constant 345
kHICommandRevert constant 349
kHICommandRotateFloatingWindowsBackward

constant 348
kHICommandRotateFloatingWindowsForward

constant 348
kHICommandRotateWindowsBackward constant 347
kHICommandRotateWindowsForward constant 347
kHICommandSave constant 348
kHICommandSaveAs constant 348
kHICommandSelectAll constant 345
kHICommandSelectWindow constant 347
kHICommandShowAll constant 346
kHICommandShowCharacterPalette constant 349
kHICommandShowHideFontPanel constant 2306
kHICommandShowSpellingPanel constant 349
kHICommandShowToolbar constant 2386
kHICommandUndo constant 345
kHICommandWindowListSeparator constant 347
kHICommandWindowListTerminator constant 347
kHICommandZoom constant 346
kHICoordSpace72DPIGlobal constant 2324
kHICoordSpaceScreenPixel constant 2325
kHICoordSpaceView constant 2325
kHICoordSpaceWindow constant 2325
kHIDataBrowserClassID data type 2271
kHierarchicalFontMenuOption constant 1375
kHighLevelEvent constant 1022
kHIGrowBoxViewClassID constant 2498
kHIHotKeyModeAllDisabled constant 377
kHIHotKeyModeAllDisabledExceptUniversalAccess

constant 377
kHIHotKeyModeAllEnabled constant 376
kHIImageViewClassID constant 2498
kHILayoutBindBottom constant 2506
kHILayoutBindLeft constant 2506
kHILayoutBindMax constant 2505
kHILayoutBindMin constant 2505
kHILayoutBindNone constant 2505
kHILayoutBindRight constant 2506
kHILayoutBindTop constant 2506
kHILayoutInfoVersionZero constant 2506
kHILayoutPositionBottom constant 2507

3081
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kHILayoutPositionCenter constant 2507
kHILayoutPositionLeft constant 2507
kHILayoutPositionMax constant 2507
kHILayoutPositionMin constant 2507
kHILayoutPositionNone constant 2507
kHILayoutPositionRight constant 2507
kHILayoutPositionTop constant 2507
kHILayoutScaleAbsolute constant 2508
kHIMenuAppendItem constant 1381
kHIMenuDismissedByActivationChange constant

1399
kHIMenuDismissedByAppSwitch constant 1398
kHIMenuDismissedByCancelMenuTracking constant

1398
kHIMenuDismissedByFocusChange constant 1399
kHIMenuDismissedByKeyEvent constant 1398
kHIMenuDismissedByMouseDown constant 1398
kHIMenuDismissedByMouseUp constant 1398
kHIMenuDismissedBySelection constant 1398
kHIMenuDismissedByTimeout constant 1398
kHIMenuDismissedByUserCancel constant 1398
kHIMenuViewClassID constant 2498
kHIModalClickAllowEvent constant 451
kHIModalClickAnnounce constant 452
kHIModalClickIsModal constant 451
kHIModalClickRaiseWindow constant 452
kHIObjectCustomDataCDEFProcIDKey constant 2341
kHIObjectCustomDataClassIDKey constant 2341
kHIObjectCustomDataParameterNamesKey constant

2340
kHIObjectCustomDataParameterTypesKey constant

2340
kHIObjectCustomDataParameterValuesKey constant

2340
kHIObjectCustomDataSuperClassIDKey constant

2341
kHIScrollViewClassID constant 2499
kHIScrollViewOptionsAllowGrow constant 2515
kHIScrollViewOptionsHorizScroll constant 2515
kHIScrollViewOptionsVertScroll constant 2515
kHIScrollViewPageDown constant 2516
kHIScrollViewPageLeft constant 2516
kHIScrollViewPageRight constant 2516
kHIScrollViewPageUp constant 2516
kHIScrollViewScrollToBottom constant 2516
kHIScrollViewScrollToLeft constant 2516
kHIScrollViewScrollToRight constant 2516
kHIScrollViewScrollToTop constant 2516
kHIScrollViewValidOptions constant 2515
kHISearchFieldAttributesCancel constant 2519
kHISearchFieldAttributesSearchIcon constant

2519
kHISearchFieldClassID constant 2499

kHISearchFieldNoAttributes constant 2519
kHISegmentBehaviorMomentary constant 2521
kHISegmentBehaviorRadio constant 2521
kHISegmentBehaviorSticky constant 2522
kHISegmentBehaviorToggles constant 2521
kHISegmentedViewClassID constant 2499
kHISegmentedViewKind constant 2504
kHISegmentNoAttributes constant 2521
kHISegmentSendCmdToUserFocus constant 2521
kHIServicesMenuCharCode constant 390
kHIServicesMenuItemName constant 390
kHIServicesMenuKeyModifiers constant 390
kHIServicesMenuProviderName constant 390
kHIStandardMenuViewClassID constant 2499
kHISymbolicHotKeyCode constant 376
kHISymbolicHotKeyEnabled constant 376
kHISymbolicHotKeyModifiers constant 376
kHITextViewClassID constant 2752
kHIToolbarAutoSavesConfig constant 2385
kHIToolbarCommandPressAction constant 2386
kHIToolbarDisplayModeDefault constant 2386
kHIToolbarDisplayModeIconAndLabel constant 2386
kHIToolbarDisplayModeIconOnly constant 2386
kHIToolbarDisplayModeLabelOnly constant 2387
kHIToolbarDisplaySizeDefault constant 2387
kHIToolbarDisplaySizeNormal constant 2387
kHIToolbarDisplaySizeSmall constant 2387
kHIToolbarIsConfigurable constant 2385
kHIToolbarItemAllowDuplicates constant 2392
kHIToolbarItemAnchoredLeft constant 2392
kHIToolbarItemCantBeRemoved constant 2392
kHIToolbarItemDisabled constant 2393
kHIToolbarItemIsSeparator constant 2392
kHIToolbarItemLabelDisabled constant 2393
kHIToolbarItemMutableAttrs constant 2393
kHIToolbarItemNoAttributes constant 2392
kHIToolbarItemSelected constant 2393
kHIToolbarItemSendCmdToUserFocus constant 2393
kHIToolbarItemValidAttrs constant 2393
kHIToolbarNoAttributes constant 2385
kHIToolbarValidAttrs constant 2385
kHIToolbarViewDrawBackgroundTag constant 2042
kHIToolboxVersionNumber constant 234
kHITransformDisabled constant 2525
kHITransformNone constant 2525
kHITransformSelected constant 2525
kHIUserPaneClassID data type 719
kHIViewAttributeIsFieldEditor constant 2508
kHIViewAttributeSendCommandToUserFocus

constant 2508
kHIViewClassID constant 2498
kHIViewClickableMetaPart constant 2511
kHIViewContentCGImageRef constant 2513

3082
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kHIViewContentIconRef constant 2512
kHIViewContentIconSuiteRef constant 2512
kHIViewContentMetaPart constant 2511
kHIViewContentNone constant 2512
kHIViewContentTextOnly constant 2512
kHIViewDisabledPart constant 2513
kHIViewEntireView constant 2513
kHIViewFeatureAllowsSubviews constant 2509
kHIViewFeatureAutoToggles constant 2510
kHIViewFeatureDoesNotDraw constant 2510
kHIViewFeatureDoesNotUseSpecialParts constant

2510
kHIViewFeatureGetsFocusOnClick constant 2509
kHIViewFeatureIdlesWithTimer constant 2510
kHIViewFeatureIgnoresClicks constant 2510
kHIViewFeatureInvertsUpDownValueMeaning

constant 2510
kHIViewFeatureIsOpaque constant 2510
kHIViewFeatureSupportsGhosting constant 2509
kHIViewFeatureSupportsLiveFeedback constant

2509
kHIViewFeatureSupportsRadioBehavior constant

2509
kHIViewInactivePart constant 2513
kHIViewIndicatorPart constant 2513
kHIViewKindSignatureApple 2525
kHIViewKindSignatureApple constant 2526
kHIViewMenuContentID constant 2522
kHIViewNoPart constant 2513
kHIViewOpaqueMetaPart constant 2511
kHIViewSendCommandToUserFocus constant 2508
kHIViewStructureMetaPart constant 2511
kHIViewWindowContentID constant 2522
kHIViewWindowGrowBoxID constant 2522
kHIViewZOrderAbove constant 2512
kHIViewZOrderBelow constant 2512
kHIWindowBitAsyncDrag constant 1996
kHIWindowBitAutoViewDragTracking constant 1997
kHIWindowBitCanBeVisibleWithoutLogin constant

1996
kHIWindowBitCloseBox constant 1993
kHIWindowBitCollapseBox constant 1994
kHIWindowBitCompositing constant 1995
kHIWindowBitDoesNotCycle constant 1995
kHIWindowBitDoesNotHide constant 1997
kHIWindowBitDoesNotShowBadgeInDock constant

1997
kHIWindowBitFrameworkScaled constant 1996
kHIWindowBitHideOnFullScreen constant 1997
kHIWindowBitHideOnSuspend constant 1996
kHIWindowBitIgnoreClicks constant 1997
kHIWindowBitInWindowMenu constant 1997
kHIWindowBitLiveResize constant 1997

kHIWindowBitNoActivates constant 1995
kHIWindowBitNoConstrain constant 1997
kHIWindowBitNoShadow constant 1996
kHIWindowBitNoTexturedContentSeparator

constant 1995
kHIWindowBitNoTitleBar constant 1994
kHIWindowBitNoUpdates constant 1995
kHIWindowBitOpaqueForEvents constant 1995
kHIWindowBitResizable constant 1994
kHIWindowBitSideTitlebar constant 1994
kHIWindowBitStandardHandler constant 1996
kHIWindowBitTextured constant 1994
kHIWindowBitTexturedSquareCorners constant 1995
kHIWindowBitToolbarButton constant 1994
kHIWindowBitUnifiedTitleAndToolbar constant

1994
kHIWindowBitZoomBox constant 1993
kHIWindowDragPart constant 2010
kHIWindowExposeHidden constant 2047
kHIWindowMenuCreator constant 2042
kHIWindowMenuWindowTag constant 2042
kHIWindowScaleModeFrameworkScaled constant 2048
kHIWindowScaleModeMagnified constant 2047
kHIWindowScaleModeUnscaled constant 2047
kHIWindowTitleBarPart constant 2010
kHIWindowTitleProxyIconPart constant 2011
kHIWindowVisibleInAllSpaces constant 2047
kHMAbsoluteCenterAligned constant 492
kHMCFStringContent constant 488
kHMCFStringLocalizedContent constant 488
kHMContentNotProvided constant 492
kHMContentNotProvidedDontPropagate constant

492
kHMContentProvided constant 492
kHMDefaultSide constant 489
kHMDisposeContent constant 487
kHMInsideBottomCenterAligned constant 491
kHMInsideBottomLeftCorner constant 492
kHMInsideBottomRightCorner constant 492
kHMInsideLeftCenterAligned constant 491
kHMInsideRightCenterAligned constant 491
kHMInsideTopCenterAligned constant 491
kHMInsideTopLeftCorner constant 491
kHMInsideTopRightCorner constant 491
kHMMaximumContentIndex constant 493
kHMMinimumContentIndex constant 493
kHMNoContent constant 488
kHMOutsideBottomCenterAligned constant 491
kHMOutsideBottomLeftAligned constant 490
kHMOutsideBottomRightAligned constant 490
kHMOutsideBottomScriptAligned constant 490
kHMOutsideLeftBottomAligned constant 490
kHMOutsideLeftCenterAligned constant 490

3083
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kHMOutsideLeftTopAligned constant 490
kHMOutsideRightBottomAligned constant 491
kHMOutsideRightCenterAligned constant 490
kHMOutsideRightTopAligned constant 491
kHMOutsideTopCenterAligned constant 491
kHMOutsideTopLeftAligned constant 490
kHMOutsideTopRightAligned constant 490
kHMOutsideTopScriptAligned constant 490
kHMPascalStrContent constant 488
kHMStringResContent constant 488
kHMStrResContent constant 489
kHMSupplyContent constant 487
kHMTEHandleContent constant 488
kHMTextResContent constant 489
kHomeCharCode constant 1014
kHRLookingForEmbedded constant 2597
kHRLookingForFrame constant 2597
kHRLookingForHTMLSource constant 2597
kHRLookingForImage constant 2597
kHRLookingForImageMap constant 2597
kIBCarbonRuntimeCantFindNibFile constant 1062
kIBCarbonRuntimeCantFindObject constant 1062
kIBCarbonRuntimeObjectNotOfRequestedType

constant 1062
kIconDialogItem constant 913
kIdleKCEvent constant 1141
kIdleKCEventMask constant 1142
KillControls function 632
kIM1ByteInputMode constant 1645
kIM2ByteInputMode constant 1645
kIMDirectInputMode constant 1645
kIMJaTypingMethodKana constant 1640
kIMJaTypingMethodProperty constant 1640
kIMJaTypingMethodRoman constant 1640
kInkAlternateCommand constant 1051
kInkDrawingCommand constant 1052
kInkDrawInkAndWritingGuides constant 1046
kInkDrawInkOnly constant 1046
kInkDrawNothing constant 1046
kInkGestureClear constant 1050
kInkGestureCopy constant 1050
kInkGestureCut constant 1049
kInkGestureDelete constant 1051
kInkGestureEscape constant 1051
kInkGestureJoin constant 1051
kInkGestureLeftReturn constant 1050
kInkGestureLeftSpace constant 1050
kInkGesturePaste constant 1050
kInkGestureRightReturn constant 1050
kInkGestureRightSpace constant 1050
kInkGestureSelectAll constant 1050
kInkGestureTab constant 1050
kInkGestureUndo constant 1049

kInkInputMethodClass constant 1638
kInkPenLowerSideButtonMask constant 1053
kInkPenTipButtonMask constant 1053
kInkPenUpperSideButtonMask constant 1053
kInkRecognitionDefault constant 1049
kInkRecognitionGesture constant 1049
kInkRecognitionNone constant 1048
kInkRecognitionText constant 1049
kInkSeparatorCommand constant 1051
kInkSourceApplication constant 1053
kInkSourceUser constant 1052
kInkTabletPointerCursor constant 1054
kInktabletPointerEraser constant 1054
kInkTabletPointerPen constant 1054
kInkTabletPointerUnknown constant 1054
kInkTerminationAll constant 1048
kInkTerminationDefault constant 1048
kInkTerminationNone constant 1047
kInkTerminationOutOfProximity constant 1047
kInkTerminationRecognizerHorizontalBreak

constant 1047
kInkTerminationRecognizerVerticalBreak

constant 1048
kInkTerminationStroke constant 1048
kInkTerminationTimeOut constant 1047
kInkTextDrawDefault constant 1052
kInkTextDrawHonorContext constant 1052
kInkTextDrawIgnorePressure constant 1052
kInkWriteAnywhere constant 1045
kInkWriteAnywhereInApp constant 1046
kInkWriteInInkAwareAppsOnly constant 1045
kInkWriteNowhere constant 1045
kInkWriteNowhereInApp constant 1046
kInputMethodService constant 1633
kInsertHierarchicalMenu constant 1381
kInternetPasswordKCItemClass constant 1151
kInvisibleKCItemAttr constant 1146
kIssuerKCItemAttr constant 1149
kIssuerURLKCItemAttr constant 1149
kItemDisableBit constant 913
kKCAuthTypeDefault constant 1137
kKCAuthTypeDPA constant 1136
kKCAuthTypeHTTPDigest constant 1137
kKCAuthTypeMSN constant 1136
kKCAuthTypeNTLM constant 1136
kKCAuthTypeRPA constant 1137
kKCProtocolTypeAFP constant 1153
kKCProtocolTypeAppleTalk constant 1153
kKCProtocolTypeFTP constant 1152
kKCProtocolTypeFTPAccount constant 1152
kKCProtocolTypeHTTP constant 1152
kKCProtocolTypeIMAP constant 1153
kKCProtocolTypeIRC constant 1152

3084
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kKCProtocolTypeLDAP constant 1153
kKCProtocolTypeNNTP constant 1152
kKCProtocolTypePOP3 constant 1152
kKCProtocolTypeSMTP constant 1152
kKCProtocolTypeSOCKS constant 1153
kKCProtocolTypeTelnet constant 1153
kKeyboardANSI constant 1072
kKeyboardInputMethodClass constant 1638
kKeyboardISO constant 1072
kKeyboardJIS constant 1072
kKeyboardUnknown constant 1072
kKeychainListChangedKCEvent constant 1142
kKLGroupIdentifier constant 1072
kKLIcon constant 1071
kKLIdentifier constant 1071
kKLKCHRData constant 1071
kKLKCHRKind constant 1070
kKLKCHRuchrKind constant 1070
kKLKind constant 1072
kKLLocalizedName constant 1071
kKLName constant 1071
kKLuchrData constant 1071
kKLuchrKind constant 1070
kKLUSKeyboard constant 1069
kLabelKCItemAttr constant 1146
kLastWindowOfClass constant 2033
kLeftArrowCharCode constant 1016
KLGetCurrentKeyboardLayout function (Deprecated

in Mac OS X v10.5) 1064
KLGetIndexedKeyboardLayout function 1065
KLGetKeyboardLayoutAtIndex function (Deprecated

in Mac OS X v10.5) 1065
KLGetKeyboardLayoutCount function (Deprecated in

Mac OS X v10.5) 1066
KLGetKeyboardLayoutProperty function (Deprecated

in Mac OS X v10.5) 1066
KLGetKeyboardLayoutWithIdentifier function

(Deprecated in Mac OS X v10.5) 1067
KLGetKeyboardLayoutWithName function (Deprecated

in Mac OS X v10.5) 1068
kLineFeedCharCode constant 1015
kListDefProcPtr 1213
kListDefProcPtr constant 1213
kListDefStandardIconType constant 1213
kListDefStandardTextType constant 1213
kListDefUserProcType constant 1213
kLockKCEvent constant 1141
kLockKCEventMask constant 1143
KLSetCurrentKeyboardLayout function (Deprecated

in Mac OS X v10.5) 1068
kMacHelpVersion constant 487
kMenuAppleLogoFilledGlyph constant 1385
kMenuAppleLogoOutlineGlyph constant 1388

kMenuAttrAutoDisable constant 1376
kMenuAttrCondenseSeparators constant 1376
kMenuAttrDoNotCacheImage constant 1376
kMenuAttrDoNotUseUserCommandKeys constant 1377
kMenuAttrExcludesMarkColumn constant 1376
kMenuAttrHidden constant 1376
kMenuAttrUsePencilGlyph constant 1376
kMenuBlankGlyph constant 1386
kMenuCalcItemMsg constant 1373
kMenuCapsLockGlyph constant 1387
kMenuCGImageRefType constant 1395
kMenuCheckmarkGlyph constant 1385
kMenuChooseMsg constant 1375
kMenuClearGlyph constant 1386
kMenuColorIconType constant 1394
kMenuCommandGlyph constant 1385
kMenuContextCommandIDSearch constant 388
kMenuContextKeyMatching constant 387
kMenuContextMenuBar constant 387
kMenuContextMenuBarTracking constant 387
kMenuContextMenuEnabling constant 388
kMenuContextPopUp constant 387
kMenuContextPopUpTracking constant 387
kMenuContextPulldown constant 387
kMenuContextSubmenu constant 387
kMenuContextualMenuGlyph constant 1388
kMenuControlGlyph constant 1384
kMenuControlISOGlyph constant 1389
kMenuControlModifier constant 1397
kMenuDefClassID constant 1380
kMenuDefProcPtr constant 1380
kMenuDeleteLeftGlyph constant 1386
kMenuDeleteRightGlyph constant 1384
kMenuDiamondGlyph constant 1385
kMenuDisposeMsg constant 1374
kMenuDownArrowGlyph constant 1387
kMenuDownwardArrowDashedGlyph constant 1385
kMenuDrawItemMsg constant 1375
kMenuDrawItemsMsg constant 1374
kMenuDrawMsg constant 1373
kMenuEjectGlyph constant 1389
kMenuEnterGlyph constant 1384
kMenuEscapeGlyph constant 1386
kMenuEventDontCheckSubmenus constant 1382
kMenuEventIncludeDisabledItems constant 1382
kMenuEventQueryOnly constant 1382
kMenuF10Glyph constant 1389
kMenuF11Glyph constant 1389
kMenuF12Glyph constant 1389
kMenuF13Glyph constant 1389
kMenuF14Glyph constant 1389
kMenuF15Glyph constant 1389
kMenuF1Glyph constant 1388

3085
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kMenuF2Glyph constant 1388
kMenuF3Glyph constant 1388
kMenuF4Glyph constant 1388
kMenuF5Glyph constant 1388
kMenuF6Glyph constant 1388
kMenuF7Glyph constant 1388
kMenuF8Glyph constant 1389
kMenuF9Glyph constant 1389
kMenuFindItemMsg constant 1374
kMenuHelpGlyph constant 1387
kMenuHiliteItemMsg constant 1374
kMenuIconRefType constant 1395
kMenuIconResourceType constant 1395
kMenuIconSuiteType constant 1395
kMenuIconType constant 1394
kMenuInitMsg constant 1373
kMenuItemAttrAutoDisable constant 1379
kMenuItemAttrAutoRepeat constant 1378
kMenuItemAttrCustomDraw constant 1379
kMenuItemAttrDisabled constant 1377
kMenuItemAttrDynamic constant 1378
kMenuItemAttrHidden constant 1378
kMenuItemAttrIconDisabled constant 1377
kMenuItemAttrIgnoreMeta constant 1378
kMenuItemAttrIncludeInCmdKeyMatching constant

1379
kMenuItemAttrNotPreviousAlternate constant 1378
kMenuItemAttrSectionHeader constant 1378
kMenuItemAttrSeparator constant 1378
kMenuItemAttrSubmenuParentChoosable constant

1377
kMenuItemAttrUpdateSingleItem constant 1379
kMenuItemAttrUseVirtualKey constant 1379
kMenuItemDataAllDataVersionOne constant 1393
kMenuItemDataAllDataVersionTwo constant 1393
kMenuItemDataAttributes constant 1393
kMenuItemDataCFString constant 1393
kMenuItemDataCmdKey constant 1391
kMenuItemDataCmdKeyGlyph constant 1391
kMenuItemDataCmdKeyModifiers constant 1391
kMenuItemDataCmdVirtualKey constant 1393
kMenuItemDataCommandID constant 1392
kMenuItemDataEnabled constant 1391
kMenuItemDataFontID constant 1392
kMenuItemDataIconEnabled constant 1391
kMenuItemDataIconHandle constant 1392
kMenuItemDataIconID constant 1391
kMenuItemDataIndent constant 1393
kMenuItemDataMark constant 1390
kMenuItemDataProperties constant 1393
kMenuItemDataRefcon constant 1392
kMenuItemDataStyle constant 1391
kMenuItemDataSubmenuHandle constant 1392

kMenuItemDataSubmenuID constant 1392
kMenuItemDataText constant 1390
kMenuItemDataTextEncoding constant 1392
kMenuLeftArrowDashedGlyph constant 1386
kMenuLeftArrowGlyph constant 1387
kMenuLeftDoubleQuotesJapaneseGlyph constant

1386
kMenuNoCommandModifier constant 1397
kMenuNoIcon constant 1394
kMenuNoModifiers constant 1396
kMenuNonmarkingReturnGlyph constant 1385
kMenuNorthwestArrowGlyph constant 1387
kMenuNullGlyph constant 1384
kMenuOptionGlyph constant 1384
kMenuOptionModifier constant 1396
kMenuPageDownGlyph constant 1387
kMenuPageUpGlyph constant 1387
kMenuParagraphKoreanGlyph constant 1385
kMenuPencilGlyph constant 1385
kMenuPopUpMsg constant 1373
kMenuPowerGlyph constant 1388
kMenuPropertyPersistent constant 1395
kMenuReturnGlyph constant 1385
kMenuReturnR2LGlyph constant 1385
kMenuRightArrowDashedGlyph constant 1386
kMenuRightArrowGlyph constant 1387
kMenuRightDoubleQuotesJapaneseGlyph constant

1386
kMenuShiftGlyph constant 1384
kMenuShiftModifier constant 1396
kMenuShrinkIconType constant 1394
kMenuSizeMsg constant 1373
kMenuSmallIconType constant 1394
kMenuSoutheastArrowGlyph constant 1387
kMenuSpaceGlyph constant 1384
kMenuStdMenuBarProc constant 1399
kMenuStdMenuProc constant 1399
kMenuSystemIconSelectorType constant 1395
kMenuTabLeftGlyph constant 1384
kMenuTabRightGlyph constant 1384
kMenuThemeSavvyMsg constant 1373
kMenuTrackingModeKeyboard constant 1396
kMenuTrackingModeMouse constant 1396
kMenuTrademarkJapaneseGlyph constant 1386
kMenuUpArrowDashedGlyph constant 1386
kMenuUpArrowGlyph constant 1387
kModalDialogVariantCode constant 2025
kModalWindowClass constant 1989
kModDateKCItemAttr constant 1146
kMouseParamsSticky constant 399
kMouseTrackingKeyModifiersChanged constant 398
kMouseTrackingMouseDown constant 398
kMouseTrackingMouseDragged constant 398

3086
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kMouseTrackingMouseEntered constant 398
kMouseTrackingMouseExited constant 398
kMouseTrackingMouseMoved constant 398
kMouseTrackingMousePressed constant 396
kMouseTrackingMouseReleased constant 396
kMouseTrackingMouseUp constant 398
kMouseTrackingOptionsGlobalClip constant 395
kMouseTrackingOptionsLocalClip constant 395
kMouseTrackingOptionsStandard constant 395
kMovableAlertVariantCode constant 2025
kMovableAlertWindowClass constant 1989
kMovableModalDialogVariantCode constant 2025
kMovableModalWindowClass constant 1989
kNavAllFiles constant 1480
kNavAllFilesInPopup constant 1473
kNavAllKnownFiles constant 1479
kNavAllowInvisibleFiles constant 1473
kNavAllowMultipleFiles constant 1473
kNavAllowOpenPackages constant 1474
kNavAllowPreviews constant 1473
kNavAllowStationery constant 1473
kNavAllReadableFiles constant 1480
kNavAskDiscardChanges constant 1475
kNavAskDiscardChangesCancel constant 1475
kNavAskSaveChangesCancel constant 1481
kNavAskSaveChangesDontSave constant 1481
kNavAskSaveChangesSave constant 1481
kNavCBAccept constant 1478
kNavCBAdjustPreview constant 1478
kNavCBAdjustRect constant 1477
kNavCBCancel constant 1478
kNavCBCustomize constant 1476
kNavCBEvent constant 1476
kNavCBNewLocation constant 1477
kNavCBOpenSelection constant 1478
kNavCBPopupMenuSelect constant 1477
kNavCBSelectEntry constant 1477
kNavCBShowDesktop constant 1477
kNavCBStart constant 1476
kNavCBTerminate constant 1477
kNavCBUserAction constant 1478
kNavCtlAccept constant 1468
kNavCtlAddControl constant 1469
kNavCtlAddControlList constant 1469
kNavCtlBrowserRedraw constant 1471
kNavCtlBrowserSelectAll constant 1470
kNavCtlCancel constant 1468
kNavCtlEjectVolume constant 1468
kNavCtlGetEditFileName constant 1470
kNavCtlGetFirstControlID constant 1469
kNavCtlGetLocation constant 1467
kNavCtlGetSelection constant 1467
kNavCtlGotoParent constant 1471

kNavCtlIsPreviewShowing constant 1469
kNavCtlNewFolder constant 1468
kNavCtlOpenSelection constant 1468
kNavCtlPageDown constant 1467
kNavCtlPageUp constant 1467
kNavCtlScrollEnd constant 1467
kNavCtlScrollHome constant 1467
kNavCtlSelectAllType constant 1470
kNavCtlSelectCustomType constant 1470
kNavCtlSelectEditFileName constant 1470
kNavCtlSetActionState constant 1471
kNavCtlSetEditFileName constant 1470
kNavCtlSetLocation constant 1467
kNavCtlSetSelection constant 1468
kNavCtlShowDesktop constant 1466
kNavCtlShowSelection constant 1468
kNavCtlSortBy constant 1466
kNavCtlSortOrder constant 1466
kNavCtlTerminate constant 1471
kNavCustomControlMessageFailedErr constant 1486
kNavDefaultNavDlogOptions constant 1472
kNavDontAddRecents constant 1474
kNavDontAddTranslateItems constant 1473
kNavDontAutoTranslate constant 1473
kNavDontChooseState constant 1465
kNavDontConfirmReplacement constant 1475
kNavDontNewFolderState constant 1465
kNavDontOpenState constant 1465
kNavDontResolveAliases constant 1474
kNavDontSaveState constant 1465
kNavDontUseCustomFrame constant 1474
kNavFilteringBrowserList constant 1480
kNavFilteringFavorites constant 1480
kNavFilteringLocationPopup constant 1481
kNavFilteringRecents constant 1480
kNavFilteringShortCutVolumes constant 1480
kNavGenericSignature constant 1479
kNavInvalidCustomControlMessageErr constant

1486
kNavInvalidSystemConfigErr constant 1486
kNavMissingKindStringErr constant 1487
kNavNormalState constant 1464
kNavNoTypePopup constant 1472
kNavPreserveSaveFileExtension constant 1475
kNavSaveChangesClosingDocument constant 1482
kNavSaveChangesOther constant 1482
kNavSaveChangesQuittingApplication constant

1482
kNavSelectAllReadableItem constant 1474
kNavSelectDefaultLocation constant 1474
kNavSortAscending constant 1482
kNavSortDateField constant 1479
kNavSortDescending constant 1482

3087
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kNavSortNameField constant 1478
kNavSupportPackages constant 1474
kNavTranslateCopy constant 1483
kNavTranslateInPlace constant 1483
kNavUserActionCancel constant 1484
kNavUserActionChoose constant 1484
kNavUserActionDiscardChanges constant 1485
kNavUserActionDiscardDocuments constant 1485
kNavUserActionDontSaveChanges constant 1485
kNavUserActionNewFolder constant 1484
kNavUserActionNone constant 1484
kNavUserActionOpen constant 1484
kNavUserActionReviewDocuments constant 1485
kNavUserActionSaveAs constant 1484
kNavUserActionSaveChanges constant 1484
kNavWrongDialogClassErr constant 1486
kNavWrongDialogStateErr constant 1486
kNegativeKCItemAttr constant 1147
kNeutralScript constant 1636
kNextWindowGroup constant 2030
kNonBreakingSpaceCharCode constant 1016
kNoneKCStopOn constant 1139
kNoteIcon constant 906
kNullCharCode constant 1014
kOCRInputMethodClass constant 1639
kOkItemIndex 914
kOkItemIndex constant 914
kOptionUnicode constant 1017
kOSACanGetSource constant 2882
kOSAComponentType 2871
kOSAComponentType constant 2871
kOSADontUsePhac constant 2880
kOSAErrorApp constant 2878
kOSAErrorBriefMessage constant 2878
kOSAErrorExpectedType constant 2879
kOSAErrorMessage constant 2878
kOSAErrorNumber constant 2878
kOSAErrorOffendingObject constant 2879
kOSAErrorPartialResult constant 2879
kOSAErrorRange constant 2879
kOSAGenericScriptingComponentSubtype 2871
kOSAModeAlwaysInteract constant 2875
kOSAModeAugmentContext constant 2876
kOSAModeCanInteract constant 2875
kOSAModeCantSwitchLayer constant 2875
kOSAModeCompileIntoContext constant 2876
kOSAModeDispatchToDirectObject constant 2876
kOSAModeDisplayForHumans constant 2876
kOSAModeDontDefine 2871
kOSAModeDontDefine constant 2871
kOSAModeDontGetDataForArguments constant 2876
kOSAModeDontReconnect constant 2875
kOSAModeDontStoreParent constant 2876

kOSAModeDoRecord constant 2875
kOSAModeFullyQualifyDescriptors constant 2877
kOSAModeNeverInteract constant 2874
kOSAModePreventGetSource constant 2874
kOSANoDispatch constant 2880
kOSANullScript 2871
kOSARecordedText 2872
kOSAScriptBestType constant 2881
kOSAScriptIsModified constant 2881
kOSAScriptIsTypeCompiledScript constant 2881
kOSAScriptIsTypeScriptContext constant 2881
kOSAScriptIsTypeScriptValue constant 2881
kOSAScriptResourceType 2872
kOSAScriptResourceType constant 2872
kOSASelectComponentSpecificStart 2872
kOSASelectComponentSpecificStart constant 2872
kOSASelectCopyScript 2873
kOSASuite 2873
kOSASupportsAECoercion constant 2860
kOSASupportsAESending constant 2860
kOSASupportsCompiling constant 2860
kOSASupportsConvenience constant 2860
kOSASupportsDialects constant 2861
kOSASupportsEventHandling constant 2861
kOSASupportsGetSource constant 2860
kOSASupportsRecording constant 2860
kOSAUseStandardDispatch constant 2880
kOutputTextInUnicodeEncodingBit constant 2748
kOutputTextInUnicodeEncodingMask constant 2751
kOverlayWindowClass constant 1991
kPageDownCharCode constant 1015
kPageUpCharCode constant 1015
kPasswordChangedKCEvent constant 1141
kPasswordChangedKCEventMask constant 1143
kPathKCItemAttr constant 1148
kPDEBaseVersionMajor constant 2935
kPDEBaseVersionMinor constant 2935
kPDEBuildVersionMajor constant 2935
kPDEBuildVersionMinor constant 2935
kPDE_PMJobTemplateRef constant 2936
kPDE_PMPageFormatRef constant 2936
kPDE_PMPrinterInfoRef constant 2936
kPDE_PMPrintSettingsRef constant 2936
kPencilUnicode constant 1017
kPictureDialogItem constant 913
kPlainDialogVariantCode constant 2025
kPlainWindowClass constant 1991
kPMCloseFailed constant 2938
kPMColorPDEKindID constant 2935
kPMCopiesAndPagesPDEKindID constant 2935
kPMCoverPagePDEKindID constant 2935
kPMDontSwitchPDEError constant 2938
kPMDuplexPDEKindID constant 2935

3088
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kPMEditRequestFailed constant 2938
kPMHideInlineItems constant 2106
kPMInvalidLookupSpec constant 2938
kPMInvalidPBMRef constant 2938
kPMInvalidPDEContext constant 2939
kPMInvalidPrinterAddress constant 2939
kPMIOAttrNotAvailable constant 2939
kPMLayoutPDEKindID constant 2936
kPMNoSelectedPrinters constant 2939
kPMOpenFailed constant 2939
kPMOutputOptionsPDEKindID constant 2936
kPMPageAttributesKindID constant 2936
kPMPaperFeedPDEKindID constant 2936
kPMPDEAllFlags constant 2934
kPMPDENoFlags constant 2934
kPMPDENoSummary constant 2934
kPMPrBrowserNoUI constant 2939
kPMPriorityPDEKindID constant 2936
kPMReadFailed constant 2939
kPMReadGotZeroData constant 2939
kPMRotationScalingPDEKindID constant 2936
kPMShowDefaultInlineItems constant 2106
kPMShowInlineCopies constant 2107
kPMShowInlineOrientation constant 2107
kPMShowInlinePageRange constant 2107
kPMShowInlinePageRangeWithSelection constant

2107
kPMShowInlinePaperSize constant 2107
kPMShowInlineScale constant 2107
kPMShowPageAttributesPDE constant 2107
kPMStatusFailed constant 2939
kPMSyncRequestFailed constant 2939
kPMUnsupportedConnection constant 2939
kPMWriteFailed constant 2939
kPolicyKCStopOn constant 1139
kPortKCItemAttr constant 1148
kPreviousWindowGroup constant 2030
kPrinterModuleTypeIDStr constant 2937
kProtocolKCItemAttr constant 1148
kPublicKeyHashKCItemAttr constant 1149
kPublicThemeFontCount 169
kRadioButtonDialogItem constant 912
kRdPermKCStatus constant 1154
kResourceControlDialogItem constant 912
kReturnCharCode constant 1015
kRightArrowCharCode constant 1016
kRoundWindowDefinition constant 2046
kScrapClearNamedScrap constant 1513
kScrapClipboardScrap constant 1514
kScrapFindScrap constant 1514
kScrapFlavorMaskNone constant 1512
kScrapFlavorMaskSenderOnly constant 1512
kScrapFlavorMaskTranslated constant 1512

kScrapFlavorTypeMovie constant 1511
kScrapFlavorTypePicture constant 1511
kScrapFlavorTypeSound constant 1511
kScrapFlavorTypeText constant 1511
kScrapFlavorTypeTextStyle constant 1511
kScrapFlavorTypeUnicode constant 1511
kScrapFlavorTypeUnicodeStyle constant 1512
kScrapGetNamedScrap constant 1513
kScriptCodeKCItemAttr constant 1146
kScrollBarsAlwaysActive constant 2761
kScrollBarsSyncWithFocus constant 2761
kScrollWindowEraseToPortBackground constant

2045
kScrollWindowInvalidate constant 2044
kScrollWindowNoOptions constant 2044
kSecurityDomainKCItemAttr constant 1147
kSerialNumberKCItemAttr constant 1149
kServerKCItemAttr constant 1147
kServiceKCItemAttr constant 1147
kShadowDialogVariantCode constant 2025
kSheetAlertWindowClass constant 1991
kSheetWindowClass constant 1990
kShiftUnicode 1016
kShiftUnicode constant 1016
kSideFloaterVariantCode constant 2026
kSignatureKCItemAttr constant 1148
kSignKCItemAttr constant 1150
kSpaceCharCode constant 1016
kSpeechInputMethodClass constant 1639
kSRAlreadyFinished constant 1570
kSRAlreadyListening constant 1569
kSRAlreadyReleased constant 1570
kSRAutoFinishingParam constant 1565
kSRBadParameter constant 1568
kSRBadSelector constant 1569
kSRBlockBackground constant 1565
kSRBlockModally constant 1565
kSRBufferTooSmall constant 1569
kSRCallBackParam constant 1565
kSRCancelOnSoundOut constant 1566
kSRCanned22kHzSpeechSource constant 1568
kSRCantAdd constant 1570
kSRCantGetProperty constant 1569
kSRCantReadLanguageObject constant 1570
kSRCantSetDuringRecognition constant 1569
kSRCantSetProperty constant 1569
kSRCleanupOnClientExit constant 1563
kSRComponentNotFound constant 1568
kSRDefaultRecognitionSystemID constant 1562
kSRDefaultSpeechSource constant 1568
kSREnabled constant 1558
kSRExpansionTooDeep constant 1570
kSRFeedbackAndListeningModes constant 1562

3089
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kSRFeedbackNotAvail constant 1569
kSRForegroundOnly constant 1565
kSRHasFeedbackHasListenModes constant 1555
kSRHasNoSubItems constant 1570
kSRIdleRecognizer constant 1567
kSRInternalError constant 1568
kSRKeyExpected constant 1564
kSRKeyWord constant 1564
kSRLanguageModelFormat constant 1561
kSRLanguageModelTooBig constant 1570
kSRLanguageModelType constant 1559
kSRListenKeyCombo constant 1563
kSRListenKeyMode constant 1563
kSRListenKeyName constant 1563
kSRLiveDesktopSpeechSource constant 1568
kSRLMObjType constant 1557
kSRModelMismatch constant 1569
kSRMustCancelSearch constant 1567
kSRNoClientLanguageModel constant 1569
kSRNoFeedbackHasListenModes constant 1555
kSRNoFeedbackNoListenModes constant 1555
kSRNoPendingUtterances constant 1569
kSRNotARecSystem constant 1569
kSRNotASpeechObject constant 1568
kSRNotAvailable constant 1568
kSRNotFinishedWithRejection constant 1570
kSRNotificationParam constant 1564
kSRNotifyRecognitionBeginning constant 1560
kSRNotifyRecognitionDone constant 1560
kSRNotImplementedYet constant 1570
kSRNotListeningState constant 1569
kSROptional constant 1558
kSROtherRecAlreadyModal constant 1570
kSROutOfMemory constant 1568
kSRParamOutOfRange constant 1569
kSRPathFormat constant 1561
kSRPathType constant 1559
kSRPendingSearch constant 1567
kSRPhraseFormat constant 1561
kSRPhraseType constant 1559
kSRReadAudioFSSpec constant 1566
kSRRecognitionCanceled constant 1569
kSRRecognitionDone constant 1569
kSRRefCon constant 1558
kSRRejectable constant 1558
kSRRejectedWord constant 1562
kSRRejectionLevel constant 1558
kSRRepeatable constant 1558
kSRSearchInProgress constant 1567
kSRSearchStatusParam constant 1565
kSRSearchWaitForAllClients constant 1567
kSRSndInSourceDisconnected constant 1570
kSRSoundInVolume constant 1566

kSRSpeedVsAccuracyParam constant 1566
kSRSpelling constant 1557
kSRSubItemNotFound constant 1570
kSRTEXTFormat constant 1561
kSRTooManyElements constant 1570
kSRUsePushToTalk constant 1560
kSRUseToggleListen constant 1560
kSRWantsAutoFBGestures constant 1566
kSRWantsResultTextDrawn constant 1566
kSRWordNotFound constant 1570
kSRWordType constant 1559
kStandardWindowDefinition constant 2046
kStartDateKCItemAttr constant 1150
kStaticTextDialogItem constant 912
kStdAlertDoNotAnimateOnCancel constant 915
kStdAlertDoNotAnimateOnDefault constant 915
kStdAlertDoNotAnimateOnOther constant 915
kStdAlertDoNotCloseOnHelp constant 915
kStdAlertDoNotDisposeSheet constant 915
kStdCancelItemIndex constant 916
kStdCFStringAlertVersionOne constant 916
kStdOkItemIndex 916
kStdOkItemIndex constant 916
kStopIcon constant 906
kStoredBasicWindowDescriptionID constant 2045
kStoredWindowPascalTitleID constant 2045
kStoredWindowSystemTag constant 2045
kStoredWindowTitleCFStringID constant 2045
kSubjectKCItemAttr constant 1148
kSystemEventKCEventMask constant 1143
kSystemKCEvent constant 1142
kTabCharCode constant 1015
kTextService constant 1635
kTextServiceDocumentInterfaceType constant 1643
kTextServiceInputModeBopomofo constant 1642
kTextServiceInputModeHangul constant 1642
kTextServiceInputModeJapanese constant 1642
kTextServiceInputModeJapaneseFirstName

constant 1642
kTextServiceInputModeJapaneseFullWidthRoman

constant 1642
kTextServiceInputModeJapaneseHalfWidthKana

constant 1642
kTextServiceInputModeJapaneseHiragana constant

1642
kTextServiceInputModeJapaneseKatakana constant

1642
kTextServiceInputModeJapaneseLastName constant

1642
kTextServiceInputModeJapanesePlaceName

constant 1642
kTextServiceInputModeKorean constant 1642
kTextServiceInputModePassword constant 1642

3090
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kTextServiceInputModePropertyTag constant 1640
kTextServiceInputModeRoman constant 1641
kTextServiceInputModeSimpChinese constant 1642
kTextServiceInputModeTradChinese constant 1642
kTextServiceInputModeTradChinesePlaceName

constant 1642
kTextServiceJaTypingMethodPropertyTag constant

1640
kTextServiceVersion2 constant 1639
kThemeActiveDialogBackgroundBrush 213
kThemeActiveDialogTextColor 214
kThemeActiveDocumentWindowTitleTextColor 215
kThemeActiveScrollBarDelimiterBrush 214
kThemeAdornmentArrowDoubleArrow constant 159
kThemeAdornmentArrowDownArrow constant 159
kThemeAdornmentArrowLeftArrow constant 158
kThemeAdornmentArrowUpArrow constant 159
kThemeAdornmentDefault constant 157
kThemeAdornmentDrawIndicatorOnly constant 157
kThemeAdornmentFocus constant 157
kThemeAdornmentHeaderButtonLeftNeighborSelected

constant 158
kThemeAdornmentHeaderButtonNoShadow constant

158
kThemeAdornmentHeaderButtonRightNeighborSelected

constant 158
kThemeAdornmentHeaderButtonShadowOnly constant

158
kThemeAdornmentHeaderButtonSortUp constant 158
kThemeAdornmentHeaderMenuButton constant 158
kThemeAdornmentNone constant 157
kThemeAdornmentNoShadow constant 158
kThemeAdornmentRightToLeft constant 157
kThemeAdornmentShadowOnly constant 158
kThemeAlertHeaderFont constant 168
kThemeAlertWindow constant 190
kThemeAliasArrowCursor constant 163
kThemeAppearanceFileNameTag constant 124
kThemeApplicationFont constant 168
kThemeArrow3pt constant 161
kThemeArrow5pt constant 161
kThemeArrow7pt constant 161
kThemeArrow9pt constant 161
kThemeArrowButton constant 154
kThemeArrowCursor constant 163
kThemeArrowDown constant 160
kThemeArrowLeft constant 160
kThemeArrowRight constant 160
kThemeArrowUp constant 160
kThemeBackgroundListViewWindowHeader constant

145
kThemeBackgroundPlacard constant 145
kThemeBackgroundTabPane constant 144

kThemeBackgroundWindowHeader constant 145
kThemeBevelButton constant 154
kThemeBottomInsideArrowPressed constant 189
kThemeBottomOutsideArrowPressed constant 189
kThemeBottomTrackPressed constant 189
kThemeBrushActiveAreaFill constant 149
kThemeBrushAlertBackgroundActive constant 147
kThemeBrushAlertBackgroundInactive constant

147
kThemeBrushAlternatePrimaryHighlightColor

constant 153
kThemeBrushAppleGuideCoachmark constant 149
kThemeBrushBevelActiveDark constant 151
kThemeBrushBevelActiveLight constant 151
kThemeBrushBevelInactiveDark constant 152
kThemeBrushBevelInactiveLight constant 152
kThemeBrushBlack constant 153
kThemeBrushButtonActiveDarkHighlight constant

150
kThemeBrushButtonActiveDarkShadow constant 150
kThemeBrushButtonActiveLightHighlight constant

150
kThemeBrushButtonActiveLightShadow constant

150
kThemeBrushButtonFaceActive constant 150
kThemeBrushButtonFaceInactive constant 150
kThemeBrushButtonFacePressed constant 150
kThemeBrushButtonFrameActive constant 149
kThemeBrushButtonFrameInactive constant 149
kThemeBrushButtonInactiveDarkHighlight

constant 150
kThemeBrushButtonInactiveDarkShadow constant

150
kThemeBrushButtonInactiveLightHighlight

constant 151
kThemeBrushButtonInactiveLightShadow constant

151
kThemeBrushButtonPressedDarkHighlight constant

151
kThemeBrushButtonPressedDarkShadow constant

151
kThemeBrushButtonPressedLightHighlight

constant 151
kThemeBrushButtonPressedLightShadow constant

151
kThemeBrushChasingArrows constant 148
kThemeBrushDialogBackgroundActive constant 147
kThemeBrushDialogBackgroundInactive constant

147
kThemeBrushDocumentWindowBackground constant

148
kThemeBrushDragHilite constant 148
kThemeBrushDrawerBackground constant 152

3091
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kThemeBrushFinderWindowBackground constant 148
kThemeBrushFocusHighlight constant 149
kThemeBrushIconLabelBackground constant 148
kThemeBrushIconLabelBackgroundSelected

constant 149
kThemeBrushListViewBackground constant 148
kThemeBrushListViewColumnDivider constant 153
kThemeBrushListViewEvenRowBackground constant

152
kThemeBrushListViewOddRowBackground constant

152
kThemeBrushListViewSeparator constant 148
kThemeBrushListViewSortColumnBackground

constant 148
kThemeBrushMenuBackground constant 152
kThemeBrushMenuBackgroundSelected constant 152
kThemeBrushModelessDialogBackgroundActive

constant 147
kThemeBrushModelessDialogBackgroundInactive

constant 147
kThemeBrushMovableModalBackground constant 152
kThemeBrushNotificationWindowBackground

constant 152
kThemeBrushPassiveAreaFill 214
kThemeBrushPopupArrowActive constant 149
kThemeBrushPopupArrowInactive constant 149
kThemeBrushPopupArrowPressed constant 149
kThemeBrushPrimaryHighlightColor constant 153
kThemeBrushScrollBarDelimiterActive constant

148
kThemeBrushScrollBarDelimiterInactive constant

148
kThemeBrushSecondaryHighlightColor constant

153
kThemeBrushSheetBackground constant 153
kThemeBrushSheetBackgroundOpaque constant 152
kThemeBrushSheetBackgroundTransparent constant

152
kThemeBrushStaticAreaFill constant 149
kThemeBrushToolbarBackground constant 152
kThemeBrushUtilityWindowBackgroundActive

constant 147
kThemeBrushUtilityWindowBackgroundInactive

constant 147
kThemeBrushWhite constant 153
kThemeButtonMixed constant 159
kThemeButtonOff constant 159
kThemeButtonOn constant 159
kThemeCheckBox constant 154
kThemeCheckBoxCheckMark constant 162
kThemeCheckBoxClassicX constant 162
kThemeClosedHandCursor constant 164
kThemeContextualMenuArrowCursor constant 163

kThemeControlSoundsMask constant 194
kThemeCopyArrowCursor constant 163
kThemeCountingDownHandCursor constant 165
kThemeCountingUpAndDownHandCursor constant 165
kThemeCountingUpHandCursor constant 164
kThemeCrossCursor constant 164
kThemeCurrentPortFont constant 169
kThemeCustomThemesFileType constant 122
kThemeDataFileType constant 122
kThemeDblClickCollapseTag constant 124
kThemeDesktopPatternNameTag constant 125
kThemeDesktopPatternTag constant 125
kThemeDesktopPictureAliasTag constant 125
kThemeDesktopPictureAlignmentTag constant 125
kThemeDesktopPictureNameTag constant 125
kThemeDialogWindow constant 190
kThemeDisclosureButton constant 155
kThemeDisclosureDown constant 160
kThemeDisclosureLeft constant 160
kThemeDisclosureRight constant 160
kThemeDocumentWindow constant 190
kThemeDragSoundDragging constant 212
kThemeDragSoundGrowUtilWindow constant 211
kThemeDragSoundGrowWindow constant 211
kThemeDragSoundMoveAlert constant 211
kThemeDragSoundMoveDialog constant 211
kThemeDragSoundMoveIcon constant 211
kThemeDragSoundMoveUtilWindow constant 211
kThemeDragSoundMoveWindow constant 211
kThemeDragSoundNone constant 210
kThemeDragSoundScrollBarArrowDecreasing

constant 212
kThemeDragSoundScrollBarArrowIncreasing

constant 212
kThemeDragSoundScrollBarGhost constant 212
kThemeDragSoundScrollBarThumb constant 211
kThemeDragSoundSliderGhost constant 211
kThemeDragSoundSliderThumb constant 211
kThemeEmphasizedSystemFont constant 167
kThemeExamplePictureIDTag constant 125
kThemeFinderSoundsMask constant 194
kThemeGrowDown constant 181
kThemeGrowLeft constant 181
kThemeGrowRight constant 181
kThemeGrowUp constant 181
kThemeHighlightColorNameTag constant 125
kThemeHighlightColorTag constant 123
kThemeIBeamCursor constant 164
kThemeIncDecButton constant 155
kThemeLabelFont constant 168
kThemeLargeBevelButton constant 155
kThemeLargeRoundButton constant 155
kThemeLargeTabHeight constant 184

3092
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kThemeLargeTabHeightMax constant 184
kThemeLeftInsideArrowPressed constant 188
kThemeLeftOutsideArrowPressed constant 187
kThemeLeftTrackPressed constant 188
kThemeListHeaderButton constant 155
kThemeMediumBevelButton constant 155
kThemeMediumIndeterminateBar constant 187
kThemeMediumProgressBar constant 187
kThemeMediumScrollBar constant 186
kThemeMediumSlider constant 187
kThemeMenuActive constant 177
kThemeMenuBarNormal constant 177
kThemeMenuBarSelected constant 177
kThemeMenuItemAtBottom constant 178
kThemeMenuItemAtTop constant 178
kThemeMenuItemCmdKeyFont constant 168
kThemeMenuItemFont constant 168
kThemeMenuItemHasIcon constant 179
kThemeMenuItemHierarchical constant 178
kThemeMenuItemHierBackground constant 178
kThemeMenuItemMarkFont constant 168
kThemeMenuItemNoBackground constant 179
kThemeMenuItemPlain constant 178
kThemeMenuItemPopUpBackground constant 179
kThemeMenuItemScrollDownArrow constant 178
kThemeMenuItemScrollUpArrow constant 178
kThemeMenuSelected constant 177
kThemeMenuSoundsMask constant 194
kThemeMenuSquareMenuBar 179
kThemeMenuSquareMenuBar constant 179
kThemeMenuTitleFont constant 168
kThemeMenuTypeHierarchical constant 176
kThemeMenuTypeInactive constant 176
kThemeMenuTypePopUp constant 176
kThemeMenuTypePullDown constant 176
kThemeMetricButtonRoundedHeight constant 144
kThemeMetricButtonRoundedRecessedHeight

constant 144
kThemeMetricCheckBoxGlyphHeight 216
kThemeMetricCheckBoxHeight constant 131
kThemeMetricCheckBoxWidth constant 135
kThemeMetricComboBoxLargeBottomShadowOffset

constant 138
kThemeMetricComboBoxLargeDisclosureWidth

constant 139
kThemeMetricComboBoxLargeRightShadowOffset

constant 138
kThemeMetricComboBoxMiniBottomShadowOffset

constant 139
kThemeMetricComboBoxMiniDisclosureWidth

constant 139
kThemeMetricComboBoxMiniRightShadowOffset

constant 139

kThemeMetricComboBoxSmallBottomShadowOffset
constant 139

kThemeMetricComboBoxSmallDisclosureWidth
constant 139

kThemeMetricComboBoxSmallRightShadowOffset
constant 139

kThemeMetricDisclosureButtonHeight constant
136

kThemeMetricDisclosureButtonWidth constant 137
kThemeMetricDisclosureTriangleHeight constant

133
kThemeMetricDisclosureTriangleWidth constant

133
kThemeMetricEditTextFrameOutset constant 132
kThemeMetricEditTextWhitespace constant 132
kThemeMetricFocusRectOutset constant 132
kThemeMetricHSliderHeight constant 134
kThemeMetricHSliderTickHeight constant 135
kThemeMetricHSliderTickOffset constant 143
kThemeMetricImageWellThickness constant 132
kThemeMetricLargeProgressBarThickness constant

134
kThemeMetricLargeRoundButtonSize constant 137
kThemeMetricLargeTabCapsWidth constant 132
kThemeMetricLargeTabHeight constant 132
kThemeMetricListBoxFrameOutset constant 132
kThemeMetricListHeaderHeight constant 133
kThemeMetricLittleArrowsHeight constant 134
kThemeMetricLittleArrowsMiniHeight constant

139
kThemeMetricLittleArrowsMiniWidth constant 140
kThemeMetricLittleArrowsSmallHeight constant

140
kThemeMetricLittleArrowsSmallWidth constant

140
kThemeMetricLittleArrowsWidth constant 134
kThemeMetricMenuExcludedMarkColumnWidth

constant 136
kThemeMetricMenuIconTrailingEdgeMargin

constant 136
kThemeMetricMenuIndentWidth constant 136
kThemeMetricMenuMarkColumnWidth constant 136
kThemeMetricMenuMarkIndent constant 136
kThemeMetricMenuTextLeadingEdgeMargin constant

136
kThemeMetricMenuTextTrailingEdgeMargin

constant 136
kThemeMetricMiniCheckBoxHeight constant 140
kThemeMetricMiniCheckBoxWidth constant 140
kThemeMetricMiniDisclosureButtonHeight

constant 140
kThemeMetricMiniDisclosureButtonWidth constant

140

3093
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kThemeMetricMiniHSliderHeight constant 140
kThemeMetricMiniHSliderMinThumbWidth constant

140
kThemeMetricMiniHSliderTickHeight constant 140
kThemeMetricMiniHSliderTickOffset constant 140
kThemeMetricMiniPopupButtonHeight constant 140
kThemeMetricMiniPullDownHeight constant 140
kThemeMetricMiniPushButtonHeight constant 141
kThemeMetricMiniRadioButtonHeight constant 141
kThemeMetricMiniRadioButtonWidth constant 141
kThemeMetricMiniTabCapsWidth constant 141
kThemeMetricMiniTabFrameOverlap constant 141
kThemeMetricMiniTabHeight constant 141
kThemeMetricMiniTabOverlap constant 141
kThemeMetricMiniVSliderMinThumbHeight constant

141
kThemeMetricMiniVSliderTickOffset constant 141
kThemeMetricMiniVSliderTickWidth constant 141
kThemeMetricMiniVSliderWidth constant 141
kThemeMetricNormalProgressBarThickness

constant 135
kThemeMetricPaneSplitterHeight constant 137
kThemeMetricPopupButtonHeight constant 134
kThemeMetricPrimaryGroupBoxContentInset

constant 135
kThemeMetricProgressBarShadowOutset constant

135
kThemeMetricPullDownHeight constant 134
kThemeMetricPushButtonHeight constant 133
kThemeMetricRadioButtonHeight constant 132
kThemeMetricRadioButtonWidth constant 135
kThemeMetricRelevanceIndicatorHeight constant

137
kThemeMetricResizeControlHeight constant 134
kThemeMetricRoundButtonSize constant 136
kThemeMetricRoundTextFieldContentHeight

constant 139
kThemeMetricRoundTextFieldContentInsetBottom

constant 139
kThemeMetricRoundTextFieldContentInsetLeft

constant 139
kThemeMetricRoundTextFieldContentInsetRight

constant 139
kThemeMetricRoundTextFieldContentInsetTop

constant 139
kThemeMetricRoundTextFieldContentInsetWithIconLeft

constant 141
kThemeMetricRoundTextFieldContentInsetWithIcon-

Right constant 141
kThemeMetricRoundTextFieldMiniContentHeight

constant 142
kThemeMetricRoundTextFieldMiniContentInsetBottom

constant 142

kThemeMetricRoundTextFieldMiniContentInsetLeft
constant 142

kThemeMetricRoundTextFieldMiniContentInsetRight
constant 142

kThemeMetricRoundTextFieldMiniContentInsetTop
constant 142

kThemeMetricRoundTextFieldMiniContentInsetWithIcon-
Left constant 142

kThemeMetricRoundTextFieldMiniContentInsetWithIcon-
Right constant 142

kThemeMetricRoundTextFieldSmallContentHeight
constant 142

kThemeMetricRoundTextFieldSmallContentInsetBottom
constant 142

kThemeMetricRoundTextFieldSmallContentInsetLeft
constant 142

kThemeMetricRoundTextFieldSmallContentInsetRight
constant 142

kThemeMetricRoundTextFieldSmallContentInsetTop
constant 142

kThemeMetricRoundTextFieldSmallContentInsetWith-
IconLeft constant 142

kThemeMetricRoundTextFieldSmallContentInsetWith-
IconRight constant 143

kThemeMetricScrollBarMinThumbHeight constant
143

kThemeMetricScrollBarMinThumbWidth constant
143

kThemeMetricScrollBarOverlap constant 132
kThemeMetricScrollBarWidth constant 131
kThemeMetricSecondaryGroupBoxContentInset

constant 136
kThemeMetricSeparatorSize constant 144
kThemeMetricSliderMinThumbHeight constant 143
kThemeMetricSliderMinThumbWidth constant 143
kThemeMetricSmallCheckBoxHeight constant 137
kThemeMetricSmallCheckBoxWidth constant 138
kThemeMetricSmallDisclosureButtonHeight

constant 137
kThemeMetricSmallDisclosureButtonWidth

constant 137
kThemeMetricSmallHSliderHeight constant 137
kThemeMetricSmallHSliderMinThumbWidth constant

138
kThemeMetricSmallHSliderTickHeight constant

138
kThemeMetricSmallHSliderTickOffset constant

138
kThemeMetricSmallPaneSplitterHeight constant

143
kThemeMetricSmallPopupButtonHeight constant

134

3094
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kThemeMetricSmallProgressBarShadowOutset
constant 135

kThemeMetricSmallPullDownHeight constant 134
kThemeMetricSmallPushButtonHeight constant 137
kThemeMetricSmallRadioButtonHeight constant

137
kThemeMetricSmallRadioButtonWidth constant 138
kThemeMetricSmallResizeControlHeight constant

134
kThemeMetricSmallScrollBarMinThumbHeight

constant 143
kThemeMetricSmallScrollBarMinThumbWidth

constant 144
kThemeMetricSmallScrollBarWidth constant 131
kThemeMetricSmallTabCapsWidth constant 133
kThemeMetricSmallTabFrameOverlap constant 143
kThemeMetricSmallTabHeight constant 133
kThemeMetricSmallTabOverlap constant 143
kThemeMetricSmallVSliderMinThumbHeight

constant 138
kThemeMetricSmallVSliderTickOffset constant

138
kThemeMetricSmallVSliderTickWidth constant 138
kThemeMetricSmallVSliderWidth constant 138
kThemeMetricTabFrameOverlap constant 133
kThemeMetricTabIndentOrStyle constant 133
kThemeMetricTabOverlap constant 133
kThemeMetricTexturedPushButtonHeight constant

144
kThemeMetricTexturedSmallPushButtonHeight

constant 144
kThemeMetricTitleBarControlsHeight constant

135
kThemeMetricVSliderTickOffset constant 143
kThemeMetricVSliderTickWidth constant 135
kThemeMetricVSliderWidth constant 135
kThemeMovableAlertWindow constant 190
kThemeMovableDialogWindow constant 190
kThemeNameTag constant 123
kThemeNoAdornment 217
kThemeNormalCheckBox constant 156
kThemeNormalRadioButton constant 156
kThemeNoSounds constant 194
kThemeNotAllowedCursor constant 165
kThemeOpenHandCursor constant 164
kThemePlainDialogWindow constant 190
kThemePlatinumFileType constant 122
kThemePlusCursor constant 164
kThemePointingHandCursor constant 164
kThemePoofCursor constant 166
kThemePopupButton constant 155
kThemePopupTabCenterOnOffset constant 193
kThemePopupTabCenterOnWindow constant 193

kThemePopupTabNormalPosition constant 193
kThemePopupWindow constant 191
kThemePushButton constant 154
kThemePushButtonFont constant 168
kThemeRadioButton constant 154
kThemeResizeDownCursor constant 166
kThemeResizeLeftCursor constant 165
kThemeResizeLeftRightCursor constant 165
kThemeResizeRightCursor constant 165
kThemeResizeUpCursor constant 165
kThemeResizeUpDownCursor constant 166
kThemeRightInsideArrowPressed constant 188
kThemeRightOutsideArrowPressed constant 188
kThemeRightTrackPressed constant 188
kThemeRoundButton constant 155
kThemeRoundedBevelButton constant 156
kThemeSavvyMenuResponse constant 1380
kThemeScrollBar 216
kThemeScrollBarArrowsLowerRight constant 180
kThemeScrollBarArrowsSingle constant 180
kThemeScrollBarArrowStyleTag constant 124
kThemeScrollBarThumbNormal constant 180
kThemeScrollBarThumbProportional constant 180
kThemeScrollBarThumbStyleTag constant 124
kThemeShadowDialogWindow constant 190
kThemeSmallBevelButton constant 155
kThemeSmallCheckBox constant 156
kThemeSmallEmphasizedSystemFont constant 167
kThemeSmallRadioButton constant 156
kThemeSmallScrollBar constant 187
kThemeSmallSystemFont constant 167
kThemeSmallSystemFontTag constant 124
kThemeSmallTabHeight constant 184
kThemeSmallTabHeightMax constant 184
kThemeSmoothFontEnabledTag constant 126
kThemeSmoothFontMinSizeTag constant 126
kThemeSoundAlertClose constant 202
kThemeSoundAlertOpen constant 202
kThemeSoundBalloonClose constant 206
kThemeSoundBalloonOpen constant 206
kThemeSoundBevelEnter constant 206
kThemeSoundBevelExit constant 206
kThemeSoundBevelPress constant 206
kThemeSoundBevelRelease constant 206
kThemeSoundButtonEnter constant 202
kThemeSoundButtonExit constant 203
kThemeSoundButtonPress constant 202
kThemeSoundButtonRelease constant 203
kThemeSoundCancelButtonEnter constant 203
kThemeSoundCancelButtonExit constant 204
kThemeSoundCancelButtonPress constant 203
kThemeSoundCancelButtonRelease constant 204
kThemeSoundCheckboxEnter constant 204

3095
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kThemeSoundCheckboxExit constant 204
kThemeSoundCheckboxPress constant 204
kThemeSoundCheckboxRelease constant 204
kThemeSoundCopyDone constant 209
kThemeSoundDefaultButtonEnter constant 203
kThemeSoundDefaultButtonExit constant 203
kThemeSoundDefaultButtonPress constant 203
kThemeSoundDefaultButtonRelease constant 203
kThemeSoundDialogClose constant 202
kThemeSoundDialogOpen constant 202
kThemeSoundDisclosureEnter constant 208
kThemeSoundDisclosureExit constant 208
kThemeSoundDisclosurePress constant 208
kThemeSoundDisclosureRelease constant 208
kThemeSoundDiskEject constant 210
kThemeSoundDiskInsert constant 210
kThemeSoundDragTargetDrop constant 209
kThemeSoundDragTargetHilite constant 209
kThemeSoundDragTargetUnhilite constant 209
kThemeSoundEmptyTrash constant 209
kThemeSoundFinderDragOffIcon constant 210
kThemeSoundFinderDragOnIcon constant 210
kThemeSoundLaunchApp constant 209
kThemeSoundLittleArrowDnPress constant 207
kThemeSoundLittleArrowDnRelease constant 207
kThemeSoundLittleArrowEnter constant 207
kThemeSoundLittleArrowExit constant 207
kThemeSoundLittleArrowUpPress constant 206
kThemeSoundLittleArrowUpRelease constant 207
kThemeSoundMaskTag constant 126
kThemeSoundMenuClose constant 197
kThemeSoundMenuItemHilite constant 197
kThemeSoundMenuItemRelease constant 197
kThemeSoundMenuOpen constant 197
kThemeSoundNewItem constant 209
kThemeSoundNone constant 197
kThemeSoundPopupEnter constant 207
kThemeSoundPopupExit constant 207
kThemeSoundPopupPress constant 207
kThemeSoundPopupRelease constant 208
kThemeSoundPopupWindowClose constant 202
kThemeSoundPopupWindowOpen constant 202
kThemeSoundRadioEnter constant 204
kThemeSoundRadioExit constant 205
kThemeSoundRadioPress constant 204
kThemeSoundRadioRelease constant 205
kThemeSoundReceiveDrop constant 209
kThemeSoundResolveAlias constant 209
kThemeSoundScrollArrowEnter constant 205
kThemeSoundScrollArrowExit constant 205
kThemeSoundScrollArrowPress constant 205
kThemeSoundScrollArrowRelease constant 205
kThemeSoundScrollEndOfTrack constant 205

kThemeSoundScrollTrackPress constant 205
kThemeSoundSelectItem constant 209
kThemeSoundsEnabledTag constant 124
kThemeSoundSliderEndOfTrack constant 206
kThemeSoundSliderTrackPress constant 206
kThemeSoundTabEnter constant 208
kThemeSoundTabExit constant 208
kThemeSoundTabPressed constant 208
kThemeSoundTabRelease constant 208
kThemeSoundTrackNameTag constant 126
kThemeSoundUtilWinCloseEnter constant 199
kThemeSoundUtilWinCloseExit constant 199
kThemeSoundUtilWinClosePress constant 199
kThemeSoundUtilWinCloseRelease constant 199
kThemeSoundUtilWinCollapseEnter constant 200
kThemeSoundUtilWinCollapseExit constant 200
kThemeSoundUtilWinCollapsePress constant 200
kThemeSoundUtilWinCollapseRelease constant 200
kThemeSoundUtilWindowActivate constant 202
kThemeSoundUtilWindowClose constant 201
kThemeSoundUtilWindowCollapseDown constant 202
kThemeSoundUtilWindowCollapseUp constant 201
kThemeSoundUtilWindowOpen constant 201
kThemeSoundUtilWindowZoomIn constant 201
kThemeSoundUtilWindowZoomOut constant 201
kThemeSoundUtilWinDragBoundary constant 200
kThemeSoundUtilWinZoomEnter constant 199
kThemeSoundUtilWinZoomExit constant 200
kThemeSoundUtilWinZoomPress constant 199
kThemeSoundUtilWinZoomRelease constant 200
kThemeSoundWindowActivate constant 201
kThemeSoundWindowClose constant 200
kThemeSoundWindowCloseEnter constant 197
kThemeSoundWindowCloseExit constant 197
kThemeSoundWindowClosePress constant 197
kThemeSoundWindowCloseRelease constant 198
kThemeSoundWindowCollapseDown constant 201
kThemeSoundWindowCollapseEnter constant 198
kThemeSoundWindowCollapseExit constant 198
kThemeSoundWindowCollapsePress constant 198
kThemeSoundWindowCollapseRelease constant 199
kThemeSoundWindowCollapseUp constant 201
kThemeSoundWindowDragBoundary constant 199
kThemeSoundWindowOpen constant 200
kThemeSoundWindowZoomEnter constant 198
kThemeSoundWindowZoomExit constant 198
kThemeSoundWindowZoomIn constant 201
kThemeSoundWindowZoomOut constant 201
kThemeSoundWindowZoomPress constant 198
kThemeSoundWindowZoomRelease constant 198
kThemeSpinningCursor constant 165
kThemeStateActive constant 127
kThemeStateDisabled 217

3096
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kThemeStateInactive constant 127
kThemeStatePressed constant 127
kThemeStatePressedDown constant 127
kThemeStatePressedUp constant 127
kThemeStateRollover constant 127
kThemeStateUnavailable constant 127
kThemeStateUnavailableInactive constant 127
kThemeSystemFont constant 167
kThemeSystemFontTag constant 124
kThemeTabEast constant 182
kThemeTabFront constant 183
kThemeTabFrontInactive constant 183
kThemeTabNonFront constant 183
kThemeTabNonFrontInactive constant 183
kThemeTabNonFrontPressed constant 183
kThemeTabNorth constant 182
kThemeTabPaneOverlap constant 184
kThemeTabSouth constant 182
kThemeTabWest constant 182
kThemeTextColorAlertActive constant 171
kThemeTextColorAlertInactive constant 171
kThemeTextColorBevelButtonActive constant 172
kThemeTextColorBevelButtonInactive constant

172
kThemeTextColorBevelButtonPressed constant 172
kThemeTextColorBevelButtonStickyActive

constant 175
kThemeTextColorBevelButtonStickyInactive

constant 175
kThemeTextColorBlack constant 175
kThemeTextColorDialogActive constant 171
kThemeTextColorDialogInactive constant 171
kThemeTextColorDocumentWindowTitleActive

constant 173
kThemeTextColorDocumentWindowTitleInactive

constant 173
kThemeTextColorIconLabel constant 173
kThemeTextColorIconLabelSelected constant 175
kThemeTextColorListView constant 173
kThemeTextColorMenuItemActive constant 174
kThemeTextColorMenuItemDisabled constant 174
kThemeTextColorMenuItemSelected constant 174
kThemeTextColorModelessDialogActive constant

171
kThemeTextColorModelessDialogInactive constant

171
kThemeTextColorMovableModalWindowTitleActive

constant 173
kThemeTextColorMovableModalWindowTitleInactive

constant 173
kThemeTextColorPlacardActive constant 171
kThemeTextColorPlacardInactive constant 172
kThemeTextColorPlacardPressed constant 172

kThemeTextColorPopupButtonActive constant 172
kThemeTextColorPopupButtonInactive constant

172
kThemeTextColorPopupButtonPressed constant 173
kThemeTextColorPopupLabelActive constant 174
kThemeTextColorPopupLabelInactive constant 174
kThemeTextColorPopupWindowTitleActive constant

173
kThemeTextColorPopupWindowTitleInactive

constant 174
kThemeTextColorPushButtonActive constant 172
kThemeTextColorPushButtonInactive constant 172
kThemeTextColorPushButtonPressed constant 172
kThemeTextColorRootMenuActive constant 174
kThemeTextColorRootMenuDisabled constant 174
kThemeTextColorRootMenuSelected constant 174
kThemeTextColorTabFrontActive constant 174
kThemeTextColorTabFrontInactive constant 175
kThemeTextColorTabNonFrontActive constant 175
kThemeTextColorTabNonFrontInactive constant

175
kThemeTextColorTabNonFrontPressed constant 175
kThemeTextColorUtilityWindowTitleActive

constant 173
kThemeTextColorUtilityWindowTitleInactive

constant 173
kThemeTextColorWhite constant 175
kThemeTextColorWindowHeaderActive constant 171
kThemeTextColorWindowHeaderInactive constant

171
kThemeThumbDownward constant 182
kThemeThumbPlain constant 181
kThemeThumbPressed constant 188
kThemeThumbUpward constant 182
kThemeToolbarFont constant 169
kThemeTopInsideArrowPressed constant 188
kThemeTopOutsideArrowPressed constant 188
kThemeTopTrackPressed constant 189
kThemeTrackActive constant 186
kThemeTrackDisabled constant 186
kThemeTrackHasFocus constant 185
kThemeTrackHorizontal constant 185
kThemeTrackNoScrollBarArrows constant 185
kThemeTrackNothingToScroll constant 186
kThemeTrackRightToLeft constant 185
kThemeTrackShowThumb constant 185
kThemeTrackThumbRgnIsNotGhost constant 185
kThemeUserDefinedTag constant 126
kThemeUtilitySideWindow constant 191
kThemeUtilityWindow constant 191
kThemeUtilityWindowTitleFont constant 168
kThemeVariantNameTag constant 123
kThemeViewsFont constant 167

3097
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kThemeViewsFontSizeTag constant 125
kThemeViewsFontTag constant 124
kThemeWatchCursor constant 164
kThemeWidgetABox 217
kThemeWidgetCloseBox constant 192
kThemeWidgetCollapseBox constant 193
kThemeWidgetZoomBox constant 192
kThemeWindowHasCloseBox constant 192
kThemeWindowHasCollapseBox constant 192
kThemeWindowHasFullZoom constant 192
kThemeWindowHasGrow constant 191
kThemeWindowHasHorizontalZoom constant 191
kThemeWindowHasTitleText constant 192
kThemeWindowHasVerticalZoom constant 191
kThemeWindowIsCollapsed constant 192
kThemeWindowSoundsMask constant 194
kThemeWindowTitleFont constant 168
kTiledOnScreen constant 212
kToolbarWindowClass constant 1991
kTrackMouseLocationOptionDontConsumeMouseUp

constant 397
kTSInputModePaletteItemAltIconKey constant 1634
kTSInputModePaletteItemEnabledKey constant 1634
kTSInputModePaletteItemIconKey constant 1634
kTSInputModePaletteItemIDKey constant 1634
kTSInputModePaletteItemKeyEquivalentKey

constant 1634
kTSInputModePaletteItemKeyEquivalentModifiersKey

constant 1634
kTSInputModePaletteItemStateKey constant 1634
kTSInputModePaletteItemTitleKey constant 1634
kTSInputModePaletteItemTypeKey constant 1634
kTSM15Version constant 1646
kTSM20Version constant 1646
kTSM22Version constant 1646
kTSM23Version constant 1646
kTSMDocAccessEffectiveRangeAttribute constant

1620
kTSMDocAccessEffectiveRangeAttributeBit

constant 1619
kTSMDocAccessFontSizeAttribute constant 1619
kTSMDocAccessFontSizeAttributeBit constant 1619
kTSMDocumentInputModePropertyTag constant 1632
kTSMDocumentPropertySupportGlyphInfo constant

1632
kTSMDocumentPropertyUnicodeInputWindow

constant 1632
kTSMDocumentRefconPropertyTag constant 1632
kTSMDocumentSupportDocumentAccessPropertyTag

constant 1632
kTSMDocumentSupportGlyphInfoPropertyTag

constant 1631

kTSMDocumentTextServicePropertyTag constant
1632

kTSMDocumentTSMTEPropertyTag constant 1633
kTSMDocumentUnicodeInputWindowPropertyTag

constant 1631
kTSMDocumentUnicodePropertyTag constant 1632
kTSMDocumentUseFloatingWindowPropertyTag

constant 1631
kTSMTEDocumentInterfaceType constant 1643
kTSMVersion constant 1646
kTXNActionAlignCenter constant 2720
kTXNActionAlignLeft constant 2719
kTXNActionAlignRight constant 2720
kTXNActionChangeColor constant 2719
kTXNActionChangeFont constant 2719
kTXNActionChangeFontFeature constant 2720
kTXNActionChangeFontVariation constant 2720
kTXNActionChangeGlyphVariation constant 2720
kTXNActionChangeSize constant 2719
kTXNActionChangeStyle constant 2719
kTXNActionChangeTextPosition constant 2720
kTXNActionClear constant 2719
kTXNActionCountOfAllChanges constant 2720
kTXNActionCountOfStyleChanges constant 2720
kTXNActionCountOfTextChanges constant 2720
kTXNActionCut constant 2719
kTXNActionDrop constant 2720
kTXNActionKeyMapperKey constant 2728
kTXNActionMove constant 2720
kTXNActionNameMapperKey constant 2728
kTXNActionPaste constant 2719
kTXNActionTyping constant 2719
kTXNActionUndoLast constant 2720
kTXNAIFFFile constant 2766
kTXNAlignCenterAction constant 2723
kTXNAlignLeftAction constant 2723
kTXNAlignRightAction constant 2723
kTXNAllCountMask constant 2722
kTXNAlreadyInitializedErr constant 2774
kTXNAlwaysUseQuickDrawTextBit constant 2753
kTXNAlwaysUseQuickDrawTextMask constant 2754
kTXNAlwaysWrapAtViewEdgeBit constant 2748
kTXNAlwaysWrapAtViewEdgeMask constant 2751
kTXNATSUIFontFeaturesAttribute constant 2740
kTXNATSUIIsNotInstalledErr constant 2774
kTXNATSUIStyle constant 2740
kTXNATSUIStyleSize constant 2741
kTXNAttributeTagInvalidForRunErr constant 2774
kTXNAutoIndentOff constant 2726
kTXNAutoIndentOn constant 2726
kTXNAutoIndentStateTag constant 2743
kTXNAutoScrollBehaviorTag constant 2745
kTXNAutoScrollInsertionIntoView constant 2727

3098
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kTXNAutoScrollNever constant 2727
kTXNAutoScrollWhenInsertionVisible constant

2727
kTXNAutoWrap constant 2758
kTXNBackgroundTypeRGB constant 2768
kTXNBadDefaultFileTypeWarning constant 2774
kTXNCannotAddFrameErr constant 2773
kTXNCannotSetAutoIndentErr constant 2774
kTXNCannotTurnTSMOffWhenUsingUnicodeErr

constant 2774
kTXNCenter constant 2756
kTXNCenterTab constant 2768
kTXNChangeFontAction constant 2723
kTXNChangeFontColorAction constant 2723
kTXNChangeFontSizeAction constant 2723
kTXNChangeStyleAction constant 2723
kTXNClearAction constant 2723
kTXNClearTheseFontFeatures constant 2729
kTXNClearThisControl constant 2729
kTXNColorContinuousBit constant 2731
kTXNColorContinuousMask constant 2732
kTXNCommandTargetKey constant 2728
kTXNCommandUpdateKey constant 2728
kTXNCopyNotAllowedInEchoModeErr constant 2774
kTXNCutAction constant 2722
kTXNDataOptionCharacterEncodingKey constant

2734
kTXNDataOptionDocumentTypeKey constant 2734
kTXNDataTypeNotAllowedErr constant 2774
kTXNDecrementTypeSize constant 2738
kTXNDefaultFontName constant 2734
kTXNDefaultFontSize constant 2734
kTXNDefaultFontStyle constant 2735
kTXNDestinationRectKey constant 2759
kTXNDisabledFunctionalityErr constant 2775
kTXNDisableDragAndDrop constant 2736
kTXNDisableDragAndDropBit constant 2749
kTXNDisableDragAndDropMask constant 2752
kTXNDisableDragAndDropTag constant 2745
kTXNDisableLayoutAndDraw constant 2757
kTXNDisableLayoutAndDrawTag constant 2745
kTXNDocumentAttributeAuthorKey constant 2735
kTXNDocumentAttributeCommentKey constant 2735
kTXNDocumentAttributeCompanyNameKey constant

2735
kTXNDocumentAttributeCopyrightKey constant 2736
kTXNDocumentAttributeCreationTimeKey constant

2736
kTXNDocumentAttributeEditorKey constant 2736
kTXNDocumentAttributeKeywordsKey constant 2735
kTXNDocumentAttributeModificationTimeKey

constant 2736
kTXNDocumentAttributeSubjectKey constant 2735

kTXNDocumentAttributeTitleKey constant 2735
kTXNDoFontSubstitution constant 2744
kTXNDoNotInstallDragProcsBit constant 2748
kTXNDoNotInstallDragProcsMask constant 2751
kTXNDontCareTypeSize constant 2738
kTXNDontCareTypeStyle constant 2738
kTXNDontDrawCaretWhenInactiveBit constant 2748
kTXNDontDrawCaretWhenInactiveMask constant 2751
kTXNDontDrawSelectionWhenInactiveBit constant

2748
kTXNDontDrawSelectionWhenInactiveMask constant

2751
kTXNDontDrawTextBit constant 2770
kTXNDontDrawTextMask constant 2772
kTXNDontUpdateBoxRectBit constant 2770
kTXNDontUpdateBoxRectMask constant 2771
kTXNDontWrapTextBit constant 2770
kTXNDontWrapTextMask constant 2772
kTXNDrawCaretWhenInactiveTag constant 2745
kTXNDrawGrowIconBit constant 2746
kTXNDrawGrowIconMask constant 2750
kTXNDrawItemAllMask constant 2738
kTXNDrawItemScrollbarsBit constant 2737
kTXNDrawItemScrollbarsMask constant 2737
kTXNDrawItemTextAndSelectionBit constant 2737
kTXNDrawItemTextAndSelectionMask constant 2738
kTXNDrawItemTextBit constant 2737
kTXNDrawItemTextMask constant 2737
kTXNDrawSelectionWhenInactiveTag constant 2745
kTXNDropAction constant 2723
kTXNEnableDragAndDrop constant 2736
kTXNEnableLayoutAndDraw constant 2757
kTXNEndIterationErr constant 2773
kTXNEndOffset constant 2733
kTXNEntireWordBit constant 2762
kTXNEntireWordMask constant 2763
kTXNFlattenMoviesTag constant 2744
kTXNFlushDefault constant 2755
kTXNFlushLeft constant 2755
kTXNFlushRight constant 2756
kTXNFontContinuousBit constant 2731
kTXNFontContinuousMask constant 2732
kTXNFontFeatureAction constant 2724
kTXNFontMenuObjectKey constant 2728
kTXNFontMenuRefKey constant 2728
kTXNFontPanelEventHandlerKey constant 2728
kTXNFontSizeAttributeSize constant 2741
kTXNFontVariationAction constant 2724
kTXNForceFullJust constant 2756
kTXNFullJust constant 2756
kTXNHorizontal constant 2760
kTXNHorizontalScrollBarRectKey constant 2760
kTXNIgnoreCaseBit constant 2762

3099
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kTXNIgnoreCaseMask constant 2763
kTXNIllegalToCrossDataBoundariesErr constant

2773
kTXNImageWithQDBit constant 2770
kTXNImageWithQDMask constant 2772
kTXNIncrementTypeSize constant 2738
kTXNInlineStateTag constant 2743
kTXNInvalidFrameIDErr constant 2773
kTXNInvalidRunIndex constant 2774
kTXNIOPrivilegesTag constant 2743
kTXNJustificationTag constant 2742
kTXNKeyboardSyncStateTag constant 2743
kTXNLeftTab constant 2768
kTXNLeftToRight constant 2757
kTXNLineDirectionTag constant 2742
kTXNMacOSEncoding constant 2773
kTXNMarginsTag constant 2744
kTXNMLTEDocumentType constant 2733
kTXNMonostyledTextBit constant 2749
kTXNMonostyledTextMask constant 2752
kTXNMoveAction constant 2723
kTXNMovieData constant 2765
kTXNMovieFile constant 2766
kTXNMultipleFrameType constant 2767
kTXNMultipleStylesPerTextDocumentResType

constant 2764
kTXNNoAppleEventHandlersBit constant 2724
kTXNNoAppleEventHandlersMask constant 2725
kTXNNoAutoWrap constant 2758
kTXNNoKeyboardSyncBit constant 2747
kTXNNoKeyboardSyncMask constant 2751
kTXNNoMatchErr constant 2774
kTXNNoSelectionBit constant 2747
kTXNNoSelectionMask constant 2751
kTXNNoSyncKeyboard constant 2756
kTXNNoTSMEverBit constant 2747
kTXNNoTSMEverMask constant 2750
kTXNNoUserIOTag constant 2744
kTXNOperationNotAllowedErr constant 2775
kTXNOutsideOfFrameErr constant 2775
kTXNOutsideOfLineErr constant 2775
kTXNPageFrameType constant 2767
kTXNPasteAction constant 2722
kTXNPictureData constant 2765
kTXNPictureFile constant 2766
kTXNPlainTextDocumentType constant 2733
kTXNQDFontColorAttribute constant 2740
kTXNQDFontColorAttributeSize constant 2741
kTXNQDFontFamilyIDAttribute constant 2739
kTXNQDFontFamilyIDAttributeSize constant 2741
kTXNQDFontNameAttribute constant 2739
kTXNQDFontNameAttributeSize constant 2741
kTXNQDFontSizeAttribute constant 2739

kTXNQDFontSizeAttributeSize constant 2741
kTXNQDFontStyleAttribute constant 2739
kTXNQDFontStyleAttributeSize constant 2741
kTXNQuickTimeDocumentType constant 2733
kTXNReadOnly constant 2759
kTXNReadOnlyBit constant 2747
kTXNReadOnlyMask constant 2751
kTXNReadWrite constant 2759
kTXNRefConTag constant 2744
kTXNRestartAppleEventHandlersBit constant 2724
kTXNRestartAppleEventHandlersMask constant 2725
kTXNRightTab constant 2768
kTXNRightToLeft constant 2758
kTXNRotateTextBit constant 2769
kTXNRotateTextMask constant 2771
kTXNRTFDocumentType constant 2733
kTXNRunCountBit constant 2721
kTXNRunCountMask constant 2721
kTXNRunIndexOutofBoundsErr constant 2774
kTXNSaveStylesAsSTYLResourceBit constant 2748
kTXNSaveStylesAsSTYLResourceMask constant 2751
kTXNScrollUnitsInLines constant 2761
kTXNScrollUnitsInPixels constant 2761
kTXNScrollUnitsInViewRects constant 2761
kTXNSelectionOff constant 2764
kTXNSelectionOn constant 2764
kTXNSelectionStateTag constant 2743
kTXNSetFlushnessBit constant 2769
kTXNSetFlushnessMask constant 2771
kTXNSetJustificationBit constant 2769
kTXNSetJustificationMask constant 2771
kTXNShowEnd constant 2763
kTXNShowStart constant 2763
kTXNShowWindowBit constant 2747
kTXNShowWindowMask constant 2750
kTXNSingleLevelUndoTag constant 2745
kTXNSingleLineOnlyBit constant 2748
kTXNSingleLineOnlyMask constant 2751
kTXNSingleStylePerTextDocumentResType constant

2764
kTXNSizeContinuousBit constant 2731
kTXNSizeContinuousMask constant 2732
kTXNSomeOrAllTagsInvalidForRunErr constant 2774
kTXNSoundData constant 2765
kTXNSoundFile constant 2766
kTXNStartOffset constant 2733
kTXNStyleContinuousBit constant 2731
kTXNStyleContinuousMask constant 2732
kTXNSupportEditCommandProcessing constant 2729
kTXNSupportEditCommandUpdating constant 2730
kTXNSupportFontCommandProcessing constant 2730
kTXNSupportFontCommandUpdating constant 2731

3100
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kTXNSupportSpellCheckCommandProcessing
constant 2730

kTXNSupportSpellCheckCommandUpdating constant
2730

kTXNSyncKeyboard constant 2756
kTXNSystemDefaultEncoding constant 2772
kTXNTabSettingsTag constant 2744
kTXNTextData constant 2765
kTXNTextEditStyleFrameType constant 2767
kTXNTextEncodingAttribute constant 2740
kTXNTextEncodingAttributeSize constant 2741
kTXNTextensionFile constant 2766
kTXNTextFile constant 2766
kTXNTextHandlerKey constant 2728
kTXNTextInputCountBit constant 2721
kTXNTextInputCountMask constant 2721
kTXNTextRectKey constant 2759
kTXNTSMDocumentAccessHandlerKey constant 2728
kTXNTypingAction constant 2722
kTXNUndoLastAction constant 2724
kTXNUnicodeEncoding constant 2773
kTXNUnicodeTextData constant 2765
kTXNUnicodeTextFile constant 2767
kTXNURLAttribute constant 2740
kTXNUseBottomline constant 2755
kTXNUseCarbonEvents constant 2745
kTXNUseCGContextRefBit constant 2770
kTXNUseCGContextRefMask constant 2772
kTXNUseCurrentSelection constant 2732
kTXNUseEncodingWordRulesBit constant 2762
kTXNUseEncodingWordRulesMask constant 2763
kTXNUseFontFallBackBit constant 2769
kTXNUseFontFallBackMask constant 2771
kTXNUseInline constant 2755
kTXNUseQDforImagingBit constant 2749
kTXNUseQDforImagingMask constant 2752
kTXNUserCanceledOperationErr constant 2773
kTXNUseTemporaryMemoryBit constant 2753
kTXNUseTemporaryMemoryMask constant 2754
kTXNUseVerticalTextBit constant 2769
kTXNUseVerticalTextMask constant 2771
kTXNVertical constant 2760
kTXNVerticalScrollBarRectKey constant 2760
kTXNViewRectKey constant 2759
kTXNVisibilityTag constant 2745
kTXNWantGraphicsBit constant 2753
kTXNWantGraphicsMask constant 2754
kTXNWantHScrollBarBit constant 2747
kTXNWantHScrollBarMask constant 2750
kTXNWantMoviesBit constant 2753
kTXNWantMoviesMask constant 2754
kTXNWantSoundBit constant 2753
kTXNWantSoundMask constant 2754

kTXNWantVScrollBarBit constant 2747
kTXNWantVScrollBarMask constant 2750
kTXNWheelMouseEventHandlerKey constant 2728
kTXNWillDefaultToATSUIBit constant 2725
kTXNWillDefaultToATSUIMask constant 2726
kTXNWillDefaultToCarbonEventBit constant 2725
kTXNWillDefaultToCarbonEventMask constant 2726
kTXNWindowEventHandlerKey constant 2728
kTXNWindowResizeEventHandlerKey constant 2728
kTXNWordWrapStateTag constant 2743
kTypeKCItemAttr constant 1146
kUIModeAllHidden constant 235
kUIModeAllSuppressed constant 235
kUIModeContentHidden constant 235
kUIModeContentSuppressed constant 235
kUIModeNormal constant 235
kUIOptionAutoShowMenuBar constant 236
kUIOptionDisableAppleMenu constant 236
kUIOptionDisableForceQuit constant 236
kUIOptionDisableHide constant 236
kUIOptionDisableProcessSwitch constant 236
kUIOptionDisableSessionTerminate constant 236
kUnicodeDocument constant 1643
kUnicodeDocumentInterfaceType constant 1643
kUnicodeTextService constant 1644
kUnknownLanguage constant 1636
kUnknownScript constant 1636
kUnlockKCEvent constant 1141
kUnlockKCEventMask constant 1143
kUnlockStateKCStatus constant 1153
kUnwrapKCItemAttr constant 1150
kUpArrowCharCode constant 1016
kUpdateKCEvent constant 1141
kUpdateKCEventMask constant 1143
kURL68kNotSupportedError constant 1781
kURLAbortingState constant 1774
kURLAbortInitiatedEvent constant 1765
kURLAbortInitiatedMask constant 1768
kURLAccessNotAvailableError constant 1781
kURLAllBufferEventsMask constant 1769
kURLAllEventsMask constant 1769
kURLAllNonBufferEventsMask constant 1769
kURLAuthenticationError constant 1780
kURLAuthType constant 1778
kURLBinHexFileFlag constant 1770
kURLCertificate constant 1779
kURLCharacterSet constant 1778
kURLCompletedEvent constant 1765
kURLCompletedEventMask constant 1768
kURLCompletedState constant 1774
kURLConnectingState constant 1773
kURLConnectTimeout constant 1779
kURLDataAvailableEvent constant 1765

3101
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kURLDataAvailableEventMask constant 1768
kURLDataAvailableState constant 1774
kURLDebinhexOnlyFlag constant 1772
kURLDestinationExistsError constant 1780
kURLDirectoryListingFlag constant 1772
kURLDisplayAuthFlag constant 1771
kURLDisplayProgressFlag constant 1771
kURLDoNotDeleteOnErrorFlag constant 1772
kURLDoNotTryAnonymousFlag constant 1771
kURLDownloadingEvent constant 1765
kURLDownloadingMask constant 1767
kURLDownloadingState constant 1774
kURLErrorOccurredEvent constant 1765
kURLErrorOccurredEventMask constant 1768
kURLErrorOccurredState constant 1774
kURLExpandAndVerifyFlag constant 1772
kURLExpandFileFlag constant 1770
kURLExtensionFailureError constant 1781
kURLFileCreator constant 1778
kURLFileEmptyError constant 1781
kURLFileType constant 1777
kURLHost constant 1778
kURLHTTPRedirectedURL constant 1776
kURLHTTPRequestBody constant 1775
kURLHTTPRequestHeader constant 1775
kURLHTTPRequestMethod constant 1775
kURLHTTPRespHeader constant 1776
kURLHTTPUserAgent constant 1776
kURLInitiatedEvent constant 1764
kURLInitiatedEventMask constant 1767
kURLInitiatingState constant 1773
kURLInvalidCallError constant 1781
kURLInvalidConfigurationError constant 1781
kURLInvalidURLError constant 1780
kURLInvalidURLReferenceError constant 1779
kURLIsDirectoryHintFlag constant 1771
kURLIsSecure constant 1779
kURLLastModifiedTime constant 1777
kURLLookingUpHostState constant 1773
kURLMIMEType constant 1777
kURLNoAutoRedirectFlag constant 1772
kURLNullState constant 1773
kURLPassword constant 1778
kURLPercentEvent constant 1766
kURLPercentEventMask constant 1769
kURLPeriodicEvent constant 1766
kURLPeriodicEventMask constant 1769
kURLProgressAlreadyDisplayedError constant 1780
kURLPropertyBufferTooSmallError constant 1780
kURLPropertyChangedEvent constant 1766
kURLPropertyChangedEventMask constant 1769
kURLPropertyNotYetKnownError constant 1780
kURLReplaceExistingFlag constant 1770

kURLReservedFlag constant 1772
kURLResourceFoundEvent constant 1764
kURLResourceFoundEventMask constant 1767
kURLResourceFoundState constant 1773
kURLResourceName constant 1778
kURLResourceSize constant 1777
kURLResumeDownloadFlag constant 1772
kURLServerBusyError constant 1780
kURLSSLCipherSuite constant 1776
kURLStatusString constant 1778
kURLSystemEvent constant 1766
kURLSystemEventMask constant 1768
kURLTotalItems constant 1779
kURLTransactionCompleteEvent constant 1765
kURLTransactionCompleteEventMask constant 1768
kURLTransactionCompleteState constant 1774
kURLUnknownPropertyError constant 1780
kURLUnsettablePropertyError constant 1781
kURLUnsupportedSchemeError constant 1780
kURLUploadFlag constant 1771
kURLUploadingEvent constant 1765
kURLUploadingMask constant 1767
kURLUploadingState constant 1775
kURLURL constant 1777
kURLUserName constant 1778
kUseBestGuess constant 213
kUseFloatingWindowTag constant 1644
kUserDialogItem constant 913
kUserFocusAuto constant 2002
kUserNameAndPasswordFlag constant 1764
kUtilityWindowClass constant 1990
kVerifyKCItemAttr constant 1150
kVerticalTabCharCode constant 1015
kVolumeKCItemAttr constant 1148
kWindowActivationScopeAll constant 2028
kWindowActivationScopeIndependent constant 2028
kWindowActivationScopeNone constant 2028
kWindowAlertPositionMainScreen constant 2019
kWindowAlertPositionOnMainScreen constant 2018
kWindowAlertPositionOnParentWindow constant

2018
kWindowAlertPositionOnParentWindowScreen

constant 2018
kWindowAlertPositionParentWindow constant 2019
kWindowAlertPositionParentWindowScreen

constant 2020
kWindowAlertProc constant 2007
kWindowAsyncDragAttribute constant 2001
kWindowBoundsChangeOriginChanged constant 446
kWindowBoundsChangeSizeChanged constant 446
kWindowBoundsChangeUserDrag constant 445
kWindowBoundsChangeUserResize constant 446
kWindowBoundsChangeZoom constant 446

3102
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kWindowCanBeVisibleWithoutLoginAttribute
constant 2001

kWindowCanCollapse constant 2011
kWindowCanDrawInCurrentPort constant 2012
kWindowCanGetWindowRegion constant 2012
kWindowCanGrow constant 2011
kWindowCanMeasureTitle constant 2012
kWindowCanSetupProxyDragImage constant 2012
kWindowCanZoom constant 2011
kWindowCascadeOnMainScreen constant 2017
kWindowCascadeOnParentWindow constant 2018
kWindowCascadeOnParentWindowScreen constant

2018
kWindowCascadeStartAtParentWindowScreen

constant 2018
kWindowCenterMainScreen constant 2019
kWindowCenterOnMainScreen constant 2017
kWindowCenterOnParentWindow constant 2017
kWindowCenterOnParentWindowScreen constant 2017
kWindowCenterParentWindow constant 2019
kWindowCenterParentWindowScreen constant 2020
kWindowCloseBoxAttribute constant 1998
kWindowCloseBoxRgn constant 2021
kWindowCollapseBoxAttribute constant 1999
kWindowCollapseBoxRgn constant 2022
kWindowCompositingAttribute constant 2000
kWindowConstrainAllowPartial constant 2029
kWindowConstrainCalcOnly constant 2029
kWindowConstrainMayResize constant 2028
kWindowConstrainMoveMinimum constant 2029
kWindowConstrainMoveRegardlessOfFit constant

2029
kWindowConstrainStandardOptions constant 2029
kWindowConstrainUseSpecifiedBounds constant

2029
kWindowConstrainUseTransitionWindow constant

2029
kWindowContentRgn constant 2022
kWindowDefaultPosition constant 2019
kWindowDefHIView constant 2034
kWindowDefinitionVersionOne constant 2024
kWindowDefinitionVersionTwo constant 2024
kWindowDefObjectClass constant 2034
kWindowDefProcID constant 2034
kWindowDefProcPtr constant 2034
kWindowDefProcType constant 2034
kWindowDefSupportsColorGrafPort constant 2013
kWindowDialogDefProcResID constant 2003
kWindowDocumentDefProcResID constant 2003
kWindowDocumentProc constant 2005
kWindowDoesNotCycleAttribute constant 2000
kWindowDragRgn constant 2021
kWindowDrawerClosed constant 2040

kWindowDrawerClosing constant 2040
kWindowDrawerOpen constant 2040
kWindowDrawerOpening constant 2040
kWindowEdgeBottom constant 2041
kWindowEdgeDefault constant 2041
kWindowEdgeLeft constant 2041
kWindowEdgeRight constant 2041
kWindowEdgeTop constant 2041
kWindowFadeTransitionEffect constant 2027
kWindowFloatFullZoomGrowProc constant 2008
kWindowFloatFullZoomProc constant 2008
kWindowFloatGrowProc constant 2007
kWindowFloatHorizZoomGrowProc constant 2008
kWindowFloatHorizZoomProc constant 2008
kWindowFloatProc constant 2007
kWindowFloatSideFullZoomGrowProc constant 2009
kWindowFloatSideFullZoomProc constant 2009
kWindowFloatSideGrowProc constant 2008
kWindowFloatSideHorizZoomGrowProc constant 2009
kWindowFloatSideHorizZoomProc constant 2009
kWindowFloatSideProc constant 2008
kWindowFloatSideVertZoomGrowProc constant 2009
kWindowFloatSideVertZoomProc constant 2009
kWindowFloatVertZoomGrowProc constant 2008
kWindowFloatVertZoomProc constant 2008
kWindowFrameworkScaledAttribute constant 2001
kWindowFullZoomAttribute constant 1999
kWindowFullZoomDocumentProc constant 2006
kWindowFullZoomGrowDocumentProc constant 2006
kWindowGenieTransitionEffect constant 2027
kWindowGlobalPortRgn constant 2022
kWindowGroupAttrFixedLevel constant 2032
kWindowGroupAttrHideOnCollapse constant 2031
kWindowGroupAttrLayerTogether constant 2031
kWindowGroupAttrMoveTogether constant 2031
kWindowGroupAttrPositionFixed constant 2032
kWindowGroupAttrSelectable constant 2032
kWindowGroupAttrSelectAsLayer constant 2031
kWindowGroupAttrSharedActivation constant 2031
kWindowGroupAttrZOrderFixed constant 2032
kWindowGroupContentsRecurse constant 2033
kWindowGroupContentsReturnWindows constant 2033
kWindowGroupContentsVisible constant 2033
kWindowGroupLevelActive constant 2048
kWindowGroupLevelInactive constant 2048
kWindowGroupLevelPromoted constant 2048
kWindowGrowDocumentProc constant 2006
kWindowGrowRgn constant 2021
kWindowHasTitleBar constant 2012
kWindowHideOnFullScreenAttribute constant 2001
kWindowHideOnSuspendAttribute constant 2001
kWindowHideTransitionAction constant 2026
kWindowHorizontalZoomAttribute constant 1999

3103
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kWindowHorizZoomDocumentProc constant 2006
kWindowHorizZoomGrowDocumentProc constant 2006
kWindowIgnoreClicksAttribute constant 2002
kWindowInWindowMenuAttribute constant 2001
kWindowIsAlert constant 2012
kWindowIsCollapsedState constant 2010
kWindowIsModal constant 2012
kWindowIsOpaque constant 2013
kWindowLatentVisibleAppHidden constant 2023
kWindowLatentVisibleCollapsedGroup constant

2023
kWindowLatentVisibleCollapsedOwner constant

2023
kWindowLatentVisibleFloater constant 2023
kWindowLatentVisibleFullScreen constant 2023
kWindowLatentVisibleSuspend constant 2023
kWindowLiveResizeAttribute constant 2002
kWindowMenuIncludeRotate constant 2041
kWindowMetalAttribute constant 2000
kWindowMetalNoContentSeparatorAttribute

constant 2000
kWindowModalDialogProc constant 2007
kWindowModalityAppModal constant 2016
kWindowModalityNone constant 2016
kWindowModalitySystemModal constant 2016
kWindowModalityWindowModal constant 2017
kWindowMovableAlertProc constant 2007
kWindowMovableModalDialogProc constant 2007
kWindowMovableModalGrowProc constant 2007
kWindowMoveTransitionAction constant 2026
kWindowMsgCalculateShape constant 2037
kWindowMsgCleanUp constant 2037
kWindowMsgDragHilite constant 2038
kWindowMsgDraw constant 2037
kWindowMsgDrawGrowBox constant 2038
kWindowMsgDrawGrowOutline constant 2037
kWindowMsgDrawInCurrentPort constant 2038
kWindowMsgGetFeatures constant 2038
kWindowMsgGetGrowImageRegion constant 2039
kWindowMsgGetRegion constant 2038
kWindowMsgHitTest constant 2037
kWindowMsgInitialize constant 2037
kWindowMsgMeasureTitle constant 2039
kWindowMsgModified constant 2038
kWindowMsgSetupProxyDragImage constant 2039
kWindowMsgStateChanged constant 2039
kWindowNoActivatesAttribute constant 2000
kWindowNoAttributes constant 1998
kWindowNoConstrainAttribute constant 2002
kWindowNoPosition constant 2019
kWindowNoShadowAttribute constant 2001
kWindowNoTitleBarAttribute constant 2000
kWindowNoUpdatesAttribute constant 2000

kWindowOpaqueForEventsAttribute constant 2000
kWindowOpaqueRgn constant 2022
kWindowPaintProcOptionsNone constant 2043
kWindowPlainDialogProc constant 2006
kWindowPropertyPersistent constant 2024
kWindowResizableAttribute constant 1999
kWindowResizeTransitionAction constant 2026
kWindowShadowDialogProc constant 2007
kWindowSheetAlertDefProcResID constant 2003
kWindowSheetAlertProc constant 2009
kWindowSheetDefProcResID constant 2003
kWindowSheetProc constant 2009
kWindowSheetTransitionEffect constant 2027
kWindowShowTransitionAction constant 2026
kWindowSideTitlebarAttribute constant 1999
kWindowSimpleDefProcResID constant 2003
kWindowSimpleFrameProc constant 2010
kWindowSimpleProc constant 2010
kWindowSlideTransitionEffect constant 2027
kWindowStaggerMainScreen constant 2019
kWindowStaggerParentWindow constant 2020
kWindowStaggerParentWindowScreen constant 2020
kWindowStandardDocumentAttributes constant 2002
kWindowStandardFloatingAttributes constant 2002
kWindowStandardHandlerAttribute constant 2001
kWindowStateTitleChanged constant 2040
kWindowStructureRgn constant 2022
kWindowSupportsDragHilite constant 2012
kWindowSupportsGetGrowImageRegion constant 2013
kWindowSupportsModifiedBit constant 2012
kWindowTexturedSquareCornersAttribute constant

2000
kWindowTitleBarRgn constant 2021
kWindowTitleProxyIconRgn constant 2022
kWindowTitleTextRgn constant 2021
kWindowToolbarButtonAttribute constant 1999
kWindowToolbarButtonRgn constant 2022
kWindowUnifiedTitleAndToolbarAttribute

constant 1999
kWindowUpdateRgn constant 2022
kWindowUtilityDefProcResID constant 2003
kWindowUtilitySideTitleDefProcResID constant

2003
kWindowVerticalZoomAttribute constant 1999
kWindowVertZoomDocumentProc constant 2006
kWindowVertZoomGrowDocumentProc constant 2006
kWindowWantsDisposeAtProcessDeath constant 2013
kWindowZoomBoxRgn constant 2021
kWindowZoomTransitionEffect constant 2027
kWrapKCItemAttr constant 1150
kWrPermKCStatus constant 1154
kZoomAccelerate constant 984
kZoomDecelerate constant 984

3104
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

kZoomNoAcceleration constant 984

L

LActivate function (Deprecated in Mac OS X v10.5) 1175
LAddColumn function (Deprecated in Mac OS X v10.5)

1175
LAddRow function (Deprecated in Mac OS X v10.5) 1176
LAddToCell function (Deprecated in Mac OS X v10.5)

1177
Language and Script Constants 1635
Language Object Properties 1557
Language Object Types 1559
LanguageOrder function (Deprecated in Mac OS X v10.4)

1668
LAutoScroll function (Deprecated in Mac OS X v10.5)

1178
Layout and Draw Constants 2757
LCellSize function (Deprecated in Mac OS X v10.5) 1178
LClick function (Deprecated in Mac OS X v10.5) 1179
lCloseMsg constant 1215
LClrCell function (Deprecated in Mac OS X v10.5) 1179
LDelColumn function (Deprecated in Mac OS X v10.5)

1180
LDelRow function (Deprecated in Mac OS X v10.5) 1181
LDispose function (Deprecated in Mac OS X v10.5) 1181
lDoHAutoscroll constant 1213
lDoHAutoscrollBit constant 1214
lDoVAutoscroll constant 1213
lDoVAutoscrollBit constant 1214
LDraw function (Deprecated in Mac OS X v10.5) 1182
lDrawingModeOff 1213
lDrawingModeOff constant 1213
lDrawingModeOffBit 1214
lDrawingModeOffBit constant 1214
lDrawMsg constant 1214
lExtendDrag constant 1217
lExtendDragBit constant 1216
LGetCell function (Deprecated in Mac OS X v10.5) 1183
LGetCellDataLocation function (Deprecated in Mac

OS X v10.5) 1183
LGetSelect function (Deprecated in Mac OS X v10.5)

1184
LHElement structure 3013
LHHandle data type 3013
lHiliteMsg constant 1215
LHTable data type 3014
Line Direction Settings 2757
Line Wrapping Settings 2758
lInitMsg constant 1214
List Box Control Data Tag Constants 783
List Box Control Definition ID Constants 784

List Definition Constants 1214
List Flags 1215
List View Append Column 2281
List View Header Description Version 2281
ListBounds data type 1207
ListClickLoopProcPtr callback 1200
ListClickLoopUPP data type 1207
ListDefProcPtr callback 1201
ListDefSpec structure 1207
ListDefType data type 1208
ListDefUPP data type 1208
Listen Key Modes 1559
ListNotification data type 1209
ListNotificationProcPtr callback 1204
ListNotificationUPP data type 1209
listNotifyClick constant 1216
listNotifyDoubleClick constant 1216
listNotifyNothing 1216
listNotifyNothing constant 1216
listNotifyPreClick constant 1216
ListRec structure 1209
ListRef data type 1211
ListSearchProcPtr callback 1204
ListSearchUPP data type 1212
Little Arrows Control Definition ID Constant 785
Little Arrows Control Tag Constant 786
LLastClick function (Deprecated in Mac OS X v10.5)

1185
LMGetKbdLast function 999
LMGetKbdType function 1000
LMGetKeyRepThresh function 1000
LMGetKeyThresh function 1000
LMGetTheMenu function 1308
LMSetKbdLast function 1001
LMSetKbdType function 1001
LMSetKeyRepThresh function 1002
LMSetKeyThresh function 1002
LNew function (Deprecated in Mac OS X v10.5) 1186
LNextCell function (Deprecated in Mac OS X v10.5) 1187
lNoDisjoint constant 1217
lNoDisjointBit constant 1216
lNoExtend constant 1217
lNoExtendBit constant 1216
lNoNilHilite constant 1217
lNoNilHiliteBit constant 1216
lNoRect constant 1217
lNoRectBit constant 1216
LoadScrap function (Deprecated in Mac OS X v10.5) 1504
Locale Object Attributes 1645
lOnlyOne constant 1217
lOnlyOneBit 1216
lOnlyOneBit constant 1216
Low-level Routine Selectors 1636

3105
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

LowercaseText function (Deprecated in Mac OS X v10.4)
1669

LRect function (Deprecated in Mac OS X v10.5) 1188
LScroll function (Deprecated in Mac OS X v10.5) 1189
LSearch function (Deprecated in Mac OS X v10.5) 1190
LSetCell function (Deprecated in Mac OS X v10.5) 1190
LSetDrawingMode function (Deprecated in Mac OS X

v10.5) 1191
LSetSelect function (Deprecated in Mac OS X v10.5)

1192
LSize function (Deprecated in Mac OS X v10.5) 1193
LUpdate function (Deprecated in Mac OS X v10.5) 1193
lUseSense constant 1217
lUseSenseBit constant 1216

M

Mac OS 8.5 Bevel Button Control Data Tag Constant 786
Mac OS 8.5 Control Font Style Flag Constant 787
Mac OS 8.5 Editable Text Control Definition ID Constant

787
Mac OS 8.5 Group Box Control Data Tag Constant 788
Mac OS 8.5 Icon Control Data Tag Constants 788
Mac OS 8.5 Pop-up Button Control Data Tag Constants

789
Maximum Small Fraction 521
MaxSmallFract constant 521
mCalcItemMsg constant 1374
MCEntry structure 1355
mChooseMsg constant 1375
MDEFDrawData structure 1358
MDEFDrawItemsData structure 1359
MDEFFindItemData structure 1360
MDEFHiliteItemData structure 1360
mDownMask constant 1018
mDrawItemMsg constant 1375
mDrawMsg constant 1374
MeasureWindowTitleRec structure 1981
Menu Attribute Constants 1375
Menu Context Constants 387
Menu Definition Feature Constants 1380
Menu Definition IDs 1380
Menu Definition Type Constants 1379
Menu Dismissal Constants 1397
Menu Event Constants 377
Menu Event Option Constants 1381
Menu Event Parameters 388
Menu Glyph Constants 1382
Menu Item Attribute Constants 1377
Menu Item Data Flags 1390
Menu Item Icon Type Constants 1394
Menu Item Property Attribute Constant 1395

Menu Item Selection Constants 1479
Menu Tracking Mode Constants 1395
MenuBarHandle data type 1361
MenuBarHeader structure 1361
MenuBarMenu structure 1362
MenuChoice function 1309
MenuCommand data type 1362
MenuCRsrc structure 1363
MenuDefProcPtr callback 1349
MenuDefSpec structure 1363
MenuDefUPP data type 1364
MenuEvent function 1309
MenuHandle data type 1364
MenuHasEnabledItems function 1310
MenuID data type 1365
menuInvalidErr constant 1400
MenuItemDataRec structure 1365
MenuItemDrawingProcPtr callback 104
MenuItemDrawingUPP data type 118
MenuItemID data type 1367
MenuItemIndex data type 1367
menuItemNotFoundErr constant 1400
MenuKey function (Deprecated in Mac OS X v10.5) 1311
menuNotFoundErr constant 1400
menuPropertyInvalidErr constant 1399
menuPropertyNotFoundErr constant 1399
MenuRef data type 1367
MenuSelect function 1312
MenuTitleDrawingProcPtr callback 105
MenuTitleDrawingUPP data type 119
MenuTrackingData structure 1367
menuUsesSystemDefErr constant 1400
Meta Font Constants 791
Modal Window Click Constants 451
Modal Window Event Parameters and Types 450
ModalDialog function 865
ModalFilterProcPtr callback 891
ModalFilterUPP data type 902
ModalFilterYDProcPtr callback 893
ModalFilterYDUPP data type 902
Mode Flags 2873
Modifier Key Mask Constants 1396
Mouse Button Constants 394
Mouse Event Parameters 396
Mouse Events 390
Mouse Tracking Area Event Constants 2514
Mouse Tracking Constants 398
Mouse Tracking Option Constant 397
Mouse Tracking Region Options 395
Mouse Tracking Selectors 399
Mouse Wheel Constants 394
mouseDown constant 1021
mouseMovedMessage 1019

3106
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

mouseMovedMessage constant 1019
MouseTrackingRef data type 318
MouseTrackingRegionID structure 318
mouseUp constant 1021
movableDBoxProc constant 2049
MoveControl function 633
MoveDataBrowserSelectionAnchor function 2186
MoveDialogItem function 867
MoveMouseTrackingRegion function (Deprecated in

Mac OS X v10.4) 283
MoveWindow function 1910
MoveWindowMouseTrackingRegions function

(Deprecated in Mac OS X v10.4) 283
MoveWindowStructure function 1911
mPopUpMsg constant 1374
msgWasFullyAccepted constant 1020
msgWasNotAccepted constant 1020
msgWasPartiallyAccepted 1019
msgWasPartiallyAccepted constant 1019
mSizeMsg constant 1374
Munger function 1669
mUpMask constant 1018

N

Named Scraps 1513
NavAskDiscardChanges function (Deprecated in Mac

OS X v10.5) 1407
NavAskSaveChanges function (Deprecated in Mac OS X

v10.5) 1408
NavCBRec structure 1451
NavCBRec Version Constant 1485
NavChooseFile function (Deprecated in Mac OS X v10.5)

1409
NavChooseFolder function (Deprecated in Mac OS X

v10.5) 1411
NavChooseObject function (Deprecated in Mac OS X

v10.5) 1412
NavChooseVolume function (Deprecated in Mac OS X

v10.5) 1413
NavCompleteSave function 1415
NavContext data type 1462
NavCreateAskDiscardChangesDialog function 1416
NavCreateAskReviewDocumentsDialog function 1417
NavCreateAskSaveChangesDialog function 1418
NavCreateChooseFileDialog function 1419
NavCreateChooseFolderDialog function 1420
NavCreateChooseObjectDialog function 1421
NavCreateChooseVolumeDialog function 1422
NavCreateGetFileDialog function 1423
NavCreateNewFolderDialog function 1424

NavCreatePreview function (Deprecated in Mac OS X
v10.5) 1425

NavCreatePutFileDialog function 1426
NavCustomAskSaveChanges function (Deprecated in

Mac OS X v10.5) 1428
NavCustomControl function 1429
NavDialogCreationOptions structure 1452
NavDialogCreationOptions Version Constant 1485
NavDialogDispose function 1430
NavDialogGetReply function 1430
NavDialogGetSaveFileExtensionHidden function

1431
NavDialogGetSaveFileName function 1431
NavDialogGetUserAction function 1432
NavDialogGetWindow function 1433
NavDialogOptions structure 1463
NavDialogRef data type 1451
NavDialogRun function 1433
NavDialogSetFilterTypeIdentifiers function 1434
NavDialogSetSaveFileExtensionHidden function

1435
NavDialogSetSaveFileName function 1435
NavDisposeReply function 1436
NavEventData structure 1454
NavEventDataInfo structure 1455
NavEventProcPtr callback 1448
NavEventUPP data type 1461
NavFileOrFolder Version Constant 1485
NavFileOrFolderInfo structure 1456
NavGetDefaultDialogCreationOptions function

1437
NavGetDefaultDialogOptions function (Deprecated

in Mac OS X v10.5) 1437
NavGetFile function (Deprecated in Mac OS X v10.5)

1438
NavLibraryVersion function (Deprecated in Mac OS X

v10.5) 1440
NavLoad function 1441
NavMenuItemSpec structure 1461
NavMenuItemSpec Version Constant 1486
NavNewFolder function (Deprecated in Mac OS X v10.5)

1441
NavObjectFilterProcPtr callback 1449
NavObjectFilterUPP data type 1461
NavPreviewProcPtr callback 1450
NavPreviewUPP data type 1461
NavPutFile function (Deprecated in Mac OS X v10.5)

1442
NavReplyRecord structure 1458
NavReplyRecord Version Constant 1486
NavServicesAvailable function 1444
NavServicesCanRun function 1444

3107
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

NavTranslateFile function (Deprecated in Mac OS X
v10.5) 1445

NavTypeList structure 1460
NavUnload function 1446
NBreakTable structure 1694
NColorChangedProcPtr callback 508
NColorChangedUPP data type 513
NColorPickerInfo structure 513
needClearScrapErr constant 1514
networkEvt 1020
networkEvt constant 1020
networkMask constant 1020
New Low-level Routine Selector 1638
NewCaretHookUPP function (Deprecated in Mac OS X

v10.4) 2962
NewColorChangedUPP function 502
NewColorDialog function 868
NewControl function (Deprecated in Mac OS X v10.5)

634
NewControlActionUPP function 636
NewControlCNTLToCollectionUPP function 636
NewControlColorUPP function 636
NewControlDefUPP function (Deprecated in Mac OS X

v10.5) 637
NewControlEditTextValidationUPP function 637
NewControlKeyFilterUPP function 637
NewControlUserPaneActivateUPP function 638
NewControlUserPaneBackgroundUPP function 638
NewControlUserPaneDrawUPP function 638
NewControlUserPaneFocusUPP function 638
NewControlUserPaneHitTestUPP function 639
NewControlUserPaneIdleUPP function 639
NewControlUserPaneKeyDownUPP function 639
NewControlUserPaneTrackingUPP function 640
NewCWindow function (Deprecated in Mac OS X v10.5)

1912
NewDataBrowserAcceptDragUPP function 2187
NewDataBrowserAddDragItemUPP function 2188
NewDataBrowserDrawItemUPP function 2188
NewDataBrowserEditItemUPP function 2188
NewDataBrowserGetContextualMenuUPP function

2189
NewDataBrowserHitTestUPP function 2189
NewDataBrowserItemAcceptDragUPP function 2190
NewDataBrowserItemCompareUPP function 2190
NewDataBrowserItemDataUPP function 2191
NewDataBrowserItemDragRgnUPP function 2191
NewDataBrowserItemHelpContentUPP function 2192
NewDataBrowserItemNotificationUPP function 2192
NewDataBrowserItemNotificationWithItemUPP

function 2193
NewDataBrowserItemReceiveDragUPP function 2193
NewDataBrowserItemUPP function 2194

NewDataBrowserPostProcessDragUPP function 2194
NewDataBrowserReceiveDragUPP function 2195
NewDataBrowserSelectContextualMenuUPP function

2195
NewDataBrowserTrackingUPP function 2196
NewDialog function 870
NewDrag function 944
NewDragDrawingUPP function (Deprecated in Mac OS X

v10.5) 944
NewDragInputUPP function 945
NewDragReceiveHandlerUPP function (Deprecated in

Mac OS X v10.5) 945
NewDragSendDataUPP function (Deprecated in Mac OS

X v10.5) 946
NewDragTrackingHandlerUPP function (Deprecated in

Mac OS X v10.5) 946
NewDrawHookUPP function (Deprecated in Mac OS X

v10.4) 2962
NewEditUnicodePostUpdateUPP function 640
NewEOLHookUPP function (Deprecated in Mac OS X v10.4)

2962
NewEventComparatorUPP function 284
NewEventHandlerUPP function 284
NewEventLoopIdleTimerUPP function 285
NewEventLoopTimerUPP function 285
NewFeaturesDialog function 871
NewGetScrapDataUPP function (Deprecated in Mac OS

X v10.3) 1712
NewHighHookUPP function (Deprecated in Mac OS X

v10.4) 2963
NewHitTestHookUPP function (Deprecated in Mac OS X

v10.4) 2963
NewHMControlContentUPP function 475
NewHMMenuItemContentUPP function 476
NewHMMenuTitleContentUPP function 477
NewHMWindowContentUPP function 477
NewHRNewCFURLUPP function (Deprecated in Mac OS X

v10.4) 2585
NewHRNewURLUPP function (Deprecated in Mac OS X

v10.4) 2586
NewHRURLToFSRefUPP function (Deprecated in Mac OS

X v10.4) 2586
NewHRURLToFSSpecUPP function (Deprecated in Mac OS

X v10.4) 2587
NewHRWasCFURLVisitedUPP function (Deprecated in

Mac OS X v10.4) 2587
NewHRWasURLVisitedUPP function (Deprecated in Mac

OS X v10.4) 2588
NewIndexToStringUPP function (Deprecated in Mac OS

X v10.4) 1671
NewKCCallbackUPP function 1130
NewListClickLoopUPP function (Deprecated in Mac OS

X v10.5) 1194

3108
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

NewListDefUPP function (Deprecated in Mac OS X v10.5)
1194

NewListSearchUPP function (Deprecated in Mac OS X
v10.5) 1195

NewMenu function (Deprecated in Mac OS X v10.5) 1314
NewMenuDefUPP function (Deprecated in Mac OS X v10.5)

1315
NewMenuItemDrawingUPP function (Deprecated in Mac

OS X v10.5) 91
NewMenuTitleDrawingUPP function (Deprecated in Mac

OS X v10.5) 92
NewModalFilterUPP function 873
NewModalFilterYDUPP function 873
NewNavEventUPP function 1446
NewNavObjectFilterUPP function 1447
NewNavPreviewUPP function 1447
NewNColorChangedUPP function 502
NewNMUPP function 1490
NewNWidthHookUPP function (Deprecated in Mac OS X

v10.4) 2964
NewOSAActiveUPP function 2795
NewOSACreateAppleEventUPP function 2795
NewOSASendUPP function 2795
NewPMItemUPP function (Deprecated in Mac OS X v10.4)

2070
NewPMPageSetupDialogInitUPP function (Deprecated

in Mac OS X v10.4) 2071
NewPMPrintDialogInitUPP function (Deprecated in

Mac OS X v10.4) 2071
NewPMSheetDoneUPP function 2072
NewScrapPromiseKeeperUPP function (Deprecated in

Mac OS X v10.5) 1505
NewSRCallBackUPP function 1520
NewString function (Deprecated in Mac OS X v10.4) 1671
NewTEClickLoopUPP function (Deprecated in Mac OS X

v10.4) 2964
NewTEDoTextUPP function (Deprecated in Mac OS X

v10.4) 2964
NewTEFindWordUPP function (Deprecated in Mac OS X

v10.4) 2965
NewTERecalcUPP function (Deprecated in Mac OS X

v10.4) 2965
NewTextWidthHookUPP function (Deprecated in Mac OS

X v10.4) 2965
NewThemeButtonDrawUPP function (Deprecated in Mac

OS X v10.5) 92
NewThemeEraseUPP function (Deprecated in Mac OS X

v10.5) 92
NewThemeIteratorUPP function (Deprecated in Mac OS

X v10.5) 93
NewThemeTabTitleDrawUPP function (Deprecated in

Mac OS X v10.5) 93
NewTSMDocument function 1595

NewTSMTEPostUpdateUPP function (Deprecated in Mac
OS X v10.4) 2966

NewTSMTEPreUpdateUPP function (Deprecated in Mac
OS X v10.4) 2966

NewTXNActionKeyMapperUPP function (Deprecated in
Mac OS X v10.4) 2616

NewTXNActionNameMapperUPP function 2616
NewTXNContextualMenuSetupUPP function 2616
NewTXNFindUPP function 2617
NewTXNScrollInfoUPP function 2617
NewURLNotifyUPP function (Deprecated in Mac OS X

v10.4) 1738
NewURLSystemEventUPP function (Deprecated in Mac

OS X v10.4) 1739
NewUserEventUPP function 503
NewUserItemUPP function 873
NewWidthHookUPP function (Deprecated in Mac OS X

v10.4) 2966
NewWindow function (Deprecated in Mac OS X v10.5) 1914
NewWindowDefUPP function (Deprecated in Mac OS X

v10.5) 1917
NewWindowPaintUPP function (Deprecated in Mac OS X

v10.5) 1917
NewWindowTitleDrawingUPP function (Deprecated in

Mac OS X v10.5) 94
nilScrapFlavorDataErr constant 1515
NMInstall function 1491
NMProcPtr callback 1492
NMRec structure 1492
NMRemove function 1491
nmTypErr constant 1494
No Item Constant 2281
No Mark Marking Character Constant 1397
noErr constant 452, 2317
noGrowDocProc constant 2049
noHelpForItem constant 522
noMark constant 1397
nonDragOriginatorErr constant 987
noPrefAppErr constant 1732
NormalizeThemeDrawingState function 94
noScrapErr constant 1514, 3037
noScrapPromiseKeeperErr constant 1515
noSuitableDisplaysErr constant 986
NoteAlert function 874
noteIcon constant 907
Notification Flags 1560
noTranslationPathErr constant 1732
noTypeErr constant 1514
NPickColor function 503
NPMColor structure 515
NPMColorPtr data type 515
Null Mode Flags 2877
nullEvent constant 1021

3109
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

NullStHandle data type 3014
NullStRec structure 3015
NumFormatString structure 1696
NumFormatString Version 1702
NumFormatStringRec data type 1697
NumToString function (Deprecated in Mac OS X v10.4)

1672
NWidthHookProcPtr callback 3006
NWidthHookUPP data type 3015

O

Object Filtering Constants 1480
Object Reference Parameters and Types 328
Obsolete Help Tag Display Locations 493
Obsolete Language Code Values 1704
Obsolete Menu Definition Messages 1374
Obsolete Window Group Attributes 2032
ok constant 916
Old Color Picker Flags 521
Old Maximum Small Fraction 521
OpenDataBrowserContainer function 2196
OpenDrawer function 1917
OpenTextService function (Deprecated in Mac OS X

v10.5) 1597
optionKey constant 1013
optionKeyBit constant 1010
Options for the GetScrapByName Function 1513
Order Constants 783
OSAActiveProcPtr callback 2852
OSAActiveUPP data type 2857
OSAAddStorageType function 2796
OSAAvailableDialectCodeList function 2796
OSAAvailableDialects function 2797
OSACoerceFromDesc function 2798
OSACoerceToDesc function 2798
OSACompile function 2799
OSACompileExecute function 2800
OSAControlFlowError constant 2888
OSACopyDisplayString function 2801
OSACopyID function 2802
OSACopyScriptingDefinition function 2803
OSACopySourceString function 2804
OSACreateAppleEventProcPtr callback 2852
OSACreateAppleEventUPP data type 2857
OSADebugCallFrameRef data type 2857
OSADebuggerCreateSession function 2805
OSADebuggerDisposeCallFrame function 2805
OSADebuggerDisposeSession function 2805
OSADebuggerGetBreakpoint function 2806
OSADebuggerGetCallFrameState function 2806
OSADebuggerGetCurrentCallFrame function 2807

OSADebuggerGetDefaultBreakpoint function 2807
OSADebuggerGetPreviousCallFrame function 2807
OSADebuggerGetSessionState function 2808
OSADebuggerGetStatementRanges function 2808
OSADebuggerGetVariable function 2809
OSADebuggerSessionStep function 2809
OSADebuggerSetBreakpoint function 2809
OSADebuggerSetVariable function 2810
OSADebugSessionRef data type 2858
OSADebugStepKind 2877
OSADisplay function 2810
OSADispose function 2811
OSADoEvent function 2812
OSADoScript function 2813
OSADoScriptFile function 2815
OSADuplicateHandler constant 2888
OSADuplicateParameter constant 2888
OSADuplicateProperty constant 2888
OSAError data type 2856
OSAExecute function 2816
OSAExecuteEvent function 2817
OSAGenericToRealID function 2818
OSAGetActiveProc function 2819
OSAGetAppTerminology function (Deprecated in Mac

OS X v10.5) 2820
OSAGetCreateProc function 2820
OSAGetCurrentDialect function 2821
OSAGetDefaultScriptingComponent function 2822
OSAGetDialectInfo function 2822
OSAGetHandler function 2823
OSAGetHandlerNames function 2824
OSAGetProperty function 2825
OSAGetPropertyNames function 2825
OSAGetResumeDispatchProc function 2826
OSAGetScriptInfo function 2827
OSAGetScriptingComponent function 2828
OSAGetScriptingComponentFromStored function

2829
OSAGetSendProc function 2829
OSAGetSource function 2830
OSAGetStorageType function 2831
OSAGetSysTerminology function 2832
OSAID data type 2855
OSAIllegalAccess constant 2886
OSAIllegalAssign constant 2888
OSAIllegalIndex constant 2886
OSAIllegalRange constant 2886
OSAInconsistentDeclarations constant 2888
OSALoad function 2832
OSALoadExecute function 2833
OSALoadExecuteFile function 2834
OSALoadFile function 2835
OSAMakeContext function 2836

3110
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

OSAMessageNotUnderstood constant 2886
OSAMissingParameter constant 2885
OSAParameterMismatch constant 2886
OSAProgramState 2877
OSARealToGenericID function 2837
OSARemoveStorageType function 2838
OSAScriptError function 2839
OSAScriptError Selectors 2877
OSAScriptingComponentName function 2840
OSASendProcPtr callback 2854
OSASendUPP data type 2857
OSASetActiveProc function 2840
OSASetCreateProc function 2841
OSASetCurrentDialect function 2842
OSASetDefaultScriptingComponent function 2842
OSASetDefaultTarget function 2843
OSASetHandler function 2843
OSASetProperty function 2844
OSASetResumeDispatchProc function 2845
OSASetScriptInfo function 2846
OSASetSendProc function 2847
OSAStartRecording function 2848
OSAStopRecording function 2849
OSAStore function 2850
OSAStoreFile function 2851
OSASyntaxError constant 2888
OSASyntaxTypeError constant 2888
OSATokenTooLong constant 2888
OSAUndefinedHandler constant 2886
OSAUndefinedVariable constant 2888
osEvt constant 1022
osEvtMessageMask constant 1011
osMask constant 1019
Other Printer Module Constants 2937
OverlayApplicationDockTileImage function 229
overlayDITL constant 913

P

P2CStr function (Deprecated in Mac OS X v10.4) 1673
p2cstr function (Deprecated in Mac OS X v10.4) 1673
p2cstrcpy function (Deprecated in Mac OS X v10.4) 1674
PaintBehind function (Deprecated in Mac OS X v10.5)

1918
PaintOne function (Deprecated in Mac OS X v10.5) 1919
ParamText function 875
Part Identifier Constants 792, 2043
PDE Feature Flags 2933
PDE Interface Identifier 2934
PDE Interface Version 2934
PDE Pane Kind Identifiers 2935
PDE Ticket Identifiers 2936

PDE Type Identifiers 2936
Phrase Termination Modes 1047
Physical Keyboard Layout Types 1072
PicHandle data type 1983
picItem constant 908
PickColor function 504
pickerCantLive constant 522
PickerMenuItemInfo structure 515
pickerResourceError constant 522
Picture Control Definition ID Constants 793
PinRect function 1919
PixPatHandle data type 1983
Placard Control Definition ID Constant 794
plainDBox constant 2049
PlayThemeSound function 94
PlugInIntf structure 2925
PlugInIntfVTable structure 2924
PMBeginDocument function (Deprecated in Mac OS X

v10.4) 2072
PMBeginJobProcPtr callback 2895
PMBeginPage function (Deprecated in Mac OS X v10.4)

2073
PMCancelJobProcPtr callback 2895
PMColor structure 516
PMColorPtr data type 517
PMCOMAddRefProcPtr callback 2895
PMCOMQueryInterfaceProcPtr callback 2896
PMCOMReleaseProcPtr callback 2896
PMContext data type 2928
PMCreateLocalizedPaperSizeCFString function

2889
PMCreatePaperSizeCFString function 2890
PMCreatePrinterBrowserModuleInfoProcPtr

callback 2896
PMCreatePrinterTicketsProcPtr callback 2897
PMCreatePrintingDialogExtensionsPathsProcPtr

callback 2897
PMDrawingCtx data type 2929
PMEndDocument function (Deprecated in Mac OS X v10.4)

2074
PMEndJobProcPtr callback 2897
PMEndPage function (Deprecated in Mac OS X v10.4) 2074
PMGetDialogAccepted function (Deprecated in Mac OS

X v10.4) 2075
PMGetDialogDone function (Deprecated in Mac OS X

v10.4) 2075
PMGetDialogPtr function (Deprecated in Mac OS X

v10.4) 2076
PMGetItemProc function (Deprecated in Mac OS X v10.4)

2076
PMGetModalFilterProc function (Deprecated in Mac

OS X v10.4) 2077
PMImageAccessProcPtr callback 2898

3111
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PMImageRef data type 2929
PMInitializeProcPtr callback 2898
PMInterface structure 2927
PMInterfaceAPIVersion structure 2931
PMInterfaceAPIVersionPtr data type 2932
PMInterfacePrBrowser structure 2929
PMInterfacePrBrowserPtr data type 2930
PMInterfaceRef data type 2928
PMIOCloseProcPtr callback 2898
PMIOGetAttributeProcPtr callback 2899
PMIOModuleCloseProcPtr callback 2899
PMIOModuleGetAttributeProcPtr callback 2900
PMIOModuleGetConnectionInfoProcPtr callback

2900
PMIOModuleInitializeProcPtr callback 2900
PMIOModuleOpenProcPtr callback 2901
PMIOModuleReadProcPtr callback 2901
PMIOModuleSetAttributeProcPtr callback 2901
PMIOModuleStatusProcPtr callback 2902
PMIOModuleTerminateProcPtr callback 2902
PMIOModuleWriteProcPtr callback 2902
PMIOOpenProcPtr callback 2903
PMIOProcs structure 2928
PMIOReadProcPtr callback 2903
PMIOSetAttributeProcPtr callback 2904
PMIOStatusProcPtr callback 2904
PMIOWriteProcPtr callback 2905
PMItemProcPtr callback 2100
PMItemUPP data type 2105
PMJobStreamGetNextBandProcPtr callback 2905
PMJobStreamGetPosProcPtr callback 2906
PMJobStreamOpenProcPtr callback 2906
PMJobStreamProcs structure 2928
PMJobStreamReadWriteProcPtr callback 2906
PMJobStreamSetPosProcPtr callback 2907
PMNotificationProcPtr callback 2907
PMPageSetupDialog function (Deprecated in Mac OS X

v10.4) 2078
PMPageSetupDialogInit function (Deprecated in Mac

OS X v10.4) 2078
PMPageSetupDialogInitProcPtr callback 2101
PMPageSetupDialogInitUPP data type 2105
PMPageSetupDialogMain function (Deprecated in Mac

OS X v10.4) 2079
PMPDECloseProcPtr callback 2908
PMPDEContext data type 2926
PMPDEFlags data type 2926
PMPDEGetSummaryTextProcPtr callback 2908
PMPDEInitializeProcPtr callback 2909
PMPDEOpenProcPtr callback 2911
PMPDEPrologueProcPtr callback 2911
PMPDERef data type 2926
PMPDESyncProcPtr callback 2913

PMPDETerminateProcPtr callback 2914
PMPlugInAPIVersion structure 2923
PMPluginGetAPIVersionProcPtr callback 2915
PMPlugInHeader structure 2922
PMPlugInHeaderInterface structure 2923
PMPluginReleaseProcPtr callback 2915
PMPluginRetainProcPtr callback 2916
PMPrBrowserAPIVersionProcPtr callback 2916
PMPrBrowserCallbacks structure 2930
PMPrBrowserCallbacksPtr data type 2930
PMPrBrowserContext data type 2931
PMPrBrowserFlags data type 2931
PMPrBrowserGetLookupSpecProcPtr callback 2916
PMPrBrowserGetSelectedPrintersProcPtr callback

2917
PMPrBrowserInitializeProcPtr callback 2917
PMPrBrowserPrologueProcPtr callback 2918
PMPrBrowserRef data type 2931
PMPrBrowserResizeProcPtr callback 2918
PMPrBrowserSelectionStatusProcPtr callback 2919
PMPrBrowserSyncProcPtr callback 2919
PMPrBrowserSyncRequestProcPtr callback 2920
PMPrBrowserTerminateProcPtr callback 2920
PMPrBrowserWorksetPrintersProcPtr callback 2920
PMPrintDialog function (Deprecated in Mac OS X v10.4)

2080
PMPrintDialogInit function (Deprecated in Mac OS X

v10.4) 2080
PMPrintDialogInitProcPtr callback 2102
PMPrintDialogInitUPP data type 2105
PMPrintDialogInitWithPageFormat function

(Deprecated in Mac OS X v10.4) 2081
PMPrintDialogMain function (Deprecated in Mac OS X

v10.4) 2082
PMPrintJobProcPtr callback 2921
PMPrintPageProcPtr callback 2921
PMProcs structure 2927
PMSessionBeginCGDocument function 2082
PMSessionBeginDocument function (Deprecated in Mac

OS X v10.5) 2083
PMSessionBeginPage function 2084
PMSessionDisablePrinterPresets function 2086
PMSessionEnablePrinterPresets function 2086
PMSessionEndDocument function 2087
PMSessionEndPage function 2087
PMSessionPageSetupDialog function 2088
PMSessionPageSetupDialogInit function (Deprecated

in Mac OS X v10.4) 2089
PMSessionPageSetupDialogMain function (Deprecated

in Mac OS X v10.4) 2090
PMSessionPrintDialog function 2091
PMSessionPrintDialogInit function (Deprecated in

Mac OS X v10.4) 2091

3112
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

PMSessionPrintDialogMain function (Deprecated in
Mac OS X v10.4) 2092

PMSessionUseSheets function 2093
PMSetDialogAccepted function (Deprecated in Mac OS

X v10.4) 2094
PMSetDialogDone function (Deprecated in Mac OS X

v10.4) 2095
PMSetItemProc function (Deprecated in Mac OS X v10.4)

2096
PMSetModalFilterProc function (Deprecated in Mac

OS X v10.4) 2096
PMSheetDoneProcPtr callback 2103
PMSheetDoneUPP data type 2106
PMShowPageSetupDialogAsSheet function 2097
PMShowPrintDialogWithOptions function 2098
PMShowPrintDialogWithOptionsAsSheet function

2099
PMTerminateProcPtr callback 2922
Pop-up Arrow Control Definition ID Constants 797
Pop-up Button Control Data Tag Constants 799
Pop-up Button Control Definition ID Constants 800
Pop-up Menu Title Constants 795
Pop-up Menu Title Justification Constants 796
Pop-up Width Constants 802
Pop-up Window Tab Positions 193
PopSymbolicHotKeyMode function 286
popupMenuProc constant 803
PopUpMenuSelect function 1316
PopupPrivateData structure 718
PopupPrivateDataHandle data type 718
PopupPrivateDataPtr data type 718
popupTitleBold constant 795
popupTitleCenterJust constant 796
popupTitleCondense constant 795
popupTitleExtend constant 795
popupTitleItalic constant 795
popupTitleLeftJust constant 796
popupTitleNoStyle constant 795
popupTitleOutline constant 795
popupTitleRightJust constant 796
popupTitleShadow constant 795
popupTitleUnderline constant 795
posCntl constant 737
PostEvent function 1002
PostEventToQueue function 286
Pre-Appearance Window Definition IDs 2048
Presentation Modes 235
Presentation Options 236
Pre–Appearance Control Definition ID Constants 802
Print Center Feature Flags 2938
Print Center Signatures 2938
Print Dialog Options 2106
Printer Module Interface Version 2937

Printer Module Status Codes 2937
ProcessHICommand function 287
ProcessIsContextualMenuClient function

(Deprecated in Mac OS X v10.5) 1317
processStateIncorrectErr constant 1514
Progress Bar Control Data Tag Constants 804
Progress Bar Control Definition ID Constants 805
ProgressTrackInfo structure 113
Promised Flavor Types 981
PromiseHFSFlavor structure 971
Properties 2282
Property Flags

List View Column Behavior 2289
Modifiers 2285
Offset and Mask for Client-Defined Properties 2290
Offset and Mask for List View Properties 2288
Universal 2284

Property Parts 2291
PropertyCreator data type 1982
PropertyTag data type 1983
PS2 Error Codes 1073
Push Button Control Data Tag Constants 806
pushButProc constant 802
PushSymbolicHotKeyMode function 287
PutScrapFlavor function (Deprecated in Mac OS X

v10.5) 1505

Q

QTModelessCallbackProcPtr callback 894
QTModelessCallbackUPP data type 903
QuitApplicationEventLoop function 288
QuitAppModalLoopForWindow function 288
QuitEventLoop function 289

R

radCtrl constant 908
Radio Button Value Constants 806
Radio Group Control Definition ID Constant 807
radioButProc constant 802
rDocProc constant 2050
Read and Write Privileges Settings 2758
ReceiveNextEvent function 289
Recognition Modes 1048
Recognition Result Properties 1561
Recognition System IDs 1562
Recognition System Properties 1562
Recognizer Listen Key Properties 1563
Recognizer Properties 1564

3113
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Recording Constants 2879
Rectangle Keys 2759
RegisterAppearanceClient function (Deprecated in

Mac OS X v10.5) 95
RegisterControlDefinition function 640
RegisterEventHotKey function 290
RegisterListDefinition function (Deprecated in Mac

OS X v10.5) 1195
RegisterMenuDefinition function 1318
RegisterToolboxObjectClass function (Deprecated

in Mac OS X v10.4) 291
RegisterWindowDefinition function 1920
ReleaseEvent function 292
ReleaseMenu function (Deprecated in Mac OS X v10.5)

1319
ReleaseMouseTrackingRegion function (Deprecated

in Mac OS X v10.4) 293
ReleaseQDContextForCollapsedWindowDockTile

function (Deprecated in Mac OS X v10.5) 1921
ReleaseWindow function (Deprecated in Mac OS X v10.5)

1922
ReleaseWindowGroup function 1922
ReleaseWindowMouseTrackingRegions function

(Deprecated in Mac OS X v10.4) 293
RelString function (Deprecated in Mac OS X v10.4) 1674
relstring function (Deprecated in Mac OS X v10.4) 1675
RemoveControlProperty function 641
RemoveDataBrowserItems function 2197
RemoveDataBrowserTableViewColumn function 2198
RemoveDialogItems function 876
RemoveEventFromQueue function 294
RemoveEventHandler function 294
RemoveEventLoopTimer function 295
RemoveEventTypesFromHandler function 295
RemoveMenuCommandProperty function 1319
RemoveMenuItemProperty function 1320
RemoveReceiveHandler function (Deprecated in Mac

OS X v10.5) 947
RemoveTrackingHandler function (Deprecated in Mac

OS X v10.5) 947
RemoveWindowProperty function 1923
RemoveWindowProxy function 1923
Renderer HTML Type 2596
ReplaceText function (Deprecated in Mac OS X v10.4)

1676
RepositionWindow function 1924
requiredFlagsDontMatch constant 522
resCtrl constant 908
Reserved Flavor Type 1512
ResetAlertStage function 876
ReshapeCustomWindow function 1924
ResizeWindow function 1925
RestoreApplicationDockTileImage function 230

Resume Dispatch Function Constants 2879
resumeFlag 1022
resumeFlag constant 1023
RetainEvent function 296
RetainMenu function (Deprecated in Mac OS X v10.5)

1321
RetainMouseTrackingRegion function (Deprecated in

Mac OS X v10.4) 296
RetainWindow function (Deprecated in Mac OS X v10.5)

1926
RetainWindowGroup function 1927
Reveal Options 2292
RevealDataBrowserItem function 2199
ReverseKeyboardFocus function 642
RGB2CMY function 505
RGB2HSL function 505
RGB2HSV function 505
RGBColor structure 1983
RgnHandle data type 1984
rightControlKey constant 1013
rightControlKeyBit constant 1011
rightOptionKey constant 1013
rightOptionKeyBit constant 1011
rightShiftKey constant 1013
rightShiftKeyBit constant 1010
Rotating Window Menu Item Constant 2041
rtrnReceiptMsgID constant 1013
RunApplicationEventLoop function 297
RunAppModalLoopForWindow function 298
RunCurrentEventLoop function 298
RunStandardAlert function 877
Runtime Errors 1061

S

Save Changes Actions 1481
Save Changes Requests 1481
Scrap Flavor Flags 1512
Scrap Flavor Types 1511
scrapFlavorFlagsMismatchErr constant 1515
ScrapFlavorInfo structure 1509
scrapFlavorNotFoundErr constant 1514
scrapFlavorSizeMismatchErr constant 1515
ScrapFlavorType data type 1510
ScrapPromiseKeeperProcPtr callback 1508
ScrapPromiseKeeperUPP data type 1510
scrapPromiseNotKeptErr constant 1514
ScrapRef data type 1510
ScrapTranslationList structure 1729
ScrapType data type 1730
ScrapTypeSpec structure 1730
Script Document File Type 2880

3114
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Script Information Selectors 2880
scriptCurLang constant 1703
scriptDefLang constant 1703
ScriptingComponentSelector data type 2856
ScriptLanguageRecord structure 1614
ScriptLanguageSupport structure 1615
ScriptOrder function (Deprecated in Mac OS X v10.4)

1677
ScriptRunStatus structure 1698
Scroll Bar Control Definition ID Constants 808
Scroll Bar Orientation 2760
Scroll Bar States 2760
Scroll Units 2761
Scroll View Action Constants 2515
Scroll View Constants 2514
Scrollable Event Constants 2517
Scrollable Event Parameter Constants 2518
Scrollbar State 2596
scrollBarProc constant 803
ScrollBarTrackInfo structure 114
Scrolling Text Box Control Data Tag Constants 809
Scrolling Text Box Control Definition ID Constants 810
ScrollMenuImage function (Deprecated in Mac OS X

v10.5) 1322
ScrollWindowRect function 1927
ScrollWindowRegion function 1928
ScrpSTElement structure 3016
ScrpSTTable data type 3017
Search Criteria Bits 2762
Search Criteria Masks 2762
Search Field Attribute Constants 2519
Search Field Data Tags 2519
Search Field Part Code Constants 2520
Search Status Flags 1567
Segment Attribute Constants 2520
Segment Behavior Constants 2521
SelectDialogItemText function 877
Selection Anchor Directions 2293
Selection Constants 782
Selection Display Settings 2763
Selection Flags 1217
Selection State Options 2293
Selection State Settings 2764
SelectTextService function (Deprecated in Mac OS X

v10.5) 1598
SelectWindow function 1929
SendAEFromTSMComponent function (Deprecated in Mac

OS X v10.5) 1598
SendBehind function 1929
SendControlMessage function 642
SendEventToEventTarget function 299
SendEventToEventTargetWithOptions function 299
SendTextInputEvent function 1600

SendWindowGroupBehind function 1930
Separator Line Control Definition ID Constant 811
Services Manager Event Parameters 401
Services Manager Events 399
Services Menu Command Keys 390
SetAnimatedThemeCursor function 96
SetApplicationDockTileImage function 230
SetApplicationDockTileMenu function 231
SetAutomaticControlDragTrackingEnabledForWindow

function 643
SetBevelButtonContentInfo function 644
SetBevelButtonGraphicAlignment function 644
SetBevelButtonMenuValue function 645
SetBevelButtonTextAlignment function 645
SetBevelButtonTextPlacement function 646
SetBevelButtonTransform function 647
SetControl32BitMaximum function 647
SetControl32BitMinimum function 648
SetControl32BitValue function 648
SetControlAction function 649
SetControlBounds function 650
SetControlColorProc function 650
SetControlCommandID function 651
SetControlData function 652
SetControlDataHandle function 653
SetControlDragTrackingEnabled function 653
SetControlFontStyle function 654
SetControlID function 655
SetControlMaximum function 655
SetControlMinimum function 656
SetControlPopupMenuHandle function 657
SetControlPopupMenuID function 657
SetControlProperty function 658
SetControlReference function 659
SetControlSupervisor function 659
SetControlTitle function (Deprecated in Mac OS X

v10.5) 660
SetControlTitleWithCFString function 661
SetControlValue function 661
SetControlViewSize function 662
SetControlVisibility function 663
SetDataBrowserActiveItems function 2199
SetDataBrowserCallbacks function 2200
SetDataBrowserColumnViewDisplayType function

2202
SetDataBrowserColumnViewPath function 2202
SetDataBrowserCustomCallbacks function 2203
SetDataBrowserEditItem function 2204
SetDataBrowserEditText function 2205
SetDataBrowserHasScrollBars function 2206
SetDataBrowserItemDataBooleanValue function

2206
SetDataBrowserItemDataButtonValue function 2207

3115
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

SetDataBrowserItemDataDateTime function 2208
SetDataBrowserItemDataDrawState function 2208
SetDataBrowserItemDataIcon function 2209
SetDataBrowserItemDataIconTransform function

2210
SetDataBrowserItemDataItemID function 2210
SetDataBrowserItemDataLongDateTime function

2211
SetDataBrowserItemDataMaximum function 2212
SetDataBrowserItemDataMenuRef function 2213
SetDataBrowserItemDataMinimum function 2213
SetDataBrowserItemDataRGBColor function 2214
SetDataBrowserItemDataText function 2214
SetDataBrowserItemDataValue function 2215
SetDataBrowserListViewDisclosureColumn function

2216
SetDataBrowserListViewHeaderBtnHeight function

2217
SetDataBrowserListViewHeaderDesc function 2218
SetDataBrowserListViewUsePlainBackground

function 2219
SetDataBrowserPropertyFlags function 2219
SetDataBrowserScrollBarInset function 2220
SetDataBrowserScrollPosition function 2221
SetDataBrowserSelectedItems function 2222
SetDataBrowserSelectionFlags function 2222
SetDataBrowserSortOrder function 2223
SetDataBrowserSortProperty function 2223
SetDataBrowserTableViewColumnPosition function

2224
SetDataBrowserTableViewColumnWidth function

2225
SetDataBrowserTableViewGeometry function 2225
SetDataBrowserTableViewHiliteStyle function

2226
SetDataBrowserTableViewItemRow function 2226
SetDataBrowserTableViewItemRowHeight function

2227
SetDataBrowserTableViewNamedColumnWidth

function 2228
SetDataBrowserTableViewRowHeight function 2228
SetDataBrowserTarget function 2229
SetDataBrowserUserState function 2230
SetDataBrowserViewStyle function 2230
SetDefaultInputMethod function (Deprecated in Mac

OS X v10.5) 1601
SetDefaultInputMethodOfClass function (Deprecated

in Mac OS X v10.5) 1602
SetDialogCancelItem function 878
SetDialogDefaultItem function 879
SetDialogFont function 880
SetDialogItem function 881
SetDialogItemText function 882

SetDialogTimeout function 882
SetDialogTracksCursor function 883
SetDisclosureTriangleLastValue function 664
SetDragAllowableActions function 948
SetDragDrawingProc function (Deprecated in Mac OS

X v10.5) 948
SetDragDropAction function 949
SetDragImage function (Deprecated in Mac OS X v10.4)

950
SetDragImageWithCGImage function 951
SetDragInputProc function 952
SetDragItemBounds function 952
SetDragItemFlavorData function (Deprecated in Mac

OS X v10.5) 953
SetDragMouse function 954
SetDragSendProc function (Deprecated in Mac OS X

v10.5) 955
SetDrawerOffsets function 1931
SetDrawerParent function 1931
SetDrawerPreferredEdge function 1932
SetDropLocation function (Deprecated in Mac OS X

v10.5) 956
SetEventLoopTimerNextFireTime function 300
SetEventMask function 1003
SetEventParameter function 300
SetEventTime function 301
SetFontInfoForSelection function 2302
SetImageWellContentInfo function 664
SetImageWellTransform function 665
SetItemCmd function 1322
SetItemIcon function (Deprecated in Mac OS X v10.5)

1323
SetItemMark function 1324
SetItemStyle function 1325
SetKeyboardFocus function 665
SetListCellIndent function (Deprecated in Mac OS X

v10.5) 1196
SetListClickLoop function (Deprecated in Mac OS X

v10.5) 1196
SetListClickTime function (Deprecated in Mac OS X

v10.5) 1197
SetListFlags function (Deprecated in Mac OS X v10.5)

1197
SetListLastClick function (Deprecated in Mac OS X

v10.5) 1198
SetListPort function (Deprecated in Mac OS X v10.5)

1198
SetListRefCon function (Deprecated in Mac OS X v10.5)

1198
SetListSelectionFlags function (Deprecated in Mac

OS X v10.5) 1199
SetListUserHandle function (Deprecated in Mac OS X

v10.5) 1199

3116
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

SetListViewBounds function (Deprecated in Mac OS X
v10.5) 1200

SetMCEntries function (Deprecated in Mac OS X v10.5)
1326

SetMCInfo function (Deprecated in Mac OS X v10.5) 1326
SetMenuBar function 1327
SetMenuBarFromNib function 1060
SetMenuCommandMark function 1328
SetMenuCommandProperty function 1329
SetMenuDefinition function 1329
SetMenuExcludesMarkColumn function 1330
SetMenuFlashCount function (Deprecated in Mac OS X

v10.5) 1331
SetMenuFont function 1331
SetMenuHeight function 1332
SetMenuID function 1333
SetMenuItemCommandID function 1333
SetMenuItemCommandKey function 1334
SetMenuItemData function 1335
SetMenuItemFontID function 1335
SetMenuItemHierarchicalID function (Deprecated in

Mac OS X v10.5) 1336
SetMenuItemHierarchicalMenu function 1337
SetMenuItemIconHandle function 1338
SetMenuItemIndent function 1338
SetMenuItemKeyGlyph function 1339
SetMenuItemModifiers function 1340
SetMenuItemProperty function 1341
SetMenuItemRefCon function 1342
SetMenuItemText function (Deprecated in Mac OS X

v10.5) 1342
SetMenuItemTextEncoding function (Deprecated in

Mac OS X v10.5) 1343
SetMenuItemTextWithCFString function 1344
SetMenuTitle function (Deprecated in Mac OS X v10.5)

1345
SetMenuTitleIcon function 1345
SetMenuTitleWithCFString function 1346
SetMenuWidth function 1347
SetModalDialogEventMask function 884
SetMouseCoalescingEnabled function 302
SetMouseTrackingRegionEnabled function

(Deprecated in Mac OS X v10.4) 302
SetPortDialogPort function 884
SetPortWindowPort function 1932
SetRootMenu function 1347
SetScrapPromiseKeeper function (Deprecated in Mac

OS X v10.5) 1507
SetStandardDropLocation function (Deprecated in

Mac OS X v10.5) 956
SetString function (Deprecated in Mac OS X v10.4) 1677
SetSystemUIMode function 232
SetTabEnabled function 666

SetTextServiceLanguage function (Deprecated in Mac
OS X v10.5) 1603

SetTextServiceProperty function 1603
SetTheme function (Deprecated in Mac OS X v10.5) 97
SetThemeBackground function (Deprecated in Mac OS

X v10.5) 98
SetThemeCursor function 98
SetThemeDrawingState function 99
SetThemePen function (Deprecated in Mac OS X v10.5)

100
SetThemeTextColor function (Deprecated in Mac OS X

v10.5) 101
SetThemeTextColorForWindow function 1933
SetThemeWindowBackground function 1933
SetTranslationAdvertisement function (Deprecated

in Mac OS X v10.3) 1713
SetTSMTEDialogDocumentID function (Deprecated in

Mac OS X v10.4) 2967
SetTSMTEDialogTSMTERecHandle function (Deprecated

in Mac OS X v10.4) 2967
SetUpControlBackground function 667
SetUpControlTextColor function 668
SetupWindowProxyDragImageRec structure 1984
SetUserFocusWindow function 1934
SetWindowActivationScope function 1935
SetWindowAlpha function 1935
SetWindowAlternateTitle function 1936
SetWindowBounds function 1936
SetWindowCancelButton function 1937
SetWindowClass function (Deprecated in Mac OS X

v10.5) 1938
SetWindowContentColor function 1938
SetWindowContentPattern function 1939
SetWindowDefaultButton function 1940
SetWindowDockTileMenu function 1940
SetWindowGroup function 1941
SetWindowGroupLevel function 1942
SetWindowGroupLevelOfType function 1942
SetWindowGroupName function 1943
SetWindowGroupOwner function 1944
SetWindowGroupParent function 1944
SetWindowIdealUserState function 1945
SetWindowKind function 1945
SetWindowModality function 1946
SetWindowModified function 1946
SetWindowMouseTrackingRegionsEnabled function

(Deprecated in Mac OS X v10.4) 303
SetWindowPic function (Deprecated in Mac OS X v10.5)

1947
SetWindowProperty function 1948
SetWindowProxyAlias function 1949
SetWindowProxyCreatorAndType function 1950

3117
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

SetWindowProxyFSSpec function (Deprecated in Mac
OS X v10.5) 1950

SetWindowProxyIcon function 1951
SetWindowResizeLimits function 1952
SetWindowStandardState function 1953
SetWindowTitleWithCFString function 1953
SetWindowToolbar function 1954
SetWindowUserState function 1954
SetWRefCon function 1955
SetWTitle function (Deprecated in Mac OS X v10.5) 1956
shiftKey constant 1013
shiftKeyBit constant 1010
ShortenDITL function 885
ShowControl function 669
ShowDialogItem function 885
ShowDragHilite function (Deprecated in Mac OS X

v10.5) 957
ShowFloatingWindows function 1956
ShowHide function 1957
ShowHideWindowToolbar function 1957
ShowMenuBar function 1348
ShowSheetWindow function 1958
ShowWindow function 1959
Signature and Interface Constants 3031
SizeControl function 670
SizeDialogItem function 886
SizeWindow function 1959
Slider Control Definition ID Constants 812
SliderTrackInfo structure 114
SmallFract data type 517
SmallFract2Fix function 506
Sort Order Constants 1482
SortDataBrowserContainer function 2231
Sorting Orders 2294
SoundProcPtr callback 894
SoundUPP data type 903
Source Constants 2882
Source Style Constants 2882
Speech Source Constants 1567
SRAddLanguageObject function 1521
SRAddText function 1522
SRCallBackParam structure 1549
SRCallBackProcPtr callback 1548
SRCallBackStruct structure 1549
SRCallBackUPP data type 1551
SRCancelRecognition function 1522
SRChangeLanguageObject function 1523
SRCloseRecognitionSystem function 1524
SRContinueRecognition function 1524
SRCountItems function 1525
SRDrawRecognizedText function 1525
SRDrawText function 1526
SREmptyLanguageObject function 1527

SRGetIndexedItem function 1527
SRGetLanguageModel function 1528
SRGetProperty function 1529
SRGetReference function 1530
SRIdle function 1531
SRLanguageModel data type 1551
SRLanguageObject data type 1551
SRNewLanguageModel function 1531
SRNewLanguageObjectFromDataFile function 1532
SRNewLanguageObjectFromHandle function 1533
SRNewPath function 1534
SRNewPhrase function 1535
SRNewRecognizer function 1535
SRNewWord function 1536
SROpenRecognitionSystem function 1537
SRPath data type 1551
SRPhrase data type 1552
SRProcessBegin function 1537
SRProcessEnd function 1538
SRPutLanguageObjectIntoDataFile function 1539
SRPutLanguageObjectIntoHandle function 1540
SRRecognitionResult data type 1552
SRRecognitionSystem data type 1552
SRRecognizer data type 1552
SRRejectionLevel data type 1553
SRReleaseObject function 1540
SRRemoveIndexedItem function 1541
SRRemoveLanguageObject function 1541
SRSetIndexedItem function 1542
SRSetLanguageModel function 1543
SRSetProperty function 1543
SRSpeakAndDrawText function 1544
SRSpeakText function 1545
SRSpeechBusy function 1546
SRSpeechObject data type 1553
SRSpeechSource data type 1553
SRSpeedSetting data type 1554
SRStartListening function 1546
SRStopListening function 1547
SRStopSpeech function 1547
SRWord data type 1554
StageList data type 903
Standard Alert and Sheet Option Flags 915
Standard Alert Structure Version Constant 915
Standard Command ID Constants 344
Standard Custom Archive Data Dictionary Class and

SuperClass Keys 2341
Standard Custom Archive Data Dictionary Key for

ProcPointer-Based CDEFs 2341
Standard Custom Archive Data Dictionary Keys for Custom

Initialize Events 2340
Standard Drop Locations 982
Standard Menu Definition Constants 1399

3118
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Standard View Constants 2522
StandardAlert function 887
StandardIconListCellDataRec structure 1212
StatementRange structure 2856
Static Text Control Data Tag Constants 813
Static Text Control Definition ID Constant 815
statText constant 908
StdFilterProc function 888
STElement structure 3017
STHandle data type 3018
StopAlert function 889
stopIcon constant 907
StoreWindowIntoCollection function (Deprecated in

Mac OS X v10.5) 1960
StringOrder function (Deprecated in Mac OS X v10.4)

1678
StringToExtended function (Deprecated in Mac OS X

v10.4) 1679
StringToFormatRec function (Deprecated in Mac OS X

v10.4) 1680
StringToNum function (Deprecated in Mac OS X v10.4)

1682
StripDiacritics function (Deprecated in Mac OS X

v10.4) 1683
StScrpHandle data type 3018
StScrpRec structure 3018
Style Mode Constants 3032
Style Resource Types 2764
StyleRun structure 3019
Supported Data Types 2765
Supported File Types 2766
Supported Frame Types 2767
suspendResumeMessage constant 1019
Symbolic Hot Key Definitions 376
System 7 Window Positioning Constants 2019
systemCurLang constant 1703
systemDefLang constant 1703

T

Tab Control Data Tag Constants 816
Tab Control Definition IDs 817
Tab Control Info Tag Constant 818
Tab Heights 183
Tab Types 2767
Table View Highlighting Styles 2294
Table View Last Column Value 2295
Table View Property Flag 2295
Tablet Event Parameters 402
Tablet Events 402
TabletPointRec structure 319
TabletProximityRec structure 320

TEActivate function (Deprecated in Mac OS X v10.4)
2968

TEAutoView function (Deprecated in Mac OS X v10.4)
2968

teBitClear constant 3034
teBitSet constant 3034
teBitTest constant 3034
TECalText function (Deprecated in Mac OS X v10.4) 2969
teCenter constant 3032
TEClick function (Deprecated in Mac OS X v10.4) 2969
TEClickLoopProcPtr callback 3007
TEClickLoopUPP data type 3019
TEContinuousStyle function (Deprecated in Mac OS X

v10.4) 2970
TECopy function (Deprecated in Mac OS X v10.4) 2971
TECustomHook function (Deprecated in Mac OS X v10.4)

2972
TECut function (Deprecated in Mac OS X v10.4) 2973
TEDeactivate function (Deprecated in Mac OS X v10.4)

2974
TEDelete function (Deprecated in Mac OS X v10.4) 2974
TEDispose function (Deprecated in Mac OS X v10.4) 2975
TEDoTextProcPtr callback 3007
TEDoTextUPP data type 3020
teFAutoScroll constant 3035
TEFeatureFlag function (Deprecated in Mac OS X v10.4)

2976
TEFindWordProcPtr callback 3008
TEFindWordUPP data type 3020
teFInlineInput constant 3036
teFlushDefault constant 3032
teFlushLeft constant 3032
teFlushRight constant 3032
teFOutlineHilite constant 3035
TEFromScrap function (Deprecated in Mac OS X v10.4)

2976
teFTextBuffering constant 3035
teFUseTextServices constant 3031
TEGetDoTextHook function (Deprecated in Mac OS X

v10.4) 2977
TEGetFindWordHook function (Deprecated in Mac OS X

v10.4) 2977
TEGetHeight function (Deprecated in Mac OS X v10.4)

2978
TEGetHiliteRgn function (Deprecated in Mac OS X

v10.4) 2978
TEGetOffset function (Deprecated in Mac OS X v10.4)

2979
TEGetPoint function (Deprecated in Mac OS X v10.4)

2979
TEGetRecalcHook function (Deprecated in Mac OS X

v10.4) 2980

3119
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

TEGetScrapHandle function (Deprecated in Mac OS X
v10.4) 2980

TEGetScrapLength function (Deprecated in Mac OS X
v10.4) 2981

TEGetStyle function (Deprecated in Mac OS X v10.4)
2981

TEGetStyleHandle function (Deprecated in Mac OS X
v10.4) 2982

TEGetStyleScrapHandle function (Deprecated in Mac
OS X v10.4) 2983

TEGetText function (Deprecated in Mac OS X v10.4) 2983
TEHandle data type 3020
TEIdle function (Deprecated in Mac OS X v10.4) 2984
TEInsert function (Deprecated in Mac OS X v10.4) 2985
TEIntHook data type 3021
TEKey function (Deprecated in Mac OS X v10.4) 2985
TENew function (Deprecated in Mac OS X v10.4) 2986
TENumStyles function (Deprecated in Mac OS X v10.4)

2987
TEPaste function (Deprecated in Mac OS X v10.4) 2988
TEPinScroll function (Deprecated in Mac OS X v10.4)

2988
TEPtr data type 3021
TERec structure 3021
TERecalcProcPtr callback 3008
TERecalcUPP data type 3025
TEReplaceStyle function (Deprecated in Mac OS X

v10.4) 2989
TerminateTextService function 1604
TEScrapHandle function (Deprecated in Mac OS X v10.4)

2990
TEScroll function (Deprecated in Mac OS X v10.4) 2990
TESelView function (Deprecated in Mac OS X v10.4) 2991
TESetAlignment function (Deprecated in Mac OS X

v10.4) 2992
TESetClickLoop function (Deprecated in Mac OS X

v10.4) 2992
TESetDoTextHook function (Deprecated in Mac OS X

v10.4) 2993
TESetFindWordHook function (Deprecated in Mac OS X

v10.4) 2993
TESetRecalcHook function (Deprecated in Mac OS X

v10.4) 2994
TESetScrapHandle function (Deprecated in Mac OS X

v10.4) 2994
TESetScrapLength function (Deprecated in Mac OS X

v10.4) 2994
TESetSelect function (Deprecated in Mac OS X v10.4)

2995
TESetStyle function (Deprecated in Mac OS X v10.4)

2996
TESetStyleHandle function (Deprecated in Mac OS X

v10.4) 2997

TESetText function (Deprecated in Mac OS X v10.4) 2997
testCntl constant 736
TestControl function 670
TEStyleInsert function (Deprecated in Mac OS X v10.4)

2998
TEStyleNew function (Deprecated in Mac OS X v10.4)

2999
TEStylePaste function (Deprecated in Mac OS X v10.4)

3000
TEStyleRec structure 3025
TEStyleTable data type 3027
TETextBox function (Deprecated in Mac OS X v10.4) 3000
TEToScrap function (Deprecated in Mac OS X v10.4) 3001
TEUpdate function (Deprecated in Mac OS X v10.4) 3002
TEUseStyleScrap function (Deprecated in Mac OS X

v10.4) 3002
Text Alignment Constants 3032
Text Background Types 2768
Text Box Options Bits 2768
Text Box Options Masks 2770
Text Custom Hook Constants 3033
Text Drawing Flags 1052
Text Encoding Preferences 2772
Text Feature Action Constants 3034
Text Feature Constants 3035
Text Field Event Constants 2522
Text Field Event Parameter Constants 2524
Text Input Event Constants 403
Text Input Event Parameters 409
Text Proc Constants 816
Text Service Classes 1638
Text Service Manager Document Event Parameters 413
Text Service Properties 1640
Text Service Version 1639
Text Services Object Attributes 1642
Text Services Property Values 1641
Text Styling Constants 3036
textMenuProc constant 1381
TextOrder function (Deprecated in Mac OS X v10.4) 1684
TextServiceEventRef function 1605
TextServiceInfo structure 1615
TextServiceList structure 1616
TextServicePropertyValue data type 1616
TextStyle structure 3027
TextWidthHookProcPtr callback 3009
TextWidthHookUPP data type 3028
Theme Backgrounds 144
Theme Brushes 145
Theme Button Adornments 156
Theme Button Values 159
Theme Buttons 153
Theme Checkbox Styles 161
Theme Collection Tags 122

3120
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Theme Cursors 162
Theme Drag Sounds 210
Theme Drawing States 126
Theme Font IDs 166
Theme Menu Bar States 177
Theme Menu Item Types 177
Theme Menu States 176
Theme Menu Types 176
Theme Metrics 128
Theme Pop-Up Arrow Orientations 160
Theme Pop-Up Arrow Sizes 161
Theme Scroll Bar Arrow Styles 179
Theme Scroll Box Styles 180
Theme Size Box Directions 180
Theme Sound Masks 193
Theme Sounds 194
Theme Tab Directions 182
Theme Tab Styles 183
Theme Text Colors 169
Theme Thumb Directions 181
Theme Title Bar Items 192
Theme Track Attributes 184
Theme Track Kinds 186
Theme Track Press States 187
Theme Track States 185
Theme Window Attributes 191
Theme Window Types 189
themeBadCursorIndexErr constant 218
themeBadTextColorErr constant 218
ThemeButtonDrawInfo structure 115
ThemeButtonDrawProcPtr callback 107
ThemeButtonDrawUPP data type 119
ThemeDrawingState data type 118
ThemeEraseProcPtr callback 108
ThemeEraseUPP data type 119
themeHasNoAccentsErr constant 218
themeInvalidBrushErr constant 217
ThemeIteratorProcPtr callback 109
ThemeIteratorUPP data type 120
themeMonitorDepthNotSupportedErr constant 218
themeNoAppropriateBrushErr constant 218
themeProcessNotRegisteredErr constant 218
themeProcessRegisteredErr constant 218
themeScriptFontNotFoundErr constant 218
ThemeTabTitleDrawProcPtr callback 111
ThemeTabTitleDrawUPP data type 120
ThemeTrackDrawInfo structure 116
ThemeWindowMetrics structure 117
thumbCntl constant 737
TOC Specification Constants 2060
ToggleDrawer function 1961
Toolbar Attributes 2384
Toolbar Command ID Constants 2385

Toolbar Display Mode Constants 2386
Toolbar Display Size Constants 2387
Toolbar Event Parameters 416
Toolbar Event Parameters and Types 2391
Toolbar Events 2387
Toolbar Item Attributes 2391
Toolbar Item Events 2393
Toolbar Item View Events 2396
Toolbar View Background Tag 2042
Toolbar View Display Event Parameters and Types 2397
ToolboxObjectClassRef data type 322
TrackBox function 1961
TrackControl function 671
TrackDrag function 958
TrackGoAway function 1962
Tracking Results 2296
TrackMouseLocation function 303
TrackMouseLocationWithOptions function 304
TrackMouseRegion function 305
TrackWindowProxyDrag function 1963
TrackWindowProxyFromExistingDrag function 1964
Transformation Constants 2525
TransitionWindow function 1965
TransitionWindowAndParent function 1966
TransitionWindowOptions structure 1985
TransitionWindowWithOptions function 1967
TranslateFile function (Deprecated in Mac OS X v10.3)

1714
TranslateScrap function (Deprecated in Mac OS X

v10.3) 1715
Translation Options 1483
Trap Value 1073
Triangle Control Data Tag Constant 818
Triangle Control Definition ID Constants 819
TripleInt data type 1698
TripleInt Index Values 1701
TruncateThemeText function (Deprecated in Mac OS X

v10.5) 102
TSM Document Interface Type data type 1613
TSM Document Interfaces 1642
tsmAlreadyRegisteredErr constant 1647
tsmCantChangeForcedClassStateErr constant 1648
tsmCantOpenComponentErr constant 1647
tsmComponentAlreadyOpenErr constant 1648
tsmComponentNoErr constant 1647
TSMContext data type 1617
TSMCopyInputMethodEnabledInputModes function

(Deprecated in Mac OS X v10.5) 1606
tsmDefaultIsNotInputMethodErr constant 1648
TSMDialogPeek data type 3028
TSMDialogPtr data type 3028
TSMDialogRecord structure 3028
tsmDocNotActiveErr constant 1647

3121
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

tsmDocPropertyBufferTooSmallErr constant 1648
tsmDocPropertyNotFoundErr constant 1648
TSMDocumentID data type 1617
tsmDocumentOpenErr constant 1647
TSMGetActiveDocument function 1607
TSMGetDocumentProperty function 1607
TSMGlyphInfo structure 1617
TSMGlyphInfoArray structure 1618
tsmInputMethodIsOldErr constant 1648
tsmInputMethodNotFoundErr constant 1647
TSMInputModePaletteLoadButtons function

(Deprecated in Mac OS X v10.5) 1609
TSMInputModePaletteUpdateButtons function

(Deprecated in Mac OS X v10.5) 1609
tsmInvalidDocIDErr constant 1647
tsmNeverRegisteredErr constant 1647
tsmNoOpenTSErr constant 1647
tsmNotAnAppErr constant 1647
TSMRemoveDocumentProperty function 1610
tsmScriptHasNoIMErr constant 1648
TSMSelectInputMode function (Deprecated in Mac OS

X v10.5) 1610
TSMSetDocumentProperty function 1611
TSMSetInlineInputRegion function (Deprecated in

Mac OS X v10.5) 1611
TSMTEPostUpdateProcPtr callback 3009
TSMTEPostUpdateUPP data type 3029
TSMTEPreUpdateProcPtr callback 3010
TSMTEPreUpdateUPP data type 3029
TSMTERec structure 3029
TSMTERecHandle data type 3030
tsmTextServiceNotFoundErr constant 1647
tsmTSHasNoMenuErr constant 1648
tsmTSMDocBusyErr constant 1647
tsmTSNotOpenErr constant 1648
tsmUnknownErr constant 1648
tsmUnsupportedTypeErr constant 1648
tsmUnsupScriptLanguageErr constant 1647
tsmUseInputWindowErr constant 1647
tsNextSelectMode constant 1704
tsNormalSelectMode constant 1704
tsPreviousSelectMode constant 1704
TXNActionKeyMapperProcPtr callback 2700
TXNActionKeyMapperUPP data type 2706
TXNActionNameMapperProcPtr callback 2702
TXNActionNameMapperUPP data type 2706
TXNActivate function (Deprecated in Mac OS X v10.3)

2618
TXNAdjustCursor function 2619
TXNATSUIFeatures structure 2706
TXNATSUIVariations structure 2707
TXNAttachObjectToWindow function (Deprecated in

Mac OS X v10.3) 2620

TXNAttachObjectToWindowRef function 2620
TXNAttributeData structure 2707
TXNBackground structure 2708
TXNBackgroundData structure 2709
TXNBeginActionGroup function 2621
TXNCanRedo function (Deprecated in Mac OS X v10.4)

2622
TXNCanRedoAction function 2622
TXNCanUndo function (Deprecated in Mac OS X v10.4)

2623
TXNCanUndoAction function 2624
TXNCarbonEventInfo structure 2709
TXNClear function 2624
TXNClearActionChangeCount function (Deprecated in

Mac OS X v10.4) 2625
TXNClearCountForActionType function 2626
TXNClick function 2626
TXNContextualMenuSetupProcPtr callback 2702
TXNContextualMenuSetupUPP data type 2711
TXNControlData structure 2711
TXNConvertFromPublicScrap function (Deprecated in

Mac OS X v10.3) 2627
TXNConvertToPublicScrap function (Deprecated in

Mac OS X v10.3) 2627
TXNCopy function 2628
TXNCopyTypeIdentifiersForRange function 2628
TXNCountRunsInRange function 2629
TXNCreateObject function 2630
TXNCut function 2631
TXNDataSize function 2632
TXNDeleteObject function 2632
TXNDisposeFontMenuObject function (Deprecated in

Mac OS X v10.5) 2633
TXNDoFontMenuSelection function (Deprecated in Mac

OS X v10.5) 2633
TXNDragReceiver function 2634
TXNDragTracker function 2635
TXNDraw function (Deprecated in Mac OS X v10.3) 2636
TXNDrawCFStringTextBox function 2637
TXNDrawObject function 2638
TXNDrawUnicodeTextBox function 2639
TXNEchoMode function 2640
TXNEndActionGroup function 2641
TXNErrors data type 2712
TXNFind function 2641
TXNFindProcPtr callback 2703
TXNFindUPP data type 2712
TXNFlattenObjectToCFDataRef function 2643
TXNFocus function 2644
TXNFontMenuObject data type 2712
TXNForceUpdate function 2644
TXNFrameID data type 2713
TXNGetAccessibilityHIObject function 2645

3122
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

TXNGetActionChangeCount function (Deprecated in
Mac OS X v10.4) 2646

TXNGetChangeCount function 2647
TXNGetCommandEventSupport function 2647
TXNGetContinuousTypeAttributes function 2648
TXNGetCountForActionType function 2649
TXNGetData function 2649
TXNGetDataEncoded function 2650
TXNGetEventTarget function 2651
TXNGetFontDefaults function (Deprecated in Mac OS

X v10.4) 2652
TXNGetFontMenuHandle function (Deprecated in Mac

OS X v10.5) 2653
TXNGetHIRect function 2653
TXNGetIndexedRunInfoFromRange function 2654
TXNGetLineCount function 2656
TXNGetLineMetrics function 2656
TXNGetRectBounds function (Deprecated in Mac OS X

v10.3) 2657
TXNGetSelection function 2658
TXNGetSleepTicks function 2658
TXNGetSpellCheckAsYouType function 2659
TXNGetTXNObjectControls function 2659
TXNGetViewRect function 2660
TXNGetWindowRef function 2660
TXNGrowWindow function 2661
TXNHIPointToOffset function 2661
TXNIdle function 2662
TXNInitTextension function 2662
TXNIsObjectAttachedToSpecificWindow function

(Deprecated in Mac OS X v10.3) 2663
TXNIsObjectAttachedToWindow function (Deprecated

in Mac OS X v10.3) 2664
TXNIsScrapPastable function 2665
TXNIsSelectionEmpty function 2665
TXNKeyDown function 2666
TXNLongRect structure 2713
TXNMacOSPreferredFontDescription structure 2714
TXNMargins structure 2714
TXNMatchTextRecord structure 2715
TXNNewFontMenuObject function (Deprecated in Mac

OS X v10.5) 2666
TXNNewObject function (Deprecated in Mac OS X v10.3)

2667
TXNObject data type 2715
TXNObjectRefCon data type 2716
TXNOffsetToHIPoint function 2670
TXNOffsetToPoint function (Deprecated in Mac OS X

v10.3) 2670
TXNPageSetup function 2671
TXNPaste function 2671
TXNPointToOffset function (Deprecated in Mac OS X

v10.3) 2672

TXNPrepareFontMenu function (Deprecated in Mac OS
X v10.5) 2672

TXNPrint function 2673
TXNReadFromCFURL function 2673
TXNRecalcTextLayout function 2675
TXNRedo function 2675
TXNRegisterScrollInfoProc function 2675
TXNResizeFrame function 2676
TXNRevert function 2677
TXNSave function (Deprecated in Mac OS X v10.4) 2677
TXNScroll function 2679
TXNScrollInfoProcPtr callback 2705
TXNScrollInfoUPP data type 2716
TXNSelectAll function 2680
TXNSetActionNameMapper function 2680
TXNSetBackground function 2681
TXNSetCommandEventSupport function 2681
TXNSetContextualMenuSetup function 2682
TXNSetData function 2683
TXNSetDataFromCFURLRef function (Deprecated in Mac

OS X v10.4) 2684
TXNSetDataFromFile function (Deprecated in Mac OS

X v10.3) 2685
TXNSetEventTarget function 2686
TXNSetFontDefaults function (Deprecated in Mac OS

X v10.4) 2688
TXNSetFrameBounds function 2688
TXNSetHIRectBounds function 2689
TXNSetRectBounds function (Deprecated in Mac OS X

v10.3) 2690
TXNSetScrollbarState function 2691
TXNSetSelection function 2692
TXNSetSpellCheckAsYouType function 2693
TXNSetTXNObjectControls function 2693
TXNSetTypeAttributes function 2694
TXNSetViewRect function (Deprecated in Mac OS X

v10.2) 2695
TXNShowSelection function 2696
TXNTab structure 2716
TXNTerminateTextension function (Deprecated in Mac

OS X v10.3) 2696
TXNTextBoxOptionsData structure 2717
TXNTSMCheck function 2697
TXNTypeAttributes structure 2718
TXNUndo function 2697
TXNUpdate function 2698
TXNVersionInformation function 2698
TXNVersionValue data type 2718
TXNWriteRangeToCFURL function 2699
TXNZoomWindow function 2700
TXTNTag data type 2718
Type and Creator Constants for Volumes and Directories

981

3123
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Type Select Modes 1703
typeAppleScript 2883
typeASStorage constant 2884
typeATSFontRef constant 415, 1630
typeATSUFontID constant 2306
typeATSUSize constant 2307
typeCFArrayRef constant 335
typeCFAttributedStringRef constant 334
typeCFBooleanRef constant 335
typeCFDictionaryRef constant 335
typeCFIndex constant 333
typeCFMutableArrayRef constant 335
typeCFMutableAttributedStringRef constant 334
typeCFMutableDictionaryRef constant 335
typeCFMutableStringRef constant 334
typeCFNumberRef constant 335
typeCFStringRef constant 334
typeCFTypeRef constant 335
typeCGContextRef constant 333
typeClickActivationResult constant 450
typeCollection constant 333
typeControlActionUPP constant 370
typeControlFrameMetrics constant 370
typeControlPartCode constant 370
typeControlRef constant 333
typeDragRef constant 332
typeEventHotKeyID constant 376
typeEventTargetRef constant 328
typeFMFontFamily constant 2307
typeFMFontSize constant 2307
typeFMFontStyle constant 2307
typeFontColor constant 2307
typeFSVolumeRefNum constant 418
typeGDHandle constant 334
typeGlyphSelector constant 415, 1630
typeGrafPtr constant 332
typeGWorldPtr constant 332
typeHIPoint constant 333
typeHIRect constant 333
typeHIShapeRef constant 333
typeHISize constant 333
typeHIToolbarDisplayMode constant 2397
typeHIToolbarDisplaySize constant 2398
typeHIToolbarItemRef constant 2391
typeHIToolbarRef constant 2391
typeIndicatorDragConstraint constant 370
typeMenuCommand constant 389
typeMenuEventOptions constant 389
typeMenuItemIndex constant 389
typeMenuRef constant 332
typeMenuTrackingMode constant 389
typeModalClickResult constant 450
typeMouseButton constant 397

typeMouseWheelAxis constant 397
typeOSADialectInfo constant 2865
typeOSAErrorRange 2884
typeOSAGenericStorage 2884
typeOSAGenericStorage constant 2884
typeOSStatus constant 333
typeQDRgnHandle constant 333
TypesBlock data type 1730
TypeSelectClear function (Deprecated in Mac OS X

v10.4) 1685
TypeSelectCompare function (Deprecated in Mac OS X

v10.4) 1686
TypeSelectFindItem function (Deprecated in Mac OS

X v10.4) 1686
TypeSelectNewKey function (Deprecated in Mac OS X

v10.4) 1687
TypeSelectRecord structure 1698
typeSRRecognizer constant 1556
typeSRSpeechResult constant 1557
typeStatementRange 2885
typeTabletPointerRec constant 403
typeTabletPointRec constant 403
typeTabletProximityRec constant 403
typeVoidPtr constant 334
typeWindowDefPartCode constant 450
typeWindowModality constant 450
typeWindowPartCode constant 450
typeWindowRef constant 332
typeWindowRegionCode constant 449
typeWindowTransitionAction constant 450
typeWindowTransitionEffect constant 450

U

Unicode Control Data Tags 772
Unicode Identifiers 1643
Universal URL Property Name Constants 1776
Unknown Flavor Data Size Constant 1513
UnloadScrap function (Deprecated in Mac OS X v10.5)

1507
UnregisterAppearanceClient function (Deprecated

in Mac OS X v10.5) 103
UnregisterEventHotKey function 306
UnregisterToolboxObjectClass function (Deprecated

in Mac OS X v10.4) 307
unsupportedForPlatformErr constant 986
UpdateCollapsedWindowDockTile function 1968
UpdateControls function 672
UpdateDataBrowserItems function 2232
UpdateDialog function 890
UpdateDragHilite function (Deprecated in Mac OS X

v10.5) 959

3124
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

updateEvt constant 1022
UpdateInvalidMenuItems function 1348
updateMask constant 1018
UpdateStandardFontMenu function 1349
UpdateTranslationProgress function (Deprecated in

Mac OS X v10.3) 1716
UppercaseStripDiacritics function (Deprecated in

Mac OS X v10.4) 1688
UppercaseText function (Deprecated in Mac OS X v10.4)

1689
UpperString function (Deprecated in Mac OS X v10.4)

1690
upperstring function (Deprecated in Mac OS X v10.4)

1691
URL Source Type 2597
URLAbort function (Deprecated in Mac OS X v10.4) 1740
URLCallbackInfo structure 1762
URLDisposeReference function (Deprecated in Mac OS

X v10.4) 1741
URLDownload function (Deprecated in Mac OS X v10.4)

1741
URLGetBuffer function (Deprecated in Mac OS X v10.4)

1743
URLGetCurrentState function (Deprecated in Mac OS

X v10.4) 1744
URLGetDataAvailable function (Deprecated in Mac OS

X v10.4) 1745
URLGetError function (Deprecated in Mac OS X v10.4)

1746
URLGetFileInfo function (Deprecated in Mac OS X

v10.4) 1746
URLGetProperty function (Deprecated in Mac OS X

v10.4) 1747
URLGetPropertySize function (Deprecated in Mac OS

X v10.4) 1748
URLGetURLAccessVersion function (Deprecated in Mac

OS X v10.4) 1749
URLIdle function (Deprecated in Mac OS X v10.4) 1749
URLNewReference function (Deprecated in Mac OS X

v10.4) 1750
URLNotifyProcPtr callback 1759
URLNotifyUPP data type 1763
URLOpen function (Deprecated in Mac OS X v10.4) 1751
URLReference data type 1763
URLReleaseBuffer function (Deprecated in Mac OS X

v10.4) 1752
URLSetProperty function (Deprecated in Mac OS X

v10.4) 1753
URLSimpleDownload function (Deprecated in Mac OS X

v10.4) 1754
URLSimpleUpload function (Deprecated in Mac OS X

v10.4) 1756
URLSystemEventProcPtr callback 1760

URLSystemEventUPP data type 1763
URLUpload function (Deprecated in Mac OS X v10.4) 1757
UseInputWindow function 1613
User Actions 1484
User Focus Auto-Select Constant 2002
User Item and User Pane Control Data Tag Constants 820
User Pane Control Definition ID Constant 822
User Selection Flags 2296
User Writing Modes 1045
UserEventProcPtr callback 508
UserEventUPP data type 518
userItem constant 908
UserItemProcPtr callback 895
UserItemUPP data type 903
userKind constant 2030
UseThemeFont function (Deprecated in Mac OS X v10.5)

103
useWFont Constants 823

V

ValidWindowRect function 1969
ValidWindowRgn function 1969
Version Constants 1646
View Styles 2298
Volume Event Constants 417
Volume Reference Constant 418

W

WaitMouseMoved function 960
WaitNextEvent function 1004
wContentColor constant 2043
Weekdays 2885
wFrameColor constant 2043
wHiliteColor constant 2043
Width and Height Constants 521
WidthHookProcPtr callback 3010
WidthHookUPP data type 3030
wInCollapseBox constant 2036
wInContent constant 2035
'wind' Resource Default Collection Item Constants 2045
Window Action Event Constants 418
Window Activation Event Constants 425
Window Activation Scope Constants 2027
Window Attribute Identifiers 1992
Window Attributes 1998
Window Availability Constants 2046
Window Bounds Attributes 445
Window Class Constants 1988

3125
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

Window Class Position Constants 2033
Window Click Event Constants 428
Window Constrain Options 2028
Window Control Data List Header Tag Constant 824
Window Control Definition IDs 823
Window Cursor Change Event Constant 435
Window Definition Hit Test Result Code Constants 2034
Window Definition Message Constants 439, 2036
Window Definition Procedure Constant 2034
Window Definition State-Changed Constant 2039
Window Definition Type Constants 2033
Window Drawer Event Constants 438
Window Edge Constants 2041
Window Event Parameters and Types 446
Window Feature Bits 2011
Window Focus Event Constants 435
Window Frame View Part Codes 2010
Window Group Attributes 2031
Window Group Content Options 2032
Window Group Level Constants 2048
Window Group Selection Constants 2030
Window Kinds 2029
Window Latent Visibility Constants 2023
Window Menu Item Property Constants 2042
Window Modality Options 2016
Window Paint Callback Options 2043
Window Part Code Constants 2013
Window Position Constants 2017
Window Property Persistent Constant 2024
Window Refresh Event Constants 434
Window Region Constants 2021
Window Resource IDs 2045
Window Scale Mode Constants 2047
Window Scrolling Options 2044
Window Sheet Event Constants 437
Window State Event Constants 430
Window Transition Action Constants 2026
Window Transition Effect Constants 2027
Window Variant Constants 2024
windowAppModalStateAlreadyExistsErr constant

2053
windowAttributeImmutableErr constant 2052
windowAttributesConflictErr constant 2052
WindowDefProcPtr callback 1973
WindowDefSpec structure 1985
WindowDefUPP data type 1986
windowGroupInvalidErr constant 2053
WindowGroupRef data type 1986
windowManagerInternalErr constant 2052
windowNoAppModalStateErr constant 2053
WindowPaintProcPtr callback 1978
WindowPaintUPP data type 1987
WindowPathSelect function 1970

WindowRef data type 1987
WindowTitleDrawingProcPtr callback 112
WindowTitleDrawingUPP data type 120
windowWrongStateErr constant 2052
wInDrag constant 2035
wInGoAway constant 2035
wInGrow constant 2035
wInProxyIcon constant 2036
wInStructure constant 2036
wInToolbarButton constant 2036
wInZoomIn constant 2035
wInZoomOut constant 2036
wNoHit constant 2035
WStateData structure 1987
wTextColor constant 2043
wTitleBarColor constant 2043

Z

Zoom Acceleration Constants 984
zoomDocProc constant 2050
zoomNoAcceleration 984
zoomNoGrow constant 2050
ZoomRects function (Deprecated in Mac OS X v10.5) 960
ZoomRegion function (Deprecated in Mac OS X v10.5)

961
ZoomWindow function 1971
ZoomWindowIdeal function 1972

3126
2007-10-31 | © 2007 Apple Inc. All Rights Reserved.

INDEX

	Carbon Framework Reference
	Contents
	Figures and Tables
	Introduction
	Part I: Managers
	Appearance Manager Reference
	Overview
	Functions by Task
	Accessing Theme Information
	Drawing Theme-Compliant Controls
	Drawing Theme-Compliant Menus
	Drawing Theme-Compliant Windows
	Playing Theme Sounds
	Registering With the Appearance Manager
	Specifying Theme-Compliant Cursors
	Using Theme-Compliant Colors and Patterns
	Drawing Theme-Compliant Text
	Creating and Disposing Universal Procedure Pointers to Appearance Manager Callbacks

	Functions
	ApplyThemeBackground
	BeginThemeDragSound
	CopyThemeIdentifier
	DisposeMenuItemDrawingUPP
	DisposeMenuTitleDrawingUPP
	DisposeThemeButtonDrawUPP
	DisposeThemeDrawingState
	DisposeThemeEraseUPP
	DisposeThemeIteratorUPP
	DisposeThemeTabTitleDrawUPP
	DisposeWindowTitleDrawingUPP
	DrawThemeButton
	DrawThemeChasingArrows
	DrawThemeEditTextFrame
	DrawThemeFocusRect
	DrawThemeFocusRegion
	DrawThemeGenericWell
	DrawThemeListBoxFrame
	DrawThemeMenuBackground
	DrawThemeMenuBarBackground
	DrawThemeMenuItem
	DrawThemeMenuSeparator
	DrawThemeMenuTitle
	DrawThemeModelessDialogFrame
	DrawThemePlacard
	DrawThemePopupArrow
	DrawThemePrimaryGroup
	DrawThemeScrollBarArrows
	DrawThemeScrollBarDelimiters
	DrawThemeSecondaryGroup
	DrawThemeSeparator
	DrawThemeStandaloneGrowBox
	DrawThemeStandaloneNoGrowBox
	DrawThemeTab
	DrawThemeTabPane
	DrawThemeTextBox
	DrawThemeTickMark
	DrawThemeTitleBarWidget
	DrawThemeTrack
	DrawThemeTrackTickMarks
	DrawThemeWindowFrame
	DrawThemeWindowHeader
	DrawThemeWindowListViewHeader
	EndThemeDragSound
	GetTheme
	GetThemeAccentColors
	GetThemeBrushAsColor
	GetThemeButtonBackgroundBounds
	GetThemeButtonContentBounds
	GetThemeButtonRegion
	GetThemeCheckBoxStyle
	GetThemeDrawingState
	GetThemeFont
	GetThemeMenuBackgroundRegion
	GetThemeMenuBarHeight
	GetThemeMenuItemExtra
	GetThemeMenuSeparatorHeight
	GetThemeMenuTitleExtra
	GetThemeMetric
	GetThemeScrollBarArrowStyle
	GetThemeScrollBarThumbStyle
	GetThemeScrollBarTrackRect
	GetThemeStandaloneGrowBoxBounds
	GetThemeTabRegion
	GetThemeTextColor
	GetThemeTextDimensions
	GetThemeTextShadowOutset
	GetThemeTrackBounds
	GetThemeTrackDragRect
	GetThemeTrackLiveValue
	GetThemeTrackThumbPositionFromOffset
	GetThemeTrackThumbPositionFromRegion
	GetThemeTrackThumbRgn
	GetThemeWindowRegion
	GetThemeWindowRegionHit
	HitTestThemeScrollBarArrows
	HitTestThemeTrack
	InvokeMenuItemDrawingUPP
	InvokeMenuTitleDrawingUPP
	InvokeThemeButtonDrawUPP
	InvokeThemeEraseUPP
	InvokeThemeIteratorUPP
	InvokeThemeTabTitleDrawUPP
	InvokeWindowTitleDrawingUPP
	IsAppearanceClient
	IsThemeInColor
	IsValidAppearanceFileType
	IterateThemes
	NewMenuItemDrawingUPP
	NewMenuTitleDrawingUPP
	NewThemeButtonDrawUPP
	NewThemeEraseUPP
	NewThemeIteratorUPP
	NewThemeTabTitleDrawUPP
	NewWindowTitleDrawingUPP
	NormalizeThemeDrawingState
	PlayThemeSound
	RegisterAppearanceClient
	SetAnimatedThemeCursor
	SetTheme
	SetThemeBackground
	SetThemeCursor
	SetThemeDrawingState
	SetThemePen
	SetThemeTextColor
	TruncateThemeText
	UnregisterAppearanceClient
	UseThemeFont

	Callbacks
	MenuItemDrawingProcPtr
	MenuTitleDrawingProcPtr
	ThemeButtonDrawProcPtr
	ThemeEraseProcPtr
	ThemeIteratorProcPtr
	ThemeTabTitleDrawProcPtr
	WindowTitleDrawingProcPtr

	Data Types
	ProgressTrackInfo
	ScrollBarTrackInfo
	SliderTrackInfo
	ThemeButtonDrawInfo
	ThemeTrackDrawInfo
	ThemeWindowMetrics
	ThemeDrawingState
	MenuItemDrawingUPP
	MenuTitleDrawingUPP
	ThemeButtonDrawUPP
	ThemeEraseUPP
	ThemeIteratorUPP
	ThemeTabTitleDrawUPP
	WindowTitleDrawingUPP

	Constants
	Appearance Manager Apple Events
	Appearance Manager File Types
	Theme Collection Tags
	Theme Drawing States
	Theme Metrics
	Theme Backgrounds
	Theme Brushes
	Theme Buttons
	Theme Button Adornments
	Theme Button Values
	Theme Pop-Up Arrow Orientations
	Theme Pop-Up Arrow Sizes
	Theme Checkbox Styles
	Theme Cursors
	Theme Font IDs
	kPublicThemeFontCount
	Theme Text Colors
	Theme Menu Types
	Theme Menu States
	Theme Menu Bar States
	Theme Menu Item Types
	kThemeMenuSquareMenuBar
	Theme Scroll Bar Arrow Styles
	Theme Scroll Box Styles
	Theme Size Box Directions
	Theme Thumb Directions
	Theme Tab Directions
	Theme Tab Styles
	Tab Heights
	Theme Track Attributes
	Theme Track States
	Theme Track Kinds
	Theme Track Press States
	Theme Window Types
	Theme Window Attributes
	Theme Title Bar Items
	Pop-up Window Tab Positions
	Theme Sound Masks
	Theme Sounds
	Theme Drag Sounds
	Desktop Picture Alignments
	appearanceBadBrushIndexErr
	kAEThemeSwitch
	kThemeActiveDialogBackgroundBrush
	kThemeActiveScrollBarDelimiterBrush
	kThemeBrushPassiveAreaFill
	kThemeActiveDialogTextColor
	kThemeActiveDocumentWindowTitleTextColor
	kThemeScrollBar
	kThemeMetricCheckBoxGlyphHeight
	kThemeNoAdornment
	kThemeStateDisabled
	kThemeWidgetABox

	Result Codes
	Gestalt Constants

	Application Manager Reference
	Overview
	Functions by Task
	Drawing in the Application Dock Tile
	Working With the Dock Menu
	Working With the Dock Icon
	Getting Scripts and Encodings
	Displaying an About Box
	Controlling System-Provided User Interface Elements
	Getting the Application Object
	Getting the Focused Window

	Functions
	BeginCGContextForApplicationDockTile
	BeginQDContextForApplicationDockTile
	CreateCGImageFromPixMaps
	EndCGContextForApplicationDockTile
	EndQDContextForApplicationDockTile
	GetApplicationDockTileMenu
	GetApplicationScript
	GetApplicationTextEncoding
	GetSystemUIMode
	HIAboutBox
	HIApplicationCreateDockTileContext
	HIApplicationGetCurrent
	HIApplicationGetFocus
	HISearchWindowShow
	OverlayApplicationDockTileImage
	RestoreApplicationDockTileImage
	SetApplicationDockTileImage
	SetApplicationDockTileMenu
	SetSystemUIMode

	Constants
	About Box Keys
	HIToolbox Version Number
	Presentation Modes
	Presentation Options

	Carbon Event Manager Reference
	Overview
	Functions by Task
	Creating and Manipulating Event Handlers
	Creating and Manipulating Event Timers
	Creating and Manipulating Events
	Dispatching Events
	Managing Secure Event Input
	Managing Event Queues
	Managing the Event Loop
	Manipulating Event Time
	Implementing Modal Windows
	Tracking the Mouse
	Working with Hot Keys
	Callback-Related Functions
	Miscellaneous

	Functions
	AcquireFirstMatchingEventInQueue
	AddEventTypesToHandler
	BeginAppModalStateForWindow
	CallNextEventHandler
	ChangeMouseTrackingRegion
	ClipMouseTrackingRegion
	ClipWindowMouseTrackingRegions
	ConvertEventRefToEventRecord
	CopyEvent
	CopyEventAs
	CopyServicesMenuCommandKeys
	CopySymbolicHotKeys
	CreateEvent
	CreateMouseTrackingRegion
	CreateTypeStringWithOSType
	DisableSecureEventInput
	DisposeEventComparatorUPP
	DisposeEventHandlerUPP
	DisposeEventLoopIdleTimerUPP
	DisposeEventLoopTimerUPP
	EnableSecureEventInput
	EndAppModalStateForWindow
	FindSpecificEventInQueue
	FlushEventQueue
	FlushEventsMatchingListFromQueue
	FlushSpecificEventsFromQueue
	GetApplicationEventTarget
	GetCFRunLoopFromEventLoop
	GetControlEventTarget
	GetCurrentEventKeyModifiers
	GetCurrentEventLoop
	GetCurrentEventQueue
	GetCurrentEventTime
	GetEventClass
	GetEventDispatcherTarget
	GetEventKind
	GetEventMonitorTarget
	GetEventParameter
	GetEventRetainCount
	GetEventTime
	GetLastUserEventTime
	GetMainEventLoop
	GetMainEventQueue
	GetMenuEventTarget
	GetMouseTrackingRegionID
	GetMouseTrackingRegionRefCon
	GetNumEventsInQueue
	GetSymbolicHotKeyMode
	GetUserFocusEventTarget
	GetWindowEventTarget
	HIMouseTrackingGetParameters
	InstallEventHandler
	InstallEventLoopIdleTimer
	InstallEventLoopTimer
	InstallStandardEventHandler
	InvokeEventComparatorUPP
	InvokeEventHandlerUPP
	InvokeEventLoopIdleTimerUPP
	InvokeEventLoopTimerUPP
	IsEventInMask
	IsEventInQueue
	IsMouseCoalescingEnabled
	IsSecureEventInputEnabled
	IsUserCancelEventRef
	MoveMouseTrackingRegion
	MoveWindowMouseTrackingRegions
	NewEventComparatorUPP
	NewEventHandlerUPP
	NewEventLoopIdleTimerUPP
	NewEventLoopTimerUPP
	PopSymbolicHotKeyMode
	PostEventToQueue
	ProcessHICommand
	PushSymbolicHotKeyMode
	QuitApplicationEventLoop
	QuitAppModalLoopForWindow
	QuitEventLoop
	ReceiveNextEvent
	RegisterEventHotKey
	RegisterToolboxObjectClass
	ReleaseEvent
	ReleaseMouseTrackingRegion
	ReleaseWindowMouseTrackingRegions
	RemoveEventFromQueue
	RemoveEventHandler
	RemoveEventLoopTimer
	RemoveEventTypesFromHandler
	RetainEvent
	RetainMouseTrackingRegion
	RunApplicationEventLoop
	RunAppModalLoopForWindow
	RunCurrentEventLoop
	SendEventToEventTarget
	SendEventToEventTargetWithOptions
	SetEventLoopTimerNextFireTime
	SetEventParameter
	SetEventTime
	SetMouseCoalescingEnabled
	SetMouseTrackingRegionEnabled
	SetWindowMouseTrackingRegionsEnabled
	TrackMouseLocation
	TrackMouseLocationWithOptions
	TrackMouseRegion
	UnregisterEventHotKey
	UnregisterToolboxObjectClass

	Callbacks
	EventComparatorProcPtr
	EventHandlerProcPtr
	EventLoopIdleTimerProcPtr
	EventLoopTimerProcPtr

	Data Types
	EventClassID
	EventComparatorUPP
	EventHandlerCallRef
	EventHandlerUPP
	EventLoopTimerUPP
	EventLoopIdleTimerUPP
	EventHandlerRef
	EventHotKeyID
	EventHotKeyRef
	EventLoopIdleTimerMessage
	EventLoopRef
	EventLoopTimerRef
	EventParamName
	EventParamType
	EventQueueRef
	EventRef
	EventTargetRef
	EventTime
	EventTimeout
	EventTimerInterval
	EventType
	EventTypeSpec
	HICommand
	HICommandExtended
	MouseTrackingRef
	MouseTrackingRegionID
	TabletPointRec
	TabletProximityRec
	ToolboxObjectClassRef

	Constants
	Basic Event Constants
	Event Class Constants
	Event Attributes
	Event Priority Constants
	Event Target Propagation Options
	Event Queue Constants
	Direct Object Parameter
	Event Target Parameter
	Object Reference Parameters and Types
	Core Foundation Object Types

	Apple Event Constants
	AppleEvent Constant
	Deprecated AppleEvent Event Constants

	Appearance Manager Event Constants
	Appearance Manager Events
	Appearance Manager Event Parameter

	Application Event Constants
	Application Event Constants
	Application Event Parameters

	Command Events
	Command Event Constants
	Standard Command ID Constants
	Command Event Source Constants

	Control Events
	Control Event Constants
	Control Bounds Constants
	Control Event Parameters

	Ink Events
	Ink Event Constants
	Ink Event Parameters

	Keyboard Events
	Keyboard Event Constants
	Key Modifier Event Masks
	Key Modifier Event Bits
	Keyboard Event Parameters and Types
	Symbolic Hot Key Definitions
	Hot Key Constants

	Menu Events
	Menu Event Constants
	Menu Context Constants
	Menu Event Parameters
	Services Menu Command Keys

	Mouse Events
	Mouse Events
	Mouse Button Constants
	Mouse Wheel Constants
	Mouse Tracking Region Options
	Alternate Mouse Tracking Result Constants
	Mouse Event Parameters
	Mouse Tracking Option Constant
	Mouse Tracking Constants
	Mouse Tracking Selectors

	Services Manager Constants
	Services Manager Events
	Services Manager Event Parameters

	Tablet Event Constants
	Tablet Events
	Tablet Event Parameters

	Text Input Events
	Text Input Event Constants
	Deprecated Text Input Constants
	Text Input Event Parameters

	Text Service Manager Document Events
	Text Service Manager Document Event Parameters

	Timer Constants
	Idle Timer Event Constants

	Toolbar Events
	Toolbar Event Parameters

	Volume Events
	Volume Event Constants
	Volume Reference Constant

	Window Events
	Window Action Event Constants
	Window Activation Event Constants
	Window Click Event Constants
	Window State Event Constants
	Window Refresh Event Constants
	Window Cursor Change Event Constant
	Window Focus Event Constants
	Window Sheet Event Constants
	Window Drawer Event Constants
	Window Definition Message Constants
	Alternate Window Definition Event Constants
	Window Bounds Attributes
	Window Event Parameters and Types
	Modal Window Event Parameters and Types
	Modal Window Click Constants

	Result Codes

	Carbon Help Manager Reference
	Overview
	Functions by Task
	Obtaining a Reference to the Help Menu
	Attaching Help Tag Content Directly to an Object
	Installing and Retrieving Help Tag Callbacks
	Displaying and Hiding Help Tags
	Enabling and Disabling Help Tags
	Getting and Setting Help Tag Delay Time
	Working With Universal Procedure Pointers to Help Tag Callback Functions

	Functions
	DisposeHMControlContentUPP
	DisposeHMMenuItemContentUPP
	DisposeHMMenuTitleContentUPP
	DisposeHMWindowContentUPP
	HMAreHelpTagsDisplayed
	HMDisplayTag
	HMGetControlContentCallback
	HMGetControlHelpContent
	HMGetHelpMenu
	HMGetMenuItemContentCallback
	HMGetMenuItemHelpContent
	HMGetMenuTitleContentCallback
	HMGetTagDelay
	HMGetWindowContentCallback
	HMGetWindowHelpContent
	HMHideTag
	HMInstallControlContentCallback
	HMInstallMenuItemContentCallback
	HMInstallMenuTitleContentCallback
	HMInstallWindowContentCallback
	HMSetControlHelpContent
	HMSetHelpTagsDisplayed
	HMSetMenuItemHelpContent
	HMSetTagDelay
	HMSetWindowHelpContent
	InvokeHMControlContentUPP
	InvokeHMMenuItemContentUPP
	InvokeHMMenuTitleContentUPP
	InvokeHMWindowContentUPP
	NewHMControlContentUPP
	NewHMMenuItemContentUPP
	NewHMMenuTitleContentUPP
	NewHMWindowContentUPP

	Callbacks
	HMControlContentProcPtr
	HMMenuItemContentProcPtr
	HMMenuTitleContentProcPtr
	HMWindowContentProcPtr

	Data Types
	HMHelpContentRec
	HMHelpContentPtr
	HMHelpContent
	HMControlContentUPP
	HMWindowContentUPP
	HMMenuItemContentUPP
	HMMenuTitleContentUPP

	Constants
	Help Manager Version
	Content Request Types
	Help Tag Content Types
	Help Tag Display Locations
	Content Provided Types
	Help Tag Content Indexes
	Obsolete Help Tag Display Locations

	Result Codes

	Color Picker Manager Reference
	Overview
	Functions by Task
	Converting Between SmallFract and Fixed Values
	Converting Colors Among Color Models
	Using the Standard Color Picker Dialog Box
	Working With Universal Procedure Pointers

	Functions
	CMY2RGB
	DisposeColorChangedUPP
	DisposeNColorChangedUPP
	DisposeUserEventUPP
	Fix2SmallFract
	GetColor
	HSL2RGB
	HSV2RGB
	InvokeColorChangedUPP
	InvokeNColorChangedUPP
	InvokeUserEventUPP
	NewColorChangedUPP
	NewNColorChangedUPP
	NewUserEventUPP
	NPickColor
	PickColor
	RGB2CMY
	RGB2HSL
	RGB2HSV
	SmallFract2Fix

	Callbacks by Task
	Changing Colors in a Document
	Handling Application-Directed Events in a Color Picker

	Callbacks
	ColorChangedProcPtr
	NColorChangedProcPtr
	UserEventProcPtr

	Data Types
	CMYColor
	ColorChangedUPP
	ColorPickerInfo (Old)
	HSLColor
	HSVColor
	NColorChangedUPP
	NColorPickerInfo
	NPMColor
	NPMColorPtr
	PickerMenuItemInfo
	PMColor
	PMColorPtr
	SmallFract
	UserEventUPP

	Constants
	Color Picker Flags
	Dialog Placement Constants
	Maximum Small Fraction
	Width and Height Constants
	Old Maximum Small Fraction
	Old Color Picker Flags

	Result Codes

	Control Manager Reference
	Overview
	Functions by Task
	Creating and Removing Controls
	Embedding Controls
	Displaying Controls
	Handling Events in Controls
	Manipulating Controls
	Handling Keyboard Focus
	Accessing Control Settings and Data
	Manipulating Menus in Controls
	Manipulating Bevel Buttons
	Managing Control UPPs
	Obsolete Functions

	Functions
	ActivateControl
	AdvanceKeyboardFocus
	AutoEmbedControl
	ChangeControlPropertyAttributes
	ClearKeyboardFocus
	CopyControlTitleAsCFString
	CountSubControls
	CreateBevelButtonControl
	CreateChasingArrowsControl
	CreateCheckBoxControl
	CreateCheckGroupBoxControl
	CreateClockControl
	CreateCustomControl
	CreateDisclosureButtonControl
	CreateDisclosureTriangleControl
	CreateEditTextControl
	CreateEditUnicodeTextControl
	CreateGroupBoxControl
	CreateIconControl
	CreateImageWellControl
	CreateListBoxControl
	CreateLittleArrowsControl
	CreatePictureControl
	CreatePlacardControl
	CreatePopupArrowControl
	CreatePopupButtonControl
	CreatePopupGroupBoxControl
	CreateProgressBarControl
	CreatePushButtonControl
	CreatePushButtonWithIconControl
	CreateRadioButtonControl
	CreateRadioGroupControl
	CreateRelevanceBarControl
	CreateRootControl
	CreateRoundButtonControl
	CreateScrollBarControl
	CreateScrollingTextBoxControl
	CreateSeparatorControl
	CreateSliderControl
	CreateStaticTextControl
	CreateTabsControl
	CreateUserPaneControl
	CreateWindowHeaderControl
	DeactivateControl
	DisableControl
	DisposeControl
	DisposeControlActionUPP
	DisposeControlCNTLToCollectionUPP
	DisposeControlColorUPP
	DisposeControlDefUPP
	DisposeControlEditTextValidationUPP
	DisposeControlKeyFilterUPP
	DisposeControlUserPaneActivateUPP
	DisposeControlUserPaneBackgroundUPP
	DisposeControlUserPaneDrawUPP
	DisposeControlUserPaneFocusUPP
	DisposeControlUserPaneHitTestUPP
	DisposeControlUserPaneIdleUPP
	DisposeControlUserPaneKeyDownUPP
	DisposeControlUserPaneTrackingUPP
	DisposeEditUnicodePostUpdateUPP
	DragControl
	Draw1Control
	DrawControlInCurrentPort
	DrawControls
	DumpControlHierarchy
	EmbedControl
	EnableControl
	FindControl
	FindControlUnderMouse
	GetBestControlRect
	GetBevelButtonContentInfo
	GetBevelButtonMenuHandle
	GetBevelButtonMenuValue
	GetControl32BitMaximum
	GetControl32BitMinimum
	GetControl32BitValue
	GetControlAction
	GetControlBounds
	GetControlByID
	GetControlClickActivation
	GetControlCommandID
	GetControlData
	GetControlDataHandle
	GetControlDataSize
	GetControlFeatures
	GetControlHilite
	GetControlID
	GetControlKind
	GetControlMaximum
	GetControlMinimum
	GetControlOwner
	GetControlPopupMenuHandle
	GetControlPopupMenuID
	GetControlProperty
	GetControlPropertyAttributes
	GetControlPropertySize
	GetControlReference
	GetControlRegion
	GetControlTitle
	GetControlValue
	GetControlVariant
	GetControlViewSize
	GetImageWellContentInfo
	GetIndexedSubControl
	GetKeyboardFocus
	GetNewControl
	GetRootControl
	GetSuperControl
	GetTabContentRect
	HandleControlClick
	HandleControlContextualMenuClick
	HandleControlDragReceive
	HandleControlDragTracking
	HandleControlKey
	HandleControlSetCursor
	HideControl
	HiliteControl
	IdleControls
	InvokeControlActionUPP
	InvokeControlCNTLToCollectionUPP
	InvokeControlColorUPP
	InvokeControlDefUPP
	InvokeControlEditTextValidationUPP
	InvokeControlKeyFilterUPP
	InvokeControlUserPaneActivateUPP
	InvokeControlUserPaneBackgroundUPP
	InvokeControlUserPaneDrawUPP
	InvokeControlUserPaneFocusUPP
	InvokeControlUserPaneHitTestUPP
	InvokeControlUserPaneIdleUPP
	InvokeControlUserPaneKeyDownUPP
	InvokeControlUserPaneTrackingUPP
	InvokeEditUnicodePostUpdateUPP
	IsAutomaticControlDragTrackingEnabledForWindow
	IsControlActive
	IsControlDragTrackingEnabled
	IsControlEnabled
	IsControlHilited
	IsControlVisible
	IsValidControlHandle
	KillControls
	MoveControl
	NewControl
	NewControlActionUPP
	NewControlCNTLToCollectionUPP
	NewControlColorUPP
	NewControlDefUPP
	NewControlEditTextValidationUPP
	NewControlKeyFilterUPP
	NewControlUserPaneActivateUPP
	NewControlUserPaneBackgroundUPP
	NewControlUserPaneDrawUPP
	NewControlUserPaneFocusUPP
	NewControlUserPaneHitTestUPP
	NewControlUserPaneIdleUPP
	NewControlUserPaneKeyDownUPP
	NewControlUserPaneTrackingUPP
	NewEditUnicodePostUpdateUPP
	RegisterControlDefinition
	RemoveControlProperty
	ReverseKeyboardFocus
	SendControlMessage
	SetAutomaticControlDragTrackingEnabledForWindow
	SetBevelButtonContentInfo
	SetBevelButtonGraphicAlignment
	SetBevelButtonMenuValue
	SetBevelButtonTextAlignment
	SetBevelButtonTextPlacement
	SetBevelButtonTransform
	SetControl32BitMaximum
	SetControl32BitMinimum
	SetControl32BitValue
	SetControlAction
	SetControlBounds
	SetControlColorProc
	SetControlCommandID
	SetControlData
	SetControlDataHandle
	SetControlDragTrackingEnabled
	SetControlFontStyle
	SetControlID
	SetControlMaximum
	SetControlMinimum
	SetControlPopupMenuHandle
	SetControlPopupMenuID
	SetControlProperty
	SetControlReference
	SetControlSupervisor
	SetControlTitle
	SetControlTitleWithCFString
	SetControlValue
	SetControlViewSize
	SetControlVisibility
	SetDisclosureTriangleLastValue
	SetImageWellContentInfo
	SetImageWellTransform
	SetKeyboardFocus
	SetTabEnabled
	SetUpControlBackground
	SetUpControlTextColor
	ShowControl
	SizeControl
	TestControl
	TrackControl
	UpdateControls

	Callbacks by Task
	Defining Your Own Action Function
	Defining Your Own Control Definition Function
	Defining Your Own Key Filter Function
	Defining Your Own Text Validation Function
	Defining Your Own User Pane Functions
	Miscellaneous

	Callbacks
	ControlActionProcPtr
	ControlCNTLToCollectionProcPtr
	ControlColorProcPtr
	ControlDefProcPtr
	ControlEditTextValidationProcPtr
	ControlKeyFilterProcPtr
	ControlUserPaneActivateProcPtr
	ControlUserPaneBackgroundProcPtr
	ControlUserPaneDrawProcPtr
	ControlUserPaneFocusProcPtr
	ControlUserPaneHitTestProcPtr
	ControlUserPaneIdleProcPtr
	ControlUserPaneKeyDownProcPtr
	ControlUserPaneTrackingProcPtr
	EditUnicodePostUpdateProcPtr

	Data Types
	AuxCtlHandle
	AuxCtlPtr
	AuxCtlRec
	ClickActivationResult
	ControlApplyTextColorRec
	ControlBackgroundRec
	ControlBevelButtonBehavior
	ControlBevelButtonMenuBehavior
	ControlButtonContentInfo
	ControlCalcSizeRec
	ControlCapabilities
	ControlClickActivationRec
	ControlContentType
	ControlContextualMenuClickRec
	ControlDataAccessRec
	ControlDefProcMessage
	ControlDefSpec
	ControlDefType
	ControlEditTextSelectionRec
	ControlFocusPart
	ControlFontStyleRec
	ControlGetRegionRec
	ControlHandle
	ControlID
	ControlImageContentInfo
	ControlKeyDownRec
	ControlKeyFilterResult
	ControlKeyScriptBehavior
	ControlKind
	ControlNotification
	ControlNotificationUPP
	ControlPartCode
	ControlPopupArrowOrientation
	ControlPopupArrowSize
	ControlPtr
	ControlRecord
	ControlRef
	ControlSetCursorRec
	ControlSize
	ControlTabEntry
	ControlTabInfoRec
	ControlTabInfoRecV1
	ControlTemplate
	ControlTrackingRec
	ControlVariant
	DataBrowserCallbacks
	DataBrowserCustomCallbacks
	DataBrowserDragFlags
	DataBrowserListViewColumnDesc
	DataBrowserListViewHeaderDesc
	DataBrowserPropertyDesc
	DataBrowserPropertyFlags
	DataBrowserPropertyPart
	DataBrowserPropertyType
	DataBrowserTableViewColumnDesc
	DataBrowserTableViewColumnIndex
	DataBrowserTableViewRowIndex
	DataBrowserTableViewColumnID
	DataBrowserViewStyle
	DBItemProcDataType
	DBRevealItemDataType
	DBSetSelectionDataType
	IndicatorDragConstraint
	IndicatorDragConstraintHandle
	PopupPrivateData
	PopupPrivateDataHandle
	PopupPrivateDataPtr
	kHIUserPaneClassID

	Constants
	Appearance–compliant Push Button, Radio Button, and Checkbox Control Definition IDs
	Asynchronous Arrows Control Definition ID
	Bevel Button Behavior Constants
	Bevel Button Control Data Tag Constants
	Bevel Button Control Definition IDs
	Bevel Button Graphic Alignment Constants
	Bevel Button Menu Constant
	Bevel Button Menu Control Data Tag Constants
	Bevel Button Text Alignment Constants
	Bevel Button Text Placement Constants
	Checkbox and Radio Button AutoToggle Control Definition IDs
	Checkbox Value Constants
	Clock Control Data Tag Constants
	Clock Control Definition IDs
	Clock Value Flag Constants
	Control Definition Message Constants
	Control Features Constants
	Control Focus Part Code Constants
	Control Font Style and Key Filter Data Tag Constants
	Control Font Style Flag Constants
	Control Key Script Behavior Constants
	Control Part Code Constants
	Control State Part Code Constants
	Control Variant Constants
	Control Bevel Button Menu Placement Constants
	Control Bevel Thickness Constants
	Control Clock Type Constants
	Control Disclosure Triangle Orientation Constants
	Control Notify Constants
	Control Push Button Icon Alignment Constants
	Control Round Button Size Constants
	Control Slider Orientation Constants
	Control Tab Direction Constants
	Control Tab Size Constants
	Drag Control Constants
	Drawing Constants
	Editable Text Control Data Tag Constants
	Editable Text Control Definition ID Constants
	Data Browser Error Constants
	Group Box Control Data Tag Constants
	Group Box Control Definition ID Constants
	Icon Control Data Tag Constants
	Icon Control Definition ID Constants
	Image Well Control Data Tag Constants
	Image Well Control Definition ID
	inLabel
	inThumb
	kControlBevelButtonOwnedMenuRefTag
	Bevel Button Size Constants
	Control Can Auto Invalidate Constant
	Control Chasing Arrows Animating Tag Constant
	Control Collection Tag Constants
	Control Collection Tag Subcontrols Constant
	Control Content Type Constants
	Control Data Browser Tag Constants
	Control Def Constants
	Control Def Type Constants
	Disclosure Triangle Constants
	Unicode Control Data Tags
	Control Edit Unicode Text Post Update Proc Tag Constant
	Control Edit Unicode Text Proc Constants
	Control Entire Control Constant
	Control Kind Bevel Button Constant
	Control Kind Chasing Arrows Constant
	Control Kind Clock Constant
	Control Kind Data Browser Constant
	Control Kind Disclosure Button Constant
	Control Kind Disclosure Triangle Constant
	Control Kind Edit Text Constant
	Control Kind Edit Unicode Text Constant
	Control Kind Group Box Constants
	Control Kind Icon Constant
	Control Kind Image Well Constant
	Control Kind List Box Constant
	kControlKindLittleArrows
	Control Kind Picture Constant
	Control Kind Placard Constant
	Control Kind Pop-up Arrow Constant
	Control Kind Pop-up Button Constant
	Control Kind Progress Bar Constants
	Control Kind Push and Radio Button Constants
	Control Kind Radio Group Constant
	Control Kind Round Button Constant
	Control Kind Scroll Bar Constant
	Control Kind Scrolling Text Box Constant
	Control Kind Separator Constant
	Control Kind Signature Apple Constant
	Control Kind Slider Constant
	Control Kind Static Text Constant
	Control Kind Tabs Constant
	Control Kind User Pane Constant
	Control Kind Window Header Constant
	Control Picture Handle Tag Constant
	Control Pop-up Arrow Orientation Constants
	Control Pop-up Arrow Size Constants
	Control Pop-up Button Check Current Tag Constant
	Control Property Persistent Constant
	Control Round Button Content and Size Tag Constants
	Control Scrollbar Shows Arrows Tag Constant
	Control Size Constants
	Control Supports New Messages Constant
	Control Tab Image Content Tag Constant
	Control Tab Info Version Constants
	Control Tab Type Constants
	Control Use Theme Font ID Mask Constant
	Click Activation Constants
	Selection Constants
	Drag Tracking Enter Control Constants
	Key Filter Result Codes
	In Control Part Constants
	Order Constants
	List Box Control Data Tag Constants
	List Box Control Definition ID Constants
	Little Arrows Control Definition ID Constant
	Little Arrows Control Tag Constant
	Mac OS 8.5 Bevel Button Control Data Tag Constant
	Mac OS 8.5 Control Font Style Flag Constant
	Mac OS 8.5 Editable Text Control Definition ID Constant
	Mac OS 8.5 Group Box Control Data Tag Constant
	Mac OS 8.5 Icon Control Data Tag Constants
	Mac OS 8.5 Pop-up Button Control Data Tag Constants
	Control Meta Part Code Constants
	Meta Font Constants
	Constraint Constants
	Part Identifier Constants
	Picture Control Definition ID Constants
	Placard Control Definition ID Constant
	Pop-up Menu Title Constants
	Pop-up Menu Title Justification Constants
	Pop-up Arrow Control Definition ID Constants
	Pop-up Button Control Data Tag Constants
	Pop-up Button Control Definition ID Constants
	Pop-up Width Constants
	Pre–Appearance Control Definition ID Constants
	Progress Bar Control Data Tag Constants
	Progress Bar Control Definition ID Constants
	Push Button Control Data Tag Constants
	Radio Button Value Constants
	Radio Group Control Definition ID Constant
	Scroll Bar Control Definition ID Constants
	Scrolling Text Box Control Data Tag Constants
	Scrolling Text Box Control Definition ID Constants
	Separator Line Control Definition ID Constant
	Slider Control Definition ID Constants
	Static Text Control Data Tag Constants
	Static Text Control Definition ID Constant
	Text Proc Constants
	Tab Control Data Tag Constants
	Tab Control Definition IDs
	Tab Control Info Tag Constant
	Triangle Control Data Tag Constant
	Triangle Control Definition ID Constants
	User Item and User Pane Control Data Tag Constants
	User Pane Control Definition ID Constant
	useWFont Constants
	Window Control Definition IDs
	Window Control Data List Header Tag Constant

	Result Codes

	Dialog Manager Reference
	Overview
	Functions by Task
	Creating Alert Boxes
	Creating and Disposing of Dialog Boxes
	Displaying Dialog Boxes and Items
	Filtering Dialog Box Events
	Handling Events in Dialog Boxes
	Handling Text in Alert and Dialog Boxes
	Initializing the Dialog Manager
	Manipulating Items in Dialog Boxes and Alert Boxes
	Simulating User Responses in Dialog Boxes
	Using the Standard Filter Function
	Miscellaneous

	Functions
	Alert
	AppendDialogItemList
	AppendDITL
	AutoSizeDialog
	CautionAlert
	CloseDialog
	CloseStandardSheet
	CountDITL
	CreateStandardAlert
	CreateStandardSheet
	DialogCopy
	DialogCut
	DialogDelete
	DialogPaste
	DialogSelect
	DisposeDialog
	DisposeModalFilterUPP
	DisposeModalFilterYDUPP
	DisposeUserItemUPP
	DrawDialog
	FindDialogItem
	GetAlertStage
	GetDialogCancelItem
	GetDialogDefaultItem
	GetDialogFromWindow
	GetDialogItem
	GetDialogItemAsControl
	GetDialogItemText
	GetDialogKeyboardFocusItem
	GetDialogPort
	GetDialogTextEditHandle
	GetDialogTimeout
	GetDialogWindow
	GetModalDialogEventMask
	GetNewDialog
	GetParamText
	GetStandardAlertDefaultParams
	GetStdFilterProc
	HideDialogItem
	InsertDialogItem
	InvokeModalFilterUPP
	InvokeModalFilterYDUPP
	InvokeUserItemUPP
	IsDialogEvent
	ModalDialog
	MoveDialogItem
	NewColorDialog
	NewDialog
	NewFeaturesDialog
	NewModalFilterUPP
	NewModalFilterYDUPP
	NewUserItemUPP
	NoteAlert
	ParamText
	RemoveDialogItems
	ResetAlertStage
	RunStandardAlert
	SelectDialogItemText
	SetDialogCancelItem
	SetDialogDefaultItem
	SetDialogFont
	SetDialogItem
	SetDialogItemText
	SetDialogTimeout
	SetDialogTracksCursor
	SetModalDialogEventMask
	SetPortDialogPort
	ShortenDITL
	ShowDialogItem
	SizeDialogItem
	StandardAlert
	StdFilterProc
	StopAlert
	UpdateDialog

	Callbacks by Task
	Accessing and Modifying Low-Memory Data
	Miscellaneous

	Callbacks
	ModalFilterProcPtr
	ModalFilterYDProcPtr
	QTModelessCallbackProcPtr
	SoundProcPtr
	UserItemProcPtr

	Data Types
	AlertStdAlertParamRec
	AlertStdCFStringAlertParamRec
	AlertTemplate
	AlertType
	DialogItemIndex
	DialogItemIndexZeroBased
	DialogItemType
	DialogPeek
	DialogRecord
	DialogRef
	DialogTemplate
	ModalFilterUPP
	ModalFilterYDUPP
	QTModelessCallbackUPP
	SoundUPP
	StageList
	UserItemUPP

	Constants
	Alert Button Constants
	Alert Default Text Constants
	Alert Feature Flag Constants
	Alert Icon Resource ID Constants
	Alert Type Constants
	ctrlItem
	Dialog Feature Flag Constants
	Dialog Font Flag Constants
	Dialog Item Constants
	Dialog Item List Display Constants
	kDialogFontUseThemeFontIDMask
	kHICommandOther
	kOkItemIndex
	Standard Alert and Sheet Option Flags
	Standard Alert Structure Version Constant
	kStdOkItemIndex

	Result Codes
	Gestalt Constants

	Drag Manager Reference
	Overview
	Functions by Task
	Installing and Removing Drag Handlers
	Creating and Disposing of Drag References
	Adding Drag Item Flavors
	Providing Drag Callback Functions
	Setting the Drag Image
	Altering the Behavior of a Drag
	Performing a Drag
	Getting Drag Item Information
	Getting and Setting the Drop Location
	Getting Drag Status Information
	Accessing Drag Actions
	Highlighting a Drag
	Drag Manager Utilities
	Creating, Calling, and Deleting Universal Procedure Pointers

	Functions
	AddDragItemFlavor
	ChangeDragBehaviors
	CountDragItemFlavors
	CountDragItems
	DisposeDrag
	DisposeDragDrawingUPP
	DisposeDragInputUPP
	DisposeDragReceiveHandlerUPP
	DisposeDragSendDataUPP
	DisposeDragTrackingHandlerUPP
	DragPostScroll
	DragPreScroll
	GetDragAllowableActions
	GetDragAttributes
	GetDragDropAction
	GetDragHiliteColor
	GetDragItemBounds
	GetDragItemReferenceNumber
	GetDragModifiers
	GetDragMouse
	GetDragOrigin
	GetDropLocation
	GetFlavorData
	GetFlavorDataSize
	GetFlavorFlags
	GetFlavorType
	GetStandardDropLocation
	HideDragHilite
	InstallReceiveHandler
	InstallTrackingHandler
	InvokeDragDrawingUPP
	InvokeDragInputUPP
	InvokeDragReceiveHandlerUPP
	InvokeDragSendDataUPP
	InvokeDragTrackingHandlerUPP
	NewDrag
	NewDragDrawingUPP
	NewDragInputUPP
	NewDragReceiveHandlerUPP
	NewDragSendDataUPP
	NewDragTrackingHandlerUPP
	RemoveReceiveHandler
	RemoveTrackingHandler
	SetDragAllowableActions
	SetDragDrawingProc
	SetDragDropAction
	SetDragImage
	SetDragImageWithCGImage
	SetDragInputProc
	SetDragItemBounds
	SetDragItemFlavorData
	SetDragMouse
	SetDragSendProc
	SetDropLocation
	SetStandardDropLocation
	ShowDragHilite
	TrackDrag
	UpdateDragHilite
	WaitMouseMoved
	ZoomRects
	ZoomRegion

	Callbacks by Task
	Tracking and Receiving Drags
	Overriding Drag Manager Behavior

	Callbacks
	DragDrawingProcPtr
	DragInputProcPtr
	DragReceiveHandlerProcPtr
	DragSendDataProcPtr
	DragTrackingHandlerProcPtr

	Data Types
	DragRef
	DragItemRef
	FlavorType
	HFSFlavor
	PromiseHFSFlavor
	DragDrawingUPP
	DragInputUPP
	DragReceiveHandlerUPP
	DragSendDataUPP
	DragTrackingHandlerUPP

	Constants
	Drag Attributes
	Drag Behaviors
	Drag Drawing Messages
	Drag Tracking Messages
	Flavor Flags
	flavorTypeDirectory
	Drag Actions
	HFS Flavor Types
	Promised Flavor Types
	Type and Creator Constants for Volumes and Directories
	Standard Drop Locations
	Drag Image Flags
	Finder Flavor Types
	Zoom Acceleration Constants
	zoomNoAcceleration
	kDragStandardImage
	dragTrackingEnterHandler
	dragRegionBegin
	dragHasLeftSenderWindow

	Result Codes
	Gestalt Constants

	Event Manager Reference (Not Recommended)
	Overview
	Functions by Task
	Accessors for Low-Memory Globals
	Getting Timing Information
	Making Keyboard Settings
	Reading the Keyboard
	Receiving Events
	Sending Events
	Miscellaneous

	Functions
	CheckEventQueueForUserCancel
	EventAvail
	FlushEvents
	GetCaretTime
	GetCurrentKeyModifiers
	GetDblTime
	GetGlobalMouse
	GetKeys
	GetNextEvent
	IsCmdChar
	KeyScript
	KeyTranslate
	LMGetKbdLast
	LMGetKbdType
	LMGetKeyRepThresh
	LMGetKeyThresh
	LMSetKbdLast
	LMSetKbdType
	LMSetKeyRepThresh
	LMSetKeyThresh
	PostEvent
	SetEventMask
	WaitNextEvent

	Data Types
	EventRecord
	EvQEl
	KeyMap
	KeyMapByteArray

	Constants
	Event Modifier Constants
	charCodeMask
	convertClipboardFlag
	Event Modifier Bits
	HighLevelEventMsgClass
	Character Codes
	kShiftUnicode
	Event Mask Constants
	mouseMovedMessage
	msgWasPartiallyAccepted
	networkEvt
	Event Kind Constants
	resumeFlag

	Result Codes

	Ink Services Reference
	Overview
	Functions by Task
	Customizing Ink Services
	Obtaining Information About Ink Services
	Handling Ink Phrases
	Working With Alternate Text Interpretations
	Working With Ink Text Objects
	Flattening and Unflattening Ink Text Objects
	Working with Ink Stroke Objects

	Functions
	InkAddStrokeToCurrentPhrase
	InkIsPhraseInProgress
	InkSetApplicationRecognitionMode
	InkSetApplicationWritingMode
	InkSetDrawingMode
	InkSetPhraseTerminationMode
	InkStrokeGetPointCount
	InkStrokeGetPoints
	InkStrokeGetTypeID
	InkTerminateCurrentPhrase
	InkTextAlternatesCount
	InkTextBounds
	InkTextCopy
	InkTextCreateCFString
	InkTextCreateFromCFData
	InkTextDraw
	InkTextFlatten
	InkTextGetStroke
	InkTextGetStrokeCount
	InkTextGetTypeID
	InkTextInsertAlternatesInMenu
	InkTextKeyModifiers
	InkUserWritingMode

	Data Types
	InkTextRef
	InkStrokeRef
	InkAlternateCount
	InkPoint

	Constants
	User Writing Modes
	Application Modes
	Drawing Modes
	Phrase Termination Modes
	Recognition Modes
	Editing Gestures
	Alternates Menu Command IDs
	Text Drawing Flags
	Ink Source Types
	Ink Pen Constants
	Ink Tablet Constants

	Result Codes

	Interface Builder Services Reference
	Overview
	Functions by Task
	Creating and Disposing of Nib References
	Unarchiving Menu Bars and Menus
	Unarchiving Windows

	Functions
	CreateMenuBarFromNib
	CreateMenuFromNib
	CreateNibReference
	CreateNibReferenceWithCFBundle
	CreateWindowFromNib
	DisposeNibReference
	SetMenuBarFromNib

	Data Types
	IBNibRef

	Constants
	Runtime Errors

	Keyboard Layout Services Reference
	Overview
	Functions by Task
	Working With Keyboard Layouts
	Unsupported Functions

	Functions
	KBGetLayoutType
	KLGetCurrentKeyboardLayout
	KLGetIndexedKeyboardLayout
	KLGetKeyboardLayoutAtIndex
	KLGetKeyboardLayoutCount
	KLGetKeyboardLayoutProperty
	KLGetKeyboardLayoutWithIdentifier
	KLGetKeyboardLayoutWithName
	KLSetCurrentKeyboardLayout

	Data Types
	KeyboardLayoutRef

	Constants
	Keyboard Layout Constants
	Keyboard Layout Identifier
	Keyboard Layout Formats
	Keyboard Layout Property Tag
	Physical Keyboard Layout Types

	Unsupported Constants
	Trap Value
	PS2 Error Codes

	Keychain Manager Reference
	Overview
	Functions by Task
	Getting Information About the Keychain Manager
	Creating and Disposing of Keychain References
	Managing Keychains
	Storing and Retrieving Passwords
	Creating and Disposing of Keychain Item References
	Manipulating Keychain Items
	Setting and Obtaining Keychain Item Data
	Searching for Keychain Items
	Managing User Interaction
	Registering Your Keychain Event Callback Function
	Working With Your Keychain Manager Callback Function
	Unsupported Functions

	Functions
	DisposeKCCallbackUPP
	InvokeKCCallbackUPP
	KCAddAppleSharePassword
	kcaddapplesharepassword
	KCAddCallback
	KCAddGenericPassword
	kcaddgenericpassword
	KCAddInternetPassword
	kcaddinternetpassword
	KCAddInternetPasswordWithPath
	kcaddinternetpasswordwithpath
	KCAddItem
	KCChangeSettings
	KCChooseCertificate
	KCCopyItem
	KCCountKeychains
	KCCreateKeychain
	kccreatekeychain
	KCDeleteItem
	KCFindAppleSharePassword
	kcfindapplesharepassword
	KCFindFirstItem
	KCFindGenericPassword
	kcfindgenericpassword
	KCFindInternetPassword
	kcfindinternetpassword
	KCFindInternetPasswordWithPath
	kcfindinternetpasswordwithpath
	KCFindNextItem
	KCFindX509Certificates
	KCGetAttribute
	KCGetData
	KCGetDefaultKeychain
	KCGetIndKeychain
	KCGetKeychain
	KCGetKeychainManagerVersion
	KCGetKeychainName
	kcgetkeychainname
	KCGetStatus
	KCIsInteractionAllowed
	KCLock
	KCMakeAliasFromKCRef
	KCMakeKCRefFromAlias
	KCMakeKCRefFromFSSpec
	KCNewItem
	KCReleaseItem
	KCReleaseKeychain
	KCReleaseSearch
	KCRemoveCallback
	KCSetAttribute
	KCSetData
	KCSetDefaultKeychain
	KCSetInteractionAllowed
	KCUnlock
	kcunlock
	KCUpdateItem
	NewKCCallbackUPP

	Callbacks
	KCCallbackProcPtr

	Data Types
	AFPServerSignature
	KCAttribute
	KCAttributeList
	KCAttrType
	KCCallbackInfo
	KCCallbackUPP
	KCItemRef
	KCPublicKeyHash
	KCRef
	KCSearchRef
	KCStatus

	Constants
	Authentication Type Constants
	Certificate Search Options
	Certificate Usage Options
	Certificate Verification Criteria
	Default Internet Port Constant
	Default Internet Protocol And Authentication Type Constants
	Keychain Events Constants
	Keychain Events Mask
	Keychain Item Attribute Tag Constants
	Keychain Item Type Constants
	Keychain Protocol Type Constants
	Keychain Status Constants

	Result Codes

	List Manager Reference (Not Recommended)
	Overview
	Functions by Task
	Accessing and Manipulating Cell Data
	Adding and Deleting Columns and Rows To and From a List
	Changing the Size of Cells and Lists
	Creating and Disposing of Lists
	Creating and Managing Universal Procedure Pointers
	Determining or Changing the Selection
	Getting Information About Cells
	Modifying a List’s Appearance
	Responding to Events Affecting Lists
	Searching a List for a Particular Item
	Miscellaneous

	Functions
	CreateCustomList
	DisposeListClickLoopUPP
	DisposeListDefUPP
	DisposeListSearchUPP
	GetListActive
	GetListCellIndent
	GetListCellSize
	GetListClickLocation
	GetListClickLoop
	GetListClickTime
	GetListDataBounds
	GetListDataHandle
	GetListDefinition
	GetListFlags
	GetListHorizontalScrollBar
	GetListMouseLocation
	GetListPort
	GetListRefCon
	GetListSelectionFlags
	GetListUserHandle
	GetListVerticalScrollBar
	GetListViewBounds
	GetListVisibleCells
	InvokeListClickLoopUPP
	InvokeListDefUPP
	InvokeListSearchUPP
	LActivate
	LAddColumn
	LAddRow
	LAddToCell
	LAutoScroll
	LCellSize
	LClick
	LClrCell
	LDelColumn
	LDelRow
	LDispose
	LDraw
	LGetCell
	LGetCellDataLocation
	LGetSelect
	LLastClick
	LNew
	LNextCell
	LRect
	LScroll
	LSearch
	LSetCell
	LSetDrawingMode
	LSetSelect
	LSize
	LUpdate
	NewListClickLoopUPP
	NewListDefUPP
	NewListSearchUPP
	RegisterListDefinition
	SetListCellIndent
	SetListClickLoop
	SetListClickTime
	SetListFlags
	SetListLastClick
	SetListPort
	SetListRefCon
	SetListSelectionFlags
	SetListUserHandle
	SetListViewBounds

	Callbacks
	ListClickLoopProcPtr
	ListDefProcPtr
	ListNotificationProcPtr
	ListSearchProcPtr

	Data Types
	Cell
	DataArray
	DataHandle
	DataPtr
	ListBounds
	ListClickLoopUPP
	ListDefSpec
	ListDefType
	ListDefUPP
	ListNotification
	ListNotificationUPP
	ListRec
	ListRef
	ListSearchUPP
	StandardIconListCellDataRec

	Constants
	kListDefProcPtr
	lDrawingModeOff
	lDrawingModeOffBit
	List Definition Constants
	List Flags
	listNotifyNothing
	lOnlyOneBit
	Selection Flags

	Menu Manager Reference
	Overview
	Functions by Task
	Creating and Disposing of Menus
	Manipulating the Root Menu
	Manipulating the Menu Bar
	Adding and Removing Menus
	Manipulating and Accessing Menu Characteristics
	Drawing Menus and Menu Items
	Adding and Deleting Menu Items
	Associating Data With Menu Items
	Enabling Menus and Menu Items
	Manipulating Menu Item Text
	Manipulating and Accessing Menu Item Characteristics
	Responding to Menu Events and User Selections
	Handling Contextual Menu Plugins
	Obsolete Functions

	Functions
	AcquireRootMenu
	AppendMenu
	AppendMenuItemText
	AppendMenuItemTextWithCFString
	AppendResMenu
	CalcMenuSize
	CancelMenuTracking
	ChangeMenuAttributes
	ChangeMenuItemAttributes
	ChangeMenuItemPropertyAttributes
	CheckMenuItem
	ClearMenuBar
	CMPluginExamineContext
	CMPluginHandleSelection
	CMPluginPostMenuCleanup
	ContextualMenuSelect
	CopyMenuItemData
	CopyMenuItems
	CopyMenuItemTextAsCFString
	CopyMenuTitleAsCFString
	CountMenuItems
	CountMenuItemsWithCommandID
	CreateCustomMenu
	CreateNewMenu
	CreateStandardFontMenu
	DeleteMCEntries
	DeleteMenu
	DeleteMenuItem
	DeleteMenuItems
	DisableAllMenuItems
	DisableMenuCommand
	DisableMenuItem
	DisableMenuItemIcon
	DisposeMCInfo
	DisposeMenu
	DisposeMenuBar
	DisposeMenuDefUPP
	DrawMenuBar
	DuplicateMenu
	DuplicateMenuBar
	EnableAllMenuItems
	EnableMenuCommand
	EnableMenuItem
	EnableMenuItemIcon
	EraseMenuBackground
	FlashMenuBar
	GetFontFamilyFromMenuSelection
	GetIndMenuItemWithCommandID
	GetItemCmd
	GetItemIcon
	GetItemMark
	GetItemStyle
	GetMBarHeight
	GetMCEntry
	GetMCInfo
	GetMenu
	GetMenuAttributes
	GetMenuBar
	GetMenuCommandMark
	GetMenuCommandProperty
	GetMenuCommandPropertySize
	GetMenuDefinition
	GetMenuExcludesMarkColumn
	GetMenuFont
	GetMenuHandle
	GetMenuHeight
	GetMenuID
	GetMenuItemAttributes
	GetMenuItemCommandID
	GetMenuItemCommandKey
	GetMenuItemFontID
	GetMenuItemHierarchicalID
	GetMenuItemHierarchicalMenu
	GetMenuItemIconHandle
	GetMenuItemIndent
	GetMenuItemKeyGlyph
	GetMenuItemModifiers
	GetMenuItemProperty
	GetMenuItemPropertyAttributes
	GetMenuItemPropertySize
	GetMenuItemRefCon
	GetMenuItemText
	GetMenuItemTextEncoding
	GetMenuRef
	GetMenuRetainCount
	GetMenuTitle
	GetMenuTitleIcon
	GetMenuTrackingData
	GetMenuType
	GetMenuWidth
	GetNewMBar
	HideMenuBar
	HiliteMenu
	InitContextualMenus
	InsertFontResMenu
	InsertIntlResMenu
	InsertMenu
	InsertMenuItem
	InsertMenuItemText
	InsertMenuItemTextWithCFString
	InsertResMenu
	InvalidateMenuEnabling
	InvalidateMenuItems
	InvalidateMenuSize
	InvalMenuBar
	InvokeMenuDefUPP
	IsMenuBarInvalid
	IsMenuBarVisible
	IsMenuCommandEnabled
	IsMenuItemEnabled
	IsMenuItemIconEnabled
	IsMenuItemInvalid
	IsMenuKeyEvent
	IsMenuSizeInvalid
	IsShowContextualMenuClick
	IsShowContextualMenuEvent
	IsValidMenu
	LMGetTheMenu
	MenuChoice
	MenuEvent
	MenuHasEnabledItems
	MenuKey
	MenuSelect
	NewMenu
	NewMenuDefUPP
	PopUpMenuSelect
	ProcessIsContextualMenuClient
	RegisterMenuDefinition
	ReleaseMenu
	RemoveMenuCommandProperty
	RemoveMenuItemProperty
	RetainMenu
	ScrollMenuImage
	SetItemCmd
	SetItemIcon
	SetItemMark
	SetItemStyle
	SetMCEntries
	SetMCInfo
	SetMenuBar
	SetMenuCommandMark
	SetMenuCommandProperty
	SetMenuDefinition
	SetMenuExcludesMarkColumn
	SetMenuFlashCount
	SetMenuFont
	SetMenuHeight
	SetMenuID
	SetMenuItemCommandID
	SetMenuItemCommandKey
	SetMenuItemData
	SetMenuItemFontID
	SetMenuItemHierarchicalID
	SetMenuItemHierarchicalMenu
	SetMenuItemIconHandle
	SetMenuItemIndent
	SetMenuItemKeyGlyph
	SetMenuItemModifiers
	SetMenuItemProperty
	SetMenuItemRefCon
	SetMenuItemText
	SetMenuItemTextEncoding
	SetMenuItemTextWithCFString
	SetMenuTitle
	SetMenuTitleIcon
	SetMenuTitleWithCFString
	SetMenuWidth
	SetRootMenu
	ShowMenuBar
	UpdateInvalidMenuItems
	UpdateStandardFontMenu

	Callbacks
	MenuDefProcPtr

	Data Types
	HMenuBarHeader
	HMenuBarMenu
	MCEntry
	MDEFDrawData
	MDEFDrawItemsData
	MDEFFindItemData
	MDEFHiliteItemData
	MenuBarHandle
	MenuBarHeader
	MenuBarMenu
	MenuCommand
	MenuCRsrc
	MenuDefSpec
	MenuDefUPP
	MenuHandle
	MenuID
	MenuItemDataRec
	MenuItemID
	MenuItemIndex
	MenuRef
	MenuTrackingData

	Constants
	Contextual Menu Gestalt Selector Constants
	Contextual Menu Help Type Constants
	Contextual Menu Selection Type Constants
	Contextual Menu Item Content Constants
	Custom Menu Definition Message Constants
	Obsolete Menu Definition Messages
	Hierarchical Font Menu Option Constant
	Menu Attribute Constants
	Menu Item Attribute Constants
	Menu Definition Type Constants
	Menu Definition Feature Constants
	Menu Definition IDs
	Menu Event Option Constants
	Menu Glyph Constants
	Menu Item Data Flags
	Menu Item Icon Type Constants
	Menu Item Property Attribute Constant
	Menu Tracking Mode Constants
	Modifier Key Mask Constants
	No Mark Marking Character Constant
	Menu Dismissal Constants
	Standard Menu Definition Constants

	Result Codes

	Navigation Services Reference
	Overview
	Functions by Task
	Creating Dialogs
	Choosing Files, Folders and Volumes
	Saving Files
	Customizing Dialogs
	Running And Disposing of Dialogs
	Obtaining Dialog Information
	Translating Files
	Identifying Navigation Services Availability
	Working With Universal Procedure Pointers
	Deprecated Functions
	Unsupported Functions

	Functions
	DisposeNavEventUPP
	DisposeNavObjectFilterUPP
	DisposeNavPreviewUPP
	InvokeNavEventUPP
	InvokeNavObjectFilterUPP
	InvokeNavPreviewUPP
	NavAskDiscardChanges
	NavAskSaveChanges
	NavChooseFile
	NavChooseFolder
	NavChooseObject
	NavChooseVolume
	NavCompleteSave
	NavCreateAskDiscardChangesDialog
	NavCreateAskReviewDocumentsDialog
	NavCreateAskSaveChangesDialog
	NavCreateChooseFileDialog
	NavCreateChooseFolderDialog
	NavCreateChooseObjectDialog
	NavCreateChooseVolumeDialog
	NavCreateGetFileDialog
	NavCreateNewFolderDialog
	NavCreatePreview
	NavCreatePutFileDialog
	NavCustomAskSaveChanges
	NavCustomControl
	NavDialogDispose
	NavDialogGetReply
	NavDialogGetSaveFileExtensionHidden
	NavDialogGetSaveFileName
	NavDialogGetUserAction
	NavDialogGetWindow
	NavDialogRun
	NavDialogSetFilterTypeIdentifiers
	NavDialogSetSaveFileExtensionHidden
	NavDialogSetSaveFileName
	NavDisposeReply
	NavGetDefaultDialogCreationOptions
	NavGetDefaultDialogOptions
	NavGetFile
	NavLibraryVersion
	NavLoad
	NavNewFolder
	NavPutFile
	NavServicesAvailable
	NavServicesCanRun
	NavTranslateFile
	NavUnload
	NewNavEventUPP
	NewNavObjectFilterUPP
	NewNavPreviewUPP

	Callbacks
	NavEventProcPtr
	NavObjectFilterProcPtr
	NavPreviewProcPtr

	Data Types
	NavDialogRef
	NavCBRec
	NavDialogCreationOptions
	NavEventData
	NavEventDataInfo
	NavFileOrFolderInfo
	NavReplyRecord
	NavTypeList
	NavEventUPP
	NavObjectFilterUPP
	NavPreviewUPP
	NavMenuItemSpec
	NavContext
	NavDialogOptions

	Constants
	Action State Constants
	Custom Control Settings
	Dialog Configuration Options
	Discard Changes Actions
	Event Messages
	File Sorting Constants
	Generic File Signature Constant
	Menu Item Selection Constants
	Object Filtering Constants
	Save Changes Actions
	Save Changes Requests
	Sort Order Constants
	Translation Options
	User Actions
	NavDialogCreationOptions Version Constant
	NavCBRec Version Constant
	NavFileOrFolder Version Constant
	NavMenuItemSpec Version Constant
	NavReplyRecord Version Constant

	Result Codes

	Notification Manager Reference
	Overview
	Functions
	DisposeNMUPP
	InvokeNMUPP
	NewNMUPP
	NMInstall
	NMRemove

	Callbacks
	NMProcPtr

	Data Types
	NMRec

	Result Codes
	Gestalt Constants

	Scrap Manager Reference (Not Recommended)
	Overview
	Functions by Task
	Getting Information About the Scrap
	Reading Information From the Scrap
	Writing Information to the Scrap
	Transferring Data Between the Scrap in Memory and the Scrap on Disk
	Working With Scrap Promise Keeper Functions

	Functions
	CallInScrapPromises
	ClearCurrentScrap
	ClearScrap
	DisposeScrapPromiseKeeperUPP
	GetCurrentScrap
	GetScrapByName
	GetScrapFlavorCount
	GetScrapFlavorData
	GetScrapFlavorFlags
	GetScrapFlavorInfoList
	GetScrapFlavorSize
	InvokeScrapPromiseKeeperUPP
	LoadScrap
	NewScrapPromiseKeeperUPP
	PutScrapFlavor
	SetScrapPromiseKeeper
	UnloadScrap

	Callbacks
	ScrapPromiseKeeperProcPtr

	Data Types
	ScrapFlavorInfo
	ScrapRef
	ScrapPromiseKeeperUPP
	ScrapFlavorType

	Constants
	Scrap Flavor Types
	Scrap Flavor Flags
	Reserved Flavor Type
	Unknown Flavor Data Size Constant
	Options for the GetScrapByName Function
	Invalid Scrap Reference
	Named Scraps

	Result Codes
	Gestalt Constants

	Speech Recognition Manager Reference
	Overview
	Functions by Task
	Opening and Closing Recognition Systems
	Creating and Manipulating Recognizers
	Managing Speech Objects
	Traversing Speech Objects
	Creating Language Objects
	Manipulating Language Objects
	Using the System Feedback Window
	Creating, Invoking and Disposing UPPs

	Functions
	DisposeSRCallBackUPP
	InvokeSRCallBackUPP
	NewSRCallBackUPP
	SRAddLanguageObject
	SRAddText
	SRCancelRecognition
	SRChangeLanguageObject
	SRCloseRecognitionSystem
	SRContinueRecognition
	SRCountItems
	SRDrawRecognizedText
	SRDrawText
	SREmptyLanguageObject
	SRGetIndexedItem
	SRGetLanguageModel
	SRGetProperty
	SRGetReference
	SRIdle
	SRNewLanguageModel
	SRNewLanguageObjectFromDataFile
	SRNewLanguageObjectFromHandle
	SRNewPath
	SRNewPhrase
	SRNewRecognizer
	SRNewWord
	SROpenRecognitionSystem
	SRProcessBegin
	SRProcessEnd
	SRPutLanguageObjectIntoDataFile
	SRPutLanguageObjectIntoHandle
	SRReleaseObject
	SRRemoveIndexedItem
	SRRemoveLanguageObject
	SRSetIndexedItem
	SRSetLanguageModel
	SRSetProperty
	SRSpeakAndDrawText
	SRSpeakText
	SRSpeechBusy
	SRStartListening
	SRStopListening
	SRStopSpeech

	Callbacks
	SRCallBackProcPtr

	Data Types
	SRCallBackParam
	SRCallBackStruct
	SRCallBackUPP
	SRLanguageModel
	SRLanguageObject
	SRPath
	SRPhrase
	SRRecognitionResult
	SRRecognitionSystem
	SRRecognizer
	SRRejectionLevel
	SRSpeechObject
	SRSpeechSource
	SRSpeedSetting
	SRWord

	Constants
	Feedback and Listening Modes
	Apple Event Selectors
	Default Rejection Level
	Language Object Properties
	Language Object Types
	Listen Key Modes
	Notification Flags
	Recognition Result Properties
	Recognition System IDs
	Recognition System Properties
	Recognizer Listen Key Properties
	Recognizer Properties
	Search Status Flags
	Speech Source Constants

	Result Codes
	Gestalt Constants

	Text Services Manager Reference
	Overview
	Functions by Task
	Applications - Facilitating User Interactions With Components
	Applications - Managing TSM Documents
	Components - Sending Events
	Low Level - Accessing Text Service Properties
	Low Level - Confirming Text Service Input
	Low Level - Managing Text Service States
	Low Level - Querying Text Services
	Low Level - Sending Events to Text Services
	Working With Document Properties
	Input Mode Palette Configuration

	Functions
	ActivateTextService
	ActivateTSMDocument
	CloseTextService
	CopyTextServiceInputModeList
	DeactivateTextService
	DeactivateTSMDocument
	DeleteTSMDocument
	DeselectTextService
	FixTextService
	FixTSMDocument
	GetDefaultInputMethod
	GetDefaultInputMethodOfClass
	GetInputModePaletteMenu
	GetScriptLanguageSupport
	GetServiceList
	GetTextServiceLanguage
	GetTextServiceMenu
	GetTextServiceProperty
	HidePaletteWindows
	InitiateTextService
	InputModePaletteItemHit
	IsTextServiceSelected
	NewTSMDocument
	OpenTextService
	SelectTextService
	SendAEFromTSMComponent
	SendTextInputEvent
	SetDefaultInputMethod
	SetDefaultInputMethodOfClass
	SetTextServiceLanguage
	SetTextServiceProperty
	TerminateTextService
	TextServiceEventRef
	TSMCopyInputMethodEnabledInputModes
	TSMGetActiveDocument
	TSMGetDocumentProperty
	TSMInputModePaletteLoadButtons
	TSMInputModePaletteUpdateButtons
	TSMRemoveDocumentProperty
	TSMSelectInputMode
	TSMSetDocumentProperty
	TSMSetInlineInputRegion
	UseInputWindow

	Data Types
	TSM Document Interface Type
	InterfaceTypeList
	ScriptLanguageRecord
	ScriptLanguageSupport
	TextServiceInfo
	TextServiceList
	TextServicePropertyValue
	TSMContext
	TSMDocumentID
	TSMGlyphInfo
	TSMGlyphInfoArray

	Constants
	Attribute Bits for TSM Document Access Carbon Events
	Attribute Masks for TSM Document Access Carbon Events
	Carbon Event Class for TSM Document Access
	Carbon Events for TSM Document Access
	Carbon Event Parameters for General TSM Events
	Carbon Event Parameters for TSM Document Access
	Component Flags
	Document Property Tags
	Input Method Identifier
	Input Mode Dictionary Key
	Input Mode Palette Menu Definition Keys
	Input Mode Palette Control Keys
	Individual Input Mode Keys
	Interfaces
	Language and Script Constants
	Low-level Routine Selectors
	New Low-level Routine Selector
	Text Service Classes
	Text Service Version
	Text Service Properties
	Text Services Property Values
	Text Services Object Attributes
	TSM Document Interfaces
	Unicode Identifiers
	Collection Tags
	Input Mode Variants
	Input Mode - Standard Tags
	Locale Object Attributes
	Version Constants

	Result Codes

	Text Utilities Reference
	Overview
	Functions by Task
	Comparing Strings for Equality
	Converting Between Integers and Strings
	Converting Between Strings and Floating-Point Numbers
	Converting Between C and Pascal Strings
	Defining and Specifying Strings
	Determining Sorting Order for Strings in Different Languages
	Determining Sorting Order for Strings in the Same Language
	Modifying Characters and Diacritical Marks
	Searching for and Replacing Strings
	Using Number Format Specification Strings for International Number Formatting
	Working With Word, Script, and Line Boundaries
	Working With Universal Procedure Pointers
	Working With Type Select Records

	Functions
	c2pstr
	C2PStr
	c2pstrcpy
	CompareString
	CompareText
	CopyCStringToPascal
	CopyPascalStringToC
	DisposeIndexToStringUPP
	EqualString
	ExtendedToString
	FindScriptRun
	FindWordBreaks
	FormatRecToString
	GetIndString
	GetString
	IdenticalString
	IdenticalText
	InvokeIndexToStringUPP
	LanguageOrder
	LowercaseText
	Munger
	NewIndexToStringUPP
	NewString
	NumToString
	p2cstr
	P2CStr
	p2cstrcpy
	RelString
	relstring
	ReplaceText
	ScriptOrder
	SetString
	StringOrder
	StringToExtended
	StringToFormatRec
	StringToNum
	StripDiacritics
	TextOrder
	TypeSelectClear
	TypeSelectCompare
	TypeSelectFindItem
	TypeSelectNewKey
	UppercaseStripDiacritics
	UppercaseText
	UpperString
	upperstring

	Callbacks
	IndexToStringProcPtr

	Data Types
	BreakTable
	FormatClass
	FormatStatus
	FVector
	IndexToStringUPP
	NBreakTable
	NumFormatString
	NumFormatStringRec
	ScriptRunStatus
	TripleInt
	TypeSelectRecord

	Constants
	Format Result Types
	TripleInt Index Values
	NumFormatString Version
	Implicit Language Codes
	Type Select Modes
	Obsolete Language Code Values

	Translation Manager Reference
	Overview
	Functions
	CanDocBeOpened
	DisposeGetScrapDataUPP
	ExtendFileTypeList
	GetDocumentKindString
	GetFileTranslationPaths
	GetFileTypesThatAppCanNativelyOpen
	GetPathFromTranslationDialog
	GetTranslationExtensionName
	InvokeGetScrapDataUPP
	NewGetScrapDataUPP
	SetTranslationAdvertisement
	TranslateFile
	TranslateScrap
	UpdateTranslationProgress

	Callbacks
	DoGetFileTranslationListProcPtr
	DoGetScrapTranslationListProcPtr
	DoGetTranslatedFilenameProcPtr
	DoIdentifyFileProcPtr
	DoIdentifyScrapProcPtr
	DoTranslateFileProcPtr
	DoTranslateScrapProcPtr
	GetScrapDataProcPtr

	Data Types
	FileTranslationList
	FileTranslationSpec
	FileType
	FileTypeSpec
	ScrapTranslationList
	ScrapType
	ScrapTypeSpec
	TypesBlock

	Constants
	DocOpenMethod

	Result Codes
	Gestalt Constants

	URL Access Manager Reference (Not Recommended)
	Overview
	Functions by Task
	Getting Information About the URL Access Manager
	Creating and Disposing of a URL Reference
	Getting and Setting Information About a URL
	Performing Simple Data Transfer
	Getting More Control Over Data Transfer Operations
	Terminating Data Transfer Operations
	Getting Data Transfer Information
	Working With URL Access Manager Callbacks

	Functions
	DisposeURLNotifyUPP
	DisposeURLSystemEventUPP
	InvokeURLNotifyUPP
	InvokeURLSystemEventUPP
	NewURLNotifyUPP
	NewURLSystemEventUPP
	URLAbort
	URLDisposeReference
	URLDownload
	URLGetBuffer
	URLGetCurrentState
	URLGetDataAvailable
	URLGetError
	URLGetFileInfo
	URLGetProperty
	URLGetPropertySize
	URLGetURLAccessVersion
	URLIdle
	URLNewReference
	URLOpen
	URLReleaseBuffer
	URLSetProperty
	URLSimpleDownload
	URLSimpleUpload
	URLUpload

	Callbacks
	URLNotifyProcPtr
	URLSystemEventProcPtr

	Data Types
	URLCallbackInfo
	URLNotifyUPP
	URLReference
	URLSystemEventUPP

	Constants
	Authentication Type Constant
	Data Transfer Event Constants
	Data Transfer Event Mask Constants
	Data Transfer Options Mask Constants
	Data Transfer State Constants
	HTTP and HTTPS URL Property Name Constants
	Universal URL Property Name Constants

	Result Codes

	Window Manager Reference
	Overview
	Functions by Task
	Accessing Information About a Window
	Activating Window Path Pop-Up Menus
	Associating Data With Windows
	Collapsing Windows
	Creating, Storing, and Closing Windows
	Displaying Floating Windows and Window Animations
	Displaying Windows
	Dragging Proxy Icons
	Establishing Proxy Icons
	Getting and Setting Window Structure Fields
	Handling Mouse Events in Windows
	Locating Windows
	Maintaining the Update Region
	Managing Activation Scope
	Managing Dock Tiles
	Managing Modality
	Managing Themes
	Managing Toolbars
	Managing Transitions
	Managing Transparency
	Managing UPPs
	Managing Window Attributes
	Managing Window Availability
	Managing Window Classes
	Managing Window Features
	Managing Window Focus
	Managing Window Groups
	Managing Window Titles
	Manipulating Drawers
	Manipulating Sheets
	Manipulating Window Color Information
	Referencing Windows
	Scrolling
	Sizing and Positioning Windows
	Updating the Screen
	Using Default and Cancel Buttons
	Zooming Windows
	Miscellaneous
	Legacy Functions

	Functions
	ActivateWindow
	ActiveNonFloatingWindow
	AreFloatingWindowsVisible
	BeginUpdate
	BeginWindowProxyDrag
	BringToFront
	CalcVis
	CalcVisBehind
	ChangeWindowAttributes
	ChangeWindowGroupAttributes
	ChangeWindowPropertyAttributes
	CheckUpdate
	ClipAbove
	CloneWindow
	CloseDrawer
	CollapseAllWindows
	CollapseWindow
	ConstrainWindowToScreen
	CopyWindowAlternateTitle
	CopyWindowGroupName
	CopyWindowTitleAsCFString
	CountWindowGroupContents
	CreateCustomWindow
	CreateNewWindow
	CreateQDContextForCollapsedWindowDockTile
	CreateStandardWindowMenu
	CreateWindowFromCollection
	CreateWindowFromResource
	CreateWindowGroup
	DebugPrintAllWindowGroups
	DebugPrintWindowGroup
	DetachSheetWindow
	DisableScreenUpdates
	DisposeWindow
	DisposeWindowDefUPP
	DisposeWindowPaintUPP
	DragGrayRgn
	DragTheRgn
	DragWindow
	DrawGrowIcon
	EnableScreenUpdates
	EndUpdate
	EndWindowProxyDrag
	FindWindow
	FindWindowOfClass
	FrontNonFloatingWindow
	FrontWindow
	GetAvailableWindowAttributes
	GetAvailableWindowPositioningBounds
	GetAvailableWindowPositioningRegion
	GetDrawerCurrentEdge
	GetDrawerOffsets
	GetDrawerParent
	GetDrawerPreferredEdge
	GetDrawerState
	GetFrontWindowOfClass
	GetGrayRgn
	GetIndexedWindow
	GetNewCWindow
	GetNewWindow
	GetNextWindow
	GetNextWindowOfClass
	GetPreviousWindow
	GetSheetWindowParent
	GetUserFocusWindow
	GetWindowActivationScope
	GetWindowAlpha
	GetWindowAttributes
	GetWindowBounds
	GetWindowCancelButton
	GetWindowClass
	GetWindowContentColor
	GetWindowContentPattern
	GetWindowDefaultButton
	GetWindowDockTileMenu
	GetWindowFeatures
	GetWindowFromPort
	GetWindowGreatestAreaDevice
	GetWindowGroup
	GetWindowGroupAttributes
	GetWindowGroupContents
	GetWindowGroupLevel
	GetWindowGroupLevelOfType
	GetWindowGroupOfClass
	GetWindowGroupOwner
	GetWindowGroupParent
	GetWindowGroupRetainCount
	GetWindowGroupSibling
	GetWindowIdealUserState
	GetWindowIndex
	GetWindowKind
	GetWindowList
	GetWindowModality
	GetWindowOwnerCount
	GetWindowPic
	GetWindowPort
	GetWindowPortBounds
	GetWindowProperty
	GetWindowPropertyAttributes
	GetWindowPropertySize
	GetWindowProxyAlias
	GetWindowProxyFSSpec
	GetWindowProxyIcon
	GetWindowRegion
	GetWindowResizeLimits
	GetWindowRetainCount
	GetWindowStandardState
	GetWindowStructurePort
	GetWindowStructureWidths
	GetWindowToolbar
	GetWindowUserState
	GetWindowWidgetHilite
	GetWRefCon
	GetWTitle
	GetWVariant
	GrowWindow
	HideFloatingWindows
	HideSheetWindow
	HideWindow
	HiliteWindow
	HiliteWindowFrameForDrag
	HIWindowChangeAttributes
	HIWindowChangeAvailability
	HIWindowChangeClass
	HIWindowChangeFeatures
	HIWindowConstrain
	HIWindowCopyAvailablePositioningShape
	HIWindowCopyDrawers
	HIWindowCopyShape
	HIWindowCreate
	HIWindowCreateCollapsedDockTileContext
	HIWindowFindAtLocation
	HIWindowFlush
	HIWindowFromCGWindowID
	HIWindowGetAvailability
	HIWindowGetAvailablePositioningBounds
	HIWindowGetBounds
	HIWindowGetCGWindowID
	HIWindowGetGreatestAreaDisplay
	HIWindowGetIdealUserState
	HIWindowGetProxyFSRef
	HIWindowGetScaleMode
	HIWindowGetThemeBackground
	HIWindowInvalidateShadow
	HIWindowIsAttributeAvailable
	HIWindowIsDocumentModalTarget
	HIWindowIsInStandardState
	HIWindowReleaseCollapsedDockTileContext
	HIWindowSetBounds
	HIWindowSetIdealUserState
	HIWindowSetProxyFSRef
	HIWindowSetToolbarView
	HIWindowShowsFocus
	HIWindowTestAttribute
	HIWindowTrackProxyDrag
	InstallWindowContentPaintProc
	InvalWindowRect
	InvalWindowRgn
	InvokeWindowDefUPP
	InvokeWindowPaintUPP
	IsValidWindowClass
	IsValidWindowPtr
	IsWindowActive
	IsWindowCollapsable
	IsWindowCollapsed
	IsWindowContainedInGroup
	IsWindowHilited
	IsWindowInStandardState
	IsWindowLatentVisible
	IsWindowModified
	IsWindowPathSelectClick
	IsWindowPathSelectEvent
	IsWindowToolbarVisible
	IsWindowUpdatePending
	IsWindowVisible
	MoveWindow
	MoveWindowStructure
	NewCWindow
	NewWindow
	NewWindowDefUPP
	NewWindowPaintUPP
	OpenDrawer
	PaintBehind
	PaintOne
	PinRect
	RegisterWindowDefinition
	ReleaseQDContextForCollapsedWindowDockTile
	ReleaseWindow
	ReleaseWindowGroup
	RemoveWindowProperty
	RemoveWindowProxy
	RepositionWindow
	ReshapeCustomWindow
	ResizeWindow
	RetainWindow
	RetainWindowGroup
	ScrollWindowRect
	ScrollWindowRegion
	SelectWindow
	SendBehind
	SendWindowGroupBehind
	SetDrawerOffsets
	SetDrawerParent
	SetDrawerPreferredEdge
	SetPortWindowPort
	SetThemeTextColorForWindow
	SetThemeWindowBackground
	SetUserFocusWindow
	SetWindowActivationScope
	SetWindowAlpha
	SetWindowAlternateTitle
	SetWindowBounds
	SetWindowCancelButton
	SetWindowClass
	SetWindowContentColor
	SetWindowContentPattern
	SetWindowDefaultButton
	SetWindowDockTileMenu
	SetWindowGroup
	SetWindowGroupLevel
	SetWindowGroupLevelOfType
	SetWindowGroupName
	SetWindowGroupOwner
	SetWindowGroupParent
	SetWindowIdealUserState
	SetWindowKind
	SetWindowModality
	SetWindowModified
	SetWindowPic
	SetWindowProperty
	SetWindowProxyAlias
	SetWindowProxyCreatorAndType
	SetWindowProxyFSSpec
	SetWindowProxyIcon
	SetWindowResizeLimits
	SetWindowStandardState
	SetWindowTitleWithCFString
	SetWindowToolbar
	SetWindowUserState
	SetWRefCon
	SetWTitle
	ShowFloatingWindows
	ShowHide
	ShowHideWindowToolbar
	ShowSheetWindow
	ShowWindow
	SizeWindow
	StoreWindowIntoCollection
	ToggleDrawer
	TrackBox
	TrackGoAway
	TrackWindowProxyDrag
	TrackWindowProxyFromExistingDrag
	TransitionWindow
	TransitionWindowAndParent
	TransitionWindowWithOptions
	UpdateCollapsedWindowDockTile
	ValidWindowRect
	ValidWindowRgn
	WindowPathSelect
	ZoomWindow
	ZoomWindowIdeal

	Callbacks
	WindowDefProcPtr
	WindowPaintProcPtr

	Data Types
	BasicWindowDescription
	GetGrowImageRegionRec
	GetWindowRegionRec
	HIWindowRef
	MeasureWindowTitleRec
	PropertyCreator
	PropertyTag
	PicHandle
	PixPatHandle
	RGBColor
	RgnHandle
	SetupWindowProxyDragImageRec
	TransitionWindowOptions
	WindowDefSpec
	WindowDefUPP
	WindowGroupRef
	WindowPaintUPP
	WindowRef
	WStateData

	Constants
	Window Class Constants
	Window Attribute Identifiers
	Window Attributes
	User Focus Auto-Select Constant
	Appearance-Compliant Window Resource IDs
	Appearance-Compliant Window Definition ID Constants
	Basic Window Description State Constant
	Window Frame View Part Codes
	Window Feature Bits
	Window Part Code Constants
	Window Modality Options
	Window Position Constants
	System 7 Window Positioning Constants
	Window Region Constants
	Window Latent Visibility Constants
	Basic Window Description Version Constants
	Window Property Persistent Constant
	Window Variant Constants
	Window Transition Action Constants
	Window Transition Effect Constants
	Window Activation Scope Constants
	Window Constrain Options
	Window Kinds
	Window Group Selection Constants
	Window Group Attributes
	Obsolete Window Group Attributes
	Window Group Content Options
	Window Class Position Constants
	Window Definition Type Constants
	Window Definition Procedure Constant
	Window Definition Hit Test Result Code Constants
	Window Definition Message Constants
	Window Definition State-Changed Constant
	Drawer State Constants
	Window Edge Constants
	Rotating Window Menu Item Constant
	Window Menu Item Property Constants
	Toolbar View Background Tag
	Window Paint Callback Options
	Part Identifier Constants
	Desk Pattern Resource ID
	Window Scrolling Options
	'wind' Resource Default Collection Item Constants
	Window Resource IDs
	Window Availability Constants
	Window Scale Mode Constants
	Window Group Level Constants
	Pre-Appearance Window Definition IDs

	Result Codes

	Part II: Other References
	Apple Help Reference
	Overview
	Functions
	AHGotoMainTOC
	AHGotoPage
	AHLookupAnchor
	AHRegisterHelpBook
	AHSearch

	Constants
	TOC Specification Constants

	Result Codes

	Carbon Printing Reference
	Overview
	Functions by Task
	Displaying the Page Setup and Print Dialogs
	Print Loop Functions
	Creating, Calling, and Deleting Universal Procedure Pointers
	Customizing the Page Setup and Print Dialogs
	Legacy Carbon Printing Functions

	Functions
	DisposePMItemUPP
	DisposePMPageSetupDialogInitUPP
	DisposePMPrintDialogInitUPP
	DisposePMSheetDoneUPP
	InvokePMItemUPP
	InvokePMPageSetupDialogInitUPP
	InvokePMPrintDialogInitUPP
	InvokePMSheetDoneUPP
	NewPMItemUPP
	NewPMPageSetupDialogInitUPP
	NewPMPrintDialogInitUPP
	NewPMSheetDoneUPP
	PMBeginDocument
	PMBeginPage
	PMEndDocument
	PMEndPage
	PMGetDialogAccepted
	PMGetDialogDone
	PMGetDialogPtr
	PMGetItemProc
	PMGetModalFilterProc
	PMPageSetupDialog
	PMPageSetupDialogInit
	PMPageSetupDialogMain
	PMPrintDialog
	PMPrintDialogInit
	PMPrintDialogInitWithPageFormat
	PMPrintDialogMain
	PMSessionBeginCGDocument
	PMSessionBeginDocument
	PMSessionBeginPage
	PMSessionDisablePrinterPresets
	PMSessionEnablePrinterPresets
	PMSessionEndDocument
	PMSessionEndPage
	PMSessionPageSetupDialog
	PMSessionPageSetupDialogInit
	PMSessionPageSetupDialogMain
	PMSessionPrintDialog
	PMSessionPrintDialogInit
	PMSessionPrintDialogMain
	PMSessionUseSheets
	PMSetDialogAccepted
	PMSetDialogDone
	PMSetItemProc
	PMSetModalFilterProc
	PMShowPageSetupDialogAsSheet
	PMShowPrintDialogWithOptions
	PMShowPrintDialogWithOptionsAsSheet

	Callbacks by Task
	Sheet Dialog Callback
	Legacy Callbacks

	Callbacks
	PMItemProcPtr
	PMPageSetupDialogInitProcPtr
	PMPrintDialogInitProcPtr
	PMSheetDoneProcPtr

	Data Types
	PMItemUPP
	PMPageSetupDialogInitUPP
	PMPrintDialogInitUPP
	PMSheetDoneUPP

	Constants
	Print Dialog Options

	Data Browser Reference
	Overview
	Functions by Task
	Creating and Configuring a Data Browser
	Manipulating Data Browser Attributes
	Setting Up and Installing Callbacks
	Formatting Table View
	Formatting List View
	Formatting Column View
	Adding and Removing Data Items
	Accessing and Operating on All Items
	Accessing and Displaying Individual Items
	Selecting and Editing Items
	Working With Attributes
	Working With Containers
	Working With Metrics
	Getting and Setting Item Data
	Working With Universal Procedure Pointers
	Working With AXUIElement References

	Functions
	AddDataBrowserItems
	AddDataBrowserListViewColumn
	AutoSizeDataBrowserListViewColumns
	AXUIElementCreateWithDataBrowserAndItemInfo
	AXUIElementGetDataBrowserItemInfo
	CloseDataBrowserContainer
	CopyDataBrowserEditText
	CreateDataBrowserControl
	DataBrowserChangeAttributes
	DataBrowserGetAttributes
	DataBrowserGetMetric
	DataBrowserSetMetric
	DisposeDataBrowserAcceptDragUPP
	DisposeDataBrowserAddDragItemUPP
	DisposeDataBrowserDrawItemUPP
	DisposeDataBrowserEditItemUPP
	DisposeDataBrowserGetContextualMenuUPP
	DisposeDataBrowserHitTestUPP
	DisposeDataBrowserItemAcceptDragUPP
	DisposeDataBrowserItemCompareUPP
	DisposeDataBrowserItemDataUPP
	DisposeDataBrowserItemDragRgnUPP
	DisposeDataBrowserItemHelpContentUPP
	DisposeDataBrowserItemNotificationUPP
	DisposeDataBrowserItemNotificationWithItemUPP
	DisposeDataBrowserItemReceiveDragUPP
	DisposeDataBrowserItemUPP
	DisposeDataBrowserPostProcessDragUPP
	DisposeDataBrowserReceiveDragUPP
	DisposeDataBrowserSelectContextualMenuUPP
	DisposeDataBrowserTrackingUPP
	EnableDataBrowserEditCommand
	ExecuteDataBrowserEditCommand
	ForEachDataBrowserItem
	GetDataBrowserActiveItems
	GetDataBrowserCallbacks
	GetDataBrowserColumnViewDisplayType
	GetDataBrowserColumnViewPath
	GetDataBrowserColumnViewPathLength
	GetDataBrowserCustomCallbacks
	GetDataBrowserEditItem
	GetDataBrowserEditText
	GetDataBrowserHasScrollBars
	GetDataBrowserItemCount
	GetDataBrowserItemDataBooleanValue
	GetDataBrowserItemDataButtonValue
	GetDataBrowserItemDataDateTime
	GetDataBrowserItemDataDrawState
	GetDataBrowserItemDataIcon
	GetDataBrowserItemDataIconTransform
	GetDataBrowserItemDataItemID
	GetDataBrowserItemDataLongDateTime
	GetDataBrowserItemDataMaximum
	GetDataBrowserItemDataMenuRef
	GetDataBrowserItemDataMinimum
	GetDataBrowserItemDataProperty
	GetDataBrowserItemDataRGBColor
	GetDataBrowserItemDataText
	GetDataBrowserItemDataValue
	GetDataBrowserItemPartBounds
	GetDataBrowserItems
	GetDataBrowserItemState
	GetDataBrowserListViewDisclosureColumn
	GetDataBrowserListViewHeaderBtnHeight
	GetDataBrowserListViewHeaderDesc
	GetDataBrowserListViewUsePlainBackground
	GetDataBrowserPropertyFlags
	GetDataBrowserScrollBarInset
	GetDataBrowserScrollPosition
	GetDataBrowserSelectionAnchor
	GetDataBrowserSelectionFlags
	GetDataBrowserSortOrder
	GetDataBrowserSortProperty
	GetDataBrowserTableViewColumnCount
	GetDataBrowserTableViewColumnPosition
	GetDataBrowserTableViewColumnProperty
	GetDataBrowserTableViewColumnWidth
	GetDataBrowserTableViewGeometry
	GetDataBrowserTableViewHiliteStyle
	GetDataBrowserTableViewItemID
	GetDataBrowserTableViewItemRow
	GetDataBrowserTableViewItemRowHeight
	GetDataBrowserTableViewNamedColumnWidth
	GetDataBrowserTableViewRowHeight
	GetDataBrowserTarget
	GetDataBrowserUserState
	GetDataBrowserViewStyle
	InitDataBrowserCallbacks
	InitDataBrowserCustomCallbacks
	InvokeDataBrowserAcceptDragUPP
	InvokeDataBrowserAddDragItemUPP
	InvokeDataBrowserDrawItemUPP
	InvokeDataBrowserEditItemUPP
	InvokeDataBrowserGetContextualMenuUPP
	InvokeDataBrowserHitTestUPP
	InvokeDataBrowserItemAcceptDragUPP
	InvokeDataBrowserItemCompareUPP
	InvokeDataBrowserItemDataUPP
	InvokeDataBrowserItemDragRgnUPP
	InvokeDataBrowserItemHelpContentUPP
	InvokeDataBrowserItemNotificationUPP
	InvokeDataBrowserItemNotificationWithItemUPP
	InvokeDataBrowserItemReceiveDragUPP
	InvokeDataBrowserItemUPP
	InvokeDataBrowserPostProcessDragUPP
	InvokeDataBrowserReceiveDragUPP
	InvokeDataBrowserSelectContextualMenuUPP
	InvokeDataBrowserTrackingUPP
	IsDataBrowserItemSelected
	MoveDataBrowserSelectionAnchor
	NewDataBrowserAcceptDragUPP
	NewDataBrowserAddDragItemUPP
	NewDataBrowserDrawItemUPP
	NewDataBrowserEditItemUPP
	NewDataBrowserGetContextualMenuUPP
	NewDataBrowserHitTestUPP
	NewDataBrowserItemAcceptDragUPP
	NewDataBrowserItemCompareUPP
	NewDataBrowserItemDataUPP
	NewDataBrowserItemDragRgnUPP
	NewDataBrowserItemHelpContentUPP
	NewDataBrowserItemNotificationUPP
	NewDataBrowserItemNotificationWithItemUPP
	NewDataBrowserItemReceiveDragUPP
	NewDataBrowserItemUPP
	NewDataBrowserPostProcessDragUPP
	NewDataBrowserReceiveDragUPP
	NewDataBrowserSelectContextualMenuUPP
	NewDataBrowserTrackingUPP
	OpenDataBrowserContainer
	RemoveDataBrowserItems
	RemoveDataBrowserTableViewColumn
	RevealDataBrowserItem
	SetDataBrowserActiveItems
	SetDataBrowserCallbacks
	SetDataBrowserColumnViewDisplayType
	SetDataBrowserColumnViewPath
	SetDataBrowserCustomCallbacks
	SetDataBrowserEditItem
	SetDataBrowserEditText
	SetDataBrowserHasScrollBars
	SetDataBrowserItemDataBooleanValue
	SetDataBrowserItemDataButtonValue
	SetDataBrowserItemDataDateTime
	SetDataBrowserItemDataDrawState
	SetDataBrowserItemDataIcon
	SetDataBrowserItemDataIconTransform
	SetDataBrowserItemDataItemID
	SetDataBrowserItemDataLongDateTime
	SetDataBrowserItemDataMaximum
	SetDataBrowserItemDataMenuRef
	SetDataBrowserItemDataMinimum
	SetDataBrowserItemDataRGBColor
	SetDataBrowserItemDataText
	SetDataBrowserItemDataValue
	SetDataBrowserListViewDisclosureColumn
	SetDataBrowserListViewHeaderBtnHeight
	SetDataBrowserListViewHeaderDesc
	SetDataBrowserListViewUsePlainBackground
	SetDataBrowserPropertyFlags
	SetDataBrowserScrollBarInset
	SetDataBrowserScrollPosition
	SetDataBrowserSelectedItems
	SetDataBrowserSelectionFlags
	SetDataBrowserSortOrder
	SetDataBrowserSortProperty
	SetDataBrowserTableViewColumnPosition
	SetDataBrowserTableViewColumnWidth
	SetDataBrowserTableViewGeometry
	SetDataBrowserTableViewHiliteStyle
	SetDataBrowserTableViewItemRow
	SetDataBrowserTableViewItemRowHeight
	SetDataBrowserTableViewNamedColumnWidth
	SetDataBrowserTableViewRowHeight
	SetDataBrowserTarget
	SetDataBrowserUserState
	SetDataBrowserViewStyle
	SortDataBrowserContainer
	UpdateDataBrowserItems

	Callbacks
	DataBrowserAcceptDragProcPtr
	DataBrowserAddDragItemProcPtr
	DataBrowserDrawItemProcPtr
	DataBrowserEditItemProcPtr
	DataBrowserGetContextualMenuProcPtr
	DataBrowserHitTestProcPtr
	DataBrowserItemAcceptDragProcPtr
	DataBrowserItemCompareProcPtr
	DataBrowserItemDataProcPtr
	DataBrowserItemDragRgnProcPtr
	DataBrowserItemHelpContentProcPtr
	DataBrowserItemNotificationProcPtr
	DataBrowserItemNotificationWithItemProcPtr
	DataBrowserItemProcPtr
	DataBrowserItemReceiveDragProcPtr
	DataBrowserPostProcessDragProcPtr
	DataBrowserReceiveDragProcPtr
	DataBrowserSelectContextualMenuProcPtr
	DataBrowserTrackingProcPtr

	Data Types
	DataBrowserAccessibilityItemInfo
	DataBrowserAccessibilityItemInfoV0
	DataBrowserAccessibilityItemInfoV1
	DataBrowserPropertyDesc
	DataBrowserCallbacks
	DataBrowserCustomCallbacks
	DataBrowserDragFlags
	DataBrowserItemDataRef
	DataBrowserItemID
	DataBrowserPropertyFlags
	DataBrowserPropertyID
	DataBrowserTableViewRowIndex
	DataBrowserTableViewColumnIndex
	DataBrowserTableViewColumnID
	DataBrowserTableViewColumnDesc
	DataBrowserListViewHeaderDesc
	DataBrowserListViewColumnDesc
	kHIDataBrowserClassID

	Constants
	Callback Data Structure Version
	Control Data Tags
	Custom Callback Data Structure Version
	Data Browser Attributes
	Data Browser Control Kind Tag
	Data Browser Metric Values
	Display Types
	Editing Commands
	Item Notifications
	Item States
	List View Header Description Version
	List View Append Column
	No Item Constant
	Properties
	Property Flags: Universal
	Property Flags: Modifiers
	Property Flags: Offset and Mask for List View Properties
	Property Flags: List View Column Behavior
	Property Flags: Offset and Mask for Client-Defined Properties
	Property Parts
	Reveal Options
	Selection Anchor Directions
	Selection State Options
	Sorting Orders
	Table View Highlighting Styles
	Table View Last Column Value
	Table View Property Flag
	Tracking Results
	User Selection Flags
	View Styles

	Result Codes

	Fonts Panel Reference
	Overview
	Functions
	FPIsFontPanelVisible
	FPShowHideFontPanel
	SetFontInfoForSelection

	Data Types
	FontSelectionQDStyle
	FontSelectionQDStylePtr

	Constants
	Font Event Class
	Fonts Panel Events
	Font Information Types
	Font Information Versions
	Fonts Panel Command
	Font Parameters and Data Types

	Result Codes

	HIArchive Reference
	Overview
	Functions by Task
	Storing Objects in an Archive
	Retrieving Objects from an Archive
	Miscellaneous Function

	Functions
	HIArchiveCopyDecodedCFType
	HIArchiveCopyEncodedData
	HIArchiveCreateForDecoding
	HIArchiveCreateForEncoding
	HIArchiveDecodeBoolean
	HIArchiveDecodeNumber
	HIArchiveEncodeBoolean
	HIArchiveEncodeCFType
	HIArchiveEncodeNumber
	HIArchiveGetTypeID

	Data Types
	HIArchiveRef

	Constants
	Archive Decoding Option Constant

	Result Codes

	HIGeometry Reference
	Overview
	Functions by Task
	Getting the Scale Factor
	Converting Coordinates

	Functions
	HIGetScaleFactor
	HIPointConvert
	HIRectConvert
	HISizeConvert

	Data Types
	HIPoint
	HISize
	HIRect

	Constants
	Coordinate Space Constants

	HIObject Reference
	Overview
	Functions by Task
	Registering and Creating HIObjects
	HIObject Utility Functions
	Accessibility Functions
	Archiving Functions
	Miscellaneous Functions

	Functions
	HIObjectCopyClassID
	HIObjectCopyCustomArchiveData
	HIObjectCreate
	HIObjectCreateFromBundle
	HIObjectDynamicCast
	HIObjectGetEventTarget
	HIObjectIsAccessibilityIgnored
	HIObjectIsArchivingIgnored
	HIObjectIsOfClass
	HIObjectOverrideAccessibilityContainment
	HIObjectPrintDebugInfo
	HIObjectRegisterSubclass
	HIObjectSetAccessibilityIgnored
	HIObjectSetArchivingIgnored
	HIObjectSetAuxiliaryAccessibilityAttribute
	HIObjectSetCustomArchiveData
	HIObjectUnregisterClass

	Constants
	Standard Custom Archive Data Dictionary Keys for Custom Initialize Events
	Standard Custom Archive Data Dictionary Class and SuperClass Keys
	Standard Custom Archive Data Dictionary Key for ProcPointer-Based CDEFs
	HIObject Base Class Events
	HIObject Base Class Event Parameters

	Result Codes

	HIShape Reference
	Overview
	Functions by Task
	Creating Immutable Shapes
	Creating Mutable Shapes
	Querying Shapes
	Manipulating Shapes

	Functions
	HIShapeContainsPoint
	HIShapeCreateCopy
	HIShapeCreateDifference
	HIShapeCreateEmpty
	HIShapeCreateIntersection
	HIShapeCreateMutable
	HIShapeCreateMutableCopy
	HIShapeCreateUnion
	HIShapeCreateWithQDRgn
	HIShapeCreateWithRect
	HIShapeDifference
	HIShapeGetAsQDRgn
	HIShapeGetBounds
	HIShapeGetTypeID
	HIShapeIntersect
	HIShapeIntersectsRect
	HIShapeIsEmpty
	HIShapeIsRectangular
	HIShapeOffset
	HIShapeReplacePathInCGContext
	HIShapeSetEmpty
	HIShapeSetQDClip
	HIShapeUnion

	Data Types
	HIShapeRef
	HIMutableShapeRef

	HIToolbar Reference
	Overview
	Functions by Task
	Creating Toolbars
	Manipulating Toolbars
	Creating and Adding Toolbar Items
	Manipulating Toolbar Items

	Functions
	HIToolbarAppendItem
	HIToolbarChangeAttributes
	HIToolbarCopyIdentifier
	HIToolbarCopyItems
	HIToolbarCreate
	HIToolbarCreateItemWithIdentifier
	HIToolbarGetAttributes
	HIToolbarGetDelegate
	HIToolbarGetDisplayMode
	HIToolbarGetDisplaySize
	HIToolbarGetSelectedItemInWindow
	HIToolbarInsertItemAtIndex
	HIToolbarItemChangeAttributes
	HIToolbarItemChangeAttributesInWindow
	HIToolbarItemConfigDataChanged
	HIToolbarItemCopyHelpText
	HIToolbarItemCopyIdentifier
	HIToolbarItemCopyImage
	HIToolbarItemCopyLabel
	HIToolbarItemCopyMenu
	HIToolbarItemCreate
	HIToolbarItemGetAttributes
	HIToolbarItemGetAttributesInWindow
	HIToolbarItemGetCommandID
	HIToolbarItemGetToolbar
	HIToolbarItemIsEnabled
	HIToolbarItemSetCommandID
	HIToolbarItemSetEnabled
	HIToolbarItemSetHelpText
	HIToolbarItemSetIconRef
	HIToolbarItemSetImage
	HIToolbarItemSetLabel
	HIToolbarItemSetMenu
	HIToolbarRemoveItemAtIndex
	HIToolbarSetDelegate
	HIToolbarSetDisplayMode
	HIToolbarSetDisplaySize
	HIToolbarSetItemsWithIdentifiers

	Constants
	Toolbar Attributes
	Toolbar Command ID Constants
	Toolbar Display Mode Constants
	Toolbar Display Size Constants
	Toolbar Events
	Toolbar Event Parameters and Types
	Toolbar Item Attributes
	Toolbar Item Events
	Toolbar Item View Events
	Toolbar View Display Event Parameters and Types

	HIView Reference
	Overview
	Functions by Task
	Obtaining and Placing Views
	Working With Subviews
	Manipulating Views
	Managing Focus
	Processing Events and Hit-Testing for Views
	Manipulating View Coordinates
	Creating and Manipulating Combo Boxes
	Creating and Manipulating Image Views
	Creating and Manipulating Scroll Views
	Creating and Manipulating Layouts
	Manipulating Tracking Areas
	Creating and Manipulating Search Fields
	Manipulating Menus
	Manipulating Segmented Views
	Working with Core Graphics Images
	Working with Grow Boxes
	Using Cocoa Views in Carbon Windows

	Functions
	HICocoaViewCreate
	HICocoaViewGetView
	HICocoaViewSetView
	HIComboBoxAppendTextItem
	HIComboBoxChangeAttributes
	HIComboBoxCopyTextItemAtIndex
	HIComboBoxCreate
	HIComboBoxGetAttributes
	HIComboBoxGetItemCount
	HIComboBoxInsertTextItemAtIndex
	HIComboBoxIsListVisible
	HIComboBoxRemoveItemAtIndex
	HIComboBoxSetListVisible
	HICreateTransformedCGImage
	HIGrowBoxViewIsTransparent
	HIGrowBoxViewSetTransparent
	HIImageViewCopyImage
	HIImageViewCreate
	HIImageViewGetAlpha
	HIImageViewGetScaleToFit
	HIImageViewIsOpaque
	HIImageViewSetAlpha
	HIImageViewSetImage
	HIImageViewSetOpaque
	HIImageViewSetScaleToFit
	HIMenuGetContentView
	HIMenuViewGetMenu
	HIScrollViewCanNavigate
	HIScrollViewCreate
	HIScrollViewGetScrollBarAutoHide
	HIScrollViewNavigate
	HIScrollViewSetScrollBarAutoHide
	HISearchFieldChangeAttributes
	HISearchFieldCopyDescriptiveText
	HISearchFieldCreate
	HISearchFieldGetAttributes
	HISearchFieldGetSearchMenu
	HISearchFieldSetDescriptiveText
	HISearchFieldSetSearchMenu
	HISegmentedViewChangeSegmentAttributes
	HISegmentedViewCopySegmentImage
	HISegmentedViewCopySegmentLabel
	HISegmentedViewCreate
	HISegmentedViewGetSegmentAttributes
	HISegmentedViewGetSegmentBehavior
	HISegmentedViewGetSegmentCommand
	HISegmentedViewGetSegmentContentWidth
	HISegmentedViewGetSegmentCount
	HISegmentedViewGetSegmentImageContentType
	HISegmentedViewGetSegmentValue
	HISegmentedViewIsSegmentEnabled
	HISegmentedViewSetSegmentBehavior
	HISegmentedViewSetSegmentCommand
	HISegmentedViewSetSegmentContentWidth
	HISegmentedViewSetSegmentCount
	HISegmentedViewSetSegmentEnabled
	HISegmentedViewSetSegmentImage
	HISegmentedViewSetSegmentLabel
	HISegmentedViewSetSegmentValue
	HIViewAddSubview
	HIViewAdvanceFocus
	HIViewApplyLayout
	HIViewChangeAttributes
	HIViewChangeFeatures
	HIViewChangeTrackingArea
	HIViewClick
	HIViewConvertPoint
	HIViewConvertRect
	HIViewConvertRegion
	HIViewCopyShape
	HIViewCopyText
	HIViewCountSubviews
	HIViewCreateOffscreenImage
	HIViewDisposeTrackingArea
	HIViewDrawCGImage
	HIViewFindByID
	HIViewFlashDirtyArea
	HIViewGetAttributes
	HIViewGetBounds
	HIViewGetCommandID
	HIViewGetEventTarget
	HIViewGetFeatures
	HIViewGetFirstSubview
	HIViewGetFocusPart
	HIViewGetFrame
	HIViewGetID
	HIViewGetIndexedSubview
	HIViewGetKind
	HIViewGetLastSubview
	HIViewGetLayoutInfo
	HIViewGetMaximum
	HIViewGetMinimum
	HIViewGetNeedsDisplay
	HIViewGetNextView
	HIViewGetOptimalBounds
	HIViewGetPartHit
	HIViewGetPreviousView
	HIViewGetRoot
	HIViewGetSizeConstraints
	HIViewGetSubviewHit
	HIViewGetSuperview
	HIViewGetTrackingAreaID
	HIViewGetValue
	HIViewGetViewForMouseEvent
	HIViewGetViewSize
	HIViewGetWindow
	HIViewIsActive
	HIViewIsCompositingEnabled
	HIViewIsDrawingEnabled
	HIViewIsEnabled
	HIViewIsLatentlyVisible
	HIViewIsLayoutActive
	HIViewIsLayoutLatentlyActive
	HIViewIsValid
	HIViewIsVisible
	HIViewMoveBy
	HIViewNewTrackingArea
	HIViewPlaceInSuperviewAt
	HIViewRegionChanged
	HIViewRemoveFromSuperview
	HIViewRender
	HIViewReshapeStructure
	HIViewResumeLayout
	HIViewScrollRect
	HIViewSetActivated
	HIViewSetBoundsOrigin
	HIViewSetCommandID
	HIViewSetDrawingEnabled
	HIViewSetEnabled
	HIViewSetFirstSubViewFocus
	HIViewSetFrame
	HIViewSetHilite
	HIViewSetID
	HIViewSetLayoutInfo
	HIViewSetMaximum
	HIViewSetMinimum
	HIViewSetNeedsDisplay
	HIViewSetNeedsDisplayInRect
	HIViewSetNeedsDisplayInRegion
	HIViewSetNeedsDisplayInShape
	HIViewSetNextFocus
	HIViewSetText
	HIViewSetValue
	HIViewSetViewSize
	HIViewSetVisible
	HIViewSetZOrder
	HIViewSimulateClick
	HIViewSubtreeContainsFocus
	HIViewSuspendLayout

	Data Types
	HILayoutInfo
	HIBinding
	HISideBinding
	HIScaling
	HIAxisScale
	HIPositioning
	HIAxisPosition
	HIViewContentInfo
	HIViewID
	HIViewFrameMetrics
	HIViewKind
	HIViewRef
	HIViewTrackingAreaRef
	HIViewTrackingAreaID

	Constants
	Class ID Constants
	Clock Event Constant
	Combo Box Attributes
	Combo Box Data Tags
	Combo Box List Item Event Constants
	Combo Box Part Constants
	Control Kind Constants
	Event Class Constants
	HILayout Binding Kind Constants
	HILayoutInfoVersion Constant
	HIPositionKind Constants
	HIScaleKind Constant
	HIView Attributes
	HIView Feature Constants
	HIView Meta-Parts Constants
	HIView Z-Ordering Constants
	HIViewContentType Constants
	HIViewPartCode Constants
	Mouse Tracking Area Event Constants
	Scroll View Constants
	Scroll View Action Constants
	Scrollable Event Constants
	Scrollable Event Parameter Constants
	Search Field Attribute Constants
	Search Field Data Tags
	Search Field Part Code Constants
	Segment Attribute Constants
	Segment Behavior Constants
	Standard View Constants
	Text Field Event Constants
	Text Field Event Parameter Constants
	Transformation Constants
	kHIViewKindSignatureApple

	Result Codes

	HTML Rendering Library Reference (Not Recommended)
	Overview
	Functions by Task
	Identifying The HTML Rendering Library
	Handling Newly Visited Links
	Handling Previously Visited Links
	Obtaining and Disposing of HRReference Values
	Formatting the Rendering Area
	Intercepting and Redirecting URL’s
	Setting and Updating the Rendering Area
	Setting Graphics and Display Options
	Working With Events
	Navigating HTML Pages
	Obtaining Information About Pages
	Converting URL and FSSpec Data
	Working With Universal Procedure Pointers
	Miscellaneous

	Functions
	DisposeHRNewCFURLUPP
	DisposeHRNewURLUPP
	DisposeHRURLToFSRefUPP
	DisposeHRURLToFSSpecUPP
	DisposeHRWasCFURLVisitedUPP
	DisposeHRWasURLVisitedUPP
	HRActivate
	HRDeactivate
	HRDisposeReference
	HRDraw
	HRDrawInPort
	HRForceQuickdraw
	HRFreeMemory
	HRGetBaseURL
	HRGetBaseURLAsCFString
	HRGetHTMLFile
	HRGetHTMLFileAsFSRef
	HRGetHTMLRenderingLibVersion
	HRGetHTMLURL
	HRGetHTMLURLAsCFURL
	HRGetRenderedImageSize
	HRGetRenderedImageSize32
	HRGetRootURL
	HRGetRootURLAsCFString
	HRGetTitle
	HRGetTitleAsCFString
	HRGoToAnchor
	HRGoToAnchorCFString
	HRGoToCFURL
	HRGoToData
	HRGoToFile
	HRGoToFSRef
	HRGoToPtr
	HRGoToURL
	HRHTMLRenderingLibAvailable
	HRIsHREvent
	HRNewReference
	HRNewReferenceInWindow
	HRRegisterNewCFURLUPP
	HRRegisterNewURLUPP
	HRRegisterURLToFSRefUPP
	HRRegisterURLToFSSpecUPP
	HRRegisterWasCFURLVisitedUPP
	HRRegisterWasURLVisitedUPP
	HRScreenConfigurationChanged
	HRScrollToImageLocation32
	HRScrollToLocation
	HRSetDrawBorder
	HRSetEmbeddingControl
	HRSetGrafPtr
	HRSetGrowboxCutout
	HRSetRenderingRect
	HRSetScrollbarState
	HRSetWindowRef
	HRUnregisterNewCFURLUPP
	HRUnregisterNewURLUPP
	HRUnregisterURLToFSRefUPP
	HRUnregisterURLToFSSpecUPP
	HRUnregisterWasCFURLVisitedUPP
	HRUnregisterWasURLVisitedUPP
	HRUtilCreateFullCFURL
	HRUtilCreateFullURL
	HRUtilGetFSRefFromURL
	HRUtilGetFSSpecFromURL
	HRUtilGetURLFromFSRef
	HRUtilGetURLFromFSSpec
	InvokeHRNewCFURLUPP
	InvokeHRNewURLUPP
	InvokeHRURLToFSRefUPP
	InvokeHRURLToFSSpecUPP
	InvokeHRWasCFURLVisitedUPP
	InvokeHRWasURLVisitedUPP
	NewHRNewCFURLUPP
	NewHRNewURLUPP
	NewHRURLToFSRefUPP
	NewHRURLToFSSpecUPP
	NewHRWasCFURLVisitedUPP
	NewHRWasURLVisitedUPP

	Callbacks
	HRNewCFURLProcPtr
	HRNewURLProcPtr
	HRURLToFSRefProcPtr
	HRURLToFSSpecProcPtr
	HRWasCFURLVisitedProcPtr
	HRWasURLVisitedProcPtr

	Data Types
	HRNewCFURLUPP
	HRNewURLUPP
	HRReference
	HRURLToFSRefUPP
	HRURLToFSSpecUPP
	HRWasCFURLVisitedUPP
	HRWasURLVisitedUPP

	Constants
	Scrollbar State
	Renderer HTML Type
	URL Source Type

	Result Codes

	Multilingual Text Engine Reference
	Overview
	Functions by Task
	Displaying Static Text
	Initializing and Terminating MLTE
	Working With MLTE Objects
	Responding to Events
	Working With HITextView
	Editing Data
	Managing Fonts and Font Menus
	Managing Layout and Formatting
	Managing Selections
	Controlling the Frame and Window
	Searching
	Managing Files
	Printing
	Supporting Drag and Drop
	Keeping Track of User Actions
	Managing Spell Checking As You Type
	Working with the Contextual Menu
	Working With UPP Pointers for MLTE Callback Functions
	Not Recommended
	Unsupported Functions

	Functions
	DisposeTXNActionKeyMapperUPP
	DisposeTXNActionNameMapperUPP
	DisposeTXNContextualMenuSetupUPP
	DisposeTXNFindUPP
	DisposeTXNScrollInfoUPP
	HITextViewCopyBackgroundColor
	HITextViewCreate
	HITextViewGetTXNObject
	HITextViewSetBackgroundColor
	InvokeTXNActionKeyMapperUPP
	InvokeTXNActionNameMapperUPP
	InvokeTXNContextualMenuSetupUPP
	InvokeTXNFindUPP
	InvokeTXNScrollInfoUPP
	NewTXNActionKeyMapperUPP
	NewTXNActionNameMapperUPP
	NewTXNContextualMenuSetupUPP
	NewTXNFindUPP
	NewTXNScrollInfoUPP
	TXNActivate
	TXNAdjustCursor
	TXNAttachObjectToWindow
	TXNAttachObjectToWindowRef
	TXNBeginActionGroup
	TXNCanRedo
	TXNCanRedoAction
	TXNCanUndo
	TXNCanUndoAction
	TXNClear
	TXNClearActionChangeCount
	TXNClearCountForActionType
	TXNClick
	TXNConvertFromPublicScrap
	TXNConvertToPublicScrap
	TXNCopy
	TXNCopyTypeIdentifiersForRange
	TXNCountRunsInRange
	TXNCreateObject
	TXNCut
	TXNDataSize
	TXNDeleteObject
	TXNDisposeFontMenuObject
	TXNDoFontMenuSelection
	TXNDragReceiver
	TXNDragTracker
	TXNDraw
	TXNDrawCFStringTextBox
	TXNDrawObject
	TXNDrawUnicodeTextBox
	TXNEchoMode
	TXNEndActionGroup
	TXNFind
	TXNFlattenObjectToCFDataRef
	TXNFocus
	TXNForceUpdate
	TXNGetAccessibilityHIObject
	TXNGetActionChangeCount
	TXNGetChangeCount
	TXNGetCommandEventSupport
	TXNGetContinuousTypeAttributes
	TXNGetCountForActionType
	TXNGetData
	TXNGetDataEncoded
	TXNGetEventTarget
	TXNGetFontDefaults
	TXNGetFontMenuHandle
	TXNGetHIRect
	TXNGetIndexedRunInfoFromRange
	TXNGetLineCount
	TXNGetLineMetrics
	TXNGetRectBounds
	TXNGetSelection
	TXNGetSleepTicks
	TXNGetSpellCheckAsYouType
	TXNGetTXNObjectControls
	TXNGetViewRect
	TXNGetWindowRef
	TXNGrowWindow
	TXNHIPointToOffset
	TXNIdle
	TXNInitTextension
	TXNIsObjectAttachedToSpecificWindow
	TXNIsObjectAttachedToWindow
	TXNIsScrapPastable
	TXNIsSelectionEmpty
	TXNKeyDown
	TXNNewFontMenuObject
	TXNNewObject
	TXNOffsetToHIPoint
	TXNOffsetToPoint
	TXNPageSetup
	TXNPaste
	TXNPointToOffset
	TXNPrepareFontMenu
	TXNPrint
	TXNReadFromCFURL
	TXNRecalcTextLayout
	TXNRedo
	TXNRegisterScrollInfoProc
	TXNResizeFrame
	TXNRevert
	TXNSave
	TXNScroll
	TXNSelectAll
	TXNSetActionNameMapper
	TXNSetBackground
	TXNSetCommandEventSupport
	TXNSetContextualMenuSetup
	TXNSetData
	TXNSetDataFromCFURLRef
	TXNSetDataFromFile
	TXNSetEventTarget
	TXNSetFontDefaults
	TXNSetFrameBounds
	TXNSetHIRectBounds
	TXNSetRectBounds
	TXNSetScrollbarState
	TXNSetSelection
	TXNSetSpellCheckAsYouType
	TXNSetTXNObjectControls
	TXNSetTypeAttributes
	TXNSetViewRect
	TXNShowSelection
	TXNTerminateTextension
	TXNTSMCheck
	TXNUndo
	TXNUpdate
	TXNVersionInformation
	TXNWriteRangeToCFURL
	TXNZoomWindow

	Callbacks
	TXNActionKeyMapperProcPtr
	TXNActionNameMapperProcPtr
	TXNContextualMenuSetupProcPtr
	TXNFindProcPtr
	TXNScrollInfoProcPtr

	Data Types
	TXNActionNameMapperUPP
	TXNActionKeyMapperUPP
	TXNATSUIFeatures
	TXNATSUIVariations
	TXNAttributeData
	TXNBackground
	TXNBackgroundData
	TXNCarbonEventInfo
	TXNContextualMenuSetupUPP
	TXNControlData
	TXNErrors
	TXNFindUPP
	TXNFontMenuObject
	TXNFrameID
	TXNLongRect
	TXNMacOSPreferredFontDescription
	TXNMargins
	TXNMatchTextRecord
	TXNObject
	TXNObjectRefCon
	TXNScrollInfoUPP
	TXNTab
	TXNTextBoxOptionsData
	TXNTypeAttributes
	TXNVersionValue
	TXTNTag

	Constants
	Action Constants
	Action Count Constants
	Action Count Bits
	Action Count Masks
	Action Types
	Apple Event Handler Bits
	Apple Event Handler Masks
	ATSUI Feature Bits
	ATSUI Feature Masks
	Automatic Indentation Settings
	Automatic Scrolling Behavior
	Carbon Event Dictionary Keys
	Clearance Settings
	Command Event Support Options
	Continuous Style Information Bits
	Continuous Style Information Masks
	Data Offsets
	Data Option Key Value Constants
	Data Option Key Constants
	Default Font Name
	Default Font Size
	Default Font Style
	Document Attribute Keys
	Drag and Drop Constants
	Draw Items Bits
	Draw Items Masks
	Font Defaults
	Font Run Attributes
	Font Run Attribute Sizes
	Formatting and Privileges Settings
	Frame Option Bits
	Frame Option Masks
	HIObject Class ID
	HIObject Control Kind
	Initialization Option Bits
	Initialization Option Masks
	Inline State Settings
	Justification Settings
	Keyboard Synchronization Settings
	Layout and Draw Constants
	Line Direction Settings
	Line Wrapping Settings
	Read and Write Privileges Settings
	Rectangle Keys
	Scroll Bar Orientation
	Scroll Bar States
	Scroll Units
	Search Criteria Bits
	Search Criteria Masks
	Selection Display Settings
	Selection State Settings
	Style Resource Types
	Supported Data Types
	Supported File Types
	Supported Frame Types
	Tab Types
	Text Background Types
	Text Box Options Bits
	Text Box Options Masks
	Text Encoding Preferences

	Result Codes

	Open Scripting Architecture Reference
	Overview
	Functions by Task
	Saving and Loading Script Data
	Executing and Disposing of Scripts
	Setting and Getting Script Information
	Manipulating the Active Function
	Compiling Scripts
	Getting Source Data
	Coercing Script Values
	Manipulating the Create and Send Functions
	Recording Scripts
	Executing Scripts in One Step
	Copying a Scripting Dictionary as a Scripting Definition File
	Manipulating Dialects
	Using Script Contexts to Handle Apple Events
	Initializing AppleScript
	Getting and Setting Styles for Source Data
	Getting and Setting the Default Scripting Component
	Using Component-Specific Routines
	Manipulating Trailers for Generic Storage Descriptor Records
	Miscellaneous
	Creating, Invoking and Disposing Universal Procedure Pointers
	Deprecated Functions

	Functions
	ASCopySourceAttributes
	ASGetAppTerminology
	ASGetHandler
	ASGetProperty
	ASGetSourceStyleNames
	ASGetSourceStyles
	ASInit
	ASSetHandler
	ASSetProperty
	ASSetSourceAttributes
	ASSetSourceStyles
	DisposeOSAActiveUPP
	DisposeOSACreateAppleEventUPP
	DisposeOSASendUPP
	InvokeOSAActiveUPP
	InvokeOSACreateAppleEventUPP
	InvokeOSASendUPP
	NewOSAActiveUPP
	NewOSACreateAppleEventUPP
	NewOSASendUPP
	OSAAddStorageType
	OSAAvailableDialectCodeList
	OSAAvailableDialects
	OSACoerceFromDesc
	OSACoerceToDesc
	OSACompile
	OSACompileExecute
	OSACopyDisplayString
	OSACopyID
	OSACopyScriptingDefinition
	OSACopySourceString
	OSADebuggerCreateSession
	OSADebuggerDisposeCallFrame
	OSADebuggerDisposeSession
	OSADebuggerGetBreakpoint
	OSADebuggerGetCallFrameState
	OSADebuggerGetCurrentCallFrame
	OSADebuggerGetDefaultBreakpoint
	OSADebuggerGetPreviousCallFrame
	OSADebuggerGetSessionState
	OSADebuggerGetStatementRanges
	OSADebuggerGetVariable
	OSADebuggerSessionStep
	OSADebuggerSetBreakpoint
	OSADebuggerSetVariable
	OSADisplay
	OSADispose
	OSADoEvent
	OSADoScript
	OSADoScriptFile
	OSAExecute
	OSAExecuteEvent
	OSAGenericToRealID
	OSAGetActiveProc
	OSAGetAppTerminology
	OSAGetCreateProc
	OSAGetCurrentDialect
	OSAGetDefaultScriptingComponent
	OSAGetDialectInfo
	OSAGetHandler
	OSAGetHandlerNames
	OSAGetProperty
	OSAGetPropertyNames
	OSAGetResumeDispatchProc
	OSAGetScriptInfo
	OSAGetScriptingComponent
	OSAGetScriptingComponentFromStored
	OSAGetSendProc
	OSAGetSource
	OSAGetStorageType
	OSAGetSysTerminology
	OSALoad
	OSALoadExecute
	OSALoadExecuteFile
	OSALoadFile
	OSAMakeContext
	OSARealToGenericID
	OSARemoveStorageType
	OSAScriptError
	OSAScriptingComponentName
	OSASetActiveProc
	OSASetCreateProc
	OSASetCurrentDialect
	OSASetDefaultScriptingComponent
	OSASetDefaultTarget
	OSASetHandler
	OSASetProperty
	OSASetResumeDispatchProc
	OSASetScriptInfo
	OSASetSendProc
	OSAStartRecording
	OSAStopRecording
	OSAStore
	OSAStoreFile

	Callbacks
	OSAActiveProcPtr
	OSACreateAppleEventProcPtr
	OSASendProcPtr

	Data Types
	OSAID
	GenericID
	OSAError
	ScriptingComponentSelector
	StatementRange
	OSAActiveUPP
	OSACreateAppleEventUPP
	OSASendUPP
	OSADebugCallFrameRef
	OSADebugSessionRef

	Constants
	cClosure
	cCoercion
	cHandleBreakpoint
	Component Flags
	Considerations Flags
	Considerations Bit Masks
	cString
	Current Dialect Constants
	Date and Time Constants
	Default Initialization Values
	Dialect Descriptor Constants
	Generic Scripting Component Selectors
	Global Properties
	kASAdd
	kASAnd
	kASErrorEventCode
	kASStartLogEvent
	kDialectBundleResType
	keyAETarget
	keyAppHandledCoercion
	keyASPrepositionAt
	keyASPrepositionOver
	keyOSASourceEnd
	keyOSASourceStart
	keyProcedureName
	keyProgramState
	kGenericComponentVersion
	kOSAComponentType
	kOSAGenericScriptingComponentSubtype
	kOSAModeDontDefine
	kOSANullScript
	kOSARecordedText
	kOSAScriptResourceType
	kOSASelectComponentSpecificStart
	kOSASelectCopyScript
	kOSASuite
	Mode Flags
	Null Mode Flags
	OSADebugStepKind
	OSAProgramState
	OSAScriptError Selectors
	Recording Constants
	Resume Dispatch Function Constants
	Script Document File Type
	Script Information Selectors
	Source Constants
	Source Style Constants
	typeAppleScript
	typeOSAErrorRange
	typeOSAGenericStorage
	typeStatementRange
	Weekdays

	Result Codes

	Printing Plug-in Interfaces Reference
	Overview
	Functions
	PMCreateLocalizedPaperSizeCFString
	PMCreatePaperSizeCFString

	Callbacks by Task
	Printing Plug-in Callbacks
	Printing Dialog Extension Callbacks
	Printer Module Callbacks
	Printer Browser Module Callbacks
	I/O Module Callbacks

	Callbacks
	GetConnInfoProcPtr
	PMBeginJobProcPtr
	PMCancelJobProcPtr
	PMCOMAddRefProcPtr
	PMCOMQueryInterfaceProcPtr
	PMCOMReleaseProcPtr
	PMCreatePrinterBrowserModuleInfoProcPtr
	PMCreatePrinterTicketsProcPtr
	PMCreatePrintingDialogExtensionsPathsProcPtr
	PMEndJobProcPtr
	PMImageAccessProcPtr
	PMInitializeProcPtr
	PMIOCloseProcPtr
	PMIOGetAttributeProcPtr
	PMIOModuleCloseProcPtr
	PMIOModuleGetAttributeProcPtr
	PMIOModuleGetConnectionInfoProcPtr
	PMIOModuleInitializeProcPtr
	PMIOModuleOpenProcPtr
	PMIOModuleReadProcPtr
	PMIOModuleSetAttributeProcPtr
	PMIOModuleStatusProcPtr
	PMIOModuleTerminateProcPtr
	PMIOModuleWriteProcPtr
	PMIOOpenProcPtr
	PMIOReadProcPtr
	PMIOSetAttributeProcPtr
	PMIOStatusProcPtr
	PMIOWriteProcPtr
	PMJobStreamGetNextBandProcPtr
	PMJobStreamGetPosProcPtr
	PMJobStreamOpenProcPtr
	PMJobStreamReadWriteProcPtr
	PMJobStreamSetPosProcPtr
	PMNotificationProcPtr
	PMPDECloseProcPtr
	PMPDEGetSummaryTextProcPtr
	PMPDEInitializeProcPtr
	PMPDEOpenProcPtr
	PMPDEPrologueProcPtr
	PMPDESyncProcPtr
	PMPDETerminateProcPtr
	PMPluginGetAPIVersionProcPtr
	PMPluginReleaseProcPtr
	PMPluginRetainProcPtr
	PMPrBrowserAPIVersionProcPtr
	PMPrBrowserGetLookupSpecProcPtr
	PMPrBrowserGetSelectedPrintersProcPtr
	PMPrBrowserInitializeProcPtr
	PMPrBrowserPrologueProcPtr
	PMPrBrowserResizeProcPtr
	PMPrBrowserSelectionStatusProcPtr
	PMPrBrowserSyncProcPtr
	PMPrBrowserSyncRequestProcPtr
	PMPrBrowserTerminateProcPtr
	PMPrBrowserWorksetPrintersProcPtr
	PMPrintJobProcPtr
	PMPrintPageProcPtr
	PMTerminateProcPtr

	Data Types
	Printing Plug-in Data Types
	PMPlugInHeader
	PMPlugInHeaderInterface
	PMPlugInAPIVersion

	Printing Dialog Extension Data Types
	PlugInIntfVTable
	PlugInIntf
	PMPDEContext
	PMPDEFlags
	PMPDERef

	Printer Module Data Types
	PMProcs
	PMInterface
	PMInterfaceRef
	PMIOProcs
	PMJobStreamProcs
	PMContext
	PMDrawingCtx
	PMImageRef

	Printer Browser Module Data Types
	PMInterfacePrBrowser
	PMInterfacePrBrowserPtr
	PMPrBrowserCallbacks
	PMPrBrowserCallbacksPtr
	PMPrBrowserContext
	PMPrBrowserFlags
	PMPrBrowserRef
	PMInterfaceAPIVersion
	PMInterfaceAPIVersionPtr

	I/O Module Data Types
	IOMContext
	IOMInterface
	IOMInterfaceRef
	IOMProcs

	Constants
	PDE Feature Flags
	PDE Interface Identifier
	PDE Interface Version
	PDE Pane Kind Identifiers
	PDE Ticket Identifiers
	PDE Type Identifiers
	I/O Module Interface Version
	Printer Module Interface Version
	Printer Module Status Codes
	Other Printer Module Constants
	Print Center Feature Flags
	Print Center Signatures

	Result Codes

	TextEdit Reference (Not Recommended)
	Overview
	Functions by Task
	Activating and Deactivating an Edit Structure
	Using Additional TextEdit Features
	Checking, Setting, and Replacing Styles
	Customizing TextEdit
	Displaying and Scrolling Text
	Initializing TextEdit, Creating an Edit Structure, and Disposing of an Edit Structure
	Managing the TextEdit Private Scrap
	Modifying the Text of an Edit Structure
	Setting and Getting an Edit Structure’s Text and Character Attribute Information
	Setting the Caret and Selection Range
	Using Byte Offsets and Corresponding Points
	Handling TSM Dialogs
	Working With UPPs for TextEdit Callback Functions

	Functions
	DisposeCaretHookUPP
	DisposeDrawHookUPP
	DisposeEOLHookUPP
	DisposeHighHookUPP
	DisposeHitTestHookUPP
	DisposeNWidthHookUPP
	DisposeTEClickLoopUPP
	DisposeTEDoTextUPP
	DisposeTEFindWordUPP
	DisposeTERecalcUPP
	DisposeTextWidthHookUPP
	DisposeTSMTEPostUpdateUPP
	DisposeTSMTEPreUpdateUPP
	DisposeWidthHookUPP
	GetTSMTEDialogDocumentID
	GetTSMTEDialogTSMTERecHandle
	InvokeCaretHookUPP
	InvokeDrawHookUPP
	InvokeEOLHookUPP
	InvokeHighHookUPP
	InvokeHitTestHookUPP
	InvokeNWidthHookUPP
	InvokeTEClickLoopUPP
	InvokeTEDoTextUPP
	InvokeTEFindWordUPP
	InvokeTERecalcUPP
	InvokeTextWidthHookUPP
	InvokeTSMTEPostUpdateUPP
	InvokeTSMTEPreUpdateUPP
	InvokeWidthHookUPP
	IsTSMTEDialog
	NewCaretHookUPP
	NewDrawHookUPP
	NewEOLHookUPP
	NewHighHookUPP
	NewHitTestHookUPP
	NewNWidthHookUPP
	NewTEClickLoopUPP
	NewTEDoTextUPP
	NewTEFindWordUPP
	NewTERecalcUPP
	NewTextWidthHookUPP
	NewTSMTEPostUpdateUPP
	NewTSMTEPreUpdateUPP
	NewWidthHookUPP
	SetTSMTEDialogDocumentID
	SetTSMTEDialogTSMTERecHandle
	TEActivate
	TEAutoView
	TECalText
	TEClick
	TEContinuousStyle
	TECopy
	TECustomHook
	TECut
	TEDeactivate
	TEDelete
	TEDispose
	TEFeatureFlag
	TEFromScrap
	TEGetDoTextHook
	TEGetFindWordHook
	TEGetHeight
	TEGetHiliteRgn
	TEGetOffset
	TEGetPoint
	TEGetRecalcHook
	TEGetScrapHandle
	TEGetScrapLength
	TEGetStyle
	TEGetStyleHandle
	TEGetStyleScrapHandle
	TEGetText
	TEIdle
	TEInsert
	TEKey
	TENew
	TENumStyles
	TEPaste
	TEPinScroll
	TEReplaceStyle
	TEScrapHandle
	TEScroll
	TESelView
	TESetAlignment
	TESetClickLoop
	TESetDoTextHook
	TESetFindWordHook
	TESetRecalcHook
	TESetScrapHandle
	TESetScrapLength
	TESetSelect
	TESetStyle
	TESetStyleHandle
	TESetText
	TEStyleInsert
	TEStyleNew
	TEStylePaste
	TETextBox
	TEToScrap
	TEUpdate
	TEUseStyleScrap

	Callbacks
	CaretHookProcPtr
	DrawHookProcPtr
	EOLHookProcPtr
	HighHookProcPtr
	HitTestHookProcPtr
	NWidthHookProcPtr
	TEClickLoopProcPtr
	TEDoTextProcPtr
	TEFindWordProcPtr
	TERecalcProcPtr
	TextWidthHookProcPtr
	TSMTEPostUpdateProcPtr
	TSMTEPreUpdateProcPtr
	WidthHookProcPtr

	Data Types
	CaretHookUPP
	Chars
	CharsPtr
	CharsHandle
	DrawHookUPP
	EOLHookUPP
	HighHookUPP
	HitTestHookUPP
	LHHandle
	LHElement
	LHTable
	NullStHandle
	NullStRec
	NWidthHookUPP
	ScrpSTElement
	ScrpSTTable
	STElement
	STHandle
	StScrpHandle
	StScrpRec
	StyleRun
	TEClickLoopUPP
	TEDoTextUPP
	TEFindWordUPP
	TEHandle
	TEIntHook
	TEPtr
	TERec
	TERecalcUPP
	TEStyleRec
	TEStyleTable
	TextStyle
	TextWidthHookUPP
	TSMDialogPeek
	TSMDialogPtr
	TSMDialogRecord
	TSMTEPostUpdateUPP
	TSMTEPreUpdateUPP
	TSMTERec
	TSMTERecHandle
	WidthHookUPP

	Constants
	Auto Idling Flag
	Auto Scroll Constant
	Do Text Selectors
	Find Word Identification Constants
	Hook Constants
	Inline Input Flag
	Signature and Interface Constants
	Style Mode Constants
	Text Alignment Constants
	Text Custom Hook Constants
	Text Feature Action Constants
	Text Feature Constants
	Text Styling Constants

	Result Codes

	Revision History
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

