
NSPersistentDocument Core Data Tutorial for
Mac OS X v10.4.
(Not Recommended)

Cocoa > Data Management

2009-02-04

Apple Inc.
© 2005, 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Logic, Mac, Mac
OS, Objective-C, and Xcode are trademarks of
Apple Inc., registered in the United States and
other countries.

Spotlight is a trademark of Apple Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to NSPersistentDocument Core Data Tutorial for Mac OS X v10.4
9

Who Should Read This Document 9
Organization of This Document 9
See Also 10

Chapter 1 Overview of the Tutorial 11

Tutorial Steps 12
Create the Project and User Interface 12
Adding a Department Object 12
Copy and Paste 12
Customizing Property Names and Alert Panels 12
Metadata Support 12

NSPersistentDocument Limitations 12

Chapter 2 Creating the Project, Model, and Interface 15

Create a New Project 15
Create the Data Model 16
Create the User Interface 19
Set the File Extension and Type 21
Build and Test 22
What Happened? 22

Chapter 3 Creating a Custom Class 23

The Employee Class 23
Support for the Derived Value 24

Steps 24
Build and Test 24

Initializing the Employee ID 25
Implement awakeFromInsert 25
Build and Test 25

What Happened? 25
Code Listing for the Employee Class 26
Optional Extra—Sorting the Managers Popup 27

Chapter 4 Adding a Department Object 29

Creating the Department 29

3
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

Steps 29
Complete Code Listing 30

Fetching the Department 31
Steps 31
Complete Code Listing 32

Update the User Interface 33
Build and Test 35

Supporting Document Revert 35
Adopting the Mediator Pattern 35
What Happened? 36

Chapter 5 Copy and Paste 37

Custom Employee Logic 37
Copy 38

Steps 38
Complete Code Listing 39
Build and Test 40

Paste 40
Steps 40
Complete Code Listing 41
Build and Test 42

Cut 42
Steps 42
Complete Code Listing 43
Build and Test 43

Chapter 6 Localizing and Customizing Model Property Names and Error Messages 45

Customizing and Localizing Model Names 45
Steps 45
Build and Test 46

Customizing the Document Alert Panel 46
Steps 46
Complete Code Listing 47
Build and Test 49

What Happened? 49

Chapter 7 Document Metadata 51

Setting Metadata for a Store 51
Steps 51
Complete Code Listing 52

Set the Metadata for a New Store 52
Steps 52
Complete Code Listing 53

4
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Set the Metadata for an Existing Store 54
Steps 54
Complete Code Listing 54

Build and Test 55
What Happened? 55
Writing a Spotlight Importer for Core Data 55

Chapter 8 A Sheet for Creating a New Employee 57

Design Considerations 58
Implementation Overview 58
Declaring and Setting up NewObjectSheetController 59

The header file 59
Update the Document nib File 59
Create and Configure the Sheet Controller nib File 60

Implement the NewObjectSheetController Class 61
Managed Object Contexts 61
Setting up the Sheet 62
Responding to Sheet Dismissal 63
Tidying Up 64

Supporting Undo 64
Accessing the undo manager 65
Validating user interface items 65
Workaround 65

What Happened? 66

Document Revision History 67

5
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

6
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 1 Overview of the Tutorial 11

Figure 1-1 Final User Interface 11

Chapter 2 Creating the Project, Model, and Interface 15

Figure 2-1 Select the Core Data Document-based Application project type 16
Figure 2-2 Data modeling tool 17
Figure 2-3 Diagram for completed data model 18
Figure 2-4 Default automatic user interface 20
Figure 2-5 Properties pane of the Target Info window 21
Table 2-1 Attributes for the Employee entity 18
Table 2-2 Relationships for the Employee entity 18
Table 2-3 Attributes for the Department entity 18
Table 2-4 Relationships for the Department entity 18

Chapter 3 Creating a Custom Class 23

Listing 3-1 Implementation of the Employee class 26

Chapter 4 Adding a Department Object 29

Figure 4-1 User interface with department 34
Listing 4-1 The complete listing for initWithType:error: 30
Listing 4-2 The complete listing for the department method 33

Chapter 5 Copy and Paste 37

Listing 5-1 Complete listing of the copy: method 39
Listing 5-2 Complete listing of the paste: method 41
Listing 5-3 Complete listing of the cut: method 43

Chapter 6 Localizing and Customizing Model Property Names and Error Messages 45

Listing 6-1 Complete listing of the willPresentError: method 48

Chapter 7 Document Metadata 51

Listing 7-1 Complete listing of the setMetadataForStoreAtURL: method 52

7
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

Listing 7-2 Complete listing of the
configurePersistentStoreCoordinatorForURL:ofType:error: method
53

Listing 7-3 Complete listing of the
writeToURL:ofType:forSaveOperation:originalContentsURL:error:
method 54

Chapter 8 A Sheet for Creating a New Employee 57

Figure 8-1 Creating a new employee using a sheet 57
Listing 8-1 Managed object context accessor methods 62
Listing 8-2 Action methods for the Add and Cancel buttons. 63
Listing 8-3 Tidying up methods 64

8
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Important: This tutorial uses tools and techniques for Mac OS X v10.4. If you are targeting Mac OS X v10.5
or later, see instead NSPersistentDocument Core Data Tutorial.

This document will not be modified in the future.

The task goal of this tutorial is to create a document-based application that allows a user to display and
modify information about a department, employees in the department, and managerial relationships between
the employees.

This tutorial takes you through the steps of building a simple Core Data–based application using
NSPersistentDocument and Cocoa bindings. NSPersistentDocument is a subclass of NSDocument that
integrates with the Core Data framework. You will find this tutorial useful if you’re using the Core Data
framework to create a document-based application.

Who Should Read This Document

You should read this document to gain an understanding of how to create a Core Data document-based
application using NSPersistentDocument and Cocoa bindings. Among other concepts, you will learn how
to create the project, how to customize the creation of a document, and how to localize error messages.

Important: To complete this tutorial, you should already be familiar with basic Cocoa development practices
and with Cocoa bindings. This document does not repeat fundamental Cocoa programming concepts and
does not provide explicit instructions for common operations (such as using Interface Builder, including
establishing bindings between user interface objects and controllers). You should, for example, ensure that
you understand the material presented in Cocoa Application Tutorial Using Bindings.

Organization of This Document

“Overview of the Tutorial” (page 11) describes the application you will create, and the task constraints.

“Creating the Project, Model, and Interface” (page 15) describes how you create a Core Data document-based
project in Xcode, and how you create the data model and how you can use it to automatically create a default
user interface.

“Creating a Custom Class” (page 23) describes how to implement a custom class for an entity.

“Adding a Department Object” (page 29) describes how you add a Department object to the document, and
configure the user interface appropriately.

“Copy and Paste” (page 37) describes one way you can support copy and paste in a Core Data application.

Who Should Read This Document 9
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to NSPersistentDocument Core
Data Tutorial for Mac OS X v10.4

“Localizing and Customizing Model Property Names and Error Messages” (page 45) describes how you can
localize property names and customize alert panels.

“Document Metadata” (page 51) describes how you can add metadata to your document that Spotlight can
extract—it also describes how you write the Spotlight importer.

“A Sheet for Creating a New Employee” (page 57) describes how you can use a sheet for data entry.

See Also

CoreData ProgrammingGuide describes functionality provided by the Core Data framework from a high-level
overview to in-depth descriptions.

Core Data Utility Tutorial takes you through the steps of building a command-line utility that uses Core Data.
You are strongly encouraged to complete the low-level tutorial before following this tutorial.

Note: The source code for the application described in this tutorial is available here: Departments and
Employees.

10 See Also
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to NSPersistentDocument Core Data Tutorial for Mac OS X v10.4

The task goal of this tutorial is to create a document-based application that allows a user to display and
modify information about a department, employees in the department, and managerial relationships between
the employees. Each document (file) contains information about a single department and the employees
associated with it. The application allows the user to save a document as a file and then reopen the file, and
supports undo and redo.

The final user interface may look like that shown in Figure 1-1.

Figure 1-1 Final User Interface

Note that the emphasis in this tutorial is on functionality. Little attempt is made to refine the user interface
as would be appropriate in a shipping application. Moreover, the problem domain is chosen for consistency
with other documentation and for clarity rather than for realism.

11
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of the Tutorial

Tutorial Steps

This document is intended to give a high-level view of creating a functional application with little code.
Although some explanation is given of what happens behind the scenes, this document does not give an
in-depth analysis of the Core Data infrastructure.

Create the Project and User Interface

The first step illustrates the creation of a Core Data document-based project in Xcode. The major initial
requirement is to create the data model, which you can use to automatically create a default user interface.
Between Core Data and Cocoa bindings, this first step actually creates a fully functional application that
meets most of the task goals without the need to write any code!

Adding a Department Object

The first step deals only with employees. The next step is to add a Department object to the document and
configure the user interface appropriately. One issue that arises here is ensuring the uniqueness of the
department. You want to ensure that only one department is created per document.

Copy and Paste

This part of the tutorial illustrates one approach to supporting copy and paste in a Core Data application.

Customizing Property Names and Alert Panels

NSDocument provides an API to allow alert panels to be customized. Since Core Data provides such a rich
infrastructure for specifying constraints on data values and error checking, it is sometimes the case that the
user generates more than one error in a single operation. It is often useful, therefore, to customize the error
presented to the user to make it as informative as possible.

Metadata Support

Spotlight provides users with a means of searching for files quickly and easily. To support this, you need to
associate metadata with your documents. Core Data makes it easy to do this, and to write the necessary
importer.

NSPersistentDocument Limitations

Although this tutorial does not aim to cover all the possible features you might implement in an application,
some functionality is omitted due to limitations in NSPersistentDocument itself. Because of the way Core
Data operates, it is not possible to easily support autosaving in an NSPersistentDocument-based application.

12 Tutorial Steps
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of the Tutorial

Core Data cannot save to a store and maintain the same changed state in a managed object context, all while
keeping an unsaved stack around as the current document. For similar reasons, NSPersistentDocument
does not support Save To operations.

NSPersistentDocument Limitations 13
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of the Tutorial

14 NSPersistentDocument Limitations
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Overview of the Tutorial

This part of the tutorial guides you through building the Department and Employees application and in the
process teaches you the steps essential to building a Cocoa application using Core Data and
NSPersistentDocument.

Create a New Project

Core Data is integrated into the Cocoa framework, so any Cocoa application can use it. The Employees and
Departments application you’ll build is a Core Data document-based application. Follow these steps to create
the initial project:

1. Choose New Project from the File menu.

2. Select Core Data Document-based Application in Xcode’s project Assistant window, and click the Next
button (as shown in Figure 2-1).

3. Enter the project name (for example, “DepartmentAndEmployees”) and a destination folder for the
project.

Create a New Project 15
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Project, Model, and Interface

Figure 2-1 Select the Core Data Document-based Application project type

Create the Data Model

It’s common to begin developing a Cocoa application by prototyping the application’s user interface. Using
Core Data, however, the first step in application development is typically to create a data model (or schema)
that describes the entities that you will use in your application. Core Data uses the model to help you build
more full-featured prototypes even than is possible using Cocoa and Cocoa bindings.

Xcode has a data modeling tool that you use to define the schema for your application, as shown in Figure
2-2. The tool itself is described in Xcode Tools for Core Data. If you do not know how to use the tool, consult
Creating a Managed Object Model with Xcode, which describes how to create a data model.

16 Create the Data Model
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Project, Model, and Interface

Figure 2-2 Data modeling tool

After creating the project, open MyDocument.xcdatamodel in the modeling tool by selecting its icon in
the project Models folder. Use the tool to define two entities, Employee and Department as specified in Table
2-1 through Table 2-4. The diagram for the finished model should look like that shown in Figure 2-3.

Items of note and not covered in the tables:

 ■ The class for both entities is NSManagedObject; neither entity is abstract.

 ■ None of the properties is transient.

 ■ Employee has a reciprocal relationship—a relationship to itself—that defines the manager-reports
relationship.

 ■ For this part of the tutorial, the Employee’s department relationship is optional.

 ■ The delete rule for all relationships is Nullify.

 ■ The minimum value for the Employee salary attribute is 0.

Create the Data Model 17
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Project, Model, and Interface

Figure 2-3 Diagram for completed data model

Table 2-1 Attributes for the Employee entity

Default valueOptionalTypeName

FirstNOStringfirstName

LastNOStringlastName

0YESint 32employeeID

0YESDecimalsalary

Table 2-2 Relationships for the Employee entity

InverseOptionalTo-manyDestinationName

employeesYESNODepartmentdepartment

directReportsYESNOEmployeemanager

managerYESYESEmployeedirectReports

Table 2-3 Attributes for the Department entity

Default valueOptionalTypeName

DepartmentNOStringname

0YESDecimalbudget

Table 2-4 Relationships for the Department entity

InverseOptionalTo-manyDestinationName

departmentYESYESEmployeeemployees

18 Create the Data Model
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Project, Model, and Interface

Note that the relationships are all modeled in both directions. It is important that you do this to ensure the
integrity of the object graph. Core Data keeps the relationships synchronized.

Create the User Interface

Now that the data model is complete, you can create the user interface. In fact, you can use the model to
create a user interface quickly. This provides a useful strategy for testing a model—you can create an
application very quickly with little effort and use it to exercise the model.

Open MyDocument.nib in Interface Builder. First remove the “Document Contents” text field from the
document window, then follow these steps:

1. Ensure that you can see the user interface window.

2. In Xcode, click the Employee entity in the graphic view of the data modeling tool.

3. Option-drag the Employee entity node to the user interface window so that a cursor appears showing
a “+” symbol. (You must make sure that Xcode is the foreground application when you start to do
this—Option-clicking Xcode while it is not foreground makes it foreground and hides all other applications,
including Interface Builder.)

4. When you release the mouse, you should be presented with an alert asking if you want to add an interface
for one or many objects. Choose Many.

Create the User Interface 19
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Project, Model, and Interface

5. Interface Builder automatically creates a user interface, as illustrated in Figure 2-4. The interface contains
a table view, search field, text fields for individual attributes, pop-up menu for Department and Manager,
and buttons to add, remove, and fetch employees. Array controllers are also added to the nib file to
manage two arrays of employees and an array of departments.

Figure 2-4 Default automatic user interface

6. Interface Builder actually does more than is required for this tutorial. Delete the Department popup
menu and the Departments array controller; also delete the Department and Manager columns in the
table view. Rearrange the user interface if you wish, to make it neater.

7. Save the nib file.

You should take some time to investigate both the connections in the nib file and the behavior of the
application. The user interface is created almost entirely using bindings. In particular you should note:

 ■ The array controllers’ managedObjectContext binding is bound to the File’s Owner’s
managedObjectContext (see the Bindings pane of the NSArrayController Inspector).

20 Create the User Interface
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Project, Model, and Interface

 ■ The array controllers are set to manage an entity, not a class (see the Attributes pane of the Inspector).

 ■ The search field has been populated with a number of predicates—one for each attribute, and an
additional one to search all attributes.

 ■ There are two array controllers to manage collections of Employees—one for the table view, and one
for the pop-up menu.

Set the File Extension and Type

Core Data supports several types of data store—XML, SQLite, and binary. Each has their own advantages and
disadvantages. XML, for example, is (to an extent) human-readable, which may be particularly useful during
the early stages of development when you want to ensure that data you expected to be saved to a file has
in fact been stored. The XML store, however, is verbose and comparatively slow. The SQLite store is smaller
and more efficient. In particular, it has the unique advantage that its entire contents do not have to be read
into memory when it is opened.

By default, the project is configured with three document types, one for each store type. You can change
these directly in Xcode simply by using the Properties pane in the Target Info window as illustrated in Figure
2-5. You set the extension as you would for any other document in a Cocoa document-based application
and select the desired store type from the pop-up menu in the Store Type menu. Typically SQLite represents
the best choice for a deployed application.

Spotlight metadata importers are associated with document types by specifying the uniform type identifiers
(UTIs) that they can extract data from (see Extracting Metadata from Documents). If you plan to write a custom
importer you should therefore specify a suitable UTI for your document type (for details of how to specify a
UTI, see Uniform Type Identifiers Overview).

Figure 2-5 Properties pane of the Target Info window

Set the File Extension and Type 21
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Project, Model, and Interface

Build and Test

You can now build and test your application. You should find that it is (almost) fully functional! You can add
and remove employees, and edit their attributes. You can set an employee’s manager using the pop-up
menu. The application supports undo and redo, the search field works, and you can save and open documents.
If you make a mistake and enter, for example, a negative salary, then try to save the document, the application
presents an alert.

You haven’t yet written any code . . .

As you test the application, however, you may start to notice some problems. The popup menu displays only
the employees’ first names. First, this may not be the best way of identifying a particular employee. Second,
if more than one employee share the same name, it is impossible to distinguish between them.

There are several steps that are necessary to fix these problems, all of which require a custom class for the
Employee entity—which in turn requires a change to the managed object model. Specifically, you need to
do the following (the implementation of these steps is described in the next section).

1. In a custom class for the Employee entity, define a custom method to return a unique derived property—a
string that contains the employee’s full name and employee ID.

2. Implement the relevant key-value observing method to ensure that the derived property is updated
when any of its components is changed.

3. Implement a method to set a new employee ID when a new employee is created.

What Happened?

The title “Creating the Project, Model, and Interface” (page 15) is somewhat misleading. More than just
“creating the project,” in a very few steps you have completed the main task goals. In the next chapters you
will refine the implementation and provide additional user-friendly behavior. Now, though, it is worth briefly
reviewing what has happened.

The example so far illustrates the focus of Core Data. Your primary tasks have been to specify the data models
in your application, and to implement custom logic relating to the data. The Core Data framework (in
conjunction with Cocoa bindings for the user interface) has provided the infrastructure to support most of
the other required behaviors.

Most of the Core Data infrastructure is hidden by the persistent document. NSPersistentDocument
implements a number of methods to support integration with Core Data. From the perspective of the typical
developer, the most important method is managedObjectContext. The managed object context serves as
the gateway to the rest of the Core Data infrastructure. It also provides the document’s undo manager.
NSPersistentDocument takes care of creating and setting the type of the persistent store, saving and
loading data, and configuring the Core Data stack. For many applications you do not need to customize its
behavior further. Later in this tutorial, however, you will override some of NSPersistentDocument's methods
to customize the store.

22 Build and Test
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 2

Creating the Project, Model, and Interface

There are three parts to implementing and using a custom Employee class for the application. First, you
create the class files and update the managed object model. Second, you implement the accessor method
for the derived value, and ensure that key-value observing notifications are sent when any of the value’s
components changes. Third, you implement a method to initialize the employee ID for new employees.

The Employee Class

1. In Xcode, either create a new Objective-C class and set its superclass and other details manually, or create
a default implementation of a managed object class using the data modeling tool. Both achieve the
same result, but through different paths. The significant advantage to using the modeling tool is that it
can also auto-generate accessor and validation methods for you—in this case, however, there's no need
to do so.

To create a custom managed object class manually, perform the following steps.

a. Create a new Objective-C class. Call the class Employee.

b. In the Employee class’s header file, change its superclass to NSManagedObject.

To create a custom managed object class using the Xcode data modeling tool, perform the following
steps:

a. In Xcode, select the data model and ensure that it is the frontmost editor—for example, simply click
inside the model diagram view. (Xcode does not display the Managed Object Class option in the
next step unless you do this.)

b. Select File > New File to show the New File Assistant. In the file type outline view select Design >
Managed Object Class and press Next.

c. In the subsequent pane select the current project and target, then again press Next.

d. In the subsequent pane (Managed Object Class Generation), select the Employee entity and uncheck
the relevant boxes to specify that the implementation should not contain custom accessor or
validation methods.

e. Press Finish. Xcode creates the files for the Employee class.

2. In the data model (use the entity detail pane, or edit the name directly in the Class column in the entity
browser), change the class name for the Employee entity from NSManagedObject to Employee.

The Employee Class 23
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating a Custom Class

Support for the Derived Value

The value of fullNameAndID is a concatenation of, and hence dependent on, the values of lastName,
firstName, and employeeID. To ensure that the derived value is updated whenever any of its components
changes, you must invoke the key-value observing method that specifies that a key is dependent on
others—setKeys:triggerChangeNotificationsForDependentKey:. This method is typically invoked
in a class’s initialize method.

Steps

1. In the Employee class’s header file, add a declaration for an instance method, -(NSString
*)fullNameAndID. (Note that this is the only modification—other than the change to the superclass
made in the first step—that you need to make to the header file. In particular, there is no need to add
any instance variables.)

2. In the implementation file, implement the fullNameAndID method. It concatenates the first and last
names and the employee ID, as illustrated in the example below.

- (NSString *)fullNameAndID
{
 return [NSString stringWithFormat:@"%@, %@ (%@)",
 [self valueForKey:@"lastName"],
 [self valueForKey:@"firstName"],
 [self valueForKey:@"employeeID"]];
}

3. In the Employee class, implement initialize as follows:

+ (void)initialize {
 if (self == [Employee class])
 {
 NSArray *keys = [NSArray arrayWithObjects:
 @"lastName", @"firstName", @"employeeID", nil];
 [self setKeys:keys
triggerChangeNotificationsForDependentKey:@"fullNameAndID"];
 }
}

4. In the nib file, change the contentValues binding for the pop-up menu. Set the model key path to
fullNameAndID (the other values remain the same).

You may also add fullNameAndID to the data model as a transient string attribute. (In this case, since the
value is solely read-only and dependent on other attributes, there is no functional benefit, but it is worth
doing so that the model more fully communicates the entity’s behavior.)

Build and Test

Build and run the application again. You should find that the manager pop-up properly displays the full name
and ID of each employee, and that the menu item titles update as you change any of the individual
components.

24 Support for the Derived Value
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating a Custom Class

What the steps so far have not addressed, however, is the need to ensure that the value of fullNameAndID
is unique when new employees are added.

Initializing the Employee ID

The application could benefit from a means of initializing a managed object when it is created—or more
specifically, the first time it is added to the object graph. The init method (more correctly, the class’s designated
initializer, initWithEntity:insertIntoManagedObjectContext:) is not appropriate since it is called
each time the object is instantiated (when it is first created, and whenever it is subsequently retrieved from
the persistent store). Core Data provides a special initialization method, awakeFromInsert, which is called
once and only once in the lifetime of a managed object, on the first occasion it is inserted into a managed
object context. This may be useful to, for example, set the creation date of a record. Contrast this with
awakeFromFetch, which is called on subsequent occasions an object is fetched from a data store.

Implement awakeFromInsert

The following implementation is crude (and should not be used in a production application—the initial
tempID reverts to 1 every time the application is launched), it serves, however, to quickly illustrate the
principle.

- (void)awakeFromInsert
{
 static int tempID = 1;

 [super awakeFromInsert];
 [self setValue:[NSNumber numberWithInt:tempID++]
 forKey:@"employeeID"];
}

Build and Test

Build and run the application again. You should find that as new employees are added to the document, the
employee ID is set, and the ID is incremented for each new employee. More importantly, it is now possible
to differentiate between all the employees in the Managers pop-up menu.

What Happened?

Most of the task goals have now been met—primarily by creating a custom class to represent the Employee
entity and implementing business logic.

A subtle point here is the interaction between the model and the employees array controller. Recall that you
use the array controller to add new employees to the document. When the user interface was created,
however, it was not configured to manage instances of a particular class. Instead it was configured to manage
an entity (in this case, Employee). When you first built and tested the application, the model specified that
employees should be represented by NSManagedObject. When the array controller created a new employee,
therefore, it created a new instance of NSManagedObject (and set its entity description accordingly). After

Initializing the Employee ID 25
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating a Custom Class

you updated the model, however, to specify that employees be represented by Employee, when the array
controller created a new employee, it created a new instance of Employee. You will see in principle how this
works in the next section when you create an instance of the Department entity.

Code Listing for the Employee Class

The complete listing for the implementation of Employee class up to this point is given in Listing 3-1.

Listing 3-1 Implementation of the Employee class

#import <CoreData/CoreData.h>
@interface Employee : NSManagedObject
{
}
+ (void)initialize;
- (NSString *)fullNameAndID;
- (void)awakeFromInsert;
@end

@implementation Employee

+ (void)initialize
{
 if (self == [Employee class])
 {
 NSArray *keys = [NSArray arrayWithObjects:
 @"lastName", @"firstName", @"employeeID", nil];
 [self setKeys:keys
triggerChangeNotificationsForDependentKey:@"fullNameAndID"];
 }
}

- (NSString *)fullNameAndID
{
 return [NSString stringWithFormat:@"%@, %@ (%@)",
 [self valueForKey:@"lastName"],
 [self valueForKey:@"firstName"],
 [self valueForKey:@"employeeID"]];
}

- (void)awakeFromInsert
{
 static int tempID = 1;

 [super awakeFromInsert];
 [self setValue:[NSNumber numberWithInt:tempID++]
 forKey:@"employeeID"];
}

@end

26 Code Listing for the Employee Class
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating a Custom Class

Optional Extra—Sorting the Managers Popup

The content of the pop-up button that displays the list of employees is currently unsorted. This can make it
difficult to find an employee to set as another's manager. You can ensure that the pop-up menu's content
is sorted by creating a sort descriptor to associate with the array controller that manages the collection of
managers and rearranging the controller's contents prior to displaying the pop-up.

1. Add outlets to the MyDocument class header file for the pop-up button and the managers array controller.

IBOutlet NSPopUpButton *managerPopup;
IBOutlet NSArrayController *managersArrayController;

2. In Interface Builder, import the header into the MyDocument nib file, and make the connections as
appropriate—connect the File's Owner's new managerPopup outlet to the pop-up menu, and the
managersArrayController outlet to the Employees array controller that provides the content for the
pop-up menu.

3. In the MyDocument class, implement a windowControllerDidLoadNib: method. This method does
two things:

a. It sets an array of sort descriptors (actually an array containing a single sort descriptor) for the
managers array controller;

b. It registers the document object as an observer of NSPopUpButtonWillPopUpNotification
events posted by the manager pop-up menu.

- (void)windowControllerDidLoadNib:(NSWindowController *)windowController
{
 [super windowControllerDidLoadNib:windowController];

 // Create a sort descriptor to sort on "fullNameAndID"
 NSSortDescriptor *sortDescriptor = [[[NSSortDescriptor alloc]
 initWithKey:@"fullNameAndID" ascending:YES] autorelease];

 // Set the sortDescriptors for the managers array controller
 [managersArrayController setSortDescriptors:[NSArray arrayWithObject:sortDescriptor]];

 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(rearrangeManagersArrayController:)
 name:NSPopUpButtonWillPopUpNotification
 object:managerPopup];
}

4. In the MyDocument class, implement a rearrangeManagersArrayController:method to rearrange
the objects in the managers array controller.

- (void)rearrangeManagersArrayController:(NSNotification *)note
{
 [managersArrayController rearrangeObjects];
}

Now build and test the application. You should find that as you add and edit employees, whenever you
activate the managers pop-up button its contents are sorted alphabetically.

Optional Extra—Sorting the Managers Popup 27
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating a Custom Class

28 Optional Extra—Sorting the Managers Popup
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Creating a Custom Class

The original task specification stated that each document represents an individual department and the
employees associated with it. Thus far, however, the only actions that have been taken with respect to
departments has been to remove all references to them. In this section you add a Department object to the
document—ensuring that only one department is associated with the document—and reconfigure the user
interface appropriately.

Creating the Department

When a new document is created, you need to create a Department object, avoiding undo registration (so
that a new document does not appear edited when it is first presented). If the user opens a saved document,
the Department object should already exist (it is retrieved from the persistent store). NSDocument provides
a method—initWithType:error:—that is called only when a new document is created, not when it is
subsequently reopened. You can therefore create the Department object in this method, and be assured
that when a document is reopened a new Department object will not be created.

Steps

1. In the MyDocument class header file, add an instance variable, department, of type NSManagedObject.
The class declaration should now look like this:

@interface MyDocument : NSPersistentDocument
{
 NSManagedObject *department;
}
@end

2. In the MyDocument class, declare and implement a set accessor method for the department variable,
and add a suitable dealloc method.

- (void)setDepartment:(NSManagedObject *)aDepartment {
 if (department != aDepartment) {
 [department release];
 department = [aDepartment retain];
 }
}

- (void)dealloc {
 [self setDepartment:nil];
 [super dealloc];
}

Creating the Department 29
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Department Object

3. In the MyDocument class implementation file, add the instance method -(id)initWithType:error:.
The first step is to set self to the result of calling the superclass’s implementation, then check to ensure
that self is not nil. The remainder of the implementation described in the following steps is contained
within the conditional.

- (id)initWithType:(NSString *)type error:(NSError **)error {
 self = [super initWithType:type error:error];
 if (self != nil) {
 // implementation continues...
 }
 return self;
}

4. To create a new instance of department, it is easiest to use the NSEntityDescription convenience
method insertNewObjectForEntityForName:inManagedObjectContext:. The method requires
as its second argument a managed object context. You get this from the document itself. The method
returns the new object.

NSManagedObjectContext *managedObjectContext = [self managedObjectContext];
[self setDepartment:[NSEntityDescription
insertNewObjectForEntityForName:@"Department"
 inManagedObjectContext:managedObjectContext]];

Note that this illustrates the strategy the employees array controller takes to create a new object. You
don’t specify the class of the new object, you specify its entity, just as you specify an entity for the array
controller.

5. When you insert the new object into the managed object context, it registers the event with its undo
manager. Unless you take further steps, when a new document is created, it appears dirty (edited). To
avoid undo registration for the insertion, disable undo registration before inserting the new managed
object then re-enable it afterwards. Invoke processPendingChanges on the managed object context
to ensure changes are propagated.

After the line NSManagedObjectContext *managedObjectContext = ... disable undo registration:

[[managedObjectContext undoManager] disableUndoRegistration];

After the line [self setDepartment: ..., process changes and re-enable undo registration:

[managedObjectContext processPendingChanges];
[[managedObjectContext undoManager] enableUndoRegistration];

Complete Code Listing

The complete listing for initWithType:error: is shown in Listing 4-1.

Listing 4-1 The complete listing for initWithType:error:

- (id)initWithType:(NSString *)type error:(NSError **)error {
 self = [super initWithType:type error:error];
 if (self != nil) {

 NSManagedObjectContext *managedObjectContext = [self
managedObjectContext];

30 Creating the Department
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Department Object

 [[managedObjectContext undoManager] disableUndoRegistration];
 [self setDepartment:[NSEntityDescription
insertNewObjectForEntityForName:@"Department"
 inManagedObjectContext:managedObjectContext]];
 [managedObjectContext processPendingChanges];
 [[managedObjectContext undoManager] enableUndoRegistration];
 }
 return self;
}

Fetching the Department

Note: This example follows the traditional Cocoa pattern of adding the Department as an instance variable
to the document class. Using Core Data, there may be no need to do this—see “Adopting the Mediator
Pattern” (page 35). The traditional pattern is used here to illustrate aspects of fetching an object. There are
also other situations in which this pattern remains valid and useful.

If you need to access the department from within any of your document’s methods, you need to fetch it
from the persistent store.

In order to perform a fetch, you need a fetch request and a managed object context. The fetch request
specifies what instances of a particular entity it is that you fetch. By implication, therefore, you also need at
least an entity description. The managed object context is the gateway to the underlying persistent store
coordinator and hence persistent stores.

You can define an accessor method for the department. The first thing it should do is check whether or not
the department has already been fetched. If it has, return it immediately. If it has not already been fetched,
create a fetch request for the Department entity and fetch from the document’s managed object context.

Steps

1. In the MyDocument class implementation file, add the instance method -(NSManagedObject
*)department. The first step is to check whether department is not nil. If it is not, return it.

- (NSManagedObject *)department {
 if (department != nil) {
 return department;
 }
 // implementation continues...
 return department;
}

2. To use a fetch request, you need a managed object context, an NSError variable to pass as an argument
to the fetch method, and an array variable to which the returned value is assigned. Given these, you can
create the fetch request.

NSManagedObjectContext *moc = [self managedObjectContext];
NSError *fetchError = nil;
NSArray *fetchResults;
NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

Fetching the Department 31
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Department Object

3. As a minimum for the fetch request, you must specify the entity description for the entity that is to be
fetched. You may also provide a predicate and an array of sort descriptors. In this case there is (or should
be!) only one department to fetch, so neither a predicate nor sort orderings are required.

You get the entity description using a convenience
method—entityForName:inManagedObjectContext:—of NSEntityDescription. It takes as its
arguments the name of an entity and a managed object context. It uses the context to find the persistent
store coordinator, and from the model associated with the coordinator, the entity description with the
specified name.

You set the entity for the fetch request, then use the context to execute the fetch, and finally release the
fetch request. You can wrap these steps in try/finally blocks to catch any exception that is thrown and
ensure that the fetch request is released.

@try {
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Department"
 inManagedObjectContext:moc];
 [fetchRequest setEntity:entity];
 fetchResults = [moc executeFetchRequest:fetchRequest error:&fetchError];
} @finally {
 [fetchRequest release];
}

4. If there is one object in the returned array, and there is no fetch error, the object in the array is the
Department object. If these conditions are not satisfied, then something has gone wrong. If there is an
error, you can display it most easily using NSDocument's presentError:method. This, however, creates
an application-modal window, so ideally you should use
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: to present a
panel modal just for the window, but showing how to do that lies outside the scope of this example (it
requires significant additional code and explanation that is not directly related to understanding Core
Data and NSPersistentDocument). If there is no error, but the either the result is nil or the count of
the results array is not 1, then something has gone wrong and the user should be alerted. Again how
to do this is not shown here.

if ((fetchResults != nil) && ([fetchResults count] == 1) && (fetchError == nil))
 {
 [self setDepartment:[fetchResults objectAtIndex:0]];
 return department;
}
if (fetchError != nil) {
 [self presentError:fetchError];
}
else {
 // should present custom error message...
}
return nil;

Complete Code Listing

The complete listing for the department method is given in Listing 4-2.

32 Fetching the Department
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Department Object

Listing 4-2 The complete listing for the department method

- (NSManagedObject *)department
{
 if (department != nil) {
 return department;
 }
 NSManagedObjectContext *moc = [self managedObjectContext];
 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
 NSError *fetchError = nil;
 NSArray *fetchResults;

 @try {
 NSEntityDescription *entity = [NSEntityDescription
entityForName:@"Department"
 inManagedObjectContext:moc];

 [fetchRequest setEntity:entity];
 fetchResults = [moc executeFetchRequest:fetchRequest error:&fetchError];
 } @finally {
 [fetchRequest release];
 }

 if ((fetchResults != nil) && ([fetchResults count] == 1) && (fetchError ==
 nil)) {
 [self setDepartment:[fetchResults objectAtIndex:0]];
 return department;
 }

 if (fetchError != nil) {
 [self presentError:fetchError];
 }
 else {
 // should present custom error message...
 }
 return nil;
}

Update the User Interface

You can now update the user interface to include the Department object. Figure 4-1 provides an example
of how the user interface might look when you have finished.

1. Open the MyDocument nib file in Interface Builder. Add an NSObjectController instance. Its entity
is Department. Bind its managedObjectContext to File’s Owner’s managedObjectContext and its
contentObject to File’s Owner’s department.

2. Add two text fields to the window. Bind the value of one to the department’s name (bind to the
Department object controller’s selection.name), the other to the department’s budget—the latter
requires a number formatter (so that the input string is converted into a number object). (To set a
formatter in Interface Builder, drag a number formatter from the Cocoa-Text palette onto the text
field—see Frequently Asked Questions. Better still, programatically set an instance ofNSNumberFormatter
that uses Mac OS X v10.4 behavior—see Number Formatters).

Update the User Interface 33
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Department Object

Figure 4-1 User interface with department

You can now specify that the employee array controllers retrieve their employees not directly from the
managed object context, but from the department’s employees relationship. This is important to ensure that
when a new employee is added, it is properly added to the department’s employees relationship, and the
employee’s department relationship is set.

It is important to note that you bind the array controller’s contentSet, not contentArray. Managed objects
represent to-many relationships using a set, not an array.

By default, removing an object from an array controller whose content set is bound to a relationship simply
removes the object from the relationship, not from the object graph. If you want the remove operation to
act as a delete, you must enable the Deletes Objects On Remove option for the contentSet binding.

1. For each array controller, bind the contentSet to the department controller’s selection.employees.

2. Inspect the bindings for the Employees array controller that manages the content of the table view. For
the contentSet binding, enable the Deletes Objects On Remove option.

34 Update the User Interface
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Department Object

Build and Test

Build and run the application again. You should find that if you set the department name and then save the
document, when you reopen the document, its department’s name is properly reconstituted.

Supporting Document Revert

Since the document retains the department object, you must make sure that it is properly released in the
case of the document being reverted. You need to implement a revertToContentsOfURL:ofType:error:
method, as follows:

- (BOOL)revertToContentsOfURL:(NSURL *)inAbsoluteURL ofType:(NSString *)inTypeName
 error:(NSError **)outError
{
 [self setDepartment: nil];
 return [super revertToContentsOfURL:inAbsoluteURL ofType:inTypeName
error:outError];
}

Note that although technically correct, due to a bug in NSObjectController the above is still not sufficient
in versions 10.4.0 to 10.4.8 of Mac OS X. The object controller maintains a handle to the department object
even after a revert, so you must also set its content to nil. To work around this, you need to add an outlet
to the controller and then connect it in Interface Builder (see Making Connections in Cocoa Applications).

// add outlet as an instance variable in MyDocument.h
IBOutlet NSObjectController *departmentController;

- (BOOL)revertToContentsOfURL:(NSURL *)inAbsoluteURL ofType:(NSString *)inTypeName
 error:(NSError **)outError
{
 [departmentController setContent:nil];
 [self setDepartment:nil];
 return [super revertToContentsOfURL:inAbsoluteURL ofType:inTypeName
error:outError];
}

Adopting the Mediator Pattern

In the Cocoa document architecture, an NSDocument instance serves primarily as a model controller and
one or more instances of NSWindowController serve as view controllers (see The Roles of Key Objects in
Document-Based Applications). The mediator pattern extends this concept of distributed control—mediating
controllers mediate the flow of data between view objects and model objects in an application (for a general
discussion, see Cocoa Design Patterns).

In the current application, the Department instance serves as a “root” object for the graph of model objects.
This is a common pattern in traditional Cocoa programming, and you would typically access other model
objects via relationships from this root object through the document instance. Many developers may be
more used to and more comfortable with the idea of keeping a reference to a root model object or collection.
If you are using Core Data, however, the recommendation is not to do that (unless it is necessary or useful),

Supporting Document Revert 35
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Department Object

but instead to hand responsibility for model object graph to the managed object context. If you need a
reference to a particular instance, you either execute a fetch request, or (more commonly) retrieve it from
the relevant object controller.

In this example, there is actually no need to keep an explicit reference to the department in the document
instance, although it is convenient for an implementation of the paste method (see “Paste” (page 40)) and—to
reiterate—here it served the useful purpose of illustrating how to fetch objects from the document's managed
object context. Since there is only ever one Department record, however, the NSObjectController object
can simply fetch it directly. Thus, instead of binding the department object controller’s contentObject to
the File’s Owner, you bind only its managedObjectContext and configure it to automatically prepare content
(see setAutomaticallyPreparesContent:)—this means that at runtime, the controller automatically
executes a fetch to fill its content. Since there is one and only one Department instance, the correct Department
instance is retrieved. If you do need a reference to the instance, you can either fetch it or retrieve it from the
object controller. You then dispense with the department and setDepartment: methods, and the explicit
support for the revert method described in “Supporting Document Revert” (page 35).

What Happened?

More of the task goals have now been met through adding an instance of Department to the document.

36 What Happened?
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 4

Adding a Department Object

Most applications support copy and paste. Copy and paste of managed objects is broadly similar to that of
other objects, except that you need to be careful about how much of the object graph you copy.

The focus of this chapter is on how to copy managed objects, not how to provide an architecture for copy
and paste. In this example, therefore, a simplistic approach is taken—the document object implements cut:,
copy:, and paste:, and only supports copying of employees selected in the table view. There are many
variants that could be implemented, this example illustrates just one approach. Moreover, basic Cocoa
techniques such as archiving, key-value coding, and creating and setting outlets in a nib file, are not explained
in detail.

Custom Employee Logic

Although it is not strictly necessary to modify the Employee class to support copy and paste, it makes sense
to implement custom business logic in one place rather than distributing it throughout the application. The
main decision you must make, however, is what it means to copy an employee—what properties of an
employee are copied. It seems obvious that first name, last name, and salary should be copied. In this example,
it is unlikely that department, manager, or direct reports should be copied. The department is set during the
paste operation. If you copy the manager or the direct reports, you are likely to end up copying the whole
object graph as you add those objects to the copy. Moreover, copying related objects presents difficulties
in cases where a given object may be referred to more than once—you need to ensure uniqueness in the
copied graph. Finally, the employee ID requires a judgement call. Whether or not you choose to copy it
depends on the semantics of copy (or particularly of paste) in the application.

To abstract out some of this logic, declare and implement a class method—copyKeys—that returns an array
of keys of attributes to be copied. To support copy of an employee both as an object and as a string (to paste
into another application), declare and implement instance methods to return a dictionary and a string
representation of the object.

1. In the Employee class, declare and implement a class method, copyKeys, as follows:

+ (NSArray *)copyKeys {
 static NSArray *copyKeys = nil;
 if (copyKeys == nil) {
 copyKeys = [[NSArray alloc] initWithObjects:
 @"firstName", @"lastName", @"salary", @"employeeID", nil];
 }
 return copyKeys;
}

2. In the Employee class, declare and implement an instance method, dictionaryRepresentation, as
follows:

- (NSDictionary *)dictionaryRepresentation
{
 return [self dictionaryWithValuesForKeys:[[self class] copyKeys]];

Custom Employee Logic 37
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Copy and Paste

}

3. In the Employee class, declare and implement an instance method, stringDescription, as follows.
(Note that you are discouraged from overriding the description method.)

- (NSString *)stringDescription
{
 NSString *stringDescription = [self fullNameAndID];
 NSString *managerString = @"none";
 Employee *manager = [self valueForKey:@"manager"];
 if (manager != nil) {
 managerString = [manager fullNameAndID];
 }
 stringDescription = [stringDescription stringByAppendingFormat:
 @"; Manager: %@", managerString];
 return stringDescription;
}

Copy

In order to copy, you need to know what the current selection is. You can get this information most easily
from the employees array controller. You can also define a label for the employee pasteboard type.

Steps

1. In the MyDocument class header file, declare an IBOutlet employeeTableController of type
NSArrayController.

IBOutlet NSArrayController *employeeTableController;

2. In Interface Builder, import the header into the document nib file, and connect the File's Owner's
employeeTableController outlet to the employee array controller.

3. In the MyDocument class implementation file, declare the global string EmployeesPBoardType. Also
import the Employee header file.

#import "Employee.h"
NSString *EmployeesPBoardType = @"EmployeesPBoardType";

4. In the MyDocument class implementation file, implement a copy:method. It first retrieves the employee
array controller’s selected objects. If no objects are selected, it returns immediately. Note also the
declaration of an integer, i, that is used later.

- (void)copy:sender {

 NSArray *selectedObjects = [employeeTableController selectedObjects];
 unsigned i, count = [selectedObjects count];
 if (count == 0) {
 return;
 }
 // implementation continues....

38 Copy
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Copy and Paste

}

5. Create two mutable arrays, one to contain the dictionary representations of the objects to copy, the
other to contain the string representations. Iterate over the array of selected employees, adding the
appropriate representation of each object to the corresponding array.

NSMutableArray *copyObjectsArray = [NSMutableArray arrayWithCapacity:count];
NSMutableArray *copyStringsArray = [NSMutableArray arrayWithCapacity:count];
Employee *employee;

for (i = 0; i < count; i++) {
 employee = (Employee *)[selectedObjects objectAtIndex:i];
 [copyObjectsArray addObject:[employee dictionaryRepresentation]];
 [copyStringsArray addObject:[employee stringDescription]];
}

6. Declare the types to be copied for the general pasteboard, and set the corresponding values. Since the
dictionary representation of an employee contains only property list types, you can simply create an
archive of the array to set as the data for the custom pasteboard. For the string representation, concatenate
the individual strings, separating them with a newline character.

NSPasteboard *generalPasteboard = [NSPasteboard generalPasteboard];
[generalPasteboard declareTypes:
 [NSArray arrayWithObjects:EmployeesPBoardType, NSStringPboardType, nil]
 owner:self];
NSData *copyData = [NSArchiver archivedDataWithRootObject:copyObjectsArray];
[generalPasteboard setData:copyData forType:EmployeesPBoardType];
[generalPasteboard setString:
 [copyStringsArray componentsJoinedByString:@"\n"]
 forType:NSStringPboardType];

Complete Code Listing

The complete listing for the copy: method is shown in Listing 5-1.

Listing 5-1 Complete listing of the copy: method

- (void)copy:sender {

 NSArray *selectedObjects = [employeeTableController selectedObjects];
 unsigned i, count = [selectedObjects count];
 if (count == 0) {
 return;
 }

 NSMutableArray *copyObjectsArray = [NSMutableArray arrayWithCapacity:count];
 NSMutableArray *copyStringsArray = [NSMutableArray arrayWithCapacity:count];
 Employee *employee;

 for (i = 0; i < count; i++) {
 employee = (Employee *)[selectedObjects objectAtIndex:i];
 [copyObjectsArray addObject:[employee dictionaryRepresentation]];
 [copyStringsArray addObject:[employee stringDescription]];
 }
 NSPasteboard *generalPasteboard = [NSPasteboard generalPasteboard];

Copy 39
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Copy and Paste

 [generalPasteboard declareTypes:
 [NSArray arrayWithObjects:EmployeesPBoardType, NSStringPboardType,
 nil]
 owner:self];
 NSData *copyData = [NSArchiver archivedDataWithRootObject:copyObjectsArray];
 [generalPasteboard setData:copyData forType:EmployeesPBoardType];
 [generalPasteboard setString:
 [copyStringsArray componentsJoinedByString:@"\n"]
 forType:NSStringPboardType];
}

Build and Test

Build and run the application.

Although you have not yet implemented support for paste within the application, you should be able to
paste a string representation of the current selection into, for example, a TextEdit document or a Mail message.

Paste

In order to paste, you create employee objects from the array of dictionaries on the pasteboard. You must
insert these into the document’s managed object context, and add them to the department’s employees
relationship.

Steps

1. In the MyDocument class implementation file, implement a paste:method. It first retrieves the employee
array data from the pasteboard (using the custom pasteboard type). If there is no data, return immediately.

- (void)paste:sender {

 NSPasteboard *generalPasteboard = [NSPasteboard generalPasteboard];
 NSData *data = [generalPasteboard dataForType:EmployeesPBoardType];
 if (data == nil) {
 return;
 }
 // implementation continues....
}

2. To create the new employees, you need to unarchive the array of dictionaries. You also need the
document’s managed object context and a way to add each new employee to the department object’s
employees relationship. You can address the latter requirement using key-value coding with the
mutableSetValueForKey: method:

NSArray *employeesArray = [NSUnarchiver unarchiveObjectWithData:data];
NSManagedObjectContext *moc = [self managedObjectContext];
NSMutableSet *departmentEmployees = [[self department]
mutableSetValueForKey:@"employees"];

40 Paste
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Copy and Paste

3. For each item in the employees array, create a new employee object and establish the relationship
between it and the department. The easiest way to create a new employee is using the
NSEntityDescription class method
insertNewObjectForEntityForName:inManagedObjectContext:. This returns a new instance of
the class specified in the managed object model to represent the Employee entity. You can then set the
attribute values of the new object from the dictionary using key-value coding.

To establish the relationship between the employee and department, you can either add the employee
to the department’s employees relationship or set the department for the employee directly. (Since the
relationship is modeled in both directions, and the inverse relationships properly specified, the referential
integrity is maintained automatically.) For the purpose of illustrating manipulation of a to-many
relationship, do the former:

unsigned i, count = [employeesArray count];
for (i = 0; i < count; i++) {
 Employee *newEmployee;
 newEmployee = (Employee *)[NSEntityDescription
insertNewObjectForEntityForName:@"Employee"
 inManagedObjectContext:moc];
 [newEmployee setValuesForKeysWithDictionary:[employeesArray objectAtIndex:i]];
 [departmentEmployees addObject:newEmployee];
}

Complete Code Listing

The complete listing for the paste: method is shown in Listing 5-2.

Listing 5-2 Complete listing of the paste: method

- (void)paste:sender {
 NSPasteboard *generalPasteboard = [NSPasteboard generalPasteboard];
 NSData *data = [generalPasteboard dataForType:EmployeesPBoardType];
 if (data == nil) {
 return;
 }

 NSManagedObjectContext *moc = [self managedObjectContext];
 NSMutableSet *departmentEmployees = [[self department]
mutableSetValueForKey:@"employees"];
 NSArray *employeesArray = [NSUnarchiver unarchiveObjectWithData:data];

 unsigned i, count = [employeesArray count];
 for (i = 0; i < count; i++) {

 Employee *newEmployee;
 newEmployee = (Employee *)[NSEntityDescription
insertNewObjectForEntityForName:@"Employee"
 inManagedObjectContext:moc];
 [newEmployee setValuesForKeysWithDictionary:[employeesArray
objectAtIndex:i]];
 [departmentEmployees addObject:newEmployee];
 }
}

Paste 41
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Copy and Paste

Build and Test

You should now be able to compile and test the application. You should be able to copy selected employees
and paste them into either the same or a different document. You should also notice that undo and redo
work appropriately.

Cut

In order to cut, you first copy the existing selection, then delete it. To delete the selected employees, you
delete them from the managed object context.

Steps

1. In the MyDocument class implementation file, implement a cut: method. It first calls copy:.

- (void)cut:sender {
 [self copy:sender];

 // implementation continues....
}

2. To delete the employees, you need the document’s managed object context. You then need to retrieve
the array of selected objects from the employee table controller. For each item in the array of selected
employees, delete it from the context:

NSManagedObjectContext *moc = [self managedObjectContext];
NSArray *selectedEmployees = [employeeTableController selectedObjects];
unsigned i, count = [selectedEmployees count];

for (i = 0; i < count; i++) {
 Employee *employee;
 employee = (Employee *)[selectedEmployees objectAtIndex:i];
 [moc deleteObject:employee];
}

Alternatively, since you have a reference to the employee controller, you could send it a removeObject:
message for each selected employee. To use this pattern you must ensure that the Deletes Object on Remove
option is set for the contentSet binding. (Objects are deleted automatically if the array controller’s content
is fetched automatically. In this case, however, the contentSet is bound to the department’s employees
relationship, so unless the Deletes Object on Remove option is set, removeObject: removes the object only
from the relationship, not from the object graph.)

Note that, since Employee’s department relationship delete rule is set to Nullify, there is no need to remove
the employees from the department’s employees relationship—this is performed automatically by the
framework.

42 Cut
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Copy and Paste

Complete Code Listing

The complete listing for the cut: method is shown in Listing 5-3.

Listing 5-3 Complete listing of the cut: method

- (void)cut:sender {
 [self copy:sender];

 NSManagedObjectContext *moc = [self managedObjectContext];

 NSArray *selectedEmployees = [employeeTableController selectedObjects];
 unsigned i, count = [selectedEmployees count];

 for (i = 0; i < count; i++) {
 Employee *employee;
 employee = (Employee *)[selectedEmployees objectAtIndex:i];
 [moc deleteObject:employee];
 }
}

Build and Test

You should now be able to compile and test the application. You should be able to cut selected employees
from one document and paste them into either the same or a different document. You should also notice
that undo and redo work appropriately.

Cut 43
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Copy and Paste

44 Cut
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 5

Copy and Paste

By default, if an error occurs the user is presented an alert indicating what the problem was. Although useful,
the text in the alert may not be very user friendly. If there was a validation error, the name of the property
that failed validation is given as defined in the model (for example, “firstName”) rather than something more
natural (such as “First name”)—this may be especially unhelpful for users whose native language is not that
of the developer. Moreover, if more than one error occurs, the alert simply states that many errors have
occurred. In order to give the user more information and help them to fix the problems, you can customize
the display of property names and multiple errors.

Customizing and Localizing Model Names

You can customize and localize entity and property names by adding a model strings file to your project
resources (see Core Data Programming Guide > Using a Managed Object Model). You set the name of the
strings file to <ModelName>Model.strings. For properties where there is only one entity with the given
property name, the keys in the file take the form Property/<NonLocalizedPropertyName>—if there is
a chance of a conflict, you can use
Property/<NonLocalizedPropertyName>/Entity/<NonLocalizedEntityName>.

Steps

1. Select the Resources folder of your project. Create a new empty file by choosing File > New File then
selecting Empty File in Project. Press Next, then name the file MyDocumentModel.strings.

2. Make the file localizable (in the Inspector (File Info window), click Make File Localizable). You should also
ensure that the file is saved in UTF-16 encoding (see Inspecting File Attributes > "Choosing File
Encodings").

3. Add key-value pairs for localized representations of the Employee entity’s properties of the form
"Property/NonLocalizedPropertyName" = "Pretty Property Name"; as illustrated in the
following examples. Note that it is important to include the semicolon at the end of each line.

"Property/firstName" = "First Name";
"Property/lastName" = "Last Name";
"Property/salary" = "Salary";

4. Add a second localized version of the file (in the Xcode inspector, click Add Localization). Choose a
localization for a language into which you can translate the property names, or use “fr” (for French) and
follow this example:

"Property/firstName" = "Prénom";
"Property/lastName" = "Nom de famille";
"Property/salary" = "Salaire";

Customizing and Localizing Model Names 45
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Localizing and Customizing Model Property
Names and Error Messages

Build and Test

Build and run the application. Add a single new employee to a document, and delete the first name. Save
the document. You should see an alert that includes the text, “First Name is a required value”.

Inspect the executable and add the argument -AppleLanguages "(fr)" (or instead of “fr” use whatever
locale identifier you chose earlier). Run the application again, and add a single new employee to a document.
Delete the value for the first name, and try to save. This time you should see an alert that displays the localized
version of the first name key. Other parts of the interface may also be localized, depending on what locales
you installed on your system, and what locale you chose for this test.

Customizing the Document Alert Panel

Cocoa provides a sophisticated error-handling architecture. Exactly how you deal with an error, and which
object receives a message in the event of an error, is described in detail in Error Handling Programming Guide
For Cocoa. In some cases, for example, if a document fails to open, it may be the responsibility of the
NSDocumentController object or of the application object to deal with the error. This section focuses on
specific errors that may be dealt with by the document itself.

There may be many reasons why an error occurs, and many errors may occur simultaneously—for example,
if a user enters several data values that fail validation then tries to save a document. In the event that an
error occurs, Core Data provides a rich set of information that describes the problem in an NSError object,
but if many things go wrong at the same time the actual description provided to the user may be impoverished.
NSDocument provides a method—willPresentError:—that you can override to customize an error
message. The method’s argument is the original error. You first, therefore, need to determine whether an
error is one that you want to handle in a custom manner. In the case of the willPresentError: method,
if it’s not an error you want to handle in a custom manner you then simply return it, otherwise analyze the
error to determine what to do.

Steps

1. In the My Document class, create a stub entry for the method willPresentError:.

- (NSError *)willPresentError:(NSError *)inError {
 // implementation continues...
}

2. To customize error messages for Core Data, you first check the error domain. If it is not a Core Data error,
(in this example) simply return the original error.

if (!([[inError domain] isEqualToString:NSCocoaErrorDomain])) {
 return inError;
}

3. Core Data provides errors for a range of different situations. In this example, the only errors of interest
are validation errors. The error codes for Core Data validation errors lie within a range delimited by
NSValidationErrorMinimum and NSValidationErrorMaximum (declared in NSError.h—error
codes and userInfo dictionary keys specific to Core Data are declared in
CoreData/CoreDataErrors.h). If the error code is not within this range, again return the original
error. (This step is not strictly necessary—the only test required is the next one—but is a useful example.)

46 Customizing the Document Alert Panel
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Localizing and Customizing Model Property Names and Error Messages

int errorCode = [inError code];
if ((errorCode < NSValidationErrorMinimum) ||
 (errorCode > NSValidationErrorMaximum)) {
 return inError;
}

4. If there are multiple validation errors, the error is an NSValidationMultipleErrorsError. If the error
is not an NSValidationMultipleErrorsError, then there is only one error message to report, so
again return the original error.

if (errorCode != NSValidationMultipleErrorsError) {
 return inError;
}

5. If the error is an NSValidationMultipleErrorsError, its userInfo dictionary contains an array of
the original error under the key, NSDetailedErrorsKey.

For this example, present error messages for no more than three validation errors at a time. You can do
so simply by concatenating the localized description for each error. You could instead construct a more
customized, user-friendly error by examining the error code of each individual error.

NSArray *detailedErrors = [[inError userInfo] objectForKey:NSDetailedErrorsKey];

unsigned numErrors = [detailedErrors count];
NSMutableString *errorString = [NSMutableString stringWithFormat:@"%u validation
 errors have occurred", numErrors];

if (numErrors > 3) {
 [errorString appendFormat:@".\nThe first 3 are:\n"];
} else {
 [errorString appendFormat:@":\n"];
}
unsigned i, displayErrors = numErrors > 3 ? 3 : numErrors;
for (i = 0; i < displayErrors; i++) {
 [errorString appendFormat:@"%@\n",
 [[detailedErrors objectAtIndex:i] localizedDescription]];
}

6. Finally, create a new error based on the original error and the new description and return it.

NSMutableDictionary *newUserInfo = [NSMutableDictionary
 dictionaryWithDictionary:[inError userInfo]];
[newUserInfo setObject:errorString forKey:NSLocalizedDescriptionKey];

NSError *newError = [NSError errorWithDomain:[inError domain]
 code:[inError code]
 userInfo:newUserInfo];
return newError;

Complete Code Listing

The complete willPresentError: method is shown in Listing 6-1.

Customizing the Document Alert Panel 47
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Localizing and Customizing Model Property Names and Error Messages

Listing 6-1 Complete listing of the willPresentError: method

- (NSError *)willPresentError:(NSError *)inError {

 // The error is a Core Data validation error if its domain is
 // NSCocoaErrorDomain and it is between the minimum and maximum
 // for Core Data validation error codes.

 if (!([[inError domain] isEqualToString:NSCocoaErrorDomain])) {
 return inError;
 }

 int errorCode = [inError code];
 if ((errorCode < NSValidationErrorMinimum) ||
 (errorCode > NSValidationErrorMaximum)) {
 return inError;
 }

 // If there are multiple validation errors, inError is an
 // NSValidationMultipleErrorsError. If it's not, return it

 if (errorCode != NSValidationMultipleErrorsError) {
 return inError;
 }

 // For an NSValidationMultipleErrorsError, the original errors
 // are in an array in the userInfo dictionary for key NSDetailedErrorsKey
 NSArray *detailedErrors = [[inError userInfo]
objectForKey:NSDetailedErrorsKey];

 // For this example, only present error messages for up to 3 validation
errors at a time.

 unsigned numErrors = [detailedErrors count];
 NSMutableString *errorString = [NSMutableString stringWithFormat:@"%u
validation errors have occurred", numErrors];

 if (numErrors > 3) {
 [errorString appendFormat:@".\nThe first 3 are:\n"];
 } else {
 [errorString appendFormat:@":\n"];
 }
 unsigned i, displayErrors = numErrors > 3 ? 3 : numErrors;
 for (i = 0; i < displayErrors; i++) {
 [errorString appendFormat:@"%@\n",
 [[detailedErrors objectAtIndex:i] localizedDescription]];
 }

 // Create a new error with the new userInfo
 NSMutableDictionary *newUserInfo = [NSMutableDictionary
 dictionaryWithDictionary:[inError userInfo]];
 [newUserInfo setObject:errorString forKey:NSLocalizedDescriptionKey];

 NSError *newError = [NSError errorWithDomain:[inError domain] code:[inError
 code] userInfo:newUserInfo];

 return newError;
}

48 Customizing the Document Alert Panel
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Localizing and Customizing Model Property Names and Error Messages

Build and Test

Build and run the application again. Add two employees to a document, and set some invalid values—for
example, set their salaries to negative numbers. When you try to save the document, you should find that
an alert is presented that lists the validation failures. Add two more employees and try the same test again
to ensure that the alert displays just the first three errors.

Comment out the willPresentError: method and build and run the application again. Contrast the alert
presented without the custom method with that presented using your custom method.

Create a new directory and remove write permissions for yourself—now try to save the document into that
directory. What error is presented? What error code is generated?

What Happened?

You have made the application more user friendly. Core Data provides rich information when something
goes wrong. You can typically help the user by making it as clear as possible what the problem is, so that
the user may have a chance to fix it.

You investigated Core Data’s error handling, in particular you discovered that errors are given a rich description.
It’s possible to find out whether a given error is a Core Data error, if so whether it’s a validation error, and
finally, if it’s a multiple validation error, what were the original errors.

What Happened? 49
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Localizing and Customizing Model Property Names and Error Messages

50 What Happened?
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 6

Localizing and Customizing Model Property Names and Error Messages

Spotlight provides users with a means of searching for files quickly and easily. To support this, you need to
associate metadata with your documents. Core Data makes it easy to do this and to write the necessary
importer.

Setting Metadata for a Store

Note that setting the metadata only queues up the information to be saved when the store is next saved—it
is not written out immediately.

Steps

1. You identify a store by its URL. Since there is more than one place that this code will be used, define a
method in MyDocument to abstract the logic.

- (BOOL)setMetadataForStoreAtURL:(NSURL *)url {
 // implementation continues...
 return NO;
}

2. You retrieve a store from the persistent store coordinator, using the URL as an identifier. Objects that
represent stores are opaque—they are defined as being of type id and have no API. You can use the ID
to identify a store, but you can’t do anything else with it.

NSPersistentStoreCoordinator *psc = [[self managedObjectContext]
persistentStoreCoordinator];
id pStore = [psc persistentStoreForURL:url];

3. If pStore is not nil, then you can set the metadata. The metadata is a dictionary of key-value pairs,
where a key may be either custom for your application, or one of the standard set of Spotlight keys such
as kMDItemKeywords. Core Data automatically sets values for NSStoreType and NSStoreUUID, so
make a mutable copy of the existing metadata, and then add your own keys and values. In this example,
simply set the department name as a keyword, then return YES.

Note that the metadata may be set before validation methods are invoked, so even though the
Department name is not optional, although unlikely it is possible for the value to be nil at this stage.
You should therefore guard against attempting to insert a nil value into the array.

NSString *departmentName = [[self department] valueForKey:@"name"];

if ((pStore != nil) && (departmentName != nil)) {
 NSMutableDictionary *metadata = [[[psc metadataForPersistentStore:pStore]
mutableCopy] autorelease];

Setting Metadata for a Store 51
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Document Metadata

 if (metadata == nil) {
 metadata = [NSMutableDictionary dictionary];

 [metadata setObject:[NSArray arrayWithObject:departmentName]
 forKey:(NSString *)kMDItemKeywords];

 [psc setMetadata:metadata forPersistentStore:pStore];
 return YES;
}

Complete Code Listing

A complete listing for setMetadataForStoreAtURL: is shown in Listing 7-1.

Listing 7-1 Complete listing of the setMetadataForStoreAtURL: method

- (BOOL)setMetadataForStoreAtURL:(NSURL *)url {

 NSPersistentStoreCoordinator *psc = [[self managedObjectContext]
persistentStoreCoordinator];
 id pStore = [psc persistentStoreForURL:url];
 NSString *departmentName = [[self department] valueForKey:@"name"];

 if ((pStore != nil) && (departmentName != nil)) {
 NSMutableDictionary *metadata = [[[psc metadataForPersistentStore:pStore]
 mutableCopy] autorelease];
 if (metadata == nil) {
 metadata = [NSMutableDictionary dictionary];
 }
 [metadata setObject:[NSArray arrayWithObject:departmentName]
 forKey:(NSString *)kMDItemKeywords];
 [psc setMetadata:metadata forPersistentStore:pStore];
 return YES;
 }
 return NO;
}

Set the Metadata for a New Store

When a new store is configured (whether for a new untitled document, or when an existing document is
reopened), Core Data calls the NSPersistentDocument method
configurePersistentStoreCoordinatorForURL:ofType:error:. You can override this method to
add metadata to a new store before it is saved.

Steps

1. In MyDocument, add an implementation for
configurePersistentStoreCoordinatorForURL:ofType:error:. You first call the superclass’s
implementation, and check the return value:

52 Set the Metadata for a New Store
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Document Metadata

- (BOOL)configurePersistentStoreCoordinatorForURL:(NSURL *)url ofType:(NSString
 *)fileType error:(NSError **)error {

 BOOL ok = [super configurePersistentStoreCoordinatorForURL:url
 ofType:fileType error:error];

 if (ok) {
 // implementation continues...
 }
 return ok;
}

2. If the return value for the superclass’s implementation is YES, then retrieve the persistent store for the
specified URL from the persistent store coordinator:

NSPersistentStoreCoordinator *psc = [[self managedObjectContext]
persistentStoreCoordinator];
id pStore = [psc persistentStoreForURL:url];

3. Since the configure method is also called when a document is reopened, you should check for existing
custom metadata to avoid overwriting it unnecessarily. If your metadata is not present, set it using
setMetadataForStoreAtURL:.

id existingMetadata = [[psc metadataForPersistentStore:pStore]
 objectForKey:(NSString *)kMDItemKeywords];
if (existingMetadata == nil) {
 ok = [self setMetadataForStoreAtURL:url];
}

Complete Code Listing

A complete listing for configurePersistentStoreCoordinatorForURL:ofType:error: is shown in
Listing 7-2.

Listing 7-2 Complete listing of theconfigurePersistentStoreCoordinatorForURL:ofType:error:
method

- (BOOL)configurePersistentStoreCoordinatorForURL:(NSURL *)url
 ofType:(NSString *)fileType
 error:(NSError **)error
{
 BOOL ok = [super configurePersistentStoreCoordinatorForURL:url
 ofType:fileType
 error:error];
 if (ok)
 {
 NSPersistentStoreCoordinator *psc = [[self managedObjectContext]
 persistentStoreCoordinator];
 id pStore = [psc persistentStoreForURL:url];
 id existingMetadata = [[psc metadataForPersistentStore:pStore]
 objectForKey:(NSString *)kMDItemKeywords];
 if (existingMetadata == nil) {
 ok = [self setMetadataForStoreAtURL:url];
 }
 }

Set the Metadata for a New Store 53
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Document Metadata

 return ok;}

Set the Metadata for an Existing Store

When a document is saved, Core Data calls the NSPersistentDocument method
writeToURL:ofType:forSaveOperation:originalContentsURL:error:. You can override this method
to add metadata to the new store before it is saved. (Recall that setting the metadata for a store does not
change the information on disk until the store is saved.)

Steps

1. In MyDocument, add an implementation for writeToURL: ofType: forSaveOperation:
originalContentsURL: error:. The final step is to invoke and return the superclass’s implementation.

- (BOOL)writeToURL:(NSURL *)absoluteURL
 ofType:(NSString *)typeName
 forSaveOperation:(NSSaveOperationType)saveOperation
 originalContentsURL:(NSURL *)absoluteOriginalContentsURL
 error:(NSError **)error
{
 // implementation continues...

 return [super writeToURL:absoluteURL
 ofType:typeName
 forSaveOperation:saveOperation
 originalContentsURL:absoluteOriginalContentsURL
 error:error];
}

2. If the document’s URL is not nil, then it is possible to retrieve the persistent store for that URL from the
persistent store coordinator. Invoke setMetadataForStoreAtURL: to set the metadata for the store.

if ([self fileURL] != nil) {
 [self setMetadataForStoreAtURL:[self fileURL]];
}

Note that this also takes account of Save As operations. The metadata is associated with the persistent
store before it is written to a new file.

Complete Code Listing

A complete listing for writeToURL:ofType:forSaveOperation:originalContentsURL:error: is
shown in Listing 7-3.

Listing 7-3 Complete listing of the
writeToURL:ofType:forSaveOperation:originalContentsURL:error: method

- (BOOL)writeToURL:(NSURL *)absoluteURL
 ofType:(NSString *)typeName

54 Set the Metadata for an Existing Store
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Document Metadata

 forSaveOperation:(NSSaveOperationType)saveOperation
 originalContentsURL:(NSURL *)absoluteOriginalContentsURL
 error:(NSError **)error
{
 if ([self fileURL] != nil) {
 [self setMetadataForStoreAtURL:[self fileURL]];
 }
 return [super writeToURL:absoluteURL
 ofType:typeName
 forSaveOperation:saveOperation
 originalContentsURL:absoluteOriginalContentsURL
 error:error];
}

Build and Test

Build and run the application again. Create and save several documents, giving the department a different
name in each. Close and then reopen some of the documents, and save some to new locations.

If you open a document in a text editor (such as TextEdit), you should see that the correct metadata is
appended to the file.

What Happened?

You used methods defined by NSPersistentDocument to set metadata for a store as it is saved. It is up to
you to decide what information to store as metadata, and what keys to specify. You use the keys when writing
your importer.

Writing a Spotlight Importer for Core Data

Details of how in general to write an importer are given in Spotlight Importer ProgrammingGuide. This section
deals with aspects that are specific to writing an importer for Core Data.

To implement an importer, you first create a new Metadata Importer project in Xcode. Since a Core Data
importer uses Objective-C, you should change the file type of the GetMetadataForFile.c file from
sourcecode.c.c to sourcecode.c.objc using the Xcode inspector (Info window).

An important aspect of a Spotlight importer is that it should be efficient. A user may have many thousands
of files, so any small inefficiency in an importer may have a serious impact on the time it takes to index their
disk drive. One of the more expensive tasks in Core Data is creating the persistence stack—the object stores,
the object store coordinator, the managed object context, and so on. So that you can avoid this overhead
when reading metadata, NSPersistentStoreCoordinator provides a convenience
method—metadataForPersistentStoreWithURL:—that retrieves the dictionary containing the metadata
stored in an on-disk persistent store without initializing a persistence stack.

Build and Test 55
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Document Metadata

The main task when you write an importer is to implement the function GetMetadataForFile. The function
must populate a mutable dictionary—supplied as one of the arguments—with the metadata for the specified
file. Given the NSPersistentStoreCoordinator convenience method, the code is trivial, as shown here:

Boolean GetMetadataForFile(void* thisInterface,
 CFMutableDictionaryRef attributes,
 CFStringRef contentTypeUTI,
 CFStringRef pathToFile)
{
 NSURL *url = [NSURL fileURLWithPath:(NSString *)pathToFile];
 NSDictionary *metadata = [NSPersistentStoreCoordinator
metadataForPersistentStoreWithURL:url error:nil];

 if (metadata != nil) {
 [(NSMutableDictionary *)attributes addEntriesFromDictionary:metadata];
 return TRUE;
 }
 return FALSE;
}

In addition to implementing the GetMetadataForFile function, you must (as with all importers) modify
the CFBundleDocumentTypes entry in the importer project’s Info.plist file to contain an array of uniform
type identifiers (UTIs) for the LSItemContentTypes that your importer can handle, and (if you have defined
new attributes) update the schema.xml file. These are explained in detail in Spotlight Importer Programming
Guide.

56 Writing a Spotlight Importer for Core Data
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 7

Document Metadata

It is possible to use the existing application to create new employees. The Add button that is part of the
automatically-created user interface is connected to the add: method of the Employee array controller. If
you click on the button, a new instance of the array controller's entity is added to its content array. Sometimes,
though, you might want a more sophisticated user interface. Specifically, some applications use a sheet to
allow the user to fill in details about a new entry, and optionally discard the new entry before it is committed.
An example of how this could be implemented in the current project is illustrated in Figure 8-1 (page 57).

Figure 8-1 Creating a new employee using a sheet

In following this section, recall that you are expected to have mastered fundamental Cocoa tools and
techniques (see “Introduction to NSPersistentDocument Core Data Tutorial for Mac OS X v10.4” (page
9))—basic tasks such as connecting outlets and establishing bindings in Interface Builder are not described
in detail.

57
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

A Sheet for Creating a New Employee

Important: This is a preliminary document. Although this document has been reviewed for technical accuracy,
it is not final. Newer versions of this document may be provided in the future. For information about updates
to this and other developer documentation, view the New & Updated sidebars in subsequent releases of the
Reference Library.

Design Considerations

There are a number of issues to consider in implementing the sheet. To create a new employee instance,
you need a managed object context. A more subtle—but profound—aspect is that you should isolate any
changes from the document, so that adding the new employee is a single action that can be undone in a
single action. Moreover, it should be possible (if the user clicks Cancel) to discard the new instance without
affecting the undo stack in the document.

Together, these constraints suggest a new pattern, where the sheet uses a separate managed object context.
The new employee is inserted into this context when the sheet is created. If the user clicks the Add button,
the employee is added to the document's main context. If the user clicks the Cancel button, the new employee
is deleted and the sheet's context reset—the document's context remains unchanged.

The implementation shown here is but one of several possibilities. Management of the sheet and the managed
object context are factored into a separate controller, distinct from the document object. This largely follows
the coordinator design pattern (discussed in “The Model-View-Controller Design Pattern” in Cocoa
Fundamentals Guide in Cocoa Fundamentals Guide). The goal here, though, is primarily to illustrate the use
of Core Data, with comparatively few distractions; it also aims to be fairly reusable. You can adapt what you
learn in the tutorial to your own needs. Which approach you take for your own project will depend on the
constraints that are specific to your application.

Implementation Overview

There are several separate steps to the implementation. You need to define the functionality of a new
class—the new employee sheet controller—and create a new nib file that contains the sheet.

1. The new employee controller needs to be able to do several things. It must coordinate its own managed
object context—which must be configured using the managed object model from the document. The
controller must also be able to add the new employee to the document's Department object's employees
relationship. To do this, it needs access to that relationship, and again to the document's managed object
model.

The simplest way to satisfy all these needs is to give the new employee controller an outlet to the
employees array controller. The array controller gives access to the document's managed object context
(to which it is bound), gives the new employee controller an easy way to create a new Employee instance,
and (since it manages it) a means to insert the new Employee into the Department's employees
relationship.

2. One issue with creating the new top-level object in the nib file is that when you use bindings an object
retains other objects to which it is bound. This means that bindings must be broken to ensure there are
no retain cycles when a document is closed. Moreover, since the nib file the new controller owns contains
top level objects and the controller’s class does not inherit from NSWindowController, you need to
release the top level objects when the window is closed.

58 Design Considerations
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

A Sheet for Creating a New Employee

3. You need to support undo in the sheet.

Declaring and Setting up NewObjectSheetController

Create in the project the files for a new class called NewObjectSheetController. An instance of this class
is responsible for creating and managing the sheet for the new Employee object and for coordinating data
between the sheet and the document.

The header file

The sheet controller uses a private managed object context. It also need to be able to access the document
window, the employees array controller, an object controller in its own nib file, and the sheet. Add to the
interface suitable instance variables for all these.

@interface NewObjectSheetController : NSObject
{
 IBOutlet NSWindow *documentWindow;
 IBOutlet NSArrayController *sourceArrayController;
 IBOutlet NSObjectController *newObjectController;
 IBOutlet NSPanel *newObjectSheet;

 NSManagedObjectContext *managedObjectContext;
}

To complete the interface, add the method declarations. The controller needs to provide accessor methods
for accessing the managed object contexts, and action methods to launch the sheet, dismiss the sheet, and
support undo and redo.

- (NSManagedObjectContext *)managedObjectContext;
- (NSManagedObjectContext *)documentManagedObjectContext;

- (IBAction)add:(id)sender;

- (IBAction)addNewObjectFromSheet:sender;
- (IBAction)cancelNewObjectFromSheet:sender;

- (IBAction)undo:sender;
- (IBAction)redo:sender;

@end

Update the Document nib File

You need to add an instance of the sheet controller in the document nib file and configure it appropriately.

 ■ Import the NewObjectSheetController header file into MyDocument.nib, then instantiate an instance.

 ■ Connect the outlets as follows:

Connect documentWindow to the document window.

Declaring and Setting up NewObjectSheetController 59
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

A Sheet for Creating a New Employee

Connect sourceArrayController to the Employees array controller.

 ■ Now disconnect the Add button from the array controller, and set its target to be the sheet controller
and the action to be add:.

Create and Configure the Sheet Controller nib File

The next stage is to create and configure the user interface for the sheet.

 ■ Create a new nib file named “NewEmployeeSheet” and add it to the project.

 ■ Import the header file for the NewObjectSheetController class into the nib file. Set the File’s Owner
to be an instance of NewObjectSheetController.

 ■ Add an NSObjectController instance to the nib file. Set its entity to be Employee.

Bind the managedObjectContext binding of the NSObjectController instance to the
managedObjectContext key of File’s Owner.

 ■ Connect the File’s Owner’s newObjectController outlet to the object controller.

 ■ Add an NSPanel instance to the nib file. To the panel, add user interface elements so that it looks like
the image below.

60 Declaring and Setting up NewObjectSheetController
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

A Sheet for Creating a New Employee

 ■ Connect the File’s Owner’s newObjectSheet outlet to the panel.

 ■ Connect the panel’s delegate outlet to the File’s Owner.

 ■ Bind the values of the text fields to the appropriate attribute in the object controller. For example, bind
the value of the First Name text field to the object controller’s selection.firstName key path. Ensure
that the “Validates Immediately” option is selected.

 ■ Set up the target and action for the Add and Cancel buttons. The target is File’s Owner, the actions are
addNewObjectFromSheet: and cancelNewObjectFromSheet: respectively.

Implement the NewObjectSheetController Class

Managed Object Contexts

You need access to two different managed object contexts—one from the source array controller (the
document's context), and one for the sheet controller itself. You can implement a simple accessor for the
source array controller, whereas the sheet controller's accessor lazily creates the context on demand. You
set the persistent store coordinator for the controller’s context to be the same as that of the document
context.

Implement the NewObjectSheetController Class 61
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

A Sheet for Creating a New Employee

Implement the managedObjectContext and documentManagedObjectContext methods as follows:

Listing 8-1 Managed object context accessor methods

- (NSManagedObjectContext *)documentManagedObjectContext
{
 return [sourceArrayController managedObjectContext];
}

- (NSManagedObjectContext *)managedObjectContext
{
 if (managedObjectContext == nil) {
 managedObjectContext = [[NSManagedObjectContext alloc] init];
 [managedObjectContext setPersistentStoreCoordinator:
 [[self documentManagedObjectContext] persistentStoreCoordinator]];
 }
 return managedObjectContext;
}

Setting up the Sheet

You configure the sheet in the add: method. The first step is to load the nib file, if necessary.

- (IBAction)add:sender
{
 if (newObjectSheet == nil) {

 NSBundle *myBundle = [NSBundle bundleForClass:[self class]];
 NSNib *nib = [[NSNib alloc] initWithNibNamed:@"NewEmployeeSheet"
bundle:myBundle];

 BOOL success = [nib instantiateNibWithOwner:self topLevelObjects:nil];
 [nib release];

 if (success != YES) {
 // should present error
 return;
 }
 }
 // implementation continues...
}

You next need to create a new Employee instance. The easiest way is to use the object controller’s newObject
method. It is also useful to disable undo registration to ensure that the user cannot undo the creation of the
new object. This is similar to the initialization of the Department object for a new document.

 NSUndoManager *um = [[self managedObjectContext] undoManager];
 [um disableUndoRegistration];

 id newObject = [[newObjectController newObject] autorelease];
 [newObjectController addObject:newObject];

 [[self managedObjectContext] processPendingChanges];
 [um enableUndoRegistration];

62 Implement the NewObjectSheetController Class
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

A Sheet for Creating a New Employee

Finally, you need to display the sheet. Use the NSApplication method,
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo:, and pass
newObjectSheetDidEnd:returnCode:contextInfo: as the selector.

 [NSApp beginSheet:newObjectSheet
 modalForWindow:documentWindow
 modalDelegate:self
 didEndSelector:@selector(newObjectSheetDidEnd:returnCode:contextInfo:)
 contextInfo:NULL];

Responding to Sheet Dismissal

Implement the action methods for the Add and Cancel buttons. Both end the sheet, but with different return
codes. Note that the add method also invokes commitEditing on the object controller—this ensures that
if the user has started editing a field, the pending changes are committed.

Listing 8-2 Action methods for the Add and Cancel buttons.

- (IBAction)addNewObjectFromSheet:sender
{
 [newObjectController commitEditing];
 [NSApp endSheet:newObjectSheet returnCode:NSOKButton];
}

- (IBAction)cancelNewObjectFromSheet:sender
{
 [NSApp endSheet:newObjectSheet returnCode:NSCancelButton];
}

When the sheet actually ends, you must respond accordingly in the implementation of
newObjectSheetDidEnd:returnCode:contextInfo: (the method you defined in “Setting up the
Sheet” (page 62) as the callback for the sheet). If the Add button was pressed, you make a new instance of
a managed object using the source array controller, and copy the copy attributes from the sheet's managed
object.

Whichever button was pressed, you set the content of the sheet's object controller to nil, and reset the
context (this disposes of all changes). Finally, you order out the sheet.

- (void)newObjectSheetDidEnd:(NSWindow *)sheet
 returnCode:(int)returnCode
 contextInfo:(void *)contextInfo
{
 NSManagedObject *sheetObject = [newObjectController content];

 if (returnCode == NSOKButton) {

 NSManagedObject *newObject =
 [[sourceArrayController newObject] autorelease];
 [newObject setValuesForKeysWithDictionary:
 [sheetObject valuesForKeys:[[newObject class] copyKeys]]];
 [sourceArrayController addObject:newObject];
 }

 [newObjectController setContent:nil];
 [[self managedObjectContext] reset];

Implement the NewObjectSheetController Class 63
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

A Sheet for Creating a New Employee

 [newObjectSheet orderOut:self];
}

In order to suppress compiler warnings for the use of the custom method (copyKeys) in the Employee class,
you must import the Employee header file. At the top of the implementation file, add:

#import "Employee.h"

Tidying Up

To take care of memory management details, the sheet controller must dispose of the sheet and the object
controller when the document closes. It must also dispose of the managed object context on dealloc.
Implement an awakeFromNib method to register for window closing notification from the document's
window, and implement the corresponding method (documentWindowWillClose:) to autorelease
newObjectSheet and newObjectController. Finally, implement a suitable dealloc method.

Listing 8-3 Tidying up methods

- (void)awakeFromNib
{
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(documentWindowWillClose:)
 name:NSWindowWillCloseNotification
 object:documentWindow];
}

- (void)documentWindowWillClose:(NSNotification *)note
{
 [[NSNotificationCenter defaultCenter]
 removeObserver:self name:nil object:nil];
 [newObjectSheet autorelease];
 [newObjectController autorelease];
}

- (void)dealloc
{
 [managedObjectContext release];
 [super dealloc];
}

Supporting Undo

Although there are only four fields in the sheet, it is still useful to properly support undo—especially if you
adapt the techniques described here to a larger task. There are several steps to this. First, you have to ensure
that the sheet uses the sheet controller’s managed object context’s undo manager and direct undo and redo
actions to the undo manager. Second, to ensure the user interface is consistent, you should implement the
validateUserInterfaceItem: method. And finally, unfortunately, you have to work around a bug in the
implementation of undo support in AppKit.

64 Supporting Undo
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

A Sheet for Creating a New Employee

Accessing the undo manager

First, implement windowWillReturnUndoManager: to return the private managed object context’s undo
manager:

- (NSUndoManager *)windowWillReturnUndoManager:(NSWindow *)sender
{
 return [[self managedObjectContext] undoManager];
}

Next, implement undo: and redo: methods to direct the actions to the context’s undo manager.

- (IBAction)undo:sender
{
 [[[self managedObjectContext] undoManager] undo];
}

- (IBAction)redo:sender
{
 [[[self managedObjectContext] undoManager] redo];
}

Validating user interface items

To validate menu items correctly, you must implement the validateUserInterfaceItem: method to
return the appropriate value. For more details, see User Interface Validation.

- (BOOL)validateUserInterfaceItem:(id <NSValidatedUserInterfaceItem>)anItem
{
 if ([anItem action] == @selector(undo:)) {
 return [[[self managedObjectContext] undoManager] canUndo];
 }
 if ([anItem action] == @selector(redo:)) {
 return [[[self managedObjectContext] undoManager] canRedo];
 }
 return YES;
}

Workaround

Unfortunately, in Mac OS X version 10.4 there is a bug in the way the Application Framework determines
the target for an action and subsequently directs action methods. To work around this, you must implement
a subclass of NSApplication as shown below:

@class NewObjectSheetController;

@implementation MyApplication

- (id)targetForAction:(SEL)anAction to:(id)aTarget from:(id)sender
{
 if ((anAction != @selector(undo:)) &&
 (anAction != @selector(redo:))) {

Supporting Undo 65
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

A Sheet for Creating a New Employee

 return [super targetForAction:anAction to:aTarget from:sender];
 }

 id keyWindowDelegate = [[self keyWindow] delegate];
 if ([keyWindowDelegate isKindOfClass:[NewObjectSheetController class]]) {
 return keyWindowDelegate;
 }
 return [super targetForAction:anAction to:aTarget from:sender];
}

- (BOOL)sendAction:(SEL)anAction to:(id)theTarget from:(id)sender
{
 if ((anAction != @selector(undo:)) &&
 (anAction != @selector(redo:))) {

 return [super sendAction:anAction to:theTarget from:sender];
 }

 id keyWindowDelegate = [[self keyWindow] delegate];
 if ([keyWindowDelegate isKindOfClass:[NewObjectSheetController class]]) {
 return [super sendAction:anAction to:keyWindowDelegate from:sender];
 }
 return [super sendAction:anAction to:theTarget from:sender];
}

@end

In Xcode (in the Properties inspector for the target), set the principal class (NSPrincipalClass) for your
project to MyApplication.

Build and run the application.

What Happened?

In this section, you followed the coordinator design pattern to create a new controller object that is responsible
for managing a sheet used to create a new object. The controller uses a separate managed object context
to keep the new managed object, and edits to the new managed object, discrete from the document..

66 What Happened?
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

CHAPTER 8

A Sheet for Creating a New Employee

This table describes the changes to NSPersistentDocument Core Data Tutorial for Mac OS X v10.4..

NotesDate

Re-release of Mac OS X v10.4 version of NSPersistentDocument Core Data
Tutorial.

2009-02-04

67
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

68
Legacy Document | 2009-02-04 | © 2005, 2009 Apple Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

	NSPersistentDocument Core Data Tutorial for Mac OS X v10.4.
	Contents
	Figures, Tables, and Listings
	Introduction
	Overview of the Tutorial
	Tutorial Steps
	Create the Project and User Interface
	Adding a Department Object
	Copy and Paste
	Customizing Property Names and Alert Panels
	Metadata Support

	NSPersistentDocument Limitations

	Creating the Project, Model, and Interface
	Create a New Project
	Create the Data Model
	Create the User Interface
	Set the File Extension and Type
	Build and Test
	What Happened?

	Creating a Custom Class
	The Employee Class
	Support for the Derived Value
	Steps
	Build and Test

	Initializing the Employee ID
	Implement awakeFromInsert
	Build and Test

	What Happened?
	Code Listing for the Employee Class
	Optional Extra—Sorting the Managers Popup

	Adding a Department Object
	Creating the Department
	Steps
	Complete Code Listing

	Fetching the Department
	Steps
	Complete Code Listing

	Update the User Interface
	Build and Test

	Supporting Document Revert
	Adopting the Mediator Pattern
	What Happened?

	Copy and Paste
	Custom Employee Logic
	Copy
	Steps
	Complete Code Listing
	Build and Test

	Paste
	Steps
	Complete Code Listing
	Build and Test

	Cut
	Steps
	Complete Code Listing
	Build and Test

	Localizing and Customizing Model Property Names and Error Messages
	Customizing and Localizing Model Names
	Steps
	Build and Test

	Customizing the Document Alert Panel
	Steps
	Complete Code Listing
	Build and Test

	What Happened?

	Document Metadata
	Setting Metadata for a Store
	Steps
	Complete Code Listing

	Set the Metadata for a New Store
	Steps
	Complete Code Listing

	Set the Metadata for an Existing Store
	Steps
	Complete Code Listing

	Build and Test
	What Happened?
	Writing a Spotlight Importer for Core Data

	A Sheet for Creating a New Employee
	Design Considerations
	Implementation Overview
	Declaring and Setting up NewObjectSheetController
	The header file
	Update the Document nib File
	Create and Configure the Sheet Controller nib File

	Implement the NewObjectSheetController Class
	Managed Object Contexts
	Setting up the Sheet
	Responding to Sheet Dismissal
	Tidying Up

	Supporting Undo
	Accessing the undo manager
	Validating user interface items
	Workaround

	What Happened?

	Revision History

