The Objective-C 2.0 Programming Language

Cocoa > Objective-C Language

¢

2009-05-06

.

[

Apple Inc.

© 2009 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, Bonjour, Cocoa, Mac,
Mac OS, Objective-C, and Xcode are trademarks
of Apple Inc, registered in the United States
and other countries.

Instruments and iPhone are trademarks of
Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to The Objective-C 2.0 Programming Language 9

Who Should Read This Document 9
Organization of This Document 10
Conventions 11
See Also 11

Runtime 11

Memory Management 12

Chapter 1 Objects, Classes, and Messaging 13

Runtime 13
Objects 13
Object Basics 13
id 14
Dynamic Typing 14
Memory Management 15
Object Messaging 15
Message Syntax 15
Sending Messages to nil 17
The Receiver’s Instance Variables 18
Polymorphism 18
Dynamic Binding 19
Dynamic Method Resolution 20
Dot Syntax 20
Classes 23
Inheritance 24
Class Types 27
Class Objects 28
Class Names in Source Code 32
Testing Class Equality 33

Chapter 2 Defining a Class 35

Source Files 35

Class Interface 35
Importing the Interface 37
Referring to Other Classes 37
The Role of the Interface 38

Class Implementation 38
Referring to Instance Variables 39
The Scope of Instance Variables 40

2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Messages to self and super 43
An Example 44
Using super 45
Redefining self 46

Chapter 3 Allocating and Initializing Objects 47

Allocating and Initializing Objects 47

The Returned Object 47

Implementing an Initializer 48
Constraints and Conventions 48
Handling Initialization Failure 50
Coordinating Classes 51

The Designated Initializer 53

Combining Allocation and Initialization 55

Chapter 4 Declared Properties 57

Overview 57
Property Declaration and Implementation 57
Property Declaration 58
Property Declaration Attributes 58
Property Implementation Directives 61
Using Properties 62
Supported Types 62
Property Re-declaration 62
Copy 63
dealloc 64
Core Foundation 64
Example 65
Subclassing with Properties 66
Performance and Threading 67
Runtime Difference 68

Chapter 5 Categories and Extensions 69

Adding Methods to Classes 69
How you Use Categories 70
Categories of the Root Class 71
Extensions 71

Chapter 6 Protocols 73

Declaring Interfaces for Others to Implement 73
Methods for Others to Implement 74
Declaring Interfaces for Anonymous Objects 75

2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Non-Hierarchical Similarities 75
Formal Protocols 76
Declaring a Protocol 76
Optional Protocol Methods 76
Informal Protocols 77
Protocol Objects 77
Adopting a Protocol 78
Conforming to a Protocol 79
Type Checking 79
Protocols Within Protocols 80
Referring to Other Protocols 81

Chapter 7 Fast Enumeration 83

The for...in Feature 83
Adopting Fast Enumeration 83
Using Fast Enumeration 84

Chapter 8 Enabling Static Behavior 87

Default Dynamic Behavior 87

Static Typing 87

Type Checking 88

Return and Argument Types 89
Static Typing to an Inherited Class 89

Chapter 9 Selectors 91

Methods and Selectors 91

SEL and @selector 91

Methods and Selectors 92

Method Return and Argument Types 92
Varying the Message at Runtime 92
The Target-Action Design Pattern 93
Avoiding Messaging Errors 93

Chapter 10 Exception Handling 95

Enabling Exception-Handling 95
Exception Handling 95

Catching Different Types of Exception 96
Throwing Exceptions 96

Chapter 11 Threading 99

Synchronizing Thread Execution 99

2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 12

Remote Messaging 101

Chapter 13

Distributed Objects 101

Language Support 102
Synchronous and Asynchronous Messages 103
Pointer Arguments 103
Proxies and Copies 105

Using C++ With Objective-C 107

Appendix A

Mixing Objective-C and C++ Language Features 107
C++ Lexical Ambiguities and Conflicts 110
Limitations 111

Language Summary 113

Messages 113

Defined Types 113
Preprocessor Directives 114
Compiler Directives 114
Classes 116

Categories 116

Formal Protocols 117
Method Declarations 118
Method Implementations 118
Deprecation Syntax 118
Naming Conventions 119

Glossary 121

Document Revision History 125

Index 129

2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

Figures and Listings

Chapter 1 Objects, Classes, and Messaging 13
Figure 1-1 Some Drawing Program Classes 24
Figure 1-2 Rectangle Instance Variables 25
Figure 1-3 Inheritance hierarchy for NSCell 30
Listing 1-1 Accessing properties using the dot syntax 20
Listing 1-2 Accessing properties using bracket syntax 21
Listing 1-3 Implementation of the initialize method 32
Chapter 2 Defining a Class 35
Figure 2-1 The scope of instance variables 41
Figure 2-2 High, Mid, Low 44
Chapter 3 Allocating and Initializing Objects 47
Figure 3-1 Incorporating an Inherited Initialization Method 52
Figure 3-2 Covering an Inherited Initialization Model 53
Figure 3-3 Covering the Designated Initializer 54
Figure 3-4 Initialization Chain 55
Chapter 4 Declared Properties 57
Listing 4-1 Declaring a simple property 58
Listing 4-2 Using @synthesize 61
Listing 4-3 Using @dynamic with direct method implementations 62
Listing 4-4 Declaring properties for a class 65
Chapter 10 Exception Handling 95
Listing 10-1 An exception handler 96
Chapter 11 Threading 99
Listing 11-1 Locking a method using self 99
Listing 11-2 Locking a method using a custom semaphore 100
Chapter 12 Remote Messaging 101

Figure 12-1 Remote Messages 102
Figure 12-2 Round-Trip Message 103

2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

FIGURES AND LISTINGS

Chapter 13 Using C++ With Objective-C 107

Listing 13-1 Using C++ and Objective-C instances as instance variables 107

2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to The Objective-C 2.0
Programming Language

The Objective-C language is a simple computer language designed to enable sophisticated object-oriented
programming. Objective-C is defined as a small but powerful set of extensions to the standard ANSI C
language. Its additions to C are mostly based on Smalltalk, one of the first object-oriented programming
languages. Objective-C is designed to give C full object-oriented programming capabilities, and to do so in
a simple and straightforward way.

Most object-oriented development environments consist of several parts:

= An object-oriented programming language
= Alibrary of objects
= A suite of development tools

= A runtime environment

This document is about the first component of the development environment—the programming language.
It fully describes the Objective-C language, and provides a foundation for learning about the second
component, the Mac OS X Objective-C application frameworks— collectively known as Cocoa. You can start
to learn more about Cocoa by reading Getting Started with Cocoa. The two main development tools you use
are Xcode and Interface Builder, described in Xcode Workspace Guide and Interface Builder respectively. The
runtime environment is described in a separate document, Objective-C 2.0 Runtime Programming Guide.

Important: This document describes version 2.0 of the Objective-C language which is released with Mac OS
X v10.5. Several new features are introduced in this version, including properties (see “Declared

Properties” (page 57)), fast enumeration (see “Fast Enumeration” (page 83)), optional protocols, and (on
modern platforms) non-fragile instance variables. These features are not available on versions of Mac OS X
prior to 10.5. If you use these features, therefore, your application cannot run on versions of Mac OS X prior
to 10.5. To learn about version 1.0 of the Objective-C language, read Object Oriented Programming and the
Objective-C Programming Language 1.0.

Who Should Read This Document

The document is intended for readers who might be interested in:
= Programming in Objective-C

= Finding out about the basis for the Cocoa application framework

This document both introduces the object-oriented model that Objective-C is based upon and fully documents
the language. It concentrates on the Objective-C extensions to C, not on the C language itself.

Who Should Read This Document 9
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to The Objective-C 2.0 Programming Language

Because this isn't a document about C, it assumes some prior acquaintance with that language. However, it
doesn't have to be an extensive acquaintance. Object-oriented programming in Objective-C is sufficiently
different from procedural programming in ANSI C that you won't be hampered if you're not an experienced
C programmer.

Organization of This Document

10

This document is divided into several chapters and one appendix.

The following chapters describe the Objective-C language They cover all the features that the language adds
to standard C.

m “Objects, Classes, and Messaging” (page 13)
= “Defining a Class” (page 35)

m “Allocating and Initializing Objects” (page 47)
m “Declared Properties” (page 57)

m “Categories and Extensions” (page 69)

m “Protocols” (page 73)

m “Fast Enumeration” (page 83)

m “Enabling Static Behavior” (page 87)

m “Selectors” (page 91)

m “Exception Handling” (page 95)

m “Threading” (page 99)

= “Remote Messaging” (page 101)

The Apple compilers are based on the compilers of the GNU Compiler Collection. Objective-C syntax is a
superset of GNU C/C++ syntax, and the Objective-C compiler works for C, C++ and Objective-C source code.
The compiler recognizes Objective-C source files by the filename extension .m, just as it recognizes files
containing only standard C syntax by filename extension . c. Similarly, the compiler recognizes C++ files that
use Objective-C by the extension . mm. Other issues when using Objective-C with C++ are covered in “Using
C++ With Objective-C” (page 107).

The appendix contains reference material that might be useful for understanding the language:

= “Language Summary” (page 113) lists and briefly comments on all of the Objective-C extensions to the
C language.

Organization of This Document
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to The Objective-C 2.0 Programming Language

Conventions

Where this document discusses functions, methods, and other programming elements, it makes special use
of computer voice and italic fonts. Computer voice denotes words or characters that are to be taken literally
(typed as they appear). Italic denotes words that represent something else or can be varied. For example,
the syntax:

@interfaceClassName(CategoryName)

means that @interface and the two parentheses are required, but that you can choose the class name and
category name.

Where example code is shown, ellipsis points indicates the parts, often substantial parts, that have been
omitted:

- (void)encodeWithCoder: (NSCoder *)coder
{
[super encodeWithCoder:coder];

}

The conventions used in the reference appendix are described in that appendix.

See Also

If you have never used object-oriented programming to create applications before, you should read
Object-Oriented Programming with Objective-C. You should also consider reading it if you have used other
object-oriented development environments such as C++ and Java, since those have many different
expectations and conventions from Objective-C. Object-Oriented Programming with Objective-C is designed
to help you become familiar with object-oriented development from the perspective of an Objective-C
developer. It spells out some of the implications of object-oriented design and gives you a flavor of what
writing an object-oriented program is really like.

Runtime

Objective-C 2.0 Runtime Programming Guide describes aspects of the Objective-C runtime and how you can
use it.

Objective-C 2.0 Runtime Reference describes the data structures and functions of the Objective-C runtime
support library. Your programs can use these interfaces to interact with the Objective-C runtime system. For
example, you can add classes or methods, or obtain a list of all class definitions for loaded classes.

Objective-C Release Notes describes some of the changes in the Objective-C runtime in the latest release of
Mac OS X.

Conventions n
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

INTRODUCTION

Introduction to The Objective-C 2.0 Programming Language

Memory Management

Objective-C supports two environments for memory management: automatic garbage collection and reference
counting:

m Garbage Collection Programming Guide describes the garbage collection system used by Cocoa. (Not
available on iPhone—you cannot access this document through the iPhone Dev Center.)

= Memory Management Programming Guide for Cocoa describes the reference counting system used by
Cocoa.

12 See Also
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Objects, Classes, and Messaging

This chapter describes the fundamentals of objects, classes, and messaging as used and implemented by the
Objective-C language. It also introduces the Objective-C runtime.

Runtime

The Objective-C language defers as many decisions as it can from compile time and link time to runtime.
Whenever possible, it dynamically performs operations such as creating objects and determining what
method to invoke. This means that the language requires not just a compiler, but also a runtime system to
execute the compiled code. The runtime system acts as a kind of operating system for the Objective-C
language; it's what makes the language work. Typically, however, you don’t need to interact with the runtime
directly. To understand more about the functionality it offers, though, see Objective-C 2.0 Runtime Programming
Guide.

Objects

As the name implies, object-oriented programs are built around objects. An object associates data with the
particular operations that can use or affect that data. Objective-C provides a data type to identify an object
variable without specifying a particular class of the object—this allows for dynamic typing. In a program,
you should typically ensure that you dispose of objects that are no longer needed.

Object Basics

An object associates data with the particular operations that can use or affect that data. In Objective-C, these
operations are known as the object’s methods; the data they affect are its instance variables. In essence,
an object bundles a data structure (instance variables) and a group of procedures (methods) into a
self-contained programming unit.

For example, if you are writing a drawing program that allows a user to create images composed of lines,
circles, rectangles, text, bit-mapped images, and so forth, you might create classes for many of the basic
shapes that a user can manipulate. A Rectangle object, for instance, might have instance variables that identify
the position of the rectangle within the drawing along with its width and its height. Other instance variables
could define the rectangle’s color, whether or not it is to be filled, and a line pattern that should be used to
display the rectangle. A Rectangle class would have methods to set an instance’s position, size, color, fill
status, and line pattern, along with a method that causes the instance to display itself.

Runtime 13
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

14

CHAPTER 1

Objects, Classes, and Messaging

In Objective-C, an object’s instance variables are internal to the object; generally, you get access to an object’s
state only through the object’s methods (you can specify whether subclasses or other objects can access
instance variables directly by using scope directives, see “The Scope of Instance Variables” (page 40)). For
others to find out something about an object, there has to be a method to supply the information. For
example, a Rectangle would have methods that reveal its size and its position.

Moreover, an object sees only the methods that were designed for it; it can’t mistakenly perform methods
intended for other types of objects. Just as a C function protects its local variables, hiding them from the rest
of the program, an object hides both its instance variables and its method implementations.

id

In Objective-C, object identifiers are a distinct data type: id. This is the general type for any kind of object
regardless of class. (It can be used for both instances of a class and class objects themselves.) id is defined
as pointer to an object data structure:

typedef struct objc_object ({
Class isa;
bo*id;
All objects thus have an isa variable that tells them of what class they are an instance.
Terminology: Since the Class type is itself defined as a pointer:
typedef struct objc_class *Class;
the isa variable is frequently referred to as the “isa pointer.”
Like a C function or an array, an object is therefore identified by its address. All objects, regardless of their
instance variables or methods, are of type id.
id anObject;

For the object-oriented constructs of Objective-C, such as method return values, id replaces int as the
default data type. (For strictly C constructs, such as function return values, int remains the default type.)

The keyword ni1 is defined as a null object, an id with a value of 0. id, ni1, and the other basic types of
Objective-C are defined in the header file objc/objc.h.

Dynamic Typing

The id type is completely nonrestrictive. By itself, it yields no information about an object, except that it is
an object.

But objects aren't all the same. A Rectangle won't have the same methods or instance variables as an object
that represents a bit-mapped image. At some point, a program needs to find more specific information about
the objects it contains—what the object’s instance variables are, what methods it can perform, and so on.
Since the id type designator can't supply this information to the compiler, each object has to be able to
supply it at runtime.

Objects
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Objects, Classes, and Messaging

The i sa instance variable identifies the object’s class—what kind of object it is. Every Rectangle object would
be able to tell the runtime system that it is a Rectangle. Every Circle can say that it is a Circle. Objects with
the same behavior (methods) and the same kinds of data (instance variables) are members of the same class.

Objects are thus dynamically typed at runtime. Whenever it needs to, the runtime system can find the exact
class that an object belongs to, just by asking the object. (To learn more about the runtime, see Objective-C
2.0 Runtime Programming Guide.) Dynamic typing in Objective-C serves as the foundation for dynamic binding,
discussed later.

The i sa variable also enables objects to perform introspection—to find out about themselves (or other
objects). The compiler records information about class definitions in data structures for the runtime system
to use. The functions of the runtime system use isa, to find this information at runtime. Using the runtime
system, you can, for example, determine whether an object implements a particular method, or discover the
name of its superclass.

Object classes are discussed in more detail under “Classes” (page 23).

It's also possible to give the compiler information about the class of an object by statically typing it in source
code using the class name. Classes are particular kinds of objects, and the class name can serve as a type
name. See “Class Types” (page 27) and “Enabling Static Behavior” (page 87).

Memory Management

In an Objective-C program, it is important to ensure that objects are deallocated when they are no longer
needed—otherwise your application’s memory footprint becomes larger than necessary. It is also important
to ensure that you do not deallocate objects while they're still being used.

Objective-C 2.0 offers two environments for memory management that allow you to meet these goals:

= Reference counting, where you are ultimately responsible for determining the lifetime of objects.
Reference counting is described in Memory Management Programming Guide for Cocoa.

= Garbage collection, where you pass responsibility for determining the lifetime of objects to an automatic
“collector.”

Garbage collection is described in Garbage Collection Programming Guide. (Not available on iPhone—you
cannot access this document through the iPhone Dev Center.)

Object Messaging

This section explains the syntax of sending messages, including how you can nest message expressions. It
also discusses the “visibility” of an object’s instance variables, and the concepts of polymorphism and dynamic
binding.

Message Syntax

To get an object to do something, you send it a message telling it to apply a method. In Objective-C, message
expressions are enclosed in brackets:

Object Messaging 15
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

16

CHAPTER 1

Objects, Classes, and Messaging

[receiver message]

The receiver is an object, and the message tells it what to do. In source code, the message is simply the name
of a method and any arguments that are passed to it. When a message is sent, the runtime system selects
the appropriate method from the receiver’s repertoire and invokes it.

For example, this message tells the myRectangle object to perform its disp1ay method, which causes the
rectangle to display itself:

[myRectangle display]l;

u,n

The message is followed by a “;” as is normal for any line of code in C.

The method name in a message serves to “select” a method implementation. For this reason, method names
in messages are often referred to as selectors.

Methods can also take parameters, or “arguments.” A message with a single argument affixes a colon (:) to
the selector name and puts the argument right after the colon. This construct is called a keyword; a keyword
ends with a colon, and an argument follows the colon, as shown in this example:

[myRectangle setWidth:20.01;

A selector name includes all keywords, including colons, but does not include anything else, such as return
type or parameter types. The imaginary message below tells the myRectangl e object to set its origin to the
coordinates (30.0, 50.0):

[myRectangle setOrigin:30.0 :50.0]; // This is a bad example of multiple arguments

Since the colons are part of the method name, the method is named setOrigin: :. It has two colons as it
takes two arguments. This particular method does not interleave the method name with the arguments and,
thus, the second argument is effectively unlabeled and it is difficult to determine the kind or purpose of the
method’s arguments.

Instead, method names should interleave the name with the arguments such that the method's name naturally
describes the arguments expected by the method. For example, the Rectangle class could instead implement
asetOriginX:y: method that makes the purpose of its two arguments clear:

[myRectangle setOriginX: 30.0 y: 50.0]; // This is a good example of multiple
arguments

Object Messaging
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Objects, Classes, and Messaging

Important: The sub-parts of the method name—of the selector—are not optional, nor can their order be
varied. “Named arguments” and “keyword arguments” often carry the implication that the arguments to a
method can vary at runtime, can have default values, can be in a different order, can possibly have additional
named arguments. This is not the case with Objective-C.

For all intents and purposes, an Objective-C method declaration is simply a C function that prepends two
additional arguments (see Messaging in the Objective-C 2.0 Runtime Programming Guide). This is different
from the named or keyword arguments available in a language like Python:

def func(a, b, NeatMode=SuperNeat, Thing=DefaultThing):
pass

where Thing (and NeatMode) might be omitted or might have different values when called.
Methods that take a variable number of arguments are also possible, though they’re somewhat rare. Extra
arguments are separated by commas after the end of the method name. (Unlike colons, the commas aren’t

considered part of the name.) In the following example, the imaginary makeGroup: method is passed one
required argument (group) and three that are optional:

[receiver makeGroup:group, memberOne, memberTwo, memberThree];

Like standard C functions, methods can return values. The following example sets the variable isFil1led to
YES if myRectangle is drawn as a solid rectangle, or NO if it's drawn in outline form only.

BOOL isFilled;
isFilled = [myRectangle isFilled];

Note that a variable and a method can have the same name.

One message expression can be nested inside another. Here, the color of one rectangle is set to the color of
another:

[myRectangle setPrimaryColor:[otherRect primaryColor]];

Objective-C 2.0 also provides a dot (.) operator that offers a compact and convenient syntax for invoking an
object’s accessor methods. This is typically used in conjunction with the declared properties feature (see
“Declared Properties” (page 57)), and is described in “Dot Syntax” (page 20).

Sending Messages to nil

In Objective-C, it is valid to send a message to ni1—it simply has no effect at runtime. There are several
patterns in Cocoa that take advantage of this fact. The value returned from a message to ni1 may also be
valid:

= If the method returns an object, then a message sent to nil returns 0 (ni1), for example:
Person *motherInLaw = [[aPerson spouse] mother];

If aPerson’s spouse isnil, then mother is sent to nil and the method returns nil.

= If the method returns any pointer type, any integer scalar of size less than or equal to sizeof (void*),
afloat,adouble,along double, oralong long, then a message sentto nil returns 0.

Object Messaging 17
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

18

CHAPTER 1

Objects, Classes, and Messaging

= If the method returns a struct, as defined by the Mac OS X ABI Function Call Guide to be returned in
registers, then a message sent to ni1 returns 0. 0 for every field in the data structure. Other struct data
types will not be filled with zeros.

= Ifthe method returns anything other than the aforementioned value types the return value of a message
sent to nil is undefined.

The following code fragment illustrates valid use of sending a message to ni 1.
id anObjectMaybeNil = nil;

// this is valid
if ([anObjectMaybeNil methodThatReturnsADouble] == 0.0)
{
// implementation continues...
}

Note: The behavior of sending messages to nil changed slightly with Mac OS X v10.5.

On Mac OS X v10.4 and earlier, a message to ni 1 also is valid, as long as the message returns an object, any
pointer type, void, or any integer scalar of size less than or equal to sizeof (void*); if it does, a message
sent to nil returns nil. If the message sent to ni1 returns anything other than the aforementioned value

types (for example, if it returns any struct type, any floating-point type, or any vector type) the return value
is undefined. You should therefore not rely on the return value of messages sent to ni1 unless the method’s
return type is an object, any pointer type, or any integer scalar of size less than or equal to sizeof (void*).

The Receiver’s Instance Variables

A method has automatic access to the receiving object’s instance variables. You don’t need to pass them to
the method as arguments. For example, the primaryColor method illustrated above takes no arguments,
yet it can find the primary color for otherRect and return it. Every method assumes the receiver and its
instance variables, without having to declare them as arguments.

This convention simplifies Objective-C source code. It also supports the way object-oriented programmers
think about objects and messages. Messages are sent to receivers much as letters are delivered to your home.
Message arguments bring information from the outside to the receiver; they don’t need to bring the receiver
to itself.

A method has automatic access only to the receiver’s instance variables. If it requires information about a
variable stored in another object, it must send a message to the object asking it to reveal the contents of
the variable. The primaryColor and isFi11ed methods shown above are used for just this purpose.

See “Defining a Class” (page 35) for more information on referring to instance variables.

Polymorphism

As the examples above illustrate, messages in Objective-C appear in the same syntactic positions as function
calls in standard C. But, because methods “belong to” an object, messages behave differently than function
calls.

Object Messaging
2009-05-06 | © 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Objects, Classes, and Messaging

In particular, an object can be operated on by only those methods that were defined for it. It can't confuse
them with methods defined for other kinds of object, even if another object has a method with the same
name. This means that two objects can respond differently to the same message. For example, each kind of
object senta display message could display itself in a unique way. A Circle and a Rectangle would respond
differently to identical instructions to track the cursor.

This feature, referred to as polymorphism, plays a significant role in the design of object-oriented programs.
Together with dynamic binding, it permits you to write code that might apply to any number of different
kinds of objects, without you having to choose at the time you write the code what kinds of objects they
might be. They might even be objects that will be developed later, by other programmers working on other
projects. If you write code that sends a disp1ay message to an id variable, any object that hasa display
method is a potential receiver.

Dynamic Binding

A crucial diff