Application Kit Framework Reference

Cocoa > Objective-C Language

¢

2008-11-19

.

[

Apple Inc.

© 1997, 2008 Apple Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript,
AppleWorks, Aqua, Bonjour, Carbon, Cocoa,
ColorSync, eMac, FireWire, iBook, iChat, iPhoto,
iPod, iTunes, Mac, Mac OS, Macintosh,
Objective-C, OpenDoc, Pages, PowerBook,
Quartz, QuickDraw, QuickTime, Safari,
WebObjects, and Xcode are trademarks of
Apple Inc,, registered in the United States and
other countries.

Aperture, Finder, Numbers, Shuffle, and
Spotlight are trademarks of Apple Inc.

NeXT and NeXTSTEP are trademarks of NeXT
Software, Inc,, registered in the United States
and other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGlL is a registered trademark of Silicon
Graphics, Inc.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction The Application Kit 41

Part |

Introduction 44

Application Kit Classes and Protocols 45
Encapsulating an Application 47
General Event Handling and Drawing 48
Panels 48

Menus and Cursors 48

Grouping and Scrolling Views 48
Controlling an Application 49

Tables 49

Text and Fonts 49

Graphics and Color 50

Dragging 50

Printing 50

Accessing the File System 50

Sharing Data With Other Applications 51
Checking Spelling 51

Localization 51

Classes 53

Chapter 1

ClColor Additions Reference 55

Chapter 2

Overview 55
Tasks 55
Instance Methods 55

Climage Additions Reference 57

Chapter 3

Overview 57
Tasks 57
Instance Methods 58

NSActionCell Class Reference 61

Overview 61
Tasks 61
Instance Methods 63

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 4 NSAffineTransform Additions Reference 73
Overview 73
Tasks 73
Instance Methods 74
Chapter 5 NSAlert Class Reference 77
Overview 77
Tasks 78
Class Methods 80
Instance Methods 82
Delegate Methods 95
Constants 96
Chapter 6 NSAnimation Class Reference 99
Overview 99
Tasks 100
Instance Methods 102
Delegate Methods 113
Constants 116
Notifications 118
Chapter 7 NSAnimationContext Class Reference 121
Overview 121
Tasks 122
Class Methods 122
Instance Methods 123
Chapter 8 NSAppleScript Additions Reference 125
Overview 125
Tasks 125
Instance Methods 125
Chapter 9 NSApplication Class Reference 127
Class at a Glance 127
Overview 128
Tasks 131
Class Methods 139
Instance Methods 140
Delegate Methods 181
Constants 196
4

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Notifications 202

Chapter 10 NSArrayController Class Reference 207

Overview 207
Tasks 207
Instance Methods 211

Chapter 11 NSATSTypesetter Class Reference 233

Overview 233

Tasks 233

Class Methods 237
Instance Methods 237

Chapter 12 NSAttributedString Application Kit Additions Reference 255

Overview 255

Tasks 255

Class Methods 258
Instance Methods 261
Constants 276

Chapter 13 NSBezierPath Class Reference 293

Overview 293
Adopted Protocols 294
Tasks 294

Class Methods 298
Instance Methods 310
Constants 338

Chapter 14 NSBitmaplmageRep Class Reference 343

Overview 343

Tasks 344

Class Methods 346
Instance Methods 350
Constants 370

Chapter 15 NSBox Class Reference 379

Overview 379

Tasks 380

Instance Methods 382
Constants 394

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 16 NSBrowser Class Reference 397

Overview 397

Tasks 398

Class Methods 405
Instance Methods 406
Delegate Methods 443
Constants 457
Notifications 458

Chapter 17 NSBrowserCell Class Reference 459

Overview 459

Tasks 459

Class Methods 460
Instance Methods 461

Chapter 18 NSBundle Additions Reference 467

Overview 467

Tasks 467

Class Methods 468
Instance Methods 469

Chapter 19 NSButton Class Reference 473

Overview 473
Tasks 474
Instance Methods 476

Chapter 20 NSButtonCell Class Reference 495

Overview 495

Tasks 496

Instance Methods 499
Constants 525

Chapter 21 NSCachedimageRep Class Reference 531

Overview 531
Tasks 531
Instance Methods 532

Chapter 22 NSCell Class Reference 535

Overview 535

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Adopted Protocols 535
Tasks 536

Class Methods 545
Instance Methods 546
Constants 612
Notifications 625

Chapter 23 NSClimageRep Class Reference 627
Overview 627
Tasks 627
Class Methods 628
Instance Methods 628
Chapter 24 NSClipView Class Objective-C Reference 631
Class at a Glance 631
Overview 632
Tasks 632
Instance Methods 634
Chapter 25 NSCoder Application Kit Additions Reference 641
Overview 641
Tasks 641
Instance Methods 641
Chapter 26 NSCollectionView Class Reference 643
Overview 643
Tasks 643
Instance Methods 645
Chapter 27 NSCollectionViewltem Class Reference 653
Overview 653
Tasks 653
Instance Methods 654
Chapter 28 NSColor Class Reference 657

Class at a Glance 657
Overview 658
Adopted Protocols 658
Tasks 658

Class Methods 664

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 692
Constants 710
Notifications 711

Chapter 29 NSColorList Class Reference 713

Overview 713
Adopted Protocols 713
Tasks 713

Class Methods 714
Instance Methods 715
Notifications 720

Chapter 30 NSColorPanel Class Reference 721

Overview 721

Tasks 721

Class Methods 723
Instance Methods 725
Delegate Methods 732
Constants 733
Notifications 736

Chapter 31 NSColorPicker Class Reference 737

Overview 737
Adopted Protocols 737
Tasks 738

Instance Methods 739

Chapter 32 NSColorSpace Class Reference 745

Overview 745

Tasks 745

Class Methods 746
Instance Methods 749
Constants 753

Chapter 33 NSColorWell Class Reference 757

Overview 757
Tasks 757
Instance Methods 758

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 34 NSComboBox Class Reference 763

Overview 763

Tasks 764

Instance Methods 766
Delegate Methods 782
Notifications 783

Chapter 35 NSComboBoxCell Class Reference 785

Overview 785
Tasks 785
Instance Methods 788

Chapter 36 NSControl Class Reference 805

Overview 805

Tasks 806

Class Methods 811
Instance Methods 812
Delegate Methods 842
Notifications 848

Chapter 37 NSController Class Reference 851

Overview 851
Adopted Protocols 851
Tasks 851

Instance Methods 852

Chapter 38 NSCursor Class Reference 855

Overview 855
Adopted Protocols 857
Tasks 857

Class Methods 859
Instance Methods 865
Constants 872

Chapter 39 NSCustomlimageRep Class Reference 873

Overview 873
Tasks 873
Instance Methods 874

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 40 NSDatePicker Class Reference 877

Overview 877
Tasks 877
Instance Methods 879

Chapter 41 NSDatePickerCell Class Reference 893

Overview 893

Tasks 893

Instance Methods 895
Delegate Methods 905
Constants 906

Chapter 42 NSDictionaryController Class Reference 911

Overview 911
Adopted Protocols 912
Tasks 912

Instance Methods 913
Constants 918

Chapter 43 NSDockTile Class Reference 921

Overview 921
Tasks 922
Instance Methods 923

Chapter 44 NSDocument Class Reference 927

Class at a Glance 927
Overview 928

Tasks 929

Class Methods 937
Instance Methods 939
Constants 996

Chapter 45 NSDocumentController Class Reference 999

Overview 999
Adopted Protocols 999
Tasks 1000

Class Methods 1004
Instance Methods 1005

10
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 46 NSDrawer Class Reference 1029
Overview 1029
Tasks 1029
Instance Methods 1032
Delegate Methods 1042
Constants 1045
Notifications 1046
Chapter 47 NSEPSImageRep Class Reference 1047
Overview 1047
Tasks 1047
Class Methods 1048
Instance Methods 1048
Chapter 48 NSEvent Class Reference 1051
Overview 1051
Adopted Protocols 1052
Tasks 1052
Class Methods 1056
Instance Methods 1063
Constants 1083
Chapter 49 NSFileWrapper Class Reference 1105
Overview 1105
Adopted Protocols 1106
Tasks 1106
Instance Methods 1108
Chapter 50 NSFont Class Reference 1123
Overview 1123
Adopted Protocols 1123
Tasks 1124
Class Methods 1129
Instance Methods 1142
Constants 1162
Notifications 1169
Chapter 51 NSFontDescriptor Class Reference 1171

Overview 1171
Adopted Protocols 1171

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

n

CONTENTS

Tasks 1172

Class Methods 1173
Instance Methods 1174
Constants 1181

Chapter 52 NSFontManager Class Reference 1189

Overview 1189

Tasks 1190

Class Methods 1194
Instance Methods 1195
Delegate Methods 1219
Constants 1221

Chapter 53 NSFontPanel Class Reference 1227

Overview 1227

Tasks 1227

Class Methods 1228
Instance Methods 1229

Chapter 54 NSForm Class Reference 1233

Overview 1233
Tasks 1233
Instance Methods 1235

Chapter 55 NSFormCell Class Reference 1243

Overview 1243
Tasks 1243
Instance Methods 1245

Chapter 56 NSGlyphGenerator Class Reference 1253

Overview 1253

Tasks 1253

Class Methods 1254
Instance Methods 1254

Chapter 57 NSGlyphinfo Class Reference 1255

Overview 1255
Adopted Protocols 1255
Tasks 1255

Class Methods 1256

12
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 1257
Constants 1259

Chapter 58 NSGradient Class Reference 1261
Overview 1261
Tasks 1262
Instance Methods 1263
Constants 1271
Chapter 59 NSGraphicsContext Class Reference 1273
Overview 1273
Tasks 1274
Class Methods 1276
Instance Methods 1280
Constants 1289
Chapter 60 NSHelpManager Class Reference 1293
Overview 1293
Tasks 1293
Class Methods 1294
Instance Methods 1295
Notifications 1298
Chapter 61 NSimage Class Reference 1301
Overview 1301
Adopted Protocols 1301
Tasks 1302
Class Methods 1307
Instance Methods 1312
Delegate Methods 1346
Constants 1348
Chapter 62 NSImageCell Class Reference 1363

Overview 1363
Adopted Protocols 1363
Tasks 1364

Instance Methods 1364
Constants 1367

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

13

CONTENTS

Chapter 63 NSImageRep Class Reference 1371
Overview 1371
Adopted Protocols 1371
Tasks 1372
Class Methods 1374
Instance Methods 1386
Constants 1395
Notifications 1395
Chapter 64 NSImageView Class Reference 1397
Overview 1397
Tasks 1397
Instance Methods 1399
Chapter 65 NSInputManager Class Reference 1405
Overview 1405
Adopted Protocols 1405
Tasks 1406
Class Methods 1407
Instance Methods 1408
Chapter 66 NSInputServer Class Reference 1413
Overview 1413
Adopted Protocols 1413
Tasks 1414
Instance Methods 1414
Chapter 67 NSLayoutManager Class Reference 1415
Overview 1415
Adopted Protocols 1416
Tasks 1417
Instance Methods 1426
Delegate Methods 1502
Constants 1503
Chapter 68 NSLevelindicator Class Reference 1507
Overview 1507
Tasks 1508
Instance Methods 1509
14

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 69 NSLevellndicatorCell Class Reference 1515
Overview 1515
Tasks 1515
Instance Methods 1517
Constants 1523
Chapter 70 NSMatrix Class Reference 1525
Overview 1525
Tasks 1526
Instance Methods 1531
Constants 1575
Chapter 71 NSMenu Class Reference 1577
Overview 1577
Adopted Protocols 1577
Tasks 1578
Class Methods 1582
Instance Methods 1585
Delegate Methods 1606
Notifications 1610
Chapter 72 NSMenultem Class Reference 1613
Overview 1613
Tasks 1613
Class Methods 1618
Instance Methods 1619
Chapter 73 NSMenultemCell Class Reference 1645
Overview 1645
Tasks 1645
Instance Methods 1647
Chapter 74 NSMenuView Class Reference 1657

Overview 1657

Tasks 1657

Class Methods 1660
Instance Methods 1660

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

15

CONTENTS

Chapter 75 NSMovie Class Reference (Not Recommended) 1679
Overview 1679
Adopted Protocols 1679
Tasks 1680
Class Methods 1680
Instance Methods 1682
Chapter 76 NSMovieView Class Reference (Not Recommended) 1685
Overview 1685
Tasks 1685
Instance Methods 1688
Constants 1701
Chapter 77 NSMutableAttributedString Additions Reference 1703
Overview 1703
Tasks 1703
Instance Methods 1704
Chapter 78 NSMutableParagraphStyle Class Reference 1711
Overview 1711
Tasks 1711
Instance Methods 1713
Chapter 79 NSNib Class Reference 1723
Overview 1723
Adopted Protocols 1724
Tasks 1724
Instance Methods 1725
Constants 1727
Chapter 80 NSNibConnector Class Reference 1729
Overview 1729
Adopted Protocols 1729
Tasks 1729
Instance Methods 1730
Chapter 81 NSNibControlConnector Class Reference 1735
Overview 1735
Tasks 1735
16

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

Chapter 82

CONTENTS

Instance Methods 1735

NSNibOutletConnector Class Reference 1737

Chapter 83

Overview 1737
Tasks 1737
Instance Methods 1737

NSObjectController Class Reference 1739

Chapter 84

Overview 1739
Tasks 1739
Instance Methods 1742

NSOpenGLContext Class Reference 1757

Chapter 85

Overview 1757

Tasks 1757

Class Methods 1759
Instance Methods 1760
Constants 1771

NSOpenGLPixelBuffer Class Reference 1775

Chapter 86

Overview 1775
Tasks 1775
Instance Methods 1776

NSOpenGLPixelFormat Class Reference 1779

Chapter 87

Overview 1779

Tasks 1779

Instance Methods 1780
Constants 1783

NSOpenGLView Class Reference 1791

Chapter 88

Overview 1791

Tasks 1792

Class Methods 1793
Instance Methods 1793

NSOpenPanel Class Reference 1799

Overview 1799
Tasks 1799

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

17

CONTENTS

Class Methods 1801
Instance Methods 1801

Chapter 89 NSOutlineView Class Reference 1811

Overview 1811

Tasks 1812

Instance Methods 1817
Delegate Methods 1829
Constants 1842
Notifications 1842

Chapter 90 NSPageLayout Class Reference 1847

Overview 1847

Tasks 1847

Class Methods 1848
Instance Methods 1849

Chapter 91 NSPanel Class Reference 1855

Overview 1855

Tasks 1855

Instance Methods 1856
Constants 1859

Chapter 92 NSParagraphStyle Class Reference 1863

Overview 1863
Adopted Protocols 1863
Tasks 1864

Class Methods 1865
Instance Methods 1866
Constants 1874

Chapter 93 NSPasteboard Class Reference 1877

Overview 1877

Tasks 1877

Class Methods 1879
Instance Methods 1883
Delegate Methods 1894
Constants 1895

18
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 94

NSPathCell Class Reference 1899

Chapter 95

Overview 1899

Tasks 1899

Class Methods 1901
Instance Methods 1902
Constants 1911

NSPathComponentCell Class Reference 1913

Chapter 96

Overview 1913
Tasks 1913
Instance Methods 1914

NSPathControl Class Reference 1917

Chapter 97

Overview 1917
Tasks 1918
Instance Methods 1919

NSPDFImageRep Class Reference 1925

Chapter 98

Overview 1925

Tasks 1925

Class Methods 1926
Instance Methods 1926

NSPersistentDocument Class Reference 1929

Chapter 99

Overview 1929
Tasks 1930
Instance Methods 1931

NSPICTImageRep Class Reference 1939

Chapter 100

Overview 1939

Tasks 1939

Class Methods 1940
Instance Methods 1940

NSPopUpButton Class Reference 1943

Class at a Glance 1943
Overview 1944

Tasks 1944

Instance Methods 1947

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

19

CONTENTS

Notifications 1964

Chapter 101 NSPopUpButtonCell Class Reference 1965

Overview 1965

Tasks 1965

Instance Methods 1968
Constants 1991
Notifications 1992

Chapter 102 NSPredicateEditor Class Reference 1993

Overview 1993
Tasks 1994
Instance Methods 1994

Chapter 103 NSPredicateEditorRowTemplate Class Reference 1997

Overview 1997

Tasks 1998

Class Methods 1999
Instance Methods 2000

Chapter 104 NSPrinter Class Reference 2007

Overview 2007
Adopted Protocols 2007
Tasks 2007

Class Methods 2009
Instance Methods 2011
Constants 2020

Chapter 105 NSPrintinfo Class Reference 2021

Overview 2021
Adopted Protocols 2021
Tasks 2022

Class Methods 2025
Instance Methods 2026
Constants 2042

Chapter 106 NSPrintOperation Class Reference 2051

Overview 2051
Tasks 2052
Class Methods 2055

20
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 2061
Constants 2075

Chapter 107 NSPrintPanel Class Reference 2077

Overview 2077

Tasks 2077

Class Methods 2079
Instance Methods 2079
Constants 2088

Chapter 108 NSProgressindicator Class Reference 2091

Overview 2091

Tasks 2091

Instance Methods 2093
Constants 2104

Chapter 109 NSQuickDrawView Class Reference 2107

Overview 2107
Tasks 2107
Instance Methods 2108

Chapter 110 NSResponder Class Reference 2109

Overview 2109
Adopted Protocols 2110
Tasks 2110

Instance Methods 2117

Chapter 111 NSRuleEditor Class Reference 2167

Overview 2167

Tasks 2168

Instance Methods 2171
Delegate Methods 2188
Constants 2191
Notifications 2194

Chapter 112 NSRulerMarker Class Objective-C Reference 2195

Overview 2195
Adopted Protocols 2195
Tasks 2196

Instance Methods 2197

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

21

CONTENTS

Chapter 113 NSRulerView Class Reference 2207

Class at a Glance 2207
Overview 2208

Tasks 2208

Class Methods 2211
Instance Methods 2212
Delegate Methods 2224
Constants 2228

Chapter 114 NSSavePanel Class Reference 2231

Overview 2231

Tasks 2231

Class Methods 2234
Instance Methods 2235
Delegate Methods 2253
Constants 2257

Chapter 115 NSScreen Class Reference 2259

Overview 2259

Tasks 2260

Class Methods 2260
Instance Methods 2262

Chapter 116 NSScroller Class Reference 2265

Class at a Glance 2265
Overview 2266

Tasks 2266

Class Methods 2268
Instance Methods 2268
Constants 2276

Chapter 117 NSScrollView Class Reference 2281

Class at a Glance 2281
Overview 2282

Tasks 2282

Class Methods 2286
Instance Methods 2288

Chapter 118 NSSearchField Class Reference 2311

Overview 2311

22
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 119

Tasks 2311
Instance Methods 2312

NSSearchFieldCell Class Reference 2315

Chapter 120

Overview 2315

Tasks 2315

Instance Methods 2317
Constants 2326

NSSecureTextField Class Reference 2329

Chapter 121

Overview 2329

NSSecureTextFieldCell Class Reference 2331

Chapter 122

Overview 2331
Tasks 2331
Instance Methods 2331

NSSegmentedCell Class Reference 2333

Chapter 123

Overview 2333

Tasks 2333

Instance Methods 2335
Constants 2349

NSSegmentedControl Class Reference 2351

Chapter 124

Overview 2351

Tasks 2352

Instance Methods 2353
Constants 2363

NSShadow Class Reference 2365

Chapter 125

Overview 2365
Adopted Protocols 2366
Tasks 2366

Instance Methods 2367

NSSimpleHorizontalTypesetter Class Reference (Not Recommended) 2371

Overview 2371
Tasks 2371
Class Methods 2373

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

23

CONTENTS

Instance Methods 2373
Constants 2381

Chapter 126 NSSlider Class Reference 2385

Overview 2385
Tasks 2385
Instance Methods 2388

Chapter 127 NSSliderCell Class Reference 2401

Overview 2401

Tasks 2401

Class Methods 2404
Instance Methods 2404
Constants 2418

Chapter 128 NSSound Class Reference 2421

Overview 2421
Adopted Protocols 2422
Tasks 2422

Class Methods 2424
Instance Methods 2426
Delegate Methods 2436
Constants 2436

Chapter 129 NSSpeechRecognizer Class Reference 2437

Overview 2437

Tasks 2438

Instance Methods 2439
Delegate Methods 2443

Chapter 130 NSSpeechSynthesizer Class Reference 2445

Overview 2445

Tasks 2447

Class Methods 2449
Instance Methods 2450
Delegate Methods 2459
Constants 2462

Chapter 131 NSSpellChecker Class Reference 2469

Overview 2469

24
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 2469
Class Methods 2471
Instance Methods 2472

Chapter 132 NSSplitView Class Reference 2483

Overview 2483

Tasks 2483

Instance Methods 2485
Delegate Methods 2492
Constants 2498
Notifications 2499

Chapter 133 NSStatusBar Class Reference 2501

Overview 2501

Tasks 2501

Class Methods 2502
Instance Methods 2502
Constants 2504

Chapter 134 NSStatusitem Class Reference 2505

Overview 2505
Tasks 2505
Instance Methods 2507

Chapter 135 NSStepper Class Reference 2519

Overview 2519
Tasks 2519
Instance Methods 2520

Chapter 136 NSStepperCell Class Reference 2525

Overview 2525
Tasks 2525
Instance Methods 2526

Chapter 137 NSString Application Kit Additions Reference 2531

Overview 2531

Tasks 2531

Instance Methods 2532
Constants 2535

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

25

CONTENTS

Chapter 138 NSTableColumn Class Reference 2537

Overview 2537
Adopted Protocols 2537
Tasks 2538

Instance Methods 2540
Constants 2551

Chapter 139 NSTableHeaderCell Class Reference 2553

Overview 2553
Tasks 2553
Instance Methods 2554

Chapter 140 NSTableHeaderView Class Reference 2555

Overview 2555
Tasks 2555
Instance Methods 2556

Chapter 141 NSTableView Class Reference 2559

Class at a Glance 2559
Overview 2560
Adopted Protocols 2560
Tasks 2561

Instance Methods 2570
Delegate Methods 2620
Constants 2630
Notifications 2633

Chapter 142 NSTabView Class Reference 2635

Overview 2635

Tasks 2636

Instance Methods 2639
Delegate Methods 2651
Constants 2653

Chapter 143 NSTabViewltem Class Reference 2655

Overview 2655
Adopted Protocols 2655
Tasks 2656

Instance Methods 2657
Constants 2663

26
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 144 NSText Class Reference 2665

Class at a Glance 2665
Overview 2666
Adopted Protocols 2666
Tasks 2666

Instance Methods 2672
Delegate Methods 2701
Constants 2702
Notifications 2707

Chapter 145 NSTextAttachment Class Reference 2709

Overview 2709
Adopted Protocols 2709
Tasks 2710

Instance Methods 2710
Constants 2713

Chapter 146 NSTextAttachmentCell Class Reference 2715

Overview 2715
Adopted Protocols 2715

Chapter 147 NSTextBlock Class Reference 2717

Overview 2717

Tasks 2717

Instance Methods 2719
Constants 2729

Chapter 148 NSTextContainer Class Reference 2731

Overview 2731
Adopted Protocols 2731
Tasks 2732

Instance Methods 2733
Constants 2742

Chapter 149 NSTextField Class Reference 2745

Overview 2745
Tasks 2745
Instance Methods 2748

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

27

CONTENTS

Chapter 150

NSTextFieldCell Class Reference 2763

Chapter 151

Overview 2763

Tasks 2763

Instance Methods 2765
Constants 2771

NSTextList Class Reference 2773

Chapter 152

Overview 2773

Tasks 2773

Instance Methods 2774
Constants 2776

NSTextStorage Class Reference 2777

Overview 2777

Tasks 2778

Instance Methods 2780
Delegate Methods 2789
Constants 2790
Notifications 2791

Chapter 153 NSTextTab Class Reference 2793
Overview 2793
Adopted Protocols 2793
Tasks 2794
Instance Methods 2794
Constants 2796
Chapter 154 NSTextTable Class Reference 2799
Overview 2799
Tasks 2799
Instance Methods 2800
Constants 2806
Chapter 155 NSTextTableBlock Class Reference 2807
Overview 2807
Tasks 2807
Instance Methods 2808
28

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 156 NSTextView Class Reference 2811

Class at a Glance 2811
Overview 2812
Adopted Protocols 2812
Tasks 2813

Class Methods 2824
Instance Methods 2825
Delegate Methods 2904
Constants 2916
Notifications 2921

Chapter 157 NSTokenField Class Reference 2923

Overview 2923

Tasks 2924

Class Methods 2925
Instance Methods 2926
Delegate Methods 2928

Chapter 158 NSTokenFieldCell Class Reference 2933

Overview 2933

Tasks 2933

Class Methods 2935
Instance Methods 2936
Delegate Methods 2939
Constants 2942

Chapter 159 NSToolbar Class Reference 2945

Overview 2945

Tasks 2946

Instance Methods 2948
Delegate Methods 2960
Constants 2963
Notifications 2964

Chapter 160 NSToolbarltem Class Reference 2967

Overview 2967
Adopted Protocols 2967
Tasks 2968

Instance Methods 2970
Constants 2985

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

29

CONTENTS

Chapter 161 NSToolbarltemGroup Class Reference 2989

Overview 2989
Tasks 2990
Instance Methods 2990

Chapter 162 NSTrackingArea Class Reference 2993

Overview 2993
Adopted Protocols 2994
Tasks 2994

Instance Methods 2995
Constants 2997

Chapter 163 NSTreeController Class Reference 3001

Overview 3001
Adopted Protocols 3001
Tasks 3002

Instance Methods 3005

Chapter 164 NSTreeNode Class Reference 3023

Overview 3023

Tasks 3023

Class Methods 3024
Instance Methods 3024

Chapter 165 NSTypesetter Class Reference 3029

Overview 3029

Tasks 3031

Class Methods 3035
Instance Methods 3037
Constants 3063

Chapter 166 NSURL Additions Reference 3065

Overview 3065

Tasks 3065

Class Methods 3065
Instance Methods 3066

Chapter 167 NSUserDefaultsController Class Reference 3067

Overview 3067

30
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Tasks 3067
Class Methods 3068
Instance Methods 3069

Chapter 168 NSView Class Reference 3075

Class at a Glance 3075
Overview 3076

Tasks 3077

Class Methods 3090
Instance Methods 3091
Constants 3190
Notifications 3193

Chapter 169 NSViewAnimation Class Reference 3195

Overview 3195

Tasks 3196

Instance Methods 3196
Constants 3197

Chapter 170 NSViewController Class Reference 3201

Overview 3201
Tasks 3202
Instance Methods 3203

Chapter 171 NSWindow Class Reference 3211

Overview 3211

Tasks 3212

Class Methods 3229
Instance Methods 3232
Delegate Methods 3338
Constants 3350
Notifications 3360

Chapter 172 NSWindowController Class Reference 3367

Overview 3367
Adopted Protocols 3368
Tasks 3369

Instance Methods 3370

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

31

CONTENTS

Chapter 173 NSWorkspace Class Reference 3383

Overview 3383

Tasks 3384

Class Methods 3387
Instance Methods 3388
Constants 3410
Notifications 3415

Part I Protocols 3419

Chapter 174 NSAccessibility Protocol Reference 3421

Overview 3421

Tasks 3421

Instance Methods 3422
Constants 3428

Chapter 175 NSAnimatablePropertyContainer Protocol Reference 3465

Overview 3465

Tasks 3465

Class Methods 3466
Instance Methods 3467
Constants 3469

Chapter 176 NSChangeSpelling Protocol Reference 3471

Overview 3471
Tasks 3471
Instance Methods 3471

Chapter 177 NSColorPickingCustom Protocol Reference 3473

Overview 3473
Tasks 3473
Instance Methods 3474

Chapter 178 NSColorPickingDefault Protocol Reference 3477

Overview 3477
Tasks 3477
Instance Methods 3478

32
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 179 NSComboBoxCellDataSource Protocol Reference 3485

Overview 3485
Tasks 3485
Instance Methods 3486

Chapter 180 NSComboBoxDataSource Protocol Reference 3489

Overview 3489
Tasks 3489
Instance Methods 3489

Chapter 181 NSDictionaryControllerKeyValuePair Protocol Reference 3493

Overview 3493
Tasks 3493
Instance Methods 3494

Chapter 182 NSDraggingDestination Protocol Reference 3497

Overview 3497
Tasks 3497
Instance Methods 3498

Chapter 183 NSDragginginfo Protocol Reference 3503

Overview 3503

Tasks 3503

Instance Methods 3504
Constants 3508

Chapter 184 NSDraggingSource Protocol Reference 3511

Overview 3511
Tasks 3511
Instance Methods 3512

Chapter 185 NSEditor Protocol Reference 3517

Overview 3517
Tasks 3517
Instance Methods 3518

Chapter 186 NSEditorRegistration Protocol Reference 3521

Overview 3521

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

33

CONTENTS

Chapter 187

Tasks 3521
Instance Methods 3522

NSFontPanelValidation Protocol Reference 3523

Chapter 188

Overview 3523

Tasks 3523

Instance Methods 3523
Constants 3524

NSGlyphStorage Protocol Reference 3527

Chapter 189

Overview 3527

Tasks 3527

Instance Methods 3528
Constants 3529

NSlgnoreMisspelledWords Protocol Reference 3531

Chapter 190

Overview 3531
Tasks 3532
Instance Methods 3532

NSInputServerMouseTracker Protocol Reference 3533

Chapter 191

Overview 3533
Tasks 3533
Instance Methods 3534

NSInputServiceProvider Protocol Reference 3537

Chapter 192

Overview 3537
Tasks 3537
Instance Methods 3538

NSKeyValueBindingCreation Protocol Reference 3545

Chapter 193

Overview 3545

Tasks 3546

Class Methods 3546
Instance Methods 3547
Constants 3550

NSMenuValidation Protocol Reference 3565

34

Overview 3565

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 194

Tasks 3565
Instance Methods 3565

NSNibAwaking Protocol Reference 3567

Overview 3567
Tasks 3567
Instance Methods 3567

Chapter 195 NSOutlineViewDataSource Protocol Reference 3571
Overview 3571
Tasks 3571
Instance Methods 3572
Chapter 196 NSPathCellDelegate Protocol Reference 3581
Overview 3581
Tasks 3581
Instance Methods 3581
Chapter 197 NSPathControlDelegate Protocol Reference 3583
Overview 3583
Tasks 3583
Instance Methods 3584
Chapter 198 NSPlaceholders Protocol Reference 3587
Overview 3587
Tasks 3587
Class Methods 3588
Constants 3588
Chapter 199 NSPrintPanelAccessorizing Protocol Reference 3591
Overview 3591
Tasks 3591
Instance Methods 3591
Constants 3592
Chapter 200 NSServicesRequests Protocol Reference 3595

Overview 3595
Tasks 3595
Instance Methods 3595

35

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Chapter 201 NSTableDataSource Protocol Reference 3597
Overview 3597
Tasks 3597
Instance Methods 3598

Chapter 202 NSTextAttachmentCell Protocol Reference 3605
Overview 3605
Tasks 3605
Instance Methods 3606

Chapter 203 NSTextinput Protocol Reference 3613
Overview 3613
Tasks 3613
Instance Methods 3614

Chapter 204 NSTextlnputClient Protocol Reference 3621
Overview 3621
Tasks 3621
Instance Methods 3622

Chapter 205 NSToolbarltemValidation Protocol Reference 3631
Overview 3631
Tasks 3631
Instance Methods 3631

Chapter 206 NSToolTipOwner Protocol Reference 3633
Overview 3633
Tasks 3633
Instance Methods 3633

Chapter 207 NSUserInterfaceValidations Protocol Reference 3635
Overview 3635
Tasks 3635
Instance Methods 3635

Chapter 208 NSValidatedUserinterfaceltem Protocol Reference 3637
Overview 3637
Tasks 3637

36

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CONTENTS

Instance Methods 3637

Chapter 209 NSWindowScripting Protocol Reference 3639
Overview 3639
Tasks 3639
Instance Methods 3640

Part Il Functions 3645

Chapter 210 Application Kit Functions Reference 3647
Overview 3647
Functions by Task 3647
Functions 3652

Part IV Data Types 3701

Chapter 211 Application Kit Data Types Reference 3703
Overview 3703
Data Types 3703

PartV Constants 3711

Chapter 212 Application Kit Constants Reference 3713

Overview 3713
Constants 3713

Document Revision History 3723

Index 3725

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

37

38

CONTENTS

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

Figures, Tables, and Listings

Introduction

The Application Kit 41

Figure I-1 Cocoa Objective-C Class Hierarchy for Application Kit 46
Chapter 5 NSAlert Class Reference 77

Figure 5-1 Alert dialog with an accessory view 89

Figure 5-2 Alert dialog with a suppression checkbox 93

Listing 5-1 Adding an accessory view to an alert 89

Listing 5-2 Creating an alert with a suppression checkbox 93
Chapter 13 NSBezierPath Class Reference 293

Figure 13-1 Line cap styles 306

Figure 13-2 Line join styles 307
Chapter 58 NSGradient Class Reference 1261

Table 58-1 Linear gradient starting points. 1266
Chapter 61 NSImage Class Reference 1301

Table 61-1 Default pasteboard types for image representations 1327

Table 61-2 Placeholder values for compositing equations 1351
Chapter 68 NSLevellndicator Class Reference 1507

Figure 68-1 Major and minor tick marks in a level indicator 1512
Chapter 123 NSSegmentedControl Class Reference 2351

Figure 123-1 NSSegmentStyle examples 2360
Chapter 130 NSSpeechSynthesizer Class Reference 2445

Figure 130-1 Speech feedback window 2446
Table 130-1 NSSpeechSynthesizer instance attributes 2446
Listing 130-1 Identifiers of the Mac OS X system voices 2463

39

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Chapter 131 NSSpellChecker Class Reference 2469

Listing 131-1 Specifying the spell checker language 2479

Chapter 171 NSWindow Class Reference 3211

Table 171-1 Title bar document icon display 3291

40
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION

The Application Kit

Framework /System/Library/Frameworks/AppKit.framework
Header file directories /System/Library/Frameworks/AppKit.framework/Headers
Declared in AMBundleAction.h

AppKitErrors.h

NSATSTypesetter.h

NSAccessibility.h
NSActionCell.h
NSAffineTransform.h
NSAlert.h
NSAnimation.h
NSAnimationContext.h
NSAppleScriptExtensions.h
NSApplication.h
NSApplicationScripting.h
NSArrayController.h
NSAttributedString.h
NSBezierPath.h
NSBitmaplmageRep.h
NSBox.h

NSBrowser.h
NSBrowserCell.h
NSButton.h
NSButtonCell.h
NSClimageRep.h
NSCachedlmageRep.h
NSCell.h

NSClipView.h
NSCollectionView.h
NSColor.h
NSColorList.h
NSColorPanel.h
NSColorPicker.h
NSColorPicking.h
NSColorSpace.h
NSColorWell.h
NSComboBox.h
NSComboBoxCell.h
NSControl.h
NSController.h
NSCursor.h
NSCustomimageRep.h
NSDatePicker.h
NSDatePickerCell.h
NSDictionaryController.h
NSDockTile.h

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

1

INTRODUCTION
The Application Kit

NSDocument.h
NSDocumentController.h
NSDocumentScripting.h
NSDragging.h
NSDrawer.h
NSEPSImageRep.h
NSErrors.h

NSEvent.h
NSFileWrapper.h
NSFont.h
NSFontDescriptor.h
NSFontManager.h
NSFontPanel.h
NSForm.h
NSFormCell.h
NSGlyphGenerator.h
NSGlyphinfo.h
NSGradient.h
NSGraphics.h
NSGraphicsContext.h
NSHelpManager.h
NSImage.h
NSImageCell.h
NSImageRep.h
NSImageView.h
NSInputManager.h
NSInputServer.h
NSInterfaceStyle.h
NSKeyValueBinding.h
NSLayoutManager.h
NSLevellndicator.h
NSLevellndicatorCell.h
NSMatrix.h
NSMenu.h
NSMenultem.h
NSMenultemCell.h
NSMenuView.h
NSMovie.h
NSMovieView.h
NSNib.h
NSNibConnector.h
NSNibControlConnector.h
NSNibDeclarations.h
NSNibLoading.h
NSNibOutletConnector.h
NSObjectController.h
NSOpenGL.h
NSOpenGLView.h
NSOpenPanel.h
NSOutlineView.h
NSPDFImageRep.h
NSPICTImageRep.h
NSPagelLayout.h

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION
The Application Kit

NSPanel.h
NSParagraphStyle.h
NSPasteboard.h
NSPathCell.h
NSPathComponentCell.h
NSPathControl.h
NSPersistentDocument.h
NSPopUpButton.h
NSPopUpButtonCell.h
NSPredicateEditor.h
NSPredicateEditorRowTemplate.h
NSPrintinfo.h
NSPrintOperation.h
NSPrintPanel.h
NSPrinter.h
NSProgressindicator.h
NSQuickDrawView.h
NSResponder.h
NSRuleEditor.h
NSRulerMarker.h
NSRulerView.h
NSSavePanel.h
NSScreen.h
NSScrollView.h
NSScroller.h
NSSearchField.h
NSSearchFieldCell.h
NSSecureTextField.h
NSSegmentedCell.h
NSSegmentedControl.h
NSShadow.h
NSSimpleHorizontalTypesetter.h
NSSlider.h
NSSliderCell.h
NSSound.h
NSSpeechRecognizer.h
NSSpeechSynthesizer.h
NSSpellChecker.h
NSSpellProtocol.h
NSSplitView.h
NSStatusBar.h
NSStatusltem.h
NSStepper.h
NSStepperCell.h
NSStringDrawing.h
NSTabView.h
NSTabViewltem.h
NSTableColumn.h
NSTableHeaderCell.h
NSTableHeaderView.h
NSTableView.h
NSText.h
NSTextAttachment.h

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

43

INTRODUCTION
The Application Kit

NSTextContainer.h
NSTextField.h
NSTextFieldCell.h
NSTextInputClient.h
NSTextList.h
NSTextStorage.h
NSTextStorageScripting.h
NSTextTable.h
NSTextView.h
NSTokenField.h
NSTokenFieldCell.h
NSToolbar.h
NSToolbarltem.h
NSToolbarltemGroup.h
NSTrackingArea.h
NSTreeController.h
NSTreeNode.h
NSTypesetter.h
NSUserDefaultsController.h
NSUserInterfaceValidation.h
NSView.h
NSViewController.h
NSWindow.h
NSWindowController.h
NSWindowScripting.h
NSWorkspace.h

Introduction

44

Important: This is a preliminary document. Although it has been reviewed for technical accuracy, it is not
final. Apple Computer is supplying this information to help you plan for the adoption of the technologies
and programming interfaces described herein. This information is subject to change, and software implemented
according to this document should be tested with final operating system software and final documentation.
For information about updates to this and other developer documentation, you can check the ADC Reference
Library Revision List. To receive notification of documentation updates, you can sign up for a free Apple
Developer Connection Online membership and receive the bi-weekly ADC News e-mail newsletter. (See
http://developer.apple.com/membership/ for more details about ADC membership.)

The Application Kit is a framework containing all the objects you need to implement your graphical,
event-driven user interface: windows, panels, buttons, menus, scrollers, and text fields. The Application Kit
handles all the details for you as it efficiently draws on the screen, communicates with hardware devices and
screen buffers, clears areas of the screen before drawing, and clips views. The number of classes in the
Application Kit may seem daunting at first. However, most Application Kit classes are support classes that
you use indirectly. You also have the choice at which level you use the Application Kit:

= Use Interface Builder to create connections from user interface objects to your application objects. In
this case, all you need to do is implement your application classes—implement those action and delegate
methods. For example, implement the method that is invoked when the user selects a menu item.

Introduction
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

http://developer.apple.com/referencelibrary/index-rev-date.html
http://developer.apple.com/referencelibrary/index-rev-date.html
http://developer.apple.com/membership/

INTRODUCTION
The Application Kit

= Control the user interface programmatically, which requires more familiarity with Application Kit classes
and protocols. For example, allowing the user to drag an icon from one window to another requires
some programming and familiarity with the NSDragging. . . protocols.

= Implement your own objects by subclassing NSView or other classes. When subclassing NSView you

write your own drawing methods using graphics functions. Subclassing requires a deeper understanding
of how the Application Kit works.

To learn more about the Application Kit, review the NSAppTication, NSWindow, and NSView class
specifications, paying close attention to delegate methods. For a deeper understanding of how the Application

Kit works, see the specifications for NSResponder and NSRunLoop (NSRunLoop is in the Foundation
framework).

Application Kit Classes and Protocols

The Application Kit is large; it comprises more than 125 classes and protocols. The classes all descend from
the Foundation framework’s NSObject class (see Figure I-1 (page 46)). The following sections briefly describe
some of the topics that the Application Kit addresses through its classes and protocols.

Application Kit Classes and Protocols 45
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

46

INTRODUCTION
The Application Kit

Figure I-1 Cocoa Objective-C Class Hierarchy for Application Kit
User Interface
Cocoa Bindings
NSObjectController — T NSArrayController —NSDictionaryController
[l NSController 4ENSTreeNode NSTreeController
NSUserDefaultsController
—NSButtonCell NSMenultemCell — NSPopUpButtonCell
|| —NSFormCell
e mgggﬁgg%le" —NSPathCell NSComboBoxCell
—NSSegmentedCell NSPathComponentCell
HNSCell NSImageCell -)
—NSSliderCell NSSearchFieldCell
NSTextAttachmentCell sS C ss eldC
L NSCollectionViewltem —N tepp_er ell NSSecureTextFieldCell
L NSDockTile NSTextFieldCell NSTableHeaderCell
I NSEvent NSPanel NSColorPanel
HNSMenu _ NSBox I:NSFontPaneI
H NSMenultem | NSClinView NSSavePanel NSOpenPanel
H NSPredicateEditorRowTemplate s pvie . s
|| NSResponder o —NSCollectionView —NSBrowser
NSObject* | NSRulerMarker NSApplication —NSControl NSButton NSPopUpButton
NSDrawer —NSMenuView —NSColorWell
H NSStatusBar NSWind - g :
| NSStatusiterm indow |_NSMovieView —NSImageView
NSWindowController NSOpenGLView —NSMatrix ————NSForm
HNSTabViewltem - A
| NSTableColumn NSView ——NSPro_gressIndpator —NSPathCo_ntroI))
| NSToolbar NSViewController —NSQuickDrawView —NSRuleEditor NSPredicateEditor
—NSRulerView —NSScroller
HNSToolbarltem NSToolbarltemGroup NSScrollVi NSS dc |
I NSTrackingArea Reondey [NS EE Cleri e -
—NSSplitView —NSSlider NSOutlineView
—NSTabView —NSStepper
| NSTableHeaderView |-NSTableView J A 2glE o
|_NSTextField NSSearchField)
NSSecureTextField
Text
H NSGlyphinfo —NSText NSTextView
H NSGlyphGenerator
H NSLayoutManager
H NSParagraphStyle —NSMutableParagraphStyle
H NSTextAttachment
NSTextTable
- NSTextBlock —— \ eeiTableBlock
H NSTextContainer
H NSTextList
H NSAttributedString* —NSMutableAttributedString*— NSTextStorage
H NSTextTab
H NSTypesetter NSATSTypesetter
Fonts
HNSFont
HNSFontManager
— NSFontDescriptor

*Class defined in the Foundation framework

Application Kit Classes and Protocols
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION
The Application Kit

Objective-C Application Kit Continued
' Graphics

NSAffineTransform
NSAnimationContext
H NSBezierPath

H NSCursor

H NSGradient

H NSGraphicsContext
H NSImage

NSBitmaplmageRep
H NSImageRep NSCachedlmageRep
H NSMovie NSClimageRep

H NSOpenGLContext NSCustomimageRep
H NSOpenGLPixelBuffer NSNSEPSImageRep
H NSOpenGLPixelFormat NSPDFImageRep

H NSScreen NSPICTImageRep

— NSShadow

/ Color ‘-

H ClColor

H NSColor

H NSColorList

H NSColorPicker

/ Document Support
H NSDocument ———— NSPersistentDocument

NSObject H NSDocumentController

H NSFileWrapper

- Printing
H NSPageLayout

H NSPrinter

H NSPrintinfo

H NSPrintOperation

H NSPrintPanel

S Operating System Services M
H NSHelpManager

— NSPasteboard

H NSSound

H NSSpeechRecognizer

H NSSpeechSynthesizer

H NSSpellChecker

H NSWorkspace

International Character Input Support
NSInputManager
NSInputServer

/" Interface Builder Support

NSNib .
) [NSNleontroIConnector
:LNSNleonnector NSNibOutletConnector

*Class defined in the Foundation framework

Encapsulating an Application

Every application uses a single instance of NSApplication to control the main event loop, keep track of
the application’s windows and menus, distribute events to the appropriate objects (that is, itself or one of
its windows), set up autorelease pools, and receive notification of application-level events. An NSApplication
object has a delegate (an object that you assign) that is notified when the application starts or terminates,
is hidden or activated, should open a file selected by the user, and so forth. By setting the NSApplication
object’s delegate and implementing the delegate methods, you customize the behavior of your application
without having to subclass NSApplication.

Encapsulating an Application 47
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION
The Application Kit

General Event Handling and Drawing

Panels

The NSResponder class defines the responder chain, an ordered list of objects that respond to user events.
When the user clicks the mouse button or presses a key, an event is generated and passed up the responder
chain in search of an object that can “respond” to it. Any object that handles events must inherit from the
NSResponder class. The core Application Kit classes, NSApplication, NSWindow, and NSView, inherit from
NSResponder.

An NSApplication object maintains a list of NSWindow objects—one for each window belonging to the
application—and each NSWindow object maintains a hierarchy of NSView objects. The view hierarchy is used
for drawing and handling events within a window. An NSWindow object handles window-level events,
distributes other events to its views, and provides a drawing area for its views. An NSWindow object also has
a delegate allowing you to customize its behavior.

NSView is an abstract class for all objects displayed in a window. All subclasses implement a drawing method

using graphics functions; drawRect : (page 3121) is the primary method you override when creating a new
NSView subclass.

The NSPanel class is a subclass of NSWindow that you use to display transient, global, or pressing information.
For example, you would use an instance of NSPane1, rather than an instance of NSWindow, to display error
messages or to query the user for a response to remarkable or unusual circumstances. The Application Kit

implements some common panels for you such as the Save, Open and Print panels, used to save, open, and

print documents. Using these panels gives the user a consistent “look and feel” across applications for common
operations.

Menus and Cursors

The NSMenu, NSMenuItem,and NSCursor classes define the look and behavior of the menus and cursors
that your application displays to the user.

Grouping and Scrolling Views

48

The NSBox, NSScrollView, and NSSplitView classes provide graphic “accessories” to other view objects or
collections of views in windows. With the NSBox class, you can group elements in windows and draw a border
around the entire group. The NSSplitView class lets you “stack” views vertically or horizontally, apportioning
to each view some amount of a common territory; a sliding control bar lets the user redistribute the territory
among views. The NSScrollView class and its helper class, NSClipView, provide a scrolling mechanism as well
as the graphic objects that let the user initiate and control a scroll. The NSRulerView class allows you to add
a ruler and markers to a scroll view.

General Event Handling and Drawing
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION
The Application Kit

Controlling an Application

The NSControl and NSCell classes, and their subclasses, define a common set of user interface objects such
as buttons, sliders, and browsers that the user can manipulate graphically to control some aspect of your
application. Just what a particular control affects is up to you: When a control is “touched,” it sends an action
message to a target object. You typically use Interface Builder to set these targets and actions by
Control-dragging from the control object to your application or other object. You can also set targets and
actions programmatically.

An NSControl object is associated with one or more NSCell objects that implement the details of drawing
and handling events. For example, a button comprises both an NSButton object and an NSButtonCell object.
The reason for this separation of functionality is primarily to allow NSCell classes to be reused by NSControl
classes. For example, NSMatrix and NSTableView can contain multiple NSCell objects of different types.

Tables

The NSTableView class displays data in row and column form. NSTableView is ideal for, but not limited to,
displaying database records, where rows correspond to each record and columns contain record attributes.
The user can edit individual cells and rearrange the columns. You control the behavior and content of an
NSTableView object by setting its delegate and data source objects.

Text and Fonts

The NSTextField class implements a simple editable text field, and the NSTextView class provides more
comprehensive editing features for larger text bodies.

NSTextView, a subclass of the abstract NSText class, defines the interface to Cocoa’s extended text system.
NSTextView supports rich text, attachments (graphics, file, and other), input management and key binding,
and marked text attributes. NSTextView works with the font panel and menu, rulers and paragraph styles,
the Services facility (for example, the spell-checking service), and the pasteboard. NSTextView also allows
customizing through delegation and notifications—you rarely need to subclass NSTextView. You rarely create
instances of NSTextView programmatically either, since objects on Interface Builder’s palettes, such as
NSTextField, NSForm, and NSScrollView, already contain NSTextView objects.

It is also possible to do more powerful and more creative text manipulation (such as displaying text in a
circle) using NSTextStorage, NSLayoutManager, NSTextContainer, and related classes.

The NSFont and NSFontManager classes encapsulate and manage font families, sizes, and variations. The
NSFont class defines a single object for each distinct font; for efficiency, these objects, which can be rather
large, are shared by all the objects in your application. The NSFontPanel class defines the font specification
panel that’s presented to the user.

Controlling an Application 49
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION
The Application Kit

Graphics and Color

The classes NSImage and NSImageRep encapsulate graphics data, allowing you to easily and efficiently access
images stored in files on the disk and displayed on the screen. NSImageRep subclasses each know how to
draw an image from a particular kind of source data. The presentation of an image is greatly influenced by
the hardware that it’s displayed on. For example, a particular image may look good on a color monitor, but
may be too “rich” for monochrome. Through the image classes, you can group representations of the same
image, where each representation fits a specific type of display device—the decision of which representation
to use can be left to the NSImage class itself.

Color is supported by the classes NSColor, NSColorPanel, NSColorList, NSColorPicker, and NSColorWell. NSColor
supports a rich set of color formats and representations, including custom ones. The other classes are mostly
interface classes: They define and present panels and views that allow the user to select and apply colors.
For example, the user can drag colors from the color panel to any color well. The NSColorPicking protocol
lets you extend the standard color panel.

Dragging

With very little programming on your part, custom view objects can be dragged and dropped anywhere.
Objects become part of this dragging mechanism by conforming to NSDragging... protocols: draggable
objects conform to the NSDraggingSource protocol, and destination objects (receivers of a drop) conform
to the NSDraggingDestination protocol. The Application Kit hides all the details of tracking the cursor and
displaying the dragged image.

Printing

The NSPrinter, NSPrintPanel, NSPageLayout, and NSPrintInfo classes work together to provide the means for
printing the information that your application displays in its windows and views. You can also create an EPS
representation of an NSView.

Accessing the File System

50

Use the NSFileWrapper class to create objects that correspond to files or directories on disk. NSFileWrapper
will hold the contents of the file in memory so that it can be displayed, changed, or transmitted to another
application. It also provides an icon for dragging the file or representing it as an attachment. Or use the

NSFileManager class in the Foundation framework to access and enumerate file and directory contents. The
NSOpenPanel and NSSavePanel classes also provide a convenient and familiar user interface to the file system.

Graphics and Color
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION
The Application Kit

Sharing Data With Other Applications

The NSPasteboard class defines the pasteboard, a repository for data that’s copied from your application,
making this data available to any application that cares to use it. NSPasteboard implements the familiar
cut-copy-paste operation. The NSServicesRequest protocol uses the pasteboard to communicate data that’s
passed between applications by a registered service.

Checking Spelling

The NSSpellServer class lets you define a spell-checking service and provide it as a service to other applications.
To connect your application to a spell-checking service, you use the NSSpellChecker class. The
NSIgnoreMisspelledWords and NSChangeSpelling protocols support the spell-checking mechanism.

Localization

If an application is to be used in more than one part of the world, its resources may need to be customized,
or “localized,” for language, country, or cultural region. For example, an application may need to have separate
Japanese, English, French, and German versions of character strings, icons, nib files, or context help. Resource
files specific to a particular language are grouped together in a subdirectory of the bundle directory (the
directories with the “. 1proj” extension). Usually you set up localization resource files using Interface Builder.
See the specifications for NSBundle Additions Reference and NSBundle class for more information on localization
(NSBund1e is in the Foundation framework).

Sharing Data With Other Applications 51
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

INTRODUCTION
The Application Kit

52 Localization
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

PART |

Classes

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

53

54

PART |

Classes

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

ClColor Additions Reference

Inherits from NSObject
Conforms to NSCoding (ClColor)
NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Declared in AppKit/NSColor.h
Availability Available in Mac OS X v10.4 and later.
Overview

The Application Kit extends the Core Image framework’s CIColor class by adding the ability to create an
instance of CIColor from an existing NSColor instance.

Tasks

Creating a ClColor Instance

- initWithColor: (page 55)
Initializes a newly allocated CIColor object using an NSColor object.

Instance Methods

initWithColor:

Initializes a newly allocated CICo1or object using an NSColor object.
- (id)initWithColor: (NSColor *)color

Parameters
color
The initial color value, which can belong to any available colorspace.

Return Value
The resulting CIColor object, or ni 1 if the object cannot be initialized with the specified value.

Overview 55
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 1

ClIColor Additions Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSColor.h

56 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Climage Additions Reference

Inherits from NSObject
Conforms to NSCoding (Climage)
NSCopying (Climage)
NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Declared in AppKit/NSClimageRep.h
Availability Available in Mac OS X v10.4 and later.
Overview

Tasks

The Application Kit adds three methods to the Core Image framework's Climage class.

Initializing

- initWithBitmapImageRep: (page 59)
Initializes the receiver, a newly allocated CIImage object, with the specified bitmap.

Drawing Images

- drawAtPoint:fromRect:operation:fraction: (page 58)
Draws all or part of the image at the specified point in the current coordinate system.
- drawlInRect:fromRect:operation:fraction: (page 58)
Draws all or part of the image in the specified rectangle in the current coordinate system

Overview
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

57

CHAPTER 2

Climage Additions Reference

Instance Methods

58

drawAtPoint:fromRect:operation:fraction:

Draws all or part of the image at the specified point in the current coordinate system.

- (void)drawAtPoint: (NSPoint)point fromRect:(NSRect)srcRect
operation: (NSCompositingOperation)op fraction:(CGFloat)delta

Parameters
point

The location in the current coordinate system at which to draw the image.
srcRect

The source rectangle specifying the portion of the image you want to draw. The coordinates of this
rectangle must be specified using the image's own coordinate system.

op
The compositing operation to use when drawing the image.
delta

The opacity of the image, specified as a value from 0.0 to 1.0. Specifying a value of 0.0 draws the
image as fully transparent while a value of 1.0 draws the image as fully opaque. Values greater than
1.0 are interpreted as 1.0.

Discussion

The image content is drawn at its current resolution and is not scaled unless the CTM of the current coordinate
system itself contains a scaling factor. The image is otherwise positioned and oriented using the current
coordinate system.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSCIImageRep.h

drawInRect:fromRect:operation:fraction:

Draws all or part of the image in the specified rectangle in the current coordinate system

- (void)drawInRect: (NSRect)dstRect fromRect:(NSRect)srcRect
operation: (NSCompositingOperation)op fraction:(CGFloat)delta

Parameters
dstRect

The rectangle in which to draw the image.
srcRect

The source rectangle specifying the portion of the image you want to draw. The coordinates of this
rectangle must be specified using the image's own coordinate system.

op
The compositing operation to use when drawing the image.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Climage Additions Reference

delta
The opacity of the image, specified as a value from 0.0 to 1.0. Specifying a value of 0.0 draws the
image as fully transparent while a value of 1.0 draws the image as fully opaque. Values greater than
1.0 are interpreted as 1.0.

Discussion

If the srcRect and dstRect rectangles have different sizes, the source portion of the image is scaled to fit
the specified destination rectangle. The image is otherwise positioned and oriented using the current
coordinate system.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CarbonCocoaCorelmageTab

Reducer

Declared In
NSCIImageRep.h

initWithBitmaplmageRep:

Initializes the receiver, a newly allocated CIImage object, with the specified bitmap.
- (id)initWithBitmapImageRep: (NSBitmapImageRep *)bitmapImageRep

Parameters
bitmapImageRep
An image representation object containing the bitmap data.

Return Value
The resulting CIImage object.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CarbonCocoaCorelmageTab

Reducer

Declared In
NSCIImageRep.h

Instance Methods 59
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 2

Climage Additions Reference

60 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

Inherits from NSCell : NSObject
Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Availability Available in Mac OS X v10.0 and later.
Declared in AppKit/NSActionCell.h
Companion guide Action Messages
Related sample code Clock Control
TrackBall
Overview

An NSActionCell defines an active area inside a control (an instance of NSControl or one of its subclasses).

As an NSControl’s active area, an NSActionCell does three things: it usually performs display of text or an
icon; it provides the NSControl with a target and an action; and it handles mouse (cursor) tracking by properly
highlighting its area and sending action messages to its target based on cursor movement.

Tasks

Configuring an NSActionCell Object

- setAlignment: (page 65)
Sets the alignment of text in the receiver.
- setBezeled: (page 66)
Sets whether the receiver draws itself with a bezeled border.
- setBordered: (page 66)
Sets whether the receiver draws itself outlined with a plain border.

- setEnabled: (page 67)
Sets whether the receiver is enabled or disabled.

Overview 61
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

- setFloatingPointFormat:left:right: (page 67)
Sets the receiver’s floating-point format.

- setFont: (page 68)
Sets the font to be used when the receiver displays text.

- setImage: (page 69)
Sets the image to be displayed in the receiver.

Obtaining and Setting Cell Values

- doubleValue (page 64)
Returns the receiver’s value as a doub1e after validating any editing of cell content.

- floatValue (page 64)
Returns the receiver’s value as a f1oat after validating any editing of cell content.

- intValue (page 65)
Returns the receiver’s value as an int after validating any editing of cell content.

- integerValue (page 64)
Returns the receiver’s value as a 64-bit compatible integer after validating any editing of cell content.

- stringValue (page 70)
Returns the receiver’s value as a string object as converted by the cell’s formatter, if one exists.

- setObjectValue: (page 69)
Discards any editing of the receiver’s text and sets its object value to object.

Managing the Cell’s View

- controlView (page 63)
Returns the view in which the receiver was last drawn.

- setControlView: (page 67)
Sets the receiver's control view, the view in which it is drawn.

Assigning the Target and Action

- setAction: (page 65)
Sets the selector used for action messages sent by the receiver's control.
- action (page 63)
Returns the receiver’s action-message selector.
- setTarget: (page 70)
Sets the receiver’s target object.
- target (page 71)
Returns the receiver’s target object.

62 Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

Assigning a Tag

- setTag: (page 69)
Sets the receiver’s tag.

- tag (page 71)
Returns the receiver’s tag.

Instance Methods

action

Returns the receiver’s action-message selector.
- (SEL)action

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAction: (page 65)

- setTarget: (page 70)
- target (page 71)

Related Sample Code
Clock Control

Declared In
NSActionCell.h

controlView
Returns the view in which the receiver was last drawn.

- (NSView *)controlView

Return Value
The returned view is normally an NSControl object. The method returns ni1 if the receiver has no control
view (usually because it hasn’t yet been placed in the view hierarchy).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
AnimatedSlider

Declared In
NSActionCell.h

Instance Methods 63
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

64

CHAPTER 3

NSActionCell Class Reference

doubleValue

Returns the receiver’s value as a doub1e after validating any editing of cell content.
- (double)doubleValue

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
- validateEditing (page 842) (NSControl)

Declared In
NSActionCell.h

floatValue

Returns the receiver’s value as a f1oat after validating any editing of cell content.
- (float)floatValue

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
- validateEditing (page 842) (NSControl)

Declared In
NSActionCell.h

integerValue

Returns the receiver’s value as a 64-bit compatible integer after validating any editing of cell content.
- (NSInteger)integerValue

Return Value
A 64-bit compatible integer value, as defined by the NSInteger type.

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSActionCell.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

intValue

Returns the receiver’s value as an int after validating any editing of cell content.
- (int)intValue

Discussion
If the receiver is not a text-type cell or the cell value is not scannable, the method returns 0.

Availability
Available in Mac OS X v10.0 and later.

See Also
- validateEditing (page 842) (NSControl)

Declared In
NSActionCell.h

setAction:

Sets the selector used for action messages sent by the receiver's control.
- (void)setAction: (SEL)aSelector

Parameters
aSelector
The selector that identifies the action method to invoke.

Availability
Available in Mac OS X v10.0 and later.

See Also
- action (page 63)

- setTarget: (page 70)
- target (page 71)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

TextEditPlus

Declared In
NSActionCell.h

setAlignment:

Sets the alignment of text in the receiver.

- (void)setAlignment: (NSTextAlignment)mode

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

66

CHAPTER 3

NSActionCell Class Reference

Parameters

mode
One of five constants that specifies alignment within the cell: NSLeftTextAlignment,
NSRightTextAlignment, NSCenterTextAlignment, NSJustifiedTextAlignment, and
NSNaturalTextAlignment (the default alignment for the text).

Discussion
The method marks the receiver as needing redisplay after discarding any editing changes that were being
made to cell text.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSActionCell.h

setBezeled:

Sets whether the receiver draws itself with a bezeled border.
- (void)setBezeled:(BOOL)fTag

Parameters
flag
YES if the cell is to be drawn with a bezeled border, NO otherwise.

Discussion
After setting the attribute the method marks the receiver as needing redisplay. The setBezeled: and
setBordered: (page 66) methods are mutually exclusive—that is, a border can be only plain or bezeled.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
QTKitMovieShuffler

Declared In
NSActionCell.h

setBordered:

Sets whether the receiver draws itself outlined with a plain border.
- (void)setBordered: (BOOL)flag

Parameters
flag

YES if the cell is to be drawn with a plain border, NO otherwise.
Discussion

After setting the attribute the method marks the receiver as needing redisplay. The setBezeled: (page 66)
and setBordered: methods are mutually exclusive—that is, a border can be only plain or bezeled.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSActionCell.h

setControlView:

Sets the receiver's control view, the view in which it is drawn.
- (void)setControlView: (NSView *)view

Parameters

view
The view object, which is normally an NSControl view. Pass in ni 1 if the receiver has no control view
(usually because it hasn't yet been placed in the view hierarchy).

Discussion
The control view is typically set in the receiver’s implementation of drawWithFrame:inView: (page 556)
(NSCe11).

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSActionCell.h

setEnabled:

Sets whether the receiver is enabled or disabled.
- (void)setEnabled:(BOOL)fTag

Parameters
flag
YES if the cell is to be enabled, NO otherwise
Discussion
The text of disabled cells is changed to gray. If a cell is disabled, it cannot be highlighted, cannot be edited,
and does not support mouse tracking (and thus cannot participate in target-action behavior). The method

marks the receiver as needing redisplay after discarding any editing changes that were being made to cell
text.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSActionCell.h

setFloatingPointFormat:left:right:

Sets the receiver’s floating-point format.

Instance Methods 67
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

68

CHAPTER 3

NSActionCell Class Reference

- (void)setFloatingPointFormat: (BOOL)autoRange Teft:(NSUInteger)leftDigits
right: (NSUInteger)rightDigits

Parameters
autoRange

NO if you want the receiver to places digits to the right and left of the decimal point as specified (in
lTeftDigits and rightDigits; YES if you want it to place the digits flexibly.

leftDigits
The maximum number of digits to the left of the decimal point. The receiver might interpret this value
flexibly if autoRange is YES.

rightDigits
The maximum number of digits to the right of the decimal point. The receiver might interpret this
value flexibly if autoRange is YES.

Discussion
The implementation of this method is based on the NSCe11 method
setFloatingPointFormat:left:right: (page 586). See the description of that method for details.

The NSActionCel1l implementation of the method supplements the NSCe11 implementation by marking
the receiver as needing redisplay after discarding any editing changes that were being made to cell text.

Note: This method is being deprecated in favor of NSFormatter objects. For more information, see
NSFormatter. This documentation is provided only for developers who need to modify older applications.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSActionCell.h

setFont:

Sets the font to be used when the receiver displays text.
- (void)setFont:(NSFont *)font0Obj

Parameters

font0Obj
The font object encapsulating information about the new font. If font0bjis ni1 and the receiver is
a text-type cell, the font object currently held by the receiver is autoreleased.

Discussion

If the receiver is not a text-type cell, the method converts it to that type. NSActionCel1 supplements the
NSCel1 implementation of this method by marking the updated cell as needing redisplay. If the receiver
was converted to a text-type cell and is selected, it also updates the field editor with font0bj.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSActionCell.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

setimage:

Sets the image to be displayed in the receiver.
- (void)setImage: (NSImage *)image

Parameters
image

The image for the receiver to display. If 7mageis ni1, the image currently displayed by the receiver

is removed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
FunkyOverlayWindow

Declared In
NSActionCell.h

setObjectValue:

Discards any editing of the receiver’s text and sets its object value to object.

- (void)setObjectValue:(id < NSCopying >)object

Parameters
object

The object value to assign to the receiver.
Discussion

If the object value is afterward different from what it was before the method was invoked, the method marks

the receiver as needing redisplay.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSActionCell.h

setTag:

Sets the receiver’s tag.
- (void)setTag:(NSInteger)anint

Parameters
anint

An integer tag to be associated with the receiver.

Availability
Available in Mac OS X v10.0 and later.

See Also

- tag (page 71)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

69

70

CHAPTER 3

NSActionCell Class Reference

Declared In
NSActionCell.h

setTarget:

Sets the receiver’s target object.
- (void)setTarget:(id)anObject

Parameters
anObject
The object that is the target of action messages sent by the receiver's control.

Availability
Available in Mac OS X v10.0 and later.

See Also
- action (page 63)

- setAction: (page 65)
- target (page 71)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

TextEditPlus

Declared In
NSActionCell.h

stringValue

Returns the receiver’s value as a string object as converted by the cell’s formatter, if one exists.
- (NSString *)stringValue

Discussion

If no formatter exists and the value is an NSString, returns the value as a plain, attributed, or localized
formatted string. If the value is not an NSString or cannot be converted to one, returns an empty string.
The method supplements the NSCe 11 implementation by validating and retaining any editing changes being
made to cell text.

Availability
Available in Mac OS X v10.0 and later.

See Also
- validateEditing (page 842) (NSControl)

Declared In
NSActionCell.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 3

NSActionCell Class Reference

tag

Returns the receiver’s tag.
- (NSInteger)tag

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTag: (page 69)

Declared In
NSActionCell.h

target
Returns the receiver’s target object.
- (id)target

Availability
Available in Mac OS X v10.0 and later.

See Also
- action (page 63)

- setAction: (page 65)
- setTarget: (page 70)

Related Sample Code
Clock Control

Declared In
NSActionCell.h

Instance Methods

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

71

CHAPTER 3

NSActionCell Class Reference

72 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAffineTransform Additions Reference

Inherits from

Conforms to

Framework

Declared in

Companion guide

Overview

Tasks

NSObject

NSCoding
NSCopying
NSObject (NSObject)

/System/Library/Frameworks/AppKit.framework
AppKit/NSAffineTransform.h

Cocoa Drawing Guide

The Application Kit extends Foundation’s NSAffineTransform class by adding:

= Methods for applying affine transformations to the current graphics context.

= A method for applying an affine transformation to an NSBezierPath.

Note: In Mac OS X v10.3 and earlier the NSAffineTransformclass was declared and implemented entirely
in the Application Kit framework. As of Mac OS X v10.4 the NSAffineTransform class has been split across
the Foundation Kit and Application Kit frameworks.

Setting and Building the Current Transformation Matrix

- set (page 74)

Sets the current transformation matrix to the receiver’s transformation matrix.

- concat (page 74)

Appends the receiver’s matrix to the current transformation matrix stored in the current graphics
context, replacing the current transformation matrix with the result.

Overview

73

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAffineTransform Additions Reference

Transforming Bezier Paths

- transformBezierPath: (page 75)
Creates and returns a new NSBezierPath object with each point in the given path transformed by
the receiver.

Instance Methods

74

concat

Appends the receiver’s matrix to the current transformation matrix stored in the current graphics context,
replacing the current transformation matrix with the result.

- (void)concat

Discussion
Concatenation is performed by matrix multiplication—see “Manipulating Transform Values”.

If this method is invoked from within an NSView drawRect: (page 3121) method, then the current
transformation matrix is an accumulation of the screen, window, and any superview’s transformation matrices.
Invoking this method defines a new user coordinate system whose coordinates are mapped into the former
coordinate system according to the receiver’s transformation matrix. To undo the concatenation, you must
invert the receiver’s matrix and invoke this method again.

Availability
Available in Mac OS X v10.0 and later.

See Also
- set (page 74)
- dinvert

Related Sample Code
DockTile

Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSAffineTransform.h

set

Sets the current transformation matrix to the receiver’s transformation matrix.

- (void)set

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAffineTransform Additions Reference

Discussion

The current transformation is stored in the current graphics context and is applied to subsequent drawing
operations. You should use this method sparingly because it removes the existing transformation matrix,
which is an accumulation of transformation matrices for the screen, window, and any superviews. Instead
use the concat (page 74) method to add this transformation matrix to the current transformation matrix.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAffineTransform.h

transformBezierPath:

Creates and returns a new NSBezierPath object with each point in the given path transformed by the
receiver.

- (NSBezierPath *)transformBezierPath:(NSBezierPath *)aPath

Parameters
aPath
An object representing the bezier path to be used in the transformation.

Discussion
The original NSBezierPath object is not modified.

Availability
Available in Mac OS X v10.0 and later.

See Also
- transformPoint:transformSize:

Related Sample Code
Cropped Image

Polygons

Declared In
NSAffineTransform.h

Instance Methods 75
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 4

NSAffineTransform Additions Reference

76 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Inherits from NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework
Declared in AppKit/NSAlert.h

Availability Available in Mac OS X v10.3 and later.
Companion guides Dialogs and Special Panels

Sheet Programming Topics for Cocoa

Related sample code CoreRecipes
ExtractMovieAudioToAIFF
QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile
QTKitTimeCode

Overview

You use an NSATert object to display an alert, either as an application-modal dialog or as a sheet attached
to a document window. The methods of the NSATert class allow you to specify alert level, icon, button titles,
and alert text. The class also lets your alerts display help buttons and provides ways for applications to offer
help specific to an alert. To display an alert as a sheet, invoke the
beginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo: (page 84) method;
to display one as an application-modal dialog, use the runModal (page 88) method.

By design, an NSATert object is intended for a single alert—that is, an alert with a unique combination of
title, buttons, and so on—that is displayed upon a particular condition. You should create an NSAlert object
for each alert dialog. Normally you should create an NSA1ert object when you need to display an alert, and
release it when you are done. If you have a particular alert dialog that you need to show repeatedly, you can
retain and reuse an instance of NSATert for this dialog.

After creating an alert using one of the alert creation methods, you can customize it further prior to displaying
it by customizing its attributes. See “Instance Attributes” (page 78)

Overview 77
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Note: The NSATert class, which was introduced in Mac OS X v10.3, supersedes the functional Application
Kit API for displaying alerts (NSRunAlertPanel, NSBeginAlertSheet, and so on). The former APl is still
supported, but you should use the NSATert class for your application’s alert dialogs.

Instance Attributes

NSAlert objects have the following attributes:

= Type. An alert’s type helps convey the importance or gravity of its message to the user. Specified with
setAlertStyle: (page 89).

m Message text. The main message of the alert. Specified with setMessageText: (page 92).
= Informative text. Additional information about the alert. Specified with informativeText (page 86).
= icon. The icon displayed in the alert. Specified with : setIcon: (page 91).

m Help. Alerts can let the user get help about them. Use setHelpAnchor: (page 90) and
setShowsHelp: (page 92).

= Response buttons. By default an alert has one response button: the OK button. You can add more
response buttons using: addButtonWithTitle: (page 83).

m Suppression checkbox. A suppression checkbox allows the user to suppress the display of a particular
alertin subsequent occurrences of the event that triggers it. Use set ShowsSuppressionButton: (page
93), suppressionButton (page 94).

m Accessory view. An accessory view lets you add additional information to an alert; for example, a text
field with contact information. Use setAccessoryView: (page 88), layout (page 87).

An alert also has a delegate; see “Displaying Help” (page 79).

Subclassing Notes

The NSATert class is not designed for subclassing.

Tasks

Creating Alerts

+ alertWithError: (page 80)
Returns an alert initialized from information in an error object.
+ alertWithMessageText:defaultButton:alternateButton:otherButton:informativeTextWithFormat: (page
81)
Creates an alert compatible with alerts created using the NSRunAlertPanel (page 3693) function for
display as a warning-style alert.

78 Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Configuring Alerts

- layout (page 87)
Specifies that the receiver must do immediate layout instead of lazily just before display.

- alertStyle (page 83)
Returns the NSATertStyle constant identifying the receiver’s alert style.

- setAlertStyle: (page 89)
Sets the alert style of the receiver.

- accessoryView (page 82)
Returns the receiver’s accessory view.

- setAccessoryView: (page 88)
Sets the receiver’s accessory view.

- showsHelp (page 94)
Indicates whether the receiver has a help button.

- setShowsHelp: (page 92)
Specifies whether the receiver has a help button.

- helpAnchor (page 86)
Returns the receiver’s HTML help anchor.

- setHelpAnchor: (page 90)
Associates the receiver to a given anchor.

- delegate (page 85)
Returns the receiver’s delegate.

- setDelegate: (page 90)
Sets the receiver’s delegate.

Displaying Alerts

- runModal (page 88)

Runs the receiver as an application-modal dialog and returns the constant positionally identifying
the button clicked.

- beginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo: (page 84)
Runs the receiver modally as an alert sheet attached to a specified window.

- suppressionButton (page 94)
Returns the receiver’s suppression checkbox.

- showsSuppressionButton (page 94)
Indicates whether the receiver shows a suppression button.

- setShowsSuppressionButton: (page 93)
Specifies whether the receiver includes a suppression checkbox.

Displaying Help

An alert’s delegate is responsible for displaying help for the alert.

Tasks 79
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

- alertShowHelp: (page 95)
Sent to the delegate when the user clicks the alert’s help button. The delegate causes help to be
displayed for an alert, directly or indirectly.

Accessing Alert Text

- informativeText (page 86)
Returns the receiver’s informative text.

- setInformativeText: (page 91)
Sets the receiver’s informative text to a given text.

- messageText (page 87)
Returns the receiver’s message text (or title).

- setMessageText: (page 92)
Sets the receiver's message text, or title, to a given text.

Accessing Alert Icons

- icon (page 86)
Returns the icon displayed in the receiver.

- setlcon: (page91)
Sets the icon to be displayed in the alert to a given icon.

Accessing Alert Buttons

- buttons (page 85)
Returns the receiver’s buttons.

- addButtonWithTitle: (page 83)
Adds a button with a given title to the receiver.

Getting Alert Panels

- window (page 95)
Provides the application-modal panel associated with the receiver.

Class Methods

80

alertWithError:

Returns an alert initialized from information in an error object.

+ (NSATert *)alertWithError:(NSError *)error

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Parameters
error
Error information to display.

Return Value
Initialized alert.

Discussion
The NSATert class extracts the localized error description, recovery suggestion, and recovery options from
error and uses them as the alert’s message text, informative text, and button titles, respectively.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
ExtractMovieAudioToAIFF

QTRecorder

Quartz Composer WWDC 2005 TextEdit
SillyFrequencyLevels

TextEditPlus

Declared In
NSAlert.h

alertWithMessageText:defaultButton:alternateButton:otherButton:
informativeTextWithFormat:

Creates an alert compatible with alerts created using the NSRunATertPanel (page 3693) function for display
as a warning-style alert.

+ (NSATert *)alertWithMessageText:(NSString *)messageTitle defaultButton: (NSString
*)YdefaultButtonTitle alternateButton:(NSString *)alternateButtonTitle
otherButton: (NSString *)otherButtonTitle informativeTextWithFormat:(NSString
*)informativeText,

Parameters
messageTitle
Title of the alert. When ni 1 or an empty string, a default localized title is used (“Alert” in English).

defaultButtonTitle
Title for the default button. When ni 1 or an empty string, a default localized button title (“OK” in
English) is used.

alternateButtonTitle
Title for the alternate button. When ni 1, the alternate button is not created.

otherButtonTitle
Title for the other button. When ni 1, the other button is not created.

informativeText
Informative text, optional. Can embed variable values using a format string; list any necessary
arguments for this formatted string at the end of the method’s argument list. For more information
on format strings, see Formatting String Objects.

Return Value
Initialized alert.

Class Methods 81
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Discussion

For languages that read left to right, the buttons are laid out on the bottom-right corner of the alert sheet
or window, with defaultButtonTitleontheright, alternateButtonTit]e on the left, and
otherButtonTit]ein the middle. The return values identifying these buttons are constants—
NSAlTertDefaultReturn, NSATertAlternateReturn, and NSATertOtherReturn—that correspond to
the keywords.

By default, the first button has a key equivalent of Return, any button with a title of “Cancel” has a key
equivalent of Escape, and any button with the title “Don’t Save” has a key equivalent of Command-D (but
only if it is not the first button). You can also assign different key equivalents for the buttons using the
setKeyEquivalent: (page 487) method of the NSButton class. To access the alert’s buttons, use the
buttons (page 85) method.

Special Considerations

This is a compatibility method. It is designed for easy adoption by applications migrating from the
corresponding function-based API. This method uses earlier return values—NSATertDefaultReturn,
NSAlertAlternateReturn,and NSATertOtherReturn—compatible with the earlier AP, rather than the
return values defined by the NSATert class, described in “Constants” (page 96).

Unless you must maintain compatibility with existing alert-processing code that uses the function-based API,
you should allocate (a110oc) and initialize (1 nit) the object, and then set its attributes using the appropriate
methods of the NSATert class.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
ExtractMovieAudioToAlIFF

MenultemView
QTExtractAndConvertToAlFF
QTExtractAndConvertToMovieFile
QTKitTimeCode

Declared In
NSAlert.h

Instance Methods

82

accessoryView

Returns the receiver’s accessory view.
- (NSView *)accessoryView

Return Value
The alert’s accessory view.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

See Also
- setAccessoryView: (page 88)

Declared In
NSATert.h

addButtonWithTitle:

Adds a button with a given title to the receiver.
- (NSButton *)addButtonWithTitle:(NSString *)buttonTitle

Parameters
buttonTitle
Title of the button to add to the alert. Must not be ni 1.

Return Value
Button added to the alert.

Discussion

Buttons are placed starting near the right side of the alert and going toward the left side (for languages that
read left to right). The first three buttons are identified positionally as NSATertFirstButtonReturn,
NSAlertSecondButtonReturn, NSATertThirdButtonReturn in the return-code parameter evaluated
by the modal delegate. Subsequent buttons are identified as NSATertThirdButtonReturn +n, where nis
an integer

By default, the first button has a key equivalent of Return, any button with a title of “Cancel” has a key
equivalent of Escape, and any button with the title “Don’t Save” has a key equivalent of Command-D (but
only if it is not the first button). You can also assign different key equivalents for the buttons using the
setKeyEquivalent: (page 487) method of the NSButton class. In addition, you can use the setTag: (page
835) method of the NSButton class to set the return value.

Availability
Available in Mac OS X v10.3 and later.

See Also
- buttons (page 85)

Related Sample Code
CoreRecipes

IdentitySample

Declared In
NSAlert.h

alertStyle

Returns the NSATertStyle constant identifying the receiver’s alert style.
- (NSATertStyle)alertStyle

Return Value
Alert style for the alert. See NSAlertStyle (page 96) for the list of alert style constants.

Instance Methods 83
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

84

CHAPTER 5

NSAlert Class Reference

Availability
Available in Mac OS X v10.3 and later.

See Also
- setAlertStyle: (page 89)

Declared In
NSATert.h

beginSheetModalForWindow:modalDelegate:didEndSelector:contextinfo:

Runs the receiver modally as an alert sheet attached to a specified window.

- (void)beginSheetModalForWindow: (NSWindow *)window modalDelegate:(id)modalDelegate
didEndSelector:(SEL)alertDidEndSelector contextInfo:(void *)contextInfo

Parameters
window
The parent window for the sheet.

modalDelegate
The delegate for the modal-dialog session.

alertDidEndSelector
Message the alert sends to moda 1 De T egat e after the user responds but before the sheet is dismissed.

contextlInfo
Contextual data passed to modalDelegatein didEndSelector message.

Discussion

You can create the required NSATert object either through the standard allocate-initialize procedure or by
using the compatibility method
alertWithMessageText:defaultButton:alternateButton:otherButton:
informativeTextWithFormat: (page 81).

The alertDidEndSelectorargument must be a selector that takes three arguments, and the corresponding
method should have a declaration modeled on the following example:

- (void) alertDidEnd: (NSAlert *)alert returnCode: (int)returnCode contextInfo:(void
*)contextInfo;

where alertisthe NSAlert object, returnCode specifies which button the user pressed, and contextInfo
is the same contextInfo passed in the original message. The returnCode argument identifies which
button was used to dismiss the alert (see this method’s “Special Considerations” section). The modal delegate
determines which button was clicked (“OK? “Cancel; and so on) and proceeds accordingly.

If you want to dismiss the sheet from within the aTertDidEndSelector method before the modal delegate
carries out an action in response to the return value, send orderOut : (page 3284) (NSWindow) to the window
object obtained by sending window (page 95) to the a/lert argument. This allows you to chain sheets, for
example, by dismissing one sheet before showing the next from withinthe a7ertDidEndSelector method.
Note that you should be careful not to call orderQut : on the sheet from elsewhere in your program before
the alertDidEndSelector method is invoked.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Special Considerations

When you use alertWlithMessageText:defaultButton:alternateButton:otherButton:
informativeTextWithFormat: (page 81) to create an alert, these are the constants used to identify the
button used to dismiss the alert: NSATertDefaultReturn, NSATertAlternateReturn, and
NSATertOtherReturn. Otherwise, the constants used are the ones described in “Button Return Values” (page
96).

Availability
Available in Mac OS X v10.3 and later.

See Also
- runModal (page 88)

Related Sample Code
CoreRecipes

ExtractMovieAudioToAIFF
IdentitySample
NSOperationSample
QTRecorder

Declared In
NSATert.h

buttons

Returns the receiver’s buttons.
- (NSArray *)buttons

Return Value
The alert’s buttons. The rightmost button is at index 0.

Availability
Available in Mac OS X v10.3 and later.

See Also
- addButtonWithTitle: (page 83)

Declared In
NSATert.h

delegate

Returns the receiver’s delegate.
- (id)delegate

Return Value
The alert’s delegate.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 85
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

86

CHAPTER 5

NSAlert Class Reference

See Also
- setDelegate: (page 90)

Declared In
NSATert.h

helpAnchor

Returns the receiver’s HTML help anchor.
- (NSString *)helpAnchor

Return Value
The alert’s help anchor. It’s ni1 when the alert has no help anchor.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setHelpAnchor: (page 90)

Declared In
NSAlert.h

icon

Returns the icon displayed in the receiver.
- (NSImage *)icon

Return Value
The alert’s icon.

Discussion

The default image is the application icon (NSAppTlicationIcon application property).

Availability
Available in Mac OS X v10.3 and later.

See Also
- setlcon: (page 91)

Declared In
NSATert.h

informativeText

Returns the receiver’s informative text.

- (NSString *)informativeText

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Return Value
The alert’s informative text.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setInformativeText: (page 91)

- messageText (page 87)

Declared In
NSATert.h

layout

Specifies that the receiver must do immediate layout instead of lazily just before display.
- (void)Tayout

Discussion

You need to call this method only when you need to customize the alert’s layout. Call this method after all
the alert’s attributes have been customized, including the suppression checkbox and the accessory layout.
After the method returns, you can make the necessary layout changes; for example, adjusting the frame of
the accessory view.

Note: The standard alert layout is subject to change in future system software versions. Therefore, if you
rely on custom alert layout, you should make sure your layouts work as expected in future releases of Mac
OsS.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setAccessoryView: (page 88)

Declared In
NSATert.h

messageText

Returns the receiver’s message text (or title).
- (NSString *)messageText

Return Value
The alert’s message text.

Availability
Available in Mac OS X v10.3 and later.

See Also

- setMessageText: (page 92)

Instance Methods 87
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

88

CHAPTER 5

NSAlert Class Reference

- informativeText (page 86)

Declared In
NSATert.h

runModal

Runs the receiver as an application-modal dialog and returns the constant positionally identifying the button
clicked.

- (NSInteger)runModal

Return Value
Response to the alert. See this method’s “Special Considerations” section for details.

Discussion

You can create the alert either through the standard allocate-initialize procedure or by using the compatibility
method alertWithMessageText:defaultButton:alternateButton:otherButton:
informativeTextWithFormat: (page 81).

Special Considerations

When you use alertWithMessageText:defaultButton:alternateButton:otherButton:
informativeTextWithFormat: (page 81) to create an alert, these are the constants used to identify the
button used to dismiss the alert: NSATertDefaultReturn, NSATertAlternateReturn, and
NSATertOtherReturn.Otherwise, the constants used are the ones described in “Button Return Values” (page
96).

Availability
Available in Mac OS X v10.3 and later.

See Also
- beginSheetModalForWindow:modalDelegate:didEndSelector:contextInfo: (page 84)

Related Sample Code
ExtractMovieAudioToAIFF

QTKitTimeCode

Quartz Composer WWDC 2005 TextEdit
SillyFrequencyLevels

TextEditPlus

Declared In
NSATert.h

setAccessoryView:
Sets the receiver’s accessory view.

- (void)setAccessoryView: (NSView *)accessoryliew

Parameters

accessoryliew
View that is to be the alert’s accessory view.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Discussion
The NSAlert class places the accessory view between the informative text or suppression checkbox (if

present) and the response buttons. To change the location of the accessory view, you must first call the
Tayout (page 87) method.

Listing 5-1 shows an example of adding an accessory view to an alert. Figure 5-1 shows the alert generated.

Listing 5-1 Adding an accessory view to an alert

NSTextView *accessory = [[NSTextView alloc] initWithFrame:NSMakeRect(0,0,200,15)7];
NSFont *font = [NSFont systemFontOfSize:[NSFont systemFontSizell;
NSDictionary *textAttributes = [NSDictionary dictionaryWithObject:font
forKey:NSFontAttributeNamel;
[accessory insertText:[[NSAttributedString alloc] initWithString:@"Text in
accessory view"

attributes:textAttributes]];
[accessory setEditable:NO];
[accessory setDrawsBackground:NOJ;

NSATert* alert = [NSAlert new];

[alert setInformativeText: @"Informative text"];
[alert setMessageText: @"Message text"];
[alert setAccessoryView:accessory];

[alert runModall;

Figure 5-1 Alert dialog with an accessory view

Message text

¥ Informative text

~x J Text in accessory view

Availability
Available in Mac OS X v10.5 and later.

See Also
- accessoryView (page 82)

Declared In
NSATert.h

setAlertStyle:

Sets the alert style of the receiver.

- (void)setAlertStyle: (NSAlertStyle)style

Instance Methods 89
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Parameters
style

Alert style for the alert. Indicates the severity level of the alert. See NSAlertStyle (page 96) for the list
of alert style constants.

Availability
Available in Mac OS X v10.3 and later.

See Also
- alertStyle (page 83)

Related Sample Code
CocoaDVDPlayer

CoreRecipes
IdentitySample

Declared In
NSATert.h

setDelegate:

Sets the receiver’s delegate.
- (void)setDelegate:(id)delegate

Parameters
delegate
Delegate for the alert. ni1 removes the delegate.

Availability
Available in Mac OS X v10.3 and later.

See Also
- delegate (page 85)

Declared In
NSATert.h

setHelpAnchor:

Associates the receiver to a given anchor.
- (void)setHelpAnchor: (NSString *)anchor

Parameters
anchor
Anchor to associate with the alert. ni1 removes the associated help anchor.

Availability
Available in Mac OS X v10.3 and later.

See Also
- helpAnchor (page 86),

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

- setShowsHelp: (page 92)

Declared In
NSATert.h

seticon:

Sets the icon to be displayed in the alert to a given icon.
- (void)setlIcon:(NSImage *)icon

Parameters
icon

Icon for the alert. ni1 restores the application icon.
Discussion

By default, the image is the application icon, accessed via the application bundle’s NSApplicationIcon

property.

Availability
Available in Mac OS X v10.3 and later.

See Also
- icon (page 86)

Declared In
NSAlert.h

setinformativeText:

Sets the receiver’s informative text to a given text.
- (void)setInformativeText:(NSString *)informativeTlext

Parameters
informativeTlext
Informative text for the alert.

Availability
Available in Mac OS X v10.3 and later.

See Also
- informativeText (page 86)

- setMessageText: (page 92)

Related Sample Code
CocoaDVDPlayer

CoreRecipes
IdentitySample

Declared In
NSAlert.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

91

92

CHAPTER 5

NSAlert Class Reference

setMessageText:

Sets the receiver's message text, or title, to a given text.
- (void)setMessageText: (NSString *)messageTlext

Parameters
messagelext
Message text for the alert.

Availability
Available in Mac OS X v10.3 and later.

See Also
- messageText (page 87)

- setInformativeText: (page 91)

Related Sample Code
CocoaDVDPlayer

CoreRecipes
IdentitySample

Declared In
NSAlert.h

setShowsHelp:

Specifies whether the receiver has a help button.
- (void)setShowsHelp: (BOOL)showsHelp

Parameters
showsHelp
YES for a help button, NO for no help button.

Discussion

When the help button is pressed, the alert delegate (delegate (page 85)) is first sent a

alertShowHelp: (page 95) message. If there is no delegate, or the delegate does not implement
alertShowHelp: orreturns NO, then the openHelpAnchor:inBook: (page 1296) message is sent to the
application’s help manager with a ni1 book and the anchor specified by setHelpAnchor: (page 90), if
any. An exception is raised if the delegate returns NO and no help anchor is set.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setDelegate: (page 90)

- showsHelp (page 94)

Declared In
NSATert.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

setShowsSuppressionButton:

Specifies whether the receiver includes a suppression checkbox.
- (void)setShowsSuppressionButton: (BOOL)showButton

Parameters
showButton
When YES the alert includes the suppression checkbox.

Discussion
You can set the title of the checkbox with the following code:

[[alert suppressionButton] setTitle:titlel;

Listing 5-2 shows how to add a suppression checkbox (with the default suppression-checkbox title) to a
modal alert. Figure 5-2 shows the corresponding dialog.

Listing 5-2 Creating an alert with a suppression checkbox

NSString *exampleAlertSuppress = @"ExampleAlertSuppress”;
NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];
if ([defaults boolForKey:exampleAlertSuppress]) f{
NSLog(@"ExampleAlert suppressed");
}
else {
NSAlert* alert = [NSAlert newl;
[alert setInformativeText: @"Informative text"];
[alert setMessageText: @"Message text"];
[alert setShowsSuppressionButton:YES];
[alert runModall;
if ([[alert suppressionButton] state] == NSOnState) {
// Suppress this alert from now on.
[defaults setBool:YES forKey:exampleAlertSuppress];

Figure 5-2 Alert dialog with a suppression checkbox

Message text

A Informative text
—— L

[Do not show this message again

o)

Availability
Available in Mac OS X v10.5 and later.

See Also

- suppressionButton (page 94)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

93

94

CHAPTER 5

NSAlert Class Reference

Declared In
NSATert.h

showsHelp

Indicates whether the receiver has a help button.
- (BOOL)showsHelp

Return Value
YES if the alert has a help button, NO otherwise.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setShowsHelp: (page 92)

Declared In
NSATert.h

showsSuppressionButton

Indicates whether the receiver shows a suppression button.
- (BOOL)showsSuppressionButton

Return Value
YES when the alert shows a suppression button, NO otherwise. The default is NO.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setShowsSuppressionButton: (page 93)

Declared In
NSATert.h

suppressionButton

Returns the receiver’s suppression checkbox.
- (NSButton *)suppressionButton

Return Value
The alert’s suppression button.

Discussion
You can use this method to customize the alert’s suppression checkbox before the alert is displayed. For
example, you can change the title of the checkbox or specify its initial state, which is unselected by default.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSATert.h

window

Provides the application-modal panel associated with the receiver.
- (id)window

Return Value
The receiver’s associated NSPanel object.

Discussion

This method is useful when you want to dismiss an alert created with
beginSheetModalForWindow:modalDelegate:didEndSelector:contextIinfo: (page 84) withinthe
method identified by the didEndSelector: parameter.

Availability
Available in Mac OS X v10.3 and later.

Related Sample Code
BackgroundExporter

QTKitTimeCode

Declared In
NSAlert.h

Delegate Methods

alertShowHelp:
Sent to the delegate when the user clicks the alert’s help button. The delegate causes help to be displayed
for an alert, directly or indirectly.

- (BOOL)alertShowHelp: (NSAlert *)alert

Return Value
YES when the delegate displayed help directly, NO otherwise. When NO and the alert has a help anchor
(setHelpAnchor: (page 90)), the application’s help manager displays help using the help anchor.

Discussion
The delegate implements this method only to override the help-anchor lookup behavior.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setShowsHelp: (page 92)

Delegate Methods 95
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

Declared In
NSATert.h

Constants

96

NSAlertStyle

The NSATert class defines these alert styles.

enum {
NSWarningAlertStyle = 0,
NSInformationalAlertStyle =1,
NSCriticalAlertStyle = 2

b

typedef NSUInteger NSAlertStyle;

Constants

NSWarningAlertStyle
An alert used to warn the user about a current or impending event. The purpose is more than
informational but not critical. This is the default alert style.

Available in Mac OS X v10.3 and later.
Declared in NSATert.h.

NSInformationalAlertStyle
An alert used to inform the user about a current or impending event.

Available in Mac OS X v10.3 and later.
Declared in NSATert.h.

NSCriticalAlertStyle
Reserved this style for critical alerts, such as when there might be severe consequences as a result of
a certain user response (for example, a “clean install” will erase all data on a volume). This style causes
the icon to be badged with a caution icon.

Available in Mac OS X v10.3 and later.
Declared in NSATert.h.

Discussion

Currently, there is no visual difference between informational and warning alerts. You should only use the
critical (or “caution”) alert style if warranted, as specified in the “Alerts” chapter in Apple Human Interface
Guidelines.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAlert.h

Button Return Values

An alert’s return values for buttons are position dependent. The following constants describe the return
values for the first three buttons on an alert (assuming a language that reads left to right).

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 5

NSAlert Class Reference

enum {
NSATertFirstButtonReturn = 1000,
NSATertSecondButtonReturn = 1001,
NSATertThirdButtonReturn = 1002
b

Constants
NSAlertFirstButtonReturn
The user clicked the first (rightmost) button on the dialog or sheet.

Available in Mac OS X v10.3 and later.
Declared in NSATert.h.

NSAlertSecondButtonReturn
The user clicked the second button from the right edge of the dialog or sheet.

Available in Mac OS X v10.3 and later.
Declared in NSATert.h.

NSAlertThirdButtonReturn
The user clicked the third button from the right edge of the dialog or sheet.

Available in Mac OS X v10.3 and later.
Declared in NSATert.h.

Discussion

If you have more than three buttons on your alert, the button-position return value is
NSAlertThirdButtonReturn + n, where nis an integer. For languages that read right to left, the first
button’s position is closest to the left edge of the dialog or sheet.

Declared In
NSATert.h

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

97

CHAPTER 5

NSAlert Class Reference

98 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Inherits from NSObject
Conforms to NSCoding

NSCopying

NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Declared in AppKit/AppKit.h
Availability Available in Mac OS X v10.4 and later.
Companion guides Animation Programming Guide for Cocoa

Cocoa Drawing Guide

Related sample code CarbonCocoaCorelmageTab
iSpend
Reducer
Overview

Objects of the NSAnimation class manage the timing and progress of animations in the user interface. The
class also lets you link together multiple animations so that when one animation ends another one starts. It
does not provide any drawing support for animation and does not directly deal with views, targets, or actions.

Note: For simple tasks requiring a timing mechanism, consider using NSTimer.

NSAnimation objects have several characteristics, including duration, frame rate, and animation curve, which
describes the relative speed of the animation over its course. You can set progress marks in an animation,
each of which specifies a percentage of the animation completed; when an animation reaches a progress
mark, it notifies its delegate and posts a notification to any observers. Animations execute in one of three
blocking modes: blocking, non-blocking on the main thread, and non-blocking on a separate thread. The
non-blocking modes permit the handling of user events while the animation is running.

Subclassing Notes

The usual usage pattern for NSAnimation is to make a subclass that overrides (at least) the
setCurrentProgress: (page 109) method to invoke the superclass implementation and then perform whatever
animation action is needed. The method implementation might invoke currentValue (page 104) and then

Overview 929
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

use that value to update some drawing; as a consequence of invoking currentValue (page 104), the method
animation:valueForProgress: (page 114) is sent to the delegate (if there is a delegate that implements the
method). For more information on subclassing NSAnimation, see Cocoa Drawing Guide.

Tasks

Initializing an NSAnimation Object

- initWithDuration:animationCurve: (page 106)
Returns an NSAnimation object initialized with the specified duration and animation-curve values.

Configuring an Animation

- setAnimationBlockingMode: (page 108)
Sets the blocking mode of the receiver.

- animationBlockingMode (page 102)
Returns the blocking mode the receiver is next scheduled to run under.

- runlLoopModesForAnimating (page 107)
Overridden to return the run-loop modes that the receiver uses to run the animation timer in.

- setAnimationCurve: (page 108)
Sets the receiver’s animation curve.

- animationCurve (page 103)
Returns the animation curve the receiver is running under.

- setDuration: (page 110)
Sets the duration of the animation to a specified number of seconds.

- duration (page 105)
Returns the duration of the animation, in seconds.

- setFrameRate: (page 110)
Sets the frame rate of the receiver.

- frameRate (page 105)
Returns the frame rate of the animation.

Managing the Delegate

- setDelegate: (page 109)
Sets the delegate of the receiver.
- delegate (page 105)
Returns the delegate of the receiver.

100 Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Controlling and Monitoring an Animation

- startAnimation (page 111)
Starts the animation represented by the receiver.
- stopAnimation (page 112)
Stops the animation represented by the receiver.
- isAnimating (page 106)
Returns a Boolean value that indicates whether the receiver is currently animating.
- setCurrentProgress: (page 109)
Sets the current progress of the receiver.
- currentProgress (page 104)
Returns the current progress of the receiver.
- currentValue (page 104)
Returns the current value of the effect based on the current progress.
- animationDidEnd: (page 114)
Sent to the delegate when the specified animation completes its run.
- animationDidStop: (page 115)
Sent to the delegate when the specified animation is stopped before it completes its run.
- animationShouldStart: (page 115)
Sent to the delegate just after an animation is started.

- animation:valueForProgress: (page 114)
Requests a custom curve value for the current progress value.

Managing Progress Marks

- addProgressMark: (page 102)
Adds the progress mark to the receiver.

- removeProgressMark: (page 107)

Removes progress mark from the receiver.
- setProgressMarks: (page 111)

Sets the receiver’s progress marks to the values specified in the passed-in array.
- progressMarks (page 107)

Returns the receiver’s progress marks.

- animation:didReachProgressMark: (page 113)
Sent to the delegate when an animation reaches a specific progress mark.

Linking Animations Together

- startWhenAnimation:reachesProgress: (page 112)
Starts running the animation represented by the receiver when another animation reaches a specific
progress mark.

- stopWhenAnimation:reachesProgress: (page 113)
Stops running the animation represented by the receiver when another animation reaches a specific
progress mark.

Tasks 101
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

- clearStartAnimation (page 103)
Clears linkage to another animation that causes the receiver to start.

- clearStopAnimation (page 103)
Clears linkage to another animation that causes the receiver to stop.

Instance Methods

102

addProgressMark:

Adds the progress mark to the receiver.
- (void)addProgressMark: (NSAnimationProgress)progressMark

Parameters

progressMark
A float value (typed as NSAnimationProgress) between 0.0 and 1.0. Values outside that range
are pinned to 0.0 or 1.0, whichever is nearest.
Discussion
A progress mark represents a percentage of the animation completed. When the animation reaches a progress
mark, an animation:didReachProgressMark: (page 113) message is sent to the delegate and an
NSAnimationProgressMarkNotification (page 118)is broadcast to all observers. You might receive
multiple notifications of progress advances over multiple marks.

Availability
Available in Mac OS X v10.4 and later.

See Also
- currentProgress (page 104)

- removeProgressMark: (page 107)

Declared In
NSAnimation.h

animationBlockingMode

Returns the blocking mode the receiver is next scheduled to run under.
- (NSAnimationBlockingMode)animationBlockingMode

Return Value
A constant representing the receiver's blocking mode. See “NSAnimationBlockingMode” (page 117) for valid
values.

Discussion
The animation can run in blocking mode or non-blocking mode; non-blocking mode can be either on the
main thread or on a separate thread. The default mode is NSAnimationBlocking.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

See Also
- setAnimationBlockingMode: (page 108)

Declared In
NSAnimation.h

animationCurve

Returns the animation curve the receiver is running under.
- (NSAnimationCurve)animationCurve

Return Value
An NSAnimationCurve constant indicating the animation curve.

Discussion
The animation curve describes the relative frame rate over the course of the animation. See
“NSAnimationCurve” (page 116) for valid NSAnimationCurve constants.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setAnimationCurve: (page 108)

Declared In
NSAnimation.h

clearStartAnimation

Clears linkage to another animation that causes the receiver to start.
- (void)clearStartAnimation

Discussion
The linkage to the other animation is made with startWhenAnimation:reachesProgress: (page 112).

Availability
Available in Mac OS X v10.4 and later.

See Also
- startAnimation (page 111)

Declared In
NSAnimation.h

clearStopAnimation

Clears linkage to another animation that causes the receiver to stop.

- (void)clearStopAnimation

Instance Methods 103
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

104

CHAPTER 6

NSAnimation Class Reference

Discussion
The linkage to the other animation is made with stopWhenAnimation:reachesProgress: (page 113).

Availability
Available in Mac OS X v10.4 and later.

See Also
- stopAnimation (page 112)

Declared In
NSAnimation.h

currentProgress

Returns the current progress of the receiver.
- (NSAnimationProgress)currentProgress

Return Value
A float value typed as NSAnimationProgress that indicates the current progress of the animation.

Discussion
The current progress is a value between 0.0 and 1.0 that represents the percentage of the animation currently
completed.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setCurrentProgress: (page 109)

Declared In
NSAnimation.h

currentValue

Returns the current value of the effect based on the current progress.
- (float)currentValue

Return Value
A float value that indicates the current value of the animation effect.

Discussion

NSAnimation gets the current value from the delegatein animation:valueForProgress: (page 114) or,
if that method is not implemented, computes it from the current progress by factoring in the animation
curve. NSAnimation itself does not invoke this method currently. Instances of NSAnimation subclasses or
other objects can invoke this method on a periodic basis to get the current value. Although this method has
no corresponding setter method, those NSAnimation subclasses may override this method to return a
custom curve value instead of implementing animation:valueForProgress: (page 114), thereby saving
on the overhead of using a delegate. The current value can be less than 0.0 or greater than 1.0. For example,
if you make the value greater than 1.0 you can achieve a “rubber effect” where the size of a view is temporarily
larger before its final size.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
- currentProgress (page 104)

- setAnimationCurve: (page 108)

Declared In
NSAnimation.h

delegate

Returns the delegate of the receiver.
- (id)delegate

Return Value
The receiver's delegate.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setDelegate: (page 109)

Declared In
NSAnimation.h

duration

Returns the duration of the animation, in seconds.
- (NSTimelInterval)duration

Return Value

An NSTimeInterval value indicating the duration.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setDuration: (page 110)

Declared In
NSAnimation.h

frameRate

Returns the frame rate of the animation.

- (float)frameRate

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

105

106

CHAPTER 6

NSAnimation Class Reference

Discussion
The frame rate is the number of updates per second. It is not guaranteed to be accurate because of differences
between systems on the time needed to process a frame.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSAnimation.h

initWithDuration:animationCurve:

Returns an NSAnimation object initialized with the specified duration and animation-curve values.

- (id)initWithDuration: (NSTimelnterval)duration
animationCurve: (NSAnimationCurve)animationCurve

Parameters

duration
The number of seconds over which the animation occurs. Specifying a negative number raises an
exception.

animationCurve
An NSAnimationCurve constant that describes the relative speed of the animation over its course;
if it is zero, the default curve (NSAnimationEaseInQut) is used.

Return Value
An initialized NSAnimation instance. Returns ni1 if the object could not be initialized.

Discussion

You can always later change the duration of an NSAnimation object by sendingita setDuration: (page
110) message, even while the animation is running. See "Constants" for descriptions of the NSAnimationCurve
constants.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CarbonCocoaCorelmageTab

Reducer

Declared In
NSAnimation.h

isAnimating

Returns a Boolean value that indicates whether the receiver is currently animating.
- (BOOL)isAnimating

Return Value
YES if the receiver is animating, NO otherwise.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSAnimation.h

progressMarks

Returns the receiver’s progress marks.
- (NSArray *)progressMarks

Return Value
An array of NSNumber objects, each encapsulating a f1oat value (typed as NSAnimationProgress) that
represents a current progress mark. If the receiver has no progress marks, an empty array is returned.

Availability
Available in Mac OS X v10.4 and later.

See Also
- addProgressMark: (page 102)

- setProgressMarks: (page 111)

Declared In
NSAnimation.h

removeProgressMark:

Removes progress mark from the receiver.
- (void)removeProgressMark: (NSAnimationProgress)progressMark

Parameters

progressMark
A float value (typed as NSAnimationProgress) that indicates the portion of the animation
completed. The value should correspond to a progress mark set with addProgressMark: (page 102) or
setProgressMarks: (page 111).

Availability
Available in Mac OS X v10.4 and later.

See Also
- addProgressMark: (page 102)

Declared In
NSAnimation.h

runLoopModesForAnimating

Overridden to return the run-loop modes that the receiver uses to run the animation timer in.

- (NSArray *)runLoopModesForAnimating

Instance Methods 107
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

108

CHAPTER 6

NSAnimation Class Reference

Return Value

An array of constants that indicate the modes the animation's run loop can be in. By default, the method
returns ni 1, which indicates that the animation can be run in default, modal, or event-tracking mode. See
the NSRunLoop class reference for information about the mode constants

Discussion
The value returned from this method is ignored if the animation blocking mode is something other than
NSAnimationNonblocking.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setAnimationBlockingMode: (page 108)

Declared In
NSAnimation.h

setAnimationBlockingMode:

Sets the blocking mode of the receiver.
- (void)setAnimationBlockingMode: (NSAnimationBlockingMode)animationBlockingMode

Parameters

animationBlockingMode
A constant representing the blocking mode the animation is next scheduled to run under. See
“NSAnimationBlockingMode” (page 117) for valid values.

If the constant is NSAnimationNonblocking, the animation runs in the main thread in one of the

standard run-loop modes or in a mode returned from runlLoopModesForAnimating (page 107). If
animationBlockingModeis NSAnimationNonblockingThreaded, a new thread is spawned to

run the animation.

Discussion

The default mode is NSAnimationB1ocking, which means that the animation runs on the main thread in
a custom run-loop mode that blocks user events. The new blocking mode takes effect the next time the
receiver is started and has no effect on an animation underway.

Availability
Available in Mac OS X v10.4 and later.

See Also
- animationBlockingMode (page 102)

Related Sample Code
Reducer

Declared In
NSAnimation.h

setAnimationCurve:

Sets the receiver’s animation curve.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

- (void)setAnimationCurve: (NSAnimationCurve)curve

Parameters
curve

An NSAnimationCurve constant specifying the animation curve. Invalid values raise an exception.
Discussion
The animation curve describes the relative frame rate over the course of the animation; predefined curves
are linear, ease in (slow down near end), ease out (slowly speed up at start), and ease in-ease out (S-curve).
Sending this message affects animations already in progress. The NSAnimationCurve setting is ignored if
the delegate implements animation:valueForProgress: (page 114). See “NSAnimationCurve” (page 116)
for valid NSAnimationCurve constants.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
QTCoreVideo301

Declared In
NSAnimation.h

setCurrentProgress:

Sets the current progress of the receiver.
- (void)setCurrentProgress: (NSAnimationProgress)progress

Parameters
progress
A float valuetypedas NSAnimationProgress that specifies the current progress of the animation.
This value should be between 0.0 and 1.0; values that are out of range are pinned to 0.0 or 1.0,
whichever is closer.
Discussion
You can use this method to adjust the progress of a running animation. The NSAnimation class invokes this
method while the animation is running to change the progress for the next frame. Subclasses can override
this method to get the latest value and perform their action with it, possibly in a secondary thread.
Alternatively, you can implement the delegation method animation:valueForProgress: (page 114).

Availability
Available in Mac OS X v10.4 and later.

See Also
- currentProgress (page 104)

Declared In
NSAnimation.h

setDelegate:

Sets the delegate of the receiver.

- (void)setDelegate:(id)delegate

Instance Methods 109
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Parameters
delegate
The delegate for the receiver.

Availability
Available in Mac OS X v10.4 and later.

See Also
- delegate (page 105)

Declared In
NSAnimation.h

setDuration:

Sets the duration of the animation to a specified number of seconds.
- (void)setDuration: (NSTimelnterval)duration

Parameters
duration

An NSTimeInterval value specifying the duration of the animation. Negative values raise an
exception.

Discussion
You can change the duration of an animation while it is running. However, setting the duration of a running
animation to an interval shorter than the current progress ends the animation.

Availability
Available in Mac OS X v10.4 and later.

See Also
- duration (page 105)

Related Sample Code
QTCoreVideo301

Reducer

Declared In
NSAnimation.h

setFrameRate:

Sets the frame rate of the receiver.
- (void)setFrameRate:(float) framesPerSecond

Parameters
framesPerSecond

A float value specifying the number of updates per second for the animation. This value must be
positive; negative values raise an exception. A frame rate of 0.0 means to go as fast as possible.

110 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Discussion

The frame rate is not guaranteed due to differences among systems for the time needed to process a frame.
You can change the frame rate while an animation is running and the new value is used at the next frame.
The default frame rate is set to a reasonable value (which is subject to future change).

Availability
Available in Mac OS X v10.4 and later.

See Also
- frameRate (page 105)

Declared In
NSAnimation.h

setProgressMarks:

Sets the receiver’s progress marks to the values specified in the passed-in array.
- (void)setProgressMarks: (NSArray *)progressMarks

Parameters

progressMarks
An array of NSNumber objects, each encapsulating a f1oat value (typed as NSAnimationProgress)
that represents a current progress mark. Passing in ni1 clears all progress marks.

Availability

Available in Mac OS X v10.4 and later.

See Also
- progressMarks (page 107)

Declared In
NSAnimation.h

startAnimation

Starts the animation represented by the receiver.
- (void)startAnimation

Discussion

The receiver retains itself and is then autoreleased at the end of the animation or when it receives
stopAnimation (page 112).If the blocking modeis NSAnimationB1ocking, the method only returns after
the animation has completed or the delegate sends it stopAnimation (page 112). If the receiver has a
progress of 1.0, it starts again at 0.0.

Availability
Available in Mac OS X v10.4 and later.

See Also
- startWhenAnimation:reachesProgress: (page 112)

- stopAnimation (page 112)

Instance Methods m
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

112

CHAPTER 6

NSAnimation Class Reference

Related Sample Code
QTCoreVideo301

Reducer

Declared In
NSAnimation.h

startWhenAnimation:reachesProgress:

Starts running the animation represented by the receiver when another animation reaches a specific progress
mark.

- (void)startWhenAnimation: (NSAnimation *)animation
reachesProgress: (NSAnimationProgress)startProgress

Parameters
animation
The other NSAnimation object with which the receiver is linked.
startProgress
A float value (typedas NSAnimationProgress) that specifies a progress mark of the other animation.

Discussion

This method links the running of two animations together. You can set only one NSAnimation objectas a
start animation and one as a stop animation at any one time. Setting a new start animation removes any
animation previously set.

Availability
Available in Mac OS X v10.4 and later.

See Also
- clearStartAnimation (page 103)

- startAnimation (page 111)
- stopWhenAnimation:reachesProgress: (page 113)

Declared In
NSAnimation.h

stopAnimation

Stops the animation represented by the receiver.
- (void)stopAnimation

Discussion
The current progress of the receiver is not reset. When this method is sent to instances of NSViewAnimation
(a subclass of NSAnimation) the receiver moves to the end frame location.

Availability
Available in Mac OS X v10.4 and later.

See Also
- startAnimation (page 111)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

- stopWhenAnimation:reachesProgress: (page 113)

Declared In
NSAnimation.h

stopWhenAnimation:reachesProgress:

Stops running the animation represented by the receiver when another animation reaches a specific progress
mark.

- (void)stopWhenAnimation: (NSAnimation *)animation
reachesProgress: (NSAnimationProgress)stopProgress

Parameters
animation
The other NSAnimation object with which the receiver is linked.
stopProgress
A float value (typed as NSAnimationProgress) that specifies a progress mark of the other animation.

Discussion

This method links the running of two animations together. You can set only one NSAnimation object as a
start animation and one as a stop animation at any one time. Setting a new stop animation removes any
animation previously set.

Availability
Available in Mac OS X v10.4 and later.

See Also
- clearStopAnimation (page 103)

- startWhenAnimation:reachesProgress: (page 112)
- stopAnimation (page 112)

Declared In
NSAnimation.h

Delegate Methods

animation:didReachProgressMark:
Sent to the delegate when an animation reaches a specific progress mark.

- (void)animation: (NSAnimation *)animation
didReachProgressMark: (NSAnimationProgress)progress

Parameters
animation
A running NSAnimation object that has reached a progress mark.

progress
A float value (typed as NSAnimationProgress) that indicates a progress mark of animation.

Delegate Methods 113
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

14

CHAPTER 6

NSAnimation Class Reference

Discussion

The delegate typically implements this method to perform some animation effect for the time slice indicated
by progress, such as redrawing objects in a view with new coordinates or changing the frame location or
size of a window or view. As an alternative to this delegation message, you may choose to observe the
NSAnimationProgressMarkNotification (page 118) notification.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSAnimation.h

animation:valueForProgress:

Requests a custom curve value for the current progress value.

- (float)animation: (NSAnimation *)animation
valueForProgress: (NSAnimationProgress)progress

Parameters

animation
An NSAnimation object thatis running.

progress
A float value (typedas NSAnimationProgress)thatindicates a progress mark of animation. This
value is always between 0.0 and 1.0.

Return Value
A float value representing a custom curve.

Discussion
The delegate can compute and return a custom curve value for the given progress value. If the delegate does
not implement this method, NSAnimation computes the current curve value.

The animation:valueForProgress: message is sent to the delegate when an NSAnimation object receives a
currentValue (page 104) message. The value the delegate returns is used as the value of currentValue; if there
is no delegate, or it doesn't implement animation:valueForProgress:, NSAnimation computes and returns
the current value. NSAnimation does not invoke currentValue itself, but subclasses might.

See the description of currentValue (page 104) for more information.

Availability
Available in Mac OS X v10.4 and later.

See Also
- currentValue (page 104)

Declared In
NSAnimation.h

animationDidEnd:

Sent to the delegate when the specified animation completes its run.

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

- (void)animationDidEnd: (NSAnimation *)animation

Parameters
animation
The NSAnimation instance that completed its run.

Discussion
When an NSAnimation object reaches the end of its planned duration, it has a progress value of 1.0.

Availability
Available in Mac OS X v10.4 and later.

See Also
- animationDidStop: (page 115)

- currentProgress (page 104)

Declared In
NSAnimation.h

animationDidStop:

Sent to the delegate when the specified animation is stopped before it completes its run.
- (void)animationDidStop: (NSAnimation *)animation

Parameters
animation
The NSAnimation instance that was stopped.
Discussion
An NSAnimation object stops running when it receives a stopAnimation (page 112) message.

Availability
Available in Mac OS X v10.4 and later.

See Also
- animationDidEnd: (page 114)

Declared In
NSAnimation.h

animationShouldStart:

Sent to the delegate just after an animation is started.
- (BOOL)animationShouldStart:(NSAnimation *)animation

Parameters
animation
The NSAnimation object that was just started.

Return Value
NO to cancel the animation, YES to have the animation proceed.

Delegate Methods 115
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Discussion
The delegate is sent this message just after animation receivesa startAnimation (page 111) message.
The delegate can use this method to prepare objects and resources for the effect.

Availability
Available in Mac OS X v10.4 and later.

See Also
- animationDidEnd: (page 114)

- animationDidStop: (page 115)

Declared In
NSAnimation.h

Constants

NSAnimationCurve

These constants describe the curve of an animation—that is, the relative speed of an animation from start
to finish.

enum {
NSAnimationEaseInOut,
NSAnimationEaseln,
NSAnimationEaseOut,
NSAnimationLinear

b

typedef NSUInteger NSAnimationCurve;

Constants

NSAnimationEaseInQOut
Describes an S-curve in which the animation slowly speeds up and then slows down near the end of
the animation. This constant is the default.

Available in Mac OS X v10.4 and later.
Declared in NSAnimation.h.

NSAnimationEaseln
Describes an animation that slows down as it reaches the end.

Available in Mac OS X v10.4 and later.
Declared in NSAnimation.h.

NSAnimationEaseOut
Describes an animation that slowly speeds up from the start.

Available in Mac OS X v10.4 and later.
Declared in NSAnimation.h.

NSAnimationLinear
Describes an animation in which there is no change in frame rate.

Available in Mac OS X v10.4 and later.

Declared in NSAnimation.h.

116 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Discussion

You initialize an NSAnimation object using one of these constants with
initWithDuration:animationCurve: (page 106) and you can set it thereafter with
setAnimationCurve: (page 108).

Declared In
NSAnimation.h

NSAnimationBlockingMode

These constants indicate the blocking mode of an NSAnimation object when it is running.

enum {
NSAnimationBlocking,
NSAnimationNonblocking,
NSAnimationNonblockingThreaded

b

typedef NSUInteger NSAnimationBlockingMode;

Constants
NSAnimationBlocking

Requests the animation to run in the main thread in a custom run-loop mode that blocks user input.

This is the default.
Available in Mac OS X v10.4 and later.
Declared in NSAnimation.h.

NSAnimationNonblocking
Requests the animation to run in a standard or specified run-loop mode that allows user input.

Available in Mac OS X v10.4 and later.
Declared in NSAnimation.h.

NSAnimationNonblockingThreaded

Requests the animation to run in a separate thread that is spawned by the NSAnimation object.

The secondary thread has its own run loop.
Available in Mac OS X v10.4 and later.
Declared in NSAnimation.h.
Discussion
You specify one of these constants in setAnimationBlockingMode: (page 108).

Declared In
NSAnimation.h

Animation action triggers

These constants are used by the NSAnimatablePropertyContainer methods
defaultAnimationForKey: (page 3466) and animationForKey: (page 3467).

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

17

CHAPTER 6

NSAnimation Class Reference

NSString *NSAnimationTriggerOrderin;
NSString *NSAnimationTriggerOrderQOut;

Constants

NSAnimationTriggerOrderIn
The trigger that represents the action taken when a view becomes visible, either as a result of being
inserted into the visible view hierarchy or the view is no longer set as hidden.

Available in Mac OS X v10.5 and later.
Declared in NSAnimation.h.

NSAnimationTriggerOrderQut
The trigger that represents the action taken when the view is either removed from the view hierarchy
or is hidden.

Available in Mac OS X v10.5 and later.
Declared in NSAnimation.h.

Declared In
NSAnimation.h

Notification Key

This constant is returned in the userinfo dictionary of the NSAnimationProgressMarkNotification (page
118) notification.

NSString* NSAnimationProgressMark;

Constants
NSAnimationProgressMark
Contains a float as an NSNumber instance that indicates the current animation progress.

Available in Mac OS X v10.4 and later.
Declared in NSAnimation.h.

Declared In
NSAnimation.h

Notifications

118

NSAnimationProgressMarkNotification

Posted when the current progress of a running animation reaches one of its progress marks.

The notification object is a running NSAnimation object. The userInfo dictionary contains the current
progress mark, accessed via the key NSAnimationProgressMark.

Availability
Available in Mac OS X v10.4 and later.

See Also
- animation:didReachProgressMark: (page 113)

Notifications
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

Declared In
NSAnimation.h

Notifications 19
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 6

NSAnimation Class Reference

120 Notifications
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAnimationContext Class Reference

Inherits from

Conforms to

Framework

Availability
Declared in

Related sample code

Overview

NSObject
NSObject (NSObject)

/System/Library/Frameworks/AppKit.framework
Available in Mac OS X v10.5 and later.

AppKit/NSAnimationContext.h

BasicCocoaAnimations
LayerBackedOpenGLView
MethodReplacement
TrackBall

NSAnimationContext is analogous to CATransaction and are similar in overall concept to
NSGraphicsContext. Each thread maintains its own stack of nestable NSAnimationContext instances,
with each new instance initialized as a copy of the instance below (so, inheriting its current properties).

Multiple NSAnimationContext instances can be nested, allowing a given block of code to initiate animations
using its own specified duration without affecting animations initiated by surrounding code.

[NSAnimationContext beginGrouping];

// Animate enclosed operations with a duration of 1 second
[[NSAnimationContext currentContext] setDuration:1.01];
[[aView animator] setFrame:newFramel;

[NSAnimationContext beginGrouping];

// Animate alpha fades with half-second duration
[[NSAnimationContext currentContext] setDuration:0.5];
[[aView animator] setAlphaValue:0.75];

[[bView animator] setAlphaValue:0.75];
[NSAnimationContext endGrouping];

// Will animate with a duration of 1 second
[[bView animator] setFrame:secondFrame];
[NSAnimationContext endGrouping];

Overview

121

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

CHAPTER 7

NSAnimationContext Class Reference

Grouping Transactions

+ beginGrouping (page 122)
Creates a new animation grouping.
+ endGrouping (page 123)
Ends the current animation grouping.

Getting the Current Animation Context

+ currentContext (page 123)
Returns the current animation context.

Modifying the Animation Duration

- setDuration: (page 124)
Sets the duration used by animations created as a result of setting new values for an animatable
property.

- duration (page 123)
Returns the duration used when animating object properties that support animation.

Class Methods

122

beginGrouping

Creates a new animation grouping.
+ (void)beginGrouping

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
BasicCocoaAnimations

LayerBackedOpenGLView
MethodReplacement
TrackBall

Declared In
NSAnimationContext.h

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAnimationContext Class Reference

currentContext

Returns the current animation context.
+ (NSAnimationContext *)currentContext

Return Value
The current animation context.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
BasicCocoaAnimations

LayerBackedOpenGLView
MethodReplacement
TrackBall

Declared In
NSAnimationContext.h

endGrouping
Ends the current animation grouping.

+ (void)endGrouping

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
BasicCocoaAnimations

LayerBackedOpenGLView
MethodReplacement
TrackBall

Declared In
NSAnimationContext.h

Instance Methods

duration

Returns the duration used when animating object properties that support animation.
- (NSTimelInterval)duration

Return Value
The duration in seconds.

Instance Methods 123
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 7

NSAnimationContext Class Reference

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAnimationContext.h

setDuration:

Sets the duration used by animations created as a result of setting new values for an animatable property.
- (void)setDuration: (NSTimelnterval)duration

Parameters
duration

The duration in seconds.
Discussion

Any animations that occur as a result of setting the values of animatable properties in the current context
will run for this duration.

Availability
Available in Mac OS X v10.5 and later.

Related Sample Code
BasicCocoaAnimations

LayerBackedOpenGLView
MethodReplacement
TrackBall

Declared In
NSAnimationContext.h

124 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8

NSAppleScript Additions Reference

Inherits from NSObject
Framework /System/Library/Frameworks/AppKit.framework
Declared in AppKit/NSAppleScriptExtensions.h
Companion guide Cocoa Scripting Guide
Overview

Tasks

The Application Kit adds a method to the Foundation Framework’s NSAppleScript class to handle rich text
source. This method becomes part of the NSAppleScript class only for those applications that use the
Application Kit.

For more information, see NSAppleScript in the Foundation Framework API Reference.

Obtaining Source

- richTextSource (page 125)

Returns the syntax-highlighted source code of the receiver if the receiver has been compiled and its
source code is available.

Instance Methods

richTextSource

Returns the syntax-highlighted source code of the receiver if the receiver has been compiled and its source
code is available.

- (NSAttributedString *)richTextSource

Discussion

Returns ni1 otherwise. It is possible for an instance of NSAppleScript that has been instantiated with
initWithContentsOfURL:error: to be ascript for which the source code is not available, but is nonetheless
executable.

Overview 125
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 8
NSAppleScript Additions Reference

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSAppleScriptExtensions.h

126 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Inherits from

Conforms to

Framework

Availability

Declared in

Companion guides

Related sample code

Class at a Glance

NSResponder : NSObject

NSUserlInterfaceValidations
NSCoding (NSResponder)
NSObject (NSObject)

/System/Library/Frameworks/AppKit.framework
Available in Mac OS X v10.0 and later.

AppKit/NSApplication.h
AppKit/NSApplicationScripting.h
AppKit/NSColorPanel.h
AppKit/NSDataLinkPanel.h
AppKit/NSFontPanel.h
AppKit/NSHelpManager.h
AppKit/NSPagelLayout.h

Application Architecture Overview
Notification Programming Topics for Cocoa
Sheet Programming Topics for Cocoa
System Services

CoreRecipes

ImageClient
Numberlnput_IMKit_Sample

Quartz Composer WWDC 2005 TextEdit
TextEditPlus

An NSApplication object manages an application’s main event loop in addition to resources used by all

of that application’s objects.

Principal Attributes

m Delegate
= Key window

= Display context

Class at a Glance

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

127

CHAPTER 9

NSApplication Class Reference

m List of windows

= Main window

Commonly Used Methods

keyWindow (page 153)

Returns an NSWindow object representing the key window.
mainWindow (page 154)

Returns the application’s main window.
registerServicesMenuSendTypes:returnTypes: (page 160)

Specifies which services are valid for this application.

runModalForWindow: (page 164)
Runs a modal event loop for the specified NSWindow object.

Overview

128

The NSApplication class provides the central framework for your application’s execution.

Every application must have exactly one instance of NSApplication (or a subclass of NSApplication).
Your program’s main () function should create this instance by invoking the sharedApplication (page
140) class method. After creating the NSApp1ication object, the main() function should load your
application’s main nib file and then start the event loop by sending the NSApplication objecta run (page
163) message. If you create an Application project in Xcode, this main () function is created for you. The
main() function Xcode creates begins by calling a function named NSApplicationMain(), whichis
functionally similar to the following:

void NSApplicationMain(int argc, char *argv[]) {
[NSApplication sharedApplication];
[NSBundle loadNibNamed:@"myMain" owner:NSApp];
[NSApp runl;

}

The sharedApplication (page 140) class method initializes the display environment and connects your
program to the window server and the display server. The NSApp1ication object maintains a list of all the
NSWindow objects the application uses, so it can retrieve any of the application’s NSV1iew objects.
sharedApplication (page 140) also initializes the global variable NSApp, which you use to retrieve the
NSApplicationinstance. sharedApplication (page 140) only performs the initialization once; if you
invoke it more than once, it simply returns the NSApp1ication object it created previously.

NSApplication performs the important task of receiving events from the window server and distributing
them to the proper NSResponder objects. NSApp translates an event into an NSEvent object, then forwards
the NSEvent object to the affected NSWindow object. All keyboard and mouse events go directly to the
NSWindow object associated with the event. The only exception to this rule is if the Command key is pressed
when a key-down event occurs; in this case, every NSWindow object has an opportunity to respond to the
event. When an NSWindow object receives an NSEvent object from NSApp, it distributes it to the objects in
its view hierarchy.

Overview
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSApplication is also responsible for dispatching certain Apple events received by the application. For
example, Mac OS X sends Apple events to your application at various times, such as when the application is
launched or reopened. NSApp1ication installs Apple event handlers to handle these events by sending a
message to the appropriate object. You can also use the NSAppleEventManager class to register your own
Apple event handlers. The applicationWillFinishLaunching: (page 193) method is generally the best
place to do so. For more information on how events are handled and how you can modify the default behavior,
including information on working with Apple events in scriptable applications, see How Cocoa Applications
Handle Apple Events in Cocoa Scripting Guide.

The NSApplication class sets up autorelease pools (instances of the NSAutoreleasePool class) during
initialization and inside the event loop—specifically, within its initialization (or sharedApplication (page
140)) and run (page 163) methods. Similarly, the methods the Application Kit adds to NSBund1e employ
autorelease pools during the loading of nib files. These autorelease pools arent accessible outside the scope
of the respective NSApplication and NSBund1le methods. Typically, an application creates objects either
while the event loop is running or by loading objects from nib files, so this lack of access usually isn’t a
problem. However, if you do need to use Cocoa classes within the main () function itself (other than to load
nib files or to instantiate NSApp1ication), you should create an autorelease pool before using the classes
and then release the pool when you're done. For more information, see NSAutoreleasePool in the
Foundation Framework Reference.

The Delegate and Notifications

You can assign a delegate to NSApp. The delegate responds to certain messages on behalf of NSApp. Some
of these messages, such as application:openFile: (page 181), ask the delegate to perform an action.

Another message, applicationShouldTerminate: (page 192), lets the delegate determine whether the
application should be allowed to quit. The NSApp11ication class sends these messages directly to its delegate.

The NSApp also posts notifications to the application’s default notification center. Any object may register
to receive one or more of the notifications posted by NSApp by sending the message
addObserver:selector:name:object: to the default notification center (an instance of the
NSNotificationCenter class). The delegate of NSApp is automatically registered to receive these
notifications if it implements certain delegate methods. For example, NSApp posts notifications when it is
about to be done launching the application and when it is done launching the application
(NSAppTicationWillFinishLaunchingNotification (page 204) and
NSApplicationDidFinishLaunchingNotification (page 203)). The delegate has an opportunity to
respond to these notifications by implementing the methods applicationWillFinishLaunching: (page
193)and applicationDidFinishlLaunching: (page 187). If the delegate wants to be informed of both
events, it implements both methods. If it needs to know only when the application is finished launching, it
implements only applicationDidFinishLaunching: (page 187).

System Services

NSApplication interacts with the system services architecture to provide services to your application
through the Services menu.

Overview 129
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

130

CHAPTER 9

NSApplication Class Reference

Subclassing Notes

You rarely should find a real need to create a custom NSApp11ication subclass. Unlike some object-oriented
libraries, Cocoa does not require you to create a custom application class to customize application behavior.
Instead it gives you many other ways to customize an application. This section discusses both some of the
possible reasons to subclass NSApp1ication and some of the reasons not to subclass NSApplication.

To use a custom subclass of NSApplication,simplysend sharedApplication (page 140) to your subclass
rather than directly to NSApp1ication.If you create your application in Xcode, you can accomplish this by
setting your custom application class to be the principal class. In Xcode, double-click the application target
in the Groups and Files list to open the Info window for the target. Then display the Properties pane of the
window and replace “NSApplication” in the Principal Class field with the name of your custom class. The
NSApplicationMain function sends sharedApplication (page 140) to the principal class to obtain the
global application instance (NSApp)—which in this case will be an instance of your custom subclass of
NSApplication.

Important: Many Application Kit classes rely on the NSApp1ication class and may not work properly until
this class is fully initialized. As a result, you should not, for example, attempt to invoke methods of other
Application Kit classes from an initialization method of an NSApp1ication subclass.

Methods to Override

Generally, you subclass NSApp11cation to provide your own special responses to messages that are routinely
sent to the global application object (NSApp). NSApp1ication does not have primitive methods in the sense
of methods that you must override in your subclass. Here are four methods that are possible candidates for
overriding:

= Override run (page 163) if you want the application to manage the main event loop differently than it
does by default. (This a critical and complex task, however, that you should only attempt with good
reason.)

m Override sendEvent: (page 167) if you want to change how events are dispatched or perform some
special event processing.

m Override requestUserAttention: (page 163) if you want to modify how your application attracts the
attention of the user (for example, offering an alternative to the bouncing application icon in the Dock).

m Override targetForAction: (page 174) to substitute another object for the target of an action message.

Special Considerations

The global application object uses autorelease pools in its run (page 163) method; if you override this method,
you'll need to create your own autorelease pools.

Do not override sharedApplication (page 140). The default implementation, which is essential to application
behavior, is too complex to duplicate on your own.

Overview
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

CHAPTER 9

NSApplication Class Reference

Alternatives to Subclassing

NSApplication defines over twenty delegate methods that offer opportunities for modifying specific

aspects of application behavior. Instead of making a custom subclass of NSApp1ication, your application

delegate may be able to implement one or more of these methods to accomplish your design goals. In

general, a better design than subclassing NSApp1icationis to put the code that expresses your application’s
special behavior into one or more custom objects called controllers. Methods defined in your controllers can
be invoked from a small dispatcher object without being closely tied to the global application object. For
more about application architectures, see Cocoa Design Patterns and The Core Application Architecture.

Getting the Application

+ sharedApplication (page 140)

Returns the application instance, creating it if it doesn't exist yet.

Configuring Applications

- applicationlconImage (page 143)
Returns the image used for the receiver’s icon.

- setApplicationIconlImage: (page 169)
Sets the receiver’s icon to the specified image.

- delegate (page 147)
Returns the receiver’s delegate.

- setDelegate: (page 169)
Makes the given object the receiver’s delegate.

Launching Applications

- finishlLaunching (page 151)

Activates the receiver, opens any files specified by the NSOpen user default, and unhighlights the

application’s icon.

- applicationWillFinishLaunching: (page 193)

Sent by the default notification center immediately before the application object is initialized.

- applicationDidFinishlLaunching: (page 187)

Sent by the default notification center after the application has been launched and initialized but

before it has received its first event.

Terminating Applications
- terminate: (page 175)

Terminates the receiver.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

131

132

CHAPTER 9

NSApplication Class Reference

- applicationShouldTerminate: (page 192)
Sent to notify the delegate that the application is about to terminate.

- applicationShouldTerminateAfterLastWindowClosed: (page 192)
Invoked when the user closes the last window the application has open.

- replyToApplicationShouldTerminate: (page 162)
Responds to NSTerminatelater once the application knows whether it can terminate.

- applicationWillTerminate: (page 195)
Sent by the default notification center immediately before the application terminates.

Managing Active Status

- isActive (page 152)
Returns a Boolean value indicating whether this is the active application.

- activatelgnoringOtherApps: (page 141)
Makes the receiver the active application.

- applicationWillBecomeActive: (page 193)
Sent by the default notification center immediately before the application becomes active.

- applicationDidBecomeActive: (page 186)
Sent by the default notification center immediately after the application becomes active.

- deactivate (page 147)
Deactivates the receiver.

- applicationWillResignActive: (page 194)
Sent by the default notification center immediately before the application is deactivated.

- applicationDidResignActive: (page 188)
Sent by the default notification center immediately after the application is deactivated.

Hiding Applications

- hideOtherApplications: (page 152)

Hides all applications, except the receiver.
- unhideAlTApplications: (page 177)

Unhides all applications, including the receiver.
- applicationWillHide: (page 194)

Sent by the default notification center immediately before the application is hidden.
- applicationDidHide: (page 188)

Sent by the default notification center immediately after the application is hidden.
- applicationWillUnhide: (page 195)

Sent by the default notification center immediately after the application is unhidden.
- applicationDidUnhide: (page 189)

Sent by the default notification center immediately after the application is made visible.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Managing the Event Loop

- isRunning (page 153)
Returns a Boolean value indicating whether the main event loop is running.
- run (page 163)
Starts the main event loop.
- stop: (page 172)
Stops the main event loop.
- runModalForWindow: (page 164)
Starts a modal event loop for a given window.
- stopModal (page 173)
Stops a modal event loop.
- stopModalWithCode: (page 173)
Stops a modal event loop, allowing you to return a custom result code.
- abortModal (page 140)
Aborts the event loop started by runModalForWindow: (page 164) or runModalSession: (page
165).
- beginModalSessionForWindow: (page 143)

Sets up a modal session with the given window and returns an NSModa1Sesson structure representing
the session.

- runModalSession: (page 165)
Runs a given modal session, as defined in a previous invocation of beginModalSessionForWindow:.

- modalWindow (page 155)
Returns the modal window that the receiver is displaying.

- endModalSession: (page 149)
Finishes a modal session.

- sendEvent: (page 167)
Dispatches an event to other objects.

Handling Events

- currentEvent (page 147)
Returns the current event, the last event the receiver retrieved from the event queue.

- nextEventMatchingMask:untilDate:inMode:dequeue: (page 156)
Returns the next event matching a given mask, or ni 1 if no such event is found before a specified
expiration date.

- discardEventsMatchingMask:beforetvent: (page 148)
Removes all events matching the given mask and generated before the specified event.

Posting Events

- postEvent:atStart: (page 160)
Adds a given event to the receiver’s event queue.

Tasks 133
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

134

CHAPTER 9

NSApplication Class Reference

Managing Sheets

- beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 144)
Starts a document modal session.

- endSheet: (page 150)
Ends a document modal session by specifying the sheet window.

- endSheet:returnCode: (page 150)
Ends a document modal session by specifying the sheet window.

Managing Windows

- keyWindow (page 153)
Returns the window that currently receives keyboard events.

- mainWindow (page 154)
Returns the main window.

- windowWithWindowNumber: (page 180)
Returns the window corresponding to the specified window number.

- windows (page 179)
Returns an array containing the receiver’s window objects.

- makeWindowsPerform:inOrder: (page 154)
Sends the specified message to each of the application’s window objects until one returns a non-ni 1
value.

- applicationWillUpdate: (page 195)
Sent by the default notification center immediately before the application object updates its windows.

- applicationDidUpdate: (page 189)
Sent by the default notification center immediately after the application object updates its windows.

- applicationShouldHandleReopen:hasVisibleWindows: (page 191)
Sent by the application to the delegate prior to default behavior to reopen (rapp) AppleEvents.

Minimizing Windows

- miniaturizeAll: (page 155)
Miniaturizes all the receiver’s windows.

Hiding Windows

- isHidden (page 152)

Returns a Boolean value indicating whether the receiver is hidden.
- hide: (page 151)

Hides all the receiver’s windows, and the next application in line is activated.
- unhide: (page 176)

Restores hidden windows to the screen and makes the receiver active.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

- unhideWithoutActivation (page 177)
Restores hidden windows without activating their owner (the receiver).

Updating Windows

- updateWindows (page 178)
Sends an update (page 3333) message to each onscreen window.

- setWindowsNeedUpdate: (page 171)

Sets whether the receiver’s windows need updating when the receiver has finished processing the
current event.

Managing Window Layers

- preventWindowOrdering (page 160)
Suppresses the usual window ordering in handling the most recent mouse-down event.

- arrangelnfFront: (page 143)
Arranges windows listed in the Window menu in front of all other windows.

Accessing the Main Menu

- mainMenu (page 153)
Returns the receiver’s main menu.

- setMainMenu: (page 170)
Makes the given menu the receiver’s main menu.

Managing the Window Menu

- windowsMenu (page 180)
Returns the Window menu of the application.

- setWindowsMenu: (page 171)
Makes the given menu the receiver’s Window menu.
- addWindowsItem:title:filename: (page 142)
Adds an item to the Window menu for a given window.
- changeWindowsItem:title:filename: (page 146)
Changes the item for a given window in the Window menu to a given string.
- removeWindowsItem: (page 161)
Removes the Window menu item for a given window.
- updateWindowsItem: (page 178)
Updates the Window menu item for a given window to reflect the edited status of that window.

Tasks 135
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

136

CHAPTER 9

NSApplication Class Reference

Managing the Dock Menu

- applicationDockMenu: (page 189)
Allows the delegate to supply a dock menu for the application dynamically.

Accessing the Dock Tile

- dockTile (page 149)
Returns the application’s Dock tile.

Managing the Services Menu

- registerServicesMenuSendTypes:returnTypes: (page 160)
Registers the pasteboard types the receiver can send and receive in response to service requests.

- servicesMenu (page 168)
Returns the Services menu.

- setServicesMenu: (page 170)
Makes a given menu the receiver’s Services menu.

Providing Services

- validRequestorForSendType:returnType: (page 179)
Indicates whether the receiver can send and receive the specified pasteboard types.
- servicesProvider (page 168)

Returns the object that provides the services the receiver advertises in the Services menu of other
applications.

- setServicesProvider: (page 170)
Registers a given object as the service provider.

Managing Panels

- orderFrontColorPanel: (page 158)
Brings up the color panel, an instance of NSColorPanel.

- orderFrontStandardAboutPanel: (page 158)

Displays a standard About window.
- orderFrontStandardAboutPanelWithOptions: (page 159)

Displays a standard About window with information from a given options dictionary.
- orderFrontCharacterPalette: (page 158)

Opens the character palette.

- runPagelayout: (page 166)
Displays the receiver’s page layout panel, an instance of NSPagelayout.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Displaying Help

- showHelp: (page 172)

If your project is properly registered, and the necessary keys have been set in the property list, this

method launches Help Viewer and displays the first page of your application’s help book.

- activateContextHelpMode: (page 141)
Places the receiver in context-sensitive help mode.
Displaying Errors
- application:willPresentError: (page 186)
Sent to the delegate before the specified application presents an error message to the user.
Managing Threads

+ detachDrawingThread:toTarget:withObject: (page 139)
Creates and executes a new thread based on the specified target and selector.

Posting Actions

- tryToPerform:with: (page 176)
Dispatches an action message to the specified target.

sendAction:to:from: (page 167)
Sends the given action message to the given target.

- targetForAction: (page 174)
Returns the object that receives the action message specified by the given selector

targetForAction:to:from: (page 174)
Finds an object that can receive the message specified by the given selector.
Drawing Windows
- context (page 146)
Returns the receiver’s display context.
Logging Exceptions

- reportkException: (page 162)
Logs a given exception by calling NSLog ().

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

137

CHAPTER 9

NSApplication Class Reference

Scripting

- orderedDocuments (page 157)

Returns an array of document objects arranged according to the front-to-back ordering of their
associated windows.

- orderedWindows (page 157)
Returns an array of window objects arranged according to their front-to-back ordering on the screen.

- application:delegateHandlesKey: (page 181)
Sent by Cocoa’s built-in scripting support during execution of get or set script commands to find
out if the delegate can handle operations on the specified key-value key.

Managing User Attention Requests

- requestUserAttention: (page 163)
Starts a user attention request.

- cancelUserAttentionRequest: (page 145)
Cancels a previous user attention request.

- replyToOpenOrPrint: (page 162)
Handles errors that might occur when the user attempts to open or print files.

Managing the Screen

- applicationDidChangeScreenParameters: (page 187)
Sent by the default notification center when the configuration of the displays attached to the computer
is changed (either programmatically or when the user changes settings in the Displays control panel).

Opening Files

- application:openFile: (page 181)
Tells the delegate to open a single file.
- application:openFileWithoutUI: (page 183)
Tells the delegate to open a file programmatically.
- application:openTempFile: (page 183)
Tells the delegate to open a temporary file.
- application:openFiles: (page 182)
Tells the delegate to open multiple files.

- applicationOpenUntitledFile: (page 190)
Tells the delegate to open an untitled file.

- applicationShouldOpenUntitledFile: (page 191)
Invoked immediately before opening an untitled file.

138 Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Printing

- application:printFile: (page 184) delegate method
Sent when the user starts up the application on the command line with the -NSPrint option.

- application:printFiles:withSettings:showPrintPanels: (page 185) delegate method
Prints a group of files.

Deprecated

- runModalForWindow:relativeToWindow: (page 165)
(Deprecated. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 144)
instead.)

- beginModalSessionForWindow:relativeToWindow: (page 144)
(Deprecated. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 144)
instead.)

- application:printFiles: (page 184) delegate method Deprecated in Mac OS X v10.4

(Deprecated. Use application:printFiles:withSettings:showPrintPanels: (page 185)
instead.)

Class Methods

detachDrawingThread:toTarget:withObject:

Creates and executes a new thread based on the specified target and selector.
+ (void)detachDrawingThread: (SEL)selector toTarget:(id)target withObject:(id)argument

Parameters
selector
The selector whose code you want to execute in the new thread.

target
The object that defines the specified selector.

argument
An optional argument you want to pass to the selector.

Discussion

This method is a convenience wrapper for the detachNewThreadSelector:toTarget:withObject:
method of NSThread. This method automatically creates an NSAutoreleasePool object for the new thread
before invoking selector.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Class Methods 139
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

sharedApplication

Returns the application instance, creating it if it doesn't exist yet.
+ (NSApplication *)sharedApplication

Return Value
The shared application object.

Discussion

This method also makes a connection to the window server and completes other initialization. Your program
should invoke this method as one of the first statements in main (); this invoking is done for you if you create
your application with Xcode. To retrieve the NSApp1ication instance after it has been created, use the
global variable NSApp or invoke this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
- run (page 163)

- terminate: (page 175)

Related Sample Code
CoreRecipes

ImageClient
Numberlnput_IMKit_Sample

Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSApplication.h

Instance Methods

140

abortModal
Aborts the event loop started by runModalForWindow: (page 164) or runModalSession: (page 165).

- (void)abortModal

Discussion
When stopped with this method, runModalForWindow: and runModalSession: return
NSRunAbortedResponse.

abortModal must be used instead of stopModal (page 173) or stopModalllithCode: (page 173) when you
need to stop a modal event loop from anywhere other than a callout from that event loop. In other words,
if you want to stop the loop in response to a user’s actions within the modal window, use stopModal;
otherwise, use abortModal. For example, use abortModal when running in a different thread from the
Application Kit's main thread or when responding to an NSTimer that you have added to the
NSModalPanelRunLoopMode mode of the default NSRunLoop.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- endModalSession: (page 149)

Declared In
NSApplication.h

activateContextHelpMode:

Places the receiver in context-sensitive help mode.
- (void)activateContextHelpMode: (id)sender

Parameters
sender

The object that sent the command.
Discussion

In this mode, the cursor becomes a question mark, and help appears for any user interface item the user
clicks.

Most applications don’t use this method. Instead, applications enter context-sensitive mode when the user
presses the Help key. Applications exit context-sensitive help mode upon the first event after a help window
is displayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
- showHelp: (page 172)

Declared In
NSHelpManager.h

activatelgnoringOtherApps:

Makes the receiver the active application.
- (void)activatelgnoringOtherApps:(BOOL)flag

Parameters
flag

If NO, the application is activated only if no other application is currently active. If YES, the application
activates regardless.

Discussion

The f7ag parameter is normally set to NO. When the Finder launches an application, using a value of NO for
f1ag allows the application to become active if the user waits for it to launch, but the application remains
unobtrusive if the user activates another application. Regardless of the setting of f7ag, there may be a time
lag before the application activates—you should not assume the application will be active immediately after
sending this message.

Instance Methods M
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

142

CHAPTER 9

NSApplication Class Reference

You rarely need to invoke this method. Under most circumstances, the Application Kit takes care of proper
activation. However, you might find this method useful if you implement your own methods for interapplication
communication.

You don't need to send this message to make one of the application’s NSWindows key. When you send a
makeKeyWindow (page 3278) message to an NSWindow object, you ensure that it is the key window when the
application is active.

Availability
Available in Mac OS X v10.0 and later.

See Also
- deactivate (page 147)

- isActive (page 152)

Declared In
NSApplication.h

addWindowsltem:title:filename:

Adds an item to the Window menu for a given window.

- (void)addWindowsItem: (NSWindow *)aWindow title:(NSString *)aString
filename: (BOOL) isFilename

Parameters
awindow

The window being added to the menu. If this window object already exists in the Window menu, this
method has no effect.

aString
The string to display for the window’s menu item. How the string is interpreted is dependent on the
value in the 7sF77ename parameter.

isFilename
If NO, aString appears literally in the menu; otherwise, aStringis assumed to be a converted
pathname with the name of the file preceding the path (the way the NSWindow method
setTitleWithRepresentedFilename: (page 3327) shows a title)

Discussion
You rarely need to invoke this method directly because Cocoa places an item in the Window menu
automatically whenever you set the title of an NSWindow object.

Availability
Available in Mac OS X v10.0 and later.

See Also
- changeWindowsItem:title:filename: (page 146)

- setTitle: (page 3326) (NSWindow)

Related Sample Code
QTAudioExtractionPanel

Declared In

NSApplication.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

applicationlconlmage

Returns the image used for the receiver’s icon.
- (NSImage *)applicationIconImage

Return Value
An image containing the application’s icon.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setApplicationIconlImage: (page 169)

Declared In
NSApplication.h

arrangelnFront:

Arranges windows listed in the Window menu in front of all other windows.
- (void)arrangelnFront:(id)sender

Parameters
sender
The object that sent the command.

Discussion
Windows associated with the application but not listed in the Window menu are not ordered to the front.

Availability
Available in Mac OS X v10.0 and later.

See Also
- addWindowsItem:title:filename: (page 142)

- removeWindowsItem: (page 161)
- makeKeyAndOrderFront: (page 3278) (NSWindow)

Declared In
NSApplication.h

beginModalSessionForWindow:

Sets up a modal session with the given window and returns an NSModa1Sess1on structure representing the
session.

- (NSModalSession)beginModalSessionForWindow: (NSWindow *)aWindow

Parameters

awindow
The window for the session.

Instance Methods 143
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

144

CHAPTER 9

NSApplication Class Reference

Return Value
The NSModa1Session structure that represents the session.

Discussion
In a modal session, the application receives mouse events only if they occur in al/7 ndow. The window is made
key, and if not already visible is placed onscreen using the NSWindow method center (page 3242).

The beginModalSessionForWindow: method only sets up the modal session. To actually run the session,
use runModalSession: (page 165). beginModalSessionForWindow: should be balanced by
endModalSession: (page 149). Make sure these two messages are sent within the same exception-handling
scope. That s, if you send beginModalSessionForWindow: insidean NS_DURING construct, you must send
endModalSession: before NS_ENDHANDLER.

If an exception is raised, beginModalSessionForWindow: arranges for proper cleanup. Do not use
NS_DURING constructs to send an endModalSession: message in the event of an exception.

A loop using these methods is similar to a modal event loop run with runModalForWindow: (page 164),
except the application can continue processing between method invocations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

beginModalSessionForWindow:relativeToWindow:
(Deprecated. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 144)instead.)

- (NSModalSession)beginModalSessionForWindow: (NSWindow *)theWindow
relativeToWindow: (NSWindow *)docWindow

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

beginSheet:modalForWindow:modalDelegate:didEndSelector:contextinfo:

Starts a document modal session.

- (void)beginSheet: (NSWindow *)sheet modalForWindow: (NSWindow *)docWindow
modalDelegate: (id)modalDelegate didEndSelector:(SEL)didEndSelector
contextInfo:(void *)contextiInfo

Parameters
Sheet
The window object representing the sheet you want to display.

docWindow
The window object to which you want to attach the sheet.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

modalDelegate
The delegate object that defines your didfndSelector method. If ni1, the method in
didEndSelectoris not called.

didEndSelector
An optional method to call when the sheet’s modal session has ended. This method must be defined
on the object in the modalDelegate parameter and have the following signature:

- (void)sheetDidEnd: (NSWindow *)sheet returnCode:(NSInteger)returnCode
contextInfo:(void *)contextInfo;

contextInfo
A pointer to the context info you want passed to the didfndSelector method when the sheet’s
modal session ends.

Discussion

This method runs the modal event loop for the specified sheet synchronously. It displays the sheet, makes
it key, starts the run loop, and processes events for it. While the application is in the run loop, it does not
respond to any other events (including mouse, keyboard, or window-close events) unless they are associated
with the sheet. It also does not perform any tasks (such as firing timers) that are not associated with the
modal run loop. In other words, this method consumes only enough CPU time to process events and dispatch
them to the action methods associated with the modal window.

Availability
Available in Mac OS X v10.0 and later.

See Also
- endSheet: (page 150)

- endSheet:returnCode: (page 150)

Related Sample Code
IdentitySample

ImageClient
QTSSConnectionMonitor
QTSSInspector
WhackedTV

Declared In
NSApplication.h

cancelUserAttentionRequest:

Cancels a previous user attention request.
- (void)cancelUserAttentionRequest: (NSInteger)request

Parameters
request
The request identifier returned by the requestUserAttention: method.

Discussion
A request is also canceled automatically by user activation of the application.

Availability
Available in Mac OS X v10.1 and later.

Instance Methods 145
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

146

CHAPTER 9

NSApplication Class Reference

See Also
- requestUserAttention: (page 163)

Declared In
NSApplication.h

changeWindowsltem:title:filename:

Changes the item for a given window in the Window menu to a given string.

- (void)changeWindowsItem: (NSWindow *)aWindow title:(NSString *)aString
filename: (BOOL)7sFilename

Parameters

alWindow
The window whose title you want to change in the Window menu. If aWindow is not in the Window
menu, this method adds it.

aString
The string to display for the window’s menu item. How the string is interpreted is dependent on the
value in the 7sF177ename parameter.

isFilename

If NO, aString appears literally in the menu; otherwise, aStringis assumed to be a converted
pathname with the name of the file preceding the path (the way the NSWindow method
setTitleWithRepresentedFilename: (page 3327) shows a title)

Availability
Available in Mac OS X v10.0 and later.

See Also
- addWindowsItem:title:filename: (page 142)

- removeWindowsItem: (page 161)
- setTitle: (page 3326) (NSWindow)

Declared In
NSApplication.h

context

Returns the receiver’s display context.
- (NSGraphicsContext *)context

Return Value
The current display context for the application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

currentEvent

Returns the current event, the last event the receiver retrieved from the event queue.

- (NSEvent *)currentEvent

Return Value
The last event object retrieved by the application.

Discussion

NSApp receives events and forwards them to the affected NSWindow objects, which then distribute them to

the objects in its view hierarchy.

Availability
Available in Mac OS X v10.0 and later.

See Also

- discardEventsMatchingMask:beforeEvent: (page 148)

- postEvent:atStart: (page 160)
- sendEvent: (page 167)

Related Sample Code
Clock Control

Declared In
NSApplication.h

deactivate

Deactivates the receiver.
- (void)deactivate

Discussion

Normally, you shouldn’t invoke this method—the Application Kit is responsible for proper deactivation.

Availability
Available in Mac OS X v10.0 and later.

See Also
- activatelgnoringOtherApps: (page 141)

Declared In
NSApplication.h

delegate

Returns the receiver’s delegate.
- (id)delegate

Return Value
The application delegate object.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

147

CHAPTER 9

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- setDelegate: (page 169)

Declared In
NSApplication.h

discardEventsMatchingMask:beforeEvent:

Removes all events matching the given mask and generated before the specified event.
- (void)discardEventsMatchingMask: (NSUInteger)mask beforeEvent: (NSEvent *)JlastEvent

Parameters

mask
Contains one or more flags indicating the types of events to discard. The constants section of the
NSEvent class defines the constants you can add together to create this mask. The discussion section
also lists some of the constants that are typically used.

lastEvent
A marker event that you use to indicate which events should be discarded. Events that occurred
before this event are discarded but those that occurred after it are not.

Discussion

Use this method to ignore any events that occurred before a specific event. For example, suppose your
application has a tracking loop that you exit when the user releases the mouse button. You could use this
method, specifying NSAnyEventMask as the mask argument and the ending mouse-up event as the
lastEvent argument, to discard all events that occurred while you were tracking mouse movements in
your loop. Passing the mouse-up event as 7astEvent ensures that any events that might have occurred
after the mouse-up event (that is, that appear in the queue after the mouse-up event) are not discarded.

Note: Typically, you send this message to an NSWindow object, rather than to the application object.
Discarding events for a window clears out all of the events for that window only, leaving events for other
windows in place.

For the mas k parameter, you can add together event type constants such as the following:

NSLeftMouseDownMask
NSLeftMouseUpMask
NSRightMouseDownMask
NSRightMouseUpMask
NSMouseMovedMask
NSLeftMouseDraggedMask
NSRightMouseDraggedMask
NSMouseEnteredMask
NSMouseExitedMask
NSKeyDownMask
NSKeyUpMask
NSFlagsChangedMask

148 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSPeriodicMask
NSCursorUpdateMask
NSAnyEventMask

This method can also be called in subthreads. Events posted in subthreads bubble up in the main thread

event queue.

Availability
Available in Mac OS X v10.0 and later.

See Also
- nextEventMatchingMask:untilDate:inMode:dequeue: (page 156)

Declared In
NSApplication.h

dockTile

Returns the application’s Dock tile.
- (NSDockTile *)dockTile;

Return Value
The application’s Dock tile.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSApplication.h

endModalSession:

Finishes a modal session.
- (void)endModalSession: (NSModalSession)session

Parameters
session

A modal session structure returned by a previous invocation of beginModalSessionForWindow:.

Availability
Available in Mac OS X v10.0 and later.

See Also
- beginModalSessionForWindow: (page 143)

- runModalSession: (page 165)

Declared In
NSApplication.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

149

150

CHAPTER 9

NSApplication Class Reference

endSheet:

Ends a document modal session by specifying the sheet window.
- (void)endSheet: (NSWindow *)sheet

Parameters
sheet
The sheet whose modal session you want to end.

Discussion
This method ends the modal session with the return code NSRunStoppedResponse.

Availability
Available in Mac OS X v10.0 and later.

See Also
- beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 144)

- endSheet:returnCode: (page 150)

Related Sample Code
QTSSConnectionMonitor

QTSSInspector
WhackedTV

Declared In
NSApplication.h

endSheet:returnCode:

Ends a document modal session by specifying the sheet window.
- (void)endSheet: (NSWindow *)sheet returnCode: (NSInteger)returnCode

Parameters

sheet
The sheet whose modal session you want to end.

returnCode
The return code to send to the delegate. You can use one of the return codes defined in “Return
values for modal operations” (page 196) or a custom value that you define.

Availability
Available in Mac OS X v10.0 and later.

See Also
- beginSheet:modalForWindow:modalDelegate:didEndSelector:contextIinfo: (page 144)

- endSheet: (page 150)

Related Sample Code
IdentitySample

ImageClient
Declared In

NSApplication.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

finishLaunching

Activates the receiver, opens any files specified by the NSOpen user default, and unhighlights the application’s
icon.

- (void)finishLaunching

Discussion

The run (page 163) method invokes this method before it starts the event loop. When this method begins,
it posts an NSApplicationWillFinishLaunchingNotification (page 204) to the default notification
center. If you override finishlLaunching (page 151), the subclass method should invoke the superclass
method.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationWillFinishLaunching: (page 193)

- applicationDidFinishLaunching: (page 187)

Declared In
NSApplication.h

hide:

Hides all the receiver’'s windows, and the next application in line is activated.
- (void)hide: (id)sender

Parameters
sender

The object that sent the command.
Discussion
This method is usually invoked when the user chooses Hide in the application’s main menu. When this method
begins, it posts an NSAppTlicationWillHideNotification (page 204) to the default notification center.
When it completes successfully, it posts an NSApplicationDidHideNotification (page 203).

Availability
Available in Mac OS X v10.0 and later.

See Also
- miniaturizeAll: (page 155)

- unhide: (page 176)

- unhideWithoutActivation (page 177)
- applicationDidHide: (page 188)

- applicationWillHide: (page 194)

Declared In
NSApplication.h

Instance Methods 151
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

hideOtherApplications:

Hides all applications, except the receiver.
- (void)hideOtherApplications:(id)sender

Parameters

sender
The object that sent this message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

isActive

Returns a Boolean value indicating whether this is the active application.
- (BOOL)isActive

Return Value
YES if this is the active application; NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also
- activatelgnoringOtherApps: (page 141)

- deactivate (page 147)

Declared In
NSApplication.h

isHidden

Returns a Boolean value indicating whether the receiver is hidden.
- (BOOL)isHidden

Return Value
YES if the receiver is hidden, NO otherwise.

Availability
Available in Mac OS X v10.0 and later.

See Also

- hide: (page 151)

- unhide: (page 176)

- unhideWithoutActivation (page 177)

152 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Declared In
NSApplication.h

isRunning

Returns a Boolean value indicating whether the main event loop is running.

- (BOOL)isRunning

Return Value
YES if the main event loop is running; NO otherwise.

Discussion
NO means the stop: (page 172) method was invoked.

Availability
Available in Mac OS X v10.0 and later.

See Also
- run (page 163)

- terminate: (page 175)

Declared In
NSApplication.h

keyWindow

Returns the window that currently receives keyboard events.
- (NSWindow *)keyWindow

Return Value

The window object currently receiving keyboard events or ni 1 if there is no key window.

Discussion

This method might return ni1 if the application’s nib file hasn’t finished loading yet or if the receiver is not

active.

Availability
Available in Mac OS X v10.0 and later.

See Also
- mainWindow (page 154)

- isKeyWindow (page 3271) (NSWindow)

Declared In
NSApplication.h

mainMenu

Returns the receiver’s main menu.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

153

CHAPTER 9

NSApplication Class Reference

- (NSMenu *)mainMenu

Return Value
The menu object representing the application’s menu bar.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setMainMenu: (page 170)

Declared In
NSApplication.h

mainWindow

Returns the main window.
- (NSWindow *)mainWindow

Return Value
The application’s main window or ni1 if there is no main window.

Discussion
This method might return ni 1 if the application’s nib file hasn't finished loading, if the receiver is not active,
or if the application is hidden.

Availability
Available in Mac OS X v10.0 and later.

See Also
- keyWindow (page 153)

- isMainWindow (page 3272) (NSWindow)

Declared In
NSApplication.h

makeWindowsPerform:inOrder:

Sends the specified message to each of the application’s window objects until one returns a non-ni 1 value.
- (NSWindow *)makeWindowsPerform:(SEL)aSelector inOrder:(BOOL)flag

Parameters

aSelector
The selector to perform on each window. This method must not take any arguments and must return
a value whose type that can be compared to nil.

flag
If YES, the aSelector message is sent to each of the window server’s onscreen windows, going in
z-order, until one returns a non-ni1 value. A minimized window is not considered to be onscreen for
this check. If NO, the message is sent to all windows in NSApp’s window list, regardless of whether or
not they are onscreen. This order is unspecified.

154 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Return Value

The window that returned a non-ni1 value or ni1 if all windows returned nil from aSelector.

Availability
Available in Mac OS X v10.0 and later.

See Also
- sendAction:to:from: (page 167)

- tryToPerform:with: (page 176)
- windows (page 179)

Declared In
NSApplication.h

miniaturizeAll:
Miniaturizes all the receiver’s windows.

- (void)miniaturizeAll:(id)sender

Parameters
sender
The object that sent the command.

Availability
Available in Mac OS X v10.0 and later.

See Also
- hide: (page 151)

Declared In
NSApplication.h

modalWindow

Returns the modal window that the receiver is displaying.
- (NSWindow *)modalWindow

Return Value

The modal window being displayed or ni1 if no modal window is being displayed.

Discussion

This method returns the current standalone modal window. It does not return sheets that are attached to
other windows. If you need to retrieve a sheet window, use the attachedSheet (page 3235) method of

NSWindow.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

155

156

CHAPTER 9

NSApplication Class Reference

nextEventMatchingMask:untilDate:inMode:dequeue:

Returns the next event matching a given mask, or ni 1 if no such event is found before a specified expiration
date.

- (NSEvent *)nextEventMatchingMask: (NSUInteger)mask untilDate: (NSDate *)expiration
inMode: (NSString *)mode dequeue:(BOOL)flag

Parameters

mask
Contains one or more flags indicating the types of events to return. The constants section of the
NSEvent class defines the constants you can add together to create this mask. The
discardEventsMatchingMask:beforeEvent: (page 148) method also lists several of these
constants.

expiration
The expiration date for the current event request. Specifying nil for this parameter is equivalent to
returning a date object using the distantPast method.

mode
The run loop mode in which to run while looking for events. The mode you specify also determines
which timers and run-loop observers may fire while the application waits for the event.

flag
Specify YES if you want the event removed from the queue.

Return Value
The event object whose type matches one of the event types specified by the mas k parameter.

Discussion

You can use this method to short circuit normal event dispatching and get your own events. For example,
you may want to do this in response to a mouse-down event in order to track the mouse while its button is
down. (In such an example, you would pass the appropriate event types for mouse-dragged and mouse-up
events to the mask parameter and specify the NSEventTrackingRunlLoopMode run loop mode.) Events
that do not match one of the specified event types are left in the queue.

You can specify one of the run loop modes defined by the Application Kit or a custom run loop mode used
specifically by your application. Application Kit defines the following run-loop modes:

NSDefaultRunlLoopMode
NSEventTrackingRunLoopMode
NSModalPanelRunLoopMode
NSConnectionReplyMode

Availability
Available in Mac OS X v10.0 and later.

See Also
- postEvent:atStart: (page 160)

- run (page 163)
- runModalForWindow: (page 164)

Declared In
NSApplication.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

orderedDocuments

Returns an array of document objects arranged according to the front-to-back ordering of their associated
windows.

- (NSArray *)orderedDocuments

Return Value
An array of NSDocument objects, where the position of a document is based on the front-to-back ordering
of its associated window.

Discussion

This method is called during script command evaluation—for example, while finding the document in the
script statement the third rectangle in the first document. For information on how your
application can return its own array of ordered documents, see application:delegateHandlesKey: (page
181).

Availability
Available in Mac OS X v10.0 and later.

See Also
- orderedWindows (page 157)

Declared In
NSApplicationScripting.h

orderedWindows

Returns an array of window objects arranged according to their front-to-back ordering on the screen.
- (NSArray *)orderedWindows

Return Value
An array of NSW1indow objects, where the position of each window in the array corresponds to the front-to-back
ordering of the windows on the screen.

Discussion
Only windows that are typically scriptable are included in the returned array. For example, panels are not
included.

This method is called during script command evaluation—for example, while finding the window in the
script statement close the second window. For information on how your application can return its own
array of ordered windows, see application:delegateHandlesKey: (page 181).

Availability
Available in Mac OS X v10.0 and later.

See Also
- orderedDocuments (page 157)

Declared In
NSApplicationScripting.h

Instance Methods 157
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

orderFrontCharacterPalette:

Opens the character palette.
- (void)orderFrontCharacterPalette:(id)sender

Parameters

sender
The object that sent the command.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSApplication.h

orderFrontColorPanel:

Brings up the color panel, an instance of NSColorPanel.
- (void)orderFrontColorPanel:(id)sender

Parameters
sender
The object that sent the command.

Discussion
If the NSCoTorPanel object does not exist yet, this method creates one. This method is typically invoked
when the user chooses Colors from a menu.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSColorPanel.h

orderFrontStandardAboutPanel:

Displays a standard About window.
- (void)orderFrontStandardAboutPanel:(id)sender

Parameters
sender

The object that sent the command.
Discussion

This method callsorderFrontStandardAboutPanelWithOptions: (page 159) withanil argument. See
orderFrontStandardAboutPanelWithOptions: fora description of what's displayed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
MenultemView

158 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Declared In
NSApplication.h

orderFrontStandardAboutPanelWithOptions:

Displays a standard About window with information from a given options dictionary.

- (void)orderFrontStandardAboutPanelWithOptions: (NSDictionary *)optionsDictionary

Parameters

optionsDictionary

A dictionary whose keys define the contents of the About window. See the discussion for a description
of the available keys.

Discussion
The following strings are keys that can occurin optionsDictionary:

@"Credits": An NSAttributedString displayed in the info area of the panel. If not specified, this method
then looks for a file named “Credits.html’“Credits.rtf’and “Credits.rtfd’in that order, in
the bundle returned by the NSBund1e class method mainBund1e. The first file found is used. If none is
found, the info area is left blank.

@"ApplicationName": An NSString object displayed as the application’s name. If not specified, this
method then uses the value of CFBund1eName (localizable). If neither is found, this method uses
[[NSProcessInfo processInfo] processName].

@"ApplicationIcon": An NSImage object displayed as the application’s icon. If not specified, this
method then looks for an image named “NSApplicationIcon’using [NSImage
imageNamed:@"NSApplicationIcon"].If neitheris available, this method uses the generic application
icon.

@"Version": An NSString object with the build version number of the application (“58.4"), displayed
as “(v58.4)"If not specified, obtain from the CFBundleVersionkeyin infoDictionary;if not specified,
leave blank (the “(v)" is not displayed).

@"Copyright": An NSString object with a line of copyright information. If not specified, this method
then looks for the value of NSHumanReadableCopyright in the localized version infoDictionary.
If neither is available, this method leaves the space blank.

@"ApplicationVersion": An NSString object with the application version (“Mac OS X} “37
“WebObjects 4.57 “AppleWorks 67...). If not specified, obtain from the CFBundleShortVersionString
keyin infoDictionary.If neitheris available, the build version, if available, is printed alone, as “Version
XX

Availability
Available in Mac OS X v10.0 and later.

See Also
- orderfrontStandardAboutPanel: (page 158)

Declared In
NSApplication.h

Instance Methods 159
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

160

CHAPTER 9

NSApplication Class Reference

postEvent:atStart:

Adds a given event to the receiver’s event queue.
- (void)postEvent: (NSEvent *)anEvent atStart:(BOOL)flag

Parameters
ankvent
The event object to post to the queue.

flag
Specify YES to add the event to the front of the queue; otherwise, specify NO to add the event to the
back of the queue.

Discussion
This method can also be called in subthreads. Events posted in subthreads bubble up in the main thread
event queue.

Availability
Available in Mac OS X v10.0 and later.

See Also
- currentEvent (page 147)

- sendEvent: (page 167)

Declared In
NSApplication.h

preventWindowOrdering

Suppresses the usual window ordering in handling the most recent mouse-down event.
- (void)preventWindowOrdering

Discussion
This method is only useful for mouse-down events when you want to prevent the window that receives the
event from being ordered to the front.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

registerServicesMenuSendTypes:returnTypes:

Registers the pasteboard types the receiver can send and receive in response to service requests.

- (void)registerServicesMenuSendTypes: (NSArray *)sendTypes returnTypes: (NSArray
*)returnTypes

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters

sendTypes
An array of NSString objects, each of which corresponds to a particular pasteboard type that the
application can send.

returnTypes
An array of NSString objects, each of which corresponds to a particular pasteboard type that the
application can receive.
Discussion
If the receiver has a Services menu, a menu item is added for each service provider that can accept one of
the specified sendTypes or return one of the specified returnTypes. You should typically invoke this
method at application startup time or when an object that can use services is created. You can invoke it more
than once—its purpose is to ensure there is a menu item for every service the application can use. The
event-handling mechanism will dynamically enable the individual items to indicate which services are currently
appropriate. All the NSResponder objects in your application (typically NSV i ew objects) should register every
possible type they can send and receive by sending this message to NSApp.

Availability
Available in Mac OS X v10.0 and later.

See Also
- validRequestorForSendType:returnType: (page 179)

- readSelectionfFromPasteboard: (page 3595) (NSServicesRequests protocol)
- writeSelectionToPasteboard:types: (page 3596) (NSServicesRequests protocol)

Declared In
NSApplication.h

removeWindowsltem:

Removes the Window menu item for a given window.
- (void)removeWindowsItem: (NSWindow *)aWindow

Parameters
aWindow

The window whose menu item is to be removed.
Discussion
This method doesn't prevent the item from being automatically added again. Use the
setExcludedFromWindowsMenu: (page 3311) method of NSWindow if you want the item to remain excluded
from the Window menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
- addWindowsItem:title:filename: (page 142)

- changeWindowsItem:title:filename: (page 146)

Declared In
NSApplication.h

Instance Methods 161
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

162

CHAPTER 9

NSApplication Class Reference

replyToApplicationShouldTerminate:

Responds to NSTerminatelater once the application knows whether it can terminate.
- (void)replyToApplicationShouldTerminate: (BOOL)shouldTerminate

Parameters
shouldTerminate
Specify YES if you want the application to terminate; otherwise, specify NO.

Discussion

If your application delegate returns NSTerminatelater fromits applicationShouldTerminate: (page
192) method, your code must subsequently call this method to let the NSApp1ication object know whether
it can actually terminate itself.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ExtractMovieAudioToAIFF

QTExtractAndConvertToAIFF
QTExtractAndConvertToMovieFile

Declared In
NSApplication.h

replyToOpenOrPrint:

Handles errors that might occur when the user attempts to open or print files.
- (void)replyToOpenOrPrint: (NSApplicationDelegateReply)reply

Parameters

reply
The error that occurred. For a list of possible values, see “Constants” (page 196).

Discussion
Delegates should invoke this method if an error is encountered in the application:openFiles: (page
182) orapplication:printFiles: (page 184) delegate methods.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSApplication.h

reportException:
Logs a given exception by calling NSLog ().

- (void)reportException: (NSException *)anException

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters

anfException
The exception whose contents you want to write to the log file.

Discussion
This method does not raise anfxception. Use it inside of an exception handler to record that the exception
occurred.

Availability
Available in Mac OS X v10.0 and later.

See Also
NSSetUncaughtExceptionHandler (Foundation Functions)

Declared In
NSApplication.h

requestUserAttention:

Starts a user attention request.
- (NSInteger)requestUserAttention: (NSRequestUserAttentionType)requestType

Parameters
requestiype
The severity of the request. For a list of possible values, see “Constants” (page 196).

Return Value
The identifier for the request. You can use this value to cancel the request later using the
cancelUserAttentionRequest: method.

Discussion

Activating the application cancels the user attention request. A spoken notification will occur if spoken
notifications are enabled. Sending requestUserAttention: to an application that is already active has no
effect.

If the inactive application presents a modal panel, this method will be invoked with NSCriticalRequest
automatically. The modal panel is not brought to the front for an inactive application.

Availability
Available in Mac OS X v10.1 and later.

See Also
- cancelUserAttentionRequest: (page 145)

Declared In
NSApplication.h

run

Starts the main event loop.

- (void)run

Instance Methods 163
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

164

CHAPTER 9

NSApplication Class Reference

Discussion

The loop continues until a stop: (page 172) or terminate: (page 175) message is received. Upon each
iteration through the loop, the next available event from the window server is stored and then dispatched
by sending it to NSApp using sendEvent: (page 167).

After creating the NSApp1ication object, the main function should load your application’s main nib file
and then start the event loop by sending the NSApp1ication objecta run message. If you create an Cocoa
application project in Xcode, this main function is implemented for you.

Availability
Available in Mac OS X v10.0 and later.

See Also
- runModalForWindow: (page 164)

- runModalSession: (page 165)
- applicationDidFinishLaunching: (page 187)

Related Sample Code
Numberlnput_IMKit_Sample

Declared In
NSApplication.h

runModalForWindow:

Starts a modal event loop for a given window.
- (NSInteger)runModalForWindow: (NSWindow *)aWindow

Parameters

aWindow
The window to be displayed modally. If it is not already visible, the window is centered on the screen
using the value inits center (page 3242)method and made visible and key. If it is already visible, it is
simply made key.

Return Value

An integer indicating the reason that this method returned. See the discussion for a description of possible

return values.

Discussion

This method runs a modal event loop for the specified window synchronously. It displays the specified
window, makes it key, starts the run loop, and processes events for that window. (You do not need to show
the window yourself.) While the application is in that loop, it does not respond to any other events (including
mouse, keyboard, or window-close events) unless they are associated with the window. It also does not
perform any tasks (such as firing timers) that are not associated with the modal run loop. In other words, this
method consumes only enough CPU time to process events and dispatch them to the action methods
associated with the modal window.

You can exit the modal loop by calling the stopModal, stopModalWithCode:, or abortModal methods
from your modal window code. If you use the stopModalWithCode: method to stop the modal event loop,
this method returns the argument passed to stopModalWithCode:. If you use stopModal instead, this
method returns the constant NSRunStoppedResponse. If you use abortModal, this method returns the
constant NSRunAbortedResponse.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- run (page 163)

- runModalSession: (page 165)

Related Sample Code
WhackedTV

Declared In
NSApplication.h

runModalForWindow:relativeToWindow:

(Deprecated. Use
beginSheet:modalForWindow:modalDelegate:didEndSelector:contextInfo: (page 144)instead.)

- (NSInteger)runModalForWindow: (NSWindow *)theWindow relativeToWindow: (NSWindow
*)docWindow

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

runModalSession:

Runs a given modal session, as defined in a previous invocation of beginModalSessionForWindow:.
- (NSInteger)runModalSession: (NSModalSession)session

Parameters
session

The modal session structure returned by the beginModalSessionForWindow: method for the
window to be displayed.

Return Value
An integer indicating the reason that this method returned. See the discussion for a description of possible
return values.

Discussion

A loop that uses this method is similar in some ways to a modal event loop run with runModalForWindow:,
except with this method your code can do some additional work between method invocations. When you
invoke this method, events for the NSWindow object of this session are dispatched as normal. This method
returns when there are no more events. You must invoke this method frequently enough in your loop that
the window remains responsive to events. However, you should not invoke this method in a tight loop
because it returns immediately if there are no events, and consequently you could end up polling for events
rather than blocking.

Instance Methods 165
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

166

CHAPTER 9

NSApplication Class Reference

Typically, you use this method in situations where you want to do some additional processing on the current
thread while the modal loop runs. For example, while processing a large data set, you might want to use a
modal dialog to display progress and give the user a chance to cancel the operation. If you want to display
a modal dialog and do not need to do any additional work in parallel, use runModalForWindow: instead.
When there are no pending events, that method waits idly instead of consuming CPU time.

The following code shows a sample loop you can use in your code:

NSModalSession session = [NSApp beginModalSessionForWindow:theWindow];
for (53) |
if ([NSApp runModalSession:session] != NSRunContinuesResponse)
break;
[self doSomeWork];
}
[NSApp endModalSession:session];

If the modal session was not stopped, this method returns NSRunContinuesResponse. At this point, your
application can do some work before the next invocation of runModalSession: (asindicated in the example’s
doSomeWork call). If stopModa (page 173) was invoked as the result of event processing, runModalSession:
returns NSRunStoppedResponse. If stopModalWithCode: (page 173) was invoked, this method returns
the value passed to stopModalWithCode:.If abortModal (page 140) was invoked, this method returns
NSRunAbortedResponse.

The window is placed on the screen and made key as a result of the runModalSession: message. Do not
send a separate makeKeyAndOrderFront: (page 3278) message.

Availability
Available in Mac OS X v10.0 and later.

See Also
- beginModalSessionForWindow: (page 143)

- endModalSession: (page 149)
- run (page 163)
- runModalForWindow: (page 164)

Declared In
NSApplication.h

runPagelayout:

Displays the receiver’s page layout panel, an instance of NSPagelayout.
- (void)runPagelayout:(id)sender

Parameters
sender

The object that sent the command.
Discussion

Ifthe NSPagelLayout instance does not exist, this method creates one. This method is typically invoked when
the user chooses Page Setup from the application’s Flle menu.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Declared In
NSPagelayout.h

sendAction:to:from:

Sends the given action message to the given target.
- (BOOL)sendAction:(SEL)anAction to:(id)aTarget from:(id)sender

Parameters
anAction
The action message you want to send.
alarget
The target object that defines the specified action message.
sender
The object to pass for the action message’s parameter.

Return Value
YES if the action was successfully sent; otherwise NO. This method also returns NO if anActionisnil.

Discussion

If aTargetisnil, NSApp looks for an object that can respond to the message—that is, an object that
implements a method matching anAction. It begins with the first responder of the key window. If the first
responder can't respond, it tries the first responder’s next responder and continues following next responder
links up the responder chain. If none of the objects in the key window’s responder chain can handle the
message, NSApp attempts to send the message to the key window’s delegate.

If the delegate doesn’t respond and the main window is different from the key window, NSApp begins again
with the first responder in the main window. If objects in the main window can’t respond, NSApp attempts

to send the message to the main window’s delegate. If still no object has responded, NSApp tries to handle
the message itself. If NSApp can't respond, it attempts to send the message to its own delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
- targetForAction: (page 174)

- tryToPerform:with: (page 176)
- makeWindowsPerform:inOrder: (page 154)

Declared In
NSApplication.h

sendEvent:

Dispatches an event to other objects.
- (void)sendEvent: (NSEvent *)anEvent

Parameters

ankvent
The event object to dispatch.

Instance Methods 167
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

168

CHAPTER 9

NSApplication Class Reference

Discussion

You rarely invoke sendEvent : directly, although you might want to override this method to perform some
action on every event. sendEvent : messages are sent from the main event loop (the run (page 163) method).
sendEvent: is the method that dispatches events to the appropriate responders—NSApp handles application
events, the NSWindow object indicated in the event record handles window-related events, and mouse and
key events are forwarded to the appropriate NSWindow object for further dispatching.

Availability
Available in Mac OS X v10.0 and later.

See Also
- currentEvent (page 147)

- postEvent:atStart: (page 160)

Declared In
NSApplication.h

servicesMenu

Returns the Services menu.
- (NSMenu *)servicesMenu

Return Value
The Services menu or ni1 if no Services menu has been created

Availability
Available in Mac OS X v10.0 and later.

See Also
- setServicesMenu: (page 170)

Declared In
NSApplication.h

servicesProvider

Returns the object that provides the services the receiver advertises in the Services menu of other applications.
- (id)servicesProvider

Return Value
The application’s service provider object.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setServicesProvider: (page 170)

Declared In
NSApplication.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

setApplicationlconlmage:

Sets the receiver’s icon to the specified image.

- (void)setApplicationIconImage: (NSImage *)anImage

Parameters
anlmage

The image to use as the new application icon.

Discussion

This method sets the icon in the dock application tile. This method scales the image as necessary so that it
fits in the dock tile. You can use this method to change your application icon while running. To restore your

application’s original icon, you pass ni1 to this method.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationlconImage (page 143)

Declared In
NSApplication.h

setDelegate:

Makes the given object the receiver’s delegate.
- (void)setDelegate:(id)anObject

Parameters

anObject
The application delegate object.

Discussion

The messages a delegate can expect to receive are listed at the end of this specification. The delegate doesn't

need to implement all the methods.

Availability
Available in Mac OS X v10.0 and later.

See Also
- delegate (page 147)

Related Sample Code
CocoaDVDPlayer

JavaSplashScreen
PictureSharing

Declared In
NSApplication.h

Instance Methods

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

169

CHAPTER 9

NSApplication Class Reference

setMainMenu:

Makes the given menu the receiver’s main menu.
- (void)setMainMenu: (NSMenu *)aMenu

Parameters
aMenu
The new menu bar for the application.

Availability
Available in Mac OS X v10.0 and later.

See Also
- mainMenu (page 153)

Declared In
NSApplication.h

setServicesMenu:

Makes a given menu the receiver’s Services menu.
- (void)setServicesMenu: (NSMenu *)aMenu

Parameters
aMenu
The new Services menu.

Availability
Available in Mac OS X v10.0 and later.

See Also
- servicesMenu (page 168)

Declared In
NSApplication.h

setServicesProvider:

Registers a given object as the service provider.
- (void)setServicesProvider:(id)aProvider

Parameters
aProvider
The new service provider object.

Discussion

The service provider is an object that performs all services the application provides to other applications.
When another application requests a service from the receiver, it sends the service request to aProvider.
Service requests can arrive immediately after the service provider is set, so invoke this method only when
your application is ready to receive requests.

170 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- servicesProvider (page 168)

Declared In
NSApplication.h

setWindowsMenu:

Makes the given menu the receiver’s Window menu.
- (void)setWindowsMenu: (NSMenu *)aMenu

Parameters
aMenu
The new Window menu for the application.

Availability
Available in Mac OS X v10.0 and later.

See Also
- windowsMenu (page 180)

Declared In
NSApplication.h

setWindowsNeedUpdate:

Sets whether the receiver’s windows need updating when the receiver has finished processing the current
event.

- (void)setWindowsNeedUpdate: (BOOL) flag

Parameters
flag

If YES, the receiver’s windows are updated after an event is processed.
Discussion

This method is especially useful for making sure menus are updated to reflect changes not initiated by user
actions, such as messages received from remote objects.

Availability
Available in Mac OS X v10.0 and later.

See Also
- updateWindows (page 178)

Declared In
NSApplication.h

Instance Methods 171
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

172

CHAPTER 9

NSApplication Class Reference

showHelp:

If your project is properly registered, and the necessary keys have been set in the property list, this method
launches Help Viewer and displays the first page of your application’s help book.

- (void)showHelp:(id)sender

Parameters
sender

The object that sent the command.
Discussion

For information on how to set up your project to take advantage of having Help Viewer display your help
book, see Specifying the Comprehensive Help File.

Availability
Available in Mac OS X v10.0 and later.

See Also
- activateContextHelpMode: (page 141)

Related Sample Code
HelpHook

Declared In
NSHelpManager.h

stop:

Stops the main event loop.
- (void)stop:(id)sender

Parameters

sender
The object that sent this message.

Discussion

This method notifies the application that you want to exit the current run loop as soon as it finishes processing
the current NSEvent object. This method does not forcibly exit the current run loop. Instead it sets a flag
that the application checks only after it finishes dispatching an actual event object. For example, you could
call this method from an action method responding to a button click or from one of the many methods
defined by the NSResponder class. However, calling this method from a timer or run-loop observer routine
would not stop the run loop because they do not result in the p of an NSEvent object.

If you call this method from an event handler running in your main run loop, the application object exits out
of the run method, thereby returning control to the main () function. If you call this method from within a
modal event loop, it will exit the modal loop instead of the main event loop.

Availability
Available in Mac OS X v10.0 and later.

See Also
- run (page 163)
- runModalForWindow: (page 164)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

- runModalSession: (page 165)
- terminate: (page 175)

Declared In
NSApplication.h

stopModal

Stops a modal event loop.
- (void)stopModal

Discussion

This method should always be paired with a previous invocation of runModalForWindow: (page 164) or
beginModalSessionForWindow: (page 143). When runModalForWindow: (page 164) is stopped with this
method, it returns NSRunStoppedResponse. This method stops the loop only if it's executed by code
responding to an event. If you need to stop a runModalForWindow: (page 164) loop outside of one of its
event callbacks (for example, a method repeatedly invoked by an NSTimer object or a method running in a
different thread), use the abortModal (page 140) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
- runModalSession: (page 165)

- stopModalWithCode: (page 173)

Related Sample Code
WhackedTV

Declared In
NSApplication.h

stopModalWithCode:

Stops a modal event loop, allowing you to return a custom result code.
- (void)stopModalWithCode: (NSInteger)returnCode

Parameters
returnCode

The result code you want returned from the runModalForWindow: or runModalSession: method.
The meaning of this result code is up to you.

Availability
Available in Mac OS X v10.0 and later.

See Also
- abortModal (page 140)

- runModalForWindow: (page 164)

Instance Methods 173
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

174

CHAPTER 9

NSApplication Class Reference

Declared In
NSApplication.h

targetForAction:

Returns the object that receives the action message specified by the given selector
- (id)targetForAction:(SEL)aSelector

Parameters
aSelector
The desired action message.

Return Value
The object that would receive the specified action message or ni 1 if no target object would receive the
message. This method also returns nil if aSelectorisnil.

Availability
Available in Mac OS X v10.0 and later.

See Also
- sendAction:to:from: (page 167)

- tryToPerform:with: (page 176)
- targetForAction:to:from: (page 174)

Declared In
NSApplication.h

targetForAction:to:from:

Finds an object that can receive the message specified by the given selector.
- (id)targetForAction: (SEL)anAction to:(id)aTarget from:(id)sender

Parameters
anAction
The desired action message.

alarget
The first target object to check. Specify ni 1 if you want the application to search the responder chain.

sender
The parameter to send to the action message.

Return Value
The object that can accept the specified action message or ni1 if no target object can receive the message.
This method also returns ni 1 if anActionisnil.

Discussion

If aTargetisnotnil, aTargetisreturned.If aTargetisnil, NSApp looks for an object that can respond
to the message—that is, an object that implements a method matching anAction. The search begins with
the first responder of the key window. If the first responder does not handle the message, it tries the first

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

responder’s next responder and continues following next responder links up the responder chain. If none of
the objects in the key window’s responder chain can handle the message, NSApp asks the key window’s
delegate whether it can handle the message.

If the delegate cannot handle the message and the main window is different from the key window, NSApp
begins searching again with the first responder in the main window. If objects in the main window cannot
handle the message, NSApp tries the main window’s delegate. If it cannot handle the message, NSApp asks
itself. If NSApp doesn’t handle the message, it asks the application delegate. If there is no object capable of
handling the message, ni1 is returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
- sendAction:to:from: (page 167)

- tryToPerform:with: (page 176)
- targetForAction: (page 174)

Declared In
NSApplication.h

terminate:

Terminates the receiver.
- (void)terminate:(id)sender

Parameters
sender
Typically, this parameter contains the object that initiated the termination request.

Discussion
This method is typically invoked when the user chooses Quit or Exit from the application’s menu.

When invoked, this method performs several steps to process the termination request. First, it asks the
application’s document controller (if one exists) to save any unsaved changes in its documents. During this
process, the document controller can cancel termination in response to input from the user. If the document
controller does not cancel the operation, this method then calls the delegate’s
applicationShouldTerminate: method.IfapplicationShouldTerminate: returns NSTerminateCancel,
the termination process is aborted and control is handed back to the main event loop. If the method returns
NSTerminatelater, the application runs its run loop in the NSModalPanelRunLoopMode mode until the
replyToApplicationShouldTerminate: method is called with the value YES or NO. If the
applicationShouldTerminate: method returns NSTerminateNow, this method posts a
NSApplicationWillTerminateNotification notification to the default notification center.

Do not bother to put final cleanup code in your application’s main () function—it will never be executed. If
cleanup is necessary, perform that cleanup in the delegate’s applicationWillTerminate: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
- run (page 163)

Instance Methods 175
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

176

CHAPTER 9

NSApplication Class Reference

- stop: (page 172)

- applicationShouldTerminate: (page 192)

- applicationWillTerminate: (page 195)

- replyToApplicationShouldTerminate: (page 162)
NSApplicationWillTerminateNotification (page 205)

Related Sample Code
JavaSplashScreen

QTSSInspector
StickiesExample
WhackedTV

Declared In
NSApplication.h

tryToPerform:with:

Dispatches an action message to the specified target.
- (BOOL)tryToPerform:(SEL)aSelector with:(id)anObject

Parameters
aSelector

The action message you want to dispatch.
anObject

The target object that defines the specified selector.

Return Value
YES if either the receiver or its delegate can accept the specified selector; otherwise, NO. This method also
returns NO if aSelectorisnil.

Discussion

The receiver tries to perform the method aSeTector usingitsinherited tryToPerform:with: (page 2163)
method of NSResponder. If the receiver doesn't perform aSelector, the delegate is given the opportunity
to perform it using its inherited performSelector:withObject: method of NSObject.

Availability
Available in Mac OS X v10.0 and later.

See Also
respondsToSelector: (NSObject protocol)

Declared In
NSApplication.h

unhide:

Restores hidden windows to the screen and makes the receiver active.

- (void)unhide: (id)sender

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters
sender
The object that sent the command.

Discussion
Invokes unhideWithoutActivation (page 177).

Availability
Available in Mac OS X v10.0 and later.

See Also
- activatelgnoringOtherApps: (page 141)

- hide: (page 151)

Declared In
NSApplication.h

unhideAllApplications:

Unhides all applications, including the receiver.
- (void)unhideAlTApplications:(id)sender

Parameters
sender
The object that sent this message.

Discussion
This action causes each application to order its windows to the front, which could obscure the currently
active window in the active application.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

unhideWithoutActivation

Restores hidden windows without activating their owner (the receiver).
- (void)unhideWithoutActivation

Discussion

When this method begins, it postsan NSApplicationWillUnhideNotification (page 205)to the default
notification center. If it completes successfully, it postsan NSApplicationDidUnhideNotification (page
203).

Availability
Available in Mac OS X v10.0 and later.

See Also
- activatelgnoringOtherApps: (page 141)

Instance Methods 177
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

- hide: (page 151)
- applicationDidUnhide: (page 189)
- applicationWillUnhide: (page 195)

Declared In
NSApplication.h

updateWindows

Sends an update (page 3333) message to each onscreen window.
- (void)updateWindows

Discussion

This method is invoked automatically in the main event loop after each event when running in
NSDefaultRunlLoopMode or NSModalRunLoopMode. This method is not invoked automatically when running
in NSEventTrackingRunlLoopMode.

When this method begins, it postsan NSAppTicationWillUpdateNotification (page205)to the default
notification center. When it successfully completes, it posts an
NSApplicationDidUpdateNotification (page 204).

Availability
Available in Mac OS X v10.0 and later.

See Also
- update (page 3333) (NSWindow)

- setWindowsNeedUpdate: (page 171)
- applicationDidUpdate: (page 189)
- applicationWillUpdate: (page 195)

Declared In
NSApplication.h

updateWindowsltem:

Updates the Window menu item for a given window to reflect the edited status of that window.
- (void)updateWindowsItem: (NSWindow *)aWindow

Parameters
aWindow

The window whose menu item is to be updated.
Discussion

You rarely need to invoke this method because it is invoked automatically when the edit status of an NSWindow
object is set.

Availability
Available in Mac OS X v10.0 and later.

178 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

See Also
- changeWindowsItem:title:filename: (page 146)

- setDocumentEdited: (page 3310) (NSWindow)

Declared In
NSApplication.h

validRequestorForSendType:returnType:

Indicates whether the receiver can send and receive the specified pasteboard types.

- (id)validRequestorForSendType: (NSString *)sendType returnType:(NSString
*)returnType

Parameters
sendType

The pasteboard type the application needs to send.
returnlType

The pasteboard type the application needs to receive.
Return Value

The object that can send and receive the specified types or ni1 if the receiver knows of no object that can
send and receive data of that type.

Discussion

This message is sent to all responders in a responder chain. NSApp is typically the last item in the responder
chain, so it usually receives this message only if none of the current responders can send sendType data
and accept back returnType data.

The receiver passes this message on to its delegate if the delegate can respond (and isn't an NSResponder
object with its own next responder). If the delegate cannot respond or returns ni 1, this method returns ni1.
If the delegate can find an object that can send sendType data and accept back returnType data, it returns
that object.

Availability
Available in Mac OS X v10.0 and later.

See Also
- registerServicesMenuSendTypes:returnTypes: (page 160)

- validRequestorForSendType:returnType: (page 2164) (NSResponder)
- readSelectionFromPasteboard: (page 3595) (NSServicesRequests protocol)
- writeSelectionToPasteboard:types: (page 3596) (NSServicesRequests protocol)

Declared In
NSApplication.h

windows

Returns an array containing the receiver’s window objects.

- (NSArray *)windows

Instance Methods 179
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Return Value
An array of NSWindow objects. This array includes both onscreen and offscreen windows.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

TextEditPlus

Declared In
NSApplication.h

windowsMenu

Returns the Window menu of the application.
- (NSMenu *)windowsMenu

Return Value
The window menu or ni1 if such a menu does not exist or has not yet been created.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setWindowsMenu: (page 171)

Declared In
NSApplication.h

windowWithWindowNumber:

Returns the window corresponding to the specified window number.
- (NSWindow *)windowWithWindowNumber:(NSInteger)windowNum

Parameters
windowNum
The unique window number associated with the desired NSWindow object.

Return Value
The desired window object or ni1 if the window could not be found.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

180 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Delegate Methods

application:delegateHandlesKey:

Sent by Cocoa’s built-in scripting support during execution of get or set script commands to find out if the
delegate can handle operations on the specified key-value key.

- (BOOL)application: (NSApplication *)sender delegateHandlesKey: (NSString *)key

Parameters
sender

The application object associated with the delegate.
key

The key to be handled.

Return Value
YES if your delegate handles the key or NO if it does not.

Discussion

The method should return YES if the delegate for the application sender handles the key specified by key,
which means it can get or set the scriptable property or element that corresponds to that key. The application
implements methods for each of the keys that it handles, where the method name matches the key.

For example, a scriptable application that doesn't use Cocoa’s document-based application architecture can
implement this method to supply its own document ordering. Such an application might want to do this

because the standard application delegate expects to work with a document-based application. The TextEdit
application (whose source is distributed with Mac OS X developer tools) provides the following implementation:

return [key isEqualToString:@"orderedDocuments”];

TextEdit then implements the orderedDocuments method in its controller class to return an ordered list of
documents. An application with its own window ordering might add a test for the key orderedWindows so
that its delegate can provide its own version of orderedWindows.

Important: Cocoa scripting does not invoke this method for script commands other than get or set. For
information on working with other commands, see Script Commands in Cocoa Scripting Guide.

Availability
Available in Mac OS X v10.0 and later.

See Also
- orderedDocuments (page 157)

- orderedWindows (page 157)

Declared In
NSApplicationScripting.h

application:openfFile:

Tells the delegate to open a single file.

Delegate Methods 181
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

182

CHAPTER 9

NSApplication Class Reference

- (BOOL)application: (NSApplication *)theApplication openFile:(NSString *)filename

Parameters
theApplication

The application object associated with the delegate.
filename

The name of the file to open.

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion

Sent directly by theApplicationto the delegate. The method should open the file 7 7ename, returning
YES if the file is successfully opened, and NO otherwise. If the user started up the application by double-clicking
a file, the delegate receives the application:openFile: message before receiving
applicationDidFinishlLaunching: (page 187).(applicationWillFinishlLaunching: (page 193)is
sent before application:openFile:.)

Availability
Available in Mac OS X v10.0 and later.

See Also
- application:openFileWithoutUI: (page 183)

- application:openTempFile: (page 183)
- applicationOpenUntitledFile: (page 190)

Declared In
NSApplication.h

application:openfFiles:

Tells the delegate to open multiple files.
- (void)application: (NSApplication *)sender openFiles:(NSArray *)filenames

Parameters
sender
The application object associated with the delegate.

filenames
An array of NSString objects containing the names of the files to open..

Discussion

Identicalto application:openFile: (page 181) except that the receiver opens multiple files corresponding
to the file names in the 7 7enames array. Delegates should invoke the replyToOpenOrPrint: (page 162)
method upon success or failure, or when the user cancels the operation.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSApplication.h

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

application:openFileWithoutUI:

Tells the delegate to open a file programmatically.
- (BOOL)application:(id)sender openFileWithoutUI:(NSString *)filename

Parameters
sender

The object that sent the command.
filename

The name of the file to open.

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion

Sent directly by sender to the delegate to request that the file 17 7ename be opened as a linked file. The
method should open the file without bringing up its application’s user interface—that is, work with the file
is under programmatic control of sender, rather than under keyboard control of the user.

Availability
Available in Mac OS X v10.0 and later.

See Also

- application:openFile: (page 181)

- application:openTempFile: (page 183)

- applicationOpenUntitledFile: (page 190)
- application:printFile: (page 184)

Declared In
NSApplication.h

application:openTempFile:

Tells the delegate to open a temporary file.
- (BOOL)application:(NSApplication *)theApplication openTempFile:(NSString *)filename

Parameters
theApplication

The application object associated with the delegate.
filename

The name of the temporary file to open.

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion
Sent directly by theAppiication to the delegate. The method should attempt to open the file 77 7ename,
returning YES if the file is successfully opened, and NO otherwise.

By design, a file opened through this method is assumed to be temporary—it’s the application’s responsibility
to remove the file at the appropriate time.

Delegate Methods 183
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

184

CHAPTER 9

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also

- application:openFile: (page 181)

- application:openFileWithoutUI: (page 183)
- applicationOpenUntitledFile: (page 190)

Declared In
NSApplication.h

application:printFile:

Sent when the user starts up the application on the command line with the -NSPrint option.
- (BOOL)appTlication: (NSApplication *)theApplication printFile:(NSString *)filename

Parameters
theApplication

The application object that is handling the printing.
filename

The name of the file to print.

Return Value
YES if the file was successfully printed or NO if it was not.

Discussion
This message is sent directly by theApplication to the delegate. The application terminates (using the
terminate: (page 175) method) after this method returns.

If at all possible, this method should print the file without displaying the user interface. For example, if you
pass the -NSPrint option to the TextEdit application, TextEdit assumes you want to print the entire contents
of the specified file. However, if the application opens more complex documents, you may want to display
a panel that lets the user choose exactly what they want to print.

Availability
Available in Mac OS X v10.0 and later.

See Also
- application:openFileWithoutUI: (page 183)

Declared In
NSApplication.h

application:printFiles:

(Deprecated in MacOS Xv104.Useapplication:printFiles:withSettings:showPrintPanels: (page
185) instead.)

- (void)application: (NSApplication *)sender printFiles:(NSArray *)filenames

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion
Identicaltoapplication:printFile: (page 184) except that the receiver prints multiple files corresponding
to the file names in the 77 7enames array.

Delegates should invoke the replyToOpenOrPrint: (page 162) method upon success or failure, or when
the user cancels the operation.

Availability
Deprecated in Mac OS X v10.4.

Declared In
NSApplication.h

application:printFiles:withSettings:showPrintPanels:

Prints a group of files.

- (NSApplicationPrintReply)application:(NSApplication *)application
printFiles: (NSArray *)fileNames withSettings:(NSDictionary *)printSettings
showPrintPanels: (BOOL)showPrintPanels

Parameters
application
The application object that is handling the printing.

fileNames
An array of NSString objects, each of which contains the name of a file to print.

printSettings
Para

showPrintPanels
Para

Return Value
A constant indicating whether printing was successful. For a list of possible values, see “Constants” (page
196).

Discussion

Sent to the delegate by app7ication. The method should print the files named in the fi7eNames array
using printSettings, a dictionary containing NSPrintInfo-compatible print job attributes. The
showPrintPanels argument is a flag indicating whether or not a print panel should be presented for each
file being printed. If it is NO, no print panels should be presented (but print progress indicators should still
be presented).

Return NSPrintingReplyLater if the result of printing cannot be returned immediately, for example, if
printing will cause the presentation of a sheet. If your method returns NSPrintingReplyLlater it must
always invoke the NSApplication method replyToOpenOrPrint:]when the entire print operation has
been completed, successfully or not.

This delegate method replaces application:printFiles: (page 184), which is now deprecated. If your
application delegate only implements the deprecated method, it is still invoked, and NSAppTication uses
private functionality to arrange for the print settings to take effect.

Availability
Available in Mac OS X v10.4 and later.

Delegate Methods 185
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

186

CHAPTER 9

NSApplication Class Reference

Declared In
NSApplication.h

application:willPresentError:

Sent to the delegate before the specified application presents an error message to the user.

- (NSError *)application: (NSApplication *)application willPresentError:(NSError
*)error

Parameters
application
The application object associated with the delegate.

error
The error object that is used to construct the error message. Your implementation of this method can
return a new NSError object or the same one in this parameter.

Return Value
The error object to display.

Discussion

You can implement this delegate method to customize the presentation of any error presented by your
application, as long as no code in your application overrides either of the NSResponder methods
presentError:modalForWindow:delegate:didPresentSelector:contextInfo: orpresentkError:
in a way that prevents errors from being passed down the responder chain to the application object.

Your implementation of this delegate method can examine errorand, if its localized description or recovery
information is unhelpfully generic, return an error object with specific localized text that is more suitable for
presentation in alert sheets and dialogs. If you do this, always use the domain and error code of the NSError
object to distinguish between errors whose presentation you want to customize and those you do not. Don’t
make decisions based on the localized description, recovery suggestion, or recovery options because parsing
localized text is problematic. If you decide not to customize the error presentation, just return the passed-in
error object.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSApplication.h

applicationDidBecomeActive:

Sent by the default notification center immediately after the application becomes active.
- (void)applicationDidBecomeActive: (NSNotification *)aNotification

Parameters

aNotification
A notification of the type NSApplicationDidBecomeActiveNotification (page 202).Calling the
object method of this notification returns the NSApp1ication object itself.

Availability
Available in Mac OS X v10.0 and later.

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

See Also
- applicationDidFinishlLaunching: (page 187)

- applicationDidResignActive: (page 188)
- applicationWillBecomeActive: (page 193)

Declared In
NSApplication.h

applicationDidChangeScreenParameters:

Sent by the default notification center when the configuration of the displays attached to the computer is
changed (either programmatically or when the user changes settings in the Displays control panel).

- (void)applicationDidChangeScreenParameters: (NSNotification *)aNotification

Parameters

aNotification
A notification of the type NSApplicationDidChangeScreenParametersNotification (page
202). Calling the object method of this notification returns the NSApplication objectitself.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

applicationDidFinishLaunching:

Sent by the default notification center after the application has been launched and initialized but before it
has received its first event.

- (void)applicationDidFinishLaunching: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidFinishlLaunchingNotification (page 203).Calling
the object method of this notification returns the NSApp1ication object itself.

Discussion

Delegates can implement this method to perform further initialization. This method is called after the
application’s main run loop has been started but before it has processed any events. If the application was
launched by the user opening a file, the delegate’s application:openFile: method is called before this
method. If you want to perform initialization before any files are opened, implement the
applicationWillFinishLaunching: (page 193) method in your delegate, which is called before
application:openFile:.)

Availability
Available in Mac OS X v10.0 and later.

See Also
- finishlLaunching (page 151)

- applicationWillFinishlLaunching: (page 193)

Delegate Methods 187
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

188

CHAPTER 9

NSApplication Class Reference

- applicationDidBecomeActive: (page 186)
- application:openfFile: (page 181)

Declared In
NSApplication.h

applicationDidHide:

Sent by the default notification center immediately after the application is hidden.
- (void)applicationDidHide: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidHideNotification (page 203). Calling the object
method of this notification returns the NSApp1ication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationWillHide: (page 194)

- applicationDidUnhide: (page 189)
- hide: (page 151)

Declared In
NSApplication.h

applicationDidResignActive:

Sent by the default notification center immediately after the application is deactivated.
- (void)applicationDidResignActive: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidResignActiveNotification (page 203).Calling the
object method of this notification returns the NSApp1ication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationDidBecomeActive: (page 186)

- applicationWillResignActive: (page 194)

Declared In
NSApplication.h

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

applicationDidUnhide:

Sent by the default notification center immediately after the application is made visible.
- (void)applicationDidUnhide: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidUnhideNotification (page 203).Callingthe object
method of this notification returns the NSApp1ication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationDidHide: (page 188)

- applicationWillUnhide: (page 195)
- unhide: (page 176)

Declared In
NSApplication.h

applicationDidUpdate:

Sent by the default notification center immediately after the application object updates its windows.
- (void)applicationDidUpdate: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationDidUpdateNotification (page 204).Callingthe object
method of this notification returns the NSApp11ication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationWillUpdate: (page 195)

- updateWindows (page 178)

Declared In
NSApplication.h

applicationDockMenu:

Allows the delegate to supply a dock menu for the application dynamically.
- (NSMenu *)applicationDockMenu: (NSApplication *)sender

Parameters
sender
The application object associated with the delegate.

Delegate Methods 189
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

190

CHAPTER 9

NSApplication Class Reference

Return Value
The menu to display in the dock.

Discussion
You can also connect a menu in Interface Builder to the dockMenu outlet. A third way for your application
to specify a dock menu is to provide an NSMenu in a nib.

If this method returns a menu, this menu takes precedence over the dockMenu in the nib.

The target and action for each menu item are passed to the dock. On selection of the menu item the dock
messages your application, which should invoke [NSApp sendAction:selector to:target from:nill.

To specify an NSMenu in a nib, you add the nib name to the info.pl1ist, using the key AppleDockMenu.
The nib name is specified without an extension. You then create a connection from the file's owner object
(which by default is NSApp1ication) to the menu. Connect the menu to the dockMenu outlet of
NSApplication. The menuisin its own nib file so it can be loaded lazily when the dockMenu is requested,
rather than at launch time.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSApplication.h

applicationOpenUntitledFile:

Tells the delegate to open an untitled file.
- (BOOL)applicationOpenUntitledFile: (NSApplication *)theApplication

Parameters
theApplication
The application object associated with the delegate.

Return Value
YES if the file was successfully opened or NO if it was not.

Discussion
Sent directly by theApplicationto the delegate to request that a new, untitled file be opened.

Availability
Available in Mac OS X v10.0 and later.

See Also

- application:openfFile: (page 181)

- application:openFileWithoutUI: (page 183)
- application:openTempFile: (page 183)

Declared In
NSApplication.h

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

applicationShouldHandleReopen:hasVisibleWindows:
Sent by the application to the delegate prior to default behavior to reopen (rapp) AppleEvents.

- (BOOL)applicationShouldHandleReopen: (NSApplication *)theApplication
hasVisibleWindows: (BOOL) flag

Parameters

theApplication
The application object.

flag
Indicates whether the NSApp1ication object found any visible windows in your application. You
can use this value as an indication of whether the application would do anything if you return YES.

Return Value
YES if you want the application to perform its normal tasks or NO if you want the application to do nothing.

Discussion

These events are sent whenever the Finder reactivates an already running application because someone
double-clicked it again or used the dock to activate it. By default the Application Kit will handle this event
by checking whether there are any visible NSWindow (not NSPane1) objects, and, if there are none, it goes
through the standard untitled document creation (the same as it does if theApplicationislaunched
without any document to open). For most document-based applications, an untitled document will be
created. The application delegate will also get a chance to respond to the normal untitled document delegate
methods. If you implement this method in your application delegate, it will be called before any of the default
behavior happens. If you return YES, then NSApp1ication will go on to do its normal thing. If you return
NO, then NSApp1ication will do nothing. So, you can either implement this method, do nothing, and return
NO if you do not want anything to happen at all (not recommended), or you can implement this method,
handle the event yourself in some custom way, and return NO.

Note that what happens to minimized windows is not determined yet, but the intent is that 17ag being NO
indicates whether the Application Kit will create a new window to satisfy the reopen event.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

applicationShouldOpenUntitledFile:

Invoked immediately before opening an untitled file.
- (BOOL)applicationShouldOpenUntitiedFile: (NSApplication *)sender

Parameters
sender
The application object associated with the delegate.

Return Value
YES if the application should open a new untitled file or NO if it should not.

Discussion
Use this method to decide whether the application should open a new, untitled file. Note that
applicationOpenUntitledFile: (page 190) is invoked if this method returns YES.

Delegate Methods 191
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

192

CHAPTER 9

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

applicationShouldTerminate:

Sent to notify the delegate that the application is about to terminate.
- (NSApplicationTerminateReply)applicationShouldTerminate: (NSApplication *)sender

Parameters
sender

The application object that is about to be terminated.
Return Value
One of the values defined in NSApplicationTerminateReply (page 198) constants indicating whether the
application should terminate. For compatibility reasons, a return value of NO is equivalent to
NSTerminateCancel, and a return value of YES is equivalent to NSTerminateNow.

Discussion

This method is typically called after the application’s Quit or Exit command has been selected, or after the
FOO method has been called. Generally, you should return NSTerminateNow to allow the termination to
complete, but you can cancel the termination process or delay it somewhat as needed. For example, you
might delay termination to finish processing some critical data but then terminate the application as soon
as you are done by calling the replyToApplicationShouldTerminate: method.

Availability
Available in Mac OS X v10.0 and later.

See Also
- terminate: (page 175)

- applicationShouldTerminateAfterLastWindowClosed: (page 192)
- applicationWillTerminate: (page 195)

Declared In
NSApplication.h

applicationShouldTerminateAfterLastWindowClosed:

Invoked when the user closes the last window the application has open.

- (BOOL)applicationShouldTerminateAfterLastWindowClosed: (NSAppTication
*)theApplication

Parameters
theApplication

The application object whose last window was closed.
Return Value

NO if the application should not be terminated when its last window is closed; otherwise, YES to terminate
the application.

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Discussion

The application sends this message to your delegate when the application’s last window is closed. It sends
this message regardless of whether there are still panels open. (A panel in this case is defined as being an
instance of NSPanel or one of its subclasses.)

If yourimplementation returns NO, control returns to the main event loop and the application is not terminated.
If you return YES, your delegate’s applicationShouldTerminate: method is subsequently invoked to
confirm that the application should be terminated.

Availability
Available in Mac OS X v10.0 and later.

See Also
- terminate: (page 175)

- applicationShouldTerminate: (page 192)

Declared In
NSApplication.h

applicationWillBecomeActive:

Sent by the default notification center immediately before the application becomes active.
- (void)applicationWillBecomeActive: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationWil1BecomeActiveNotification (page 204). Calling
the object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationDidBecomeActive: (page 186)

- applicationWillFinishlLaunching: (page 193)
- applicationWillResignActive: (page 194)

Declared In
NSApplication.h

applicationWillFinishLaunching:

Sent by the default notification center immediately before the application object is initialized.
- (void)applicationWillFinishLaunching: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSAppTicationWillFinishLaunchingNotification (page 204).Calling
the object method of this notification returns the NSApp1ication object itself.

Delegate Methods 193
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

194

CHAPTER 9

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationDidFinishlLaunching: (page 187)

- applicationWillBecomeActive: (page 193)
- finishlLaunching (page 151)

Declared In
NSApplication.h

applicationWillHide:

Sent by the default notification center immediately before the application is hidden.
- (void)applicationWillHide: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationWillHideNotification (page 204).Callingthe object
method of this notification returns the NSApp1ication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationDidHide: (page 188)

- hide: (page 151)

Declared In
NSApplication.h

applicationWillResignActive:

Sent by the default notification center immediately before the application is deactivated.
- (void)applicationWiTlTResignActive: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationWillResignActiveNotification (page 205). Calling
the object method of this notification returns the NSApplication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationWillBecomeActive: (page 193)

- applicationDidResignActive: (page 188)

Declared In
NSApplication.h

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

applicationWillTerminate:

Sent by the default notification center immediately before the application terminates.
- (void)applicationWillTerminate: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSApplicationWillTerminateNotification (page 205). Calling the
object method of this notification returns the NSApp1ication object itself.

Discussion
Your delegate can use this method to perform any final cleanup before the application terminates.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationShouldTerminate: (page 192)

- terminate: (page 175)

Declared In
NSApplication.h

applicationWillUnhide:

Sent by the default notification center immediately after the application is unhidden.
- (void)applicationWillUnhide: (NSNotification *)aNotification

Parameters
aNotification

A notification of the type NSAppTicationWillUnhideNotification (page205).Callingtheobject
method of this notification returns the NSApp1ication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
- unhide: (page 176)

- applicationDidUnhide: (page 189)
- applicationWillHide: (page 194)

Declared In
NSApplication.h

applicationWillUpdate:

Sent by the default notification center immediately before the application object updates its windows.

- (void)applicationWillUpdate: (NSNotification *)aNotification

Delegate Methods 195
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Parameters
aNotification

A notification of the type NSAppTlicationWillUpdateNotification (page205).Callingtheobject
method of this notification returns the NSApp1ication object itself.

Availability
Available in Mac OS X v10.0 and later.

See Also
- applicationDidUpdate: (page 189)

- updateWindows (page 178)

Declared In
NSApplication.h

Constants

Return values for modal operations

These are possible return values for runModalForWindow: (page 164) and runModalSession: (page 165).

enum {
NSRunStoppedResponse = (-1000),
NSRunAbortedResponse = (-1001),

NSRunContinuesResponse (-1002)

b

Constants
NSRunStoppedResponse
Modal session was broken with stopModal (page 173).

Available in Mac OS X v10.0 and later.
Declared in NSApplication.h.

NSRunAbortedResponse
Modal session was broken with abortModal (page 140).

Available in Mac OS X v10.0 and later.
Declared in NSApplication.h.

NSRunContinuesResponse
Modal session is continuing (returned by runModalSession: (page 165) only).

Available in Mac OS X v10.0 and later.
Declared in NSApplication.h.

Discussion
The system also reserves all values below these.

Declared In
NSApplication.h

196 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSUpdateWindowsRunLoopOrdering
This constant is used by the NSRunlLoop method performSelector:target:argument:order:modes:.
enum {

NSUpdateWindowsRunLoopOrdering = 500000
b

Constants
NSUpdateWindowsRunLoopOrdering
Run-loop message priority for handling window updates.

Available in Mac OS X v10.0 and later.
Declared in NSApplication.h.

Declared In
NSApplication.h

NSApp

A global constant for the shared application instance.
id NSApp

Constants
NSApp
Global constant for the shared application instance.

Available in Mac OS X v10.0 and later.
Declared in NSApplication.h.

Discussion
This variable designates the shared application object, created by the sharedApplication (page 140) method.

Declared In
NSApplication.h

NSRequestUserAttentionType

These constants specify the level of severity of a user attention request and are used by
cancelUserAttentionRequest: (page 145) and requestUserAttention: (page 163).

typedef enum {
NSCriticalRequest = 0,
NSInformationalRequest = 10
} NSRequestUserAttentionType;

Constants
NSCriticalRequest
The user attention request is a critical request.

The dock icon will bounce until either the application becomes active or the request is canceled.
Available in Mac OS X v10.1 and later.
Declared in NSApplication.h.

Constants 197
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSInformationalRequest
The user attention request is an informational request.

The dock icon will bounce for one second. The request, though, remains active until either the
application becomes active or the request is canceled.

Available in Mac OS X v10.1 and later.
Declared in NSApplication.h.

Availability
Available in Mac OS X v10.1 and later.

Declared In
NSApplication.h

NSApplicationDelegateReply

These constants indicate whether or not a copy or print operation was successful, was cancelled, or failed.
These constants are used by the replyToOpenOrPrint: (page 162) method.

typedef enum NSApplicationDelegateReply {
NSApplicationDelegateReplySuccess = 0,
NSApplicationDelegateReplyCancel = 1,
NSApplicationDelegateReplyFailure = 2
} NSApplicationDelegateReply;

Constants
NSApplicationDelegateReplySuccess
Indicates the operation succeeded.

Available in Mac OS X v10.3 and later.
Declared in NSApplication.h.

NSApplicationDelegateReplyCancel
Indicates the user cancelled the operation.

Available in Mac OS X v10.3 and later.
Declared in NSApplication.h.

NSApplicationDelegateReplyFailure
Indicates an error occurred processing the operation.

Available in Mac OS X v10.3 and later.
Declared in NSApplication.h.
Availability
Available in Mac OS X v10.3 and later.

Declared In
NSApplication.h

NSApplicationTerminateReply

These constants define whether an application should terminate and are used by
applicationShouldTerminate: (page 192).

198 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

typedef enum NSApplicationTerminateReply {
NSTerminateCancel = 0,
NSTerminateNow 1,
NSTerminatelLater = 2

} NSApplicationTerminateReply;

Constants
NSTerminateNow
It is OK to proceed with termination.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.
NSTerminateCancel

The application should not be terminated.

Available in Mac OS X v10.0 and later.

Declared in NSApplication.h.

NSTerminatelater
It may be OK to proceed with termination later. Returning this value causes Cocoa to run the run loop
in the NSModalPanelRunLoopMode until your application subsequently calls
replyToApplicationShouldTerminate: (page 162) with the value YES or NO. This return value is
for delegates that need to provide document modal alerts (sheets) in order to decide whether to quit.

Available in Mac OS X v10.0 and later.
Declared in NSApplication.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationPrintReply

These constants are returned by application:printFiles:withSettings:showPrintPanels: (page
185).

typedef enum NSApplicationPrintReply (|
NSPrintingCancelled = 0
NSPrintingSuccess
NSPrintingFailure
NSPrintingReplylater =
} NSApplicationPrintReply;

1,
3,
2

Constants
NSPrintingCancelled
Printing was cancelled.

Available in Mac OS X v10.4 and later.
Declared in NSApplication.h.

NSPrintingSuccess
Printing was successful.

Available in Mac OS X v10.4 and later.
Declared in NSApplication.h.

Constants 199
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

200

CHAPTER 9

NSApplication Class Reference

NSPrintingFailure
Printing failed.

Available in Mac OS X v10.4 and later.
Declared in NSApplication.h.

NSPrintingReplylater
The result of printing cannot be returned immediately, for example, if printing will cause the
presentation of a sheet. If your method returns NSPrintingReplylLater it must always invoke
replyToOpenOrPrint: (page 162) when the entire print operation has been completed, successfully
or not.

Declared in NSApplication.h.
Available in Mac OS X v10.4 and later.

Declared In
NSApplication.h

Run loop modes
These loop mode constants are defined by NSApplication.

NSString *NSModalPanelRunlLoopMode;
NSString *NSEventTrackingRunlLoopMode;

Constants
NSEventTrackingRunLoopMode
A run loop should be set to this mode when tracking events modally, such as a mouse-dragging loop.

Available in Mac OS X v10.0 and later.
Declared in NSApplication.h.

NSModalPanelRunLoopMode
A run loop should be set to this mode when waiting for input from a modal panel, such as
NSSavePanel or NSOpenPanel.

Available in Mac OS X v10.0 and later.
Declared in NSApplication.h.

Declared In
NSApplication.h

NSAppKitVersionNumber

This constant identifies the installed version of the Application Kit framework.
const double NSAppKitVersionNumber;

Constants

NSAppKitVersionNumber
This value corresponds to one of the constants defined in “Application Kit framework version
numbers” (page 201).
Available in Mac OS X v10.1 and later.

Declared in NSApplication.h.

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

Declared In
NSApplication.h

Application Kit framework version numbers

You can use the following constants to determine if you are using a version of the Application Kit framework
newer than the version delivered in Mac OS X v10.0.

ffdefine NSAppKitVersionNumber10_0 577
ffdefine NSAppKitVersionNumberl0_1 620
ffdefine NSAppKitVersionNumberl0O_2 663
ftdefine NSAppKitVersionNumberl0_2_3 663.6
jtdefine NSAppKitVersionNumberl0_3 743
ffdefine NSAppKitVersionNumber10_3_2 743.14
ffdefine NSAppKitVersionNumber10_3_3 743.2
ffdefine NSAppKitVersionNumberl0_3_5 743.24
ffdefine NSAppKitVersionNumberl0_3_7 743.33
ftdefine NSAppKitVersionNumberl0_3_9 743.36
jtdefine NSAppKitVersionNumberl0_4 824

Constants
NSAppKitVersionNumberl0_0
The Application Kit framework included in Mac OS X v10.0.

Available in Mac OS X v10.1 and later.
Declared in NSApplication.h.

NSAppKitVersionNumberl0O_1
The Application Kit framework included in Mac OS X v10.1.

Available in Mac OS X v10.2 and later.
Declared in NSApplication.h.

NSAppKitVersionNumberl0_2
The Application Kit framework included in Mac OS X v10.2.

Available in Mac OS X v10.3 and later.
Declared in NSApplication.h.

NSAppKitVersionNumberl0_2_3
The Application Kit framework included in Mac OS X v10.2.3.

Available in Mac OS X v10.3 and later.
Declared in NSApplication.h.

NSAppKitVersionNumberl0_3
The Application Kit framework included in Mac OS X v10.3.

Available in Mac OS X v10.4 and later.
Declared in NSApplication.h.

NSAppKitVersionNumberl0_3_2
The Application Kit framework included in Mac OS X v10.3.2.

Available in Mac OS X v10.4 and later.
Declared in NSApplication.h.

Constants 201
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSAppKitVersionNumberl0_3_3
The Application Kit framework included in Mac OS X v10.3.3.

Available in Mac OS X v10.4 and later.
Declared in NSApplication.h.

NSAppKitVersionNumberl10_3_5
The Application Kit framework included in Mac OS X v10.3.5.

Available in Mac OS X v10.4 and later.
Declared in NSApplication.h.

NSAppKitVersionNumberl10_3_7
The Application Kit framework included in Mac OS X v10.3.7.

Available in Mac OS X v10.5 and later.
Declared in NSApplication.h.

NSAppKitVersionNumberl0_3_9
The Application Kit framework included in Mac OS X v10.3.9.

Available in Mac OS X v10.5 and later.
Declared in NSApplication.h.

NSAppKitVersionNumberl0_4
The Application Kit framework included in Mac OS X v10.4.

Available in Mac OS X v10.5 and later.
Declared in NSApplication.h.

Declared In
NSApplication.h

Notifications

202

These notifications apply to NSApp1ication. See “Notifications” (page 3415) in NSWorkspace for additional,
similar notifications.

NSApplicationDidBecomeActiveNotification

Posted immediately after the application becomes active.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In

NSApplication.h

NSApplicationDidChangeScreenParametersNotification

Posted when the configuration of the displays attached to the computer is changed.

Notifications
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

The configuration change can be made either programmatically or when the user changes settings in the
Displays control panel. The notification object is NSApp. This notification does not contain a userInfo
dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidFinishLaunchingNotification

Posted at theend of the finishLaunching (page 151) method to indicate that the application has completed
launching and is ready to run.

The notification object is NSApp. This notification does not contain a usernfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidHideNotification
Posted at the end of the hide: (page 151) method to indicate that the application is now hidden.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidResignActiveNotification
Posted immediately after the application gives up its active status to another application.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidUnhideNotification

Posted at the end of the unhideWithoutActivation (page 177) method to indicate that the application
is now visible.

The notification object is NSApp. This notification does not contain a usernfo dictionary.

Notifications 203
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

204

CHAPTER 9

NSApplication Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationDidUpdateNotification

Posted at the end of the updateWindows (page 178) method to indicate that the application has finished
updating its windows.

The notification object is NSApp. This notification does not contain a usernfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillBecomeActiveNotification
Posted immediately after the application becomes active.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillFinishLaunchingNotification

Posted at the start of the finishlLaunching (page 151) method to indicate that the application has completed
its initialization process and is about to finish launching.

The notification object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillHideNotification
Posted at the start of the hide: (page 151) method to indicate that the application is about to be hidden.

The notification object is NSApp. This notification does not contain a usernfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Notifications
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

NSApplicationWillResignActiveNotification

Posted immediately before the application gives up its active status to another application.

The notification object is NSApp. This notification does not contain a usernfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillTerminateNotification
Posted by the terminate: (page 175) method to indicate that the application will terminate.

Posted only if the delegate method applicationShouldTerminate: (page 192) returns Y ES. The notification
object is NSApp. This notification does not contain a userInfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillUnhideNotification

Posted at the start of the unhideWithoutActivation (page 177) method to indicate that the application
is about to become visible.

The notification object is NSApp. This notification does not contain a usernfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

NSApplicationWillUpdateNotification

Posted at the start of the updateWindows (page 178) method to indicate that the application is about to
update its windows.

The notification object is NSApp. This notification does not contain a usernfo dictionary.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSApplication.h

Notifications 205
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 9

NSApplication Class Reference

206 Notifications
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Inherits from

Conforms to

Framework
Availability

Declared in

Companion guides

Related sample code

Overview

Tasks

NSObjectController : NSController : NSObject

NSCoding (NSController)
NSObject (NSObject)

/System/Library/Frameworks/AppKit.framework
Available in Mac OS X v10.3 and later.

AppKit/NSArrayController.h

Cocoa Bindings Programming Topics
Predicate Programming Guide
Core Data Programming Guide

Aperture Edit Plugin - Borders & Titles
CoreRecipes

Departments and Employees
GridCalendar

iSpend

NSArrayController is a bindings compatible class that manages a collection of objects. Typically the
collection is an array, however, if the controller manages a relationship of a managed object (see
NSManagedObject) the collection may be aset. NSArrayControl1er provides selection management and

sorting capabilities.

Managing Sort Descriptors

- setSortDescriptors: (page 231)
Sets the sort descriptors for the receiver.

- sortDescriptors (page 231)
Returns the receiver's array of sort descriptors.

Overview

207

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

208

CHAPTER 10

NSArrayController Class Reference

Arranging Objects

- arrangeObjects: (page 214)
Returns a given array, appropriately sorted and filtered.

- arrangedObjects (page 213)
Returns an array containing the receiver’s content objects arranged using arrangeObjects: (page
214).

- rearrangeObjects (page 220)
Triggers filtering of the receiver’s content.

Managing Content

- add: (page 211)
Creates and adds a new object to the receiver’s content and arranged objects.

- setAutomaticallyPreparesContent: (page 227)
Sets whether the receiver automatically creates and inserts new content objects automatically.

- automaticallyPreparesContent (page 214)

Returns a Boolean value that indicates whether the receiver automatically prepares its content when
it is loaded from a nib.

Selection Attributes

- setAvoidsEmptySelection: (page 227)
Sets whether the receiver attempts to avoid an empty selection.

- avoidsEmptySelection (page 215)
Returns a Boolean value that indicates whether if the receiver requires that the content array attempt
to maintain a selection.

- setClearsFilterPredicateOnInsertion: (page 228)
Sets whether the receiver automatically clears an existing filter predicate when a new object is inserted
or added to the content array.

- preservesSelection (page 220)
Returns a Boolean value that indicates whether the receiver will attempt to preserve the current
selection then when the content changes.

- setPreservesSelection: (page 229)
Sets whether the receiver attempts to preserve selection when the content changes.

- alwaysUsesMultipleValuesMarker (page 213)
Returns a Boolean value that indicates whether the receiver always returns the multiple values marker
when multiple objects are selected.

- setAlwaysUsesMultipleValuesMarker: (page 226)
Sets whether the receiver always returns the multiple values marker when multiple objects are selected.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Managing Selections

- selectionlndex (page 224)
Returns the index of the first object in the receiver’s selection.

- setSelectionIndex: (page 230)
Sets the receiver’s selection to the given index, and returns a Boolean value that indicates whether
the selection was changed.

- setSelectsInsertedObjects: (page 231)
Sets whether the receiver will automatically select objects as they are inserted.

- selectsInsertedObjects (page 226)
Returns whether the receiver automatically selects inserted objects.

- setSelectionIndexes: (page 230)
Sets the receiver’s selection indexes and returns a Boolean value that indicates whether the selection
changed.

- selectionlndexes (page 224)
Returns an index set containing the indexes of the receiver’s currently selected objects in the content
array.

- addSelectionIndexes: (page 213)

Adds the objects at the specified indexes in the receiver’s content array to the current selection,
returning YES if the selection was changed.

- removeSelectionIndexes: (page 223)
Removes the object as the specified 7ndexes from the receiver’s current selection, returning YES if
the selection was changed.

- setSelectedObjects: (page 229)
Sets objects as the receiver’s current selection, returning YES if the selection was changed.

- selectedObjects (page 224)
Returns an array containing the receiver’s selected objects.

- addSelectedObjects: (page 212)
Adds objects from the receiver’s content array to the current selection, returning Y ES if the selection
was changed.

- removeSelectedObjects: (page 223)
Removes ob jects from the receiver’s current selection, returning YES if the selection was changed.

- selectNext: (page 225)
Selects the next object, relative to the current selection, in the receiver’s arranged content.

- canSelectNext (page 216)
Returns YES if the next object, relative to the current selection, in the receiver’s content array can be
selected.

- selectPrevious: (page 225)
Selects the previous object, relative to the current selection, in the receiver’s arranged content.

- canSelectPrevious (page 217)
Returns YES if the previous object, relative to the current selection, in the receiver’s content array can
be selected.

Tasks 209
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

210

CHAPTER 10

NSArrayController Class Reference

Inserting

- canlnsert (page 216)
Returns a Boolean value that indicates whether an object can be inserted into the receiver’s content
collection.

- insert: (page 218)

Creates a new object and inserts it into the receiver’s content array.

Adding and Removing Objects

- addObject: (page 211)

Adds object to the receiver’s content collection and the arranged objects array.
- addObjects: (page 212)

Adds objects to the receiver’s content collection.

- insertObject:atArrangedObjectIndex: (page 219)
Inserts object into the receiver’s arranged objects array at the location specified by 7ndex, and adds
it to the receiver’s content collection.

- insertObjects:atArrangedObjectIndexes: (page 219)

Inserts objects into the receiver’s arranged objects array at the locations specified in 7ndexes, and
adds it to the receiver’s content collection.

- removeObjectAtArrangedObjectIndex: (page 222)
Removes the object at the specified 7ndex in the receiver’s arranged objects from the receiver’s
content array.
- removeObjectsAtArrangedObjectIndexes: (page 222)
Removes the objects at the specified indexes in the receiver’s arranged objects from the content
array.
- remove: (page 221)
Removes the receiver’s selected objects from the content collection.
- removeObject: (page 221)
Removes ob ject from the receiver’s content collection.
- removeObjects: (page 222)
Removes objects from the receiver’s content collection.

Filtering Content

- clearsFilterPredicateOnInsertion (page 217)
Returns a Boolean value that indicates whether the receiver automatically clears an existing filter
predicate when new items are inserted or added to the content.
- filterPredicate (page 218)
Returns the predicate used by the receiver to filter the array controller contents.
- setFilterPredicate: (page 228)
Sets the predicate used to filter the contents of the receiver.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Automatic Content Rearranging

- setAutomaticallyRearrangesObjects: (page 227)
Sets whether or not the receiver automatically rearranges its content to correspond to the current
sort descriptors and filter predicates.

- automaticallyRearrangesObjects (page 215)
Returns a Boolean that indicates if the receiver automatically rearranges its content to correspond to
the current sort descriptors and filter predicates.

- automaticRearrangementKeyPaths (page 215)
Returns an array of key paths that trigger automatic content sorting or filtering.

- didChangeArrangementCriteria (page 218)
Invoked to inform the controller that the arrangement criteria has changed..

Instance Methods

add:

Creates and adds a new object to the receiver’s content and arranged objects.
- (void)add:(id)sender

Parameters
sender
Typically the object that invoked this method.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSArrayController.h

addObject:

Adds object to the receiver’s content collection and the arranged objects array.
- (void)addObject:(id)object

Availability
Available in Mac OS X v10.3 and later.

See Also
- addObjects: (page 212)

- insertObject:atArrangedObjectIndex: (page 219)
- removeObject: (page 221)

Instance Methods 2N
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

212

CHAPTER 10

NSArrayController Class Reference

Related Sample Code
Aperture Edit Plugin - Borders & Titles

Declared In
NSArrayController.h

addObjects:

Adds objects to the receiver’s content collection.
- (void)addObjects: (NSArray *)objects

Discussion
If selectsInsertedObjects (page 226) returns YES (the default), the added objects are selected in the
array controller.

Itisimportant to note that inserting many objects with selectsInsertedObjects on can cause a significant
performance penalty. In this case it is more efficient to use the setContent: (page 1752) method to set the
array, orto set selectsInsertedObjects to NO before adding the objects with addObjects:.

Availability
Available in Mac OS X v10.3 and later.

See Also
- addObject: (page 211)

- insertObjects:atArrangedObjectIndexes: (page 219)
- removeObjects: (page 222)

Declared In
NSArrayController.h

addSelectedObjects:

Adds objects from the receiver’s content array to the current selection, returning YES if the selection was
changed.

- (BOOL)addSelectedObjects: (NSArray *)objects

Discussion
Attempting to change the selection may cause a commitEditing (page 852) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
- removeSelectedObjects: (page 223)

- setSelectedObjects: (page 229)

Declared In
NSArrayController.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

addSelectionindexes:

Adds the objects at the specified indexes in the receiver’s content array to the current selection, returning
YES if the selection was changed.

- (BOOL)addSelectionIndexes: (NSIndexSet *)indexes

Discussion
Attempting to change the selection may cause a commitEditing (page 852) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
- removeSelectionIndexes: (page 223)

Declared In
NSArrayController.h

alwaysUsesMultipleValuesMarker

Returns a Boolean value that indicates whether the receiver always returns the multiple values marker when
multiple objects are selected.

- (BOOL)alwaysUsesMultipleValuesMarker

Return Value
YES if the receiver always returns the multiple values marker when multiple objects are selected—even if
the selected items have the same value, otherwise NO.

Discussion
The default is NO.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setAlwaysUsesMultipleValuesMarker: (page 226)

Declared In
NSArrayController.h

arrangedObjects

Returns an array containing the receiver’s content objects arranged using arrangeObjects: (page 214).
- (id)arrangedObjects

Return Value
An array containing the receiver’s content objects arranged using arrangeObjects: (page 214).

Instance Methods 213
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

214

CHAPTER 10

NSArrayController Class Reference

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- arrangeObjects: (page 214)

Declared In
NSArrayController.h

arrangeObjects:

Returns a given array, appropriately sorted and filtered.
- (NSArray *)arrangeObjects:(NSArray *)objects

Return Value
An array containing objects filtered using the receiver's filter predicate (see filterPredicate (page 218)) and
sorted according to the receiver’s sortDescriptors (page 231).

Discussion
Subclasses should override this method to use a different sort mechanism, provide custom object arrangement,
or (typically only prior to Mac OS X version 10.4, which provides a filter predicate) filter the objects.

Availability
Available in Mac OS X v10.3 and later.

See Also
- arrangedObjects (page 213)

- rearrangeObjects (page 220)
- sortDescriptors (page 231)

Declared In
NSArrayController.h

automaticallyPreparesContent

Returns a Boolean value that indicates whether the receiver automatically prepares its content when it is
loaded from a nib.

- (BOOL)automaticallyPreparesContent

Return Value
YES if the receiver automatically prepares its content when loaded from a nib, otherwise NO.

Discussion
See setAutomaticallyPreparesContent: (page 227) for a full explanation of "automatically prepares
content."

The defaultis YES.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

See Also
- setAutomaticallyPreparesContent: (page 227)

- prepareContent (page 1749)

automaticallyRearrangesObjects

Returns a Boolean that indicates if the receiver automatically rearranges its content to correspond to the
current sort descriptors and filter predicates.

- (BOOL)automaticallyRearrangesObjects

Return Value
YES if the receiver automatically rearranges objects upon changes to the content, NO if the content does not
automatically rearrange.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSArrayController.h

automaticRearrangementKeyPaths

Returns an array of key paths that trigger automatic content sorting or filtering.
- (NSArray *)automaticRearrangementKeyPaths

Return Value
An array of key paths that trigger automatic content sorting or filtering.

Discussion

Subclasses can override this method to customize the default behavior of the sort descriptors and filtering
predicates, for example, if additional arrangement criteria are used in custom implementations of
rearrangeObjects (page 220).

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSArrayController.h

avoidsEmptySelection

Returns a Boolean value that indicates whether if the receiver requires that the content array attempt to
maintain a selection.

- (BOOL)avoidsEmptySelection

Return Value
YES if the receiver requires that the content array attempt to maintain a selection at all times, otherwise NO.

Instance Methods 215
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

216

CHAPTER 10

NSArrayController Class Reference

Discussion
The defaultis YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setAvoidsEmptySelection: (page 227)

Declared In
NSArrayController.h

canlnsert

Returns a Boolean value that indicates whether an object can be inserted into the receiver’s content collection.
- (BOOL)canlInsert

Return Value
YES if an object can be inserted into the receiver’s content collection, otherwise NO.

Discussion
The result of this method can be used by a binding to enable user interface items.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- insert: (page 218)

Declared In
NSArrayController.h

canSelectNext

Returns YES if the next object, relative to the current selection, in the receiver’s content array can be selected.
- (BOOL)canSelectNext

Discussion
The result of this method can be used by a binding to enable user interface items.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- selectNext: (page 225)

- canSelectPrevious (page 217)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Declared In
NSArrayController.h

canSelectPrevious

Returns YES if the previous object, relative to the current selection, in the receiver’s content array can be
selected.

- (BOOL)canSelectPrevious

Discussion
The result of this method can be used by a binding to enable user interface items.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- canSelectNext (page 216)

- selectPrevious: (page 225)

Declared In
NSArrayController.h

clearsFilterPredicateOninsertion

Returns a Boolean value that indicates whether the receiver automatically clears an existing filter predicate
when new items are inserted or added to the content.

- (BOOL)clearsFilterPredicateOnInsertion

Return Value
YES if the receiver automatically clears an existing filter predicate when new items are inserted or added to
the content, otherwise NO.

Discussion
The defaultis YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setClearsFilterPredicateOnInsertion: (page 228)

Declared In
NSArrayController.h

Instance Methods 217
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

didChangeArrangementCriteria

Invoked to inform the controller that the arrangement criteria has changed..
- (void)didChangeArrangementCriteria

Discussion
This is invoked automatically when sort descriptors and filter predicates are changed.

Subclasses should invoke this method when the array returned by
automaticallyRearrangesObjects (page 215) is changed.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSArrayController.h

filterPredicate

Returns the predicate used by the receiver to filter the array controller contents.
- (NSPredicate *)filterPredicate

Return Value
The predicate used by the receiver to filter the array controller contents. Returns ni 1 if no filter predicate is
set.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setClearsFilterPredicateOnInsertion: (page 228)

Declared In
NSArrayController.h

insert:

Creates a new object and inserts it into the receiver’s content array.
- (void)insert:(id)sender

Parameters
sender
Typically the object that invoked this method.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

218 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Discussion

If an entity name is specified (see entityName (page 1745)), this method creates an instance of the of the
class specified by the entity, otherwise this method creates an instance of the class specified by
objectClass (page 1748).

Availability
Available in Mac OS X v10.3 and later.

See Also
- canlnsert (page 216)

Declared In
NSArrayController.h

insertObject:atArrangedObjectindex:

Inserts object into the receiver’s arranged objects array at the location specified by 7ndex, and adds it to
the receiver’s content collection.

- (void)insertObject:(id)object atArrangedObjectIndex:(NSUInteger)index

Discussion
Subclasses can override this method to provide customized arranged objects support.

Availability
Available in Mac OS X v10.3 and later.

See Also
- insertObjects:atArrangedObjectIndexes: (page 219)

- addObject: (page 211)
- removeObjectAtArrangedObjectIndex: (page 222)

Declared In
NSArrayController.h

insertObjects:atArrangedObjectindexes:

Inserts objects into the receiver’s arranged objects array at the locations specified in 7ndexes, and adds it
to the receiver’s content collection.

- (void)insertObjects: (NSArray *)objects atArrangedObjectIndexes:(NSIndexSet
*)indexes

Availability
Available in Mac OS X v10.3 and later.

See Also
- insertObject:atArrangedObjectIndex: (page 219)

- addObjects: (page 212)
- removeObjectsAtArrangedObjectIndexes: (page 222)

Instance Methods 219
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Declared In
NSArrayController.h

preservesSelection

Returns a Boolean value that indicates whether the receiver will attempt to preserve the current selection
then when the content changes.

- (BOOL)preservesSelection

Return Value
YES if the receiver attempts to preserve the current selection then when the content changes, otherwise NO.

Discussion
The defaultis YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setClearsFilterPredicateOnInsertion: (page 228)

Declared In
NSArrayController.h

rearrangeObjects

Triggers filtering of the receiver’s content.
- (void)rearrangeObjects

Discussion
This method invokes arrangeObjects: (page 214).

When you detect that filtering criteria change (such as when listening to the text sent by an NSSearchField
instance), invoke this method on self.

Availability
Available in Mac OS X v10.3 and later.

See Also
- arrangeObjects: (page 214)

Related Sample Code
iSpend

Declared In
NSArrayController.h

220 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

remove:

Removes the receiver’s selected objects from the content collection.
- (void)remove: (id)sender

Parameters
sender

Typically the object that invoked this method.
Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Discussion
See removeObject: (page 221) for a discussion of the semantics of removing objects when using Core Data.

Availability
Available in Mac OS X v10.4 and later.

See Also

- removeObjects: (page 222)

- removeObjectAtArrangedObjectIndex: (page 222)
- addObject: (page 211)

Related Sample Code
Aperture Edit Plugin - Borders & Titles

Declared In
NSArrayController.h

removeObject:

Removes object from the receiver’s content collection.
- (void)removeObject:(id)object

Discussion

If you are using Core Data, the exact semantics of this method differ depending on the settings for the array
controller. If the receiver’s content is fetched automatically, removed objects are marked for deletion by the
managed object context (and hence removal from the object graph). If, however, the receiver’s contentSet
is bound to a relationship, removeObject : by default only removes the object from the relationship (not
from the object graph). You can, though, set the “Deletes Object on Remove” option for the contentSet
binding, in which case objects are marked for deletion as well as being removed from the relationship.

Availability
Available in Mac OS X v10.3 and later.

See Also
- removeObjects: (page 222)

- removeObjectAtArrangedObjectIndex: (page 222)
- addObject: (page 211)

Instance Methods 221
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Declared In
NSArrayController.h

removeObjectAtArrangedObjectindex:

Removes the object at the specified index in the receiver’s arranged objects from the receiver’s content
array.

- (void)removeObjectAtArrangedObjectIndex: (NSUInteger) index

Discussion
See removeObject: (page 221) for a discussion of the semantics of removing objects when using Core Data.

Availability
Available in Mac OS X v10.3 and later.

See Also
- removeObjectsAtArrangedObjectIndexes: (page 222)

- insertObject:atArrangedObjectIndex: (page 219)
- removeObject: (page 221)

Declared In
NSArrayController.h

removeObjects:

Removes objects from the receiver’s content collection.
- (void)removeObjects: (NSArray *)objects

Discussion
See removeObject: (page 221) for a discussion of the semantics of removing objects when using Core Data.

Availability
Available in Mac OS X v10.3 and later.

See Also
- removeObject: (page 221)

- removeObjectsAtArrangedObjectIndexes: (page 222)
- addObjects: (page 212)

Declared In
NSArrayController.h

removeObjectsAtArrangedObjectindexes:

Removes the objects at the specified indexes in the receiver’s arranged objects from the content array.

- (void)removeObjectsAtArrangedObjectIndexes: (NSIndexSet *)indexes

222 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Discussion
See removeObject: (page 221) for a discussion of the semantics of removing objects when using Core Data.

Availability
Available in Mac OS X v10.3 and later.

See Also
- removeObjectAtArrangedObjectIndex: (page 222)

- insertObjects:atArrangedObjectIndexes: (page 219)
- removeObjects: (page 222)

Declared In
NSArrayController.h

removeSelectedObjects:

Removes objects from the receiver’s current selection, returning YES if the selection was changed.
- (BOOL)removeSelectedObjects: (NSArray *)objects

Discussion
Attempting to change the selection may cause a commitEditing (page 852) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
- addSelectedObjects: (page 212)

Declared In
NSArrayController.h

removeSelectionindexes:
Removes the object as the specified indexes from the receiver’s current selection, returning YES if the
selection was changed.

- (BOOL)removeSelectionIndexes: (NSIndexSet *)indexes

Discussion
Attempting to change the selection may cause a commitEditing (page 852) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
- addSelectionIndexes: (page 213)

Declared In
NSArrayController.h

Instance Methods 223
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

selectedObjects

Returns an array containing the receiver’s selected objects.
- (NSArray *)selectedObjects

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setSelectedObjects: (page 229)

Related Sample Code
CoreRecipes

Declared In
NSArrayController.h

selectionlndex

Returns the index of the first object in the receiver’s selection.
- (NSUInteger)selectionIndex

Return Value
The index of the first object in the receiver’s selection, or NSNotFound if there is no selection.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setSelectionIndex: (page 230)

- selectionlIndexes (page 224)

Related Sample Code
SBSystemPrefs

Declared In
NSArrayController.h

selectionindexes

Returns an index set containing the indexes of the receiver’s currently selected objects in the content array.
- (NSIndexSet *)selectionIndexes

Return Value
An index set containing the indexes of the receiver’s currently selected objects in the content array.

224 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setSelectionIndexes: (page 230)

- selectionIndex (page 224)

Declared In
NSArrayController.h

selectNext:

Selects the next object, relative to the current selection, in the receiver’s arranged content.
- (void)selectNext:(id)sender

Discussion

The senderis typically the object that invoked this method.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.3 and later.

See Also
- selectPrevious: (page 225)

- canSelectNext (page 216)

Declared In
NSArrayController.h

selectPrevious:

Selects the previous object, relative to the current selection, in the receiver’s arranged content.
- (void)selectPrevious:(id)sender

Discussion
The senderis typically the object that invoked this method.

Special Considerations

Beginning with Mac OS X v10.4 the result of this method is deferred until the next iteration of the runloop
so that the error presentation mechanism can provide feedback as a sheet.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 225
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

See Also
- selectNext: (page 225)

- canSelectPrevious (page 217)

Declared In
NSArrayController.h

selectsinsertedObjects

Returns whether the receiver automatically selects inserted objects.
- (BOOL)selectsInsertedObjects

Return Value
YES if the receiver automatically selects inserted objects, otherwise NO.

Discussion
The defaultis YES.

This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setSelectsInsertedObjects: (page 231)

Declared In
NSArrayController.h

setAlwaysUsesMultipleValuesMarker:

Sets whether the receiver always returns the multiple values marker when multiple objects are selected.
- (void)setAlwaysUsesMultipleValuesMarker:(BOOL)flag

Parameters

flag
If YES, the receiver always returns the multiple values marker when multiple objects are selected,
even if they have the same value.

Discussion
Setting f7agto YES can increase performance if your application doesn’t allow editing multiple values. The
defaultis NO.

Availability
Available in Mac OS X v10.4 and later.

See Also
- alwaysUsesMultipleValuesMarker (page 213)

Declared In
NSArrayController.h

226 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

setAutomaticallyPreparesContent:

Sets whether the receiver automatically creates and inserts new content objects automatically.
- (void)setAutomaticallyPreparesContent:(BOOL)f7ag

Parameters
flag
If YES, the receiver automatically prepares its content.

Discussion
If f1agis YES and the receiver is not using a managed object context, prepareContent (page 1749) is used
to create the content object.

If fTagis YES and a managed object context is set, the initial content is fetched from the managed object
context using the current fetch predicate. The controller also registers as an observer of its managed object
context. It then tracks insertions and deletions of its entity using the context's notifications, and updates its
content array as appropriate.

Setting f7agto YES is the same as checking the “Automatically Prepares Content” option in the Interface
Builder controller inspector.

See Also
- automaticallyPreparesContent (page 214)

- prepareContent (page 1749)

setAutomaticallyRearrangesObjects:
Sets whether or not the receiver automatically rearranges its content to correspond to the current sort
descriptors and filter predicates.

- (void)setAutomaticallyRearrangesObjects:(BOOL)flag

Parameters
flag

A Boolean value that indicates whether the receiver automatically rearranges its content (YES) or not
(NO).

Discussion
The default is NO.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSArrayController.h

setAvoidsEmptySelection:

Sets whether the receiver attempts to avoid an empty selection.

- (void)setAvoidsEmptySelection: (BOOL)f7ag

Instance Methods 227
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Parameters

flag
If YES, the receiver maintains a selection unless there are no objects in the content array.

Discussion
The defaultis YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
- avoidsEmptySelection (page 215)

Declared In
NSArrayController.h

setClearsFilterPredicateOnlInsertion:

Sets whether the receiver automatically clears an existing filter predicate when a new object is inserted or
added to the content array.

- (void)setClearsFilterPredicateOnInsertion:(BOOL)f7ag

Parameters
flag

If YES, the receiver automatically clears an existing filter predicate when a new object is inserted or
added to the content array.

Discussion
The default is YES.

Availability
Available in Mac OS X v10.4 and later.

See Also
- clearsFilterPredicateOnInsertion (page 217)

Declared In
NSArrayController.h

setFilterPredicate:

Sets the predicate used to filter the contents of the receiver.
- (void)setFilterPredicate: (NSPredicate *)filterPredicate

Parameters
filterPredicate
The predicate used to filter the contents of the receiver.

Discussion
If filterPredicateis nil, any existing filter predicate is removed.

228 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
- filterPredicate (page 218)

Declared In
NSArrayController.h

setPreservesSelection:

Sets whether the receiver attempts to preserve selection when the content changes.
- (void)setPreservesSelection:(BOOL)f7ag

Parameters

flag
If YES, the receiver attempts to preserve selection when the content changes.

Discussion
The defaultis YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
- preservesSelection (page 220)

Declared In
NSArrayController.h

setSelectedObjects:

Sets objects as the receiver’s current selection, returning YES if the selection was changed.
- (BOOL)setSelectedObjects: (NSArray *)objects

Discussion

Attempting to change the selection may cause a commitEditing (page 852) message which fails, thus

denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
- selectedObjects (page 224)

- addSelectedObjects: (page 212)

Declared In
NSArrayController.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

229

230

CHAPTER 10

NSArrayController Class Reference

setSelectionindex:

Sets the receiver’s selection to the given index, and returns a Boolean value that indicates whether the
selection was changed.

- (BOOL)setSelectionIndex: (NSUInteger)index

Parameters
index
The index for the selection.

Return Value
YES if the selection was changed, otherwise NO.

Discussion
Attempting to change the selection may cause a commitEditing (page 852) message which fails, thus
denying the selection change.

Availability
Available in Mac OS X v10.3 and later.

See Also
- selectionlndex (page 224)

- setSelectionIndexes: (page 230)

Declared In
NSArrayController.h

setSelectionindexes:

Sets the receiver’s selection indexes and returns a Boolean value that indicates whether the selection changed.
- (BOOL)setSelectionIndexes:(NSIndexSet *)indexes

Parameters
indexes
The set of selection indexes for the receiver.

Return Value
YES if the selection was changed, otherwise NO.

Discussion
Attempting to change the selection may cause a commitEditing (page 852) message which fails, thus
denying the selection change.

To select all the receiver’s objects, indexes should be an index set with indexes [0. . .count -11].Todeselect
all indexes, pass an empty index set.

Availability
Available in Mac OS X v10.3 and later.

See Also
- selectionIndexes (page 224)

- setSelectionIndex: (page 230)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 10

NSArrayController Class Reference

Declared In
NSArrayController.h

setSelectsinsertedObjects:

Sets whether the receiver will automatically select objects as they are inserted.

- (void)setSelectsInsertedObjects:(BOOL)fTag

Parameters
flag
If YES then items will be selected upon insertion.

Discussion
The defaultis YES.

Availability
Available in Mac OS X v10.3 and later.

See Also
- selectsInsertedObjects (page 226)

Declared In
NSArrayController.h

setSortDescriptors:

Sets the sort descriptors for the receiver.
- (void)setSortDescriptors: (NSArray *)sortDescriptors

Parameters
sortDescriptors

An array of NSSortDescriptor objects, used by the receiver to arrange its content.

Availability
Available in Mac OS X v10.3 and later.

See Also
- sortDescriptors (page 231)

- arrangeObjects: (page 214)

Declared In
NSArrayController.h

sortDescriptors

Returns the receiver's array of sort descriptors.

- (NSArray *)sortDescriptors

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

231

CHAPTER 10

NSArrayController Class Reference

Return Value
The array of NSSortDescriptor objects used by the receiver to arrange its content.

Discussion
This property is observable using key-value observing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setSortDescriptors: (page 231)

- arrangeObjects: (page 214)

Declared In
NSArrayController.h

232 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11

NSATSTypesetter Class Reference

Inherits from NSTypesetter : NSObject

Conforms to NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework
Declared in AppKit/NSATSTypesetter.h

Availability Available in Mac OS X v10.3 and later.
Companion guides Text System Overview

Text Layout Programming Guide for Cocoa

Overview

Tasks

NSATSTypesetter isaconcrete subclass of NSTypesetter that places glyphs during the text layout process.
The typesetter creates line fragment rectangles, positions glyphs within the line fragments, determines line
breaks by word wrapping and hyphenation, and handles tab positioning.

NSATSTypesetter encapsulates the advanced typesetting capabilities of Core Text. NSATSTypesetter
provides enhanced line and character spacing accuracy and supports more languages, including bidirectional
languages, than the original, built-in typesetter class NSSimpleHorizontal Typesetter (which is deprecated
in Mac OS X version 104 and later).

Subclassing Notes

NSATSTypesetter introduced a set of interfaces in Mac OS X version 10.3 that facilitated subclassing and
made it possible to substitute a custom layout engine into the Cocoa text system. In Mac OS X version 10.4,
those interfaces moved to NSTypesetter, which you can subclass to the same effect. See the NSTypesetter
reference documentation for relevant subclassing notes.

Getting a Typesetter

+ sharedTypesetter (page 237)
Returns a shared instance of NSATSTypesetter.

Overview 233
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

234

CHAPTER 11
NSATSTypesetter Class Reference

Managing the Layout Manager

- layoutManager (page 242)
Returns the layout manager for the text being typeset.
- setUsesFontleading: (page 251)
Sets a Boolean value controlling whether the typesetter uses the leading (or line gap) value specified
in the font metric information.
- usesFontleading (page 253)
Returns a Boolean value indicating whether the typesetter uses the leading (or line gap) value specified
in the font metric information of the current font.
- setTypesetterBehavior: (page 250)
Sets the default typesetter behavior, which affects glyph spacing and line height.
- typesetterBehavior (page 253)
Returns the current typesetter behavior value.
- setHyphenationFactor: (page 248)
Sets the threshold controlling when hyphenation is attempted
- hyphenationFactor (page 241)
Returns the current hyphenation factor.

Managing the Text Container

- currentTextContainer (page 239)
Returns the text container for the text being typeset.

- setlinefFragmentPadding: (page 248)
Sets the amount (in points) by which text is inset within line fragment rectangles

- lineFragmentPadding (page 243)

Returns the current line fragment padding amount; that is, the portion on each end of the line fragment
rectangle left blank.

Mapping Screen and Printer Fonts

- substituteFontForFont: (page 252)
Returns a screen font suitable for use in place of the specified original font, or simply returns the
original font if a screen font can’t be used or isn't available.

Managing Text Tabs
- textTabForGlyphlLocation:writingDirection:maxlLocation: (page 252)

Returns the text tab next closest to a given glyph location, indexing in the specified direction but not
beyond a given glyph location.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSATSTypesetter Class Reference

Bidirectional Text Processing

- setBidiProcessingEnabled: (page 247)

Sets a Boolean value controlling whether the typesetter performs bidirectional text processing.
- bidiProcessingEnabled (page 238)

Returns a Boolean value indicating the bidirectional text processing setting currently in effect.

Accessing Paragraph Typesetting Information

- setAttributedString: (page 246)
Sets the text backing store on which this typesetter operates.

- attributedString (page 237)
Returns the text backing store, usually an instance of NSTextStorage.

- setParagraphGlyphRange:separatorGlyphRange: (page 250)
Sets the current glyph range being processed and the paragraph separator glyph range (the range
of the paragraph separator character or characters).

- paragraphGlyphRange (page 244)
Returns the glyph range currently being processed.

- paragraphSeparatorGlyphRange (page 245)

Returns the current paragraph separator range, which is the full range that contains the current glyph
range and that extends from one paragraph separator character to the next.

Paragraph Layout

- layoutParagraphAtPoint: (page 243)
Lays out glyphs in the current glyph range until the next paragraph separator is reached.

Line and Paragraph Spacing

- lineSpacingAfterGlyphAtIndex:withProposedlLineFragmentRect: (page 244)
Returns the line spacing in effect following the specified glyph.

- paragraphSpacingAfterGlyphAtIndex:withProposedlLineFragmentRect: (page 245)
Returns the paragraph spacing, the number of points of space added following a paragraph, which
is in effect after the specified glyph.

- paragraphSpacingBeforeGlyphAtIndex:withProposedlLineFragmentRect: (page 245)
Returns the number of points of space added before a paragraph, which is in effect before the specified
glyph.

Glyph Caching
- setHardInvalidation:forGlyphRange: (page 248)

Sets a Boolean value controlling whether to force the layout manager to invalidate the portion of the
glyph cache in the given glyph range when invalidating layout.

Tasks 235
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

236

CHAPTER 11
NSATSTypesetter Class Reference

Laying out Glyphs

- boundingBoxForControlGlyphAtIndex: forTextContainer:proposedLineFragment:glyphPosition:characterIndex: (page
238)
Returns the bounding rectangle for the given control glyph, at the given glyph position and character
index, in the given text container.
- getlineFragmentRect:usedRect:forParagraphSeparatorGlyphRange:atProposedOrigin: (page
240)
Calculates the line fragment rectangle and line fragment used rectangle for blank lines.

- hyphenCharacterForGlyphAtIndex: (page 242)
Returns the hyphen character to be inserted after the given glyph when hyphenation is enabled in
the layout manager.

- hyphenationFactorForGlyphAtIndex: (page 241)
Returns the hyphenation factor in effect at the given glyph index.

- shouldBreakLineByHyphenatingBeforeCharacterAtIndex: (page 251)
The typesetter calls this method, if implemented by a subclass, before breaking a line by hyphenating
before the character at the given character index, enabling the subclass to control line breaking.

- shouldBreakLineByWordBeforeCharacterAtIndex: (page 251)
The typesetter calls this method, if implemented by a subclass, before breaking a line by word wrapping
before the character at the given character index, enabling the subclass to control line breaking.

- willSetLineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 253)
Called by the typesetter just prior to calling

setlLineFragmentRect:forGlyphRange:usedRect:baseline0ffset: (page 249) which stores
the actual line fragment rectangle location in the layout manager.

Interfacing with Glyph Storage

- characterRangeForGlyphRange:actualGlyphRange: (page 238)
Returns the range for the characters in the receiver’s text store that are mapped to the glyphs in the
given glyph range.

- deleteGlyphsInRange: (page 239)
Deletes the glyphs in the given glyph range from the glyph cache maintained by the layout manager.

- getGlyphsInRange:glyphs:characterIndexes:glyphInscriptions:elasticBits: (page239)
Extracts the information needed to lay out the glyphs in the given glyph buffer from the given glyph
range.

- glyphRangeForCharacterRange:actualCharacterRange: (page 240)

Returns the range for the glyphs mapped to the characters of the text store in the given character
range.

- insertGlyph:atGlyphIndex:characterIndex: (page 242)

Enables the typesetter to insert a new glyph into the stream.

- setAttachmentSize:forGlyphRange: (page 246)

Sets the size the glyphs in the given glyph range (assumed to be attachments) will be asked to draw
themselves.

- setBidilevels:forGlyphRange: (page 247)
Sets the direction of the glyphs in the given glyph range for bidirectional text to the given levels.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSATSTypesetter Class Reference

- setDrawsOutsidelLineFragment:forGlyphRange: (page 247)

Sets a Boolean value controlling whether the glyphs in the given glyph range exceed the bounds of
the line fragment in which they are laid out.

- setlineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 249)

Sets the line fragment rectangle where the glyphs in in the given glyph range are laid out to the given
line fragment rectangle.

- setlocation:withAdvancements:forStartOfGlyphRange: (page 249)
Sets the location where the glyphs in the given glyph range are laid out to the specified location.

- setNotShownAttribute:forGlyphRange: (page 250)
Sets a Boolean value controlling whether the glyphs in the given glyph rangeare not shown.

- substituteGlyphsInRange:withGlyphs: (page 252)
Replaces the glyphs in the given glyph range with the given glyphs.

- lineFragmentRectForProposedRect:remainingRect: (page 243) Deprecated in Mac OS X v10.4
This method has been deprecated. Use the NSTypesetter method
getlLineFragmentRect:usedRect:remainingRect:forStartingGlyphAtIindex:proposedRect:
lTineSpacing:paragraphSpacingBefore:paragraphSpacingAfter: (page 3044) instead.

Class Methods

sharedTypesetter
Returns a shared instance of NSATSTypesetter.

+ (id)sharedTypesetter

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSATSTypesetter.h

Instance Methods

attributedString

Returns the text backing store, usually an instance of NSTextStorage.
- (NSAttributedString *)attributedString

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- setAttributedString: (page 246)

Class Methods 237
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

238

CHAPTER 11
NSATSTypesetter Class Reference

Declared In
NSATSTypesetter.h

bidiProcessingEnabled

Returns a Boolean value indicating the bidirectional text processing setting currently in effect.
- (BOOL)bidiProcessingEnabled

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- setBidiProcessingEnabled: (page 247)

Declared In
NSATSTypesetter.h

boundingBoxForControlGlyphAtindex:forTextContainer:proposedLineFragment:
glyphPosition:characterindex:

Returns the bounding rectangle for the given control glyph, at the given glyph position and character index,
in the given text container.

- (NSRect)boundingBoxForControlGlyphAtIndex: (NSUInteger)giyphIndex
forTextContainer: (NSTextContainer *)textContainer
proposedLineFragment: (NSRect)proposedRect glyphPosition: (NSPoint)glyphPosition
characterIndex: (NSUInteger)charindex

Discussion

Returns the bounding rectangle for the control glyph at g7yphIndex, at the given glyphPositionand
character index charindex, in textContainer. The proposed line fragment rectangle is specified by
proposedRect.

The typesetter calls this method when it encounters an NSControlGlyph. The default behavior is to return
zero width for control glyphs. A subclass can override this method to do something different, such as
implement a way to display control characters.

NSGlyphGenerator can choose whether or not to map control characters to NSControlGlyph. Tab characters,
for example, do not use this facility.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

characterRangeForGlyphRange:actualGlyphRange:

Returns the range for the characters in the receiver’s text store that are mapped to the glyphs in the given
glyph range.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSATSTypesetter Class Reference

- (NSRange)characterRangeForGlyphRange: (NSRange)glyphRange
actualGlyphRange: (NSRangePointer)actualGlyphRange

Discussion
If actualGlyphRangeis non-NULL, expands the requested range as needed so that it identifies all glyphs
mapped to those characters and returns the new range by reference in actualGlyphRange.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- glyphRangeForCharacterRange:actualCharacterRange: (page 240)

Declared In
NSATSTypesetter.h

currentTextContainer

Returns the text container for the text being typeset.
- (NSTextContainer *)currentTextContainer

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

deleteGlyphsinRange:

Deletes the glyphs in the given glyph range from the glyph cache maintained by the layout manager.
- (void)deleteGlyphsInRange: (NSRange)gl/yphRange

Discussion
A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
insertGlyph:atGlyphIndex:characterIndex: (page 242)

Declared In
NSATSTypesetter.h

getGlyphsinRange:glyphs:characterindexes:glyphinscriptions:elasticBits:
Extracts the information needed to lay out the glyphs in the given glyph buffer from the given glyph range.

Instance Methods 239
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

240

CHAPTER 11
NSATSTypesetter Class Reference

- (NSUInteger)getGlyphsInRange: (NSRange)glyphsRange glyphs:(NSGlyph *)glyphBuffer
characterIndexes: (NSUInteger *)charlIndexBuffer
glyphInscriptions: (NSGlyphInscription *)inscribeBuffer elasticBits:(BOOL
*)elasticBuffer

Discussion
The charIndexBuffer contains the original characters for the glyphs. Note that a glyph at index 1 is not
necessarily mapped to the character at index 1, since a glyph may be for a ligature or accent.

The inscribeBuffer contains the inscription attributes for each glyph, which are used to layout characters
that are combined together. The possible values are described in the “Constants” (page 1503) section of the
NSLayoutManager reference.

The elasticBuffer contains a Boolean value indicating whether a glyph is elastic for each glyph. An elastic
glyph can be made longer at the end of a line or when needed for justification.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

getLineFragmentRectusedRect:forParagraphSeparatorGlyphRange:atProposedOrigin:

Calculates the line fragment rectangle and line fragment used rectangle for blank lines.

- (void)getLineFragmentRect: (NSRect *)TineFragmentRect usedRect:(NSRect
*)1lineFragmentUsedRect
forParagraphSeparatorGlyphRange: (NSRange)paragraphSeparatorGlyphRange
atProposedQOrigin: (NSPoint) lineOrigin

Discussion

The method returns the calculated line fragment rectangle in 77neFragmentRect, and it returns the used
rectangle (the portion of the line fragment rectangle that actually contains marks) in 7 inefragmentUsedRect.
The paragraphSeparatorGlyphRangeisthe range of glyphs under consideration, and 7ine0riginisthe
origin point of the line fragment rectangle. A paragraphSeparatorGlyphRange with length 0 indicates
an extra line fragment (which occurs if the last character in the paragraph is a line separator.)

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

glyphRangeForCharacterRange:actualCharacterRange:

Returns the range for the glyphs mapped to the characters of the text store in the given character range.

- (NSRange)glyphRangeForCharacterRange: (NSRange)charRange
actualCharacterRange: (NSRangePointer)actualCharRange

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSATSTypesetter Class Reference

Discussion
If actualCharRangeis non-NULL, expands the requested range as needed so that it identifies all characters
mapped to those glyphs and returns the new range by reference in actualCharRange.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- characterRangeForGlyphRange:actualGlyphRange: (page 238)

Declared In
NSATSTypesetter.h

hyphenationFactor

Returns the current hyphenation factor.
- (float)hyphenationFactor

Discussion

The hyphenation factor is a value ranging from 0.0 to 1.0 that controls when hyphenation is attempted. By
default, the value is 0.0, meaning hyphenation is off. A factor of 1.0 causes hyphenation to be attempted
always.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- setHyphenationFactor: (page 248)

Declared In
NSATSTypesetter.h

hyphenationFactorForGlyphAtindex:

Returns the hyphenation factor in effect at the given glyph index.
- (float)hyphenationFactorForGlyphAtIndex: (NSUInteger)glyphindex

Discussion

The hyphenation factor is a value ranging from 0.0 to 1.0 that controls when hyphenation is attempted. By
default, the value is 0.0, meaning hyphenation is off. A factor of 1.0 causes hyphenation to be attempted
always.

The typesetter calls this method with a proposed hyphenation point for a line break to find the hyphenation
factor in effect at that time. A subclass can override this method to customize the text layout process.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Instance Methods 241
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

242

CHAPTER 11
NSATSTypesetter Class Reference

See Also
- hyphenCharacterForGlyphAtIndex: (page 242)

Declared In
NSATSTypesetter.h

hyphenCharacterForGlyphAtindex:

Returns the hyphen character to be inserted after the given glyph when hyphenation is enabled in the layout
manager.

- (UTF32Char)hyphenCharacterForGlyphAtIndex: (NSUInteger)glyphlIndex

Discussion
The typesetter calls this method before hyphenating. A subclass can override this method to return a different

hyphen glyph.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- hyphenationFactorForGlyphAtIndex: (page 241)

Declared In
NSATSTypesetter.h

insertGlyph:atGlyphindex:characterindex:

Enables the typesetter to insert a new glyph into the stream.

- (void)insertGlyph: (NSGlyph)glyph atGlyphIndex:(NSUInteger)glyphlndex
characterIndex: (NSUInteger)charlndex

Discussion
Inserts g7yphinto the glyph cache at g7yphIndex and maps it to the character at charIndex. If the glyph
is mapped to several characters, charIndex should indicate the first character to which it's mapped.

The standard typesetter uses this method for inserting hyphenation glyphs. Because this method keeps the
glyph caches synchronized, subclasses should always use this method to insert glyphs instead of calling
lTayoutManager (page 242) directly.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSATSTypesetter.h

layoutManager

Returns the layout manager for the text being typeset.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSATSTypesetter Class Reference

- (NSLayoutManager *)layoutManager

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

layoutParagraphAtPoint:

Lays out glyphs in the current glyph range until the next paragraph separator is reached.
- (NSUInteger)layoutParagraphAtPoint: (NSPoint *)I1ineFragmentOrigin

Discussion

The TinefragmentOrigin specifies the upper-left corner of line fragment rectangle. On return,
lineFragmentOrigin contains the next origin. This method returns the next glyph index. Usually it’s the
index right after the paragraph separator, but it can be inside the paragraph range if, for example, the end
of the text container is reached before the paragraph separator.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

lineFragmentPadding
Returns the current line fragment padding amount; that is, the portion on each end of the line fragment
rectangle left blank.

- (CGFloat)TineFragmentPadding

Discussion
Text is inset within the line fragment rectangle by this amount.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- setlineFragmentPadding: (page 248)

Declared In
NSATSTypesetter.h

lineFragmentRectForProposedRect:remainingRect:

This method has been deprecated. Use the NSTypesetter method
getlLineFragmentRect:usedRect:remainingRect:forStartingGlyphAtindex:proposedRect:
lTineSpacing:paragraphSpacingBefore:paragraphSpacingAfter: (page 3044)instead. (Deprecated
in Mac OS X v104.)

Instance Methods 243
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

244

CHAPTER 11
NSATSTypesetter Class Reference

- (NSRect)TineFragmentRectForProposedRect: (NSRect)proposedRect
remainingRect: (NSRectPointer)remainingRect

Discussion

Returns the largest rectangle available for the proposed rectangle proposedRect. It also returns a rectangle
in remainingRect containing any remaining space, such as that left on the other side of a hole or gap in
the text container.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3 and later.

Deprecated in Mac OS X v10.4.

Declared In
NSATSTypesetter.h

lineSpacingAfterGlyphAtindex:withProposedLineFragmentRect:

Returns the line spacing in effect following the specified glyph.

- (CGFloat)lineSpacingAfterGlyphAtIndex: (NSUInteger)glyphlndex
withProposedLineFragmentRect: (NSRect)rect

Discussion
The NSATSTypesetter calls this method to determine the number of points of space to include below the
descenders in the used rectangle for the proposed line fragment rectangle rect.

Line spacing, also called leading, is an attribute of NSParagraphStyle, which you can set on an
NSMutableParagraphStyle object. A font typically includes a default minimum line spacing metric used if
none is set in the paragraph style.

If the typesetter behavior specified in the NSLayoutManageris NSTypesetterOriginalBehavior, the text
system uses the original, private typesetter NSSimpleHorizontalTypesetter, which adds the line spacing above
the ascender. Similarly, NSATSTypesetter adds the line spacing above the ascender if the value is negative.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

paragraphGlyphRange

Returns the glyph range currently being processed.
- (NSRange)paragraphGlyphRange

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- setParagraphGlyphRange:separatorGlyphRange: (page 250)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSATSTypesetter Class Reference

- paragraphSeparatorGlyphRange (page 245)

Declared In
NSATSTypesetter.h

paragraphSeparatorGlyphRange
Returns the current paragraph separator range, which is the full range that contains the current glyph range
and that extends from one paragraph separator character to the next.

- (NSRange)paragraphSeparatorGlyphRange

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- setParagraphGlyphRange:separatorGlyphRange: (page 250)

- paragraphGlyphRange (page 244)

Declared In
NSATSTypesetter.h

paragraphSpacingAfterGlyphAtindex:withProposedLineFragmentRect:

Returns the paragraph spacing, the number of points of space added following a paragraph, which is in effect
after the specified glyph.

- (CGFloat)paragraphSpacingAfterGlyphAtIndex: (NSUInteger)glyphIndex
withProposedLineFragmentRect: (NSRect)rect

Discussion
The rect argument specifies the line fragment rectangle of the last line in the paragraph.

The typesetter adds the number of points specified in the return value to the bottom of the line fragment
rectangle specified by rect (but not to the used line fragment rectangle for that line). Paragraph spacing
added after a paragraph correlates to the value returned by the paragraphSpacing method of
NSParagraphStyle, which you can set using the setParagraphSpacing: method of NSMutableParagraphStyle.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- paragraphSpacingBeforeGlyphAtIndex:withProposedlLineFragmentRect: (page 245)

Declared In
NSATSTypesetter.h

paragraphSpacingBeforeGlyphAtindex:withProposedLineFragmentRect:

Returns the number of points of space added before a paragraph, which is in effect before the specified
glyph.

Instance Methods 245
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

246

CHAPTER 11
NSATSTypesetter Class Reference

- (CGFloat)paragraphSpacingBeforeGlyphAtIndex: (NSUInteger)glyphIndex
withProposedLineFragmentRect: (NSRect)rect

Discussion
The rect argument specifies the line fragment rectangle of the first line in the paragraph.

The typesetter adds the number of points specified in the return value to the top of the line fragment rectangle
specified by rect (but not to the used line fragment rectangle for that line). Paragraph spacing added before
a paragraph correlates to the value returned by the paragraphSpacingBefore method of NSParagraphStyle,
which you can set using the setParagraphSpacingBefore: method of NSMutableParagraphStyle.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- paragraphSpacingAfterGlyphAtIndex:withProposedLineFragmentRect: (page 245)

Declared In
NSATSTypesetter.h

setAttachmentSize:forGlyphRange:

Sets the size the glyphs in the given glyph range (assumed to be attachments) will be asked to draw
themselves.

- (void)setAttachmentSize: (NSSize)attachmentSize forGlyphRange: (NSRange)glyphRange

Discussion
A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setAttributedString:

Sets the text backing store on which this typesetter operates.
- (void)setAttributedString: (NSAttributedString *)attrString

Discussion
The string object is not retained.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- attributedString (page 237)

Declared In
NSATSTypesetter.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSATSTypesetter Class Reference

setBidiLevels:forGlyphRange:

Sets the direction of the glyphs in the given glyph range for bidirectional text to the given levels.
- (void)setBidiLevels:(const uint8_t *)levels forGlyphRange: (NSRange)glyphRange

Discussion
The value of Tevels can range from 0 to 61 as defined by Unicode Standard Annex #9.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setBidiProcessingEnabled:
Sets a Boolean value controlling whether the typesetter performs bidirectional text processing.

- (void)setBidiProcessingEnabled: (BOOL) fTag

Discussion
You can use this method to disable the bidirectional layout stage if you know the paragraph does not need
this stage; that is, if the characters in the backing store are in display order.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- bidiProcessingEnabled (page 238)

Declared In
NSATSTypesetter.h

setDrawsOutsideLineFragment:forGlyphRange:

Sets a Boolean value controlling whether the glyphs in the given glyph range exceed the bounds of the line
fragment in which they are laid out.

- (void)setDrawsOutsideLineFragment: (BOOL) flag forGlyphRange: (NSRange)glyphRange

Discussion
This can happen when text is set at a fixed line height. For example, if the user specifies a fixed line height
of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

Instance Methods 247
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

248

CHAPTER 11
NSATSTypesetter Class Reference

setHardInvalidation:forGlyphRange:

Sets a Boolean value controlling whether to force the layout manager to invalidate the portion of the glyph
cache in the given glyph range when invalidating layout.

- (void)setHardInvalidation:(BOOL)f7ag forGlyphRange: (NSRange)glyphRange

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setHyphenationFactor:

Sets the threshold controlling when hyphenation is attempted
- (void)setHyphenationFactor:(float) factor

Discussion
The factorargument is in the range of 0.0 to 1.0. By default, the value is 0.0, meaning hyphenation is off.
A factor of 1.0 causes hyphenation to be attempted always.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- hyphenationFactor (page 241)

Declared In
NSATSTypesetter.h

setLineFragmentPadding:

Sets the amount (in points) by which text is inset within line fragment rectangles
- (void)setLineFragmentPadding: (CGFloat)padding

Discussion
Note that line fragment padding isn’t a suitable means for expressing margins; you should set the NSTextView
object’s position and size for document margins or the paragraph margin attributes for text margins.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- lineFragmentPadding (page 243)

Declared In
NSATSTypesetter.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSATSTypesetter Class Reference

setLineFragmentRect:forGlyphRange:usedRect:baselineOffset:

Sets the line fragment rectangle where the glyphs in in the given glyph range are laid out to the given line
fragment rectangle.

- (void)setLineFragmentRect: (NSRect) fragmentRect forGlyphRange: (NSRange)glyphRange
usedRect: (NSRect)usedRect baselineOffset:(CGFloat)baselinelOffset

Discussion
The exact positions of the glyphs must be set after the line fragment rectangle with
setlocation:forStart0OfGlyphRange:.

The usedRect argument indicates the portion of fragmentRect, in the NSTextContainer object’s coordinate
system, that actually contains glyphs or other marks that are drawn (including the text container’s line
fragment padding). The usedRect must be equal to or contained within fragmentRect. The
baselineOffset argument is the vertical distance in pixels from the line fragment origin to the baseline
on which the glyphs align.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setLocation:withAdvancements:forStartOfGlyphRange:

Sets the location where the glyphs in the given glyph range are laid out to the specified location.

- (void)setlLocation: (NSPoint)Tocation withAdvancements: (const CGFloat *)advancements
forStart0fGlyphRange: (NSRange)glyphRange

Discussion

The x-coordinate of Tocat ionis expressed relative to the line fragment rectangle origin, and the y-coordinate
is expressed relative to the baseline previously specified by
setlineFragmentRect:forGlyphRange:usedRect:baselineOffset: (page 249). The glyphRange
defines a series of glyphs that can be displayed with a single PostScript show operation (a nominal range).
Setting the location for a series of glyphs implies that the glyphs preceding it can’t be included in a single
show operation. The advancements argument is the nominal glyph advance width specified in the font
metric information.

Before setting the location for a glyph range, you must specify line fragment rectangle with
setlLinefFragmentRect:forGlyphRange:usedRect:baselineOffset:.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

Instance Methods 249
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

250

CHAPTER 11
NSATSTypesetter Class Reference

setNotShownAttribute:forGlyphRange:

Sets a Boolean value controlling whether the glyphs in the given glyph rangeare not shown.
- (void)setNotShownAttribute: (BOOL)flag forGlyphRange: (NSRange)glyphRange

Discussion
For example, a tab or newline character doesn’t leave any marks; it just indicates where following glyphs are
laid out.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

setParagraphGlyphRange:separatorGlyphRange:

Sets the current glyph range being processed and the paragraph separator glyph range (the range of the
paragraph separator character or characters).

- (void)setParagraphGlyphRange: (NSRange)paragraphRange
separatorGlyphRange: (NSRange)paragraphSeparatorRange

Parameters
paragraphRange

The glyph range that becomes current.
paragraphSeparatorRange

The paragraph separator glyph range that becomes current.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- paragraphGlyphRange (page 244)

- paragraphSeparatorGlyphRange (page 245)

Declared In
NSATSTypesetter.h

setTypesetterBehavior:
Sets the default typesetter behavior, which affects glyph spacing and line height.

- (void)setTypesetterBehavior:(NSTypesetterBehavior)behavior

Discussion
The possible values for behaviorare described in the “Constants” (page 1503) section of the NSLayoutManager
reference.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSATSTypesetter Class Reference

See Also
- typesetterBehavior (page 253)

Declared In
NSATSTypesetter.h

setUsesFontLeading:

Sets a Boolean value controlling whether the typesetter uses the leading (or line gap) value specified in the
font metric information.

- (void)setUsesFontLeading: (BOOL)fTag

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- usesFontleading (page 253)

Declared In
NSATSTypesetter.h

shouldBreakLineByHyphenatingBeforeCharacterAtindex:

The typesetter calls this method, if implemented by a subclass, before breaking a line by hyphenating before
the character at the given character index, enabling the subclass to control line breaking.

- (BOOL)shouldBreakLineByHyphenatingBeforeCharacterAtIndex: (NSUInteger)charindex

Discussion
A subclass can override this method to customize the text layout process. If the method returns NO, the
typesetter continues looking for a break point.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- shouldBreakLineByWordBeforeCharacterAtIndex: (page 251)

Declared In
NSATSTypesetter.h

shouldBreakLineByWordBeforeCharacterAtindex:

The typesetter calls this method, if implemented by a subclass, before breaking a line by word wrapping
before the character at the given character index, enabling the subclass to control line breaking.

- (BOOL)shouldBreakLineByWordBeforeCharacterAtIndex: (NSUInteger)charlindex

Discussion
A subclass can override this method to customize the text layout process. If the method returns NO, the
typesetter continues looking for a break point.

Instance Methods 251
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

252

CHAPTER 11
NSATSTypesetter Class Reference

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- shouldBreakLineByHyphenatingBeforeCharacterAtIndex: (page 251)

Declared In
NSATSTypesetter.h

substituteFontForFont:

Returns a screen font suitable for use in place of the specified original font, or simply returns the original
font if a screen font can’t be used or isn't available.

- (NSFont *)substituteFontForFont:(NSFont *)originalFont

Discussion
A screen font can be substituted if the receiver is set to use screen fonts and if no NSTextView associated
with the receiver is scaled or rotated.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

substituteGlyphsinRange:withGlyphs:
Replaces the glyphs in the given glyph range with the given glyphs.

- (void)substituteGlyphsInRange: (NSRange)glyphRange withGlyphs: (NSGlyph *)glyphs

Discussion
This method does not alter the glyph-to-character mapping or invalidate layout information.

A subclass can override this method to interact with custom glyph storage.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSATSTypesetter.h

textTabForGlyphLocation:writingDirection:maxLocation:

Returns the text tab next closest to a given glyph location, indexing in the specified direction but not beyond
a given glyph location.

- (NSTextTab *)textTabForGlyphLocation:(CGFloat)glyphlLocation
writingDirection: (NSWritingDirection)direction maxLocation:(CGFloat)maxlLocation

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 11
NSATSTypesetter Class Reference

Discussion
The typesetter calls this method whenever it finds a tab character. To determine the width to advance the
next glyph, the typesetter examines the NSParagraphStyle tab array and the default tab interval.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

typesetterBehavior

Returns the current typesetter behavior value.
- (NSTypesetterBehavior)typesetterBehavior

Discussion
The possible return values are described in the “Constants” (page 1503) section of the NSLayoutManager
reference.

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- setTypesetterBehavior: (page 250)

Declared In
NSATSTypesetter.h

usesFontLeading

Returns a Boolean value indicating whether the typesetter uses the leading (or line gap) value specified in
the font metric information of the current font.

- (BOOL)usesFontLeading

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

See Also
- setUsesFontleading: (page 251)

Declared In
NSATSTypesetter.h

willSetLineFragmentRect:forGlyphRange:usedRect:baselineOffset:

Called by the typesetter just prior to calling
setLinefFragmentRect:forGlyphRange:usedRect:baseline0ffset: (page 249) which stores the
actual line fragment rectangle location in the layout manager.

Instance Methods 253
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

254

CHAPTER 11
NSATSTypesetter Class Reference

- (void)willSetLineFragmentRect: (NSRect *)lineRect forGlyphRange: (NSRange)glyphRange
usedRect: (NSRect *)usedRect baselineOffset:(CGFloat *)baselineOffset

Discussion

The 7ineRect argument is the rectangle in which the glyphsin g7yphRange are laid out. The usedRect
argument indicates the portion of 7 7neRect, in the NSTextContainer object’s coordinate system, that actually
contains glyphs or other marks that are drawn (including the text container’s line fragment padding). The
usedRect must be equal to or contained within 7ineRect.The baselineOffset argument is the vertical
distance in pixels from the line fragment origin to the baseline on which the glyphs align.

A subclass can override this method to customize the text layout process. For example, it could change the
shape of the line fragment rectangle. The subclass is responsible for ensuring that the modified rectangle
remains valid (for example, that it lies within the text container).

Availability
Available in Mac OS X v10.3. Moved to NSTypesetter in Mac OS X v10.4 and later.

Declared In
NSATSTypesetter.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions
Reference

Inherits from NSObject

Framework /System/Library/Frameworks/AppKit.framework

Declared in AppKit/NSAttributedString.h
AppKit/NSStringDrawing.h

AppKit/NSTextAttachment.h

Companion guide Attributed Strings Programming Guide

Overview

Tasks

The Application Kit extends Foundation’s NSAttributedString class by adding support for RTF (with or without
attachments), graphics attributes (including font and ruler attributes), methods for drawing attributed strings,
and methods for calculating significant linguistic units.

Creating an NSAttributedString

+ attributedStringWithAttachment: (page 258)
Creates an attributed string with an attachment.

- initWithData:options:documentAttributes:error: (page 266)
Initializes and returns a new NSAttributedString object from the data contained in the given
NSData object.

- initWithDocFormat:documentAttributes: (page 266)
Initializes and returns a new NSAttributedString object from Microsoft Word format data contained
in the given NSData object.

- initWithHTML:documentAttributes: (page 267)
Initializes and returns a new NSAttributedString object from HTML contained in the given data
object.

- initWithHTML:baseURL:documentAttributes: (page 267)
Initializes and returns a new NSAttributedString object from the HTML contained in the given
object and base URL.

- initWithHTML:options:documentAttributes: (page 268)

Initializes and returns a new NSAttributedString object from HTML contained in the given data
object.

Overview 255
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

256

CHAPTER 12
NSAttributedString Application Kit Additions Reference

- initWithPath:documentAttributes: (page 268)
Initializes a new NSAttributedString object from RTF or RTFD data contained in the file at the
given path.

- initWithRTF:documentAttributes: (page 268)
Initializes a new NSAttributedString object by decoding the stream of RTF commands and data
contained in the given data object.

- initWithRTFD:documentAttributes: (page 269)
Initializes a new NSAttributedString object by decoding the stream of RTFD commands and data
contained in the given data object.

- initWithRTFDFileWrapper:documentAttributes: (page 269)
Initializes a new NSAttributedString object from the given NSFileWrapper object containing
an RTFD document.

- initWithURL:documentAttributes: (page 270)
Initializes a new NSAttributedString object from the data at the given URL.

- initWithURL:options:documentAttributes:error: (page 270)
Initializes a new NSAttributedString object from the contents of the given URL.

Retrieving Font Attribute Information

- containsAttachments (page 262)
Returns YES if the receiver contains any attachment attributes, NO otherwise.

- fontAttributesInRange: (page 265)
Returns the font attributes in effect for the character at the given location.

- rulerAttributesInRange: (page 275)
Returns the ruler (paragraph) attributes in effect for the characters within the given range.

Calculating Linguistic Units

- URLAtIndex:effectiveRange: (page 276)
Returns a URL, either from a link attribute or from text at the given location that appears to be a URL
string, for use in automatic link detection.

- doubleClickAtIndex: (page 263)
Returns the range of characters that form a word (or other linguistic unit) surrounding the given index,
taking language characteristics into account.

- lineBreakBeforelIndex:withinRange: (page 271)
Returns the index of the closest character before the given index, and within the given range, that
can be placed on a new line when laying out text.

- lineBreakByHyphenatingBeforelIndex:withinRange: (page 271)
Returns the index of the closest character before the given index, and within the given range, that
can be placed on a new line by hyphenating.

- nextWordFromIndex:forward: (page 272)
Returns the index of the first character of the word after or before the given index.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Calculating Ranges

- itemNumberInTextlist:atIndex: (page 270)
Returns the range of the item at the given index within the given list.

- rangeOfTextBlock:atIndex: (page 272)
Returns the range of the individual text block that contains the given location.

- rangeOfTextlList:atIndex: (page 272)
Returns the range of the given text list that contains the given location.

- rangeOfTextTable:atIndex: (page 273)
Returns the range of the given text table that contains the given location

Generating Data

- dataFromRange:documentAttributes:error: (page 262)
Returns an NSData object that contains a text stream corresponding to the characters and attributes
within the given range.

- fileWrapperFromRange:documentAttributes:error: (page 265)
Returns an NSFilelWrapper object that contains a text stream corresponding to the characters and
attributes within the given range.

- docFormatFromRange:documentAttributes: (page 262)
Returns an NSData object that contains a Microsoft Word-format stream corresponding to the
characters and attributes within the specified range.

- RTFFromRange:documentAttributes: (page 274)
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes
within the given range, omitting all attachment attributes.

- RTFDFromRange:documentAttributes: (page 274)
Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes
within aRange.

- RTFDFileWrapperFromRange:documentAttributes: (page 273)

Returnsan NSFileWrapper object that contains an RTFD document corresponding to the characters
and attributes within the given range.

Drawing the String

- drawAtPoint: (page 263)
Draws the receiver with its font and other display attributes at the given point in the currently focused
NSView.

- drawlnRect: (page 264)
Draws the receiver with its font and other display attributes within the given rectangle in the currently
focused NSView, clipping the text layout to this rectangle.

- drawWithRect:options: (page 264)
Draws the receiver with the specified options, within the given rectangle in the current graphics
context.

- size (page 275)
Returns the bounding box of the marks that the receiver draws.

Tasks 257
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Getting the Bounding Rectangle of Rendered Strings

- boundingRectWithSize:options: (page 261)
Calculates and returns bounding rectangle for the receiver drawn using the options specified, within
the given rectangle in the current graphics context.

Testing String Data Sources

+ textTypes (page 260)
Returns an array of UTI strings identifying the file types supported by the receiver, either directly or
through a user-installed filter service.

+ textUnfilteredTypes (page 261)
Returns an array of UTI strings identifying the file types supported directly by the receiver.

Deprecated Methods

+ textFileTypes (page 259) Deprecated in Mac OS X v10.5
Returns an array of strings representing those file types that can be loaded as text. (Deprecated. Use
textTypes (page 260) instead.)

+ textPasteboardTypes (page 259) Deprecated in Mac OS X v10.5
Returns an array of pasteboard types that can be loaded as text. (Deprecated. Use textTypes (page
260) instead.)

+ textUnfilteredFileTypes (page 260) Deprecated in Mac OS X v10.5
Returns an array of strings representing those file types that can be loaded as a text. (Deprecated.
Use textUnfilteredTypes (page 261) instead.)

+ textUnfilteredPasteboardTypes (page 260) Deprecated in Mac OS X v10.5

Returns an array of pasteboard types that can be loaded as text. (Deprecated. Use
textUnfilteredTypes (page 261) instead.)

Class Methods

258

attributedStringWithAttachment:

Creates an attributed string with an attachment.
+ (NSAttributedString *)attributedStringWithAttachment: (NSTextAttachment *)attachment

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes

Declared In
NSTextAttachment.h

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

textFileTypes

Returns an array of strings representing those file types that can be loaded as text. (Deprecated in Mac OS
Xv10.5. Use textTypes (page 260) instead.)

+ (NSArray *)textFileTypes

Discussion

This list includes all file types supported by text classes, plus those types that can be converted to supported
file types through a user-installed filter service. The array returned by this method may be passed directly to
NSOpenPanel method runModalForTypes: (page 1806).

File types are identified by extension and HFS file types. By default, the list returned by this method includes
“txtTrtf)“rtfdyand “html”

When creating a subclass of NSAttributedString that accepts text data from nondefault file types, override
textUnfilteredFileTypes (page 260)to notify NSAttributedString of the file types your class supports.

Availability
Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.5.

See Also
+ textUnfilteredFileTypes (page 260)

Declared In
NSAttributedString.h

textPasteboardTypes

Returns an array of pasteboard types that can be loaded as text. (Deprecated in Mac OS X v10.5. Use
textTypes (page 260) instead.)

+ (NSArray *)textPasteboardTypes

Discussion
This listincludes all pasteboard types supported by text classes and those that can be converted to supported
pasteboard types through a user-installed filter service.

By default, the list returned by this method includes NSHTMLPboardType, NSRTFPboardType,
NSRTFDPboardType,and NSStringPboardType.

When creating a subclass of NSAttributedString that accepts text data from nondefault pasteboard types,
override textUnfilteredPasteboardTypes (page 260) to notify NSAttributedString of the pasteboard
types your class supports.

Availability
Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.5.

See Also
+ textUnfilteredPasteboardTypes (page 260)

Class Methods 259
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

260

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Declared In
NSAttributedString.h

textTypes
Returns an array of UTI strings identifying the file types supported by the receiver, either directly or through
a user-installed filter service.

+ (NSArray *)textTypes

Return Value
An array of NSString objects, each of which contains a UTI identifying a supported file type.

Discussion

The returned list includes UTls all file types supported by the receiver plus those that can be opened by the
receiver after being converted by a user-installed filter service. You can use the returned UTI strings with any
method that supports UTIs.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAttributedString.h

textUnfilteredFileTypes

Returns an array of strings representing those file types that can be loaded as a text. (Deprecated in Mac OS
Xv10.5. Use textUnfilteredTypes (page 261) instead.)

+ (NSArray *)textUnfilteredFileTypes

Discussion

This list consists of all file types supported by text classes, but does not include those types that can be
converted to supported file types through a user-installed filter service. The array returned by this method
may be passed directly to NSOpenPanel method runModalForTypes: (page 1806).

Availability
Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.5.

See Also
+ textFileTypes (page 259)

Declared In
NSAttributedString.h

textUnfilteredPasteboardTypes

Returns an array of pasteboard types that can be loaded as text. (Deprecated in Mac OS X v10.5. Use
textUnfilteredTypes (page 261) instead.)

+ (NSArray *)textUnfilteredPasteboardTypes

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Discussion
This list consists of all pasteboard types supported by text classes, but does not include those that can be
converted to supported pasteboard types through a user-installed filter service.

Availability
Available in Mac OS X v10.1 and later.

Deprecated in Mac OS X v10.5.

See Also
+ textPasteboardTypes (page 259)

Declared In
NSAttributedString.h

textUnfilteredTypes
Returns an array of UTI strings identifying the file types supported directly by the receiver.

+ (NSArray *)textUnfilteredTypes

Return Value
An array of NSString objects, each of which contains a UTI identifying a supported file type.

Discussion

The returned list includes UTI strings only for those file types that are supported directly by the receiver. It
does not include types that are supported through user-installed filter services. You can use the returned
UTI strings with any method that supports UTls.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAttributedString.h

Instance Methods

boundingRectWithSize:options:

Calculates and returns bounding rectangle for the receiver drawn using the options specified, within the
given rectangle in the current graphics context.

- (NSRect)boundingRectWithSize: (NSSize)size options: (NSStringDrawingOptions)options

Discussion
The origin of the rectangle returned from this method is the first glyph origin.

The values of NSStringDrawingOptions are listed in the “Constants” (page 2535) section of NSString Additions.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 261
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

262

CHAPTER 12
NSAttributedString Application Kit Additions Reference

See Also
- drawlnRect: (page 264)

Declared In
NSStringDrawing.h

containsAttachments

Returns YES if the receiver contains any attachment attributes, NO otherwise.
- (BOOL)containsAttachments

Discussion
This method checks only for attachment attributes, not for NSAttachmentCharacter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

dataFromRange:documentAttributes:error:

Returns an NSData object that contains a text stream corresponding to the characters and attributes within
the given range.

- (NSData *)dataFromRange:(NSRange)range documentAttributes:(NSDictionary *)dict
error:(NSError **)error

Discussion

Requires a document attributes dictionary d7 ct specifying at least the NSDocumentTypeDocumentAttribute
to determine the format to write. Raises an NSRangeException if any part of range lies beyond the end of
the receiver’s characters. If unsuccessful, returns ni1 after setting errorto point to an NSError object that
encapsulates the reason why the object could not be created.

Availability
Available in Mac OS X v10.4 and later.

See Also
- fileWrapperFromRange:documentAttributes:error: (page 265)

Declared In
NSAttributedString.h

docFormatFromRange:documentAttributes:

Returns an NSData object that contains a Microsoft Word—format stream corresponding to the characters
and attributes within the specified range.

- (NSData *)docFormatFromRange: (NSRange)range documentAttributes:(NSDictionary
*)dict

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Discussion

The range is passed in the range parameter. Also writes the document-level attributes in d7ct, as explained
in “Constants” (page 276). If there are no document-level attributes, d7ct can be nil. Raises an
NSRangeException if any part of range lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAttributedString.h

doubleClickAtindex:

Returns the range of characters that form a word (or other linguistic unit) surrounding the given index, taking
language characteristics into account.

- (NSRange)doubleClickAtIndex: (NSUInteger)index

Discussion
Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
- nextWordFromIndex:forward: (page 272)

Declared In
NSAttributedString.h

drawAtPoint:

Draws the receiver with its font and other display attributes at the given point in the currently focused
NSView.

- (void)drawAtPoint: (NSPoint)point

Discussion
The width (height for vertical layout) of the rendering area is unlimited, unlike drawInRect: (page 264),
which uses a bounding rectangle. As a result, this method renders the text in a single line.

Don't invoke this method while no NSView is focused.

Availability
Available in Mac OS X v10.0 and later.

See Also
- lockFocus (page 3135) (NSView)

- size (page 275)
- drawlInRect: (page 264)

Related Sample Code
Aperture Edit Plugin - Borders & Titles

Instance Methods 263
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

264

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Declared In
NSStringDrawing.h

drawlInRect:

Draws the receiver with its font and other display attributes within the given rectangle in the currently focused
NSView, clipping the text layout to this rectangle.

- (void)drawInRect:(NSRect)rect

Discussion
Text is drawn within rect according to its line sweep direction; for example, Arabic text will begin at the
right edge and potentially be clipped on the left.

The rect parameter determines how many glyphs are typeset within the width of a line, but it’s possible for
a portion of a glyph to appear outside the area of rect if the image bounding box of the particular glyph
exceeds its typographic bounding box.

If the focus view is flipped, the text origin is set at the upper-left corner of the drawing bounding box;
otherwise the origin is set at the lower-left corner. For text rendering, whether the view coordinates are
flipped or not doesn't affect the flow of line layout, which goes from top to bottom. However, it affects the
interpretation of the text origin. So, for example, if the rect argumentis (0.0, 0.0, 100.0, 100.0},
the text origin is {0.0, 0.0} when the view coordinates are flipped and {0.0, 100.0} when not.

Don't invoke this method while no NSView is focused.

Availability
Available in Mac OS X v10.0 and later.

See Also
- lockFocus (page 3135) (NSView)

- drawAtPoint: (page 263)

Related Sample Code
IBFragmentView

Declared In
NSStringDrawing.h

drawWithRect:options:

Draws the receiver with the specified options, within the given rectangle in the current graphics context.
- (void)drawWithRect: (NSRect)rect options:(NSStringDrawingOptions)options

Discussion

The rect argument's origin field specifies the rendering origin. The point is interpreted as the baseline origin
by default. With NSStringDrawingUsesLineFragmentQOrigin,itis interpreted as the upper left corner
of the line fragment rect. The size field specifies the text container size. The width part of the size field specifies
the maximum line fragment width if larger than 0. 0. The height defines the maximum size that can be
occupied with text if larger than 0.0 and NSStringDrawingUseslLineFragmentOrigin is specified. If

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSStringDrawingUsesLineFragmentOrigin is not specified, height is ignored and considered to be
single-line rendering (NSLineBreakByWordWrapping and NSLineBreakByCharWrapping are treated as
NSLineBreakByClipping).

The values of NSStringDrawingOptions are listed in the “Constants” (page 2535) section of NSString Additions.
You should only invoke this method when there is a current graphics context.

Availability
Available in Mac OS X v10.4 and later.

See Also
- drawAtPoint: (page 263) (NSView)

- lockFocus (page 3135)

Declared In
NSStringDrawing.h

fileWrapperFromRange:documentAttributes:error:

Returnsan NSF1ilelWrapper object that contains a text stream corresponding to the characters and attributes
within the given range.

- (NSFileWrapper *)fileWrapperFromRange: (NSRange)range
documentAttributes: (NSDictionary *)dict error:(NSError **)error

Discussion

Requires a document attributes dictionary d7 ct specifying at least the NSDocumentTypeDocumentAttribute
to determine the format to write. Raises an NSRangeException if any part of range lies beyond the end of
the receiver’s characters. Returns a directory file wrapper for those document types for which it is appropriate;
otherwise a regular file wrapper. If unsuccessful, returns ni1 after setting error to point to an NSError
object that encapsulates the reason why the object could not be created.

Availability
Available in Mac OS X v10.4 and later.

See Also
- dataFromRange:documentAttributes:error: (page 262)

Declared In
NSAttributedString.h

fontAttributesinRange:

Returns the font attributes in effect for the character at the given location.

- (NSDictionary *)fontAttributesInRange:(NSRange)aRange

Instance Methods 265
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

266

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Discussion

Returns the font attributes in effect for the character at aRange. Tocation. Font attributes are all those
listedin “Standard Attributes” (page 276), except NSLinkAttributeName,
NSParagraphStyleAttributeName,and NSAttachmentAttributeName.Use this method to obtain font
attributes that are to be copied or pasted with “copy font” operations. Raises an NSRangeException if any
part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
- rulerAttributesInRange: (page 275)

Declared In
NSAttributedString.h

initWithData:options:documentAttributes:error:

Initializes and returns a new NSAttributedString object from the data contained in the given NSData
object.

- (id)initWithData:(NSData *)data options:(NSDictionary *)options
documentAttributes: (NSDictionary **)dict error:(NSError **)error

Discussion

The options dictionary can contain the values described in “Option keys for importing documents” (page
289) to specify how the document should be loaded. If NSDocumentTypeDocumentOption is specified, the
document is treated as being in the specified format. If NSDocumentTypeDocumentQOption is not specified,
the method examines the document and loads it using whatever format it seems to contain. Also returns by
reference in d7ct adictionary containing document-level attributes described in “Constants” (page 276). The
dict parameter may be nil, in which case no document attributes are returned. Returns ni 1 if data can't
be decoded, after setting error to point to an NSError that encapsulates the reason why the attributed
string object could not be created.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
CoreRecipes

Declared In
NSAttributedString.h

initWithDocFormat:documentAttributes:

Initializes and returns a new NSAttributedString object from Microsoft Word format data contained in
the given NSData object.

- (id)initWithDocFormat: (NSData *)data documentAttributes:(NSDictionary
**)docAttributes

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Discussion

Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Constants” (page 276). docAttributes may be NULL, in which case no document attributes are returned.
Returns nil if data can't be decoded.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAttributedString.h

initWithHTML:baseURL:documentAttributes:

Initializes and returns a new NSAttributedString object from the HTML contained in the given object
and base URL.

- (id)initWithHTML: (NSData *)data baseURL:(NSURL *)aURL
documentAttributes: (NSDictionary **)docAttributes

Discussion

Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Constants” (page 276). docAttributes may be NULL, in which case no document attributes are returned.
Returns an initialized object, or ni1 if the file at aURL can’t be decoded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

initWithHTML:documentAttributes:

Initializes and returns a new NSAttributedString object from HTML contained in the given data object.
- (id)initWithHTML: (NSData *)data documentAttributes: (NSDictionary **)docAttributes

Discussion

Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Constants” (page 276). docAttributes may be NULL, in which case no document attributes are returned.
Returns ni 1 if data can’t be decoded.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
ObjectPath

Declared In
NSAttributedString.h

Instance Methods 267
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

268

CHAPTER 12
NSAttributedString Application Kit Additions Reference

initWithHTML:options:documentAttributes:

Initializes and returns a new NSAttributedString object from HTML contained in the given data object.

- (1d)initWithHTML: (NSData *)data options:(NSDictionary *)options
documentAttributes: (NSDictionary **)dict

Discussion
The options dictionary can contain the values described in “Option keys for importing documents” (page
289).

Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Constants” (page 276). docAttributes may be NULL, in which case no document attributes are returned.
Returns nil if data can't be decoded.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSAttributedString.h

initWithPath:documentAttributes:
Initializes a new NSAttributedString object from RTF or RTFD data contained in the file at the given path.

- (id)initWithPath: (NSString *)path documentAttributes:(NSDictionary **)docAttributes

Discussion

The contents of path will be examined to best load the file in whatever format it’s in. Filter services can be
used to convert the file into a format recognized by Cocoa. Also returns by reference in docAttributesa
dictionary containing document-level attributes described in “Constants” (page 276). docAttributes may
be NULL, in which case no document attributes are returned. Returns an initialized object, or ni1 if the file
at path can't be decoded.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
iSpend
VertexPerformanceTest

Declared In
NSAttributedString.h

initWithRTF:documentAttributes:

Initializes anew NSAttributedString object by decoding the stream of RTF commands and data contained
in the given data object.

- (id)initWithRTF:(NSData *)rtfData documentAttributes: (NSDictionary **)docAttributes

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Discussion

Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Constants” (page 276). docAttributes may be NULL, in which case no document attributes are returned.
Returns an initialized object, or ni1 if rtfData can’t be decoded.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CoreRecipes

iSpend

Spotlight

Declared In
NSAttributedString.h

initWithRTFD:documentAttributes:

Initializes anew NSAttributedString object by decoding the stream of RTFD commands and data contained
in the given data object.

- (id)initWithRTFD: (NSData *)rtfdData documentAttributes:(NSDictionary
**)docAttributes

Discussion

Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Constants” (page 276). docAttributes may be NULL, in which case no document attributes are returned.
Returns an initialized object, or ni1 if rtfData can’t be decoded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

initWithRTFDFileWrapper:documentAttributes:

Initializes a new NSAttributedString object from the given NSFileWrapper object containing an RTFD
document.

- (id)initWithRTFDFileWrapper: (NSFileWrapper *)wrapper
documentAttributes: (NSDictionary **)docAttributes

Discussion

Also returns by reference in docAttributes a dictionary containing document-level attributes described
in “Constants” (page 276). docAttributes may be NULL, in which case no document attributes are returned.
Returns an initialized object, or ni1 if wrapper can’t be interpreted as an RTFD document.

Availability
Available in Mac OS X v10.0 and later.

Declared In

NSAttributedString.h

Instance Methods 269
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

270

CHAPTER 12
NSAttributedString Application Kit Additions Reference

initWithURL:documentAttributes:
Initializes a new NSAttributedString object from the data at the given URL.

- (id)initWithURL: (NSURL *)aURL documentAttributes:(NSDictionary **)docAttributes

Discussion

The contents of aURL are examined to best load the file in whatever format it's in. Filter services can be used
to convert the file into a format recognized by Cocoa. Also returns by reference in docAttributes adictionary
containing document-level attributes described in “Constants” (page 276). docAttributes may be NULL,
in which case no document attributes are returned. Returns an initialized object, or ni1 if the file at path
can’t be decoded.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSAttributedString.h

initWithURL:options:documentAttributes:error:

Initializes a new NSAttributedString object from the contents of the given URL.

- (id)initWithURL: (NSURL *)url options:(NSDictionary *)options
documentAttributes: (NSDictionary **)dict error:(NSError **)error

Discussion

Filter services can be used to convert the file into a format recognized by Cocoa. The options dictionary
specifies how the document should be loaded and can contain the values described in “Option keys for
importing documents” (page 289).

If NSDocumentTypeDocumentOption is specified, the document is treated as being in the specified format.
If NSDocumentTypeDocumentOption is not specified, the method examines the document and loads it
using whatever format it seems to contain.

Also returns by reference in d7ct a dictionary containing document-level attributes described in
“Constants” (page 276). The dict parameter may be nil, in which case no document attributes are returned.
Returns an initialized object, or ni 1 if the file at ur7 can't be decoded, after setting error to point to an
NSError object that encapsulates the reason why the attributed string object could not be created.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSAttributedString.h

itemNumberinTextList:atindex:

Returns the range of the item at the given index within the given list.
- (NSInteger)itemNumberInTextList: (NSTextList *)7ist atIndex:(NSUInteger)location

Availability
Available in Mac OS X v10.4 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

See Also
- rangeOfTextBlock:atIndex: (page 272)

- rangeOfTextlList:atIndex: (page 272)
- rangeOfTextTable:atIndex: (page 273)

Declared In
NSAttributedString.h

lineBreakBeforelndex:withinRange:

Returns the index of the closest character before the given index, and within the given range, that can be
placed on a new line when laying out text.

- (NSUInteger)lineBreakBeforelIndex: (NSUInteger)index withinRange: (NSRange)aRange

Discussion

In other words, finds the appropriate line break when the character at 7ndex won't fit on the same line as
the character at the beginning of aRange. Returns NSNot Found if no line break is possible before 7ndex.Raises
an NSRangeException if index or any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
- lineBreakByHyphenatingBeforelndex:withinRange: (page 271)

Declared In
NSAttributedString.h

lineBreakByHyphenatingBeforelndex:withinRange:

Returns the index of the closest character before the given index, and within the given range, that can be
placed on a new line by hyphenating.

- (NSUInteger)lineBreakByHyphenatingBeforeIndex: (NSUInteger)location
withinRange: (NSRange)aRange

Discussion

In other words, during text layout, finds the appropriate line break by hyphenation (the character index at
which the hyphen glyph should be inserted) when the character at 7ndex won't fit on the same line as the
character at the beginning of aRange. Returns NSNot Found if no line break by hyphenation is possible before
index.Raises an NSRangeException if index or any part of aRange lies beyond the end of the receiver’s
characters.

Availability
Available in Mac OS X v10.3 and later.

See Also
- lineBreakBeforelIndex:withinRange: (page 271)

Declared In
NSAttributedString.h

Instance Methods 271
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

272

CHAPTER 12
NSAttributedString Application Kit Additions Reference

nextWordFromindex:forward:

Returns the index of the first character of the word after or before the given index.
- (NSUInteger)nextWordFromIndex: (NSUInteger)index forward:(BOOL)f/ag

Discussion

If flagis YES, this is the first character after index that begins a word; if f7agis NO, it's the first character
before 7ndex that begins a word, whether index is located within a word or not. If index lies at either end
of the string and the search direction would progress past that end, it's returned unchanged. This method
is intended for moving the insertion point during editing, not for linguistic analysis or parsing of text.Raises
an NSRangeException if index lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
- lineBreakBeforeIndex:withinRange: (page 271)

Declared In
NSAttributedString.h

rangeOfTextBlock:atIndex:

Returns the range of the individual text block that contains the given location.
- (NSRange)rangeOfTextBlock: (NSTextBlock *)block atIndex:(NSUInteger)location

Discussion
The individual text is given by b7ock and contains Tocation.

Availability
Available in Mac OS X v10.4 and later.

See Also
- itemNumberInTextlList:atIndex: (page 270)

- rangeOfTextlList:atIndex: (page 272)
- rangeOfTextTable:atIndex: (page 273)

Related Sample Code
iSpend

Declared In
NSAttributedString.h

rangeOfTextList:atindex:

Returns the range of the given text list that contains the given location.
- (NSRange)rangeOfTextList:(NSTextList *)7ist atIndex:(NSUInteger)Tocation

Discussion
Returns the range of the 77st that contains Tocation.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Availability
Available in Mac OS X v10.4 and later.

See Also
- itemNumberInTextlist:atIndex: (page 270)

- rangeOfTextBlock:atIndex: (page 272)
- rangeOfTextTable:atIndex: (page 273)

Declared In
NSAttributedString.h

rangeOfTextTable:atindex:

Returns the range of the given text table that contains the given location
- (NSRange)rangeOfTextTable: (NSTextTable *)table atIndex:(NSUInteger)location

Discussion
Returns the range of the text tab e that contains Jocation.

Availability
Available in Mac OS X v10.4 and later.

See Also
- itemNumberInTextlist:atIndex: (page 270)

- rangeOfTextlList:atIndex: (page 272)
- rangeOfTextBlock:atIndex: (page 272)

Related Sample Code
iSpend

Declared In
NSAttributedString.h

RTFDFileWrapperFromRange:documentAttributes:

Returns an NSFileWrapper object that contains an RTFD document corresponding to the characters and
attributes within the given range.

- (NSFileWrapper *)RTFDFileWrapperFromRange: (NSRange)aRange
documentAttributes: (NSDictionary *)docAttributes

Discussion

The file wrapper also includes the document-level attributes in docAttributes, as explained in “RTF Files
and Attributed Strings”. If there are no document-level attributes, docAttributes can be nil. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.You can save the
file wrapper using the NSFileWrapper method writeToFile:atomically:updateFilenames: (page
1122).

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 273
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

274

CHAPTER 12
NSAttributedString Application Kit Additions Reference

See Also
- RTFFromRange:documentAttributes: (page 274)

- RTFDFromRange:documentAttributes: (page 274)

Declared In
NSAttributedString.h

RTFDFromRange:documentAttributes:

Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes within
aRange.

- (NSData *)RTFDFromRange: (NSRange)aRange documentAttributes:(NSDictionary
*)docAttributes

Discussion

Also writes the document-level attributes in docAttributes, as explained in “RTF Files and Attributed
Strings”. If there are no document-level attributes, docAttributes canbenil.Raisesan NSRangeException
if any part of aRange lies beyond the end of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to the
NSPasteboard method setData: forType: (page 1889), with a second argument of NSRTFDPboardType.

Availability
Available in Mac OS X v10.0 and later.

See Also
- RTFFromRange:documentAttributes: (page 274)

- RTFDFileWrapperFromRange:documentAttributes: (page 273)

Declared In
NSAttributedString.h

RTFFromRange:documentAttributes:

Returns an NSData object that contains an RTF stream corresponding to the characters and attributes within
the given range, omitting all attachment attributes.

- (NSData *)RTFFromRange:(NSRange)aRange documentAttributes:(NSDictionary
*)docAttributes

Discussion

Also writes the document-level attributes in docAttributes, as explained in “RTF Files and Attributed
Strings”. If there are no document-level attributes, docAttributes canbenil.Raisesan NSRangeException
if any part of aRange lies beyond the end of the receiver’s characters.When writing data to the pasteboard,
you can use the NSData object as the first argument to the NSPasteboard method setData: forType: (page
1889), with a second argument of NSRTFPboardType. Although this method strips attachments, it leaves the
attachment characters in the text itself. The NSText method RTFFromRange : (page 2686), on the other hand,
does strip attachment characters when extracting RTF.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

See Also
- RTFDFromRange:documentAttributes: (page 274)

- RTFDFileWrapperFromRange:documentAttributes: (page 273)

Related Sample Code
VertexPerformanceTest

Declared In
NSAttributedString.h

rulerAttributesinRange:

Returns the ruler (paragraph) attributes in effect for the characters within the given range.
- (NSDictionary *)rulerAttributesInRange: (NSRange)aRange

Discussion

The only ruler attribute currently defined is that named by NSParagraphStyleAttributeName. Use this
method to obtain attributes that are to be copied or pasted with “copy ruler” operations. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.0 and later.

See Also
- fontAttributesInRange: (page 265)

Declared In
NSAttributedString.h

size
Returns the bounding box of the marks that the receiver draws.

- (NSSize)size

Availability
Available in Mac OS X v10.0 and later.

See Also
- drawAtPoint: (page 263)

- drawlnRect: (page 264)

Related Sample Code
Aperture Edit Plugin - Borders & Titles

IBFragmentView

Declared In
NSStringDrawing.h

Instance Methods 275
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

URLAtIndex:effectiveRange:

Returns a URL, either from a link attribute or from text at the given location that appears to be a URL string,
for use in automatic link detection.

- (NSURL *)URLAtIndex:(NSUInteger)Tocation
effectiveRange: (NSRangePointer)effectiveRange

Parameters

Tocation
The character index in the string at which the method checks for a link.

effectiveRange

The actual range covered by the link attribute or URL string, or of non-URL text if no apparent URL is
found.

Return Value
The URL found at Tocation.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSAttributedString.h

Constants

Standard Attributes

Attributed strings support the following standard attributes for text. If the key is not in the dictionary, then
use the default values described below.

276 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12

NSAttributedString Application Kit Additions Reference

NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString
NSString

Constants

*NSFontAttributeName;
*NSParagraphStyleAttributeName;
*NSForegroundColorAttributeName;
*NSUnderlineStyleAttributeName;
*NSSuperscriptAttributeName;
*NSBackgroundColorAttributeName;
*NSAttachmentAttributeName;
*NSLigatureAttributeName;
*NSBaselineOffsetAttributeName;
*NSKernAttributeName;
*NSLinkAttributeName;
*NSStrokeWidthAttributeName;
*NSStrokeColorAttributeName;
*NSUnderlineColorAttributeName;

*NSStrikethroughStyleAttributeName;
*NSStrikethroughColorAttributeName;

*NSShadowAttributeName;
*NSObliquenessAttributeName;
*NSExpansionAttributeName;
*NSCursorAttributeName;
*NSToolTipAttributeName;

*NSMarkedClauseSegmentAttributeName;

NSFontAttributeName
NSFont

Default Helvetica 12-point
Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSParagraphStyleAttributeName
NSParagraphStyle

Default as returned by the NSParagraphStyle method defaultParagraphStyle

Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSForegroundColorAttributeName
NSColor

Default bTackColor
Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSUnderlineStyleAttributeName
NSNumber containing integer

Default 0, no underline. See “Underlining Patterns” (page281), “Underlining Styles” (page

280), and “Underline Masks” (page 282) for mask values.

Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

Constants

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

277

278

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSSuperscriptAttributeName
NSNumber containing integer

Default 0
Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSBackgroundColorAttributeName
NSColor

Default ni1, no background
Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSAttachmentAttributeName
NSTextAttachment

Default ni1, no attachment
Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSLigatureAttributeName
NSNumber containing integer

Default 1, standard ligatures; 0, no ligatures; 2, all ligatures
Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSBaselineOffsetAttributeName
NSNumber containing floating point value, as points offset from baseline

Default 0.0
Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSKernAttributeName
NSNumber containing floating point value, as points by which to modify default kerning

Default ni1, use default kerning specified in font file; 0. 0, kerning off; non-zero, points by which to
modify default kerning

Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSLinkAttributeName
NSURL (preferred) or NSString

Default ni1, no link
Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSStrokeWidthAttributeName
NSNumber containing floating point value, as percent of font point size

Default 0, no stroke; positive, stroke alone; negative, stroke and fill (a typical value for outlined text
would be 3.0)

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSStrokeColorAttributeName
NSColor

Default ni1, same as foreground color
Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSUnderlineColorAttributeName
NSColor

Default ni1, same as foreground color
Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSStrikethroughStyleAttributeName
NSNumber containing integer

Default 0, no strikethrough. See “Underlining Patterns” (page 281), “Underlining
Styles” (page 280), and “Underline Masks” (page 282) for mask values.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSStrikethroughColorAttributeName
NSColor

Default ni1, same as foreground color
Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSShadowAttributeName
NSShadow

Default ni1, no shadow
Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSObliquenessAttributeName
NSNumber containing floating point value, as skew to be applied to glyphs

Default 0.0, no skew
Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSExpansionAttributeName
NSNumber containing floating point value, as log of expansion factor to be applied to glyphs

Default 0.0, no expansion
Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSCursorAttributeName
NSCursor

Default as returned by the NSCursor method IBeamCursor
Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

Constants 279
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSToolTipAttributeName
NSString

Default ni1, no tooltip
Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSMarkedClauseSegmentAttributeName
NSNumber containing an integer, as an index in marked text indicating clause segments

Available in Mac OS X v10.5 and later.
Declared in NSAttributedString.h.

Declared In
NSAttributedString.h

Underlining Styles

These constants define underlining style values for NSUnderlineStyleAttributeName (page 277) and
NSStrikethroughStyleAttributeName (page 279).

enum {
NSUnderlineStyleNone = 0x00,
NSUnderlineStyleSingle = 0x01,
NSUnderlineStyleThick = 0x02,
NSUnderlineStyleDouble = 0x09

b

Constants

NSUnderlineStyleNone
Do not draw an underline.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSUnderlineStyleSingle
Draw an underline consisting of a single line.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSUnderlineStyleThick
Draw an underline consisting of a thick line.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSUnderlineStyleDouble
Draw an underline consisting of a double line.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

Discussion

See also “Underline Masks” (page 282) and “Underlining Patterns” (page 281). The style, pattern,
and optionally by-word mask are OR'd together to produce the value for
NSUnderlineStyleAttributeName (page277)and NSStrikethroughStyleAttributeName (page 279).

280 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Declared In
NSAttributedString.h

Underlining Patterns

These constants define underlining pattern values for NSUnderTineStyleAttributeName (page 277) and
NSStrikethroughStyleAttributeName (page 279).

enum {
NSUnderlinePatternSolid = 0x0000,
NSUnderlinePatternDot = 0x0100,
NSUnderlinePatternDash = 0x0200,
NSUnderlinePatternDashDot = 0x0300,

NSUnderlinePatternDashDotDot = 0x0400
b

Constants
NSUnderlinePatternSolid
Draw a solid underline.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSUnderlinePatternDot
Draw an underline using a pattern of dots.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSUnderlinePatternDash
Draw an underline using a pattern of dashes.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSUnderlinePatternDashDot
Draw an underline using a pattern of alternating dashes and dots.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSUnderlinePatternDashDotDot
Draw an underline using a pattern of a dash followed by two dots.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

Discussion

Seealso “Underline Masks” (page 282)and “Underlining Styles” (page 280). The style, pattern, and
optionally by-word mask are OR'd together to produce the value for

NSUnderlineStyleAttributeName (page277)and NSStrikethroughStyleAttributeName (page 279).

The following constants previously used for underline style are deprecated in Mac OS X v10.3 and later:

NSNoUnderlineStyle
Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

Constants 281
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

282

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSSingleUnderlineStyle
Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.
NSUnderlineStrikethroughMask

Declared In
NSAttributedString.h

Underline Masks

This constant defines the underlining style for NSUnder1ineStyleAttributeName (page 277) and
NSStrikethroughStyleAttributeName (page 279).

unsigned NSUnderlineByWordMask;

Constants
NSUnderlineByWordMask
Draw the underline only underneath words, not underneath whitespace.

Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

Discussion

Use this constant with the desired underline style to create the given effect. For example, to get a thick
underline only underneath words, set NSUnderlineStyleAttribute to (NSUnderlineStyleThick |
NSUnderlineByWordMask).Also see “Underlining Styles” (page 280) and “Underlining Patterns” (page 281).

Declared In
NSAttributedString.h

Glyph Info Attribute

This object provides a means to override the standard glyph generation.
NSString *NSGlyphInfoAttributeName;

Constants
NSGTyphInfoAttributeName
The name of an NSG1yphInfo object.

NSLayoutManager assigns the glyph specified by this glyph info to the entire attribute range, provided
that its contents match the specified base string, and that the specified glyph is available in the font
specified by NSFontAttributeName.

Available in Mac OS X v10.2 and later.
Declared in NSAttributedString.h.

Declared In
NSAttributedString.h

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

Character Shape Attribute

The character shape feature type (kCharacterShapeType) is used when a single font contains different
appearances for the same character shape, and these shapes are not traditionally treated as swashes. It is
needed for languages such as Chinese that have both traditional and simplified character sets.

NSString *NSCharacterShapeAttributeName;

Constants

NSCharacterShapeAttributeName
An integer value. The value is interpreted as Apple Type Services kCharacterShapeType selector
+ 1.

The default value is 0 (disable). 1 is kTraditionalCharactersSelector, and so on. Refer to
{ATS/SFNTLayoutTypes.h> and Font Features in ATSUI Programming Guide for additional information.
Available in Mac OS X v10.0 and later.

Declared in NSAttributedString.h.

Declared In
NSAttributedString.h

Document Types

The following values can be returned for the @"DocumentType" key in the document attributes dictionary.

NSString *NSPlainTextDocumentType;
NSString *NSRTFTextDocumentType;

NSString *NSRTFDTextDocumentType;

NSString *NSMacSimpleTextDocumentType;
NSString *NSHTMLTextDocumentType;

NSString *NSDocFormatTextDocumentType;
NSString *NSWordMLTextDocumentType;
NSString *NSOfficeOpenXMLTextDocumentType;
NSString *NSOpenDocumentTextDocumentType;

Constants
NSPTainTextDocumentType
Plain text document.

Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSRTFTextDocumentType
Rich text format document.

Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSRTFDTextDocumentType
Rich text format with attachments document.

Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

Constants 283
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSMacSimpleTextDocumentType
Macintosh SimpleText document.

Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSHTMLTextDocumentType
Hypertext Markup Language (HTML) document.

Available in Mac OS X v10.0 and later.
Declared in NSAttributedString.h.

NSDocFormatTextDocumentType
Microsoft Word document.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSWordMLTextDocumentType
Microsoft Word XML (WordML schema) document.

Available in Mac OS X v10.3 and later.
Declared in NSAttributedString.h.

NSWebArchiveTextDocumentType
Web Kit WebArchive document.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSOfficeOpenXMLTextDocumentType
ECMA Office Open XML text document format.

Available in Mac OS X v10.5 and later.
Declared in NSAttributedString.h.

NSOpenDocumentTextDocumentType
OASIS Open Document text document format.

Available in Mac OS X v10.5 and later.

Declared in NSAttributedString.h.
Discussion
See also NSDocumentTypeDocumentOption (page 290).

Declared In
NSAttributedString.h

Document Attributes

The init... methods can return a dictionary with the following document-wide attributes (attribute
identifiers available on Mac OS X v10.4 and later; use actual string value keys for earlier systems):

284 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSString *NSAuthorDocumentAttribute;

NSString *NSBackgroundColorDocumentAttribute;
NSString *NSBottomMarginDocumentAttribute;
NSString *NSCharacterEncodingDocumentAttribute;
NSString *NSCocoaVersionDocumentAttribute;
NSString *NSCommentDocumentAttribute;

NSString *NSCompanyDocumentAttribute;

NSString *NSConvertedDocumentAttribute;
NSString *NSCopyrightDocumentAttribute;
NSString *NSCreationTimeDocumentAttribute;
NSString *NSDefaultTabIntervalDocumentAttribute;
NSString *NSDocumentTypeDocumentAttribute;
NSString *NSEditorDocumentAttribute;

NSString *NSHyphenationFactorDocumentAttribute;
NSString *NSKeywordsDocumentAttribute;

NSString *NSLeftMarginDocumentAttribute;
NSString *NSModificationTimeDocumentAttribute;
NSString *NSPaperSizeDocumentAttribute;
NSString *NSReadOnlyDocumentAttribute;

NSString *NSRightMarginDocumentAttribute;
NSString *NSSubjectDocumentAttribute;

NSString *NSTitleDocumentAttribute;

NSString *NSTopMarginDocumentAttribute;
NSString *NSViewModeDocumentAttribute;

NSString *NSViewSizeDocumentAttribute;

NSString *NSViewZoomDocumentAttribute;

Constants
NSPaperSizeDocumentAttribute
@"PaperSize"

NSValue, containing NSSize.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSLeftMarginDocumentAttribute
@"LeftMargin"

NSNumber, containing a float, in points.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSRightMarginDocumentAttribute
@"RightMargin"

NSNumber, containing a float, in points.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSTopMarginDocumentAttribute
@"TopMargin"

NSNumber, containing a float, in points.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

285

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSBottomMarginDocumentAttribute
@"BottomMargin"

NSNumber, containing a float, in points.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSHyphenationFactorDocumentAttribute
@"HyphenationFactor"

NSNumber, containing a float; 0 = off, 1 = full hyphenation.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSDocumentTypeDocumentAttribute
@"DocumentType"

How the document was interpreted; one of the values below.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSCharacterEncodingDocumentAttribute
@"CharacterkEncoding"

NSNumber, containing an int specifying the NSStringEncoding for the file; for reading and writing
plain text files and writing HTML; default for plain text is the default encoding; default for HTML is
UTF-8.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSViewSizeDocumentAttribute
@"ViewSize"

NSValue, containing NSSize.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSViewZoomDocumentAttribute
@"ViewZoom"

NSValue, containing a float; 100 = 100% zoom.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSViewModeDocumentAttribute
@"ViewMode"

NSValue, containing an int; 0 = normal; 1 = page layout (use value of @"PaperSize".
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSBackgroundColorDocumentAttribute
@"BackgroundColor"

NSColor, representing the document-wide page background color.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

286 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSCocoaVersionDocumentAttribute
@"CocoaRTFVersion"

NSNumber, containing a float. For RTF files only, stores the version of Cocoa with which the file was
created. Absence of this value indicates RTF file not created by Cocoa or its predecessors. Values less
than 100 are pre—-Mac OS X; 100 is Mac OS X v10.0 or v10.1; 102 is Mac OS X v10.2 and 10.3; values
greater than 102 correspond to values of NSAppKitVersionNumber on Mac OS X v10.4 and later.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSReadOnlyDocumentAttribute
@"ReadOnly"

NSNumber, containing int. If missing or 0 or negative, not read only; 1 or more, read only. Note that
this has nothing to do with the file system protection on the file, but instead can affect how the file
should be displayed to the user.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSConvertedDocumentAttribute
@"Converted"

NSNumber, containing an int. Indicates whether the file was converted by a filter service. If missing
or 0, the file was originally in the format specified by document type. If negative, the file was originally
in the format specified by document type, but the conversion to NSAttributedString may have been
lossy. If 1 or more, it was converted to this type by a filter service.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSDefaultTabIntervalDocumentAttribute
@"DefaultTabInterval™

NSNumber containing a float. Represents the document-wide default tab stop interval.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSTitleDocumentAttribute
NSString containing document title.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSCompanyDocumentAttribute
NSString containing company or organization name.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSCopyrightDocumentAttribute
NSString containing document copyright info.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSSubjectDocumentAttribute
NSString containing subject of document.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

Constants 287
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

288

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSAuthorDocumentAttribute
NSString containing author name.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSKeywordsDocumentAttribute
NSArray of NSString, containing keywords.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSCommentDocumentAttribute
NSString containing document comments.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSEditorDocumentAttribute
NSString containing name of person who last edited the document.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSCreationTimeDocumentAttribute
NSDate containing the creation date of the document; note that this is not the file system creation
date of the file, but of the document.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSModificationTimeDocumentAttribute
NSDate containing the modification date of the document contents.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

Declared In
NSAttributedString.h

Attributes for generating HTML

These document-wide attributes provide control over the form of generated HTML—you use them only for
writing HTML

NSString *NSExcludedElementsDocumentAttribute;
NSString *NSTextEncodingNameDocumentAttribute;
NSString *NSPrefixSpacesDocumentAttribute;

Constants

NSExcludedElementsDocumentAttribute
An NSArray object containing NSString objects, representing HTML elements not to be used in
generated HTML.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSTextEncodingNameDocumentAttribute
An NSString object containing the name, IANA or otherwise, of a text encoding to be used; mutually
exclusive with NSCharacterEncodingDocumentAttribute.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSPrefixSpacesDocumentAttribute
An NSNumber containing an integer (default 0) representing the number of spaces per level by which
to indent certain nested HTML elements.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

Discussion

NSExcludedElementsDocumentAttribute allows control over the tags used. The recognized values in
the NSExcludedElementsDocumentAttribute array are (case-insensitive) HTML tags, plus DOCTYPE
(representing a doctype declaration) and XML (representing an XML declaration). By default, if this attribute
is not present, the excluded elements will be those deprecated in HTML 4 (APPLET, BASEFONT, CENTER, DIR,
FONT, ISINDEX, MENU, S, STRIKE, and U) plus XML. If XML is on the list, HTML forms are used; if XML is not
on the list, XHTML forms are used where there is a distinction. Either
NSCharacterEncodingDocumentAttribute or NSTextEncodingNameDocumentAttribute may be
used to control the encoding used for generated HTML; character entities are used for characters not
representable in the specified encoding. NSPrefixSpacesDocumentAttribute allows some control over
formatting.

Declared In
NSAttributedString.h

Option keys for importing documents

These option keys are recognized for importing documents using
initWithData:options:documentAttributes:error: (page 266), initWithHTML:options:documentAttributes: (page
268), initWithURL:options:documentAttributes:error: (page 270), or the readFrom... methods (such as
readFromData:options:documentAttributes: (page 1706)) implemented by
NSMutableAttributedString.

NSString *NSBaseURLDocumentOption;

NSString *NSCharacterEncodingDocumentOption;
NSString *NSDefaultAttributesDocumentOption;
NSString *NSDocumentTypeDocumentOption;

NSString *NSTextEncodingNameDocumentOption;
NSString *NSTextSizeMultiplierDocumentOption;
NSString *NSTimeoutDocumentOption;

NSString *NSWebPreferencesDocumentOption;

NSString *NSWebResourceloadDelegateDocumentOption;

Constants
NSCharacterEncodingDocumentOption
@"CharacterEncoding"

For plain text documents; NSNumber containing the unsigned int NSStringEncoding to override
any encoding specified in an HTML document.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

Constants 289
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

290

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSBaseURLDocumentOption
@"BaseURL"

For HTML documents; NSURL containing base URL.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSDefaultAttributesDocumentOption
@"DefaultAttributes”

For plain text documents; NSDictionary containing attributes to be applied to plain files.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSDocumentTypeDocumentOption
@"DocumentType"

One of the document types described in “Document Types” (page 283), indicating a document type
to be forced when loading the document.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSTextEncodingNameDocumentOption
@"TextEncodingName"

NSString containing the name, IANA or otherwise, of a text encoding to override any encoding specified
in an HTML document. Mutually exclusive with @"CharacterEncoding".

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSTimeoutDocumentOption
@"Timeout"”

NSNumber containing float. Time in seconds to wait for a document to finish loading.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSWebPreferencesDocumentOption
@"WebPreferences”

WebPreferences; for HTML only, specifies a WebPreferences object. If not present, a default set of
preferences is used.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

NSWebResourceloadDelegateDocumentOption
@"WebResourcelLoadDelegate™

NSObject; for HTML only, specifies an object to serve as the WebResourceLoadDelegate. If not present,
a default delegate is used that permits the loading of subsidiary resources but does not respond to
authentication challenges.

Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

NSTextSizeMultiplierDocumentOption
Specifies a scale factor for font sizes.

NSNumber containing float, default 1.0; for HTML only, corresponding to WebView's
textSizeMultiplier.

There is no textual equivalent for Mac OS X v10.3.
Available in Mac OS X v10.4 and later.
Declared in NSAttributedString.h.

Discussion

In Mac OS X v10.3, the options key @"UseWebKit" specifies that WebKit-based HTML importing be used
(and must be specified for the other options to be recognized). In Mac OS X v10.4 and later, WebKit is always
used for HTML documents, and all of the options except @"UseWebKit" are recognized (attribute identifiers
are available on Mac OS X v10.4 and later; use actual string value keys for Mac OS X v10.3):

Declared In
NSAttributedString.h

NSSpellingStateAttributeName

These constants control the display of the spelling and grammar indicators on text, highlighting portions of
the text that are flagged for spelling or grammar issues. These regions are denoted by a temporary attribute
on the layout manager, using the NSSpellingStateAttributeName key.

NSString *NSSpellingStateAttributeName;
enum {

NSSpellingStateSpellingFlag = (1 << 0),
NSSpellingStateGrammarFlag (1 << 1)

b

Constants

NSSpellingStateAttributeName
This key is available in Mac OS X v10.2 and later, but its interpretation changed in Mac OS X v10.5.
Previously, any non-zero value caused the spelling indicator to be displayed. For Mac OS X v10.5 and
later, the (integer) value is treated as being composed of the spelling and grammar flags.

NSSpellingStateSpellingFlag
Flag for spelling issues.

Available in Mac OS X v10.5 and later.
Declared in NSAttributedString.h.

NSSpellingStateGrammarflag
Flag for grammar issues.

Available in Mac OS X v10.5 and later.
Declared in NSAttributedString.h.

Declared In
NSAttributedString.h

Constants 291
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 12
NSAttributedString Application Kit Additions Reference

292 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Inherits from NSObject
Conforms to NSCoding
NSCopying
NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Availability Available in Mac OS X v10.0 and later.
Declared in AppKit/NSBezierPath.h
Companion guide Cocoa Drawing Guide
Related sample code Dicey
DockTile
Sketch-112

WebKitPluginStarter
WebKitPluginWithJavaScript

Overview

An NSBezierPath object allows you to create paths using PostScript-style commands. Paths consist of
straight and curved line segments joined together. Paths can form recognizable shapes such as rectangles,
ovals, arcs, and glyphs; they can also form complex polygons using either straight or curved line segments.
A single path can be closed by connecting its two endpoints, or it can be left open.

An NSBezierPath object can contain multiple disconnected paths, whether they are closed or open. Each
of these paths is referred to as a subpath. The subpaths of an NSBezierPath object must be manipulated
as a group. The only way to manipulate subpaths individually is to create separate NSBezierPath objects
for each.

For a given NSBezierPath object, you can stroke the path’s outline or fill the region occupied by the path.
You can also use the path as a clipping region for views or other regions. Using methods of NSBezierPath,
you can also perform hit detection on the filled or stroked path. Hit detection is needed to implement
interactive graphics, as in rubberbanding and dragging operations.

The current graphics context is automatically saved and restored for all drawing operations involving
NSBezierPath objects, so your application does not need to worry about the graphics settings changing
across invocations.

Overview 293
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Adopted Protocols

NSCoding
- encodeWithCoder:

- initWithCoder:

NSCopying
- copyWithZone:

Tasks

Creating an NSBezierPath Object

+ bezierPath (page 298)
Creates and returns a new NSBezierPath object.
+ bezierPathWithOvalInRect: (page 299)

Creates and returns a new NSBezierPath object initialized with an oval path inscribed in the specified
rectangle.

bezierPathWithRect: (page 299)

Creates and returns a new NSBezierPath object initialized with a rectangular path.
bezierPathWithRoundedRect:xRadius:yRadius: (page 300)

Creates and returns a new NSBezierPath object initialized with a rounded rectangular path.
- bezierPathByFlatteningPath (page 317)
Creates and returns a “flattened” copy of the receiver.

+

+

- bezierPathByReversingPath (page 318)
Creates and returns a new NSBezierPath object with the reversed contents of the receiver’s path.

Constructing Paths

- moveToPoint: (page 328)
Moves the receiver’s current point to the specified location.
- lineToPoint: (page 326)
Appends a straight line to the receiver’s path
- curveToPoint:controlPointl:controlPoint?: (page 321)
Adds a Bezier cubic curve to the receiver’s path.
- closePath (page 319)
Closes the most recently added subpath.
- relativeMoveToPoint: (page 330)

Moves the receiver’s current point to a new point whose location is the specified distance from the
current point.

294 Adopted Protocols
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

- relativelineToPoint: (page 329)
Appends a straight line segment to the receiver’s path starting at the current point and moving
towards the specified point, relative to the current location.

- relativeCurveToPoint:controlPointl:controlPoint2: (page 328)
Adds a Bezier cubic curve to the receiver’s path from the current point to a new location, which is
specified as a relative distance from the current point.

Appending Common Shapes to a Path

- appendBezierPath: (page 311)
Appends the contents of the specified path object to the receiver’s path.

- appendBezierPathWithPoints:count: (page 316)
Appends a series of line segments to the receiver’s path.
- appendBezierPathWithOvalInRect: (page 315)
Appends an oval path to the receiver, inscribing the oval in the specified rectangle.
- appendBezierPathWithArcFromPoint:toPoint:radius: (page311)
Appends an arc to the receiver’s path.
- appendBezierPathWithArcWithCenter:radius:startAngle:endAngle: (page 312)
Appends an arc of a circle to the receiver’s path.
- appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:clockwise: (page 313)
Appends an arc of a circle to the receiver’s path.
- appendBezierPathWithGlyph:inFont: (page 313)
Appends an outline of the specified glyph to the receiver’s path.
- appendBezierPathWithGlyphs:count:inFont: (page 314)
Appends the outlines of the specified glyphs to the receiver’s path.
- appendBezierPathWithPackedGlyphs: (page 315)
Appends an array of packed glyphs to the receiver’s path.
- appendBezierPathWithRect: (page 316)
Appends a rectangular path to the receiver’s path.

- appendBezierPathWithRoundedRect:xRadius:yRadius: (page 317)
Appends a rounded rectangular path to the receiver’s path.

Accessing Path Attributes

+ defaultWindingRule (page 303)
Returns the default winding rule used to fill all paths.
+ setDefaultWindingRule: (page 308)
Sets the default winding rule used to fill all paths.
- windingRule (page 338)
Returns the winding rule used to fill the receiver’s path.
- setWindingRule: (page 336)
Sets the winding rule used to fill the receiver’s path.

+ defaultlLineCapStyle (page 302)
Returns the default line cap style for all paths.

Tasks 295
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

296

CHAPTER 13

NSBezierPath Class Reference

setDefaultlLineCapStyle: (page 305)

Sets the default line cap style for all paths.
lineCapStyle (page 325)

Returns the line cap style for the receiver's path.
setlLineCapStyle: (page 333)

Sets the line cap style for the receiver's path.
defaultlLinedoinStyle (page 302)

Returns the default line join style for all paths.
setDefaultlLinedoinStyle: (page 306)

Sets the default line join style for all paths.
lTinedoinStyle (page 326)

Returns the receiver’s line join style.
setlLinedoinStyle: (page 334)

Sets the line join style for the receiver's path.
defaultlLineWidth (page 303)

Returns the default line width for the all paths.
setDefaultlLineWidth: (page 307)

Sets the default line width for all paths.
TineWidth (page 327)

Returns the line width of the receiver's path.
setLineWidth: (page 335)

Sets the line width of the receiver's path.
defaultMiterLimit (page 303)

Returns the default miter limit for all paths.
setDefaultMiterLimit: (page 308)

Sets the default miter limit for all paths.
miterLimit (page 327)

Returns the miter limit of the receiver's path.
setMiterLimit: (page 335)

Sets the miter limit for the receiver's path.
defaultFlatness (page 301)

Returns the default flatness value for all paths.
setDefaultFlatness: (page 305)

Sets the default flatness value for all paths.
flatness (page 324)

Returns the flatness value of the receiver's path.
setFlatness: (page 332)

Sets the flatness value for the receiver's path.
getlLineDash:count:phase: (page 324)

Returns the line-stroking pattern for the receiver.
setlLineDash:count:phase: (page 333)

Sets the line-stroking pattern for the receiver.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Drawing Paths

stroke (page 336)
Draws a line along the receiver’s path using the current stroke color and drawing attributes.
fill (page 323)
Paints the region enclosed by the receiver’s path.
+ fillRect: (page 304)
Fills the specified rectangular path with the current fill color.

+ strokeRect: (page 310)

Strokes the path of the specified rectangle using the current stroke color and the default drawing
attributes.

+ strokelineFromPoint:toPoint: (page 309)
Strokes a line between two points using the current stroke color and the default drawing attributes.

+ drawPackedGlyphs:atPoint: (page 304)
Draws a set of packed glyphs at the specified point in the current coordinate system.

Clipping Paths

- addClip (page 310)
Intersects the area enclosed by the receiver's path with the clipping path of the current graphics
context and makes the resulting shape the current clipping path.

- setClip (page 332)
Replaces the clipping path of the current graphics context with the area inside the receiver's path.

+ clipRect: (page 301)
Intersects the specified rectangle with the clipping path of the current graphics context and makes
the resulting shape the current clipping path

Hit Detection

- containsPoint: (page 320)
Returns a Boolean value indicating whether the receiver contains the specified point.

Querying Paths

- bounds (page 318)
Returns the bounding box of the receiver’s path.
- controlPointBounds (page 320)
Returns the bounding box of the receiver’s path, including any control points.

- currentPoint (page 321)
Returns the receiver’s current point (the trailing point or ending point in the most recently added
segment).

- iskEmpty (page 325)
Returns a Boolean value indicating whether the receiver is empty.

Tasks 297
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Applying Transformations

- transformUsingAffineTransform: (page 337)
Transforms all points in the receiver using the specified transform.

Accessing Elements of a Path

- elementCount (page 323)

Returns the total number of path elements in the receiver's path.
- elementAtIndex: (page 322)

Returns the type of path element at the specified index.
- elementAtindex:associatedPoints: (page 322)

Gets the element type and (and optionally) the associated points for the path element at the specified
index.

- removeAllPoints (page 330)
Removes all path elements from the receiver, effectively clearing the path.

- setAssociatedPoints:atIndex: (page 331)
Changes the points associated with the specified path element.

Caching Paths

- cachesBezierPath (page 319)

Returns a Boolean value indicating whether this object maintains a cached image of its path.
- setCachesBezierPath: (page 331)

Sets whether the receiver should cache its path information.

Class Methods

298

bezierPath

Creates and returns a new NSBezierPath object.
+ (NSBezierPath *)bezierPath

Return Value
A new empty path object.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dicey

DockTile

Sketch-112
WebKitPluginStarter

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

bezierPathWithOvallnRect:

Creates and returns a new NSBezierPath object initialized with an oval path inscribed in the specified

rectangle.
+ (NSBezierPath *)bezierPathWithOvalInRect:(NSRect)aRect

Parameters
arect
The rectangle in which to inscribe an oval.

Return Value
ANSBezierPath new path object with the oval path.

Discussion

If the aRect parameter specifies a square, the inscribed path is a circle. The path is constructed by starting
in the lower-right quadrant of the rectangle and adding arc segments counterclockwise to complete the

oval.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ bezierPath (page 298)

- appendBezierPathWithOvalInRect: (page 315)

Related Sample Code
BindingsJoystick
Dicey

MenultemView
Sketch-112

Worm

Declared In
NSBezierPath.h

bezierPathWithRect:

Creates and returns a new NSBezierPath object initialized with a rectangular path.

+ (NSBezierPath *)bezierPathWithRect:(NSRect)aRect

Parameters
aRect
The rectangle describing the path to create.

Return Value
A new path object with the rectangular path.

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

299

300

CHAPTER 13

NSBezierPath Class Reference

Discussion
The path is constructed by starting at the origin of aRect and adding line segments in a counterclockwise
direction.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ bezierPath (page 298)

- appendBezierPathWithRect: (page 316)
+ fillRect: (page 304)
+ strokeRect: (page 310)

Related Sample Code
Cropped Image

Link Snoop

PDF Annotation Editor
PDFKitLinker2
Sketch-112

Declared In
NSBezierPath.h

bezierPathWithRoundedRect:xRadius:yRadius:

Creates and returns a new NSBezierPath object initialized with a rounded rectangular path.

+ (NSBezierPath *)bezierPathWithRoundedRect: (NSRect)rect xRadius:(CGFloat)xRadius
yRadius: (CGFloat)yRadius

Parameters
rect
The rectangle that defines the basic shape of the path.

xRadius
The radius of each corner oval along the x-axis. Values larger than half the rectangle’s width are
clamped to half the width.

YRadius
The radius of each corner oval along the y-axis. Values larger than half the rectangle’s height are
clamped to half the height.

Return Value
A new path object with the rounded rectangular path.

Discussion

The path is constructed in a counter-clockwise direction, starting at the top-left corner of the rectangle. If
either one of the radius parameters contains the value 0. 0, the returned path is a plain rectangle without
rounded corners.

Availability
Available in Mac OS X v10.5 and later.

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

See Also
+ bezierPath (page 298)

- appendBezierPathWithRoundedRect:xRadius:yRadius: (page 317)

Related Sample Code
TrackBall

Declared In
NSBezierPath.h

clipRect:

Intersects the specified rectangle with the clipping path of the current graphics context and makes the
resulting shape the current clipping path

+ (void)clipRect: (NSRect)aRect

Parameters
aRect
The rectangle to intersect with the current clipping path.

Availability
Available in Mac OS X v10.0 and later.

See Also
- addClip (page 310)

- setClip (page 332)

Related Sample Code
Sketch-112

Transformed Image

Declared In
NSBezierPath.h

defaultFlatness
Returns the default flatness value for all paths.

+ (CGFloat)defaultFlatness

Return Value
The default value for determining the smoothness of curved paths, or 0.6 if no other value has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setDefaultFlatness: (page 305)

- flatness (page 324)

Class Methods 301
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Declared In
NSBezierPath.h

defaultLineCapStyle

Returns the default line cap style for all paths.
+ (NSLineCapStyle)defaultLineCapStyle

Return Value
The default line cap style or NSButtlLineCapSty1e if no other style has been set. For a list of values, see
“Constants” (page 338).

Discussion
The default line cap style can be overridden for individual paths by setting a custom style for that path using
the setlineCapStyle: (page 333) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setDefaultLineCapStyle: (page 305)

+ defaultlLinedoinStyle (page 302)
+ defaultlLineWidth (page 303)
- TineCapStyle (page 325)

Declared In
NSBezierPath.h

defaultLineJoinStyle

Returns the default line join style for all paths.
+ (NSLinedoinStyle)defaultLinedoinStyle

Return Value
The default line join style or NSMiterLineJoinSty1e if no other value has been set. For a list of values, see
“Constants” (page 338).

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setDefaultlLinedoinStyle: (page 306)

+ defaultlLineCapStyle (page 302)
+ defaultlLineWidth (page 303)
- linedoinStyle (page 326)

Declared In
NSBezierPath.h

302 Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

defaultLineWidth

Returns the default line width for the all paths.
+ (CGFloat)defaultLineWidth

Return Value
The default line width, measured in points in the user coordinate space, or 1.0 if no other value has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setDefaultlLineWidth: (page 307)

+ defaultlLineCapStyle (page 302)
+ defaultlLinedoinStyle (page 302)
- lineWidth (page 327)

Declared In
NSBezierPath.h

defaultMiterLimit

Returns the default miter limit for all paths.
+ (CGFloat)defaultMiterLimit

Return Value
The default miter limit for all paths, or 10.0 if no other value has been set.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ setDefaultMiterLimit: (page 308)

- miterLimit (page 327)

Declared In
NSBezierPath.h

defaultWindingRule

Returns the default winding rule used to fill all paths.
+ (NSWindingRule)defaultWindingRule

Return Value
The current default winding rule or NSNonZeroWindingRule if no default rule has been set. This value may
be either NSNonZeroWindingRule or NSEvenOddWindingRule.

Availability
Available in Mac OS X v10.0 and later.

Class Methods 303
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

304

CHAPTER 13

NSBezierPath Class Reference

See Also
+ setDefaultWindingRule: (page 308)

- windingRule (page 338)

Declared In
NSBezierPath.h

drawPackedGlyphs:atPoint:

Draws a set of packed glyphs at the specified point in the current coordinate system.
+ (void)drawPackedGlyphs:(const char *)packedGlyphs atPoint:(NSPoint)aPoint

Parameters
packedGlyphs

A C-style array containing one or more CGG1yph data types terminated by a NULL character.
arpoint

The starting point at which to draw the glyphs.

Discussion
This method draws the glyphs immediately.

You should avoid using this method directly. Instead, use the appendBezierPathWithGlyph:inFont: (page
313)and appendBezierPathWithGlyphs:count:inFont: (page 314) methods to create a path with one
or more glyphs.

Availability
Available in Mac OS X v10.0 and later.

See Also
- appendBezierPathWithPackedGlyphs: (page 315)

- set (page 707) (NSColor)

Declared In
NSBezierPath.h

fillRect:

Fills the specified rectangular path with the current fill color.
+ (void)fillRect:(NSRect)aRect

Parameters
aRect

A rectangle in the current coordinate system.
Discussion

This method fills the specified region immediately. This method uses the compositing operation returned
by the compositingOperation method of NSGraphicsContext.

Availability
Available in Mac OS X v10.0 and later.

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

See Also
- appendBezierPathWithRect: (page 316)

+ bezierPathWithRect: (page 299)

+ strokeRect: (page 310)

- compositingOperation (page 1282) (NSGraphicsContext)
- set (page 707) (NSColor)

Related Sample Code
DragltemAround

JSPong
QTSSConnectionMonitor
ThreadsimportMovie
WhackedTV

Declared In
NSBezierPath.h

setDefaultFlatness:

Sets the default flatness value for all paths.
+ (void)setDefaultFlatness:(CGFloat)flatness

Parameters
flatness
The default flatness value.

Discussion

The flatness value specifies the accuracy (or smoothness) with which curves are rendered. It is also the

maximum error tolerance (measured in pixels) for rendering curves, where smaller numbers give smoother
curves at the expense of more computation. The exact interpretation may vary slightly on different rendering

devices.
The default flatness value is 0.6, which yields smooth curves.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultFlatness (page 301)

- setFlatness: (page 332)

Declared In
NSBezierPath.h

setDefaultLineCapStyle:
Sets the default line cap style for all paths.

+ (void)setDefaultLineCapStyle: (NSLineCapStyle)lineCap

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

305

CHAPTER 13

NSBezierPath Class Reference

Parameters
lineCap
The default line cap style. For a list of values, see “Constants” (page 338).

Discussion
The line cap style specifies the shape of the endpoints of an open path when stroked. Figure 13-1 (page 306)
shows the appearance of the available line cap styles.

Figure 13-1 Line cap styles

NSButtLineCapStyle

NSSquareLineCapStyle

m NSRoundLineCapStyle

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultlLineCapStyle (page 302)

+ setDefaultlLinedoinStyle: (page 306)
+ setDefaultlLineWidth: (page 307)
- setlineCapStyle: (page 333)

Declared In
NSBezierPath.h

setDefaultLineJoinStyle:
Sets the default line join style for all paths.

+ (void)setDefaultLinedoinStyle: (NSLinedoinStyle)linedoinStyle

Parameters
linedoinStyle

The default line join style. For a list of values, see “Constants” (page 338).
Discussion

The line join style specifies the shape of the joints between connected segments of a stroked path. Figure
13-2 (page 307) shows the appearance of the available line join styles.

306 Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Figure 13-2 Line join styles

NSMiterLinedoinStyle

NSRoundLinedoinStyle

NSBevellLinedoinStyle

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultlinedoinStyle (page 302)

setDefaultlLineCapStyle: (page 305)
setDefaultlLineWidth: (page 307)
setDefaultMiterLimit: (page 308)

- setlinedoinStyle: (page 334)

+ + +

Declared In
NSBezierPath.h

setDefaultLineWidth:
Sets the default line width for all paths.

+ (void)setDefaultLineWidth: (CGFloat)width

Parameters
width

The default line width, measured in points in the user coordinate space.

Discussion

The line width defines the thickness of stroked paths. A width of 0 is interpreted as the thinnest line that can
be rendered on a particular device. The actual rendered line width may vary from the specified width by as
much as 2 device pixels, depending on the position of the line with respect to the pixel grid and the current
anti-aliasing settings. The width of the line may also be affected by scaling factors specified in the current

transformation matrix of the active graphics context.

Availability
Available in Mac OS X v10.0 and later.

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

See Also
+ defaultlLineWidth (page 303)

+ setDefaultlLineCapStyle: (page 305)
+ setDefaultlLinedoinStyle: (page 306)
- setlineWidth: (page 335)

Related Sample Code
Clock Control

CocoaDragAndDrop

Declared In
NSBezierPath.h

setDefaultMiterLimit:

Sets the default miter limit for all paths.
+ (void)setDefaultMiterLimit:(CGFloat)7imit

Parameters
Timit
The default limit at which miter joins are converted to bevel joins.

Discussion

The miter limit helps you avoid spikes at the junction of two line segments connected by a miter join
(NSMiterlLinedoinStyle). If the ratio of the miter length—the diagonal length of the miter join—to the
line thickness exceeds the miter limit, the joint is converted to a bevel join. The default miter limit value is
10, which converts miters whose angle at the joint is less than 11 degrees.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultMiterlLimit (page 303)

+ setDefaultlLinedoinStyle: (page 306)
- setMiterLimit: (page 335)

Declared In
NSBezierPath.h

setDefaultWindingRule:
Sets the default winding rule used to fill all paths.

+ (void)setDefaultWindingRule: (NSWindingRule)windingRule

Parameters
windingRule

The winding rule to use if no winding rule is set explicitly for a path object. This value may be either
NSNonZeroWindingRule or NSEvenOddWindingRule.

308 Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Discussion
Winding rules determine how to paint (or fill) the region enclosed by a path. You use this method to set the
default rule that is applied to paths that do not have a custom winding rule assigned.

For more information on how winding rules affect the appearance of filled paths, see “Winding Rules and
Filling Paths”.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultWindingRule (page 303)

- setWindingRule: (page 336)

Declared In
NSBezierPath.h

strokeLineFromPoint:toPoint:

Strokes a line between two points using the current stroke color and the default drawing attributes.
+ (void)strokelLineFromPoint:(NSPoint)pointl toPoint:(NSPoint)pointZ?

Parameters
pointl

The starting point of the line.
pointZ2

The ending point of the line.

Discussion
This method strokes the specified path immediately.

Availability
Available in Mac OS X v10.0 and later.

See Also
- TineToPoint: (page 326)

- moveToPoint: (page 328)

+ setDefaultlLineCapStyle: (page 305)
+ setDefaultlLineWidth: (page 307)

- stroke (page 336)

Related Sample Code
BindingsJoystick
Clock Control
FilterDemo
GLChildWindowDemo
WhackedTV

Declared In
NSBezierPath.h

Class Methods 309
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

strokeRect:

Strokes the path of the specified rectangle using the current stroke color and the default drawing attributes.
+ (void)strokeRect:(NSRect)aRect

Parameters
aRect
A rectangle in the current coordinate system.

Discussion
The path is drawn beginning at the rectangle’s origin and proceeding in a counterclockwise direction. This
method strokes the specified path immediately.

Availability
Available in Mac OS X v10.0 and later.

See Also
- appendBezierPathWithRect: (page 316)

bezierPathWithRect: (page 299)
fillRect: (page 304)
setDefaultlinedoinStyle: (page 306)
setDefaultlineWidth: (page 307)

- set (page 707) (NSColor)

+ + + +

Related Sample Code
CocoaDragAndDrop

Declared In
NSBezierPath.h

Instance Methods

addClip

Intersects the area enclosed by the receiver's path with the clipping path of the current graphics context and
makes the resulting shape the current clipping path.

- (void)addClip

Discussion
This method uses the current winding rule to determine the clipping shape of the receiver. This method does
not affect the receiver’s path.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ clipRect: (page 301)

- setClip (page 332)

310 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Related Sample Code
BindingsJoystick
IBFragmentView

Reducer
WebKitDOMElementPlugin

Declared In
NSBezierPath.h

appendBezierPath:

Appends the contents of the specified path object to the receiver’s path.
- (void)appendBezierPath: (NSBezierPath *)aPath

Parameters
aPath
The path to add to the receiver.
Discussion
This method adds the commands used to create aPath to the end of the receiver’s path. This method does

not explicitly try to connect the subpaths in the two objects, although the operations in aPath may still
cause that effect.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

appendBezierPathWithArcFromPoint:toPoint:radius:

Appends an arc to the receiver’s path.

- (void)appendBezierPathWithArcFromPoint: (NSPoint) fromPoint toPoint:(NSPoint)toPoint
radius: (CGFloat)radius

Parameters
fromPoint
The middle point of the angle.

toPoint
The end point of the angle.

radius
The radius of the circle inscribed in the angle.

Discussion

The created arc is defined by a circle inscribed inside the angle specified by three points: the current point,
the fromPoint parameter, and the toPoint parameter (in that order). The arc itself lies on the perimeter
of the circle, whose radius is specified by the radius parameter. The arc is drawn between the two points
of the circle that are tangent to the two legs of the angle.

Instance Methods 3N
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

312

CHAPTER 13

NSBezierPath Class Reference

The arc usually does not contain the pointsin the fromPoint and toPoint parameters. If the starting point
of the arc does not coincide with the current point, a line is drawn between the two points. The starting
point of the arc lies on the line defined by the current point and the fromPoint parameter.

You must set the path's current point (using the moveToPoint: (page 328) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Depending on the length of the arc, this method may add multiple connected curve segments to the path.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
IBFragmentView

Declared In
NSBezierPath.h

appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:

Appends an arc of a circle to the receiver’s path.

- (void)appendBezierPathWithArcWithCenter: (NSPoint)center radius:(CGFloat)radius
startAngle: (CGFloat)startAngle endAngle: (CGFloat)endAnglie

Parameters
center
Specifies the center point of the circle used to define the arc.

radius
Specifies the radius of the circle used to define the arc.

startAngle
Specifies the starting angle of the arc, measured in degrees counterclockwise from the x-axis.

endAngle

Specifies the end angle of the arc, measured in degrees counterclockwise from the x-axis.
Discussion
The created arc lies on the perimeter of the circle, between the angles specified by the startAngle and
endAngle parameters. The arc is drawn in a counterclockwise direction. If the receiver's path is empty, this
method sets the current point to the beginning of the arc before adding the arc segment. If the receiver's
path is not empty, a line is drawn from the current point to the starting point of the arc.

Depending on the length of the arc, this method may add multiple connected curve segments to the path.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile

SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Declared In
NSBezierPath.h

appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:clockwise:

Appends an arc of a circle to the receiver’s path.

- (void)appendBezierPathWithArcWithCenter: (NSPoint)center radius:(CGFloat)radius
startAngle: (CGFloat)startAngle endAngle: (CGFloat)endAngle
clockwise: (BOOL)clockwise

Parameters
center
Specifies the center point of the circle used to define the arc.
radius
Specifies the radius of the circle used to define the arc.
startAngle
Specifies the starting angle of the arc, measured in degrees counterclockwise from the x-axis.
endAngle
Specifies the end angle of the arc, measured in degrees counterclockwise from the x-axis.
clockwise
YES if you want the arc to be drawn in a clockwise direction; otherwise NO to draw the arcin a
counterclockwise direction.

Discussion

The created arc lies on the perimeter of the circle, between the angles specified by the startAngle and
endAngle parameters. The arc is drawn in the direction indicated by the c7ockwise parameter. If the
receiver's path is empty, this method sets the current point to the beginning of the arc before adding the
arc segment. If the receiver's path is not empty, a line is drawn from the current point to the starting point
of the arc.

Depending on the length of the arc, this method may add multiple connected curve segments to the path.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile

SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

appendBezierPathWithGlyph:inFont:

Appends an outline of the specified glyph to the receiver’s path.

- (void)appendBezierPathWithGlyph: (NSGlyph)aGlyph inFont:(NSFont *)font0bj

Instance Methods 313
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

314

CHAPTER 13

NSBezierPath Class Reference

Parameters
aGlyph
The glyph to add to the path.
font0obj
The font in which the glyph is encoded.

Discussion
If the glyph is not encoded in the font specified by the font0bj parameter—that is, the font does not have
an entry for the specified glyph—then no path is appended to the receiver.

You must set the path's current point (using the moveToPoint: (page 328) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
- appendBezierPathWithGlyphs:count:inFont: (page 314)

- appendBezierPathWithPackedGlyphs: (page 315)
+ drawPackedGlyphs:atPoint: (page 304)

Declared In
NSBezierPath.h

appendBezierPathWithGlyphs:count:inFont:

Appends the outlines of the specified glyphs to the receiver’s path.

- (void)appendBezierPathWithGlyphs: (NSGlyph *)glyphs count:(NSInteger)count
inFont: (NSFont *)font0Obj

Parameters
glyphs

A C-style array of NSG1yph data types to add to the path.
count

The number of glyphs in the g7yphs parameter.

font0Obj
The font in which the glyphs are encoded.
Discussion
If the glyphs are not encoded in the font specified by the font0bj parameter—that is, the font does not
have an entry for one of the specified glyphs—then no path is appended to the receiver.

You must set the path's current point (using the moveToPoint: (page 328) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also

- appendBezierPathWithGlyph:inFont: (page 313)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

- appendBezierPathWithPackedGlyphs: (page 315)
+ drawPackedGlyphs:atPoint: (page 304)

Declared In
NSBezierPath.h

appendBezierPathWithOvallnRect:

Appends an oval path to the receiver, inscribing the oval in the specified rectangle.
- (void)appendBezierPathWithOvalInRect: (NSRect)aRect

Parameters
arect
The rectangle in which to inscribe the oval.

Discussion

Before adding the oval, this method moves the current point, which implicitly closes the current subpath. If
the aRect parameter specifies a square, the inscribed path is a circle. The path is constructed by starting in
the lower-right quadrant of the rectangle and adding arc segments counterclockwise to complete the oval.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Grady

SonOfSillyBalls

Declared In
NSBezierPath.h

appendBezierPathWithPackedGlyphs:

Appends an array of packed glyphs to the receiver’s path.
- (void)appendBezierPathWithPackedGlyphs:(const char *)packedGlyphs

Parameters
packedGlyphs

A C-style array containing one or more CGG1yph data types terminated by a NULL character.
Discussion
You should avoid using this method directly. Instead, use the appendBezierPathWithGlyph:inFont: (page
313)and appendBezierPathWithGlyphs:count:inFont: (page 314) methods to append glyphs to a path.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ drawPackedGlyphs:atPoint: (page 304)

Related Sample Code
DockTile

Instance Methods 315
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

316

CHAPTER 13

NSBezierPath Class Reference

SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

appendBezierPathWithPoints:count:

Appends a series of line segments to the receiver’s path.
- (void)appendBezierPathWithPoints: (NSPointArray)points count:(NSInteger)count

Parameters
points
A C-style array of NSPo1int data types, each of which contains the end point of the next line segment.

count

The number of points in the points parameter.
Discussion
This method interprets the points as a set of connected line segments. If the current path contains an open
subpath, a line is created from the last point in that subpath to the first point in the points array. If the current
path is empty, the first point in the points array is used to set the starting point of the line segments.
Subsequent line segments are added using the remaining points in the array.

This method does not close the path that is created. If you wish to create a closed path, you must do so by
explicitly invoking the receiver’s closePath (page 319) method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

appendBezierPathWithRect:

Appends a rectangular path to the receiver’s path.
- (void)appendBezierPathWithRect: (NSRect)aRect

Parameters
aRect
The rectangle describing the path to create.

Discussion

Before adding the rectangle, this method moves the current point to the origin of the rectangle, which
implicitly closes the current subpath (if any). The path is constructed by starting at the origin of aRect and
adding line segments in a counterclockwise direction. The final segment is added usinga closePath (page
319) message.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

See Also
+ bezierPathWithRect: (page 299)

+ fillRect: (page 304)
+ strokeRect: (page 310)

Related Sample Code
Cropped Image

IBFragmentView
TrackBall

Declared In
NSBezierPath.h

appendBezierPathWithRoundedRect:xRadius:yRadius:

Appends a rounded rectangular path to the receiver’s path.

- (void)appendBezierPathWithRoundedRect: (NSRect)rect xRadius:(CGFloat)xRadius
yRadius: (CGFloat)yRadius

Parameters

rect
The rectangle that defines the basic shape of the path.

XRadius
The radius of each corner oval along the x-axis. Values larger than half the rectangle’s width are
clamped to half the width.

yRadius
The radius of each corner oval along the y-axis. Values larger than half the rectangle’s height are
clamped to half the height.

Discussion

The path is constructed in a counter-clockwise direction, starting at the top-left corner of the rectangle. If
either one of the radius parameters contains the value 0. 0, the returned path is a plain rectangle without
rounded corners.

Availability
Available in Mac OS X v10.5 and later.

See Also
+ bezierPathWithRoundedRect:xRadius:yRadius: (page 300)

Declared In
NSBezierPath.h

bezierPathByFlatteningPath

Creates and returns a “flattened” copy of the receiver.

- (NSBezierPath *)bezierPathByFlatteningPath

Instance Methods 317
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

318

CHAPTER 13

NSBezierPath Class Reference

Return Value
A new path object whose contents are a flattened version of the receiver's path.

Discussion

Flattening a path converts all curved line segments into straight line approximations. The granularity of the
approximations is controlled by the path's current flatness value, which is set using the
setDefaultFlatness: (page 305) method.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

bezierPathByReversingPath

Creates and returns a new NSBezierPath object with the reversed contents of the receiver’s path.
- (NSBezierPath *)bezierPathByReversingPath

Return Value
A new path object whose contents are a reversed version of the receiver's path.

Discussion

Reversing a path does not necessarily change the appearance of the path when rendered. Instead, it changes
the direction in which path segments are drawn. For example, reversing the path of a rectangle (whose line
segments are normally drawn starting at the origin and proceeding in a counterclockwise direction) causes
its line segments to be drawn in a clockwise direction instead. Drawing a reversed path could affect the
appearance of a filled pattern, depending on the pattern and the fill rule in use.

This method reverses each whole or partial subpath in the path object individually.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

bounds
Returns the bounding box of the receiver’s path.

- (NSRect)bounds

Return Value
The rectangle that encloses the path of the receiver. If the path contains curve segments, the bounding box
encloses the curve but may not enclose the control points used to calculate the curve.

Availability
Available in Mac OS X v10.0 and later.

See Also
- controlPointBounds (page 320)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Related Sample Code
DockTile

ImageMapExample
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

cachesBezierPath

Returns a Boolean value indicating whether this object maintains a cached image of its path.
- (BOOL)cachesBezierPath

Return Value
YES if the path maintains a cached image; otherwise, NO.

Discussion
Caching of paths currently has no effect, so method always returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setCachesBezierPath: (page 331)

Declared In
NSBezierPath.h

closePath
Closes the most recently added subpath.

- (void)closePath

Discussion

This method closes the current subpath by creating a line segment between the first and last points in the
subpath. This method subsequently updates the current point to the end of the newly created line segment,

which is also the first point in the now closed subpath.

Availability
Available in Mac OS X v10.0 and later.

See Also
- fill (page 323)

Related Sample Code
DockTile

Polygons
SpeedometerView

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

319

320

CHAPTER 13

NSBezierPath Class Reference

WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

containsPoint:

Returns a Boolean value indicating whether the receiver contains the specified point.
- (BOOL)containsPoint: (NSPoint)aPoint

Parameters
arpoint
The point to test against the path, specified in the path object's coordinate system.

Return Value
YES if the path's enclosed area contains the specified point; otherwise, NO.

Discussion

This method checks the point against the path itself and the area it encloses. When determining hits in the
enclosed area, this method uses the non-zero winding rule (NSNonZeroWindingRule). It does not take into
account the line width used to stroke the path.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Dicey
ImageMapExample

Declared In
NSBezierPath.h

controlPointBounds
Returns the bounding box of the receiver’s path, including any control points.

- (NSRect)controlPointBounds

Return Value
The rectangle that encloses the receiver's path. If the path contains curve segments, the bounding box
encloses the control points of the curves as well as the curves themselves.

Availability
Available in Mac OS X v10.0 and later.

See Also
- bounds (page 318)

Declared In
NSBezierPath.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

currentPoint

Returns the receiver’s current point (the trailing point or ending point in the most recently added segment).
- (NSPoint)currentPoint

Return Value
The point from which the next drawn line or curve segment begins.

Discussion
If the receiver is empty, this method raises NSGenericException.

Availability
Available in Mac OS X v10.0 and later.

See Also
- closePath (page 319)

- curveToPoint:controlPointl:controlPoint?: (page 321)
- lineToPoint: (page 326)
- moveToPoint: (page 328)

Declared In
NSBezierPath.h

curveToPoint:controlPoint1:controlPoint2:

Adds a Bezier cubic curve to the receiver’s path.

- (void)curveToPoint:(NSPoint)aPoint controlPointl:(NSPoint)controlPointl
controlPoint2:(NSPoint)controlPoint?2

Parameters
arpoint
The destination point of the curve segment, specified in the current coordinate system
controlPointl
The point that determines the shape of the curve near the current point.
controlPoint?2
The point that determines the shape of the curve near the destination point.
Discussion
You must set the path's current point (using the moveToPoint: (page 328) method or through the creation

of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
- closePath (page 319)

- TineToPoint: (page 326)
- relativeCurveToPoint:controlPointl:controlPoint2: (page 328)
+ setDefaultFlatness: (page 305)

Instance Methods 321
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

322

CHAPTER 13

NSBezierPath Class Reference

Related Sample Code
CocoaVideoFrameToGWorld

DockTile

SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

elementAtindex:

Returns the type of path element at the specified index.
- (NSBezierPathElement)elementAtIndex: (NSInteger)index

Parameters
index
The index of the desired path element.

Return Value
The type of the path element. For a list of constants, see “NSBezierPathElement” (page 338).

Discussion

Path elements describe the commands used to define a path and include basic commands such as moving
to a specific point, creating a line segment, creating a curve, or closing the path. The elements are stored in
the order of their execution.

Availability
Available in Mac OS X v10.0 and later.

See Also
- elementCount (page 323)

- elementAtIndex:associatedPoints: (page 322)
- bezierPathByReversingPath (page 318)

Declared In
NSBezierPath.h

elementAtindex:associatedPoints:

Gets the element type and (and optionally) the associated points for the path element at the specified index.

- (NSBezierPathElement)elementAtIndex: (NSInteger)index
associatedPoints: (NSPointArray)points

Parameters
index
The index of the desired path element.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

points
On input, a C-style array containing up to three NSPoint data types, or NULL if you do not want the
points. On output, the data points associated with the specified path element.

Return Value

The type of the path element. For a list of constants, see “NSBezierPathElement” (page 338).

Discussion

If you specify a value for the points parameter, your array must be large enough to hold the number of points
for the given path element. Move, close path, and line segment commands return one point. Curve operations
return three points.

For curve operations, the order of the points is controlPoint1 (po 7nts[0]), controlPoint2 (points[1]), endPoint
(points[2]).

Availability
Available in Mac OS X v10.0 and later.

See Also
- elementCount (page 323)

- elementAtIndex: (page 322)

Declared In
NSBezierPath.h

elementCount

Returns the total number of path elements in the receiver's path.
- (NSInteger)elementCount

Return Value
The number of path elements.

Discussion
Each element type corresponds to one of the operations described in “Path Elements”.

Availability
Available in Mac OS X v10.0 and later.

See Also
- elementAtIndex: (page 322)

- elementAtIndex:associatedPoints: (page 322)

Related Sample Code
Cropped Image

Declared In
NSBezierPath.h

fill

Paints the region enclosed by the receiver’s path.

Instance Methods 323
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

- (void)fill

Discussion
This method fills the path using the current fill color and the receiver's current winding rule. If the path
contains any open subpaths, this method implicitly closes them before painting the fill region.

The painted region includes the pixels right up to, but not including, the path line itself. For paths with large
line widths, this can result in overlap between the fill region and the stroked path (which is itself centered
on the path line).

Availability
Available in Mac OS X v10.0 and later.

See Also
- stroke (page 336)

- windingRule (page 338)
- set (page 707) (NSColor)

Related Sample Code
Cropped Image

Dicey

WebKitPluginStarter
WebKitPluginWithJavaScript
Worm

Declared In
NSBezierPath.h

flatness

Returns the flatness value of the receiver's path.
- (CGFToat)flatness

Return Value
The flatness value of the path. If no value is set, this method returns the default flatness value.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setFlatness: (page 332)

+ defaultFlatness (page 301)

Declared In
NSBezierPath.h

getLineDash:count:phase:

Returns the line-stroking pattern for the receiver.

324 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

- (void)getLineDash:(CGFloat *)pattern count:(NSInteger *)count phase:(CGFloat
*)phase

Parameters

pattern
On input, a C-style array of floating point values, or ni1 if you do not want the pattern values. On
output, this array contains the lengths (measured in points) of the line segments and gaps in the
pattern. The values in the array alternate, starting with the first line segment length, followed by the
first gap length, followed by the second line segment length, and so on.

count

On input, a pointer to an integer or ni1 if you do not want the number of pattern entries. On output,
the number of entries written to pattern.

phase
On input, a pointer to a floating point value or ni1 if you do not want the phase. On output, this
value contains the offset at which to start drawing the pattern, measured in points along the
dashed-line pattern. For example, a phase of 6 in the pattern 5-2-3-2 would cause drawing to begin
in the middle of the first gap.
Discussion
The array in the pattern parameter must be large enough to hold all of the returned values in the pattern.
If you are not sure how many values there might be, you can call this method twice. The first time you call
it, do not pass a value for pattern but use the returned value in count to allocate an array of floating-point
numbers that you can then pass in the second time.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setlineDash:count:phase: (page 333)

Declared In
NSBezierPath.h

iSEmpty
Returns a Boolean value indicating whether the receiver is empty.

- (BOOL)isEmpty

Return Value
YES if the receiver contains no path elements; otherwise, NO.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

lineCapStyle

Returns the line cap style for the receiver's path.

Instance Methods 325
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

- (NSLineCapStyle)lineCapStyle

Return Value
The receiver's line cap style. For a list of values, see “Constants” (page 338). If this value is not set for the
receiver, the default line cap style is returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultlLineCapStyle (page 302)

+ setDefaultlLineCapStyle: (page 305)
- setlineCapStyle: (page 333)

Declared In
NSBezierPath.h

lineJoinStyle

Returns the receiver’s line join style.
- (NSLineJdoinStyle)linedoinStyle

Return Value
The receiver's line join style. For a list of values, see “Constants” (page 338). If this value is not set for the
receiver, the default line join style is returned.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultlinedoinStyle (page 302)

+ setDefaultlLinedoinStyle: (page 306)
- setlinedoinStyle: (page 334)

Declared In
NSBezierPath.h

lineToPoint:

Appends a straight line to the receiver’s path
- (void)lineToPoint: (NSPoint)aPoint

Parameters
aPoint

The destination point of the line segment, specified in the current coordinate system.
Discussion

This method creates a straight line segment starting at the current point and ending at the point specified
by the aPoint parameter. The current point is the last point in the receiver’s most recently added segment.

326 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

You must set the path's current point (using the moveToPoint: (page 328) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises

an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
- closePath (page 319)

- curveToPoint:controlPointl:controlPoint?: (page 321)

Related Sample Code
IBFragmentView

ImageMapExample
Polygons
Sketch-112
Squiggles

Declared In
NSBezierPath.h

lineWidth

Returns the line width of the receiver's path.
- (CGFloat)TineWidth

Return Value
The line width of the receiver, measured in points in the user coordinate space.

Discussion

If no value was set explicitly for the receiver, this method returns the default line width.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setlineWidth: (page 335)

+ defaultlLineWidth (page 303)

Declared In
NSBezierPath.h

miterLimit
Returns the miter limit of the receiver's path.

- (CGFloat)miterLimit

Return Value

The miter limit of the path. If no value is set, this method returns the default miter limit.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

327

328

CHAPTER 13

NSBezierPath Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- setMiterLimit: (page 335)

+ defaultMiterlLimit (page 303)

Declared In
NSBezierPath.h

moveToPoint:

Moves the receiver’s current point to the specified location.
- (void)moveToPoint: (NSPoint)aPoint

Parameters
apoint
A point in the current coordinate system.
Discussion
This method implicitly closes the current subpath (if any) and sets the current point to the value in aPoint.

When closing the previous subpath, this method does not cause a line to be created from the first and last
points in the subpath.

For many path operations, you must invoke this method before issuing any commands that cause a line or
curve segment to be drawn.

Availability
Available in Mac OS X v10.0 and later.

See Also
- closePath (page 319)

- curveToPoint:controlPointl:controlPoint2: (page 321)
- lineToPoint: (page 326)

Related Sample Code
DockTile

Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

relativeCurveToPoint:controlPoint1:controlPoint2:

Adds a Bezier cubic curve to the receiver’s path from the current point to a new location, which is specified
as a relative distance from the current point.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

- (void)relativeCurveToPoint: (NSPoint)aPoint controlPointl:(NSPoint)controlPointl
controlPoint2: (NSPoint)controlPoint2

Parameters
aPoint
The destination point of the curve segment, interpreted as a relative offset from the current point.
controlPointl
The point that determines the shape of the curve near the current point, interpreted as a relative
offset from the current point.
controlPoint?2
The point that determines the shape of the curve near the destination point, interpreted as a relative
offset from the current point.

Discussion

You must set the path's current point (using the moveToPoint: (page 328) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
- closePath (page 319)

- curveToPoint:controlPointl:controlPoint?: (page 321)
- relativelineToPoint: (page 329)
- relativeMoveToPoint: (page 330)

Declared In
NSBezierPath.h

relativeLineToPoint:

Appends a straight line segment to the receiver’s path starting at the current point and moving towards the
specified point, relative to the current location.

- (void)relativelLineToPoint: (NSPoint)aPoint

Parameters
aPoint

A point whose coordinates are interpreted as a relative offset from the current point.
Discussion

The destination point is relative to the current point. For example, if the current pointis (1, 1) and aPoint
contains the value (1, 2), a line segment is created between the points (1, 1) and (2, 3).

You must set the path's current point (using the moveToPoint: (page 328) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 329
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

330

CHAPTER 13

NSBezierPath Class Reference

See Also
- closePath (page 319)

- lTineToPoint: (page 326)
- relativelineToPoint: (page 329)
- relativeMoveToPoint: (page 330)

Declared In
NSBezierPath.h

relativeMoveToPoint:

Moves the receiver’s current point to a new point whose location is the specified distance from the current
point.

- (void)relativeMoveToPoint: (NSPoint)aPoint

Parameters
aPoint

A point whose coordinates are interpreted as a relative offset from the current point.
Discussion
This method implicitly closes the current subpath (if any) and updates the location of the current point. For
example, if the current point is (1, 1) and aPoint contains the value (1, 2), the previous subpath would be
closed and the current point would become (2, 3). When closing the previous subpath, this method does
not cause a line to be created from the first and last points in the subpath.

You must set the path's current point (using the moveToPoint: (page 328) method or through the creation
of a preceding line or curve segment) before you invoke this method. If the path is empty, this method raises
an NSGenericException exception.

Availability
Available in Mac OS X v10.0 and later.

See Also
- closePath (page 319)

- relativeCurveToPoint:controlPointl:controlPoint2: (page 328)
- relativelineToPoint: (page 329)

Declared In
NSBezierPath.h

removeAllPoints

Removes all path elements from the receiver, effectively clearing the path.
- (void)removeAllPoints

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

setAssociatedPoints:atindex:

Changes the points associated with the specified path element.
- (void)setAssociatedPoints: (NSPointArray)points atIndex:(NSInteger)index

Parameters

points
A C-style array containing up to three NSPoint data types. This parameter must contain the correct
number of points for the path element at the specified index. Move, close path, and line segment
commands require one point. Curve operations require three points.

index
The index of the path element you want to modify.

Discussion

You can use this method to change the points associated with a path quickly and without recreating the

path. You cannot use this method to change the type of the path element.

The following example shows you how you would modify the point associated with a line path element. The
path created by this example results in a path with two elements. The first path element specifies a move to
point (0, 0) while the second creates a line to point (100, 100). It then changes the line to go only to the point
(50,50) using this method:

NSBezierPath *bezierPath = [NSBezierPath bezierPath];
NSPoint newPoint = NSMakePoint(50.0, 50.0);

[bezierPath moveToPoint: NSMakePoint(0.0, 0.0)1;
[bezierPath lineToPoint: NSMakePoint(100.0, 100.0)17;

// Modifies the point added by lineToPoint: method (100.0, 100.0)
// to the new point (50.0, 50.0)
[bezierPath setAssociatedPoints: &newPoint atlIndex: 171;

Note: If you specify too few points for a path element of type NSCurveToBezierPathElement, the behavior
of this method is undefined.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBezierPath.h

setCachesBezierPath:

Sets whether the receiver should cache its path information.
- (void)setCachesBezierPath:(BOOL)flag

Parameters
flag
YES if the receiver should cache its path information; otherwise, NO.

Discussion
Caching of paths currently has no effect.

Instance Methods 331
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- cachesBezierPath (page 319)

Declared In
NSBezierPath.h

setClip

Replaces the clipping path of the current graphics context with the area inside the receiver's path.
- (void)setClip

Discussion

You should avoid using this method as a way of adjusting the clipping path, as it may expand the clipping
path beyond the bounds set by the enclosing view. If you do use this method, be sure to save the graphics
state prior to modifying the clipping path and restore the graphics state when you are done.

This method uses the current winding rule to determine the clipping shape of the receiver. This method does
not affect the receiver’s path.

Availability
Available in Mac OS X v10.0 and later.

See Also
- addC1ip (page 310)

+ clipRect: (page 301)
- saveGraphicsState (page 1285) (NSGraphicsContext)
- restoreGraphicsState (page 1285) (NSGraphicsContext)

Related Sample Code
PDF Annotation Editor

Declared In
NSBezierPath.h

setFlatness:

Sets the flatness value for the receiver's path.
- (void)setFlatness:(CGFloat)flatness

Parameters

flatness
The flatness value for the path.

Discussion

The flatness value specifies the accuracy (or smoothness) with which curves are rendered. It is also the
maximum error tolerance (measured in pixels) for rendering curves, where smaller numbers give smoother
curves at the expense of more computation. The exact interpretation may vary slightly on different rendering
devices.

332 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

The default flatness value is 0.6, which yields smooth curves.

Availability
Available in Mac OS X v10.0 and later.

See Also
- flatness (page 324)

+ setDefaultFlatness: (page 305)

Declared In
NSBezierPath.h

setLineCapStyle:

Sets the line cap style for the receiver's path.
- (void)setLineCapStyle: (NSLineCapStyle)lineCapStyle

Parameters
lineCapStyle
The line cap style to use with the receiver. For a list of values, see “Constants” (page 338).

Discussion
The line cap style specifies the shape of the endpoints of an open path when stroked. Figure 13-1 (page 306)
shows the appearance of the available line cap styles.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultlLineCapStyle (page 302)

+ setDefaultlLineCapStyle: (page 305)
- TineCapStyle (page 325)

Related Sample Code
DockTile

SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

setLineDash:count:phase:

Sets the line-stroking pattern for the receiver.

- (void)setLineDash:(const CGFloat *)pattern count:(NSInteger)count
phase: (CGFloat)phase

Instance Methods 333
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

334

CHAPTER 13

NSBezierPath Class Reference

Parameters

pattern
A C-style array of floating point values that contains the lengths (measured in points) of the line
segments and gaps in the pattern. The values in the array alternate, starting with the first line segment
length, followed by the first gap length, followed by the second line segment length, and so on

count
The number of values in pattern.

phase
The offset at which to start drawing the pattern, measured in points along the dashed-line pattern.
For example, a phase of 6 in the pattern 5-2-3-2 would cause drawing to begin in the middle of the
first gap

Discussion

For example, to produce a supermarket coupon type of dashed line:

array[0] =
array[1]

5.0; //segment painted with stroke color
2.0; //segment not painted with a color

[path setlLineDash: array count: 2 phase: 0.0];

In the above example, if you set phase to 6.0, the line dash would begin exactly six units into pattern,
which would start the pattern in the middle of the first gap.

Availability
Available in Mac OS X v10.0 and later.

See Also
- getlLineDash:count:phase: (page 324)

Declared In
NSBezierPath.h

setLineJoinStyle:

Sets the line join style for the receiver's path.
- (void)setLinedoinStyle:(NSLinedoinStyle)linedoinStyle

Parameters
linedoinStyle
The line join style to use for the receiver's path. For a list of values, see “Constants” (page 338).

Discussion
The line join style specifies the shape of the joints between connected segments of a stroked path. Figure
13-2 (page 307) shows the appearance of the available line join styles.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ defaultlLinedoinStyle (page 302)

+ setDefaultlLinedoinStyle: (page 306)
- TinedoinStyle (page 326)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

Related Sample Code
DockTile

Link Snoop
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

setLineWidth:

Sets the line width of the receiver's path.
- (void)setLineWidth:(CGFloat) lineWidth

Parameters
lineWidth
The line width to use for the receiver, measured in points in the user coordinate space.

Discussion

The line width defines the thickness of the receiver's stroked path. A width of 0 is interpreted as the thinnest
line that can be rendered on a particular device. The actual rendered line width may vary from the specified
width by as much as 2 device pixels, depending on the position of the line with respect to the pixel grid and
the current anti-aliasing settings. The width of the line may also be affected by scaling factors specified in
the current transformation matrix of the active graphics context.

Availability
Available in Mac OS X v10.0 and later.

See Also
- TineWidth (page 327)

+ setDefaultlLineWidth: (page 307)

Related Sample Code
DockTile

Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

setMiterLimit:

Sets the miter limit for the receiver's path.

- (void)setMiterLimit:(CGFloat)miterlLimit

Instance Methods 335
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

336

CHAPTER 13

NSBezierPath Class Reference

Parameters
miterLimit
A value indicating the limit at which miter joins are converted to bevel joins.

Discussion

The miter limit helps you avoid spikes at the junction of two line segments connected by a miter join
(NSMiterlLinedoinStyle). If the ratio of the miter length—the diagonal length of the miter join—to the
line thickness exceeds the miter limit, the joint is converted to a bevel join. The default miter limit value is
10, which converts miters whose angle at the joint is less than 11 degrees.

Availability
Available in Mac OS X v10.0 and later.

See Also
- miterLimit (page 327)

+ setDefaultMiterLimit: (page 308)

Declared In
NSBezierPath.h

setWindingRule:

Sets the winding rule used to fill the receiver’s path.
- (void)setWindingRule: (NSWindingRule)aWindingRule

Parameters

awindingRule
The winding rule to use for the path. This value may be either NSNonZeroWindingRule or
NSEvenOddWindingRule.

Discussion
For more information on how winding rules affect the appearance of filled paths, see “Winding Rules and
Filling Paths”.

Availability
Available in Mac OS X v10.0 and later.

See Also

- fill (page 323)

- windingRule (page 338)

+ setDefaultWindingRule: (page 308)

Related Sample Code
Cropped Image

Declared In
NSBezierPath.h

stroke

Draws a line along the receiver’s path using the current stroke color and drawing attributes.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

- (void)stroke

Discussion

The drawn line is centered on the path with its sides parallel to the path segment. This method uses the
current drawing attributes associated with the receiver. If a particular attribute is not set for the receiver, this
method uses the corresponding default attribute.

Availability
Available in Mac OS X v10.0 and later.

See Also

- fil1 (page 323)

+ setDefaultlLineCapStyle: (page 305)
+ setDefaultlLinedoinStyle: (page 306)
- set (page 707) (NSColor)

Related Sample Code
DockTile

Sketch-112
SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

transformUsingAffineTransform:

Transforms all points in the receiver using the specified transform.
- (void)transformUsingAffineTransform: (NSAffineTransform *)alransform

Parameters
alransform

The transform to apply to the path.
Discussion

This method applies the transform to the path's points immediately. The following code translates a line
from 0,0 to 100,100 to a line from 10,10 to 110,110.

NSBezierPath *bezierPath = [NSBezierPath bezierPathl;
NSAffineTransform *transform = [NSAffineTransform transform];

[bezierPath moveToPoint: NSMakePoint(0.0, 0.0)1;
[bezierPath lineToPoint: NSMakePoint(100.0, 100.0)1;

[transform translateXBy: 10.0 yBy: 10.01;
[bezierPath transformUsingAffineTransform: transform];

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
DockTile

Instance Methods 337
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

SpeedometerView
WebKitPluginStarter
WebKitPluginWithJavaScript

Declared In
NSBezierPath.h

windingRule

Returns the winding rule used to fill the receiver’s path.
- (NSWindingRule)windingRule

Return Value
The winding rule for the path. This value may be either NSNonZeroWindingRule or NSEvenOddWindingRule.

Discussion
This value overrides the default value returned by defaultWindingRule (page 303).

For more information on how winding rules affect the appearance of filled paths, see “Winding Rules and
Filling Paths”.

Availability
Available in Mac OS X v10.0 and later.

See Also
- fil1 (page 323)

- setWindingRule: (page 336)
+ defaultWindingRule (page 303)

Declared In
NSBezierPath.h

Constants

NSBezierPathElement

Basic path element commands.

338 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

typedef enum {
NSMoveToBezierPathElement,
NSLineToBezierPathElement,
NSCurveToBezierPathElement,
NSClosePathBezierPathElement
} NSBezierPathElement;

Constants
NSMoveToBezierPathETement
Moves the path object’s current drawing point to the specified point.

This path element does not result in any drawing. Using this command in the middle of a path results
in a disconnected line segment.

Contains 1 point.
Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

NSLineToBezierPathETement
Creates a straight line from the current drawing point to the specified point.

Lines and rectangles are specified using this path element.
Contains 1 point.

Available in Mac OS X v10.0 and later.

Declared in NSBezierPath.h.

NSCurveToBezierPathElement
Creates a curved line segment from the current point to the specified endpoint using two control
points to define the curve.

The points are stored in the following order: controlPoint1, controlPoint2, endPoint. Ovals, arcs, and
Bezier curves all use curve elements to specify their geometry.

Contains 3 points.
Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

NSClosePathBezierPathElement
Marks the end of the current subpath at the specified point.

Note that the point specified for the Close Path element is essentially the same as the current point.
Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

Discussion

These commands are enough to define all of the possible path shapes. Each command has one or more
points that contain information needed to position the path element. Most path elements use the current
drawing point as the starting point for drawing. For more details, see Paths.

Declared In
NSBezierPath.h

NSLineJoinStyle

These constants specify the shape of the joints between connected segments of a stroked path.

Constants 339
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

340

CHAPTER 13

NSBezierPath Class Reference

typedef enum {
NSMiterLinedoinStyle = 0,
NSRoundLinedoinStyle =
NSBevellinedoinStyle
} NSLinedoinStyle;

no —

Constants
NSBevellLinedoinStyle
Specifies a bevel line shape of the joints between connected segments of a stroked path.

See the setDefaultLinedoinStyle: (page 306) method for an example of the appearance.
Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

NSMiterlLinedoinStyle
Specifies a miter line shape of the joints between connected segments of a stroked path.

See the setDefaultlinedoinStyle: (page 306) method for an example of the appearance.
Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

NSRoundlLinedoinStyle
Specifies a round line shape of the joints between connected segments of a stroked path.

See the setDefaultlLinedoinStyle: (page 306) method for an example of the appearance.
Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

Declared In
NSBezierPath.h

NSLineCapStyle

These constants specify the shape of endpoints for an open path when stroked.

typedef enum {
NSButtlLineCapStyle =0,
NSRoundLineCapStyle
NSSquarelLineCapStyle
} NSLineCapStyle;

I
N —

Constants
NSButtlLineCapStyle
Specifies a butt line cap style for endpoints for an open path when stroked.

See the setDefaultlLineCapStyle: (page 305) method for an example of the appearance.
Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

NSSquarelLineCapStyle
Specifies a square line cap style for endpoints for an open path when stroked.

See the setDefaultlLineCapStyle: (page 305) method for an example of the appearance.
Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

NSRoundLineCapStyle
Specifies a round line cap style for endpoints for an open path when stroked.

See the setDefaultlLineCapStyle: (page 305) method for an example of the appearance.
Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

Declared In
NSBezierPath.h

NSWindingRule

These constants are used to specify the winding rule a Bezier path should use.

typedef enum {
NSNonZeroWindingRule = 0,
NSEvenOddWindingRule
} NSWindingRule;

Il
—

Constants
NSNonZeroWindingRule
Specifies the non-zero winding rule.

Count each left-to-right path as +1 and each right-to-left path as -1. If the sum of all crossings is 0,
the point is outside the path. If the sum is nonzero, the point is inside the path and the region
containing it is filled. This is the default winding rule.

Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

NSEvenOddWindingRule
Specifies the even-odd winding rule.

Count the total number of path crossings. If the number of crossings is even, the point is outside the
path. If the number of crossings is odd, the point is inside the path and the region containing it should
be filled.

Available in Mac OS X v10.0 and later.
Declared in NSBezierPath.h.

Discussion

These constants are described in more detail in Paths.

Declared In
NSBezierPath.h

Constants 34
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 13

NSBezierPath Class Reference

342 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

Inherits from NSImageRep : NSObject
Conforms to NSCoding (NSImageRep)
NSCopying (NSImageRep)
NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Availability Available in Mac OS X v10.0 and later.
Declared in AppKit/NSBitmaplmageRep.h
Companion guide Cocoa Drawing Guide
Related sample code GLSLShowpiece
Image Difference
NSGLImage
Quartz EB
Reducer
Overview

An NSBitmapImageRep is an object that can render an image from bitmap data. Bitmap data formats
supported include GIF, JPEG, TIFF, PNG, and various permutations of raw bitmap data.

Alpha Premultiplication

If a coverage (alpha) plane exists, a bitmap’s color components are premultiplied with it. If you modify the
contents of the bitmap, you are therefore responsible for premultiplying the data. For this reason, though,
if you want to manipulate the actual data, an NSBitmapImageRep object is not recommended for storage.
If you need to work with unpremultiplied data, you should use Quartz, specifically CcImageCreate with
kCGImageAlphalast.

Note that premultiplying does not affect the output quality. Given source bitmap pixel s, destination pixel
d, and alpha value a, a blend is basically

d'"'=a*s+ (1 -a)*d

All premultiplication does is precalculate a * s.

Overview 343
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

344

CHAPTER 14

NSBitmaplmageRep Class Reference

Creating an NSBitmaplmageRep Object

+ imageRepWithData: (page 347)
Creates and returns an NSBitmapImageRep object initialized with the first image in the supplied
data.
+ imageRepsWithData: (page 347)
Creates and returns an array of initialized NSBitmapImageRep objects corresponding to the images
in the supplied data.
- colorizeByMappingGray:toColor:blackMapping:whiteMapping: (page 354)
Colorizes a grayscale image.
- rithitBitmed ataPlares:pixel Wide:pixel Hich:bitsRer Savple:samplesherPixel :eshlia: isPlarar:colarSecehame: bitnepromat by tesPer Row:bitsRerPixel e
358)
Initializes the receiver, a newly allocated NSBitmapImageRep object, so it can render the specified
image.
- nititBitmeplataPlanes:pixel dWide:pixel sHigh:bitsPerSample: satplesherPixel :hasAlpha: isPlanar:colorSpacehame: bytesPerfow:bitsPerPixel :fegp
360)
Initializes the receiver, a newly allocated NSBitmapImageRep object, so it can render the specified
image.
- initWithCGImage: (page 362)
Returns an NSBitmapImageRep object created from a Core Graphics image object.
- initWithCIImage: (page 363)
Returns an NSBitmapImageRep object created from a Core Image object.
- initWithData: (page 364)
Initializes a newly allocated NSBitmapImageRep from the provided data.
- initWithFocusedViewRect: (page 364)
Initializes the receiver, a newly allocated NSBitmapImageRep object, with bitmap data read from a
rendered image.
- initForIncrementalload (page 357)

Initializes and returns the receiver, a newly allocated NSBitmapImageRep object, for incremental
loading.

Getting Information About the Image

- bitmapFormat (page 351)

Returns the bitmap format of the receiver.
- bitsPerPixel (page 351)

Returns the number of bits allocated for each pixel in each plane of data.
- bytesPerPlane (page 351)

Returns the number of bytes in each plane or channel of data.

- bytesPerRow (page 352)
Returns the minimum number of bytes required to specify a scan line (a single row of pixels spanning
the width of the image) in each data plane.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

- isPlanar (page 365)
Returns YES if image data is a planar configuration and NO if its in a meshed configuration.

- numberOfPlanes (page 365)
Returns the number of separate planes image data is organized into.

- samplesPerPixel (page 366)
Returns the number of components in the data.

Getting Image Data

- bitmapData (page 350)
Returns a pointer to the bitmap data.

- getBitmapDataPlanes: (page 354)
Returns by indirection bitmap data of the receiver separated into planes.

Producing Representations of the Image

+

TIFFRepresentationOfImageRepsInArray: (page 349)
Returns a TIFF representation of the given images

+ TIFFRepresentationOfImageRepsInArray:usingCompression:factor: (page 349)
Returns a TIFF representation of the given images using a specified compression scheme and factor.

- TIFFRepresentation (page 368)
Returns a TIFF representation of the receiver.

- TIFFRepresentationUsingCompression:factor: (page 369)
Returns a TIFF representation of the image using the specified compression.

+ representationOfImageRepsInArray:usingType:properties: (page 348)
Formats the specified bitmap images using the specified storage type and properties and returns
them in a data object.

- representationUsingType:properties: (page 365)
Formats the receiver’s image data using the specified storage type and properties and returns it in a
data object.

Mananging Compression Types

+ getTIFFCompressionTypes:count: (page 346)
Returns by indirection an array of all available compression types that can be used when writing a
TIFF image.

+ localizedNameForTIFFCompressionType: (page 348)
Returns an autoreleased string containing the localized name for the specified compression type.

- canBeCompressedUsing: (page 352)

Tests whether the receiver can be compressed by the specified compression scheme.
- setCompression:factor: (page 367)

Sets the receiver’s compression type and compression factor.

Tasks 345
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

- getCompression:factor: (page 355)
Returns by indirection the receiver’s compression type and compression factor.

- setProperty:withValue: (page 368)
Sets the image’s propertyto value.

- valueForProperty: (page 370)
Returns the value for the specified property.

Loading Image Incrementally

- incrementalloadFromData:complete: (page 356)

Loads the current image data into an incrementally-loaded image representation and returns the
current status of the image.

Managing Pixel Values

- setColor:atX:y: (page 366)
Changes the color of the pixel at the specified coordinates.

- colorAtX:y: (page 353)

Returns the color of the pixel at the specified coordinates.
- setPixel:atX:y: (page 367)

Sets the receiver's pixel at the specified coordinates to the specified raw pixel values.
- getPixel:atX:y: (page 356)

Returns by indirection the pixel data for the specified location in the receiver.

Getting a Core Graphics Image

- CGImage (page 353)
Returns a Core Graphics image object from the receiver’s current bitmap data.

Class Methods

346

getTIFFCompressionTypes:count:

Returns by indirection an array of all available compression types that can be used when writing a TIFF image.

+ (void)getTIFFCompressionTypes:(const NSTIFFCompression **)Jist count:(NSInteger
*)YnumTypes

Parameters

list
Onreturn,a Carray of NSTIFFCompression constants. This array belongs to the NSBitmapImageRep
class; it shouldn't be freed or altered. See “Constants” (page 370) for the supported TIFF compression
types.

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

numTypes
The number of constants in list.

Discussion

Note that not all compression types can be used for all images: NSTIFFCompressionNEXT can be used only
to retrieve image data. Because future releases may include other compression types, always use this method
to get the available compression types—for example, when you implement a user interface for selecting
compression types.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ localizedNameForTIFFCompressionType: (page 348)

- canBeCompressedUsing: (page 352)

Declared In
NSBitmapImageRep.h

imageRepsWithData:

Creates and returns an array of initialized NSBitmapImageRep objects corresponding to the images in the
supplied data.

+ (NSArray *)imageRepsWithData:(NSData *)bitmapData

Parameters

bitmapData
A data object containing one or more bitmapped images or ni 1 if the class is unable to create an
image representation. The b7tmapData parameter can contain data in any supported bitmap format.

Return Value
An array of NSBitmapImageRep instances or an empty array if the class is unable to create any image
representations.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

imageRepWithData:

Creates and returns an NSBitmapImageRep object initialized with the first image in the supplied data.
+ (id)imageRepWithData: (NSData *)bitmapData

Parameters

bitmapData
A data object containing one or more bitmapped images. The bitmapData parameter can contain
data in any supported bitmap format.

Return Value
An NSBitmapImageRep instance or ni 1 if the class is unable to create an image representation.

Class Methods 347
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

348

CHAPTER 14

NSBitmaplmageRep Class Reference

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
SpecialPictureProtocol

Declared In
NSBitmapImageRep.h

localizedNameForTIFFCompressionType:

Returns an autoreleased string containing the localized name for the specified compression type.
+ (NSString *)localizedNameForTIFFCompressionType: (NSTIFFCompression)compression

Parameters
compression
A TIFF compression type. NSTIFFCompression types are described in “Constants” (page 370).

Return Value
A localized name for compressionornil if compressionis unrecognized.

Discussion

When implementing a user interface for selecting TIFF compression types, use
getTIFFCompressionTypes:count: (page 346) to get the list of supported compression types, then use
this method to get the localized names for each compression type.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ getTIFFCompressionTypes:count: (page 346)

Declared In
NSBitmapImageRep.h

representationOflmageRepsinArray:usingType:properties:

Formats the specified bitmap images using the specified storage type and properties and returns themin a
data object.

+ (NSData *)representationOfImageRepsInArray:(NSArray *)imageReps
usingType: (NSBitmapImageFileType)storageType properties:(NSDictionary
*)properties

Parameters
imageReps

An array of NSBitmapImageRep objects.
Storagelype

An enum constant specifying a file type for bitmap images. It can be NSBMPFileType, NSGIFFileType,
NSJPEGFileType, NSPNGFileType, or NSTIFFFileType.

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

properties
A dictionary that contains key-value pairs specifying image properties. These string constants used
as keys and the valid values are described in “Bitmap image properties” (page 372).

Return Value
A data object containing the bitmap image data in the specified format. You can write this data to a file or
use it to create a new NSBitmapImageRep object.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

TIFFRepresentationOflmageRepsinArray:

Returns a TIFF representation of the given images
+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array

Parameters
array
An array containing objects representing bitmap image representations.

Return Value
A data object containing a TIFF image representation.

Discussion

This method uses the compression returned by getCompression:factor: (page 355) (if applicable). If a
problem is encountered during generation of the TIFF, this method raises an NSTIFFException or an
NSBadBitmapParameterskException.

Availability
Available in Mac OS X v10.0 and later.

See Also
- TIFFRepresentation (page 368)

Declared In
NSBitmapImageRep.h

TIFFRepresentationOflmageRepsinArray:usingCompression:factor:

Returns a TIFF representation of the given images using a specified compression scheme and factor.

+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array
usingCompression: (NSTIFFCompression)compression factor:(float)factor

Parameters
array
An array containing objects representing bitmap image representations.

Class Methods 349
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

compression
An enum constant that represents a TIFF data-compression scheme. Legal values for compression
can be found in NSBitmapImageRep.h and are described in “Constants” (page 370).

factor
A f1oat value that provides a hint for those compression types that implement variable compression
ratios.

Currently only JPEG compression uses a compression factor. JPEG compression in TIFF files is not
supported, and factor is ignored.

Return Value
A data object containing a TIFF image representation.

Discussion
If the specified compression isn't applicable, no compression is used. If a problem is encountered during
generation of the TIFF, the method raisesan NSTIFFExceptionoran NSBadBitmapParametersException.

Availability
Available in Mac OS X v10.0 and later.

See Also
- TIFFRepresentationUsingCompression:factor: (page 369)

Declared In
NSBitmapImageRep.h

Instance Methods

350

bitmapData

Returns a pointer to the bitmap data.
- (unsigned char *)bitmapData

Discussion
If the data is planar, returns a pointer to the first plane.

Availability
Available in Mac OS X v10.0 and later.

See Also
- getPixel:atX:y: (page 356)
- getBitmapDataPlanes: (page 354)

Related Sample Code
ColorMatching

Image Difference
LayerBackedOpenGLView
NSOpenGL Fullscreen
Quartz EB

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

Declared In
NSBitmapImageRep.h

bitmapFormat

Returns the bitmap format of the receiver.
- (NSBitmapFormat)bitmapFormat

Discussion
Returns 0 by default. The return value can indicate several different attributes, which are described in
“Constants” (page 370).

Availability
Available in Mac OS X v10.4 and later.

See Also
- bytesPerRow (page 352)

Declared In
NSBitmapImageRep.h

bitsPerPixel

Returns the number of bits allocated for each pixel in each plane of data.
- (NSInteger)bitsPerPixel

Discussion

This number is normally equal to the number of bits per sample or, if the data is in meshed configuration,
the number of bits per sample times the number of samples per pixel. It can be explicitly set to another value
(ininitWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel: (page 360))in case extramemory
is allocated for each pixel. This may be the case, for example, if pixel data is aligned on byte boundaries.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
Quartz EB

Declared In
NSBitmapImageRep.h

bytesPerPlane

Returns the number of bytes in each plane or channel of data.
- (NSInteger)bytesPerPlane

Discussion
This number is calculated from the number of bytes per row and the height of the image.

Instance Methods 351
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- bytesPerRow (page 352)

Declared In
NSBitmapImageRep.h

bytesPerRow

Returns the minimum number of bytes required to specify a scan line (a single row of pixels spanning the
width of the image) in each data plane.

- (NSInteger)bytesPerRow

Discussion

If not explicitly set to another value (in
initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel: (page 360)), thisnumber will be
figured from the width of the image, the number of bits per sample, and, if the data is in a meshed
configuration, the number of samples per pixel. It can be set to another value to indicate that each row of
data is aligned on word or other boundaries.

Availability
Available in Mac OS X v10.0 and later.

See Also
- bytesPerPlane (page 351)

Related Sample Code
NURBSSurfaceVertexProg

Quartz EB

Vertex Optimization
VertexPerformanceDemo
VertexPerformanceTest

Declared In
NSBitmapImageRep.h

canBeCompressedUsing:

Tests whether the receiver can be compressed by the specified compression scheme.
- (BOOL)canBeCompressedUsing: (NSTIFFCompression)compression

Parameters
compression
A TIFF compression type. NSTIFFCompression types are defined in “Constants” (page 370).

352 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

Return Value
YES if the receiver's data matches compression with this type, NO if the data doesn’t match compression
orif compressionis unsupported..

Discussion

Legal values for compressioncan be foundin NSBitmapImageRep.h and are described in TIFF Compression
in NSBitmaplmageReps. This method returns YES if the receiver’s data matches compress ion; for example,
if compressionis NSTIFFCompressionCCITTFAX3, then the data must be 1 bit per sample and 1 sample
per pixel.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ getTIFFCompressionTypes:count: (page 346)

Declared In
NSBitmapImageRep.h

CGIimage

Returns a Core Graphics image object from the receiver’s current bitmap data.
- (CGImageRef)CGImage

Return Value
Returns an autoreleased CGImageRef opaque type based on the receiver’s current bitmap data.

Discussion

The returned CGImageRef has pixel dimensions that are identical to the receiver’s. This method might return
a preexisting CGImageRef opaque type or create a new one. If the receiver is later modified, subsequent
invocations of this method might return different CGImageRef opaque types.

Availability
Available in Mac OS X version 10.5.

See Also
- initWithCGImage: (page 362)

Declared In
NSBitmapImageRep.h

colorAtX:y:
Returns the color of the pixel at the specified coordinates.

- (NSColor *)colorAtX:(NSInteger)x y:(NSInteger)y

Parameters
X
The x-axis coordinate.

Instance Methods 353
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

354

CHAPTER 14

NSBitmaplmageRep Class Reference

Y
The y-axis coordinate.

Return Value
A color object representing the color at the specified coordinates.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setColor:atX:y: (page 366)

Declared In
NSBitmapImageRep.h

colorizeByMappingGray:toColor:blackMapping:whiteMapping:
Colorizes a grayscale image.

- (void)colorizeByMappingGray: (CGFloat)midPoint toColor:(NSColor *)midPointColor
blackMapping: (NSColor *)shadowColor whiteMapping: (NSColor *)I1ightColor

Parameters

midPoint
A float value representing the midpoint of the grayscale image.

midPointColor
A color object representing the midpoint of the color to map the image to.

shadowColor
A color object representing the black mapping to use for shadows.

lightColor
A color object representing the white mapping to be used in the image.

Discussion
This method maps the receiver such that:

Gray value of midPoint -> midPointColor;
black —> shadowCoTlor;
white -> TightColor.

It works on images with 8-bit SPP, and thus supports either 8-bit gray or 24-bit color (with optional alpha).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

getBitmapDataPlanes:

Returns by indirection bitmap data of the receiver separated into planes.

- (void)getBitmapDataPlanes: (unsigned char **)data

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

Parameters
data

On return, a C array of five character pointers. If the bitmap data is in planar configuration, each
pointer will be initialized to point to one of the data planes. If there are less than five planes, the
remaining pointers will be set to NULL. If the bitmap data is in meshed configuration, only the first
pointer will be initialized; the others will be NULL.

Discussion

Color components in planar configuration are arranged in the expected order—for example, red before green
before blue for RGB color. All color planes precede the coverage plane. If a coverage plane exists, the bitmap's
color components are premultiplied with it. If you modify the contents of the bitmap, you are responsible
for premultiplying the data.

Availability
Available in Mac OS X v10.0 and later.

See Also
- isPlanar (page 365)

- nithitBitmed ataPlares:pixel Wide:pixel Hich:bitsRerSavple:samplesherPixel -reshlia: isPlarar:colorSoecehame:bitmepromat:bytesPer Row:bitsRerPixel e
358)
- InititBitmeplataPlanes:pixel dide:pixel sHich:bitsPerSample: satplesherPixel :hasAlpha: isPlanar:colorSpacehame:bytesPerfaw:bitsPerPixel (e
360)

Declared In
NSBitmapImageRep.h

getCompression:factor:

Returns by indirection the receiver’s compression type and compression factor.
- (void)getCompression: (NSTIFFCompression *)compression factor:(float *)factor

Parameters
compression
On return, an enum constant that represents the compression type used on the data; it corresponds
to one of the values returned by the class method get TIFFCompressionTypes:count: (page 346).
factor
A float value that is specific to the compression type. Many types of compression don't support varying

degrees of compression and thus ignore factor. JPEG compression allows a compression factor
ranging from 0.0 to 1.0, with 0.0 being the lowest and 1.0 being the highest.

Discussion
Use this method to get information on the compression type for the source image data.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

Instance Methods 355
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

356

CHAPTER 14

NSBitmaplmageRep Class Reference

getPixel:atX:y:

Returns by indirection the pixel data for the specified location in the receiver.
- (void)getPixel:(NSUInteger[l)pixelData atX:(NSInteger)x y:(NSInteger)y

Parameters

pixelData
On return, an array of integers containing raw pixel data in the appropriate order for the receiver’s
bitmapFormat (page 351). Smaller integer samples, such as 4-bit, are returned as an integer. Floating
point values are cast to integer values and returned.

X
The x-axis coordinate of the pixel.
Y
The y-axis coordinate of the pixel.
Availability

Available in Mac OS X v10.4 and later.

See Also
- setPixel:atX:y: (page 367)

Declared In
NSBitmapImageRep.h

incrementalLoadFromData:complete:

Loads the current image data into an incrementally-loaded image representation and returns the current
status of the image.

- (NSInteger)incrementallLoadFromData: (NSData *)data complete:(BOOL)complete

Parameters
data
A data object that contains the image to be loaded.

complete
YES if the image is entirely downloaded, NO otherwise.

Return Value
An integer constant indicating the status of the image during the load operation. See the discussion for
details.

Discussion

After initializing the receiver with initForIncrementalload (page 357), you should call this method to
incrementally load the image. Call this method each time new data becomes available. Always pass the entire
image data bufferin data, not just the newest data, because the image decompressor may need the original
data in order to backtrack. This method will block until the data is decompressed; it will decompress as much
of the image as possible based on the length of the data. The image rep does not retain data, so you must
ensure that data is not released for the duration of this method call. Pass NO for comp T ete until the entire
image is downloaded, at which time you should pass YES. You should also pass YES for compieteif you
have only partially downloaded the data, but cannot finish the download.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

This method returns NSTmageReplLoadStatusUnknownType if you did not pass enough data to determine
the image format; you should continue to invoke this method with additional data.

This method returns NSTmageReplLoadStatusReadingHeader if it has enough data to determine the image
format, but needs more data to determine the size and depth and other characteristics of the image. You
should continue to invoke this method with additional data.

This method returns NSImageReplLoadStatusWillNeedAl1Data if the image format does not support

incremental loading or the Application Kit does not yet implement incremental loading for the image format.
You may continue to invoke this method in this case, but until you pass YES for compiete, this method will
continue to return NSImageRepLoadStatusWil1NeedAl1Data, and will perform no decompression. Once
you pass YES, the image will be decompressed and one of the final three status messages will be returned.

If the image format does support incremental loading, then once enough data has been read, the image is
decompressed from the top down a row at a time. In this case, instead of a status value, this method returns
the number of pixel rows that have been decompressed, starting from the top of the image. You can use
this information to draw the part of the image that is valid. The rest of the image is filled with opaque white.
Note that if the image is progressive (as in a progressive JPEG or 2D interlaced PNG), this method may quickly
return the full height of the image, but the image may still be loading, so do not use this return value as an
indication of how much of the image remains to be decompressed.

If an error occurred while decompressing, this method returns NSImageReploadStatusInvalidData. If
completeis YES but not enough data was available for decompression,
NSImageReplLoadStatusUnexpectedEOF is returned. If enough data has been provided (regardless of the
complete flag), then NSImageRepLoadStatusCompleted is returned. When any of these three status
results are returned, this method has adjusted the NSBitmapImageRep sothat pixelsHigh (page 1389) and
size (page 1394), as well as the bitmap data, only contains the pixels that are valid, if any.

To cancel decompression, just pass in the existing data or ni1 and YES for comp T ete. This method stops
decompression immediately, adjusts the image size, and returns NSImageRepLoadStatusUnexpectedEOF.
This method returns NSImageReplLoadStatusCompleted if you call it after receiving any error results
(NSImageReploadStatusInvalidData or NSImageReplLoadStatusUnexpectedEOQF) orif you call it on
an NSBitmapImageRep that was not initialized with initForIncrementalload (page 357).

Availability
Available in Mac OS X v10.2 and later.

See Also
- initForIncrementalload (page 357)

Declared In
NSBitmapImageRep.h

initForIncrementalLoad

Initializes and returns the receiver, a newly allocated NSBitmapImageRep object, for incremental loading.
- (id)initForIncrementalload

Discussion
The receiver returns itself after setting its size and data buffer to zero. You can then call
incrementalloadFromData:complete: (page 356) to incrementally add image data.

Instance Methods 357
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

358

CHAPTER 14

NSBitmaplmageRep Class Reference

Availability
Available in Mac OS X v10.2 and later.

See Also
- incrementalloadFromData:complete: (page 356)

Declared In
NSBitmapImageRep.h

initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bitmapFormat:bytesPerRow:bitsPerPixel:

Initializes the receiver, a newly allocated NSBitmapImageRep object, so it can render the specified image.

- (id)initWithBitmapDataPlanes: (unsigned char **)planes pixelsWide: (NSInteger)width
pixelsHigh:(NSInteger)height bitsPerSample: (NSInteger)bps
samplesPerPixel:(NSInteger)spp hasAlpha:(BOOL)alpha isPlanar:(BOOL)isPlanar
colorSpaceName: (NSString *)colorSpaceName
bitmapFormat: (NSBitmapFormat)bitmapformat bytesPerRow: (NSInteger)rowBytes
bitsPerPixel:(NSInteger)pixelBits

Parameters

planes
An array of character pointers, each of which points to a buffer containing raw image data. If the data
is in planar configuration, each buffer holds one component—one plane—of the data. Color planes
are arranged in the standard order—for example, red before green before blue for RGB color. All color
planes precede the coverage plane. If a coverage plane exists, the bitmap’s color components must
be premultiplied with it. If the data is in meshed configuration (thatis, 7sP7anar is NO), only the first
buffer is read.

If pTanesis NULL or an array of NULL pointers, this method allocates enough memory to hold the
image described by the other arguments. You can then obtain pointers to this memory (with the
getPixel:atX:y: (page356)orbitmapData (page 350) method) and fill in the image data. In this
case, the allocated memory will belong to the object and will be freed when it’s freed.

If pTanesis not NULL and the array contains at least one data pointer, the returned object will only
reference the image data; it will not copy it. The object treats the image data in the buffers as
immutable and will not attempt to alter it. When the object itself is freed, it will not attempt to free

the buffers.
width
The width of the image in pixels. This value must be greater than 0.
height
The height of the image in pixels. This value must be greater than 0.
bps
The number of bits used to specify one pixel in a single component of the data. All components are
assumed to have the same bits per sample. bps should be one of these values: 1, 2, 4, 8, 12, or 16.
spp

The number of data components, or samples per pixel. This value includes both color components
and the coverage component (alpha), if present. Meaningful values range from 1 through 5. An image
with cyan, magenta, yellow, and black (CMYK) color components plus a coverage component would
have an spp of 5; a grayscale image that lacks a coverage component would have an spp of 1.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

alpha
YES if one of the components counted in the number of samples per pixel (spp) is a coverage (alpha)
component, and NO if there is no coverage component. If YES, the color components in the bitmap
data must be premultiplied with their coverage component.

isPlanar
YES if the data components are laid out in a series of separate “planes” or channels (“planar
configuration”) and NO if component values are interwoven in a single channel (“meshed
configuration”). If NO, only the first buffer of planes is read.
For example, in meshed configuration, the red, green, blue, and coverage values for the first pixel of
an image would precede the red, green, blue, and coverage values for the second pixel, and so on.
In planar configuration, red values for all the pixels in the image would precede all green values,
which would precede all blue values, which would precede all coverage values.

colorSpaceName
A string constant that indicates how data values are to be interpreted. It should be one of the following
values:

m NSCalibratedWhiteColorSpace
m NSCalibratedBlackColorSpace
m NSCalibratedRGBColorSpace

m NSDeviceWhiteColorSpace

m NSDeviceBlackColorSpace

m NSDeviceRGBColorSpace

m NSDeviceCMYKColorSpace

m NSNamedColorSpace

m NSCustomColorSpace

If bps is 12, you cannot specify the monochrome color space.

bitmapFormat
An integer that specifies the ordering of the bitmap components. It is a mask created by combining
the NSBitmapFormat constants NSATphaFirstBitmapFormat,
NSATphaNonpremultipliedBitmapFormatandNSFloatingPointSamplesBitmapFormat using
the C bitwise OR operator.

rowBytes

The number of bytes that are allocated for each scan line in each plane of data. A scan line is a single
row of pixels spanning the width of the image.

Normally, rowBytes can be figured from the width of the image, the number of bits per pixel in each
sample (bps), and, if the data is in a meshed configuration, the number of samples per pixel (spp).
However, if the data for each row is aligned on word or other boundaries, it may have been necessary
to allocate more memory for each row than there is data to fill it. rowBytes lets the object know
whether that’s the case.

If you pass in a rowBytes value of 0, the bitmap data allocated may be padded to fall on long word
or larger boundaries for performance. If your code wants to advance row by row, use

bytesPerRow (page 352) and do not assume the data is packed. Passing in a non-zero value allows
you to specify exact row advances.

Instance Methods 359
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

360

CHAPTER 14

NSBitmaplmageRep Class Reference

pixelBits
This integer value informs NSBi tmap ImageRep how many bits are actually allocated per pixel in each
plane of data. If the data is in planar configuration, this normally equals bps (bits per sample). If the
data is in meshed configuration, it normally equals bps times spp (samples per pixel). However, it’s
possible for a pixel specification to be followed by some meaningless bits (empty space), as may
happen, for example, if pixel data is aligned on byte boundaries. NSBitmapImageRep supports only
a limited number of pixeB7ts values (other than the default): for RGB images with 4 bps, pixelBits
may be 16; for RGB images with 8 bps, pixelBits may be 32. The legal values for pixelBits are
system dependent.

If you specify 0 for this parameter, the object interprets the number of bits per pixel using the values
in the bps and spp parameters, as described in the preceding paragraph, without any meaningless
bits.

Return Value
An initialized NSBitmapImageRep object or ni1 if the object cannot be initialized.

Availability
Available in Mac OS X v10.4 and later.

Related Sample Code
Quartz Composer Offline Rendering

Declared In
NSBitmapImageRep.h

initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel:

Initializes the receiver, a newly allocated NSBitmapImageRep object, so it can render the specified image.

- (id)initWithBitmapDataPlanes: (unsigned char **)planes pixelsWide: (NSInteger)width
pixelsHigh: (NSInteger)height bitsPerSample: (NSInteger)bps
samplesPerPixel:(NSInteger)spp hasAlpha:(BOOL)alpha isPlanar:(BOOL)isPlanar
colorSpaceName: (NSString *)colorSpaceName bytesPerRow: (NSInteger)rowBytes
bitsPerPixel:(NSInteger)pixelBits

Parameters

planes
An array of character pointers, each of which points to a buffer containing raw image data. If the data
is in planar configuration, each buffer holds one component—one plane—of the data. Color planes
are arranged in the standard order—for example, red before green before blue for RGB color. All color
planes precede the coverage plane. If a coverage plane exists, the bitmap’s color components must
be premultiplied with it. If the data is in meshed configuration (that is, 7sP7anar is NO), only the first
buffer is read.

If pTanes is NULL or an array of NULL pointers, this method allocates enough memory to hold the
image described by the other arguments. You can then obtain pointers to this memory (with the
getPixel:atX:y: (page356)orbitmapData (page 350) method) and fill in the image data. In this
case, the allocated memory will belong to the object and will be freed when it’s freed.

If pTanesis not NULL and the array contains at least one data pointer, the returned object will only
reference the image data; it will not copy it. The object treats the image data in the buffers as
immutable and will not attempt to alter it. When the object itself is freed, it will not attempt to free
the buffers.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

width
The width of the image in pixels. This value must be greater than 0.
height
The height of the image in pixels. This value must be greater than 0.
bps
The number of bits used to specify one pixel in a single component of the data. All components are
assumed to have the same bits per sample. bps should be one of these values: 1, 2, 4, 8, 12, or 16.
spp
The number of data components, or samples per pixel. This value includes both color components
and the coverage component (alpha), if present. Meaningful values range from 1 through 5. An image
with cyan, magenta, yellow, and black (CMYK) color components plus a coverage component would
have an spp of 5; a grayscale image that lacks a coverage component would have an spp of 1.
alpha
YES if one of the components counted in the number of samples per pixel (spp) is a coverage (alpha)
component, and NO if there is no coverage component. If YES, the color components in the bitmap
data must be premultiplied with their coverage component.
isPlanar

YES if the data components are laid out in a series of separate “planes” or channels (“planar
configuration”) and NO if component values are interwoven in a single channel (“meshed
configuration”). If NO, only the first buffer of planes is read.

For example, in meshed configuration, the red, green, blue, and coverage values for the first pixel of
an image would precede the red, green, blue, and coverage values for the second pixel, and so on.
In planar configuration, red values for all the pixels in the image would precede all green values,
which would precede all blue values, which would precede all coverage values.

colorSpaceName

A string constant that indicates how data values are to be interpreted. It should be one of the following
values:

m NSCalibratedWhiteColorSpace
m NSCalibratedBlackColorSpace
m NSCalibratedRGBColorSpace

m NSDeviceWhiteColorSpace

m NSDeviceBlackColorSpace

m NSDeviceRGBColorSpace

m NSDeviceCMYKColorSpace

m NSNamedColorSpace

m NSCustomColorSpace

If bps is 12, you cannot specify the monochrome color space.

Instance Methods 361
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

362

CHAPTER 14

NSBitmaplmageRep Class Reference

rowBytes

The number of bytes that are allocated for each scan line in each plane of data. A scan line is a single
row of pixels spanning the width of the image.

Normally, rowBytes can be figured from the width of the image, the number of bits per pixel in each
sample (bps), and, if the data is in a meshed configuration, the number of samples per pixel (spp).
However, if the data for each row is aligned on word or other boundaries, it may have been necessary
to allocate more memory for each row than there is data to fill it. rowBytes lets the object know
whether that’s the case.

If you pass in a rowBytes value of 0, the bitmap data allocated may be padded to fall on long word
or larger boundaries for performance. If your code wants to advance row by row, use

bytesPerRow (page 352) and do not assume the data is packed. Passing in a non-zero value allows
you to specify exact row advances.

pixelBits

This integer value informs NSBitmap ImageRep how many bits are actually allocated per pixel in each
plane of data. If the data is in planar configuration, this normally equals bps (bits per sample). If the
data is in meshed configuration, it normally equals bps times spp (samples per pixel). However, it's
possible for a pixel specification to be followed by some meaningless bits (empty space), as may
happen, for example, if pixel data is aligned on byte boundaries. NSBitmapImageRep supports only
a limited number of p7xe]B17ts values (other than the default): for RGB images with 4 bps, pixelBits
may be 16; for RGB images with 8 bps, pixelBits may be 32. The legal values for pixelBits are
system dependent.

If you specify 0 for this parameter, the object interprets the number of bits per pixel using the values
in the bps and spp parameters, as described in the preceding paragraph, without any meaningless
bits.

Return Value
An initialized NSBitmapImageRep object or ni1 if the object cannot be initialized.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CocoaVideoFrameToNSImage

ColorMatching
Monochrome Image
Reducer

Transformed Image

Declared In
NSBitmapImageRep.h

initWithCGImage:

Returns an NSBitmapImageRep object created from a Core Graphics image object.

(id)initWithCGImage: (CGImageRef)cglimage

Parameters

cglmage

A Core Graphics image object (an opaque type) from which to create the receiver. This opaque type
is retained.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

Return Value
An NSBitmapImageRep object initialized from the contents of the Core Graphics image or ni1 if the
NSBitmapImageRep couldn’t be created.

Discussion

If you use this method, you should treat the resulting bitmap NSBitmapImageRep object as read only.
Because it only retains the value in the cgImage parameter, rather than unpacking the data, accessing the
pixel data requires the creation of a copy of that data in memory. Changes to that data are not saved back
to the Core Graphics image.

Availability
Available in Mac OS X v10.5 and later.

See Also
- CGImage (page 353)

Declared In
NSBitmapImageRep.h

initWithClimage:

Returns an NSBitmapImageRep object created from a Core Image object.
- (id)initWithCIImage:(CIImage *)cilmage

Parameters

cilmage
A Core Image object whose contents are to be copied to the receiver. This image rectangle must be
of a finite size.

Return Value
An NSBitmapImageRep object initialized from the contents of the Core Image (CIImage) object or ni 1 if
the NSBitmapImageRep couldn't be created.

Discussion

The image in the c7Image parameter must be fully rendered before the receiver can be initialized. If you
specify an object whose rendering was deferred (and thus does not have any pixels available now), this
method forces the image to be rendered immediately. Rendering the image could result in a performance
penalty if the image has a complex rendering chain or accelerated rendering hardware is not available. By
the time this method returns, however, the resultant NSBitmapImageRep object can have its raw pixel data
inspected, can be put on the pasteboard, and can be encoded to any of the standard image formats that
NSBitmapImageRep supports (JPEG, TIFF, and so on.)

If you passin a CIImage object whose extents are not finite, this method raises an exception.

Availability
Available in Mac OS X v10.5 and later.

See Also
- initWithBitmapImageRep: (page 59) (Climage)

Declared In
NSBitmapImageRep.h

Instance Methods 363
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

364

CHAPTER 14

NSBitmaplmageRep Class Reference

initWithData:

Initializes a newly allocated NSBitmapImageRep from the provided data.
- (id)initWithData: (NSData *)bitmapData

Parameters

bitmapData
A data object containing image data. The contents of bitmapData can be any supported bitmap
format. For TIFF data, the NSBitmapImageRep is initialized from the first header and image data
foundin bitmapData.

Return Value
Returns an initialized NSB1itmap ImageRep if the initialization was successful or ni 1 if it was unable to interpret
the contents of bitmapData.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

initWithFocusedViewRect:

Initializes the receiver, a newly allocated NSB1itmap ImageRep object, with bitmap data read from a rendered
image.

- (id)initWithFocusedViewRect: (NSRect)rect

Parameters
rect
A rectangle that specifies an area of the current window in the current coordinate system.

Return Value
Returns the initialized object or ni1 If for any reason the new object can't be initialized.

Discussion
This method uses imaging operators to read the image data into a buffer; the object is then created from
that data. The object is initialized with information about the image obtained from the window server.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
CarbonCocoaCorelmageTab

Color Sampler
GLChildWindowDemo
NSGLImage

Reducer

Declared In
NSBitmapImageRep.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

isPlanar

Returns YES if image data is a planar configuration and NO if its in a meshed configuration.
- (BOOL)isPlanar

Discussion
In a planar configuration, the image data is segregated into a separate plane for each color and coverage
component. In a meshed configuration, the data is integrated into a single plane.

Availability
Available in Mac OS X v10.0 and later.

See Also
- samplesPerPixel (page 366)

Declared In
NSBitmapImageRep.h

numberOfPlanes

Returns the number of separate planes image data is organized into.
- (NSInteger)numberOfPlanes

Discussion
This number is the number of samples per pixel if the data has a separate plane for each component
(isPTanar (page 365) returns YES) and 1 if the data is meshed (isPTanar (page 365) returns NO).

Availability
Available in Mac OS X v10.0 and later.

See Also
- samplesPerPixel (page 366)

- hasAlpha (page 1388) (NSImageRep)
- bitsPerSample (page 1386) (NSImageRep)

Declared In
NSBitmapImageRep.h

representationUsingType:properties:

Formats the receiver’s image data using the specified storage type and properties and returns it in a data
object.

- (NSData *)representationUsingType: (NSBitmapImageFileType)storagelype
properties:(NSDictionary *)properties

Parameters
StorageType

An enum constant specifying a file type for bitmap images. It can be NSBMPFileType, NSGIFFileType,
NSJPEGFileType, NSPNGFileType,or NSTIFFFileType.

Instance Methods 365
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

366

CHAPTER 14

NSBitmaplmageRep Class Reference

properties
A dictionary that contains key-value pairs specifying image properties. These string constants used
as keys and the valid values are described in “Bitmap image properties” (page 372).

Return Value
A data object containing the receiver’s image data in the specified format. You can write this data to a file
or use it to create a new NSBitmapImageRep object.

Availability
Available in Mac OS X v10.0 and later.

See Also
- TIFFRepresentation (page 368)

- TIFFRepresentationUsingCompression:factor: (page 369)
- TIFFRepresentation (page 1343) (NSImage)
- TIFFRepresentationUsingCompression:factor: (page 1344) (NSImage)

Related Sample Code
Reducer

SpecialPictureProtocol

Declared In
NSBitmapImageRep.h

samplesPerPixel

Returns the number of components in the data.
- (NSInteger)samplesPerPixel

Discussion
The returned value includes both color components and the coverage component, if present.

Availability
Available in Mac OS X v10.0 and later.

See Also
- hasAlpha (page 1388) (NSImageRep)

- bitsPerSample (page 1386) (NSImageRep)

Related Sample Code
Image Difference

Declared In
NSBitmapImageRep.h

setColor:atX:y:

Changes the color of the pixel at the specified coordinates.

- (void)setColor:(NSColor *)color atX:(NSInteger)x y:(NSInteger)y

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

Parameters
color
A color object representing the color to be set.

X
The x-axis coordinate of the pixel.
Y
The y-axis coordinate of the pixel.
Availability

Available in Mac OS X v10.4 and later.

See Also
- colorAtX:y: (page 353)

Declared In
NSBitmapImageRep.h

setCompression:factor:

Sets the receiver’s compression type and compression factor.
- (void)setCompression: (NSTIFFCompression)compression factor:(float)factor

Parameters

compression
An enum constant that identifies one of the supported compression types as described in
“Constants” (page 370).

factor

A floating point value that is specific to the compression type. Many types of compression don’t
support varying degrees of compression and thus ignore factor. JPEG compression allows a
compression factor ranging from 0.0 to 1.0, with 0.0 being the lowest and 1.0 being the highest.

Discussion

When an NSBitmapImageRep is created, the instance stores the compression type and factor for the source
data. TIFFRepresentation (page 368) and TIFFRepresentationOfImageRepsIinArray: (page 349)
(class method) try to use the stored compression type and factor. Use this method to change the compression
type and factor.

Availability
Available in Mac OS X v10.0 and later.

See Also
- canBeCompressedUsing: (page 352)

Declared In
NSBitmapImageRep.h

setPixel:atX:y:

Sets the receiver's pixel at the specified coordinates to the specified raw pixel values.

- (void)setPixel:(NSUInteger[l)pixelData atX:(NSInteger)x y:(NSInteger)y

Instance Methods 367
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

368

CHAPTER 14

NSBitmaplmageRep Class Reference

Parameters

pixelData
An array of integers representing the raw pixel values. The values must be in an order appropriate to
the receiver's bitmapFormat (page 351). Small pixel sample values should be passed as an integer
value. Floating point values should be cast int[].

X
The x-axis coordinate of the pixel.
Y
The y-axis coordinate of the pixel.
Availability

Available in Mac OS X v10.4 and later.

See Also
- getPixel:atX:y: (page 356)

Declared In
NSBitmapImageRep.h

setProperty:withValue:

Sets the image’s propertyto value.
- (void)setProperty: (NSString *)property withValue:(id)value

Parameters

property
A string constant used as a key for an image property. These properties are described in
“Constants” (page 370).

value

A value specific to property.If valueis nil, the value of the property is cleared.
Discussion
The properties can affect how the image is read in and saved to file.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

TIFFRepresentation

Returns a TIFF representation of the receiver.
- (NSData *)TIFFRepresentation

Discussion

This method invokes TTFFRepresentationUsingCompression:factor: (page 369) using the stored
compression type and factor retrieved from the initial image data or changed using
setCompression:factor: (page 367).If the stored compression type isn't supported for writing TIFF data

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

(forexample, NSTIFFCompressionNEXT), the stored compression is changedto NSTIFFCompressionNone
before invoking TIFFRepresentationUsingCompression:factor: (page 369). receiver, using the
compression that's returned by getCompression: factor: (page 355) (if applicable).

If a problem is encountered during generation of the TIFF, TIFFRepresentationraisesan NSTIFFException
oran NSBadBitmapParameterskException.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ TIFFRepresentationOfImageRepsInArray: (page 349)

- TIFFRepresentationUsingCompression:factor: (page 369)

- representationUsingType:properties: (page 365)

- TIFFRepresentation (page 1343) (NSImage)

- TIFFRepresentationUsingCompression:factor: (page 1344) (NSImage)

Declared In
NSBitmapImageRep.h

TIFFRepresentationUsingCompression:factor:

Returns a TIFF representation of the image using the specified compression.

- (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)compression
factor:(float) factor

Parameters
compression

An enum constant that represents a TIFF data-compression scheme. Legal values for compression
can be found in NSBitmapImageRep.h and are described in “Constants” (page 370).

factor
A f1oat value that provides a hint for those compression types that implement variable compression
ratios.

Currently only JPEG compression uses a compression factor. JPEG compression in TIFF files is not
supported, and factor is ignored.
Discussion
If the compression type isn't supported for writing TIFF data (for example, NSTIFFCompressionNEXT), the
stored compression is changed to NSTIFFCompressionNone before the TIFF representation is generated.

If a problem is encountered during generation of the TIFF,
TIFFRepresentationUsingCompression:factor: raisesan NSTIFFException oran
NSBadBitmapParametersException.

Availability
Available in Mac OS X v10.0 and later.

See Also
- canBeCompressedUsing: (page 352)

+ TIFFRepresentationOfImageRepsInArray: (page 349)
- TIFFRepresentation (page 368)

Instance Methods 369
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

- representationUsingType:properties: (page 365)
- TIFFRepresentation (page 1343) (NSImage)
- TIFFRepresentationUsingCompression:factor: (page 1344) (NSimage)

Related Sample Code
Quartz Composer Offline Rendering

Declared In
NSBitmapImageRep.h

valueForProperty:

Returns the value for the specified property.
- (id)valueForProperty: (NSString *)property

Parameters

property
A string constant used as a key for an image property. These properties are described in
“Constants” (page 370).

Return Value
A value specific to property, or nil if the property is not set for the bitmap.

Discussion

Image properties can affect how an image is read in and saved to file. When retrieving the bitmap image
properties defined in “Bitmap image properties” (page 372), be sure to check the return value of this method
foranil value. If a particular value is not set for the image, this method may return ni1.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

Constants

370

NSimageRepLoadStatus

These constants represent the various status values returned by
incrementalloadFromData:complete: (page 356).

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

typedef enum {
NSImageReplLoadStatusUnknownType = -1,

NSImageReplLoadStatusReadingHeader = -2,
NSImageReplLoadStatusWillNeedAllData = -3,
NSImageReplLoadStatusInvalidData = -4,
NSImageReploadStatusUnexpectedEOF = -5,
NSImageReplLoadStatusCompleted = -6
} NSImageReplLoadStatus;
Constants

NSImageReplLoadStatusUnknownType
Not enough data to determine image format. You should continue to provide more data.

Available in Mac OS X v10.2 and later.
Declared in NSBitmapImageRep.h.

NSImageReplLoadStatusReadingHeader
The image format is known, but not enough data has been read to determine the size, depth, etc.,
of the image. You should continue to provide more data.

Available in Mac OS X v10.2 and later.
Declared in NSBitmapImageRep.h.

NSImageRepLoadStatusWillNeedAl1Data
Incremental loading cannot be supported. Until you call
incrementalloadFromData:complete: (page 356) with YES, this status will be returned. You can
continue to call the method but no decompression will take place. Once you do call the method with
YES, then the image will be decompressed and one of the final three status messages will be returned.

Available in Mac OS X v10.2 and later.
Declared in NSBitmapImageRep.h.

NSImageReplLoadStatusInvalidData
An error occurred during image decompression. The image contains the portions of the data that
have already been successfully decompressed, if any

Available in Mac OS X v10.2 and later.
Declared in NSBitmapImageRep.h.

NSImageReplLoadStatusUnexpectedEQF
incrementalloadFromData:complete: (page 356)was called with YES, but not enough data was
available for decompression. The image contains the portions of the data that have already been
successfully decompressed, if any.

Available in Mac OS X v10.2 and later.
Declared in NSBitmapImageRep.h.

NSImageReplLoadStatusCompleted
Enough data has been provided to successfully decompress the image (regardless of the complete:
flag).
Available in Mac OS X v10.2 and later.
Declared in NSBitmapImageRep.h.

Availability
Available in Mac OS X v10.2 and later.

Declared In
NSBitmapImageRep.h

Constants 37
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

Bitmap image properties

These constants identify properties that are used by
representationOfImageRepsInArray:usingType:properties: (page 348),

representationUsingType:properties: (page 365), setPixel:atX:y: (page 367), and

valueForProperty: (page 370).

NSString *NSImageCompressionMethod;
NSString *NSImageCompressionfFactor;
NSString *NSImageDitherTransparency;
NSString *NSImageRGBColorTable;
NSString *NSImagelnterlaced;

NSString *NSImageColorSyncProfileData;
NSString *NSImageFrameCount;

NSString *NSImageCurrentFrame;
NSString *NSImageCurrentFrameDuration;
NSString *NSImageloopCount;

NSString *NSImageGamma;

NSString *NSImageProgressive;

NSString *NSImageEXIFData;

NSString* NSImageFallbackBackgroundColor

Constants
NSImageColorSyncProfileData
Identifies an NSData object containing the ColorSync profile data.

It can be used for TIFF, JPEG, GIF, and PNG files. This value is set when reading in and used when
writing out image data. You can get the profile data for a particular color space from the corresponding

NSColorSpace object or from the ColorSync Manager.
Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSImageCompressionFactor
Identifies an NSNumber object containing the compression factor of the image.

Used only for JPEG files. JPEG compression in TIFF files is not supported, and the factor is ignored.
The value is a float between 0.0 and 1.0, with 1.0 resulting in no compression and 0.0 resulting in the
maximum compression possible. It's set when reading in and used when writing out the image.

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSImageCompressionMethod
Identifies an NSNumber object identifying the compression method of the image.

Used only for TIFF files. The value corresponds to one of the NSTIFFCompression constants, described

below. It's set when reading in and used when writing out.
Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSImageDitherTransparency

Identifies an NSNumber object containing a boolean that indicates whether the image is dithered.

Used only when writing GIF files.
Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

372 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

NSImagelnterlaced
Identifies an NSNumber object containing a Boolean value that indicates whether the image is
interlaced.

Used only when writing out PNG files.
Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSImageRGBColorTable
Identifies an NSData object containing the RGB color table.

Used only for GIF files. It's stored as packed RGB. It's set when reading in and used when writing out.
Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSImageEXIFData
Identifies an NSDictionary object containing the EXIF data for the image.

This property is used only when reading or writing JPEG files. The dictionary contains the EXIF keys
and values. Th standard dictionary keys (that is, those that are not specific to camera vendors) are
identical to those for kCGImagePropertyExifDictionary declared in the CGImageSource AP
See kCGImagePropertyExifDictionary Keys for details.

Available in Mac OS X v10.4 and later.
Declared in NSBitmapImageRep.h.

NSImageFallbackBackgroundColor
Specifies the background color to use when writing to an image format (such as JPEG) that doesn't
support alpha. The color's alpha value is ignored. The default background color, when this property
is not specified, is white. The value of the property should be an NSCo1or object. This constant
corresponds to the kCGImageDestinationBackgroundColor constant in Quartz.

Available in Mac OS X v10.5 and later.
Declared in NSBitmapImageRep.h.

NSImageFrameCount
Identifies an NSNumber object containing the number of frames in an animated GIF file.

This value is used when reading in data.
Available in Mac OS X v10.2 and later.
Declared in NSBitmapImageRep.h.

NSImageGamma
Identifies an NSNumber object containing the gamma value for the image.

Used only for PNG files. The gamma values is a floating-point number between 0.0 and 1.0, with 0.0
being black and 1.0 being the maximum color. It’s set when reading in and used when writing out.

Available in Mac OS X v10.4 and later.
Declared in NSBitmapImageRep.h.

NSImageCurrentFrame
Identifies an NSNumber object containing the current frame for an animated GIF file.

The first frame is 0.
Available in Mac OS X v10.2 and later.
Declared in NSBitmapImageRep.h.

Constants 373
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

NSImageCurrentFrameDuration
Identifies an NSNumber object containing the duration (in seconds) of the current frame for an animated
GIF image.

The frame duration can be a floating-point value. It is used when reading in, but not when writing
out.

Available in Mac OS X v10.2 and later.
Declared in NSBitmapImageRep.h.
NSImageProgressive

Identifies an NSNumber object containing a boolean that indicates whether the image uses progressive
encoding.

Used only for JPEG files. It's set when reading in and used when writing out.
Available in Mac OS X v10.4 and later.
Declared in NSBitmapImageRep.h.

NSImagelLoopCount
Identifies an NSNumber object containing the number of loops to make when animating a GIF image.

A value of 0 indicates the animation should loop indefinitely. Values should be specified as integer
numbers. It is used when reading in but not when writing out the image.

Available in Mac OS X v10.3 and later.
Declared in NSBitmapImageRep.h.

Discussion

When using the valueForProperty: method to retrieve the the value for any of these keys, be sure to
check that the returned value is non-ni1 before you attempt to use it. A bitmap image representation may
return ni1 for any values that have not yet been set.

Declared In
NSBitmapImageRep.h

NSBitmaplmageFileType

The following file type constants are provided as a convenience by NSBitmapImageRep:

typedef enum _NSBitmapImageFileType {
NSTIFFFileType,
NSBMPFileType,
NSGIFFileType,
NSJPEGFileType,
NSPNGFileType,
NSJPEG2000FiTleType
} NSBitmapImageFileType;

Constants
NSTIFFFileType
Tagged Image File Format (TIFF)

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

374 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

NSBMPFileType
Windows bitmap image (BMP) format

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.
NSGIFFileType

Graphics Image Format (GIF), originally created by CompuServe for online downloads

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSJPEGFileType
JPEG format

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSPNGFileType
Portable Network Graphics (PNG) format

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSJPEG2000FiTeType
JPEG 2000 file format.

Available in Mac OS X v10.4 and later.
Declared in NSBitmapImageRep.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

NSTIFFCompression

These constants represent the various TIFF data-compression schemes supported by NSBitmapImageRep.

typedef enum _NSTIFFCompression {
NSTIFFCompressionNone = 1,
NSTIFFCompressionCCITTFAX3 =
NSTIFFCompressionCCITTFAX4 = 4,
NSTIFFCompressionlLZW = 5,
NSTIFFCompressionJPEG = 6,
NSTIFFCompressionNEXT = 32766,

w

NSTIFFCompressionPackBits = 32773,

NSTIFFCompressionO1dJPEG = 32865
} NSTIFFCompression;

Constants
NSTIFFCompressionNone
No compression.

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

Constants

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

375

376

CHAPTER 14

NSBitmaplmageRep Class Reference

NSTIFFCompressionCCITTFAX3
CCITT Fax Group 3 compression.

Used for 1-bit fax images sent over telephone lines.
Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSTIFFCompressionCCITTFAX4
CCITT Fax Group 4 compression.

Used for 1-bit fax images sent over ISDN lines.
Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSTIFFCompressionlLZW
LZW compression.

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSTIFFCompressiondPEG
JPEG compression. No longer supported for input or output.

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSTIFFCompressionNEXT
NeXT compressed. Used for input only.
Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSTIFFCompressionPackBits
PackBits compression.

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

NSTIFFCompressionO1dJPEG
Old JPEG compression. No longer supported for input or output.

Available in Mac OS X v10.0 and later.
Declared in NSBitmapImageRep.h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBitmapImageRep.h

NSBitmapFormat

These constants represent the various bitmap component formats supported by NSBitmapImageRep. These
values are combined using the C bitwise OR operator and passed to
initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bitmapFormat:bytesPerRow:bitsPerPixel: (page 358)as
the bitmap format and are returned by bitmapFormat (page 351).

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 14

NSBitmaplmageRep Class Reference

typedef enum {
NSAlphaFirstBitmapFormat

NSAlphaNonpremultipliedBitmapFormat
NSFloatingPointSamplesBitmapFormat

} NSBitmapFormat;

Constants
NSATphaFirstBitmapFormat
If 0, alpha values are the last component.

For example, CMYKA and RGBA.
Available in Mac OS X v10.4 and later.
Declared in NSBitmapImageRep.h.

NSAlphaNonpremultipliedBitmapFormat
If 0, alpha values are premultiplied.

Available in Mac OS X v10.4 and later.
Declared in NSBitmapImageRep.h.

NSFloatingPointSamplesBitmapFormat
If 0, samples are integer values.

Available in Mac OS X v10.4 and later.
Declared in NSBitmapImageRep.h.

Availability
Available in Mac OS X v10.4 and later.

Declared In
NSBitmapImageRep.h

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

377

CHAPTER 14

NSBitmaplmageRep Class Reference

378 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Inherits from NSView : NSResponder : NSObject
Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Availability Available in Mac OS X v10.0 and later.
Declared in AppKit/NSBox.h
Companion guide Boxes
Related sample code Aperture Image Resizer
CoreRecipes
EnhancedDataBurn
LayerBackedOpenGLView
Quartz Composer QCTV
Overview

The NSBox class implements simple views that can title themselves and draw a border around their content.
These objects are known as boxes. You can use box to group, visually, some number of other views.

Subclassing Notes

An NSBox object is a view that draws a line around its rectangular bounds and that displays a title on or near
the line (or might display neither line nor title). You can adjust the style of the line (bezel, grooved, or plain)
as well as the placement and font of the title. An NSBox also has a content view to which other views can
be added; it thus offers a way for an application to group related views. You could create a custom subclass
of NSBox that alters or augments its appearance or that modifies its grouping behavior. For example, you
might add color to the lines or background, add a new line style, or have the views in the group automatically
snap to an invisible grid when added.

Methods to Override

You must override the drawRect : (page 3121) method (inherited from NSV i ew) if you want to customize the
appearance of your NSBox objects. Depending on the visual effect you're trying to achieve, you may have
to invoke super’s implementation first. For example, if you are compositing a small image in a corner of the

Overview 379
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

380

CHAPTER 15

NSBox Class Reference

box, you would invoke the superclass implementation first. If you're adding a new style of line, you would

provide a way to store a request for this line type (such as a boolean instance variable and related accessor
methods). Then, in drawRect : (page 3121), if a request for this line type exists, you would draw the entire
view yourself (that is, without calling super). Otherwise, you would invoke the superclass implementation.

If you wish to change grouping behavior or other behavioral characteristics of the NSBox class, consider
overriding setContentView: (page 387),sizeToFit (page392),oraddSubview: (page 3092) (inherited from
NSView).

Special Considerations

If you are drawing the custom NSBox entirely by yourself, and you want it to look exactly like the superclass
object (except for your changes), it may take some effort and time to get the details right.

Configuring Boxes

- borderRect (page 382)
Returns the rectangle in which the receiver’s border is drawn.
- boxType (page 383)
Returns the receiver’s box type.
- setBoxType: (page 387)
Sets the box type.
- borderType (page 382)
Returns the receiver’s border type.

- setBorderType: (page 386)
Sets the border type to aType, which must be a valid border type.

- isTransparent (page 385)
Indicates whether the receiver is transparent.
- setTransparent: (page 391)
Specifies whether the receiver is transparent.
- title (page 392)
Returns the receiver's title.
- setTitle: (page 389)
Sets the title of the box and marks the region of the receiver within the title rectangle as needing
display.
- titleFont (page 393)
Returns the font object used to draw the receiver’s title.
- setTitleFont: (page 390)

Sets the font object used to draw the receiver’s title and marks the region of the receiver within the
title rectangle as needing display.

- titlePosition (page 393)
Returns a constant representing the title position.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

- setTitlePosition: (page 390)
Sets the position of the box's title.
- setTitleWithMnemonic: (page 391)
Sets the title of the receiver with a character denoted as an access key.

- titleCell (page 393)
Returns the cell used to display the receiver’s title.
- titleRect (page 394)
Returns the rectangle in which the receiver’s title is drawn.

Customizing

- borderColor (page 382)
Returns the color of the receiver’s border when the receiver is a custom box with a simple line border.

- setBorderColor: (page 385)

Specifies the receiver’s border color.
- borderWidth (page 383)

Returns the width of the receiver’s border when the receiver is a custom box with a simple line border.
- setBorderWidth: (page 386)

Specifies the receiver’s border width.

- cornerRadius (page 384)
Returns the radius of the receiver’s corners when the receiver is a custom box with a simple line
border.

- setCornerRadius: (page 388)
Specifies the receiver’s corner radius.

- fillColor (page 385)
Returns the color of the receiver’s background when the receiver is a custom box with a simple line
border.

- setFillColor: (page 389)
Specifies the receiver’s fill color.

Managing Content

- contentView (page 384)
Returns the receiver’s content view.

- setContentView: (page 387)
Sets the receiver’s content view.
- contentViewMargins (page 384)
Returns the distances between the border and the content view.

- setContentViewMargins: (page 388)
Sets the horizontal and vertical distance between the border of the receiver and its content view.

Tasks 381
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Sizing

- setFrameFromContentFrame: (page 389)
Places the receiver so its content view lies on the specified frame.

- sizeToFit (page 392)
Resizes and moves the receiver’s content view so it just encloses its subviews.

Instance Methods

borderColor

Returns the color of the receiver’s border when the receiver is a custom box with a simple line border.
- (NSColor *)borderColor

Return Value
The receiver’s border color. It must be a custom box—that is, it has a type of NSBoxCustom (page 396)—and
it must have a border style of NSLineBorder (page 3190).

Availability
Available in Mac OS X v10.5 and later.

See Also
- setBorderColor: (page 385)

Declared In
NSBox.h

borderRect

Returns the rectangle in which the receiver’s border is drawn.
- (NSRect)borderRect

Return Value
The rectangle in which the border of the NSBox is drawn.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBox.h

borderType

Returns the receiver’s border type.

- (NSBorderType)borderType

382 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Return Value
A constant describing the type of border. Border types are defined in NSView. h. Currently, the following
border types are defined: NSNoBorder,NSLineBorder,NSBezelBorder, NSGrooveBorder.

By default, the border type of an NSBox is NSGrooveBorder.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setBorderType: (page 386)

Declared In
NSBox.h

borderWidth

Returns the width of the receiver’s border when the receiver is a custom box with a simple line border.
- (CGFloat)borderWidth

Return Value
The receiver’s border width. It must be a custom box—that is, it has a type of NSBoxCus tom (page 396)—and
it must have a border style of NSLineBorder (page 3190).

Availability
Available in Mac OS X v10.5 and later.

See Also
- setBorderWidth: (page 386)

Declared In
NSBox.h

boxType

Returns the receiver’s box type.
- (NSBoxType)boxType

Return Value
A constant describing the type of box. These constants are described in NSBoxType (page 395). By default,
the box type of an NSBox is NSBoxPrimary.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setBoxType: (page 387)

Declared In
NSBox.h

Instance Methods 383
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

384

CHAPTER 15

NSBox Class Reference

contentView

Returns the receiver’s content view.
- (id)contentView

Return Value

The content view of the NSBox object. The content view is created automatically when the box is created
and resized as the box is resized (you should never send frame-altering messages directly to a box’s content
view). You can replace it with an NSV1iew of your own through the setContentView: (page 387) method.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setContentView: (page 387)

Related Sample Code
Quartz Composer QCTV

Declared In
NSBox.h

contentViewMargins

Returns the distances between the border and the content view.
- (NSSize)contentViewMargins

Return Value

The width (the horizontal distance between the innermost edge of the border and the content view) and
height (the vertical distance between the innermost edge of the border and the content view) describing
the distance between the border and the content view. By default, these are both 5.0 in the box's coordinate
system.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setContentViewMargins: (page 388)

Declared In
NSBox.h

cornerRadius

Returns the radius of the receiver’s corners when the receiver is a custom box with a simple line border.
- (CGFToat)cornerRadius

Return Value
The receiver’s corner radius. It must be a custom box—that is, it has a type of NSBoxCus tom (page 396)—and
it must have a border style of NSLineBorder (page 3190).

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
- setCornerRadius: (page 388)

Declared In
NSBox.h

fillColor

Returns the color of the receiver’s background when the receiver is a custom box with a simple line border.
- (NSColor *)fillColor

Return Value
The receiver’s fill color. It must be a custom box—that is, it has a type of NSBoxCustom (page 396)—and it
must have a border style of NSLineBorder (page 3190).

Availability
Available in Mac OS X v10.5 and later.

See Also
- setFillColor: (page 389)

Declared In
NSBox.h

isTransparent

Indicates whether the receiver is transparent.
- (BOOL)isTransparent

Return Value
YES when the receiver is transparent, NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setTransparent: (page 391)

Declared In
NSBox.h

setBorderColor:

Specifies the receiver’s border color.

- (void)setBorderColor:(NSColor *)borderColor

Instance Methods 385
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

386

CHAPTER 15

NSBox Class Reference

Parameters
borderColor
Border color for the receiver.

Special Considerations

Functional only when the receiver’s box type (boxType (page 383)) is NSBoxCustom and its border type
(borderType (page 382)) is NSLineBorder.

Availability
Available in Mac OS X v10.5 and later.

See Also
- borderColor (page 382)

Declared In
NSBox.h

setBorderType:

Sets the border type to a Type, which must be a valid border type.
- (void)setBorderType: (NSBorderType)aType

Parameters

alype
A constant describing the type of border. Border types are defined in NSView. h. Currently, the
following border types are defined: NSNoBorder,NSLineBorder,NSBeze1Border, NSGrooveBorder.

Discussion
If the size of the new border is different from that of the old border, the content view is resized to absorb
the difference, and the box is marked for redisplay.

Availability
Available in Mac OS X v10.0 and later.

See Also
- borderType (page 382)

- setNeedsDisplay: (page 3169) (NSView)

Declared In
NSBox.h

setBorderWidth:

Specifies the receiver’s border width.
- (void)setBorderWidth:(CGFloat)borderWidth

Parameters

borderWidth
Border width for the receiver.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Special Considerations

Functional only when the receiver’s box type (boxType (page 383)) is NSBoxCustom and its border type
(borderType (page 382)) is NSLineBorder.

Availability
Available in Mac OS X v10.5 and later.

See Also
- borderWidth (page 383)

Declared In
NSBox.h

setBoxType:

Sets the box type.
- (void)setBoxType: (NSBoxType)boxType

Parameters

boxType
A constant describing the type of box; this must be a valid box type. These constants are described
in NSBoxType (page 395).

Availability
Available in Mac OS X v10.0 and later.

See Also
- boxType (page 383)

Declared In
NSBox.h

setContentView:

Sets the receiver’s content view.
- (void)setContentView: (NSView *)aliew

Parameters

aliew
The new content view. The NSV1iew object is resized to fit within the box’s current content area and
the box is marked for redisplay.

Availability
Available in Mac OS X v10.0 and later.

See Also
- contentView (page 384)

- setFrameFromContentFrame: (page 389)
- sizeToFit (page 392)
- setNeedsDisplay: (page 3169) (NSView)

Instance Methods 387
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

388

CHAPTER 15

NSBox Class Reference

Related Sample Code
Quartz Composer QCTV

Declared In
NSBox.h

setContentViewMargins:

Sets the horizontal and vertical distance between the border of the receiver and its content view.
- (void)setContentViewMargins: (NSSize)offsetSize

Parameters

offsetSize
The width and height of the offset between the box's border and content view. The horizontal value
is applied (reckoned in the box’s coordinate system) fully and equally to the left and right sides of
the box. The vertical value is similarly applied to the top and bottom.

Discussion

Unlike changing a box’s other attributes, such as its title position or border type, changing the offsets doesn’t
automatically resize the content view. In general, you should send a sizeToF it (page 392) message to the
box after changing the size of its offsets. This message causes the content view to remain unchanged while
the box is sized to fit around it.

Availability
Available in Mac OS X v10.0 and later.

See Also
- contentViewMargins (page 384)

Declared In
NSBox.h

setCornerRadius:

Specifies the receiver’s corner radius.
- (void)setCornerRadius:(CGFloat)cornerRadius

Parameters
cornerRadius
Corner radius for the receiver.

Special Considerations

Functional only when the receiver’s box type (boxType (page 383)) is NSBoxCustom and its border type
(borderType (page 382)) is NSLineBorder.

Availability
Available in Mac OS X v10.5 and later.

See Also
- cornerRadius (page 384)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Declared In
NSBox.h

setFillColor:

Specifies the receiver’s fill color.
- (void)setFillColor:(NSColor *)fillColor

Parameters

fillColor
Fill color for the receiver.

Special Considerations

Functional only when the receiver’s box type (boxType (page 383)) is NSBoxCustom and its border type
(borderType (page 382))is NSLineBorder.

Availability
Available in Mac OS X v10.5 and later.

See Also
- fillColor (page 385)

Declared In
NSBox.h

setFrameFromContentFrame:

Places the receiver so its content view lies on the specified frame.
- (void)setFrameFromContentFrame: (NSRect)contentFrame

Parameters

contentfFrame
The rectangle specifying the frame of the box's content view, reckoned in the coordinate system of
the box's superview. The box is marked for redisplay.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setContentViewMargins: (page 388)

- setFrame: (page 3164) (NSView)
- setNeedsDisplay: (page 3169) (NSView)

Declared In
NSBox.h

setTitle:

Sets the title of the box and marks the region of the receiver within the title rectangle as needing display.

Instance Methods 389
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

390

CHAPTER 15

NSBox Class Reference

- (void)setTitle: (NSString *)aString

Parameters
aString

The new title of the NSBox. The default title of an NSBox is “Title.” If the size of the new title is different
from that of the old title, the content view is resized to absorb the difference.

Availability
Available in Mac OS X v10.0 and later.

See Also

- title (page 392)

- titleRect (page 394)

- setNeedsDisplayInRect: (page 3169) (NSView)

Related Sample Code
Quartz Composer QCTV

Declared In
NSBox.h

setTitleFont:

Sets the font object used to draw the receiver’s title and marks the region of the receiver within the title
rectangle as needing display.

- (void)setTitleFont:(NSFont *)afont

Parameters
afont
The NSFont object used to draw the box's title.

Discussion

By default, the title is drawn using the small system font (obtained using (small1SystemFontSize (page
1137) as the parameter of systemFont0fSize: (page 1137), both NSFont class methods). If the size of the new
font is different from that of the old font, the content view is resized to absorb the difference.

Availability
Available in Mac OS X v10.0 and later.

See Also
- titleFont (page 393)

- setNeedsDisplayInRect: (page 3169) (NSView)

Declared In
NSBox.h

setTitlePosition:

Sets the position of the box's title.

- (void)setTitlePosition: (NSTitlePosition)aPosition

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Parameters
aPosition

A constant describing the position of the box's title. These constants are described in
NSTitlePosition (page 394). The default position is NSAtTop.

Discussion
If the new title position changes the size of the box’s border area, the content view is resized to absorb the
difference, and the box is marked as needing redisplay.

Availability
Available in Mac OS X v10.0 and later.

See Also
- titlePosition (page 393)

- setNeedsDisplay: (page 3169) (NSView)

Declared In
NSBox.h

setTitleWithMnemonic:

Sets the title of the receiver with a character denoted as an access key.
- (void)setTitleWithMnemonic: (NSString *)aString

Discussion
Mnemonics are not supported in Mac OS X.

By default, a box’s title is “Title.” The content view is not automatically resized, and the box is not marked for
redisplay.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTitleWithMnemonic: (page 599) (NSCel1)

Declared In
NSBox.h

setTransparent:

Specifies whether the receiver is transparent.
- (void)setTransparent:(BOOL)transparent

Parameters

transparent
YES makes the receiver transparent.
NO makes the receiver opaque.

Availability
Available in Mac OS X v10.5 and later.

Instance Methods 391
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

392

CHAPTER 15

NSBox Class Reference

See Also
- isTransparent (page 385)

Declared In
NSBox.h

sizeToFit

Resizes and moves the receiver’s content view so it just encloses its subviews.
- (void)sizeToFit

Discussion
The receiver is then moved and resized to wrap around the content view. The receiver’s width is constrained
so its title will be fully displayed.

You should invoke this method after:

= Adding a subview (to the content view)
= Altering the size or location of such a subview

m Setting the margins around the content view

The mechanism by which the content view is moved and resized depends on whether the object responds
toitsown sizeToF1it message: If it does respond, then that message is sent, and the content view is expected
to be so modified. If the content view doesn’t respond, the box moves and resizes the content view itself.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBox.h

title

Returns the receiver’s title.
- (NSString *)title

Return Value
The title of the NSBox. By default, a box’s title is “Title.”

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTitle: (page 389)

Related Sample Code
Quartz Composer QCTV

Declared In
NSBox.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

titleCell

Returns the cell used to display the receiver’s title.
- (id)titleCell

Return Value
The NSCe11 object used to display the title.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBox.h

titleFont

Returns the font object used to draw the receiver’s title.
- (NSFont *)titleFont

Return Value
The NSFont object used to draw the title.

Discussion
By default, the title is drawn using the small system font (obtained using (smal1SystemFontSize (page
1137) as the parameter of systemFont0fSize: (page 1137), both NSFont class methods).

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTitleFont: (page 390)

Declared In
NSBox.h

titlePosition

Returns a constant representing the title position.
- (NSTitlePosition)titlePosition

Return Value
A constant representing the position of the receiver's title. See NSTit1ePosition (page 394) for a list of
these constants.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTitlePosition: (page 390)

Instance Methods 393
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

Declared In
NSBox.h

titleRect

Returns the rectangle in which the receiver’s title is drawn.
- (NSRect)titleRect

Return Value
The rectangle in which the title is drawn.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTitlePosition: (page 390)

- setTitle: (page 389)

- setTitleFont: (page 390)

- setFrameFromContentFrame: (page 389)
- sizeToFit (page 392)

Declared In
NSBox.h

Constants

NSTitlePosition

Specify the location of a box’s title with respect to its border.

typedef enum _NSTitlePosition {
NSNoTitle =0,
NSAboveTop
NSAtTop
NSBeTowTop
NSAboveBottom =
NSAtBottom =
NSBelowBottom

} NSTitlePosition;

OOl BN

Constants
NSNoTitle
The box has no title.

Available in Mac OS X v10.0 and later.
Declared in NSBox. h.

394 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

NSAboveTop
Title positioned above the box’s top border.

Available in Mac OS X v10.0 and later.
Declared in NSBox. h.

NSAtTop
Title positioned within the box’s top border.

Available in Mac OS X v10.0 and later.
Declared in NSBox . h.

NSBeTowTop
Title positioned below the box’s top border.

Available in Mac OS X v10.0 and later.
Declared in NSBox . h.

NSAboveBottom
Title positioned above the box’s bottom border.

Available in Mac OS X v10.0 and later.
Declared in NSBox. h.

NSAtBottom
Title positioned within the box’s bottom border.

Available in Mac OS X v10.0 and later.
Declared in NSBox. h.

NSBelowBottom
Title positioned below the box’s bottom border.

Available in Mac OS X v10.0 and later.
Declared in NSBox . h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBox.h

NSBoxType

These constants and data type identifies box types, which, in conjunction with a box's border type, define
the appearance of the box.

Constants 395
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 15

NSBox Class Reference

enum {
NSBoxPrimary
NSBoxSecondary =
NSBoxSeparator
NSBox01dStyle
NSBoxCustom

Il
S wro e o

Vs
typedef NSUInteger NSBoxType;

Constants
NSBoxPrimary
Specifies the primary box appearance. This is the default box type.

Available in Mac OS X v10.0 and later.
Declared in NSBox. h.

NSBoxSecondary
Specifies the secondary box appearance.

Available in Mac OS X v10.0 and later.
Declared in NSBox . h.

NSBoxSeparator
Specifies that the box is a separator.

Available in Mac OS X v10.0 and later.
Declared in NSBox . h.

NSBoxQ1dStyle
Specifies that the box is a Mac OS X v10.2-style box.

Available in Mac OS X v10.0 and later.
Declared in NSBox. h.

NSBoxCustom
Specifies that the appearance of the box is determined entirely by the by box-configuration methods,
without automatically applying Apple human interface guidelines. See “Customizing” (page 381)
for details.

Available in Mac OS X v10.5 and later.
Declared in NSBox . h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBox.h

396 Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)
NSObject (NSObject)

Framework /System/Library/Frameworks/AppKit.framework

Availability Available in Mac OS X v10.0 and later.

Declared in AppKit/NSBrowser.h

Companion guide Browsers

Related sample code NewsReader

Overview

This class provides a user interface for displaying and selecting items from a list of data or from hierarchically
organized lists of data such as directory paths. Instances of this class are known as browsers. When working
with a hierarchy of data, the levels are displayed in columns, which are indexed from left to right.

This class uses the NSBrowserCell class to implement its user interface.
Browsers have the following components:

= Columns
= Scroll views
= Matrices

= Browser cells

To the user, browsers display data in columns and rows within each column. These components are arranged
in the following component hierarchy:

Browser
|---Columns [1..*]
|---Scroll view
|---Matrix
|---Rows [0..*]

Overview 397
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

398

CHAPTER 16

NSBrowser Class Reference

Configuring Browsers

- reusesColumns (page 423)
Returns a Boolean value indicating whether the browser reuses NSMat ri x objects after their columns
are unloaded.
- setReusesColumns: (page 438)
Specifies whether NSMat rix objects are reused.
- maxVisibleColumns (page 419)
Returns the maximum number of visible columns.
- setMaxVisibleColumns: (page 435)
Sets the maximum number of columns displayed.
- backgroundColor (page 408)
Provides the receiver’s background color. Default: [NSColor whiteColor].
- setBackgroundColor: (page 431)
Specifies the receiver’s background color.
- minColumnWidth (page 419)
Returns the minimum column width.
- setMinColumnWidth: (page 436)
Sets the minimum column width.t
- separatesColumns (page 429)
Returns a Boolean value indicating whether columns are separated by bezeled borders.
- setSeparatesColumns: (page 438)
Sets whether to separate columns with bezeled borders.
- takesTitleFromPreviousColumn (page 441)
Returns a Boolean value indicating whether a column takes its title from the selected cell in the
previous column.
- setTakesTitleFromPreviousColumn: (page 439)
Sets whether the title of a column is set to the string value of the selected cell in the previous column.
- tile (page 441)
Adjusts the various subviews of the receiver—scrollers, columns, titles, and so on—without redrawing.
- acceptsArrowKeys (page 406)
Returns a Boolean value indicating whether the browser allows navigation using the arrow keys.
- setAcceptsArrowKeys: (page 429)
Specifies whether the browser allows navigation using the arrow keys.
- delegate (page 411)
Returns the receiver’s delegate.
- setDelegate: (page 433)
Sets the receiver’s delegate.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Getting Browser Information

- is0Opaque (page 416)
Indicates whether the receiver is opaque.

- browser:isColumnValid: (page 446)
Returns whether the contents of the specified column are valid.

- browser:numberOfRowsInColumn: (page 448)
Returns the number of rows of data in the specified column.

- browser:titleOfColumn: (page 452)
Asks the delegate for the title to display above the specified column.

Managing Component Types

+ cellClass (page 405)
Returns the NSBrowserCel1 class.

- setCellClass: (page 431)
Sets the class of NSCe11 used by the matrices in the columns of the receiver.

- cellPrototype (page 409)
Returns the receiver’s prototype NSCel1.

- setCellPrototype: (page 432)
Sets the NSCe11 instance copied to display items in the matrices in the columns of the receiver.

- matrixClass (page 418)
Returns the matrix class used in the receiver’s columns.

- setMatrixClass: (page 435)
Sets the matrix class used in the receiver’s columns.

Managing Selection Behavior

- allowsBranchSelection (page 406)

Returns a Boolean value indicating whether the user can select branch items.
- setAllowsBranchSelection: (page 429)

Sets whether the user can select branch items.
- allowsEmptySelection (page 407)

Returns a Boolean value indicating whether there can be nothing selected.
- setAllowsEmptySelection: (page 430)

Sets whether there can be nothing selected.
- allowsMultipleSelection (page 407)

Returns a Boolean value indicating whether the user can select multiple items.
- setAllowsMultipleSelection: (page 430)

Sets whether the user can select multiple items.

- selectedRowIndexesInColumn: (page 427)
Provides the indexes of the selected rows in a given column of the receiver.

Tasks 399
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

400

CHAPTER 16

NSBrowser Class Reference

selectRowIndexes:inColumn: (page 428)
Specifies the selected rows in a given column of the receiver.

allowsTypeSelect (page 407)
Indicates whether the receiver allows keystroke-based selection (type select).

setAllowsTypeSelect: (page 430)
Specifies whether the receiver allows keystroke-based selection.

browser:shouldTypeSelectForEvent:withCurrentSearchString: (page 451)
Sent to the delegate to determine whether keyboard-based selection (type select) for a given event
and search string should proceed.

browser:typeSelectStringForRow:inColumn: (page 452)
Sent to the delegate to get the keyboard-based selection (type select) string for a given row and
column.

browser:nextTypeSelectMatchFromRow:toRow:inColumn: forString: (page447)
Sent to the delegate to customize a browser’s keyboard-based selection (type select) behavior.

Managing Selection

- selectedCell (page 425)

Returns the last (rightmost and lowest) selected NSCe11.
selectedCellInColumn: (page 425)

Returns the last (lowest) NSCe11 selected in the given column.
selectedCells (page 426)

Returns all cells selected in the rightmost column.
selectAll: (page 424)

Selects all NSCe 11 objects in the last column of the receiver.
selectedRowInColumn: (page 426)

Returns the row index of the selected cell in the specified column.
selectRow:inColumn: (page 427)

Selects the cell at the specified row and column index.
browser:selectCellWithString:inColumn: (page 448)

Asks the delegate to select the NSCe11 with the given title in the specified column.a
browser:selectRow:inColumn: (page 449)

Asks the delegate to select the NSCe11 at the specified row and column location.

Accessing Components

- loadedCelTAtRow:column: (page 418)

Loads, if necessary, and returns the NSCe 11 at the specified row and column location.

- matrixInColumn: (page 419)

Returns the matrix located in the specified column.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Managing the Path

- path (page 420)
Returns a string representing the receiver’s current path.

- setPath: (page 436)
Sets the path displayed by the receiver.

- pathToColumn: (page 421)

Returns a string representing the path from the first column up to, but not including, the column at

the given index.

- pathSeparator (page 421)
Returns the path separator.

- setPathSeparator: (page 437)
Sets the path separator.

Managing Columns

- addColumn (page 406)
Adds a column to the right of the last column.

- displayAllColumns (page 412)
Updates the receiver to display all loaded columns.

- displayColumn: (page 412)
Updates the receiver to display the given column.

- columnOfMatrix: (page 410)
Returns the column number in which the given matrix is located.

- selectedColumn (page 426)
Returns the index of the last column with a selected item.

- lastColumn (page 417)
Returns the index of the last column loaded.

- setlastColumn: (page 435)
Sets the last column.

- firstVisibleColumn (page 415)
Returns the index of the first visible column.

- numberOfVisibleColumns (page 420)
Returns the number of columns visible.

- lastVisibleColumn (page 417)
Returns the index of the last visible column.

- validateVisibleColumns (page 443)

Invokes the delegate method browser:isColumnValid: (page 446) for visible columns.

- isloaded (page 416)
Returns whether column 0 is loaded.
- loadColumnZero (page 418)
Loads column 0; unloads previously loaded columns.

- reloadColumn: (page 422)
Reloads the given column if it exists and sets it to be the last column.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

401

402

CHAPTER 16

NSBrowser Class Reference

- browser:createRowsForColumn:inMatrix: (page 445)
Creates a row in the given matrix for each row of data to be displayed in the specified column of the
browser.

- browser:willDisplayCell:atRow:column: (page 454)
Gives the delegate the opportunity to modify the specified cell at the given row and column position
before it's displayed by the NSBrowser.

Accessing Column Titles

- titleOfColumn: (page 442)

Returns the title displayed for the given column.
- setTitle:ofColumn: (page 439)

Sets the title of the given column.
- isTitled (page 417)

Returns a Boolean value indicating whether columns display titles.
- setTitled: (page 440)

Sets whether columns display titles.
- drawTitleOfColumn:inRect: (page 414)

Draws the title for the specified column within the given rectangle.
- titleHeight (page 442)

Returns the height of column titles.

- titleFrameOfColumn: (page 441)
Returns the bounds of the title frame for the specified column.

Scrolling

- updateScroller (page 442)

Updates the horizontal scroller to reflect column positions.
- hasHorizontalScroller (page 416)

Returns a Boolean value indicating whether the browser has a horizontal scroller.
- setHasHorizontalScroller: (page 434)

Sets whether an NSScroller is used to scroll horizontally.
- scrollColumnToVisible: (page 424)

Scrolls to make the specified column visible.
- scrollColumnslLeftBy: (page 423)

Scrolls columns left by the specified number of columns.
- scrollColumnsRightBy: (page 423)

Scrolls columns right by the specified number of columns.
- scrollViaScroller: (page 424)

Scrolls columns left or right based on an NSScroller.

- browserWillScroll: (page 456)
Notifies the delegate when the NSBrowser will scroll.

- browserDidScroll: (page 456)
Notifies the delegate when the NSBrowser has scrolled.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Dragging

- draggingSourceOperationMaskForlLocal: (page 414)
Indicates the types of dragging operations the source object allows on the dragged image’s data.
- setDraggingSourceOperationMask:forlLocal: (page 434)
Specifies the drag-operation mask for dragging operations with local or external destinations.
- canDragRowsWithIndexes:inColumn:withEvent: (page 408)
Indicates whether the receiver can attempt to initiate a drag of the given rows for the given event.
- browser:canDragRowsWithIndexes:inColumn:withEvent: (page 444)
Sent to the delegate to determine whether the browser can attempt to initiate a drag of the given
rows for the given event.
- draggingImageForRowsWithIndexes:inColumn:withEvent:offset: (page 413)
Provides an image to represent dragged rows during a drag operation on the receiver.

- browser:draggingImageForRowsWithIndexes:inColumn:withEvent:offset: (page 445)

Sent to the delegate to obtain an image to represent dragged rows during a drag operation on a
browser.
- browser:validateDrop:proposedRow:column:dropOperation: (page 453)
Sent to the delegate during a dragging session to determine whether to accept a drop, and to obtain
the drop location. Required for a browser to be a drag destination.
- browser:acceptDrop:atRow:column:dropOperation: (page 443)
Sent to the delegate during a dragging session to determine whether to accept the drop. Required
for a browser to be a drag destination.
- namesOfPromisedFilesDroppedAtDestination: (page 420)
Provides the names of the files that the receiver promises to create at a specified location.
- browser:writeRowsWithIndexes:inColumn:toPasteboard: (page 455)
Determines whether a drag operation can proceed. Required for a browser to be a drag source.
- browser:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes:inColumn: (page
446)
Implements file-promise drag operations.

Getting Column Frames

- frameOfColumn: (page 415)
Returns the rectangle containing the given column.

- frameOfInsideOfColumn: (page 415)
Returns the rectangle containing the specified column, not including borders.

Managing Actions

- doubleAction (page 413)
Returns the receiver’s double-click action method.

- setDoubleAction: (page 433)
Sets the receiver’s double-click action.

Tasks 403
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

404

CHAPTER 16

NSBrowser Class Reference

- sendsActionOnArrowKeys (page 428)
Returns a Boolean value indicating whether pressing an arrow key causes an action message to be
sent.

- setSendsActionOnArrowKeys: (page 438)
Sets whether pressing an arrow key causes the action message to be sent.

- sendAction (page 428)
Sends the action message to the target.

Handling Mouse-Click Events

- doClick: (page 412)

Responds to (single) mouse clicks in a column of the receiver.
- doDoubleClick: (page 413)

Responds to double clicks in a column of the receiver.

Sizing

+ removeSavedColumnsWithAutosaveName: (page 405)
Removes the column configuration data stored under the given name from the application’s user
defaults.
- columnsAutosaveName (page 410)
Returns the name used to automatically save the receiver’s column configuration.
- setColumnsAutosaveName: (page 432)
Sets the name used to automatically save the receiver’s column configuration.
- columnContentWidthForColumnWidth: (page 409)
Given the column width, returns the content width.
- columnWidthForColumnContentWidth: (page 411)
Given the content width, returns the column width.
- columnResizingType (page 410)
Returns the receiver’s column resizing type.
- setColumnResizingType: (page 432)
Sets the receiver’s column resizing type.
- prefersAllColumnUserResizing (page 422)
Returns a Boolean value indicating if the browser is set to resize all columns simultaneously rather
than resizing a single column at a time.
- setPrefersAllColumnUserResizing: (page 437)
Specifies whether the browser resizes all columns simultaneously rather than resizing a single column
at a time.
- widthOfColumn: (page 443)
Returns the width of the specified column.
- setWidth:ofColumn: (page 440)
Sets the width of the specified column.
- browser:shouldSizeColumn:forUserResize:toWidth: (page 450)
Used for determining a column’s initial size.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

- browser:sizeToFitWidthOfColumn: (page 451)
Returns the ideal width for a column.

- browserColumnConfigurationDidChange: (page 456)
Used by clients to implement their own column width persistence.

Displaying Expansion Tooltips

- browser:shouldShowCellExpansionForRow:column: (page 450)
Determines whether an expansion tooltip appears for a cell at the given row in the given column.

Class Methods

cellClass

Returns the NSBrowserCel1 class.
+ (Class)cellClass

Return Value
Always returns the NSBrowserCe11 class (even if the developer has senta setCel1Class: (page 431)
message to a particular instance).

Discussion
This method is used by NSControl during initialization and is not meant to be used by applications.

Availability
Available in Mac OS X v10.0 and later.

See Also
- cellPrototype (page 409)

- setCellPrototype: (page 432)

Declared In
NSBrowser.h

removeSavedColumnsWithAutosaveName:

Removes the column configuration data stored under the given name from the application’s user defaults.
+ (void)removeSavedColumnsWithAutosaveName: (NSString *)name

Parameters
name
The name of the column configuration data to remove.

Availability
Available in Mac OS X v10.3 and later.

Class Methods 405
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
- columnsAutosaveName (page 410)

- setColumnsAutosaveName: (page 432)

Declared In
NSBrowser.h

Instance Methods

acceptsArrowKeys

Returns a Boolean value indicating whether the browser allows navigation using the arrow keys.
- (BOOL)acceptsArrowKeys

Return Value
YES if the arrow keys are enabled; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAcceptsArrowKeys: (page 429)

Declared In
NSBrowser.h

addColumn

Adds a column to the right of the last column.
- (void)addColumn

Availability
Available in Mac OS X v10.0 and later.

See Also
- columnOfMatrix: (page 410)

- displayColumn: (page 412)
- selectedColumn (page 426)

Declared In
NSBrowser.h

allowsBranchSelection

Returns a Boolean value indicating whether the user can select branch items.

- (BOOL)allowsBranchSelection

406 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Return Value
YES if the user can select branch items when multiple selection is enabled; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAllowsBranchSelection: (page 429)

Declared In
NSBrowser.h

allowsEmptySelection

Returns a Boolean value indicating whether there can be nothing selected.
- (BOOL)allowsEmptySelection

Return Value
YES if the browser allows the selection to be empty; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAllowsEmptySelection: (page 430)

Declared In
NSBrowser.h

allowsMultipleSelection

Returns a Boolean value indicating whether the user can select multiple items.
- (BOOL)allowsMultipleSelection

Return Value
YES if the browser allows the user to select multiple items at once; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAllowsMultipleSelection: (page 430)

Declared In
NSBrowser.h

allowsTypeSelect

Indicates whether the receiver allows keystroke-based selection (type select).

Instance Methods 407
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

408

CHAPTER 16

NSBrowser Class Reference

- (BOOL)allowsTypeSelect

Return Value
YES (default) when the receiver allows keystroke-based selection, NO otherwise.

Availability
Available in Mac OS X v10.5 and later.

See Also
- setAllowsTypeSelect: (page 430)

Declared In
NSBrowser.h

backgroundColor

Provides the receiver’s background color. Default: [NSColor whiteColor].
- (NSColor *)backgroundColor

Return Value
The receiver’s background color.

Default: [NSColor whiteColor]

Availability
Available in Mac OS X v10.5 and later.

See Also
- setBackgroundColor: (page 431)

- is0paque (page 416)

Declared In
NSBrowser.h

canDragRowsWithIndexes:inColumn:withEvent:

Indicates whether the receiver can attempt to initiate a drag of the given rows for the given event.

- (BOOL)canDragRowsWithIndexes: (NSIndexSet *)rowlndexes
inColumn: (NSInteger)columnIndex withEvent:(NSEvent *)dragfvent

Parameters
rowlndexes
Rows the user is dragging
columnindex
Column containing the rows the user is dragging.
dragEvent
Mouse-drag event.

Return Value
YES when rowIndexes identifies at least one row and all the identified rows are enabled, NO otherwise.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
- browser:canDragRowsWithIndexes:inColumn:withEvent: (page 444)

Declared In
NSBrowser.h

cellPrototype

Returns the receiver’s prototype NSCel1.
- (id)cellPrototype

Return Value
The prototype NSCe11. The prototype NSCe 11 instance is copied to display items in the matrices of the
browser.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setCellPrototype: (page 432)

- setCellClass: (page 431)

Declared In
NSBrowser.h

columnContentWidthForColumnWidth:

Given the column width, returns the content width.
- (CGFloat)columnContentWidthForColumnWidth: (CGFloat)columnWidth

Parameters
columnWidth
The width of the column. This width is the entire scrolling text view.

Return Value
The width of the content for the column. This is the width of the matrix in the column.

Availability
Available in Mac OS X v10.3 and later.

See Also
- columnWidthForColumnContentWidth: (page 411)

Declared In
NSBrowser.h

Instance Methods 409
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

columnOfMatrix:

Returns the column number in which the given matrix is located.
- (NSInteger)columnOfMatrix: (NSMatrix *)matrix

Parameters
matrix
The matrix for which to return the column number.

Return Value
The index of the column in which the specified matrix appears.

Availability
Available in Mac OS X v10.0 and later.

See Also
- matrixInColumn: (page 419)

Declared In
NSBrowser.h

columnResizingType

Returns the receiver’s column resizing type.
- (NSBrowserColumnResizingType)columnResizingType

Return Value
A constant indicating the column resizing type. Possible return values are described in
NSBrowserColumnResizingType (page 457). The default is NSBrowserAutoColumnResizing

Availability
Available in Mac OS X v10.3 and later.

See Also
- setColumnResizingType: (page 432)

Declared In
NSBrowser.h

columnsAutosaveName

Returns the name used to automatically save the receiver’s column configuration.
- (NSString *)columnsAutosaveName

Return Value
The name used to save the column configuration.

Availability
Available in Mac OS X v10.3 and later.

410 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
- setColumnsAutosaveName: (page 432)

Declared In
NSBrowser.h

columnWidthForColumnContentWidth:

Given the content width, returns the column width.
- (CGFloat)columnWidthForColumnContentWidth: (CGFloat)columnContentWidth

Parameters
columnContentWidth
The width of the column's content (the width of the the matrix in the column).

Return Value
The width of the column (the width of the entire scrolling text view).

Discussion
For example, to guarantee that 16 pixels of your browser cell are always visible, call:

[browser setMinColumnWidth: [browser columnWidthForColumnContentWidth:16]1]

Availability
Available in Mac OS X v10.3 and later.

See Also
- columnContentWidthForColumnWidth: (page 409)

Declared In
NSBrowser.h

delegate

Returns the receiver’s delegate.
- (id)delegate

Return Value
The receiver's delegate.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setDelegate: (page 433)

Declared In
NSBrowser.h

Instance Methods m
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

displayAllColumns

Updates the receiver to display all loaded columns.
- (void)displayAl1Columns

Availability
Available in Mac OS X v10.0 and later.

See Also
- addColumn (page 406)

- validateVisibleColumns (page 443)

Declared In
NSBrowser.h

displayColumn:

Updates the receiver to display the given column.
- (void)displayColumn: (NSInteger)column

Parameters

column
The index of the column to display.

Availability
Available in Mac OS X v10.0 and later.

See Also
- addColumn (page 406)

- validateVisibleColumns (page 443)

Declared In
NSBrowser.h

doClick:

Responds to (single) mouse clicks in a column of the receiver.
- (void)doClick:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
- sendAction (page 428)

Declared In
NSBrowser.h

412 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

doDoubleClick:

Responds to double clicks in a column of the receiver.
- (void)doDoubleClick:(id)sender

Availability
Available in Mac OS X v10.0 and later.

See Also
- setDoubleAction: (page 433)

Declared In
NSBrowser.h

doubleAction

Returns the receiver’s double-click action method.
- (SEL)doubleAction

Return Value
The action method invoked when the user double-clicks on the browser.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setDoubleAction: (page 433)

Declared In
NSBrowser.h

dragginglmageForRowsWithindexes:inColumn:withEvent:offset:
Provides an image to represent dragged rows during a drag operation on the receiver.
- (NSImage *)draggingImageForRowsWithIndexes:(NSIndexSet *)rowlndexes

inColumn: (NSInteger)columnIndex withEvent:(NSEvent *)dragfvent
offset:(NSPointPointer)dragimageOffset

Parameters
rowlndexes
Rows the user is dragging.

columnlndex
Column with the rows the user is dragging.

dragEvent
Mouse drag event.

inout_draglmageOffset
Offset for the returned image:

m NSZeroPoint:The image is centered under the pointer.

Instance Methods 413
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

414

CHAPTER 16

NSBrowser Class Reference

Return Value
Image representing the visible cells identified by rowlndexes.

Availability
Available in Mac OS X v10.5 and later.

See Also
- browser:draggingImagefForRowsWithIndexes:inColumn:withEvent:offset: (page 445)

Declared In
NSBrowser.h

draggingSourceOperationMaskForLocal:

Indicates the types of dragging operations the source object allows on the dragged image’s data.
- (NSDragQOperation)draggingSourceOperationMaskForLocal:(BOOL) /ocalDestination

Parameters
localDestination

Indicates the location of the dragging operation’s destination object: YES for this application, NO for
another application.

Return Value
NSDragOperationEvery when localDestination is YES.

NSDragOperationNone when localDestination is NO.

Discussion
This method overrides NSDraggingSource draggingSourceOperationMaskForLocal: (page 3514).

drawTitleOfColumn:inRect:

Draws the title for the specified column within the given rectangle.
- (void)drawTitleOfColumn: (NSInteger)column inRect:(NSRect)aRect

Parameters
column

The index of the column for which to draw the title.
aRect

The rectangle within which to draw the title.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTitle:ofColumn: (page 439)

- titleFrameOfColumn: (page 441)
- titleHeight (page 442)

Declared In
NSBrowser.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

firstVisibleColumn

Returns the index of the first visible column.
- (NSInteger)firstVisibleColumn

Return Value
The index of the first visible column.

Availability
Available in Mac OS X v10.0 and later.

See Also
- lastVisibleColumn (page 417)

- numberOfVisibleColumns (page 420)

Declared In
NSBrowser.h

frameOfColumn:

Returns the rectangle containing the given column.
- (NSRect)frameOfColumn: (NSInteger)column

Parameters
column
The index of the column for which to retrieve the frame.

Return Value
The rectangle containing the specified column.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

frameOflnsideOfColumn:

Returns the rectangle containing the specified column, not including borders.
- (NSRect)frameOfInsideOfColumn: (NSInteger)column

Parameters
column
The index of the column for which to retrieve the inside frame.

Return Value
The rectangle containing the column, not including the column borders.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 415
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

416

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

hasHorizontalScroller

Returns a Boolean value indicating whether the browser has a horizontal scroller.
- (BOOL)hasHorizontalScroller

Return Value
YES if the browser uses an NSScro11er object to scroll horizontally; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setHasHorizontalScroller: (page 434)

Declared In
NSBrowser.h

isLoaded

Returns whether column 0 is loaded.
- (BOOL)islLoaded

Return Value
YES if column 0 is loaded; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- loadColumnZero (page 418)

- reloadColumn: (page 422)

Declared In
NSBrowser.h

isOpaque
Indicates whether the receiver is opaque.
- (BOOL)isOpaque

Return Value
YES when the receiver doesn't have a title and its background color’s alpha componentis 1.0, NO otherwise.

Discussion
This method overrides NSView isOpaque (page 3132).

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

isTitled

Returns a Boolean value indicating whether columns display titles.
- (BOOL)isTitled

Return Value
YES if the columns in a browser display titles; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTitled: (page 440)

Declared In
NSBrowser.h

lastColumn

Returns the index of the last column loaded.
- (NSInteger)lastColumn

Return Value
The index of the last loaded column.

Availability
Available in Mac OS X v10.0 and later.

See Also
- selectedColumn (page 426)

- setlastColumn: (page 435)

Declared In
NSBrowser.h

lastVisibleColumn

Returns the index of the last visible column.
- (NSInteger)lastVisibleColumn

Return Value
The index of the last visible column.

Availability
Available in Mac OS X v10.0 and later.

See Also
- firstVisibleColumn (page 415)

- numberOfVisibleColumns (page 420)

Instance Methods 17
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

418

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

loadColumnZero

Loads column 0; unloads previously loaded columns.
- (void)loadColumnZero

Availability
Available in Mac OS X v10.0 and later.

See Also
- islLoaded (page 416)

- reloadColumn: (page 422)

Declared In
NSBrowser.h

loadedCellAtRow:column:

Loads, if necessary, and returns the NSCe 11 at the specified row and column location.
- (id)loadedCelTAtRow: (NSInteger)row column: (NSInteger)column

Parameters
row
The row index of the cell to return.

column
The column index of the cell to return.

Availability
Available in Mac OS X v10.0 and later.

See Also
- selectedCellInColumn: (page 425)

Declared In
NSBrowser.h

matrixClass

Returns the matrix class used in the receiver’s columns.
- (Class)matrixClass

Return Value
The class of NSMatrix used in the browser's columns.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
- setMatrixClass: (page 435)

Declared In
NSBrowser.h

matrixinColumn:

Returns the matrix located in the specified column.
- (NSMatrix *)matrixInColumn:(NSInteger)column

Parameters
column
The column index of the matrix to obtain.

Return Value
The matrix located in the column.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

maxVisibleColumns

Returns the maximum number of visible columns.
- (NSInteger)maxVisibleColumns

Return Value
The maximum number of visible columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setMaxVisibleColumns: (page 435)

Declared In
NSBrowser.h

minColumnWidth

Returns the minimum column width.
- (CGFloat)minColumnWidth

Return Value
The minimum column width, in pixels.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

419

420

CHAPTER 16

NSBrowser Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- setMinColumnWidth: (page 436)

Declared In
NSBrowser.h

namesOfPromisedFilesDroppedAtDestination:

Provides the names of the files that the receiver promises to create at a specified location.
- (NSArray *)namesOfPromisedFilesDroppedAtDestination: (NSURL *)dropDestination

Return Value

Result of sending
browser:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes:inColumn:
to the delegate.

Discussion
Implementation of NSDraggingSource namesOfPromisedFilesDroppedAtDestination: (page3515).

See Also
- browser:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithIndexes:inColumn: (page
446)

numberOfVisibleColumns

Returns the number of columns visible.
- (NSInteger)numberO0fVisibleColumns

Return Value
The number of visible columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
- validateVisibleColumns (page 443)

Declared In
NSBrowser.h

path

Returns a string representing the receiver’s current path.

- (NSString *)path

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Return Value
The path representing the current selection. The components of this path are separated with the string
returned by pathSeparator (page 421).

Discussion
Invoking this method is equivalent to invoking pathToColumn: (page 421) for all columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setPath: (page 436)

Declared In
NSBrowser.h

pathSeparator

Returns the path separator.
- (NSString *)pathSeparator

Return Value
The path separator. The default is “/"

Availability
Available in Mac OS X v10.0 and later.

See Also
- setPathSeparator: (page 437)

Declared In
NSBrowser.h

pathToColumn:

Returns a string representing the path from the first column up to, but not including, the column at the given
index.

- (NSString *)pathToColumn: (NSInteger)column

Parameters
column

The index of the column at which the path stops.
Return Value

The path of the current selection up to, but not including, the specified column. The components of this path
are separated with the string returned by pathSeparator (page 421).

Availability
Available in Mac OS X v10.0 and later.

See Also

- path (page 420)

Instance Methods a1
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

422

CHAPTER 16

NSBrowser Class Reference

- setPath: (page 436)

Declared In
NSBrowser.h

prefersAllColumnUserResizing

Returns a Boolean value indicating if the browser is set to resize all columns simultaneously rather than
resizing a single column at a time.

- (BOOL)prefersAl1ColumnUserResizing

Return Value
YES if the browser is set to resize all columns simultaneously; otherwise NO. The default is NO.

Discussion

This setting applies only to browsers that allow the user to resize columns (see
NSBrowserUserColumnResizing (page 457). Holding down the Option key while resizing switches the
type of resizing used.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setPrefersAllColumnUserResizing: (page 437)

- setColumnResizingType: (page 432)

Declared In
NSBrowser.h

reloadColumn:

Reloads the given column if it exists and sets it to be the last column.
- (void)reloadColumn: (NSInteger)column

Parameters
column
The index of the column to reload.

Availability
Available in Mac OS X v10.0 and later.

See Also
- islLoaded (page 416)

- loadColumnZero (page 418)

Declared In
NSBrowser.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

reusesColumns
Returns a Boolean value indicating whether the browser reuses NSMatr i x objects after their columns are
unloaded.

- (BOOL)reusesColumns

Return Value
YES if NSMatrix objects aren't freed when their columns are unloaded; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setReusesColumns: (page 438)

Declared In
NSBrowser.h

scrollColumnsLeftBy:

Scrolls columns left by the specified number of columns.
- (void)scrollColumnsLeftBy: (NSInteger)shiftAmount

Parameters
shiftAmount
The number of columns by which to scroll the browser.

Availability
Available in Mac OS X v10.0 and later.

See Also
- scrollViaScroller: (page 424)

- updateScroller (page 442)

Declared In
NSBrowser.h

scrollColumnsRightBy:

Scrolls columns right by the specified number of columns.
- (void)scrollColumnsRightBy: (NSInteger)shiftAmount

Parameters
shiftAmount
The number of columns by which to scroll the browser.

Availability
Available in Mac OS X v10.0 and later.

See Also
- scrollViaScroller: (page 424)

Instance Methods 423
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

- updateScroller (page 442)

Declared In
NSBrowser.h

scrollColumnToVisible:

Scrolls to make the specified column visible.
- (void)scroll1ColumnToVisible: (NSInteger)column

Parameters
column
The index of the column to scroll to.

Availability
Available in Mac OS X v10.0 and later.

See Also
- scrollViaScroller: (page 424)

- updateScroller (page 442)

Declared In
NSBrowser.h

scrollViaScroller:

Scrolls columns left or right based on an NSScroller.
- (void)scrollViaScroller:(NSScroller *)sender

Parameters

sender
The NSScroller object that determines the scrolling of the browser columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
- updateScroller (page 442)

Declared In
NSBrowser.h

selectAll:

Selects all NSCe11 objects in the last column of the receiver.
- (void)selectAll:(id)sender

Availability
Available in Mac OS X v10.0 and later.

424 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
- selectedCell (page 425)

- selectedCells (page 426)
- selectedColumn (page 426)

Declared In
NSBrowser.h

selectedCell

Returns the last (rightmost and lowest) selected NSCe11.
- (id)selectedCell

Return Value
The selected cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
- loadedCellAtRow:column: (page 418)

- selectedCell (page 425)
- selectRow:inColumn: (page 427)

Declared In
NSBrowser.h

selectedCellinColumn:

Returns the last (lowest) NSCe11 selected in the given column.

- (id)selectedCel1InColumn: (NSInteger)column

Parameters
column
The column for which to return the last selected cell.

Return Value
The last (or lowest) selected cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
- loadedCelTAtRow:column: (page 418)

- selectedCell (page 425)
- selectedRowInColumn: (page 426)

Declared In
NSBrowser.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

425

426

CHAPTER 16

NSBrowser Class Reference

selectedCells

Returns all cells selected in the rightmost column.
- (NSArray *)selectedCells

Return Value
An array of NSCe11 objects representing the selected cells in the rightmost browser column.

Availability
Available in Mac OS X v10.0 and later.

See Also
- selectAll: (page 424)

- selectedCell (page 425)

Declared In
NSBrowser.h

selectedColumn

Returns the index of the last column with a selected item.
- (NSInteger)selectedColumn

Return Value
The index of the last column with a selected item.

Availability
Available in Mac OS X v10.0 and later.

See Also
- columnOfMatrix: (page 410)

- selectAll: (page 424)

Declared In
NSBrowser.h

selectedRowInColumn:

Returns the row index of the selected cell in the specified column.
- (NSInteger)selectedRowInColumn: (NSInteger)column

Parameters
column
The column index specifying the column for which to return the selected row.

Return Value
The row index of the selected cell in the specified column.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
- loadedCellAtRow:column: (page 418)

- selectedCell (page 425)
- selectedCellInColumn: (page 425)

Related Sample Code
NewsReader

Declared In
NSBrowser.h

selectedRowlIndexesinColumn:

Provides the indexes of the selected rows in a given column of the receiver.
- (NSIndexSet *)selectedRowIndexesInColumn: (NSInteger)columnindex

Parameters
columnlndex
Column whose selected rows are provided.

Return Value
Rows selected in column columnIndex.

Availability
Available in Mac OS X v10.5 and later.

See Also
- selectRowIndexes:inColumn: (page 428)

Declared In
NSBrowser.h

selectRow:inColumn:

Selects the cell at the specified row and column index.
- (void)selectRow: (NSInteger)row inColumn: (NSInteger)column

Parameters
row

The row index of the cell to select.
column

The column index of the cell to select.

Availability
Available in Mac OS X v10.0 and later.

See Also
- loadedCelTAtRow:column: (page 418)

Declared In

NSBrowser.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

427

CHAPTER 16

NSBrowser Class Reference

selectRowindexes:inColumn:

Specifies the selected rows in a given column of the receiver.
- (void)selectRowIndexes: (NSIndexSet *)rowlIndexes inColumn:(NSInteger)columnindex

Parameters

rowlndexes
Rows to be selected in column columnindex.

columnIndex
Column in which to select rows rowIndexes.

Availability
Available in Mac OS X v10.5 and later.

See Also
- selectedRowIndexesInColumn: (page 427)

Declared In
NSBrowser.h

sendAction
Sends the action message to the target.

- (BOOL)sendAction

Return Value
YES if successful, NO if no target for the message could be found.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

sendsActionOnArrowKeys

Returns a Boolean value indicating whether pressing an arrow key causes an action message to be sent.
- (BOOL)sendsActionOnArrowKeys

Return Value
NO if pressing an arrow key only scrolls the receiver, YES if it also sends the action message specified by
setAction: (page 826).

Availability
Available in Mac OS X v10.0 and later.

See Also
- acceptsArrowKeys (page 406)

- setSendsActionOnArrowKeys: (page 438)

428 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

separatesColumns

Returns a Boolean value indicating whether columns are separated by bezeled borders.
- (BOOL)separatesColumns

Return Value
YES if the browser's columns are separated by bezeled borders; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setSeparatesColumns: (page 438)

Declared In
NSBrowser.h

setAcceptsArrowKeys:

Specifies whether the browser allows navigation using the arrow keys.
- (void)setAcceptsArrowKeys: (BOOL) flag

Parameters
flag
YES to enable the use of the arrow keys for navigating within and between browsers; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- acceptsArrowKeys (page 406)

- sendsActionOnArrowKeys (page 428)

Declared In
NSBrowser.h

setAllowsBranchSelection:
Sets whether the user can select branch items.

- (void)setAllowsBranchSelection: (BOOL)flag

Parameters
flag
YES if the user can select branch items when multiple selection is enabled; otherwise NO.

Instance Methods 429
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

430

CHAPTER 16

NSBrowser Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- allowsBranchSelection (page 406)

Declared In
NSBrowser.h

setAllowsEmptySelection:

Sets whether there can be nothing selected.
- (void)setAllowsEmptySelection: (BOOL)fTag

Parameters

flag
YES if the browser allows an empty selection; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- allowsEmptySelection (page 407)

Declared In
NSBrowser.h

setAllowsMultipleSelection:

Sets whether the user can select multiple items.
- (void)setAllowsMultipleSelection: (BOOL) flag

Parameters

flag
YES if the user can select multiple items at once; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- allowsMultipleSelection (page 407)

Declared In
NSBrowser.h

setAllowsTypeSelect:

Specifies whether the receiver allows keystroke-based selection.

- (void)setAllowsTypeSelect:(BOOL)allowsTypeSelection

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Parameters
allowsTypeSelection
YES to allow type selection, NO to disallow it.

Availability
Available in Mac OS X v10.5 and later.

See Also
- allowsTypeSelect (page 407)

Declared In
NSBrowser.h

setBackgroundColor:

Specifies the receiver’s background color.
- (void)setBackgroundColor: (NSColor *)backgroundColor

Parameters
backgroundColor
[NSColor clearColor] specifies a transparent background.

Availability
Available in Mac OS X v10.5 and later.

See Also
- backgroundColor (page 408)

Declared In
NSBrowser.h

setCellClass:

Sets the class of NSCe11 used by the matrices in the columns of the receiver.
- (void)setCellClass:(Class)factoryld

Parameters

factoryld
The class of NSCe11 used by the matrices in the columns of the browser. This method creates an
instance of the class and calls setCel1Prototype: (page 432).

Availability

Available in Mac OS X v10.0 and later.

See Also
+ cellClass (page 405)

- cellPrototype (page 409)

Declared In
NSBrowser.h

Instance Methods 431
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

432

CHAPTER 16

NSBrowser Class Reference

setCellPrototype:

Sets the NSCe11 instance copied to display items in the matrices in the columns of the receiver.
- (void)setCellPrototype: (NSCell *)aCell

Parameters
aCell
The prototype NSCel1 instance.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ cellClass (page 405)

- cellPrototype (page 409)
- setCellClass: (page 431)

Declared In
NSBrowser.h

setColumnResizingType:

Sets the receiver’s column resizing type.
- (void)setColumnResizingType: (NSBrowserColumnResizingType)columnResizingType

Parameters
columnResizingType
A constant specifying the column resizing type. Possible values are described in

NSBrowserColumnResizingType (page 457). The defaultis NSBrowserAutoColumnResizing.This
setting is persistent.

Availability
Available in Mac OS X v10.3 and later.

See Also
- columnResizingType (page 410)

Declared In
NSBrowser.h

setColumnsAutosaveName:

Sets the name used to automatically save the receiver’s column configuration.
- (void)setColumnsAutosaveName: (NSString *)name

Parameters
name
The name used to save the column configuration. If name is different from the current name, this

method also reads in any column configuration data previously saved under name and applies the
values to the browser.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Discussion

Column configuration is defined as an array of column content widths. One width is saved for each level the
user has reached. That is, the browser saves column width based on depth, not on unique paths. To do more
complex column persistence, you should register for
NSBrowserColumnConfigurationDidChangeNotification (page458)and handle persistence yourself.
This setting is persistent.

Availability
Available in Mac OS X v10.3 and later.

See Also
- columnsAutosaveName (page 410)

Declared In
NSBrowser.h

setDelegate:

Sets the receiver’s delegate.
- (void)setDelegate:(id)anObject

Parameters
anObject
The object to set at the receiver's delegate.

Discussion

Raises NSBrowserIllegalDelegateException if the delegate specified by anObject doesn’t respond
tobrowser:willDisplayCell:atRow:column: (page 454) and either of the methods
browser:numberOfRowsInColumn: (page448)orbrowser:createRowsForColumn:inMatrix: (page
445),

Availability
Available in Mac OS X v10.0 and later.

See Also
- delegate (page 411)

Declared In
NSBrowser.h

setDoubleAction:

Sets the receiver’s double-click action.
- (void)setDoubleAction:(SEL)aSelector

Parameters
aSelector

The action method to invoke when the receiver is double-clicked.
Discussion

For the method to have any effect, the receiver’s action and target must be set to the class in which the
selector is declared. See Action Messages for additional information on action messages.

Instance Methods 433
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

434

CHAPTER 16

NSBrowser Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- doubleAction (page 413)

- sendAction (page 428)

Declared In
NSBrowser.h

setDraggingSourceOperationMask:forLocal:
Specifies the drag-operation mask for dragging operations with local or external destinations.

- (void)setDraggingSourceOperationMask: (NSDragOperation)dragOperationMask
forLocal:(BOOL)/ocalDestination

Parameters

dragOperationMask

Dragging operation mask to use for either local or external drag operations, as specified by
localDestination.

localDestination
Indicates the location of the dragging operation’s destination object:

YES for this application, NO for another application.
Discussion

Important: Do not override this method.

Availability
Available in Mac OS X v10.5 and later.

See Also
- draggingSourceOperationMaskForlLocal: (page 414)

Declared In
NSBrowser.h

setHasHorizontalScroller:

Sets whether an NSScroller is used to scroll horizontally.
- (void)setHasHorizontalScroller:(BOOL)flag

Parameters
flag
YES if the browser uses an NSScrol1er object to scroll horizontally; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
- hasHorizontalScroller (page 416)

Declared In
NSBrowser.h

setLastColumn:

Sets the last column.
- (void)setLastColumn: (NSInteger)column

Parameters
column
The index of the last column.

Availability
Available in Mac OS X v10.0 and later.

See Also
- TastColumn (page 417)

- lastVisibleColumn (page 417)

Declared In
NSBrowser.h

setMatrixClass:

Sets the matrix class used in the receiver’s columns.
- (void)setMatrixClass:(Class)factoryld

Parameters
factoryld

The matrix class (NSMatrix oran NSMatrix subclass) used in the browser's columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
- matrixClass (page 418)

Declared In
NSBrowser.h

setMaxVisibleColumns:

Sets the maximum number of columns displayed.

- (void)setMaxVisibleColumns: (NSInteger)columnCount

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

435

CHAPTER 16

NSBrowser Class Reference

Parameters
columnCount
The maximum number of visible columns.

Availability
Available in Mac OS X v10.0 and later.

See Also
- maxVisibleColumns (page 419)

Declared In
NSBrowser.h

setMinColumnWidth:

Sets the minimum column width.t
- (void)setMinColumnWidth: (CGFloat)columnWidth

Parameters
columnWidth
The minimum column width, specified in pixels.

Availability
Available in Mac OS X v10.0 and later.

See Also
- minColumnWidth (page 419)

Declared In
NSBrowser.h

setPath:
Sets the path displayed by the receiver.

- (BOOL)setPath: (NSString *)path

Parameters

path
The path to display. If pathis prefixed by the path separator, the path is absolute, containing the full
path from the receiver’s first column. Otherwise, the path is relative, extending the receiver’s current
path starting at the last column.

Return Value
YES if the given path is valid; otherwise, NO.

Discussion

While parsing path, the receiver compares each component with the entries in the current column. If an
exact match is found, the matching entry is selected, and the next component is compared to the next
column’s entries. If no match is found for a component, the method exits and returns NO; the final path is set
to the valid portion of path. If each component of path specifies a valid branch or leaf in the receiver’s
hierarchy, the method returns YES.

436 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- path (page 420)

- pathToColumn: (page 421)
- pathSeparator (page 421)
- setPathSeparator: (page 437)

Declared In
NSBrowser.h

setPathSeparator:
Sets the path separator.

- (void)setPathSeparator: (NSString *)newString

Parameters
newString
The new path separator.

Availability
Available in Mac OS X v10.0 and later.

See Also
- pathSeparator (page 421)

Declared In
NSBrowser.h

setPrefersAllColumnUserResizing:

Specifies whether the browser resizes all columns simultaneously rather than resizing a single column at a
time.

- (void)setPrefersAl1ColumnUserResizing: (BOOL)prefersAliColumnResizing

Parameters

prefersAllColumnResizing
YES to cause the browser to resize all columns simultaneously; the default is single column resizing
(NO). This setting applies only to browsers that allow the user to resize columns (see
NSBrowserUserColumnResizing (page457). Holding down the Option key while resizing switches
the type of resizing used. This setting is persistent.

Availability

Available in Mac OS X v10.3 and later.

See Also
- prefersAllColumnUserResizing (page 422)

- setColumnResizingType: (page 432)

Instance Methods 437
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

setReusesColumns:

Specifies whether NSMatrix objects are reused.
- (void)setReusesColumns: (BOOL)flag

Parameters
flag

YES to prevent NSMatrix objects from being freed when their columns are unloaded, so they can
be reused; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- reusesColumns (page 423)

Declared In
NSBrowser.h

setSendsActionOnArrowKeys:

Sets whether pressing an arrow key causes the action message to be sent.
- (void)setSendsActionOnArrowKeys: (BOOL)flag

Parameters
flag

YES if pressing an arrow key should send the action message specified by setAction: (page 826)in
addition to scrolling the browser; NO if it should only scroll the browser.

Availability
Available in Mac OS X v10.0 and later.

See Also
- sendsActionOnArrowKeys (page 428)

Declared In
NSBrowser.h

setSeparatesColumns:

Sets whether to separate columns with bezeled borders.

- (void)setSeparatesColumns: (BOOL) flag

438 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Parameters
flag

YES if the browser's collumns should be separated by bezeled borders; otherwise NO. This value is
ignored if isTitled (page 417) does not return NO

Availability
Available in Mac OS X v10.0 and later.

See Also
- separatesColumns (page 429)

Declared In
NSBrowser.h

setTakesTitleFromPreviousColumn:

Sets whether the title of a column is set to the string value of the selected cell in the previous column.
- (void)setTakesTitleFromPreviousColumn: (BOOL)flag

Parameters
flag

YES if the title of a column should be set to the string value of the selected NSCe11 in the previous
column; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- takesTitleFromPreviousColumn (page 441)

Declared In
NSBrowser.h

setTitle:ofColumn:

Sets the title of the given column.
- (void)setTitle: (NSString *)aString ofColumn: (NSInteger)column

Parameters
aString
The title of the column.
column
The index of the column whose title should be set.

Availability
Available in Mac OS X v10.0 and later.

See Also
- drawTitleOfColumn:inRect: (page 414)

- titleOfColumn: (page 442)

Instance Methods 439
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

440

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

setTitled:

Sets whether columns display titles.
- (void)setTitled: (BOOL)flag

Parameters
flag
YES if the columns in a browser display titles; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- isTitled (page 417)

Declared In
NSBrowser.h

setWidth:ofColumn:

Sets the width of the specified column.
- (void)setWidth: (CGFloat)columniWidth ofColumn: (NSInteger)columnlndex

Parameters
columnWidth
The new width of the specified column.

columnIndex
The index of the column for which to set the width.

Discussion

This method can be used to set the initial width of browser columns unless the column sizing is automatic;
setWidth:ofColumn: does nothing if columnResizingType (page 410) is
NSBrowserAutoColumnResizing. To set the default width for new columns (that don’t otherwise have
initial widths from defaults or via the delegate), use a columnIndex of -1. A value set for columnIndex of
-1 is persistent. An NSBrowserColumnConfigurationDidChangeNotification (page 458) notification
is posted (not immediately), if necessary, so that the receiver can autosave the new column configuration.

Availability
Available in Mac OS X v10.3 and later.

See Also
- widthOfColumn: (page 443)

- browser:shouldSizeColumn:forUserResize:toWidth: (page 450)

Declared In
NSBrowser.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

takesTitleFromPreviousColumn

Returns a Boolean value indicating whether a column takes its title from the selected cell in the previous
column.

- (BOOL)takesTitleFromPreviousColumn

Return Value
YES if the title of a column is set to the string value of the selected NSCe 11 in the previous column; otherwise
NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTakesTitleFromPreviousColumn: (page 439)

Declared In
NSBrowser.h

tile
Adjusts the various subviews of the receiver—scrollers, columns, titles, and so on—without redrawing.

- (void)tile

Discussion
Your code shouldn’t send this message. It's invoked any time the appearance of the receiver changes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

titleFrameOfColumn:

Returns the bounds of the title frame for the specified column.
- (NSRect)titleFrameOfColumn: (NSInteger)column

Parameters
column
The index of the column for which to return the title frame.

Return Value
The rectangle specifying the bounds of the column's title frame.

Availability
Available in Mac OS X v10.0 and later.

See Also
- drawTitleOfColumn:inRect: (page 414)

Instance Methods M1
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

442

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

titleHeight

Returns the height of column titles.
- (CGFToat)titleHeight

Return Value
The height of the column titles for the browser.

Availability
Available in Mac OS X v10.0 and later.

See Also
- drawTitleOfColumn:inRect: (page 414)

Declared In
NSBrowser.h

titleOfColumn:
Returns the title displayed for the given column.

- (NSString *)titleOfColumn: (NSInteger)column

Parameters

column
The index of the column for which to get the title.

Return Value
The title of the specified column.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTitle:ofColumn: (page 439)

Declared In
NSBrowser.h

updateScroller

Updates the horizontal scroller to reflect column positions.
- (void)updateScroller

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

See Also
- scrollViaScroller: (page 424)

Declared In
NSBrowser.h

validateVisibleColumns

Invokes the delegate method browser:isColumnValid: (page 446) for visible columns.
- (void)validateVisibleColumns

Availability
Available in Mac OS X v10.0 and later.

See Also
- numberOfVisibleColumns (page 420)

Declared In
NSBrowser.h

widthOfColumn:

Returns the width of the specified column.
- (CGFloat)widthOfColumn: (NSInteger)column

Parameters

column
The index of the column for which to retrieve the width.

Return Value
The width of the column.

Availability
Available in Mac OS X v10.3 and later.

See Also
- setWidth:ofColumn: (page 440)

Declared In
NSBrowser.h

Delegate Methods

browser:acceptDrop:atRow:column:dropOperation:

Sent to the delegate during a dragging session to determine whether to accept the drop. Required for a
browser to be a drag destination.

Delegate Methods 443
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

444

CHAPTER 16

NSBrowser Class Reference

- (BOOL)browser: (NSBrowser *)sender acceptDrop:(id <NSDragginglInfo>)draglnfo
atRow: (NSInteger)dropReferenceRowlIndex column:(NSInteger)dropColumnlIndex
dropOperation: (NSBrowserDropOperation)dropRowRelativelocation

Parameters
sender

Browser querying its delegate.
draglnfo

Drag session information.
dropReferenceRowIndex

The drop row.
dropColumnlndex

The drop column.
dropRowRelativelocation

Drop location relative to dropRowIndex.

Return Value
YES to accept the drop, NO to decline it.

Discussion
Sentafterbrowser:validateDrop:proposedRow:column:dropOperation: (page 453)allows the drop.

The delegate should incorporate the pasteboard data from the dragging session
(dragInfo.draggingPasteboard)

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSBrowser.h

browser:canDragRowsWithindexes:inColumn:withEvent:

Sent to the delegate to determine whether the browser can attempt to initiate a drag of the given rows for
the given event.

- (BOOL)browser: (NSBrowser *)sender canDragRowsWithIndexes:(NSIndexSet *)rowlIndexes
inColumn: (NSInteger)columnindex withEvent: (NSEvent *)dragEvent

Parameters
sender
Browser querying its delegate.
rowlIndexes
Rows the user is dragging
columnlndex
Column containing the rows the user is dragging.
dragEvent
Mouse-drag event.

Return Value
YES to allow the drag operation, NO to disallow it.

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Availability
Available in Mac OS X v10.5 and later.

See Also
- canDragRowsWithIndexes:inColumn:withEvent: (page 408)

Declared In
NSBrowser.h

browser:createRowsForColumn:inMatrix:

Creates a row in the given matrix for each row of data to be displayed in the specified column of the browser.

- (void)browser: (NSBrowser *)sender createRowsForColumn: (NSInteger)column
inMatrix: (NSMatrix *)matrix

Parameters
sender
The browser.
column
The index of the column for which to create the rows.
matrix
The NSMatrix object in which to create the rows.

Discussion
Either this method or browser :numberOfRowsInColumn: (page 448) must be implemented, but not both
(oran NSBrowserIllegalDelegateException will be raised).

Availability
Available in Mac OS X v10.0 and later.

See Also
- browser:willDisplayCell:atRow:column: (page 454)

Declared In
NSBrowser.h

browser:dragginglmageForRowsWithIndexes:inColumn:withEvent:offset:

Sent to the delegate to obtain an image to represent dragged rows during a drag operation on a browser.

- (NSImage *)browser:(NSBrowser *)sender draggingImageForRowsWithIndexes:(NSIndexSet
*)rowlndexes inColumn: (NSInteger)columnIindex withEvent:(NSEvent *)dragEvent
offset:(NSPointPointer)inout_draglimageOffset

Parameters
sender
Browser querying its delegate.

rowlndexes
Rows the user is dragging.

Delegate Methods 445
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

446

CHAPTER 16

NSBrowser Class Reference

columnlndex
Column with the rows the user is dragging.

dragEvent
Mouse drag event.

inout_draglmageOffset
Offset for the returned image:

m NSZeroPoint: Centers the image under the pointer.

Return Value
Image representing the visible rows identified by rowIndexes.

Availability
Available in Mac OS X v10.5 and later.

See Also
- draggingImageForRowsWithIndexes:inColumn:withEvent:offset: (page 413)

Declared In
NSBrowser.h

browser:isColumnValid:

Returns whether the contents of the specified column are valid.
- (BOOL)browser: (NSBrowser *)sender isColumnValid:(NSInteger)column

Parameters
sender
The browser for which to validate the contents.

column
The index of the column to validate.

Return Value
YES if the column's contents are valid; otherwise NO. If NO is returned, sender reloads the column.

Discussion
This method is invoked in response to validateVisibleColumns (page 443) being sent to sender.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

browser:namesOfPromisedFilesDroppedAtDestination:forDraggedRowsWithindexes:
inColumn:

Implements file-promise drag operations.

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

- (NSArray *)browser:(NSBrowser *)sender
namesOfPromisedFilesDroppedAtDestination: (NSURL *)dropURL
forDraggedRowsWithIndexes: (NSIndexSet *)rowlIndexes
inColumn: (NSInteger)columnIndex

Parameters
sender
Browser querying its delegate.
dropURL
Drop filesystem location.
rowlndexes
Rows the user is dropping.
columnindex
Column with the rows the user is dropping.

Return Value
Filenames (not pathnames) for the actual files represented by the rows the user is dropping.

Discussion

Note: File-promise drag operation support requires adding NSFilesPromisePboardType to the pasteboard
inbrowser:writeRowsWithIndexes:inColumn:toPasteboard: (page
455)-browser:writeRowWithIndexes:inColumn:toPasteboard:

Availability
Available in Mac OS X v10.5 and later.

See Also
- namesOfPromisedFilesDroppedAtDestination: (page 420)

Declared In
NSBrowser.h

browser:nextTypeSelectMatchFromRow:toRow:inColumn:forString:

Sent to the delegate to customize a browser’s keyboard-based selection (type select) behavior.

- (NSInteger)browser:(NSBrowser *)sender
nextTypeSelectMatchFromRow: (NSInteger)startRowIndex toRow: (NSInteger)endRowIndex
inColumn: (NSInteger)columnindex forString:(NSString *)searchString

Parameters

sender
Browser querying its delegate.

startRowlIndex
Beginning of row-set to search.
endRowIndex
End of row-set to to search. Can be less than startRowIndex when the search wraps to the beginning.

columnlndex
Column with the rows being searched.

Delegate Methods 447
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

searchString
Keyboard-based selection string. It’s ni1 when no keyboard-based selection has begun.

Return Value
Index—between startRowIndex and endRowIndex - 1, inclusive—of the first row that matches
searchString.

-1 indicates that there’s no match.

Availability
Available in Mac OS X v10.5 and later.

See Also
- browser:shouldTypeSelectForEvent:withCurrentSearchString: (page 451)

- browser:typeSelectStringForRow:inColumn: (page 452)

Declared In
NSBrowser.h

browser:numberOfRowsIinColumn:

Returns the number of rows of data in the specified column.
- (NSInteger)browser:(NSBrowser *)sender numberOfRowsInColumn:(NSInteger)column

Parameters
sender
The browser.
column
The index of the column for which to return the number of rows.

Return Value
The number of rows of data in the specified column.

Discussion
Either this method or browser:createRowsForColumn:inMatrix: (page 445) must be implemented, but
not both.

Availability
Available in Mac OS X v10.0 and later.

See Also
- browser:willDisplayCell:atRow:column: (page 454)

Declared In
NSBrowser.h

browser:selectCellWithString:inColumn:

Asks the delegate to select the NSCe11 with the given title in the specified column.a

- (BOOL)browser: (NSBrowser *)sender selectCellWithString: (NSString *)title
inColumn: (NSInteger)column

448 Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Parameters
sender
The browser.
title
The title of the cell to select.
column
The index of the column containing the cell to select.

Return Value
YES if the NSCe 11 was successfully select; otherwise, NO.

Discussion
It is the delegate’s responsibility to select the cell, rather than the browser. Invoked in response to
setPath: (page 436) being received by sender.

Availability
Available in Mac OS X v10.0 and later.

See Also
- selectedCellInColumn: (page 425)

Declared In
NSBrowser.h

browser:selectRow:inColumn:

Asks the delegate to select the NSCe11 at the specified row and column location.

- (BOOL)browser: (NSBrowser *)sender selectRow:(NSInteger)row
inColumn: (NSInteger)column

Parameters
sender
The browser.
row
The index of the row containing the cell to select.
column
The index of the column containing the cell to select.

Return Value
NO if the NSCe11 was not selected; otherwise YES.

Discussion
It is the delegate’s responsibility to select the cell, rather than the browser. Invoked in response to
selectRow:inColumn: (page 427) being received by sender.

Availability
Available in Mac OS X v10.0 and later.

See Also
- selectedRowInColumn: (page 426)

- selectRow:inColumn: (page 427)

Delegate Methods 449
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

450

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

browser:shouldShowCellExpansionForRow:column:

Determines whether an expansion tooltip appears for a cell at the given row in the given column.

- (BOOL)browser: (NSBrowser *)sender shouldShowCelTExpansionForRow: (NSInteger)rowlIndex
column: (NSInteger)columnIndex

Parameters
sender

Browser querying its delegate.
rowlndex

Row requesting an expansion tooltip.
columnilndex

Column with the requesting row.

Return Value
YES to allow the cell expansion tooltip, NO to disallow it.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSBrowser.h

browser:shouldSizeColumn:forUserResize:toWidth:

Used for determining a column’s initial size.

- (CGFloat)browser: (NSBrowser *)browser shouldSizeColumn: (NSInteger)columnIndex
forUserResize: (BOOL) forUserResize toWidth:(CGFloat)suggestediWidth

Parameters

browser
The browser.

columnIndex
The index of the column to size.

forUserResize
As currently implemented, this method is always called with forUserResize set to NO.

suggestedWidth
The suggested width for the column.

Return Value

The delegate's desired initial width for a newly added column. If you want to accept the suggested width,
return suggestedWidth. If you return 0 or a size too small to display the resize handle and a portion of the
column, the actual size used will be larger than you requested.

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Discussion
Implementation is optional and applies only to browsers with resize type NSBrowserNoColumnResizing
or NSBrowserUserColumnResizing (see NSBrowserColumnResizingType (page 457)). 1

Availability
Available in Mac OS X v10.3 and later.

See Also
- setWidth:ofColumn: (page 440)

Declared In
NSBrowser.h

browser:shouldTypeSelectForEvent:withCurrentSearchString:

Sent to the delegate to determine whether keyboard-based selection (type select) for a given event and
search string should proceed.

- (BOOL)browser: (NSBrowser *)sender shouldTypeSelectForktvent: (NSEvent *)keyEvent
withCurrentSearchString: (NSString *)searchString

Parameters

sender
Browser querying its delegate.

keyEvent
Keyboard event being processed.

searchString

Keyboard-based selection string. It’s ni1 when no keyboard-based selection has begun.
Return Value
YES to allow the selection, NO to disallow it.

Availability
Available in Mac OS X v10.5 and later.

See Also
- allowsTypeSelect (page 407)

Declared In
NSBrowser.h

browser:sizeToFitWidthOfColumn:

Returns the ideal width for a column.
- (CGFloat)browser: (NSBrowser *)browser sizeToFitWidthOfColumn: (NSInteger)columnindex

Parameters
browser
The browser.

columnilndex
The index of the column to size. If columnindexis -1, the resultis used for a “right-size-all” operation.

Delegate Methods 451
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

452

CHAPTER 16

NSBrowser Class Reference

Return Value
The ideal width of the column. This method is used when performing a “right-size” operation; that is, when
sizing a column to the smallest width that contains all the content without clipping or truncating.

If columnlIndexis -1, you should return a size that can be uniformly applied to all columns (that is, every
column will be set to this size). It is assumed that the implementation may be expensive, so it will be called
only when necessary.

Discussion
Implementation is optional and is for browsers with resize type NSBrowserUserColumnResizing only.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSBrowser.h

browser:titleOfColumn:

Asks the delegate for the title to display above the specified column.
- (NSString *)browser:(NSBrowser *)sender titleOfColumn:(NSInteger)column

Parameters
sender
The browser.
column
The index of the column for which to return the title.

Return Value
The title of the specified column.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTitle:ofColumn: (page 439)

- titleOfColumn: (page 442)

Declared In
NSBrowser.h

browser:typeSelectStringForRow:inColumn:

Sent to the delegate to get the keyboard-based selection (type select) string for a given row and column.

- (NSString *)browser: (NSBrowser *)sender typeSelectStringForRow:(NSInteger)rowindex
inColumn: (NSInteger)columnlndex

Parameters
sender
Browser querying its delegate.

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

rowlndex
Row being inquired about.

columnilndex
Column with the row being inquired about.

Return Value
Keyboard-based selection string for the identified row and column.

Returning the empty string or ni1 (for example, when the cell does not contain text) specifies that the
[columnIndex, rowlIndex] cell has no text to search.

Discussion

If the delegate does not implement this method, all cells with text are searched, and the browser determines
the keyboard-based selection text by sending stringValue (page 604) to the cell specified by columnindex
and rowlndex.

Availability
Available in Mac OS X v10.5 and later.

See Also
- browser:shouldTypeSelectForEvent:withCurrentSearchString: (page 451)

Declared In
NSBrowser.h

browser:validateDrop:proposedRow:column:dropOperation:
Sent to the delegate during a dragging session to determine whether to accept a drop, and to obtain the
drop location. Required for a browser to be a drag destination.

- (NSDragOperation)browser: (NSBrowser *)sender validateDrop:(id
<NSDraggingInfo>)draginfo proposedRow: (NSInteger *)inout_dropReferenceRowlIndex
column: (NSInteger *)inout_dropColumnindex dropOperation: (NSBrowserDropOperation
*) inout_dropRowRelativelocation

Parameters
sender
Browser querying its delegate.

draginfo
Drag session information.

inout_dropReferenceRowlIndex
Together with inout_dropRowRelativelocation specifies the drop location.

On input, the proposed drop reference row.
On output, the drop reference row.

inout_dropColumnlndex
Column on which the dragged rows are being dropped.

On input, the proposed drop column.

On output, the drop column.

Delegate Methods 453
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

inout_dropRowRelativelocation
Drop location, within the rows identified in rowIndexes, of the drag operation.

On input, the proposed drop location.
On output, the drop location.

Return Value
Drag operation the data source is to perform. Must not be NSDragOperationNone for sender to accept the
drop.

Discussion
The browser proposes a drop column, row, and row-relative location for the drop based on the pointer
position, as shown in this table:

Drop relative location | Description

NSBrowserDropOn Dragging location (draginfo.dragginglocation) is closer to the middle of
inout_dropReferenceRowIndex than to either of its vertical sides.
NSBroserDropAbove | Dragging location is between two rows. Indicates a drop location above

inout_dropReferenceRowIndexandbelow inout_dropReferenceRowIndex
- 1.

These are a few examples of how to specify a drop location:

454

Reference row index Row-relative location
On row 2 2 NSBrowserDropQn
Between rows 2and 3 | 3 NSBrowserDropAbove
Below the last row [sender numberOfRows] | NSBrowserDropAbove
All rows -1 NSBrowserDropOn
Availability

Available in Mac OS X v10.5 and later.

See Also

- registerForDraggedTypes: (page 3148)

Declared In
NSBrowser.h

browser:willDisplayCell:atRow:column:

Gives the delegate the opportunity to modify the specified cell at the given row and column position before
it's displayed by the NSBrowser.

- (void)browser: (NSBrowser *)sender willDisplayCell:(id)cell atRow:(NSInteger)row
column: (NSInteger)column

Delegate Methods

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Parameters
sender
The browser.
cell
The cell to be displayed.
row
The row index of the cell to be displayed.
column
The column index of the cell to be displayed.

Discussion
The delegate should set any state necessary for the correct display of the cell.

Availability
Available in Mac OS X v10.0 and later.

See Also
- browser:createRowsForColumn:inMatrix: (page 445)

- browser:numberOfRowsInColumn: (page 448)

Declared In
NSBrowser.h

browser:writeRowsWithindexes:inColumn:toPasteboard:

Determines whether a drag operation can proceed. Required for a browser to be a drag source.

- (BOOL)browser: (NSBrowser *)sender writeRowsWithIndexes:(NSIndexSet *)rowlIndexes
inColumn: (NSInteger)columnindex toPasteboard: (NSPasteboard *)pasteboard

Parameters
sender
Browser querying its delegate.

rowlndexes
Rows the user is dragging.

columnlndex
Column with the dragged rows.

pasteboard
Content from the dragged rows.

Return Value
YES to allow the dragging operation to proceed (see discussion for further details), NO to disallow it.

Discussion

Called after a drag operation has been allowed to start
(browser:canDragRowsWithIndexes:inColumn:withEvent: (page 444) returns YES) but before it
actually begins.

Availability
Available in Mac OS X v10.5 and later.

Delegate Methods 455
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

456

CHAPTER 16

NSBrowser Class Reference

Declared In
NSBrowser.h

browserColumnConfigurationDidChange:

Used by clients to implement their own column width persistence.
- (void)browserColumnConfigurationDidChange: (NSNotification *)notification

Parameters
notification
The notification of the configuration change.

Discussion

Implementation is optional, and used for browsers with resize type NSBrowserUserColumnResizing only.
Itis called when the method setWidth:ofColumn: (page 440) is used to change the width of any browser
columns or when the user resizes any columns. If the user resizes more than one column, a single notification
is posted when the user is finished resizing.

Availability
Available in Mac OS X v10.3 and later.

See Also
NSBrowserColumnConfigurationDidChangeNotification (page 458)

- setWidth:ofColumn: (page 440)

Declared In
NSBrowser.h

browserDidScroll:

Notifies the delegate when the NSBrowser has scrolled.
- (void)browserDidScroll:(NSBrowser *)sender

Parameters

sender
The browser sending the message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

browserWillScroll:

Notifies the delegate when the NSBrowser will scroll.

- (void)browserWillScroll:(NSBrowser *)sender

Delegate Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

Parameters
sender
The browser sending the message.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowser.h

Constants

NSBrowserColumnResizingType

Describe types of browser column resizing.

typedef enum _NSBrowserColumnResizingType ({
NSBrowserNoColumnResizing =0,
NSBrowserAutoColumnResizing = 1,
NSBrowserUserColumnResizing Vs

} NSBrowserColumnResizingType;

Constants

NSBrowserNoColumnResizing
Neither NSBrowser nor the user can change the column width. The developer must explicitly set all
column widths.

Available in Mac OS X v10.3 and later.
Declared in NSBrowser. h.

NSBrowserAutoColumnResizing
All columns have the same width, calculated using a combination of the minimum column width and
maximum number of visible columns settings. The column width changes as the window size changes.
The user cannot resize columns.

Available in Mac OS X v10.3 and later.
Declared in NSBrowser. h.

NSBrowserUserColumnResizing
The developer chooses the initial column widths, but users can resize all columns simultaneously or
each column individually.

Available in Mac OS X v10.3 and later.
Declared in NSBrowser. h.

Discussion
These constants are used by the setColumnResizingType: (page432)and columnResizingType (page
410) methods.

Availability
Available in Mac OS X v10.3 and later.

Declared In
NSBrowser.h

Constants 457
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 16

NSBrowser Class Reference

NSBrowserDropOperation

This type is used to to specifying the drop type of a drag-and-drop operation. See
browser:validateDrop:proposedRow:column:dropOperation for more information.

enum {
NSBrowserDropOn,
NSBrowserDropAbove
b
typedef NSUInteger NSBrowserDropOperation;

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSBrowser.h

Notifications

NSBrowserColumnConfigurationDidChangeNotification

Notifies the delegate when the width of a browser column has changed. The notification object is the browser
whose column sizes need to be made persistent. This notification does not contain a userInfo dictionary.
If the user resizes more than one column, a single notification is posted when the user is finished resizing.

Availability
Available in Mac OS X v10.3 and later.

See Also
- browserColumnConfigurationDidChange: (page 456)

Declared In
NSBrowser.h

458 Notifications
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

Inherits from

Conforms to

Framework

Availability
Declared in
Companion guide

Related sample code

Overview

Tasks

NSCell : NSObject

NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

/System/Library/Frameworks/AppKit.framework
Available in Mac OS X v10.0 and later.

AppKit/NSBrowserCell.h
Browsers

NewsReader

The NSBrowserCel1 class is the subclass of NSCe11 used by default to display data in the columns of an

NSBrowser object. (Each column contains an NSMatrix filled with NSBrowserCe11 objects.)

The NSBrowserCel1 class implements the user interface of NSBrowser.

Getting Browser Cell Information

+ branchImage (page 460)

Returns the default image for branch cells in a browser.

+ highlightedBranchImage (page 461)
Returns the default image for branch browser cells that are highlighted.

Configuring Browser Cells

- image (page 462)

Returns the receiver’s image.

Overview

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

459

CHAPTER 17

NSBrowserCell Class Reference

- setlmage: (page 464)
Sets the receiver’s image, retaining the image.
- alternatelmage (page 461)
Returns the receiver’s image for the highlighted state.

- setAlternatelmage: (page 464)
Sets the receiver’s image for the highlighted state, retaining the image.

Managing Browser Cell State

- reset (page 463)
Unhighlights the receiver and unsets its state.
- set (page 463)
Highlights the receiver and sets its state.
- islLeaf (page 462)
Returns whether the receiver is a leaf or a branch cell.
- setleaf: (page 465)
Sets whether the receiver is a leaf or a branch cell.
- islLoaded (page 463)
Returns a Boolean value indicating whether the cell is ready to display.
- setloaded: (page 465)
Sets whether the receiver’s state has been set and the cell is ready to display.

- highlightColorInView: (page 462)
Returns the highlight color that the receiver wants to display.

Class Methods

460

branchimage

Returns the default image for branch cells in a browser.
+ (NSImage *)branchImage

Return Value
The default image used for branch NSBrowserCe11 objects. The default image is a right-pointing triangle.

Discussion
Override this method if you want a different image. To have a branch NSBrowserCe11 with no image (and
no space reserved for an image), override this method to return ni1l.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ highlightedBranchImage (page 461)

- alternatelmage (page 461)
- setAlternatelmage: (page 464)

Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

Declared In
NSBrowserCell.h

highlightedBranchimage
Returns the default image for branch browser cells that are highlighted.

+ (NSImage *)highlightedBranchImage

Return Value
The default image used for branch NSBrowserCe11 objects that are highlighted. This is a lighter version of
the image returned by branchImage (page 460).

Discussion
Override this method if you want a different image.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ branchImage (page 460)

- alternatelmage (page 461)
- setAlternatelmage: (page 464)

Declared In
NSBrowserCell.h

Instance Methods

alternatelmage

Returns the receiver’s image for the highlighted state.
- (NSImage *)alternatelmage

Return Value
The image used for the browser cell in its highlighted state or ni 1 if no image is set.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAlternatelmage: (page 464)

Declared In
NSBrowserCell.h

Instance Methods 461
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

highlightColorinView:

Returns the highlight color that the receiver wants to display.
- (NSColor *)highlightColorInView: (NSView *)controlView

Parameters
controlView
The view for which to return the highlight color.

Return Value
The highlight color.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSBrowserCell.h

image
Returns the receiver’s image.
- (NSImage *)image

Return Value
The image of the receiver or ni1 if no image is set.

Availability
Available in Mac OS X v10.2 and later.

See Also
- setlImage: (page 464)

Declared In
NSBrowserCell.h

isLeaf

Returns whether the receiver is a leaf or a branch cell.
- (BOOL)isLeaf

Return Value
YES if the receiver is a leaf cell; otherwise NO.

Discussion

A branch NSBrowserCel1 has an image near its right edge indicating that more, hierarchically related
information is available; when the user selects the cell, the NSBrowser displays a new column of
NSBrowserCel1 objects. Aleaf NSBrowserCel1 has noimage, indicating that the user has reached a terminal
piece of information; it doesn’t point to additional information.

Availability
Available in Mac OS X v10.0 and later.

462 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

See Also
- setleaf: (page 465)

Declared In
NSBrowserCell.h

isLoaded

Returns a Boolean value indicating whether the cell is ready to display.
- (BOOL)isLoaded

Return Value

YES if the receiver’s state has been set and the cell is ready to display; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setloaded: (page 465)

Declared In
NSBrowserCell.h

reset

Unhighlights the receiver and unsets its state.
- (void)reset

Availability
Available in Mac OS X v10.0 and later.

See Also
- set (page 463)

Declared In
NSBrowserCell.h

set

Highlights the receiver and sets its state.
- (void)set

Availability
Available in Mac OS X v10.0 and later.

See Also
- reset (page 463)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

463

CHAPTER 17

NSBrowserCell Class Reference

Declared In
NSBrowserCell.h

setAlternatelmage:

Sets the receiver’s image for the highlighted state, retaining the image.
- (void)setAlternatelmage: (NSImage *)newAltImage

Parameters

newAltImage
The new image for the browser cell in its highlighted state. If newA 1t Imageis nil, it removes the
alternate image for the receiver. newA 1t Image is drawn vertically centered on the left edge of the
browser cell.
Note that newA Tt Image is drawn at the given size of the image. NSBrowserCe11 does not set the
size of the image, nor does it clip the drawing of the image. Make sure newATtImage is the correct
size for drawing in the browser cell.

Availability

Available in Mac OS X v10.0 and later.

See Also
- alternatelmage (page 461)

Declared In
NSBrowserCell.h

setimage:

Sets the receiver’s image, retaining the image.
- (void)setImage: (NSImage *)newlImage

Parameters
newlmage

The new image. If newImageis nil, it removes the image for the receiver. newImageis drawn vertically
centered on the left edge of the browser cell.

Note that newImage is drawn at the given size of the image. NSBrowserCe11 does not set the size
of the image, nor does it clip the drawing of the image. Make sure newImage is the correct size for
drawing in the browser cell.

Availability
Available in Mac OS X v10.2 and later.

See Also
- image (page 462)

Declared In
NSBrowserCell.h

464 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

setLeaf:

Sets whether the receiver is a leaf or a branch cell.
- (void)setLeaf:(BOOL)flag

Parameters
flag
YES if the receiver is a leaf cell; otherwise NO.

Discussion

A branch NSBrowserCel1 has an image near its right edge indicating that more, hierarchically related
information is available; when the user selects the cell, the NSBrowser displays a new column of
NSBrowserCel1 objects. Aleaf NSBrowserCel1 has noimage, indicating that the user has reached a terminal
piece of information; it doesn’t point to additional information.

Availability
Available in Mac OS X v10.0 and later.

See Also
- isleaf (page 462)

Related Sample Code
NewsReader

Declared In
NSBrowserCell.h

setLoaded:

Sets whether the receiver’s state has been set and the cell is ready to display.
- (void)setLoaded: (BOOL)flag

Parameters
flag
YES if the receiver’s state has been set and the cell is ready to display; otherwise NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- islLoaded (page 463)

Declared In
NSBrowserCell.h

Instance Methods 465
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 17

NSBrowserCell Class Reference

466 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18

NSBundle Additions Reference

Inherits from NSObject
Framework /System/Library/Frameworks/AppKit.framework
Declared in AppKit/NSHelpManager.h
AppKit/NSImage.h
AppKit/NSNibLoading.h
AppKit/NSSound.h
Companion guide Resource Programming Guide
Overview

Tasks

The Application Kit extends the behavior of the Foundation framework’s NSBundle class to support the
loading of specific resource types.

The NSBund1e additions add support for the following tasks:

m Loading nib files
m Locating image and sound resources

m Accessing context help fromaHelp.plist file

These methods become part of the NSBund1e class only for those applications that use the Application Kit.

Loading Nib Files

+ ToadNibFile:externalNameTable:withZone: (page 468)
Unarchives the contents of the nib file and links them to objects in your program.

+ ToadNibNamed:owner: (page 469)
Unarchives the contents of the nib file and links them to a specific owner object.

- loadNibFile:externalNameTable:withZone: (page 470)
Unarchives the contents of a nib file located in the receiver's bundle.

Overview 467
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18
NSBundle Additions Reference

Locating Image Resources

- pathForImageResource: (page 471)
Returns the location of the specified image resource file.

Accessing Context Help

- contextHelpForKey: (page 469)
Returns the context-sensitive help for the specified key from the bundle's help file.

Locating Sound Resources

- pathForSoundResource: (page 471)
Returns the location of the specified sound resource file.

Class Methods

loadNibFile:externalNameTable:withZone:

Unarchives the contents of the nib file and links them to objects in your program.

+ (BOOL)loadNibFile: (NSString *)fileName externalNameTable: (NSDictionary *)context
withZone: (NSZone *)zone

Parameters

fileName
The location of the nib file specified as an absolute path in the file system.

context
A name table whose keys identify objects associated with your program or the nib file. The newly
unarchived objects from the nib file use this table to connect to objects in your program. For example,
the nib file uses the object associated with the NSNibOwner constant as the nib file's owning object.
If you associate an empty NSMutableArray object with the NSNibTopLevelObjects constant, on
output, the array contains the top level objects from the nib file. For descriptions of these constants,
see NSNib Class Reference.

zone
The memory zone in which to allocate the nib file objects.

Return Value

YES if the nib file was loaded successfully; otherwise, NO.

Discussion
This method is declared in NSNibLoading.h.

Availability
Available in Mac OS X v10.0 and later.

468 Class Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18
NSBundle Additions Reference

Declared In
NSNibLoading.h

loadNibNamed:owner:

Unarchives the contents of the nib file and links them to a specific owner object.
+ (BOOL)loadNibNamed: (NSString *)aNibName owner:(id)owner

Parameters

aNibName
The name of the nib file, which need notinclude the . nib extension. The file name should not include
path information. The object in the owner parameter determines the location in which to look for
the nib file.

owner

The object to assign as the nib Flle's Owner. If the class of this object has an associated bundle, that
bundle is searched for the specified nib file; otherwise, this method looks in the main bundle.

Return Value
YES if the nib file was loaded successfully; otherwise, NO.

Discussion
This method is declared in NSNibLoading. h.

Availability
Available in Mac OS X v10.0 and later.

See Also
+ bundleForClass: (NSBundle)

Related Sample Code
MyPhoto

Numberlnput_IMKit_Sample
QTAudioExtractionPanel
Reducer

WhackedTV

Declared In
NSNibLoading.h

Instance Methods

contextHelpForKey:

Returns the context-sensitive help for the specified key from the bundle's help file.

- (NSAttributedString *)contextHelpForKey: (NSString *)key

Instance Methods 469
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

470

CHAPTER 18
NSBundle Additions Reference

Parameters

key
A key in your application's He1p.p1ist file that identifies the context-sensitive help to return.

Return Value
The help string or ni1 if the application does not have a Help.p11ist file or the file does not contain an
entry for the specified key.

Discussion

When you build your application, you can merge multiple RTF-based help files together using the
/usr/bin/compileHelp tool, which then packages your help file information into a property list named
Help.plist. After placing this property-list file in your application bundle, you can use this method to
extract context help information from it. To look up a particular entry, you specify the name of the original
RTF help file in the key parameter of this method. For example, if your application project contains a help
file named Copy . rtf, you would retrieve the text from this file by passing the value @"Copy.rtf" to the
key parameter.

This method is declared in NSHe1pManager. h.

Availability
Available in Mac OS X v10.0 and later.

See Also
- contextHelpForObject: (page 1295) (NSHelpManager)

Declared In
NSHelpManager.h

loadNibFile:externalNameTable:withZone:

Unarchives the contents of a nib file located in the receiver's bundle.

- (BOOL)ToadNibFile: (NSString *)fileName externalNameTable: (NSDictionary *)context
withZone: (NSZone *)zone

Parameters

fileName
The name of the nib file, which need not include the .nib extension.

context
A name table whose keys identify objects associated with your program or the nib file. The newly
unarchived objects from the nib file use this table to connect to objects in your program. For example,
the nib file uses the object associated with the NSNibOwner constant as the nib file's owning object.
If you associate an empty NSMutableArray object with the NSNibToplLevelObjects constant, on
output, the array contains the top level objects from the nib file. For descriptions of these constants,
see NSNib Class Reference.

zone
The memory zone in which to allocate the nib file objects.

Return Value
YES if the nib file was loaded successfully; otherwise, NO.

Discussion
This method searches the language-specific project (. 1proj) directories for the specified nib file. If the file
is not there, it searches the bundle's Resources directory for a nonlocalized version of the file.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18
NSBundle Additions Reference

This method is declared in NSNibLoading. h.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSNibLoading.h

pathForlimageResource:

Returns the location of the specified image resource file.
- (NSString *)pathForImageResource: (NSString *)name

Parameters
name

The name of the image resource file, without any pathname information. Including a filename extension
is optional.

Return Value
The absolute pathname of the resource file or ni1 if the file was not found.

Discussion
Image resources are those files in the bundle that are recognized by the NSImage class, including those that
can be converted using the Image |0 framework.

This method is declared in NSImage. h.

Availability
Available in Mac OS X v10.0 and later.

See Also
- pathForResource:ofType: (NSBundle)

Related Sample Code
LayerBackedOpenGLView

Declared In
NSImage.h

pathForSoundResource:

Returns the location of the specified sound resource file.
- (NSString *)pathForSoundResource: (NSString *)name

Parameters

name
The name of the sound resource file, without any pathname information. Including a filename extension
is optional

Return Value
The absolute pathname of the resource file or ni1 if the file was not found.

Instance Methods an
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 18
NSBundle Additions Reference

Discussion
Sound resources are those files in the bundle that are recognized by the NSSound class. The types of sound
files can be determined by calling the soundUnfilteredFileTypes (page 2425) method of NSSound.

This method is declared in NSSound. h.

Availability
Available in Mac OS X v10.0 and later.

See Also
- pathForResource:ofType: (NSBundle)

Declared In
NSSound.h

472 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Inherits from NSControl : NSView : NSResponder : NSObject

Conforms to NSUserlInterfaceValidations
NSAnimatablePropertyContainer (NSView)
NSCoding (NSResponder)

NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Availability Available in Mac OS X v10.0 and later.
Declared in AppKit/NSButton.h
Companion guide Button Programming Topics for Cocoa
Related sample code CocoaSpeechSynthesisExample
MyPhoto
PDF Annotation Editor
Sproing
WhackedTV

Overview

The NSButton class is a subclass of NSControl that intercepts mouse-down events and sends an action
message to a target object when it’s clicked or pressed.

The NSButton class uses NSButtonCell to implement its user interface.

NSButton and NSMatrix both provide a control view, which is needed to display an NSButtonCe11 object.
However, while NSMatrix requires you to access the NSButtonCel1 objects directly, most of the NSButton
class' methods are “covers” for identically declared methods in NSButtonCel1. (In other words, the
implementation of the NSButton method invokes the corresponding NSButtonCel1 method for you,
allowing you to be unconcerned with the existence of the NSButtonCe11.) The only NSButtonCel1 methods
that don’t have covers relate to the font used to display the key equivalent and to specific methods for
highlighting or showing the state of the NSButton (these last are usually set together with the NSButton
setButtonType: (page 486) method).

Overview 473
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

474

CHAPTER 19

NSButton Class Reference

Configuring Buttons

- setButtonType: (page 486)
Sets how the receiver button highlights while pressed and how it shows its state.
- getPeriodicDelay:interval: (page 478)
Returns by reference the delay and interval periods for a continuous button.
- setPeriodicDelay:interval: (page 489)
Sets the message delay and interval periods for a continuous button.
- alternateTitle (page 477)
Returns the title that the button displays when it’s in its alternate state.
- setAlternateTitle: (page 483)
Sets the title that appears on the button when it’s in its alternate state.
- attributedTitle (page 478)
Returns the title that the button displays in its normal state as an attributed string.
- setAttributedTitle: (page 484)

Sets the string that appears on the button when it’s in its normal state to the given attributed string
and redraws the button.

- attributedAlternateTitle (page 477)
Returns the title that the button displays when it’s in its alternate state as an attributed string.
- setAttributedAlternateTitle: (page 484)
Sets the title that appears on the button when it’s in its alternate state to the given attributed string.
- title (page 494)
Returns the title displayed on the button when it’s in its normal state.
- setTitle: (page 491)

Sets the title displayed by the receiver when in its normal state and, if necessary, redraws the button’s
contents.

- setTitleWithMnemonic: (page 491)
Sets the title of a button with a character denoting an access key.

- setSound: (page 490)
Sets the sound played when the user presses the button.

- sound (page 493)
Returns the sound that’s played when the user presses the button.

Configuring Button Images

- image (page 479)

Returns the image that appears on the receiver when it’s in its normal state.
- setImage: (page 486)

Sets the receiver’s image and redraws the button.

- alternatelmage (page 476)
Returns the image that appears on the button when it’s in its alternate state.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

- setAlternatelmage: (page 483)

Sets the image displayed by the button when it’s in its alternate state and, if necessary, redraws the
contents of the button.

- imagePosition (page 480)

Returns the position of the receiver’s image relative to its title.
- setImagePosition: (page 487)

Sets the position of the button's image relative to its title.
- isBordered (page 480)

Returns a Boolean value indicating whether the button has a border.
- setBordered: (page 485)

Sets whether the receiver has a bezeled border.
- isTransparent (page 481)

Returns a Boolean value indicating whether the button is transparent.
- setTransparent: (page 492)

Sets whether the receiver is transparent and redraws the receiver if necessary.
- bezelStyle (page 478)

Returns the appearance of the receiver’s border.
- setBezelStyle: (page 485)

Sets the appearance of the border, if the receiver has one.

- showsBorderOnlyWhileMouselInside (page 492)
Returns a Boolean value indicating whether the button displays its border only when the cursor is
over it.

- setShowsBorderOnlyWhileMouselnside: (page 489)
Sets whether the receiver’s border is displayed only when the cursor is over the button.

Managing Button State

- allowsMixedState (page 476)
Returns a Boolean value indicating whether the button allows a mixed state.

- setAllowsMixedState: (page 482)
Sets whether the button allows a mixed state.
- state (page 493)
Returns the receiver’s state.
- setState: (page 490)
Sets the cell’s state to the specified value.
- setNextState (page 488)
Sets the receiver to its next state.
- highlight: (page 479)
Highlights (or unhighlights) the receiver.

Accessing Key Equivalents

- keyEquivalent (page 481)
Returns the key-equivalent character of the receiver.

Tasks 475
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

- setKeyEquivalent: (page 487)
Sets the key equivalent character of the receiver to the given character.

- keyEquivalentModifierMask (page 481)
Returns the mask specifying the modifier keys for the receiver’s key equivalent.

- setKeyEquivalentModifierMask: (page 488)
Sets the mask indicating the modifier keys used by the receiver’s key equivalent.

Handling Keyboard Events
- performKeyEquivalent: (page 482)

Checks the button's key equivalent against the specified event and, if they match, simulates the button
being clicked.

Instance Methods

476

allowsMixedState

Returns a Boolean value indicating whether the button allows a mixed state.
- (BOOL)allowsMixedState

Return Value
YES if the receiver has three states: on, off, and mixed. NO if the receiver has two states: on and off. The default
is NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAllowsMixedState: (page 482)

- setNextState (page 488)

Declared In
NSButton.h

alternatelmage

Returns the image that appears on the button when it’s in its alternate state.
- (NSImage *)alternatelmage

Return Value
The image displayed by the button when it's in its alternate state, or ni 1 if there is no alternate image. Note
that some button types don't display an alternate image. Buttons don't display images by default.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

See Also
- setAlternatelmage: (page 483)

- image (page 479)

- imagePosition (page 480)
- keyEquivalent (page 481)
- setButtonType: (page 486)

Declared In
NSButton.h

alternateTitle

Returns the title that the button displays when it’s in its alternate state.
- (NSString *)alternateTitle

Return Value
The string that appears on the receiver when it's in its alternate state, or the empty string if the receiver
doesn't display an alternate title. By default, a button’s alternate title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAlternateTitle: (page 483)

- attributedAlternateTitle (page 477)
- setButtonType: (page 486)
- title (page 494)

Declared In
NSButton.h

attributedAlternateTitle

Returns the title that the button displays when it’s in its alternate state as an attributed string.
- (NSAttributedString *)attributedAlternateTitle

Return Value
The string that appears on the receiver when it's in its alternate state, as an NSAttributedString, or the
empty string if the receiver doesn't display an alternate title. By default, a button’s alternate title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAttributedAlternateTitle: (page 484)

- attributedTitle (page 478)
- setButtonType: (page 486)

Instance Methods 477
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Declared In
NSButton.h

attributedTitle
Returns the title that the button displays in its normal state as an attributed string.

- (NSAttributedString *)attributedTitle

Return Value
The string that appears on the receiver when it's in its normal state asan NSAttributedString, oran empty
attributed string if the receiver doesn't display a title.

A button’s title is always displayed if the button doesn't use its alternate contents for highlighting or displaying
the alternate state. By default, a button'’s title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAttributedTitle: (page 484)

- attributedAlternateTitle (page 477)
- setButtonType: (page 486)

Declared In
NSButton.h

bezelStyle

Returns the appearance of the receiver’s border.
- (NSBezelStyle)bezelStyle

Return Value
The bezel style of the button. See the “Constants” (page 525) section of NSButtonCell (page 495) for the list
of possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setBezelStyle: (page 485)

Declared In
NSButton.h

getPeriodicDelay:interval:

Returns by reference the delay and interval periods for a continuous button.

- (void)getPeriodicDelay:(float *)delay interval:(float *)interval

478 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Parameters

delay
On return, the amount of time (in seconds) the button will pause before starting to periodically send
action messages to the target object. The default delay is taken from a user's default (60 seconds
maximum). If the user hasn’t specified a default value, deay defaults to 0.4 seconds,

interval
On return, the amount of time (in seconds) between each action message that is sent. The default
interval is taken from a user's default (60 seconds maximum). If the user hasn't specified a default
value, interval defaults to 0.075 seconds.

Availability

Available in Mac OS X v10.0 and later.

See Also
- isContinuous (page 820) (NSControl)

Declared In
NSButton.h

highlight:
Highlights (or unhighlights) the receiver.

- (void)highlight:(B0OOL)f7ag

Parameters

flag
YES to highlight the button; NO to unhighlight the button. If the current state of the button matches
flag, no action is taken.

Discussion
Highlighting may involve the button appearing “pushed in” to the screen, displaying its alternate title or
image, or causing the button to appear to be “lit.”

Availability
Available in Mac OS X v10.0 and later.

See Also
- setButtonType: (page 486)

Declared In
NSButton.h

image

Returns the image that appears on the receiver when it’s in its normal state.
- (NSImage *)image

Return Value

The image displayed by the button when it's in its normal state, or ni1 if there is no such image. This image
is always displayed on a button that doesn’t change its contents when highlighting or showing its alternate
state. Buttons don't display images by default.

Instance Methods 479
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- setlImage: (page 486)

- alternatelmage (page 476)
- setButtonType: (page 486)

Declared In
NSButton.h

imagePosition

Returns the position of the receiver’s image relative to its title.
- (NSCellImagePosition)imagePosition

Return Value
The position of the button's image. This is one of the image positions described in the “Constants” (page
612) section of NSCell (page 535).

Discussion
If the title is above, below, or overlapping the image, or if there is no image, the text is horizontally centered
within the button.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setImagePosition: (page 487)

- setButtonType: (page 486)
- setImage: (page 486)
- setTitle: (page 491)

Declared In
NSButton.h

isBordered

Returns a Boolean value indicating whether the button has a border.
- (BOOL)isBordered

Return Value
YES if the receiver has a border, NO otherwise. A button’s border isn't the single line of most other controls’
borders—instead, it’s a raised bezel. By default, buttons are bordered.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setBordered: (page 485)

480 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Declared In
NSButton.h

isTransparent

Returns a Boolean value indicating whether the button is transparent.
- (BOOL)isTransparent

Return Value
YES if the receiver is transparent, NO otherwise. A transparent button never draws itself, but it receives
mouse-down events and tracks the mouse properly.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTransparent: (page 492)

Declared In
NSButton.h

keyEquivalent

Returns the key-equivalent character of the receiver.
- (NSString *)keyEquivalent

Return Value
The button's key equivalent, or the empty string if one hasn’t been defined. Buttons don’t have a default key
equivalent.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setKeyEquivalent: (page 487)

- performKeyEquivalent: (page 482)
- keyEquivalentFont (page 508) (NSButtonCell)

Declared In
NSButton.h

keyEquivalentModifierMask

Returns the mask specifying the modifier keys for the receiver’s key equivalent.

- (NSUInteger)keyEquivalentModifierMask

Instance Methods 481
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

482

CHAPTER 19

NSButton Class Reference

Return Value

The mask specifying the modifier keys that are applied to the button's key equivalent. Mask bits are defined
in NSEvent . h. The only mask bits relevant in button key-equivalent modifier masks are NSControlKeyMask,
NSATternateKeyMask, and NSCommandKeyMask.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setKeyEquivalentModifierMask: (page 488)

- keyEquivalent (page 481)

Declared In
NSButton.h

performKeyEquivalent:

Checks the button's key equivalent against the specified event and, if they match, simulates the button being
clicked.

- (BOOL)performKeyEquivalent: (NSEvent *)anfvent

Parameters
antvent
The event containing the key equivalent.

Return Value
YES if the key equivalent in anEvent matches the button's key equivalent; NO if it does not. This method also
returns NO if he receiver is blocked by a modal panel or the button is disabled.

Discussion

If the character in anfvent matches the receiver’s key equivalent, and the modifier flags in anEvent match
the key-equivalent modifier mask, performKeyEquivalent: simulates the user clicking the button and
returning YES. Otherwise, performKeyEquivalent: does nothing and returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- keyEquivalent (page 481)

- keyEquivalentModifierMask (page 481)

Declared In
NSButton.h

setAllowsMixedState:

Sets whether the button allows a mixed state.

- (void)setAllowsMixedState: (BOOL) flag

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Parameters

flag
YES to indicate that the receiver has three states: on, off, and mixed. If flag is NO, the receiver has two
states: on and off.

Availability
Available in Mac OS X v10.0 and later.

See Also
- allowsMixedState (page 476)

- setNextState (page 488)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

TextEditPlus

Declared In
NSButton.h

setAlternatelmage:

Sets the image displayed by the button when it’s in its alternate state and, if necessary, redraws the contents
of the button.

- (void)setAlternateImage: (NSImage *)image

Parameters

image
The image that appears on the receiver when it’s in its alternate state. Note that some button types
don’t display an alternate image.

Availability
Available in Mac OS X v10.0 and later.

See Also
- alternatelmage (page 476)

- setButtonType: (page 486)
- setImage: (page 486)

Declared In
NSButton.h

setAlternateTitle:

Sets the title that appears on the button when it’s in its alternate state.

- (void)setAlternateTitle: (NSString *)aString

Parameters

aString
The string to set as the button's alternate title. Note that some button types don't display an alternate
title.

Instance Methods 483

2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

484

CHAPTER 19

NSButton Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- alternateTitle (page 477)

- setTitle: (page 491)

- setTitleWithMnemonic: (page 491)
- setButtonType: (page 486)

- setFont: (page 515) (NSButtonCelT)

Declared In
NSButton.h

setAttributedAlternateTitle:

Sets the title that appears on the button when it’s in its alternate state to the given attributed string.
- (void)setAttributedAlternateTitle: (NSAttributedString *)aString

Parameters

aString

The attributed string to set as the button's alternate title. Note that some button types don't display
an alternate title.

Availability
Available in Mac OS X v10.0 and later.

See Also
- attributedAlternateTitle (page 477)

- setAttributedTitle: (page 484)
- setButtonType: (page 486)
- setFont: (page 515) (NSButtonCelT)

Declared In
NSButton.h

setAttributedTitle:

Sets the string that appears on the button when it's in its normal state to the given attributed string and
redraws the button.

- (void)setAttributedTitle: (NSAttributedString *)aString

Parameters
aString

The attributed string to set as the button's title. The title is always shown on buttons that don’t use
their alternate contents when highlighting or displaying their alternate state.

Discussion

Availability
Available in Mac OS X v10.0 and later.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

See Also
- attributedTitle (page 478)

- setAttributedAlternateTitle: (page 484)
- setButtonType: (page 486)
- setFont: (page 515) (NSButtonCelT)

Declared In
NSButton.h

setBezelStyle:

Sets the appearance of the border, if the receiver has one.
- (void)setBezelStyle: (NSBezelStyle)bezelStyle

Parameters

bezelStyle
The bezel style of the button. This must be one of the bezel styles described in the “Constants” (page
525) section of NSButtonCell (page 495).

If the button is not bordered, the bezel style is ignored.

Discussion
The button uses shading to look like it's sticking out or pushed in. You can set the shading with the
NSButtonCell method setGradientType: (page 516).

Availability
Available in Mac OS X v10.0 and later.

See Also
- bezelStyle (page 478)

Declared In
NSButton.h

setBordered:

Sets whether the receiver has a bezeled border.
- (void)setBordered: (BOOL) flag

Parameters

flag
YES if the receiver should display a border; NO if it should not. A button’s border is not the single line
of most other controls’ borders—instead, it’s a raised bezel.

Discussion
This method redraws the button if setBordered: causes the bordered state to change.

Availability
Available in Mac OS X v10.0 and later.

See Also

- isBordered (page 480)

Instance Methods 485
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

486

CHAPTER 19

NSButton Class Reference

Declared In
NSButton.h

setButtonType:

Sets how the receiver button highlights while pressed and how it shows its state.
- (void)setButtonType: (NSButtonType)aTlype

Parameters

alype
A constant specifying the type of the button—one of the constants described in the Constants section
of NSButtonCell.

Discussion
setButtonType: redisplays the button before returning.

The types available are for the most common button types, which are also accessible in Interface Builder.
You can configure different behavior with the NSButtonCe11 methods setHighlightsBy: (page 516)and
setShowsStateBy: (page 521).

Note that there is no -buttonType method. The set method sets various button properties that together
establish the behavior of the type.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAlternatelmage: (page 483)

- setImage: (page 486)
- setButtonType: (page 514) (NSButtonCelT)

Declared In
NSButton.h

setlmage:

Sets the receiver’s image and redraws the button.
- (void)setImage: (NSImage *)anlmage

Parameters
anlmage

The button's image. A button’s image is displayed when the button is in its normal state, or all the
time for a button that doesn’t change its contents when highlighting or displaying its alternate state.

Availability
Available in Mac OS X v10.0 and later.

See Also

- image (page 479)

- setImagePosition: (page 487)
- setAlternatelmage: (page 483)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

- setButtonType: (page 486)

Declared In
NSButton.h

setimagePosition:

Sets the position of the button's image relative to its title.
- (void)setImagePosition: (NSCellImagePosition)aPosition

Parameters
aPosition

A constant specifying the position of the button's image. See the “Constants” (page 612) section of
NSCell (page 535) for a listing of possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
- imagePosition (page 480)

Declared In
NSButton.h

setKeyEquivalent:

Sets the key equivalent character of the receiver to the given character.
- (void)setKeyEquivalent:(NSString *)charCode

Parameters
charCode

The character to set as the button's key equivalent.
Discussion
This method redraws the button’s interior if it displays a key equivalent instead of an image. The key equivalent
isn’t displayed if the image position is set to NSNoImage, NSTmageOnly, or NSImageOverlaps; that is, the
button must display both its title and its “image” (the key equivalent in this case), and they must not overlap.

To display a key equivalent on a button, set the image and alternate image to ni 1, then set the key equivalent,
then set the image position.

Availability
Available in Mac OS X v10.0 and later.

See Also
- keyEquivalent (page 481)

- performKeyEquivalent: (page 482)

- setAlternatelmage: (page 483)

- setlImage: (page 486)

- setImagePosition: (page 487)

- setKeyEquivalentFont: (page 518) (NSButtonCell)

Instance Methods 487
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

488

CHAPTER 19

NSButton Class Reference

Related Sample Code
Calculator

Declared In
NSButton.h

setKeyEquivalentModifierMask:

Sets the mask indicating the modifier keys used by the receiver’s key equivalent.
- (void)setKeyEquivalentModifierMask: (NSUInteger)mask

Parameters

mask
The mask identifying the modifier keys to be applied to the button's key equivalent.
Mask bits are defined in NSEvent . h. The only mask bits relevant in button key-equivalent modifier
masks are NSControlKeyMask, NSATternateKeyMask, and NSCommandKeyMask.

Availability
Available in Mac OS X v10.0 and later.

See Also
- keyEquivalentModifierMask (page 481)

- setKeyEquivalent: (page 487)

Declared In
NSButton.h

setNextState

Sets the receiver to its next state.
- (void)setNextState

Discussion
If the button has three states, it cycles through them in this order: on, off, mixed, on, and so forth. If the
button has two states, it toggles between them.

Availability
Available in Mac OS X v10.0 and later.

See Also
- allowsMixedState (page 476)

- setAllowsMixedState: (page 482)

Declared In
NSButton.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

setPeriodicDelay:interval:

Sets the message delay and interval periods for a continuous button.
- (void)setPeriodicDelay:(float)delay interval:(float)interval

Parameters

delay
The amount of time (in seconds) that a continuous button will pause before starting to periodically
send action messages to the target object. The maximum allowed value is 60.0 seconds; if a larger
value is supplied, it is ignored, and 60.0 seconds is used.

interval
The amount of time (in seconds) between each action message. The maximum value is 60.0 seconds;
if a larger value is supplied, it is ignored, and 60.0 seconds is used.

Discussion
The delay and interval values are used if the button is configured (by a setContinuous : (page 828) message)
to continuously send the action message to the target object while tracking the mouse.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setContinuous: (page 828) (NSControl)

Declared In
NSButton.h

setShowsBorderOnlyWhileMouselnside:

Sets whether the receiver’s border is displayed only when the cursor is over the button.
- (void)setShowsBorderOnlyWhileMouselnside: (BOOL)show

Parameters

show
YES to display the border only when the cursor is within the button’s border and the button is active.
NO, to continue to display the button’s border when the cursor is outside the button’s bounds.

Discussion
If isBordered (page 480) returns NO, the border is never displayed, regardless of what this method returns.

Availability
Available in Mac OS X v10.0 and later.

See Also
- showsBorderOnlyWhileMouselnside (page 492)

Declared In
NSButton.h

Instance Methods 489
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

490

CHAPTER 19

NSButton Class Reference

setSound:

Sets the sound played when the user presses the button.
- (void)setSound: (NSSound *)aSound

Parameters

aSound
The sound that should be played when the user presses the button. The sound is played during a
mouse-down event, such as NSLeftMouseDown.

Availability
Available in Mac OS X v10.0 and later.

See Also
- sound (page 493)

Declared In
NSButton.h

setState:

Sets the cell’s state to the specified value.
- (void)setState: (NSInteger)value

Parameters

value
The state of the button. This can be NSOnState, NSOffState,NSMixedState. See the discussion
for a more detailed explanation.

Discussion
If necessary, this method also redraws the receiver.

The cell can have two or three states. If it has two, value can be NSOffState (the normal or unpressed
state) and NSOnState (the alternate or pressed state). If it has three, va7ue can be NSOnState (the feature
is in effect everywhere), NSOffState (the feature is in effect nowhere), or NSMixedState (the feature is in
effect somewhere). Note that if the cell has only two states and valueis NSMixedState, this method sets
the cell’s state to NSOnState.

Although using the enumerated constants is preferred, va7ue can also be an integer. If the cell has two
states, 0 is treated as NSOffState, and a nonzero value is treated as NSOnState. If the cell has three states,
0 is treated as NSOffState; a negative value, as NSMixedState; and a positive value, as NSOnState.

To check whether the button uses the mixed state, use the method allowsMixedState (page 476).

Availability
Available in Mac OS X v10.0 and later.

See Also
- state (page 493)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

Sproing

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

TextEditPlus
WhackedTV

Declared In
NSButton.h

setTitle:

Sets the title displayed by the receiver when in its normal state and, if necessary, redraws the button’s contents.
- (void)setTitle: (NSString *)aString

Parameters
aString

The string to set as the button's title. This title is always shown on buttons that don't use their alternate
contents when highlighting or displaying their alternate state.

Availability
Available in Mac OS X v10.0 and later.

See Also
- title (page 494)

- setAlternateTitle: (page 483)

- setButtonType: (page 486)

- setTitleWithMnemonic: (page 491)
- setFont: (page 515) (NSButtonCelT)

Related Sample Code
Quartz Composer WWDC 2005 TextEdit

SpeedometerView
TextEditPlus
WhackedTV

Declared In
NSButton.h

setTitleWithMnemonic:

Sets the title of a button with a character denoting an access key.
- (void)setTitleWithMnemonic: (NSString *)aString

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
- title (page 494)

- setAlternateTitle: (page 483)

Instance Methods 491
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

492

CHAPTER 19

NSButton Class Reference

- setButtonType: (page 486)
- setTitle: (page 491)
- setFont: (page 515) (NSButtonCelT)

Declared In
NSButton.h

setTransparent:

Sets whether the receiver is transparent and redraws the receiver if necessary.
- (void)setTransparent:(BOOL)flag

Parameters

flag
YES if the button is transparent; otherwise NO.

Discussion

A transparent button tracks the mouse and sends its action, but doesn’t draw. A transparent button is useful
for sensitizing an area on the screen so that an action gets sent to a target when the area receives a mouse
click.

Availability
Available in Mac OS X v10.0 and later.

See Also
- isTransparent (page 481)

Declared In
NSButton.h

showsBorderOnlyWhileMouselnside

Returns a Boolean value indicating whether the button displays its border only when the cursor is over it.
- (BOOL)showsBorderOnlyWhileMouseInside

Return Value
YES if the receiver’s border is displayed only when the cursor is over the button and the button is active; NO
if the border is displayed all the time.

By default, this method returns NO.

Discussion
If isBordered (page 480) returns NO, the border is never displayed, regardless of what this method returns.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setShowsBorderOnlyWhileMouselnside: (page 489)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 19

NSButton Class Reference

Declared In
NSButton.h

sound

Returns the sound that’s played when the user presses the button.

- (NSSound *)sound

Return Value
The sound played when the user presses the button.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setSound: (page 490)

Declared In
NSButton.h

state

Returns the receiver’s state.
- (NSInteger)state

Return Value

The button's state. A button can have two or three states. If it has two, this value is either NSOffState (the
normal or unpressed state) or NSOnState (the alternate or pressed state). If it has three, this value can be

NSOnState (the feature is in effect everywhere), NSOf fState (the feature is in effect nowhere), or

NSMixedState (the feature is in effect somewhere).

Discussion

To check whether the button uses the mixed state, use the method allowsMixedState (page 476).

Availability
Available in Mac OS X v10.0 and later.

See Also
- setState: (page 490)

Related Sample Code
CocoaPeoplePicker

DatePicker
WhackedTV

Declared In
NSButton.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

493

CHAPTER 19

NSButton Class Reference

title

Returns the title displayed on the button when it’s in its normal state.
- (NSString *)title

Return Value

The title displayed on the receiver when it’s in its normal state or the empty string if the button doesn't
display a title. This title is always displayed if the button doesn’t use its alternate contents for highlighting
or displaying the alternate state. By default, a button’s title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
- alternateTitle (page 477)

- setButtonType: (page 486)
- setTitle: (page 491)
- setTitleWithMnemonic: (page 491)

Related Sample Code
SpeedometerView

Declared In
NSButton.h

494 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Inherits from NSActionCell : NSCell : NSObject
Conforms to NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Availability Available in Mac OS X v10.0 and later.
Declared in AppKit/NSButtonCell.h
Companion guide Button Programming Topics for Cocoa
Related sample code FunkyOverlayWindow
Overview

The NSButtonCel1 class is a subclass of NSActionCel1 used to implement the user interfaces of push
buttons, checkboxes (switches), and radio buttons. It can also be used for any other region of a view that's
designed to send a message to a target when clicked. The NSButton subclass of NSControl uses a single
NSButtonCell.

The NSButtonCel1 class implements the user interface of NSButton.

Setting the integer, float, double, or object value of an NSButtonCel1 object results in a call to
setState: (page 596) with the value converted to integer. In the case of setObjectValue: (page 593),nil
is equivalent to 0, and a non-ni1 object that doesn't respond to intValue (page 566) sets the state to 1.
Otherwise, the state is set to the object's intValue (page 566). Similarly, querying the integer, float, double,
or object value of an NSButtonCe11 returns the current state in the requested representation. In the case
of objectValue (page 573), this is an NSNumber containing YES for on, NO for off, and integer value -1 for
the mixed state.

For more information on the behavior of NSButtonCel1, see the NSButton and NSMat ri x class specifications,
and Button Programming Topics for Cocoa.

Exceptions

In its implementation of the compare: (page 552) method (declared in NSCe11), NSButtonCel1 raises an
NSBadComparisonException if the otherCell argumentis not of the NSButtonCel1 class.

Overview 495
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

Tasks

496

CHAPTER 20

NSButtonCell Class Reference

Setting Titles

- alternateMnemonic (page 500)
Returns the character in the alternate title that’s marked as the “keyboard mnemonic.”
- alternateMnemoniclocation (page 500)
Returns an unsigned integer indicating the character in the alternate title that’s marked as the
“keyboard mnemonic.”
- alternateTitle (page 501)
Returns the string displayed by the button when it's in its alternate state.
- attributedAlternateTitle (page 501)
Returns the title displayed by the button when it’s in its alternate state, as an attributed string.
- attributedTitle (page 502)
Returns the title displayed by the button when it’s in its normal state as an attributed string.
- setAlternateMnemoniclocation: (page 511)
Sets the character in the alternate title that should be the “keyboard mnemonic.”
- setAlternateTitle: (page511)
Sets the title the button displays when it’s in its alternate state.
- setAlternateTitleWithMnemonic: (page 512)
Sets the title the button displays when it’s in its alternate state to the given string with an embedded
mnemonic.
- setAttributedAlternateTitle: (page 512)
Sets the string the button displays when it’s in its alternate state to the given attributed string.
- setAttributedTitle: (page 513)
Sets the string the button displays when it’s in its normal state to the given attributed string and
redraws the button.
- setfFont: (page 515)
Sets the font used to display the button's title and alternate title.
- setTitle: (page 522)
Sets the title the button displays when in its normal state and, if necessary, redraws the receiver’s
contents.
- setTitleWithMnemonic: (page 522)
Sets the title the button displays when it’s in its normal state to the given string with an embedded
mnemonic.
- title (page 524)
Returns the title displayed on the receiver when it’s in its normal state.

Managing Images

- alternatelmage (page 499)
Returns the image the button displays in its alternate state.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

- imagePosition (page 506)
Returns the position of the receiver’s image relative to its title.

- setAlternatelmage: (page 510)
Sets the image the button displays in its alternate state and, if necessary, redraws its contents.

- setImagePosition: (page 517)
Sets the position of the receiver’s image relative to its title.

- imageScaling (page 507)
Returns the scale factor for the receiver’s image.

- setImageScaling: (page 517)
Sets the scale factor for the receiver’s image.

Managing the Repeat Interval

- getPeriodicDelay:interval: (page 504)
Returns by reference the delay and interval periods for a continuous button.

- setPeriodicDelay:interval: (page 520)
Sets the message delay and interval for the receiver.

Managing the Key Equivalent

- keyEquivalent (page 508)
Returns the receiver's key-equivalent character.

- keyEquivalentFont (page 508)
Returns the font used to draw the key equivalent.

- keyEquivalentModifierMask (page 509)
Returns the mask identifying the modifier keys for the button's key equivalent.

- setKeyEquivalent: (page 518)
Sets the key equivalent character of the receiver.

- setKeyEquivalentModifierMask: (page 519)
Sets the mask identifying the modifier keys to use with the button's key equivalent.

- setKeyEquivalentFont: (page 518)
Sets the font used to draw the key equivalent and redisplays the receiver if necessary.

- setKeyEquivalentFont:size: (page 519)
Sets by name and size of the font used to draw the key equivalent.

Managing Graphics Attributes

- backgroundColor (page 502)
Returns the background color of the receiver.

- setBackgroundColor: (page 513)
Sets the background color of the receiver.

- bezelStyle (page 502)
Returns the appearance of the receiver’s border.

Tasks 497
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

498

CHAPTER 20

NSButtonCell Class Reference

- setBezelStyle: (page 514)

Sets the appearance of the border, if the receiver has one.
- gradientType (page 505)

Returns the gradient of the receiver’s border.
- setGradientType: (page 516)

Sets the type of gradient to use for the receiver.

- imageDimsWhenDisabled (page 506)

Returns a Boolean value that indicates whether the receiver’s image and text appear “dim” when the
receiver is disabled.

- setImageDimsWhenDisabled: (page 517)

Sets whether the receiver’s image appears “dim” when the button cell is disabled.
- is0Opaque (page 507)

Returns a Boolean value that indicates whether the receiver is opaque.

- isTransparent (page 507)

Returns a Boolean value that indicates whether the receiver is transparent.
- setTransparent: (page 523)

Sets whether the receiver is transparent.

- showsBorderOnlyWhileMouselInside (page 523)

Returns a Boolean value indicating whether the button displays its border only when the cursor is
over it.

- setShowsBorderOnlyWhileMouselnside: (page 520)
Sets whether the receiver’s border is displayed only when the cursor is over the button.

Displaying the Cell

- highlightsBy (page 505)
Returns flags indicating how the button highlights when it receives a mouse-down event.
- setHighlightsBy: (page 516)
Sets the way the receiver highlights itself while pressed.
- setShowsStateBy: (page 521)
Sets the way the receiver indicates its alternate state.
- setButtonType: (page 514)
Sets how the receiver highlights while pressed and how it shows its state.

- showsStateBy (page 523)
Returns the flags indicating how the button cell shows its alternate state.

Managing the Sound

- sound (page 524)
Returns the sound that’s played when the user presses the receiver.

- setSound: (page 521)
Sets the sound that’s played when the user presses the receiver.

Tasks
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Handling Events and Action Messages

- mousekntered: (page 509)
Draws the receiver’s border.

- mouseExited: (page 510)
Erases the receiver’s border.

- performClick: (page 510)
Simulates the user clicking the receiver with the cursor.

Drawing the Button Content

- drawBezelWithFrame:inView: (page 503)
Draws the border of the button using the current bezel style.

- drawlImage:withFrame:inView: (page 503)
Draws the image associated with the button’s current state.

- drawTitle:withFrame:inView: (page 504)
Draws the button’s title centered vertically in a specified rectangle.

Instance Methods

alternatelmage

Returns the image the button displays in its alternate state.
- (NSImage *)alternatelmage

Return Value
The image displayed by the button when it's in its alternate state, or ni1 if there is no alternate image.

Discussion
Note that some button types don’t display an alternate image. Buttons don't display images by default.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAlternatelmage: (page 510)

- imagePosition (page 506)
- keyEquivalent (page 508)
- setButtonType: (page 514)
- image (page 563) (NSCel1)

Declared In
NSButtonCell.h

Instance Methods 499
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

alternateMnemonic

Returns the character in the alternate title that’s marked as the “keyboard mnemonic.”
- (NSString *)alternateMnemonic

Return Value
The character in the alternate title (the title displayed on the receiver when it's in its alternate state) marked
as the "keyboard mnemonic."

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
- alternateMnemoniclocation (page 500)

- setAlternateTitleWithMnemonic: (page 512)
- mnemonic (page 571) (NSCe1T)

Declared In
NSButtonCell.h

alternateMnemonicLocation

Returns an unsigned integer indicating the character in the alternate title that's marked as the “keyboard
mnemonic.”

- (NSUInteger)alternateMnemoniclLocation

Return Value

An unsigned integer indicating the character in the alternate title (the title displayed on the receiver when
it's in its alternate state) that's marked as the “keyboard mnemonic.” If the alternate title doesn't have a
keyboard mnemonic, returns NSNotFound.

Discussion
Mnemonics are not supported in Mac OS X.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAlternateMnemoniclocation: (page 511)

- alternateMnemonic (page 500)
- setAlternateTitleWithMnemonic: (page 512)
- mnemoniclocation (page 572) (NSCel1)

Declared In
NSButtonCell.h

500 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

alternateTitle

Returns the string displayed by the button when it's in its alternate state.
- (NSString *)alternateTitle

Return Value
The string that appears on the button when it's in its alternate state, or the empty string if the receiver doesn’t
display an alternate title.

Discussion
Note that some button types don't display an alternate title. By default, a button’s alternate title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAlternateTitle: (page 511)

- alternateMnemonic (page 500)

- attributedAlternateTitle (page 501)
- setButtonType: (page 514)

- title (page 524)

Declared In
NSButtonCell.h

attributedAlternateTitle

Returns the title displayed by the button when it’s in its alternate state, as an attributed string.
- (NSAttributedString *)attributedAlternateTitle

Return Value
The attributed string that appears on the button when it's in its alternate state, or the empty string if the
receiver doesn't display an alternate title.

Discussion
Note that some button types don't display an alternate title. By default, a button’s alternate title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAttributedAlternateTitle: (page 512)

- alternateMnemonic (page 500)
- attributedTitle (page 502)
- setButtonType: (page 514)

Declared In
NSButtonCell.h

Instance Methods 501
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

attributedTitle

Returns the title displayed by the button when it's in its normal state as an attributed string.
- (NSAttributedString *)attributedTitle

Return Value
The attributes string that appears on the button when it's in its normal state, or an empty attributed string
if the receiver doesn't display a title.

Discussion
A button’s title is always displayed if the button doesn’t use its alternate contents for highlighting or displaying
the alternate state. By default, a button’s title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAttributedTitle: (page 513)

- attributedAlternateTitle (page 501)
- setButtonType: (page 514)
- mnemonic (page 571) (NSCe1T1)

Declared In
NSButtonCell.h

backgroundColor

Returns the background color of the receiver.
- (NSColor *)backgroundColor

Return Value
The receiver’s background color.

Discussion
The background color is used only when drawing borderless buttons.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setBackgroundColor: (page 513)

Declared In
NSButtonCell.h

bezelStyle

Returns the appearance of the receiver’s border.

- (NSBezelStyle)bezelStyle

502 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Return Value

A constant specifying the bezel style used by the button. See “Bezel Styles” (page 525) for a list of possible

values.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setBezelStyle: (page 514)

Declared In
NSButtonCell.h

drawBezelWithFrame:inView:

Draws the border of the button using the current bezel style.
- (void)drawBezelWithFrame: (NSRect) frame inView: (NSView *)controlView

Parameters
frame

The bounding rectangle of the button.
controlView

The control being drawn.

Discussion
This method is called automatically when the button is redrawn; you should not call it directly.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setBezelStyle: (page 514)

Declared In
NSButtonCell.h

drawlmage:withFrame:inView:
Draws the image associated with the button’s current state.

- (void)drawImage: (NSImage *)image withFrame: (NSRect)frame inView: (NSView
*)controlView

Parameters
image

The image associated with the button's current state.
frame

The bounding rectangle of the button.

controlView
The control being drawn.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

503

504

CHAPTER 20

NSButtonCell Class Reference

Discussion
This method is called automatically when the button is redrawn; you should not call it directly.

You specify the primary and alternate images for the button using Interface Builder.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setAlternatelmage: (page 510)

Declared In
NSButtonCell.h

drawTitle:withFrame:inView:
Draws the button’s title centered vertically in a specified rectangle.

- (NSRect)drawTitle: (NSAttributedString *)title withFrame: (NSRect) frame
inView: (NSView *)controlView

Parameters

title
The title of the button.

frame
The rectangle in which to draw the title.

controlView
The control being drawn.

Return Value
The bounding rectangle for the text of the title.

Discussion
This method is called automatically when the button is redrawn; you should not call it directly.

Availability
Available in Mac OS X v10.4 and later.

See Also
- setAlternateTitle: (page 511)

- setAttributedTitle: (page 513)

Declared In
NSButtonCell.h

getPeriodicDelay:interval:

Returns by reference the delay and interval periods for a continuous button.

- (void)getPeriodicDelay:(float *)delay interval:(float *)interval

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Parameters

delay
On return, the amount of time (in seconds) that the button will pause before starting to periodically
send action messages to the target object. Default values are taken from the user's defaults (60 seconds
maximum); if the user hasn't specified a default value, this defaults to 0.4 seconds.

interval
On return, the amount of time (in seconds) between each action message. Default values are taken
from the user's defaults (60 seconds maximum); if the user hasn't specified a default value, this defaults
to 0.075 seconds.

Availability
Available in Mac OS X v10.0 and later.

See Also
- isContinuous (page 567)

- isContinuous (page 567) (NSCelT)

Declared In
NSButtonCell.h

gradientType

Returns the gradient of the receiver’s border.
- (NSGradientType)gradientType

Return Value
A constant specifying the gradient used for the button's border. See “Gradient Types” (page 530) for a list of
possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setGradientType: (page 516)

Declared In
NSButtonCell.h

highlightsBy
Returns flags indicating how the button highlights when it receives a mouse-down event.

- (NSInteger)highlightsBy

Return Value
The logical OR of flags that indicate the way the receiver highlights when it receivers a mouse-down event.
See the “Constants” (page 612) section of NSCell (page 535) for the list of flags.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 505
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

See Also
- setHighlightsBy: (page 516)

- showsStateBy (page 523)

Declared In
NSButtonCell.h

imageDimsWhenDisabled

Returns a Boolean value that indicates whether the receiver’s image and text appear “dim” when the receiver
is disabled.

- (BOOL)imageDimsWhenDisabled

Return Value
YES if the button's image and text are dimmed when the button is disabled, otherwise NO.

Discussion
By default, all button types except NSSwitchButton and NSRadioButton do dim when disabled. When
buttons of type NSSwitchButton and NSRadioButton are disabled, only the associated text dims.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setButtonType: (page 514)

- setImageDimsWhenDisabled: (page 517)

Declared In
NSButtonCell.h

imagePosition

Returns the position of the receiver’s image relative to its title.
- (NSCellImagePosition)imagePosition

Return Value
The position of the button's image. This is one of the image positions described in the “Constants” (page
612) section of NSCell (page 535).

Discussion
If the title is above, below, or overlapping the image, or if there is no image, the text is horizontally centered
within the button.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setImagePosition: (page 517)

- setButtonType: (page 514)
- setTitle: (page 522)

506 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

- setlImage: (page 590) (NSCell)

Declared In
NSButtonCell.h

imageScaling

Returns the scale factor for the receiver's image.
- (NSImageScaling)imageScaling

Return Value
The scale factor for the receiver’s image.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSButtonCell.h

isOpaque
Returns a Boolean value that indicates whether the receiver is opaque.

- (BOOL)isOpaque

Return Value
YES if the receiver draws over every pixel in its frame, otherwise NO.

Discussion
A button cell is opaque only if it isn't transparent and if it has a border.

Availability
Available in Mac OS X v10.0 and later.

See Also
- isTransparent (page 507)

- setTransparent: (page 523)

Declared In
NSButtonCell.h

isTransparent

Returns a Boolean value that indicates whether the receiver is transparent.

- (BOOL)isTransparent

Return Value
YES if the receiver is transparent, NO otherwise.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

507

CHAPTER 20

NSButtonCell Class Reference

Discussion
A transparent button never draws itself, but it receives mouse-down events and tracks the mouse properly.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTransparent: (page 523)

- isOpaque (page 507)

Declared In
NSButtonCell.h

keyEquivalent

Returns the receiver's key-equivalent character.
- (NSString *)keyEquivalent

Return Value
The string containing the key equivalent character of the button, or the empty string if one hasn't been
defined.

Discussion
Buttons don't have a default key equivalent.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setKeyEquivalent: (page 518)

- keyEquivalentFont (page 508)

Declared In
NSButtonCell.h

keyEquivalentFont
Returns the font used to draw the key equivalent.

- (NSFont *)keyEquivalentFont

Return Value
The font object describing the font used to draw the button's key equivalent, or ni1 if the receiver doesn't
have a key equivalent.

Discussion
The default font is the same as that used to draw the title.

Availability
Available in Mac OS X v10.0 and later.

508 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

See Also
- setKeyEquivalentFont: (page 518)

- setKeyEquivalentFont:size: (page 519)
- setFont: (page 515)

Declared In
NSButtonCell.h

keyEquivalentModifierMask

Returns the mask identifying the modifier keys for the button's key equivalent.

- (NSUInteger)keyEquivalentModifierMask

Return Value

A mask indicating the modifier keys that are applied to the receiver's key equivalent.

Mask bits are defined in NSEvent . h. The only mask bits relevant in button key-equivalent modifier masks

are NSControlKeyMask, NSATternateKeyMask, and NSCommandKeyMask bits.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setKeyEquivalentModifierMask: (page 519)

- keyEquivalent (page 508)

Declared In
NSButtonCell.h

mouseEntered:

Draws the receiver’s border.
- (void)mouseEntered: (NSEvent *)event

Parameters
event

The event object generated by the mouse movement.
Discussion

This method is called only when the cursor moves onto the receiver and
showsBorderOnlyWhileMouseInside (page 523) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

509

510

CHAPTER 20

NSButtonCell Class Reference

mouseExited:

Erases the receiver’s border.
- (void)mouseExited: (NSEvent *)event

Parameters

event
The event object generated by the mouse movement.

Discussion
This method is called only when the cursor moves off the receiver and
showsBorderOnlyWhileMouselInside (page 523) returns YES.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

performClick:

Simulates the user clicking the receiver with the cursor.
- (void)performClick:(id)sender

Parameters
sender
The sender of the message.

Discussion

This method essentially highlights the button, sends the button’s action message to the target object, and
then unhighlights the button. If an exception is raised while the target object is processing the action message,
the button is unhighlighted before the exception is propagated out of performClick:.

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

setAlternatelmage:

Sets the image the button displays in its alternate state and, if necessary, redraws its contents.
- (void)setAlternateImage: (NSImage *)image

Parameters
image
The image displayed by the button when it's in its alternate state.

Discussion
Note that some button types don't display an alternate image.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

See Also
- alternatelmage (page 499)

- setButtonType: (page 514)
- setlImage: (page 590) (NSCell)

Declared In
NSButtonCell.h

setAlternateMnemoniclLocation:

Sets the character in the alternate title that should be the “keyboard mnemonic.”
- (void)setAlternateMnemoniclLocation: (NSUInteger) location

Parameters
location

An unsigned integer indicating the character in the alternate title that should be marked as the
"keyboard mnemonic." If you don’t want the alternate title to have a keyboard mnemonic, specify a
location of NSNotFound.

Discussion
Mnemonics are not supported in Mac OS X.

The setAlternateMnemoniclocation: method doesn’t cause the button cell to be redisplayed.

Availability
Available in Mac OS X v10.0 and later.

See Also
- alternateMnemoniclocation (page 500)

- setAlternateTitleWithMnemonic: (page 512)

Declared In
NSButtonCell.h

setAlternateTitle:

Sets the title the button displays when it’s in its alternate state.
- (void)setAlternateTitle: (NSString *)aString

Parameters
aString
The string to set as the button's title when it's in its alternate state.

Discussion
Note that some button types don't display an alternate title.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 51
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

512

CHAPTER 20

NSButtonCell Class Reference

See Also
- alternateTitle (page 501)

- setAlternateMnemoniclocation: (page511)
- setAlternateTitleWithMnemonic: (page 512)
- setTitle: (page 522)

- setButtonType: (page 514)

- setfFont: (page 515)

Declared In
NSButtonCell.h

setAlternateTitleWithMnemonic:

Sets the title the button displays when it’s in its alternate state to the given string with an embedded
mnemonic.

- (void)setAlternateTitleWithMnemonic: (NSString *)aString

Parameters
aString

The string to set as the button's alternate title, taking into account the fact that an embedded “&”
character is not a literal but instead marks the alternate state’s “keyboard mnemonic.”

Discussion
Mnemonics are not supported in Mac OS X.

If necessary, setAlternateTitleWithMnemonic: redraws the button cell. Note that some button types
don't display an alternate title.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAlternateMnemoniclocation: (page 511)

- setTitleWithMnemonic: (page 522)

Declared In
NSButtonCell.h

setAttributedAlternateTitle:

Sets the string the button displays when it’s in its alternate state to the given attributed string.
- (void)setAttributedAlternateTitle: (NSAttributedString *)aString

Parameters
aString
The attributed string to set as the button's alternate title.

Discussion
Note that some button types don't display an alternate title.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Graphics attributes that are set on the cell (backgroundColor, alignment, font, etc.) are overriden when
corresponding properties are set for the attributed string.

Availability
Available in Mac OS X v10.0 and later.

See Also
- attributedAlternateTitle (page 501)

- setAlternateMnemoniclocation: (page 511)
- setAlternateTitleWithMnemonic: (page 512)
- setAttributedTitle: (page 513)

- setButtonType: (page 514)

- setFont: (page 515)

Declared In
NSButtonCell.h

setAttributedTitle:

Sets the string the button displays when it’s in its normal state to the given attributed string and redraws
the button.

- (void)setAttributedTitle: (NSAttributedString *)aString

Parameters
aString
The attributed string to set as the button's title.

Discussion
The title is always shown on buttons that don’t use their alternate contents when highlighting or displaying
their alternate state.

Graphics attributes configured for the cell (backgroundColor, alignment, font, etc.) are overriden when
corresponding properties are set for the attributed string.

Availability
Available in Mac OS X v10.0 and later.

See Also
- attributedTitle (page 502)

- setAttributedAlternateTitle: (page 512)
- setButtonType: (page 514)

- setFont: (page 515)

- setMnemoniclocation: (page 592) (NSCelT)

Declared In
NSButtonCell.h

setBackgroundColor:

Sets the background color of the receiver.

Instance Methods 513
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

514

CHAPTER 20

NSButtonCell Class Reference

- (void)setBackgroundColor:(NSColor *)color

Parameters
color
The color to use for the receiver’s background.

Discussion
The background color is used only when drawing borderless buttons.

Availability
Available in Mac OS X v10.4 and later.

See Also
- backgroundColor (page 502)

Declared In
NSButtonCell.h

setBezelStyle:

Sets the appearance of the border, if the receiver has one.
- (void)setBezelStyle: (NSBezelStyle)bezelStyle

Parameters
bezelStyle

A constant specifying the bezel style to use for the button. This must be one of the values specified
in “Bezel Styles” (page 525).

If the receiver is not bordered, the bezel style is ignored.

Discussion
A button uses shading to look like it’s sticking out or pushed in. You can set the shading with
setGradientType: (page 516).

Availability
Available in Mac OS X v10.0 and later.

See Also
- bezelStyle (page 502)

Declared In
NSButtonCell.h

setButtonType:

Sets how the receiver highlights while pressed and how it shows its state.
- (void)setButtonType: (NSButtonType)aType

Parameters

alype
A constant specifying the type of button. This can be one of the constants defined in “Button
Types” (page 527).

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Discussion
setButtonType: redisplays the receiver before returning.

The types available are for the most common button types, which are also accessible in Interface Builder;
you can configure different behavior with the setHigh1ightsBy: (page516)and setShowsStateBy: (page
521) methods.

Note that there is no -buttonType method. The set method sets various button properties that together
establish the behavior of the type.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAlternatelmage: (page 510)

- setlImage: (page 590) (NSCell)

Declared In
NSButtonCell.h

setFont:
Sets the font used to display the button's title and alternate title.

- (void)setFont:(NSFont *)font0Obj

Parameters
font0Obj
The font object specifying the font to use.

Discussion
This method does nothing if the receiver has no title or alternate title.

If the button cell has a key equivalent, its font is not changed, but the key equivalent’s font size is changed
to match the new title font.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setKeyEquivalentFont: (page 518)

- setKeyEquivalentFont:size: (page 519)
- font (page 559) (NSCell)

Related Sample Code
QTAudioExtractionPanel

Quartz Composer WWDC 2005 TextEdit
TextEditPlus

Declared In
NSButtonCell.h

Instance Methods 515
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

516

CHAPTER 20

NSButtonCell Class Reference

setGradientType:

Sets the type of gradient to use for the receiver.
- (void)setGradientType: (NSGradientType)gradientType

Parameters

gradientType
A constant specifying the gradient to use for the button's border. This can be one of the constants
defined in “Gradient Types” (page 530).
Discussion
If the receiver has no border, this method has no effect on its appearance. A concave gradient is darkest in
the top-left corner; a convex gradient is darkest in the bottom-right corner. Weak versus strong is how much
contrast exists between the colors used in opposite corners.

Note: This method is currently unused by the Application Kit and has no effect.

Availability
Available in Mac OS X v10.0 and later.

See Also
- gradientType (page 505)

Declared In
NSButtonCell.h

setHighlightsBy:

Sets the way the receiver highlights itself while pressed.
- (void)setHighlightsBy:(NSInteger)aTlype

Parameters

alype
The logical OR of one or more of the cell masks described in the “Constants” (page 612) section of
NSCell (page 535).

Discussion

If both NSChangeGrayCel1Mask and NSChangeBackgroundCel1Mask are specified, both are recorded,
but which behavior is used depends on the button cell’s image. If the button has no image, or if the image
has no alpha (transparency) data, NSChangeGrayCel1Mask is used. If the image does have alpha data,
NSChangeBackgroundCel1Mask is used; this arrangement allows the color swap of the background to
show through the image’s transparent pixels.

Availability
Available in Mac OS X v10.0 and later.

See Also
- highlightsBy (page 505)
- setShowsStateBy: (page 521)

Declared In
NSButtonCell.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

setimageDimsWhenDisabled:

Sets whether the receiver’s image appears “dim” when the button cell is disabled.
- (void)setImageDimsWhenDisabled: (BOOL)flag

Parameters
flag
YES to indicate that the button's image should dim when the button is disabled.

Discussion

By default, all button types except NSSwitchButton and NSRadioButton do dim when disabled. When
NSSwitchButtonsand NSRadioButtons are disabled, only the associated text dims. The default setting
for this condition is reasserted whenever you invoke setButtonType: (page 514), so be sure to specify the
button cell’s type before you invoke setImageDimsWhenDisabled:.

Availability
Available in Mac OS X v10.0 and later.

See Also
- imageDimsWhenDisabled (page 506)

Declared In
NSButtonCell.h

setimagePosition:

Sets the position of the receiver’s image relative to its title.
- (void)setImagePosition: (NSCellImagePosition)aPosition

Parameters
aPosition

A constant specifying the position of the button's image. See the “Constants” (page 612) section of
NSCell (page 535) for a listing of possible values.

Availability
Available in Mac OS X v10.0 and later.

See Also
- imagePosition (page 506)

Related Sample Code
FunkyOverlayWindow

Declared In
NSButtonCell.h

setimageScaling:

Sets the scale factor for the receiver’s image.

- (void)setImageScaling: (NSImageScaling)scaling

Instance Methods 517
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

518

CHAPTER 20

NSButtonCell Class Reference

Parameters
scaling
The scale factor for the receiver’s image.

Availability
Available in Mac OS X v10.5 and later.

Declared In
NSButtonCell.h

setKeyEquivalent:

Sets the key equivalent character of the receiver.
- (void)setKeyEquivalent: (NSString *)aKeyEquivalent

Parameters
aKeyEquivalent
The key equivalent character.

Discussion

This method redraws the receiver’s inside if it displays a key equivalent instead of an image. The key equivalent
isn't displayed if the image position is set to NSNoImage, NSITmageOnly, or NSImageOverlaps; thatis, the
button must display both its title and its “image” (the key equivalent in this case), and they must not overlap.

To display a key equivalent on a button, set the image and alternate image to ni 1, then set the key equivalent,
then set the image position.

Availability
Available in Mac OS X v10.0 and later.

See Also
- keyEquivalent (page 508)

- setAlternatelmage: (page 510)

- setImagePosition: (page 517)

- setKeyEquivalentFont: (page 518)
- setlImage: (page 590) (NSCell)

Declared In
NSButtonCell.h

setKeyEquivalentFont:

Sets the font used to draw the key equivalent and redisplays the receiver if necessary.
- (void)setKeyEquivalentFont: (NSFont *)font0bj

Parameters
font0ObJj
The font object specifying the font to use for the receiver's key equivalent.

Discussion
This method does nothing if the receiver doesn’t have a key equivalent associated with it.

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

The default font is the same as that used to draw the title.

Availability
Available in Mac OS X v10.0 and later.

See Also
- keyEquivalentFont (page 508)

- setFont: (page 515)

Declared In
NSButtonCell.h

setKeyEquivalentFont:size:

Sets by name and size of the font used to draw the key equivalent.
- (void)setKeyEquivalentFont: (NSString *)fontName size:(CGFloat) fontSize

Parameters
fontName

The name of the font to use to draw the key equivalent.
fontSize

The font size to use to draw the key equivalent.

Discussion
This method redisplays the receiver if necessary. It does nothing if the receiver doesn't have a key equivalent
associated with it. The default font is the same as that used to draw the title.

Availability
Available in Mac OS X v10.0 and later.

See Also
- keyEquivalentFont (page 508)

- setfFont: (page 515)

Declared In
NSButtonCell.h

setKeyEquivalentModifierMask:

Sets the mask identifying the modifier keys to use with the button's key equivalent.
- (void)setKeyEquivalentModifierMask: (NSUInteger)mask

Parameters

mask
The mask indicating the modifier keys to be applied to the receiver's key equivalent.
Mask bits are defined in NSEvent . h. The only mask bits relevant in button key-equivalent modifier
masks are NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask.

Availability
Available in Mac OS X v10.0 and later.

Instance Methods 519
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

520

CHAPTER 20

NSButtonCell Class Reference

See Also
- keyEquivalentModifierMask (page 509)

- setKeyEquivalent: (page 518)

Declared In
NSButtonCell.h

setPeriodicDelay:interval:

Sets the message delay and interval for the receiver.
- (void)setPeriodicDelay:(float)delay interval:(float)interval

Parameters
delay
The amount of time (in seconds) that a continuous button will pause before starting to periodically
send action messages to the target object.
The maximum value is 60.0 seconds; if a larger value is supplied, it's ignored, and 60.0 seconds is used.
interval
The amount of time (in seconds) between each action message.
The maximum value is 60.0 seconds; if a larger value is supplied, it's ignored, and 60.0 seconds is used.

Discussion
These values are used if the receiver is configured (by a setContinuous: (page 582) message) to continuously
send the action message to the target object while tracking the mouse.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setContinuous: (page 582) (NSCell)

Declared In
NSButtonCell.h

setShowsBorderOnlyWhileMouselnside:

Sets whether the receiver’s border is displayed only when the cursor is over the button.
- (void)setShowsBorderOnlyWhileMouseInside: (BOOL)show

Parameters

show
YES to display the button's border only when the cursor is within the receiver’s border and the button
is active. NO to continue to display the border when the cursor is outside button’s bounds.

Availability
Available in Mac OS X v10.0 and later.

See Also
- showsBorderOnlyWhileMouselInside (page 523)

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Declared In
NSButtonCell.h

setShowsStateBy:

Sets the way the receiver indicates its alternate state.
- (void)setShowsStateBy: (NSInteger)aType

Parameters
alype

The logical OR of one or more of the cell masks described in the “Constants” (page 612) section of

NSCell (page 535).
Discussion

If both NSChangeGrayCel1Mask and NSChangeBackgroundCel1Mask are specified, both are recorded,
but the actual behavior depends on the button cell’s image. If the button has no image, or if the image has

no alpha (transparency) data, NSChangeGrayCel1Mask is used. If the image exists and has alpha data,

NSChangeBackgroundCel1Mask is used; this arrangement allows the color swap of the background to

show through the image’s transparent pixels.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setHighlightsBy: (page 516)
- showsStateBy (page 523)

Declared In
NSButtonCell.h

setSound:

Sets the sound that’s played when the user presses the receiver.
- (void)setSound: (NSSound *)aSound

Parameters

aSound
The sound to play when the button is pressed.

Discussion

The sound is played during a mouse-down event, such as NSLeftMouseDown.

Availability
Available in Mac OS X v10.0 and later.

See Also
- sound (page 524)

Declared In
NSButtonCell.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

521

522

CHAPTER 20

NSButtonCell Class Reference

setTitle:

Sets the title the button displays when in its normal state and, if necessary, redraws the receiver’s contents.
- (void)setTitle: (NSString *)aString

Parameters
aString
The string to set as the button's title.

Discussion
The title is always shown on buttons that don’t use their alternate contents when highlighting or displaying
their alternate state.

Availability
Available in Mac OS X v10.0 and later.

See Also
- title (page 524)

- setAlternateTitle: (page511)

- setButtonType: (page 514)

- setFont: (page 515)

- setTitleWithMnemonic: (page 522)

Declared In
NSButtonCell.h

setTitleWithMnemonic:

Sets the title the button displays when it's in its normal state to the given string with an embedded mnemonic.
- (void)setTitleWithMnemonic: (NSString *)aString

Parameters

aString
The string to set as the button's title, taking into account the fact that an embedded “&" character is
not a literal but instead marks the alternate state’s “keyboard mnemonic.” This title is always shown
on buttons that don't use their alternate contents when highlighting or displaying their alternate
state.

Discussion

If necessary, setTitleWithMnemonic: redraws the button cell. Mnemonics are not supported in Mac OS
X.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setAlternateTitleWithMnemonic: (page 512)

- setTitleWithMnemonic: (page 599) (NSCelT)
- setMnemoniclocation: (page 592) (NSCelT)

Declared In
NSButtonCell.h

Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

setTransparent:

Sets whether the receiver is transparent.
- (void)setTransparent: (BOOL)f7ag

Parameters
flag
YES to make the button cell transparent.

Discussion

This method redraws the receiver if necessary. A transparent button tracks the mouse and sends its action,
but doesn’t draw. A transparent button is useful for sensitizing an area on the screen so that an action gets
sent to a target when the area receives a mouse click.

Availability
Available in Mac OS X v10.0 and later.

See Also
- isTransparent (page 507)

- isOpaque (page 507)

Declared In
NSButtonCell.h

showsBorderOnlyWhileMouselnside

Returns a Boolean value indicating whether the button displays its border only when the cursor is over it.
- (BOOL)showsBorderOnlyWhileMouselnside

Return Value
YES if the receiver’s border is displayed only when the cursor is over the button and the button is active.

Discussion
By default, this method returns NO.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setShowsBorderOnlyWhileMouselnside: (page 520)

Declared In
NSButtonCell.h

showsStateBy

Returns the flags indicating how the button cell shows its alternate state.

- (NSInteger)showsStateBy

Instance Methods 523
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

Return Value
The logical OR of flags that indicate the way the receiver shows its alternate state. See the “Constants” (page
612) section of NSCell (page 535) for the list of flags.

Availability
Available in Mac OS X v10.0 and later.

See Also
- highlightsBy (page 505)
- setShowsStateBy: (page 521)

Declared In
NSButtonCell.h

sound

Returns the sound that’s played when the user presses the receiver.
- (NSSound *)sound

Return Value
The sound played when the receiver is pressed.

Availability
Available in Mac OS X v10.0 and later.

See Also
- setSound: (page 521)

Declared In
NSButtonCell.h

title

Returns the title displayed on the receiver when it's in its normal state.
- (NSString *)title

Return Value
The title displayed by the button in its normal state, or the empty string if the button doesn’t display a title.

Discussion
This title is always displayed if the button doesn't use its alternate contents for highlighting or displaying
the alternate state. By default, a button’s title is “Button.”

Availability
Available in Mac OS X v10.0 and later.

See Also
- setTitle: (page 522)

- alternateTitle (page 501)
- setButtonType: (page 514)
- mnemonic (page 571) (NSCe1T)

524 Instance Methods
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

- mnemoniclocation (page 572) (NSCel1)

Declared In
NSButtonCell.h

Constants

NSBezelStyle
Type to define bezel styles.

typedef NSUInteger NSBezelStyle;

Discussion
For possible values, see “Bezel Styles” (page 525).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

Bezel Styles
Define the bezel styles used by beze1Style (page 502) and setBezelStyle: (page 514).

enum {
NSRoundedBezelStyle =
NSRegularSquareBezelStyle =
NSThickSquareBezelStyle =
NSThickerSquareBezelStyle =
NSDisclosureBezelStyle =
NSShadowlessSquareBezelStyle =
NSCircularBezelStyle =
NSTexturedSquareBezelStyle =
NSHelpButtonBezelStyle =9,
NSSmallSquareBezelStyle = 10,
NSTexturedRoundedBezelStyle
NSRoundRectBezelStyle
NSRecessedBezelStyle
NSRoundedDisclosureBezelStyle =

O ~NOY Ol RN

LI | I
=
B~ w o

}

Constants
NSRoundedBezelStyle
A rounded rectangle button, designed for text.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

Constants 525
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

526

CHAPTER 20

NSButtonCell Class Reference

NSRegularSquareBezelStyle
A rectangular button with a 2 point border, designed for icons.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSThickSquareBezelStyle
A rectangular button with a 3 point border, designed for icons.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSThickerSquareBezelStyle
A rectangular button with a 4 point border, designed for icons.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSDisclosureBezelStyle
A bezel style for use with a disclosure triangle.

To create the disclosure triangle, set the button bezel style to NSDisclosureBezelStyle and the
button type to NSOnOffButton.

Available in Mac OS X v10.3 and later.
Declared in NSButtonCel1.h.

NSShadowlessSquareBezelStyle
Similar to NSRegularSquareBezelSty1e, but has no shadow so you can abut the cells without
overlapping shadows.

This style would be used in a tool palette, for example.
Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSCircularBezelStyle
A round button with room for a small icon or a single character.

This style has both regular and small variants, but the large variant is available only in gray at this
time.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSTexturedSquareBezelStyle
A bezel style appropriate for use with textured (metal) windows.

Available in Mac OS X v10.3 and later.
Declared in NSButtonCel1.h.

NSHelpButtonBezelStyle
A round button with a question mark providing the standard help button look.

Available in Mac OS X v10.3 and later.
Declared in NSButtonCel1.h.

NSSmallSquareBezelStyle
A simple square bezel style. Buttons using this style can be scaled to any size.

Available in Mac OS X v10.4 and later.
Declared in NSButtonCel1.h.

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

NSTexturedRoundedBezelStyle

A textured (metal) bezel style similar in appearance to the Finder’s action (gear) button.

The height of this button is fixed.
Available in Mac OS X v10.4 and later.
Declared in NSButtonCel1.h.

NSRoundRectBezelStyle
A bezel style that matches the search buttons in Finder and Mail.

Available in Mac OS X v10.4 and later.
Declared in NSButtonCel1.h.

NSRecessedBezelStyle
A bezel style that matches the recessed buttons in Mail, Finder and Safari.

Available in Mac OS X v10.4 and later.
Declared in NSButtonCel1.h.

NSRoundedDisclosureBezelStyle
A bezel style that matches the disclosure style used in the standard Save panel.

Available in Mac OS X v10.4 and later.
Declared in NSButtonCel1.h.

Discussion
For examples of how these styles are displayed, see Button Programming Topics for Cocoa.

Declared In
NSButtonCell.h

NSButtonType
Type to define button types.

typedef NSUInteger NSButtonType;

Discussion
For possible values, see “Button Types” (page 527).

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

Button Types
Represent the button types that can be specified using setButtonType: (page 514).

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

527

528

CHAPTER 20

NSButtonCell Class Reference

enum {
NSMomentarylLightButton =
NSPushOnPushOffButton
NSToggleButton
NSSwitchButton
NSRadioButton
NSMomentaryChangeButton
NSOnOffButton
NSMomentaryPushInButton
NSMomentaryPushButton
NSMomentarylLight =

Il
NO N~ WM O

b

Constants

NSMomentaryLightButton
While the button is held down it's shown as “lit,” and also “pushed in” to the screen if the button is
bordered.

This type of button is best for simply triggering actions, as it doesn't show its state; it always displays
its normal image or title. This option is called “Momentary Light” in Interface Builder’s Button Inspector.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel11.h.

NSPushOnPushOffButton
The first click both highlights and causes the button to be “pushed in” if the button is bordered; a
second click returns it to its normal state.

This option is called “Push On Push Off” in Interface Builder’s Button Inspector.
Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSToggleButton
After the first click, the button displays its alternate image or title; a second click returns the button
to its normal state.

This option is called “Toggle” in Interface Builder’s Button Inspector.
Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSSwitchButton
This style is a variant of NSTogg1eButton that has no border and is used to represent a checkbox.

This type of button is available as a separate Library item in Interface Builder.
Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSRadioButton
This style is similar to NSSwitchButton, butit used to constrain a selection to a single element from
several.

You typically use this type of button in a group formed by an instance of NSMatrix. In Interface
Builder, a matrix of this type of button is available as a separate Library item.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 20

NSButtonCell Class Reference

NSMomentaryChangeButton
While the button is held down, the alternate image and alternate title are displayed.

The normal image and title are displayed when the button isn’t pressed. This option is called
“Momentary Change” in Interface Builder’s Button Inspector.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSOnOffButton
The first click highlights the button; a second click returns it to the normal (unhighlighted) state.

This option is called “On Off” in Interface Builder’s Button Inspector.
Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSMomentaryPushInButton
While the button is held down it's shown as “lit.”

This type of button is best for simply triggering actions, as it doesn't show its state; it always displays
its normal image or title. This option is called “Momentary Push In” in Interface Builder’s Button
Inspector.

This button type is the default.
Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.
NSMomentaryPushButton
While the button is held down it's shown as “lit,” and also “pushed in” to the screen if the button is
bordered. (Deprecated. Use NSMomentaryLightButton instead.)
Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.
NSMomentarylLight
While the button is held down it’s shown as “lit.” (Deprecated. Use NSMomentaryPushInButton
instead.)
Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.
Discussion

For examples of how these types behave, see Button Programming Topics for Cocoa.

Declared In
NSButtonCell.h

NSGradientType
Type to define gradient types.

typedef NSUInteger NSGradientType;

Discussion
For possible values, see “Gradient Types” (page 530).

Constants 529
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

530

CHAPTER 20
NSButtonCell Class Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
NSButtonCell.h

Gradient Types
Specify the gradients used by gradientType (page 505) and setGradientType: (page 516).

typedef enum _NSGradientType ({
NSGradientNone =
NSGradientConcaveWeak =
NSGradientConcaveStrong =
NSGradientConvexWeak
NSGradientConvexStrong
} NSGradientType;

B~ — O

Constants
NSGradientNone
There is no gradient, so the button looks flat.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSGradientConcaveWeak
The top-left corner is light gray, and the bottom-right corner is dark gray, so the button appears to
be pushed in.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSGradientConcaveStrong
As with NSGradientConcavelleak, the top-left corner is light gray, and the bottom-right corner is
dark gray, but the difference between the grays is greater, so the appearance of being pushed in is
stronger.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSGradientConvexWeak
The top-left corner is dark gray, and the bottom-right corner is light gray, so the button appears to
be sticking out.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

NSGradientConvexStrong
As with NSGradientConvexWeak, the top-left corner is dark gray, and the bottom-right corner is
light gray, but the difference between the grays is greater, so the appearance of sticking out is stronger.

Available in Mac OS X v10.0 and later.
Declared in NSButtonCel1.h.

Declared In
NSButtonCell.h

Constants
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21

NSCachedlmageRep Class Reference

Inherits from NSImageRep : NSObject
Conforms to NSCoding (NSImageRep)
NSCopying (NSImageRep)
NSObject (NSObject)
Framework /System/Library/Frameworks/AppKit.framework
Availability Available in Mac OS X v10.0 and later.
Declared in AppKit/NSCachedimageRep.h
Companion guide Cocoa Drawing Guide
Overview

Tasks

An NSCachedImageRep object store image data in a form that can be readily transferred to the screen. An
NSCachedImageRep object differs from other image representation objects in that it simply stores the already
rendered image, whereas other image representation objects generally have knowledge about how to render
the image from source data.

You typically do not use this class directly. Instead, NSImage and its other image representation objects
create instances of NSCachedImageRep as needed to cache versions of the rendered image. This caching
speeds up screen-based drawing for existing images during subsequent rendering operations. Cached image
representations are also used to capture drawing commands for images created programmatically by locking
focus on an image.

Initializing an NSCachedimageRep

- initWithSize:depth:separate:alpha: (page 532)

Returns an NSCachedImageRep object initialized with the specified image characteristics.
- initWithWindow:rect: (page 532)

Returns an NSCachedImageRep object initialized for drawing in the specified window.

Overview 531
2008-11-19 | © 1997, 2008 Apple Inc. All Rights Reserved.

CHAPTER 21
NSCachedlmageRep Class Reference

Getting the Representation

- rect (page 533)

Returns the rectangle where the receiver is cached.
- window (page 533)

Returns the window where the receiver is cached.

Instance Methods

532

initWithSize:depth:separate:alpha:

Returns an NSCachedImageRep object initialized with the specified image characteristics.

- (id)initWithSize: (NSSize)size depth: (NSWindowDepth)depth separate:(