Using the built-in functions described below, you can record the arguments a function received, and call another function with the same arguments, without knowing the number or types of the arguments.
You can also record the return value of that function call, and later return that value, without knowing what data type the function tried to return (as long as your caller expects that data type).
This built-in function returns a pointer to data describing how to perform a call with the same arguments as were passed to the current function.
The function saves the arg pointer register, structure value address, and all registers that might be used to pass arguments to a function into a block of memory allocated on the stack. Then it returns the address of that block.
This built-in function invokes function with a copy of the parameters described by arguments and size.
The value of arguments should be the value returned by
__builtin_apply_args
. The argument size specifies the size of the stack argument data, in bytes.This function returns a pointer to data describing how to return whatever value was returned by function. The data is saved in a block of memory allocated on the stack.
It is not always simple to compute the proper value for size. The value is used by
__builtin_apply
to compute the amount of data that should be pushed on the stack and copied from the incoming argument area.
This built-in function returns the value described by result from the containing function. You should specify, for result, a value returned by
__builtin_apply
.
The reason for using names that start with underscores for the local
variables is to avoid conflicts with variable names that occur within the
expressions that are substituted for a
and b
. Eventually we
hope to design a new form of declaration syntax that allows you to declare
variables whose scopes start only after their initializers; this will be a
more reliable way to prevent such conflicts.