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Note:  This document was previously called Writing Audio Device Drivers.

This book describes the architecture, services, and mechanisms of the I/O Kit’s Audio family, and explains
how you use the APIs of the family to write an audio device driver for Mac OS X. It does not cover any aspect
of user-space audio programming (MIDI, synthesizers, CD players, and so on) except to discuss the overall
composition of the Mac OS X audio system, which includes Core Audio and other audio frameworks.

To gain the most value from reading this book, it helps to be familiar with the I/O Kit and object-oriented
programming, preferably C++ programming. The book I/OKit Fundamentals provides a thorough introduction
to the I/O Kit; see “Additional Information on the I/O Kit” (page 8) for details on this and other I/O Kit
documentation.

Who Should Read This Document?

As with any kernel-level device driver, you should only write a driver if there is no other way to achieve your
goals. Many audio devices are supported natively in Mac OS X. If your device complies with USB or FireWire
audio standards, you should not need to write a custom driver unless you need to implement features beyond
those supported in the relevant audio standards.

In some cases, even if you need to do special device-specific processing, you may be able to do so without
writing an entire driver. For example, some USB audio hardware (for USB speakers, for example) may require
additional software filtering, such as equalization. Mac OS X provides a mechanism in the kernel for doing
this through the AppleUSBAudio plug-in model. For more information, see the SampleUSBAudioPlugin example
code.

Organization of This Document

This document describes all aspects of creating an audio device driver using the I/O Kit’s Audio family. It
includes conceptual and procedural information and consists of the following chapters:

 ■ “Audio on Mac OS X” (page 11)—Describes the features, benefits, and architecture of the Mac OS X
audio system. It includes an overview of the audio I/O model.

 ■ “Audio Family Design” (page 21)—Presents a comprehensive overview of the Audio family’s architecture,
classes, object relationships, and primary mechanisms. It also goes into more detail about the workings
of the audio I/O model in Mac OS X.

 ■ “Implementing an Audio Driver” (page 39)—Describes the various steps required to design and implement
an audio device driver using the Audio family. Most steps are amply illustrated with sample code.

Who Should Read This Document? 7
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For details of specific methods, structures, and other API elements, consult the reference documentation for
the Audio family. See “Additional Information on the I/O Kit” (page 8) for instructions on accessing this
documentation.

See Also

Apple offers several other resources to developers of audio software for Mac OS X, including:

 ■ See http://developer.apple.com/audio for a page full of links to audio-related material.

 ■ See Core Audio for a description of the Core Audio framework (Audio HAL).

 ■ For information on MIDI frameworks, see CoreMIDI Framework Reference and CoreMIDI Server Framework
Reference.

 ■ See /Developer/Examples/Kernel/IOKit/Audio for some sample audio driver projects and other
code examples relevant to audio development.

Additional Information on the I/O Kit

For additional information on the I/O Kit in general, see the following documents:

 ■ Overviews of the Darwin kernel, including Kernel Programming Guide.

 ■ The aforementioned I/O Kit Fundamentals describes the features, architecture, classes, and general
mechanisms of the I/O Kit and includes discussions of driver matching and loading, event handling,
memory management, and power management.

 ■ I/O Kit DeviceDriver DesignGuidelines, which describes the general steps required to design, code, debug,
and build a device driver that will be resident in the kernel.

 ■ Kernel Extension Programming Topics, a collection of tutorials that introduce you to the development
tools and take you through the steps required to create, debug, and package kernel extensions and I/O
Kit drivers (a type of kernel extension).

 ■ Reference documentation on I/O Kit families and classes.

Of course, you can always browse the header files shipped with the I/O Kit, which are installed in
Kernel.framework/Headers/iokit (kernel-resident) and IOKit.framework/Headers (user-space).

The documentation is in HTML or PDF format. You can access the HTML documentation (and download the
PDF) from the Xcode Help menu. To view, click Help > Show Documentation Window. You can then search
for specific API or view the entire developer documentation library. You can also access developer
documentation on the Apple Developer Connection website at http://developer.apple.com/documentation/in-
dex.html.

Other Information on the Web

Apple maintains websites where developers can go for general and technical information on Mac OS X.
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 ■ Apple Developer Connection: Mac OS X (http://developer.apple.com/macosx) offers SDKs, release notes,
product notes and news, and other resources and information related to Mac OS X.

 ■ Apple Support Area (http://www.apple.com/support/) enables you to locate technical articles on Mac
OS X (and other areas) using a natural language search.
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This chapter gives an overview of audio on Mac OS X, describing its capabilities, its interrelated technologies,
and its architecture. Reading this chapter will help you to understand how the I/O Kit’s Audio family fits
together and interacts with the other pieces of audio software on Mac OS X.

Mac OS X Audio Capabilities

In versions of Macintosh system software prior to Mac OS X, the sound capabilities of a system largely
depended on the availability of third-party audio and MIDI protocols and services. Apple has designed the
Mac OS X audio system to consolidate, integrate, and standardize these services and protocols, thereby
streamlining configuration of audio and MIDI devices and development of future audio and MIDI technologies.

Audio on Mac OS X comprises several audio technologies that, taken together, offer the following capabilities:

 ■ Built-in support for a variety of audio formats, including formats based on pulse code modulation (PCM)
and encoded formats such as AC-3 and MP3

 ■ Multi-channel audio I/O that is scalable to a virtually unlimited number of channels

 ■ Variable sample rates

 ■ A remarkably clean signal path requiring little overhead

 ■ Simultaneous access for multiple clients to all of the audio devices attached to the host, no matter how
the connection is made (PCI, USB, FireWire, and so on)

Outside the kernel, Mac OS X represents audio as 32-bit floating point data; this format allows efficient
processing of data with today’s advanced audio peripherals (for example, those capable of 24-bit, 192 kHz
operation) and ensures that the system can scale to future high-resolution formats.

Architecture of Mac OS X Audio

The audio capabilities of Mac OS X arise from several software technologies that are accessible through their
public programming interfaces. These technologies are situated at different levels of the operating system
where their relationships with each other can be characterized as client and provider. In other words, Mac
OS X audio software is layered, with one layer dependent on the layer “under” it and communicating, through
defined interfaces, with adjoining layers (see Figure 1-1 (page 12)).

The relative locations of these technologies within the layers of system software suggest their degree of
abstraction and their proximity to audio hardware. Some audio technologies in Mac OS X are incorporated
into the kernel environment (that is, Darwin) while others are packaged as frameworks for use by application
environments, applications, and other user processes.

Mac OS X Audio Capabilities 11
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Figure 1-1 Mac OS X audio layers
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At the lowest level of the Mac OS X audio stack is the driver that controls audio hardware. The driver is based
on the I/O Kit’s audio family, which provides much of the functionality and data structures needed by the
driver. For example, the Audio family implements the basic timing mechanisms, provides the user-client
objects that communicate with the upper layers, and maintains the sample and mix buffers (which hold
audio data for the hardware and the hardware’s clients, respectively).

The basic role of the audio driver is to control the process that moves audio data between the hardware and
the sample buffer. It is responsible for providing that sample data to the upper layers of the system when
necessary, making any necessary format conversions in the process. In addition, an audio driver must make
the necessary calls to audio hardware in response to format and control changes (for example, volume and
mute).

Immediately above the driver and the I/O Kit’s Audio family—and just across the boundary between kernel
and user space—is the Audio Hardware Abstraction Layer (HAL). The Audio HAL functions as the device
interface for the I/O Kit Audio family and its drivers. For input streams, its job is to make the audio data it
receives from drivers accessible to its clients. For output streams, its job is to take the audio data from its
clients and pass it to a particular audio driver.

The Audio Units and Audio Toolbox frameworks are two other frameworks that provide specialized audio
services. They are both built on top of the Audio HAL, which is implemented in the Core Audio framework.

MIDI System Services, which comprises two other frameworks, is not directly dependent on the Audio HAL.
As its name suggests, MIDI System Services makes MIDI services available to applications and presents an
API for creating MIDI drivers.

Finally, the ultimate clients of audio on Mac OS X—applications, frameworks, and other user processes—can
directly access the Audio HAL or indirectly access it through one of the higher-level audio frameworks. They
can also indirectly access the Audio HAL through the audio-related APIs of the application environments
they belong to: Sound Manager in Carbon, NSSound in Cocoa, and the Java sound APIs.

The following sections examine each of these audio technologies of Mac OS X in more detail.

12 Architecture of Mac OS X Audio
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Audio HAL (Core Audio)

The Audio Hardware Abstraction Layer (HAL) is the layer of the Mac OS X audio system that acts as an
intermediary between the I/O Kit drivers controlling audio hardware and the programs and frameworks in
user space that are clients of the hardware. More specifically, the Audio HAL is the standardized device
interface for the I/O Kit’s Audio family. It is implemented in the Core Audio framework
(CoreAudio.framework) and presents both C-language and Java APIs. In the Audio HAL, all audio data is
in 32-bit floating point format.

The API of the Audio HAL includes three main abstractions: audio hardware, audio device, and audio stream.

 ■ The audio hardware API gives clients access to audio entities that exist in the “global” space, such as the
list of current devices and the default device.

 ■ The audio device API enables clients to manage and query a specific audio device and the I/O engines
that it contains. An audio device in the Audio HAL represents a single I/O cycle, a clock source based on
it, and all the buffers that are synchronized to this cycle. The audio device methods permit a client to,
among other things, start and stop audio streams, retrieve and translate the time, and get and set
properties of the audio device.

 ■ The audio stream API enables a client to control and query an audio stream. Each audio device has one
or more audio streams, which encapsulate the buffer of memory used for transferring audio data across
the user/kernel boundary. They also specify the format of the audio data.

The abstractions of audio device and audio stream loosely correspond to different I/O Kit Audio family objects
in the kernel (see “The Audio Family” (page 15)). For example, the entity referred to as “audio device” in the
Audio HAL corresponds to a combination of an IOAudioDevice and IOAudioEngine in the kernel. For
each IOAudioEngine the Audio HAL finds in the kernel, it generates an audio-device identifier. However,
there is considerable overlap of role among the various Audio family and Audio HAL objects and entities.

A critical part of the APIs for audio hardware, devices, and streams involves audio properties and their
associated notifications. These APIs allow clients to get and set properties of audio hardware. The “get”
methods are synchronous, but the “set” methods work in an asynchronous manner that makes use of
notifications. Clients of the Audio HAL implement “listener procs”—callback functions for properties associated
with audio hardware, audio devices, or audio streams. When an audio driver changes a property of the
hardware, either as a result of user manipulation of a physical control or in response to a “set” method, it
sends notifications to interested Audio HAL clients. This results in the appropriate “listener procs” being
called.

Just as important as the property APIs is the callback prototype (AudioDeviceIOProc) that the audio-device
subset of the Audio HAL API defines for I/O management. Clients of the Audio HAL must implement a function
or method conforming to this prototype to perform I/O transactions for a given device. Through this function,
the Audio HAL presents all inputs and outputs simultaneously in an I/O cycle to the client for processing. In
this function, a client of the Audio HAL must send audio data to the audio device (for output), or copy and
process the audio data received from the audio device (for input).

Architecture of Mac OS X Audio 13
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Secondary Audio Frameworks

Mac OS X has several frameworks other than the Core Audio framework that offer audio-related functionality
to applications. Two of these frameworks—Audio Units and Audio Toolbox—are built directly on the Core
Audio framework. MIDI System Services (consisting of the Core MIDI and Core MIDI Server frameworks) does
not directly depend on the Core Audio framework, but is still a consumer of the services of the audio
frameworks.

All of these secondary frameworks are implemented in the C language and present their public programming
interfaces in C. Thus, any application or other program in any application environment can take advantage
of their capabilities.

Audio Units

The Audio Units framework (AudioUnits.framework) provides support for generating, processing, receiving,
and manipulating or transforming streams of audio data. This functionality is based on the notion of audio
units.

Audio units are one form of a building block called a component. A component is a piece of code that provides
a defined set of services to one or more clients. In the case of audio units, these clients can use audio unit
components either singly or connected together to form an audio signal graph. To compose an audio signal
graph, clients can use the AUGraph API in the Audio Toolbox framework—see “Audio Toolbox” (page 14)
for details.

An audio unit can have one or more inputs and outputs. The inputs can accept either encoded audio data
or MIDI data. The output is generally a buffer of audio data. Using a “pull I/O” model, an audio unit specifies
the number and format of its inputs and outputs through its properties. Each output is in itself a stream of
an arbitrary number of interleaved audio channels derived from the audio unit’s inputs. Clients also manage
the connections between units through properties.

Examples of audio units are DSP processors (such as reverbs, filters, and mixers), format converters (for
example, 16-bit integer to floating-point converters), interleavers-deinterleavers, and sample rate converters.
In addition to defining the interface for custom audio units in the Audio Units framework, Apple ships a set
of audio units. One of these is the MusicDevice component, which presents an API targeted specifically toward
software synthesis.

Audio Toolbox

The Audio Toolbox framework (AudioToolbox.framework) complements the Audio Units framework with
two major abstractions: the AUGraph and the Music Player.

An AUGraph provides a complete description of an audio signal processing network. It is a programmatic
entity that represents a set of audio units and the connections (input and output) among them. With the
AUGraph APIs, you can construct arbitrary signal paths through which audio can be processed. Audio graphs
enact real-time routing changes while audio is being processed, creating and breaking connections between
audio units “on the fly,” thus maintaining the representation of the graph even when constituent audio units
have not been instantiated.

The Music Player APIs use AUGraphs to provide the services of a sequencing toolbox that collects audio
events into tracks, which can then be copied, pasted, and looped within a sequence. The APIs themselves
consist of a number of related programmatic entities. A Music Player plays a Music Sequence, which can be
created from a standard MIDI file. A Music Sequence contains an arbitrary number of tracks (Music Tracks),

14 Architecture of Mac OS X Audio
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each of which contains timestamped audio events in ascending temporal order. A Music Sequence usually
has an AUGraph associated with it, and a Music Track usually addresses its audio events to a specific Audio
Unit within the graph. Events can involve tempo and extended events, as well as regular MIDI events.

The Audio Toolbox framework also includes APIs for converting audio data between different formats.

MIDI System Services

MIDI System Services is a technology that allows applications and MIDI devices to communicate with each
other in a single, unified way. It comprises two frameworks: Core MIDI (CoreMIDI.framework) and Core
MIDI Server (CoreMIDIServer.framework).

MIDI System Services gives user processes high-performance access to MIDI hardware. In a manner similar
to the Audio HAL, MIDI System Services implements a plug-in interface that enables clients to communicate
with a MIDI device driver.

Note:  MIDI device drivers are not I/O Kit drivers. The MIDI device driver model is based on the CFPlugIn
architecture and typically loads a CFPlugIn bundle from /System/Library/Extensions or
Library/Audio/MIDI Drivers.

For MIDI devices that cannot be directly addressed from a user-space device driver (for example, a MIDI
interface built into a PCI card), you must split your driver into two parts: an I/O Kit device driver that matches
against the device and a CFPlugIn bundle that manipulates the I/O Kit driver using a user client.

The details of implementing such a mechanism are beyond the scope of this document. For information on
user clients, see Device-Interface Development.

Apple provides several default MIDI drivers for interfaces that comply with USB and FireWire MIDI interface
standards. Using the Core MIDI Server framework, third-party MIDI manufacturers can create their own driver
plug-ins to support additional device-specific features. A MIDI server can then load and manage those drivers.

Applications can communicate with MIDI drivers through the client-side APIs of the Core MIDI framework.

The Audio Family

The I/O Kit’s Audio family facilitates the creation of drivers for audio hardware. Drivers created through the
Audio family can support any hardware on the system, including PCI, USB, and FireWire devices. Essentially,
an I/O Kit audio driver transfers audio data between the hardware and the Audio HAL. It provides one or
more sample buffers along with a process that moves data between the hardware and those sample buffers.
Typically this is done with the audio hardware’s DMA engine.

Because the native format of audio data on Mac OS X is 32-bit floating point, the driver must provide routines
to convert between the hardware format of the data in the sample buffer and 32-bit floating point. The
sequence of steps that a driver follows depends on the direction of the stream. For example, with input audio
data, the driver is asked for a block of data. It obtains it from the sample buffer, converts it to the expected
client format (32-bit floating point), and returns it. That data is then passed by the family to the Audio HAL
through a user-client mechanism.

Architecture of Mac OS X Audio 15
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The interactions between the DMA engine, the driver, and the Audio HAL, are based on the assumption that,
in any one direction, the stream of audio data proceeds continuously at the same rate. The Audio family sets
up several timers (based on regularly taken timestamps) to synchronize the actions of the agents involved
in this transfer of data. These timing mechanisms ensure that the audio data is processed at maximum speed
and with minimum latency.

Take again an input stream as an example. Shortly after the DMA engine writes sample frames to the driver’s
sample buffer, the driver reads that data, converts the integer format to 32-bit floating point, and writes the
resulting frames to the mixer buffer, from whence they are passed on to the Audio HAL. Optionally, just
before the DMA engine writes new frames to the same location in the sample buffer, an “erase head”
zero-initializes the just-processed frames. (By default, however, the erase head only runs on output streams.)

For more on the sample buffer and the timer mechanisms used by the Audio family, see “The Audio I/O
Model on Mac OS X” (page 17).

An I/O Kit audio driver consists of a number of objects, the most important of which are derived from the
IOAudioDevice, IOAudioEngine, IOAudioStream, and IOAudioControl classes. These objects perform
the following roles for the driver:

 ■ A single instance of a custom subclass of IOAudioDevice represents the audio device itself. The
IOAudioDevice subclass is the root object of a complete audio driver. It is responsible for mapping all
hardware resources from the service-provider’s nub and for controlling all access to the hardware (handled
automatically through a provided command gate). An IOAudioDevice object manages one or more
IOAudioEngine objects.

 ■ An audio driver must contain one or more instances of a custom subclass of IOAudioEngine. This
custom subclass manages each audio I/O engine associated with the audio device. Its job is to control
the process that transfers data between the hardware and a sample buffer. Typically the I/O process is
implemented as a hardware DMA engine (although it doesn’t have to be). The sample buffer must be
implemented as a ring buffer so that when the I/O process of a running IOAudioEngine reaches the
end of the buffer, it wraps back around to the beginning and keeps going.

An IOAudioEngine object is also responsible for starting and stopping the engine, and for taking a
timestamp each time the sample buffer wraps around to the beginning. It contains one or more
IOAudioStream objects and can contain any number of IOAudioControl objects.

All sample buffers within a single IOAudioEngine must be the same size and running at the same rate.
If you need to handle more than one buffer size or sampling rate, you must use more than one
IOAudioEngine.

 ■ An instance of IOAudioStream represents a sample buffer, the associated mix buffer, and the direction
of the stream. The IOAudioStream object also contains a representation of the current format of the
sample buffer as well as a list of allowed formats for that buffer.

 ■ An instance of IOAudioControl represents any controllable attribute of an audio device, such as volume
or mute.

An I/O Kit audio driver uses two user-client objects to communicate with the Audio HAL layer. The Audio
HAL communicates with the IOAudioEngine and IOAudioControl objects through the
IOAudioEngineUserClient and IOAudioControlUserClient objects, respectively. The audio family
creates these objects as they are needed. The IOAudioEngineUserClient class provides the main linkage
to an IOAudioEngine subclass; it allows the Audio HAL to control the IOAudioEngine and it enables the
engine to pass notifications of changes back to the Audio HAL. For each IOAudioControl object in the
driver, an IOAudioControlUserClient object passes notifications of value changes to the Audio HAL.

16 Architecture of Mac OS X Audio
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For more detailed information on the classes and general architecture of the Audio family, see the chapter
“Audio Family Design” (page 21).

Apple Audio Drivers

Apple ships several audio device drivers with a standard Mac OS X installation. These drivers are suitable for
much of the audio hardware commonly found on Power PC computers. The “onboard driver” kernel
extension—AppleOnboardAudio.kext—contains almost a half dozen audio drivers packaged as plug-ins.
Each of these drivers is based on a specific subclass of IOAudioDevice and each uses the code in the
AppleDBDMAAudio kernel extension for the IOAudioEngine subclass. The I/O Kit, through its matching
process, finds and loads the appropriate plug-ins based on existing audio hardware. For USB audio hardware,
Apple includes the driver defined in the AppleUSBAudio.kext kernel extension.

Important:  The set of audio drivers provided by Apple may change at any time. Your drivers should thus
avoid depending on the presence or absence of specific drivers.

The Audio I/O Model on Mac OS X

Mac OS 9 and Mac OS X perform audio I/O in very different ways. The differences between them are most
salient in the lower layers of the audio stack, particularly the audio driver model and the audio access libraries.

In Mac OS 9, an audio driver’s DMA engine transfers audio data between a sample buffer, which is provided
by the driver, and the hardware. The buffer holds a segment of the audio data containing a sequence of
sample frames in temporal order.

The Mac OS 9 driver model uses double buffering to exchange audio data between the driver and its clients,
so there are actually two sample buffers. In the case of audio output, after the driver’s clients (using the
Sound Manager API) fill one of the buffers, the hardware (usually through its DMA engine) signals the driver
(typically through an interrupt) that it is finished playing the other buffer and ready for more data. The driver
then gives the hardware the buffer it just filled, receives the just-played buffer from the hardware, and signals
the application that it needs more data.

The Audio I/O Model on Mac OS X 17
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Figure 1-2 Access to the sample buffer on Mac OS 9
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The architecture and goals of Mac OS X made this design untenable. With the Mac OS X kernel, an audio
driver incurs a greater cost than on Mac OS 9 when it signals an application that more audio data is needed
(or that new data is available). Moreover, a major goal of the Mac OS X audio system is to support multiple
simultaneous clients, which is not possible with the Mac OS 9 model. A new audio I/O model was needed
not only for this goal but also to provide the highest possible performance and the lowest possible latency.
Figure 1-3 (page 19) depicts the audio I/O model on Mac OS X.
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Figure 1-3 The Mac OS X audio model
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The key facet of the Mac OS X audio I/O model involves predictive timing mechanisms. Instead of requiring
the driver to message an application directly when an I/O cycle has completed, the timing mechanisms
enable the Audio HAL to predict when the cycle will complete. The Audio HAL uses the extremely accurate
timing code on Mac OS X to ensure that clients perform their I/O at the proper time, based on the size of
their buffers. The audio driver does its part to make this possible by setting up the hardware’s sample buffer
as a ring buffer and by taking an accurate timestamp every time the I/O engine wraps to the beginning of
the buffer.

The Audio HAL keeps track of each timestamp and uses the sequence of timestamps to predict the current
location of the audio I/O engine (in terms of sample frame read or written) at any time. Given that information,
it can predict when a cycle will complete and sets its wake-up timestamp accordingly. This model, combined
with the ability of the I/O Kit Audio family to receive audio data from each client asynchronously, allows any
number of clients to provide audio data that gets mixed into the final output. It also allows different client
buffer sizes; one client can operate at a very low buffer size (and a correspondingly low latency) while at the
same time another client may use a much larger buffer. As long as the timestamps provided by the driver
are accurate, the family and the Audio HAL do all of the work to make this possible.

Another important difference between the audio I/O model on Mac OS 9 and the one on Mac OS X is the
native format of audio data in the system. In Mac OS 9, because the application (through the Sound Manager)
has direct access to the hardware buffer, it has to deal with the native hardware format. Because of this reality,
the Mac OS 9 audio libraries only support 16-bit one-channel or two-channel PCM audio data to simplify
things.

In Mac OS X, an application cannot directly access the sample buffer. This indirection permits the use of the
32-bit floating point format between the Audio HAL and an audio driver. Consequently, the driver is responsible
for providing a routine that can clip and convert that 32-bit floating point output data into the buffer’s native
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format. It might also have to implement a routine to convert input data into 32-bit floating point. Both
routines are called asynchronously as Audio HAL clients pass audio data to the driver and receive data from
it.

For detailed information on the Mac OS X audio I/O model, see “The Audio I/O Model Up Close” (page 31).

20 The Audio I/O Model on Mac OS X
2009-03-04   |   © 2001, 2009 Apple Inc. All Rights Reserved.

CHAPTER 1

Audio on Mac OS X



All audio drivers, regardless of platform, must perform the same general actions. For input streams, drivers
receive digital audio data from the hardware in a stream of frames consistent with the current sampling rate
and audio format. They modify the data, if necessary, to a form acceptable to the clients of the device (say,
32-bit floating point) and make the altered frames accessible to those clients at the current sampling rate.
In the reverse (output) direction, the job of the audio driver is essentially the same. It accepts digital audio
data from the clients of the device, changes that stream of sample frames to a form required by the hardware
(say, 16-bit integer), and gives the data to the device’s controller at the current sampling rate.

Drivers must also initially configure the hardware, respond to client requests to change device attributes (for
example, volume), and notify clients when some attribute or state of the audio device has changed. They
must guard against data corruption in a multithreaded environment, and they must be prepared to respond
to systemwide events, such as sleep/wake notifications.

The Audio family provides object-oriented abstractions to help your driver deal with many of these things.
The family itself takes care of much of the work for you; you just supply the behavior that is specific to your
hardware. To do this, it is useful to know how your code fits together with the family implementation, which
is what this chapter is about.

The Classes of the Audio Family

As you can with any object-oriented system, you can come to an understanding of the design of the I/O Kit
Audio family by examining the classes of the family. The examination in this section looks at the roles of the
family, the properties they encapsulate, the audio entities they represent, and the relationships they have
with each other. The relationships considered are not only the static relationships imposed by inheritance
but also the dynamic relationships characterized by containment, dependency, and control.

The Audio family consists of about a dozen classes, all having the prefix “IOAudio”:

 ■ IOAudioDevice

 ■ IOAudioEngine

 ■ IOAudioStream

 ■ IOAudioControl

 ■ IOAudioPort

 ■ IOAudioEngineUserClient

 ■ IOAudioControlUserClient

 ■ IOAudioLevelControl

 ■ IOAudioSelectorControl

 ■ IOAudioToggleControl
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The inheritance relationships among these classes, as depicted in Figure 2-1 (page 22), are uncomplicated.

Figure 2-1 The Audio family class hierarchy
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All classes of the Audio family directly or indirectly inherit from IOService; thus objects of these classes are
full-fledged driver objects, with the capability for responding to driver life-cycle messages and for participating
in the matching process. In practice, however, an instance of an IOAudioDevice subclass, as root object of
the audio driver, usually matches against the provider’s nub (the provider being a PCI controller or FireWire
or USB device, in most cases). Audio drivers are typically “leaf” objects in the driver stack, and typically their
only client is the Audio HAL, in user space. Therefore they do not publish nubs of their own.

Two classes, IOAudioEngineUserClient and IOAudioControlUserClient, inherit from the
IOUserClient class. Objects of these classes represent user-client connections that enable the Audio family
to communicate with the Audio HAL. Five of the Audio family classes are subclasses of IOAudioControl,
providing behavior specific to certain types of audio-device controls (mute switches, volume controls, and
so on). For further details on the user-client and control classes of the Audio Family, see “The Roles of Audio
Family Objects” (page 25).

An understanding of the static inheritance relationships between classes of the Audio family goes only so
far to clarify what instances of those classes do in a typical audio driver. It is more illuminating to consider
the dynamic relationships among these objects.

Dynamic Relationships in the Audio Family

An I/O Kit audio driver consists of a variable number of objects that represent or encapsulate certain aspects
of an audio device. Many of these objects own references to other objects. The most significant objects in a
“live” audio driver derive from four Audio family classes:

 ■ IOAudioDevice

 ■ IOAudioEngine

 ■ IOAudioStream

 ■ IOAudioControl

Figure 2-2 (page 23) illustrates the dynamic relationships of these objects.
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Figure 2-2 Audio family objects in a typical driver and what they represent
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The root object in an audio driver is an instance of a custom subclass of IOAudioDevice. It represents an
audio device in a general, overall sense. An IOAudioDevice object is the root object for a couple of reasons:
it creates and coordinates many of the other objects in the driver, and it is typically the object that must
match against the provider’s nub.

The custom subclass of IOAudioDevice adds attributes and implements behavior that are specific to the
device. It is responsible for identifying, configuring, and creating all necessary audio-engine objects and
attaching those objects to itself. It must map all hardware resources from the provider’s nub and, when
requested by the system, it must change the values of controls.

Furthermore, an IOAudioDevice object is the power controller and power policy maker for the driver; in
coordination with its IOAudioEngine objects, it must properly determine system idleness and deal with
power-state transitions (sleep and wake), deactivating and reactivating its audio engines as necessary. (See
“Handling Sleep/Wake Notifications” (page 46) for more information.)

A driver’s IOAudioDevice object contains one or more IOAudioEngine objects as instance variables. Each
of these objects is an instance of a custom subclass of IOAudioEngine. An IOAudioEngine object represents
the I/O engine (usually a DMA engine) of the audio device; its job is to transfer audio data to or from one or
more sample buffers and the hardware. The object starts and stops the audio I/O engine when requested;
once started, it should run continuously, looping through the sample buffers until stopped. While it is running,
an IOAudioEngine takes a timestamp and increments a loop count each time it “wraps around” a sample
buffer (see “The Audio I/O Model Up Close” (page 31)). The Core Audio framework (Audio HAL) uses this
timing information to calculate the exact position of the audio engine at any time.

An audio driver needs only one IOAudioEngine object unless it needs to manage sample buffers of different
sizes or to have sample frames transferred at different rates. In these cases, it should instantiate and configure
the required number of IOAudioEngine instances.

An IOAudioEngine object itself contains one or more instances of the IOAudioStream class. An
IOAudioStream object primarily represents a sample buffer, which it encapsulates. It also encapsulates the
mix buffer for an output audio stream. It describes the direction of the stream as well as the format information
that can be applied to the sample buffer. The format information includes such data as number of channels,
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sampling format, and bit depth. If a sample buffer has multiple channels, the channels are typically interleaved
(although separate IOAudioStream instances can be used to represent non-interleaved different channels).
Often an audio engine has one IOAudioStream object for an input stream and another for an output stream.

An IOAudioEngine also contains one or more IOAudioControl objects as instance variables. Such an
object represents a controllable attribute of the audio device, such as mute, volume, or master gain. An
IOAudioControl is usually associated with a specific channel in a specific stream. However, it can control
all channels of an IOAudioStream or even all channels of an IOAudioEngine. At hardware-initialization
time, an IOAudioEngine (or perhaps the driver’s IOAudioDevice object) creates the necessary
IOAudioControl objects and adds them to the appropriate IOAudioEngine.

Each IOAudioControl is known as a “default control” because the Audio HAL recognizes and uses it based
on its attributes. Most value changes to the controls originate with clients of the Audio HAL, which passes
them via the user-client interface to the designated value-change handlers in the driver. Notifications of
value changes in audio controls can also travel in the other way; for example, if a user turns the volume knob
on a speaker, the driver communicates this change to Audio HAL clients.

The Audio Family and the I/O Registry

As it does with all I/O Kit drivers, the I/O Registry captures the client-provider relationships and the properties
of audio drivers. By using the I/O Registry Explorer application or the ioreg command-line tool, you can
view the objects of “live” audio drivers in the I/O Registry and examine the properties of those objects. The
visual presentation that these tools provide clarifies the client-provider relationships among Audio-family
objects and the relationships between audio objects and other objects in the driver stack. You can use these
tools to verify driver status and for debugging problems.

Figure 2-3 (page 25) shows how some of the objects in a USB audio driver appear in the I/O Registry.
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Figure 2-3 A USB audio driver displayed in the IORegistryExplorer application

In addition to these programming uses, the I/O Registry also serves a critical function in the architecture of
the Mac OS X audio system. The control properties of an audio driver—volume, mute, gain settings—are
stored in the I/O Registry and are associated with an IOAudioControl object. The Audio HAL looks for,
recognizes, and uses the object based on its attributes, which it discovers through the I/O Registry. See
“IOAudioControl” (page 28) for further information.

For details on matching properties, device attributes, and other I/O Registry keys, see the header file
Kernel.framework/Headers/IOKit/audio/IOAudioDefines.h or the associated reference
documentation for IOAudioDefines.h.

The Roles of Audio Family Objects

The previous section looked in a general way at the major objects in a “live” audio driver, describing what
those objects basically do and what their relationships are with one another. This section probes a little
deeper and examines the roles of all Audio family classes (and objects) in more detail.
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IOAudioDevice

Every audio driver based on the Audio family must have one instance of a custom subclass of IOAudioDevice.
The driver’s IOAudioDevice object is the central, coordinating node of the driver’s object tree—the “root”
object. All other objects ultimately depend on it or are contained by it.

Because of its status as root object, the IOAudioDevice object represents the audio hardware generally.
This central position gives it several roles:

 ■ It is the object that usually matches against the provider’s nub.

 ■ It initializes the device, mapping hardware resources from the provider’s nub, and otherwise reads and
writes to the device registers as necessary.

 ■ It creates the IOAudioEngine objects of the driver and can create the IOAudioControl objects used
by the driver.

 ■ It usually manages synchronization of values between hardware controls and the associated software
controls associated with its audio-engine objects.

 ■ It acts as the power controller and policy maker for the audio hardware; in this role, it must respond to
system sleep, system wake, and domain idleness transitions by deactivating and reactivating its audio
engines as necessary.

The driver’s IOAudioDevice object fulfills other functions. It controls access to the audio hardware to ensure,
in the driver’s multithreaded environment, that the hardware doesn’t get into an inconsistent state. Toward
this end, the IOAudioDevice superclass provides a separate work loop (IOWorkLoop) and a command gate
(IOCommandGate) to synchronize access by all objects in the driver. All other objects in the
driver—IOAudioEngine, IOAudioStream, and IOAudioControl—contain references to the
IOAudioDevice’s work loop and the command gate as instance variables. All Audio family classes take care
of executing I/O and hardware-related code on the command gate for all calls into the driver that they know
about. Generally, drivers should ensure that all I/O and hardware-specific operations are executed with the
command gate closed.

IOAudioDevice also offers timer services to the audio driver. These services allow different objects within
the driver to receive notifications that are guaranteed to be delivered at the requested timer interval, if not
sooner. Different target objects can register for timer callbacks at a specific interval; however, IOAudioDevice
makes the actual timer interval the smallest of those requested.

The idea behind this design is that there is no harm in having timed events in an audio driver occur sooner
than requested. By coalescing the callback intervals, the Audio family obviates the overhead of multiple
timers in a single driver.

In some cases, however, this may result in unexpected behavior if you make assumptions based on the
amount of time elapsed, such as assuming that the hardware has played a certain number of samples. You
should thus always make certain to test to make sure conditions are appropriate before performing such
operations.

Your driver itself can have localized strings that are accessible by the Audio HAL. These strings can include
such things as name, manufacturer, and input sources. Follow the Mac OS X localization procedure for these
strings, putting them in a file named Localizable.strings in the locale-specific subdirectories of your
bundle. The driver should have a property named IOAudioDeviceLocalizedBundleKey, which has a
value of the path of the bundle or kernel extension holding the localized strings, relative to
/System/Library/Extensions. The driver’s IOAudioDevice object should set this property in its
implementation of the initHardware method.
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IOAudioEngine

An audio engine object represents and manages an audio device’s I/O engine. In an audio driver, the object
is an instance of a custom subclass of IOAudioEngine. The audio engine has two main roles:

 ■ To configure a hardware DMA engine to transfer audio data (in the form of a stream of sample frames)
between the device and the sample buffer at a specific sampling rate. (In the absence of a hardware
DMA engine, the audio engine may emulate this functionality in software.)

 ■ To move data between the sample buffer and the mix buffer after appropriately converting the data to
the format expected by the client or hardware (depending on direction).

You can find more information on this topic in “The Audio I/O Model Up Close” (page 31).)

An instance of IOAudioStream (described in “IOAudioStream” (page 28)) represents and encapsulates a
sample buffer in a driver (and a mix buffer for output streams). Each IOAudioEngine in a driver must create
one or more IOAudioStream objects for each sample buffer required by the I/O engine. A typical driver has
at least an input IOAudioStream and an output IOAudioStream.

An IOAudioEngine object may also create the audio-control objects (IOAudioControl) required by the
device, although this task can be handled by the driver’s IOAudioDevice. During the initialization phase,
the driver must add all created IOAudioStream instances and IOAudioControl instances to the
IOAudioEngine as instance variables using the appropriate IOAudioEngine methods. This must happen
before it activates the IOAudioEngine (with the activateAudioEngine method).

In addition to facilitating the transfer of audio data in and out of the sample and mix buffers, an
IOAudioEngine has a number of functions:

 ■ It must stop and start the I/O engine when requested.

 ■ When the I/O engine is started, the IOAudioEngine object must ensure that it runs continuously and,
at the end of the sample buffer, loops to the beginning of the buffer. As the engine loops, the
IOAudioEngine takes a timestamp and increments a loop count.

 ■ It must provide the current sample on demand.

 ■ If the IOAudioEngine supports multiple stream formats or sampling rates, it must modify the hardware
appropriately when a format or rate changes.

An IOAudioEngine has several attributes and structures associated with it. Most important of these is a
status buffer (IOAudioEngineStatus) that it shares with the Audio HAL. This status buffer is a structure
that the IOAudioEngine must update each time the I/O engine loops around to the start of the sample
buffer. The structure contains four fields, three of which hold critical values:

 ■ The number of times the audio engine has looped to the start of the sample buffer

 ■ The timestamp of the most recent occurrence of this looping

 ■ The current location of the erase head (in terms of sample frame)

It is important that these fields, especially the timestamp field, be as accurate as possible. The Core Audio
framework (Audio HAL) uses this timing information to calculate the exact position of the audio engine at
any time. The shared status buffer is thus the basis for the timer and synchronization mechanism used by
the Mac OS X audio subsystem.
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The erase head mentioned in the previous paragraph is another attribute of an IOAudioEngine object. The
erase head is a software construct that zeroes out the mix and sample buffers just after the sample frames
have been played in an output stream. It is always moving just behind the audio engine to avoid erasing
data that has not yet been played. However, it also must remain well ahead of the IOAudioEngine clipping
and conversion routines that convert the audio data in the mix buffer to ensure that no stale data from a
previous loop iteration is mixed or clipped.

An IOAudioEngine object performs a number of initializations to fine-tune the synchronization mechanism
described above. For example, it provides methods for setting the latency of the audio engine and for varying
the offset between the Audio HAL and the audio engine’s I/O head.

IOAudioStream

An IOAudioStream object represents a single, independently addressable audio input or output stream
(which may include multiple channels). It contains the following (as instance variables):

 ■ A sample buffer

 ■ A mix buffer (for output streams)

 ■ Supported format information (sample rate, bit depth, and number of channels)

 ■ The starting channel ID

 ■ The number of current clients

 ■ All IOAudioControl objects that affect the channels of the stream

An IOAudioStream is an instance variable of the IOAudioEngine object that creates it. When the audio
engine creates an IOAudioStream object, it must list all supported sample formats as well as all the supported
sample rates for each format. The current format must be explicitly set.

If a sample buffer has multiple channels, the channels are typically interleaved on a frame-by-frame basis. If
your hardware uses separate buffers for each channel, however, you may use separate IOAudioStream
instances for different channels.

The IOAudioStream class defines the AudioIOFunction type for the callbacks (typically implemented by
the owning IOAudioEngine) that clip and convert output audio data from the float mix buffer to the sample
buffer in the format required by the hardware. See “The Audio I/O Model Up Close” (page 31) for further
information.

IOAudioStream includes convenience methods that permit IOAudioStream objects to be created from
and saved to OSDictionary objects.

IOAudioControl

An IOAudioControl object represents a controllable attribute of an audio device, such as mute, volume,
input/output selector, or master gain. It is usually associated with a specific channel in a specific stream, but
can be used to control all channels in an IOAudioStream or even all channels in an IOAudioEngine.

IOAudioControl objects are typically instance variables of the owning IOAudioEngine object. However,
IOAudioControl objects associated with a specific stream may also be stored in the relevant IOAudioStream
object.
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Usually an instance of an IOAudioEngine subclass creates its IOAudioControl instances when it initializes
the hardware (in the initHardware method). However, the driver’s IOAudioDevice object may be the
object that creates the necessary IOAudioControl objects. In either case, the driver must add the control
objects to the appropriate IOAudioEngine using the addDefaultAudioControl method.

Thus an IOAudioControl object is associated with an IOAudioEngine object, an IOAudioStream object,
and a channel of the stream. All of its attributes are stored in the I/O Registry. It is known as a “default control”
because the Audio HAL recognizes and uses it based on its attributes, which are discovered through the I/O
Registry.

When the IOAudioEngine (or IOAudioDevice) object creates IOAudioControl objects, it must obtain
from the audio device the starting channel identifier (an integer) for the audio stream. When the driver creates
the first IOAudioControl for the stream, it assigns this channel ID to it. When it creates IOAudioControl
objects for any other channels of the stream (based on the number of channels the stream supports), it simply
increments the ID of the channel associated with the control.

For audio devices with more than one audio stream, each stream should start at the next free ID beyond the
highest numbered ID that the previous stream could contain. This can be obtained by adding the maximum
number of channels in any given stream format to the starting ID.

The Audio family assigns enum identifiers to channel IDs in IOAudioTypes.h; these include identifiers for
left, right, center, left-rear, and right-rear channels, as well as an identifier for all channels.

In addition to channel ID, the Audio family uses a multitier classification scheme (defined by enums in
IOAudioTypes.h) to identify IOAudioControl types:

 ■ Audio types: output, input, mixer, pass-through, and processing

 ■ Audio subtypes:

 ❏ For output: internal speaker, external speaker, headphones, line, and S/PDIF

 ❏ For input: internal microphone, external microphone, CD, line, and S/PDIF

 ■ Control types: level and selector

 ■ Control subtypes: volume, mute, input, output, clock services

 ■ Usage type: input, output, and pass-through

Note:  For information about creating custom control types beyond those specified, see “Tips, Tricks, and
Frequently Asked Questions” (page 65).

When you create an IOAudioControl object, you specify control type, control subtype, usage type, and
channel name (in addition to channel ID).

The level and selector control types correspond to subclasses of IOAudioControl, described in Table
2-1 (page 30).
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Table 2-1 Subclasses of IOAudioControl

DescriptionSubclass

Implements an audio control based on a minimum and maximum value. A
control subtype specifically creates a volume control using minimum and
maximum decibels associated with these levels.

IOAudioLevelControl

Implements an audio control based on selection of discrete elements. Control
subtypes include those for mute, input/output, and clock services.

IOAudioSelectorControl

Implements an audio control based on binary values (off and on, start and
stop, and so on) such as might pertain to a mute control.

IOAudioToggleControl

Some objects in an audio driver—typically the IOAudioDevice object because of its central role—must
implement what is known as “value change handlers.” A value change handler is a callback routine that
conforms to one of three prototypes defined in IOAudioControl.h based on the type of value (integer,
OSObject, or void * data). When invoked, a value change handler should write the change in value to the
audio hardware.

Changes to control values that originate with clients of the Audio HAL—for example, a user moving the
volume slider in the menu bar—initiate a long series of actions in the Audio HAL and the Audio family:

1. The Audio HAL goes through the I/O Registry to determine the property or properties associated with
the value change.

2. Via the IOAudioEngineUserClient object, the IOAudioControl superclass’s implementation of
setProperties is invoked.

3. Using the dictionary of properties passed into setProperties, IOAudioControl locates the target
control object and calls setValueAction on it.

4. The setValueAction method calls setValue on the driver’s work loop while holding the driver’s
command gate.

5. The setValue method first calls performValueChange, which does two things:

a. It calls the value change handler for the IOAudioControl (which must conform to the appropriate
function prototype for the callback).

b. It sends a notification of the change to all clients of the IOAudioControl
(sendValueChangeNotification).

6. Finally, setValue calls updateValue to update the I/O Registry with the new value.

When a change is physically made to audio hardware—for example, a user turns a volume dial on an external
speaker—what must be done is much abbreviated. When the driver detects a control-value change in
hardware, it simply calls hardwareValueChanged on the driver’s work loop. This method updates the value
in the IOAudioControl instance and in the I/O Registry, and then sends a notification to all interested
clients.
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User Client Classes

The Audio family provides two user-client classes, IOAudioEngineUserClient and
IOAudioControlUserClient. The Audio family automatically instantiates objects of each class for each
IOAudioEngine object and each IOAudioControl in a driver. These objects enable the communication
of audio data and notifications between the driver and the Audio HAL. You should not have to do anything
explicitly in your code to have the default user-client objects created for, and used by, your driver.

For further details, see “User Client Objects” (page 35).

IOAudioPort

The IOAudioPort class instantiates objects that represent a logical or physical port, or a functional unit in
an audio device. An IOAudioPort object represents an element in the signal chain in the audio device and
may contain one or more IOAudioControl objects through which different attributes of the port can be
represented and adjusted.

The IOAudioPort class is deprecated and may eventually be made obsolete. The class is currently public
to maintain compatibility. Driver writers are discouraged from using IOAudioPort objects in their code.

The Audio I/O Model Up Close

In the previous chapter, the section “The Audio I/O Model on Mac OS X” (page 17) described the Mac OS X
audio I/O model from the perspective of how that model compares to the Mac OS 9 model. Because it was
a comparative overview, that description left out some important details. The following discussion supplies
those details, with the intent that a fuller understand of the audio I/O model is of particular benefit to audio
driver writers.

Ring Buffers and Timestamps

In Mac OS X, the driver’s audio engine programs the audio device’s DMA engine to read from or write to a
single (typically large) ring buffer. In a ring buffer, the DMA engine (or a software emulation thereof ) wraps
around to the start of the buffer when it finishes writing to (or reading from) the end of the buffer. Thus the
DMA engine continuously loops through the sample buffer, reading or writing audio data, depending on
direction. As it wraps, the DMA engine is expected to fire an interrupt. The driver (in an IOAudioEngine
object) records the time when this interrupt occurs by calling takeTimeStamp in the driver’s work loop.

In calling takeTimeStamp, the driver writes two critical pieces of data to an area of memory shared between
the IOAudioEngine and its Audio HAL clients. The first is an extremely accurate timestamp (based on utime),
and the other is an incremented loop count. The structure defining these (and other) fields is
IOAudioEngineStatus. The engine’s user-client object maps the memory holding the
IOAudioEngineStatus information into the address spaces of the Audio HAL clients.

For information about handling timestamp approximation, see “Faking Timestamps” (page 66).
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The Audio HAL Predicts

The Audio HAL uses the accumulated timestamps and loop counts in a sophisticated calculation that predicts
when the I/O engine will be at any location in the sample buffer; as a result, it can also predict when each
client of a particular I/O engine should be ready to provide audio data to the hardware or accept audio data
from it. This calculation takes into account not only the current sample-frame position of the I/O engine, but
also the buffer sizes of the clients, which can vary.

Each client of the Audio HAL has its own I/O thread. The Audio HAL puts this thread to sleep until the time
comes for the client to read or write audio data. Then the Audio HAL wakes the client thread. This is a kind
of software-simulated interrupt, which involves much less overhead than a hardware interrupt.

Interpolation

Before going further, it is worthwhile to consider some of the theory behind this design. The Mac OS X audio
system makes the assumption that a hardware I/O engine, as it processes audio data in the sample buffer,
is proceeding continuously at a more or less constant rate. The “more or less” qualification is important here
because, in reality, there will be slight variations in this rate for various reasons, such as imperfections in clock
sources. So the mechanism by which the Audio HAL continually uses timestamps to calculate and predict a
wake-up time for each of its client I/O threads can be considered an interpolation engine. It is a highly accurate
predictive mechanism that “smooths out” these slight variations in engine rate, building in some leeway so
that there is no discernible effect on audio quality.

Client Buffers and I/O Procedures

As noted earlier, each client of the Audio HAL can define the size of its audio buffer. There are no restrictions,
except that the buffer can be no larger than the size of the hardware sample buffer. For performance reasons,
almost all clients prefer buffer sizes that are considerably smaller. Buffer sizes are typically a power of two.
The Audio HAL takes the buffer sizes of its clients into account when it calculates the next I/O cycle for those
clients.

Each client of the Audio HAL must also implement a callback function conforming to the type
AudioDeviceIOProc. When the Audio HAL wakes a sleeping client I/O thread, it calls this function, passing
in the buffers (input and output) whose sizes were specified by the client. It is in this implementation of the
AudioDeviceIOProc routine that the client gives audio data to the hardware or receives it from the hardware.

The following section, “A Walk Through the I/O Model” (page 32), discusses what happens next in detail.

A Walk Through the I/O Model

With the essential timing mechanism used for audio I/O in mind, we can now follow a cycle of that I/O through
the audio system to see exactly what happens. What happens is different between input and output audio
streams. An output stream involves a more complicated path because each client is contributing, frame by
frame, to the final sound played by speakers or recorded by some device.
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Output Streams

Let’s begin with an output stream. Figure 2-4 (page 33) illustrates the relationship between the buffers of
Audio HAL clients and the buffers of the audio driver during an output cycle. Refer to this diagram during
the following discussion.

Figure 2-4 Multiple Audio HAL client buffers and the mix buffer (output)
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For each of its clients, the Audio HAL calculates intervals that are based on the accumulated timestamps and
loop counts associated with an I/O engine as well as client buffer sizes. The Audio HAL sleeps the I/O threads
of its clients for these intervals, waking each thread when it’s time for the client to give the hardware its data.
In waking the thread, it calls the AudioDeviceIOProc routine implemented by the client, passing in a
number of buffers and timestamps:

 ■ A list of input buffers along with a timestamp that indicates when the data was recorded

 ■ A list of output buffers along with a timestamp that indicates when the data will be played

 ■ A timestamp to be used for “now” rather than the device clock

The input and output timestamps allow the client to make various calculations, such as how much time it
has before the data is played. The inclusion of both input and output parameters enables clients that are
both producers and consumers of audio data (for example, a recording unit with playback capabilities) to
process both streams at the same time. In this case, the client first takes the data in the list of input buffers
before filling the output buffers with 32-bit floating-point samples.

When the client returns in its AudioDeviceIOProc routine, the Audio HAL puts the I/O thread to sleep until
the next time data is required from the client. The Audio HAL gives the samples in the output buffer to the
associated IOAudioEngineUserClient object, which calls the appropriate IOAudioStream object to have
the samples moved from the client buffer to the appropriate frames in the engine’s mix buffer. Other clients
can also deposit data in the same locations in the mix buffer. If another client already has deposited data in
those frames, the new client’s floating-point values are simply added to the existing values.

Clients can contribute output data to a frame almost until the I/O engine is ready for that data. The
IOAudioEngine object containing the mix buffer knows how many clients it has and when each has
contributed its share of data to any one frame of the mix buffer (for the current loop through it). In addition,
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the driver (through the Audio family) maintains a “watchdog” timer that tracks the current location of each
client relative to the I/O engine. If a client has not provided audio data by the time the I/O engine needs to
accesses it, the watchdog timer fires and clips all of the currently mixed samples into the sample buffer.

Because some time is needed to perform this clip operation, the watchdog actually fires a short amount of
time before the data is needed. It is possible that a “late” client could attempt to put data in the location of
the mix buffer after the watchdog has fired but before the I/O engine has processed the data. To accommodate
this situation, the driver backs up and remixes and clips the data in an attempt to get the “late” samples to
the I/O engine in time.

Next, the driver’s clip routine, clipOutputSamples, is invoked. In its implementation of this method, the
driver must clip any excess floating-point values under –1.0 and over 1.0 —which can happen when multiple
clients are adding their values to existing values in the same frame—and then convert these values to
whatever format is required by the hardware. When clipOutputSamples returns, the converted values
have been written to the corresponding locations in the sample buffer. The DMA engine grabs the frames
as it progresses through the sample buffer and the hardware plays them as sound.

Since a picture is worth a thousand words, the interaction of these processes is described in Figure 2-5 (page
34).

Figure 2-5 Interplay of the I/O engine, erase heads, and clip routine (output)
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The Audio family includes a further refinement to the synchronized actions described in the preceding
paragraphs. Between the I/O engine and the clipping and converting done by the driver, it runs parallel
“erase heads” in both the mix and sample buffers. These erase heads simply zero-fill the corresponding frames
at the same time. This precaution reduces the possibility that any frame could become polluted with leftover
bits.

The erase heads are run in a separate thread and have their own timer. They are programmed to run four
times per sample-buffer cycle. They do not erase the entire range of frames between the current locations
of the DMA engine and the driver’s clip routine, allowing a little space for the remixing of data from tardy
clients.

The erase head’s timer is run using IOAudioDevice’s timer services. Its interval is, of course, closely tied to
the rate of the I/O engine and the timestamps taken by the IOAudioEngine.
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Input Streams

With input audio streams, the picture is much simpler. There is no mix buffer and there are no erase heads.
The Audio HAL clients are consumers of the data in this case, and not producers of it, so there is no need for
these things.

Neither is there any need for a clip routine. The driver has to convert the integer data coming from the
hardware to the 32-bit floating point required by the Audio HAL. But in the input direction, the driver is in a
position to fit the converted data within the –1.0 to 1.0 floating-point maximum range.

So the simplified sequence is this: shortly after the I/O engine writes the input data into the sample buffer,
the driver—in its implementation of the IOAudioEngine method convertInputSamples—converts that
data to 32-bit floating point. Then the data is given, via the IOAudioEngineUserClient interface, to each
Audio HAL client in that client’s AudioDeviceIOProc callback routine.

Interfaces With the Audio HAL

Audio drivers communicate with the Audio HAL and its clients using two mechanisms. The principal mechanism
uses user-client objects to pass audio data, control value changes, and notifications across the kernel-user
space boundary. The other mechanism allows driver writers to export custom device properties to Audio
HAL clients.

User Client Objects

As described earlier in “User Client Classes” (page 31), the Audio family automatically configures and creates
the appropriate number of user-client objects for a driver. These objects enable the communication of audio
data and notifications between the driver and the Audio HAL. The objects typically are instances of either
the IOAudioEngineUserClient class or the IOAudioControlUserClient class. One
IOAudioEngineUserClient object is created for each IOAudioEngine in a driver, and one
IOAudioControlUserClient object is created for each IOAudioControl.

An IOAudioEngineUserClient object acts as the conduit through which audio data is passed between
the audio driver and the Audio HAL. It is also the agent that maps the buffer maintained by an IOAudioEngine
into memory shared with the associated Audio HAL device. (As you may recall, this buffer contains the
timestamp and count of the most recent “wrap” of the sample buffer by the I/O engine.) Finally, the
IOAudioEngineUserClient responds to requests by Audio HAL clients to get and set the properties of
the hardware. An IOAudioControlUserClient object has a more limited role compared to a
IOAudioEngineUserClient object. It merely sends a notification to interested clients of the Audio HAL
when the value of a control (represented by IOAudioControl) changes.

The interaction of these user clients with the Audio HAL and other parts of your driver is shown in Figure
2-6 (page 36).
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Figure 2-6 The Audio family’s user clients
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You do not have to do anything explicitly in your code to have the Audio family create the default user-client
objects for your driver, nor do you have to write any code to enable your driver to use these objects. It all
happens automatically for your driver. But it could happen that you want custom behavior from your user
clients; for example, you might want the user client to perform hardware mixing, writing the combined
samples into a new buffer used by a single client. When you want custom user-client behavior, you can
subclass the IOAudioEngineUserClient class or the IOAudioControlUserClient class. These classes
are described in IOAppleEngineUserClient.h and IOAppleControlUserClient.h.

Custom Core Audio Properties

Sometimes you might have an audio device with properties that are not covered by what the Audio HAL
specifies (in the Core Audio framework’s AudioHardware.h). For these situations, you can create a bundle
that contains code implementing these device-specific properties on behalf of the Audio HAL. Then you can
put this bundle in a location where it can be exported to user space. The bundle must be accessible by Core
Foundation Bundle Services APIs (CFBundle).

To give the Audio HAL access to your device-property code, the bundle must also present the programmatic
interface defined in the Core Audio header file AudioDriverPlugIn.h. These routines allow the Audio HAL
clients to open and close the device and to get and set the device properties. When the driver changes a
property, it calls one of two notification callbacks implemented by clients (one defined for Audio HAL device
properties and the other for stream properties) to notify them of the change.
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When you have created a bundle conforming to the interface in AudioDriverPlugIn.h, you usually install
it inside your driver’s kernel extension in /System/Library/Extensions. Because it is a bundle, it can also
contain localizations of strings relevant to the new properties. The Audio HAL finds the bundle by looking
in the I/O Registry for two keys: kIOAudioEngineCoreAudioPlugInKey and
kIOAudioDeviceLocalizedBundleKey.
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As discussed in the chapter “Audio Family Design” (page 21), writing an audio driver using the Audio family
requires, in object-oriented terms, that you do some certain things in your code:

 ■ Create a subclass of IOAudioDevice which, among other things, initializes the hardware and registers
for sleep/wake notifications.

 ■ Create a subclass of IOAudioEngine which, among other things, initializes the I/O engine and stops
and starts it.

 ■ Create, configure, and attach to the IOAudioEngine object the number of IOAudioStream and
IOAudioControl objects appropriate to your driver.

 ■ Respond to value changes in the IOAudioControl objects.

 ■ In a separate code module (but as part of the IOAudioEngine subclass implementation), implement
the driver’s clipping and converting routines.

This chapter will guide you through these implementation steps. It uses as a code source the
SamplePCIAudioDriver example project (located in
/Developer/Examples/Kernel/IOKit/Audio/Templates when you install the Developer package). In
the interest of brevity, this chapter does not use all the code found in that project and strips the comments
from the code. Refer to the SamplePCIAudioDriver project for the full range of code and comments on it.

Setting Up the Project

Even before you create a project for your audio driver, you should consider some elemental facets of design.
Examine the audio hardware and decide which Audio-family objects are required to support it. Of course,
your driver must have one IOAudioDevice object (instantiated from a custom subclass), but how many
IOAudioEngine, IOAudioStream, and IOAudioControl objects should you create?

Table 3-1 (page 39) provides a decision matrix for determining how many Audio-family objects of each kind
that you need.

Table 3-1 Deciding which Audio family objects to create (and other design decisions)

What to createQuestion

Create a custom IOAudioEngine object for each
sample buffer.

Are there sample buffers of different sizes?

Create a custom IOAudioEngine object for each I/O
or DMA engine.

How many I/O or DMA engines are there on the
device?

Create anIOAudioStream object for each buffer (both
input and output).

How many separate or interleaved sample buffers
are there?
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What to createQuestion

Create an IOAudioControl object for each attribute.How many controllable attributes are there
(volume, gain, mute, and so on)?

The SamplePCIAudioDriver project requires one customIOAudioEngine subclass object, twoIOAudioStream
objects (input and output), and six IOAudioControl objects (left and right output volume, left and right
input gain, and input and output mute).

You also should decide what properties your driver must have to match against your provider’s nub and
specify those properties in your driver’s IOKitPersonalities dictionary. In the SamplePCIAudioDriver
personality (see Figure 3-1 (page 40)), the provider is the PCI family and the nub class is IOPCIDevice. In
addition, a PCI audio driver would usually specify the vendor and device ID registers (primary or subsystem)
as the value of the IOPCIMatch key. (Note that in the SamplePCIAudioDriver example, the vendor and device
ID registers are specified as zeros; for your driver, you would substitute the appropriate values.) Finally, for
your IOClass property, append the name of your IOAudioDevice subclass to the standard reverse-DNS
construction com_company_driver_; in the case of the SamplePCIAudioDriver project, the IOClass value
is com_MyCompany_driver_SamplePCIAudioDevice.

Figure 3-1 Bundle settings of the sample PCI audio driver

Note:  For more on PCI device matching, see the document Writing PCI Drivers.

Of course, if your driver’s provider is different (say, USB or FireWire), the matching properties that you would
specify in an IOKitPersonalities dictionary would be different.

As Figure 3-1 (page 40) suggests, also make sure that you specify other necessary properties in your driver’s
Info.plist file, including the versioning and dependency information in the OSBundleLibraries
dictionary.
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Warning: Use of floating point is generally discouraged in the kernel to avoid a performance penalty
during function calls. Threads running in the kernel only keep floating point registers in their stack if
floating point has already been used in that thread.

For threads called from user space (including the threads that call clipOutputSamples and
convertInputSamples), however, floating point has already been used, and thus no additional penalty
is incurred by using hardware floating point.

However, there is a catch. By default, most I/O Kit code is compiled with floating-point emulation (the
-msoft-float compiler flag). You must be very careful to ensure that code that needs to interact with
actual floating-point samples does not get compiled with this compiler flag. This is described in more
detail in the relevant sections.

Implementing an IOAudioDevice Subclass

Every I/O Kit audio driver must implement a subclass of IOAudioDevice. One instance of this class is created
when the driver is loaded. An IOAudioDevice object is the central, coordinating object of the driver; it
represents the audio hardware in an overall sense.

Despite its central role, an IOAudioDevice subclass generally does not do as much as an IOAudioEngine
subclass. It merely initializes the hardware at startup and creates the custom IOAudioEngine objects required
by the driver. It may also create the IOAudioControl objects used by the driver and respond to requests
to change the values of these controls, but the IOAudioEngine subclass could do these tasks instead. In
the example used for this chapter (SamplePCIAudioDriver), the IOAudioDevice subclass creates and manages
the device’s controls.

Begin by adding a header file and an implementation file for the IOAudioDevice superclass you are going
to implement. In the header file, specify IOAudioDevice as the superclass and provide the necessary
declarations.

Listing 3-1 (page 41) shows the beginning of SamplePCIAudioDevice.h.

Listing 3-1 Partial class declaration of the IOAudioDevice subclass

#include <IOKit/audio/IOAudioDevice.h>

typedef struct SamplePCIAudioDeviceRegisters {
    UInt32 reg1;
    UInt32 reg2;
    UInt32 reg3;
    UInt32 reg4;
} SamplePCIAudioDeviceRegisters;

class IOPCIDevice;
class IOMemoryMap;

#define SamplePCIAudioDevice com_MyCompany_driver_SamplePCIAudioDevice

class SamplePCIAudioDevice : public IOAudioDevice
{
    friend class SampleAudioEngine;

    OSDeclareDefaultStructors(SamplePCIAudioDevice)
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    IOPCIDevice     *pciDevice;
    IOMemoryMap     *deviceMap;

    SamplePCIAudioDeviceRegisters *deviceRegisters;
// ...
};

Hardware Initialization

I/O Kit audio drivers do not need to override the IOService::start method. Instead, the default
IOAudioDevice implementation of start first invokes the superclass implementation and then calls the
initHardware method of the subclass. Your IOAudioDevice subclass must override the initHardware
method.

Your implementation of initHardware must do two general things:

 ■ It must perform any necessary hardware-specific initializations (on both the provider and the audio
sides), such as mapping resources and setting the hardware to a known state. It also involves creating
and initializing the necessary Audio family objects.

 ■ It must set the names by which the driver is to be known to the Audio HAL and its clients.

If the initHardware call succeeds, the IOAudioDevice superclass (in the start method) sets up power
management if the family is supposed to manage power and then calls registerService to make the
IOAudioDevice object visible in the I/O Registry.

Listing 3-2 (page 42) shows how the SamplePCIAudioDevice class implements the initHardware method.

Listing 3-2 Implementing the initHardware method

bool SamplePCIAudioDevice::initHardware(IOService *provider)
{
    bool result = false;

    IOLog("SamplePCIAudioDevice[%p]::initHardware(%p)\n",  this, provider);

    if (!super::initHardware(provider)) {
        goto Done;
    }

    pciDevice = OSDynamicCast(IOPCIDevice, provider);
    if (!pciDevice) {
        goto Done;
    }

    deviceMap = pciDevice->mapDeviceMemoryWithRegister(kIOPCIConfigBaseAddress0);
    if (!deviceMap) {
        goto Done;
    }

    deviceRegisters = (SamplePCIAudioDeviceRegisters  
*)deviceMap->getVirtualAddress();
    if (!deviceRegisters) {
        goto Done;
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    }

    pciDevice->setMemoryEnable(true);

    setDeviceName("Sample PCI Audio Device");
    setDeviceShortName("PCIAudio");
    setManufacturerName("My Company");

#error Put your own hardware initialization code here...and in other  routines!!

    if (!createAudioEngine()) {
        goto Done;
    }

    result = true;

Done:

    if (!result) {
        if (deviceMap) {
            deviceMap->release();
            deviceMap = NULL;
        }
    }

    return result;
}

The first part of this method does some provider-specific initializations. The implementation gets the provider,
an IOPCIDevice object, and with it, configures a map for the PCI configuration space base registers. With
this map, it gets the virtual address for the registers. Then it enables PCI memory access by calling
setMemoryEnable.

Next, the SamplePCIAudioDevice implementation sets the full and short name of the device as well as the
manufacturer’s name, making this information available to the Audio HAL.

The last significant call in this implementation is a call to createAudioEngine. This method creates the
driver’s IOAudioEngine and IOAudioControl objects (and, indirectly, the driver’s IOAudioStream objects).

Creating the IOAudioEngine Objects

In the initHardware method, create an instance of your driver’s IOAudioEngine subclass for each I/O
engine on the device. After it’s created and initialized, call activateAudioEngine to signal to the Audio
HAL that the engine is ready to begin vending audio services.

The SamplePCIAudioDevice subclass creates its sole IOAudioEngine object in a subroutine of initHardware
named createAudioEngine (see Listing 3-3 (page 43)).

Listing 3-3 Creating an IOAudioEngine object

bool SamplePCIAudioDevice::createAudioEngine()
{
    bool result = false;
    SamplePCIAudioEngine *audioEngine = NULL;
    IOAudioControl *control;
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    audioEngine = new SamplePCIAudioEngine;
    if (!audioEngine) {
        goto Done;
    }
    if (!audioEngine->init(deviceRegisters)) {
        goto Done;
    }
     // example code skipped...
     // Here create the driver’s IOAudioControl objects
     // (see next section)...

    activateAudioEngine(audioEngine);

    audioEngine->release();
    result = true;

Done:
    if (!result && (audioEngine != NULL)) {
        audioEngine->release();
    }
    return result;
}

Note:  In the interest of concision, this listing excludes the code that creates the driver’s IOAudioControl
objects; see “Creating and Adding the IOAudioControl Objects” (page 44) for this step.

In this example, the IOAudioDevice subclass creates a raw instance of the driver’s subclass of IOAudioEngine
(SamplePCIAudioEngine) and then initializes it, passing in the device registers so the object can access those
registers. You can define your init method to take any number of parameters.

Next, the IOAudioDevice implementation activates the audio engine (activateAudioEngine); this causes
the newly created IOAudioEngine object’s start and initHardware methods to be invoked. When
activateAudioEngine returns, the IOAudioEngine is ready to begin vending audio services to the system.
Because the IOAudioDevice superclass retains the driver’s IOAudioEngine objects, be sure to release each
IOAudioEngine object so that it is freed when the driver is terminated.

Creating and Adding the IOAudioControl Objects

A typical I/O Kit audio driver must instantiate several IOAudioControl objects to help it manage the
controllable attributes of the audio hardware. These attributes include such things as volume, mute, and
input/output selection. You can create and manage these control objects in your IOAudioEngine subclass
or in your IOAudioDevice subclass; it doesn’t matter which.

As summarized in Table 3-2 (page 44), the Audio family provides three subclasses of IOAudioControl that
implement behavior specific to three functional types of control. Instantiate a control from the subclass that
is appropriate to a controllable attribute of the device.

Table 3-2 Subclasses of IOAudioControl

PurposeSubclass

For controls such as volume, where a range of measurable values (such as
decibels) is associated with an integer range.

IOAudioLevelControl
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PurposeSubclass

For controls such as mute, where the state is either off or on.IOAudioToggleControl

For controls that select a discrete attribute, such as input gain.IOAudioSelectorControl

Each subclass (or control type) has a create method and a convenience method specific to a subtype of
control. The IOAudioTypes.h header file, which defines constants for control type and subtype, also defines
other constants intended to be supplied as parameters in the control-creation methods. Table 3-3 (page 45)
summarizes the categories that these constants fall into.

Table 3-3 Categories of audio-control constants in IOAudioTypes.h

Examples and commentsPurposeCategory

Level, toggle, or selector (each corresponding to an
IOAudioControl subclass).

General function of controlType

Volume, mute, or input/output; subclass convenience
methods assume a subtype.

Purpose of the controlSubtype

Default right channel, default center channel, default sub
woofer, all channels.

Common defaults for channelsChannel ID

Output, input, or pass-through.How the control is to be usedUsage

See IOAudioTypes.h for the complete set of audio-control constants.

After you create an IOAudioControl object you must take two further steps:

 ■ Set the value-change handler for the control.

The value-change handler is a callback routine that is invoked when a client of the Audio HAL requests
a change in a controllable attribute. See “Implementing Control Value-Change Handlers” (page 46) for
more on these routines.

 ■ Add the IOAudioControl to the IOAudioEngine object they are associated with.

In the SamplePCIAudioDriver example, the IOAudioDevice subclass creates and initializes the driver’s
IOAudioControl objects. This happens in the createAudioEngine method; Listing 3-4 (page 45) shows
the creation and initialization of one control.

Listing 3-4 Creating an IOAudioControl object and adding it to the IOAudioEngine object

    // ... from createAudioEngine()
    control = IOAudioLevelControl::createVolumeControl(
          65535,     // initial value
          0,     // min value
          65535,     // max value
          (-22 << 16) + (32768),     // -22.5 in IOFixed (16.16)
          0,     // max 0.0 in IOFixed
          kIOAudioControlChannelIDDefaultLeft,
          kIOAudioControlChannelNameLeft,
          0,     // control ID - driver-defined
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          kIOAudioControlUsageOutput);
    if (!control) {
        goto Done;
    }
    control->setValueChangeHandler((IOAudioControl::IntValueChangeHandler)
                                    volumeChangeHandler, this );
    audioEngine->addDefaultAudioControl(control);
    control->release();

/* Here create more IOAudioControl objects for right output channel,
** output mute,left and right input gain, and input mute. For each,  set
** value change handler and add to the IOAudioEngine
*/
// ...

Note:  This code fragment shows the creation of only one IOAudioControl object. What must be done for
the other controls—right output volume, output mute, left and right input gain, and input mute—is similar.

In this example, the IOAudioDevice subclass creates a left output volume control with an integer range
from 0 to 65535 and a corresponding decibel range from –22.5 to 0.0. A channel must always be associated
with an IOAudioControl object. You do this when you create the object by specifying constants (defined
in IOAudioDefines.h) for both channel ID and channel name. You must also specify a “usage” constant
that indicates how the IOAudioControl will be used (input, output, or pass-through).

Once you have added an IOAudioControl to its IOAudioEngine, you should release it so that it is properly
freed when the IOAudioEngine object is done with it.

Handling Sleep/Wake Notifications

As the power controller for your device, it is necessary to register for sleep/wake notifications. At a minimum,
your handlers should stop and restart any audio engines under their control. Depending on the device, this
may not be sufficient, however.

In general—and particularly for PCI devices—device power will be cycled during sleep, but the device will
not disappear from the device tree. This means that your driver will not be torn down and reinitialized. Thus,
for these devices, it is crucial that you register for sleep/wake notifications and reinitialize your device registers
to a known state on wake. Otherwise, unexpected behavior may result.

For information about how to register for sleep/wake notifications, see the Power Management chapter of
I/O Kit Fundamentals.

Implementing Control Value-Change Handlers

For each IOAudioControl object that your driver creates, it must implement what is known as a value-change
handler for it. (This doesn’t imply that you need you need to create a separate handler for each control; one
handler could be used to manage multiple controls of similar type.) The value-change handler is a callback
routine that is invoked when the controllable device attribute associated with an IOAudioControl object
needs to be changed.

The header file IOAudioControl.h defines three prototypes for control value-change handlers:

    typedef IOReturn (*IntValueChangeHandler)(OSObject *target,

46 Implementing an IOAudioDevice Subclass
2009-03-04   |   © 2001, 2009 Apple Inc. All Rights Reserved.

CHAPTER 3

Implementing an Audio Driver



        IOAudioControl *audioControl, SInt32 oldValue, SInt32 newValue);
    typedef IOReturn (*DataValueChangeHandler)(OSObject *target,
        IOAudioControl *audioControl, const void *oldData, UInt32
        oldDataSize, const void *newData, UInt32 newDataSize);
    typedef IOReturn (*ObjectValueChangeHandler)(OSObject *target,
        IOAudioControl *audioControl, OSObject *oldValue,
        OSObject *newValue);

Each prototype is intended for a different kind of control value: integer, pointer to raw data (void *), and
(libkern) object. For most cases, the integer handler should be sufficient. All of the existing IOAudioControl
subclasses pass integer values to the IntValueChangeHandler object.

The essential task of the value-change handler is to update the proper attribute of the audio hardware to
the new control value. Listing 3-5 (page 47) shows how one might implement a value-change handler
(excluding the actual attribute-setting code).

Listing 3-5 Implementing a control value-change handler

IOReturn SamplePCIAudioDevice::volumeChangeHandler(IOService *target,
        IOAudioControl *volumeControl, SInt32 oldValue, SInt32 newValue)
{
    IOReturn result = kIOReturnBadArgument;
    SamplePCIAudioDevice *audioDevice;

    audioDevice = (SamplePCIAudioDevice *)target;
    if (audioDevice) {
        result = audioDevice->volumeChanged(volumeControl, oldValue,
                    newValue);
    }

    return result;
}

IOReturn SamplePCIAudioDevice::volumeChanged(IOAudioControl *volumeControl,
                            SInt32 oldValue, SInt32 newValue)
{
    IOLog("SamplePCIAudioDevice[%p]::volumeChanged(%p, %ld,  %ld)\n", this,
            volumeControl, oldValue, newValue);

    if (volumeControl) {
        IOLog("\t-> Channel %ld\n", volumeControl->getChannelID());
    }

    // Add hardware volume code change

    return kIOReturnSuccess;
}

The reason for the nested implementation in this example is that the value-change callback itself must be a
straight C-language function (in this case, it’s a static member function). The static function simply forwards
the message to the actual target for processing.
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Implementing an IOAudioEngine Subclass

In addition to implementing a subclass of IOAudioDevice, writers of audio drivers must also implement a
subclass of IOAudioEngine. This subclass should define the attributes and behavior of the driver that are
specific to the hardware’s I/O engine. These include specifying the size and characteristics of the sample and
mix buffers, getting the current sample frame on demand, handling interrupts to take a timestamp, handling
format changes, and starting and stopping the I/O engine upon request.

Start by defining the interface of your IOAudioEngine subclass in a header file. Listing 3-6 (page 48) shows
the main contents of the SamplePCIAudioEngine.h file.

Listing 3-6 Interface definition of the SamplePCIAudioEngine class

class SamplePCIAudioEngine : public IOAudioEngine
{
    OSDeclareDefaultStructors(SamplePCIAudioEngine)

    SamplePCIAudioDeviceRegisters   *deviceRegisters;

    SInt16                          *outputBuffer;
    SInt16                          *inputBuffer;

    IOFilterInterruptEventSource     *interruptEventSource;

public:

    virtual bool init(SamplePCIAudioDeviceRegisters *regs);
    virtual void free();

    virtual bool initHardware(IOService *provider);
    virtual void stop(IOService *provider);

    virtual IOAudioStream *createNewAudioStream(IOAudioStreamDirection
            direction, void *sampleBuffer, UInt32 sampleBufferSize);

    virtual IOReturn performAudioEngineStart();
    virtual IOReturn performAudioEngineStop();

    virtual UInt32 getCurrentSampleFrame();

    virtual IOReturn performFormatChange(IOAudioStream *audioStream,
            const IOAudioStreamFormat *newFormat, const IOAudioSampleRate
            *newSampleRate);

    virtual IOReturn clipOutputSamples(const void *mixBuf, void  *sampleBuf,
            UInt32 firstSampleFrame, UInt32 numSampleFrames, const
            IOAudioStreamFormat *streamFormat, IOAudioStream *audioStream);
    virtual IOReturn convertInputSamples(const void *sampleBuf,  void *destBuf,
            UInt32 firstSampleFrame, UInt32 numSampleFrames, const
            IOAudioStreamFormat *streamFormat, IOAudioStream *audioStream);

    static void interruptHandler(OSObject *owner, IOInterruptEventSource
            *source, int count);
    static bool interruptFilter(OSObject *owner, IOFilterInterruptEventSource
            *source);
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    virtual void filterInterrupt(int index);
};

Most of the methods and types declared here are explained in the following sections—including (for example)
why there is a cluster of interrupt-related methods.

Note:  The clipOutputSamples and convertInputSamples methods, although they are declared in the
class interface-definition file (in this case, SamplePCIAudioEngine.h), are implemented in a separate source
module. The reason for that, and the procedures for implementing these methods, are found in “Clipping
and Converting Samples” (page 55).

Hardware Initialization

As you did in your IOAudioDevice subclass, you must implement the initHardware method in your
IOAudioEngine subclass to perform certain hardware initializations. The IOAudioEngine initHardware
method is invoked indirectly when the IOAudioDevice object calls activateAudioEngine on an
IOAudioEngine object.

In your implementation of initHardware, you should accomplish two general tasks: configure the I/O
engine and create the IOAudioStream objects used by the engine. As part of initialization, you should also
implement the init method if anything special should happen prior to the invocation of initHardware;
in the case of the SamplePCIAudioEngine class, the init method calls the superclass implementation and
then assigns the passed-in device registers to an instance variable.

Configuring the I/O Engine

Configuring the audio hardware’s I/O engine involves the completion of many recommended tasks:

 ■ Determine the current sample rate and set the initial sample rate using setSampleRate.

 ■ Call setNumSampleFramesPerBuffer to specify the number of sample frames in each buffer serviced
by this I/O engine.

 ■ Call setDescription to make the name of the I/O engine available to Audio HAL clients.

 ■ Call setOutputSampleLatency or setInputSampleLatency (or both methods, if appropriate) to
indicate how much latency exists on the input and output streams. The Audio family makes this
information available to the Audio HAL so it can pass it along to its clients for synchronization purposes.

 ■ Call setSampleOffset to make sure that the Audio HAL stays at least the specified number of samples
away from the I/O engine’s head. This setting is useful for block-transfer devices.

 ■ Create the IOAudioStream objects to be used by the I/O engine and add them to the IOAudioEngine.
See “Creating IOAudioStream Objects” (page 51) for details.

 ■ Add a handler to your command gate for the interrupt fired by the I/O engine when it wraps to the
beginning of the sample buffer. (This assumes a “traditional” interrupt.)

 ■ Perform any necessary engine-specific initializations.

Listing 3-7 (page 50) illustrates how the SamplePCIAudioEngine class does some of these steps. Note that
some initial values, such as INITIAL_SAMPLE_RATE, have been defined earlier using #define preprocessor
commands.
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Listing 3-7 Configuring the I/O engine

bool SamplePCIAudioEngine::initHardware(IOService *provider)
{
    bool result = false;
    IOAudioSampleRate initialSampleRate;
    IOAudioStream *audioStream;
    IOWorkLoop *workLoop;

    if (!super::initHardware(provider)) {
        goto Done;
    }
    initialSampleRate.whole = INITIAL_SAMPLE_RATE;
    initialSampleRate.fraction = 0;
    setSampleRate(&initialSampleRate);
    setDescription("Sample PCI Audio Engine");
    setNumSampleFramesPerBuffer(NUM_SAMPLE_FRAMES);

    workLoop = getWorkLoop();
    if (!workLoop) {
        goto Done;
    }

    interruptEventSource =  
IOFilterInterruptEventSource::filterInterruptEventSource(this,
            OSMemberFunctionCast(IOInterruptEventAction, this,
                    &SamplePCIAudioEngine::interruptHandler),
            OSMemberFunctionCast(Filter, this,
                    &SamplePCIAudioEngine::interruptFilter),
            audioDevice->getProvider());
    if (!interruptEventSource) {
        goto Done;
    }
    workLoop->addEventSource(interruptEventSource);

    outputBuffer = (SInt16 *)IOMalloc(BUFFER_SIZE);
    if (!outputBuffer) {
        goto Done;
    }
    inputBuffer = (SInt16 *)IOMalloc(BUFFER_SIZE);
    if (!inputBuffer) {
        goto Done;
    }

    audioStream = createNewAudioStream(kIOAudioStreamDirectionOutput,
                outputBuffer, BUFFER_SIZE);
    if (!audioStream) {
        goto Done;
    }
    addAudioStream(audioStream);
    audioStream->release();

    audioStream = createNewAudioStream(kIOAudioStreamDirectionInput,
                inputBuffer, BUFFER_SIZE);
    if (!audioStream) {
        goto Done;
    }
    addAudioStream(audioStream);
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    audioStream->release();
    result = true;
Done:
    return result;
}

The following section, “Creating IOAudioStream Objects” (page 51), describes the implementation of
createNewAudioStream, which this method calls. A couple of other things in this method merit a bit more
discussion.

First, in the middle of the method are a few lines of code that create a filter interrupt event source and add
it to the work loop. Through this event source, an event handler specified by the driver will receive interrupts
fired by the I/O engine. In the case of SamplePCIAudioEngine, the driver wants the interrupt at primary
interrupt time instead of secondary interrupt time because of the better periodic accuracy. To do this, it
creates an IOFilterInterruptEventSource object that makes a filtering call to the primary interrupt
handler (interruptFilter); the usual purpose of this callback is to determine which secondary interrupt
handler should be called, if any. The SamplePCIAudioEngine in the interruptFilter routine (as you’ll see
in “Taking a Timestamp” (page 53)) calls the method that actually takes the timestamp and always returns
false to indicate that the secondary handler should not be called. For the driver to receive interrupts, the
event source must be enabled. This is typically done when the I/O engine is started.

Second, this method allocates input and output sample buffers in preparation for the creation of
IOAudioStream objects in the two calls to createNewAudioStream. The method of allocation in this
example is rather rudimentary and would be more robust in a real driver. Also note that BUFFER_SIZE is
defined earlier as:

NUM_SAMPLE_FRAMES * NUM_CHANNELS * BIT_DEPTH / 8

In other words, compute the byte size of your sample buffers by multiplying the number of sample frames
in the buffer by the number of the channels in the audio stream; then multiply that amount by the bit depth
and divide the resulting amount by 8 (bit size of one byte).

Creating IOAudioStream Objects

Your IOAudioEngine subclass should also create its IOAudioStream objects when it initializes the I/O
engine (initHardware). You should have one IOAudioStream instance for each sample buffer serviced
by the I/O engine. In the process of creating an object, make sure that you do the following things:

 ■ Initialize it with the IOAudioEngine object that uses it (in this case, your IOAudioEngine subclass
instance).

 ■ Initialize the fields of a IOAudioStreamFormat structure with the values specific to a particular format.

 ■ Call setSampleBuffer to pass the actual hardware sample buffer to the stream. If the sample buffer
resides in main memory, it should be allocated before you make this call.

The SamplePCIAudioEngine subclass allocates the sample buffers (input and output) in initHardware
before it calls createNewAudioStream.

 ■ Call addAvailableFormat for each format to which the stream can be set. As part of the
addAvailableFormat call, specify the minimum and maximum sample rates for that format.

 ■ Once you have added all supported formats to an IOAudioStream, call setFormat to specify the initial
format for the hardware. Currently, performFormatChange is invoked as a result of the setFormat
call.
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Listing 3-8 (page 52) shows how the SamplePCIAudioEngine subclass creates and initializes an
IOAudioStream object.

Listing 3-8 Creating and initializing an IOAudioStream object

IOAudioStream *SamplePCIAudioEngine::createNewAudioStream(IOAudioStreamDirection
                direction, void *sampleBuffer, UInt32 sampleBufferSize)
{
    IOAudioStream *audioStream;

    audioStream = new IOAudioStream;
    if (audioStream) {
        if (!audioStream->initWithAudioEngine(this, direction,  1)) {
            audioStream->release();
        } else {
            IOAudioSampleRate rate;
            IOAudioStreamFormat format = {
                2,      // number of channels
                kIOAudioStreamSampleFormatLinearPCM, // sample format
                kIOAudioStreamNumericRepresentationSignedInt,
                BIT_DEPTH,      // bit depth
                BIT_DEPTH,      // bit width
                kIOAudioStreamAlignmentHighByte,  // high byte aligned
                kIOAudioStreamByteOrderBigEndian, // big endian
                true,      // format is mixable
                0      // driver-defined tag - unused by this driver
            };
            audioStream->setSampleBuffer(sampleBuffer, sampleBufferSize);

            rate.fraction = 0;
            rate.whole = 44100;
            audioStream->addAvailableFormat(&format, &rate,  &rate);
            rate.whole = 48000;
            audioStream->addAvailableFormat(&format, &rate,  &rate);
            audioStream->setFormat(&format);
        }
    }

    return audioStream;
}

Starting and Stopping the I/O Engine

Your IOAudioEngine subclass must implement performAudioEngineStart and
performAudioEngineStop to start and stop the I/O engine. When you start the engine, make sure it starts
at the beginning of the sample buffer. Before starting the I/O engine, your implementation should do two
things:

 ■ Enable the interrupt event source to allow the I/O engine to fire interrupts as it wraps from the end to
the beginning of the sample buffer; in its interrupt handler, the IOAudioEngine instance can continually
take timestamps.

 ■ Take an initial timestamp to mark the moment the audio engine started, but do so without incrementing
the loop count.
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By default, the method takeTimeStamp automatically increments the current loop count as it takes the
current timestamp. But because you are starting a new run of the I/O engine and are not looping, you don't
want the loop count to be incremented. To indicate that, pass false into takeTimeStamp.

Listing 3-9 (page 53) shows how the SamplePCIAudioEngine class implements the
performAudioEngineStartmethod; the actual hardware-related code that starts the engine is not supplied.

Listing 3-9 Starting the I/O engine

IOReturn SamplePCIAudioEngine::performAudioEngineStart()
{
    IOLog("SamplePCIAudioEngine[%p]::performAudioEngineStart()\n",  this);

    assert(interruptEventSource);
    interruptEventSource->enable();

    takeTimeStamp(false);

    // Add audio - I/O start code here

#error performAudioEngineStart() - add engine-start code here; driver  will
                                not work without it

    return kIOReturnSuccess;
}

In performAudioEngineStop, be sure to disable the interrupt event source before you stop the I/O engine.

Taking a Timestamp

A major responsibility of your IOAudioEngine subclass is to take a timestamp each time the I/O engine
loops from the end of the sample buffer to the beginning of the sample buffer. Typically, you program the
hardware to throw the interrupt when this looping occurs. You must also set up an interrupt handler to
receive and process the interrupt. In the interrupt handler, simply call takeTimeStamp with no parameters;
this method does the following:

 ■ It gets the current (machine) time and sets it as the loop timestamp in the
IOAudioEngineStatus-defined area of memory shared with Audio clients.

 ■ It increments the loop count in the same IOAudioEngineStatus-defined area of shared memory.

The Audio HAL requires both pieces of updated information so that it can track where the I/O engine currently
is and predict where it will be in the immediate future.

The SamplePCIAudioEngine subclass uses an IOFilterInterruptEventSource object in its
interrupt-handling mechanism. As “Hardware Initialization” (page 49) describes, when the subclass creates
this object, it specifies both an interrupt-filter routine and an interrupt-handler routine. The interrupt-handler
routine, however, is never called; instead, the interrupt-filter routine calls another routine directly
(filterInterrupt), which calls takeTimeStamp. Listing 3-10 (page 53) shows this code.

Listing 3-10 The SamplePCIAudioEngine interrupt filter and handler

bool SamplePCIAudioEngine::interruptFilter(OSObject *owner,
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                            IOFilterInterruptEventSource *source)
{
    SamplePCIAudioEngine *audioEngine = OSDynamicCast(SamplePCIAudioEngine,
            owner);

    if (audioEngine) {
        audioEngine->filterInterrupt(source->getIntIndex());
    }
    return false;
}

void SamplePCIAudioEngine::filterInterrupt(int index)
{

    takeTimeStamp();
}

Note that you can specify your own timestamp in place of the system’s by calling takeTimeStamp with an
AbsoluteTime parameter (see Technical Q&A QA1398 and the “Using Kernel Time Abstractions” section of
Kernel Programming Guide for information on AbsoluteTime). This alternative typically isn’t necessary but
may be used in cases where the looping isn’t detectable until some time after the actual loop time. In that
case, the delay can be subtracted from the current time to indicate when the loop occurred in the past.

Warning: It is crucial to provide a reasonable timestamp, particularly with USB devices. The CoreAudio
HAL does additional filtering of timestamps to compensate for deficiencies in USB. If your timestamps
are not reasonably close to the expected timestamp (and in particular, if your timestamps are too far
in the future), they will be ignored. This can result in various audio glitches and artifacts.

If you are experiencing pops and other glitches, try setting your transport type to something other than
kIOAudioDeviceTransportTypeUSB. If this significantly improves the situation, you likely have
something wrong with your timestamps. (Note, however, that lack of improvement does not necessarily
vindicate your timestamps.)

If you are experiencing unexplained glitches in audio playback, the timestamps are the most likely
cause. You should use the HALLab tool (available in the CoreAudio SDK, or preinstalled as part of Xcode)
to help you determine what is causing the failure.

Providing a Playback Frame Position

An IOAudioEngine subclass must implement the getCurrentSampleFrame to return the playback
hardware’s current frame to the caller. This value (as you can see in Figure 2-5 (page 34)) tells the caller
where playback is occurring relative to the start of the buffer.

Note:  A common mistake is to report the number of frames played since the start of IOAudioEngine
processing. The value the getCurrentSampleFrame method returns should be equal to that value modulo
the number of frames per buffer.

The erase-head process uses this value; it erases (zeroes out) frames in the sample and mix buffers up to, but
not including, the sample frame returned by this method. Thus, although the sample counter value returned
doesn’t have to be exact, it should never be larger than the actual sample counter. If it is larger, audio data
may be erased by the erase head before the hardware has a chance to play it.
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Implementing Format and Rate Changes

If an audio driver supports multiple audio formats or sample rates, it must implement the
performFormatChange method to make these changes in the hardware when clients request them. The
method has parameters for a new format and for a new sample rate; if either of these parameters is NULL,
the IOAudioEngine subclass should change only the item that isn’t NULL.

Although the SamplePCIAudioDriver driver deals with only one audio format, it is capable of two sample
rates, 44.1 kilohertz and 48 kilohertz. Listing 3-11 (page 55) illustrates how performFormatChange is
implemented to change a sample rate upon request.

Listing 3-11 Changing the sample rate

IOReturn SamplePCIAudioEngine::performFormatChange(IOAudioStream
        *audioStream, const IOAudioStreamFormat *newFormat,
        const IOAudioSampleRate *newSampleRate)
{
    IOLog("SamplePCIAudioEngine[%p]::peformFormatChange(%p,  %p, %p)\n", this,
        audioStream, newFormat, newSampleRate);

    if (newSampleRate) {
        switch (newSampleRate->whole) {
            case 44100:
                IOLog("/t-> 44.1kHz selected\n");

                // Add code to switch hardware to 44.1khz
                break;
            case 48000:
                IOLog("/t-> 48kHz selected\n");

                // Add code to switch hardware to 48kHz
                break;
            default:
                IOLog("/t Internal Error - unknown sample rate  selected.\n");
                break;
        }
    }
    return kIOReturnSuccess;
}

Clipping and Converting Samples

Arguably, the most important work that an audio device driver does is converting audio samples between
the format expected by the hardware and the format expected by the clients of the hardware. In Mac OS X,
the default format of audio data in the kernel as well as in the Audio HAL and all of its clients is 32-bit floating
point. However, audio hardware typically requires audio data to be in an integer format.

To perform these conversions, your audio driver must implement at least one of two methods, depending
on the directions of the audio streams supported:

 ■ Implement clipOutputSamples if your driver has an output IOAudioStream object.
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 ■ Implement convertInputSamples if your driver has an input IOAudioStream object.

In addition to performing clipping and conversion, these methods are also a good place to add device-specific
input and output filtering code. For example, a particular model of USB speakers might sound better with a
slight high frequency roll-off. (Note that if this is the only reason for writing a driver, you should generally
use an AppleUSBAudio plug-in instead, as described in the SampleUSBAudioPlugin example code.)

Because these methods execute floating-point code, you cannot include them in the same source file as the
other IOAudioEngine methods you implement. The compiler, by default, enables floating-point emulation
to prevent floating-point instructions from being generated. To get around this, create a separate library that
contains the floating-point code and compile and link this library into the resulting kernel module. The
separate library for the SamplePCIAudioDriver project is libAudioFloatLib.

A common mistake that people make when developing an audio driver is either failing to write these methods
or failing to include this additional library when linking the KEXT. When this occurs, you will execute the
clipOutputSamples and convertInputSamplesmethods that are built into the base class. These methods
are just stubs that return kIOReturnUnsupported (0xe00002c7, or -536870201). If you see this error
returned by one of these methods, you should make sure you are linking your KEXT together correctly.

Important:  See the project configuration for SamplePCIAudioDriver (or any other example audio-driver
project) to find out how to generate this separate static library and include it in your project. Pay particular
attention to the required compiler options.

The clipOutputSamples method is passed six parameters:

 ■ A pointer to the start of the source (mix) buffer

 ■ A pointer to the start of the destination (sample) buffer

 ■ The index of the first sample frame in the buffers to clip and convert

 ■ The number of sample frames to clip and convert

 ■ A pointer to the current format (structure IOAudioStreamFormat) of the audio stream

 ■ A pointer to the IOAudioStream object this method is working on

Your implementation must first clip any floating-point samples in the mix buffer that fall outside the range
–1.0 to 1.0 and then convert the floating-point value to the comparable value in the format expected by the
hardware. Then copy that value to the corresponding positions in the sample buffer. Listing 3-12 (page 56)
illustrates how the SamplePCIAudioDriver implements the clipOutputSamples method.

Listing 3-12 Clipping and converting output samples

IOReturn SamplePCIAudioEngine::clipOutputSamples(const void *mixBuf,
        void *sampleBuf, UInt32 firstSampleFrame, UInt32 numSampleFrames,
        const IOAudioStreamFormat *streamFormat, IOAudioStream *audioStream)
{
    UInt32 sampleIndex, maxSampleIndex;
    float *floatMixBuf;
    SInt16 *outputBuf;

    floatMixBuf = (float *)mixBuf;
    outputBuf = (SInt16 *)sampleBuf;
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    maxSampleIndex = (firstSampleFrame + numSampleFrames) *
                        streamFormat->fNumChannels;

    for (sampleIndex = (firstSampleFrame * streamFormat->fNumChannels);
                        sampleIndex < maxSampleIndex; sampleIndex++)  {
        float inSample;
        inSample = floatMixBuf[sampleIndex];
        const static float divisor = ( 1.0 / 32768 );

        // Note: A softer clipping operation could be done here
        if (inSample > (1.0 - divisor)) {
            inSample = 1.0 - divisor;
        } else if (inSample < -1.0) {
            inSample = -1.0;
        }
        outputBuf[sampleIndex] = (SInt16) (inSample * 32768.0);
    }
    return kIOReturnSuccess;
}

Here are a few comments on this specific example:

1. It starts by casting the void * buffers to float * for the mix buffer and SInt16 * for the sample
buffer; in this project, the hardware uses signed 16-bit integers for its samples while the mix buffer is
always float *.

2. Next, it calculates the upper limit on the sample index for the upcoming clipping and converting loop.

3. The method loops through the mix and sample buffers and performs the clip and conversion operations
on one sample at a time.

a. It fetches the floating-point sample from the mix buffer and clips it (if necessary) to a range between
-1.0 and 1.0.

b. It scales and converts the floating-point value to the appropriate signed 16-bit integer sample and
writes it to the corresponding location in the sample buffer.

The parameters passed into the convertInputSamples method are almost the same as those for the
clipOutputSamples method. The only difference is that, instead of a pointer to the mix buffer, a pointer
to a floating-point destination buffer is passed; this is the buffer that the Audio HAL uses. In your driver’s
implementation of this method, do the opposite of the clipOutputSamples: convert from the hardware
format to the system 32-bit floating point format. No clipping is necessary because your conversion process
can control the bounds of the floating-point values.

Note:  The convertInputSamples method should begin writing at the beginning of the destination buffer,
unlike clipOuputSamples, which writes at an offset based on the index passed in.

Listing 3-13 (page 57) shows how the SamplePCIAudioDriver project implements this method.

Listing 3-13 Converting input samples.

IOReturn SamplePCIAudioEngine::convertInputSamples(const void *sampleBuf,
        void *destBuf, UInt32 firstSampleFrame, UInt32 numSampleFrames,
        const IOAudioStreamFormat *streamFormat, IOAudioStream
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        *audioStream)
{
    UInt32 numSamplesLeft;
    float *floatDestBuf;
    SInt16 *inputBuf;

    // Note: Source is offset by firstSampleFrame
    inputBuf = &(((SInt16 *)sampleBuf)[firstSampleFrame *
                            streamFormat->fNumChannels]);

    // Note: Destination is not.
    floatDestBuf = (float *)destBuf;

    numSamplesLeft = numSampleFrames * streamFormat->fNumChannels;

    const static float divisor = ( 1.0 / 32768 );
    while (numSamplesLeft > 0) {
        SInt16 inputSample;
        inputSample = *inputBuf;

        if (inputSample >= 0) {
            *floatDestBuf = inputSample * divisor;
        }

        ++inputBuf;
        ++floatDestBuf;
        --numSamplesLeft;
    }

    return kIOReturnSuccess;
}

The code in Listing 3-13 does the following things:

1. It starts by casting the destination buffer to a float *.

2. It casts the sample buffer to a signed 16-bit integer and determines the starting point within this input
buffer for conversion.

3. It calculates the number of actual samples to convert.

4. It loops through the samples, scaling each to within a range of –1.0 to 1.0 (thus converting it to a float)
and storing it in the destination buffer at the proper location.

Debugging and Testing the Driver

Many of the techniques you would use in debugging and testing an audio driver are the same ones you’d
use with other types of device drivers. After all, any I/O Kit driver has a structure and a behavior that are
similar to any other I/O Kit driver, regardless of family.
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For example, it’s always a good idea when a driver is under development to make IOLog calls at critical
points in your code, such as before and after an I/O transfer. The IOLog function writes a message to the
console (accessible through the Console application) and to /var/log/system.log. You can format the
message string with variable data in the style of printf.

Similarly, you can examine the I/O Registry with the I/O Registry Explorer application or the ioreg
command-line utility. The I/O Registry will show the position of your driver’s objects in the driver stack, the
client-provider relationships among them, and the attributes of those driver objects. In Figure 3-2 (page 59),
the I/O Registry Explorer shows part of the objects and their attributes in a USB audio device driver.

Figure 3-2 The I/O Registry (via I/O Registry Explorer)

However, as “Custom Debugging Information in the I/O Registry” (page 63) explains, your driver can insert
information in the I/O Registry to assist the testing and debugging of your driver.
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Tools for Testing Audio Drivers

The Mac OS X Developer package provides two applications that are helpful when you’re testing audio driver
software. These items are not shipped as executables, but are instead included as example-code projects
installed in /Developer/Examples/CoreAudio/HAL. The two projects that are of interest are HALLab and
MillionMonkeys. To obtain the executables, copy the project folders to your home directory (or any file-system
location where you have write access) and build the projects.

The HALLab application helps you verify the controls and other attributes of a loaded audio driver. With it,
you can play back sound files to any channel of a device, check whether muting and volume changes work
for every channel, test input operation, enable soft play through, view the device object hierarchy, and do
various other tests.

Figure 3-3 (page 60) and Figure 3-4 (page 61) show you what two of the HALLab windows look like.

Figure 3-3 The HALLab System window
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Figure 3-4 The HALLab IO Cycle Telemetry window

The MillionMonkeys application was designed for performance profiling of your driver. In particular, it allows
you to determine latency at various steps of audio processing while the system is under load. This can aid
in tracking down performance-related issues with audio drivers. Figure 3-5 (page 62) and Figure 3-6 (page
63) show the two panes of the MillionMonkeys application window.
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Figure 3-5 The MillionMonkeys Device & Workload pane
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Figure 3-6 The MillionMonkeys Data Collection & Display pane

Custom Debugging Information in the I/O Registry

Another way you can test and debug your audio device driver is to write custom properties to the I/O Registry.
For example, you may want to track hardware register state or internal driver state (if the driver has any).
Whenever your driver makes a change to the hardware state, it could read the hardware register values and
call setProperty with the current value. Then, when testing the driver, run the I/O Registry Explorer
application and note what the I/O Registry shows this value to be. This technique allows you to easily determine
if the driver is putting the hardware in the correct state.
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This chapter contains various tips on general concepts, sample buffers, and custom controls.

General Issues

What is the effect of aggregate devices from a driver programming perspective?
Aggregate devices cause multiple devices to behave as a single device. In the process, Core Audio
does some extra work to smooth out timing inconsistencies.

The process should be transparent to driver writers, provided that your timestamps are reasonably
correct.

Should I create a “whole device” stream containing all outputs from my device, or just a stream for each pair
of inputs/outputs?

That’s entirely up to you. Aggregate devices make this largely a non-issue. However, it may be
convenient to provide a “whole device” stream to better support audio applications in versions of
Mac OS X prior to version 10.4.

How do drivers interact with Audio/MIDI Setup?
Audio/MIDI Setup presents the standard controls for an audio device, along with stream selection
capabilities. There’s no magic here. However, this question often comes up in conjunction with the
issue of custom controls. In that case, some additional work is needed. This process is described further
in “Creating Custom Controls” (page 67).

Sample Buffer Issues

What is the minimum (practical) size of a sample buffer, and what happens if a driver’s buffer is too small?
The size of a sample buffer is limited by a number of factors. For one, the sample offset (not sample
latency) must be taken into account. If the audio engine is set to read 1000 samples behind the
hardware (for example), there had better be room for more than 1000 samples in the buffer. In fact,
there should be at least two additional frames—the one in which the hardware is writing and the
frame being erased ahead of it.

If your buffer is hopelessly too small, a good indicator is a continuous stream of errors indicating that
the data has already been clipped. If the buffer is only slightly too small, you will merely experience
a large number of glitches as the audio engine fails to keep up with the hardware.

What is the difference between sample latency and sample offset?
Sample latency refers to the amount of time the audio hardware requires to reproduce a sound. This
includes all delays in the input or output chain. For example, a device might take a few milliseconds
between when it posts an interrupt indicating it read the start of the buffer and when the sound is
actually played.

Sample offset is a feature designed for audio devices based on block I/O. Consider an output device
as an example. If the audio device transfers data in a 32-sample block transaction, it must have at
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least 32 samples available when the audio engine wakes up. Otherwise, the engine won’t be able to
queue up a block transfer, and will end up slipping a cycle, potentially resulting in a glitch. To solve
this problem, you can specify a sample offset to guarantee that the higher levels stay a certain distance
ahead of the I/O head.

I’m having significant performance problems when doing custom input/output filtering in my driver. How
can I improve performance?

A common cause of poor performance is using a separate thread for such audio filters. You can get
a significant performance gain by doing this processing in your clipping or conversion routines instead.

Another possible performance problem is forgetting to turn off floating point emulation. Software
floating point is significantly slower than hardware floating point and should generally be avoided
in the critical path for audio data.

I’m not doing any custom filtering, but I’m still having performance problems (dropouts, stuttering, and so
on). Any ideas?

The most common cause of audio glitches is bad timestamping. See “Taking a Timestamp” (page 53)
for detailed suggestions. If you are using block devices or other devices where the timestamp can’t
be taken precisely when the buffer wraps around, you may also find the code example in “Faking
Timestamps” (page 66) helpful.

Faking Timestamps

One common problem that many audio device driver writers face is working around a transport layer that
does not provide a timestamp when each audio packet is sent. If you take a timestamp based on receiving
a packet that is larger than the remaining space in the buffer (where wrapping occurs mid-packet), your
timestamp will not be particularly accurate.

The following code snippet shows a simple example of how to work around this problem:

void set_timestamp_adjusted(int current_bufpos)
{
    static int sec=0, usec=0, lastsec, lastusec=0, lastpos=0;
    int len, stampsec, stampusec;
    uint64_t curtm, lasttm, stampoff, stamptm

    clock_get_system_microtime(&sec, &usec);
    if (!lastsec && !lastusec) {
        // Engine just started. Initialize values.
        lastsec = sec;
        lastusec = sec;
    }

    curtm = (sec * 1000000UL) + usec; // usec since startup.
    lasttm = (lastsec * 1000000UL) + lastusec;
    stampoff = ((lasttm - curtm) * (uint64_t)(BUFFER_SIZE - lastpos))  /
            (uint64_t)len;
    stamptm = lasttm + stampoff;

    stampsec = (int)(stamptm / 1000000ULL);
    stampusec = (int)(stamptm % 1000000ULL);
    lastpos = current_bufpos;

    // set timestamp here.
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}

Note that, if at all possible, you should attempt to take a time stamp (ideally at primary interrupt time for
maximum accuracy) when the device wraps around to the start of the buffer. If it is possible to obtain a stamp
precisely when the device wraps around, these sorts of calculations should not be necessary.

Creating Custom Controls

For most common purposes, the standard audio controls are sufficient. However, in some cases, you may
need to create a custom control type.

Note:  Apple reserves all-lowercase control types for its own use. If you create a custom control type, you
must use at least one capital letter in its type.

The first step in creating a custom audio control is to subclass either the IOAudioControl or
IOAudioLevelControl class. In general, most typical controls express a continuous floating-point value
across a particular range. For those controls, subclassing IOAudioLevelControl is more appropriate. The
more general IOAudioControl class is more appropriate for creating toggles and other controls that express
noncontinuous values.

The second step is to write a setValue method. This method must interpret what those values mean and
set appropriate instance variables accordingly, performing any range conversion calculations as needed.

The final step is to implement an application for managing these controls. Nonstandard controls can be
manipulated using the same mechanisms as any other controls, but most applications won’t do anything
with them because they don’t know to look for them (or what to do with them when they find them).
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This table describes the changes to Audio Device Driver Programming Guide.

NotesDate

Corrected errors in Listing 3-12 and 3-13.2009-03-04

Corrected a typographical error in code sample.2006-01-10

Major content revision; changed title from "Writing Audio Device Drivers."2005-11-09

Added installed location of SamplePCIAudioDriver project.2004-03-25

First version.2001-12-15
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