

ð

Developer Press

 Apple Computer, Inc. 1995

ð

Developer Note

Developing PC Card Software for
the Mac OS

Thi d t t d ith F M k 4 0 4

ð

Apple Computer, Inc.

 1995 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form or
by any means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc., except in the
normal use of the software or to make a
backup copy of the software. The same
proprietary and copyright notices must
be affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies to be
made for others, whether or not sold,
but all of the material purchased (with
all backup copies) may be sold, given,
or loaned to another person. Under the
law, copying includes translating into
another language or format. You may
use the software on any computer
owned by you, but extra copies cannot
be made for this purpose.
Printed in the United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist developers to
develop products only for Apple
Macintosh computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter, Macintosh,
and PowerBook are trademarks of
Apple Computer, Inc., registered in the
United States and other countries.

Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
America Online is a service mark of
Quantum Computer Services, Inc.
CompuServe is a registered trademark
of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, APDA will replace
the media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to APDA.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

Thi d t t d ith F M k 4 0 4

iii

Contents

Figures and Tables vii

Preface

About This Developer Note

ix

Contents of This Note ix
Conventions and Abbreviations x

Typographical Conventions x
Abbreviations x

Supplementary Documents xi
PCMCIA Documents xi
Apple Documents xii

Chapter 1

Overview

1

Overview of PCMCIA Standards 2
Mechanical Considerations for PC Card Developers 3

Optimal Square Corner Design 3
Type III Cards 3

Overview of the Software Architecture 3
Card Services 5

Installation 5
Operation 6

Socket Services 7
Drivers as Clients 7
Programming Model 9
PowerBook Implementation of the PCMCIA Standard 9

Chapter 2

Client Software

11

PCMCIA Services Model 12
Client Structure 13

Structure Overview 14
Client Setup 15

Event Processing 15
Card Insertion Message 16
Card Ready Message 18
Card Removal Message 18
Ejection Request Message 18
Ejection Failed Message 19
Client Information Message 19

Thi d t t d ith F M k 4 0 4

iv

Function Interrupt Message 20
Power Management Suspend Message 20
Power Management Resume Message 20

Sample Client Code 22
Global Variables 22
Client Initialization 23
Client Removal 24
Event Handler 25
Returning Client Information 27
Driver Location Icon 27
Sample Client Pseudocode 29

Chapter 3

Card Services Routines

33

Client Information 34
Configuration Routines 38
Masking Routines 45
Tuple Information 49
Card and Socket Status 53
Access Window Management 54
Client Registration 59
Miscellaneous Routines 61
PC Card Manager Constants 68

Chapter 4

Device Drivers

71

Driver Loading 72
Booting Requirements 72
Guidelines for Socket Developers 72
Interrupt Support 73
Alternative PCMCIA Controllers 74

Chapter 5

Human Interface

75

Manual Card Ejection 76
Finder Extension 76

Card Services Client Registration 77
Card Icons 77
User Interactions 77
Card Information Display 79
Custom Card Actions 79
Software Not Installed 80
Custom Support for I/O Cards 81

v

Multifunction Cards 81
February-Release Support 82
Release 2 Support 83

Glossary

85

Index

87

vii

Figures and Tables

Chapter 1

Overview

1

Figure 1-1

Software architecture for PC Card support 4

Table 1-1

Sample of events reported by Card Services to clients 5

Chapter 2

Client Software

11

Figure 2-1

PCMCIA software/hardware model 13

Figure 2-2

Example of event progression 14

Figure 2-3

Event processing from kCSCardInsertionMessage 17

Figure 2-4

kCSPMSuspendMessage and kCSPMResumeMessage
processing 21

Chapter 5

Human Interface

75

Figure 5-1

Sample PC Card icon 77

Figure 5-2

Icon dragging warning 78

Figure 5-3

Card ejection warning 78

Figure 5-4

Ejection failure warning 78

Figure 5-5

User guide reference warning 79

Figure 5-6

Sample PC Card Get Info window 79

Figure 5-7

Generic message for cards that cannot be opened 80

Figure 5-8

Missing software warning 80

Figure 5-9

Parsing tuples for multifunction cards — February release 82

Figure 5-10

Parsing tuples for multifunction cards — Release 2 84

Table 5-1

MFC tuple functions 83

Thi d t t d ith F M k 4 0 4

ix

P R E F A C E

About This Developer Note

This developer note describes how the Personal Computer Memory Card
International Association (PCMCIA) expansion card interface is implemented
in PowerBook computers. The term PC Card is used throughout this note to
indicate expansion cards defined by the PCMCIA standard.

Apple provides full software support for PC Cards, including

■

close adherence to the PCMCIA standard

■

seamless integration into the Macintosh platform and user experience

■

a high level of compatibility with existing and future PC Cards

This note is written for professional hardware and software engineers who
are generally familiar with existing Macintosh technology and have
previously read the PCMCIA standard. If you would like more information
about the PCMCIA standard and about Macintosh technology, see the
documents listed in “Supplementary Documents” beginning on page xi.

Contents of This Note 0

This note is divided into five chapters:

■

Chapter 1, “Overview,” introduces the general features and concepts of the
PowerBook system software that supports PC Cards.

■

Chapter 2, “Client Software,” describes how to write client software for the
Card Services application programming interface (API).

■

Chapter 3, “Card Services Routines,” describes the Card Services portion of
the PC Card Manager, which constitutes the primary Macintosh system
software support for PC Cards in PowerBook computers.

■

Chapter 4, “Device Drivers,” provides guidelines for developers writing
device drivers compatible with PowerBook computers.

■

Chapter 5, “Human Interface,” describes the installation and operation of
PC Cards from the user’s viewpoint and provides human interface guide-
lines for developers of PC Card software.

At the end of this book are a glossary and an index.

Thi d t t d ith F M k 4 0 4

x

P R E F A C E

Conventions and Abbreviations 0

This developer note uses the following typographical conventions and
abbreviations.

Typographical Conventions 0

Terms that appear in the Glossary, are shown in

boldface

 where they are first
appear in the main body of text.

Computer-language text, that is any text that is literally the same as it appears
in computer input or output, appears in

Courier

 font.

Note

A note like this contains information that is interesting but not essential
for an understanding of the text.

◆

IMPORTANT

A note like this contains important information that you should read
before proceeding.

▲

▲ W A R N I N G

A note like this indicates a potential problem that could damage
hardware, cause the software to crash, or cause permanent data loss.

▲

Abbreviations 0

Abbreviated units of measurement used in this note include

Other abbreviations used in this book include

KB kilobytes MHz megahertz

MB megabytes V volts

API application programming interface

CIS Card Information Structure

DCE device control entry

EEPROM electrically-erasable programmable ROM

HFS hierarchical file system

JEDEC Joint Electron Device Engineering Council

MTD Memory Technology Driver

NVRAM nonvolatile RAM

PCMCIA Personal Computer Memory Card International Association

xi

P R E F A C E

Supplementary Documents 0

This section describes technical documents that supplement the material in
this book.

PCMCIA Documents 0

There are two primary sources of information about PCMCIA standards.

■

The first document is

PCMCIA Standards

, Standard Release 2.01—
November 1992. Current Apple hardware and software supports this
release, and you should read the following sections of this book if you
want to develop client software for PowerBook computers: Card Services
Specification, Socket Services Specification.

■

The latest version of the document is

PC Card Standard

, February 1995. This
book contains the same information as the first document, but it also
contains additional information on standards developed since 1992. The
document consists of a number of volumes, and the ones most relevant in
this context are: Volume 1, Overview and Glossary; Volume 5, Card
Services Specification; and Volume 6, Socket Services Specification.

To simplify references to these documents, if you can use either book, you are
referred to

PCMCIA Standards

. If the information you need is only in the latest
version, you are referred to

PC Card Standard

, or the February Release. If the
reference is to the actual standard, it is referenced as PCMCIA standard.

Both books are published by the Personal Computer Memory Card
International Association, and you can order them from

Personal Computer Memory Card International Association
1030G East Duane Avenue
Sunnyvale, CA 94086
Phone: 408-720-0107
Fax: 408-720-9416

PDS processor-direct slot

RAM random-access memory

ROM read-only memory

SRAM static RAM

UPP universal procedure pointer

xii

P R E F A C E

Apple Documents 0

Apple Developer Press publishes a variety of books and technical notes
designed to help third-party developers design hardware and software
products compatible with Apple computers.

■

Inside Macintosh

 is a collection of books, organized by topic, that describe
the system software of Macintosh computers. Together, these books
provide the essential reference for programmers, software designers, and
engineers.

Designing Cards and Drivers for the Macintosh Family,

 third
edition, explains the general software requirements for drivers compatible
with Macintosh computers.

■

Technical Introduction to the Macintosh Family,

 second edition, surveys
the complete Macintosh family of computers from the developer’s point
of view.

■

Macintosh Human Interface Guidelines

 provides authoritative information on
the theory behind the Macintosh “look and feel” and Apple’s standard
ways of using individual interface components. A companion CD-ROM
disk,

Making It Macintosh,

 illustrates the Macintosh human interface
guidelines through interactive, animated examples.

The Apple publications listed are available from APDA, Apple’s worldwide
source for hundreds of development tools, technical resources, training
products, and information for anyone interested in developing applications
on Apple platforms. Customers receive the

APDA Tools Catalog

featuring all
current versions of Apple development tools and the most popular third-
party development tools. APDA offers convenient payment and shipping
options, including site licensing.

To order products or to request a complimentary copy of the

APDA Tools
Catalog

, contact

APDA
Apple Computer, Inc.
P.O. Box 319
Buffalo, NY 14207-0319

Telephone 1-800-282-2732 (United States)
1-800-637-0029 (Canada)
716-871-6555 (International)

Fax 716-871-6511

AppleLink APDA

America Online APDAorder

CompuServe 76666,2405

Internet APDA@applelink.apple.com

C H A P T E R 1

Overview 1Figure 1-0
Listing 1-0
Table 1-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 1

Overview

2

Overview of PCMCIA Standards

This chapter gives an overview of the software architecture that supports PC Cards
installed in PowerBook computers. It includes overviews of:

■

The PCMCIA standard developed by the Personal Computer Memory Card
International Association.

■

Elements of the architecture, including Card Services, Socket Services, and drivers as
clients. Card Services and Socket Services are the elements of the architecture that
conform to the PCMCIA standard. Chapter 3 of this developer note provides detailed
information about Socket Services. The note does not deal in detail with Socket
Services. However, you will find comprehensive information on the subject in

PCMCIA Standards

, published by the Personal Computer Memory Card International
Association, and referred to throughout this developer note as

PCMCIA Standards

.

■

The programming model.

■

PowerBook implementation of the PCMCIA standard.

The architecture includes a PC Card Manager and client software written by Apple
Computer, Inc. and by third-party developers. Apple supplies the system software for
PC Cards in the ROMs of certain PowerBook computers. For details about the hardware
support for PC Cards, refer to the developer documentation provided with specific
PowerBook models.

Overview of PCMCIA Standards 1

The goal of the PCMCIA is to promote the interchangeability of Integrated Circuit Cards
(IC cards) among various computers and electronic products. The cards are referred to in
this developer note as PC Cards, and they are 68-pin I/O cards that provide:

■

memory storage

■

fax/modem implementation

■

local area networks (LANs) implementation

■

video support

There are three types of PC Cards: Type I, Type II, and Type III. The cards are 3.370” by
2.126”, but differ in thickness, with the Type III card being the thickest. Type I and Type
II cards can be accommodated in the same type of slot. Type III cards requires a deeper
slot. In computers, such as the PowerBook, that provide two stacked slots, Type III cards
are usually plugged into the lower slot, but occupy the physical space of both slots.
Computers with two stacked slots can therefore accommodate: two Type I cards, two
Type II cards, one Type I card and one Type II card, or one Type III card. The standards
for PC Cards are defined in

PCMCIA Standards

.

C H A P T E R 1

Overview

Mechanical Considerations for PC Card Developers

3

Mechanical Considerations for PC Card Developers 1

The Apple PCMCIA card slot is a unique design, that incorporates a software eject
capability. As a PC Card is inserted into the slot, the card presses against a spring-loaded
lever and then latches into place. The stored energy in the spring is used later to eject the
card. As a developer of PC Cards, you have some design choices that are recommended
to avoid mechanical incompatibilities with the Apple card slot.

Optimal Square Corner Design 1

When a PC Card is inserted into the slot, the leading edge of the card, which has a
female connector, is used to press against the spring-loaded lever. The process works
most effectively if your PC Card has square corners on the leading edge. Although
rounded corners will work, it is recommended that the radius of these corners be less
than 2 mm. Apple recommends that your card be designed with square corners on the
leading edge.

Type III Cards 1

Type III cards are built so that they have essentially a double thickness. The PCMCIA
mechanical specification is very specific on the dimensions of the lower part of the Type
III card, but is very vague about the shape of the upper part of the card.

When a Type III card is inserted into the Apple card lower slot, the upper half of the card
actually presses against the ejection lever for the upper slot. Apple recommends that you
design the mechanical outline of the Type III card in such a way that the upper half of
the card cannot snag or bind on the upper arm of the card slot.

Since the PCMCIA specification allows much freedom in the shape of the upper half of
the card, Apple recommends that you test a prototype of your card in the Apple card slot
to ensure smooth insertion and ejection.

Overview of the Software Architecture 1

The PowerBook software support for PC Cards follows the traditional layered
architectures seen in the Macintosh platform, with Card Services and Socket Services
comprising the operating system portion. Unlike other Card and Socket Services
implementations, the PowerBook implementation does not allow clients access to the
Socket Services layer. Figure 1-1 gives an overview of the software architecture that
supports PC Cards in PowerBook computers.

C H A P T E R 1

Overview

4

Overview of the Software Architecture

Figure 1-1

Software architecture for PC Card support

■

Clients

 are device drivers or application software that use Card Services.

■

Card Services

 is the operating system layer that supports PC Card sockets and Socket
Services software. Card Services software also provides resource management for
clients of PC Cards. Table 1-1 lists some events that Card Services reports to clients. It
illustrates the relationship between the support architecture and its clients. Card
Services routines are described in detail in Chapter 3 of this developer note.

■

Socket Services

is the operating system layer that provides the upper layers of
software with

hardware abstraction

 from socket controllers and adapters. PowerBook
support for PC Cards contains both Card Services and Socket Services software layers.
This developer note does not provide detailed information about Socket Services. For
this type of information, you should refer to

PCMCIA Standards

.

■

The

PCMCIA controller

 is the hardware interface to the PC Cards. It provides the
interface signals, configurable voltages to power the cards, hardware windows into
the card’s address space, and interrupt decoding for state changes.

■

PC Cards

 themselves contain the hardware interface to the PowerBook’s PCMCIA
bus, as well as the hardware required to implement the card’s function (memory, fax/
modem, local area networks, and so on). The cards may also have a

Card Information
Structure (CIS).

This is a list of structures that describe the card’s functions and
capabilities.

■

Sockets

 (not shown in Figure 1-1) are the actual hardware receptacles that accept PC
Cards. The PowerBook hardware implementation supports two stacked sockets that
allow the user to insert two Type I or Type II cards, or one Type III card. When the
Type III card is installed, its interface connector occupies only one socket (usually the
lower socket). However, because the card is thicker than Type I and Type II cards, it
occupies both slots.

Clients

PCMCIA controller

Socket Services

Card Services

PC Cards

Software

Hardware

C H A P T E R 1

Overview

Card Services

5

Card Services 1

Card Services supports multiple clients and multiple Socket Services modules. Card
Services provides client registration, resource management, memory services, client
utilities, and advanced client utilities. The PowerBook Card Services architecture
coordinates access to sockets (through the Socket Services software interfaces) and access
to system resources. There is only one executing copy of Card Services in the host system.

Installation 1

The Card Services software is loaded from ROM and requires Macintosh System 7 or
later. It installs a trap for opcode $AAF0 and registers with the Gestalt Manager to let
other software know that it is installed. The Gestalt selector (

pccd

) determines whether
Card Services is installed. See “PC Card Manager Constants” beginning on page 68 for
the Gestalt attribute definitions.

Card Services performs the following installation processes:

■

Accesses the socket hardware through Socket Services software, described in “Socket
Services” beginning on page 7.

■

Receives all interrupt notification of socket changes from Socket Services.

■

Passes status changes, interrupt notification, and other messages to clients through a
standard callback architecture. The clients of Card Services register with Card Services
when they need to communicate with PC Cards. At registration time the clients pass a
callback handler address to Card Services and an event mask to remove unwanted
events for a particular socket.

Table 1-1

Sample of events reported by Card Services to clients

Event message Meaning

kCSBatteryDeadMessage

The PC Card battery is no longer serviceable
and data may be lost.

kCSBatteryLowMessage

The PC Card battery is weak and should be
replaced. Data integrity of the PC Card is
maintained.

kCSCardReadyMessage

The PC Card’s +RDY/–BSY line has
transitioned from the busy to the ready state.

kCSCardRemovalMessage

The PC Card has been removed from its socket.

kCSCardInsertionMessage

The PC Card has been inserted into a socket,
or a client has just registered for insertion
events. Card Services is creating artificial
insertion events for the PC Cards that are
already in sockets.

kCSFunctionInterruptMessage

The PC Card’s interrupt request (–IREQ) line
has been asserted.

C H A P T E R 1

Overview

6

Card Services

■

Numbers resources (adapters, sockets, windows, pages, and so on) as they are
registered. Most numbering is zero-based in Card Services. For example, if two
sockets are registered by an adapter and they are the first two sockets to be registered
with Card Services, Card Services will number them socket 0 and socket 1. The
next set will be numbered 2, 3, and so on. Any undefined fields in the Card Services
interface definitions should be set to 0 for compatibility with future Card Services
revisions.

Operation 1

Events and the subsequent callbacks from Card Services to clients are generated from a
variety of status conditions and card interrupts, including phantom events that Card
Services manufactures for clients. Table 1-1 on page 5 lists some of the system messages.
See “PC Card Manager Constants” beginning on page 68 for a complete list of Card
Services callback events. Card Services itself is a state machine that waits for clients and
Socket Services modules to register with it. Card Services is driven by the actions of a
client or the actions of a Socket Services module.

Card Services performs the following operating tasks:

■

Provides the means to register PC Card clients.

■

Prioritizes and dispatches a card event, interrupt, or status change notification back
to registered clients. The PCMCIA standard specifies how callbacks to card clients
are prioritized.

■

Provides the minimum CIS parsing needed to recognize and provide support for
different types of memory devices, and to provide simple ways for clients to extract
information from the CIS when they do not have the knowledge to do this.

■

Provides the means to configure a PC Card in a specific socket.

■

Provides the means to register Socket Services modules that support other types of
PCMCIA adapters.

■

Provides OS (operating system) services to Socket Services modules. Such services
include routing interrupt callbacks, static (global) data space allocation and
deallocation, isolation from virtual memory requirements, and so on.

Card Services returns multibyte fields in

little-endian

 format, which is the way most PC
Cards store data. With little-endian addressing, the address for a field refers to its least
significant byte, as opposed to

big-endian

 addressing, where the address for a field
refers to its most significant byte. Macintosh computers use big-endian addressing.

Card Services supports the conversion of the little-endian to the big-endian format for
multibyte data. The conversion is done in the Socket Services layer, usually within the
controller itself. PowerBook Card Services lets client software control the addressing
format of multibyte data.

Card Services is

reentrant

 by design. However, most of the functions that Card Services
provides are

synchronous

 and control the configuration of PC Cards, not the interactions
with the functions that are on the PC Card. Only a few of the many Card Services
functions are designed to be

asynchronous.

 Once a card is configured by a client, the
client usually accesses the card registers or card memory directly.

PCMCIA Standards

describes in detail the nature of each function call.

C H A P T E R 1

Overview

Socket Services

7

Socket Services 1

Beneath the Card Services layer lies one or more Socket Services modules, each of which
is responsible for providing a common API (application programming interface) for
Card Services to call, and for routing communication between Card Services and the
socket controller hardware. Each Socket Services module is tailored to a specific piece
of socket controller hardware, which is either on the main logic board or on a
PCMCIA adapter.

Socket Services is part of the hardware abstraction layer. It presents a standard API
to Card Services that is unaffected by socket hardware changes. Socket Services is
responsible for handling the interrupt generation and interrupt control processes of
its particular hardware. When an interrupt is generated by hardware, Socket Services
accepts the interrupt and calls the Card Services entry point with information about
the socket and adapter that caused the interrupt and the nature of the interrupt.

A Socket Services module is specific to a PCMCIA controller. The initial Macintosh
implementation includes a Socket Services module for the hardware controller. Each
Socket Services module owns one or more host adapters, and each host adapter may
have multiple PCMCIA sockets associated with it.

Socket Services modules are responsible for

■

Registering and acknowledging interrupt generation from the adapter

■

Validating access parameters for adapters within its scope of control

■

Relaying all control calls from Card Services to the adapter

■

Informing Card Services of the Socket Services capabilities and attributes

The

CSAddSocketServices

 routine is called by a Socket Services module during
initialization to inform Card Services of its presence and attributes. Various entry
points and details of the Socket Services are passed to Card Services in the

AddSocketServicesPB

 parameter block. The last field in

AddSocketServicesPB

 is
a pointer that is passed to Socket Services each time it is called by Card Services. In
this way Socket Service modules can retain global variables or other data that is
dependent upon the implementation.

Drivers as Clients 1

The support software for the PowerBook PC Card provides the functionality that PC
Card client developers require, using an architecture that resembles the traditional
Macintosh environment. The Card Services and Socket Services APIs are very similar to
the APIs presented in the PCMCIA standard. The PowerBook architecture also includes
guidelines for helping client developers implement client loading, PC Card parsing,
client event handling, and other aspects of the client environment.

C H A P T E R 1

Overview

8

Drivers as Clients

Macintosh drivers are the main clients of Card Services. However, applications, as well
as other types of code, can register with Card Services, and can become a client if they
wish. You should note the following client issues:

■

Client loading.

 Whether it is loaded from a resource of type '

INIT

', from a configuration
ROM, or from an application program, the PowerBook architecture defines fast,
efficient ways for a client to inspect PC Card resources and to determine whether it is
appropriate for a client to control a particular PC Card.

■

Client interrupt and

message handling.

 Clients of PC Cards receive all event, interrupt,
and status change notifications through a callback mechanism. Clients do not need to
register interrupt handling routines specific to an adapter because that is taken care of
by Card Services and Socket Services. The client must provide an interrupt handling
callback address and adhere to the interrupt execution limitations of Macintosh
programming. For example, during interrupt time the client must not move memory.

■

Client human-interface responsibilities.

 The Macintosh interface demands that PC Cards
be tightly integrated into the desktop metaphor. Drivers must provide services that
will allow users to manipulate the PC Cards in sensible ways (for example, when
ejecting a PC Card). The system determines the events and user actions of which a
client may have to be aware, and decides how the client should react.

IMPORTANT

Clients should not bypass the Card Services API to configure PC
Cards. Clients that do so may cause synchronization errors within
the adapter and eventually cause the system to malfunction.

▲

PC Card clients register with Card Services using a call

CSRegisterClient

 routine.
Most clients of Card Services will be drivers, which normally load with system
extensions. Applications can be clients as well, and they register during initialization. To
receive events, a registered client must enable events by calling a

CSVendorSpecific

routine with the function code

vsEnableSockets

.

Arguments to the CSRegisterClient include information about whether the client is a
memory client or an I/O client, and also contain the address of an

event handler.

 Card
Services uses the event handler

to notify clients of events, including interrupts from
cards. All events generated and delivered to clients use the callback mechanism. Clients
must preserve the contents of the arguments used in the callback mechanism, so that
when subsequent clients are notified by Card Services, they will see the same arguments
in their callback handler. Clients can specify the sockets and event types for which they
need to receive callback events. Clients use

CSRequestSocketMask

,

CSReleaseSocketMask

,

CSGetClientEventMask

, and

CSSetClientEventMask

to tell Card Services what events to forward.

The registration process provides the following services:

■

It informs clients of cards already installed in a socket.

■

It informs newly registered clients of any subsequent card events for a socket, such as
card insertion, card removal, battery low, and so on.

The order in which clients are notified of card events is outlined in the Card Services
section of

PCMCIA Standards

.

C H A P T E R 1

Overview

Programming Model 9

Programming Model 1

The PowerBook PC Card programming model supports the following features:

■ Parameter block programming interface. Each function call to Card Services has a single
parameter block argument. This is unlike the PCMCIA standard, which defines six
arguments, one of which is a parameter block.

■ Interrupt/Event/Status change notification services. Each driver or other client may
request interrupt, event, or status change notification for a particular socket. The
callback interface is described in the Card Services section of PCMCIA Standards.

■ Dynamic socket adapter registration. Socket controller and Socket Services software can
be added dynamically once Card Services is available. This allows Socket adapters to
be engineered onto PDS (processor direct slot) cards or NuBus cards.

■ Single trap entry point. All accesses to Apple PC Card support software are through the
Card Services interface. Socket Services access is not available to clients, except for
testing. A glue routine is provided for developers so that they can use the C function
calling conventions.

■ Mostly synchronous calling environment. The majority of calls to Card Services routines
execute synchronously. For those executed asynchronously, the event callback
mechanism notifies the caller when the operation is complete. There are no
completion-routine requirements for calls to Card Services

■ Reentrancy. Unlike Card Services, Socket Services is not reentrant code.

PowerBook Implementation of the PCMCIA Standard 1

The functional interface that exists in the PCMCIA standard is available to PC Card
developers. However, elements of the standard that are not relevant to the PowerBook
environment, or do not have direct analogies, are not included in the support
architecture.

Although the PCMCIA standard is supposed to represent a platform-independent
environment, it contains traces of the DOS architecture. The PowerBook implementation
supports those DOS elements only where appropriate. For instance, function calls
that allocate system resources for interrupt assignment in DOS do not have an
analogous counterpart in the Mac OS, and normal Macintosh interrupt processing
schemes are substituted.

C H A P T E R 2

Client Software 2Figure 2-0
Listing 2-0
Table 2-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 2

Client Software

12

PCMCIA Services Model

A Card Services client is any third-party software that provides support for one or more
types of PC Card. The software can take the form of a driver, extension, application, or
other code. The client receives messages from Card Services indicating changes in the
state of the PC Card(s) it controls, and makes access and resource requests to Card
Services as needed for the card to perform its function.

The Mac OS Card Services implementation is compliant with version 2.01 of the
PCMCIA standard. However, there are several divergences from the standard, mainly
because of architectural differences between configurable voltage supplies to PC Cards,
hardware windows into the card’s address space, and interrupt decoding for state
changes.

This chapter explains how to write client software for the Card Services API.

PCMCIA Services Model 2

The PCMCIA standard provides a layered model to control card access and to isolate
hardware specifics from client software. This makes it possible to write client software
that can easily be ported to numerous PCMCIA platforms with few changes, if any.

The model consists of the following layers:

■

Clients

 are responsible for performing functions associated with the particular kinds
of cards with which they can deal.

■

Card Services

 arbitrates access control for each card socket, manages card and
PCMCIA resources, provides a client messaging system, and communicates with each
of the installed Socket Services.

■

Socket Services

 modules are software units that work directly with the PCMCIA
hardware controller, converting generic commands into hardware-specific register
accesses. They configure card power, windows, and pages, and dispatch interrupts to
Card Services.

■

The

PCMCIA controller

 is the hardware interface to the PC Cards. It provides all the
signals needed to communicate with the cards in the sockets it controls. In addition, it
provides configurable voltages to power the cards, hardware windows into the card’s
address space, and interrupt decoding for state changes.

■

Each

 PC Card

 contains a hardware interface to the PowerBook’s PCMCIA bus as well
as function-specific hardware. Cards may also have a

Card Information Structure
(CIS).

This is

a list of structures that describe the functions and capabilities of the
card, and it is optional.

Figure 2-1 shows the interactions between the various components of the PCMCIA
services model. Note that clients may communicate only with Card Services and, once
they are allowed access, with the PC Card itself.

C H A P T E R 2

Client Software

Client Structure

13

Figure 2-1

PCMCIA software/hardware model

Client Structure 2

A Card Services client can be any kind of software entity, including a driver, extension,
application, and so forth. Every client has a client event handler. This is a routine,
registered with Card Services, that processes notifications to the client of state changes to
any of the cards it monitors. The client software registers its event handler with Card
Services, which then calls this routine whenever it has an event for the client. The event
handler’s interface is

pascal UInt16 EventHandler(ClientCallbackPB* pb)

The client is passed

■

a pointer to a parameter block containing information about the event

■

message-specific data buffers

■

a pointer to the client’s data.

The client typically returns the result code

noErr

, although some messages may require
that other result code values are returned instead.

Client

Card Services

PCMCIA controller PCMCIA controller

Socket Services Socket Services

PC Cards

Note:	 Each client may communicate directly with
	 the PC Card(s) installed

Client Client

PC Cards

. . .

. . .

C H A P T E R 2

Client Software

14

Client Structure

Structure Overview 2

When there is a state change, such as a card insertion event, a process occurs, which
starts from the physical insertion of the card and ends with the event handler. Figure 2-2
shows an example of this process.

Figure 2-2

Example of event progression

kCSCardInsertionMessage

 is one of several messages sent to a client’s event
handler. For more information about events, see “Event Processing” beginning on
page 15.

The client’s event handler is essentially an interrupt handler. Card state changes
typically generate interrupts that are eventually forwarded to the client, as shown in
Figure 2-2. Because of this, there are some precautions you should take when writing
client software.

■

Minimize the amount of time spent in the event handler, because interrupts could be
restricted or disabled. This prevents the “jerky mouse” syndrome, as well as possible
data loss in other software that does not get time. In many cases you can delay time-
intensive processing until later.

■

Use shared globals to communicate between the client event handler and the rest of
the client software.

■

When Virtual Memory (VM) is active, make sure the event handler’s code and global
data (not the entire client) is held in memory. This prevents paging at interrupt time.

PCMCIA controller

A PC Card is inserted into the socket.

Socket service

Card services

Clients

The Socket Service's interrupt handler decodes the interrupt
and sends a kCSCardInsertionMessage to the Card
Services interrupt handler.

Card Services dispatches the message to each of the clients
that want to receive kCSCardInsertionMessage.

Each client processes the message as it sees fit.

The PCMCIA controller notices that a card has been
inserted and generates an interrupt.

C H A P T E R 2

Client Software

Event Processing

15

Client Setup 2

Before a client can interact with Card Services, it must register its event handler so that
Card Services can find the client. This is done by calling

CSRegisterClient

. The client
passes a universal procedure pointer (UPP) to its event handler and a pointer to the
client’s data. Card Services adds the client to its queue, and synchronously initializes the
client’s state and returns. The parameter block passed to Card Services contains a

clientHandle

 field. It is important to save this value in the client’s globals because it is
needed to identify the client in a number of calls to Card Services.

Note

The

CSRegisterClient

 routine, and other routines
mentioned in the following discussion, are described in
Chapter 3, “Card Services Routines.”

◆

The synchronous aspect of client registration represents a deviation from the PCMCIA
standard. The standard requires

CSRegisterClient

 to be asynchronous, with a

kCSRegistrationCompleteMessage

 that notifies the client’s event handler that
registration is complete. Since this message may be sent at an arbitrary time, other
messages may be sent to a client before registration is finished. The client is thus unable
to process the message correctly at this time.

At this point, the client is registered with Card Services, but cannot receive any event
messages. This prevents unexpected messages from being sent to the client before it
has finished initialization. Once client initialization is complete, the client must call

CSVendorSpecific

 with the

EnableSocketEvents

 function code to notify Card
Services that it is ready to receive messages. This is a Card Services call specific to
the Mac OS.

The client should now be prepared to receive messages from Card Services. The
remainder of the core client software consists of the client event handler.

Event Processing 2

When a hardware event results in a state change, or a software event is generated, a
message is sent to each client’s event handler. A pointer to a parameter block is passed to
the event handler. This pointer contains the message (event type), message-specific
buffer pointers, and a pointer to the client’s global data. The client is free to process the
message, and then return a result code to indicate what happened. Unless otherwise
indicated, a result code of

noErr

 is returned so that new types of messages will be
handled correctly.

The event processing environment (not the events themselves) is binding-specific in
conformance with the PCMCIA standard. Most events are dispatched at interrupt
priority level 2, although some client-to-client events may be excluded. This means that
event processing must adhere to the normal Mac OS interrupt handling restrictions
described in

Inside Macintosh: Processes,

 Chapter 1.

C H A P T E R 2

Client Software

16

Event Processing

Any activity that cannot be handled in a normal interrupt handling environment (or that
may take too much time to complete) should be delayed, using the techniques described
in

Inside Macintosh: Processes.

Some events (

kCSPMSuspendMessage

,

kCSPMResumeMessage

, and

kCSSSUpdatedMessage

) are not specific to any socket. These events are dispatched
to clients based on the client’s global event mask, and the client’s

socketEvent

mask is irrelevant.

The next sections describe several types of events and what Card Services expects of
them.

PCMCIA Standards

 describes more types of events than those shown below.
However, the ones described in this chapter merit particular attention because they are
specific to the Mac OS, or because they are handled in a way that is slightly different
from that described in

PCMCIA Standards

.

Card Insertion Message 2

A card insertion message (

kCSCardInsertionMessage

) is sent to all clients to notify
them that a card has been inserted into a particular socket. By the time a client has
received this message, power has been applied to the socket. However, the card is not
ready for access at this point, so this call should be used only to indicate that the client
may soon be able to talk to a card.

IMPORTANT

If you access the card at this time, even to read

tuples,

 the
access could cause a bus error. Wait until the client receives a

kCSCardReadyMessage

 before trying to access the card.

▲

IMPORTANT

If a card fails to send a

kCSCardReadyMessage

 within a prescribed
period of time, clients should not post their own messages. Card
Services or the Mac OS Finder Extension will deal with cards that
appear to be damaged.

▲

Figure 2-3 illustrates the event processing that Card Services invokes when it receives

kCSCardInsertionMessage

 from Socket Services.

C H A P T E R 2

Client Software

Event Processing

17

Figure 2-3

Event processing from kCSCardInsertionMessage

kCSCardInsertionMessage

kCSCardReadyMessage

Card Services:
Sets VCC = Vpp = 5V
Sets interface = Memory Only
Issues kCSCardResetMessage to card

Card parses all tuples and issues
the kCSCardReadyMessage to all
registered clients.

Finder issues a “Damaged Card”
alert to user and puts a “Damaged
Card Icon” on the desktop.

Received
kCSCardReadyMessage

before
3 seconds?

No

No

No

Finder issues an alert to user that
asks whether they want to eject
the card because no software
installed can use the card.

Card Services powers off the card
and initiates the card ejection
process.

Did any clients call
CSRequestConfiguration

while Card Services
was issuing the card

ready message?

Card Services powers down the
card and issues
kCSCardUnconfigureMessage
to all registered clients.

Eject request
accepted?

Yes

Yes

C H A P T E R 2

Client Software

18

Event Processing

Card Ready Message 2

When a client receives a card ready message (

kCSCardReadyMessage

), hardware on
the card has determined that it is ready to be accessed. At this point, the client can start
processing to determine whether or not it knows how to operate the card. It does this by
calling

CSGetConfigurationInfo

 to determine the card type, and to look for specific
tuples that will indicate if this card is one with which the client can communicate.

If the client determines that it knows how to use this card, it calls

CSGetConfigurationInfo

 to get the current card configuration, and then calls

CSRequestConfiguration

 to request a card configuration. When the client does
this, some or all of the card’s resources are reserved for this client, and other clients
will not be able to operate the card in a mode that interferes with the first client.
You should check the result codes from each of these calls, since it is possible that
another client has already reserved a configuration for the card.

IMPORTANT

In some situations a card may never become ready or it may take a long
time to do so. If this happens, do nothing. The system software handles
the timeouts from the point at which the card is inserted into the socket
to the point at which it is ready for access.

▲

Card Removal Message 2

The card removal message (

kCSCardRemovalMessage

) indicates that a card has been
removed. Card removal can occur at appropriate and inappropriate times. If the card has
been legally ejected by calling

CSEjectCard

, then all clients should be safe and there
should be no side affects.

If the card was removed manually, it may have been done when a client was in the
process of accessing the card. In this case, a bus error is generated. Card Services does
not provide any kind of bus error protection for clients doing card accesses, so
individual clients must determine if they want to provide protection.

Ejection Request Message 2

Cards are ejected legally only after all clients have approved their ejection. This prevents
a card from being removed at an inappropriate time. When a client calls

CSEjectCard

,
each PC Card receives an ejection request message (

kCSEjectionRequestMessage

)
giving it the opportunity to stop the card from being ejected. If the client allows the
ejection, it should send a

noErr

 result code. Otherwise it can return any other value to
block the ejection.

C H A P T E R 2

Client Software

Event Processing

19

Ejection Failed Message 2

The ejection failed message (

kCSEjectionFailedMessage) is specific to the Mac OS
and is not part of the PCMCIA standard. This message is sent to each client after ejection
has been approved but the card cannot be successfully ejected. This may happen, for
example, if the PCMCIA slot is physically blocked, or if there is a malfunction in the card
eject mechanism.

Clients do not need to provide error notification to the user when this happens, since the
system handles error notification.

Client Information Message 2
A client information message (kCSClientInfoMessage) is sent to the client’s event
handler whenever a GetClientInfo call is made using the client’s clientHandle. A
pointer to the GetClientInfo parameter block is passed to the client in the buffer field
of the event handler’s parameter block. The client can then determine what type of
information is requested.

The upper byte of GetClientInfoPB.attributes contains a subfunction code that
describes the kind of information being requested. The client sends a result code of
kCSUnsupportedModeErr for any subfunctions it does not support.

Currently six subfunctions are supported. Except for the csClientInfo subfunction,
they are all specific to the Mac OS. These subfunctions are described in the following
sections.

kCSClientInfo Subfunction 2

This subfunction returns information about the client itself, such as the client’s attributes
and revision number, the lowest version of Card Services with which it is compliant, and
C strings describing the client’s function and manufacturer.

kCSCardName Subfunction 2

This subfunction returns an alternate name for a card other than that found in the card’s
tuples. This could be useful, for instance, if the name found on the card were something
like “XY-D22-0354, REVISION 2.3,” and you wanted to replace it with “FaxCo
FaxModem,” which provides a less cryptic human interface. The string is a zero-
terminated C string.

kCSCardType Subfunction 2

This subfunction covers a range of functions. Serial card type covers serial devices such
as UARTs, data and fax modems, pagers, and so on. The subfunction provides a means
of returning a more descriptive string. For instance, it might replace the generic “Serial
Port/Modem Card,” with the more specific “Fax Modem Card.” The string is a zero-
terminated C string.

C H A P T E R 2

Client Software

20 Event Processing

kCSHelpString Subfunction 2

This subfunction returns a descriptive help message which is used when the cursor
moves over the card’s icon. This message overrides the generic help message which is
based on the card type. The string is a zero-terminated C string.

kCSCardIcon Subfunction 2

This subfunction returns a handle to an icon suite containing custom icons that display
the card on the desktop. The client owns the icon suite, so users of the icon suite may not
modify or dispose of it or its associated icons.

kCSActionProc Subfunction 2

When a client is called with this subfunction, it should perform a custom action in
response to the user clicking or opening the card’s icon. For instance, a pager card might
open a custom pager application that can download messages stored in the pager and
display them for the user. The client should send noErr result code if it performed the
action. It should send any other value if it did not perform the action and wants the
caller to handle it.

Function Interrupt Message 2
The function interrupt message (kCSFunctionInterruptMessage) is sent to the
client’s event handler in response to a function-specific interrupt from the card’s hard-
ware. The client then does any processing required by the interrupt, such as determining
the interrupt source (for a multifunction card), reading or writing to a data register, and
so on. The client then clears the source of the interrupt. This message is given high
priority by Card Services to minimize interrupt service time as much as possible.

Power Management Suspend Message 2
Card Services issues a power management suspend message (kCSPMSuspendMessage)
to indicate to registered clients that the PowerBook computer is going into sleep mode.
This message is guaranteed to occur after all I/O transactions are complete. Clients
should note the configuration of any cards and sockets they have configured because
they must reestablish the configuration after the computer wakes from sleep mode.

Power Management Resume Message 2
The power management resume message (kCSPMResumeMessage) is the first message a
client receives when the computer is waking from sleep mode. This message happens
before any I/O requests are generated. Immediately after Card Services has issued this
message to all registered clients, it scans the socket configuration and supplies power to
any socket that contains a PC Card but has no power. The process Card Services uses to
supply power to these cards is identical to the process it uses when it receives a
kCSCardInsertionMessage from Socket Services. Clients, therefore, should avoid
accessing any cards until they have received a kCSCardReadyMessage for the socket.

C H A P T E R 2

Client Software

Event Processing 21

Different PCMCIA controllers provide different information to Card Services when the
PowerBook computer is waking from sleep mode. In some instances, Card Services may
not be able to determine if PC Cards were switched in a socket during sleep mode.
Clients should always provide some check to ensure that the card that appears in a
socket is the same card the client was using before the computer went into sleep mode.

Figure 2-4 shows the processing sequence for kCSPMSuspendMessage and
kCSPMResumeMessage.

Figure 2-4 kCSPMSuspendMessage and kCSPMResumeMessage processing

1. kCSPMSuspendMessage is issued to all registered clients after the last I/O access is
completed prior to the computer entering sleep mode. Clients at this point should
record any card configuration information they want to restore after the PowerBook
wakes up. Clients should release all window resources, but keep all configurations.
This means that they should not call CSReleaseConfiguration, because Card
Services maintains the clientHandle configuration lock during sleep mode.

2. Card Services processes each socket with a card as if it were processing a
kCSCardInsertionMessage event. Note that clients must not access the card until
kCSCardReadyMessage has been received. kCSPMResumeMessage is merely an
indication to clients that Card Services is attempting to awaken cards that were
powered down during sleep mode. Card Services maintains the clientHandle
configuration lock during sleep mode, but clients must reestablish the card/socket
physical configurations by calling CSModifyConfiguration after they have
received kCSCardReadyMessage for their socket.

kCSPMSuspendMessage
is issued to all registered

clients

kCSPMResumeMessage
is issued to all registered

clients

PowerBook is in Sleep
mode

kCSCardReadyMessage
issued

See note 1 below.

See note 2 below.

Key Event wakes the PowerBook

C H A P T E R 2

Client Software

22 Sample Client Code

Sample Client Code 2

This section provides code excerpts that illustrate some of the concepts discussed in the
previous sections, including global variables, the client’s initialization, removal, and
event-handling codes.

Global Variables 2
The client needs shared global data to communicate state information between the event
handler, which can run at interrupt time, and the rest of the client code that deals with
the functional aspects of the card or cards under its control. The global variables can be
set as follows:

typedef struct SharedGlobals SharedGlobals;

struct SharedGlobals

{

.

.

.

 PCCardCSClientUPP eventHandler; // UPP for event handler

 unsigned long clientHandle; // returned by RegisterClient

 char cardState[kMaxCards]; // state of each card

.

.

.

};

The eventHandler field contains a UPP (universal procedure pointer) that points to the
client’s event handler. The clientHandle field contains the clientHandle returned
by CSRegisterClient, which is used in a number of calls to Card Services. The
cardState array contains the current state of each card in the system. It is a bitmap that
contains the following bits:

#define kCardInserted (1<<0)

#define kCardReady (1<<1)

#define kCardIsMyType (1<<2)

#define kCardIsWriteProtected (1<<3)

#define kCardIsLocked (1<<4)

#define kBatteryIsLow (1<<5)

#define kBatteryIsDead (1<<6)

With this minimal set of globals, you can now set up the client.

C H A P T E R 2

Client Software

Sample Client Code 23

Client Initialization 2
The client initialization routine:

■ allocates the shared globals

■ registers the client’s event handler with Card Services

■ performs other initialization tasks specific to its needs

The following code is an example of an initialization routine:

void Initialize()

{

 SharedGlobals *globals;

 RegisterClientPB client;

 VendorSpecificPB vsPB;

.

.

.

// allocate space for the shared globals

 globals = (SharedGlobals *)NewPtrClear(sizeof(SharedGlobals));

 if (globals == nil) return;

 // create a Universal Proc Ptr that points to the event handler

 globals->eventHandler = NewPCCardCSClientProc(&MyEventHandler);

 // register the client with Card Services

 client.clientHandle = nil;

 client.clientEntry = globals->clientEntry;

 client.attributes = csExclusiveCardInsertEvents |

 csExclusiveCardInsertEvents |

 csIOClient;

 client.eventMask = csReadyChangeEvent | csCardDetectChangeEvent;

 client.clientData = (Ptr)globals;

 client.version = 0;

 if (CSRegisterClient(&client) != noErr)

 {

 TearDownWorld(globals);

 return;

 }

 globals->clientHandle = client.clientHandle;

 // once everything's set up, make sure relevant pieces

 // are held in memory for VM

C H A P T E R 2

Client Software

24 Sample Client Code

 if ((HoldMemory((void*)globals, sizeof(SharedGlobals)) != noErr) ||

 (HoldMemory((void*)&MyEventHandler, kEventHandlerSize) != noErr))

 {

 TearDownWorld(globals);

 return;

 }

 // now enable events from Card Services

vsPB.clientHandle = globals->clientHandle;

vsPB.vsCode = vsEnableSocketEvents;

if (CSVendorSpecific(&vsPB) != noErr)

 {

 TearDownWorld(globals);

 return;

 }

.

.

.

}

Client Removal 2
The client removal routine is called when a client terminates in a normal manner, or
when there is an error during client initialization. The following code is an example of a
client removal routine:

void TearDownWorld(SharedGlobals *globals) {

 RegisterClientPB client;

 // remove the event handler from Card Services’ clutches

 client.clientHandle = globals->clientHandle;

 CSDeregisterClient(&client);

 // release the event handler’s and globals’ memory

 UnholdMemory((void*)globals, sizeof(SharedGlobals));

 UnholdMemory((void*)&MyEventHandler, kEventHandlerSize);

 // dispose of the globals

 DisposePtr((Ptr)globals);

}

C H A P T E R 2

Client Software

Sample Client Code 25

Event Handler 2
The event handler routine is called by Card Services in response to a state change. Each
message is stubbed out to show what it does, but a real client may require more work to
be done for some messages, and may not need to do anything for others. The following
code is an example of an event handler routine:

pascal short MyEventHandler(ClientCallbackPB *pb)

{

 SharedGlobals *globals;

 unsigned short socket;

 globals = (SharedGlobals *)pb->clientData;

 socket = pb->socket;

 switch (pb->function)

 {

 case kCSCardInsertionMessage: // card has been inserted

 globals->cardState[socket] |= kCardInserted;

 break;

 case kCSCardRemovalMessage: // card has been removed

 globals->cardState[socket] = 0;

 break;

 case kCSCardReadyMessage: // card is ready to be accessed

 if (globals->cardState[socket] & kCardInserted)

 {

 globals->cardState[socket] |= kCardReady;

 if (CardIsMyType(socket, globals))

 globals->cardState[socket] |= kCardIsMyType;

 }

 break;

 case kCSEjectionRequestMessage: // determine if it’s OK to eject

 // my card

 if (globals->cardState[socket] & kCardIsMyType)

 return(CanCardBeEjected(socket, globals));

 break;

 case kCSEjectionFailedMessage: // ejection failure (mechanism,

 // etc.)

 // depends on what the client wants to do

 break;

 case kCSClientInfoMessage: // returns client information

 return(FillInClientInfo((GetClientInfoPB *)pb->buffer, globals));

C H A P T E R 2

Client Software

26 Sample Client Code

 case kCSFunctionInterruptMessage: // function interrupt from the

 // card

 HandleCardFunctionInterrupt(socket, globals);

 break;

 case kCSWriteProtectMessage: // card is write-protected

 globals->cardState[socket] |= kCardIsWriteProtected;

 break;

 case kCSWriteEnabledMessage: // card is write-enabled

 globals->cardState[socket] &= ~kCardIsWriteProtected;

 break;

 case kCSCardLockMessage: // card is locked into the socket

 globals->cardState[socket] |= kCardIsLocked;

 break;

 case kCSCardUnlockMessage: // card’s socket is now unlocked

 globals->cardState[socket] &= ~kCardIsLocked;

 break;

 case kCSBatteryDeadMessage: // card’s battery is dead

 globals->cardState[socket] |= kBatteryIsDead;

 break;

 case kCSBatteryLowMessage: // card’s battery is getting low

 globals->cardState[socket] |= kBatteryIsLow;

 break;

 case kCSCardResetMessage:

 case kCSInsertionRequestMessage:

 case kCSInsertionCompleteMessage:

 case kCSPMResumeMessage:

 case kCSPMSuspendMessage:

 case kCSExclusiveRequestMessage:

 case kCSExclusiveCompleteMessage:

 case kCSResetPhysicalMessage:

 case kCSResetRequestMessage:

 case kCSResetCompleteMessage:

 case kCSSSUpdatedMessage:

 break;

 }

 return(noErr);

}

#define kClientVersion 0x0100 // driver version, in BCD

#define kCardServicesLevel 0x0201 // Card Services release

 // compliance, in BCD

#define kRevisionDate ((1994-1980)<<9) | (8<<5) | (25<<0) // y/m/d

C H A P T E R 2

Client Software

Sample Client Code 27

Returning Client Information 2
When a call is made to CSGetClientInfo, Card Services calls the client event
handler associated with the clientHandle passed in the parameter block.
kCSClientInfoMessage is passed to the client event handler, and
ClientCallbackPB.buffer contains a pointer to a GetClientInfoPB.

Driver Location Icon 2
Mass storage device drivers, such as those for hard disk and floppy disk drives, return a
pointer to a structure that describes the location of their device. This process is handled
by a control call with csCode set to 22. The structure is:

typedef struct DriverLocationIcon DriverLocationIcon;

struct DriverLocationIcon

{

 char locationIcon[256];

 Str255 locationString;

};

For most mass storage devices, the driver knows where its device resides physically. This
means it can easily return an appropriate icon and location string. For PCMCIA-based
mass storage devices, the driver does not intrinsically know where its card is plugged in,
so it cannot provide a location icon.

The PowerBook implementation of Card Services provides a means for clients (typically
drivers) to acquire both the card’s location icon and a string describing the card’s current
location. Clients can call CSVendorSpecific with pb.vsCode set to either
vsGetCardLocationIcon or vsGetCardLocationText, and Card Services will
return the appropriate information.

▲ W A R N I N G

The location icon and string can be localized, so that they can be loaded
from a disk. In the same way, Socket Services modules can be loaded at
any time during the boot process. Clients, therefore, should not assume
that the location information is valid before the PowerBook computer
has finished the start-up process. ▲

Because location information is not returned in the exact format that the driver control
call expects, the driver must pack the information into the format described above. For
example, in response to control call 22, the driver can make this call:

OSErr DriverControl(CntrlParam *pb, DCtlHandle dce)

{

.

.

.

 switch (pb->csCode)

C H A P T E R 2

Client Software

28 Sample Client Code

 {

.

.

.

 case 22:

 socket = GetDriveSocket(globals, pb->ioVRefNum);

 GetDriverLocation(socket, &globals->locationIcon);

 *(DriverLocationIcon *)&pb->csParam[0] = &globals->locationIcon;

 return(noErr);

.

.

.

 }

.

.

.

}

GetDriverLocationIcon makes the following calls to CSVendorSpecific to get
the icon and string:

void GetDriverLocationIcon(unsigned short socket,

 DriverLocationIcon *theIcon)

{

 VendorSpecificPB pb;

 Handle theIconSuite, theIconData;

 Str255 locationString;

 pb.vsCode = vsGetCardLocationIcon;

 pb.socket = socket;

 pb.dataLen = 0;

 pb.vsDataPtr = (unsigned char *) &theIconSuite;

 if ((CSVendorSpecific(&pb) == noErr) && (theIconSuite != nil) &&

 (GetIconFromSuite(&theIconData, theIconSuite, ‘ICN#’) != noErr))

 BlockMove(*theIconData, theIcon->locationIcon, 256);

 pb.vsCode = vsGetCardLocationText;

 pb.socket = socket;

 pb.dataLen = 256;

 pb.vsDataPtr = (Ptr) &theIcon->locationString;

 CSVendorSpecific(&pb);

 c2pstr(theIcon->locationString);

}

Note
The vsGetCardLocationText call follows the Card Services
convention for returning C strings, which are terminated with a null
character. It is necessary to call c2pstr() on the returned string to
convert it to a Pascal string, which contains a leading length byte. ◆

C H A P T E R 2

Client Software

Sample Client Code 29

Sample Client Pseudocode 2
The first task a client undertakes is to recognize Card Services and determine its
compatibility with the Card Services version. If a client can interact with the available
Card Services, it registers with Card Services and provides the address of its event
handler, as shown below. The handler must be locked down while the client is registered.

main()

{

RegisterClientPB client;

If ((Card Services Exists) && (Card Services Revision is appropriate))

{

client.clientHandle = nil;

client.clientEntry = &ClientEventHandler;

.

.

.

CSRegisterClient(&client);

gClientHandle = client.clientHandle;

CSVendorSpecific(vsCode == vsEnableSocketEvents);

}

}

The event handler consists of the following big switch statement:

ClientEventHandler(ClientCallbackPB pb)

{

switch(pb->event)

{

case kCSCardInsertionMessage:

DoCardInsertion();

break;

case kCSCardReadyMessage:

DoCardReady(pb->socket);

break;

case kCSCardRemovalMessage:

DoCardRemoval();

break;

case kCSEjectionRequestMessage:

DoEjectionRequest();

break;

C H A P T E R 2

Client Software

30 Sample Client Code

case kCSPMSuspendMessage:

DoPMSuspend();

break;

.

.

.

}

}

The normal sequence of events delivered to a client upon the insertion of a PC Card into
a socket is kCSCardInsertionMessage -> kCSCardReadyMessage -> . . .

Clients should not call any Card Services function that requires a card access until
kCSCardReadyMessage is delivered. Upon receiving kCSCardReadyMessage, clients
are free to parse the card attribute space (for example, using CSGetFirstTuple,
CSGetNextTuple, and CSGetTupleData) or ask Card Services for condensed
information about the card (for example, using CSVendorSpecific(vsCode ==
vsGetCardInfo)).

When a client recognizes an inserted card it typically performs the following tasks:

DoCardReady(socket)

{

GetModRequestConfigInfoPB getModReqConfigPB;

ReqModRelWindowPB reqModRelWindowPB;

if (CSGetConfigurationInfo(&getModReqConfigPB) != noErr)

return(err);

if (getModReqConfigPB.firstDevType != myDeviceType)

return(err);

getModReqConfigPB.clientHandle = gClientHandle;

getModReqConfigPB.socket = socket;

// we want leave the card in Memory Only mode (when we get

kCSCardReadyMessage

// for the first time the interface and card are in Memory Only mode)

if (result = CSRequestConfiguration(&getModReqConfigPB))

return(result);

// map the card into a window

reqModRelWindowPB.clientHandle = gClientHandle;

reqModRelWindowPB.windowHandle = nil;

reqModRelWindowPB.socket = socket;

C H A P T E R 2

Client Software

Sample Client Code 31

reqModRelWindowPB.attributes =...;

reqModRelWindowPB.base = 0;

reqModRelWindowPB.size = 0;

if (result = CSRequestWindow(&reqModRelWindowPB))

return(result);

return;

}

C H A P T E R 3

Card Services Routines 3Figure 3-0
Listing 3-0
Table 3-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 3

Card Services Routines

34

Client Information

The PC Card Manager helps client software recognize, configure, and view PC Cards
that are inserted into PC Card sockets on PowerBook computers. The PC Card Manager
is composed of two sets of system software:

■

Card Services is used by all PC Card client software. It is a new part of the Mac OS
and allows software to use PC Cards.

■

Socket Services is used primarily by developers of new PC Card hardware.

This chapter describes only the Card Services routines as they apply to PC Cards used in
PowerBook computers. The chapter provides the following information for each routine:
a general description, software code, and result codes. When applicable, it supplies
supplementary information about the routine and also indicates areas where the routine
differs from the PCMCIA standard.

For detailed information on both Card Services and Socket Services, refer to

PCMCIA
Standards

, published by the Personal Computer Memory Card International Association.

Client Information 3

The routines described in this section let you access Card Services clients and get
information about those clients.

CSGetFirstClient 3

This routine returns a client handle for the first client in the Card Services global client
first-in-first-out (FIFO) queue.

pascal OSErr CSGetFirstClient(GetClientPB *pb)

typedef struct GetClientPB GetClientPB;

struct GetClientPB

{

UInt32 clientHandle; // <- clientHandle for this client

UInt16 socket; // -> logical socket number

UInt16 attributes; // -> bitmap of attributes

};

// 'attributes' field values

enum

{

kCSClientsForAllSockets = 0x0000,

kCSClientsThisSocketOnly= 0x0001

};

C H A P T E R 3

Card Services Routines

Client Information

35

SUPPLEMENTARY INFORMATION

The client handle returned by this routine is used with

CSGetClientInfo

. If the caller
specifies

kCSClientsThisSocketOnly

 and passes in a valid socket number, Card
Services returns the first client whose event mask for the given socket is not

NULL

.

RESULT CODES

CSGetNextClient 3

This routine returns a client handle for the next client in the Card Services global
first-in-first-out (FIFO) queue.

pascal OSErr CSGetNextClient(GetClientPB *pb)

typedef struct GetClientPB GetClientPB;

struct GetClientPB

{

UInt32 clientHandle; // <-> clientHandle for this client

UInt16 socket; // -> logical socket number

UInt16 attributes; // -> bitmap of attributes

};

For the field values of

attributes

, see “CSGetFirstClient” on page 34.

SUPPLEMENTARY INFORMATION

T

he next client handle is used with

CSGetClientInfo

. If the caller specifies

kCSClientsThisSocketOnly

 and passes in a valid socket number, Card Services
returns the next client whose event mask for the given socket is not

NULL

.

RESULT CODES

noErr

No error

kCSBadSocketErr

Invalid socket specified

kCSNoMoreItemsError

No clients registered

noErr

No error

kCSBadSocketErr

Invalid socket specified

kCSNoMoreItemsError

No clients registered

kCSBadHandleErr

Invalid client handle

C H A P T E R 3

Card Services Routines

36

Client Information

CSGetClientInfo 3

This routine returns information that describes a client, and it may be used by browsing
utilities. The information returned includes items such as revision date, length of the
client name, logical socket number, and so forth.

pascal OSErr CSGetClientInfo(GetClientInfoPB *pb)

typedef struct ClientInfoParam ClientInfoParam;

struct ClientInfoParam

{

UInt32 clientHandle; // -> clientHandle returned by

RegisterClient

UInt16 attributes; // <-> subfunction + bitmapped client

attributes

UInt16 revision; // <- BCD value of client's revision

UInt16 kCSLevel; // <- BCD value of CS release

UInt16 revDate; // <- revision date: y[15-9], m[8-5], d[4-0]

SInt16 nameLen; // <-> in: max length of client name string,

// out: actual length

SInt16 vStringLen; // <-> in: max length of vendor string,

// out: actual length

UInt8 *nameString ;; // <- pointer to client name string

// (zero-terminated)

UInt8 *vendorString; // <- pointer to vendor string

// (zero-terminated)

};

// upper byte of attributes is

// kCSCardNameSubfunction,

{ // kCSCardTypeSubfunction,

// kCSHelpStringSubfunction

typedef struct AlternateTextStringParam AlternateTextStringParam;

struct AlternateTextStringParam

{

UInt32 clientHandle; // -> clientHandle returned by

RegisterClient

UInt16 attributes; // <-> subfunction + bitmapped client

attributes

UInt16 socket; // -> logical socket number

UInt16 reserved;// -> zero

SInt16 length; // <-> in: max length of string,

// out: actual length

UInt8 *text; // <- pointer to string (zero-terminated)

};

// upper byte of attributes is

//kCSCardIconSubfunction

typedef struct AlternateCardIconParam AlternateCardIconParam;

C H A P T E R 3

Card Services Routines

Client Information

37

struct AlternateCardIconParam

{

UInt32 clientHandle; // -> clientHandle returned by

RegisterClient

UInt16 attributes; // <-> subfunction + bitmapped client

attributes

UInt16 socket; // -> logical socket number

UInt16 reserved; // -> zero

Handle iconSuite; // <- handle to suite containing all icons

}

//upper byte of attributes is

//kCSActionProcSubfunction

typedef struct CustomActionProcParam CustomActionProcParam

struct // upper struct CustomActionProcParam

{

UInt32 clientHandle; //-> clientHandle returned by

RegisterClient

UInt16 attributes; // <-> subfunction + bitmapped client

attributes

UInt16 socket; // -> logical socket number

};

typedef struct GetClientInfoPB GetClientInforPB;

struct GetClientInfoPB {

union {

ClientInfoParam clientInfo;

AlternateTextStringParam alternateTextString;

AlternateCardIconParam alternateIcon;

CustomActionProcParam customActionProc;

} u;

};

// 'attributes' field values

enum {

kCSMemoryClient = 0x0001,

kCSIOClient = 0x0004,

kCSClientTypeMask = 0x0007,

kCSShareableCardInsertEvents = 0x0008,

kCSExclusiveCardInsertEvents = 0x0010,

kCSInfoSubfunctionMask = 0xFF00,

kCSClientInfoSubfunction = 0x0000,

kCSCardNameSubfunction = 0x8000,

kCSCardTypeSubfunction = 0x8100,

kCSHelpStringSubfunction = 0x8200,

kCSCardIconSubfunction = 0x8300,

kCSActionProcSubfunctionon = 0x8400

};

C H A P T E R 3

Card Services Routines

38

Configuration Routines

SUPPLEMENTARY INFORMATION

The

CSGetClientInfo

 routine is used by clients to extract information about the client
whose client handle is passed in. Note that in this case the caller does not pass in its own
client handle. Card Services passes

kCSClientInfoMessage

 to the client pointed to by
the client handle. The caller of

CSGetClientInfo

 passes the requested information
subfunction in the upper byte of the

attributes

 field. Called clients should respond to

kCSClientInfoMessage

 by filling out the data requested. When a client receives

kCSClientInfoMessage

 that requires it to perform a custom action, it should be
aware that it is being called from the Finder or a similar process environment.

Each client that is called with

kCSClientInfoMessage

 is passed one of the items from

ClientCallbackPB

. The buffer field of

ClientCallbackPB

 contains a pointer to

GetClientInfoPB

:

ClientCallbackPB.function = kCSClientInfoMessage ;

ClientCallbackPB.socket = 0;

ClientCallbackPB.info = 0;

ClientCallbackPB.misc = 0;

ClientCallbackPB.buffer = (Ptr) GetClientInfoPB;

ClientCallbackPB.clientData

= ((ClientQRecPtr) GetClientInfoPB->clientHandle)->clientDataPtr;

Callers of

CSGetClientInfo

 should use

GetFirstClient

 and

GetNextClient

 to
iterate through all the registered clients. Card Services passes the client handle to the
caller of either routine.

RESULT CODES

Configuration Routines 3

The routines described in this section help you to configure the PC Cards and the 68-pin
sockets into which they are plugged.

noErr

No error

kCSBadHandleErr

Invalid client handle

C H A P T E R 3

Card Services Routines

Configuration Routines

39

CSGetConfigurationInfo 3

This routine returns information about the specified socket and PC Card configuration.
The information, as shown below, includes such things as status register setting, device
ID, and manufacturer’s ID.

pascal OSErr CSGetConfigurationInfo(GetModRequestConfigInfoPB *pb)

typedef struct GetModRequestConfigInfoPB GetModRequestConfigInfoPB;

struct GetModRequestConfigInfoPB

{

UInt32 clientHandle; // -> clientHandle returned by RegisterClient

UInt16 socket; // -> logical socket number

UInt16 attributes; // <- bitmap of configuration attributes

UInt8 vcc; // <- Vcc setting

UInt8 vpp1; // <- Vpp1 setting

UInt8 vpp2; // <- Vpp2 setting

UInt8 intType; // <- interface type (memory or memory+I/O)

UInt32 configBase; // <- card base address of config registers

UInt8 status; // <- card status register setting, if present

UInt8 pin; // <- card pin register setting, if present

UInt8 copy; // <- card socket/copy reg setting, if present

UInt8 configIndex; // <- card option register setting, if present

UInt8 present; // <- bitmap of which config regs are present

UInt8 firstDevType; // <- from DeviceID tuple

UInt8 funcCode; // <- from FuncID tuple

UInt8 sysInitMask; // <- from FuncID tuple

UInt16 manufCode; // <- from ManufacturerID tuple

UInt16 manufInfo; // <- from ManufacturerID tuple

UInt8 cardValues; // <- valid card register values

UInt8 padding[1];

};

// 'attributes' field values

enum

{

kCSExclusivelyUsed = 0x0001,

kCSEnableIREQs = 0x0002,

kCSVccChangeValid = 0x0004,

kCSVpp1ChangeValid = 0x0008,

kCSVpp2ChangeValid = 0x0010,

kCSValidClient = 0x0020,

// request that power be applied to socket during sleep

kCSSleepPower = 0x0040,

C H A P T E R 3

Card Services Routines

40

Configuration Routines

kCSLockSocket = 0x0080,

kCSTurnOnInUse = 0x0100

};

// 'intType' field values

enum

{

kCSMemoryInterface = 0x01,

kCSMemory_And_IO_Interface = 0x02

};

// 'present' field values

enum

{

kCSOptionRegisterPresent = 0x01,

kCSStatusRegisterPresent = 0x02,

kCSPinReplacementRegisterPresent = 0x04,

kCSCopyRegisterPresent = 0x08

};

// 'cardValues' field values

enum

{

kCSOptionValueValid = 0x01,

kCSStatusValueValid = 0x02,

kCSPinReplacementValueValid= 0x04,

kCSCopyValueValid = 0x08

};

SUPPLEMENTARY INFORMATION

The

CSGetConfigurationInfo

 routine is generally called after a client has parsed a
tuple stream, identified an inserted card as its card, and then wants to initialize a

GetModRequestConfigInfoPB

 parameter block. For a typical sequence of events, see
“Card Ready Message” beginning on page 18. For information about tuples, refer to
“Tuple Information” on page 49, and to the Glossary at the end of this note.

RESULT CODES

noErr

No error

kCSBadHandleErr

Invalid client handle

C H A P T E R 3

Card Services Routines

Configuration Routines

41

CSRequestConfiguration 3

A client uses this routine to configure the PC Card and the socket. The routine must be
used by clients that require an I/O interface to their PC Card.

pascal OSErr CSRequestConfiguration(GetModRequestConfigInfoPB *pb)

typedef struct GetModRequestConfigInfoPB GetModRequestConfigInfoPB;

struct GetModRequestConfigInfoPB

{

UInt32 clientHandle;// -> clientHandle returned by RegisterClient

UInt16 socket; // -> logical socket number

UInt16 attributes; // -> bitmap of configuration attributes

UInt8 vcc; // -> Vcc setting

UInt8 vpp1; // -> Vpp1 setting

UInt8 vpp2; // -> Vpp2 setting

UInt8 intType; // -> interface type (memory or memory+I/O)

UInt32 configBase; // -> card base address of configuration registers

UInt8 status; // -> card status register setting, if present

UInt8 pin; // -> card pin register setting, if present

UInt8 copy; // -> card socket/copy register setting, if present

UInt8 configIndex; // -> card option register setting, if present

UInt8 present; // -> bitmap of which confign registers are present

UInt8 firstDevType;// <- from DeviceID tuple

UInt8 funcCode; // <- from FuncID tuple

UInt8 sysInitMask; // <- from FuncID tuple

UInt16 manufCode; // <- from ManufacturerID tuple

UInt16 manufInfo; // <- from ManufacturerID tuple

UInt8 cardValues; // <- valid card register values

UInt8 padding[1]; //

};

For the field values of

attributes

,

intType

,

present

, and

cardValues

, see
“CSGetConfigurationInfo” beginning on page 39.

SUPPLEMENTARY INFORMATION

A client calls

CSRequestConfiguration

 after it has parsed a PC Card that is inserted
and ready, and has recognized the card as being usable.

Card Services uses the client handle to maintain a lock on the configuration until the
same client calls

CSReleaseConfiguration

. Once a socket and card are configured,
no other client may alter their configuration.

Configuring a socket and card requires three operations:

■

establishing Vcc and Vpp for the socket

■

establishing the socket interface definition (Memory Only or I/O and Memory)

■

writing to the configuration registers on the card

C H A P T E R 3

Card Services Routines

42

Configuration Routines

When Card Services receives KCSCardInsertionMessage and subsequently
kCSCardReadyMessage for a socket, it configures the socket by setting Vcc, Vpp1, and
Vpp2 to 5 volts, configuring the interface to be Memory Only, and issuing a RESET to the
card. Card Services then parses the CIS of the card. Once Card Services has finished
parsing the CIS, it issues kCSCardReadyMessage to all registered clients. It has already
delivered kCSCardInsertionMessage to the same clients. Even if a client parses and
recognizes a card and intends to use the card without altering the configuration, it
should call CSRequestConfiguration to establish it as the configuring client.

RESULT CODES

CSModifyConfiguration 3

This routine allows a socket and PC Card configuration to be modified without using the
CSReleaseConfiguration routine followed by the CSRequestConfiguration
routine. The routine can only modify a configuration originally requested through
CSRequestConfiguration.

pascal OSErr CSModifyConfiguration(GetModRequestConfigInfoPB *pb)

typedef struct GetModRequestConfigInfoPB GetModRequestConfigInfoPB;

struct GetModRequestConfigInfoPB

{

UInt32 clientHandle; // -> clientHandle returned by RegisterClient

UInt16 socket; // -> logical socket number

UInt16 attributes; // -> bitmap of configuration attributes

UInt8 vcc; // -> Vcc setting

UInt8 vpp1; // -> Vpp1 setting

UInt8 vpp2; // -> Vpp2 setting

UInt8 intType; // -> interface type (memory or memory+I/O)

UInt32 configBase; // -> card base address of config registers

UInt8 status; // -> card status register setting, if present

UInt8 pin; // -> card pin register setting, if present

UInt8 copy; // -> card socket/copy regr setting, if present

UInt8 configIndex; // -> card option register setting, if present

noErr No error

kCSBadSocketErr Invalid socket specified

kCSBadHandleErr Invalid client handle

kCSConfigurationLockedErr Another client has already locked a configuration

kCSNoCardErr No card in the specified socket

kCSOutOfResourceErr Card Services lacks the resources to
complete this request

kCSBadBaseErr Invalid base entered

C H A P T E R 3

Card Services Routines

Configuration Routines 43

UInt8 present; // -> bitmap of which config regis are present

UInt8 firstDevType; // <- from DeviceID tuple

UInt8 funcCode; // <- from FuncID tuple

UInt8 sysInitMask; // <- from FuncID tuple

UInt16 manufCode; // <- from ManufacturerID tuple

UInt16 manufInfo; // <- from ManufacturerID tuple

UInt8 cardValues; // <- valid card register values

UInt8 padding[1]; //

};

For 'attributes', 'intType', 'present', and 'cardValues' field values see
“CSGetConfigurationInfo” beginning on page 39.

SUPPLEMENTARY INFORMATION

The CSModifyConfiguration routine is used by clients to alter any of the three
configuration elements of a socket or card: the power supply (Vcc and Vpp) for the
socket, the socket interface definition (Memory Only or I/O and Memory), the
configuration registers on the card. Only a client that has previously succeeded in calling
CSRequestConfiguration may call CSModifyConfiguration.

RESULT CODES

CSReleaseConfiguration 3

This routine releases the PC Card and socket from the I/O interface, and returns them to
a memory-only interface with configuration 0. If no clients have indicated that they are
using the socket, Card Services may remove power from the socket.

pascal OSErr CSReleaseConfiguration(ReleaseConfigurationPB *pb)

typedef struct ReleaseConfigurationPB ReleaseConfigurationPB;

struct ReleaseConfigurationPB

{

UInt32 clientHandle;

UInt16 socket;

};

noErr No error

kCSBadSocketErr Invalid socket specified

kCSBadHandleErr Invalid client handle

kCSConfigurationLockedErr Another client has already locked a configuration

kCSNoCardErr No card in the specified socket

kCSOutOfResourceErr Card Services lacks the resources to
complete this request

kCSBadBaseErr Invalid base entered

C H A P T E R 3

Card Services Routines

44 Configuration Routines

RESULT CODES

CSAccessConfigurationRegister 3

This routine allows a client to modify a single configuration register. It can do this by
adding AccessConfigurationRegisterPC.offset to the configuration base
address. However, clients do not generally use this routine.

pascal OSErr CSAccessConfigurationRegister(AccessConfigurationRegisterPB *pb)

typedef struct AccessConfigurationRegisterPB AccessConfigurationRegisterPB;

struct AccessConfigurationRegisterPB

{

UInt16 socket; // -> global socket number

UInt8 action; // -> read/write

UInt8 offset; // -> offset from config register base

UInt8 value; // <-> value to read/write

UInt8 padding[1];

};

// 'action' field values

enum {

CS_ReadConfigRegister = 0x00,

CS_WriteConfigRegister = 0x01

};

SUPPLEMENTARY INFORMATION

If the client uses this routine to modify a register, and adds
AccessConfigurationRegisterPB.offset to the configuration base
address, then one of two things happens:

■ If action is set to CS_ReadConfigRegister, the configuration register value is
returned in AccessConfigurationRegisterPB.value.

■ If action is set to CS_WriteConfigRegister, the configuration register is written
with AccessConfigurationRegisterPB.value.

When clients want to set configuration registers, they usually call
CSRequestConfiguration or CSModifyConfiguration and set the appropriate
registers at that time.

noErr No error

kCSBadSocketErr Invalid socket specified

kCSBadHandleErr Invalid client handle

kCSConfigurationLockedErr Another client has already locked a configuration

kCSNoCardErr No card in the specified socket

C H A P T E R 3

Card Services Routines

Masking Routines 45

RESULT CODES

Masking Routines 3

The routines described in this section get and set masks for client events and sockets.
Card Services provide notification about events based on the contents of this field. Each
mask is a 16-bit field, with bit 0 being the lowest-order bit. In the case of event masks, the
8 lower-order bits specify events noted by Socket Services, and the 8 higher-order bits
specify events generated by Card Services. The socket masks establish or clear an event
mask for a given socket number.

CSGetClientEventMask 3

Clients use this routine to obtain their current event mask.

pascal OSErr CSGetClientEventMask(GetSetClientEventMaskPB *pb)

typedef struct GetSetClientEventMaskPB GetSetClientEventMaskPB;

struct GetSetClientEventMaskPB

{

UInt32 clientHandle; // -> clientHandle returned by RegisterClient

UInt16 attributes; // -> bitmap of attributes

UInt16 eventMask; // <- bitmap of events to be passed to client for

 // this socket

UInt16 socket; // -> logical socket number

};

// 'attributes' field values

enum

{

kCSEventMaskThisSocketOnly = 0x0001

};

// 'eventMask' field values

enum

{

kCSWriteProtectEvent = 0x0001,

kCSCardLockChangeEvent = 0x0002,

kCSEjectRequestEvent = 0x0004,

noErr No error

kCSBadSocketErr Invalid socket specified

C H A P T E R 3

Card Services Routines

46 Masking Routines

kCSInsertRequestEvent = 0x0008,

kCSBatteryDeadEvent = 0x0010,

kCSBatteryLowEvent = 0x0020,

kCSReadyChangeEvent = 0x0040,

kCSCardDetectChangeEvent = 0x0080,

kCSPMChangeEvent = 0x0100,

kCSResetEvent = 0x0200,

kCSSSUpdateEvent = 0x0400,

kCSFunctionInterrupt = 0x0800,

kCSAllEvents = 0xFFFF

};

SUPPLEMENTARY INFORMATION

If GetSetClientEventMaskPB.attributes has kCSEventMaskThisSocketOnly
(bit 0) reset, CSGetClientEventMask returns the client’s global event mask. If
GetSetClientEventMaskPB.attributes has kCSEventMaskThisSocketOnly
set, then the event mask for the given socket number is returned. If the client has not
registered for the socket, kCSBadSocketErr is returned.

RESULT CODES

CSSetClientEventMask 3

Clients use this routine to establish their event masks.

pascal OSErr CSSetClientEventMask(GetSetClientEventMaskPB *pb)

typedef struct GetSetClientEventMaskPB GetSetClientEventMaskPB;

struct GetSetClientEventMaskPB

{

UInt32 clientHandle; // -> clientHandle returned by RegisterClient

UInt16 attributes; // -> bitmap of attributes

UInt16 eventMask; // -> bitmap of events to be passed to client

// for this socket

UInt16 socket; // -> logical socket number

};

For the field values of eventMask,see “CSGetClientEventMask” on page 45.

noErr No error

kCSBadSocketErr Invalid socket specified

kCSBadHandleErr Invalid client handle

C H A P T E R 3

Card Services Routines

Masking Routines 47

SUPPLEMENTARY INFORMATION

If GetSetClientEventMaskPB.attributes (bit 0) is reset, CSSetClientEventMask
(the client’s global event mask) is changed. If GetSetClientEventMaskPB.
attributes has kCSEventMaskThisSocketOnly set, then the event mask for the
given socket number is changed. If the client has not registered for the socket,
kCSBadSocketErr is returned.

After processing kCSCardReadyMessage and determining that the card is not usable,
clients should clear their global event masks so that message processing with the system
is streamlined.

RESULT CODES

CSRequestSocketMask 3

This routine requests that the client be notified of status changes for the given socket. If
the client has events enabled in the global event mask, it may be notified more than once
for each status change for the socket.

pascal OSErr CSRequestSocketMask(ReqRelSocketMaskPB *pb)

typedef struct ReqRelSocketMaskPB ReqRelSocketMaskPB;

struct ReqRelSocketMaskPB

{

UInt32 clientHandle; // -> clientHandle returned by RegisterClient

UInt16 socket; // -> logical socket

UInt16 eventMask; // -> bitmap of events to be passed to client for

// this socket

};

For the field values of eventMask, see “CSGetClientEventMask” on page 45.

SUPPLEMENTARY INFORMATION

CSRequestSocketMask must be used before CSSetClientEventMask or
CSGetClientEventMask. Otherwise, these two routines may not execute successfully.
If the client has not registered for the socket, kCSBadSocketErr is returned.

noErr No error

kCSBadSocketErr Invalid socket specified

kCSBadHandleErr Invalid client handle

C H A P T E R 3

Card Services Routines

48 Masking Routines

RESULT CODES

CSReleaseSocketMask 3

The client uses this routine to clear the event mask and to request that it no longer be
notified of status changes to the socket. However, if the client has events enabled in a
global event mask, it will still be notified of status changes in that mask. This is the
recommended way for clients to clear socket events when they recognize that they are
not interested in using a particular PC Card.

pascal OSErr CSReleaseSocketMask(ReqRelSocketMaskPB *pb)

typedef struct ReqRelSocketMaskPB ReqRelSocketMaskPB;

struct ReqRelSocketMaskPB

{

UInt32 clientHandle;// -> clientHandle returned by RegisterClient

UInt16 socket; // -> logical socket

UInt16 eventMask; // -> bitmap of events to be passed to client for

// this socket

};

For the field values of eventMask, see “CSGetClientEventMask” on page 45.

SUPPLEMENTARY INFORMATION

CSReleaseSocketMask is used to clear the event mask for the given socket. If the
client has not registered for the socket, kCSBadSocketErr is returned.

RESULT CODES

noErr No error

kCSBadSocketErr Invalid socket specified

kCSBadHandleErr Invalid client handle

noErr No error

kCSBadSocketErr Invalid socket specified

kCSBadHandleErr Invalid client handle

C H A P T E R 3

Card Services Routines

Tuple Information 49

Tuple Information 3

The routines described in this section allow you to access tuples. A tuple is a chain or
linked list of data blocks. It can be of various lengths. Tuples contain information about
the PC Card, such as access speed, function ID, manufacturer’s ID, organization, and
so forth.

CSGetFirstTuple 3

This routine returns the first tuple of the type specified in the CIS for the specific socket.
If there are no tuples, the status argument returns kCSNoMoreItemsErr. The first tuple
identifies the local socket containing the specified PC Card. It also contains the
information needed to link to the next tuple, as well as fields that are used internally by
Card Services. Tuple format is described in more detail in “CSGetTupleData” on page 52.

pascal OSErr CSGetFirstTuple(GetTuplePB *pb)

typedef struct GetTuplePB GetTuplePB;

struct GetTuplePB

{

UInt16 socket; // -> logical socket number

UInt16 attributes; // -> bitmap of attributes

UInt8 desiredTuple;// -> desired tuple code value, or $FF for all

UInt8 tupleOffset; // -> offset into tuple from link byte

UInt16 flags; // <-> internal use only!

UInt32 linkOffset // <-> internal use only!

UInt32 cisOffset; // <-> internal use only!

union

{

struct

{

UInt8 tupleCode; // <- tuple code found

UInt8 tupleLink; // <- link value for tuple found

} TuplePB;

struct

{

UInt16 tupleDataMax;// -> maximum size of tuple data area

UInt16 tupleDataLen;// <- number of bytes in tuple body

TupleBody tupleData; // <- tuple data

C H A P T E R 3

Card Services Routines

50 Tuple Information

} TupleDataPB;

} u;

};

// 'attributes' field values

enum

{

kCSReturnLinkTuples = 0x0001

};

RESULT CODES

CSGetNextTuple 3

This routine returns the next tuple of the type specified in the CIS for the specific socket.
If there are no tuples, the status argument returns kCSNoMoreItemsErr. The next tuple
contains information about the link value for the tuple. Certain fields in the tuple are
reserved for internal use by Card Services. These fields are updated by Card Services,
and must have the same values as the tuple returned just previously. Tuple format is
described in more detail in “CSGetTupleData” on page 52.

pascal OSErr CSGetNextTuple(GetTuplePB *pb)

typedef struct GetTuplePB GetTuplePB;

struct GetTuplePB

{

UInt16 socket; // -> logical socket number

UInt16 attributes; // -> bitmap of attributes

UInt8 desiredTuple;// -> desired tuple code value, or $FF for all

UInt8 tupleOffset; // -> offset into tuple from link byte

noErr No error

kCSBadSocketErr Invalid socket specified

kCSNoCardErr No card in the specified socket

kCSInUseErr Card is configured and being used
by another client

kCSReadFailureErr Card cannot be read

kCSBadCISErr Card Services has encountered a bad CIS
structure

kCSOutOfResourceErr Card Services lacks the resources to
complete this request

kCSNoMoreItemsErr There are no more tuples to process

C H A P T E R 3

Card Services Routines

Tuple Information 51

UInt16 flags; // <-> internal use only!

UInt32 linkOffset; // <-> internal use only!

UInt32 cisOffset; // <-> internal use only!

union

{

struct

{

UInt8 tupleCode; // <- tuple code found

UInt8 tupleLink; // <- link value for tuple found

} TuplePB;

struct

{

UInt16 tupleDataMax; // -> maximum size of tuple data area

UInt16 tupleDataLen; // <- number of bytes in tuple body

TupleBody tupleData; // <- tuple data

} TupleDataPB;

} u;

};

For the field values of attributes, see “CSGetFirstTuple” on page 49.

RESULT CODES

noErr No error

kCSBadSocketErr Invalid socket specified

kCSNoCardErr No card in the specified socket

kCSInUseErr Card is configured and being used
by another client

kCSReadFailureErr Card cannot be read

kCSBadCISErr Card Services has encountered a
bad CIS structure

kCSOutOfResourceErr Card Services lacks the resources to
complete this request

kCSNoMoreItemsErr There are no more tuples to process

C H A P T E R 3

Card Services Routines

52 Tuple Information

CSGetTupleData 3

This routine returns the contents of the last tuple returned by either kCSGetFirstTuple,
or kCSGetNextTuple. Data returned is packed so that the tuple data is contiguous. The
argument packet contains the same fields as kCSGetFirstTuple, or kCSGetNextTuple:

■ The Socket field identifies the logical socket containing the PC Card.

■ Attributes, DesiredTuple, Flags, LinkOffset, and CISOffset fields are for the internal
use of Card Services, and the must contain the same values as kCSGetFirstTuple,
or kCSGetNextTuple. Attributes and DesiredTuple describe the tuple being processed.
Flags, LinkOffset, and CISOffset maintain state information during CIS processing
requests.

pascal OSErr CSGetTupleData(GetTuplePB *pb)

typedef struct GetTuplePB GetTuplePB;

struct GetTuplePB

{

UInt16 socket; // -> logical socket number

UInt16 attributes; // -> bitmap of attributes

UInt8 desiredTuple;// -> desired tuple code value, or $FF for all

UInt8 tupleOffset; // -> offset into tuple from link byte

UInt16 flags; // <-> internal use

UInt32 linkOffset; // <-> internal use

UInt32 cisOffset; // <-> internal use

union

{

struct

{

UInt8 tupleCode; // <- tuple code found

UInt8 tupleLink; // <- link value for tuple found

} TuplePB;

struct

{

UInt16 tupleDataMax; // -> maximum size of tuple data area

UInt16 tupleDataLen; // <- number of bytes in tuple body

TupleBody tupleData; // <- tuple data

} TupleDataPB;

} u;

};

// 'attributes' field values

enum

{

kCSReturnLinkTuples = 0x0001

};

C H A P T E R 3

Card Services Routines

Card and Socket Status 53

RESULT CODES

Card and Socket Status 3

There is only one card and socket status routine, CSGetStatus.

CSGetStatus 3

This routine returns the following information about the current status of the PC Card
and its socket:

■ Identifies the logical socket in which the card is installed.

■ Provides information about the card itself

n whether it is write protected

n if it is locked in the socket

n whether a request has been made to insert the card into the socket or to eject it

n the condition of the battery

n the status of the card’s readiness for an access

n whether a card is actually present in the socket.

■ It indicates any changes in the status of the card, as listed above.

pascal OSErr CSGetStatus(GetStatusPB *pb)

typedef struct GetStatusPB GetStatusPB;

struct GetStatusPB

{

UInt16 socket; // -> logical socket number

UInt16 cardState; // <- current state of installed card

UInt16 socketState; // <- current state of the socket

};

noErr No error

kCSBadSocketErr Invalid socket specified

kCSNoCardErr No card in the specified socket

kCSOutOfResourceErr Card Services lacks the resources to
complete this request

C H A P T E R 3

Card Services Routines

54 Access Window Management

// 'cardState' field values

enum

{

kCSWriteProtected= 0x0001,

kCSCardLocked = 0x0002,

kCSEjectRequest = 0x0004,

kCSInsertRequest = 0x0008,

kCSBatteryDead = 0x0010,

kCSBatteryLow = 0x0020,

kCSReady = 0x0040,

kCSCardDetected = 0x0080

};

// 'socketState' field values

enum

{

kCSWriteProtectChanged = 0x0001,

kCSCardLockChanged = 0x0002,

kCSEjectRequestPending = 0x0004,

kCSInsertRequestPending = 0x0008,

kCSBatteryDeadChanged = 0x0010,

kCSBatteryLowChanged = 0x0020,

kCSReadyChanged = 0x0040,

kCSCardDetectChanged = 0x0080

};

RESULT CODES

Access Window Management 3

A window in this context is the block of system memory space assigned to the PC Card.
The routines described in this section allow you to:

■ Assign a window.

■ Modify the characteristics of the window.

■ Release the block of system memory space allocated.

noErr No error

kCSBadSocketErr Invalid socket specified

C H A P T E R 3

Card Services Routines

Access Window Management 55

CSRequestWindow 3

This routine assigns memory space, sets the base address and memory window size,
defines access speed, and maps the logical socket number to the system memory
address space.

pascal OSErr CSRequestWindow(ReqModRelWindowPB *pb)

typedef struct ReqModRelWindowPB ReqModRelWindowPB;

struct ReqModRelWindowPB

{

UInt32 clientHandle;// -> clientHandle returned by RegisterClient

UInt32 windowHandle;// <-> window descriptor

UInt16 socket; // -> logical socket number

UInt16 attributes; // -> window attributes (bitmap)

UInt32 base; // <-> system base address

UInt32 size; // <-> memory window size

UInt8 accessSpeed; // -> window access speed (bitmap)

// (not applicable for I/O mode)

UInt8 padding[1];

};

// 'attributes' field values

enum

{

kCSMemoryWindow = 0x0001,

kCSIOWindow = 0x0002,

kCSAttributeWindow = 0x0004, // not normally used by Card Services

// clients

kCSWindowTypeMask = 0x0007,

kCSEnableWindow = 0x0008,

kCSAccessSpeedValid = 0x0010,

kCSSwapLittleToBigEndian= 0x0020,// configure socket for

little-endianess

kCS16BitDataPath = 0x0040,

kCSWindowPaged = 0x0080,

kCSWindowShared = 0x0100,

kCSWindowFirstShared = 0x0200,

kCSWindowProgrammable = 0x0400

};

// 'accessSpeed' field values

enum

{

kCSDeviceSpeedCodeMask = 0x07,

C H A P T E R 3

Card Services Routines

56 Access Window Management

kCSSpeedExponentMask = 0x07,

kCSSpeedMantissaMask = 0x78,

kCSUseWait = 0x80,

kCSAccessSpeed250nsec = 0x01,

kCSAccessSpeed200nsec = 0x02,

kCSAccessSpeed150nsec = 0x03,

kCSAccessSpeed100nsec = 0x04,

kCSExtAccSpeedMant1pt0 = 0x01,

kCSExtAccSpeedMant1pt2 = 0x02,

kCSExtAccSpeedMant1pt3 = 0x03,

kCSExtAccSpeedMant1pt5 = 0x04,

kCSExtAccSpeedMant2pt0 = 0x05,

kCSExtAccSpeedMant2pt5 = 0x06,

kCSExtAccSpeedMant3pt0 = 0x07,

kCSExtAccSpeedMant3pt5 = 0x08,

kCSExtAccSpeedMant4pt0 = 0x09,

kCSExtAccSpeedMant4pt5 = 0x0A,

kCSExtAccSpeedMant5pt0 = 0x0B,

kCSExtAccSpeedMant5pt5 = 0x0C,

kCSExtAccSpeedMant6pt0 = 0x0D,

kCSExtAccSpeedMant7pt0 = 0x0E,

kCSExtAccSpeedMant8pt0 = 0x0F,

kCSExtAccSpeedExp1ns = 0x00,

kCSExtAccSpeedExp10ns = 0x01,

kCSExtAccSpeedExp100ns = 0x02,

kCSExtAccSpeedExp1us = 0x03,

kCSExtAccSpeedExp10us = 0x04,

kCSExtAccSpeedExp100us = 0x05,

kCSExtAccSpeedExp1ms = 0x06,

kCSExtAccSpeedExp10ms = 0x07

};

RESULT CODES

noErr No error

kCSBadSocketErr Invalid socket specified

kCSOutOfResourceErr Card Services lacks the resources to
complete this request

kCSBadBaseErr Invalid base address

kCSBadAttributeErr Invalid window attributes

C H A P T E R 3

Card Services Routines

Access Window Management 57

DIVERGENCE FROM PCMCIA STANDARD

Apple has added another attribute (kCSIOTypeWindow) that lets a client request that its
new window be an I/O cycle window. Speed characteristics of an I/O window are fixed
and any speed-related parameters are ignored. Speed parameters are considered only if
the window is of the type Memory or Attribute.

In the PCMCIA standard, there is an implied window assignment when a client calls
RequestConfiguration because the client must have called RequestI/O first. This
assures the client that there is I/O window support for the change.

CSModifyWindow 3

This routine modifies the attributes and access speed of the window that were allocated
by CSRequestWindow.

pascal OSErr CSModifyWindow(ReqModRelWindowPB *pb)

typedef struct ReqModRelWindowPB ReqModRelWindowPB;

struct ReqModRelWindowPB

{

UInt32 clientHandle;// -> clientHandle returned by RegisterClient

UInt32 windowHandle;// <-> window descriptor

UInt16 socket; // -> logical socket number

UInt16 attributes; // -> window attributes (bitmap)

UInt32 base; // <-> system base address

UInt32 size; // <-> memory window size

UInt8 accessSpeed; // -> window access speed (bitmap)

// (not applicable for I/O mode)

UInt8 padding[1];

};

For the field values of attributes and accessSpeed,see “CSRequestWindow” on
page 55.

RESULT CODES

noErr No error

kCSBadSocketErr Invalid socket specified

kCSBadHandleErr Invalid client handle

kCSOutOfResourceErr Card Services lacks the resources to
complete this request

kCSBadBaseErr Invalid base address

kCSBaddAttributeErr Invalid window attributes

C H A P T E R 3

Card Services Routines

58 Access Window Management

DIVERGENCE FROM PCMCIA STANDARD

The CSModifyWindow routine must have a valid client handle (the one passed in on
CSRequestWindow), otherwise a kCSBadHandleErr error is returned.

CSReleaseWindow 3

This routine releases the block of system memory assigned by CSRequestWindow.

pascal OSErr CSReleaseWindow(ReqModRelWindowPB *pb)

typedef struct ReqModRelWindowPB ReqModRelWindowPB;

struct ReqModRelWindowPB

{

UInt32 clientHandle;// -> clientHandle returned by RegisterClient

UInt32 windowHandle;// -> window descriptor

UInt16 socket; // -> logical socket number

UInt16 attributes; // not used

UInt32 size; // not used

UInt8 accessSpeed; // not used

UInt8 padding[1]; // not used

};

For the field values of attributes and accessSpeed, see “CSRequestWindow” on
page 55.

RESULT CODES

DIVERGENCE FROM PCMCIA STANDARD

CSReleaseWindow must have a valid client handle (the one passed in on
CSRequestWindow), otherwise kCSBadHandleErr is returned.

noErr No error

kCSBadSocketErr Invalid socket specified

kCSBadHandleErr Invalid client handle

C H A P T E R 3

Card Services Routines

Client Registration 59

Client Registration 3

When a PC Card is installed in a socket, it must be registered with Card Services. This
allows Card Services to provide the client with event notifications, and to keep track of
the clients that can manipulate PC Cards, using the client services routines described in
this section. These routines allow you to:

■ Get information about Card Services.

■ Register clients.

■ Deregister clients.

CSGetCardServicesInfo 3

This routine allows a client to detect the presence of Card Services. It returns the number
of logical sockets installed; indicates whether Card Services is installed; and provides
information about the vendor, such as revision number.

pascal OSErr CSGetCardServicesInfo(GetCardServicesInfoPB *pb)

typedef struct GetCardServicesInfoPB GetCardServicesInfoPB;

struct GetCardServicesInfoPB

{

UInt8 signature[2]; // <- two ascii chars 'CS'

UInt16 count; // <- total number of sockets installed

UInt16 revision; // <- BCD

UInt16 kCSLevel; // <- BCD

UInt16 reserved; // -> zero

UInt16 vStrLen; // <-> in: client's buffer size

out: vendor string length

UInt8 *vendorString; // <-> in: pointer to buffer to hold CS vendor

// string (zero-terminated)

// out: CS vendor string copied to buffer

};

RESULT CODES

noErr No error

C H A P T E R 3

Card Services Routines

60 Client Registration

CSRegisterClient 3

Clients invoke this routine to make Card Services aware of their presence and to indicate
their interest in various events. They also use the routine to indicate whether they are a
memory or I/O client device driver, or a Memory Technology Driver (MTD).

pascal OSErr CSRegisterClient(RegisterClientPB *pb)

typedef struct RegisterClientPB RegisterClientPB;

struct RegisterClientPB

{

UInt32 clientHandle; // <- client descriptor

PCCardCSClientUPPclientEntry; // -> UPP to client's event handler

UInt16 attributes; // -> bitmap of client attributes

UInt16 eventMask; // -> bitmap of events to notify client

Ptr clientData; // -> pointer to client's data

UInt16 version; // -> Card Services version client expects

};

// 'attributes' field values (see GetClientInfo)

// kCSMemoryClient = 0x0001,

// kCSIOClient = 0x0004,

// kCSShareableCardInsertEvents = 0x0008,

// kCSExclusiveCardInsertEvents = 0x0010

SUPPLEMENTARY INFORMATION

Observe these precautions when using CSRegisterClient:

■ It must not be called at interrupt time.

■ You must specify the type of client for event notification order.

■ You must set the event mask for types of events in which the client is interested.
The event mask passed in during this call will be set for the global mask and all
socket event masks.

RESULT CODES

noErr No error

kCSOutOfResourceErr Card Services lacks the resources to
complete this request

kCSBadAttributeErr Invalid window attributes

C H A P T E R 3

Card Services Routines

Miscellaneous Routines 61

DIVERGENCE FROM PCMCIA STANDARD

The CSRegisterClient routine is synchronous. On returning from
CSRegisterClient the client handle field is valid. Once this call is successful, all
clients should support reentrancy. After calling CSRegisterClient, clients normally
call CSVendorSpecific with vsCode set to vsEnableSocketEvents.

CSDeregisterClient 3

Clients invoke this routine when they want to remove themselves from the system. They
must return all resources requested before calling this routine.

pascal OSErr CSDeregisterClient(RegisterClientPB *pb)

typedef struct RegisterClientPB RegisterClientPB;

struct RegisterClientPB

{

UInt32 clientHandle; // <- client descriptor

PCCardCSClientUPPclientEntry; // -> UPP to client's event handler

UInt16 attributes; // -> bitmap of client attributes

UInt16 eventMask; // -> bitmap of events to notify client

Ptr clientData; // -> pointer to client's data

UInt16 version; // -> Card Services version client expects

};

For the field values of attributes, see “CSRegisterClient” on page 60.

RESULT CODES

Miscellaneous Routines 3

The routines described in this section help you with various Card Services management
tasks, such as:

■ Resetting the PC Card.

■ Validating the CIS (Card Information Structure).

■ Getting vendor information that is specific to Apple Computer, Inc.

noErr No error

kCSBadHandleErr Invalid client handle

kCSBadAttributeErr Invalid window attributes

C H A P T E R 3

Card Services Routines

62 Miscellaneous Routines

CSResetCard 3

This routine resets the logical socket number. It can also reset PC Card attributes, but this
function of the routine is not used in this application.

pascal OSErr CSResetCard(ResetCardPB *pb)

typedef struct ResetCardPB ResetCardPB;

struct ResetCardPB

{

UInt32 clientHandle; // -> clientHandle returned by RegisterClient

UInt16 socket; // -> socket number

UInt16 attributes; // not used

};

SUPPLEMENTARY INFORMATION

Calling clients will receive kCSResetCompleteMessage regardless of whether or not
their socket event mask and global event mask have set kCSResetEvent.

RESULT CODES

DIVERGENCE FROM PCMCIA STANDARD

Card Services does not issue kCSCardResetMessage in place of
kCSCardReadyMessage. If a client is issuing a reset to a card, then it should know
whether the card will generate a kCSCardReadyMessage or not. If the card goes
through a transition from busy to ready, then the client will know that it should not
access the card until it receives the kCSCardReadyMessage event.

noErr No error

kCSBadSocketErr Invalid socket specified

kCSNoCardErr No card in the specified socket

kCSBadHandleErr Invalid client handle

C H A P T E R 3

Card Services Routines

Miscellaneous Routines 63

CSValidateCIS 3

This routine validates the CIS on the PC Card in the socket specified. It identifies the
logical socket that contains the PC Card and returns the number of valid tuple chains
located in the CIS.

pascal OSErr CSValidateCIS(ValidateCISPB *pb)

typedef struct ValidateCISPB ValidateCISPB;

struct ValidateCISPB

{

UInt16 socket; // -> socket number

UInt16 chains; // -> whether link/null tuples should be included

};

RESULT CODES

DIVERGENCE FROM PCMCIA STANDARD

The PCMCIA standard indicates that a kCSBadCISErr result should be returned by
setting the pb->chains element to zero. To accomodate cards that have no tuples,
Apple returns kCSBadCISErr as a result code if the CIS is bad. If noErr is returned,
then the value in the pb->chains reflects the number of valid tuples, not counting
link tuples.

CSVendorSpecific 3

CSVendorSpecific is defined to allow Apple to extend the interface definition of Card
Services for elements that are specific to the Mac OS. The call requires two paramenters,
clientHandle and vsCode.

pascal OSErr CSVendorSpecific(VendorSpecificPB *pb)

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle; // -> clientHandle returned by RegisterClient

UInt16 vsCode;

UInt16 socket;

noErr No error

kCSBadSocketErr Invalid socket specified

kCSNoCardErr No card in the specified socket

kCSBadCISErr Card Services has detected a bad CIS

C H A P T E R 3

Card Services Routines

64 Miscellaneous Routines

UInt32 dataLen; // -> length of buffer pointed to by

vsDataPtr

UInt8 *vsDataPtr; // -> Card Services version this client

expects

};

// 'vsCode' field values

enum

{

vsAppleReserved = 0x0000,

vsEjectCard = 0x0001,

vsGetCardInfo = 0x0002,

vsEnableSocketEvents = 0x0003,

vsGetCardLocationIcon = 0x0004,

vsGetCardLocationText = 0x0005,

vsGetAdapterInfo = 0x0006

};

SUPPLEMENTARY INFORMATION

Additional parameters may be required for each vendor-specific code, as described in
the following sections. The parameters that may be required are:

■ EjectCard Parameter Block

■ GetCardInfo Parameter Block

■ EnableSocketEvents Parameter Block

■ GetAdapterInfo Parameter Block

RESULT CODES

EjectCard Parameter Block 3

If clients have configured their PC Cards themselves, they must pass in their client
handle when they wish to eject such cards. Clients may not be able to eject cards they
have not configured until the card is reconfigured.

// vendor-specific call #1

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle; // -> clientHandle returned by RegisterClient

UInt16 vsCode; // -> vsCode = 1

noErr No error

kCSUnsupportedFunctionErr Invalid vendor-specific code

C H A P T E R 3

Card Services Routines

Miscellaneous Routines 65

UInt16 socket; // -> desired socket number to eject

UInt32 dataLen; // not used

UInt8 *vsDataPtr; // not used

};

RESULT CODES

GetCardInfo Parameter Block 3

Calling this routine allows the client to get vendor-specific information, as detailed in the
following code.

// vendor-specific call #2

typedef struct GetCardInfoPB GetCardInfoPB;

struct GetCardInfoPB

{

UInt8 cardType; // <- type of card in socket (defined at top of

file)

UInt8 subType; // <- detailed card type (defined at top of file)

UInt16 reserved; // <-> reserved (should be set to zero)

UInt16 cardNameLen; // -> maximum length of card name to be returned

UInt16 vendorNameLen;// -> maximum length of vendor name to be

returned

UInt8 *cardName; // -> ptr to card name string (read from CIS),

or nil

UInt8 *vendorName; // -> ptr to vendor name (read from CIS), or nil

};

// GetCardInfo card types

#define kCSUnknownCardType 0

#define kCSMultiFunctionCardType 1

#define kCSMemoryCardType 2

#define kCSSerialPortCardType 3

#define kCSSerialOnlyType 0

#define kCSDataModemType 1

#define kCSFaxModemType 2

#define kCSFaxAndDataModemMask (kCSDataModemType | kCSFaxModemType)

#define kCSVoiceEncodingType 4

noErr No error

kCSBadSocketError Invalid socket specified

kCSNoCardErr No card in the specified socket

kCSInUseErr Card is configured and being used by another
client

C H A P T E R 3

Card Services Routines

66 Miscellaneous Routines

#define kCSParallelPortCardType 4

#define kCSFixedDiskCardType 5

#define kCSUnknownFixedDiskType 0

#define kCSATAInterface 1

#define kCSRotatingDevice (0<<7)

#define kCSSiliconDevice (1<<7)

#define kCSVideoAdaptorCardType 6

#define kCSNetworkAdaptorCardType 7

#define kCSAIMSCardType 8

#define kCSNumCardTypes 9

RESULT CODES

EnableSocketEvents Parameter Block 3

Calling this routine is equivalent to calling the old RequestSocket mask for every
socket in the system, using the global event mask as the starting socket event mask.

// vendor-specific call #3

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle;// -> clientHandle returned by RegisterClient

UInt16 vsCode; // -> vsCode = 3

UInt16 socket; // not used

UInt32 dataLen; // not used

UInt8 *vsDataPtr; // not used

};

RESULT CODES

DIVERGENCE FROM PCMCIA STANDARD

This call is not a standard PCMCIA call. It provides a better way to enable events after
reentrance into a client is available.

noErr No error

kCSBadSocketError Invalid socket specified

kCSNoCardErr No card in the specified socket

noErr No error

kCSBadHandleErr Invalid client handle

C H A P T E R 3

Card Services Routines

Miscellaneous Routines 67

GetAdapterInfo Parameter Block 3

Socket Services API elements are frequently not brought out to the Card Services API but
are still required for normal card operation. This call allows clients to query the
capabilities of an adapter that interfaces to a given socket. This information may be used
to improve the operation of a client with a given socket and card.

// vendor-specific call #6

typedef struct VendorSpecificPB VendorSpecificPB;

struct VendorSpecificPB

{

UInt32 clientHandle; // -> clientHandle returned by RegisterClient

UInt16 vsCode; // -> vsCode = 6

UInt16 socket; // -> socket number

UInt32 dataLen; // -> length of GetAdapterInfoPB plus space for

// voltages

UInt8 *vsDataPtr; // -> GetAdapterInfoPB * (supplied by client)

};

typedef struct GetAdapterInfoPB GetAdapterInfoPB;

struct GetAdapterInfoPB

{

UInt32 attributes; // <- capabilties of socket's adapter

UInt16 revision; // <- id of adapter

UInt16 reserved; //

UInt16 numVoltEntries; // <- number of valid voltage values

UInt8 *voltages; // <-> array of BCD voltage values

};

// 'attributes' field values

enum

{

kCSLevelModeInterrupts = 0x00000001,

kCSPulseModeInterrupts = 0x00000002,

kCSProgrammableWindowAddr = 0x00000004,

kCSProgrammableWindowSize = 0x00000008,

kCSSocketSleepPower = 0x00000010,

kCSSoftwareEject = 0x00000020,

kCSLockableSocket = 0x00000040,

kCSInUseIndicator = 0x00000080

};

C H A P T E R 3

Card Services Routines

68 PC Card Manager Constants

RESULT CODES

Unsupported Routines 3

CSRequestExclusive and CSReleaseExclusive are not supported by the
PowerBook Card Services API.

PC Card Manager Constants 3

The PC Card Manager helps client software to recognize, configure, and view PC Cards
that are installed in the PC Card sockets on PowerBook computers. This section lists the
PC Card Manager constants and explains the function of each constant.

// miscellaneous

#define CS_MAX_SOCKETS 32 // a long is used as a socket bitmap

enum

{

gestaltCardServicesAttr = 'pccd', // Card Services attributes

gestaltCardServicesPresent = 0 // if set, Card Services is present

};

enum

{

_PCCardDispatch = 0xAAF0 // Card Services entry trap

};

/*

The PC Card Manager will migrate towards a complete Macintosh name

space very soon. Part of that process will be to reassign result codes

to a range reserved for the PC Card Manager. The range will be -9050 to

-9305 (decimal inclusive).

*/

noErr No error

kCSBadSocketError Invalid socket specified

C H A P T E R 3

Card Services Routines

PC Card Manager Constants 69

// result codes

enum

{

};

kCSBadAapterErr = -9050 // invalid adapter number
kCSBadAttributeErr = -9051 // attributes field value is invalid
kCSBadBaseErr = -9052 // base system memory address is invalid
kCSBadEDCErr = -9053 // EDC generator specified is invalid
kCSBadIRQErr = -9054 // specified IRQ level is invalid
kCSBadOffsettErr = -9055 // specified PC Card memory array offset is

// invalid
kCSBadPageErr = -9056 // specified page is invalid
kCSBadSizeErr = -9057 // specified size is invalid
kCSBadSocketErr = -9058 // specified logical or physical socket

// number is invalid
kCSBadTypeErr = -9059 // specified window or interface type is

// invalid
kCSBadVccErr = -9060 // specified Vcc power level index is invalid
kCSBadVppErr = -9061 // specified Vpp1 or Vpp2 power level index

// is invalid
kCSBadWindowErr = -9062 // specified window is invalid
kCSBadArgLengthErr = -9063 // ArgLength argument is invalid
kCSBadArgsErr = -9064 // values in argument packet are invalid
kCSBadHandleErr = -9065 // clientHandle is invalid
kCSBadCISErr = -9066 // CIS on card is invalid
kCSBadSpeedErr = -9067 // specified speed is unavailable
kCSReadFailureErr = -9068 // unable to complete read request
kCSWriteFailureErr = -9069 // unable to complete writer request
kCSGeneralFailureErr = -9070 // an undefined error has occurred
kCSNoCardErr = -9071 // no PC Card in the socket
kCSUnsupportedFunctionErr = -9072 // function is not supported by this

// implementation
kCSUnsupportedModeErr = -9073 // mode is not supported
kCSBusyErr = -9074 // unable to process request at this time
kCSWriteProtectedErr = -9075 // media is write-protected
kCSConfigurationLockedErr = -9076 // a configuration has already been locked
kCSInUseErr = -9077 // resource is being used by a client
kCSNoMoreItemsErr = -9078 // there are no more of the items requested
kCSOutOfResourceErr = -9079 // Card Services has exhausted the resource

C H A P T E R 3

Card Services Routines

70 PC Card Manager Constants

// messages sent to client's event handler

enum

{

};

kCSNullMessage = 0x00 // no messages pending (not sent to clients)

kCSCardInsertionMessage = 0x01 // card has been inserted into the socket

kCSCardRemovalMessage = 0x02 // card has been removed from the socket

kCSCardLockMessage = 0x03 // card is locked into the socket with a
// mechanical latch

kCSCardUnlockMessage = 0x04 // card is no longer locked into the socket

kCSCardReadyMessage = 0x05 // card is ready to be accessed

kCSCardResetMessage = 0x06 // physical reset has completed

kCSInsertionRequestMessage = 0x07 // request to insert a card using insertion
// motor

kCSInsertionCompleteMessage = 0x08 // insertion motor has finished inserting a
// card

kCSEjectionRequestMessage = 0x09 // user or other client is requesting a card
// ejection

kCSEjectionFailedMessage = 0x0A // eject failure due to electrical or
// mechanical problems

kCSPMResumeMessage = 0x0B // power management resume

kCSPMSuspendMessage = 0x0C // power management suspend

kCSResetPhysicalMessage = 0x0D // physical reset is about to occur

kCSResetRequestMessage = 0x0E // client has requested physical reset

kCSResetCompleteMessage = 0x0F // ResetCar() background reset has completed

kCSBatteryDeadMessage = 0x10 // battery is no longer usable; data will be
// lost

kCSBatteryLowMessage = 0x11 // battery is weak and should be replaced

kCSWriteProtectMessage = 0x12 // card is now write protected

kCSWriteEnableMessage = 0x13 // card is now write enabled

kCSClientInfoMessage = 0x14 // client is to return client information

kCSSSUpdatedMessage = 0x15 // AddSocketServices/ReplaceSocketServices
// has changed SS (SocketServices) support

kCSFunctionInterruptMessage = 0x16 // card function interrupt

kCSAccessErrorMessage = 0x17 // client bus made error on access to socket

kCSCardUnconfiguredMessage = 0x18 // a kCSCardReadyMessage was delivered to
// all clients and no clients request a
// configuration for the socket

kCSStatusChangedMessage = 0x19 // status change for cards in I/O mode

C H A P T E R 4

Device Drivers 4Figure 4-0
Listing 4-0
Table 4-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 4

Device Drivers

72

Driver Loading

This chapter provides guidelines for developers of PC Card device drivers for
PowerBook computers. It describes questions that commonly come up during
development and suggests answers to those questions.

Driver Loading 4

Currently there is no defined mechanism for installing and loading drivers from PC
Cards. Apple is working on an architecture for loading device drivers from PC Cards,
but neither the PCMCIA committee nor the Apple development team has a solution at
this time. Later versions of this developer note will describe any driver loading
architecture that Apple develops before the first product release.

In the first system release, all drivers and other client software are stored in the PC
Card’s expansion ROM. Because the expansion ROM is electronically erasable, its
contents can be changed in the field if necessary.

Drivers may also be loaded from a disk or other source by the Macintosh system
software.

Booting Requirements 4

The hierarchical file system (HFS) storage driver lets the HFS mount data storage and
search for a bootable system. To boot the Macintosh system from a PC Card, the HFS
storage driver must be

■

aware of the Slot Manager. It must know how to install a DCE (device control entry)
that is compatible with booting from a slot device.

■

present in the PC Card’s expansion ROM or in the Macintosh ROM.

Guidelines for Socket Developers 4

Card Services supports the process of adding and deleting Socket Services modules.
Socket Services modules are developed to enable support for different socket adapters or
different adapter topologies. For example, a PCMCIA adapter (controller) may be added
to a system via a PDS (processor-direct slot) connector and therefore requires a version of
Socket Services that knows how to handle interrupts from the PDS adapter.

Card Services provides

AddSocketServices

 for Socket Services developers. When

AddSocketServices

 is called, the Socket Services to be installed passes an entry point,
a unique (usually version-associated) ID, the number of adapters and sockets supported
by the installing Socket Services module, and a pointer to the Socket Services globals.

C H A P T E R 4

Device Drivers

Interrupt Support

73

Card Services passes the installed Socket Services globals pointer to it during each
function call made to Socket Services. The

AddSocketServices

 parameter block
structure is as follows:

typedef struct

{

Ptr SSEntry; // entry point to SS

ushort Attributes; // unique id

ushort NumAdapters; // number of adapters supported

ushort NumSockets; // number of sockets supported

Ptr DataPtr; // pointer to SS globals

}

AddSocketServicesPB;

Interrupt Support 4

Interrupt support for drivers is handled at multiple levels within the Mac OS architec-
ture. When a client registers with Card Services, the client passes a client callback
address that Card Services stores for all callbacks to the client. At the same time, the
registering client also passes an event mask for all events for which it wants to receive
callback notification. A client can adjust the event mask at some later time with

GetClientEventMask

 and

SetClientEventMask

.

When an event generated by Card Services or Socket Services is destined for a client
(for example, if the client has previously indicated that it wants to be notified of certain
events on a given socket) Card Services uses the appropriate event callback interface
described in the Card Services section of the

PCMCIA Standards

. There are different
callback arguments based on the event type.

Some events are artificially generated by Card Services. For example, when a client
registers after a PC Card has already been inserted into a socket, Card Services generates
a

kCSCardInsertionMessage

 event for the newly registered client. In this way, clients
can be designed to do PC Card tasks in response to event callbacks. These artificial
events execute at interrupt level 0.

Other events may be the result of an interrupt generated by the Socket Services adapter.
An example of this is a

kCSFunctionInterruptMessage

 event, which would be
generated by an adapter whose socket has a PC Card that asserts

–IREQ

. This type of
event is dispatched to the client at the interrupt level at which the adapter interrupt
came in. In this case the client has to be aware that any event-handling code must
operate within the bounds of the normal execution restrictions placed on Macintosh
interrupt time. Refer to

Inside Macintosh: Memory

 for further information.

C H A P T E R 4

Device Drivers

74

Alternative PCMCIA Controllers

Alternative PCMCIA Controllers 4

The PowerBook Card Services architecture is designed to support alternative PCMCIA
controllers in conformance with the intent of the PCMCIA standard. The PC Card
support architecture includes the ability to substitute PCMCIA controllers (and provide
an accompanying Socket Services module) and have existing clients work with the new
controller. There are no architectural barriers that would prevent Apple from adopting
other PCMCIA controllers in the future.

C H A P T E R 5

Human Interface 5Figure 5-0
Listing 5-0
Table 5-0

Thi d t t d ith F M k 4 0 4

C H A P T E R 5

Human Interface

76

Manual Card Ejection

This chapter discusses some of the human interface issues that are important to
developers designing panels or developing software for PC Cards in the PowerBook
environment.

The PCMCIA standard supports mass storage cards as well as I/O cards, such as
modems, network cards, and video cards. The Macintosh desktop metaphor already
includes the concept of storage device representation (for example, floppy disks, hard
disks, servers, and CD-ROMs) so it automatically supports PC Cards that provide mass
storage. Since users are already familiar with manipulating desktop icons for these
storage devices, Apple has extended the metaphor to include I/O cards as well. This
approach has the following advantages:

■

It provides a more consistent user experience for all types of PC Cards.

■

It informs the user that the card is installed.

■

It provides greater protection for the user, the card, and the operating system by
providing a software-controlled removal mechanism for all cards.

Manual Card Ejection 5

PowerBook computers currently support PC Card ejection using a software command.
Ejection is controlled by Card Services which can eject a PC Card after notifying all card
clients that the card is about to be ejected. If clients are using resources on the card, they
have the option of refusing the request and telling users why the card cannot be ejected.

In the future, software ejection may not be the norm. Software clients may have to deal
with the situation where a PC Card is removed without notification. Currently, a user
may manually eject the card in an emergency by inserting a paper clip into a hole near
the card socket. (This method of ejection is similar to the method of emergency ejection
used with floppy diskettes in a floppy disk drive.) For this reason, clients must be careful
if they access PC Card addresses (registers and memory locations) directly because they
cannot rely on advice from Card Services before the PC Card is ejected, and clients it
must be aware that the access may fail under these conditions.

A mechanism built into Card Services prepares for and handles unexpected PC Card
removal. When Card Services detects an access error to a PC Card it sends an access
error message to each registered PC Card client. Clients may want to set an internal flag
and halt access to the card during the next attempt to access the card.

Finder Extension 5

Support for I/O-oriented PC Cards is provided through a Macintosh

Finder extension

that is a client of Card Services. The Finder extension mechanism was chosen because it
is the only external means of providing access to the Finder’s internal code. The
extension maintains card icons on the desktop, provides custom card information in Get

C H A P T E R 5

Human Interface

Finder Extension

77

Info windows, and ejects cards when they are dragged to the Trash folder. The Finder
extension also helps a client to provide custom icons, card names, card types, help
messages, and other custom features (based on card type) when a card is opened. For
example, a typical custom feature would be to open the Monitors control panel when the
user double-clicks a video card’s icon.

The following sections describe various Finder extension support features.

Card Services Client Registration 5

The Finder extension registers itself with Card Services as part of its startup process.
After that point, it simply tracks card events to determine when cards have been
inserted or removed. It ignores storage cards because they are normally handled by
device drivers.

The client event handler and extension code communicate with each other using shared
global variables. This is necessary because the event handler receives card events at
interrupt time. The shared variables let the extension code process events at a later
(noninterrupt) time, when it can use all parts of the Macintosh Toolbox.

Card Icons 5

Macintosh users benefit from having icons and names that reflect the functionality or the
type of the card, and each installed PC Card is identified by a custom icon. The name
associated with the icon is the name taken from the card’s level 1 version tuple. If the
tuple is missing or no name is specified, the card is assigned the name “Untitled.” The
user cannot change the card’s icon or name. Figure 5-1 shows a sample PC Card icon.

Figure 5-1

Sample PC Card icon

Client software can provide a custom icon, overriding the default icon for the card type.
It may also override the card’s name. See “Custom Support for I/O Cards” on page 81
for more information about overriding card icons and names.

User Interactions 5

When a PC Card is inserted, the Finder extension places its icon on the Macintosh
desktop. At this point the icon can be dragged anywhere on the desktop or placed in the
Trash folder. If the user attempts to drag the icon to a folder or disk icon, or to an open
folder or disk window, the user is presented with a dialog box (Figure 5-2) that indicates
the icon must remain on the desktop, and the icon returns to its previous location.

C H A P T E R 5

Human Interface

78

Finder Extension

Figure 5-2

Icon dragging warning

If the user drags a PC Card icon onto an application’s icon and the application starts up,
the card’s file will not be included in the list of files sent to the application for processing.

If the user drags a card icon to the Trash folder, the Finder extension tries to eject the
card. If the card is in use, the ejection operation fails and the user is presented with the
dialog box shown in Figure 5-3.

Figure 5-3

Card ejection warning

If the card cannot be ejected because of a failure of the ejection mechanism or because the
card’s slot is blocked, the user is presented with a dialog box that describes the problem
and indicates what to do about it. Figure 5-4 shows atypical ejection failure dialog box.

Figure 5-4

Ejection failure warning

If the user attempts to eject the card a second time, and this attempt also fails, the user is
presented with a dialog box pointing to the user guide for instructions on manual
ejection of the card. Figure 5-5 shows this dialog box.

C H A P T E R 5

Human Interface

Finder Extension

79

Figure 5-5

User guide reference warning

When a card has been successfully ejected, the Finder extension removes its icon from
the desktop. It also closes the card’s Get Info window if it was open.

Card Information Display 5

Most Finder objects (disks, files, folders, Trash folder) are allowed to display information
about themselves using a Get Info window. PC Cards are no exception. The Get Info
windows for PC Cards contain all relevant information about the PC Cards such as their
icon, name, function, and location. Figure 5-6 shows an example of a PC Card Get Info
window.

Figure 5-6

Sample PC Card Get Info window

Custom Card Actions 5

A PowerBook user who double-clicks on an icon or selects Open from the File menu
expects something to happen. Typically, the item represented by the icon opens. Apple
does not currently implement any standard icon opening behavior for PC Cards.
However, Card Services and the Finder extension let developers supply custom actions.

Since many I/O cards have no user interface elements, opening a card may be meaning-
less. In this case, double-clicking on the desktop icon displays a dialog box that names
the card and gives a generic message about it, as shown in Figure 5-7.

C H A P T E R 5

Human Interface

80

Finder Extension

Figure 5-7

Generic message for cards that cannot be opened

Card Services provides a mechanism that lets clients define custom actions for specific
card types. The Finder extension uses this mechanism to override the default open action
by first asking the client to perform a custom action. If no custom action is defined, the
Finder extension executes its default action.

Some examples of custom actions that a client might perform include

■

helping the user select and open a terminal program for modem cards

■

opening an address book application for a pager card

When defining custom actions, it should be easy to access a card’s associated elements
(such as a page card’s address book application) when you double-click the PC Card’s
icon. If some elements do not open immediately, a dialog box is displayed that directs
you to the interface element requiring attention.

IMPORTANT

Low-level PC Card support software should not implement
user interface actions. However, low-level software may
initiate events to be handled by higher-level software.

▲

Software Not Installed 5

When you are using PC Cards, you generally need specific application software. For
example, you need networking software for the LAN cards, and so forth. If you install a
card and the application software is not installed on your computer, you will see the type
of message shown in Figure 5-8. You can choose to ignore the message by clicking
Cancel, or eject the PC Card by clicking Eject. You will not be able to access the card until
you install the appropriate software.

Figure 5-8

Missing software warning

C H A P T E R 5

Human Interface

Multifunction Cards

81

Custom Support for I/O Cards 5

The Finder extension provides a mechanism for developers that supports custom icons,
names, types, help messages, actions, and other custom features. Observe the following
guidelines when customizing these elements of PC Cards:

■

You can design custom icons that are passed to the Macintosh Finder. The custom icon
should represent the functionality of the card and look similar to Apple PC Card
icons. The shape of the icon should be the same as the shape of Apple’s icons,
although you may use a unique symbol or logo inside this shape to identify the card
as coming from a particular developer.

■

Card names provided by the card vendor may be overwritten with names provided
by the software developer. These names should be placed in a resource so that they
may be localized. For example, if a vendor supplies a card name “XY-5Y-22A,” which
is meaningless to the user, you may provide a card name such as “ACME Modem” to
explain the functionality provided by the card.

■

You may override card types defined by the Finder. The Finder displays the
information to the user in the Kind field of the card’s Get Info window. For example,
the Finder may define a card type as “Serial Card” but you may override this with the
more specific card type “FAX Modem Card.”

■

You may customize balloon help messages to provide more specific card information.
For example, if the Finder includes the help message “This is a serial card…” you may
substitute the message “This is a FAX Modem card…”

■

Custom card actions are discussed in “Custom Card Actions” on page 79. You can
defines custom card actions that will be performed when the user double-clicks on the
desktop card icon. If you do not define custom actions, If it has no default action, it
displays the generic message shown in Figure 5-7.

Multifunction Cards 5

A multifunction card is one that can perform at least two discrete functions, such as
modem and network functions. This type of card is supported by the latest release of the
PCMCIA standard, which is documented in

PC Card Standard

, February 1995, and
referred to in this section as the “February release.”

Apple Computer, Inc. provides full software support for PC Cards, as defined by the
PCMCIA standard, release 2, and documented in

PCMCIA Standards

, Release 2.01,
November 1992. This standard does not support multifunction cards and, if you use a
multifunction card with the software currently supplied by Apple, only the first function
on the card will be recognized by the software.

There are ways currently available to work around this situation. This section provides
an overview of February-release support for multifunction cards, and indicates ways
that developers may use other Apple resources to accommodate multifunction cards
with the Apple software currently available.

C H A P T E R 5

Human Interface

82

Multifunction Cards

IMPORTANT

Before you attempt to write drivers or other software to support
multifunction cards, you should read the relevant sections in

PC Card Standard

, February 1995, and consult your technical
support representative at Apple Computer, Inc.

▲

February-Release Support 5

Multifunction cards contain multiple Card Information Structures (CIS). The first CIS,
which is shown in Figure 5-9 as the global CIS, identifies the card as being one that
contains multiple functions. It does this by means of the

CISTPL_LONGLINK_MFC

tuple
(MFC tuple). There are separate CIS for each of the functions supported, that is for each
set of configuration registers on the card.

The MFC tuple performs the following functions:

■

It provides the link to the next tuple.

■

It indicates the number of sets of configuration registers (that is the number of
functions implemented by the card)

■

It provides the target addresses for each of the functions.

Table 5-1 summarizes the functions of the different bytes in the MFC tuple. You will find
detailed information on this subject in

PC Card Standard

, February 1995, Volume 4.

When the client parses the MFC tuple, it finds the first tuple listed. In the example
shown, this is the modem tuple. Subsequently the MFC tuple identifies and targets all
other functions on the PC Card.

Figure 5-9

Parsing tuples for multifunction cards — February release

Global CIS

MFC tuple

Modem
tuples

Network
tuples

Other
tuples

C H A P T E R 5

Human Interface

Multifunction Cards

83

Release 2 Support 5

The MFC tuple is not supported by PCMCIA Standard Release 2 Card Services.
Therefore the process of identifying multiple functions described in the previous section
does not work with multifunction PC Cards currently used in Apple applications.

As shown in Figure 5-10, the global CIS identifies the first function (modem tuple), but
will ignore any other tuples. This means that the multifunction card is actually being
used as a single-function card.

Table 5-1

MFC tuple functions

Byte
number Field Description

0

TPL_CODE CISTPL_LONGLINK_MFC

1

TPL_LINK

Link to next tuple. This will be at least byte 6,
figuring 5 bytes per function.

2

TPLMFC_NUM

Number of sets of configuration registers.
This gives the count of the number of functions
on the card.

3

TPLMFC_TAS1

CIS target address space for the first function
on the PC Card.

4-7

TPLMFC_ADDR1

Target address for the first function stored as an
unsigned long integer, with the low-order byte first.

8

TPLMFC_TAS2

CIS target address space for the second function on
the PC Card.

9-12

TPLMFC_ADDR2

Target address for the second function stored as an
unsigned long integer, with the low-order byte first.

13-n Additional target address space and address fields
for any additional functions on the PC Card. If
there are only two functions, these fields will not
be present.

C H A P T E R 5

Human Interface

84

Multifunction Cards

Figure 5-10

Parsing tuples for multifunction cards — Release 2

It is possible to parse multiple tuples manually, using

GetFirstTuple

 and

GetNextTuple

, combined with the return links attribute set, which is the Apple
constant

kCSReturnLinkTuples

. This process involves writing a client driver that
can call Card Services and parse the information it receives. The client driver gets
the first tuple, and then proceeds through the CIS identifying the tuple for each
card function in turn.

IMPORTANT

This developer note does not describe the process for manual
parsing, and you should contact your Apple technical support
representative if you wish to use multifunction cards with the
Release 2 of the PCMCIA standard.

▲

Apple Computer, Inc. is conducting an ongoing investigation to establish rules for
identifying and controlling multifunction PC Cards on the Macintosh desktop, and is
currently considering updating the software supplied with hardware that accommodates
multifunction PC Cards. There should be a desktop icon for each type of functionality
provided on a card, but Apple has yet to establish the mechanism for supporting user
actions for individual functions of a card.

The committee for PCMCIA standards is in the process of defining how Card Services,
Socket Services, and interrupt-sharing should work with multifunction PC Cards.

Global CIS

MFC tuple

Modem
tuples

Network
tuples

Other
tuples

The first function is identified
and implemented

These functions are ignored

85

asynchronous

This term is applied to processes
and operations in which the sequencing of events
is controlled by free-running signals. Each event
is triggered by the completion of the previous
event.

The alternate type of operation is known
as

 synchronous.

big-endian

Data formatting in which each field
is addressed by referring to its most significant
byte. This means that if you are accessing a
four-byte, 32-bit data word, the most significant
byte is byte 03, and the most significant bit is
bit 31. Macintosh computers use the big-endian
data format. Computers based on Intel
architectures, such as IBM PCs, use the
little-endian format. See also

little-endian.

Card Information Structure (CIS)

A list of
structures that describe the functions and
capabilities of a PC Card. These structures are
variable in length, and are made up of data
blocks referred to in this context as

tuples.

 The
CIS is generally written only once, when the card
is formatted.

Card Services

The part of the PC Card
Manager that provides system services for
third-party PC Card control software.

client

A device driver or application program
that uses the Card Services software.

event handler

A routine in a client that Card
Services uses to notify the client of events. This
routine lets clients of a particular PC Card handle
interrupts from functions on the card.

Finder extension

 A client of Card Services. It is
the only external means of accessing the Finder’s
internal code. The extension maintains card icons
on the desktop, provides custom card informa-
tion in the Get Info window, and ejects cards
when they are dragged to the Trash. The Finder
extension also helps clients provide custom icons,
card names, card types, help messages, and other
custom features.

glue routine

 A run-time library routine,
usually provided by the development environ-
ment. It provides a linkage between a high-level
language code and a system routine with an
interface protocol different from that of the
high-level language. It is also any short special-
purpose assembly-language routine.

hardware abstraction

 This is a process that
takes hardware functionality and gives it a name,
thus concealing the hardware implementation
from the software. The hardware abstraction
layer acts as a liason between the software
element and the hardware element.

JEDEC

 The Joint Electron Device Engineering
Council is one of the groups that determines
engineering standards in the United States.

little-endian

Data formatting in which each
field is addressed by referring to its least
significant byte. This means that if you are
accessing a four-byte, 32-bit word, the most
significant byte is byte 00, and the most
significant bit is bit 00. Computers based on Intel
architectures, such as IBM PCs, use the
little-endian format. Macintosh computers use
the big-endian format. See also

big-endian.

PC Card

An expansion card that conforms to
the PCMCIA standard, and may be inserted into
a 68-pin socket in the PowerBook computer. PC
Cards provide such functions as additional
storage, fax/modem support, video support, and
LAN (local area network) support.

PC Card Manager

Part of the Mac OS that
supports PC cards in PowerBook computers. The
PC Card Manager helps client software to
recognize, configure, and view PC Cards that are
inserted into PC Card sockets on PowerBook
computers.

Glossary

Thi d t t d ith F M k 4 0 4

G L O S S A R Y

86

PCMCIA controller

The hardware interface
to PC Cards. It provides the interface signals,
configurable voltages to power the cards,
hardware windows into the card’s address space,
and interrupt decoding for state changes.

PCMCIA standards

An industry standard for
computer expansion cards set by the Personal
Computer Memory Card Internal Association.

pseudocode

This is an algorithm that is not
written in any real computer language. It is
generally written in English, or in something
close to a computer language.

reentrant

A reentrant routine is one that is
able to accept a call while one or more previous
calls to it are pending. It can do this without
invalidating the previous call(s).

socket

The hardware receptacle into which a
PC Card is inserted.

Socket Services

The layer of software that is
responsible for routing communication to and
from Card Services and to and from the socket
controller hardware.

stubbed message

A stub is a piece of code that
has no function. A stubbed message, therefore,
instead of handling some situation, generally
returns without doing anything.

synchronous

 This term is applied to processes
and operations in which the sequencing of events
is controlled by clock pulses. The alternate type
of operation is described as

asynchronous

.

tuple

Tuples are elements of the

CIS

. They are
blocks of data made up of eight-bit bytes. Each
tuple contains information about itself, including
its length, type, and information about the PC
Card. Host software examines the tuples to deter-
mine the capabilities of the card, such as checksum
control,

JEDEC

 programming information, and
configuration information. The tuple also
contains the link to the next tuple, or an indicator
showing that it is the last tuple in the list.

window

The term window is used in this
developer note to indicate the block of system
memory space assigned to the PC Card. It is a
defined address range that you can use to
perform read or write accesses to the card Each
card slot is assigned a block of memory. Each
block of memory is divided into two sections.
You can access the card in both sections at the
same time, for example, you could do a buffer
access using one section and generate an I/O
cycle using the other section. This use of the term
window should be distinguished from the
standard Macintosh usage, where a window
refers to some sort of panel displayed on the
screen, such as the Get Info window.

87

Index

A

abbreviations x
accessing memory space 86
accessing the PC Card 86
access windows 54
adapter registration 9
adapter topologies 72

AddSocketServices

 parameter block 73
APDA xii
API 7
Apple documents xii
application software 4
architecture 2, 3, 4
asynchronous calls 9
asynchronous routines 6, 9, 85

B

Balloon Help 81
big-endian format 6, 85

C

card corners 3
card ejection 3, 76, 78

facilitating 3
warning 78

card icons 77
card information display 79
Card Information Structure (CIS) 12, 85
card insertion 73
card names 81
Card Services 4, 5, 6, 12, 34, 85

API 12
clients 12
operating tasks 6
PowerBook implementation 27

card status 53
card types 81
C function 9
CIS parsing 6
C language 9
client registration 77

clients 4, 12, 34, 85
code 22
deregistration 61
event handler 14
human interface 8
initialization 23
interrupt 8
loading 8
message handling 8
pseudocode 29
registration 59
removal 24
returning information 27, 36
setup 15
structure 13
writing software for 12

configuration 38
constants 68
conventions x

CSAccessConfigurationRegister

 routine 44

CSAddSocketServicesPB

 routine 7

CSDeregisterClient

 routine 61

CSGetCardServicesInfo

 routine 59

CSGetClientEventMask

 routine 45

CSGetClientInfo

 routine 27, 36

CSGetConfigurationInfo

 routine 18, 39

CSGetFirstClient

 routine 34

CSGetFirstTuple

 routine 49

CSGetNextClient

 routine 35

CSGetNextTuple

 routine 50

CSGetStatus

 routine 53

CSGetTupleData

 routine 52

CSModifyConfiguration

 routine 42

CSModifyWindow

 routine 57

CSRegisterClient

 routine 8, 15

CSRegisterClient

 routine 60

CSReleaseConfiguration

 routine 43

CSReleaseExclusive

 routine 68

CSReleaseSocketMask

 routine 48

CSReleaseWindow

 routine 58

CSRequestConfiguration

 routine 41

CSRequestExclusive

 routine 68

CSRequestSocketMask

 routine 47

CSRequestWindow

 routine 55

CSResetCard

 routine 62

CSSetClientEventMask

 routine 46

CSValidateCIS

 routine 63

CSVendorSpecific

 routine 8, 63

Thi d t t d ith F M k 4 0 4

I N D E X

88

current card state 22
custom card actions 79, 81
custom icons 81

D

deregistering clients 61
designing card corners 3

Designing Cards and Drivers for the Macintosh Family

xii
device drivers 4
documentation xi
DOS 9
driver loading 72
driver location icon 27
drivers as clients 7
dynamic socket adapter registration 9

E

EjectCard

 parameter block 64

EjectCard

 vendor-specific call 64
ejection failure warning 78
ejection of PC cards 76

EnableSocketEvents

 parameter block 66

EnableSocketEvents

 vendor-specific call 15, 66
event handler 8, 13, 14, 25, 85

EventHandler

 function 13
event masks 5, 8, 45
event messages

kCSBatteryDeadMessage

5

kCSBatteryLowMessage

5

kCSCardInsertionMessage

5

kCSCardReadyMessage

5

kCSCardRemovalMessage

5

kCSFunctionInterruptMessage

5
event notification 9
event processing 15
event progression 14
events, non-specific 16

F

fax/modem implementation 2
Finder extension 76, 85
function interrupts 20

G

gestalt 68
Gestalt Manager 5

GetAdapterInfo

 parameter block 67

GetAdapterInfo

 vendor-specific call 67

GetCardInfo

 parameter block 65

GetCardInfo

 vendor-specific call 65

GetClientInfo

19
globals 14
global variables 22

H

hardware abstraction 85
hardware abstraction layer 7
hierarchical file system 72
human interface 8, 76

Human Interface Guidelines

xii

I

icon dragging warning 78
icons 77

custom 81
location 27

information display for PC cards 79

Inside Macintosh

xii
interrupts 5, 7, 73

handling 15
notification 5, 9

J

jerky mouse syndrome 14
Joint Electron Device Engineering Council (JEDEC) 85

K

kCSActionProc

 subfunction 20

kCSBatteryDeadMessage

 event message 5

kCSBatteryLowMessage

 event message 5

kCSCardIcon

 subfunction 20

kCSCardInsertionMessage

 event message 5, 14,
16, 17

kCSCardName

 subfunction 19

kCSCardReadyMessage

 event message 16, 18, 30

I N D E X

89

kCSCardReadyMessage

event message 5

kCSCardRemovalMessage

 event message 5, 18

kCSCardType

 subfunction 19

kCSClientInfoMessage

 event message 19

kCSClientInfo

 subfunction 19

kCSEjectionFailedMessage

 event message 19

kCSEjectionRequestMessage

 event message 18

kCSFunctionInterruptMessage

 event message 20

kCSFunctionInterruptMessage

 event message 5

kCSHelpString

 subfunction 20
kCSPMResumeMessage event message 20
kCSPMSuspendMessage event message 20
kCSRegistrationCompleteMessage event

message 15

L

LAN implementation 2
little-endian format 6, 85
loading client code 8
loading drivers from PC Cards 72
location icon 27

M

Macintosh Finder 76
managing windows 54
manually parsing tuples 84
masking routines 45
mass storage drivers 27
mass storage PC cards 76
mechanical considerations 3
mechanical design 3
memory space 54
memory space, accessing 86
memory storage 2
message handling 8
messages 70
kCSBatteryDeadMessage 5
kCSBatteryLowMessage 5
kCSCardInsertionMessage 5, 16, 17
kCSCardReadyMessage 5, 16, 18, 30
kCSCardRemovalMessage 5, 18
kCSClientInfoMessage 19
kCSEjectionFailedMessage 19
kCSEjectionRequestMessage 18
kCSFunctionInterruptMessage 5, 20
kCSPMResumeMessage 20
kCSPMSuspendMessage 20

missing software warning 80

multifunction PC Cards 81–84
CIS structures 82
February-release support 82
future Apple support 84
MFC tuple 82
parsing multiple tuples 83

N

names of cards 81
non-reentrancy of Socket Services 9
notification

of interrupts 5
services 9

NuBus cards 9
numbering resources 6

O

opening PC cards 79

P, Q

parameter blocks
EjectCard 64
EnableSocketEvents 66
GetAdapterInfo 67
GetCardInfo 65
programming interface 9

PC Card Manager 2, 34, 68, 85
constants 68

PC Cards 4, 85
dragging icons 77
functions 2
types 2

PCMCIA
address xi
compliance with standards 12
controller 4, 12, 74, 86
documents xi
standards 2, 9, 86

PDS (processor-direct slot) cards 9
PowerBooks

implementation 9
sleep mode 20

power management 20, 21
processing resume messages 21
processing suspend messages 21

processor-direct slot (PDS) 72

I N D E X

90

programming interface, parameter block 9
programming model 9
pseudocode 29, 86

R

reentrancy of Card Services code 6, 9
reentrant routines 86
registration of clients 59
registration services 8
removal of PC cards 76
removing clients 61
resources, numbering 6
result codes 69
rounded card corners 3
routines
CSAccessConfigurationRegister 44
CSAddSocketServicesPB 7
CSDeregisterClient 61
CSGetCardServicesInfo 59
CSGetClientEventMask 45
CSGetClientInfo 27, 36
CSGetConfigurationInfo 18, 39
CSGetFirstClient 34
CSGetFirstTuple 49
CSGetNextClient 35
CSGetNextTuple 50
CSGetStatus 53
CSGetTupleData 52
CSModifyConfiguration 42
CSModifyWindow 57
CSRegisterClient 8, 15, 60
CSReleaseConfiguration 43
CSReleaseSocketMask 48
CSReleaseWindow 58
CSRequestConfiguration 41
CSRequestExclusive 68
CSRequestSocketMask 47
CSRequestWindow 55
CSResetCard 62
CSSetClientEventMask 46
CSValidateCIS 63
CSVendorSpecific 8, 63

routines not supported 68

S

shared globals 14
single trap entry point 9
sleep mode 20
Slot Manager 72
sockets 4, 86

adapters 72
masks 45
status 53

Socket Services 4, 7, 12, 86
software architecture 2, 3, 4
software card ejection 3
square card corners 3
status change notification 9
status changes 5
status information 53
stubbed message 86
subfunctions
kCSActionProc 20
kCSCardIcon 20
kCSCardName 19
kCSCardType 19
kCSClientInfo 19
kCSHelpString 20

switch statement 29
synchronous routines 6, 9, 86
system memory space 54

T

Technical Introduction to the Macintosh Family xii
tuples 16, 49, 86

for multifunction cards 81–84
manually parsing 84

Type III card mechanical design 3

U

universal procedure pointer (UPP) 15, 22
unsupported routines 68

I N D E X

91

V

vendor-specific calls
GetAdapterInfo 67
GetCardInfo 65

virtual memory 6, 14

W, X, Y, Z

warnings
card ejection 78
ejection failure 78
icon dragging 78
missing software 80

windows 4, 6, 12, 54, 86
writing client software 12

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Final pages were created on an Apple
LaserWriter Pro 630 printer. Line art
was created using Adobe Illustrator.
PostScript

, the page-description
language for the LaserWriter, was
developed by Adobe Systems
Incorporated.

Text type is Palatino

 and display type is
Helvetica

. Bullets are ITC Zapf
Dingbats

. Some elements, such as
program listings, are set in Apple Courier.

WRITERS

Joyce D. Mann and George Towner

DEVELOPMENTAL EDITOR

Jeanne Woodward

ILLUSTRATOR

Sandee Karr

PRODUCTION

Rex Wolf

Special thanks to Sue Bartalo, James Blair,
Steve Carlton, Steve Christensen,
Godfrey DiGiorgi, Dave Falkenberg,
Jerry Katzung, Mike Primeau,
D. K. Smith, and Carlton Van Putten

Thi d t t d ith F M k 4 0 4

	Developing PC Card Software for the Mac OS
	Contents
	Figures and Tables
	About This Developer Note
	Contents of This Note
	Conventions and Abbreviations
	Typographical Conventions
	Abbreviations

	Supplementary Documents
	PCMCIA Documents
	Apple Documents

	Overview
	Overview of PCMCIA Standards
	Mechanical Considerations for PC Card Developers
	Optimal Square Corner Design
	Type III Cards

	Overview of the Software Architecture
	Card Services
	Installation
	Operation

	Socket Services
	Drivers as Clients
	Programming Model
	PowerBook Implementation of the PCMCIA Standard

	Client Software
	PCMCIA Services Model
	Client Structure
	Structure Overview
	Client Setup

	Event Processing
	Card Insertion Message
	Card Ready Message
	Card Removal Message
	Ejection Request Message
	Ejection Failed Message
	Client Information Message
	Function Interrupt Message
	Power Management Suspend Message
	Power Management Resume Message

	Sample Client Code
	Global Variables
	Client Initialization
	Client Removal
	Event Handler
	Returning Client Information
	Driver Location Icon
	Sample Client Pseudocode

	Card Services Routines
	Client Information
	Configuration Routines
	Masking Routines
	Tuple Information
	Card and Socket Status
	Access Window Management
	Client Registration
	Miscellaneous Routines
	PC Card Manager Constants

	Device Drivers
	Driver Loading
	Booting Requirements
	Guidelines for Socket Developers
	Interrupt Support
	Alternative PCMCIA Controllers

	Human Interface
	Manual Card Ejection
	Finder Extension
	Card Services Client Registration
	Card Icons
	User Interactions
	Card Information Display
	Custom Card Actions
	Software Not Installed
	Custom Support for I/O Cards

	Multifunction Cards
	February-Release Support
	Release 2 Support

	Glossary
	Index

