
Java 1.3.1 Development for Mac OS X
(Legacy)

Java > Unsupported

2002-09-01

Apple Inc.
© 2002 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

.Mac is a registered service mark of Apple Inc.

Apple, the Apple logo, AppleScript, Aqua,
Carbon, Cocoa, eMac, iBook, Mac, Mac OS,
Macintosh, Objective-C, OpenDoc, Pages,
PowerBook, Quartz, QuickTime, TrueType, and
WebObjects are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder and iWeb are trademarks of Apple Inc.

OPENSTEP is a registered trademark of NeXT
Software, Inc.

GeForce4 is a trademark of NVIDIA Corporation.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

OpenGL is a registered trademark of Silicon
Graphics, Inc.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Chapter 1 About This Book 9

How to Use This Book 9
Other Resources 10
Filing and Tracking Bugs 10

Chapter 2 How Java Is Implemented in Mac OS X 11

Java Integration in the Operating System 11
What Is Included 12
Java 2D Graphics Implementation 13
The Virtual Machine 14

Performance Profiling Tools 14
Nonstandard Virtual Machine Options 15
The Java Native Interface 15

Environmental Differences 17
Finding JAVAHOME 17
Where to Put Extensions 17
Where to Put Preferences 18
Setting the Classpath 18
Java Output 18

Chapter 3 Deployment Options 19

Distributing Your Application as a JAR File 19
Mac OS X Java Applications 19

Application Bundles 20
Property List Attributes for Java Applications 21
Setting the Java Runtime Properties for an Application Bundle 23

Java Web Start 24
Applets 25

Accessing Mac OS X–Specific Properties From Applets 25
Java Applet Plug-in 25

Chapter 4 The Development Environment 29

Java Development Tools 29
Standard JDK Tools 29
Other Command-Line Tools 31
GUI-Based Tools 31
Where to Get the Tools 34

3
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

Chapter 5 Cross-Platform Practices for Great Native Behavior 37

The Aqua Look and Feel 37
Placing and Painting Components 38

Layout Managers 38
Sizing Components 38
Coloring Components 38

Windows and Dialogs 39
Use of the Multiple Document Interface 39
Windows With Scroll Bars (Using JScrollPanes) 39
File Choosing Dialogs 40

Menus 43
Menu Shortcuts 43
Menu Item Icons 44
Contextual Menus 44

Event Handling 45

Chapter 6 Using Native Features of Mac OS X in Java Applications 47

Modifying the Default Settings for Hardware Graphics Acceleration 47
Advanced Options 48
Video Cards Designation Strings 48

Specifying a Name and Icon for Command-Line Applications 49
Using the Macintosh Menu Bar 49

The Window Menu 50
The Application Menu 50

More MRJ Handlers 51
Localizing Packaged Java applications on Mac OS X 52
QuickTime for Java 52
Java Core Audio Packages 52
Java Spelling and Speech Frameworks 52
JDirect 53

Human Interface Toolbox Synchronization 53
Debugging Features for JDirect 53
MethodClosureUPP Not Supported 54
JDirect Access to Bundles 54

Embedding Applets in Native Applications 54
Cocoa Java 55

Appendix A Project Builder Tutorial 57

Building a Java Application With Project Builder 57
The Makeup of a Project Builder Project 57
Building a Java Project 58
Adding Your Source Files 59
Modifying the Application Parameters 64

4
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Building Applets With Project Builder 68

Appendix B MRJAppBuilder Tutorial 69

Building a Basic Application 69
Building a More Robust Application 71
Making Your Application More Mac-like 72

Java Properties Pane 72
Mac OS X Pane 74

Appendix C Mac OS X Java System Properties 75

Java Virtual Machine Properties 75
Mac OS X Application Properties 76

Mac OS X–Specific Properties 77

Document Revision History 79

Glossary 81

5
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CONTENTS

6
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures, Tables, and Listings

Chapter 2 How Java Is Implemented in Mac OS X 11

Figure 2-1 Architecture of Mac OS X 11
Figure 2-2 Metal and Aqua look and feel on Mac OS X 12
Figure 2-3 Mac OS X as a Java development platform 13
Table 2-1 HotSpot VM options 15

Chapter 3 Deployment Options 19

Figure 3-1 Show application bundle contents 20
Figure 3-2 Contents of a Java application bundle 21
Figure 3-3 Java Web Start integration 24
Figure 3-4 Effect of HTML tags in Mac OS X 10.2 26
Table 3-1 Interpretation of HTML tags in common Mac OS X browsers 26
Listing 3-1 Info.plist file for simple Java application 21

Chapter 4 The Development Environment 29

Figure 4-1 MRJAppBuilder 32
Figure 4-2 Tools in /Developer/Applications 34

Chapter 5 Cross-Platform Practices for Great Native Behavior 37

Figure 5-1 java.awt.FileDialog 40
Figure 5-2 javax.swing.jFileChooser 41
Figure 5-3 Application displayed as an atomic object 42
Figure 5-4 Application displayed as a directory 42
Listing 5-1 Setting JScrollBar policies to be more like Aqua 40
Listing 5-2 Explicitly setting KeyStrokes based on the host platform 43
Listing 5-3 Using getMenuShortcutKeyMask to set meta keys 44
Listing 5-4 Using isPopupTrigger to detect contextual menu activation 45

Chapter 6 Using Native Features of Mac OS X in Java Applications 47

Figure 6-1 Application menu for a Java application in Mac OS X 51
Figure 6-2 Java Applet Plug-in versus Java Embedding Framework 55
Table 6-1 Video-card designation strings 49

Appendix A Project Builder Tutorial 57

Figure A-1 Project folder contents 58

7
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

Figure A-2 Result of building a default project 59
Figure A-3 Generic Java icon 59
Figure A-4 Default files in a new Java Swing application 60
Figure A-5 Delete References alert 61
Figure A-6 Selecting files to add to a Java project 62
Figure A-7 Copy items into project folder option 63
Figure A-8 Contents of a built application 64
Figure A-9 Target settings 65
Figure A-10 Pure Java-Specific settings 66
Figure A-11 Expert View 67
Figure A-12 Default setting for live resizing 67
Figure A-13 Applet Launcher 68

Appendix B MRJAppBuilder Tutorial 69

Figure B-1 MRJAppBuilder Application pane 70
Figure B-2 A successful build 70
Figure B-3 Merge Files pane 71
Figure B-4 FileChooserDemo application with relics 72
Figure B-5 Modifying the growbox.intrudes property 73
Figure B-6 com.apple.mrj.application.growbox.intrudes=true 73
Figure B-7 Application bundle contents 74

Appendix C Mac OS X Java System Properties 75

Table C-1 JVM properties 75
Table C-2 required Mac OS X application properties 76
Table C-3 Application launch properties 76
Table C-4 System properties related to the graphical user interface 77

8
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Important: The information in this document is obsolete and should not be used for new development.

With Mac OS X, Apple delivers a Java implementation that adds value for both developers and end users.
Java is fully integrated into Mac OS X, which offers developers easy access to the Aqua user interface,
UNIX-based tools and technologies, QuickTime, OpenGL, and Cocoa. This built-in flexibility allows developers
to create robust, well-designed applications that offer users a wide range of rich features and functionality.

This book provides an overview of Java development on Mac OS X and discusses the available features. It
also provides simple examples on using the development tools available with Mac OS X.

This book is for the Java developer interested in writing Java applications on Mac OS X version 10.2 with Java
2 Standard Edition (J2SE) version 1.3.1. It does not discuss Java 2 Standard Edition version 1.4 on Mac OS X.
Information on previous versions of Java on Mac OS X can be found in the Release Notes at http://develop-
er.apple.com/documentation/java. It is primarily geared toward developers of pure Java applications, but it
will also be useful for Cocoa Java development and WebObjects Java development.

This is not a tutorial for the Java language. If you are not already proficient in Java, this document will still
be helpful to you but it will not teach you about the Java language and J2SE packages. Many resources exist
in print and on the Web for learning the Java programming language. If you are new to programming in
Java, you may want to start with one of Sun’s tutorials available online at http://developer.java.sun.com/de-
veloper/onlineTraining/new2java/.

How to Use This Book

Overall, the purpose is document to highlight how Java development in Mac OS X may be different if you
are accustomed to Java development on other platforms. It does not attempt to present a conclusive overview
of Java itself. It is meant as a supplemental guide to help you save time and development effort. It introduces
you to the tools available to you, discusses some details of how Java is implemented, points out potential
trouble spots, and provides some reference documentation.

This book has information for many different types of Java developers. To help you determine what information
is important for you the following listing provides an overview of the contents of the following chapters:

 ■ “How Java Is Implemented in Mac OS X” (page 11) Presents a broad overview of how Java works in Mac
OS X. It also highlights some areas where things differ between Java in Mac OS X and other platforms.
This chapter has many important details for anyone doing Java development on Mac OS X. It is a good
place to begin if you don’t have specific questions, but want an overview of what is available.

 ■ “Deployment Options” (page 19) Reveals the four suggested deployment vehicles for your Java
applications on the Mac OS X operating system. If you have a Java application that you want to distribute
on Mac OS X, this chapter is important reading. It discusses not only details to be aware of in the standard
distribution methods, but also presents some unique to Mac OS X.

How to Use This Book 9
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About This Book

http://developer.apple.com/documentation/java
http://developer.apple.com/documentation/java
http://developer.java.sun.com/developer/onlineTraining/new2java/
http://developer.java.sun.com/developer/onlineTraining/new2java/

 ■ “The Development Environment” (page 29) If you are new to Java development on Mac OS X, this chapter
provides important background information on what tools are available to you.

 ■ “Cross-Platform Practices for Great Native Behavior” (page 37) Discusses some considerations you should
make while designing your applications so that they will behave just as well on Mac OS X as they do on
other platforms.

 ■ “Using Native Features of Mac OS X in Java Applications” (page 47) Explores some of the options available
to you in Mac OS X that are not available on other platforms. Some things discussed in this chapter will
tie your application to Mac OS X specifically, while other things will help you to add value to your Java
applications on Mac OS X without affecting your application’s cross-platform compatibility. The information
in this chapter may be important if you are designing a new application or modifying an existing one.

 ■ “Project Builder Tutorial” (page 57) If you want to take advantage of the free Project Builder IDE for you
Java development, this is a useful place to start.

 ■ “MRJAppBuilder Tutorial” (page 69) This is a tutorial for anyone distributing a Java application on Mac
OS X.

 ■ “Mac OS X Java System Properties” (page 75) Provides a listing of the common Java system properties
useful in Mac OS X.

Other Resources

This document and other Java documentation for Mac OS X, including the javadoc API reference, is available
online at http://developer.apple.com/documentation/java. A subset of this documentation is installed in
/Developer/Documentation/Mac OS X/Java on a Mac OS X system with the Mac OS X Developer Tools.
You can view this documentation through a Web Browser or through Project Builder (from Project Builder’s
Help menu, choose Developer Help Center).

The main Java technology page http://developer.apple.com/java contains many links to information about
Java development in Mac OS X.

The java-dev mailing list is a great source of information on a wide range of Java development topics in
Mac OS X. You can sign up for this list at http://lists.apple.com.

Sun’s Java site, http://java.sun.com is the essential reference point for Java development in general.

Filing and Tracking Bugs

If you find issues with the implementation of Java that are not represented in this document or want to
follow the resolution of an issue, you may do so online through Radar, Apple’s bug tracking system. To access
Radar, you will need an Apple Developer Connection (ADC) account. You can view the ADC membership
options, including the free online membership at, http://developer.apple.com/membership/index.html. With
an ADC membership, you can file and view bugs at http://bugreport.apple.com. When filing new bugs for
Java on Mac OS X, please use Java (new bugs) for the Component and X as the Version.

10 Other Resources
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

About This Book

http://developer.apple.com/documentation/java
http://developer.apple.com/java
http://lists.apple.com
http://java.sun.com
http://developer.apple.com/membership/index.html
http://bugreport.apple.com

Java is included in every copy of Mac OS X and Mac OS X Server. Mac OS X provides full support for Java 2
Platform, Standard Edition (J2SE), and support for much of Java 2 Platform, Enterprise Edition (J2EE).

Because of the emphasis Apple has placed on integrating Java into the operating system, there are many
benefits to developing and deploying Java applications on Mac OS X rather than other platforms. In Mac OS
X, Java is not an add-on feature, but an integral part of the operating system. This means that you do not
need to deal with installing and configuring the Java Runtime Environment (JRE) or the Java Development
Kit (JDK) as you, or the end users of your application, might need to on other platforms. In addition to the
Java pieces you are already familiar with, Apple provides extensions and enhancements to these standard
Java APIs as well as Java access to some of Apple’s other technologies. With Java on Mac OS X, Apple provides
all that you expect in a standard Java 2 implementation while providing the extra value that makes it better
on the Macintosh for you as a developer and for your customers.

Java Integration in the Operating System

At the core of Mac OS X lives a BSD-style UNIX-based operating system called Darwin. On top of that, Apple
has built a collection of fundamental technologies for presenting graphics and sound to users far beyond
what has been traditionally available in a UNIX-based operating system. Further collections of tools, event
loops, and functions/methods yield high-level APIs for application developers. These include:

 ■ Carbon for traditional Macintosh developers

 ■ Cocoa, an object-oriented application development environment

 ■ Java, an object-oriented environment for building cross-platform applications

Figure 2-1 (page 11) depicts the conceptual layout of the Mac OS X operating system. A more extensive
analysis of the system as a whole is available in Inside Mac OS X: System Overview.

Figure 2-1 Architecture of Mac OS X

Darwin

Cocoa CarbonJava

AppleScript

Quartz QuickTimeOpenGL

Aqua

Java Integration in the Operating System 11
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

How Java Is Implemented in Mac OS X

One of the most obvious advantages of the integration of Java into the operating system can be seen in the
user interface of any Swing application. Java on Mac OS X includes a default Aqua look and feel for your
Swing applications. You can see from Figure 2-2 (page 12) how this can really make your Java applications
look great compared to the default look and feel, Metal.

Figure 2-2 Metal and Aqua look and feel on Mac OS X

Because Mac OS X is a UNIX-based operating system, you have access to BSD tools and technologies useful
in software development. You are working with the foundation of a robust, powerful operating system that
gives you preemptive multitasking and protected memory.

In Mac OS X you can also take advantage of the operating system’s other fundamental features. For example,
in Mac OS X you can take advantage of the cross-platform QuickTime API through QuickTime for Java. Apple
also provides Java access to the Core Audio framework of Mac OS X, OpenGL, Quartz, the Mac OS X font
implementation (with support for OpenType, PostScript Type I and TrueType fonts), the Mac OS X spelling
and speech frameworks, and the Foundation and Application Kit frameworks of Cocoa.

What Is Included

Mac OS X ships with the Java 2 Platform, Standard Edition (J2SE) 1.3.1. Full support of Java 2 means that there
is first-class support for Swing, the Collections framework, the Accessibility API, and other APIs from Sun.
Support for applets that require Java 2 is also provided. You will also find implementations of the Java2D
graphics architecture and the policy-based security model. In addition to the standard parts of J2SE, Mac OS
X includes Java Web Start and the security frameworks as well as some packages that were formerly available
as part of the Java 2 Enterprise Edition (J2EE) like Remote Method Invocation (RMI) over IIOP, the Java Naming
and Directory Interface (JNDI), and the Java Database Connectivity (JDBC) model.

12 What Is Included
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

How Java Is Implemented in Mac OS X

The Java implementation is installed in /System/Library/Frameworks/JavaVM.framework. This includes
the virtual machine, the command-line tools, the runtime classes, and the API documentation. Additional
tools and documentation are included with the free Mac OS X Developer Tools and are installed in
/Developer/Tools and /Developer/Documentation, respectively.

The basic command-line tools are installed in
/System/Library/Frameworks/JavaVM.framework/Commands with links from /usr/bin so that your
scripts and tools work on Mac OS X like they would on other platforms.

For the most part, the Java 2 Platform Standard Edition version 1.3.1 works on Mac OS X like it does on other
platforms. The standard packages you expect to find are all included in every installation of Mac OS X, as are
the basic development tools. With the Mac OS X Developer Tools installed, you have a complete Java
Development environment as illustrated in

Figure 2-3 Mac OS X as a Java development platform

Java compiler
javac

Other development
tools Java debugger Project Builder

Development tools

Java HotSpot Runtime VM

Java Runtime Environment

awtapplet langiobeans

accessibility sound

net

util

math

text

sql

corba

security naming

swing

rmi

Although the java.sound packages are included with Java in Mac OS X, you cannot currently use them for
sound input. You can work around this by using Mac OS X native audio system. You can find more information
about the audio architecture of Mac OS X at http://developer.apple.com/audio. Specific options for providing
audio functionality to your Java application in Mac OS X include these:

 ■ Use QuickTime for Java-based services. This works on Mac OS 9, Mac OS X, and Windows.

 ■ Use the Core Audio framework. This API is for Mac OS X only and provides Java classes to access the
underlying Core Audio platform services for audio and MIDI in Mac OS X.

 ■ Use JNI to provide a native binding to the Core Audio framework directly.

Java 2D Graphics Implementation

The Mac OS X implementation of the Java2D API is based on Apple’s Quartz graphics engine. The Quartz
graphics system improves drawing quality over other platforms’ Java 2D implementation. Because Java on
Mac OS X draws its graphics with Quartz, you might notice that images drawn do not match the Sun Java
2D implementation pixel for pixel, especially when anti-aliasing is on. This is because Quartz’s anti-aliasing
algorithms for both line art and text are different from Sun’s default implementations, so the rendered pixels
do not match exactly. Since anti-aliasing is implemented through the operating system itself, it does not
hinder graphics performance. Turning it off for your Java application will probably not affect the speed up
your code.

Java 2D Graphics Implementation 13
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

How Java Is Implemented in Mac OS X

http://developer.apple.com/audio

In Mac OS X, windows are double-buffered, this includes Java windows. Java on Mac OS X attempts to flush
the buffer to the screen often enough to have good drawing behavior without compromising performance.
If for some reason you need to force window buffers to be flushed immediately, you may do so with
Toolkit.sync.

Mac OS X provides hardware graphics acceleration for your Java Swing graphics on computers whose video
cards have 16 MB or more of video RAM. If enabled, this technology passes Swing and Java 2D graphics calls
directly to the video card. This can result in significant speed increases for your graphics-intensive Java
applications. See “Modifying the Default Settings for Hardware Graphics Acceleration” (page 47) for information
on changing the default settings of the hardware graphics acceleration.

Anti-aliasing is on by default for text and graphics, but it can be turned off using the properties described in
“Mac OS X–Specific Properties” (page 77), or by calling java.awt.Graphics.setRenderingHint within
your Java application. With anti-aliasing on, drawing shapes over each other may cause different results than
in Java 1.1. For example, drawing a white line on top of a black line does not completely erase the line; the
compositing rules leave some gray pixels around the edges. Also, drawing text multiple times in the same
place causes the partially-covered pixels along the edges to get darker and darker, making the text look
smudged.

The Virtual Machine

The Java platform for Mac OS X is based on the Java HotSpot client virtual machine (VM) from the Sun JDK
1.3.1_03 technology train. Because the VM is based on the HotSpot VM, synching is a low overhead operation.
The VM maps Java threads directly to Mach threads. The Darwin kernel (XNU) schedules these Mach threads
as it would schedule any other threads in the system giving you true preemptive multitasking.

One unique aspect of the Mac OS X Java implementation is its use of a technology to enable shared generation
of class files. A single shared Java archive for the Java classes in the system is generated once. This archive
is regenerated when you update Java. Since each Java application does not need to generate an independent
archive at runtime you save both memory and CPU cycles.

The -server option to Java is different in Mac OS X than on other platforms in that it doesn’t invoke a
different VM. The Java VM is the same Java HotSpot Client VM technology. Using the -server flag however,
does change a few default settings to values more appropriate to a server type program. For example, a
different shared archive generation is used. On Mac OS X Server -server is the default. On Mac OS X, -client
is the default.

Specific guidelines for interacting with the VM are in the following sections.

Performance Profiling Tools

To get the most out of your Java applications, you can take advantage of the performance and profiling tools
available to you in Mac OS X. Built-in profiling support is provided in flags you can pass in to the VM at
runtime. For basic CPU monitoring and profiling, use the -Xrunhprof flag as follows:

 ■ java -Xrunhprof:cpu=sampleyourApplication

 ■ java -Xrunhprof:monitor=yyourApplication

For allocation profiling use the -Xaprof flag. To profile a single thread use -Xprof.

14 The Virtual Machine
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

How Java Is Implemented in Mac OS X

Third-party tools like Borland’s Optimizeit and Hewlet Packard’s HPjmeter are also valuable tools.

Nonstandard Virtual Machine Options

The Mac OS X Java VM includes some nonstandard VM options that you should be aware of. Since these are
nonstandard (-X) options, you should keep in mind that these are not guaranteed to be available on other
VM implementations, and could change from release to release. These options are set by passing a
-Xoptionname flag to the Java runtime (java). You can also see a list of available options by typing java
-X in a Terminal window. VM options that have important details to note about them are outlined in Table
2-1 (page 15).

Table 2-1 HotSpot VM options

NotesProperty

Overrides the default application name displayed in the Dock
and the menu bar.

-Xdock:name=applicationName

This option is disabled in Mac OS X version 10.2.-Xincgc

Sets the initial Java heap size. The maximum heap limit is about
2 GB.

-Xmssize

Sets the initial Java heap size. The maximum heap limit is about
2 GB.

-Xmssize

Sets maximum Java heap size. The maximum heap limit is about
2 GB.

-Xmxsize

Enables Apple’s thread local eden (TLE) allocation. This allows
for more scalable allocation for heavily threaded applications,
greatly increasing allocation performance. It is on by default on
multiprocessor computers.

-XX:+UseTLE

Enable Java backtraces to be generated when a crash occurs in
native code. Note that this is not guaranteed to work all the
time since the crash may destroy some critical data structures.

-XX:+PrintJavaStackAtFatalState

The Java Native Interface

Java Native Interface (JNI) in Mac OS X works as you would expect it to on other platforms with a couple of
important details to remember.

JNI libraries are named with the library name used in the System.loadLibrary method of your Java code
prefixed by lib and suffixed with .jnilib. For example, System.loadLibrary("hello") loads the
library named libhello.jnilib.

The Virtual Machine 15
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

How Java Is Implemented in Mac OS X

In building your JNI libraries, you have two options. You can either build them as bundles or as dynamic
shared libraries (sometimes called dylibs). If you are concerned about maintaining backward compatibility
with previous versions of Java on Mac OS X, you should build as a bundle; otherwise you will probably want
to build as a dylib. Dylibs have the added value of being able to be prebound which speeds up the launch
time of your application. They are also a little simpler to build if you have multiple libraries to link together.

To build as a dynamic shared library, use the -dynamiclib flag. Since your javah produced .h file includes
jni.h, you need to make sure you include its source directory. Putting all of that together looks something
like this:

cc -c -I/System/Library/Frameworks/JavaVM.framework/HeaderssourceFile.c

cc -dynamiclib -o libhello.jnilibsourceFile.o-framework JavaVM

To build a JNI library as a bundle use the -bundle flag:

cc -bundle -I/System/Library/Frameworks/JavaVM.framework/Headers -o libName.jnilib
-framework JavaVMsourceFiles

For example, if the files hello.c and hola.c contain the implementations of the native methods to be built
into a dynamic shared JNI library, and it needs to be called with System.loadLibrary(“hello”), you would
build the resultant library, libhello.jnilib, with this code:

cc -c -I/System/Library/Frameworks/JavaVM.framework/Headers hola.c
cc -c -I/System/Library/Frameworks/JavaVM.framework/Headers hello.c
cc -dynamiclib -o libhello.jnilib hola.o hello.o -framework JavaVM

Often JNI libraries have interdependencies. For example assume the following:

 ■ libA.jnilib contains a function foo()

 ■ libB.jnilib needs to link against libA.jnilib to make use of foo()

This is not a problem if you build your JNI libraries as dynamic shared libraries, but if you build them as
bundles this does not work since symbols are private to a bundle. If you need to use bundles for backward
compatibility, one solution is to put the common functions into a separate dynamic shared library and link
that to the bundle. For example:

1. Compile the JNI library:

cc -g -I/System/Library/Frameworks/JavaVM.framework/Headers -c -o myJNILib.o
myJNILib.c

2. Compile the file with the common functions:

cc -g -I/System/Library/Frameworks/JavaVM.framework/Headers -c -o
CommonFunctions.o CommonFunctions.c

3. Build the object file for your common functions as a dynamic shared library:

cc -dynamiclib -o libCommonFunctions.dylib CommonFunctions.o

4. Build your JNI library as a bundle and link against the dynamic shared library with your common functions
in it:

cc -bundle -lCommonFunctions -o libMyJNILib.jnilib myJNILib.o

16 The Virtual Machine
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

How Java Is Implemented in Mac OS X

Note: Once you have built your JNI libraries, make sure to let Java know where they are. You can do this
either by passing in the path with the -Djava.library.path option on the command line or in your
information property list, or by setting the DYLD_LIBRARY_PATH environment variable.

You can also access native code libraries through JDirect. See “JDirect” (page 53) for more information on
using this Mac–specific technology.

Environmental Differences

Although the Aqua user interface may belie it, behind the scenes Mac OS X is a UNIX-based operating system.
The things you expect to be there are indeed there. At times, however, pieces might be in a slightly different
spot than you expect. To make your experience on Mac OS X as smooth as possible, this section looks at
where you might expect to find things on Mac OS X and also addresses some of the issues of environment
variables.

Note: You can access the command line interface to Mac OS X through the Terminal application in
/Applications/Utilities/. Terminal launches your user shell. By default this is tcsh, an enhanced C
shell. bash, a Bourne compatible-shell, zsh, a ksh-like shell, and csh are also provided.

Finding JAVAHOME

Many Java applications require you to identify Java’s home directory on your system (JAVAHOME), especially
during installation. On Mac OS X this should be set to /Library/Java/Home. You might notice that this is
actually a symbolic link to /System/Library/Frameworks/JavaVM.framework/Home. This is the real
Java home directory, but since it is owned by the system you should not modify it, nor should you expect
that users will be able to modify it on their system. This directory will be modified by software updates from
Apple so any changes you make there are volatile. The /Library/Java/Home symlink is provided as an
abstraction so that you can be sure that your applications will continue to work when Apple updates either
the Java VM or the operating system itself. /Library/Java/Home allows access to the /bin subdirectory
where command-line tools like java and javac can be found. These tools are also accessible through
/usr/bin.

Where to Put Extensions

Java can be extended by adding custom .jar, .zip, and .class files, as well as native JNI libraries, into an
extensions directory. On some platforms this is designated by the java.ext.dir directory. In Mac OS X,
put your extensions in /Library/Java/Extensions. Java automatically looks in that directory as it is
starting up a VM.

Putting extensions in /Library/Java/Extensions loads those extensions for any user on that particular
computer. If you want to limit which users can use certain extensions, you could put them in the user’s home
directory in ~/Library/Java/Extensions. You may need to make that directory if it does not already
exist. It is important to note that extensions in the user’s directory are loaded first, so if you have duplicate
JAR files in your user’sLibrary/Java/Extensionsdirectory and the system’s/Library/Java/Extensions
directory, those in the latter directory may overload classes in the former.

Environmental Differences 17
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

How Java Is Implemented in Mac OS X

Where to Put Preferences

Some applications store their preferences in the application directory; others store their preferences where
the host platform stores its preferences. In Mac OS X, user preferences for an application are stored in the
~/Library/Preferences directory. System-level preferences, or preferences that should effect all users
should be stored in /Library/Preferences. The standard preference format in Mac OS X is an XML property
list, with a title of the form of a reverse URL followed by the .plist extension, for example
com.apple.ProjectBulder.plist. This directory can be reached from Java code by appending the string
Library/Preferences to the user.home System property.

Setting the Classpath

In Mac OS X, you treat the classpath the way you would in any BSD shell. You can use setenv
classpathnewClasspathAddition to add to the classpath for the duration of the current session for that
particular Terminal window. You still have to explicitly add a reference to this variable when compiling by
typing javac -classpath %CLASSPATHfilename. You can determine the current value of CLASSPATHwith
the command echo $CLASSPATH. By default no CLASSPATH variable is explicitly set for the shell, although
Java knows to look in the various Library/Java/Extensions folder for developer-supplied JAR files.

You can avoid retyping the setenv classpath command for each Terminal session by automatically adding
paths to your classpath shell startup script (.cshrc or .tcshrc for the default tcsh shell). For example, find
or create ~/.cshrc. That file should have a line that looks similar to setenv CLASSPATH
".:/Users/username/Projects/HelloWorld/:/Users/username/Projects/HelloWorld/HelloWorld.jar".
In this example, the current directory, the specific directory of a particular project, and a JAR file in that
directory are included in the classpath.

Java Output

When you launch a Java application from the command line, standard output goes to the Terminal window.
When you launch a Java application by double clicking it, your Java output is displayed in the Console
application in /Applications/Utilities. Applets that use the Java Plug-in may display output in the
Java Console.

18 Environmental Differences
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

How Java Is Implemented in Mac OS X

There are basically four different distribution methods for Java applications in Mac OS X. You can distribute
your applications as a JAR file, a Mac OS X Java application, a Java Web Start application, or an applet. They
each have different benefits as outlined in the following sections.

Distributing Your Application as a JAR File

The most basic distribution method for your Java applications is as a JAR file. It is the simplest way for you
as a developer since it requires very little, if any, changes from the JAR files you distribute on other platforms.
It does though, have drawbacks for the end user. The major drawback being that Swing applications look
out of place with their odd application names in the menu bar and generic Java icons in the dock. Considering
this alone, deploying your application from a JAR file is not recommended on Mac OS X if your application
has a graphical interface and will be run by general users.

If you do choose to deploy your application from a JAR file on Mac OS X, it is important to remember to
include in your JAR file a valid manifest file that declares the class that contains the main method. Without
one, users will have to resort to launching your application from the command line. This will seem very
outdated for users whose platform has let them launch an application simply by double-clicking it for almost
twenty years!

If you do not have the class with main declared in your JAR file a simple way to fix this is as follows:

1. Unarchive your JAR file into a working directory with some variant of jar xvf myjar.jar

2. In the META-INF directory is a MANIFEST.MF file. Copy that file and add a line that begins with
Main-Class: followed by the name of your main class, for example, Main-Class: HelloWorld.

3. Archive you files again but this time use the -m option to jar and designate the relative path to the
manifest file you just modified, for example, jar cmf
YourModifiedManifestFile.txtYourJARFile.jar*.class

This is a very basic example that does not take into account more advanced uses of the jar program. More
detailed information on adding a manifest to a JAR file can be found in the jar(1) man page. From Project
Builder, choose “Open man page” from the Help menu. (In Terminal, type man jar .)

Mac OS X Java Applications

Native Mac OS X applications include more than just the executable code. They also include images, sounds,
icons, localizable strings, and other resources that the application may use. They might even include
executables for different versions of the operating system. The applications that are visible in the Finder are
actually directories that hold the executable code and the relevant resources. This directory structure is

Distributing Your Application as a JAR File 19
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Deployment Options

hidden from view in the Finder by the .app suffix and a specific bit that is set for that directory. Such a
directory is often referred to as a Mac OS X application bundle. More information on Mac OS X application
bundles is available in Inside Mac OS X: System Overview. Since the J2SE platform includes ways to deal with
many of these other things, you might not need the full functionality of a Mac OS X application. There are,
however, some things that you gain by wrapping your pure Java JAR file into an application bundle, and it
is very simple to do.

Overall, it provides a better user experience for your users, helping your application to integrate more closely
with native Mac OS X applications. Specific benefits include these:

 ■ Users can simply double-click the application to launch it.

 ■ If you add an appropriate icon, it shows the application icon in the Dock, clearly identifying your
application. Otherwise, a default Java icon appears in the Dock.

 ■ It lets you set specific system properties that can make your Java application hard to distinguish from a
native application.

 ■ You can bind specific document types to your application. This will allow users to launch your application
by double clicking a document associated with it.

MRJAppBuilder, discussed in more detail in “MRJAppBuilder” (page 32) and “MRJAppBuilder Tutorial” (page
69), helps you easily bundle your existing Java application as a Mac OS X Java application.

Application Bundles

What users see as an application in Mac OS X is actually a bundle of resources to a developer. To get a glimpse
inside an application on Mac OS X, you can either explore the directory of resources from the Terminal or
from the Finder. Although by default the Finder displays applications as a single object, you can view the
true makeup of any application in the Finder. To see what is contained inside a standard application bundle,
Control-click any application and choose Show Package Contents as in Figure 3-1 (page 20).

Figure 3-1 Show application bundle contents

You should see something like Figure 3-2 (page 21).

20 Mac OS X Java Applications
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Deployment Options

Figure 3-2 Contents of a Java application bundle

Notice some important details:

 ■ Mac OS X expects to see an Info.plist file in the Contents folder. In the case of a Java application,
this contains some important information that Mac OS X uses to set up the Java runtime environment
for your application. More information about these property lists is in “Property List Attributes for Java
Applications” (page 21)

 ■ If you have an icon that should be displayed in the Mac OS X Finder, put it in the Resources folder. There
is a Mac OS X–specific file type designated by the .icns suffix, but most common image types work.
To make an icon (.icns) file from your images, use the Icon Composer application installed in
/Developer/Applications with the Mac OS X Developer Tools.

 ■ Your Java code, in either JAR or .class files is put into Resources/Java. This is launched by a native
executable file in the MacOS folder.

There are other files in the application bundle, but the specific ones mentioned are the ones you probably
care most about as a Java developer. You can learn more about the other files an application bundle in Inside
Mac OS X: System Overview.

Property List Attributes for Java Applications

Mac OS X makes extensive use of XML files for various system settings. These are called property lists and
have a .plist extension. The Info.plist file in the Contents folder of a Mac OS X application is one such
property list. If you build your Java application in Project Builder or MRJAppBuilder, this file is automatically
generated for you. Even if it is built for you, there may be times when you may want to modify it. Since it is
a simple XML file, you can modify it with any text editor. Its settings will be read the next time you launch
your application from the Finder. An example property list for a Java application is shown in Listing 3-1 (page
21).

Listing 3-1 Info.plist file for simple Java application

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>CFBundleDevelopmentRegion</key>

Mac OS X Java Applications 21
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Deployment Options

 <string>English</string>
 <key>CFBundleExecutable</key>
 <string>SampleApp</string>
 <key>CFBundleIconFile</key>
 <string>SampleApp.icns</string>
 <key>CFBundleInfoDictionaryVersion</key>
 <string>6.0</string>
 <key>CFBundlePackageType</key>
 <string>APPL</string>
 <key>CFBundleSignature</key>
 <string>????</string>
 <key>CFBundleVersion</key>
 <string>0.1</string>
 <key>Java</key>
 <dict>
 <key>ClassPath</key>
 <string>$JAVAROOT/SampleApp.jar</string>
 <key>MainClass</key>
 <string>SampleApp</string>
 <key>Properties</key>
 <dict>
 <key>com.apple.macos.useScreenMenuBar</key>
 <string>true</string>
 <key>com.apple.mrj.application.apple.menu.about.name</key>
 <string>SampleApp</string>
 </dict>
 </dict>
</dict>
</plist>

The property list is divided into hierarchical dictionaries. The top-level dictionary contains the information
that the operating system needs to properly launch the application. The keys in this section are prefixed by
CFBundle and are usually self explanatory. Where they are not, see the documentation in MacOS XDeveloper
Release Notes: Information Property List and Inside Mac OS X: System Overview.

At the end of the CFBundle keys, a Java key designates the beginning of a Java dictionary. The two top-level
keys in the Java dictionary are required in the property list of a Java application bundle. They are defined as
follows:

 ■ MainClass, corresponds to the com.apple.mrj.application.main system property. The string
value for this key should specify the fully qualified class name for the class containing you application’s
main method.

 ■ ClassPath, corresponds to the com.apple.mrj.application.classpath system property. The
string value for this key should specify the fully qualified path to the directories where your class files
are or to your JAR files.

Aside from those two required keys, there are some optional keys that you can add here. They are described
in “Mac OS X Application Properties” (page 76).

The Properties sub dictionary of the Java dictionary contains keys that you pass to your Java applications
from the command line with the -D option. For example, if you want to run this same application from the
command line, you pass in the two keys, com.apple.macos.usescreenmenubar and
com.apple.mrj.application.apple.menu.about.name as follows:

java -Dcom.apple.macos.useScreenMenuBar=true
-Dcom.apple.mrj.application.apple.menu.about.name=SampleApp SampleApp

22 Mac OS X Java Applications
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Deployment Options

The keys in the Properties dictionary include both Mac OS X–specific options as well as general Java
options. Mac OS X–specific keys and values that you may add to this dictionary of the property list are specified
in “Mac OS X Application Properties” (page 76).

If you examine an application built with MRJAppBuilder, you might notice that some of the keys seem to be
missing from the Properties dictionary. MRJAppBuilder uses a legacy style non-XML property list named
MRJApp.properties in the Contents/Resources folder of an application bundle. This property list contains
the same flags and system properties that you would normally find in Properties sub-dictionary (of the Java
dictionary) in an Info.plist. In general, this list behaves like the Info.plist with a few exceptions:

 ■ Arguments to main() may not contain embedded spaces. You can work around this by passing in such
arguments to the Info.plist, though.

 ■ The APP_PACKAGE property is not expanded when used in com.apple.mrj.application parameters.

 ■ Additional command-line arguments designated in MRJApp.properties are ignored if the application
is launched from the command line.

Setting the Java Runtime Properties for an Application Bundle

Having seen the structure of the Mac OS X information property list should help you to debug your application
and modify existing applications, but how do you generate that list in the first place? You could build
application bundles by hand in the Terminal, write the Info.plist file yourself in a text editor, and designate
the file as an application with the SetFile command-line tool. There are two much simpler solutions: Project
Builder and MRJAppBuilder.

If you build a Java AWT or Swing application from one of Project Builder’s templates, Project Builder
automatically generates a default Info.plist file. You may either modify this by hand or directly from
Project Builder as outlined in “Modifying the Application Parameters” (page 64). If you want to turn your
preexisting Java application into a Mac OS X Java Application, MRJAppBuilder is the tool for you. It allows
you to take existing .class or JAR files and wrap the information around them that Mac OS X expects to
find when launching a native application, including setting up the runtime properties of your Java application.
A simple tutorial for MRJAppBuilder is available in “MRJAppBuilder Tutorial” (page 69). “Project Builder
Tutorial” (page 57) provides a tutorial on using Project Builder to build a Mac OS X native application.

Setting Runtime Properties in Project Builder

When you begin a new Java Swing or Java AWT application project in Project Builder, the ClassPath and
MainClass properties are generated automatically. The ClassPath property is updated as you add and
remove .class and .jar files. If you change the name of your main class or want to append values for any
of the other properties available in “Mac OS X Java System Properties” (page 75), you may do so by editing
the target settings. Choose Edit Active Target from the Project menu. In the resulting window (or pane
depending your settings) you can modify the settings in a more user-friendly manner than by editing the
property list by hand. Some of the most common properties are set with a checkbox. Other properties are
set in the Additional Properties and Additional VM Options fields.

Setting Runtime Properties in MRJAppBuilder

The Java Properties pane of MRJAppBuilder allows you to set Java runtime properties. The main and classpath
fields are not editable. These values are derived from your settings in the Application pane. A default set of
properties is already provided but it is simple to add more:

Mac OS X Java Applications 23
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Deployment Options

1. Click the Add button.

2. In the property field, put the name of the system property as specified in “Mac OS X Java System
Properties” (page 75).

3. Fill in the appropriate value for that property.

4. The Description field can be left blank; its information will not be saved.

When you build your application, you will see the specified settings in the Info.plist and
MRJApp.properties files.

Java Web Start

Java Web Start provides yet another way you can distribute your Java applications on Mac OS X. Although
not a standard part of Java 1.3.1, Mac OS X does provide Java Web Start with the default installation of the
operating system. This is an implementation of the Java Network Launching Protocol & API (JNLP) Specification,
v1.0.1. This means that if you choose to build JNLP-aware applications, Mac OS X users do not need to do
anything to take advantage of them. They have access to your applications through the Web browser and
the Java Web Start application (installed in /Applications/Utilities/Java).

By default, if a user launches a Java Web Start application more than twice from the same URL, they are
prompted to save the application as a standard Mac OS X application, as shown in Figure 3-3 (page 24). They
are also prompted on where they want to save your application. The application is still a Java Web Start
application, with all the benefits that offer, but it now easier for users to run your application since they do
not have to launch a Web browser or the Java Web Start application.

Figure 3-3 Java Web Start integration

The desktop integration setting can be changed in the Preferences of the Java Web Start application.

There are only a few details to be aware of in how the Mac OS X implementation of Java Web Start differs
from the Windows and Solaris versions:

 ■ It does not support downloading of additional Java Runtime Environments (JREs). Mac OS X includes
J2SE 1.3.1, so if your application specifically requires JRE 1.2 or 1.4, it will not work. Specifications for
versions numbers that can expand to include 1.3.1 will work though, for example 1.2+ or 1.3+.

 ■ It is s not necessary to set up proxy information explicitly in the Web Start application. Java Web Start
in Mac OS X automatically picks up your proxy settings from the Network preference pane.

 ■ Java Web Start caches its data in the user’s /Library/Caches/Java Web Start directory.

24 Java Web Start
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Deployment Options

Applets

Applets have always been one of the most common deployment methods for Java. Mac OS X provides a
robust environment for applet development through the use of Sun’s Java Plug-in. Applets use the same
1.3.1 VM that Java applications use. Their behavior should be similar to the behavior of Sun’s Java Plug-in.
Of course as with all applet deployment, the host platform’s support for Java is only part of the story. How
Web browsers interpret your HTML code to launch the applet is also key. This section gives you some relevant
information for deploying your applets in Mac OS X.

Accessing Mac OS X–Specific Properties From Applets

Mac OS X includes some specific system properties that you might want to take advantage of in your applets.
Except for the com.apple.macos.useScreenMenuBar, unsigned applets cannot access these properties.
If you want to use any of the properties discussed in “Mac OS X Java System Properties” (page 75), you can
grant permission to access them by adding a line to your system-wide java.policy file located at
/Library/Java/Home/lib/security/.

The line should be of the form:

java.util.PropertyPermission systemPropertyName, read;

Java Applet Plug-in

In previous versions of Mac OS X, applications that displayed applets, such as Web browsers, used the Mac
OS X Java Embedding framework to embed the Java applets in the native application. This framework uses
Sun’s reference appletviewer class not Sun’s Java Plug-in architecture. When this framework is used to
display an applet, users miss out on the additional features of Sun’s Java Plug-in. Additionally applet behavior
is dependent on how the browser maker uses the Java Embedding framework.

In Mac OS X version 10.2, browser developers may easily display applets with the Java Applet Plug-in
architecture (Java Applet.plugin) without writing browser–specific code to use the Java Embedding
framework. Mac OS X’s Java Applet Plug-in takes full advantage of Sun’s Java Plug-in. What this means to
you is that if you want to deploy your Java applets on Mac OS X is that you should modify your HTML code
so that your applets are be run through the new Java Applet Plug-in architecture and not the Java Embedding
framework.

Taking Advantage of the Java Applet Plug-in with HTML

Although Sun encourages the use of the <APPLET> tag for all applets, this does not always give you the
recommended behavior. For example, in some browsers, <APPLET> does not give you the full functionality
of Sun’s Java Plug-in, while the <OBJECT> tag, which is mapped to the mime type
application/x-java-applet, does. This is illustrated in Figure 3-4 (page 26).

Applets 25
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Deployment Options

Figure 3-4 Effect of HTML tags in Mac OS X 10.2

Java Embedding framework
Restricted access to plug-in

Java Plug-in

Java 1.3.1 VM

Java Applet.plugin

<APPLET> in IE and Opera

Full access to Plug-in

<OBJECT> in Opera
<EMBED> in Netscape/Mozilla
<APPLET> in Netscape/Mozilla

Your applet

Java Applet.plugin
Full access to plug-in

Figure 3-4 (page 26) shows the effect of the <APPLET> tag in comparison to the <EMBED> tag. You can see
that the suggested <APPLET> tag has the desired results only in Mozilla/Netscape. To work around the
different interpretations of the <APPLET> tag, you have a few options. You can just use the tag listed in
Listing 3-1 (page 21) that invokes the Java Plug-in or you can use Sun’s HTML converter to get HTML that
works in any browser. The converter is available at http://java.sun.com/products/plugin/1.3/docs/html-
conv.html. Without changing anything, you should see the same applet behavior that you saw in previous
versions of Mac OS X.

Table 3-1 Interpretation of HTML tags in common Mac OS X browsers

<EMBED><OBJECT><APPLET>Browser

Java Embedding frameworkInternet Explorer 5.2.x (default
browser in Mac OS X 10.2)

Java Plug-inTreated as an <EMBED> tag, which by
default maps to the
application/x-java-applet mime
type.

Netscape/Mozilla

Java Plug-inOmniWeb

Java Plug-inOpera

Java Plug-inTreated as an <EMBED> tag.Chimera

Benefits of Using the Java Applet Plug-in

Using the Java Applet Plug-in provides a better experience for people that use your applets. Changes have
been made in the areas discussed below.

26 Applets
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Deployment Options

http://java.sun.com/products/plugin/1.3/docs/htmlconv.html
http://java.sun.com/products/plugin/1.3/docs/htmlconv.html

JAR Caching

You can now designate that you want to store certain JAR files for repeated use. If you developed for Mac
OS 9, notice that this is similar to JAR caching on MRJ 2.2.x. The cache is stored in the users home folder in
Library/Caches/Java. To take advantage of JAR file caching, you may need to modify your HTML with
the following tags:

<PARAM NAME = "cache_option" VALUE="plugin">
Turns on caching.

<PARAM NAME = "cache_archive" VALUE="a.jar, b.jar, c.jar">
This is an optional tag used to specify the list of JAR files you want to cache.

JAR files in cache_archive are searched first, then the JAR files designated with the ARCHIVE tag
are used

<PARAM NAME = "cache_version" VALUE="1.2.0.1, 2.1.1.2, 1.1.2.7">
This is an optional tag used to specify the version number of the JAR files designated with
cache_archive. Each value corresponds to the respective JAR files designated with cache_archive.
If the version value is newer than what is cached, the JAR file in the cache is updated. If this tag is
omitted, the plug-in checks the server to see if there is a newer version available and caches that
version.

JAR file caching in Mac OS X conforms to the Java 1.3.1_03 standard. It does not conform to the Java 1.4
standard. This means that there are certain things you should keep in mind:

 ■ JAR files specified with the ARCHIVE tag are not cached.

 ■ The cache_version_ex parameter is not supported.

 ■ There is no JAR file indexing support.

 ■ For better forward compatibility, it is suggested that you use the cache_archive and cache_version
parameters.

Signed JAR Files

If a user decides to always trust your JAR file, a certificate is stored in the user’s home folder in
Library/Preferences/Java Plugin certificates 1.3.1.

Users can view their JAR file certificates in the Java Plugin Settings application.

The Java Console

The Java Console provides a way to log and trace the behavior of your applet while it is running. It can give
you interactive thread information and allow you to force garbage collection. The Java Console is the display
medium for System.outSystem.err for applets. The Java Console is visible if you select the option Show
Java Console in the Java Plugin Settings utility.

Java Plugin Settings Application

The Java Plugin Settings application allows users to fine-tune how applets behave in Mac OS X. It behaves
on Mac OS X as it does on other platforms. It is important to recognize that settings you make while testing
may not be the settings that users have on their computers. These settings are stored per user in
~/Library/Preferences/com.apple.java.plugin.properties131.

Applets 27
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Deployment Options

28 Applets
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Deployment Options

Mac OS X provides a very robust environment for Java development. This chapter outlines some of the tools
available to you in Mac OS X. It also discusses some things that may be different in the development
environment from other platforms that you may have used for Java development.

Java Development Tools

There are three basic types of Java development tools available to you in Mac OS X:

 ■ There are the standard command-line Java tools that you normally associate with the Java Development
Kit (JDK).

 ■ Apple provides additional command-line and GUI-based tools free with the Mac OS X Developer Tools.

 ■ There are many third-party tools, both open source and commercial, that you can use for Java
development on Mac OS X.

Standard JDK Tools

Most of the same tools that you would expect to find on Linux, Solaris, or Windows with the Java Development
Kit (JDK) installed are included with Mac OS X by default. There are no extra installation steps required. Most
of the standard JDK tools are command-line tools. The Java command-line tools are accessible from /usr/bin
and /Library/Java/Home/bin. These tools are included with the default installation of Mac OS X:

 ■ basic Java tools

 ■ java— runtime and virtual machine ❏

 ❏ javac—compiler

 ❏ javah—C header and stub file generator

 ❏ javap—class file disassembler

 ❏ jdb—debugger

 ❏ jar—archive tool

 ❏ javadoc—API documentation generator

 ❏ appletviewer—applet viewer

 ❏ extcheck—JAR conflict detection utility

 ■ Remote Method Invocation (RMI) tools

 ■ rmic—RMI stub compiler ❏

Java Development Tools 29
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Development Environment

 ❏ rmid—RMI activation system daemon

 ❏ rmiregistry—remote object registry

 ❏ serialver—tool to obtain class serial version

 ■ internationalization tool

 ■ native2acsii—text converter to Unicode ❏

 ■ security tools

 ■ jarsigner—JAR signing and verification tool ❏

 ❏ keytool—key and certificate management tool

 ❏ policytool—tool to manage Java policy files

 ■ Java Interface Definition Language (IDL) and RMI over Internet Inter-ORB Protocol (IIOP) tools

 ■ idlj—IDL-to-Java compiler ❏

 ❏ tnameserv—Java IDL name server starter script

Documentation on using these tools is available in the online manual (man) pages. These are available in
Project Builder under the Help menu as well as in the shell itself.

Displaying a Java Stack Trace

When debugging your Java applications, you may want to display a stack trace. If you launched your application
from the command line, CTRL-\ generates a SIGQUIT signal and prints the current stack trace in your Terminal
window. If you launch your Java application from the Finder, you just need to find its process ID (PID) and
deliver a SIGQUIT signal to that process. You see the stack trace in the Console application. For example,
first launch Applet Launcher, Terminal, and Console (all are in Applications/Utilities). If you want to
generate a stack trace for Applet Launcher, in Terminal type:

ps -auxwww | grep "Applet Launcher"

You would see the results as something like:

bgerfen 1490 0.0 2.3 255700 17912 ?? S 2:39PM 0:05.76
/Applications/Utilities/Java/Applet Launcher.app/Contents/MacOS/Applet Launcher
 -psn_0_5898241
bgerfen 1507 0.0 0.0 1116 4 std R+ 2:41PM 0:00.00 grep -i
Applet Launcher

Once you have the appropriate PID, kill it. For this example this looks like:

kill -QUIT 1490

Console displays the stack trace.

30 Java Development Tools
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Development Environment

Note: If you deliver a signal to a process that is running in gdb, gdb breaks on the signal. You can just
continue on (with the c command) since you are actually not interested in the signal itself, but in the output
the signal handler gives you.

You may also want to include monitor status information in the stack trace. If you are running your application
from the command line, just run your program with the -XX:+JavaMonitorsInStackTrace flag. You can
also make a .hotspotrc file in your home directory with this line in it:

+JavaMonitorsInStackTrace

Since this file is parsed every time a Java VM starts up, it is in effect for applications run from the command
line, double-clickable applications run from the Finder, and even Java applications embedded within other
applications.

If you have a reproducible crash, you might also want to find the stack trace for the native code by running
your application in gdb. After a crash use this command:

thread apply all bt

Other Command-Line Tools

Having a UNIX-based core at the heart of the operating system provides you, as a Java developer, access not
only to Java tools, but also a host of general UNIX-based development tools.

A look in /usr/bin shows many tools that make Java development on Mac OS X very comfortable if you
are already accustomed to a UNIX-based operating system. (In the Finder, choose “Go to Folder” from the
Go menu.) You will find emacs, gdb, make, pico, vi, and perl among others. If you do not see all of these,
you may need to install the Mac OS X Developer Tools. See “Where to Get the Tools” (page 34) for more
information.

If you are looking for Mac OS X ports of other command-line tools, look first in the Darwin CVS repository
available at http://developer.apple.com/darwin or http://www.opendarwin.org. You can also look at the main
repository of the tool you are trying to obtain. For basic information on porting your favorite non-Java tools
to Mac OS X, see Inside Mac OS X: UNIX Porting Guide.

GUI-Based Tools

Among the GUI-based tools are three that are especially important for Java development: Project Builder,
MRJAppBuilder, and Applet Launcher.

Project Builder

Project Builder is a complete integrated developmente environment (IDE) that allows you to edit, compile,
debug, and package your Java applications. A tutorial of how to build a simple Java application is included
in “Project Builder Tutorial” (page 57). Additional details of using Project Builder to build Java applications
are included in the section on compiling Java files in Project Builder Help.

Java Development Tools 31
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Development Environment

http://developer.apple.com/darwin
http://www.opendarwin.org

MRJAppBuilder

MRJAppBuilder is a utility for packaging already-compiled Java applications to run as Mac OS X applications.
MRJAppBuilder constructs applications in the same application bundle format as other Mac OS X applications.
It is very simple to use and allows you, with minimal work, to make your Java application launch like native
Mac OS X applications. You can even easily set options like the Dock icon and the application name that
appears in the menu bar without modifying your Java source code. Additionally you can use MRJAppBuilder
to set runtime flags that you might want to use only in Mac OS X. In order to use MRJAppBuilder, you need
only know the main class name of your application and have access to the .class files.

The interface to MRJAppBuilder is simple and readily apparent when you open the application. As illustrated
in Figure 4-1 (page 32), there are four tabbed panes in the MRJAppBuilder window.

Figure 4-1 MRJAppBuilder

The information in the Application pane is all that you need to make a Mac OS X application. All three fields
are required. The “Main classname” field is where you enter the name of the class that contains main. This
field represents the value of the property com.apple.mrj.application.main. Remember to include a
full package name. For example, com.myCompany.myMainClass.

The Classpath field allows you to modify the classpath. This is automatically set to point to the JAR file that
you’re bundling into your application. If you want to use JAR or .class files that will not be included in the
resulting application bundle, add a classpath entry of this form:

$APP_PACKAGE/../MyJARFile.jar

32 Java Development Tools
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Development Environment

$APP_PACKAGE is a special path string that represents the application bundle directory. The last required
field is the “Output file” field. This is where the resulting application bundle will be built. An optional setting
in this pane is the application icon. Click the icon in the “Output file” section to bring up a file chooser dialog
for selecting an .icns file.

Settings in Mac OS X, Java Properties, and Merge Files panes are optional. The Mac OS X pane allows you to
set values specific to the Mac OS X application bundle format. If you do not specify CFBundleExecutable
or CFBundleName, they are set based on the name of the output file you choose.

The Java Properties pane lets you set specific runtime properties, which can include standard Java properties
as well as the specific Mac OS X system properties discussed in “Mac OS X Application Properties” (page 76).
See “Setting Runtime Properties in MRJAppBuilder” (page 23) for more information on the Java Properties
pane.

The Merge Files pane provides a means for adding files to the application bundle, such as .zip or JAR files.
Each item added to the merge list is copied into the application’s Contents/Resources/Java directory.
Each item you add to the merge list gets automatically added to the classpath.

When you have finished making settings, click Build Application. MRJAppBuilder does not provide an import
mechanism. If you build an application and want to change certain settings, you need to make a new
application with MRJAppBuilder or modify the Info.plist and MRJApp.properties files by hand.
Information on these files can be found in “Application Bundles” (page 20).

Applet Launcher

Applet Launcher (in /Applications/Utilities/Java) allows you to run applets without the overhead
of launching a Web browser. It provides a graphical interface to Sun’s Java Plug-in. If you want to test the
performance of your applet with the sun.applet.AppletViewer class, you should use the appletviewer
command-line tool (/usr/bin/). You can enter the path to an applet using its fully-qualified URL, and then
press the Launch button. For example, entering the following URL launches the ArcTest applet:

file:///Developer/Examples/Java/Applets/ArcTest/example1.html

Performance and behavior settings for applets may be adjusted in the Java Plugin Settings application
installed in /Applications/Utilities/Java.

Other Tools

The Mac OS X Developer Tools also provide many tools useful for any kind of development, not just Java.
For example Package Maker, File Merge, and Icon Composer are just a few examples. Figure 4-2 (page 34)
shows all of the tools that get installed into /Developer/Applications.

Java Development Tools 33
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Development Environment

Figure 4-2 Tools in /Developer/Applications

In addition to the Apple-supplied tools, since you have both a UNIX foundation and a full implementation
of Java 2 Standard Edition, you may use many third party tools in Mac OS X. IDEs like Borland’s JBuilder, Sun’s
ONE Studio, and Metrowerks’ CodeWarrior are all available. There are many text editors, as well as other tools
for specific functionality like ant, JUnit, and OptimizeIt. If you are interested in Java 2 Platform, Enterprise
Edition (J2EE) development, Pramati and Jboss both offer J2EE development environments for Mac OS X.
Some of the most important pieces of J2EE, like Enterprise Java Beans and Java Server Pages (JSP), are
supported in Apple’s WebObjects product (http://www.apple.com/webobjects). Zentek’s iJADE product line
is one solution for Java 2 Platform, Micro Edition (J2ME) development in Mac OS X.

Where to Get the Tools

The standard JDK tools are installed with a default user installation of Mac OS X. If your computer has Mac
OS X installed but does not appear to have tools like javac, you can remedy this by making sure that the
BSD packages are installed:

1. In the Welcome to Mac OS X folder of the Mac OS X Install Disk 1, double-click the Install Mac OS X icon.

2. In the window that opens, click the Restart button.

3. When your computer has restarted, follow the onscreen prompts until you get to the Installation Type
phase. (This is indicated on the left side of the Install Mac OS X window.)

4. Select the Customize button.

5. Select BSD Subsytem.Though you may select other packages to add to your computer, for basic
command-line Java development, you do not need any other packages. (The Base System and Essential
System Software packages are always included.)

34 Java Development Tools
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Development Environment

http://www.apple.com/webobjects

6. Proceed with the installation by following the onscreen prompts. Once you have restarted your computer,
you should find the command-line Java tools installed in /usr/bin.

The Mac OS X Developer Tools CD comes with Mac OS X and is provided with new Macintosh computers. If
you do not have a current copy of the Mac OS X Developer Tools, you may download them from the Apple
Developer Connection Web site at http://connect.apple.com. Even if you do not want to use the Apple
provided GUI-based tools, you should install the Mac OS X Developer Tools since they contains some important
tools not installed by default.

Note: The Developer Tools available through the Apple Developer Connection online may be a more recent
version than the Developer Tools CD that came with your copy of Mac OS X. It is advisable to check the
website first. Compatibility information between releases is discussed in the release notes which are available
online at http://developer.apple.com/releasenotes.

Java Development Tools 35
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Development Environment

http://connect.apple.com
http://developer.apple.com/releasenotes

36 Java Development Tools
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

The Development Environment

If you are developing Java applications that you plan to deploy on multiple platforms, there are some things
that you should keep in mind to support Mac OS X as well as the other platforms. This chapter discusses
some basic points to consider and small changes you can make to your Java code to help it run well on any
platform, but are especially important to consider to make your application look like a Mac OS X application.
In general, these changes do not require you to use any APIs or properties specific to Mac OS X. This chapter
mainly discusses user interface issues.

The Aqua Look and Feel

Before discussing cross-platform coding practices, it is important to lay the foundation of what is available
in Mac OS X. The default interface to the operating system is called Aqua. Although other interfaces can be
displayed in Mac OS X, there is great benefit in usability by adhering closely to the native interface. To that
end, Apple has worked hard to make your Java applications appear and behave as much like native applications
as possible. Taking advantage of the basic look of the Aqua user interface is very simple. It requires you to
do nothing other than write clean Java code. In Mac OS X, the default pluggable look and feel (PLAF) for
Swing applications, com.apple.mrj.swing.MacLookAndFeel, gives an Aqua appearance to your Swing
applications. So if you don’t explicitly change your code to invoke another look and feel, Swing applications
look like native applications by default.

In general it is good practice to avoid explicitly setting the PLAF in your Java code.This makes your application
fit in much better on any platform. In the case of Mac OS X, this is especially true. If do you need to change
the look and feel of your application to test it for different platforms, it is better to set the swing.defaultlaf
Java property for your application at runtime by passing in -Dswing.defaultlaf=yourLookAndFeel when
launching the application. For development purposes, you may want to temporarily change Mac OS X’s
default look and feel. You can do this by modifying the swing.properties file in
/Library/Java/Home/lib.

You don’t need to use AWT components for the native look of Aqua because Swing provides it. You can
enjoy further benefits in performance and predictable graphics behavior by not mixing the heavyweight and
lightweight components of AWT and Aqua.

Behavior is part of a user interface as well as appearance. Automatic adoption of the Aqua appearance is a
first step, but there are many details that still are in your hands when trying to provide the best Aqua
experience. Inside Mac OS X: Aqua Human Interface Guidelines is the definitive guide for how applications
should appear and behave in Mac OS X and why they should behave that way. If you have a decision to make
that is not specified anywhere else, that document is a great source of answers to user interface questions.
If you find areas where your pure Java applications do not take advantage of these guidelines, please let
Apple know.

There are numerous details that go into designing a first-class application on any platform. Although it may
be impossible to build a perfect application, there are a few topics that are hot issues to users of a particular
platform. As a Java developer, a few areas to keep in mind as you design are discussed in the following
sections.

The Aqua Look and Feel 37
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Cross-Platform Practices for Great Native
Behavior

Placing and Painting Components

The complicated nestings and interrelations of containers and components in Swing interfaces can sometimes
make it difficult to remember that the development platform is not always the deployment platform. The
different look and feel designs available can provide widely variable appearances and behaviors. This section
brings to the foreground some details that while helping your application to work well on any platform, are
especially important in Mac OS X.

Layout Managers

Explicitly setting the x and y coordinates is dangerous when you consider the multiple platforms and look
and feel designs that the application may run under. The results of a “well-designed” application in one
environment may be disastrous in another, with components painting on top of each other and running off
the edge of a container, among other things. It is generally unsafe to assume that placing buttons and controls
at explicit coordinates is portable. Use the AWT layout managers to solve this problem. The layout managers
use abstracted location constants and determine the exact placement of these controls for a specific
environment. Layout managers take into account the sizes of each individual component while maintaining
their placement relative to one another within the container.

Sizing Components

In general, do not set component sizes explicitly. Each look and feel has font styles and sizes. These font sizes
will affect the required size of the component containing the text. Moving explicitly sized components to a
new look and feel with a larger font size can cause problems. The safest means of keeping your components
a proper, minimal size in a portable manner is to simply use
yourComponent.setSize(yourComponent.getPreferredSize()).

Most layout managers and containers respect a components preferred size, usually making this call
unnecessary. As your interface becomes more complicated however, you may find this call handy for containers
with many child components.

Coloring Components

Because a given look and feel tends to have universal coloring and styling for most, if not all of its controls,
developers may be tempted to create custom components that match the look and feel of standard user
interface classes. This is perfectly legal, but adds maintenance and portability costs. It is easy to set an explicit
color that you think works well with the current look and feel. Changing to a different look and feel though
may surprise you with an occasional non-standard component. To ensure that your custom control matches
standard components, query the UIManager class for the desired colors. An example of this is a custom
Window object that contains some standard lightweight components but wants to paint its uncovered
background to match that of the rest of the applications containers and windows. To do this, you can call

myPanel.setBackground(UIManager.getColor("window"))

This returns the color appropriate for the current look and feel. The other advantage of using such standard
methods is that they provide more specialized backgrounds that are not easily reconstructed, such as the
striped background used for Aqua containers and windows.

38 Placing and Painting Components
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Cross-Platform Practices for Great Native Behavior

Windows and Dialogs

Window coordinates and insets are compatible with the JDK. In a nutshell: Window bounds refer to the
outside of the window’s frame; the coordinates of the window put (0,0) at the top left of the title bar (not at
the top left of the content region as in MRJ on Mac OS 9). The getInsets method returns the amount by
which content needs to be inset in the window to avoid the window border. This should affect only applications
that are doing precision positioning of windows (especially full-screen windows), or those that bypass layout
managers to do their own hard-coded component positioning.

Windows behave differently in Mac OS X than they do on other platforms. For example an application can
be open without having any windows. Windows minimize to the Dock, and windows with variable content
always have scroll bars. This section highlights the windows details you should be aware of and discusses
how to deal with window behavior in Mac OS X.

Use of the Multiple Document Interface

The multiple document interface (MDI) model of the javax.swing.JDesktopPane class can provide a
confusing user experience in Mac OS X. Windows minimized in a JDesktopPane move around as the
JDesktopPane changes size. In the JDesktopPane, windows minimize to the bottom of the pane while
independent windows minimize to the Dock. Furthermore, JDesktopPane restricts users from moving windows
where they want. They are forced to deal with two different scopes of windows, those within the JDesktopPane
and the JDesktopPane itself. Normally Mac OS X users interact with applications through numerous
free-floating, independent windows and a single menu bar at the top of the screen. Users can intersperse
these windows with other application windows (from the same application or other applications) anywhere
they want in their view, which includes the entire desktop. Users are not constrained visually to one area of
the screen when using a particular application. When building cross-platform applications with multiple
windows, it is generally a good idea to avoid using javax.swing.JDesktopPanes.

There are times when there is not a simple way to solve window-related problems other than using a
JDesktopPane. For example, you might have a Java application that requires a floating toolbar-like entity,
referred to in Swing as an internal utility window”, that needs to always remain in the foreground regardless
of which document is active. Although Java currently has no means of providing this other than by using
JDesktopPane, for new development you may want to consider designing a more platform-neutral user
interface with a single dynamic container, similar to applications like JBuilder or LimeWire. If you are bringing
an existing MDI-based application to the Macintosh from another platform and do not want to refactor the
code, Mac OS X does support the MDI as specified in the J2SE 1.3.1 specification.

Windows With Scroll Bars (Using JScrollPanes)

In Mac OS X, scrollable document windows have a scroll bar regardless of whether or not there is enough
content in the window to require scrolling. The scroller itself is present only when the size of the content
exceeds the viewable area of the window. This prevents users from perceiving that the viewable area is
changing size. By default, a Swing JFrame has no scroll bars, regardless of how it is resized. The easiest way
to provide scrollable content in a frame is to place your frame’s components inside a JScrollPane, which can
then be added to the parent frame. In the default behavior of JScrollPane however, scrollbars only appear if
they content in the pane exceeds the size of the window. If you are using a JScrollPane in your application,
you can set the JScrollPane’s scroll bar policy to always display the scroll bars, even when the content is
smaller than the viewable size of the window. An example is shown in Listing 5-1 (page 40).

Windows and Dialogs 39
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Cross-Platform Practices for Great Native Behavior

Listing 5-1 Setting JScrollBar policies to be more like Aqua

JScrollPane jsp = new JScrollPane();
jsp.setVerticalScrollBarPolicy(JScrollPane.VERTICAL_SCROLLBAR_ALWAYS);
jsp.setHorizontalScrollBarPolicy(JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

With this setting the scroll bars are solid—with scrollers appearing when the contents are larger than the
viewable area. You might want to do this conditionally based on the host platform since the default policy,
AS_NEEDED, may more closely resemble other platforms native behavior.

File Choosing Dialogs

The java.awt.FileDialog and javax.swing.JFileChooser classes are the two main mechanisms to
create quick and easy access to the file system for Java applications. Although each has its advantages,
java.awt.FileDialog provides considerable benefit in making your application behave more like a native
application. The difference between the two is especially evident in Mac OS X as Figure 5-1 (page 40) and
Figure 5-2 (page 41) show.

Figure 5-1 java.awt.FileDialog

40 Windows and Dialogs
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Cross-Platform Practices for Great Native Behavior

Figure 5-2 javax.swing.jFileChooser

The column-view style of browsing is adopted automatically by the AWT FileDialog while the Swing
JFileChooser uses a navigation style different from that of native Mac OS X applications. Unless you need the
functional advantages of JFileChooser you probably want to use java.awt.FileDialog. Since the FileDialog
is modal and draws on top of other visible components, which is not the usual consequence of mixing Swing
and AWT components.

Note: javax.swing.JFileChooser only supports traversal of Mac OS X file aliases in the default file view.
If you replace it, aliases are not traversable. This limitation does not affect soft links, only Mac OS X aliases.

Dealing With Bundles in Mac OS X

As described in “Application Bundles” (page 20), a native Mac OS X application is packaged as a bundle,
which appears in the Finder as a single object but is actually a directory that contains all the resources of an
application. Packages are also bundles that can be viewed as single objects or as directories. Java applications
using JFileChooser or FileDialog recognize bundles as directories and allow inappropriate navigation. If you
are building an application for developers, you might want to display the actual, on-disk contents of the
directory, but if you are building an application for an end user, you do not want to display the bundle
contents. Apple provides properties for both dialog classes that allow you the option of controlling how
application and package bundles are displayed.

java.awt.FileDialog can be set to display application and package bundles as non navigable using the
com.apple.macos.use-file-dialog-packages runtime system property. For example, to turn off
navigation, run your application as follows:

java -Dcom.apple.macos.use-file-dialog-packages=true yourApplication

The resulting file dialog resembles Figure 5-3 (page 42). Notice that you cannot navigate into the application
bundle.

Windows and Dialogs 41
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Cross-Platform Practices for Great Native Behavior

Figure 5-3 Application displayed as an atomic object

The default setting of com.apple.macos.use-file-dialog-packages, false, leaves the contents of
application and package bundles navigable by users as seen in Figure 5-4 (page 42).

Figure 5-4 Application displayed as a directory

You can set this behavior in your application bundle using the technique described in “Setting the Java
Runtime Properties for an Application Bundle” (page 23). This allows you to alter your AWT dialogs for Mac
OS X without any code change. If your application requires unique instances to behave differently, you can
set the property to true or false at runtime as necessary using System.setProperty.

The FileDialog.setFile method does not work as expected in Mac OS X, so you can not specify which
directory the dialog opens in.

42 Windows and Dialogs
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Cross-Platform Practices for Great Native Behavior

javax.swing.JFileChooser offers more flexibility than java.awt.FileDialog. If you are already using
it in your code, there are two properties that let you specify whether or not application and package bundles
reveal their contents. Modifying JFileChooser’s behavior does require you to modify your source code. The
properties JFileChooser.appBundleIsTraversable and JFileChooser.packageIsTraversable
take values of never or always. If you want to hide the contents of both types of bundles, set
JFileChooser.packageIsTraversable to never. If you want to hide the contents of application bundles
but show the contents of package bundles, set JFileChooser.appBundleIsTraversable to never.
Generally, you should set JFileChooser.packageIsTraversable to never.

You can set these properties globally for all instances of JFileChooser in your application with the
UIManager.put method. You can set them on a per-instance basis via the putClientProperty instance
method inherited from javax.swing.JComponent.

Note: These properties have an effect only when using the Swing’s Aqua look and feel in Mac OS X.

Menus

One difficulty in cross-platform Java user interface development is dealing with menus. The appearance of
menu items tends to vary between platforms, as does how you handle meta keys described in menus.
Unfortunately, many Java programmers write their applications with only the current development platform
in mind and explicitly specify the appropriate modifier or trigger in their code. This poses problems in porting
applications from platform to platform, as well as risking misinterpretation of what the platform’s appropriate
triggers are. Elegant and portable solutions to creating the appropriate actions on any given platform do
exist and are covered in the following sections.

Menu Shortcuts

Keyboard shortcuts for invoking menu actions are often set with an explicit javax.swing.KeyStroke
specification. This becomes complicated when moving to a new platform with a different modifier key because
new KeyStrokes need to be conditionally created based on the current client platform. The solution to this
problem is to use java.awt.Toolkit.getMenuShortcutKeyMask to ask the system for the appropriate
key rather than defining it yourself.

When calling this method, the current platform’s Toolkit implementation returns the proper mask for you.
This single call checks for the current platform and then guesses which key is correct. In the case of adding
a Copy item to a menu, this means that you can replace the complication of Listing 5-2 (page 43) with the
simplicity of Listing 5-3 (page 44).

Listing 5-2 Explicitly setting KeyStrokes based on the host platform

JMenuItem jmi = new JMenuItem("Copy");
 String vers = System.getProperty("os.name").toLowerCase();
 if (s.indexOf("windows") != -1) {
 jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C, Event.CTRL_MASK));
 } else if (s.indexOf("mac") != -1) {
 jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C, Event.META_MASK));
 }

Menus 43
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Cross-Platform Practices for Great Native Behavior

Listing 5-3 Using getMenuShortcutKeyMask to set meta keys

JMenuItem jmi = new JMenuItem("Copy");
jmi.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C,
 Toolkit.getDefaultToolkit().getMenuShortcutKeyMask()));

Most common actions in Mac OS X have a keyboard equivalent that uses the Command key, previously
known as the Apple key, as a modifier. There may be additional modifier keys like Shift, Option, or Control,
but the Command key is the primary key that alerts an application that what follows is a command, not
regular input. Not all platforms provided this consistency in user interface behavior.

Different keys may prompt an application to begin listening for commands. The code presented in Listing
5-3 (page 44) provides only one generalized mask, so you still may need to make conditional settings
depending on your intended host platform. The fact that Mac OS X keyboard equivalents use Command
makes your life a bit easier if you’re bringing your application to Mac OS X. To make sure you are not overriding
any of the keyboard commands Macintosh users have been accustomed to for over twenty years, see Inside
MacOS X: Aqua Human Interface Guidelines for the definitive list of the most common and reserved shortcuts.

Some platforms support menu item mnemonics or single-key shortcuts to menus and their contents using
the Alt key. Mnemonics for these shortcuts are highlighted with a single underlined letter in the menu or
item’s name. This is a foreign concept to Mac OS X users. Although it is supported as a part of Java, the
suggested way to handle the identification of keyboard shortcuts in Mac OS X is by clearly identifying all of
the required keys. For an example, look at the File menu in the Finder. When writing your Java applications,
it is suggested that you apply Swing mnemonics in a platform-sensitive manner in your code if possible, such
as using a single setMnemonics() method that is conditionally called when constructing your interface.

Note: Since the ALT_MASK modifier evaluates to the Option key on the Mac, Control-Alt masks set for
Windows become Command-Option masks if you use getMenuShortcutKeyMask in conjunction with
ALT_MASK.

Menu Item Icons

Like mnemonics, menu item icons are also available and functional via Swing in Mac OS X. They are not a
standard part of the Aqua interface, although some applications do display them—most notably the Finder
in the Go menu. You may want to consider applying these icons conditionally based on platform. Whether
or not you choose to display menu item icons in Mac OS X, you should be aware that Aqua does specify a
specific set of special characters to be used in menus. See the information on using special characters in
menus in Inside Mac OS X: Aqua Human Interface Guidelines

Contextual Menus

There is no problem supporting contextual menus in your Java applications on Mac OS X—they are fully
supported. There are slight differences in terminology though. Java calls them popup menus while Aqua
calls them contextual menus. More important is how they are triggered on different platforms. On Mac OS
X, they are triggered by a Control-click. (By default, the second button of a two-button mouse maps to
Control-click in Mac OS X.) In Windows, the right mouse button is the standard trigger for contextual menus.

44 Menus
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Cross-Platform Practices for Great Native Behavior

These are two very different cases, which could result in fragmented and conditional code. One important
aspect of both triggers is shared, the mouse click. To ensure that your program is interpreting the proper
contextual menu trigger, it is again a good idea to ask the AWT to do the interpreting for you with
java.awt.event.MouseEvent.isPopupTrigger.

The method is defined in java.awt.event.MouseEvent because you need to activate the contextual menu
through ajava.awt.event.MouseListeneron a given component when a mouse event on that component
is detected. The important thing to determine is how and when to detect the proper event. In Mac OS X, the
pop up trigger is set on MOUSE_PRESSED. In Windows it is set on MOUSE_RELEASED. For portability, both
cases should be considered as shown in Listing 5-4 (page 45).

Listing 5-4 Using isPopupTrigger to detect contextual menu activation

JLabel label = new JLabel("I have a pop up menu!");

label.addMouseListener(new MouseAdapter(){
 public void mousePressed(MouseEvent e) {
 evaluatePopup(e);
 }

 public void mouseReleased(MouseEvent e) {
 evaluatePopup(e);
 }

 private void evaluatePopup(MouseEvent e) {
 if (e.isPopupTrigger()) {
 // show the pop up menu...
 }
 }
});

Event Handling

Two notes on event handling may be useful to your in your development and deployment of applications
in Mac OS X:

 ■ Many of the Swing and AWT components are implemented with native code from the Carbon API of
Mac OS X. Although this should not affect your Java code, it might be important information in debugging
applications that do not appear to behave correctly, especially in regard to the runtime handling of
events. If you do find an issue where the event handling is not as specified by the Java 2 specification,
please file a bug as explained in “Filing and Tracking Bugs” (page 10).

 ■ Although mouse-down events from additional buttons on multi button USB mice are delivered correctly,
mouse-up and mouse-drag events involving the additional buttons may not be delivered with the correct
modifiers. There may be ambiguity between various button masks and meta key masks. Use the utility
functions as a workaround (for example, java.awt.event.InputEvent.isMetaDown) instead of
accessing the modifiers directly.

Event Handling 45
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Cross-Platform Practices for Great Native Behavior

46 Event Handling
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Cross-Platform Practices for Great Native Behavior

If you are targeting a Java application for Mac OS X deployment, this chapter offers a collection of things you
might need to know to help your application perform the best it can in Mac OS X.

Modifying the Default Settings for Hardware Graphics Acceleration

When your Swing applications start up, the Java implementation in Mac OS X determines which video card
is installed in your system and compares this against a list of known unsupported video cards. If your card
does not appear in, or is commented out of this list, then hardware graphics acceleration is invoked. If you
do nothing at all, your Java applications take advantage of hardware acceleration if that computer has a
compatible video card. You may find in testing your application in Mac OS X that you do not want hardware
acceleration on or you might find certain video cards that you wish to turn off hardware acceleration for. If
these cards are not ones that Apple automatically turns off hardware acceleration for, you need to explicitly
turn them off with the com.apple.hwaccelexclude property using the naming conventions described in
“Video Cards Designation Strings” (page 48). For example, to turn off hardware acceleration on just the ATI
Radeon 8500 but leave it on for all other cards, you could use the following command in Terminal:

java -Dcom.apple.hwaccel=true -Dcom.apple.hwaccelexclude=ATIRadeon8500_67108864
 -jar App.jar

By using the com.apple.hwaccelexclude property, you have complete control of which cards are ignored.
If you choose to turn off hardware acceleration for any specific cards, make sure that you also turn it off for
those that are uncommented by default in the hwexcludelist.properties file as well. Otherwise you
will turn it off for the video card you are concerned with, but it will be on with cards that Apple initially had
it turned off for.

Taking this into account, a better example of turning off hardware acceleration for the ATI Radeon 8500
would also turn it off for the 8 MB ATI Rage 128 card in the first generation iBooks and Titanium PowerBooks:

java -Dcom.apple.hwaccel=true
-Dcom.apple.hwaccelexclude=ATIRadeon8500_67108864,ATIRage128_8388608 -jar App.jar

The com.apple.hwaccel=true is not necessary in Mac OS X version 10.2, but it is suggested that you use
it along with the -Dcom.apple.hwaccelexclude flag.

To turn off hardware acceleration completely, pass in the command-line flag com.apple.hwaccel=false.
For example:

java -Dcom.apple.hwaccel=false -jar App.jar

To turn on hardware acceleration for all video cards, pass in the command-line flag
com.apple.hwaccelexclude with no arguments as follows:

java -Dcom.apple.hwaccel=true -Dcom.apple.hwaccelexclude= -jar App.jar

Modifying the Default Settings for Hardware Graphics Acceleration 47
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Using Native Features of Mac OS X in Java
Applications

You may incorporate any of these command-line options into your Mac OS X applications bundles using
MRJAppBuilder or Project Builder.

Advanced Options

While testing your Java applications, you may want to see what effect Mac OS X’s Java hardware graphics
acceleration has on your code without having to restart your application each time you make a change. By
passing in the system propertycom.apple.usedebugkeys=true and you can use function keys combinations
to turn hardware acceleration on and off. There are two sets of key combinations you can use:

 ■ Command-F7 to turn on hardware acceleration gracefully. This is equivalent to the default behavior
except that you may toggle it on and off while the application is running. Option-F7 turns it off.

 ■ Command-F8 forces hardware acceleration on. This differs from Command-F7 in that it forces everything
to be hardware acceleration without applying any of the logic that Command-F7 would use. This is for
testing only, and you may see unpredictable results. Option-F8 turns it off.

Note: Once you have forced hardware acceleration on with Command-F8, you cannot use Command-F7 to
turn it on without restarting your application.

The com.apple.forcehwaccel runtime property allows you to force hardware acceleration on or off
without looking at the list of suggested video cards. This is similar to using Command-F8 with
com.apple.usedebugkeys as noted above except that with com.apple.forcehwaccel, the state is
explicitly determined at runtime. Available values are true and false.

Another runtime property, com.apple.hwaccelnogrowbox, is provided so that you can determine if
hardware acceleration is on or off just by looking at a window. By setting this to true, the grow box (called
a resize control in Aqua) normally found in the bottom right corner is not displayed if hardware acceleration
is on. It will be visible if hardware acceleration is not on. Setting this to false, gives you the default behavior
that shows the grow box regardless of whether hardware acceleration is on or off.

Video Cards Designation Strings

Java hardware graphics acceleration is supported on most of the default video cards in Apple computers,
provided they have 16 MB or more of on-card video memory. For the purpose of Java graphics hardware
acceleration, each of these cards has been assigned a distinct identifying string. There are a few ways of
determining these strings:

 ■ If you are unsure of the type of video card in a computer, use the hwaccel_info_tool available online
at http://connect.apple.com. Instructions on using this command-line tool are provided in a man page
installed with the tool.

 ■ If you know what type of video card is in your computer, you can determine the appropriate string by
looking in the hwaccelexclude.properties file in
/System/Library/Frameworks/JavaVM.framework/Versions/1.3.1/Home/libor by usingTable
6-1 (page 49).

48 Modifying the Default Settings for Hardware Graphics Acceleration
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Using Native Features of Mac OS X in Java Applications

http://connect.apple.com

Table 6-1 Video-card designation strings

StringMemoryVideo card model

ATIRage128_83886088 MBATI Rage Mobility 128

ATIRage128_1677721616 MBATI Rage 128

ATIRadeon_1677721616 MBATI Radeon

ATIRage128_3355443232 MBATI Rage 128

ATIRadeon_3355443232 MBATI Radeon 7500

ATIRadeon8500_6710886432 MBATI Radeon 8500

NVidia11_3355443232 MBNVidia GeForce2

NVidia20_6710886464 MBNVidia GeForce3

NVidia11_6710886464 MBNVidia GeForce4MX

NVidia20_13421772864 MBNVidia GeForce4TNT

Specifying a Name and Icon for Command-Line Applications

By default, Java processes that are launched from a shell do not show up in the Dock or the menu bar until
they show a window. If they never show a window, they never appear in the Dock. This allows server-type
processes to run behind the scenes with no user-visible manifestation.

If you are running an application from the command line that opens a window, the class name of the
application’s main class appears as the application name in the Dock and application menu. You may specify
a more appropriate name to display by using this command-line option:

-Xdock:name=applicationName

You can also specify an icon to replace the generic Java icon with this option:

-Xdock:icon=pathToIconFile

The icon file must be a Mac OS X icon file—the same type you would use for any other Mac OS X application.
If either the application name or path to the icon file has spaces in it, wrap it in double quotes.

Using the Macintosh Menu Bar

In Swing, an application’s menu bar is applied on a per-frame (window) basis. Similar to the Windows model,
the menu bar appears directly under the frame’s title bar. This is different from the Macintosh model, where
the application has a single menu bar that controls all of the application's windows. To solve the basic
problem, a runtime property is provided:

Specifying a Name and Icon for Command-Line Applications 49
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Using Native Features of Mac OS X in Java Applications

com.apple.macos.useScreenMenuBar

This property can have a value of true or false. If undefined, the standard Java behavior equivalent to a
value of false is used. When read by the Java runtime at application startup, a given JFrame’s JMenuBar is
placed at the top of the screen, where a Macintosh user would expect it to be. Since this is a simple runtime
property that must be used by the host VM, setting it in your application has no effect on other platforms
since they do not even check for it.

Note that a JMenuBar attached to a JDialog does not appear at the top of the screen as expected when
setting this property, but rather inside the dialog as if the property were not set. If your JDialog does not
have a menu bar, the default parent JFrame’s menu bar is displayed when the JDialog is brought into focus.

If you find the need to attach menus to a dialog window, you may want to consider making the window a
JFrame instead of a JDialog. A dialog should be informational or present the user with a simple decision, not
provide complex choices. A window with enough functionality to necessitate a menu bar may be better as
a JFrame.

Unfortunately, this solves only part of the problem—the placement of the menu bar. The fundamental
discrepancy between the idea of a single menu bar per application of the Macintosh and a menu bar per
window of Java, still exists. In other words, setting this property causes the menu to appear at the top of the
screen, but only when the specific window it was assigned to is in focus. If your application has multiple
windows, and a window other than the one holding the menu bar is focused, the menu bar vanishes. The
Aqua guidelines state that the menu bar should always be visible in an application; even an insignificant
window such as an alert dialog should still show the menu bar (though you may want to disable the menus).

The Window Menu

One of the suggestions in Inside Mac OS X: Aqua Human Interface Guidelines is that all Mac OS X applications
should provide a Window menu to keep track of all currently open windows. A Window menu should contain
a list of currently active (visible) windows, with the corresponding menu item checked if a given window is
currently in the foreground. Likewise, selection of a given Window menu item should result in the
corresponding window being brought to the front. New windows should be added to the menu, and closed
windows should be removed. The ordering of the menu items is typically the order in which the windows
appeared. InsideMacOSX: AquaHuman InterfaceGuidelines has more specific guidance on the Window menu.

The Application Menu

Any Java application that uses AWT/Swing, or is packaged in a double-clickable application bundle, is
automatically launched with an application menu similar to native applications on Mac OS X. This application
menu, by default, contains the full name of the main class as the title. This name can be changed using the
com.apple.mrj.application.apple.menu.about.name application property or the -Xdock:name
command-line property. According to the Aqua guidelines, the name you specify for the application menu
should be no longer than 16 characters. Figure 6-1 (page 51) shows an application menu.

50 Using the Macintosh Menu Bar
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Using Native Features of Mac OS X in Java Applications

Figure 6-1 Application menu for a Java application in Mac OS X

The next step to customizing your application menu is to have your own handling code called when an item
in the application menu is chosen. Apple has provided a means for this through interfaces in the
com.apple.mrj package. Each interface has a special callback method that is called when the appropriate
application menu item is chosen. The following callback interfaces for the application menu are available:

 ■ com.apple.MRJAboutHandler, to handle the About menu item.

 ■ com.apple.MRJPrefsHandler, to handle the Preferences menu item.

 ■ com.apple.MRJQuitHandler, to trigger final clean-up logic when the Quit menu item is chosen. By default,
that Quit menu item just calls System.exit. You might actually want to do more than just exit.

To handle a given application menu item:

1. Implement the appropriate handler interface.

2. Define the appropriate handler method in your implementation: handleAbout, handlePrefs, or
handleQuit.

3. Register your handler using the appropriate static methods in the
com.apple.mrj.MRJApplicationUtils class: either registerAboutHandler,
registerPrefsHandler, or registerQuitHandler.

You can see examples of these implementations in a default Swing application project in Project Builder.

If your application is to be deployed on other platforms, where Preferences, Quit, and About are accessed
elsewhere on the menu bar (in a File or Edit menu, for example), you may want to make this placement
conditional based on the operating system of the host platform. This is preferable to just adding a second
instance of each of these menu items for Mac OS X. This minor modification can go a long way to making
your Java application feel more like a native application on Mac OS X.

More MRJ Handlers

In addition to the interfaces provided for handling application menu items, Java on Mac OS X provides two
other handlers:

 ■ com.apple.MRJOpenApplicationHandler, which lets you respond to an Open Application Apple event.

More MRJ Handlers 51
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Using Native Features of Mac OS X in Java Applications

 ■ com.apple.MRJOpenDocumentHandler, that responds to double-clicking a supported document or the
dragging of a document onto your application’s icon.

These handler interfaces are intended to enhance a Java application’s behavior in the Mac OS X Finder and
are used in the same manner as the application menu interfaces described above.

Localizing Packaged Java applications on Mac OS X

To run correctly in non-English locales, Java applications bundles need to have the appropriate localized
folders inside the application package. This is true even if the Java application handles its localization through
Java ResourceBundles. Specifically, you need to have a folder named with the locale name and the .lproj
suffix present in the application’s Resources folder for any locale that you wish to use. For example, you
need a Japanese.lproj folder inside YourApplication.pkg/Contents/Resources/ in order for
Japanese localization to work correctly. The folder itself can be empty, but it must be present for Mac OS X
to set the locale correctly when the application launches. Otherwise Mac OS X launches your application
with the English US locale.

The Bundle Services documentation and Inside Mac OS X: System Overview, both available from http://devel-
oper.apple.com/documentation, provide more details about the application bundle format.

QuickTime for Java

QuickTime for Java provides a cross-platform API that allows Java developers to build multimedia components,
including streaming audio and video, into applications and applets for both Macintosh and Windows. More
information on QuickTime for Java is available online at http://developer.apple.com/quicktime/qtjava/.

Java Core Audio Packages

Mac OS X includes a very robust sound subsystem. Hooks for using this system directly from Java are provided
in the Java Core Audio packages. More information on the Mac OS X Core Audio framework can be found
online at http://developer.apple.com/audio.

Java Spelling and Speech Frameworks

Two very useful frameworks, Spelling and Speech, are also available for you to use in Mac OS X. These are
implemented as Java Beans. The source code, examples, and documentation are available at http://develop-
er.apple.com/java.

52 Localizing Packaged Java applications on Mac OS X
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Using Native Features of Mac OS X in Java Applications

http://developer.apple.com/documentation
http://developer.apple.com/documentation
http://developer.apple.com/quicktime/qtjava/
http://developer.apple.com/audio
http://developer.apple.com/java
http://developer.apple.com/java

JDirect

In addition to the standard Java Native Interface, Mac OS X also includes JDirect3. JDirect3 allows access to
preexisting native code libraries from Java without you needing to explicitly use JNI. It builds JNI stubs for
you on the fly.

JDirect3 is not a standard part of J2SE, and it is important to keep in mind that it ties your code to Mac OS
X. JDirect3 is not recommended for future new development since changes in future releases of Mac OS X
will yield your code unusable.

JDirect1, which has been deprecated since 1997, is not supported in Mac OS X. If you have JDirect2 code, it
requires minor modifications to run under JDirect3. If you are porting old JDirect2 code to JDirect3, there
are a few important details to keep in mind as the following sections discuss.

Human Interface Toolbox Synchronization

You must synchronize all Human Interface Toolbox calls. Since Java threads are native Mach threads and can
preempt Toolbox calls made by the host application or by other Java threads otherwise. The Java
implementation itself is based on the Carbon threading model in Mac OS X. This threading model is neither
reentrant or thread-safe. Since reentrant calls can corrupt memory or crash your application, it is important
that only one thread be inside Carbon at any time.

This is the correct way to call the Toolbox from Java on Mac OS X:

import com.apple.mrj.macos.carbon.CarbonLock;
try {
 CarbonLock.acquire();

//Carbon call here

} finally {
 CarbonLock.release();
}

This way the Carbon lock handling can easily be reversed for JDirect callbacks.

Be sure to use CarbonLock around all Carbon calls. Since threads are preemptive on Mac OS X, you should
hold the Carbon lock for the shortest amount of time possible.

Make sure not to do anything that might throw an exception in the finally block that calls
CarbonLock.release. Structure your code so that the Carbon locking is separate from other finally blocks.

Debugging Features for JDirect

To help debug JDirect on Mac OS X, you can define a shell variable, JDIRECT_VERBOSE to write verbose
JDirect loading info to stderr. This works only when launching Java code from the command line, not when
double-clicking a bundled application in the Finder. You can launch any double-clickable application from
the command line by specifying the path to the application’s executable.

For example, to set the shell variable, and then launch an application called Foo.app, you would do the
following in csh:

JDirect 53
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Using Native Features of Mac OS X in Java Applications

setenv JDIRECT_VERBOSE

/path/Foo.app/Contents/MacOS/Foo

MethodClosureUPP Not Supported

The class MethodClosureUPP was created for use in Mac OS 9 and is not supported in Mac OS X. If you are
using Carbon callbacks and want code that can run in Mac OS 9 and Mac OS X, you need to have a helper
class that creates a new MethodClosureUPP when in Mac OS 9 or a new MethodClosure when in Mac OS
X.

JDirect Access to Bundles

Normally, your JDirect_MacOSX string is a full path to a dylib, which is the standard packaging for shared
Mach-O binaries in Mac OS X. You can also specify a full path to a bundle. The bundle path name must end
in .bundle and be a properly constructed directory. A bundle can use both Mach-O binaries and CFM binaries.
The Bundle Services documentation in Inside Mac OS X: System Overview has more details.

Embedding Applets in Native Applications

If you are a Mac OS X developer that needs to embed Java applets inside of your native application, use the
Java Applet Plug-in (Java Applet.plugin) architecture of Mac OS X. In previous versions of Mac OS X, you
might have used Java Embedding framework. Though this framework still works, it is not recommended for
future development. It may change significantly in future versions of Java on Mac OS X.

As illustrated in Figure 6-2 (page 55), using the Java Applet Plug-in architecture will allow applets displayed
in you application to take full advantage of Sun’s Java Plug-in; the Java Embedding framework provides only
a subset of that functionality. The Java Applet Plug-in therefore provides both developmental benefits for
developers as well as an enhanced user experience for applets displayed in your application.

54 Embedding Applets in Native Applications
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Using Native Features of Mac OS X in Java Applications

Figure 6-2 Java Applet Plug-in versus Java Embedding Framework

Java Applet.plugin
Full access to Plug-in

The Java Applet Plug-in architecture allows your native code access to Sun’s Java Plug-in which in turn lets
you access a virtual machine. Since it is a standard Netscape 4.0 style plug-in, you may also use it to provide
Java support inside native applications. Java Applet.plugin is a native Mach-O library. It is a standard
Mac OS X bundle. It exports the same symbols that the UNIX Netscape plug-in exports. Complete details on
integrating a Netscape-style plug-in is beyond the scope of this document. .

Cocoa Java

In Mac OS X, Cocoa applications can be written in Java as well as their native Objective-C. Cocoa Java
applications will behave just like a native applications but will not be portable to other platforms.

If you are using Cocoa Java for your user interface, it is important that you do not try to mix Cocoa Java with
standard Java components. Since many of these components are Carbon-based, you will run into many
problems. In particular, you should avoid trying to mix the following with Cocoa Java:

 ■ Swing/AWT components, including Java events

 ■ QuickTime for Java components

 ■ JDirect calls

The main reason for this is that Carbon and Cocoa use different run loops, which conflict with one another
if mixed in the same application.

More information on Cocoa Java is available at http://developer.apple.com/documentation/cocoa.

Cocoa Java 55
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Using Native Features of Mac OS X in Java Applications

http://developer.apple.com/documentation/cocoa

56 Cocoa Java
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Using Native Features of Mac OS X in Java Applications

Apple provides a complete set of development tools free with Mac OS X. This set includes compilers, a
debugger, a complete integrated development environment (IDE), as well as many other tools and resources.
Apple’s IDE, Project Builder, allows you to edit, compile, debug, and package your Java applications. This
chapter provides a simple tutorial on using Project Builder to build a Swing-based Java application and an
applet.

Building a Java Application With Project Builder

To follow this example, you need to have the Mac OS X Developer Tools installed. Project Builder is installed
in /Developer/Applications. The sourcecode files you need are ExampleFileFilter.java,
ExampleFileView.java, and FileChooserDemo.java; they are installed in
/Developer/Examples/Java/JFC/FileChooserDemo. If you do not see these files you need, install the
Mac OS X Developer Tools. If you do a custom install, make sure that the Developer Example and Developer
Tools Software packages are installed. For this example you will build Sun’s FileChooserDemo that lets you
see how different Java look and feel designs display file browsers.

The Makeup of a Project Builder Project

Open Project Builder. From the Project Builder File menu choose New Project.

You see that you can use Project Builder to create AppleScript, Carbon, Cocoa, and Java applications as well
as bundles, tools, frameworks, kernel extensions, and plug-ins. In the Java section, there is support for creating
several types of Java projects including tools, applets, and applications. Select Java Swing Application by
double-clicking it.

Enter FileChooserDemo in the Project Name field and place the project in a location that is convenient for
you by either entering a pathname or by clicking the Choose button and navigating using the browser. In
either case, the Location field displays the location of your project.

Click Finish. Project Builder generates the appropriate files and places them inside the directory that you
specified.

A look at this project’s directory in the Finder reveals the files that Project Builder creates when you make a
new project as shown in Figure A-1 (page 58).

Building a Java Application With Project Builder 57
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Figure A-1 Project folder contents

The build directory contains the results of building your project. The file FileChoserDemo.icns contains
the icons for your application. This file is the icon set that Project Builder assigns by default to Java applications
if you do not specify another .icns file to use. FileChooserDemo.pbproj is the Project Builder project
file. It contains generated meta data about your project, and Project Builder maintains this file.
FileChooserDemostring.propertiesmaintains a list of localizable strings. There are also two Java source
files.

To further explore the interactions of these parts of the FileChooserDemo project, make Project Builder active
again.

In the Files list you see the same basic layout as in the Finder. With such a simple project, it might appear
that the Files list is just a mirror of the file-system layout. It is important to note that this is not the case.
Project Builder keeps track of the files in your project by means of references. It does not have to actually
copy the file to the project folder. This allows you to set up your project in the Files list in a manner that
streamlines development without having to be concerned with how the files are structured on disk. You
could, for example, have source code in a directory different from that of your Project Builder project.

Building a Java Project

Before making any changes to your new project, verify that it builds a valid Java application. Choose Build
and Run from the Build menu. You can also click the Build and Run button (the one with the hammer and
computer monitor) in the toolbar or simply press Command-R. Your application should build and then launch
a simple Hello World application. It’s window should look like the one shown in Figure A-2 (page 59).

58 Building a Java Application With Project Builder
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Figure A-2 Result of building a default project

Notice the generic Java icon in the Dock for this application.

Figure A-3 Generic Java icon

Also notice that the application, though a pure Java application, takes on the Aqua look and feel of a Mac
OS X application, right down to the genie effect when you minimize the window.

Project Builder has not only compiled the .java source files, but also wrapped the resulting Java application
as a Mac OS X application. In the Finder you can see the double-clickable Mac OS X application inside your
project folder in the Build directory. In building the Mac OS X application, Project Builder has set certain
system properties. For example, by default Project Builder passes the flag
-Dcom.apple.macosx.useScreenMenuBar=true to your application when it runs. This puts the menu
bar at the top of the screen where it is in native Macintosh applications.

Adding Your Source Files

Building a default application is nice, but how do you get your code to build in Project Builder? So far you
have only built and run the default files provided in the Java Swing application template. Now you are going
to add modify the template to get a feel for how you can modify the default Project Builder templates with
your own Java source code.

If the FileChooserDemo application is still running, quit it. You can do this either by clicking the Stop button
in the Project Builder toolbar or by pressing Command-Q in the application itself. Before adding the correct
source files, you need to remove the two source files that Project Builder gave you by default. In the Files
list, you see FileChooserDemo.java and AboutBox.java as indicated in Figure A-4 (page 60).

Building a Java Application With Project Builder 59
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Figure A-4 Default files in a new Java Swing application

FileChooserDemo.java contains the main method invoked when the application runs. You will replace
this file with the FileChooserDemo.java source file in /Developer/Examples/Java. The use of
MRJAboutBox and MRJQuitHandler in FileChooserDemo.java allows your Java application to more closely
resemble a native Mac OS X application. Their use, however, is beyond the scope of this example. There is
another file, AboutBox.java, which contains the AboutBox class that is used in conjunction with the
MRJAboutHandler.

To get rid of the old FileChooserDemo.java file, select it in the Files list and choose Delete from Project
Builder’s Edit menu. In the alert that appears, click Delete References & Files. This removes the reference to
the file in Project Builder and deletes the file from your project directory. Delete AboutBox.java in the same
manner.

60 Building a Java Application With Project Builder
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Figure A-5 Delete References alert

You now have a Java project with no source files. From the Project menu, choose Add Files. Navigate to
/Developer/Examples/Java/JFC/FileChooserDemo/src either in the browser or by typing the path
in the "Go to” field. Select ExampleFileFilter.java, ExampleFileView.java, and
FileChooserDemo.java. Click Add.

Building a Java Application With Project Builder 61
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Figure A-6 Selecting files to add to a Java project

In the next dialog, you need to decide whether to copy the files themselves into the project folder or just
make references to them. Do you want a local version that you can alter without affecting other projects or
do you want to maintain a single copy of that source file? In this case the former is appropriate so select the
option “Copy items into destination group’s folder.” Leave the Reference Style pup-up menu set to Default.
Since you are not adding any folders, your choice for the folder reference radio buttons does not matter.
Click Add.

62 Building a Java Application With Project Builder
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Figure A-7 Copy items into project folder option

Once you have the appropriate files in your project, you can compile the Java code and build the Mac OS X
application. Since you removed some files and added others since your last build, it is a good idea to clean
the active target before building. If you don’t clean the active target, you might get build errors. From the
Build menu select Clean. Dismiss the resulting warning by clicking Clean Active Target. Now you are ready
to build. Click the Build button (with the hammer icon) in the Project Builder toolbar or choose Build from
the Build menu. Look at the results of this process by opening your project folder in the Finder.

Building a Java Application With Project Builder 63
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Figure A-8 Contents of a built application

At the top level of the project directory are the source files and the FileChooserDemo.icns file that were
there before. The build directory now contains the class files and the Mac OS X double-clickable application,
FileChooserDemo. You can see how everything was built by looking at the messages in Project Builder’s Build
pane. When Project Builder builds a Java application, the source code is compiled, archived as a JAR file, and
then converted to a Mac OS X application.

Modifying the Application Parameters

Although Project Builder did compile the Java source files and used jar to archive them together, it also put
together the Mac OS X application bundle. In doing this it evaluates certain settings in Project Builder to
construct the property lists that Java on Mac OS X uses at runtime. (see “Property List Attributes for Java
Applications” (page 21)). For example, Project Builder determined the name FileChooserDemo to display in
the title bar and determined the main class to run when your application is double-clicked in the Finder.
Some properties don’t get set automatically though and some retain default values unless you specify
otherwise. For example if you launch the FileChooserDemo application, you can see that the default Java
icon is still in the Dock. This icon is added to your application bundle if you don’t add your own icon.

It is simple to modify the generic Java runtime properties of your application or to add specific Mac OS X
properties from Project Builder. In your FileChooserDemo Project window, click the Targets tab. Select the
FileChooserDemo target in the top left window. It should be the only target there. (If you are using Project
Builder’s multi window user interface, double click the target.) In the resulting window or pane you can
modify many different aspects of that target as Figure A-9 (page 65) shows.

64 Building a Java Application With Project Builder
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Figure A-9 Target settings

There are many settings here that you can modify, but the ones you will probably modify the most include
those in Pure Java-Specific. To see how you can modify these, select the Pure Java-Specific section. Project
Builder should display a window that looks like the one in Figure A-10 (page 66).

Building a Java Application With Project Builder 65
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Figure A-10 Pure Java-Specific settings

This pane shows the default settings. To see the effect of changing settings here, add a command-line setting
to the Additional Properties list, then clean and rebuild the application. For example:

1. Click the plus (+) button under Additional Properties.

2. Replace the highlighted new.property with com.apple.mrj.application.live-resize.

3. Replace value with true.

4. Choose Clean from the Build menu. In the sheet select Clean Active Target.

5. From the Build menu, select Build and Run.

You can see in the resulting application that if you resize the window it now attempts to fill in the contents
as the window is resizing, instead of just resizing an outline of the window. You can also see why this system
property is off by default! (For an application with a simpler window, turning on this system property might
be beneficial.)

You can add any properties in the Pure Java Specific section that you might pass in at the command line.
Those that you pass in with the -D flag should go in the Additional Properties section. Those that you pass
in with -X should go into the Additional VM Options section.

Having tried an option that didn’t make your application better, you should remove it. In removing it though,
try using the Expert View indicated in Figure A-11 (page 67). Just select the offending property, and delete
it.

66 Building a Java Application With Project Builder
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Figure A-11 Expert View

Now if you clean, build, and run the application, you should see that the original behavior has returned. This
is seen in Figure A-12. Whether modifying the settings in the Expert View or Simple View, you are really just
modifying the property list entries as discussed in “Property List Attributes for Java Applications” (page 21).

Figure A-12 Default setting for live resizing

With the basic steps presented here, you have the foundation to build your own Java applications in Project
Builder and take advantage of the value it adds by allowing users to run your pure Java application just like
they would any other Mac OS X application.

Building a Java Application With Project Builder 67
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Building Applets With Project Builder

Building applets with Project Builder is very similar to building applications. Since applets are hosted within
another application, there is no need to convert them to Mac OS X applications like you did with the Pure
Java application. Having built an application in Project Builder, building your applet should be very
straightforward. As with the application, the simplest way to start is with one of Project Builder’s templates.
By adding your own files and removing the default files, you can quickly get your own applets built in Project
Builder.

Build one of the applets in /Developer/Examples/Java/Applets. For example:

1. Open a new Project Builder project. Use the Java AWT Applet template. Name it ArcTest.

2. Delete the ArcTest.java and example1.html files.

3. Add in ArcTest.java and example1.html from /Developer/Examples/Java/Applets/ArcTest
like you did in “Adding Your Source Files” (page 59).

4. Clean and Build the applet.

Once you have built your applet, you can test it by loading the HTML file into a browser or into the Applet
Launcher application found in /Applications/Utilities/Java. As illustrated in Figure A-13 (page 68),
just put in the path to the HTML file that Project Builder generated. This file is in your project folder in
build/ArdTest.build/ArcTest.build/JavaClasses.

Figure A-13 Applet Launcher

By following this short tutorial, you should now see that Project Builder gives you a simple-to-use development
environment for pure Java development, while also helping you to make your Java applications fit seamlessly
into Mac OS X.

68 Building Applets With Project Builder
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Project Builder Tutorial

Although command-line Java applications are great for development, when you want to distribute your
application, you want the user to be able to launch it just like any other Mac OS X application—without a
trip to the command line. MRJAppBuilder allows you to take your existing Java .class or .jar files and
wrap them into a Mac OS X application bundle. This chapter provides a simple tutorial that you can work
through to help you understand this process.

To follow this example, you need to have the Mac OS X Developer Tools installed. MRJAppBuilder is installed
in /Developer/Applications. The sourcecode files you need are ExampleFileFilter.java,
ExampleFileView.java, and FileChooserDemo.java; they are installed in
/Developer/Examples/Java/JFC/FileChooserDemo/src. If you do not see these files, install the Mac OS
X Developer Tools. If you do a custom install, make sure that the Developer Example and Developer Tools
Software packages are installed. This example will take a JAR file and show you how to bundle it as a Mac
OS X application.

Building a Basic Application

MRJAppBuilder works with either stand-alone class files or class files in a JAR file. Since most of the source
code in /Developer/Examples/Java is not compiled, the first step is to compile a selection to obtain the
class files.

In this example, you will use the FileChooserDemo application. From Terminal, compile the three Java files
in /Developer/Examples/Java/JFC/FileChooserDemo/src with javac -d /tmp
/Developer/Examples/Java/JFC/FileChooserDemo/src/*.java. This gives you the required class
files.

Once you have the class files, open the MRJAppBuilder application in /Developer/Applications. When
the application opens, you are presented with the Application pane. The required fields for building a valid
application are all present in this pane.

In this example set the main classname to FileChooserDemo. This is the class that contains the mainmethod.
Set the classpath to /tmp. In this example, there are only class files in the classpath. It might be appropriate
in a more complicated application for the classpath to include image, font, or sound files as well. Set the
output file to whatever location is convenient to use for testing your application. This field should include
the fully qualified intended location and name of the resultant application, for example
/tmp/FileChooserDemo.app. Be sure to append the .app suffix to the name you choose for this application.
The result should be similar to Figure B-1 (page 70).

Building a Basic Application 69
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

MRJAppBuilder Tutorial

Figure B-1 MRJAppBuilder Application pane

With these three fields filled in, you are ready to build the application. Click the Build Application button.
You are informed that your build was successful.

Figure B-2 A successful build

Navigating in the Finder to the directory you specified in the “Output file” field reveals a double-clickable
application. (Hint: In Finder, choose Go to Folder from the Go menu.)

70 Building a Basic Application
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

MRJAppBuilder Tutorial

Building a More Robust Application

The example in “Building a Basic Application” (page 69) worked fine, but notice that you set the path to a
specific directory, /tmp. Unless your users happen to have the appropriate class files installed in /tmp, this
application won’t work on their computers. How do you get around this? That leads to another pane in
MRJAppBuilder. Before using it though you need to prepare the appropriate files. In this example, navigate
to your /tmp directory and make a JAR file from the class files you put there as follows:

jar cf FileChooserDemo.jar *.class

You should still have MRJAppBuilder open. If not go ahead and open it and set it up the way it was before.
Click the tab labeled Merge Files. It gives you the option to add files. Click the Add button and choose the
JAR file you just made. The result should look like Figure B-3 (page 71).

Figure B-3 Merge Files pane

The JAR file is copied into the /Contents/Resources/Java directory of the resulting application bundle.
Now go back to the Application pane. Notice that the path to this JAR file was automatically added to the
/tmp path you had there before. (You can get rid of that reference to /tmp now if you haven’t already.) You
now have a Mac OS X application that a user can install by simply dropping in the Finder without having to
deal with installing anything else or being concerned with where the application is installed.

Building a More Robust Application 71
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

MRJAppBuilder Tutorial

Making Your Application More Mac-like

So far you have built a basic application that has some features that Mac users expect. For example they can
install it with a simple drag and drop. If you launch that application, you will notice something missing. The
icon in the Dock is a generic Java icon. You can fix that easily enough in MRJAppBuilder. For the sake of this
example, just copy an icon from another application, in this case the icon from the prebuilt version of the
FileChooserDemo application. To do this, select the generic icon in the Application pane. It is near the bottom
of the pane, in the “Output file” section. If you click it, it opens a file chooser. Navigate to the file named
JavaApp.icns in
/Developer/Examples/Java/JFC/FileChooserDemo/FileChooserDemo.app/Contents/Resources
and click Select. (You will probably need to change the Format pop-up menu to All Files from the default
Icon Files to navigate there.) Now if you build the application, you should see that it displays the new icon
in the Dock.

Java Properties Pane

An icon is only the first step. There are a few other things you can do to make a well-written Java application
hard to distinguish from a native Mac OS X application. MRJAppBuilder provides an interface for making a
lot of these changes in the Java Properties pane. Before going there, launch the FileChooserDemo application
that you just built. Notice that the window has a white bar at the bottom of the window as shown in Figure
B-4 (page 72).

Figure B-4 FileChooserDemo application with relics

This is because by default, MRJAppBuilder sets certain system properties. In this case,
com.apple.mrj.application.growbox.intrudes is set to false. The result is that an extra 15 pixels
are added to the window. You can correct this in the Java Properties pane.

Click the Java Properties tab. This pane contains properties that are passed to the application when it is run.
Of special note here is the Parameters property. This is where you can specify any command-line parameters
that need to be passed to your application when it is run. To see the effect of modifying the Java properties,
change the value of the growbox.intrudes property from false to true as in Figure B-5 (page 73).

72 Making Your Application More Mac-like
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

MRJAppBuilder Tutorial

Figure B-5 Modifying the growbox.intrudes property

Quit the previously built FileChooserDemo if it is still running, and build and run the new version. Notice that
the relics no longer surround the window when you switch between the different interface styles.

Figure B-6 com.apple.mrj.application.growbox.intrudes=true

You can change the value of the other properties by clicking the appropriate value field and making the
desired change. See Appendix C, “Mac OS X Java System Properties”, (page 75) for a listing and description
of some Mac OS X system properties.

Making Your Application More Mac-like 73
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

MRJAppBuilder Tutorial

Mac OS X Pane

The Mac OS X pane allows you to set attributes of the Mac OS X application bundle. Features like the
application icon and name can be set here. For information on these keys and how to use them, see Mac OS
X Technology Overview . These are not explored in this tutorial.

In this tutorial, you have seen how to wrap your JAR files into a native Mac OS X application, and you have
seen how to modify the parameters of that application to build an application that fits in with the native
applications in Mac OS X. There was no magic going on behind the scenes. MRJAppBuilder is a very simple
application that builds an application bundle directory structure, determines runtime options to be passed
to the Java virtual machine when the application is invoked, and sets some Mac OS X application properties.
To get a glimpse inside an application in Mac OS X, you can either explore the directory of the .app from
the Terminal or from the Finder. To see what is contained inside an application bundle generated by
MRJAppBuilder, Control-click an MRJAppBuilder-generated application. You could use the FileChooserDemo
application or even MRJAppBuilder itself. Inside is a structure similar to Figure B-7 (page 74)

Figure B-7 Application bundle contents

Once you have built an application bundle with MRJAppBuilder, you might want to fine tune the settings in
the Info.plist or the MRJApp.properties files by hand. Any text editor will do and you won’t need to
set up all of the fields in MRJAppBuilder each time you want to make changes.

74 Making Your Application More Mac-like
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX B

MRJAppBuilder Tutorial

This appendix lists the Mac OS X–specific system properties that you should be aware of.

Java Virtual Machine Properties

You can use System.getProperties().list(System.out) to obtain a complete list of system properties.
The most useful ones are included here, as well as brief descriptions.

The properties in Table C-1 (page 75) all return a value of type String. They can be used in this manner:

if (System.getProperty("os.version").equals("10.2"))
 System.out.println("Mac OS X version 10.2 Jaguar");

Table C-1 JVM properties

NotesValueProperty

1.3.1java.version

1.3.1_03-69java.vm.version

This differs from MRJ in Mac OS 9, which used \r, but is consistent with
UNIX-based Java implementations and with the BSD and Cocoa
frameworks.

‘\n’line.separator

Testing for the existence of this property is the general way to detect
whether you are using an Apple-developed JVM. To detect specific
features like JDirect or MRJToolkit, it is better to use reflection to check
for the existence of the specific classes they use.

3.3mrj.version

This value was Darwin in developmental versions of Mac OS X. The
MRJ on Mac OS 9 used Mac OS. It is suggested that you use
System.getProperty("os.name").startsWith("Mac OS") if
you need to test whether your code is running on any version of Mac
OS.

Mac OS Xos.name

This is the version number available in the About This Mac dialog.
Developmental versions of Java on Mac OS X used the Darwin kernel
number (1.1, 1.2, and so forth)

10.2os.version

Java Virtual Machine Properties 75
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX C

Mac OS X Java System Properties

Mac OS X Application Properties

It is simple to wrap your pure Java application inside of a natively executable Mac OS X application bundle.
This is discussed in “Mac OS X Java Applications” (page 19). In so doing, there are two properties that must
be defined. These are listed in Table C-2 (page 76). If you are using Project Builder or MRJAppBuilder, you
do not need to do anything to define them since both of those applications take care of this for you.

Table C-2 required Mac OS X application properties

DescriptionInfo.plist keyProperty

The fully qualified class name of the
class containing the application’s main
method.

MainClasscom.apple.mrj.application.main

The paths of all required directories or
JAR files.

ClassPathcom.apple.mrj.application.classpath

In addition, you can pass in the options listed in Table C-3 (page 76).

Table C-3 Application launch properties

DescriptionInfo.plist KeyProperty

Space-separated list of
arguments that are
parsed to build the
String[] passed to
main.

Argumentscom.apple.mrj.application.parameters

Sets the current working
directory for the
application. By default
the current working
directory is set to the
parent directory of the
application bundle. The
APP_PACKAGE variable
may be used to refer to
the root of the
application bundle.

WorkingDirectorycom.apple.mrj.application.workingdirectory

Space-separated list of
options for the Java
virtual machine. These
are the -X and -XX
options without the
-X(X) prefix.

VMOptionscom.apple.mrj.application.vm.options

Note the following about these properties:

76 Mac OS X Application Properties
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX C

Mac OS X Java System Properties

 ■ None of these properties are set by default.

 ■ If you are adding properties to an Info.plist, they should go into the Java dictionary.

 ■ When adding properties to an Info.plist, do not use the fully qualified package name. Instead use
the Info.plist key value designated in the appropriate table.

 ■ In setting the values for any of these keys, you may take advantage of two variables unique to application
bundles:

APP_PACKAGE
The root directory of the application bundle.

JAVAROOT
This is not set by default. If you do set it in the Info.plist file, you may use $JAVAROOT to
resolve its value.

Note: These variables are used only by Mac OS X for launching your application. Do not use them in
your Java code.

Mac OS X–Specific Properties

The properties listed in Table C-4 (page 77) are all properties that are found only on Mac OS X. Overall they
help your applications to fit in more cleanly with the rest of the Mac OS X environment. They can be set three
ways:

 ■ In the Info.plist or MRJApp.properties files through Project Builder or MRJAppBuilder respectively.
You can modify these files later with a text editor.

 ■ In your main class as arguments to System.setProperty.

 ■ From the command-line using the -D flag as follows:

java -Dcom.apple.macosx.useScreenMenuBar=trueYourSwingApp

Table C-4 System properties related to the graphical user interface

NotesDefault
Value

Property

Turns on hardware graphics acceleration for the video cards
not commented out of
/Library/Java/Home/lib/hwexclude.properties.If
set to false, hardware acceleration is turned off. It may be
used in conjunction with the com.apple.hwaccelexclude
property.

truecom.apple.hwaccel

When specific video card designation strings are passed in
with this property, hardware graphics acceleration is not
turned on for the respective video cards. It is be on for all
other video cards. When this property is set,
/Library/Java/Home/lib/hwexclude.properties is
ignored.

nonecom.apple.hwexclude

Mac OS X Application Properties 77
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX C

Mac OS X Java System Properties

NotesDefault
Value

Property

When set to true, causes java.awt.FileDialog to show
application packages as if they were files and does not allow
navigation into them.

falsecom.apple.macos.use-file-dialog-packages

Puts Swing menus in the Mac OS X menu bar if using the
Aqua look and feel. Java applications created with Project
Builder have this set to true. Note that JMenuBars in
JDialogs are not moved to the Mac OS X menu bar.

falsecom.apple.macos.useScreenMenuBar

If defined, and set to true, tab controls in Swing applications
more closely resemble the Metal look and feel. If set to
false, the tabs assume a larger size more similar to the
default Aqua controls.

nonecom.apple.macos.useSmallTabs

Use anti-aliasing when rendering text.truecom.apple.macosx.AntiAliasedTextOn

Use anti-aliasing when rendering graphics.truecom.apple.macosx.AntiAliasedGraphicsOn

If defined, an About command is added to the top of the
application menu and can be detected by registering a
com.apple.mrj.AboutHandler. Java applications created
with Project Builder have this set to initial name of your
project.

Nonecom.apple.mrj.application.apple.menu.about.name

Resizable window’s growbox (resize control) intrudes into
AWT content. If turned off, the bottom of the window is
pushed down 15 pixels.

truecom.apple.mrj.application.growbox.intrudes

Enables live resizing of windows.falsecom.apple.mrj.application.live-resize

78 Mac OS X Application Properties
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

APPENDIX C

Mac OS X Java System Properties

This table describes the changes to Java 1.3.1 Development for Mac OS X.

NotesDate

Changed the title from JavaDevelopment onMacOS X: Java 2 Platform, Standard
Edition Version 1.3.1 to Java 1.3.1 Development for Mac OS X.

2003-04-01

Format completely revised. Changed target emphasis from Mac OS 9 Java
developers to Java developers coming from other platforms. Updated to include
new features introduced in Java 1.3.1, including the Java.applet.plugin
and information about hardware acceleration.

2002-09-01

Updated for Mac OS X version 10.2. Modified tutorials to work with new operating
system and corrected some typographical errors.

2002-07-01

Document originally released with a focus on describing what is different in
Java development from Mac OS 9 to Mac OS X.

2001-12-01

79
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

80
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

application bundle The executable code and related
resources as they are packaged into a prescribed
directory hierarchy.

Apple menu A menu that provides items that are
available to users at all times, regardless of which
application is active. It is the leftmost menu in the
menu bar.

application menu A menu that contains items that
apply to the application as a whole, rather than to a
specific document or other window. The application
menu is immediately to the right of the Apple menu.

Apple Developer Connection The primary source
for technical and business resources and information
for anyone developing for Apple's software and
hardware platforms anywhere in the world. It includes
programs, products, and services and a website filled
with up-to-date technical documentation for existing
and emerging Apple technologies. The Apple
Developer Connection is at http://www.apple.com/de-
veloper/.

AppleScript A scripting language used to control
the actions of the computer and the applications that
run on it.

Aqua The graphical user interface for Mac OS X.

bundle A directory in the file system that stores
executable code and the software resources related
to that code. Applications, plug-ins, and frameworks
are types of bundles. Except for frameworks, bundles
are file packages, presented by the Finder as a single
file.

BSD Berkeley Software Distribution. Formerly known
as the Berkeley version of UNIX, BSD is now simply
called the BSD operating system. The BSD portion of
Mac OS X is based on 4 FreeBSD 4.4, a “flavor” of 4.4
BSD.

Carbon An application environment for Mac OS X
that features a set of programming interfaces derived
from earlier versions of the Mac OS. The Carbon API
has been modified to work properly with Mac OS X,
especially with the foundation of the operating
system, the kernel environment. Carbon applications
can run in Mac OS X, Mac OS 9, and all versions of
Mac OS 8 later than Mac OS 8.1.

Cocoa An advanced object-oriented development
platform for Mac OS X. Cocoa is a set of frameworks
with programming interfaces in both Java and
Objective-C. It is based on the integration of
OPENSTEP, Apple technologies, and Java.

Classic An application environment for Mac OS X
that lets you run non-Carbon legacy Mac OS software.
It supports programs built for both Power PC and 68K
chip architectures and is fully integrated with the
Finder and the other application environments.

Darwin Another name for the Mac OS X core
operating system. The Darwin kernel is equivalent to
the Mac OS X kernel plus the BSD libraries and
commands essential to the BSD Commands
environment. Darwin is Open Source technology.

dmg A Mac OS X disk image file.

dock An area on the edge of the screen that holds
applications, documents, minimized windows, folders,
storage devices, and links to websites. It is
customizable by users to allow them to easily organize
and quickly access their most used resources.

Finder The system application that acts as the
primary interface for file-system interaction.

81
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

Glossary

http://www.apple.com/developer/
http://www.apple.com/developer/

HFS (Hierarchical File System) The Mac OS Standard
file-system format, used to represent a collection of
files as a hierarchy of directories (folders), each of
which may contain either files or folders themselves.
HFS is a two-fork volume format.

HFS+ The Mac OS Extended file-system format. This
file-system format was introduced as part of Mac OS
8.1, adding support for filenames longer than 31
characters, Unicode representation of file and
directory names, and efficient operation on very large
disks. HFS+ is a multiple-fork volume format.

JDirect A Mac OS–specific technology that allows
you to access native code without building Java
Native Interface libraries.

Mach The lowest level of the Mac OS X kernel. Mach
provides such basic services and abstractions as
threads, tasks, ports, interprocess communication
(IPC), scheduling, physical and virtual address space
management, virtual memory, and timers.

Mach-O The executable format of Mach object files.
This is the default executable format in Mac OS X.

MRJAppBuilder An application used to bundle cross
platform Java applications into native Mac OS X Java
applications. It is included with the Mac OS X
Developer Tools in /Developer/Applications.

.pkg file A Mac OS X Installer file. May be grouped
together into a meta package (.mpkg).

Objective-C An object-oriented programming
language based on standard C and a runtime system
that implements the dynamic functions of the
language. Objective-C's few extensions to the C
language are mostly based on Smalltalk, one of the
first object-oriented programming languages.
Objective-C is available in the Cocoa application
environment.

OpenGL An industry-wide standard for developing
portable 3D graphics applications.

plist See property list (page 82).

Project Builder Apple’s graphical integrated
development environment. It is available free with
the Mac OS X Developer Tools package.

property list A structured, textual representation of
data that uses the Extensible Markup Language (XML)
as the structuring medium. Elements of a property
list represent data of certain types, such as arrays,
dictionaries, and strings.

Quartz Quartz is a powerful graphics system that
delivers a rich imaging model, on-the-fly rendering,
anti-aliasing, and compositing of PostScript graphics.
Quartz also implements the windowing system for
Mac OS X and provides low-level services such as
event handling and cursor management. It also offers
facilities for rendering and printing that use PDF as
an internal model for graphics representation.

QuickTime QuickTime is a powerful, cross-platform,
multimedia technology for manipulating, enhancing,
and storing video, sound, animation, graphics, text,
music, and even 360-degree virtual reality. It also
allows you to stream digital video where the data
stream can be either live or stored.

window menu A menu that contains commands for
managing document windows. The menu lists an
application's open document windows, including
minimized windows, in the order in which they were
opened.

XNU The Mac OS X kernel. It combines functionality
of Mach and BSD as well as the driver model, the I/O
Kit.

82
Legacy Document | 2002-09-01 | © 2002 Apple Computer, Inc. All Rights Reserved.

GLOSSARY

	Java 1.3.1 Development for Mac OS X
	Contents
	Figures, Tables, and Listings
	About This Book
	How to Use This Book
	Other Resources
	Filing and Tracking Bugs

	How Java Is Implemented in Mac OS X
	Java Integration in the Operating System
	What Is Included
	Java 2D Graphics Implementation
	The Virtual Machine
	Performance Profiling Tools
	Nonstandard Virtual Machine Options
	The Java Native Interface

	Environmental Differences
	Finding JAVAHOME
	Where to Put Extensions
	Where to Put Preferences
	Setting the Classpath
	Java Output

	Deployment Options
	Distributing Your Application as a JAR File
	Mac OS X Java Applications
	Application Bundles
	Property List Attributes for Java Applications
	Setting the Java Runtime Properties for an Application Bundle
	Setting Runtime Properties in Project Builder
	Setting Runtime Properties in MRJAppBuilder

	Java Web Start
	Applets
	Accessing Mac OS X–Specific Properties From Applets
	Java Applet Plug-in
	Taking Advantage of the Java Applet Plug-in with HTML
	Benefits of Using the Java Applet Plug-in
	JAR Caching
	Signed JAR Files
	The Java Console
	Java Plugin Settings Application

	The Development Environment
	Java Development Tools
	Standard JDK Tools
	Displaying a Java Stack Trace

	Other Command-Line Tools
	GUI-Based Tools
	Project Builder
	MRJAppBuilder
	Applet Launcher
	Other Tools

	Where to Get the Tools

	Cross-Platform Practices for Great Native Behavior
	The Aqua Look and Feel
	Placing and Painting Components
	Layout Managers
	Sizing Components
	Coloring Components

	Windows and Dialogs
	Use of the Multiple Document Interface
	Windows With Scroll Bars (Using JScrollPanes)
	File Choosing Dialogs
	Dealing With Bundles in Mac OS X

	Menus
	Menu Shortcuts
	Menu Item Icons
	Contextual Menus

	Event Handling

	Using Native Features of Mac OS X in Java Applications
	Modifying the Default Settings for Hardware Graphics Acceleration
	Advanced Options
	Video Cards Designation Strings

	Specifying a Name and Icon for Command-Line Applications
	Using the Macintosh Menu Bar
	The Window Menu
	The Application Menu

	More MRJ Handlers
	Localizing Packaged Java applications on Mac OS X
	QuickTime for Java
	Java Core Audio Packages
	Java Spelling and Speech Frameworks
	JDirect
	Human Interface Toolbox Synchronization
	Debugging Features for JDirect
	MethodClosureUPP Not Supported
	JDirect Access to Bundles

	Embedding Applets in Native Applications
	Cocoa Java

	Appendix A: Project Builder Tutorial
	Building a Java Application With Project Builder
	The Makeup of a Project Builder Project
	Building a Java Project
	Adding Your Source Files
	Modifying the Application Parameters

	Building Applets With Project Builder

	Appendix B: MRJAppBuilder Tutorial
	Building a Basic Application
	Building a More Robust Application
	Making Your Application More Mac-like
	Java Properties Pane
	Mac OS X Pane

	Appendix C: Mac OS X Java System Properties
	Java Virtual Machine Properties
	Mac OS X Application Properties
	Mac OS X–Specific Properties

	Revision History
	Glossary

