Project Builder for Java
(Legacy)

Java > Tools

¢

2003-10-10

.

[

Apple Inc.

© 2003 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Cocoa, Mac, Mac OS,
and Objective-C are trademarks of Apple Inc.,
registered in the United States and other
countries.

Finder is a trademark of Apple Inc.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction Introduction to Project Builder for Java 9

Chapter 1

Organization of This Document 9
See Also 10

Application Development 11

Chapter 2

The Tool Template 12
The Swing Application Template 13
The JNI Application Template 14

Build System 17

Chapter 3

Build Settings 17
Targets 19
Target Information Panes 19
Target Summary 19
Build Settings 20
Information Property List Entries 24
Build Styles 29
Build Phases 30

Developing a Tool 33

Chapter 4

Creating the “Hello, World” Tool 33
Creating the Clock Tool 36
Installing the Clock Tool 38

Developing a Swing Application 41

Chapter 5

Creating the “Hello, Swing” Application 41
Creating the File Chooser Demo 43
Changing an Application’s Icon 48

Developing a JNI Application 51

Chapter 6

Creating the “Hello, JNI” Application 51
JNI-Based Examples 54

Debugging Applications 55

Adding Breakpoints 55

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Stepping Through Lines of Code 56
Viewing the Debug Information 58
Accessing the Contents of Objects 59

Appendix A Build Settings Reference 61

Project Settings Reference 61
Deployment Settings Reference 61
Target Settings Reference 62

Java Compiler Settings 63

Java Application Settings 64

Document Revision History 65

Glossary 67

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

Figures, Tables, and Listings

Chapter 1 Application Development 11

Figure 1-1 Project Builder templates for Java development 11

Figure 1-2 The files of a Java tool project 12

Figure 1-3 Target editor for the Hammer project. 13

Figure 1-4 The files of a Java Swing application project 14

Figure 1-5 A JNI-based application project 15

Figure 1-6 Targets of JNI-based application project 16

Table 1-1 Applications types and their corresponding project templates 11
Chapter 2 Build System 17

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-M
Figure 2-12
Figure 2-13
Figure 2-14
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 2-12
Table 2-13
Table 2-14
Table 2-15
Table 2-16

Target Summary pane of the target editor in Project Builder 20
General Settings pane of the target editor in Project Builder 21
Installation Settings pane of the target editor in Project Builder 21
Search Paths pane of the target editor in Project Builder 22

Java Compiler Settings pane of the target editor in Project Builder 23
Java Archive Settings pane of the target editor in Project Builder 24
Basic Information pane of the target editor in Project Builder 25
Display Information pane of the target editor in Project Builder 26
Application Icon pane of the target editor in Project Builder 27
Cocoa Java-Specific pane of the target editor in Project Builder 27
Pure Java—-Specific pane of the target editor in Project Builder 28
Build style definition 30

Build-setting display script 31

Output of a build-setting display script 31

Project build settings 17

Deployment build settings 18

Target build settings 18

Java compiler build settings 18

Java application build setting 18

Elements of the Target Summary pane 20

Elements of the General Settings pane 21

Elements of the Installation Settings pane 22

Elements of the Search Paths pane 22

Elements of the Java Compiler Settings pane 23

Elements of the Java Archive Settings pane 24

Elements of the Basic Information pane 25

Elements of the Display Information pane 26

Elements of the Application Icon pane 27

Elements of the Cocoa Java-Specific pane 28

Elements of the Pure Java-Specific pane 28

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Chapter 3 Developing a Tool 33
Figure 3-1 The Hello project in Project Builder 35
Figure 3-2 Project Builder’s Run pane showing Hello’s console output 35
Figure 3-3 Arguments pane of the executable editor in Project Builder 37
Figure 3-4 Output of Clock tool displayed in Project Builder 37
Figure 3-5 Expert View pane of the target editor in Project Builder 38
Figure 3-6 Clock distribution directory in /tmp 39
Figure 3-7 Clock target directory 39

Figure 3-8 Output of Clock viewed through Console 39

Chapter 4 Developing a Swing Application 41
Figure 4-1 The Hello_Swing project in Project Builder's window 43
Figure 4-2 Hello_Swing application in action 43
Figure 4-3 Delete References dialog of Project Builder 44
Figure 4-4 Adding source files to a project in Project Builder 45
Figure 4-5 FileChooser in action 47

Figure 4-6 Open dialog displayed by FileChooserDemo 47

Chapter 5 Developing a JNI Application 51
Figure 5-1 The Leverage project in the Project Builder window 52
Figure 5-2 The build folder of the Leverage project after building the application 54
Listing 5-1 Leveragejnilib.c source file in the Leverage project 53
Listing 5-2 JNIWrapper.java source file in the Leverage project 53
Chapter 6 Debugging Applications 55
Figure 6-1 Breakpointin Debug. java file of Debug project 56
Figure 6-2 Debugging an application—stopping 57
Figure 6-3 Debugging an application—stepping over 57
Figure 6-4 Debugging an application—stepping into a method 58
Figure 6-5 Debugging an application—viewing variable information 59
Figure 6-6 Debugging an application—viewing an object’s contents 60

Listing 6-1 Debug. java file of Debug project 55
Listing 6-2 Person.java file 59

Listing 6-3 Console output after executing Print Description to Console command on a Person
object 60
Appendix A Build Settings Reference 61
Table A-1 Project build settings 61
Table A-2 Deployment build settings 61
Table A-3 Target build settings 62

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Table A-4 Java compiler build settings 63
Table A-5 Java application build settings 64

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Project Builder for Java

Important: The information in this document is obsolete and should not be used for new development.

This document addresses Java development in Mac OS X using Project Builder. Project Builder is part of
Apple’s integrated development environment.

Important: To run the examples described in this document, you must have installed Java 1.4.1 and the
December 2002 (or later) Developer Tools package.

You should read this document if you are a Java developer who is interested in developing applications for
Mac OS X or want to port an existing application into Mac OS X.

Organization of This Document

This document has the following chapters and appendixes:

“Application Development” (page 11) introduces Java development using Project Builder. The chapter
explains each of the Java-based templates, which give you a head start when developing a project.

“Build System” (page 17) addresses the Project Builder build system. It describes build settings, build
targets, and build styles.

“Developing a Tool” (page 33) explains how to use the Java Tool template to develop a text-based Java
application. This a good place to start if you're new to Java development in Mac OS X.

“Developing a Swing Application” (page 41) explains how to use the Java Swing Application template
to develop a graphical user interface-based application.

“Developing a JNI Application” (page 51) provides an overview of the Java JNI Application template,
which you can use to develop Java applications that need to interact with native code.

“Debugging Applications” (page 55) focuses on Project Builder’s debugging facilities.

“Build Settings Reference” (page 61) describes the build settings that you may need to configure in Java
applications.

Following the appendixes are a document revision history, and a glossary.

Organization of This Document 9
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

Introduction to Project Builder for Java

See Also

There are source files and Project Builder projects in the companion files of this document. They are located
in /Developer/ADC Reference

Library/documentation/Java/Conceptual /Project_Builder_for_Java/Project_Builder_for_Java_companion.zip;
that directory is called companion in the remainder of this document. You can also download the companion
files from http://developer.apple.com/documentation/Java/index.html.

For general information about Project Builder, see Project Builder Help. For information on specialized Project

Builder customization, see Customizing Project Builder, at http://developer.apple.com/documentation/Devel-
operTools/index.html.

10 See Also
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

http://developer.apple.com/documentation/Java/index.html
http://developer.apple.com/documentation/DeveloperTools/index.html
http://developer.apple.com/documentation/DeveloperTools/index.html

CHAPTER 1

Application Development

This chapter introduces the development of Java applications using Project Builder. Project Builder provides
a development environment in which you can develop, build, and deploy Java applications. In addition,
Project Builder has a project template that facilitates the development of applications that use the native
Mac OS X environment, that is, applications that have both Java code as well as C or Objective-C code.

Project Builder templates are prebuilt projects that give you a head start in the development of an application.
Figure 1-1 shows the New Project pane of the Project Builder Assistant, listing the Java project templates
you can use to develop applications. When you want to develop a Swing-based application, for example,
you can start with the Swing application template, which provides a fully configured application that follows
Apple’s guidelines for GUI (graphical user interface) applications. That template is also useful if you're new
to Java and Swing and want to see the inner workings of a working application.

Figure 1-1 Project Builder templates for Java development

08 Assistant

.; New Project

Empty Project

- Application

P Bundle

P Framework

¥Java
Java AWT Applet
Java AWT Application
Java NI Application
Java Swing Applet
Java Swing Application
Java Tool

P Kernel Extension

b Standard Apple Plug-ins

P Tool

f Cancal M ;
Cancel Previous Next

£
T —

Table 1-1 shows the type of Java applications you can develop with Project Builder and their corresponding
project templates.

Table 1-1 Applications types and their corresponding project templates
Application type Template name
Text-based application Java Tool
Swing applet Java Swing Applet

n
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Application Development

Application type

Template name

Swing application

Java Swing Application

JNI (Java Native Interface) application

Java JNI Application

AWT (Abstract Window Toolkit) applet

Java AWT Applet

AWT application

Java AWT Application

Project Builder has a powerful and flexible build system that facilitates the potentially complex tasks involved
in building and deploying products, which include applications, libraries, frameworks, JAR files, and so on.
The main elements involved in building products are targets. A project can contain more than one product,
each produced by a target. In the case of text-based application projects, such as Java tool projects, the target
is a JAR file created by the project’s only target.

In general, a target encompasses instructions on how to build a product, which can be an application or a
component of one. Build settings are properties that tell Project Builder how to build a product. Build phases
are concrete steps Project Builder takes to build a target; for example, compiling source files into object files
and linking object files to create an executable file. For more information, see “Targets” (page 19), “Build
Settings” (page 17), and “Build Phases” (page 30).

The Tool Template

The Java Tool template provides the files needed to create a simple, text-based application. It includes source
files for the class with the ma in method, the JAR manifest, and the man page. Figure 1-2 shows the files that
make up a Java tool project.

Figure 1-2 The files of a Java tool project

00 O 5. Hammer

Groups & Files

oy 0

v £ Hammer |
= [4] Hammer.java - 1
E " Manifest — LIsF 2
v [7 Documentation J
] _|Hammer.1 3
¥ [Products]
(=] 2| Hammer jar ; 4
| |3

ki

‘\

The following list describes the files of a Java tool project named Hammer:

1. Hammer. java:Java source file that contains the main method. Project Builder names this file after the
project.

2. Manifest: File that contains information that Project Builder adds to the MANTFEST . MF file of the
generated JAR file.

3. Hammer. 1: Source for the man page that documents the tool.

12 The Tool Template
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Application Development

4. Hammer. jar:JAR file in which Java class files, the manifest file, and other resources are stored for
distribution. This is the product of the project. It's red because it hasn't been produced yet, so the file
doesn't exist in the file system.

Figure 1-3 shows the target editor for the Hammer project.

Figure 1-3 Target editor for the Hammer project.

8686 #. Hammer - Target: Hammer =
(® Hammer B 8e i%e® oo Pdd (]
@, Find “ Build = Run 1 Debug 7 SCM GHelp
¥ 54 Hammer.pbproj
yTargets M ’; (-] Target: Hammer * (5]
® » @ Hammer 2 :
v Build Styles Target "Hammer" of Project "Hammer"
® # Development Summary
1<) 4 Deployment ©|| pseutings F-Souwces
A 5
WExecutables || ¥Build Phases Files [5] Hammer.java
® & java i] Sources
(<) & Hammer I3 [Java Resource Files
] Frameworks & Librarie v Re Fil
Il Copy Files Java Resource Files
Files: File Destination Subdirectory
_ Manifest

_| Hammer.1

sijodjralga | S1BIRLE | S{EWoog ()

¥ Frameworks & Libraries

Files

¥ Copy Files

Where: | Absolute Path B Path: jusr/share/man/man1/

M Copy only when installing

<>

Files __ Hammer.1

The items under Build Phases in the target editor list the build phases of the Hammer target. The phases are
executed from top to bottom when the product is built. That is, the build phases are executed in the following
order:

1. Sources Determines which Java source files are to be compiled (run through the javac compiler).

2. Java Resource Files Indicates which files to copy to the root level of the product (the top level of the
JAR file).

3. Frameworks & Libraries Lists frameworks or libraries to which the Java class files generated in step 1
must link against.

4. Copy Files Copies files to specific parts of a product (for example, its resources directory or its plug-ins
directory).

The Swing Application Template

The Java Swing Application template provides the files needed to create a desktop application. It includes
source files for a controller class (which includes the main method) and two JFrames that the user can make
visible through menu commands, an icon file, and a properties file. Figure 1-4 shows the files that make up
a Java Swing application project.

The Swing Application Template 13
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Application Development

Figure 1-4 shows the project’s files in the Project Builder window, the contents of the project’s build folder,
and the running application.

Figure 1-4 The files of a Java Swing application project
m File Edit
About Dance
A 8686 Dance

Preferences...

000 » Dance =) Services >
oL D .
Groups & Files b | ane 1 SWlng Example
¥ 5 Dance ‘ o Hide Dance %H 1o
] K| Dance.java—| el Hide Others ~C#H
o [51 AboutBox.j =2 1 Show All
C} \i] Preferences.]ava—l J |
“ ¥ Dance.icns - 2 Quit Dance #Q JOK 1.4.1
o ve Rfs;:x:mnqs pmpemesJ_Hg”_ 3 Capyright (c) 2003 __MyCompanyName__. All rights res
[Products 7 E

a B4 Dance.app - 4

ok

i,

Dance Preferences...

oK

The following list describes the files in a Java Swing application project named Dance and their relationship
to the actual application:

1. Dance.java, AboutBox.java and Preferences. java:Java source files that implement an About
box and a preferences dialog.

2. Dance.icns:lcon file that contains the icon that the Finder displays for the application package.

3. Dancestrings.properties:Filethat contains the names and values of application properties accessible
at runtime. Project Builder places this file inside the JAR file for the application.

4. Dance.app: Application package that contains Mac OS X-specific information for the application, as
well as the application’s JAR file.

The JNI Application Template

The Java Native Interface (JNI) provides a standard interface for communication with native libraries. You
may want to use the JNI if you need to interface with native, legacy code from Java applications or when
you want to improve the performance of an application by porting certain tasks to native code.

Project Builder provides a template with which you can develop projects that include both native code and
Java code. Figure 1-5 shows a project called Pronto created with the JNI Application template.

14 The JNI Application Template
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Application Development

Figure 1-5 A JNI-based application project
0606 4. Native - JNIWrapper.java e
: - : N =
@ [(©@nawe BB % umnPdd
L:Eigp;ai‘:les | \ @Find 4 “Build 4 SRun , A Debug 4 FCvs |
[€] Nativejnilib.c) (<] [E] Nativejnilib.c:1 #: <No selected symbol= % e @ o
| Manifest ? #include "JWIMropper.h” L
i] INWrapper.java |
Ly pper & int shored_function{const chor *arg) {
¥ [E} JavaVM framework M " .
N d © printf{"shored_function called with &s'wn", arg);
_bt’ Headers =1 return 4z;
¥ Products | 3
IL} libNative_jnilib “
@HEQdErE.‘J\IWrapper,l" 1 JNIEXPORT jint JWICALL Java_INIWrapper_native_lmethod(IMIEny *env, jobject this, I
= X < oy
3| INIWrapper.jar jstring arg) {
0 INtWrapper. = 2% Corvert to UTFES */ |
[const chor *orgutf = {*fenw)-sGetStringUTFChors(enw, arg, JNI_FALSE); |
g |
=
E A% Coll into external dylib function *¢ |
a_ jint roc = shored_function{argutf); |
% A Relense created UTFG string */ |
(*env j->ReleasestringUTFChars{env, arg, orgutf);
= —
o
= return rc; -
gl — i
b [«] [4] JNIWrapper.java:l # : <No selected symbol> % e @ 0
[} = r
® + »a
g
é‘ native int native_method{String arg);
a' public static void matn {String args[]) {
& #f inzert code here...
System.out printin"Storted INIWrapper");
INIWrapper newini = new JNIWrapper(; |
int result = newjni.notive_method("Hello World 1"); |
System.out.printing"Finished JNIWropper. Answer is " + result);
¥ "~
.
} v

The most interesting part of the Pronto project are its targets. While the previous project types, tool and

Swing application, required only one target, a JNI project requires several targets. This is because a JNI project

contains three products, a JNI library (which contains the compiled C code), a header to the library, and a

JAR file for the Java side of the application. See Figure 1-6.

The JNI Application Template

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

15

CHAPTER 1

Application Development

Figure 1-6 Targets of JNI-based application project

jovoh —closspath "${BUILD_DIR}AINIWropper . jor"

|| Shell Script Files
~foree —d "${0BIROOT}/Headers" " ININrapper”

|1 Java Resource Files
Ll Frameworks & Libraries 1 Run only when installing

@ Target: JNILib * . 000
Target "INILib" of Project "Native"

Summary ¥ Sources
P Settings
¥ Build Phases Files: [e] Nativejnilib.c
[l Headers |
|| Sources
|| Frameworks & Libraries
| ResourceManager Resources

0606 ©. Mative - Target: JNILib =
o " @ Native) ,(\ cé‘ % g o R "jf‘ ‘T'
¥Targets N | @Find 4 SBuild 4 FRun 4 dDebug 4 TCWS
® ¥ @) Native '3: (<] Target: INIWrapper % e @ o
INIWrapper 7 © " " e
CreateHeaders) ® Target "|NIWrapper" of Project "Native
JNILib Summary Y-Sources
© » © BuildUsingMake 5‘) » Settings
(G] » @ JNIWrapper = ¥ Build Phases m Files: [5] INWrapper.java
O »@)NILib a L] Sources il
© b © CreateHeaders 9 ["]Java Resource Files
W EBuild Styles B] Frameworks & Libraries
® # Development ’E :
(a] # Deployment] (] Target: CreateHeaders = e @ 0
VExecutabl 3 : = ———
® e;;fm\:s,a er] Target "CreateHeaders" of Project "Native"
pp E |
ST ¥ Shell Script Files
| P Settings
@ vBuild phases shell: | /hin/sh
E 1 Sources n
2
-
L)
@
g
l
a.
P

The project has three main targets:

= JNIWrapper Compiles the Java source files of the application and archives them in a JAR file. This is the
Java application.

m CreateHeaders Creates C function prototypes from Java class files in the JAR file generated by the
JNIWrapper target.

= JNILib Builds the native library by compiling Prontojnilib.c and linking it with the Java VM framework
(/System/Library/Frameworks/JavaVM. framework).

The Native target is an aggregate target. Its purpose is to enclose the JNIWrapper, CreateHeaders, and JNILib
targets into one build unit, so that any action performed on it is performed on all the targets it contains. The
BuildUsingMake target bypasses the Project Builder build system. It uses gnumake (/usr/bin/gnumake) to
build the application.

You can find detailed information on the JNI at http://java.sun.com/j2se/1.4/docs/qguide/jni/.

16 The JNI Application Template
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

http://java.sun.com/j2se/1.4/docs/guide/jni/

CHAPTER 2

Build System

This chapter discusses the Project Builder build system, which determines how applications are built. Project
Builder uses the Jam software build tool as its build engine. Jam allows Project Builder to easily manage
dependencies between a project’s elements. It can also take advantage of computers with two or more
central processing units (CPUs).

Build Settings

Build settings are similar to Java properties: They store values that Project Builder uses to build products.
Project Builder facilitates configuring some build settings through specialized panes (see “Target Information
Panes” (page 19)). However, you can set the value of any build setting directly through expert panes. Expert
panes show the configuration build settings as a list of key-value pairs. Through these panes you can set the
values of build settings for which the more user-friendly specialized panes do not provide a user interface.

The following tables list some of the build settings you may have to use in your projects. “Build Settings
Reference” (page 61) has a complete list of Java-related settings. See the Project Builder release notes for a
complete list of all settings.

Table 2-1 lists build settings that identify a project and tell Project Builder where to put temporary files
generated during product building.

Table 2-1 Project build settings

Build setting Description

PROJECT_NAME Name of the project. For example, MyProject. You should not modify this setting
directly.

SYMROOT Base location for built products. For example, MyProject/build.

BUILD_DIR Base location for the temporary files generated by a project’s targets. For example,

MyProject/build. You should not modify this setting directly.

TARGET_BUILD_DIR | Base location for built products. It's set to $BUILD_DIR in development builds (for
example, MyProject/build), $INSTALL_DIR (for example, /tmp/My -
Project.dst/usr/bin)in deployment builds when the product is installed, and
$BUILD_DIR/UninstalledProducts when the product is not installed.

Table 2-2 lists build settings that determine where files are placed when you use pbxbui1d to install a
product.

Build Settings 17
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Build System

Table 2-2 Deployment build settings

Build setting Description

DSTROOT Base location for the installed product. For example, /tmp/MyProject.dst/.

INSTALL_PATH | Location of the installed product. For example usr/bin.

INSTALL_DIR | Fully qualified path for the installed product. By default, it concatenates DSTROOT and
INSTALL_PATH. So, with the example values, it evaluates to /tmp/My -
Project.dst/usr/bin. You should not modify this setting directly.

Table 2-3 lists build settings that identify a target and tell Project Builder where to put the files it generates.

Table 2-3 Target build settings

Build setting | Description

TARGET_NAME | Name of the target. For example, MyProject. You should not modify this setting directly.

ACTION The action being performed on a target. Its possible values are build, clean,orinstall
(through pbxbui1d). You should not modify this setting directly.

TEMP_DIR Location for a target’s temporary files. For example, MyProject/build/My-
Project.build/MyTarget.build.

Table 2-4 lists build settings used to call javac or jikes to compile Java source files.

Table 2-4 Java compiler build settings

Build setting Description

CLASS_FILE_DIR Base location for Java class files. For example,
MyProject/build/MyProject.build/MyTarget.build/Java-
Classes.

JAVA_COMPTLER_- Defines the Java virtual machine version that javac compiles Java

TARGET_VM_VERSTION source files to—for example, 1. 4. By default, this setting is undefined.

Table 2-5 lists the build setting that defines the archive of Java class files and the creation of the application
package.

Table 2-5 Java application build setting

Build setting Description

JAVA_MANTFEST_FILE | Path (relative to the project’s root directory) to a manifest file to use when
archiving Java class files into a JAR file. For example, Manifest.

18 Build Settings
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Build System

Targets

Project Builder targets represent a product, such as an application or a framework. A project can produce
more than one product. For example, a project can contain Java source files, which are compiled into Java
class files by javac, and Objective-C source files, which are compiled into object files by gcc. Such a project
must contain at least two targets, one that compiles the Java sources files and another that compiles the
Objective-C source files. The build settings introduced in “Build Settings” (page 17) are what Project Builder
uses to determine how to build a product.

Each target has its own set of build setting values; they are autonomous entities within a project. However,
you can tell Project Builder that a target depends on one or more additional targets. That way you can
guarantee, for example, that when target A needs files produced by target B, target B is executed before
target A. In addition, if there’s a problem with target B, target A doesn’t get executed.

In addition, Project Builder provides the ability to add aggregate targets to a project. An aggregate target
contains no product-building instructions; instead, it groups other targets. The operations you perform on
aggregate targets are carried out on all the targets they enclose.

Each target can contain some or all of the following types of elements:

= Build settings The group of build settings that control the build system.

= Information property list entries Application package-specific information, such as type, version, icon,
and so on.

= Build phases Types of tasks to perform on a set of a project’s files, such as compile, link, archive, copy,
and so on. See “Build Phases” (page 30) for more information.

For more information on targets, see Project Builder Help.

Target Information Panes

Target information panes group information about how a product is built. They contain a user-friendly view
of the values of certain build settings. These information panes are grouped in three major groups: Summary,
Settings and Info.plist Entries.

Target Summary

The Summary pane shows summary information for a project, including its name, type, and developer
comments; it's shown in Figure 2-1.

Targets 19
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System

Figure 2-1 Target Summary pane of the target editor in Project Builder
0600 4. Debug - Target: Debug =)
0 (oo B8RO ® uwnPdad
N \ @Find 4 “Bulld 4 SRun 4 ADebug 4 W CVs |
'g (-] Target: Debug # e @

Target "Debug" of Project "Debug"

BUmTALY ¥ Target Summary
»Settings
» Build Phases Product type: Tool

Base product name: Debug

Full product name:

Comments

Mote: The build settings in this editor show what is defined for this target. When building from
within Project Builder, some of these settings may be overridden by settings defined in the
active build style, 'Development’. When building for installation {using 'pbxbuild install -
target Debug' in a Terminal window), the settings in this editor will be used

. SWBIEL® | SEwyoogly , sasseDé |

Table 2-6 describes the elements of the Target Summary pane.

Table 2-6 Elements of the Target Summary pane
Element label Description Corresponding build setting
Product type Indicates the type of project. Can be Application, Tool, | None.
Framework, and so on.
Base product name | Name of the generated product file without an PRODUCT_NAME
extension.
Comments Developer comments about the target. None.

Build Settings

The Build Settings pane groups views of the build settings of a project. It includes two views: Simple View
and Expert View. The Simple View provides a easy-to-use user interface to various build settings. The Expert
View lists all the build settings. You can use this view when the other views don'’t provide a way of configuring
a particular build setting.

General Settings

The General Settings pane, depicted in Figure 2-2, shows information that pertains to the entire project.
Table 2-7 describes its elements.

20 Target Information Panes
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Build System

Figure 2-2 General Settings pane of the target editor in Project Builder

0606 4. Debug - Target: Debug =
0 (0w B89 ® unPddd
N \ QFind 4 SNBuild 4 SRun 4 A Debug 4 WcCvs
e © © © Target: Debug * 00
T Target "Debug" of Project "Debug”
2””{“‘” ¥ General Settings
N ;‘;Iunmgps\e View Product type: Tool

General Settings
Installation Settings
GCC Compiler Settings H
Linker Settings
Search Paths
Java Compiler Settings
Java Archive Settings
Expert View
» Build Phases

Product name: Debug

. S{Ewoog(y | sasseD@

Table 2-7 Elements of the General Settings pane

Element label | Description Corresponding build setting

Product type | Indicates the type of project. Can be Application, Tool, None.
Framework, and so on.

Product name | Name of the generated product file without an extension. | PRODUCT_NAME

Installation Settings

The Installation Settings pane, depicted in Figure 2-3, shows installation information for the selected target.
Table 2-8 describes its elements.

Figure 2-3 Installation Settings pane of the target editor in Project Builder
006 8. Debug - Target: Debug =
O (©obuw M\ 8 9e® uopPFdd
N @Find 4 ASBuild 4 HRun 4 Y Debug 4 WCvs
g (4] Target: Debug * e e
¢ Target "Debug" of Project "Debug”
S| summary ¥ Installation Location
& | wSettings
mﬂ ¥ Simple View) None (don't install the built product)
F General Settings — =
& Installation Settings Sxpath: I:—/l:hoose —
* GCC Compiler Settings ”
= Linker Settings
ugu Search Paths
5’ Java Compiler Settings
= Java Archive Settings
& Expert View -
<| ¥ Build Phases v
P

Target Information Panes 21
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Build System

Table 2-8 Elements of the Installation Settings pane

Element label | Description Corresponding build setting
None When selected, the product doesn’t get installed. None.
Path When selected, the product gets installed in the directory | INSTALL_PATH

entered in the text input field.

Search Paths

The Search Paths pane, depicted in Figure 2-4, determines the places Project Builder searches for frameworks,
libraries, Java classes, and headers (in the case of a JNI application) to build the selected target. Table 2-9
describes its elements.

Figure 2-4 Search Paths pane of the target editor in Project Builder

0006 4. Debug - Target: Debug (=
[] [@ Debug i+ N é‘ "i ‘3; @ w0t bd
 @Find 4 SBuild 4 SRun 4 YA Debug 4 WCvs

E o Target: Debug # 00

" =

1 Target "Debug" of Project "Debug"

<

BUmmary ¥ Search paths

&| vSettings

9 ¥ Simple View ¥ Headers

E General Settings ¥ Frameworks

3 Installation Settings ¥ Libraries

% GCC Compiler Settings 1 ¥Java Classes
'E Linker Settings i (+]

2 Search Paths

5’ Java Compiler Settings

L Java Archive Settings v

& Expert View .

<I ¥ Build Phases v

Table 2-9 Elements of the Search Paths pane

Element label | Description Corresponding build setting
Headers Search paths for Objective-C header files. | HEADER_SEARCH_PATHS
Frameworks Search paths for frameworks. FRAMEWORK_SEARCH_PATHS
Libraries Search paths for libraries. LIBRARY_SEARCH_PATH

Java Classes Search paths for Java class files or JAR files. | JAVA_CLASS_SEARCH_PATHS

Java Compiler Settings

The Java Compiler Settings pane, depicted in Figure 2-5, determines some compiler settings for the selected
target. Table 2-10 describes its elements.

Target Information Panes
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Build System
Figure 2-5 Java Compiler Settings pane of the target editor in Project Builder

0600 4. Debug - Target: Debug =

(] "'@ Debug =) '(\ _é‘ "3. ‘; %« o R \-],l |']‘|

1 _ _@Find j_ “ABuld j_ @Run) ADebug) (FCVs

E (-] Target: Debug # e @

] Target "Debug"” of Project "Debug"

SUMTALY ¥ Java Compiler Settings

& wSettings

Q wSimple View Java Compiler: | javac [:!

“ General Settings

b Installation Settings . N

GCC Compiler Settings Warnings Debugging Symbols

= Linker Settings | Disable warnings M Generate debugging symbols

ugu Search Paths | Show usage of deprecated APl

’ar Java Compiler Settings

:'_ Java Archive Settings Target VM version: | Unspecified H]

« Expert View

» Build Phases Source file encoding: | Western (Mac OS5 Roman) | :]

al Other Java Compiler Flags

2

L}

P

Table 2-10 Elements of the Java Compiler Settings pane

Element label

Description

Corresponding build setting

Java Compiler

Determines the compiler to use to compile
Java source files. The options are javac and
Jikes.

JAVA_COMPILER

Disable warnings

When selected, the compiler doesn’t produce
warnings.

JAVA_COMPILER_-
DISABLE_WARNINGS

Show usage of deprecated
API

When selected, the compiler warns about
deprecated API use.

JAVA_COMPILER_-
DEPRECATED_WARNINGS

Generate debugging
symbols

When selected, the compiler generates
debugging symbols.

JAVA_COMPILER_-
DEBUGGING_SYMBOLS

Target VM version

The virtual machine version the compiler is
to produce Java class files for.

JAVA_COMPILER_-
TARGET_VM_VERSION

Source file encoding

Specifies the character encoding used in all
the Java source files that are to be compiled.

JAVAC_SOURCE_FILE_-
ENCODING

Other Java Compiler Flags

Additional compiler options.

JAVA_COMPILER_FLAGS

Java Archive Settings

The Java Archive Settings pane, depicted in Figure 2-6, determines how Java class files in the selected target
are archived. Table 2-11 describes its elements.

Target Information Panes

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

23

24

CHAPTER 2
Build System

Figure 2-6 Java Archive Settings pane of the target editor in Project Builder

0606 #. Debug - Target: Debug =
(] ¢ @ Debug [EEN ‘a, ’; © e u o Pdd
\ @Find 4 “Bulld 4 SRun 4 ADebug 4 W CVs |
E o Target:[)ebug 3 9@
T =
1 Target "Debug" of Project "Debug"
Summary ¥ Java Archive Settings
&| wsettings
Il ’
& ¥simple View Product type: | Jar Archive File | :]
ﬁ General Settings
b Installation Settings Archive File Options
CCC Compiler Settings = - | L — =
= Linker Settings _| Compress Archive File Extension: | jar v
=]
g Search Paths Manifest file: | Manifest
= Java Compiler Settings
= Java Archive Settings
|
L Expert View
| » Build Phases

Table 2-1 Elements of the Java Archive Settings pane

Element label Description Corresponding build setting
Product type Determines whether Java class files are archived | JAVA_ARCHIVE_CLASSES

in a JAR file.
Compress When unselected, the Java class files are stored | JAVA_ARCHIVE_COMPRESSION

in the JAR file, but are not compressed.

Archive file extension | The extension to use for the JAR file. The options | CLASS_ARCHIVE_SUFFIX
are .jar, .war,and .ear.

Manifest file Name of the supplemental manifest file. JAVA_MANTFEST_FILE

Information Property List Entries

Information property lists (Info.p1ist files) contain information an application can access at runtime. This
is similar to Java's system properties. Information property lists, however, specify Mac OS X-specific application
details, such as the application type and its icon. In addition, some Java-specific settings are also stored there;
for example, the Java VM version that Mac OS X uses to run the application.

The following sections describe the simple views of information property list entries. See Mac OS X Developer
Release Notes: Information Property List at http://developer.apple.com/releasenotes/index.html for more
information about information property lists.

Basic Information

The Basic Information pane, depicted in Figure 2-7, encapsulates identification information about the
application package. Table 2-12 describes its elements.

Target Information Panes
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

http://developer.apple.com/releasenotes/index.html

CHAPTER 2

Build System

Figure 2-7 Basic Information pane of the target editor in Project Builder
0606 4. Dance - Target: Dance (=]
(7] @ Dance B w(\ "_é‘ @ % %, TE | s ILI ,T,
N . ®Find A SBuild 4 SRun 4 "1Debug 4 (BcCvs |
'g Target: Dance = e @

Target "Dance" of Project "Dance”

Summary ¥ Basic Information
» Settings
¥ Info.plist Entries Executable: Dance
¥ Simple View
Basic Information Identifier:

Display Information —_— ——
Application Icon . Type: APPL Signature: 7777
Cocoa-Specific i Version: | 0.1
Cocoa Java-Specific
Pure Java-Specific
Document Types
URL Types

Expert View

» Build Phases

EL@ |, SjEwyoogly , sasseaé

Table 2-12 Elements of the Basic Information pane

Element label | Description Corresponding Info.plist entry
Executable Name of the file containing the application’s executable | CFBundleExecutable

code.
Identifier Package-style name (for example, CFBundleldentifier

com.apple.ProjectBuilder)usedtouniquely identify
the application or bundle.

Type Four-letter type indicator for the bundle. For example, | CFBundlePackageType
APPL for applications, FMWK for frameworks, and so on.

Signature Four-letter creator code for the bundle. CFBundleSignature

Version Version number for the bundle. For example, 10.2.3. | CFBundleVersion

Display Information

The Display Information pane, depicted in Figure 2-8, encapsulates display information about the application
package file. Table 2-13 describes its elements.

Target Information Panes 25
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

26

CHAPTER 2

Build System
Figure 2-8 Display Information pane of the target editor in Project Builder
000 #. Dance - Target: Dance =
(7] @ Dance B w(\ "_é‘ @ % %, TE | s ILI ,T,
N \ @ Find 4 “NBuild 4 HRun 4 "iDebug 4 WCVs
Target: Dance = e @

sa|ld]

Target "Dance" of Project "Dance”

URL Types
Expert View
» Build Phases

EL@ |, SjEwyoogly , sasseaé

Display Information
Application Icon
Cocoa-Specific
Cocoa Java-Specific
Pure Java-Specific
Document Types

Summary ¥ Display Information
»Settings
¥ Info.plist Entries Display name: Dance
¥ Simple View
Basic Information Get-Info string:

Shaort version:

Table 2-13 Elements of the Display Information pane

Element label

Description

Corresponding Info.plist entry

Display name

In application packages, localized name that is displayed
in the menu bar.

CFBundleName

Get-Info string

Localized string that appears in Info windows or the
Inspector in the Finder.

CFBundleGetInfoString

Short version

Localized string with bundle-version information. This is
the string displayed in Info windows or the Inspector in
the Finder when CFBundleGetInfoStringisundefined.

CFBundleShortVersion-
String

Application Icon

The Application Icon pane, depicted in Figure 2-9, identifies the icon file to be used for the application
package’s icon, which is the icon the Finder displays to the user. Table 2-14 describes its elements.

Target Information Panes
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Build System

Figure 2-9 Application Icon pane of the target editor in Project Builder

066 #. Dance - Target: Dance (=
0 (Gounc BAad%® unPFd b

\ QFind 4 SNBuild 4 SRun 4 A Debug 4 WcCvs
g Target: Dance % e @
g

Target "Dance" of Project "Dance"

Summary ¥ Application lcon
P 5Settings

¥ Info.plist Entries —
¥ Simple View
Basic Information
Display Information
Application Icon ”
Cocoa-Specific
Cocoa Java-Specific
Pure Java-Specific
Document Types
URL Types
Expert View
» Build Phases

Icon file: Dance.icns

EL@ |, SjEwyoogly , sasseaé

Table 2-14 Elements of the Application Icon pane

Element label | Description Corresponding Info.plist entry

Icon file Name of the icon file for the bundle. | CFBundlelconFile

Cocoa Java-Specific

The Cocoa Java-Specific pane, depicted in Figure 2-10, contains information specific for Cocoa applications
written in Java. Table 2-15 describes its elements.

Figure 2-10 Cocoa Java-Specific pane of the target editor in Project Builder

000 #. Dance - Target: Dance (=
: = s =
O (©pance BAad%® unPFd b
\ QFind 4 SNBuild 4 SRun 4 A Debug 4 WcCvs
g Target: Dance # 006
T n
1 Target "Dance" of Project "Dance"
B ¥ Cocoa Java-Specific
b Settings
¥ Info.plist Entries] Needs Java
¥ Simple View =
Basic Information Koot Directory:
Display Information Path:
Application Icon ” [+

Cocoa-Specific
Cocoa Java-5Specific
Pure Java-Specific
Document Types
URL Types
Expert View
» Build Phases

EL@ |, SjEwyoogly , sasseaé

Target Information Panes 27
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

28

CHAPTER 2
Build System

Table 2-15 Elements of the Cocoa Java-Specific pane

Elements label | Description Corresponding Info.plist
entry
Needs Java When selected, indicates that a Cocoa application needs | NSJavaNeeded
to instantiate a Java virtual machine.
Root Directory | The directory where the application’s JAR files are stored | NSJavaRoot
in the application bundle. For example,
Contents/Resources/Java.
Path List of JAR files contained in the root directory. NSJavaPath

Pure Java-Specific

The Pure Java Specific pane, depicted in Figure 2-11, contains settings that are specific to Pure Java. Table
2-16 describes its elements.

Figure 2-1 Pure Java—Specific pane of the target editor in Project Builder

006 a. Dance - Target: Dance =
0 (oo MO ® unRPdd
N @Find 4 ASBuild 4 HRun 4 Y Debug 4 WCvs
g @) Target: Dance * e@
- Target "Dance" of Project "Dance"
BUmIALY ¥ Pure Java-Specific
&|| pSettings
mQ ¥ Info.plist Entries Main Class: Dance
E ¥ Simple View
4 Basic Information Class Path: | §)AVAROOT/Dance.jar
Display Information (+]
'§ 2:5:::::‘::;:” "l Place JFrame menu bars at top of screen M Anti-alias text
5— Cocoa Java-Specific E Crowbox intrudes] Live Resizing
L Pure Java-Specific " "] Set cwd to Contents/Resources/Java subdirectory
& Document Types
URL Types Target VM Version: 1.4+ |
b—BuiIE:p:P:;:iieZw Additional VM Options:
‘S Additional Properties: Name Value
3 apple.laf.useScreenMenuBar true
©
)
v
Table 2-16 Elements of the Pure Java-Specific pane
Element label Description Corresponding Info.plist entry
Main Class Fully qualified name of an Java/MainClass
application’s main class.
Class Path List of paths to Java class files | Java/ClassPath/
of JAR files the application
uses.

Target Information Panes
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Build System

Element label

Description

Corresponding Info.plist entry

Place JFrame menu bars
at top of screen

When selected, the
application’s menu bar follows
Mac OS X style: It’s placed at
the top of the screen instead
of within each application
window.

Java/Properties/com.apple.macos.useScreenMenuBa

Growbox intrudes

When selected, the resize
control is part of the window
pane. When unselected, a
white band is added to the
bottom of the window, so that
the resize control doesn’t
intrude in the windows’
content.

Java/Properties/com.apple.mrj.application.growb

Set cwd to
Contents/Resources/Java
subdirectory

When selected, the
application’s working directory
is set to the bundle’s
Contents/Resources/Java
directory.

Java/WorkingDirectory

Anti-alias text

Toggles text anti-aliasing.

Java/Properties/com.apple.macosx.AntiAliasedTex

application requires. For
example, 1.4+,

Live resizing Toggles live resizing of Java/Properties/com.apple.mrj.application.live-
windows.
Target VM Version Version of the Java runtime the | Java/JVMVersion

Additional VM Options

Command-line options to add
to the java invocation. For
example, -Xfuture -Xprof.

Java/VMOptions

Additional Properties

Additional Java system
properties, which you can
access through
System.getProperty.

Java/Properties/

Build Styles

During development, you may want to include debugging information in Java class files, but would rather
not include it in the final version of those files. For example, the JAVA_COMPILER_DEBUGGING_SYMBOLS
build setting determines whether debugging symbols are added to class files. So, a project could have a
target called MyAppDebug that sets that build setting to YES and a target called MyApp that sets it to NO.
However, when you need to set another build setting that affects the building of the application, you would
have to make the change in two targets instead of one. To solve this situation, Project Builder includes build

styles.

Build Styles

29

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Build System

Build styles contain build setting configurations that override target build settings. So, instead of having two
targets to produce an application, one for debugging and another for your customers, a project would contain
one target that builds both types of products and a couple of build styles, one called Development and
another named Deployment. The Development build style would contain the
JAVA_COMPTILER_DEBUGGING_SYMBOLS = YES build configuration, while the Deployment build style would
have JAVA_COMPILER_DEBUGGING_SYMBOLS = NO.

To add a build style to a project, choose Project > New Build Style and name it. Then add the build settings
that the build style is to override. For example, the build style shown in Figure 2-12 tells javac to optimize
code for execution time.

Figure 2-12 Build style definition

e8é 3. Dance - Build style: Optimum O
= - 7 o Py - | i A
i NBY AupPFdd
YTarget . @Find J ABuild 4 SRun 4 TADebug 4 @CVS |
argets
® p® Dance '_E © © € Build style: Optimum = 00
i =
Bulld Syles 9 + Build Style "Optimum" of Project "Dance"
(&) # Development J
© # Deployment ¥ Build Settings
® + Optimum g) .
VExecutables b Name Value
@ & Dance a JAVA_COMPILER_FLAGS = -0
i
=
=
(=]
g
3
b
&
-+
g

Build Phases

30

Build phases define concrete tasks that Project Builder performs to build a product. These are the build phases
you use in Java application projects:

= Sources Compiles the selected Java source files using javac and puts the generated class files in
$TEMP_DIR/JavaClasses.ltusesthe JavaFilelist filein the target’s build directory (the TEMP_DIR

build setting).

= JavaResource Files Copies the selected Java resourcefiles, the Dancestrings.stringfile forexample,
to $TEMP_DIR/JavaClasses.

= Bundle Resources Copies the selected bundle resource files, such as the icon file, to the resulting bundle’s
Resources directory.

= Frameworks & Libraries Links the class files generated in the Sources build phase with the selected
frameworks and libraries, and archives the result in a JAR file (when the JAVA_ARCHIVE_CLASSES build

setting is set to YES).

Build Phases
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Build System

= Shell Script Files Executes a custom shell script. The value of every build setting is accessible in the script
using the format $BUTLD_SETTING, $ (BUILD_SETTING), or ${BUILD_SETTING}. Therefore, you can
use shell script phases to perform tasks that the other type of build phases do not support. Further, you
can insert shell script phases between other build phases to confirm the value of a build setting.

= Copy Files Copies the files indicated in the build phase to a specified location. To select the files to copy,
drag them from the Files list into the Files list.

Figure 2-13 is an example of inserting a shell script phase to confirm the value of a build setting. It shows a
script that displays the value of the JAVA_COMPILER_FLAGS build setting. Figure 2-14 shows the script’s
output.

Figure 2-13 Build-setting display script

0060 #. Dance - Target: Dance =
0 e BABY AH B D
N . ®Find 4 Build 4 SRun 4 YDebug 4, [DWCVs
g o Targel: Dance = e @
=
1 Target "Dance” of Project "Dance”
Surnmary ¥ Shell Script Files

- Settings

b Info.plist Entries Shell: fbin/sh

¥ Build Phases

I sources echo $J4YA_COMPILER_FLAGS

[_I Shell Seript Files "1 Run only when installing
[_|Java Resource Files 1

[|Bundle Resources

] Frameworks & Libraries

UBL@ ,_ SMewijoog(y , SsseD@

A
Figure 2-14 Output of a build-setting display script
0600 3. Dance - Target: Dance =
: = - o : = —
@ (@Dance) - @ mwnrdd
Build succeeded 1 Show Build Steps EShowWarnings =

0 Build succeeded

=

=3 =

1 echo "--- Output ---" —

< /Volumes/Athene/ernest/Development/Java/Dance/build/Dance.build/Dance.build/BE

PTaglll-script.sh

< _result=§?

[a] echo "=== Exit code: ${_result} ==="

5 exit ${_result}

©|| === Script === m

M #1/bin/sh

echo $JAVA COMFILER FLAGS

B ——— output ———

@ _p

= .

Q|| === Exit code: 0 ===

gr BuildPhase <Script®Dance.app

o —

« | BuildPhase <JawvaArchiveFiles>Dance.app i
v

—

- _ @Find AwABuildey HRun | A Debug j_ W CVS

Build succeeded 4

Build Phases 31
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Build System

32 Build Phases
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

This chapter shows how to develop text-based Java applications or tools in Project Builder using the tool

project template. It guides you through the creation of two projects, Hello and Clock. The former one is a

“Hello, World” application, while the latter is a simple tool to display the current time, which is included in
this document’s companion files. See “Introduction to Project Builder for Java” (page 9) for details.

Creating the “Hello, World” Tool

The Java Tool project template provides the prototypical “Hello, World” application. Follow these steps to
create your first Java application using Project Builder.

1. Launch Project Builder. It's located in /Developer/Applications.
2. Create a Java tool project.

Choose File > New Project, and select Java Tool under Java in the project-template list of the New Project
pane.

8 Assistant

.5 New Project

¥ Framework
Carbon Framework
Cocoa Framework

¥ Java
Java AWT Applet
Java AWT Application
Java NI Application |
Java Swing Applet |
Java Swing Application |

ava Tool

¥ Kernel Extension

Generic Kernel Extension

10Kt Driver -
¥ Standard Apple Plug-ins £
|BPalette b

4 N -
Cancel Previous @

3. Name the project and choose a location for it.

Creating the “Hello, World” Tool 33
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

34

CHAPTER 3

Developing a Tool

In the New Java Tool pane of the Assistant, enter He 110 in the Project Name text input field, click Choose,
and choose a location for it.

0 Assistant

.; New Java Tool

Project Name: Hello

Project Directory: ~/Development/java/Hello/| { Choose...)

The project directory ~/Development/Java/Hello/ will be created if necessary, and the
project file Hello.pbproj will be created therein.

{ Cancel) { Previous) (Finish 3

P
T ——

When done, you should see the Project Builder window. Figure 3-1 shows the window with three editor
panes, one for each file in the project, the Java source file, the manifest file, and the man page documentation
file. The product, He110. jar, is shown in red because it hasn’t been built.

Creating the “Hello, World” Tool
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

Figure 3-1 The Hello project in Project Builder
0606 #. Hello - Hello.java =
[2
- BANadvNe® unFdd 0
. G"Eép: ﬁ' il _ @Fnd J_ “Buld) HRun J_ dDebug Jj_ (HCVS
v ello -
o Hello java © © [Hello.java:13 & : <No selected symbol> % L7 e @ o
54 _\' Manifest A)
¥ Documentation o :e“D'JWG
o _\“ Helle.1 ;; e
b [Produrts 2 import jova.util.*;
B
E public class Hella |
‘] public static void main {String args[]) {
=) A4 ingert code here...
[System.out printind"Hello World!™);
2 i
3 ¥
z| - .
1 QcC _\"; Manifest:1 < e @ o
B Main-Clasz: Hello
le
B _
2 Q€ [YHello.11 2 000
| -\Modified from mon(l) of FreeBSD, the NetBSD mdoc.templote, ond mooc.zonples.
JWSee Alsos m
Bl vman modoc . zanples for o complete listing of options
u;; SAMman mdoc for the short list of editing options
;‘_ SMAusrssharesmisc/mdoc . Lenplate
B|| Do wed Apr B2 2883 A" DATE
3| bt Hello 1 %" Program name and manual section number
"J .0z Darwin
L5h HAME W' Section Heoder - required - don't modify
WM Hello,
A" The following lines are read in gererating the apropos{man —k) dotobase. Use only
kew
LA words here as the dotobose is built based on the words here and in the ND line.
Nm Other_nome_for_same_programd s, -
WM Yet another name for the some program. | &
A Use WNmomacro to deszignote other nomes for the documented program. v

Build and run the application by choosing Build > Build and Run. Figure 3-2 shows the Run pane of the Project
Builder window. The Run pane displays the console output of the application.

Figure 3-2 Project Builder’s Run pane showing Hello’s console output
066 4. Hello - Hello.java (=]
_® Hello BANa9%e® uapnPFdd (i)
@ Groups & Files Hello World!
v B Hello
54 [4] Hello java java has exited with status 0.
o _\“ Manifest
¥ Documentation

o _\“ Helle.1

p [Products

. & Find A Build JewBRuncod A Debug j FoVs |

© © [Hello.java:13 & : <No selected symbol> # 0o

- sebiEL@® | SpEwypog(y | sassed s heosma0

A4 Hello.jova
A Hello

import jova.ubil.*;
public class Hella {
public stotic void main (String args[]) {

A4 insert code here...
System.out printind"Hello World!");

java exited normally.
e —

Creating the “Hello, World” Tool
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

35

CHAPTER 3

Developing a Tool

Creating the Clock Tool

This section shows how to create the Clock tool. Clock is a text-based application that tells time. It takes an
optional command-line argument, the name of the user. You can find the finished product among this
document’s companion files in companion/projects/Clock (see “Introduction to Project Builder for
Java” (page 9) for details on companion files).

Follow these instructions to create the Clock tool.
1. Create a Java tool project and name it Clock.
2. Edit the main method of the Clock class so that it looks like this:

public static void main (String args[]) {
Date date = new Date();

if (args.length > 0) {
String user_name = args[0];
System.out.printin("Hello, " + user_name + ". It's " + date);
}
else {
System.out.printin("It's " + date);
}
}

3. Add an argument to the application’s launch arguments to test it within Project Builder.
a. Click the Targets tab to display the Targets list.
b. Click java under Executables in the Targets list.
¢. Click the plus sign (+) in the Arguments pane of the target editor.

d. Enter -jar "Clock.jar" Sheilla inthe newly added row of the Launch Arguments list.

36 Creating the Clock Tool
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

e. Deselect the Use option in the first row by clicking the checkmark in the Use column. The Arguments
pane should now look like Figure 3-3.

Figure 3-3 Arguments pane of the executable editor in Project Builder
0006 4. Clock - Executable: java (=]
0 (@« BAae AunPFdd
= \ ®Find 4 “Build 4 SRun 4 "I Debug 4 [@CVs |
W¥Targets
® » @ Clock g (4] \é Executable: java e @
wBuild Styles & s " . " "
® & Developmant) & Executable "java" of Project "Clock
(6] # Deployment ¥ Path to Executable
W¥Executables %’
(C] Hjava B Path: fusr/bin/java [_Choose...)
@
||; ¥ Arguments
:u: Launch Arguments Use
’3“ ~jar "Clock_jar”
i —jar “Clock.jar” sheilla i
3 (+]
+ ¥ Environment Variables e
E—— 3 14 Name Value Use | |v
.

Build and run the application. You should see its output in Project Builder’s Run pane, as shown in Figure
3-4.

Figure 3-4 Output of Clock tool displayed in Project Builder

60606 3. Clock - Clock.java o
: = < : =
@ [0« BNy AuniPFdd
@ Groups & Files Helle, Sheilla. It's Tue Feb 18 18:30:35 PST 2003
¥ 5 Clock
o CIDl:k.Java java has exited with status 0.
] | Manifest

» [Documentation
» [Products

 @Find 4 “\Build _Hn--n 4 A Debug 4 DWcovs
(4] [4] Clock.java:14 % : main() * e @

A

A4 Clock. jowa
£ Clock

s

import jowa.util.®;

sibiel @ | syewioog mj 58552|7 m)

public closs Clock {

public stotic wvoid main (String args[]) {
Date dote = new Dated); e

java exited normally. Y
T — .

Creating the Clock Tool 37
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

Installing the Clock Tool

This section shows how to install the Clock tool on a computer. Follow these steps to install Clock on your
computer:

1. Determine the location of the installed product by adding the INSTALL_DIR build setting to the project
and configuring the setting appropriately.

a. Click the Targets tab to display the Targets list.

b. Click the Clock target.

c. Click Expert View under Settings in the target editor.
d. Click the plus sign (+) in the Build Settings pane.

e. Inthenewly added row, enter INSTALL_PATH in the Name column and Too1s in the Value column.
The Expert View pane should look like Figure 3-5.

Figure 3-5 Expert View pane of the target editor in Project Builder

0606 4. Clock - Target: Clock =
— - o= —y ——— e
@ [©@Cok B B % 5 40P dHD
\ @Find 4 “Buld 4 SRun 4 "ADebug 4 [@CVs |
¥Targets
® » @ Clock (<] Target: Clock % e @
W¥EBuild Styles ©) ", " : " "
® € Davelopment ® Target "Clock” of Project "Clock
G} # Deployment Summary (M| ¥ Build Settings
¥Executables ¥ Settings =
® Hjava ¥ simple View Name Value
Ceneral Settings
Installaticn Settings JAVA_ARCHIVE_CLASSES YES
| GCC Compiler Settings JAVA_ARCHIVE_COMPRESSION WO
Linker Settings JAVA_ARCHIVE_TYPE JAR

Search Paths
Java Compiler Settings
Java Archive Settings

JAVA_COMPILER
JAVA_MANIFEST_FILE
JAVA_SOURCE_SUBDIR

Manifest

SI9BIELE | SMEWyooE(y sessED@ | sajdl]

|
|
|
|
|
|
|
|
|
|
|
" REZ_EXECUTABLE
A
£

(et evy PRODUCT_NAME Clock
¥ Build Phases PURE_JAVA YES
[Sources -
|_|Java Resource Files
[Frameworks & Libraries oQ
3)| [Copy Files

2. Run pbxbuild to install the application:
a. Launch Terminal. It's located in /Applications/Utilities.
b. Execute the following commands:

% cd <path_to_Clock_project>
% pbxbuild install -buildstyle Deployment

Now, your /tmp directory contains the Clock distribution directory (C1ock.dst), as shown in Figure 3-6.

38 Installing the Clock Tool
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

Figure 3-6 Clock distribution directory in /tmp

0006 [tmp o
Name

L« Clock.dst

v L_— Tools

3| Clock jar |

B Clock |

v L_» share
v L_— man

Jalr ;
If you want pbxbui1d to install in the final destination of a product instead of in /tmp, use the following

commands:

sudo pbxbuild clean
sudo pbxbuild install -buildstyle Deployment DSTROOT=/

This creates /Too1s in your root volume if it doesn't already exist and places the application’s JAR file there,
as shown in Figure 3-7.

Figure 3-7 Clock target directory

868686 =} Acropolis =

Mame

l_;_\.g Applications -
7 Develaper
| & Library
| Systemn
- Tools

B claek

4vYvYVYY

3| Clack jar
P |E Users

s
v
J4|w!

To run the application, double-click the JAR file. To view the application’s output when you launch it from

the Finder, launch Console, located in /Applications/Utilities.Figure 3-8 shows Console displaying
the output of a Clock session.

Figure 3-8 Output of Clock viewed through Console

0006 _| consale.log

It's Fri Feb 21 11:34:84 PST 2683

Installing the Clock Tool

39
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

Developing a Tool

40 Installing the Clock Tool
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

Developing a Swing Application

This chapter covers the steps needed to develop Swing applications. First, this chapter guides you through
the creation of a simple application, completely based on Project Builder’s Swing project template. Second,
to show how to port an existing Swing application to Mac OS X, it shows how to create a Swing project based
on Sun’s File Chooser Demo application and deploy it as a Mac OS X application; the finished project is in
companion/projects/FileChooser. (See “Introduction to Project Builder for Java” (page 9) for details
on this document’s companion files.) Finally, this chapter explains how to change the icon the Finder displays
for the application from the generic Java application icon. .

Creating the “Hello, Swing” Application

The Swing application template provides another version of the “Hello, World” application. Follow these
steps to create a project that demonstrates how a Swing application looks in Mac OS X.

1. Launch Project Builder. It’s located in /Developer/Applications.
2. Create a Java Swing application project.

Choose File > New Project, and select Java Swing Application under Java in the project-template list of
the New Project pane.

BN - Assistant

.5 New Project

¥ Bundle
Carbon Bundle
CFPlugin Bundle
Cocoa Bundle
¥ Framework
Carbon Framework |
Cocoa Framework |
¥Java |
Java AWT Applet
Java AWT Application
Java NI Application
Java Swing Applet
Java Tool 2
¥ Kernel Extension

 Cancal M -
[Cancel) Previous

3. Name the project and choose a location for it.

Creating the “Hello, Swing” Application 1
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
Developing a Swing Application

In the New Java Swing Application pane of the Assistant enter He110_Swing in the Project Name text
input field, click Choose, and choose a location for the project folder.

0 Assistant
.; New Java Swing Application

Project Name: Hello_Swing

Project Directory: ~/Development/Java/Hello_Swing/ { Choose...)

The project directory ~/Development/Java/Hello_Swing/ will be created if necessary, and
the project file Hello_Swing.pbproj will be created therein.

[Cancel) { Previous) (Finish }

P

When done, you should see the Project Builder window, shown in Figure 4-1. The product, He110_Swing. app,
appears in red because it hasn’t been built.

42 Creating the “Hello, Swing” Application
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
Developing a Swing Application

Figure 4-1

0006

8. Hello_Swing - Hello_Swing.java

The Hello_Swing project in Project Builder’s window

o @ Hello_Swing }+j

8% dunw

o

& @

@ Groups & Files

 @Find 4 SBuild j SRun 4 A Debug 4 (@ Cvs

Ji

¥ i Helle_Swing

K Hello g.java

o

[4] Hello_Swing.java:l # : <No selected symbol> % e @

i] AboutBox_java
Preferences java
#| Hello_Swing.icns
¥ Resources
: Hello_Swingstrings.propertie
¥ Products
b"éHeHo_Swing app

B ER&

o

| Swodjrugae | slamzj_@?_k Sjewyoog[j) | sasse D@ | s34l)\

import
import

import
import
import

import

import.

util.locale;
util.ResourceBundle;

Jowva.
Java.

Jova.
Jowva.
Java.

=%]

aut .event . ActionEvent ;
awt .event KeyEvent;
Jovox.swing ¥y

com.apple.eaut g

public class Hello_Swing extends JFrome {

private Font font = new Fontd"serif", Font.ITALIC+Font.BOLD, 3633

protected ResourceBundle resbundle;

protected AboutBox aboutBox;

protected Preferences prefs;

private applicotion fapplication = new Applicationd);

protected Action newhction, openAdction, clossdction, sovedction, sovedshction,
undodction, cutAction, copwAction, pastedction, cleardction,

zelectAl lAction;

stotic final IMenuBar mainMenuBar = new JMenuBor();
protected JMenu fileMenu, editMenu;

public Hello_Swing () {

super ("3

/¢ The ResourceBundle below contoing all of the strings used in this

A4 application. ResourceBundles are useful for localizing applications.
A Mew locolities con be odded by odding additional properties files.
reshundle = ResourceBundle.getBundle ("Hello_Swingstrings", Locale.

getDefault(}y;

setTit le{resbundle .getString" frameConstructor”) ;
thiz.getContentPane). setlavout (hulLy;

createdctions{l;

alri

Build and run the application by choosing Build > Build and Run. Figure 4-2 shows the running Hello_Swing

application.
Figure 4-2 Hello_Swing application in action
8’ Hello_Swing File Edit

ra 86 Hello_Swing 1

Swing Example

ing - Target: Hello_Swing

@ 4 e momw P

>

Cd

@
2
]

& R Find__J

A Build 4 !_Run A 1 Debug 4 @CVs

=]

uild succeeded

£

Creating the File Chooser Demo

This section explains how to use existing Java source files to create a Swing-based Mac OS X application.

Creating the File Chooser Demo

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

43

CHAPTER 4
Developing a Swing Application

You can download source code that demonstrates the use of the JFileChooser class (javax.swing) at
http://java.sun.com/docs/books/tutorial/uiswing/components/filechooser.html. You can also use the files
included with this document in companion/source/FileChooser (see “Introduction to Project Builder
for Java” (page 9) for details on companion files).

Perform these steps to create a file-chooser demonstration project.

1. Create a Java Swing application project named FileChooser.

2. Remove the standard source files from the project:
a. Selectthe FileChooser.java, AboutBox.java,and Preferences. java files in the Files list.
b. Choose File > Delete or press the Delete key.

¢. Click Delete References & Files in the Delete References dialog, shown in Figure 4-3.

Figure 4-3 Delete References dialog of Project Builder
006 #. FileChooser - Preferences.java =
i

—— Delete References
@ |p——
% \ The references to be deleted refer to files on your disk. Do you wish to delete anly the h_WCvs
o hd I_“l il L] t references and not the related files? e @

o

[[d] Ab
] [Pre { Delete References & Files } [Cancel) { Delete References)
] ¥ Fil *

v [Resources import jova.owt ok
] __|FileChooserstrings.properties import jovo.owt.event ¥

¥ [Products import jovox.swing.*;

» (A FileChooser.app

[}

public class Preferences extends JFrome {
protected JButton okButton;
protected Jlobel prefsText;

swbIEL@ | SEudpogly | SassEd

public Preferences()

{

super ()3

thiz.getContentPane() setlayout{new BordarLuyout(iB 18)),

prefsText = new Jlobel {"FileChooser Preferences.

JPanel textPanel = new JPanel(new FlDwLuyout(FlowLuyDut LEFT, 18, &
L H v

bt P mdd fisend AT ook

P
T —

3. Add the source files and image files required for the project:

a. Choose Project > Add Files.

44 Creating the File Chooser Demo
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

http://java.sun.com/docs/books/tutorial/uiswing/components/filechooser.html

CHAPTER 4
Developing a Swing Application

b. Navigate to where the source files reside, select them, and click Add. Figure 4-4 exemplifies the
addition of the file-chooser demonstration files in companion/source/FileChooser.

Figure 4-4 Adding source files to a project in Project Builder
206 @ FileChooser - FileChooser.icns =
P d =
% From: | [source 3!
roups S s
- — L movs
7@'1'“ | FileChooser » [images S B ExampleFileFilter.java W
u vﬁ: 2| README.txt ExampleFileView.java s
o i [source [B FileChooserDemo.java
vids
5 >
¢ Py « | »

[Add to Favorites) [Mew Folder)

Go to:

(Cancel)

i

c. Inthe dialog that appears, select “Copy items into destination group’s folder” and make sure the
FileChooser target is selected in the Add To Targets list.

86 3. FileChooser 3
o @ FileChooser
s B Copy items into destination group's folder (if needed) |
@ Groups & Files 3 R Debug A .CVS_J
¥ = FileChooser Reference Style: | Default O
= #| FileChooser.icns 15 — 00
¥ [Resources Text Encoding: | Western (Mac OS Roman D
= : FileChooserstrings.| -] () H
vid P_[oducls =
IS » (A FileChooser.app (® Recursively create groups for any added folders

() Create Folder References for any added folders

Add To Targets
(@ FileChooser

(cancel) € add)

d. Repeat the previous step for the image files.

4. Examine the FileChooser target to verify that the newly added files are assigned to the correct build
phases:

a. Click the Targets tab and select the FileChooser target in the Targets list.

Creating the File Chooser Demo 45
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
Developing a Swing Application

b. Select the Sources build phase and the Java Resource Files build phase in the target editor. Make
sure the source files and image files you added to the project appear in the Sources pane and the
Java Resource Files pane, respectively.

0006 FileChooser - Target: FileChooser (=]

.
0 " @ FileChooser) '{\ _é‘ @ @ im0 ;_-]3 [ia] LT]

. @Find 4 “Build 4 HRun 4 A Debug 4 FCVSs |

wTargets

® » ©) FileChooser g (<] Target: FilaChooser # e @
& " . .
® “u”;sg;::mpmm 1 Target "FileChooser" of Project "FileChooser"
(G] # Deployment Summary ¥-Sources
¥Executables I Settings
® <& FileChooser > Info.plist Entries Files: ExampleFileFilter java

¥ Build Phases ExampleFileView.java

EJSDI-IY;ES = FileChooserDemo.java
ava Resource Files

] Bundle Resources
| Frameworks & Libraries
|1 Shell Script Files

| SBBIELE) DMELpOE() , S9ssED@

¥ Java Resource Files

Files: File Des
__ FileChooserstrings.properties
2 giflcon.gif
#| jpglcon.jpg

5. Change the name of the main class in the information property list:
a. Select Pure Java-Specific under Simple view under Info.plist Entries in the target editor.
b. Enter FileChooserDemo in the Main Class text field.

6. Clean the FileChooser target by choosing Build > Clean and click Clean Active Target in the dialog that
appears.

Cleaning the target erases any temporary files stored in the target’s bui1d directory, which may have
been left there in previous builds. (If you didn't build the application, you may skip this step.)

88 4. FileChooser - Target: FileChooser =
o FileChooser ;
e Warning
Target Cleaning will cancel all active debug, run, and build L A dDebug 4 WCVs J
¥Targe s_ sessions before proceeding. Cleaning will remove all e @
@ b @ FileChooser derived products and files for the active target and
¥ Euild Styles targets it depends on. Do you really want to clean "
eChooser
® # Development the active target? leC
0
e # Deployment = N = [&
wExecutables { Cancel) E Clean Active Target a
® \éFiIeChooser =
wSimple View
Basic Information Class Path: §)AVAROOT/FileChooser.jar
| Display Information (+]
= lication Icon
m App | Place JFrame menu bars at top of screen
] Cocoa-5Specific e -
3 Cocoa Java-Specific | ¥ Growbox intrudes
5 Pure Java-Specific | Set cwd to Contents/Resources/Java subdirectory
W Document Types
—— T =
URL Types Target VM Version: | 1.4+ I3
Expert View =
Additional VM Options:
@ || » Build Phases 2 -
E Additional Properties: Name Value i
[}
¢ R 9 annle laf useSer trie 1
4

46 Creating the File Chooser Demo
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
Developing a Swing Application

Build and run the application. You should see the window shown in Figure 4-5.

Figure 4-5 FileChooser in action
006 FileChooserDemo
~Dialog Type ~Filter Controls ———— ~Display Options———— ~File and Directory Options-

@ Open @ Show "All Files" Filter] Show Hidden Files @ Just Select Files

) save "] Show JPG and GIF Filters "] Use FileView () Just Select Directories

) Custom | With File Extensions] Show Preview () select Files or Directories

Doit # Show Control Buttans
® single Selection
) Multi Selection
® Aqua (O Metal O Motif Windows Show FileChooser

If instead of a running application you get an error message like the following in Project Builder’s Run pane,
make sure that the name of the application’s main class matches the contents of the Main Class entry of the
Pure Java-Specific pane of the Info.plist Entries pane in the target editor.

[LaunchRunner Error] The main class "FileChooser" could not be found.
[JavaApplLauncher Error] CallStaticVoidMethod() threw an exception
java.lang.NullPointerException

at apple.launcher.LaunchRunner.run(LaunchRunner.java:85)

at apple.launcher.lLaunchRunner.callMain(LaunchRunner.java:50)

at
apple.launcher.JavaApplicationLauncher.launch(JavaApplicationlLauncher.java:52)
Exception in thread "main"
FileChooser has exited with status 0.

When you click the Show FileChooser button of the FileChooserDemo window, you should see a window

like the one in Figure 4-6. Of course, the actual look of the window depends on the selections you make in
the FileChooserDemo window.

Figure 4-6 Open dialog displayed by FileChooserDemo

000 Open
4 ernest F
Name Date Modified B
@8 Desktop Feb 24, 2003 7:03 PM
|.* Development Feb 18, 2003 8:17 PM m
' Documents Feb 24, 2003 1:31 PM
¥ Library Feb 20, 2003 7:54 PM
® Movies Nov 5, 2001 5:52 PM
& Music Sep 12, 2002 3:21 PM 4
1= Pictures Feb 19. 2003 10:52 AM b

Ak
e

Format: | All Files |

Cancel Open

Creating the File Chooser Demo 47
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
Developing a Swing Application

Changing an Application’s Icon

The Resources folder of an application package holds several types of files, including icon files. The Finder

consults the CFBundleIconFi1e information property list entry to determine which of these files to use as
the application’s icon.

Follow these steps to change the icon of the FileChooser application developed in “Creating the File Chooser
Demo” (page 43) from the default icon.

1. Identify the icon file for the new icon.
You canfind aniconfilein /Developer/Applications/Pixie.app/Contents/Resources/Big.icns.
In Terminal, execute the following command:

cp /Developer/Applications/Pixie.app/Contents/Resources/Big.icns
<FileChooser_project_directory>

2. Remove the FileChooser.icns file from the FileChooser project:
a. Select FileChooser.icns in the Files list in the Project Builder main window.
b. Choose Edit > Delete or press the Delete key.

c. Click Delete References & Files.

3. Add the icon file for the desired icon to the project:
a. Choose Project > Add Files.

b. SelectBig.icns in the file list and click Add.

00 . FileChooser - ExampleFileFilter.java =
=1
OG : ‘_E From: | [FileChooser 3! —
roups o
] _L:_'=. Awtd A= o 00
E] 7 Clock > m |2 build s]
o L_ Dance - i| ExampleFileFilter.java ;) O
o el L— Dance2 - .| ExampleFileView.java \
) 12 7 FileChooser > “. FileChooser.pbproj =
'g _ FileChooserDemo IS .| FileChooserDemo.java -
= _ Hammer 3| F\IeCh:JL-';er:lrirlqh.proper: ICNS 1
[Hello_Swing » [| ¥ gificon.gif v S
e = R
(Add to Favorites } (New Folder)
Go to: -
&
[Cancel } 1
48 Changing an Application’s Icon

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
Developing a Swing Application

¢. Inthe dialog that appears, make sure “Copy items into destination group’s folder” is not selected

and click Add.
88 #. FileChooser - ExampleFileFilter java —
o @ FileChooser
E |_| Copy items into destination group's folder (if needed)
@ Groups & Files e ry—
v 53 FileChooser Reference Style: = Default o
] ExampleFileFilter. java i — i 1 symbol> 3 00
o ExampleFileView.java Text Encoding: | Western (Mac OS Roman 4
[FileChooserDemo.java 2! () = i m
4 # gificon.gif : &
- % ipglcan.| ® Recursively create groups for any added folders ights reserved.
.‘—'Jpg con.ipg o it to license terms.
» [Resources (_ Create Folder References for any added folders

» [Products

Add To Targets

¥ (© FileChooser

r

that filt t
(cancel) € Add) ot it broes

that it knows about.

A

4. Make sure that the new icon file is assigned to the Bundle Resources build phase and not the Java
Resource Files build phase.

a. Select the Java Resource Files build phase and the Bundle Resources build phase in the target editor
of the FileChooser target.

b. Drag Big.icns from the Files list of the Java Resource Files pane to the Files list of the Bundle
Resources pane.

000 4. FileChooser - Target: FileChooser (=]
o @ FileChooser \3} "R "é. % '& in mn ;_1‘3 I¢1 L?]
- N \ @Find 4 ABuild 4 SRun 4 WA Debug 4 @FCVs |
argets
® v ’ FileChooser E o Target: FileChooser 3 00
¥Euild Styles 7 e n . "
® # Development J Target "FileChooser" of Project "FileChooser
6] # Deployment SUmmary. ¥ Java Resource Files
YExecutables &| pSettings
® \éF”EChDDSEr Q »Info.plist Entries Files: File Destination
E ¥ Build Phases _| FileChoeserstrings.
L] Sources ¥ giflcon.gif
(I |_|Java Resource Files [® jpgicon.ipg
= || Bundle Resources ~; Big.icns
g] Frameworks & Libraries ” .
3 [Shell Script Files
[
& ¥ Bundle Resources
Files: “)ig-iens
o
=]
 — — — — — P
v
5. Set the name of the icon file of the application.
a. Select Application Icon under Simple View under Info.plist Entries in the target editor.
Changing an Application’s Icon 49

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
Developing a Swing Application

b. EnterBig.icns in the “Icon file” text field of the Application Icon pane.

000 . FileChooser - Target: FileChooser =
(7] | @ FileChooser =) Of\ ‘é. % 'g. i I ﬂ}l (Jvl [“P]
_ @Find J_ *Build ,_ SAun 4 Debug ,_ (M CVSs
wTargets =] - — — -
® » @) FileChooser = [« X Target: FileChooser % £ e @)
f o - = =
VAl Stles 1 Target "FileChooser” of Praject "FileChooser”
® # Development J
(o] 4 Deployment Summary ¥ Application lcon
wExecutables 2 P Settings
@ & FileChooser = | ¥info.plist Entries
" v simple View Icon file: Big.icns
4 Basic Information .
| 'j Display Information
= Application Icon
ugu Cocoa-Specific]]
| Cocoa Java-Specific
3 Pure Java-Specific
& Document Types
URL Types
Expert View

» Build Phases

e — PR

Clean the project, and build and run the application. The icon for FileChooser.app in the build folder of
the project should have the icon used by Pixie.

68 e [FileChooser =)
11 items, 15.91 GB available
Name
¥ Big.icns
v [build
e FileChoaser

[7 FileChooser.build
ExampleFileFilter.java
ExampleFileView java
FileChooser.pbpraj
FileChooserDemo._java
FileChoaserstrings.properties
giflcan.gif

W= Y

ipglean.jpg

[== =3]

S i <«vl

50 Changing an Application’s Icon
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing a JNI Application

When you need to leverage existing C or Objective-C code in a Java application or need to improve the
performance of an application by executing critical parts natively instead of on the Java virtual machine, you
use the Java Native Interface (JNI). The JNI provides a way for Java code to communicate with C-based libraries.

Project Builder provides a template that facilitates the development of JNI-based applications. For an
explanation of the elements of that template, including its targets, see “The JNI Application Template” (page
14).

Creating the “Hello, JNI” Application

The JNI application template provides yet another version of a “Hello, World” application. This one, however,
joins the flexibility of Java with the high performance of C code to print the famous greeting on the console.
Follow these steps to create a JNI-based application.

1. Launch Project Builder. It’s located in /Developer/Applications.
2. Create a Java JNI application project.

Choose File > New Project, and select Java JNI Application under Java in the template list.

08 Assistant

.; New Project

Carbon Bundle =
CFPlugin Bundle
Cocoa Bundle
¥ Framework
Carbon Framework
Cocoa Framework
V¥ Java |
Java AWT Applet |
Java AWT Application
2 App
Java Swing Applet
Java Swing Application
Java Tool
¥ Kernel Extension M
Ceneric Kernel Extension

[Cancel) Previous Next

3. Name the project and choose a location for it.

Creating the “Hello, JNI” Application 51
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
Developing a JNI Application

In the New Java JNI Application pane of the Assistant, enter He110_JNT in the Project Name text input
field, click Choose, and choose a location for the project folder.

0 Assistant
.5 New Java NI Application

Project Name: Hello_JNI

Project Directory: ~/Development/java/Hello_JNI/ { Choose...)

The project directory ~/Development/Java/Hello_INI/ will be created if necessary, and the
project file Hello_Nl.pbproj will be created therein.

{ Cancel) [Previous fFlnlsh *)

P
T —

When done, you should see the Project Builder window, shown in Figure 5-1. The files in red are the project’s
products, which haven't been built.

Figure 5-1 The Leverage project in the Project Builder window
06006 4. Hello_JNI - JNIWrapper.java (=]
> o f— =
@ Hello_NI B a4e® oo PFdd ()
fﬁ":g‘ﬁ':j':: | _ @Find) ABuld) SRun) dDebug j_ B CVS
[&] Hello_INIjnilib.c I; [4) INMwrapper.java:l # : <No selected symbol> 3 (a]=]
— Manifest import jova.util.®; r
@ INIWrapper.java 4&
bE)JavaVM framework public class JNIWrapper {
¥ [Products < &
[} libHello_JNLjnilib :‘—. static {
[T} Headers /JNWrapper.h E ¢/ Ensure native JNE Library L2 Logded
3 JNIWrapger.jar A System. loadlibrary{"Hel lo_JNI");
= P, T
2 ublic JNIWropper ()
= o pp i . _ .
2 System.out printind" NIWropper instonce created");
3 I
g
i3 native int native_method{String arg);
<
public stotic void main (String args[]) {
| A4 insert code here...
E System.out.printlng"Storted INIWrapper s
[} INIWrapper newini = new JNIWrapper();
4 int result = newjni.native_method("Hello Yorld I");
« System.out printin{"Finished INIWropper. snswer is " + result);
) ¥ v
= 1
g ¥ v
A

Project Builder generated the source files for the native side and the Java side of the application. They're
shown in Listing 5-1 and Listing 5-2.

Creating the “Hello, JNI” Application
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

Developing a JNI Application

Listing 5-1 Leveragejnilib.c source file in the Leverage project

f#include "JINIWrapper.h"

int shared_function(const char *arg) f{

}

JNTEXPORT jint JNICALL Java_JNIWrapper_native_lmethod(JNIEnv *env, jobject this,
jstring arg) {

printf("shared_function called with %s\n", arg);
return 42;

/* Convert to UTF8 */

const char *argutf = (*env)->GetStringUTFChars(env, arg, JNI_FALSE);

/* Call into external dylib function */
jint rc = shared_function(argutf);

/* Release created UTF8 string. */
(*env)->ReleaseStringUTFChars(env, arg, argutf);

return rc;

Listing 5-2 JNIWrapper. java source file in the Leverage project

import java.util.*;

public class JNIWrapper f{

}

Now, make sure the Leverage target is selected, and build and run the application. Several files appear in
the project’s build folder. Because this is a JNI application, in addition to the JAR file containing the Java
application, you see a JNI library file, which contains the object file for the native function specified in

static {
// Ensure native JNI Tibrary is loaded.
System.loadLibrary("Leverage");

}

public JINIWrapper() f{
System.out.printin("JdNIWrapper instance created");

}
native int native_method(String arg);
public static void main (String args[]) {

System.out.printin("Started JNIWrapper");
JNIWrapper newjni = new JNIWrapper();

int result = newjni.native_method("Hello World !");

System.out.printin("Finished JNIWrapper. Answer is

"+ result);

Leveragejnilib.c (Figure 5-2). The Header folder contains the JNIWrapper. h file, which is generated
by javah from the JNIWrapper.class file.

Creating the “Hello, JNI” Application
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

53

CHAPTER 5
Developing a JNI Application

Figure 5-2 The build folder of the Leverage project after building the application

006 [build =

MName
»> L Headers
,:\3' INIWrapper
B inwrapper jar
| 2 L Leverage. build
. libLeverage. jnilib

JNI-Based Examples

The developer tools package includes several examples of JNI-based applications, including a Cocoa/Java
application located in /Developer/Examples/Java/AppleDemos/CocoaComponent.Open those projects
and examine them to get a glimpse of the power and flexibility that Java and JNI provide.

54 JNI-Based Examples
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

Debugging Applications

Project Builder provides facilities for debugging Java applications. They allow you to stop the execution of
an application at a specific line of code, execute a line of code within a method, step into a method call, step
out of a method, or view the contents of variables in any method in the call stack.

This chapter shows how to use Project Builder’s debugging facilities to analyze the execution of a small
application. It's based on the Debug project included in the companion folder (companion/projects/Debug);
see “Introduction to Project Builder for Java” (page 9) for details on companion files.

Adding Breakpoints

To pause the execution of an application, place a breakpoint marker in the line of code you want execution
to stop. Listing 6-1 shows the definition of the Debug class in the Debug project.

Listing 6-1 Debug. java file of Debug project
import java.util.*;
public class Debug ({

public static void main (String args[]) {
System.out.printin("<Debug.main> Hello, World!");

int a_number = 1;
int another_number = 10; /11

method(a_number, another_number);

System.out.printin("<Debug.main> a_number = " + a_number);
System.out.printin("<Debug.main> another_number = " + another_number);

public static void method(int numberl, int number2) {

Person person = new Person("Kathy", "Yates", "female", "brown");
String a_string = person.firstName() + " likes debugging code.";
System.out.printin("<Debug.method> person = " + person);

To add a breakpoint to the line numbered 1, click the line’s left margin in the editor. You can also set the
insertion point in the line and choose Debug > Add Breakpoint at Current Line. Figure 6-1 shows the result.

Adding Breakpoints 55
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6
Debugging Applications

Figure 6-1 Breakpoint in Debug. java file of Debug project

686 4. Debug - Debug.java =]
6 (oo HNad4%® uoFdd
@ Groups & Files - _ @Find) ~Buld j_ @Run) 'iDebug j_ (B CVS

v Debug
[[4] Debug.java
) [5] Person.java
= _| Manifest
» [7 Documentation

o @ Debug.java:13 = : main) = e @

(11148 e ¥ i Ly e

sal14]

public closs Debug {

-

» [0 Products < public static void main ¢String args[]) { "
:'—‘ Swstem.out .printIn{"<Debug.main= Hello, Yorld!"); I
I |
B int a_number = 1; |
- Ig int another_number = 18; |

| = |
S method{o_nunber , another_number 3 |
=]

g_ Swstem.out .printlnd"<Debug.maine a_nunber = " + a_number’; l
& Swstem.out .printlng" <Debug.maine another_number = " + another_number) ; I
3 1 |
- 4 |
public stotic void method{int numberl, int number2) £ |
b | Person person = new Person{"Kaothy", "Yotes", "female", "brown"); |
5 String o_string = person.firstNome() + " likes debugging code."; Y,
[l Swstem.out .printIng" <Debug.methods person = " + person); -
w -~
= v

¥

¥

To remove a breakpoint, click the breakpoint marker, drag the marker out of the margin, or choose Debug
> Remove Breakpoint at Current Line.

To disable a breakpoint, Command-click the breakpoint marker or choose Debug > Disable Breakpoint at
Current Line.

Stepping Through Lines of Code

To build and debug the Debug project, choose Build > Build and then choose Debug > Debug Executable,
or click the Build and Debug toolbar button. Figure 6-2 shows the result, in which the highlighted line is
about to be executed.

56 Stepping Through Lines of Code
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6
Debugging Applications

Figure 6-2 Debugging an application—stopping

0606 4. Debug - Debug.java =
0 (S0cbw DA a@ee noRPdd
Stopped at breakpaint. _ Console , Standard IO |
[-
| ain '+! Variable Value Summary
T ¥ Arguments
1 # | Frame P Static Fields @ox127 class Debug
0 Debug.main() b-args @0x128
¥lLocals
a_number 1
another_number out of scope

* @ find J_ SBuild) @Run i Debug.d_ M CVs

-+

@

[a]

|

in

a

@ (-] Debug.java:13 # : main() e @

8 public static void main {String args[]) { =

; System.out.print lnd"Debug.naine Hello, World!");

&

B

& int a_number = 1;

= | int another_number = 16; |

? method{a_nunber , another_nunber) ;

3

- System.out.print lnd"Debug.naine a_number = " + o_humber}; -

';] System.out.print ln"Debug.naine another_number = " + another_nunber); b
\

Stopped at breakpoint. v

To step to the next line of code choose Debug > Step Over or click the Step Over toolbar button, as shown
in Figure 6-3. Because the line executed is not a method call, clicking the Step Into toolbar button would
give the same result.

Figure 6-3 Debugging an application—stepping over

00606 4. Debug - Debug.java (=]
@ (oobw BNo@ee npRdhd

Stopped at breakpaint. . Console , Standard IO |
(" =
Al Tmain '+! Variable Value Summary
w ¥ Arguments
1 # Frame b= Static Fields @ox127 class Debug

0 Debug.main() b-args @ox128
¥lLocals
a_number 1

another_number L0

& @, Find J_ SBuild 4 @Run koA Debug.d BCVS
(] [i] Debugjava:15 4 : main * 00

public static wvoid main {String args[]} { »4
System.out.print Ing"-Debug.naine Hello, World!");

int a_number = 1;
- int another_number = 18;
» mekhod{a_nunber, another_number j;
System.out.print lnd"<Debug.naine a_number = " + o_humber}; [
System.out.print ln("-Debug.naine another_number = " + another_number); s

[_S®biEl@ , SUewypog(y , sasseD@ |

To step into a method choose Debug > Step Into or click the Step Into toolbar button, as shown in Figure
6-4.

Stepping Through Lines of Code 57
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6
Debugging Applications

Figure 6-4 Debugging an application—stepping into a method

0606 4. Debug - Debug.java (=]
= ™ o] ¢ 2 m
o Debug B a2@ @ monj) {{})]
= A
stopped at breakpaint. _ Console ,_Standard I/O
D — — Variable Value Summary
o [main]
T ¥ Arguments
1 # | Frame P Static Fields @ox127 class Debug
0 Debug.method() numberl L
1 Debug.main() number2 10
¥locals
person out of scope
a_string out of scope

__@Ffind) ~GBuld) HRun A dDebug J_ (¥ CVS
© © [i] Debug.java:22 3 : method() 3 (=Y =)

System.out.print ln"Debug.naine another_number = " + another_nunber);

H

public stotic void method{int numberl, int rumber2y {
Person person = new Person{"Kathy", "Votes", "female”, "brown"3;
String a_string = person.firstMame() + " likes debugging code.";
Tystem.out.print lnd"-Debug.nethods person = " + person);

H

. SWBIEL® | SEwyoogly , sasseDé |

}

i

To step out of a method, (that is, to execute the rest of the lines in the current method and return to calling
method), choose Debug > Step Out or click the Step Out toolbar button.

Viewing the Debug Information

The pop-up menu to the right of the Files tab (with main chosen) lists threads of execution. The list below
it shows the call stack for the chosen thread. The pane to the right of the call stack pane, the variable pane,
shows the names of the parameters and variables declared for the currently executing method in the chosen
thread. It may also show the arguments used in the method invocation and the values of the local variables.
Figure 6-5 shows the call stack of the main thread and parameters and local variables of a method.

58 Viewing the Debug Information
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6
Debugging Applications

Figure 6-5 Debugging an application—viewing variable information
0606 4. Debug - Debug.java (=]
@ [(©oeu BHNa@eve nowRPdd
N Stopped at breakpaint. __Console , Standard I/O
Lj‘ rmain “] Variable Value Summary
E — ¥ Arguments
1 # | Frame P Static Fields ®@0x127 class Debug

0 Debug.method() numberl 1
1 Debug.main() number2 10
W Locals
W person @O0x12C
B Static Fields (@0x12D class Person
P lastName @0x130 “Yates"
P hairColor @0x131 “brown"
p-firstName @0x132 “Kathy"
P gender @0x133 “female”
P a_string @Ox12E “Kathy likes debugging code."

__@Ffind) ABuld) HRun | dDebug J_ (U CVS
(4] Debug.java:24 3 : method() 3 00
} —_
public stobic void method{int numberl, int number2y {
Person person = new Person("Kothy", "Yotes", "fenals", "brown");

String a_string = person.firstNome() + " likes debugging code.";
Syztem.out .print [n{"-Debug.method= perzon = + person;

» }
1

O =)

updiralga | s1afuel@ | SEWoog() | SasseD@

BN

Accessing the Contents of Objects

While you debug code, you may need to see the values of an object’s instance variables. Most programmers
sprinkle System.out.print1ninvocations throughout their code to accomplish this essential task. In Project
Builder you can execute an object’s toString method to get the same effect.

Listing 6-2 shows a partial listing of the Person class. It contains an implementation of the toString method.

Listing 6-2 Person.java file

public class Person {
private String firstName;
private String TastName;
private String gender;
private String hairColor;

public Person(String firstName, String lastName, String gender, String
hairColor) {
setFirstName(firstName);
setLastName(lastName);
setGender(gender);
setHairColor(hairColor);

public String toString() {

return "{FirstName: " + firstName() + "},{LastName: " + lastName() +
"},{Gender: " + gender() + "},{HairColor: " + hairColor() + "}";
}
Accessing the Contents of Objects 59

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6
Debugging Applications

Figure 6-6 depicts a debugging session in which the user chooses the Print Description to Console command
through the contextual menu of person in the Variable list of the Debug pane.

p-Static Fields @0x1

P lastName @ox1
M hairColor @03 Print Description to Console

L bfirstName @0x1

Show Types

Figure 6-6 Debugging an application—viewing an object’s contents
000 @. Debug - Debug.java =
L HNe@ve npRPdhd (i)
@ Groups & Files [i'] Picked up _JAVA OPTIONS: -Xdebug -Xnoagent -Djava.compiler=NONE -
w Elj Debug Xrunjdwp:transport=dt_local, server=y, address=8000

o Debug.java <Debug.main> Hello, World!

] Person.java Javadug>

= 1 Manifest

» [7 Documentat
b [Products)
[l
& —
E Java Debugger: Stopped at breakpoint. | Consale J_Standard 1o
4 - — Variable Value Summary
main =)

J] ¥ Arguments T
’E # Frame |- Static Fields @ox127 class Debug }
3 0 Debug.method() numberl L }
=
3 1 Debug.main{) number2 10
8 ¥Locals }
& |
=4
@
Py
3
[

o ~
 @Find 4 SBuild 4 SRun AwS).Debuj

u'r-! (-] [4] Debug.java:23 4 : method() %

g

é_ System.out printing" <Debug.mains a_nunber = " + a_number;

§' System.out printlnd"<Debug.main= another_number = " + another
b

&

¥

public staobic void method(int numberl, int numberz) {
Person person = new Persond"Kathy", "Yotes", "female", “"brown
- String o_string = person.firsthomed + " likes debugging codg
System.out printing"Debug.methods person = " + person; View Value History

¥

Listing 6-3 shows the output generated.

Listing 6-3 Console output after executing Print Description to Console command on a Person object

Picked up _JAVA_OPTIONS: -Xdebug -Xnoagent -Djava.compiler=NONE
-Xrunjdwp:transport=dt_local,server=y,address=8000
<Debug.main> Hello, World!

Printing description of person:
"{FirstName: Kathy},{LastName: Yates},{Gender: female},{HairColor: brown}"
JavaBug>

60 Accessing the Contents of Objects
Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Build Settings Reference

This appendix lists some of the build settings you are likely to use in Java-based projects. See the Project

Builder release notes for a

complete treatment of Project Builder’s build settings.

Project Settings Reference

Table A-1 describes build settings that apply to a project as a whole; that is, they apply to all targets in a

project.

Table A-1 Project build settings

Build setting

Description

PROJECT_NAME

Name of the project. This setting is read-only.

SYMROOT Base location for built products. Configured initially as <project_-
directory>/build.
BUILD_DIR Base location for the temporary files generated by a project’s targets. Default:

<project_directory>/build. This setting is read-only.

TARET_BUILD_DIR

The location for products. Set initially to $BUT LD_DIR in development builds and
$INSTALL_DIR in deployment builds when the product is installed. When the
product is not installed, the setting is configured to $BUTLD_ -
DIR/UninstalledProducts in development and deployment builds.

BUILT_PRODUCTS_DIR

The base location for all products. Configured initially as $BUTLD_DIR.

Deployment Settings

Reference

Table A-2 describes build setting that determine the location of an installed product and its permissions.

Table A-2 Deployment build settings

Build setting

Description

DSTROOT

Base location for the installed product. Default: /tmp/$PROJECT_NAME.dst/.

INSTALL_PATH

Location of the installed product. For example, /my_app_path. This setting is
undefined by default.

Project Settings Reference

61

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Build Settings Reference

Build setting

Description

INSTALL_DIR

Fully qualified path for the installed product. By default, it concatenates DSTROOT
and INSTALL_PATH. This setting is read-only.

SKIP_INSTALL

Determines whether the target’s product gets installed. When undefined, which
is the default, the target’s product gets installed.

DEPLOYMENT_LOCATION | When YES, the product gets installed in its deployment location

($INSTALL_DIR). Otherwise, the product gets installed in
$BUILT_PRODUCTS_DIR. This setting is undefined by default.

INSTALL_OWNER

User who owns the generated product. As pbxbui1d should be run by root,
the owner should be root. This is applied after the product is deployed.

INSTALL_GROUP

Group who owns the generated product. Usually, staff. This is applied after the
product is deployed.

INSTALL_MODE_FLAG The mode that is applied to the product after it's deployed. Default: ugo-w,

o+rX.

Target Settings Reference

Table A-3 describes build settings that identify a target and determine the location of source files and of a
directory for temporary files created as a product gets built.

Table A-3 Target build settings

Build setting Description

TARGET_NAME | Name of the target. This setting is read-only.

PRODUCT_NAME | Name of the product the target builds. This setting is read-only.

ACTION The action being performed on the target. Values: bui1d or c1ean from Project Builder,
install,installhdrs,and installsrc from pbxbuild. When its valueis clean,
the target’s build directory is deleted and no build phases are executed. This setting is
read-only.

SRCROOT The base location of project sources. It's set to the contents of the PWD environment
variable when PWD is defined or to the current directory otherwise.

0BJROOT The base location for intermediate build files. Configured initially as $SRCRO0T/build
(MyProject/build).

TEMP_DIR The location of a target’s intermediate files. Configured initially as
$0BJROOT/$PROJECT_NAME .build/$TARGET_NAME.build.

62 Target Settings Reference

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Build Settings Reference

Java Compiler Settings

Table A-4 describes build settings that determine the flags that are used in the invocation of the Java compiler
as well as the location of generated Java class files.

Table A-4 Java compiler build settings

Build setting

Description

CLASS_FILE_DIR

The base location for Java class files. Configured as $ TEMP_ -
DIR/JavaClasses. This setting is read-only.

JAVA_COMPILER

The compiler used in Sources (compilation) build phases. Initially
configured as /usr/bin/javac.

JAVA_COMPILER_-
DEBUGGING_SYMBOLS

Determines whether Java classes are compiled with debugging symbols.
When NO, debugging symbols are not generated. When undefined or YES,
debugging symbols are generated. Initially undefined.

JAVA_COMPILER_-
DISABLE_WARNINGS

Determines whether the compiler generates warnings. When YES,
warnings are not produced. When undefined or NO, warnings are produced.
Initially undefined.

JAVA_COMPILER_-
DEPRECATED_WARNINGS

Determines whether the compiler shows a description of the use of
deprecated APl (whether the -deprecation command-line option of
javacand jikes is used).

JAVA_COMPILER_-
TARGET_VM_VERSION

Determines the target Java virtual machine for generated class files (javac
and jikes-target command-line options).

JAVAC_SOURCE_FILE_-
ENCODING

Determines the value for the -encoding command-line option of javac
and jikes. When undefined, MACINTOSH is used.

JAVA_COMPILER_FLAGS

Use to set compiler options not supported in build settings for javac
and jikes.Forexample, you can set the -extdirs command-line option
of javac to include paths to additional JAR files.

JAVAC_DEFAULT_FLAGS

Base javac command-line options to use for javac. When undefined,
the options are configured as -J-Xms64m -J-XX:NewSize=4M
-J-Dfile.encoding=UTF8. For more information, see Inside Mac OS X:
Java Development on Mac OS X.

JIKES_DEFAULT_FLAGS

Base jikes command-line options to use for javac. When undefined, the
options are configured as +E +0LDCSO.

JAVA_CLASS_SEARCH_PATHS

Space-separated list of paths of required JAR files. This list is added to the
-classpath command-line option of the compiler invocation.

OTHER_JAVA_CLASS_PATH

Colon-separated list of additional paths of required JAR files. This list is
added to the -classpath command-line option of the compiler
invocation.

Java Compiler Settings

63

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

APPENDIX A

Build Settings Reference

Build setting Description

LINKED_CLASS_ARCHIVES Space-separated list of required JAR files. Initially configured as the
combination of $ LINKED_CLASS_ARCHIVES and $OTHER_JAVA_-
CLASS_PATH. This setting is read-only.

Java Application Settings

Table A-5 describes build settings that determine whether Java class files are archived, how they are archived,
and the name of the archive file, among other items.

Table A-5 Java application build settings

Build setting Description

JAVA_ARCHIVE_CLASSES | Determines the disposition of Java class files generated by the target. This
setting can have two values, YES or NO. When YES (the default), Java classes
are archived in a JAR file, which is then copied to the product’s
Contents/Resources/Java directory. When N0, the class files are copied
to that directory. You should not change the value of this setting if you plan
to distribute your application or tool.

JAVA_ARCHIVE_- Determines whether the contents of the archive file are compressed. When
COMPRESSION YES the contents of the archive are compressed; otherwise, the contents are
not compressed. Initially unconfigured.

CLASS_ARCHIVE_SUFFIX | Determines the extension used for the JAR file. Values: . jar, .war, or .ear.

JAVA_MANIFEST_FILE Project-directory based path to the file used to supplement the default
manifest file (MANIFEST . MF) of the JAR file.

JAVA_APP_STUB Path to the Cocoa application stub that’s embedded in a bundle-based Java
application to launch the Java application. Configured as
/System/Library/Frameworks/JavaVM.framework/Resources/Mac-
0S/JavaApplicationStub. This setting is read-only.

DEVELOPMENT_PLIST_- | Path to the development-settings property list file of the product. Initially
FILE configured as $SYMROOT/pbhdevelopment.plist.
64 Java Application Settings

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to Project Builder for Java.

Date Notes

2003-10-10 Corrected obsolete links.

2003-05-01 Second preliminary version of Project Builder for Java.
2003-03-01 Preliminary version of Project Builder for Java.

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

65

66

REVISION HISTORY

Document Revision History

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

Glossary

build phase A build phases defines a concrete task
that Project Builder performs to build a product.

build setting A build setting is a variable that stores
a specific aspect to be used for building a product.

build style Build styles contain build setting
configurations that override the configurations of the
active target in a project They allow you to make small
changes to a target’s configuration without having
to create a separate target.

information property list A property list that
contains essential configuration information for
bundles. A file named Info.plist (ora
platform-specific variant of that filename) contains
the information property list and is packaged inside
the bundle.

product An element that gets created as part of the
process of generating a running application, such as
library files and executable files.

target A target is a blueprint for building a product
from specified resources in a project. It consists of a
list of the necessary files the actions that need to be
performed on them to generate a product.

target, aggregate Anaggregate target groups other
targets; it contains no product-building instructions.
The operations you perform on an aggregate targets
are carried out on all the targets it encloses.

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

67

68

GLOSSARY

Legacy Document | 2003-10-10 | © 2003 Apple Computer, Inc. All Rights Reserved.

	Project Builder for Java
	Contents
	Figures, Tables, and Listings
	Introduction
	Application Development
	The Tool Template
	The Swing Application Template
	The JNI Application Template

	Build System
	Build Settings
	Targets
	Target Information Panes
	Target Summary
	Build Settings
	General Settings
	Installation Settings
	Search Paths
	Java Compiler Settings
	Java Archive Settings

	Information Property List Entries
	Basic Information
	Display Information
	Application Icon
	Cocoa Java–Specific
	Pure Java–Specific

	Build Styles
	Build Phases

	Developing a Tool
	Creating the “Hello, World” Tool
	Creating the Clock Tool
	Installing the Clock Tool

	Developing a Swing Application
	Creating the “Hello, Swing” Application
	Creating the File Chooser Demo
	Changing an Application’s Icon

	Developing a JNI Application
	Creating the “Hello, JNI” Application
	JNI-Based Examples

	Debugging Applications
	Adding Breakpoints
	Stepping Through Lines of Code
	Viewing the Debug Information
	Accessing the Contents of Objects

	Appendix A: Build Settings Reference
	Project Settings Reference
	Deployment Settings Reference
	Target Settings Reference
	Java Compiler Settings
	Java Application Settings

	Revision History
	Glossary

