
Foundation Reference for Java
(Legacy)

Cocoa > Java

2006-07-24

Apple Inc.
© 1997, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Bonjour,
Carbon, Cocoa, Logic, Mac, Mac OS, Macintosh,
Objective-C, and Xcode are trademarks of Apple
Inc., registered in the United States and other
countries.

Finder, Numbers, and Spotlight are trademarks
of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction The Foundation Framework 25

Introduction 25

Part I Classes 29

Chapter 1 NSAppleEventDescriptor 31

Overview 31
Tasks 32
Constructors 34
Static Methods 35
Instance Methods 36

Chapter 2 NSAppleScript 43

Overview 43
Tasks 44
Constructors 44
Instance Methods 45
Constants 46

Chapter 3 NSArchiver 47

Class at a Glance 47
Overview 47
Tasks 48
Constructors 49
Static Methods 49
Instance Methods 51

Chapter 4 NSArray 55

Class at a Glance 55
Overview 55
Tasks 57
Constructors 59
Static Methods 59
Instance Methods 60
Constants 66

3
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 5 NSAttributedString 67

Overview 67
Tasks 67
Constructors 69
Instance Methods 70
Constants 75

Chapter 6 NSAutoreleasePool 79

Overview 79
Tasks 79
Static Methods 80

Chapter 7 NSBundle 81

Overview 81
Tasks 81
Constructors 84
Static Methods 84
Instance Methods 87

Chapter 8 NSCharacterSet 95

Overview 95
Tasks 95
Constructors 97
Static Methods 98
Instance Methods 102

Chapter 9 NSClassDescription 105

Overview 105
Tasks 105
Constructors 106
Static Methods 106
Instance Methods 107
Notifications 108

Chapter 10 NSCloneCommand 109

Overview 109
Tasks 109
Constructors 110
Instance Methods 110

4
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 11 NSCloseCommand 111

Overview 111
Tasks 111
Constructors 111
Instance Methods 112
Constants 112

Chapter 12 NSCoder 113

Overview 113
Tasks 113
Constructors 116
Instance Methods 116
Constants 126

Chapter 13 NSCountCommand 127

Overview 127
Tasks 127
Constructors 127

Chapter 14 NSCreateCommand 129

Overview 129
Tasks 129
Constructors 130
Instance Methods 130

Chapter 15 NSData 131

Class at a Glance 131
Overview 132
Tasks 132
Constructors 133
Static Methods 133
Instance Methods 134

Chapter 16 NSDate 137

Class at a Glance 137
Overview 138
Tasks 139
Constructors 140
Static Methods 141
Instance Methods 142

5
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Constants 145

Chapter 17 NSDecimalMappingBehavior 147

Overview 147
Tasks 147
Static Methods 148
Constants 149
Notifications 149

Chapter 18 NSDeleteCommand 151

Overview 151
Tasks 151
Constructors 152
Instance Methods 152

Chapter 19 NSDictionary 153

Class at a Glance 153
Overview 154
Tasks 154
Constructors 155
Instance Methods 156

Chapter 20 NSDistributedNotificationCenter 159

Class at a Glance 159
Overview 159
Tasks 160
Constructors 161
Static Methods 161
Instance Methods 162
Constants 164

Chapter 21 NSEnumerator 165

Class at a Glance 165
Overview 165
Tasks 166
Instance Methods 166

Chapter 22 NSError 169

Overview 169
Tasks 169

6
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Constructors 170
Instance Methods 171
Constants 173

Chapter 23 NSException 175

Overview 175
Tasks 175
Constructors 176
Static Methods 176
Instance Methods 176

Chapter 24 NSExistsCommand 179

Overview 179
Tasks 179
Constructors 179

Chapter 25 NSExpression 181

Overview 181
Tasks 181
Constructors 182
Static Methods 182
Instance Methods 184
Constants 186

Chapter 26 NSFormatter 187

Overview 187
Tasks 187
Constructors 188
Instance Methods 188

Chapter 27 NSFormatter.FormattingException 191

Overview 191
Tasks 191
Constructors 191

Chapter 28 NSFormatter.ParsingException 193

Overview 193
Tasks 193
Constructors 193

7
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 29 NSGetCommand 195

Overview 195
Tasks 195
Constructors 195

Chapter 30 NSGregorianDate 197

Overview 197
Tasks 197
Constructors 199
Instance Methods 200

Chapter 31 NSGregorianDate.IntRef 207

Overview 207
Tasks 207
Constructors 207

Chapter 32 NSGregorianDateFormatter 209

Overview 209
Tasks 209
Constructors 210
Instance Methods 211
Constants 212

Chapter 33 NSHFSFileTypes 215

Overview 215
Tasks 215
Constructors 215
Static Methods 216

Chapter 34 NSIndexSet 217

Overview 217
Tasks 217
Constructors 218
Instance Methods 219
Constants 222

Chapter 35 NSIndexSpecifier 223

Overview 223
Tasks 223

8
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Constructors 223
Instance Methods 224

Chapter 36 NSKeyedArchiver 225

Overview 225
Tasks 225
Constructors 228
Static Methods 229
Instance Methods 230
Delegate Methods 238

Chapter 37 NSKeyedUnarchiver 241

Overview 241
Tasks 241
Constructors 244
Static Methods 244
Instance Methods 246
Delegate Methods 254

Chapter 38 NSKeyValue 257

Overview 257
Tasks 257
Constructors 259
Static Methods 259
Constants 264

Chapter 39 NSLogicalTest 265

Overview 265
Constants 265
Tasks 265
Constructors 266

Chapter 40 NSMetadataItem 267

Overview 267
Tasks 267
Constructors 267
Instance Methods 268

Chapter 41 NSMetadataQuery 269

Overview 269

9
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Tasks 269
Constructors 271
Instance Methods 272
Constants 280
Notifications 280

Chapter 42 NSMetadataQueryAttributeValueTuple 283

Overview 283
Tasks 283
Constructors 283
Instance Methods 284

Chapter 43 NSMetadataQueryResultGroup 285

Overview 285
Tasks 285
Constructors 286
Instance Methods 286

Chapter 44 NSMiddleSpecifier 289

Overview 289
Tasks 289
Constructors 289

Chapter 45 NSMoveCommand 291

Overview 291
Tasks 291
Constructors 292
Instance Methods 292

Chapter 46 NSMutableArray 293

Class at a Glance 293
Overview 294
Tasks 294
Constructors 295
Instance Methods 296

Chapter 47 NSMutableAttributedString 303

Overview 303
Tasks 303
Constructors 305

10
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Instance Methods 306

Chapter 48 NSMutableCharacterSet 315

Overview 315
Tasks 315
Constructors 316
Instance Methods 317

Chapter 49 NSMutableData 321

Class at a Glance 321
Overview 321
Tasks 322
Constructors 322
Instance Methods 323

Chapter 50 NSMutableDictionary 325

Class at a Glance 325
Overview 325
Tasks 326
Constructors 326
Instance Methods 327

Chapter 51 NSMutableIndexSet 329

Overview 329
Tasks 329
Constructors 330
Instance Methods 331

Chapter 52 NSMutablePoint 335

Overview 335
Tasks 335
Constructors 336
Instance Methods 336

Chapter 53 NSMutableRange 339

Overview 339
Tasks 339
Constructors 340
Instance Methods 340

11
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 54 NSMutableRect 343

Overview 343
Tasks 343
Constructors 344
Instance Methods 345

Chapter 55 NSMutableSet 351

Class at a Glance 351
Overview 352
Tasks 352
Constructors 353
Instance Methods 353

Chapter 56 NSMutableSize 357

Overview 357
Tasks 357
Constructors 358
Instance Methods 358

Chapter 57 NSMutableStringReference 361

Overview 361
Tasks 361
Constructors 362
Instance Methods 362

Chapter 58 NSNamedValueSequence 365

Overview 365
Tasks 365
Constructors 366
Instance Methods 367

Chapter 59 NSNameSpecifier 371

Overview 371
Tasks 372
Constructors 372
Instance Methods 373

Chapter 60 NSNetService 375

Overview 375

12
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Tasks 376
Constructors 378
Instance Methods 378
Constants 383
Delegate Methods 384

Chapter 61 NSNetServiceBrowser 387

Overview 387
Tasks 388
Constructors 389
Instance Methods 389
Delegate Methods 393

Chapter 62 NSNotification 397

Overview 397
Tasks 397
Constructors 398
Instance Methods 398

Chapter 63 NSNotificationCenter 401

Class at a Glance 401
Overview 401
Tasks 402
Constructors 403
Static Methods 403
Instance Methods 403

Chapter 64 NSNotificationQueue 405

Overview 405
Tasks 405
Constructors 406
Static Methods 406
Instance Methods 406
Constants 407

Chapter 65 NSNull 409

Overview 409
Tasks 409
Constructors 409
Static Methods 410

13
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 66 NSNumberFormatter 411

Overview 411
Tasks 411
Constructors 413
Instance Methods 414

Chapter 67 NSObject 423

Overview 423
Interfaces Implemented 423
Tasks 423
Constructors 424
Instance Methods 424

Chapter 68 NSPathUtilities 427

Overview 427
Tasks 427
Constructors 429
Static Methods 429
Constants 437

Chapter 69 NSPoint 441

Overview 441
Tasks 441
Constructors 442
Static Methods 443
Instance Methods 443
Constants 445

Chapter 70 NSPort 447

Overview 447
Tasks 447
Constructors 448
Instance Methods 448

Chapter 71 NSPositionalSpecifier 451

Overview 451
Tasks 452
Constructors 453
Instance Methods 453
Constants 454

14
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 72 NSPredicate 455

Overview 455
Tasks 456
Constructors 456
Static Methods 457
Instance Methods 457

Chapter 73 NSPropertyListSerialization 459

Overview 459
Tasks 459
Constructors 460
Static Methods 460
Constants 463

Chapter 74 NSPropertySpecifier 465

Overview 465
Tasks 465
Constructors 465

Chapter 75 NSQuitCommand 467

Overview 467
Tasks 467
Constructors 467
Instance Methods 468

Chapter 76 NSRandomSpecifier 469

Overview 469
Tasks 469
Constructors 469

Chapter 77 NSRange 471

Overview 471
Tasks 471
Constructors 472
Static Methods 473
Instance Methods 473
Constants 476

15
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 78 NSRangeSpecifier 477

Overview 477
Tasks 477
Constructors 478
Instance Methods 478

Chapter 79 NSRect 481

Overview 481
Tasks 481
Constructors 483
Static Methods 484
Instance Methods 484
Constants 491

Chapter 80 NSRelativeSpecifier 493

Overview 493
Tasks 493
Constructors 494
Instance Methods 494
Constants 495

Chapter 81 NSRunLoop 497

Overview 497
Tasks 497
Constructors 499
Static Methods 499
Instance Methods 499
Constants 503

Chapter 82 NSRuntime 505

Overview 505
Tasks 505
Static Methods 505

Chapter 83 NSScriptClassDescription 507

Overview 507
Tasks 508
Constructors 510
Instance Methods 510

16
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 84 NSScriptCoercionHandler 515

Overview 515
Tasks 515
Constructors 516
Static Methods 516
Instance Methods 516

Chapter 85 NSScriptCommand 517

Overview 517
Tasks 518
Constructors 520
Static Methods 520
Instance Methods 521
Constants 527

Chapter 86 NSScriptCommandDescription 529

Overview 529
Tasks 529
Constructors 530
Instance Methods 531

Chapter 87 NSScriptExecutionContext 535

Overview 535
Tasks 536
Constructors 536
Static Methods 537
Instance Methods 537

Chapter 88 NSScriptObjectSpecifier 539

Overview 539
Tasks 541
Constructors 543
Instance Methods 543
Constants 548

Chapter 89 NSScriptSuiteRegistry 549

Overview 549
Tasks 550
Constructors 551
Static Methods 552

17
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Instance Methods 552

Chapter 90 NSScriptWhoseTest 557

Overview 557
Tasks 557
Constructors 557
Instance Methods 558

Chapter 91 NSSelector 559

Overview 559
Tasks 559
Constructors 560
Static Methods 560
Instance Methods 561

Chapter 92 NSSet 565

Class at a Glance 565
Overview 566
Tasks 566
Constructors 567
Instance Methods 568

Chapter 93 NSSetCommand 573

Overview 573
Tasks 573
Constructors 574
Instance Methods 574

Chapter 94 NSSize 575

Overview 575
Tasks 575
Constructors 576
Static Methods 577
Instance Methods 577
Constants 579

Chapter 95 NSSortDescriptor 581

Overview 581
Tasks 581
Constructors 582

18
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Instance Methods 582

Chapter 96 NSSpecifierTest 585

Overview 585
Constants 585
Tasks 586
Constructors 586

Chapter 97 NSSpellServer 587

Overview 587
Tasks 587
Constructors 588
Instance Methods 588
Delegate Methods 590

Chapter 98 NSStringReference 591

Overview 591
Tasks 593
Constructors 595
Static Methods 596
Instance Methods 597
Constants 603

Chapter 99 NSSystem 605

Overview 605
Tasks 605
Constructors 606
Static Methods 607
Constants 610

Chapter 100 NSTimer 611

Overview 611
Tasks 611
Constructors 612
Instance Methods 612

Chapter 101 NSTimeZone 615

Overview 615
Tasks 615
Constructors 617

19
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Static Methods 618
Instance Methods 620

Chapter 102 NSUnarchiver 623

Overview 623
Tasks 623
Constructors 624
Static Methods 625
Instance Methods 626

Chapter 103 NSUndoManager 631

Overview 631
Tasks 631
Constructors 634
Instance Methods 634
Constants 642
Notifications 643

Chapter 104 NSUniqueIDSpecifier 645

Overview 645
Tasks 646
Constructors 646
Instance Methods 647

Chapter 105 NSUserDefaults 649

Class at a Glance 649
Overview 649
Tasks 650
Constructors 653
Static Methods 653
Instance Methods 654
Constants 665
Notifications 667

Chapter 106 NSValueTransformer 669

Overview 669
Tasks 669
Constructors 670
Static Methods 670
Instance Methods 671
Constants 672

20
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 107 NSWhoseSpecifier 675

Overview 675
Tasks 675
Constructors 676
Instance Methods 677
Constants 679

Part II Interfaces 681

Chapter 108 NSCoding 683

Overview 683

Chapter 109 NSComparisonMethods 685

Overview 685
Tasks 685
Instance Methods 686

Chapter 110 NSKeyValueCoding 689

Overview 689
Tasks 689
Instance Methods 689
Constants 690

Chapter 111 NSScriptingComparisonMethods 691

Overview 691
Tasks 691
Instance Methods 692

Chapter 112 NSScriptingKeyValueCoding 695

Overview 695
Tasks 695
Instance Methods 696

Index 699

21
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

22
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Figures

Introduction The Foundation Framework 25

Figure I-1 The Foundation framework class hierarchy 26

Chapter 88 NSScriptObjectSpecifier 539

Figure 88-1 Reference forms and nested object specifiers 540

23
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

24
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

FIGURES

Package: com.apple.cocoa.foundation

Introduction

Important: The Java API for the Foundation framework is deprecated in Mac OS X version 10.4 and later.
You should use the Objective-C API, documented in Foundation Framework Reference, to develop Cocoa
applications.

The Foundation framework defines a base layer of Java classes. In addition to providing a set of useful primitive
object classes, it introduces several paradigms that define functionality not covered by the Java language.
The Foundation framework is designed with these goals in mind:

 ■ Provide a small set of basic utility classes.

 ■ Make software development easier by introducing consistent conventions for things such as deallocation.

 ■ Support Unicode strings, object persistence, and object distribution.

 ■ Provide a level of OS independence, to enhance portability.

The Foundation framework includes the root object class, classes representing basic data types such as strings
and byte arrays, collection classes for storing other objects, classes representing system information such as
dates, and classes representing communication ports. See Figure I-1 (page 26) for a list of those classes that
make up the Foundation framework.

The Foundation framework introduces several paradigms to avoid confusion in common situations, and to
introduce a level of consistency across class hierarchies. This consistency is done with some standard policies,
such as that for object ownership (that is, who is responsible for disposing of objects), and with abstract
classes like NSEnumerator. These new paradigms reduce the number of special and exceptional cases in an
API and allow you to code more efficiently by reusing the same mechanisms with various kinds of objects.

Foundation Framework Classes

The Foundation class hierarchy is rooted in the Foundation framework’s NSObject class (see Figure I-1 (page
26)). The remainder of the Foundation framework consists of several related groups of classes as well as a
few individual classes. NSStringReference and NSMutableStringReference, for example, act as brokers for
instances of various subclasses optimized for different kinds of storage needs. Depending on the method
you use to create a string, an instance of the appropriate optimized class will be returned to you.

Introduction 25
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

Figure I-1 The Foundation framework class hierarchy

RuntimeException

java.lang

Object
Throwable
Exception

NSObject

Value Objects

Collections

Strings

NSDecimalMappingBehavior
NSPoint
NSRange
NSRect
NSSize
NSData
NSDate
NSNull
NSTimeZone
NSValueTransformer

NSArray
NSCharacterSet
NSDictionary
NSEnumerator
NSSet
NSIndexSet

NSMutableArray
NSMutableCharacterSet
NSMutableDictionary

NSMutableSet
NSMutableIndexSet

NSMutableAttributedString
NSMutableStringReference
NSDateFormatter
NSNumberFormatter

NSAttributedString
NSStringReference
NSFormatter
NSSortDescriptor

NSMutablePoint
NSMutableRange
NSMutableRect
NSMutableSize
NSMutableData
NSGregorianDate

Key-Value Coding

NSKeyValue
NSNamedValueSequence
NSPropertyListSerialization

Operating-System Services

NSRunLoop
NSRuntime
NSSpellServer
NSSystem
NSTimer
NSUserDefaults
NSBundle
NSHFSFileTypes
NSMetadataItem
NSMetadataQuery
NSMetsdataQueryAttributeValueTuple
NSMetadataQueryResultGroup
NSPathUtilities

NSPort

Interprocess Communication

File System

NSError

NSPredicate
NSExpression

Predicates

26 Introduction
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

RuntimeException

Language Services

Notificationsjava.lang

Object
Throwable
Exception

NSSelector
NSAutoreleasePool
NSUndoManager
NSException
NSFormatter.FormattingException
NSFormatter.ParsingException
NSClassDescription

NSDisributedNotificationCenter

Archiving and Serialization

NSArchiver
NSKeyedArchiver
NSKeyedUnarchiver
NSUnarchiver

NSNotification
NSNotificationCenter
NSNotificationQueue

NSCoder

Scripting

NSScriptCommand

NSScriptCommandDescription

NSScriptExecutionContext

NSScriptCoercionHandler

NSScriptObjectSpecifier

NSPositionalSpecifier

NSScriptSuiteRegistry

NSScriptWhoseTest

NSScriptClassDescription

NSCloneCommand
NSCloseCommand
NSCountCommand
NSCreateCommand
NSDeleteCommand
NSExistsCommand
NSGetCommand
NSMoveCommand
NSQuitCommand
NSSetCommand

NSIndexSpecifier
NSMiddleSpecifier
NSPropertySpecifier
NSRandomSpecifier
NSRangeSpecifier
NSRelatativeSpecifier
NSWholeSpecifier

NSLogicalTest
NSSpecifierTest

NSObject

Java Foundation Continued

Many of these classes have closely related functionality:

 ■ Data storage. NSData provides object-oriented storage for arrays of bytes. NSArray, NSDictionary, and
NSSet provide storage for objects of any class.

 ■ Text and strings. NSCharacterSet represents various groupings of characters that are used by the String
and NSScanner classes. An NSScanner object is used to scan numbers and words from a String object.

 ■ Dates and times. The NSDate and NSTimeZone classes store times and dates. They offer methods for
calculating date and time differences, for displaying dates and times in many formats, and for adjusting
times and dates based on location in the world.

 ■ Application coordination and timing. NSNotification, NSNotificationCenter, and NSNotificationQueue
provide systems that an object can use to notify all interested observers of changes that occur. You can
use an NSTimer object to send a message to another object at specific intervals.

Introduction 27
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

 ■ Object distribution and persistence. The data that an object contains can be represented in an
architecture-independent way using NSPropertyListSerialization. The NSCoder and its subclasses take
this process a step further by allowing class information to be stored along with the data. The resulting
representations are used for archiving and for object distribution.

28 Introduction
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

29
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

PART I

Classes

30
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

PART I

Classes

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Scriptable Applications Programming Guide for Cocoa

Overview

Important: The information in this document is obsolete and should not be used for new development.

A descriptor is the basic building block for Apple events—every Apple event is a descriptor, where descriptor
is a type of data structure. Descriptors can be used to build arbitrarily complex containers, so that one Apple
event can represent a script statement such as tell application "TextEdit" to get word 3 of
paragraph 6 of document 3.

In working with Apple event descriptors, it can be useful to understand some of the underlying data types.
You’ll find terms such as descriptor, descriptor list, Apple event record, and Apple event defined in “Building
an Apple Event” in Apple Events Programming Guide. You’ll also find information on the four-character codes
used to identify information within a descriptor.

Cocoa supplies built-in scripting support that converts received Apple events into script commands that
operate on application objects. As a result, most Cocoa applications don’t need to work directly with Apple
event descriptors. However, those applications that do need to construct Apple events or extract information
from them can use NSAppleEventDescriptor. The most common reason to construct an Apple event is to
supply information in a return event. In addition, if you execute an AppleScript script using the NSAppleScript
class, you get an NSAppleEventDescriptor as the return value, from which you extract the necessary
information.

Cocoa doesn’t currently provide a mechanism for applications to directly send raw Apple events (though
compiling and executing an AppleScript script with NSAppleScript may result in Apple events being sent).
However, Cocoa applications have full access to the Apple Event Manager C APIs for working with Apple
events. If you need to send Apple events, or if you need more information on some of the Apple event
concepts described here, see Apple Events Programming Guide and Apple Event Manager Reference.

Overview 31
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

Tasks

Constructors

NSAppleEventDescriptor (page 34)
Creates an empty NSAppleEventDescriptor.

Creating an Event Descriptor

descriptorWithBoolean (page 35)
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeBoolean
and value specified by boolean.

descriptorWithEnumCode (page 35)
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event typetypeEnumerated
and value specified by enumerator.

descriptorWithInt32 (page 35)
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeSInt32
and value specified by signedInt.

descriptorWithString (page 35)
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type
typeUnicodeText and value specified by string.

descriptorWithTypeCode (page 35)
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeType and
value specified by typeCode.

listDescriptor (page 36)
Creates and returns an instance of NSAppleEventDescriptor initialized as an empty list descriptor.

nullDescriptor (page 36)
Creates and returns an instance of NSAppleEventDescriptor with no parameter or attribute values
set.

recordDescriptor (page 36)
Creates and returns a descriptor for an Apple event record whose data has yet to be set.

Getting Information About an Event Descriptor

data (page 37)
Returns the receiving descriptor’s data as an NSData object.

descriptorType (page 38)
Returns the descriptor type for the receiving descriptor.

coerceToDescriptorType (page 37)
Returns an instance of NSAppleEventDescriptor coerced to the type specified by descType.

numberOfItems (page 39)
Returns the number of descriptors in the receiving descriptor list.

32 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

booleanValue (page 37)
Return the contents of the descriptor, after first coercing it to typeBoolean.

enumCodeValue (page 38)
Return the contents of the descriptor, after first coercing it to typeEnumerated.

int32Value (page 39)
Return the contents of the descriptor, after first coercing it to typeSInt32.

stringValue (page 41)
Return the contents of the descriptor, after first coercing it to typeUnicodeText.

typeCodeValue (page 41)
Return the contents of the descriptor, after first coercing it to typeType.

Working with List Descriptors

descriptorAtIndex (page 37)
Returns an instance of NSAppleEventDescriptor from the position specified by anIndex.

insertDescriptor (page 38)
Inserts the NSAppleEventDescriptor specified by descriptor at the position specified by anIndex.

removeDescriptorAtIndex (page 39)
Removes the receiver’s descriptor at the position specified by anIndex.

Working with Record Descriptors

descriptorForKeyword (page 37)
Returns an instance of NSAppleEventDescriptor for the receiver’s descriptor specified by keyword.

keywordForDescriptorAtIndex (page 39)
Returns the keyword for the descriptor at the position specified by anIndex.

removeDescriptorWithKeyword (page 40)
Removes the descriptor in the receiver identified by keyword.

setDescriptor (page 40)
Adds descriptor to the receiver identified by keyword.

Working with Apple Event Descriptors

attributeDescriptorForKeyword (page 36)
Returns an instance of NSAppleEventDescriptor for the attribute specified by keyword.

setAttributeDescriptor (page 40)
Adds descriptor to the receiver as an attribute identified by keyword.

eventClass (page 38)
Returns the event class for the receiving descriptor.

eventID (page 38)
Returns the event ID for the receiving descriptor.

paramDescriptorForKeyword (page 39)
Returns a descriptor for the receiver’s Apple event parameter specified by keyword.

Tasks 33
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

setParamDescriptor (page 41)
Adds descriptor to the receiver as an Apple event parameter identified by keyword.

removeParamDescriptorWithKeyword (page 40)
Removes the receiver’s parameter descriptor identified by keyword.

returnID (page 40)
Returns the receiver’s return ID (the ID for a reply Apple event).

transactionID (page 41)
Returns the receiver’s transaction ID, if any.

Constructors

NSAppleEventDescriptor
Creates an empty NSAppleEventDescriptor.

NSAppleEventDescriptor()

Creates an NSAppleEventDescriptor object with descriptor type specified by descType and data specified
by data.

NSAppleEventDescriptor(int descType, NSData data)

Creates a new NSAppleEventDescriptor object for an Apple event.

NSAppleEventDescriptor(int eventClass, int eventID, NSAppleEventDescriptor
addressDescriptor, int returnID, int transactionID)

Discussion
Returns null if an error occurs. The event class and event ID for the returned descriptor are set to the values
in the eventClass and eventID parameters. The addressDescriptor parameter supplies an Apple event
descriptor that identifies the target application for the Apple event.

The returnID parameter specifies the return ID for the created Apple event. If you pass a value of
kAutoGenerateReturnID (–1), the Apple Event Manager assigns the created Apple event a return ID that
is unique to the current session. If you pass any other value, the Apple Event Manager assigns that value for
the ID.

The transactionID parameter specifies the transaction ID for the created Apple event. A transaction is a
sequence of Apple events that are sent back and forth between client and server applications, beginning
with the client’s initial request for a service. All Apple events that are part of a transaction must have the
same transaction ID. You can specify kAnyTransactionID (0) if the Apple event is not one of a series of
interdependent Apple events.

The constants kAutoGenerateReturnID and kAnyTransactionID are defined in the header
AEDataModel.h in AE.framework, a subframework of ApplicationServices.framework.

34 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

Static Methods

descriptorWithBoolean
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeBoolean and
value specified by boolean.

public static NSAppleEventDescriptor descriptorWithBoolean(boolean boolean)

Availability
Available in Mac OS X v10.2 and later.

descriptorWithEnumCode
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeEnumerated
and value specified by enumerator.

public static NSAppleEventDescriptor descriptorWithEnumCode(int enumerator)

Availability
Available in Mac OS X v10.2 and later.

descriptorWithInt32
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeSInt32 and
value specified by signedInt.

public static NSAppleEventDescriptor descriptorWithInt32(int signedInt)

Availability
Available in Mac OS X v10.2 and later.

descriptorWithString
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeUnicodeText
and value specified by string.

public static NSAppleEventDescriptor descriptorWithString(String string)

Availability
Available in Mac OS X v10.2 and later.

descriptorWithTypeCode
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeType and value
specified by typeCode.

public static NSAppleEventDescriptor descriptorWithTypeCode(int typeCode)

Static Methods 35
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

Availability
Available in Mac OS X v10.2 and later.

listDescriptor
Creates and returns an instance of NSAppleEventDescriptor initialized as an empty list descriptor.

public static NSAppleEventDescriptor listDescriptor()

Discussion
A list descriptor is a descriptor whose data consists of one or more descriptors. You can add items to the list
by calling insertDescriptor (page 38) or remove them with removeDescriptorAtIndex (page 39).

nullDescriptor
Creates and returns an instance of NSAppleEventDescriptor with no parameter or attribute values set.

public static NSAppleEventDescriptor nullDescriptor()

Discussion
This method isn’t typically called, as most NSAppleEventDescriptor instance methods can’t be safely called
on the returned descriptor.

recordDescriptor
Creates and returns a descriptor for an Apple event record whose data has yet to be set.

public static NSAppleEventDescriptor recordDescriptor()

Discussion
A record descriptor is a descriptor whose data is a set of descriptors keyed by four-character codes. You can
add information to the descriptor with methods such as setAttributeDescriptor (page 40),
setDescriptor (page 40), and setParamDescriptor (page 41).

Instance Methods

attributeDescriptorForKeyword
Returns an instance of NSAppleEventDescriptor for the attribute specified by keyword.

public NSAppleEventDescriptor attributeDescriptorForKeyword(int keyword)

Discussion
Returns null if any error occurs.

36 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

booleanValue
Return the contents of the descriptor, after first coercing it to typeBoolean.

public boolean booleanValue()

Availability
Available in Mac OS X v10.2 and later.

coerceToDescriptorType
Returns an instance of NSAppleEventDescriptor coerced to the type specified by descType.

public NSAppleEventDescriptor coerceToDescriptorType(int descType)

Discussion
Returns null if the coercion fails.

data
Returns the receiving descriptor’s data as an NSData object.

public NSData data()

Discussion
Returns null if an error occurs.

descriptorAtIndex
Returns an instance of NSAppleEventDescriptor from the position specified by anIndex.

public NSAppleEventDescriptor descriptorAtIndex(int anIndex)

Discussion
NSAppleEventDescriptor indices are one-based. Returns null if an error occurs.

See Also
insertDescriptor (page 38)
removeDescriptorAtIndex (page 39)

descriptorForKeyword
Returns an instance of NSAppleEventDescriptor for the receiver’s descriptor specified by keyword.

public NSAppleEventDescriptor descriptorForKeyword(int keyword)

Discussion
Returns null if an error occurs.

Instance Methods 37
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

descriptorType
Returns the descriptor type for the receiving descriptor.

public int descriptorType()

enumCodeValue
Return the contents of the descriptor, after first coercing it to typeEnumerated.

public int enumCodeValue()

Availability
Available in Mac OS X v10.2 and later.

eventClass
Returns the event class for the receiving descriptor.

public int eventClass()

Discussion
An Apple event is identified by its event class and event ID, a pair of four-character codes stored as 32-bit
integers. For example, most events in the Standard suite have the four-character code core (defined as the
constant kAECoreSuite in the header AERegistry.h in AE.framework, a subframework of
ApplicationServices.framework).

eventID
Returns the event ID for the receiving descriptor.

public int eventID()

Discussion
An Apple event is identified by its event class and event ID, a pair of four-character codes stored as 32-bit
integers. For example, the Open Apple event from the Standard suite has the four-character code odoc
(defined as the constant kAEOpen in the header AERegistry.h in AE.framework, a subframework of
ApplicationServices.framework).

insertDescriptor
Inserts the NSAppleEventDescriptor specified by descriptor at the position specified by anIndex.

public void insertDescriptor(NSAppleEventDescriptor descriptor, int anIndex)

Discussion
NSAppleEventDescriptor indices are one-based. The receiver must be a list descriptor. Currently provides no
indication if an error occurs.

See Also
descriptorAtIndex (page 37)

38 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

removeDescriptorAtIndex (page 39)

int32Value
Return the contents of the descriptor, after first coercing it to typeSInt32.

public int int32Value()

Availability
Available in Mac OS X v10.2 and later.

keywordForDescriptorAtIndex
Returns the keyword for the descriptor at the position specified by anIndex.

public int keywordForDescriptorAtIndex(int anIndex)

Discussion
NSAppleEventDescriptor indices are one-based. Returns the value 0 if an error occurs.

numberOfItems
Returns the number of descriptors in the receiving descriptor list.

public int numberOfItems()

Discussion
Returns the value 0 if an error occurs.

paramDescriptorForKeyword
Returns a descriptor for the receiver’s Apple event parameter specified by keyword.

public NSAppleEventDescriptor paramDescriptorForKeyword(int keyword)

Discussion
The receiver must be an Apple event. Returns null if an error occurs.

removeDescriptorAtIndex
Removes the receiver’s descriptor at the position specified by anIndex.

public void removeDescriptorAtIndex(int anIndex)

Discussion
NSAppleEventDescriptor indices are one-based. The receiver must be a list descriptor. Currently provides no
indication if an error occurs.

See Also
descriptorAtIndex (page 37)

Instance Methods 39
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

insertDescriptor (page 38)

removeDescriptorWithKeyword
Removes the descriptor in the receiver identified by keyword.

public void removeDescriptorWithKeyword(int keyword)

Discussion
The receiver must be an Apple event or Apple event record.

removeParamDescriptorWithKeyword
Removes the receiver’s parameter descriptor identified by keyword.

public void removeParamDescriptorWithKeyword(int keyword)

Discussion
The receiver must be an Apple event or Apple event record.

returnID
Returns the receiver’s return ID (the ID for a reply Apple event).

public int returnID()

Discussion
The receiver must be an Apple event. Returns the value 0 if an error occurs.

setAttributeDescriptor
Adds descriptor to the receiver as an attribute identified by keyword.

public void setAttributeDescriptor(NSAppleEventDescriptor descriptor, int keyword)

Discussion
The receiver must be an Apple event.

setDescriptor
Adds descriptor to the receiver identified by keyword.

public void setDescriptor(NSAppleEventDescriptor descriptor, int keyword)

Discussion
The receiver must be an Apple event or Apple event record.

40 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

setParamDescriptor
Adds descriptor to the receiver as an Apple event parameter identified by keyword.

public void setParamDescriptor(NSAppleEventDescriptor descriptor, int keyword)

Discussion
The receiver must be an Apple event or Apple event record.

stringValue
Return the contents of the descriptor, after first coercing it to typeUnicodeText.

public String stringValue()

Availability
Available in Mac OS X v10.2 and later.

transactionID
Returns the receiver’s transaction ID, if any.

public int transactionID()

Discussion
For more information on transactions, see the description for NSAppleEventDescriptor (page 34).

typeCodeValue
Return the contents of the descriptor, after first coercing it to typeType.

public int typeCodeValue()

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 41
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

42 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.2 and later.

Companion guide Cocoa Scripting Guide

Overview

The NSAppleScript class provides the ability to load, compile, and execute scripts.

Important: You should access NSAppleScript only from the main thread.

This class provides applications with the ability to

 ■ load a script from a text string

 ■ compile or execute a script or an individual Apple event

 ■ obtain an NSAppleEventDescriptor containing the reply from an executed script or event

 ■ obtain an attributed string for a compiled script, suitable for display in a script editor

 ■ obtain various kinds of information about any errors that may occur

Important: NSAppleScript provides the -executeAppleEvent method so that you can send an Apple event
to invoke a handler in a script. (In an AppleScript script, a handler is the equivalent of a function.) However,
you cannot use this method to send Apple events to other applications.

When you create an NSAppleScript object, you supply the script as a string. Should an error occur when
compiling or executing the script, several of the methods fill in a dictionary containing error information.
The keys for obtaining error information are described in the “Constants” (page 46) section.

Overview 43
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

NSAppleScript

Tasks

Constructors

NSAppleScript (page 44)
Creates an empty NSAppleScript object.

Getting Information About a Script

isCompiled (page 45)
Returns true if the receiver is already compiled, false otherwise.

source (page 46)
Returns the source code of the receiver if it is available, null otherwise.

richTextSource (page 46)
Returns the syntax-highlighted source code of the receiver if the receiver has been compiled and its
source code is available.

Compiling and Executing a Script

compile (page 45)
Compiles the receiver, if it is not already compiled.

execute (page 45)
Executes the receiver, compiling it first if it is not already compiled.

executeAppleEvent (page 45)
Executes an Apple event in the context of the receiver, as a means of allowing the application to
invoke a handler in the script; compiles the receiver first if it is not already compiled.

Constructors

NSAppleScript
Creates an empty NSAppleScript object.

public NSApplescript()

Discussion
Use the other constructor to create an object with associated AppleScript source code.

Availability
Available in Mac OS X v10.2 and later.

Creates an NSAppleScript object from the AppleScript source code contained in source.

public NSAppleScript(String source)

44 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

NSAppleScript

Availability
Available in Mac OS X v10.2 and later.

Instance Methods

compile
Compiles the receiver, if it is not already compiled.

public boolean compile(NSMutableDictionary errorInfo)

Discussion
Returns true for success or if the script was already compiled, false and it fills in the error information
dictionary otherwise.

Availability
Available in Mac OS X v10.2 and later.

execute
Executes the receiver, compiling it first if it is not already compiled.

public NSAppleEventDescriptor execute(NSMutableDictionary errorInfo)

Discussion
Returns the result of executing the script, or null and it fills in the error information dictionary for failure.

Availability
Available in Mac OS X v10.2 and later.

executeAppleEvent
Executes an Apple event in the context of the receiver, as a means of allowing the application to invoke a
handler in the script; compiles the receiver first if it is not already compiled.

public NSAppleEventDescriptor executeAppleEvent(NSAppleEventDescriptor event,
NSMutableDictionary errorInfo)

Discussion
Returns the result of executing the event, or null and it fills in the error information dictionary for failure.
You cannot use this method to send Apple events to other applications.

Availability
Available in Mac OS X v10.2 and later.

isCompiled
Returns true if the receiver is already compiled, false otherwise.

Instance Methods 45
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

NSAppleScript

public boolean isCompiled()

Availability
Available in Mac OS X v10.2 and later.

richTextSource
Returns the syntax-highlighted source code of the receiver if the receiver has been compiled and its source
code is available.

public NSAttributedString richTextSource()

Discussion
Returns null otherwise.

Availability
Available in Mac OS X v10.2 and later.

source
Returns the source code of the receiver if it is available, null otherwise.

public String source()

Availability
Available in Mac OS X v10.2 and later.

Constants

If the result of compile (page 45), execute (page 45), or executeAppleEvent (page 45), signals failure
(false, null, or null, respectively), the method puts error information into the mutable dictionary passed
to it. The error info dictionary may contain entries that use any combination of the following keys, including
no entries at all.

DescriptionConstant

A String that supplies a detailed description of the error condition.AppleScriptErrorMessage

The error number.AppleScriptErrorNumber

A String that specifies the name of the application that generated
the error.

AppleScriptErrorAppName

A String that provides a brief description of the error.AppleScriptErrorBriefMessage

An NSRange that specifies a range.AppleScriptErrorRange

46 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

NSAppleScript

Inherits from NSCoder : NSObject

Package: com.apple.cocoa.foundation

Companion guide Archives and Serializations Programming Guide for Cocoa

Class at a Glance

An NSArchiver encodes objects into a format that can be written to a file. The archiving process traverses a
set of interconnected objects, making sure to encode each one only once.

Principal Attributes

 ■ An NSMutableData object containing the encoded data

NSArchiver Constructors
Returns an archiver.

Commonly Used Methods

archiveRootObjectToFile (page 50)
Archives a graph of objects to a file.

archivedDataWithRootObject (page 49)
Archives a graph of objects into an NSMutableData object.

Overview

NSArchiver, a concrete subclass of NSCoder, provides a way to encode objects into an architecture-independent
format that can be stored in a file. When you archive a set of objects, the class information and instance
variables for each object are written to the archive. NSArchiver’s companion class, NSUnarchiver (page 623),
decodes the data in an archive and creates a set of objects equivalent to the original set.

NSArchiver stores the archive data in a mutable data object (NSMutableData). After encoding the objects,
you can have the NSArchiver object write this mutable data object immediately to a file, or you can retrieve
the mutable data object for some other use.

Class at a Glance 47
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

NSArchiver

Tasks

Constructors

NSArchiver (page 49)
Creates an empty archiver.

Archiving Data

archivedDataWithRootObject (page 49)
Returns a data object containing the encoded form of the object graph whose root object is
rootObject.

archiveRootObjectToFile (page 50)
Creates a temporary instance of NSArchiver and archives rootObject by encoding it into a data
object and writing the resulting data object to the file path.

classNameGloballyEncodedForTrueClassName (page 50)
Returns the class name globally used to archive instances of the class trueName.

globallyEncodeClassNameIntoClassName (page 50)
Encodes a substitute name globally used for the class named trueName.

encodeRootObject (page 53)
Archives rootObject along with all the objects to which it is connected.

encodeConditionalObject (page 52)
Archives object conditionally.

encodeByte (page 51)
Encodes aByte.

encodeChar (page 51)
Encodes aChar.

encodeDataObject (page 52)
Encodes aData.

encodeDouble (page 52)
Encodes aDouble.

encodeFloat (page 52)
Encodes aFloat.

encodeInt (page 53)
Encodes anInt.

encodeLong (page 53)
Encodes aLong.

encodeObject (page 53)
Encodes anObject.

encodeShort (page 53)
Encodes aShort.

48 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

NSArchiver

versionForClassName (page 54)
Returns the version number for the current implementation of the class named className or
NSArray.NotFound if no class named className exists.

Getting the Archived Data

data (page 51)
Returns the archived data.

Substituting Classes or Objects

classNameEncodedForTrueClassName (page 51)
Returns the class name used to archive instances of the class trueName.

encodeClassNameIntoClassName (page 51)
Encodes a substitute name for the class named trueName.

replaceObject (page 54)
Causes the NSArchiver to treat subsequent requests to encode object as though they were requests
to encode newObject.

Constructors

NSArchiver
Creates an empty archiver.

public NSArchiver()

Discussion
Use the other constructor, or the static methods archiveRootObjectToFile (page 50) or
archivedDataWithRootObject (page 49), instead.

Creates an archiver, encoding stream and version information into data.

public NSArchiver(NSMutableData data)

Discussion
Throws an InvalidArgumentException if data is null.

Static Methods

archivedDataWithRootObject
Returns a data object containing the encoded form of the object graph whose root object is rootObject.

Constructors 49
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

NSArchiver

public static NSData archivedDataWithRootObject(Object rootObject)

Discussion
This method invokes encodeRootObject (page 53) to create a temporary archiver that encodes the object
graph.

See Also
encodeRootObject (page 53)

archiveRootObjectToFile
Creates a temporary instance of NSArchiver and archives rootObject by encoding it into a data object and
writing the resulting data object to the file path.

public static boolean archiveRootObjectToFile(Object rootObject, String path)

Discussion
This convenience method invokes archivedDataWithRootObject (page 49) to get the encoded data.
Returns true upon success.

The archived data should be retrieved from the archive by an NSUnarchiver (page 623) object.

See Also
archivedDataWithRootObject (page 49)

classNameGloballyEncodedForTrueClassName
Returns the class name globally used to archive instances of the class trueName.

public static String classNameGloballyEncodedForTrueClassName(String trueName)

See Also
globallyEncodeClassNameIntoClassName (page 50)
classNameEncodedForTrueClassName (page 51)

globallyEncodeClassNameIntoClassName
Encodes a substitute name globally used for the class named trueName.

public static void globallyEncodeClassNameIntoClassName(String trueName, String
inArchiveName)

Discussion
Any subsequently encountered objects of class trueName are archived as instances of class inArchiveName.
It is safest not to invoke this method during the archiving process. Instead, invoke it before
encodeRootObject (page 53).

See Also
classNameGloballyEncodedForTrueClassName (page 50)
encodeClassNameIntoClassName (page 51)

50 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

NSArchiver

Instance Methods

classNameEncodedForTrueClassName
Returns the class name used to archive instances of the class trueName.

public String classNameEncodedForTrueClassName(String trueName)

See Also
encodeClassNameIntoClassName (page 51)
classNameGloballyEncodedForTrueClassName (page 50)

data
Returns the archived data.

public NSMutableData data()

Discussion
The returned data object is the same one specified as the argument to the constructor. It contains whatever
data has been encoded thus far by invocations of the various encoding methods. It is safest not to invoke
this method until after encodeRootObject (page 53) has returned. In other words, although it is possible
for a class to invoke this method from within an encoding method, that method must not alter the data.

encodeByte
Encodes aByte.

public void encodeByte(byte aByte)

Discussion
This method must be matched by a subsequent decodeByte (page 627) message.

encodeChar
Encodes aChar.

public void encodeChar(char aChar)

Discussion
This method must be matched by a subsequent decodeChar (page 627) message.

encodeClassNameIntoClassName
Encodes a substitute name for the class named trueName.

public void encodeClassNameIntoClassName(String trueName, String inArchiveName)

Instance Methods 51
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

NSArchiver

Discussion
Any subsequently encountered objects of class trueName are archived as instances of class inArchiveName.
It is safest not to invoke this method during the archiving process . Instead, invoke it before
encodeRootObject (page 53).

See Also
classNameEncodedForTrueClassName (page 51)
globallyEncodeClassNameIntoClassName (page 50)

encodeConditionalObject
Archives object conditionally.

public void encodeConditionalObject(Object object)

Discussion
This method overrides the superclass implementation to allow object to be encoded only if it is also encoded
unconditionally by another object in the object graph. Conditional encoding lets you encode one part of a
graph detached from the rest. (See “Archives” for more information.)

If object is null, the NSArchiver encodes it unconditionally as null. This method throws an
InvalidArgumentException if no root object has been encoded.

encodeDataObject
Encodes aData.

public void encodeDataObject(NSData aData)

Discussion
This method must be matched by a subsequent decodeDataObject (page 627) message.

encodeDouble
Encodes aDouble.

public void encodeDouble(double aDouble)

Discussion
This method must be matched by a subsequent decodeDouble (page 627) message.

encodeFloat
Encodes aFloat.

public void encodeFloat(float aFloat)

Discussion
This method must be matched by a subsequent decodeFloat (page 628) message.

52 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

NSArchiver

encodeInt
Encodes anInt.

public void encodeInt(int anInt)

Discussion
This method must be matched by a subsequent decodeInt (page 628) message.

encodeLong
Encodes aLong.

public void encodeLong(long aLong)

Discussion
This method must be matched by a subsequent decodeLong (page 628) message.

encodeObject
Encodes anObject.

public void encodeObject(Object anObject)

Discussion
This method must be matched by a subsequent decodeObject (page 628) message.

encodeRootObject
Archives rootObject along with all the objects to which it is connected.

public void encodeRootObject(Object rootObject)

Discussion
If any object is encountered more than once while traversing the graph, it is encoded only once, but the
multiple references to it are stored. (See “Archives” for more information.)

This message must not be sent more than once to a given NSArchiver; an InvalidArgumentException is
thrown if a root object has already been encoded. Therefore, don’t attempt to reuse an NSArchiver; instead,
create a new one. To encode multiple object graphs, use distinct NSArchivers.

encodeShort
Encodes aShort.

public void encodeShort(short aShort)

Discussion
This method must be matched by a subsequent decodeShort (page 628) message.

Instance Methods 53
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

NSArchiver

replaceObject
Causes the NSArchiver to treat subsequent requests to encode object as though they were requests to
encode newObject.

public void replaceObject(Object object, Object newObject)

Discussion
Both object and newObject must be valid objects.

versionForClassName
Returns the version number for the current implementation of the class named className or
NSArray.NotFound if no class named className exists.

public int versionForClassName(String className)

Discussion
The class version number of each encoded object is written to the archive so that newer versions of the class
can detect and properly decode older archived versions.

54 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

NSArchiver

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guides Collections Programming Topics for Cocoa
Key-Value Coding Programming Guide
Property List Programming Guide
Predicate Programming Guide

Class at a Glance

An NSArray stores an immutable array of objects. The mutable subclass of NSArray is NSMutableArray (page
293).

Principal Attributes

 ■ A count of the number of objects in the array

 ■ The list of objects contained in the array

NSArray Constructors
Returns an array.

Commonly Used Methods

count (page 61)
Returns the number of objects currently in the array.

objectAtIndex (page 64)
Returns the object located at the specified index.

Overview

NSArray and its subclass NSMutableArray manage collections of objects called arrays. NSArray creates static
arrays, and NSMutableArray creates dynamic arrays.

Class at a Glance 55
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

NSArray’s two primitive methods—count (page 61) and objectAtIndex (page 64)—provide the basis for
all other methods in its interface. The count method returns the number of elements in the array;
objectAtIndex gives you access to the array elements by index, with index values starting at 0.

The methods objectEnumerator (page 64) and reverseObjectEnumerator (page 65) also grant
sequential access to the elements of the array, differing only in the direction of travel through the elements.
These methods are provided so that arrays can be traversed in a manner similar to that used for objects of
other collection classes in both the Java API and Foundation, such as java.util.Hashtable or NSDictionary. See
the objectEnumerator method description for a code excerpt that shows how to use these methods to
access the elements of an array.

NSArray provides methods for querying the elements of the array. The indexOfObject (page 63)method
searches the array for the object that matches its argument. To determine whether the search is successful,
each element of the array is sent an equals (page 424) message. Another method,
indexOfIdenticalObject (page 62), is provided for the less common case of determining whether a
specific object is present in the array. The indexOfIdenticalObject method tests each element in the
array to see whether its id matches that of the argument.

NSArray’s filteredArrayUsingPredicate (page 62) method allows you to create a new array from an
existing array filtered using a predicate (see Predicates Programming Guide).

To act on the array as a whole, a variety of other methods are defined. You can extract a subset of the array
(subarrayWithRange (page 66)) or concatenate the elements of an array of Strings into a single string
(componentsJoinedByString (page 61)). In addition, you can compare two arrays using the
isEqualToArray (page 63) and firstObjectCommonWithArray (page 62) methods. Finally, you can
create new arrays that contain the objects in an existing array and one or more additional objects with
arrayByAddingObject (page 60) and arrayByAddingObjectsFromArray (page 61).

Subclassing Notes

Most developers would not have any reason to subclass NSArray. The class does well what it is designed to
do—maintain an ordered collection of objects. But there are situations where a custom NSArray object might
come in handy. Here are a few possibilities:

 ■ Changing how NSArray stores the elements of its collection. You might do this for performance reasons
or for better compatibility with legacy code.

 ■ Changing how NSArray retains and releases its elements.

 ■ Acquiring more information about what is happening to the collection (for example, statistics gathering).

Methods to Override

Any subclass of NSArray must override the primitive instance methods count (page 61) and
objectAtIndex (page 64). These methods must operate on the backing store that you provide for the
elements of the collection. For this backing store you can use a static array, a standard NSArray object, or
some other data type or mechanism. You may also choose to override, partially or fully, any other NSArray
method for which you want to provide an alternative implementation.

56 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

You might want to implement an constructor for your subclass that is suited to the backing store that the
subclass is managing. The NSArray class adopts the NSCopying, NSMutableCopying, and NSCoding interfaces;
if you want instances of your own custom subclass created from copying or coding, override the methods
in these interfaces.

Remember that NSArray is the public interface for a class cluster and what this entails for your subclass. The
primitive methods of NSArray do not include any designated initializers. This means that you must provide
the storage for your subclass and implement the primitive methods that directly act on that storage.

Special Considerations

In most cases your custom NSArray class should conform to Cocoa’s object-ownership conventions. Of course,
if the reason for subclassing NSArray is to implement object-retention behavior different from the norm (for
example, a non-retaining array), then you can ignore this requirement.

Alternatives to Subclassing

Before making a custom class of NSArray, investigate the corresponding Core Foundation type, CFArray.
Because NSArray and CFArray are “toll-free bridged,” you can substitute a CFArray object for a NSArray object
in your code (with appropriate casting). Although they are corresponding types, CFArray and NSArray do not
have identical interfaces or implementations, and you can sometimes do things with CFArray that you cannot
easily do with NSArray. For example, CFArray provides a set of callbacks, some of which are for implementing
custom retain-release behavior. If you specify NULL implementations for these callbacks, you can easily get
a non-retaining array.

If the behavior you want to add supplements that of the existing class, you could write a category on NSArray.
Keep in mind, however, that this category will be in effect for all instances of NSArray that you use, and this
might have unintended consequences.

Tasks

Constructors

NSArray (page 59)

Querying the Array

containsObject (page 61)
Returns true if anObject is present in the array.

count (page 61)
Returns the number of objects currently in the array.

getObjects (page 62)
Copies all objects contained in the receiver to aBuffer.

Tasks 57
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

indexOfObject (page 63)
Searches all objects in the receiver for anObject and returns the lowest index whose corresponding
array value is equal to anObject.

indexOfIdenticalObject (page 62)
This method has been deprecated.

lastObject (page 63)
Returns the object in the array with the highest index value.

objectAtIndex (page 64)
Returns the object located at index.

objectsAtIndexes (page 64)
Returns an array containing the objects in the receiver at the specified indexes.

objectEnumerator (page 64)

reverseObjectEnumerator (page 65)
Returns an enumerator object that lets you access each object in the receiver, in order, from the
element at the highest index down to the element at index 0.

Comparing Arrays

firstObjectCommonWithArray (page 62)
Returns the first object contained in the receiver that’s equal to an object in otherArray.

isEqualToArray (page 63)
Compares the receiving array to otherArray.

Deriving New Arrays

arrayByAddingObject (page 60)
Returns a new array that is a copy of the receiver with anObject added to the end.

arrayByAddingObjectsFromArray (page 61)
Returns a new array that is a copy of the receiver with the objects contained in otherArray added
to the end.

filteredArrayUsingPredicate (page 62)
Evaluates the predicate against the receiver’s content and returns a new array containing the objects
that match.

subarrayWithRange (page 66)
Returns a new array containing the receiver’s elements that fall within the limits specified by range.

Sorting Arrays

sortedArrayUsingDescriptors (page 65)
Returns a copy of the receiver sorted as specified by sortDescriptors.

sortedArrayUsingSelector (page 65)
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by the selector selector.

58 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

Working with String Elements

componentsJoinedByString (page 61)
Constructs and returns a String that is the result of interposing separator between the elements of
the receiver’s array.

componentsSeparatedByString (page 59)
Returns an NSArray containing substrings from aString that have been divided by separator.

Constructors

NSArray
public NSArray()

Discussion
Creates an empty array. This method is used by mutable subclasses of NSArray.

public NSArray(Object anObject)

Discussion
Creates an array containing the single element anObject. After an immutable array has been initialized in
this way, it can’t be modified.

public NSArray(Object[] objects)

Discussion
Creates an array containing objects. After an immutable array has been initialized in this way, it can’t be
modified.

public NSArray(NSArray anArray)

Discussion
Creates an array containing the objects in anArray. After an immutable array has been initialized in this way,
it can’t be modified.

Static Methods

componentsSeparatedByString
Returns an NSArray containing substrings from aString that have been divided by separator.

public static NSArray componentsSeparatedByString(String aString, String separator)

Discussion
The substrings in the array appear in the order they did in aString. If aString begins or ends with the
separator, the first or last substring, respectively, is empty. For example, this code excerpt:

NSStringReference list = "wrenches, hammers, saws";

Constructors 59
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

NSArray listItems = [list.componentsSeparatedByString (", ")];

produces an array with these contents:

SubstringIndex

wrenches0

hammers1

saws2

If list begins with a comma and space—for example, “, wrenches, hammers, saws”—the array has these
contents:

SubstringIndex

(empty string)0

wrenches1

hammers2

saws3

If list has no separators—for example, “wrenches”—the array contains the string itself, in this case
“wrenches”.

See Also
componentsJoinedByString (page 61)
componentsSeparatedByString (page 597) (NSStringReference)

Instance Methods

arrayByAddingObject
Returns a new array that is a copy of the receiver with anObject added to the end.

public NSArray arrayByAddingObject(Object anObject)

Discussion
If anObject is null, an InvalidArgumentException is thrown.

See Also
addObject (page 296) (NSMutableArray)

60 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

arrayByAddingObjectsFromArray
Returns a new array that is a copy of the receiver with the objects contained in otherArray added to the
end.

public NSArray arrayByAddingObjectsFromArray(NSArray otherArray)

See Also
addObjectsFromArray (page 296) (NSMutableArray)

componentsJoinedByString
Constructs and returns a String that is the result of interposing separator between the elements of the
receiver’s array.

public String componentsJoinedByString(String separator)

Discussion
For example, this code excerpt writes the path System/Library to the console:

NSArray pathArray = new NSArray(new Object[] {"System",
 "Library"});
System.out.println("The path is "+
 pathArray.componentsJoinedByString("/") + ".");

Each element in the receiver’s array must handle either description, or if it is not implemented,
toString (page 426). If the receiver has no elements, a String representing an empty string is returned.

See Also
componentsSeparatedByString (page 597) (NSStringReference)

containsObject
Returns true if anObject is present in the array.

public boolean containsObject(Object anObject)

Discussion
This method determines whether an object is present in the array by sending an equals (page 424) message
to each of the array’s objects (and passing anObject as the parameter to each equals message).

See Also
indexOfObject (page 63)
indexOfIdenticalObject (page 62)

count
Returns the number of objects currently in the array.

public int count()

Instance Methods 61
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

See Also
objectAtIndex (page 64)

filteredArrayUsingPredicate
Evaluates the predicate against the receiver’s content and returns a new array containing the objects that
match.

public NSArray filteredArrayUsingPredicate(NSPredicate predicate)

Discussion
For more details, see Predicates Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

firstObjectCommonWithArray
Returns the first object contained in the receiver that’s equal to an object in otherArray.

public Object firstObjectCommonWithArray(NSArray otherArray)

Discussion
If no such object is found, this method returns null. This method uses equals (page 424) to check for object
equality.

See Also
containsObject (page 61)

getObjects
Copies all objects contained in the receiver to aBuffer.

public void getObjects(Object[] aBuffer)

Copies the objects contained in the receiver that fall within the specified range to aBuffer.

public void getObjects(Object[] aBuffer, NSRange aRange)

indexOfIdenticalObject
This method has been deprecated.

public int indexOfIdenticalObject(Object anObject)

This method has been deprecated.

public int indexOfIdenticalObject(Object anObject, NSRange aRange)

See Also
containsObject (page 61)

62 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

indexOfObject (page 63)

indexOfObject
Searches all objects in the receiver for anObject and returns the lowest index whose corresponding array
value is equal to anObject.

public int indexOfObject(Object anObject)

Discussion
Objects are considered equal if equals (page 424) returns true. If none of the specified objects is equal to
anObject, returns NSArray.NotFound.

Searches the specified range within the receiver for anObject and returns the lowest index whose
corresponding array value is equal to anObject.

public int indexOfObject(Object anObject, NSRange aRange)

Discussion
Objects are considered equal if equals (page 424) returns true. If none of the specified objects is equal to
anObject, returns NSArray.NotFound.

See Also
containsObject (page 61)
indexOfIdenticalObject (page 62)

isEqualToArray
Compares the receiving array to otherArray.

public boolean isEqualToArray(NSArray otherArray)

Discussion
If the contents of otherArray are equal to the contents of the receiver, this method returns true. If not, it
returns false.

Two arrays have equal contents if they each hold the same number of objects and objects at a given index
in each array satisfy the equals (page 424) test.

lastObject
Returns the object in the array with the highest index value.

public Object lastObject()

Discussion
If the array is empty, lastObject returns null.

See Also
removeLastObject (page 298) (NSMutableArray)

Instance Methods 63
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

objectAtIndex
Returns the object located at index.

public Object objectAtIndex(int index)

Discussion
If index is beyond the end of the array (that is, if index is greater than or equal to the value returned by
count), a RangeException is thrown.

See Also
count (page 61)

objectEnumerator
public java.util.Enumeration objectEnumerator()

Discussion
Returns an enumerator object that lets you access each object in the receiver, in order, starting with the
element at index 0, as in:

java.util.Enumeration enumerator = myArray.objectEnumerator();

while (enumerator.hasMoreElements()) {{
 Object anObject = enumerator.nextElement();
 /* code to act on each element */
}

When this method is used with mutable subclasses of NSArray, your code shouldn’t modify the array during
enumeration.

See Also
reverseObjectEnumerator (page 65)
nextElement (page 167) (NSEnumerator)

objectsAtIndexes
Returns an array containing the objects in the receiver at the specified indexes.

public NSArray objectsAtIndexes(NSIndexSet indexes)

Discussion
Throws an exception if any location in indexes exceeds the bounds of the receiver.

Availability
Available in Mac OS X version 10.4 and later.

See Also
count (page 61)
objectAtIndex (page 64)

64 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

reverseObjectEnumerator
Returns an enumerator object that lets you access each object in the receiver, in order, from the element at
the highest index down to the element at index 0.

public java.util.Enumeration reverseObjectEnumerator()

Discussion
Your code shouldn’t modify the array during enumeration.

See Also
objectEnumerator (page 64)
nextElement (page 167) (NSEnumerator)

sortedArrayUsingDescriptors
Returns a copy of the receiver sorted as specified by sortDescriptors.

public NSArray sortedArrayUsingDescriptors(NSArray sortDescriptors)

Discussion
The first descriptor specifies the primary key value path to be used in sorting the receiver’s contents. Any
subsequent descriptors are used to further refine sorting of objects with duplicate values. See
NSSortDescriptor (page 581) for additional information.

Availability
Available in Mac OS X v10.3 and later.

See Also
sortedArrayUsingSelector (page 65)

sortedArrayUsingSelector
Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by the selector selector.

public NSArray sortedArrayUsingSelector(NSSelector selector)

Discussion
The new array contains references to the receiver’s elements, not copies of them. The retain count is
incremented for each element in the receiving array.

The selector message is sent to each object in the array and has as its single argument another object in
the array. The selector method is used to compare two elements at a time and should return
OrderedAscending if the receiver is smaller than the argument, OrderedDescending if the receiver is
larger than the argument, and OrderedSame if they are equal.

See Also
sortedArrayUsingDescriptors (page 65)

Instance Methods 65
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

subarrayWithRange
Returns a new array containing the receiver’s elements that fall within the limits specified by range.

public NSArray subarrayWithRange(NSRange range)

Discussion
If range isn’t within the receiver’s range of elements, a RangeException is thrown.

For example, the following code example creates an array containing the elements found in the first half of
wholeArray (assuming wholeArray exists).

NSRange theRange = new NSRange(0, wholeArray.count()/2);
NSArray halfArray = wholeArray.subarrayWithRange(theRange);

Constants

NSArray provides the following constant as a convenience; you can use it to compare to values returned by
some NSArray methods:

DescriptionConstant

Returned when an object is not found in an NSArray.NotFound

66 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide Attributed Strings Programming Guide

Overview

NSAttributedString objects manage character strings and associated sets of attributes (for example, font and
kerning) that apply to individual characters or ranges of characters in the string. An association of characters
and their attributes is called an attributed string. The classes NSAttributedString and NSMutableAttributedString
declare the programmatic interface for read-only attributed strings and modifiable attributed strings,
respectively. Methods supporting the drawing of NSAttributedStrings are found in the Application Kit class
NSGraphics. The Application Kit uses a subclass of NSMutableAttributedString, called NSTextStorage, to
provide the storage for the Application Kit’s extended text-handling system.

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to encapsulate
the paragraph or ruler attributes used by the NSAttributedString classes.

The mutable subclass of NSAttributedString is NSMutableAttributedString (page 303).

Note that the default font for NSAttributedString objects is Helvetica 12-point, which differs from the Mac
OS X system font Lucida Grande, so you may wish to create the string with non-default attributes suitable
for your application.

Tasks

Constructors

NSAttributedString (page 69)
Creates an empty NSAttributedString.

Retrieving Character Information

stringReference (page 74)
Returns the character contents of the receiver as an NSStringReference object.

Overview 67
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

length (page 72)
Returns the length of the receiver’s string object.

Retrieving Attribute Information

attributesAtIndex (page 71)
Returns the attributes for the character at index.

attributeAtIndex (page 70)
Returns the value for the attribute named attributeName of the character at index, or null if there
is no such attribute.

Comparing Attributed Strings

isEqualToAttributedString (page 72)
Returns true if the receiver is equal to otherString.

Extracting a Substring

attributedSubstringWithRange (page 71)
Returns an NSAttributedString object consisting of the characters and attributes within aRange in
the receiver.

Retrieving General Information

containsAttachments (page 71)
Returns true if the receiver contains any attachment attributes, false otherwise.

doubleClickAtIndex (page 72)
Returns the range of characters that form a word (or other linguistic unit) surrounding index, taking
language characteristics into account.

fontAttributesInRange (page 72)
Returns the font attributes in effect for the character at aRange.location.

lineBreakBeforeIndex (page 73)
Returns the index of the closest character before index and within aRange that can be placed on a
new line when laying out text.

lineBreakByHyphenatingBeforeIndex (page 73)
Returns the index of the closest character before index and within aRange that can be placed on a
new line by hyphenating.

nextWordFromIndex (page 73)
Returns the index of the first character of the word after or before index.

rulerAttributesInRange (page 74)
Returns the ruler (paragraph) attributes in effect for the characters within aRange.

68 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

Generating Data

RTFDFileWrapperFromRange (page 74)
Returns an object that contains an RTFD document corresponding to the characters and attributes
within aRange.

RTFFromRange (page 74)
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes
within aRange, omitting all attachment attributes.

docFormatFromRange (page 71)
Returns an NSData object that contains a Microsoft Word–format stream corresponding to the
characters and attributes within the specified range.

Constructors

NSAttributedString
Creates an empty NSAttributedString.

public NSAttributedString()

Creates an NSAttributedString with the characters of aString and no attribute information.

public NSAttributedString(String aString)

Creates an NSAttributedString with the characters of aString and the attributes of attributes.

public NSAttributedString(String aString, NSDictionary attributes)

Creates an NSAttributedString with the characters and attributes of attributedString.

public NSAttributedString(NSAttributedString attributedString)

Creates an NSAttributedString with the contents of aURL, returning document properties, which are described
in “Constants” (page 75), in attributes.

public NSAttributedString(java.net.URL aURL, NSMutableDictionary attributes)

Creates an NSAttributedString with the contents of aData, returning document properties, which are described
in “Constants” (page 75), in attributes.

public NSAttributedString(NSData aData, NSMutableDictionary attributes)

Creates an NSAttributedString from wrapper, an NSFileWrapper object containing an RTFD document.

public NSAttributedString(NSFileWrapper wrapper, NSMutableDictionary attributes)

Discussion
Also returns in attributes a dictionary containing document-level attributes described in “Constants” (page
75). Returns null if wrapper can’t be interpreted as an RTFD document.

Creates an NSAttributedString from the HTML contained in data and base URL aURL.

Constructors 69
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

public NSAttributedString(NSData data, java.net.URL aURL, NSMutableDictionary
attributes)

Discussion
Also returns in attributes a dictionary containing document-level attributes described in “Constants” (page
75). Returns null if the file at aURL can’t be decoded.

Creates an NSAttributedString from HTML contained in data.

public NSAttributedString(NSData data, NSDictionary options, NSMutableDictionary
attributes)

Discussion
options can contain one of the values described in NSMutableAttributedString’s readFromURL (page 310)
method. Also returns in attributes a dictionary containing document-level attributes described in
“Constants” (page 75). Returns null if data can’t be decoded.

Instance Methods

attributeAtIndex
Returns the value for the attribute named attributeName of the character at index, or null if there is no
such attribute.

public Object attributeAtIndex(String attributeName, int index, NSMutableRange
aRange)

Discussion
If the named attribute exists at index and aRange is non-null, it’s filled with a range over which the named
attribute’s value applies. If the named attribute doesn’t exist at index and aRange is non-null, aRange is
filled instead with the range over which the attribute doesn’t exist. This range isn’t necessarily the maximum
range covered by attributeName, and its extent is implementation-dependent.

Throws an exception if index lies beyond the end of the receiver’s characters.

Returns the value for the attribute named attributeName of the character at index, or null if there is no
such attribute.

public Object attributeAtIndex(String attributeName, int index, NSMutableRange
aRange, NSRange rangeLimit)

Discussion
If the named attribute exists at index and aRange is non-null, it’s filled with the full range over which the
value of the named attribute is the same as that at index, clipped to rangeLimit. If the named attribute
doesn’t exist at index and aRange is non-null, aRange is filled instead with the full range over which the
attribute doesn’t exist, clipped to rangeLimit.

Throws an exception if index or any part of rangeLimit lies beyond the end of the receiver’s characters.

See Also
attributesAtIndex (page 71)

70 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

attributedSubstringWithRange
Returns an NSAttributedString object consisting of the characters and attributes within aRange in the receiver.

public NSAttributedString attributedSubstringWithRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters. This
method treats the length of the string as a valid range value that returns an empty string.

attributesAtIndex
Returns the attributes for the character at index.

public NSDictionary attributesAtIndex(int index, NSMutableRange aRange)

Discussion
If aRange is non-null it’s filled with the range over which the attributes and values are the same as those
at index. This range isn’t necessarily the maximum range covered, and its extent is implementation-dependent.

Throws an exception if index lies beyond the end of the receiver’s characters.

Returns the attributes for the character at index.

public NSDictionary attributesAtIndex(int index, NSMutableRange aRange, NSRange
rangeLimit)

Discussion
If aRange is non-null, it’s filled with the maximum range over which the attributes and values are the same
as those at index, clipped to rangeLimit.

Throws an exception if index or any part of rangeLimit lies beyond the end of the receiver’s characters.

See Also
attributeAtIndex (page 70)

containsAttachments
Returns true if the receiver contains any attachment attributes, false otherwise.

public boolean containsAttachments()

Discussion
This method checks only for attachment attributes, not for NSAttachmentCharacter.

docFormatFromRange
Returns an NSData object that contains a Microsoft Word–format stream corresponding to the characters
and attributes within the specified range.

public NSData docFormatFromRange(NSRange range, NSDictionary dict)

Instance Methods 71
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

Discussion
The range is passed in the range parameter. Also writes the document-level attributes in dict, as explained
in “Constants” (page 75). If there are no document-level attributes, dict can be null. Throws an
NSRangeException if any part of range lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.3 and later.

doubleClickAtIndex
Returns the range of characters that form a word (or other linguistic unit) surrounding index, taking language
characteristics into account.

public NSRange doubleClickAtIndex(int index)

Discussion
Throws a RangeException if index lies beyond the end of the receiver’s characters.

See Also
nextWordFromIndex (page 73)

fontAttributesInRange
Returns the font attributes in effect for the character at aRange.location.

public NSDictionary fontAttributesInRange(NSRange aRange)

Discussion
Use this method to obtain font attributes that are to be copied or pasted with “copy font” operations. Throws
a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
rulerAttributesInRange (page 74)

isEqualToAttributedString
Returns true if the receiver is equal to otherString.

public boolean isEqualToAttributedString(NSAttributedString otherString)

Discussion
Attributed strings must match in both characters and attributes to be equal.

length
Returns the length of the receiver’s string object.

public int length()

See Also
length (page 600) (NSStringReference)

72 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

lineBreakBeforeIndex
Returns the index of the closest character before index and within aRange that can be placed on a new line
when laying out text.

public int lineBreakBeforeIndex(int index, NSRange aRange)

Discussion
In other words, finds the appropriate line break when the character at index won’t fit on the same line as
the character at the beginning of aRange. Returns NSArray.NotFound if no line break is possible before
index.Throws a RangeException if index or any part of aRange lies beyond the end of the receiver’s
characters.

See Also
lineBreakByHyphenatingBeforeIndex (page 73)

lineBreakByHyphenatingBeforeIndex
Returns the index of the closest character before index and within aRange that can be placed on a new line
by hyphenating.

public int lineBreakByHyphenatingBeforeIndex(int location, NSRange aRange)

Discussion
In other words, during text layout, finds the appropriate line break by hyphenation (the character index at
which the hyphen glyph should be inserted) when the character at index won’t fit on the same line as the
character at the beginning of aRange. Returns NSArray.NotFound if no line break by hyphenation is possible
before index.Throws a RangeException if index or any part of aRange lies beyond the end of the receiver’s
characters.

Availability
Available in Mac OS X v10.3 and later.

See Also
lineBreakBeforeIndex (page 73)

nextWordFromIndex
Returns the index of the first character of the word after or before index.

public int nextWordFromIndex(int index, boolean flag)

Discussion
If flag is true, this is the first character after index that begins a word; if flag is false, it’s the first character
before index that begins a word, whether index is located within a word or not. If index lies at either end
of the string and the search direction would progress past that end, it’s returned unchanged. This method
is intended for moving the insertion point during editing, not for linguistic analysis or parsing of text.Throws
a RangeException if index lies beyond the end of the receiver’s characters.

See Also
lineBreakBeforeIndex (page 73)

Instance Methods 73
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

RTFDFileWrapperFromRange
Returns an object that contains an RTFD document corresponding to the characters and attributes within
aRange.

public Object RTFDFileWrapperFromRange(NSRange aRange, NSDictionary docAttributes)

Discussion
The file wrapper also includes the document-level attributes in docAttributes. If there are no document-level
attributes, docAttributes can be null. Throws a RangeException if any part of aRange lies beyond the
end of the receiver’s characters.You can save the file wrapper using NSFileWrapper’s writeToFile.

See Also
RTFFromRange (page 74)

RTFFromRange
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes within
aRange, omitting all attachment attributes.

public NSData RTFFromRange(NSRange aRange, NSDictionary docAttributes)

Discussion
Also writes the document-level attributes in docAttributes. If there are no document-level attributes,
docAttributes can be null. Throws a RangeException if any part of aRange lies beyond the end of the
receiver’s characters.When writing data to the pasteboard, you can use the NSData object as the first argument
to NSPasteboard’s setDataForType, with a second argument of NSPasteboard.RTFPboardType.Although
this method strips attachments, it leaves the attachment characters in the text itself. NSText’s RTFFromRange,
on the other hand, does strip attachment characters when extracting RTF.

See Also
RTFDFileWrapperFromRange (page 74)

rulerAttributesInRange
Returns the ruler (paragraph) attributes in effect for the characters within aRange.

public NSDictionary rulerAttributesInRange(NSRange aRange)

Discussion
The only ruler attribute currently defined is that named by NSParagraphStyleAttributeName. Use this
method to obtain attributes that are to be copied or pasted with “copy ruler” operations. Throws a
RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
fontAttributesInRange (page 72)

stringReference
Returns the character contents of the receiver as an NSStringReference object.

public NSStringReference stringReference()

74 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

Discussion
This method doesn’t strip out attachment characters; use NSText’s string method to extract just the
linguistically significant characters.

For performance reasons, this method returns the current backing store of the attributed string object. If you
want to maintain a snapshot of this as you manipulate the returned string, you should make a copy of the
appropriate substring.

This primitive method must guarantee efficient access to an attributed string’s characters; subclasses should
implement it to execute in O(1) time.

Constants

NSAttributedString provides the following attribute name constants:

Default ValueValue ClassAttribute Identifier

None (no attachment)NSTextAttachmentAttachmentAttributeName

None (no background drawn)NSColorBackgroundColorAttributeName

0.0floatBaselineOffsetAttributeName

IBeamCursorNSCursorCursorAttributeName

0 (no expansion)floatExpansionAttributeName

Helvetica 12-pointNSFontFontAttributeName

BlackNSColorForegroundColorAttributeName

0.0floatKernAttributeName

1 (standard ligatures)intLigatureAttributeName

0 (no skew)floatObliquenessAttributeName

Object returned by NSParagraphStyle’s
defaultParagraphStyle method

NSParagraphStyleParagraphStyleAttributeName

null (no shadow)NSShadowShadowAttributeName

null (same as foreground color)NSColorStrikethroughColorAttributeName

0 (no strikethrough)intStrikethroughStyleAttributeName

null (same as foreground color)NSColorStrokeColorAttributeName

0 (no stroke)floatStrokeWidthAttributeName

0intSuperscriptAttributeName

null (no tooltip)StringToolTipAttributeName

Constants 75
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

Default ValueValue ClassAttribute Identifier

null (same as foreground color)NSColorUnderlineColorAttributeName

None (no underline)intUnderlineStyleAttributeName

NSAttributedString provides the following constants to use when working with underlines:

DescriptionConstant

Underline skips whitespace characters.UnderlineByWordMask

No underline.UnderlineStyleNone

Single underline drawn below the characters.UnderlineStyleSingle

Thick underline drawn below the characters.UnderlineStyleThick

Double underline drawn below the characters.UnderlineStyleDouble

Draw a solid underline.UnderlinePatternSolid

Draw an underline using a pattern of dots.UnderlinePatternDot

Draw an underline using a pattern of dashes.UnderlinePatternDash

Draw an underline using a pattern of alternating dashes and dots.UnderlinePatternDashDot

Draw an underline using a pattern of a dash followed by two dots.UnderlinePatternDashDotDot

The following constants previously used for underline style were deprecated in Mac OS X v10.3:

NoUnderlineStyle

SingleUnderlineStyle

UnderlineStrikethroughMask

The constructors can return a dictionary with the following document-wide attributes:

DescriptionConstant

NSSize.PaperSize

float, in points.LeftMargin

float, in points.RightMargin

float, in points.TopMargin

float, in points.BottomMargin

float.HyphenationFactor

How the document was interpreted; one of the values below.DocumentType

76 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

DescriptionConstant

For plain text files only; int specifying NSStringEncoding used to interpret the file.CharacterEncoding

NSSize.ViewSize

float; 100 == 100% zoom.ViewZoom

int; 0 = normal; 1 = page layout (use value of PaperSize).ViewMode

If RTF file, stores the version of Cocoa the file was created with. Number containing
int. Absence of this value indicates RTF file not created by Cocoa or its predecessors.
100 is Mac OS X; lower values are pre–Mac OS X.

CocoaRTFVersion

int. Indicates whether the file was converted by a filter service. If missing, 0, or
negative, the file was originally in the format specified by document type. If 1 or
more, it was converted to this type by a filter service.

Converted

The following values can be returned for the DocumentType key in the document attributes dictionary:

DocumentType

NSHTMLTextDocumentType

NSMacSimpleTextDocumentType

NSPlainTextDocumentType

NSRTFDTextDocumentType

NSRTFTextDocumentType

NSDocFormatTextDocumentType

NSWordMLTextDocumentType

Constants 77
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

78 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

Inherits from Object

Package: com.apple.cocoa.foundation

Companion guide Memory Management Programming Guide for Cocoa

Overview

An autorelease pool is used to manage Foundation’s autorelease mechanism for Objective-C objects.
NSAutoreleasePool provides Java applications access to autorelease pools. Typically it is not necessary for
Java applications to use NSAutoreleasePools since Java manages garbage collection. However, some situations
require an autorelease pool; for instance, if you start off a thread that calls Cocoa, there won’t be a top-level
pool.

You know you need an autorelease pool when you see “no pool in place - just leaking” warnings coming
from your Cocoa Java application. Just wrap pools around the places where you have top-level Java threads
calling into Cocoa. Use code like the following to accomplish this task:

int myPool = NSAutoreleasePool.push();

// Your code here

NSAutoreleasePool.pop(myPool);

Tasks

Creating a Pool

push (page 80)
Creates an NSAutoreleasePool and returns an identifier to it.

Freeing a Pool

pop (page 80)
Indicates that you are finished using the NSAutoreleasePool identified by pool.

Overview 79
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

NSAutoreleasePool

Static Methods

pop
Indicates that you are finished using the NSAutoreleasePool identified by pool.

public static void pop(int pool)

See Also
push (page 80)

push
Creates an NSAutoreleasePool and returns an identifier to it.

public static int push()

See Also
pop (page 80)

80 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

NSAutoreleasePool

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guides Bundle Programming Guide
Resource Programming Guide

Overview

An NSBundle represents a location in the file system that groups code and resources that can be used in a
program. NSBundles locate program resources, dynamically load executable code, and assist in localization.
You build a bundle in Xcode using one of these project types: Application, Framework, Loadable Bundle,
Palette.

Tasks

Constructors

NSBundle (page 84)
Creates an empty NSBundle.

Getting an NSBundle

bundleForClass (page 84)
Returns the NSBundle that dynamically loaded aClass (a loadable bundle), the NSBundle for the
framework in which aClass is defined, or the main bundle object if aClass was not dynamically
loaded or is not defined in a framework.

bundleWithIdentifier (page 85)
Returns the previously created NSBundle instance that has the bundle identifier identifier.

bundleWithPath (page 85)
Returns an NSBundle that corresponds to the specified directory fullPath or null if fullPath
does not identify an accessible bundle directory.

mainBundle (page 86)
Returns an NSBundle that corresponds to the directory where the application executable is located
or null if this executable is not located in an accessible bundle directory.

Overview 81
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

allBundles (page 84)
Returns an array of all the application’s nonframework bundles.

allFrameworks (page 84)
Returns an array of all of the application’s bundles that represent frameworks.

Getting a Bundled Class

principalClass (page 91)
Returns the receiver’s principal class after ensuring that the code containing the definition of that
class is dynamically loaded.

Finding a Resource

pathForResource (page 90)
Returns the full pathname for the resource identified by name with the specified file extension.

pathsForResources (page 91)
Returns an array containing the pathnames for all bundle resources having the specified filename
extension and residing in the resource subdirectory specified by subpath; returns an empty array
if no matching resource files are found.

resourcePath (page 92)
Returns the full pathname of the receiving bundle’s subdirectory containing resources.

Getting the Bundle Directory

bundlePath (page 87)
Returns the full pathname of the receiver’s bundle directory.

Getting Bundle Information

builtInPlugInsPath (page 87)
Returns the full pathname of the receiving bundle’s subdirectory containing plug-ins.

bundleIdentifier (page 87)
Returns the receiver’s bundle identifier, which is defined by the CFBundleIdentifier key in the
bundle’s information property list.

executablePath (page 87)
Returns the full pathname of the receiving bundle’s executable file.

infoDictionary (page 87)
Returns a dictionary that contains information about the receiver.

objectForInfoDictionaryKey (page 89)
Returns the value associated with key in the bundle’s property list (Info.plist).

pathForAuxiliaryExecutable (page 89)
Returns the full pathname of the executable executableName in the receiver’s bundle.

82 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

privateFrameworksPath (page 92)
Returns the full pathname of the receiving bundle’s subdirectory containing private frameworks.

sharedFrameworksPath (page 92)
Returns the full pathname of the receiving bundle’s subdirectory containing shared frameworks.

sharedSupportPath (page 93)
Returns the full pathname of the receiving bundle’s subdirectory containing shared support files.

Managing Localized Resources

localizedString (page 85)
Returns the localized version of the string designated by key in the Localizable.strings file in
the application’s main bundle.

localizedStringForKey (page 89)
Returns a localized version of the string designated by key in table tableName.

Loading a Bundle’s Code

load (page 88)
Dynamically loads the bundle’s executable code into a running program, if the code has not already
been loaded.

isLoaded (page 88)
Obtains information about the load status of a bundle.

Managing Localizations

preferredLocalizations (page 86)
Returns the one or more localizations from the list localizationsArray that NSBundle prefers to
use to locate resources based on the user’s preferences.

localizations (page 88)
Returns a list of all the localizations contained within the receiver’s bundle.

developmentLocalization (page 87)
Returns the localization used to create the bundle.

preferredLocalizations (page 91)
Returns one or more localizations contained in the receiver’s bundle that the receiver uses to locate
resources based on the user’s preferences.

localizedInfoDictionary (page 88)
Returns a dictionary with the keys from the bundle’s localized property list (InfoPList.strings).

Tasks 83
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

Constructors

NSBundle
Creates an empty NSBundle.

public NSBundle()

Do not use this constructor. Use bundleWithPath (page 85) instead.

public NSBundle(String fullPath)

Static Methods

allBundles
Returns an array of all the application’s nonframework bundles.

public static NSArray allBundles()

Discussion
This array includes the main bundle and all bundles that have been dynamically created but doesn’t contain
any bundles that represent frameworks.

allFrameworks
Returns an array of all of the application’s bundles that represent frameworks.

public static NSArray allFrameworks()

Discussion
This array includes frameworks that are linked into an application when the application is built and bundles
for frameworks that have been dynamically created. Only frameworks with one or more Objective-C classes
in them are included.

bundleForClass
Returns the NSBundle that dynamically loaded aClass (a loadable bundle), the NSBundle for the framework
in which aClass is defined, or the main bundle object if aClasswas not dynamically loaded or is not defined
in a framework.

public static NSBundle bundleForClass(Class aClass)

See Also
mainBundle (page 86)
bundleWithPath (page 85)

84 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

bundleWithIdentifier
Returns the previously created NSBundle instance that has the bundle identifier identifier.

public static NSBundle bundleWithIdentifier(String identifier)

Discussion
The instance must currently exist. Returns null if the requested bundle is not found.

bundleWithPath
Returns an NSBundle that corresponds to the specified directory fullPath or null if fullPath does not
identify an accessible bundle directory.

public static NSBundle bundleWithPath(String fullPath)

Discussion
This method creates and initializes the returned object if there is no existing NSBundle associated with
fullPath, in which case it returns the existing object. fullPath must be a full pathname for a directory; if
it contains any symbolic links, they must be resolvable. If the directory doesn’t exist or the user doesn’t have
access to it, this method returns null.

See Also
mainBundle (page 86)
bundleForClass (page 84)

localizedString
Returns the localized version of the string designated by key in the Localizable.strings file in the
application’s main bundle.

public static String localizedString(String key)

Discussion
Returns key if it is not found in the file.

Returns the localized version of the string designated by key in the Localizable.strings file in the
application’s main bundle.

public static String localizedString(String key, String comment)

Discussion
Returns key if it is not found in the file.

Returns the localized version of the string designated by key in table tableName in the application’s main
bundle.

public static String localizedString(String key, String tableName, String comment)

Discussion
The argument tableName specifies the .strings file to search. Returns key if it is not found in the file.

Returns the localized version of the string designated by key in table tableName in bundle.

Static Methods 85
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

public static String localizedString(String key, String tableName, NSBundle bundle,
String comment)

Discussion
The argument tableName specifies the .strings file to search. Returns key if it is not found in the file.

Thecomment arguments are not used by these methods. They are used only by thegenstrings command-line
tool, which creates .strings files by extracting the arguments of localizedString invocations in your
source code. Use comment to document the purpose of each key in the .strings file.

See Also
localizedStringForKey (page 89)

mainBundle
Returns an NSBundle that corresponds to the directory where the application executable is located or null
if this executable is not located in an accessible bundle directory.

public static NSBundle mainBundle()

Discussion
This method allocates and initializes the returned NSBundle if it doesn’t already exist.

In general, the main bundle corresponds to an application file package or application wrapper: a directory
that bears the name of the application and is marked by a “.app” extension.

See Also
bundleForClass (page 84)
bundleWithPath (page 85)

preferredLocalizations
Returns the one or more localizations from the list localizationsArray that NSBundle prefers to use to
locate resources based on the user’s preferences.

public static NSArray preferredLocalizations(NSArray localizationsArray)

Returns the localizations that NSBundle would prefer, given the specified bundle and user preference
localizations.

public static NSArray preferredLocalizations(NSArray localizationsArray, NSArray
preferencesArray)

Discussion
Use the argument localizationsArray to specify the supported localizations of the bundle and use
preferencesArray to specify the user’s localization preferences. If you specify null for preferencesArray,
this method uses the current user’s localization preferences. If none of the user-preferred localizations are
available in the bundle, this method chooses one of the bundle localizations and returns it.

Availability
Available in Mac OS X v10.2 and later.

86 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

Instance Methods

builtInPlugInsPath
Returns the full pathname of the receiving bundle’s subdirectory containing plug-ins.

public String builtInPlugInsPath()

bundleIdentifier
Returns the receiver’s bundle identifier, which is defined by the CFBundleIdentifier key in the bundle’s
information property list.

public String bundleIdentifier()

See Also
infoDictionary (page 87)

bundlePath
Returns the full pathname of the receiver’s bundle directory.

public String bundlePath()

developmentLocalization
Returns the localization used to create the bundle.

public String developmentLocalization()

Discussion
The returned localization corresponds to the value in the CFBundleDevelopmentRegion key of the bundle’s
property list (Info.plist).

Availability
Available in Mac OS X v10.2 and later.

executablePath
Returns the full pathname of the receiving bundle’s executable file.

public String executablePath()

infoDictionary
Returns a dictionary that contains information about the receiver.

Instance Methods 87
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

public NSDictionary infoDictionary()

Discussion
This information is extracted from the property list (Info.plist) associated with the bundle. The returned
dictionary is empty if no Info.plist can be found. Common keys for accessing the values of the dictionary
are CFBundleIdentifier, NSMainNibFile, and NSPrincipalClass.

See Also
principalClass (page 91)

isLoaded
Obtains information about the load status of a bundle.

public boolean isLoaded()

Discussion
Returns true if the bundle’s code is currently loaded; otherwise, returns false.

Availability
Available in Mac OS X v10.2 and later.

See Also
load (page 88)

load
Dynamically loads the bundle’s executable code into a running program, if the code has not already been
loaded.

public boolean load()

Discussion
A bundle attempts to load its code—if it has any—only once. Returns true if the method successfully loads
the bundle’s code or if the code has already been loaded. Returns false if the method fails to load the code.
You don’t need to load a bundle’s executable code to search the bundle’s resources.

See Also
isLoaded (page 88)
principalClass (page 91)

localizations
Returns a list of all the localizations contained within the receiver’s bundle.

public NSArray localizations()

localizedInfoDictionary
Returns a dictionary with the keys from the bundle’s localized property list (InfoPList.strings).

88 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

public NSDictionary localizedInfoDictionary()

Discussion
This method uses the preferred localization for the current user when determining which resources to return.
If the preferred localization is not available, this method chooses the most appropriate localization found in
the bundle.

Availability
Available in Mac OS X v10.2 and later.

localizedStringForKey
Returns a localized version of the string designated by key in table tableName.

public String localizedStringForKey(String key, String value, String tableName)

Discussion
The argument tableName specifies the receiver’s string table to search. If tableName is null or is an empty
string, the method attempts to use the table in Localizable.strings. The value argument specifies the
value to return if key is null or if a localized string for key can’t be found in the table. If value is null or
an empty string, and a localized string is not found in the table, the method returns key. If key and value
are both null, the method returns the empty string. For more details about string localization and the
specification of a .strings file, see “Working With Localized Strings.”

Using the user default NSShowNonLocalizedStrings, you can alter the behavior of
localizedStringForKey (page 89) to log a message when the method can’t find a localized string. If you
set this default to true (in the global domain or in the application’s domain), then when the method can’t
find a localized string in the table, it logs a message to the console and capitalizes key before returning it.

See Also
pathForResource (page 90)
pathsForResources (page 91)

objectForInfoDictionaryKey
Returns the value associated with key in the bundle’s property list (Info.plist).

public Object objectForInfoDictionaryKey(String key)

Discussion
Use of this method is preferred over other access methods because it returns the localized value of a key
when one is available.

Availability
Available in Mac OS X v10.2 and later.

pathForAuxiliaryExecutable
Returns the full pathname of the executable executableName in the receiver’s bundle.

public String pathForAuxiliaryExecutable(String executableName)

Instance Methods 89
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

pathForResource
Returns the full pathname for the resource identified by name with the specified file extension.

public String pathForResource(String name, String extension)

Discussion
If extension is an empty string or null, the returned pathname is the first one encountered where the file
name exactly matches name.

The method first looks for a matching resource file in the nonlocalized resource directory (typically Resources)
of the specified bundle. If a matching resource file is not found, it then looks in the top level of any available
language-specific “.lproj” directories. (The search order for the language-specific directories corresponds
to the user’s preferences.) It does not recurse through other subdirectories at any of these locations. For more
details see “Bundles and Localization”.

Returns the full pathname for the resource identified by name, with the specified filename extension, and
residing in the specific resource subdirectory specified by subpath; returns null if no matching resource
file exists in the bundle.

public String pathForResource(String name, String extension, String subpath)

Discussion
If extension is an empty string or null, the returned pathname is the first one encountered where the file
name exactly matches name.

The argument subpath specifies the name of a specific subdirectory to search within the current bundle’s
general resource directory hierarchy. If subpath is null, this method searches the top-level nonlocalized
resource directory (typically Resources) and the top-level of any language-specific directories. For example,
suppose you have a modern bundle and specify @"Documentation" for the subpath parameter. This
method would first look in the Contents/Resources/Documentation directory of the bundle, followed
by the Documentation subdirectories of each language-specific .lproj directory. (The search order for the
language-specific directories corresponds to the user’s preferences.) This method does not recurse through
any other subdirectories at any of these locations. For more details see “Bundles and Localization”.

Returns the full pathname for the resource identified by name, with the specified filename extension,
residing in the resource subdirectory specified by subpath, and limited to global resources and those
associated with localizationName.

public String pathForResource(String name, String extension, String subpath, String
localizationName)

Discussion
This method is equivalent to the three parameter version except that only nonlocalized resources and those
in the language-specific .lproj directory specified by localizationName are searched.

See Also
localizedStringForKey (page 89)
pathsForResources (page 91)

90 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

pathsForResources
Returns an array containing the pathnames for all bundle resources having the specified filename extension
and residing in the resource subdirectory specified by subpath; returns an empty array if no matching
resource files are found.

public NSArray pathsForResources(String extension, String subpath)

Discussion
This method provides a means for dynamically discovering multiple bundle resources of the same type. If
extension is an empty string or null, all bundle resources in the specified resource directory are returned.

The argument subpath specifies the name of a specific subdirectory to search within the current bundle’s
resource directory hierarchy. If subpath is null, this method searches the top-level nonlocalized resource
directory (typically Resources) and the top-level of any language-specific directories. For example, suppose
you have a modern bundle and specify @"Documentation" for the subpath parameter. This method would
first look in the Contents/Resources/Documentation directory of the bundle, followed by the
Documentation subdirectories of each language-specific .lproj directory. (The search order for the
language-specific directories corresponds to the user’s preferences.) This method does not recurse through
any other subdirectories at any of these locations. For more details see “Bundles and Localization”.

Returns an array containing pathnames for all bundle resources having the specified filename extension,
residing in the resource subdirectory specified by subpath, and limited to global resources and those
associated with localizationName.

public NSArray pathsForResources(String extension, String subpath, String
localizationName)

Discussion
This method is equivalent to the two parameter version except that only nonlocalized resources and those
in the language-specific .lproj directory specified by localizationName are searched.

See Also
localizedStringForKey (page 89)

preferredLocalizations
Returns one or more localizations contained in the receiver’s bundle that the receiver uses to locate resources
based on the user’s preferences.

public NSArray preferredLocalizations()

See Also
preferredLocalizations (page 86)
localizations (page 88)

principalClass
Returns the receiver’s principal class after ensuring that the code containing the definition of that class is
dynamically loaded.

public Class principalClass()

Instance Methods 91
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

Discussion
If the receiver encounters errors in loading or if it can’t find the executable code file in the bundle directory,
it returns NIL. The principal class typically controls all the other classes in the bundle; it should mediate
between those classes and classes external to the bundle. Classes (and categories) are loaded from just one
file within the bundle directory. NSBundle obtains the name of the code file to load from the dictionary
returned from infoDictionary (page 87), using “NSExecutable” as the key. The NSBundle determines
its principal class in one of two ways:

 ■ It first looks in its own information dictionary, which extracts the information encoded in the bundle’s
property list (Info.plist). NSBundle obtains the principal class from the dictionary using the key
NSPrincipalClass. For nonloadable bundles (applications and frameworks), if the principal class is
not specified in the property list, the method returns NIL.

 ■ If the principal class is not specified in the information dictionary, NSBundle identifies the first class
loaded as the principal class. When several classes are linked into a dynamically loadable file, the default
principal class is the first one listed on the ld command line. In the following example, Reporter would
be the principal class:

ld -o myBundle -r Reporter.o NotePad.o QueryList.o

The order of classes in Xcode’s project browser is the order in which they will be linked. To designate the
principal class, control-drag the file containing its implementation to the top of the list.

See Also
infoDictionary (page 87)
load (page 88)

privateFrameworksPath
Returns the full pathname of the receiving bundle’s subdirectory containing private frameworks.

public String privateFrameworksPath()

resourcePath
Returns the full pathname of the receiving bundle’s subdirectory containing resources.

public String resourcePath()

See Also
bundlePath (page 87)

sharedFrameworksPath
Returns the full pathname of the receiving bundle’s subdirectory containing shared frameworks.

public String sharedFrameworksPath()

92 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

sharedSupportPath
Returns the full pathname of the receiving bundle’s subdirectory containing shared support files.

public String sharedSupportPath()

Instance Methods 93
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

94 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide String Programming Guide for Cocoa

Overview

An NSCharacterSet object represents a set of Unicode 3.2 compliant characters. String and NSScanner objects
use NSCharacterSets to group characters together for searching operations, so that they can find any of a
particular set of characters during a search. The two classes, NSCharacterSet and NSMutableCharacterSet,
declare the programmatic interface for static and dynamic character sets, respectively.

The objects you create using these classes are referred to as character set objects (and when no confusion
will result, merely as character sets).

The NSCharacterSet class declares the programmatic interface for an object that manages a set of Unicode
characters (see the NSStringReference (page 591) class specification for information on Unicode).
NSCharacterSet’s principal primitive method, characterIsMember (page 102), provides the basis for all
other instance methods in its interface. A subclass of NSCharacterSet needs only to implement this method
for proper behavior. For optimal performance, a subclass should also override bitmapRepresentation (page
102), which otherwise works by invoking characterIsMember (page 102) for every possible Unicode value.

The mutable subclass of NSCharacterSet is NSMutableCharacterSet (page 315).

Tasks

Constructors

NSCharacterSet (page 97)
Creates an empty NSCharacterSet.

Creating a Standard Character Set

alphanumericCharacterSet (page 98)
Returns a character set containing the characters in the categories Letters, Marks, and Numbers.

Overview 95
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

capitalizedLetterCharacterSet (page 98)
Returns a character set containing the characters in the category of Titlecase Letters.

controlCharacterSet (page 98)
Returns a character set containing the characters in the categories of Control or Format Characters.

decimalDigitCharacterSet (page 99)
Returns a character set containing the characters in the category of Decimal Numbers.

decomposableCharacterSet (page 99)
Returns a character set containing all individual Unicode characters that can also be represented as
composed character sequences (such as for letters with accents), by the definition of “standard
decomposition” in version 3.2 of the Unicode character encoding standard.

illegalCharacterSet (page 99)
Returns a character set containing values in the category of Non-Characters or that have not yet been
defined in version 3.2 of the Unicode standard.

letterCharacterSet (page 100)
Returns a character set containing the characters in the categories Letters and Marks.

lowercaseLetterCharacterSet (page 100)
Returns a character set containing the characters in the category of Lowercase Letters.

nonBaseCharacterSet (page 100)
Returns a character set containing the characters in the category of Marks.

punctuationCharacterSet (page 100)
Returns a character set containing the characters in the category of Punctuation.

symbolCharacterSet (page 101)
Returns a character set containing the characters in the category of Symbols.

uppercaseLetterCharacterSet (page 101)
Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase
Letters.

whitespaceAndNewlineCharacterSet (page 101)
Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009)
and the newline and nextline characters (U+000A–U+000D, U+0085).

whitespaceCharacterSet (page 101)
Returns a character set containing only the in-line whitespace characters space (U+0020) and tab
(U+0009).

Opening a Character Set File

characterSetWithContentsOfFile (page 98)
Returns a character set read from the bitmap representation stored in the file at path, which must
end with the extension .bitmap.

Testing Set Membership

characterIsMember (page 102)
Returns true if aCharacter is in the receiving character set, false if it isn’t.

96 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

isSupersetOfSet (page 103)
Returns true if the receiving character set is a superset of theOtherSet, false if it isn’t.

Getting a Binary Representation

bitmapRepresentation (page 102)
Returns an NSData object encoding the receiving character set in binary format.

Deriving New Character Sets

characterSetByIntersectingCharacterSet (page 102)
Returns a character set containing only characters that exist in both the receiver and otherSet.

characterSetByInvertingCharacterSet (page 102)
Returns a character set containing only characters that do not exist in the receiver. Inverting an
immutable character set is much more efficient than inverting a mutable character set.

characterSetBySubtractingCharacterSet (page 102)
Returns a character set containing all the characters in the receiver except for those in otherSet.

characterSetByUnioningCharacterSet (page 102)
Returns a character set containing all characters that exist in either the receiver or otherSet.

Constructors

NSCharacterSet
Creates an empty NSCharacterSet.

public NSCharacterSet()

Creates a character set containing characters determined by the bitmap representation aData.

public NSCharacterSet(NSData aData)

Discussion
This capability is useful for creating a character set object with data from a file or other external data source.

Creates a character set containing characters whose Unicode values are given by aRange.

public NSCharacterSet(NSRange aRange)

Discussion
aRange.location is the value of the first character, and aRange.location + aRange.length – 1 is the
value of the last. Returns an empty character set if aRange.length is 0.

Creates a character set containing the characters in aString.

public NSCharacterSet(String aString)

Constructors 97
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

Discussion
Returns an empty character set if aString is empty.

Static Methods

alphanumericCharacterSet
Returns a character set containing the characters in the categories Letters, Marks, and Numbers.

public static NSCharacterSet alphanumericCharacterSet()

Discussion
Informally, this set is the set of all characters used as basic units of alphabets, syllabaries, ideographs, and
digits.

See Also
letterCharacterSet (page 100)
decimalDigitCharacterSet (page 99)

capitalizedLetterCharacterSet
Returns a character set containing the characters in the category of Titlecase Letters.

public static NSCharacterSet capitalizedLetterCharacterSet()

Availability
Available in Mac OS X v10.2 and later.

See Also
letterCharacterSet (page 100)
uppercaseLetterCharacterSet (page 101)

characterSetWithContentsOfFile
Returns a character set read from the bitmap representation stored in the file at path, which must end with
the extension .bitmap.

public static NSCharacterSet characterSetWithContentsOfFile(String path)

Discussion
This method doesn’t use filenames to check for the uniqueness of the character sets it creates. To prevent
duplication of character sets in memory, cache them and make them available through an API that checks
whether the requested set has already been loaded.

controlCharacterSet
Returns a character set containing the characters in the categories of Control or Format Characters.

98 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

public static NSCharacterSet controlCharacterSet()

Discussion
These characters are specifically the Unicode values U+0000 to U+001F and U+007F to U+009F.

See Also
illegalCharacterSet (page 99)

decimalDigitCharacterSet
Returns a character set containing the characters in the category of Decimal Numbers.

public static NSCharacterSet decimalDigitCharacterSet()

Discussion
Informally, this set is the set of all characters used to represent the decimal values 0 through 9. These characters
include, for example, the decimal digits of the Indic scripts and Arabic.

See Also
alphanumericCharacterSet (page 98)

decomposableCharacterSet
Returns a character set containing all individual Unicode characters that can also be represented as composed
character sequences (such as for letters with accents), by the definition of “standard decomposition” in version
3.2 of the Unicode character encoding standard.

public static NSCharacterSet decomposableCharacterSet()

Discussion
These characters include compatibility characters as well as precomposed characters.

Note: This character set doesn’t currently include the Hangul characters defined in version 2.0 of the Unicode
standard.

See Also
nonBaseCharacterSet (page 100)

illegalCharacterSet
Returns a character set containing values in the category of Non-Characters or that have not yet been defined
in version 3.2 of the Unicode standard.

public static NSCharacterSet illegalCharacterSet()

See Also
controlCharacterSet (page 98)

Static Methods 99
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

letterCharacterSet
Returns a character set containing the characters in the categories Letters and Marks.

public static NSCharacterSet letterCharacterSet()

Discussion
Informally, this set is the set of all characters used as letters of alphabets and ideographs.

See Also
alphanumericCharacterSet (page 98)
lowercaseLetterCharacterSet (page 100)
uppercaseLetterCharacterSet (page 101)

lowercaseLetterCharacterSet
Returns a character set containing the characters in the category of Lowercase Letters.

public static NSCharacterSet lowercaseLetterCharacterSet()

Discussion
Informally, this set is the set of all characters used as lowercase letters in alphabets that make case distinctions.

See Also
uppercaseLetterCharacterSet (page 101)
letterCharacterSet (page 100)

nonBaseCharacterSet
Returns a character set containing the characters in the category of Marks.

public static NSCharacterSet nonBaseCharacterSet()

Discussion
This set is also defined as all legal Unicode characters with a nonspacing priority greater than 0. Informally,
this set is the set of all characters used as modifiers of base characters.

See Also
decomposableCharacterSet (page 99)

punctuationCharacterSet
Returns a character set containing the characters in the category of Punctuation.

public static NSCharacterSet punctuationCharacterSet()

Discussion
Informally, this set is the set of all nonwhitespace characters used to separate linguistic units in scripts, such
as periods, dashes, parentheses, and so on.

100 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

symbolCharacterSet
Returns a character set containing the characters in the category of Symbols.

public static NSCharacterSet symbolCharacterSet()

Discussion
These characters include, for example, the dollar sign ($) and the plus (+) sign.

Availability
Available in Mac OS X v10.3 and later.

uppercaseLetterCharacterSet
Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase Letters.

public static NSCharacterSet uppercaseLetterCharacterSet()

Discussion
Informally, this set is the set of all characters used as uppercase letters in alphabets that make case distinctions.

See Also
capitalizedLetterCharacterSet (page 98)
lowercaseLetterCharacterSet (page 100)
letterCharacterSet (page 100)

whitespaceAndNewlineCharacterSet
Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009) and the
newline and nextline characters (U+000A–U+000D, U+0085).

public static NSCharacterSet whitespaceAndNewlineCharacterSet()

See Also
whitespaceCharacterSet (page 101)

whitespaceCharacterSet
Returns a character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009).

public static NSCharacterSet whitespaceCharacterSet()

Discussion
This set doesn’t contain the newline or carriage return characters.

See Also
whitespaceAndNewlineCharacterSet (page 101)

Static Methods 101
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

Instance Methods

bitmapRepresentation
Returns an NSData object encoding the receiving character set in binary format.

public NSData bitmapRepresentation()

Discussion
This format is suitable for saving to a file or otherwise transmitting or archiving.

A raw bitmap representation of a character set is a byte array of 2^16 bits (that is, 8192 bytes). The value of
the bit at position n represents the presence in the character set of the character with decimal Unicode value
n.

characterIsMember
Returns true if aCharacter is in the receiving character set, false if it isn’t.

public boolean characterIsMember(char aCharacter)

characterSetByIntersectingCharacterSet
Returns a character set containing only characters that exist in both the receiver and otherSet.

public NSCharacterSet characterSetByIntersectingCharacterSet(NSCharacterSet otherSet)

characterSetByInvertingCharacterSet
Returns a character set containing only characters that do not exist in the receiver. Inverting an immutable
character set is much more efficient than inverting a mutable character set.

public NSCharacterSet characterSetByInvertingCharacterSet()

See Also
invertCharacterSet (page 318) (NSMutableCharacterSet)

characterSetBySubtractingCharacterSet
Returns a character set containing all the characters in the receiver except for those in otherSet.

public NSCharacterSet characterSetBySubtractingCharacterSet(NSCharacterSet otherSet)

characterSetByUnioningCharacterSet
Returns a character set containing all characters that exist in either the receiver or otherSet.

102 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

public NSCharacterSet characterSetByUnioningCharacterSet(NSCharacterSet otherSet)

isSupersetOfSet
Returns true if the receiving character set is a superset of theOtherSet, false if it isn’t.

public boolean isSupersetOfSet(NSCharacterSet theOtherSet)

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 103
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

104 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guides Cocoa Scripting Guide
Key-Value Coding Programming Guide

Overview

NSClassDescription is an abstract class that provides the interface for querying the relationships and properties
of a class. Concrete subclasses of NSClassDescription provide the available attributes of objects of a particular
class and the relationships between that class and other classes. Defining these relationships between classes
allows for more intelligent and flexible manipulation of objects with key-value coding.

Method implementations for all instance methods of NSClassDescription must be provided by concrete
subclasses. NSClassDescription provides only the implementation for the class methods that maintain the
cache of registered class descriptions. Once created, you must register a class description with the
NSClassDescription method registerClassDescription (page 107).

NSScriptClassDescription, which is used to map the relationships between scriptable classes, is the only
concrete subclass of NSClassDescription provided as part of the Cocoa framework.

Tasks

Constructors

NSClassDescription (page 106)
Creates an empty NSClassDescription.

Working with Class Descriptions

classDescriptionForClass (page 106)
Returns the NSClassDescription for aClass.

invalidateClassDescriptionCache (page 107)
Removes all NSClassDescriptions from the cache. You should rarely need to invoke this method. Use
it whenever a registered NSClassDescription might be replaced by a different version, such as when
you have loaded a new provider of NSClassDescriptions, or when you are about to remove a provider
of NSClassDescriptions.

Overview 105
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

NSClassDescription

registerClassDescription (page 107)
Registers an NSClassDescription object for aClass in the NSClassDescription cache.

Attribute Keys

attributeKeys (page 107)
Overridden by subclasses to return an array of Strings containing the names of immutable values that
instances of this class contain.

Relationship Keys

inverseForRelationshipKey (page 107)
Overridden by subclasses to return the name of the inverse relationship from the relationship specified
by relationshipKey. For a given key that defines the name of the relationship from the receiver’s
class to another class, returns the name of the relationship from the other class to the receiver’s class.

toManyRelationshipKeys (page 108)
Overridden by subclasses to return the keys for the to-many relationship properties of the receiver.

toOneRelationshipKeys (page 108)
Overridden by subclasses to return the keys for the to-one relationship properties of the receiver.

Constructors

NSClassDescription
Creates an empty NSClassDescription.

public NSClassDescription()

Discussion
You should create instances of concrete subclasses instead of NSClassDescription.

Static Methods

classDescriptionForClass
Returns the NSClassDescription for aClass.

public static NSClassDescription classDescriptionForClass(Class aClass)

Discussion
If a class description for aClass is not found, the method posts a
ClassDescriptionNeededForClassNotification (page 108) on behalf of aClass, allowing an observer
to register a class description. The method then checks for a class description again. Returns null if a class
description is still not found.

106 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

NSClassDescription

invalidateClassDescriptionCache
Removes all NSClassDescriptions from the cache. You should rarely need to invoke this method. Use it
whenever a registered NSClassDescription might be replaced by a different version, such as when you have
loaded a new provider of NSClassDescriptions, or when you are about to remove a provider of
NSClassDescriptions.

public static void invalidateClassDescriptionCache()

registerClassDescription
Registers an NSClassDescription object for aClass in the NSClassDescription cache.

public static void registerClassDescription(NSClassDescription description, Class
aClass)

Discussion
You should rarely need to directly invoke this method.

Instance Methods

attributeKeys
Overridden by subclasses to return an array of Strings containing the names of immutable values that instances
of this class contain.

public NSArray attributeKeys()

Discussion
For example, a class description that describes Movie objects could return the attribute keys title,
dateReleased, and rating.

See Also
toManyRelationshipKeys (page 108)
toOneRelationshipKeys (page 108)

inverseForRelationshipKey
Overridden by subclasses to return the name of the inverse relationship from the relationship specified by
relationshipKey. For a given key that defines the name of the relationship from the receiver’s class to
another class, returns the name of the relationship from the other class to the receiver’s class.

public String inverseForRelationshipKey(String relationshipKey)

Discussion
For example, suppose an Employee class has a relationship named department to a Department class, and
that Department has a relationship named employees to Employee. The statement:

employee.inverseForRelationshipKey("department");

Instance Methods 107
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

NSClassDescription

returns the string employees.

toManyRelationshipKeys
Overridden by subclasses to return the keys for the to-many relationship properties of the receiver.

public NSArray toManyRelationshipKeys()

Discussion
To-many relationship properties contain arrays of objects.

See Also
attributeKeys (page 107)
toOneRelationshipKeys (page 108)

toOneRelationshipKeys
Overridden by subclasses to return the keys for the to-one relationship properties of the receiver.

public NSArray toOneRelationshipKeys()

Discussion
To-one relationship properties are other objects.

See Also
attributeKeys (page 107)
toManyRelationshipKeys (page 108)

Notifications

ClassDescriptionNeededForClassNotification
Posted by classDescriptionForClass (page 106) when a class description cannot be found for a class.

After the notification is processed, classDescriptionForClass (page 106) checks for a class description
again. This checking allows an observer to register class descriptions lazily. The notification is posted only
once for any given class, even if the class description remains undefined.

The notification object is the class object for which the class description is requested. This notification does
not contain a userInfo dictionary.

108 Notifications
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

NSClassDescription

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An instance of NSCloneCommand clones the specified scriptable object or objects (such as words, paragraphs,
images, and so on) and inserts them in the specified location, or the default location if no location is specified.
The cloned scriptable objects typically correspond to objects in the application, but aren’t required to. This
command corresponds to AppleScript’s Duplicate command.

NSCloneCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Clone
command through key-value coding. Most applications don’t need to subclass NSCloneCommand or invoke
its methods.

When an instance of NSCloneCommand is executed, it clones the specified objects by sending them
-copyWithZone: messages.

Tasks

Constructors

NSCloneCommand (page 110)
Returns an NSCloneCommand with no data.

Working with Specifiers

keySpecifier (page 110)
Returns a specifier for the object or objects to be cloned.

setReceiversSpecifier (page 110)
Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers
of the Clone command.

Overview 109
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

NSCloneCommand

Constructors

NSCloneCommand
Returns an NSCloneCommand with no data.

public NSCloneCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSCloneCommand with the command description supplied by
aCommandDescription.

public NSCloneCommand(NSScriptCommandDescription aCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

keySpecifier
Returns a specifier for the object or objects to be cloned.

public NSScriptObjectSpecifier keySpecifier()

Discussion
For example, the specifier may indicate that a document’s third rectangle should be cloned. The returned
specifier is valid only in the context of the NSCloneCommand; for example, if you send the specifier a
containerSpecifier (page 544) message, the result is null.

setReceiversSpecifier
Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers of the
Clone command.

public void setReceiversSpecifier(NSScriptObjectSpecifier receiversRef)

Discussion
This method overrides setReceiversSpecifier (page 525) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRef is a specifier for the third
rectangle of the first document, the receiver specifier is the first document while the key
specifier is the third rectangle.

110 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

NSCloneCommand

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An instance of NSCloseCommand closes the specified scriptable object or objects—typically a document or
window (and its associated document, if any). The command may optionally specify a location to save in and
how to handle modified documents (by automatically saving changes, not saving them, or asking the user).

NSCloseCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Close
command through key-value coding. Most applications don’t need to subclass NSCloseCommand or call its
methods.

Tasks

Constructors

NSCloseCommand (page 111)
Returns an NSCloseCommand with no data.

Accessing Save Options

saveOptions (page 112)
Returns a constant indicating how to deal with closing any modified documents.

Constructors

NSCloseCommand
Returns an NSCloseCommand with no data.

public NSCloseCommand()

Overview 111
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

NSCloseCommand

Discussion
Do not use this constructor.

Initializes an instance of NSCloseCommand with the command description supplied by
aScriptCommandDescription.

public NSCloseCommand(NSScriptCommandDescription aScriptCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

saveOptions
Returns a constant indicating how to deal with closing any modified documents.

public int saveOptions()

Discussion
The default value returned is SaveOptionsAsk. See “Constants” (page 112) for a list of possible return values.

Constants

The saveOptions (page 112) method returns one of the following constants to indicate how to deal with
saving any modified documents:

DescriptionConstant

Indicates a modified document should be saved on closing without asking the user.SaveOptionsYes

Indicates a modified document should not be saved on closing.SaveOptionsNo

Indicates the user should be asked before saving any modified documents on closing.SaveOptionsAsk

112 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

NSCloseCommand

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Archives and Serializations Programming Guide for Cocoa

Overview

The NSCoder abstract class declares the interface used by concrete subclasses to transfer objects and other
data items between memory and some other format. This capability provides the basis for archiving (where
objects and data items are stored on disk) and distribution (where objects and data items are copied between
different processes or threads). The concrete subclasses provided by Foundation for these purposes are
NSArchiver, NSUnarchiver, NSKeyedArchiver, and NSKeyedUnarchiver. Concrete subclasses of NSCoder are
referred to in general as coder classes, and instances of these classes as coder objects (or simply coders). A
coder object that can only encode values is referred to as an encoder object, and one that can only decode
values as a decoder object.

NSCoder operates on objects, scalars, arrays, structures, and strings. It does not handle types whose
implementation varies across platforms. A coder object stores object type information along with the data,
so an object decoded from a stream of bytes is normally of the same class as the object that was originally
encoded into the stream.

Tasks

Constructors

NSCoder (page 116)
Creates an empty NSCoder.

Testing Coder

allowsKeyedCoding (page 116)
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

containsValueForKey (page 116)
Returns a Boolean value that indicates whether an encoded value is available for a string.

Overview 113
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

Encoding Data

encodeBoolForKey (page 121)
Encodes boolv and associates it with the string key.

encodeByte (page 121)
Encodes aByte.

encodeByteForKey (page 121)
Encodes bytev and associates it with the string key.

encodeChar (page 122)
Encodes aChar.

encodeCharForKey (page 122)
Encodes charv and associates it with the string key.

encodeConditionalObjectForKey (page 122)
Conditionally encodes a reference to objv and associates it with the string key only if objv has been
unconditionally encoded with encodeObjectForKey (page 125).

encodeDataObject (page 122)
Encodes the NSData object data.

encodeDouble (page 123)
Encodes aDouble.

encodeDoubleForKey (page 123)
Encodes realv and associates it with the string key.

encodeFloat (page 123)
Encodes aFloat.

encodeFloatForKey (page 123)
Encodes realv and associates it with the string key.

encodeIntForKey (page 124)
Encodes intv and associates it with the string key.

encodeInt (page 124)
Encodes anInt.

encodeLong (page 124)
Encodes aLong.

encodeLongForKey (page 124)
Encodes longv and associates it with the string key.

encodeObject (page 125)
Encodes object.

encodeObjectForKey (page 125)
Encodes the object objv and associates it with the string key.

encodeShort (page 125)
Encodes aShort.

encodeShortForKey (page 125)
Encodes shortv and associates it with the string key.

114 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

Decoding Data

decodeBoolForKey (page 117)
Decodes and returns a boolean value that was previously encoded with encodeBoolForKey (page
121) and associated with the string key.

decodeByte (page 117)
Decodes and returns a byte value that was previously encoded with encodeByte (page 121).

decodeByteForKey (page 117)
Decodes and returns a byte value that was previously encoded with encodeByteForKey (page 121)
and associated with the string key.

decodeChar (page 117)
Decodes and returns a char value that was previously encoded with encodeChar (page 122).

decodeCharForKey (page 118)
Decodes and returns a char value that was previously encoded with encodeCharForKey (page 122)
and associated with the string key.

decodeDataObject (page 118)
Decodes and returns an NSData object that was previously encoded with encodeDataObject (page
122). Subclasses must override this method.

decodeDouble (page 118)
Decodes and returns a double value that was previously encoded with encodeDouble (page 123).

decodeDoubleForKey (page 118)
Decodes and returns a double value that was previously encoded with either
encodeFloatForKey (page 123) or encodeDoubleForKey (page 123) and associated with the string
key.

decodeFloat (page 119)
Decodes and returns a float value that was previously encoded with encodeFloat (page 123).

decodeFloatForKey (page 119)
Decodes and returns a float value that was previously encoded with encodeFloatForKey (page
123) or encodeDoubleForKey (page 123) and associated with the string key.

decodeInt (page 119)
Decodes and returns an int value that was previously encoded with encodeInt (page 124).

decodeIntForKey (page 119)
Decodes and returns an int value that was previously encoded with encodeIntForKey (page 124),
encodeShortForKey (page 125), or encodeLongForKey (page 124) and associated with the string
key.

decodeLong (page 119)
Decodes and returns a long value that was previously encoded with encodeLong (page 124).

decodeLongForKey (page 120)
Decodes and returns a long value that was previously encoded with encodeShortForKey (page
125), encodeIntForKey (page 124), or encodeLongForKey (page 124) and associated with the string
key.

decodeObject (page 120)
Decodes an object that was previously encoded with any of the encode... methods.

decodeObjectForKey (page 120)
Decodes and returns an object that was previously encoded with encodeObjectForKey (page 125)
or encodeConditionalObjectForKey (page 122) and associated with the string key.

Tasks 115
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

decodeShort (page 120)
Decodes and returns a short value that was previously encoded with encodeShort (page 125).

decodeShortForKey (page 121)
Decodes and returns a short value that was previously encoded with encodeShortForKey (page
125), encodeIntForKey (page 124), or encodeLongForKey (page 124) and associated with the string
key.

Getting Version Information

systemVersion (page 126)
During encoding, this method should return the system version currently in effect.

versionForClassName (page 126)
Returns the version in effect for the class named className or NSArray.NotFound if no class named
className exists.

Constructors

NSCoder
Creates an empty NSCoder.

public NSCoder()

Discussion
NSCoder is an abstract class, so use one of the concrete subclasses instead.

Instance Methods

allowsKeyedCoding
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

public boolean allowsKeyedCoding()

Discussion
The default implementation returns false. Concrete subclasses that support keyed coding, such as
NSKeyedArchiver, need to override this method to return true.

Availability
Available in Mac OS X v10.2 and later.

containsValueForKey
Returns a Boolean value that indicates whether an encoded value is available for a string.

116 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

public boolean containsValueForKey(String key)

Discussion
The string is passed as key. Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeBoolForKey
Decodes and returns a boolean value that was previously encoded with encodeBoolForKey (page 121) and
associated with the string key.

public boolean decodeBoolForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeByte
Decodes and returns a byte value that was previously encoded with encodeByte (page 121).

public byte decodeByte()

Discussion
Subclasses must override this method.

decodeByteForKey
Decodes and returns a byte value that was previously encoded with encodeByteForKey (page 121) and
associated with the string key.

public byte decodeByteForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeChar
Decodes and returns a char value that was previously encoded with encodeChar (page 122).

public char decodeChar()

Discussion
Subclasses must override this method.

Instance Methods 117
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

decodeCharForKey
Decodes and returns a char value that was previously encoded with encodeCharForKey (page 122) and
associated with the string key.

public char decodeCharForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeDataObject
Decodes and returns an NSData object that was previously encoded with encodeDataObject (page 122).
Subclasses must override this method.

public NSData decodeDataObject()

Discussion
The implementation of your overriding method must match the implementation of your
encodeDataObject (page 122) method. For example, a typical encodeDataObject (page 122) method
encodes the number of bytes of data followed by the bytes themselves. Your override of this method must
read the number of bytes, create an NSData object of the appropriate size, and decode the bytes into the
new NSData object.

decodeDouble
Decodes and returns a double value that was previously encoded with encodeDouble (page 123).

public double decodeDouble()

Discussion
Subclasses must override this method.

decodeDoubleForKey
Decodes and returns a double value that was previously encoded with either encodeFloatForKey (page
123) or encodeDoubleForKey (page 123) and associated with the string key.

public double decodeDoubleForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

118 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

decodeFloat
Decodes and returns a float value that was previously encoded with encodeFloat (page 123).

public float decodeFloat()

Discussion
Subclasses must override this method.

decodeFloatForKey
Decodes and returns a float value that was previously encoded with encodeFloatForKey (page 123) or
encodeDoubleForKey (page 123) and associated with the string key.

public float decodeFloatForKey(String key)

Discussion
If the value was encoded as a double, the extra precision is lost. Also, if the encoded real value does not fit
into a float, the method throws a RangeException. Subclasses must override this method if they perform
keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeInt
Decodes and returns an int value that was previously encoded with encodeInt (page 124).

public int decodeInt()

Discussion
Subclasses must override this method.

decodeIntForKey
Decodes and returns an int value that was previously encoded with encodeIntForKey (page 124),
encodeShortForKey (page 125), or encodeLongForKey (page 124) and associated with the string key.

 public int decodeIntForKey(String key);

Discussion
If the encoded integer does not fit into the default integer size, the method throws a RangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeLong
Decodes and returns a long value that was previously encoded with encodeLong (page 124).

Instance Methods 119
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

public long decodeLong()

Discussion
Subclasses must override this method.

decodeLongForKey
Decodes and returns a long value that was previously encoded with encodeShortForKey (page 125),
encodeIntForKey (page 124), or encodeLongForKey (page 124) and associated with the string key.

public long decodeLongForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeObject
Decodes an object that was previously encoded with any of the encode... methods.

public Object decodeObject()

Discussion
Subclasses may need to override this method.

See Also
encodeObject (page 125)

decodeObjectForKey
Decodes and returns an object that was previously encoded with encodeObjectForKey (page 125) or
encodeConditionalObjectForKey (page 122) and associated with the string key.

public Object decodeObjectForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeShort
Decodes and returns a short value that was previously encoded with encodeShort (page 125).

public short decodeShort()

Discussion
Subclasses must override this method.

120 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

decodeShortForKey
Decodes and returns a short value that was previously encoded with encodeShortForKey (page 125),
encodeIntForKey (page 124), or encodeLongForKey (page 124) and associated with the string key.

public short decodeShortForKey(String key)

Discussion
If the encoded integer does not fit into the default integer size, the method throws a RangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

encodeBoolForKey
Encodes boolv and associates it with the string key.

public void encodeBoolForKey(boolean boolv, String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeBoolForKey (page 117)

encodeByte
Encodes aByte.

public void encodeByte(byte aByte)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeByte (page 117) message.

encodeByteForKey
Encodes bytev and associates it with the string key.

public void encodeByteForKey(byte bytev, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeByteForKey (page 117)

Instance Methods 121
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

encodeChar
Encodes aChar.

public void encodeChar(char aChar)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeChar (page 117) message.

encodeCharForKey
Encodes charv and associates it with the string key.

public void encodeCharForKey(char charv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeCharForKey (page 118)

encodeConditionalObjectForKey
Conditionally encodes a reference to objv and associates it with the string key only if objv has been
unconditionally encoded with encodeObjectForKey (page 125).

public void encodeConditionalObjectForKey(Object objv, String key)

Discussion
Subclasses must override this method if they support keyed coding.

The encoded object is decoded with the decodeObjectForKey (page 120) method. If objv was never
encoded unconditionally, decodeObjectForKey (page 120) returns null in place of objv.

Availability
Available in Mac OS X v10.2 and later.

encodeDataObject
Encodes the NSData object data.

public void encodeDataObject(NSData data)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeDataObject (page 118) message.

See Also
encodeObject (page 125)

122 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

encodeDouble
Encodes aDouble.

public void encodeDouble(double aDouble)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeDouble (page 118) message.

encodeDoubleForKey
Encodes realv and associates it with the string key.

public void encodeDoubleForKey(double realv, String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeDoubleForKey (page 118)
decodeFloatForKey (page 119)

encodeFloat
Encodes aFloat.

public void encodeFloat(float aFloat)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeFloat (page 119) message.

encodeFloatForKey
Encodes realv and associates it with the string key.

public void encodeFloatForKey(float realv, String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeFloatForKey (page 119)

Instance Methods 123
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

decodeDoubleForKey (page 118)

encodeInt
Encodes anInt.

public void encodeInt(int anInt)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeInt (page 119) message.

encodeIntForKey
Encodes intv and associates it with the string key.

public void encodeIntForKey(int intv, String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeIntForKey (page 119)
decodeLongForKey (page 120)
decodeShortForKey (page 121)

encodeLong
Encodes aLong.

public void encodeLong(long aLong)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeLong (page 119) message.

encodeLongForKey
Encodes longv and associates it with the string key.

public void encodeLongForKey(long longv, String key)

Availability
Available in Mac OS X v10.2 and later.

124 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

See Also
decodeLongForKey (page 120)
decodeIntForKey (page 119)
decodeShortForKey (page 121)

encodeObject
Encodes object.

public void encodeObject(Object object)

Discussion
Subclasses must override this method. For example, NSArchiver detects duplicate objects and encodes a
reference to the original object rather than encode the same object twice.

This method must be matched by a subsequent decodeObject (page 120) message.

encodeObjectForKey
Encodes the object objv and associates it with the string key.

public void encodeObjectForKey(Object objv, String key)

Discussion
Subclasses must override this method to identify multiple encodings of objv and encode a reference to
objv instead. For example, NSKeyedArchiver detects duplicate objects and encodes a reference to the original
object rather than encode the same object twice.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeObjectForKey (page 120)

encodeShort
Encodes aShort.

public void encodeShort(short aShort)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeShort (page 120) message.

encodeShortForKey
Encodes shortv and associates it with the string key.

public void encodeShortForKey(short shortv, String key)

Instance Methods 125
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeShortForKey (page 121)
decodeLongForKey (page 120)
decodeIntForKey (page 119)

systemVersion
During encoding, this method should return the system version currently in effect.

public int systemVersion()

Discussion
During decoding, this method should return the version that was in effect when the data was encoded.

By default, this method returns the current system version, which is appropriate for encoding but not for
decoding. Subclasses that implement decoding must override this method to return the system version of
the data being decoded.

versionForClassName
Returns the version in effect for the class named className or NSArray.NotFound if no class named
className exists.

public abstract int versionForClassName(String className)

Discussion
When encoding, this method returns the current version number of the class. When decoding, this method
returns the version number of the class being decoded. Subclasses must override this method.

Constants

The following exceptions may be thrown when an error is encountered:

DescriptionConstant

Archive contains invalid data and may be corruptedInconsistentArchiveException

Attempted to perform an illegal action on a keyed archive, such
as trying to encode a value after finished encoding

InvalidArchiveOperationException

Attempted to perform an illegal action on a keyed archive, such
as trying to decode a float value as a boolean

InvalidUnarchive-
OperationException

126 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An instance of NSCountCommand counts the number of objects of a specified class in the specified object
container (such as the number of words in a paragraph or document) and returns the result.

NSCountCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Count
command through key-value coding. Most applications don’t need to subclass NSCountCommand or call its
methods.

Tasks

Constructors

NSCountCommand (page 127)
Returns an NSCountCommand with no data.

Constructors

NSCountCommand
Returns an NSCountCommand with no data.

public NSCountCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSCountCommand with the command description supplied by
aScriptCommandDescription.

public NSCountCommand(NSScriptCommandDescription aScriptCommandDescription)

Overview 127
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

NSCountCommand

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

128 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

NSCountCommand

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An instance of NSCreateCommand creates the specified scriptable object (such as a document), optionally
supplying the new object with the specified attributes. This command corresponds to AppleScript’s Make
command.

NSCreateCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSCreateCommand or invoke its methods.

If an NSCreateCommand with no argument corresponding to the at parameter is executed (for example,
tell application "Mail" to make new mailbox with properties {name:"testFolder"}),
and the receiver of the command (not necessarily the application object) has a to-many relationship to objects
of the class to be instantiated, and the class description for the receiving class returns false when sent an
isLocationToRequiredToCreateForKey:toManyRelationshipKeymessage, the NSCreateCommand
creates a new object and sends the receiver an insertValueAtIndexInPropertyWithKey (page 696)
message to place the new object in the container. This is part of Cocoa’s scripting support for inserting
newly-created objects into containers without explicitly specifying a location.

Tasks

Constructors

NSCreateCommand (page 130)
Returns an NSCreateCommand with no data.

Getting Information About a Create Command

createClassDescription (page 130)
Returns the class description for the class that is to be created.

resolvedKeyDictionary (page 130)
Returns a dictionary that contains the properties that were specified in the Make Apple event script
command that has been converted to this NSCreateCommand.

Overview 129
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

NSCreateCommand

Constructors

NSCreateCommand
Returns an NSCreateCommand with no data.

public NSCreateCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSCreateCommand with the command description supplied by
aScriptCommandDescription.

public NSCreateCommand(NSScriptCommandDescription aScriptCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

createClassDescription
Returns the class description for the class that is to be created.

public NSScriptClassDescription createClassDescription()

resolvedKeyDictionary
Returns a dictionary that contains the properties that were specified in the Make Apple event script command
that has been converted to this NSCreateCommand.

public NSDictionary resolvedKeyDictionary()

Discussion
The keys in the dictionary are the names of properties (attributes or relationships, in the script suite) that
have been specified for the command, and the corresponding values in the dictionary are the values that
those properties should take. The required and optional arguments for the Create command are specified
in the core suite definition, NSCoreSuite.scriptSuite.

130 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

NSCreateCommand

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guides Binary Data Programming Guide for Cocoa
Property List Programming Guide

Class at a Glance

An NSData object stores immutable data in the form of bytes. The size of the data is subject to a 2GB limit.

Principal Attributes

 ■ A count of the number of bytes in the data object

 ■ The sequence of bytes contained in the data object

NSData (page 133)
Creates a data object.

Commonly Used Methods

length (page 134)
Returns the number of bytes contained by the data object.

Primitive Methods

length (page 134)
Returns the number of bytes contained by the data object.

Class at a Glance 131
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

NSData

Overview

NSData and its subclass NSMutableData provide data objects, object-oriented wrappers for byte buffers.
Data objects let simple allocated buffers (that is, data with no embedded pointers) take on the behavior of
Foundation objects. NSData creates static data objects, and NSMutableData creates dynamic data objects.
NSData and NSMutableData are typically used for data storage and are also useful in Distributed Objects
applications, where data contained in data objects can be copied or moved between applications.

The mutable subclass of NSData is NSMutableData (page 321).

Tasks

Constructors

NSData (page 133)

Creating Data Objects

dataWithContentsOfMappedFile (page 133)
Creates and returns a data object from the mapped file specified by file.

Accessing Data

bytes (page 134)
Returns a byte array of length bytes from the receiver’s contents starting at start.

subdataWithRange (page 134)
Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by
range.

Testing Data

isEqualToData (page 134)
Compares the receiving data object to otherData.

length (page 134)
Returns the number of bytes contained in the receiver.

Storing Data

writeToURL (page 135)
Writes the bytes in the receiver to the location specified by aURL.

132 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

NSData

Constructors

NSData
public NSData()

Discussion
Creates an empty data object. This method is declared primarily for the use of mutable subclasses of NSData.

public NSData(byte[] bytes, int start, int length)

Discussion
Creates a data object with length bytes from the buffer bytes, starting at start.

public NSData(byte[] bytes)

Discussion
Creates a data object with all the data in the buffer bytes.

public NSData(java.io.File aFile)

Discussion
Creates a data object with the data from the file specified by aFile.

public NSData(java.net.URL aURL)

Discussion
Creates a data object with the data from the location specified by aURL.

public NSData(NSData aData)

Discussion
Creates a data object containing the contents of another data object, aData.

public NSData(String aString)

Discussion
Deprecated. To create an NSData from a property list use propertyListFromString (page 461); to initialize
an NSData from a file, pass either a java.io.file or a java.net.url object.

Static Methods

dataWithContentsOfMappedFile
Creates and returns a data object from the mapped file specified by file.

public static NSData dataWithContentsOfMappedFile(java.io.File file)

Discussion
Returns null if the data object could not be creates. Because of file mapping restrictions, this method should
only be used if the file is guaranteed to exist for the duration of the data object’s existence.

Constructors 133
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

NSData

This methods assumes mapped files are available from the underlying operating system. A mapped file uses
virtual memory techniques to avoid copying pages of the file into memory until they are actually needed.

Instance Methods

bytes
Returns a byte array of length bytes from the receiver’s contents starting at start.

public byte[] bytes(int start, int length)

isEqualToData
Compares the receiving data object to otherData.

public boolean isEqualToData(NSData otherData)

Discussion
If the contents of otherData are equal to the contents of the receiver, this method returns true. If not, it
returns false. Two data objects are equal if they hold the same number of bytes, and if the bytes at the
same position in the objects are the same.

length
Returns the number of bytes contained in the receiver.

public int length()

subdataWithRange
Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by range.

public NSData subdataWithRange(NSRange range)

Discussion
If range isn’t within the receiver’s range of bytes, a RangeException is thrown.

For example, the following code excerpt initializes a data object, data2, to contain a subrange of data1:

String myString = "ABCDEFG";
range = new NSRange(2,4);
NSData data1 = new NSData(myString.getBytes());
NSData data2 = data1.subdataWithRange(range);

The result of this excerpt is that data2 contains “CDEF”.

134 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

NSData

writeToURL
Writes the bytes in the receiver to the location specified by aURL.

public boolean writeToURL(java.net.URL aURL, boolean atomically)

Discussion
If atomically is true, the data is written to a backup location, and then, assuming no errors occur, the
backup location is renamed to the specified name. Otherwise, the data is written directly to the specified
location. atomically is ignored if aURL is not of a type the supports atomic writes.

This method returns true if the operation succeeds; otherwise, it returns false.

Instance Methods 135
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

NSData

136 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

NSData

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guides Date and Time Programming Guide for Cocoa
Property List Programming Guide

Class at a Glance

An NSDate object stores a date and time that can be compared to other dates and times.

Principal Attributes

 ■ Seconds since absolute reference date (1 January 2001, GMT)

Commonly Used Methods

earlierDate (page 142)
Compares the receiver to the argument and returns the earlier of the two.

isEqualToDate (page 143)
Returns true if the receiver and the argument are equal.

laterDate (page 143)
Compares the receiver to the argument and returns the later of the two.

timeIntervalSinceNow (page 144)
Returns the number of seconds difference between the receiver and the current date and time.

Primitive Methods

timeIntervalSinceReferenceDate (page 144)

Class at a Glance 137
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

Overview

NSDate objects represent a single point in time. NSDate declares the programmatic interface for specific and
relative time values.

The objects you create using NSDate are referred to as date objects. They are immutable objects.

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates,
computing intervals, and similar functionality. NSDate presents a programmatic interface through which
suitable date objects are requested and returned. Date objects returned from NSDate are lightweight and
immutable since they represent an invariant point in time. This class is designed to provide the foundation
for arbitrary calendrical representations. Its subclass NSGregorianDate offers date objects that are suitable
for representing dates according to western calendrical systems.

NSDate’s sole primitive method, timeIntervalSinceReferenceDate (page 144), provides the basis for all
the other methods in the NSDate interface. This method returns a time value relative to an absolute reference
date.

Subclassing Notes

The major reason for subclassing NSDate is to create a class that expresses a calendrical system other than
the western, Gregorian calendar (for which Cocoa provides the NSCalendarDate class). But you could also
require a custom NSDate class for other reasons, such as to get a date and time value that provides a finer
temporal granularity.

Methods to Override

If you want to subclass NSDate to obtain behavior different than that provided by the private or public
subclasses, you must do these things:

 ■ Declare a suitable instance variable to hold the date and time value (relative to an absolute reference
date).

 ■ Override the timeIntervalSinceReferenceDate (page 144) instance method to provide the correct
date and time value based on your instance variable.

If you are creating a subclass that represents a calendrical system, you must also define methods that partition
past and future periods into the units of this calendar. See the NSCalendarDate class for examples of such
methods.

Because the NSDate class adopts the NSCopying and NSCoding protocols, your subclass must also implement
all of the methods in these protocols.

Special Considerations

Your subclass may use a different reference date than the absolute reference date used by NSDate (the first
instance of 1 January 2001, GMT). If it does, it must still use the absolute reference date in its implementations
of the method timeIntervalSinceReferenceDate (page 144) . That is, the reference date referred to in

138 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

the titles of these methods is the absolute reference date. If you do not use the absolute reference date in
these methods, comparisons between NSDate objects of your subclass and NSDate objects of a private
subclass will not work.

Tasks

Constructors

NSDate (page 140)
Creates an NSDate set to the current date and time.

Creating an NSDate Instance

distantFuture (page 141)
Creates and returns an object representing a date in the distant future (in terms of centuries).

distantPast (page 141)
Creates and returns an object representing a date in the distant past (in terms of centuries).

dateByAddingTimeInterval (page 142)
Returns an NSDate object that is set to a specified number of seconds, seconds, relative to the
receiver.

Comparing Dates

isEqualToDate (page 143)
Returns true if the two objects compared are NSDate objects and are exactly equal to each other,
false if one of the objects is not of the NSDate class or their date and time values differ.

earlierDate (page 142)
Compares the receiver date toanotherDate, usingtimeIntervalSinceDate (page 144), and returns
the earlier of the two.

laterDate (page 143)
Compares the receiver to anotherDate, using timeIntervalSinceDate (page 144), and returns
the later of the two.

compare (page 142)
Compares the receiving date to anotherDate, using timeIntervalSinceDate (page 144), and
returns a value of type int.

equals (page 143)
Returns true if anObject is an instance of NSDate and satisfies isEqualToDate (page 143).

hashCode (page 143)
Returns a hash value for the receiver.

Tasks 139
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

Getting Time Intervals

timeIntervalSinceDate (page 144)
Returns the interval between the receiver and anotherDate.

timeIntervalSinceNow (page 144)
Returns the interval between the receiver and the current date and time.

currentTimeIntervalSinceReferenceDate (page 141)
Returns the interval between the system’s absolute reference date (the first instant of 1 January 2001,
GMT) and the current date and time

timeIntervalSinceReferenceDate (page 144)
Returns the interval between the receiver and the system’s absolute reference date, 1 January 2001,
GMT.

Representing Dates as Strings

toString (page 144)
Returns a string representation of the receiver.

Working with Milliseconds

millisecondsToTimeInterval (page 141)
Converts a time span, milliseconds, measured in milliseconds, to a time interval, which is in seconds.

timeIntervalToMilliseconds (page 142)
Converts a time interval, seconds, which is in seconds, to milliseconds.

Constructors

NSDate
Creates an NSDate set to the current date and time.

public NSDate()

Creates an NSDate relative to the absolute reference date (the first instant of 1 January 2001, GMT) by the
specified number of seconds (plus or minus).

public NSDate(double seconds)

Creates an NSDate relative to refDate by a specified number of seconds (plus or minus).

public NSDate(double seconds, NSDate refDate)

140 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

Static Methods

currentTimeIntervalSinceReferenceDate
Returns the interval between the system’s absolute reference date (the first instant of 1 January 2001, GMT)
and the current date and time

public static double currentTimeIntervalSinceReferenceDate()

Discussion
.

See Also
timeIntervalSinceReferenceDate (page 144)
timeIntervalSinceDate (page 144)
timeIntervalSinceNow (page 144)

distantFuture
Creates and returns an object representing a date in the distant future (in terms of centuries).

public static Object distantFuture()

Discussion
You can pass this value when an NSDate is required to have the date argument essentially ignored. For
example, the NSWindow method nextEventMatchingMask returns null if an event specified in the event
mask does not happen before the specified date. You can use the object returned by distantFuture as
the date argument to wait indefinitely for the event to occur.

See Also
distantPast (page 141)

distantPast
Creates and returns an object representing a date in the distant past (in terms of centuries).

public static Object distantPast()

Discussion
You can use this object in your code as a control date, a guaranteed temporal boundary.

See Also
distantFuture (page 141)

millisecondsToTimeInterval
Converts a time span, milliseconds, measured in milliseconds, to a time interval, which is in seconds.

public static double millisecondsToTimeInterval(long milliseconds)

Static Methods 141
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

timeIntervalToMilliseconds
Converts a time interval, seconds, which is in seconds, to milliseconds.

public static long timeIntervalToMilliseconds(double seconds)

Instance Methods

compare
Compares the receiving date to anotherDate, using timeIntervalSinceDate (page 144), and returns a
value of type int.

public int compare(NSDate anotherDate)

Discussion
If the two dates are exactly equal to each other, this method returns OrderedSame. If the receiving object
in the comparison is more recent than anotherDate, the method returns OrderedDescending. If the
receiving object is older, this method returns OrderedAscending.

This method detects subsecond differences between dates. If you want to compare dates with a less fine
granularity, use timeIntervalSinceDate (page 144) to compare the two dates or use NSGregorianDate
objects instead.

See Also
earlierDate (page 142)
laterDate (page 143)

dateByAddingTimeInterval
Returns an NSDate object that is set to a specified number of seconds, seconds, relative to the receiver.

public NSDate dateByAddingTimeInterval(double seconds)

Discussion
Use a negative value for seconds to have the returned object specify a date before the receiver. The date
returned might have a representation different from the receiver’s.

See Also
timeIntervalSinceDate (page 144)

earlierDate
Compares the receiver date to anotherDate, using timeIntervalSinceDate (page 144), and returns the
earlier of the two.

public NSDate earlierDate(NSDate anotherDate)

See Also
compare (page 142)

142 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

laterDate (page 143)

equals
Returns true if anObject is an instance of NSDate and satisfies isEqualToDate (page 143).

public boolean equals(Object anObject)

Discussion
Returns false otherwise.

hashCode
Returns a hash value for the receiver.

public int hashCode()

Discussion
The hash value is the integer value of the time interval returned from
timeIntervalSinceReferenceDate (page 144).

isEqualToDate
Returns true if the two objects compared are NSDate objects and are exactly equal to each other, false if
one of the objects is not of the NSDate class or their date and time values differ.

public boolean isEqualToDate(NSDate anotherDate)

Discussion
This method detects subsecond differences between dates. If you want to compare dates with a less fine
granularity, either usetimeIntervalSinceDate (page 144) to compare the two dates or use NSGregorianDate
objects instead.

See Also
compare (page 142)
earlierDate (page 142)
laterDate (page 143)

laterDate
Compares the receiver to anotherDate, using timeIntervalSinceDate (page 144), and returns the later
of the two.

public NSDate laterDate(NSDate anotherDate)

See Also
compare (page 142)
earlierDate (page 142)

Instance Methods 143
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

timeIntervalSinceDate
Returns the interval between the receiver and anotherDate.

public double timeIntervalSinceDate(NSDate anotherDate)

Discussion
If the receiver is earlier than anotherDate, the return value is negative.

See Also
timeIntervalSinceNow (page 144)
currentTimeIntervalSinceReferenceDate (page 141)

timeIntervalSinceNow
Returns the interval between the receiver and the current date and time.

public double timeIntervalSinceNow()

Discussion
If the receiver is earlier than the current date and time, the return value is negative.

See Also
timeIntervalSinceDate (page 144)
currentTimeIntervalSinceReferenceDate (page 141)

timeIntervalSinceReferenceDate
Returns the interval between the receiver and the system’s absolute reference date, 1 January 2001, GMT.

public double timeIntervalSinceReferenceDate()

Discussion
If the receiver is earlier than the absolute reference date, the return value is negative.

This method is the primitive method for NSDate. If you subclass NSDate, you must override this method with
your own implementation for it.

See Also
timeIntervalSinceDate (page 144)
timeIntervalSinceNow (page 144)
currentTimeIntervalSinceReferenceDate (page 141)

toString
Returns a string representation of the receiver.

public String toString()

144 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

Constants

NSDate provides the following constants as a convenience:

DescriptionTypeConstant

Date object for 1 January 1970NSDateDateFor1970

Seconds from 1 January 1970 to reference date, 1 January 2001doubleTimeIntervalSince1970

Constants 145
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

146 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

Inherits from Object

Package: com.apple.cocoa.foundation

Companion guide Number and Value Programming Topics for Cocoa

Overview

The NSDecimalMappingBehavior class controls mapping behavior (rounding mode and not-a-number
treatment) used for converting between the Objective-C class NSDecimalNumber and the Java class
java.math.BigDecimal. The mapping behavior is automatically invoked when a Java object invokes an
Objective-C method that takes (or returns) an NSDecimalNumber value; the Java object sends and receives
the value in the form of a java.math.BigDecimal object.

Tasks

Modifying Behavior

defaultRoundingMode (page 148)
Returns the way arithmetic methods round off.

setDefaultRoundingMode (page 148)
Sets the way arithmetic methods round off to roundingMode.

Error Handling

getNotANumberValue (page 148)
Returns a value that specifies no number.

setNotANumberValue (page 148)
Sets a value that specifies no number.

setShouldRaiseForNotANumberArgument (page 148)
Sets whether an exception is thrown when NaN is passed to a method.

shouldRaiseForNotANumberArgument (page 149)
Returns whether an exception is thrown when NaN is passed to a method.

Overview 147
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

NSDecimalMappingBehavior

Static Methods

defaultRoundingMode
Returns the way arithmetic methods round off.

public static int defaultRoundingMode()

Discussion
Possible values are described in “Constants” (page 149).

getNotANumberValue
Returns a value that specifies no number.

public static java.math.BigDecimal getNotANumberValue()

Discussion
Any arithmetic method receiving this value as an argument returns this value.

This value can be a useful way of handling nonnumeric data in an input file. It can also be a useful response
to calculation errors.

setDefaultRoundingMode
Sets the way arithmetic methods round off to roundingMode.

public static void setDefaultRoundingMode(int roundingMode)

Discussion
Possible values for roundingMode are described in “Constants” (page 149).

setNotANumberValue
Sets a value that specifies no number.

public static void setNotANumberValue(java.math.BigDecimal aBigDecimal)

Discussion
Any arithmetic method receiving this value as an argument returns this value.

This value can be a useful way of handling nonnumeric data in an input file. It can also be a useful response
to calculation errors.

setShouldRaiseForNotANumberArgument
Sets whether an exception is thrown when NaN is passed to a method.

public static void setShouldRaiseForNotANumberArgument(boolean flag)

148 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

NSDecimalMappingBehavior

Discussion
If flag is true, an IllegalArgumentException is thrown. If flag is false, the not-a-number value is
returned and a NotANumberConversionNotification (page 150) is posted. Default is false.

See Also
shouldRaiseForNotANumberArgument (page 149)

shouldRaiseForNotANumberArgument
Returns whether an exception is thrown when NaN is passed to a method.

public static boolean shouldRaiseForNotANumberArgument()

Discussion
Default is false.

See Also
setShouldRaiseForNotANumberArgument (page 148)

Constants

The following constants are provided by NSDecimalMappingBehavior:

DescriptionConstant

Methods round to the closest possible return value. When they are caught halfway
between two possibilities, they return the possibility whose last digit is even. In practice,
this means that, over the long run, numbers will be rounded up as often as they are
rounded down; there will be no systematic bias.

RoundBankers

Methods round their return values down.RoundDown

Methods round to the closest possible return value. When they are caught halfway
between two positive numbers, they round up; when caught between two negative
numbers, they round down.

RoundPlain

Methods round their return values up.RoundUp

Notifications

DecimalLossOfPrecisionNotification
Posted when loss of precision occurs in converting java.math.BigDecimal to NSDecimalNumber. The
notification does not contain a notification object or userInfo dictionary.

Constants 149
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

NSDecimalMappingBehavior

NotANumberConversionNotification
Posted when NaN is passed as an argument to a method or the not-a-number value is returned from a method.
The notification does not contain a notification object or userInfo dictionary.

See Also
setShouldRaiseForNotANumberArgument (page 148)

150 Notifications
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

NSDecimalMappingBehavior

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guides Cocoa Scripting Guide
Key-Value Coding Programming Guide

Overview

An instance of NSDeleteCommand deletes the specified scriptable object or objects (such as words, paragraphs,
and so on).

Suppose, for example, a user executes a script that sends the command delete the third rectangle
in the first document to the Sketch sample application (located in /Developer/Examples/AppKit).
Cocoa creates an NSDeleteCommand to perform the operation.When the command is executed, it uses the
key-value coding mechanism to remove the specified object or objects from their container.

NSDeleteCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSDeleteCommand or call its methods.

Tasks

Constructors

NSDeleteCommand (page 152)
Returns an NSDeleteCommand with no data.

Working with Specifiers

keySpecifier (page 152)
Returns a specifier for the object or objects to be deleted.

setReceiversSpecifier (page 152)
Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers
of the Delete command.

Overview 151
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

NSDeleteCommand

Constructors

NSDeleteCommand
Returns an NSDeleteCommand with no data.

public NSDeleteCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSDeleteCommand with the command description supplied by
aScriptCommandDescription.

public NSDeleteCommand(NSScriptCommandDescription aScriptCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

keySpecifier
Returns a specifier for the object or objects to be deleted.

public NSScriptObjectSpecifier keySpecifier()

Discussion
Note that this may be different than the specifier or specifiers set by setReceiversSpecifier (page 152).

setReceiversSpecifier
Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers of the
Delete command.

public void setReceiversSpecifier(NSScriptObjectSpecifier receiversRef)

Discussion
This method overrides setReceiversSpecifier (page 525) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRef is a specifier for the third
rectangle of the first document, the receiver specifier is the first document while the key
specifier is the third rectangle.

152 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

NSDeleteCommand

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guides Collections Programming Topics for Cocoa
Property List Programming Guide

Class at a Glance

An NSDictionary object stores an immutable set of entries.

Principal Attributes

 ■ A count of the number of entries in the dictionary

 ■ The set of keys contained in the dictionary

 ■ The objects that correspond to the keys in the dictionary

NSDictionary (page 155)
Creates a new dictionary.

Commonly Used Methods

count (page 157)
Returns the number of objects currently in the dictionary.

objectForKey (page 158)
Returns the object that corresponds to the specified key.

keyEnumerator (page 157)
Returns an enumerator object that lets you access each key in the dictionary.

Class at a Glance 153
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

NSDictionary

Overview

The NSDictionary class declares the programmatic interface to objects that manage immutable associations
of keys and values. Use this class or its subclass NSMutableDictionary when you need a convenient and
efficient way to retrieve data associated with an arbitrary key. (For convenience, we use the term dictionary
to refer to any instance of one of these classes without specifying its exact class membership.)

The mutable subclass of NSDictionary is NSMutableDictionary (page 325).

A key-value pair within a dictionary is called an entry. Each entry consists of one object that represents the
key and a second object that is that key’s value. Within a dictionary, the keys are unique. That is, no two keys
in a single dictionary are equal (as determined by equals (page 424)).

An instance of NSDictionary is an immutable dictionary: you establish its entries when it’s created and cannot
modify them afterward. An instance of NSMutableDictionary is a mutable dictionary: you can add or delete
entries at any time, and the object automatically allocates memory as needed.

Internally, a dictionary uses a hash table to organize its storage and to provide rapid access to a value given
the corresponding key. However, the methods defined insulate you from the complexities of working with
hash tables, hashing functions, or the hashed value of keys. The methods described below take keys directly,
not their hashed form.

Methods that add entries to dictionaries—whether during construction (for all dictionaries) or modification
(for mutable dictionaries)—add each value object to the dictionary directly, but copy each key argument
and add the copy to the dictionary.

NSDictionary’s three primitive methods—count (page 157), objectForKey (page 158), and
keyEnumerator (page 157)—provide the basis for all of the other methods in its interface. The countmethod
returns the number of entries in the dictionary. objectForKey returns the value associated with a given
key. keyEnumerator returns an object that lets you iterate through each of the keys in the dictionary.

The other methods declared here operate by invoking one or more of these primitives. The nonprimitive
methods provide convenient ways of accessing multiple entries at once.

Tasks

Constructors

NSDictionary (page 155)

Counting Entries

count (page 157)
Returns the number of entries in the receiver.

154 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

NSDictionary

Comparing Dictionaries

isEqualToDictionary (page 157)
Compares the receiving dictionary to otherDictionary.

Accessing Keys and Values

allKeys (page 156)
Returns a new array containing the receiver’s keys or an empty array if the receiver has no entries.

allKeysForObject (page 156)
Finds all occurrences of the value anObject in the receiver and returns a new array with the
corresponding keys.

allValues (page 156)
Returns a new array containing the receiver’s values, or an empty array if the receiver has no entries.

keyEnumerator (page 157)
Returns an enumerator object that lets you access each key in the receiver.

objectEnumerator (page 158)
Returns an enumerator object that lets you access each value in the receiver.

objectForKey (page 158)
Returns an entry’s value given its key, or null if no value is associated with aKey.

objectsForKeys (page 158)
Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.

Constructors

NSDictionary
public NSDictionary()

Discussion
Creates and returns an empty dictionary.

public NSDictionary(Object[] objects, Object[] keys)

Discussion
Creates a dictionary with entries constructed from the contents of the objects and keys arrays. This method
steps through the objects and keys arrays, creating entries in the new dictionary as it goes. Each value
object is added directly to the dictionary. Each key object is copied, and the copy is added to the dictionary.
An InvalidArgumentException is thrown if the objects and keys arrays do not have the same number of
elements.

public NSDictionary(Object anObject, Object aKey)

Discussion
Creates a dictionary containing a single object, anObject, for a single key, aKey.

public NSDictionary(NSDictionary otherDictionary)

Constructors 155
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

NSDictionary

Discussion
Creates a dictionary containing the keys and values found in otherDictionary.

Instance Methods

allKeys
Returns a new array containing the receiver’s keys or an empty array if the receiver has no entries.

public NSArray allKeys()

Discussion
The order of the elements in the array isn’t defined.

See Also
allValues (page 156)
allKeysForObject (page 156)

allKeysForObject
Finds all occurrences of the value anObject in the receiver and returns a new array with the corresponding
keys.

public NSArray allKeysForObject(Object anObject)

Discussion
Each object in the receiver is sent an equals (page 424) message to determine if it’s equal to anObject. If
no object matching anObject is found, this method returns an empty array.

See Also
allKeys (page 156)
keyEnumerator (page 157)

allValues
Returns a new array containing the receiver’s values, or an empty array if the receiver has no entries.

public NSArray allValues()

Discussion
The order of the values in the array isn’t defined.

See Also
allKeys (page 156)
objectEnumerator (page 158)

156 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

NSDictionary

count
Returns the number of entries in the receiver.

public int count()

isEqualToDictionary
Compares the receiving dictionary to otherDictionary.

public boolean isEqualToDictionary(NSDictionary otherDictionary)

Discussion
If the contents of otherDictionary are equal to the contents of the receiver, this method returns true. If
not, it returns false.

Two dictionaries have equal contents if they each hold the same number of entries and, for a given key, the
corresponding value objects in each dictionary satisfy the equals (page 424) test.

See Also
equals (page 424) (NSObject)

keyEnumerator
Returns an enumerator object that lets you access each key in the receiver.

public java.util.Enumeration keyEnumerator()

Discussion

java.util.Enumeration enumerator = myDict.keyEnumerator();

while (enumerator.hasMoreElements()) {{
 Object anObject = enumerator.nextElement();
 /* code to act on each element */
}

When this method is used with mutable subclasses of NSDictionary, your code shouldn’t modify the entries
during enumeration. If you intend to modify the entries, use the allKeys (page 156) method to create a
“snapshot” of the dictionary’s keys. Then use this snapshot to traverse the entries, modifying them along the
way.

Note that the objectEnumerator (page 158) method provides a convenient way to access each value in
the dictionary.

See Also
allKeys (page 156)
allKeysForObject (page 156)
objectEnumerator (page 158)
nextElement (page 167) (NSEnumerator)

Instance Methods 157
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

NSDictionary

objectEnumerator
Returns an enumerator object that lets you access each value in the receiver.

public java.util.Enumeration objectEnumerator()

Discussion

java.util.Enumeration enumerator = myDict.objectEnumerator();

while (enumerator.hasMoreElements()) {{
 Object anObject = enumerator.nextElement();
 /* code to act on each element */
}

When this method is used with mutable subclasses of NSDictionary, your code shouldn’t modify the entries
during enumeration. If you intend to modify the entries, use the allValues (page 156) method to create a
“snapshot” of the dictionary’s values. Work from this snapshot to modify the values.

See Also
keyEnumerator (page 157)
nextElement (page 167) (NSEnumerator)

objectForKey
Returns an entry’s value given its key, or null if no value is associated with aKey.

public Object objectForKey(Object akey)

See Also
allKeys (page 156)
allValues (page 156)

objectsForKeys
Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.

public NSArray objectsForKeys(NSArray keys, Object anObject)

Discussion
The objects in the returned array and the keys array have a one-for-one correspondence, so that the nth
object in the returned array corresponds to the nth key in keys. If an object isn’t found in the receiver to
correspond to a given key, the marker object, specified by anObject, is placed in the corresponding element
of the returned array.

158 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

NSDictionary

Inherits from NSNotificationCenter : NSObject

Package: com.apple.cocoa.foundation

Companion guide Notification Programming Topics for Cocoa

Class at a Glance

NSDistributedNotificationCenter provides a way to send notifications to objects in other tasks. It takes
NSNotification objects and broadcasts them to any objects in other tasks that have registered for the
notification with their task’s default NSDistributedNotificationCenter.

Principal Attributes

 ■ A table of objects that want to receive notifications, the notifications they want to receive, and identifying
strings they are interested in

Each task has a default distributed notification center. You typically don’t create your own.

Commonly Used Methods

defaultCenter (page 161)
Accesses the default notification center.

addObserver (page 162)
Registers an object to receive a notification with a specified behavior when notification delivery is
suspended.

postNotification (page 162)
Creates and posts a notification.

Overview

An NSDistributedNotificationCenter object (or simply, distributed notification center) is a notification center
that can distribute notifications asynchronously to tasks other than the one in which the notification was
posted.

Class at a Glance 159
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

NSDistributedNotificationCenter

Each task has a default distributed notification center that you access with the defaultCenter (page 161)
static method. There may be different types of distributed notification centers. Right now there is a single
type—LocalNotificationCenterType. This type of distributed notification center handles notifications
that can be sent between tasks on a single machine. For communication between tasks on different machines,
use “Distributed Objects”.

Posting a distributed notification is an expensive operation. The notification gets sent to a system-wide server
that then distributes it to all the tasks that have objects registered for distributed notifications. The latency
between posting the notification and the notification’s arrival in another task is unbounded. In fact, if too
many notifications are being posted and the server’s queue fills up, notifications can be dropped.

Distributed notifications are delivered via a task’s run loop. A task must be running a run loop in one of the
“common” modes, such as NSRunLoop.DefaultRunLoopMode, to receive a distributed notification. For
multithreaded applications running in Mac OS X v10.3 and later, distributed notifications are always delivered
to the main thread. For multithreaded applications running in Mac OS X v10.2.8 and earlier, notifications are
delivered to the thread that first used the distributed notifications API, which in most cases is the main thread.

Tasks

Constructors

NSDistributedNotificationCenter (page 161)
Creates an empty NSDistributedNotificationCenter.

Accessing Distributed Notification Centers

defaultCenter (page 161)
Returns the default distributed notification center, representing the local notification center for the
machine by calling notificationCenterForType (page 161) with an argument of
LocalNotificationCenterType.

notificationCenterForType (page 161)
Returns the distributed notification center for the specified type.

Adding and Removing Observers

addObserver (page 162)
Registers anObserver to receive notifications with the name notificationName and/or the
identifying string anObject.

Posting Notifications

postNotification (page 162)
Creates a notification with the name notificationName, associates it with the string anObject
and dictionary userInfo, and posts it to the notification center with delivery scheduled for
deliverImmediately, as supplied by the invoker.

160 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

NSDistributedNotificationCenter

Suspending and Enabling Notification Delivery

setSuspended (page 163)
Suspends notification delivery when set to true and resumes immediate notification delivery when
set to false.

suspended (page 163)
Returns true if the notification center is delivering notifications for this application according to their
suspension behavior, false if it is delivering them immediately.

Constructors

NSDistributedNotificationCenter
Creates an empty NSDistributedNotificationCenter.

public NSDistributedNotificationCenter()

Discussion
This center is not the default notification center. To obtain the default center, use defaultCenter (page
161).

Static Methods

defaultCenter
Returns the default distributed notification center, representing the local notification center for the machine
by callingnotificationCenterForType (page 161) with an argument ofLocalNotificationCenterType.

public static NSNotificationCenter defaultCenter()

notificationCenterForType
Returns the distributed notification center for the specified type.

public static NSDistributedNotificationCenter notificationCenterForType(String
type)

Discussion
Currently only one type, LocalNotificationCenterType, is supported.

Constructors 161
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

NSDistributedNotificationCenter

Instance Methods

addObserver
Registers anObserver to receive notifications with the name notificationName and/or the identifying
string anObject.

public void addObserver(Object anObserver, NSSelector aSelector, String
notificationName, String anObject, int suspensionBehavior)

Discussion
When a notification of name notificationNamewith the identifying string anObject is posted, anObserver
receives an aSelectormessage with this notification as the argument. The method for the selector specified
in aSelectormust have one and only one argument. If notificationName is null, the notification center
notifies the observer of all notifications with an identifying string matching anObject. If anObject is null,
the notification center notifies the observer of all notifications with the name notificationName. The
suspensionBehavior determines how the notification center handles notifications when notification
delivery has been suspended. The possible values are described in “Constants” (page 164).

See Also
postNotification (page 162)

postNotification
Creates a notification with the name notificationName, associates it with the string anObject and
dictionary userInfo, and posts it to the notification center with delivery scheduled for deliverImmediately,
as supplied by the invoker.

public void postNotification(String notificationName, String anObject, NSDictionary
userInfo, boolean deliverImmediately)

Discussion
This method is the preferred method for posting notifications.

The userInfo dictionary is serialized as a property list, so it can be passed to another task. In the receiving
task, it is deserialized back into a dictionary. This serialization imposes some restrictions on the objects that
can be placed in the userInfo dictionary. See “XML Property Lists” for details.

Posting with deliverImmediately set to false allows the normal suspension behavior of the observers
to take place. If deliverImmediately is set to true, the notification is delivered immediately to all observers,
regardless of their suspension behavior or suspension state.

Creates a notification with the name notificationName, associates it with the string anObject and
dictionary userInfo, and posts it to the notification center.

public void postNotification(String name, String anObject, NSDictionary userInfo,
int options)

Discussion
Possible values for options are described in the “Constants” (page 164) section. Pass in 0 for no options.

162 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

NSDistributedNotificationCenter

The userInfo dictionary is serialized as a property list, so it can be passed to another task. In the receiving
task, it is deserialized back into a dictionary. This serialization imposes some restrictions on the objects that
can be placed in the userInfo dictionary. See “XML Property Lists” for details.

Availability
Available in Mac OS X v10.3 and later.

See Also
encodeRootObject (page 53) (NSArchiver)
unarchiveObjectWithData (page 626) (NSUnarchiver)

setSuspended
Suspends notification delivery when set to true and resumes immediate notification delivery when set to
false.

public void setSuspended(boolean suspended)

Discussion
Distributed notification centers enable or suspend notification delivery on a per-task basis. When a task
suspends notification delivery, notifications are delivered according to the suspension behavior of the
observer. When delivery is not suspended, notifications are always delivered immediately. See
“Constants” (page 164) for the available types of suspension behaviors.

NSApplication automatically suspends delivery when the application is not active. Applications based on the
Application Kit should let the Application Kit manage the suspension of distributed notification delivery.
Foundation-only programs may have occasional need to use this method.

See Also
addObserver (page 162)
postNotification (page 162)
suspended (page 163)

suspended
Returns true if the notification center is delivering notifications for this application according to their
suspension behavior, false if it is delivering them immediately.

public boolean suspended()

Discussion
Applications based on the Application Kit should let the Application Kit manage the suspension of distributed
notification delivery. Foundation-only programs may have occasional need to use this method.

See Also
setSuspended (page 163)

Instance Methods 163
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

NSDistributedNotificationCenter

Constants

NSDistributedNotificationCenter defines the following notification center type:

DescriptionConstant

Distributes notifications to all tasks on the sender’s machine.LocalNotificationCenterType

There are four different types of suspension behavior, each useful in different circumstances:

DescriptionConstant

The server does not queue any notifications with this name and object
until setSuspended (page 163) with an argument of false is called.

Notification-
SuspensionBehaviorDrop

The server only queues the last notification of the specified name and
object; earlier notifications are dropped. In cover methods for which
suspension behavior is not an explicit argument, Notification-
SuspensionBehaviorCoalesce is the default.

Notification-
SuspensionBehavior-
Coalesce

The server holds all matching notifications until the queue has been filled
(queue size determined by the server), at which point the server may flush
queued notifications.

Notification-
SuspensionBehaviorHold

The server delivers notifications matching this registration irrespective of
whether setSuspended (page 163) with an argument of true has been
called. When a notification with this suspension behavior is matched, it
has the effect of first flushing any queued notifications. The effect is as if
setSuspended (page 163) with an argument of false were first called if
the application is suspended, followed by the notification in question being
delivered, followed by a transition back to the previous suspended or
unsuspended state.

Notification-
SuspensionBehavior-
DeliverImmediately

NSDistributedNotificationCenter defines these constants to specify the behavior of notifications posted using
postNotification (page 162):

DescriptionConstant

If not set, allows the normal suspension behavior of notification observers
to take place. If set, the notification is delivered immediately to all
observers, regardless of their suspension behavior or suspension state.

NotificationDeliver-
Immediately

If not set, the notification is sent only to applications within the same
login session as the posting process. If set, the notification is posted to
all sessions.

NotificationPost-
ToAllSessions

164 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

NSDistributedNotificationCenter

Inherits from Object

Implements java.util.Enumeration

Package: com.apple.cocoa.foundation

Companion guide Collections Programming Topics for Cocoa

Class at a Glance

An abstract class whose instances enumerate collections of other objects, such as arrays and dictionaries.

Principal Attributes

 ■ A set of objects to enumerate

 ■ The next object in the enumeration

All creation methods are defined in the collection classes such as NSArray and NSDictionary. These methods
contain the word “Enumerator,” as in NSArray’s objectEnumerator (page 64) method or NSDictionary’s
keyEnumerator (page 157) method.

Commonly Used Methods

nextElement (page 167)
Returns the next object in the collection being enumerated.

Overview

NSEnumerator is a simple abstract class whose subclasses enumerate collections of other objects. Collection
objects—such as arrays, sets, and dictionaries—provide special NSEnumerator objects with which to enumerate
their contents. You send nextElement (page 167) repeatedly to a newly created NSEnumerator object to
have it return the next object in the original collection. When the collection is exhausted, null is returned.
You can’t “reset” an enumerator after it’s exhausted its collection. To enumerate a collection again, you need
a new enumerator.

Class at a Glance 165
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

NSEnumerator

Collection classes such as NSArray, NSSet, and NSDictionary include methods that return an enumerator
appropriate to the type of collection. For instance, NSArray has two methods that return an NSEnumerator
object: objectEnumerator (page 64) and reverseObjectEnumerator (page 65). NSDictionary also has
two methods that return an NSEnumerator object:keyEnumerator (page 157) andobjectEnumerator (page
158). These methods let you enumerate the contents of an NSDictionary by key or by value, respectively.

Note: It isn’t safe to modify a mutable collection while enumerating through it.

The enumerator subclasses used by NSArray, NSDictionary, and NSSet retain the collection during enumeration.
When the enumeration is exhausted, the collection is released.

Tasks

Getting the Objects

nextElement (page 167)
Returns the next object from the collection being enumerated.

Querying Enumerators

getObjCEnumerator (page 166)
Returns an integer value identifying the underlying Objective-C enumerator.

hasMoreElements (page 166)
Returns a Boolean value that indicates whether there are more elements in the collection that can
be enumerated by the receiver.

Instance Methods

getObjCEnumerator
Returns an integer value identifying the underlying Objective-C enumerator.

public int getObjCEnumerator()

hasMoreElements
Returns a Boolean value that indicates whether there are more elements in the collection that can be
enumerated by the receiver.

public boolean hasMoreElements()

166 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

NSEnumerator

nextElement
Returns the next object from the collection being enumerated.

public Object nextElement()

Discussion
When nextElement returns null, all objects have been enumerated.

Instance Methods 167
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

NSEnumerator

168 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

NSEnumerator

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.3 and later.

Companion guide Error Handling Programming Guide For Cocoa

Overview

NSError encapsulates richer and more extensible error information than is possible using only an error code
or error string. The core attributes of an NSError are an error domain (represented by a string), a domain-specific
error code and a user info dictionary containing application specific information.

Several well-known domains are defined corresponding to Mach, POSIX, and OSStatus errors. In addition,
NSError allows an arbitrary user info dictionary to be specified, and provides the means to return a
human-readable description for the error.

NSError is not an abstract class, and can be used directly. Applications may choose to create subclasses of
NSError to provide better localized error strings by overriding localizedDescription (page 171).

In general, the presence of an error should be indicated by other means, for example by returning false or
null from the method. The method can then optionally return an NSError object by-reference, in order to
further describe the error.

Tasks

Constructors

NSError (page 170)
Creates an empty NSError.

Getting Error Properties

code (page 171)
Returns the receiver’s error code.

Overview 169
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

NSError

domain (page 171)
Returns a string containing the receiver’s error domain.

userInfo (page 173)
Returns an NSDictionary containing the user info associated with the receiver or null if the user info
dictionary has not been set.

Getting a Localized Error Description

localizedDescription (page 171)
Returns a string containing the localized description of the error.

localizedRecoveryOptions (page 172)
Returns an array containing the localized titles of buttons appropriate for displaying in an alert panel.

localizedRecoverySuggestion (page 172)
Returns a string containing the localized recovery suggestion for the error.

localizedFailureReason (page 172)
Returns a string containing the localized explanation of the reason for the error.

Getting the Error Recovery Attempter

recoveryAttempter (page 173)
Returns an object that conforms to the NSErrorRecoveryAttempting informal protocol.

Constructors

NSError
Creates an empty NSError.

public NSError()

Availability
Available in Mac OS X v10.3 and later.

Creates an NSError object for domain with the specified error code and the dictionary of arbitrary data
userInfo.

public NSError(String domain, int code, NSDictionary dict)

Discussion
The domain must not be null. The userInfo may be null.

The domain can be one of the predefined NSError domains, or an arbitrary string describing a custom domain.

Availability
Available in Mac OS X v10.3 and later.

170 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

NSError

Instance Methods

code
Returns the receiver’s error code.

public int code()

Discussion
Note that errors are domain specific.

Availability
Available in Mac OS X v10.3 and later.

See Also
localizedDescription (page 171)
domain (page 171)
userInfo (page 173)

domain
Returns a string containing the receiver’s error domain.

public String domain()

Availability
Available in Mac OS X v10.3 and later.

See Also
code (page 171)
localizedDescription (page 171)
userInfo (page 173)

localizedDescription
Returns a string containing the localized description of the error.

public String localizedDescription()

Discussion
By default this method will attempt to return the object in the user info dictionary for the key
LocalizedDescriptionKey. If the user info dictionary doesn’t contain a value for
LocalizedDescriptionKey, a default string will be constructed from the domain and code.

This method can be overridden by subclasses to present customized error strings.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 171
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

NSError

See Also
code (page 171)
domain (page 171)
userInfo (page 173)

localizedFailureReason
Returns a string containing the localized explanation of the reason for the error.

public String localizedFailureReason()

Discussion
By default this method will attempt to return the object in the user info dictionary for the key
LocalizedFailureReasonErrorKey.

This method can be overridden by subclasses to present customized error strings.

Availability
Available in Mac OS X v10.4 and later.

See Also
code (page 171)
domain (page 171)
userInfo (page 173)

localizedRecoveryOptions
Returns an array containing the localized titles of buttons appropriate for displaying in an alert panel.

public Array localizedRecoveryOptions()

Discussion
The first string is the title of the right-most and default button, the second the one to the left, and so on. The
recovery options should be appropriate for the recovery suggestion returned by
localizedRecoverySuggestion (page 172). By default this method will attempt to return the object in
the user info dictionary for the key LocalizedRecoveryOptionsErrorKey. If the user info dictionary
doesn’t contain a value for LocalizedRecoveryOptionsErrorKey, null is returned and only an OK button
is displayed..

This method can be overridden by subclasses to present customized recovery suggestion strings.

Availability
Available in Mac OS X 10.4 and later.

localizedRecoverySuggestion
Returns a string containing the localized recovery suggestion for the error.

public String localizedRecoverySuggestion()

172 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

NSError

Discussion
This string is suitable for displaying as the secondary message in an alert panel. By default this method will
attempt to return the object in the user info dictionary for the key
LocalizedRecoverySuggestionErrorKey. If the user info dictionary doesn’t contain a value for
LocalizedRecoverySuggestionErrorKey, null is returned.

This method can be overridden by subclasses to present customized recovery suggestion strings.

Availability
Available in Mac OS X v10.4 and later.

recoveryAttempter
Returns an object that conforms to the NSErrorRecoveryAttempting informal protocol.

public Object recoverAttempter()

Discussion
The recovery attempter must be an object that can correctly interpret an index into the array returned by
localizedRecoveryOptions (page 172). By default this method will attempt to return the object for the
user info dictionary for the key RecoveryAttempterErrorKey. If the user info dictionary doesn’t contain
a value for RecoveryAttempterErrorKey, null is returned.

Availability
Available in Mac OS X v10.4 and later.

See Also
localizedRecoveryOptions (page 172)

userInfo
Returns an NSDictionary containing the user info associated with the receiver or null if the user info dictionary
has not been set.

public NSDictionary userInfo()

Availability
Available in Mac OS X v10.3 and later.

See Also
code (page 171)
domain (page 171)
localizedDescription (page 171)

Constants

The following keys may exist in the user info dictionary:

Constants 173
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

NSError

DescriptionConstant

A localized string representation containing the reason for the failure that,
if present, will be returned by localizedFailureReason (page 172). This
string p;rovides a more detailed explanation of the error than the description.
Available in Mac OS X 10.4 and later.

LocalizedFailure-
ReasonErrorKey

A string containing the localized recovery suggestion for the error. This string
is suitable for displaying as the secondary message in an alert panel.
Available in Mac OS X 10.4 and later.

LocalizedRecovery-
SuggestionErrorKey

An array containing the localized titles of buttons appropriate for displaying
in an alert panel. The first string is the title of the right-most and default
button, the second the one to the left, and so on. The recovery options should
be appropriate for the recovery suggestion returned by
localizedRecoverySuggestion (page 172).
Available in Mac OS X 10.4 and later.

LocalizedRecovery-
OptionsErrorKey

An object that conforms to the NSErrorRecoveryAttempting informal protocol.
The recovery attempter must be an object that can correctly interpret an
index into the array returned by recoveryAttempter (page 173).
Available in Mac OS X 10.4 and later.

RecoveryAttempter-
ErrorKey

The following error domains are predefined:

DescriptionConstant

POSIX/BSD errorsPOSIXErrorDomain

Mac OS 9/Carbon errorsOSStatusErrorDomain

Mach errorsMachErrorDomain

URL loading system errorsNSURLErrorDomain

Application Kit and Foundation Kit errors.
Available in Mac OS X v10.4 and later.

NSCocoaErrorDomain

174 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

NSError

Inherits from java.lang.RuntimeException

Package: com.apple.cocoa.foundation

Companion guide Exception Programming Topics for Cocoa

Overview

NSException is used to implement exception handling and contains information about an exception. An
exception is a special condition that interrupts the normal flow of program execution. Each application can
interrupt the program for different reasons. For example, one application might interpret saving a file in a
directory that is write-protected as an exception. In this sense, the exception is equivalent to an error. Another
application might interpret the user’s keypress (for example, Control-C) as an exception: an indication that
a long-running process should be aborted.

The string constants for exceptions are listed and described in Foundation Types and Constants.

Tasks

Constructors

NSException (page 176)
Creates an NSException object with a null message string.

Querying an NSException

getStackTrace (page 176)
Returns the stack trace for where anException was thrown.

name (page 176)
Returns a String used to uniquely identify the receiver.

toString (page 176)
Returns the receiver’s name and reason message, so that formatted strings produce a meaningful
description of the exception.

userInfo (page 177)
Returns an Object containing application-specific data pertaining to the receiver.

Overview 175
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

NSException

Constructors

NSException
Creates an NSException object with a null message string.

public NSException()

Creates an NSException object with the human-readable message string reason.

public NSException(String reason)

Creates an NSException object namednamewith the human-readable message stringreason and user-defined
userInfo.

public NSException(String name, String reason, Object userInfo)

Static Methods

getStackTrace
Returns the stack trace for where anException was thrown.

public static String getStackTrace(Throwable anException)

Discussion
The exception’s name and reason message are included in the first line. If anException has no name, the
exception’s class is used.

Instance Methods

name
Returns a String used to uniquely identify the receiver.

public String name()

toString
Returns the receiver’s name and reason message, so that formatted strings produce a meaningful description
of the exception.

public String toString()

Discussion
If the receiver is not named, the receiver’s class name is used.

176 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

NSException

userInfo
Returns an Object containing application-specific data pertaining to the receiver.

public Object userInfo()

Discussion
Returns null if no application-specific data exists. As an example, if a method’s return value caused the
exception to be thrown, the return value might be available to the exception handler through this method.

Instance Methods 177
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

NSException

178 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

NSException

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An instance of NSExistsCommand determines whether a specified scriptable object, such as a word, paragraph,
or image, exists.

When an instance of NSExistsCommand is executed, it evaluates the receiver specifier for the command to
determine if it specifies any objects.

NSExistsCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSExistsCommand.

Tasks

Constructors

NSExistsCommand (page 179)
Returns an NSExistsCommand with no data.

Constructors

NSExistsCommand
Returns an NSExistsCommand with no data.

public NSExistsCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSExistsCommand with the command description supplied by
aScriptCommandDescription.

Overview 179
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

NSExistsCommand

public NSExistsCommand(NSScriptCommandDescription aScriptCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

180 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

NSExistsCommand

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.

Companion guide Predicate Programming Guide

Overview

NSExpression is used to represent expressions in a predicate.

Comparison operations in an NSPredicate are based on two expressions, as represented by instances of the
NSExpression class. Expressions are created for constant values, key paths, and so on.

Tasks

Constructors

NSExpression (page 182)
Returns an empty NSExpression object.

Constructors and Initialization

expressionForConstantValue (page 182)

expressionForEvaluatedObject (page 183)

expressionForFunction (page 183)
Returns a new expression that invokes a predefined function.

expressionForKeyPath (page 183)

expressionForVariable (page 184)

Overview 181
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Getting Information About an Expression

arguments (page 184)
Returns the arguments for the receiver—that is, the array of expressions that will be passed as
parameters during invocation of the selector on the operand of a function expression.

constantValue (page 184)
Returns the constant value for the receiver.

expressionType (page 184)
Returns the expression type for the receiver.

function (page 185)
Returns the function for the receiver.

keyPath (page 185)
Returns the key path for the receiver.

operand (page 185)
Returns the operand for the receiver—that is, the object on which the selector will be invoked.

variable (page 186)
Returns the variable for the receiver.

Evaluating an Expression

expressionValueWithObject (page 185)
Evaluates the expression using the specified object and context.

Constructors

NSExpression
Returns an empty NSExpression object.

public NSExpression()

Returns an NSExpression object initialized with the specified expression type.

public NSExpression(int type)

Discussion
The type parameter represents the expression type as shown in “Constants” (page 186).

Static Methods

expressionForConstantValue
public static NSExpression expressionForConstantValue(Object obj)

182 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Discussion
Returns a new expression that represents a constant value.

Availability
Available in Mac OS X v10.4 and later.

expressionForEvaluatedObject
public static NSExpression expressionForEvaluatedObject()

Discussion
Returns a new expression that represents the object being evaluated.

Availability
Available in Mac OS X v10.4 and later.

expressionForFunction
Returns a new expression that invokes a predefined function.

public static NSExpression expressionForFunction(String name, NSArray parameters)

Discussion
The name parameter can be one of the following predefined functions.

ReturnsParameterFunction

NSNumberNSArray of NSExpressionsavg

NSNumberNSArray of NSExpressionscount

NSNumberNSArray of NSExpressionsmax

NSNumberNSArray of NSExpressionsmin

NSNumberNSArray of NSExpressionssum

This method throws an exception immediately if the selector is invalid; it throws an exception at runtime if
the parameters are incorrect.

Availability
Available in Mac OS X v10.4 and later.

expressionForKeyPath
public static NSExpression expressionForKeyPath(String keyPath)

Discussion
Returns a new expression that invokes valueForKeyPath (page 263) with keyPath.

Static Methods 183
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Availability
Available in Mac OS X v10.4 and later.

expressionForVariable
public static NSExpression expressionForVariable(String string)

Discussion
Returns a new expression that extracts a value from the variable bindings dictionary.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

arguments
Returns the arguments for the receiver—that is, the array of expressions that will be passed as parameters
during invocation of the selector on the operand of a function expression.

public NSArray arguments()

Discussion
Throws an exception if not applicable.

Availability
Available in Mac OS X v10.4 and later.

constantValue
Returns the constant value for the receiver.

public Object constantValue()

Discussion
Throws an exception if not applicable.

Availability
Available in Mac OS X v10.4 and later.

expressionType
Returns the expression type for the receiver.

public int expressionType()

Discussion
The expression type is described in “Constants” (page 186).Throws an exception if not applicable.

184 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Availability
Available in Mac OS X v10.4 and later.

expressionValueWithObject
Evaluates the expression using the specified object and context.

public Object expressionValueWithObject(Object object, NSMutableDictionary context)

Discussion
Note that context is mutable—it can be used by expressions to store temporary state for one predicate
evaluation.

Availability
Available in Mac OS X v10.4 and later.

function
Returns the function for the receiver.

public String function()

Discussion
Throws an exception if not applicable.

Availability
Available in Mac OS X v10.4 and later.

keyPath
Returns the key path for the receiver.

public String keyPath()

Discussion
Throws an exception if not applicable.

Availability
Available in Mac OS X v10.4 and later.

operand
Returns the operand for the receiver—that is, the object on which the selector will be invoked.

public NSExpression operand()

Discussion
The object is the result of evaluating a key path or one of the defined functions. Throws an exception if not
applicable.

Instance Methods 185
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Availability
Available in Mac OS X v10.4 and later.

variable
Returns the variable for the receiver.

public String variable()

Discussion
Throws an exception if not applicable.

Availability
Available in Mac OS X v10.4 and later.

Constants

These constants describe the possible types of NSExpression:

DescriptionConstant

An expression that always returns the same value.ConstantValueExpressionType

An expression that always returns the parameter object itself.EvaluatedObjectExpressionType

An expression that always returns whatever value is associated
with the key specified by ‘variable’ in the bindings dictionary.

VariableExpressionType

An expression that returns something that can be used as a key
path.

KeyPathExpressionType

An expression that returns the result of evaluating a function.FunctionExpressionType

186 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide Data Formatting Programming Guide for Cocoa

Overview

NSFormatter is an abstract class that declares an interface for objects that create, interpret, and validate the
textual representation of cell contents. The Foundation framework provides two concrete subclasses of
NSFormatter to generate these objects: NSNumberFormatter (page 411) and NSGregorianDateFormatter (page
209).

Subclassing Notes

NSFormatter is similar to other abstract classes such as NSView or NSDocument in that it is intended for
subclassing. A custom formatter can restrict the input and enhance the display of data in novel ways. For
example, you could have a custom formatter that ensures that serial numbers entered by a user conform to
predefined formats. Before you decide to create a custom formatter, make sure that you cannot configure
the public subclasses NSGregorianDateFormatter (page 209) and NSNumberFormatter (page 411) to satisfy
your requirements.

For instructions on how to create your own custom formatter, see “Creating A Custom Formatter”.

Tasks

Constructors

NSFormatter (page 188)
NSFormatter is an abstract class; use the constructor of one of its concrete classes instead.

Overview 187
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

NSFormatter

Textual Representation of Cell Content

stringForObjectValue (page 190)
This method is an abstract method that you must override in your subclass. The default implementation
of this method throws an exception.

attributedStringForObjectValue (page 188)
This method is an abstract method that you must override in your subclass.

editingStringForObjectValue (page 189)
The default implementation of this method invokes stringForObjectValue (page 190).

Object Equivalent to Textual Representation

objectValueForString (page 189)
This method is an abstract method that you must override in your subclass.

Dynamic Cell Editing

isPartialStringValid (page 189)
Since this method is invoked each time the user presses a key while the cell has the keyboard focus,
it lets you verify the cell text as the user types it. partialString is the text currently in the cell.

replacementStringForString (page 190)
The default implementation of this method returns aString.

Constructors

NSFormatter
NSFormatter is an abstract class; use the constructor of one of its concrete classes instead.

public NSFormatter()

Instance Methods

attributedStringForObjectValue
This method is an abstract method that you must override in your subclass.

public abstract NSAttributedString attributedStringForObjectValue(Object anObject,
NSDictionary attributes)

188 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

NSFormatter

Discussion
When implementing a subclass, return an NSAttributedString if the string for display should have some
attributes. For instance, you might want negative values in a financial application to appear in red text. Invoke
your implementation of stringForObjectValue (page 190) to get the nonattributed string. Then create
an NSAttributedString with it. The default attributes for text in the cell are passed in with attributes; use
this NSDictionary to reset the attributes of the string when a change in value warrants it (for example, a
negative value becomes positive) If a NSAttributedString cannot be created for anObject, an
NSFormatter.FormattingException is thrown. For information on creating attributed strings, see the
NSAttributedString (page 67) class.

See Also
editingStringForObjectValue (page 189)

editingStringForObjectValue
The default implementation of this method invokes stringForObjectValue (page 190).

public String editingStringForObjectValue(Object anObject)

Discussion
When implementing a subclass, override this method only when the string that users see and the string that
they edit are different. In your implementation, return a String that is used for editing, following the logic
recommended for implementing stringForObjectValue. As an example, you would implement this
method if you want the dollar signs in displayed strings removed for editing.

See Also
attributedStringForObjectValue (page 188)

isPartialStringValid
Since this method is invoked each time the user presses a key while the cell has the keyboard focus, it lets
you verify the cell text as the user types it. partialString is the text currently in the cell.

public boolean isPartialStringValid(String partialString)

Discussion
Return true if it is acceptable and false if it is not. If you return false, the cell displays partialString
minus the last character typed.

See Also
replacementStringForString (page 190)

objectValueForString
This method is an abstract method that you must override in your subclass.

public abstract Object objectValueForString(String aString)

Discussion
When implementing a subclass, return an object you’ve created from aString. If an object cannot be created
from aString, an NSFormatter.ParsingException is thrown.

Instance Methods 189
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

NSFormatter

See Also
stringForObjectValue (page 190)

replacementStringForString
The default implementation of this method returns aString.

public String replacementStringForString(String aString)

Discussion
When implementing a subclass, check whether aString is a valid string for the cell. If it is, return it unmodified.
Otherwise, correct it and return the modified string. For example, you might convert all lowercase letters to
uppercase or insert separator characters in a telephone number.

See Also
isPartialStringValid (page 189)

stringForObjectValue
This method is an abstract method that you must override in your subclass. The default implementation of
this method throws an exception.

public abstract String stringForObjectValue(Object anObject)

Discussion
When implementing a subclass, return the String that textually represents the cell’s object for display and—if
editingStringForObjectValue (page 189) is unimplemented—for editing. First test the passed-in object
to see if it’s of the correct class. If it isn’t, return null; but if it is of the right class, return a properly formatted
and, if necessary, localized string. If a string cannot be created for anObject, an
NSFormatter.FormattingException is thrown.

See Also
attributedStringForObjectValue (page 188)
editingStringForObjectValue (page 189)
objectValueForString (page 189)

190 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

NSFormatter

Inherits from java.lang.Exception

Package: com.apple.cocoa.foundation

Companion guides Data Formatting Programming Guide for Cocoa
Exception Programming Topics for Cocoa

Overview

FormattingException is a custom exception thrown by the NSFormatter methods
stringForObjectValue (page 190) and attributedStringForObjectValue (page 188) when they
encounter an error trying to convert the object to its string representation.

Tasks

Constructors

FormattingException (page 191)
Creates a new FormattingException exception with the message reason.

Constructors

FormattingException
Creates a new FormattingException exception with the message reason.

public NSFormatter.FormattingException(String reason)

Overview 191
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

NSFormatter.FormattingException

192 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

NSFormatter.FormattingException

Inherits from java.lang.Exception

Package: com.apple.cocoa.foundation

Companion guides Data Formatting Programming Guide for Cocoa
Exception Programming Topics for Cocoa

Overview

ParsingException is a custom exception thrown by the NSFormatter method objectValueForString (page
189) when it encounters a problem converting the string to the appropriate object representation.

Tasks

Constructors

ParsingException (page 193)
Creates a new ParsingException exception with the message reason.

Constructors

ParsingException
Creates a new ParsingException exception with the message reason.

public NSFormatter.ParsingException(String reason)

Overview 193
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

NSFormatter.ParsingException

194 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

NSFormatter.ParsingException

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An instance of NSGetCommand gets the specified value or object from the specified scriptable object: for
example, the words from a paragraph or the name of a document.

When an instance of NSGetCommand is executed, it evaluates the specified receivers, gathers the specified
data, if any, and packages it in a return Apple event.

NSGetCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Get
command through key-value coding. Most applications don’t need to subclass NSGetCommand or call its
methods.

Tasks

Constructors

NSGetCommand (page 195)
Returns an NSGetCommand with no data.

Constructors

NSGetCommand
Returns an NSGetCommand with no data.

public NSGetCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSGetCommand with the command description supplied by
aScriptCommandDescription.

Overview 195
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

NSGetCommand

public NSGetCommand(NSScriptCommandDescription aScriptCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

196 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

NSGetCommand

Inherits from NSDate : NSObject

Implements NSCoding (NSDate)

Package: com.apple.cocoa.foundation

Companion guides Date and Time Programming Guide for Cocoa
Data Formatting Programming Guide for Cocoa

Overview

NSGregorianDate is a public subclass of NSDate that represents concrete date objects and performs date
computations based on the Gregorian calendar. These objects associate a time interval with a time zone and
are especially suited for representing and manipulating dates according to western calendrical systems.
NSGregorianDates are immutable objects.

An NSGregorianDate object stores a date as the number of seconds relative to the absolute reference date
(the first instance of 1 January 2001, GMT). Use the associated time zone to change how the NSGregorianDate
object prints its time interval. The time zone does not change how the time interval is stored. Because the
value is stored independently of the time zone, you can accurately compare NSGregorianDates with any
other NSDate objects or use them to create other NSDate objects. It also means that you can track a date
across different time zones; that is, you can create a new NSGregorianDate object with a different time zone
to see how the particular date is represented in that time zone.

To retrieve conventional elements of an NSGregorianDate object, use the ...Of... methods. For example,
dayOfWeek (page 201) returns a number that indicates the day of the week (0 is Sunday). The
monthOfYear (page 204) method returns a number from 1 through 12 that indicates the month.

To format a date as a string or to parse a date from a string, use an NSGregorianDateFormatter.

Tasks

Constructors

NSGregorianDate (page 199)

Overview 197
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

Retrieving Date Elements

dayOfCommonEra (page 200)

dayOfMonth (page 201)
Returns a number that indicates the day of the month (1 through 31) of the receiver.

dayOfWeek (page 201)
Returns a number that indicates the day of the week (0 through 6) of the receiver; 0 indicates Sunday.

dayOfYear (page 202)
Returns a number that indicates the day of the year (1 through 366) of the receiver.

hourOfDay (page 203)
Returns the hour value (0 through 23) of the receiver.

microsecondOfSecond (page 204)
Returns the microseconds value (0 through 999,999) of the receiver.

minuteOfHour (page 204)
Returns the minutes value (0 through 59) of the receiver.

monthOfYear (page 204)
Returns a number that indicates the month of the year (1 through 12) of the receiver.

secondOfMinute (page 205)
Returns the seconds value (0 through 59) of the receiver.

yearOfCommonEra (page 205)
Returns a number that indicates the year, including the century, of the receiver (for example, 1995).
The base year of the Common Era is 1 C.E. (which is the same as 1 A.D.).

Adjusting a Date

dateByAddingGregorianUnits (page 200)

Computing Date Intervals

gregorianUnitsSinceDate (page 202)
Computes the calendrical time difference between the receiver and date and returns it in years,
months, days, hours, minutes, and seconds.

Comparing Dates

equals (page 202)
Returns true if anObject is an instance of NSGregorianDate and satisfies
isEqualToGregorianDate (page 203).

hashCode (page 203)
Returns a hash value for the receiver.

198 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

isEqualToGregorianDate (page 203)
Returns true if the receiver and aGregorianDate represent the same date and have the same time
zone set.

Representing Dates as Strings

toString (page 205)
Returns a string representation of the receiver.

Getting the Time Zone

timeZone (page 205)
Returns the time zone object associated with the receiver.

Constructors

NSGregorianDate
public NSGregorianDate()

Discussion
Creates a new Gregorian date initialized to the current date and time.

public NSGregorianDate(double seconds)

Discussion
Creates a new Gregorian date initialized to the absolute reference date (the first instant of 1 January 2001,
GMT) plus seconds, which may be positive or negative. This constructor sets the date’s time zone to the
default time zone.

public NSGregorianDate(double seconds, NSDate aDate)

Discussion
Creates a new Gregorian date initialized to aDate plus seconds, which may be positive or negative. This
constructor sets the date’s time zone to the default time zone.

public NSGregorianDate(double seconds, NSTimeZone aTimeZone)

Discussion
Creates a new Gregorian date initialized to the absolute reference date (the first instant of 1 January 2001,
GMT) plus seconds, which may be positive or negative. This constructor sets the date’s time zone to
aTimeZone.

public NSGregorianDate(int year, int month, int day, int hour, int minute, int
second, NSTimeZone aTimeZone)

Constructors 199
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

Discussion
Creates a new Gregorian date with the specified values for year, month, day, hour, minute, second, and
time zone, aTimeZone. The year value must include the century (for example, 1995 instead of 95). The other
values are the standard ones: 1 through 12 for months, 1 through 31 for days, 0 through 23 for hours, and 0
through 59 for both minutes and seconds.

On days when daylight savings “falls back,” there are two 1:30 AMs. If you use this method there is no way
to create the second 1:30 AM. Instead, you should create the first and then use
dateByAddingGregorianUnits (page 200) to add an hour.

The following code fragment shows a Gregorian date created for 4 July 1994, 9 PM, eastern standard time:

NSGregorianDate fireworks = new NSGregorianDate(1994, 7, 4, 21, 0, 0,
 new NSTimeZone("EST", true));

Instance Methods

dateByAddingGregorianUnits
public NSGregorianDate dateByAddingGregorianUnits(int year, int month, int day,

int hour, int minute, int second)

Discussion
Returns a Gregorian date that is updated with the year, month, day, hour, minute, and second offsets
specified as arguments. The offsets can be positive (future) or negative (past).

This method preserves “clock time” across changes in daylight savings time zones and leap years. For example,
adding one month to a Gregorian date with a time of 12 noon correctly maintains time at 12 noon. One thing
to be aware of is if you add one day to 2:30 AM on the day before daylight savings “springs ahead,” it will
actually result in 1:30 AM on the next day (which is one day, or 24 hours, later).

Note that the arguments are applied in a left-to-right order: year first, then month, then day, and so on. So,
adding one month, four days to 27 April results in 31 May, not 1 June.

The following code fragment shows a Gregorian date created with a date a week later than an existing
Gregorian date:

NSCalendarDate now = new NSGregorianDate();
NSCalendarDate nextWeek =
 now.dateByAddingGregorianUnits(0, 0, 7, 0, 0, 0);

See Also
gregorianUnitsSinceDate (page 202)

dayOfCommonEra
public int dayOfCommonEra()

Discussion
Returns the number of days since the beginning of the Common Era. The base year of the Common Era is 1
C.E. (which is the same as 1 A.D.).

200 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

See Also
dayOfMonth (page 201)
dayOfWeek (page 201)
dayOfYear (page 202)
hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
secondOfMinute (page 205)
yearOfCommonEra (page 205)

dayOfMonth
Returns a number that indicates the day of the month (1 through 31) of the receiver.

public int dayOfMonth()

See Also
dayOfCommonEra (page 200)
dayOfWeek (page 201)
dayOfYear (page 202)
hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
secondOfMinute (page 205)
yearOfCommonEra (page 205)

dayOfWeek
Returns a number that indicates the day of the week (0 through 6) of the receiver; 0 indicates Sunday.

public int dayOfWeek()

See Also
dayOfCommonEra (page 200)
dayOfMonth (page 201)
dayOfYear (page 202)
hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
secondOfMinute (page 205)
yearOfCommonEra (page 205)

Instance Methods 201
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

dayOfYear
Returns a number that indicates the day of the year (1 through 366) of the receiver.

public int dayOfYear()

See Also
dayOfCommonEra (page 200)
dayOfMonth (page 201)
dayOfWeek (page 201)
hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
secondOfMinute (page 205)
yearOfCommonEra (page 205)

equals
Returns true if anObject is an instance of NSGregorianDate and satisfies isEqualToGregorianDate (page
203).

public boolean equals(Object anObject)

Discussion
Returns false otherwise.

gregorianUnitsSinceDate
Computes the calendrical time difference between the receiver and date and returns it in years, months,
days, hours, minutes, and seconds.

public void gregorianUnitsSinceDate(NSGregorianDate date, NSGregorianDate.IntRef
years, NSGregorianDate.IntRef months, NSGregorianDate.IntRef days,
NSGregorianDate.IntRef hours, NSGregorianDate.IntRef minutes,
NSGregorianDate.IntRef seconds)

Discussion
NSGregorianDate.IntRef is a local class that contains a single element: the integer value.

You can choose any representation you wish for the time difference by passing null for the arguments you
want to ignore. For example, the following code fragment computes the difference in months, days, and
years between two dates:

NSGregorianDate momsBDay =
 new NSGregorianDate(1936, 1, 8, 7, 30, 0, new NSTimeZone("EST", true));
NSGregorianDate dateOfBirth =
 new NSGregorianDate(1965, 12, 7, 17, 25, 0, new NSTimeZone("EST", true));

NSGregorianDate.IntRef years = new NSGregorianDate.IntRef();
NSGregorianDate.IntRef months = new NSGregorianDate.IntRef();
NSGregorianDate.IntRef days = new NSGregorianDate.IntRef();

202 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

dateOfBirth.gregorianUnitsSinceDate(momsBDay, years, months, days,
 null, null, null)

This message returns 29 years, 10 months, and 29 days. If you want to express the years in terms of months,
you pass null for the years argument:

dateOfBirth.gregorianUnitsSinceDate(momsBDay, null, months, days,
 null, null, null);

This message returns 358 months and 29 days.

See Also
dateByAddingGregorianUnits (page 200)

hashCode
Returns a hash value for the receiver.

public int hashCode()

Discussion
The hash value is the integer value of the time interval returned from
timeIntervalSinceReferenceDate (page 144) (NSDate).

hourOfDay
Returns the hour value (0 through 23) of the receiver.

public int hourOfDay()

Discussion
On daylight savings “fall back” days, a value of 1 is returned for two consecutive hours, but with a different
time zone (the first in daylight savings time and the second in standard time).

See Also
dayOfCommonEra (page 200)
dayOfMonth (page 201)
dayOfWeek (page 201)
dayOfYear (page 202)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
secondOfMinute (page 205)
yearOfCommonEra (page 205)

isEqualToGregorianDate
Returns true if the receiver and aGregorianDate represent the same date and have the same time zone
set.

Instance Methods 203
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

public boolean isEqualToGregorianDate(NSGregorianDate aGregorianDate)

Discussion
Returns false otherwise.

microsecondOfSecond
Returns the microseconds value (0 through 999,999) of the receiver.

public int microsecondOfSecond()

See Also
dayOfCommonEra (page 200)
dayOfMonth (page 201)
dayOfWeek (page 201)
dayOfYear (page 202)
hourOfDay (page 203)
minuteOfHour (page 204)
monthOfYear (page 204)
secondOfMinute (page 205)
yearOfCommonEra (page 205)

minuteOfHour
Returns the minutes value (0 through 59) of the receiver.

public int minuteOfHour()

See Also
dayOfCommonEra (page 200)
dayOfMonth (page 201)
dayOfWeek (page 201)
dayOfYear (page 202)
hourOfDay (page 203)
microsecondOfSecond (page 204)
monthOfYear (page 204)
secondOfMinute (page 205)
yearOfCommonEra (page 205)

monthOfYear
Returns a number that indicates the month of the year (1 through 12) of the receiver.

public int monthOfYear()

See Also
dayOfCommonEra (page 200)
dayOfMonth (page 201)

204 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

dayOfWeek (page 201)
dayOfYear (page 202)
hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
secondOfMinute (page 205)
yearOfCommonEra (page 205)

secondOfMinute
Returns the seconds value (0 through 59) of the receiver.

public int secondOfMinute()

See Also
dayOfCommonEra (page 200)
dayOfMonth (page 201)
dayOfWeek (page 201)
dayOfYear (page 202)
hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
yearOfCommonEra (page 205)

timeZone
Returns the time zone object associated with the receiver.

NSTimeZone timeZone()

Discussion
You can explicitly set the time zone to an NSTimeZone object using a constructor that takes an NSTimeZone
object as an argument. If you do not specify a time zone for an object at initialization time, NSGregorianDate
uses the default time zone for the locale.

toString
Returns a string representation of the receiver.

String toString()

yearOfCommonEra
Returns a number that indicates the year, including the century, of the receiver (for example, 1995). The base
year of the Common Era is 1 C.E. (which is the same as 1 A.D.).

Instance Methods 205
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

public int yearOfCommonEra()

See Also
dayOfCommonEra (page 200)
dayOfMonth (page 201)
dayOfWeek (page 201)
dayOfYear (page 202)
hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
secondOfMinute (page 205)

206 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

Inherits from Object

Package: com.apple.cocoa.foundation

Companion guide Date and Time Programming Guide for Cocoa

Overview

The NSGregorianDate.IntRef class is used by the NSGregorianDate methodgregorianUnitsSinceDate (page
202) to return the integer values for the number of years, months, and so on separating two dates. The class
contains a single element: the integer value.

Tasks

Constructors

IntRef (page 207)
Creates a new NSGregorianDate.IntRef object.

Constructors

IntRef
Creates a new NSGregorianDate.IntRef object.

public NSGregorianDate.IntRef()

Overview 207
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

NSGregorianDate.IntRef

208 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

NSGregorianDate.IntRef

Inherits from NSFormatter : NSObject

Implements NSCoding (NSFormatter)

Package: com.apple.cocoa.foundation

Companion guide Data Formatting Programming Guide for Cocoa

Overview

Instances of NSGregorianDateFormatter format the textual representation of cells that contain NSDates
(including NSGregorianDates) and convert textual representations of dates and times into NSDates. You can
express the representation of dates and times very flexibly: “Thu 22 Dec 1994” is just as acceptable as
“12/22/94.” With natural-language processing for dates enabled, users can also express dates colloquially,
such as “today,” “day after tomorrow,” and “a month from today.”

With Mac OS X version 10.4 and later, NSGregorianDateFormatter has two modes of operation (or behaviors).
By default, instances of NSGregorianDateFormatter have the same behavior as they did on Mac OS X versions
10.0 to 10.3. You can, however, configure instances (or set a default for all instances) to adopt a new behavior
implemented for Mac OS X version 10.4. See Data Formatting for a full description of the old and new
behaviors.

Tasks

Constructors

NSGregorianDateFormatter (page 210)
Creates an empty NSGregorianDateFormatter.

Getting Behavior

allowsNaturalLanguage (page 211)
Returns true if the receiver attempts to process dates entered as a vernacular string (“today,” “day
before yesterday,” and so on).

Overview 209
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

Getting and Setting Attributes

dateFormat (page 211)
Returns the date format string used by the receiver.

String Manipulation

attributedStringForObjectValue (page 211)
Returns an NSAttributedString if the string for display should have some attributes.

isPartialStringValid (page 211)
Since this method is invoked each time the user presses a key while the cell has the keyboard focus,
it lets you verify the cell text as the user types it. partialString is the text currently in the cell.

objectValueForString (page 212)
Returns an object you’ve created from aString.

replacementStringForString (page 212)
Checks whether aString is a valid string for the cell.

stringForObjectValue (page 212)
Returns the string that textually represents the cell’s object for display and for editing.

Constructors

NSGregorianDateFormatter
Creates an empty NSGregorianDateFormatter.

public NSGregorianDateFormatter()

Discussion
The formatter processes dates entered as expressions in the vernacular (for example, “tomorrow”);
NSGregorianDateFormatter attempts natural-language processing only after it fails to interpret an entered
string according to format.

Creates an NSGregorianDateFormatter instance that uses the date format in its conversions.

public NSGregorianDateFormatter(String format, boolean naturalLanguageFlag)

Discussion
See “The Calendar Format” for a list of conversion specifiers permitted in date format strings. Set
naturalLanguageFlag to true if you want the NSGregorianDateFormatter to process dates entered as
expressions in the vernacular (for example, “tomorrow”); NSGregorianDateFormatter attempts natural-language
processing only after it fails to interpret an entered string according to format.

210 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

Instance Methods

allowsNaturalLanguage
Returns true if the receiver attempts to process dates entered as a vernacular string (“today,” “day before
yesterday,” and so on).

public boolean allowsNaturalLanguage()

Discussion
Returns false if the receiver does not do any natural-language processing of these date expressions.

attributedStringForObjectValue
Returns an NSAttributedString if the string for display should have some attributes.

public NSAttributedString attributedStringForObjectValue(Object anObject,
NSDictionary attributes)

Discussion
For instance, you might want past dates to appear in red text. Invoke your implementation of
stringForObjectValue (page 212) to get the nonattributed string. Then create an NSAttributedString with
it. The default attributes for text in the cell are passed in with attributes; use this NSDictionary to reset
the attributes of the string when a change in value warrants it (for example, a negative value becomes
positive). If an NSAttributedString cannot be created foranObject, anNSFormatter.FormattingException
is thrown. For information on creating attributed strings, see the NSAttributedString (page 67) class.

dateFormat
Returns the date format string used by the receiver.

public String dateFormat()

Discussion
See “The Calendar Format” for a list of the conversion specifiers permitted in date format strings.

isPartialStringValid
Since this method is invoked each time the user presses a key while the cell has the keyboard focus, it lets
you verify the cell text as the user types it. partialString is the text currently in the cell.

public boolean isPartialStringValid(String partialString)

Discussion
Return true if partialString is acceptable and false if it is not. If you return false, the cell displays
partialString minus the last character typed.

See Also
replacementStringForString (page 212)

Instance Methods 211
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

objectValueForString
Returns an object you’ve created from aString.

public Object objectValueForString(String aString)

Discussion
If an object cannot be created from aString, an NSFormatter.ParsingException is thrown.

See Also
stringForObjectValue (page 212)

replacementStringForString
Checks whether aString is a valid string for the cell.

public String replacementStringForString(String aString)

Discussion
If it is, returns it unmodified. Otherwise, corrects it and returns the modified string. For example, you might
convert all lowercase letters to uppercase or insert different separator characters in a date.

See Also
isPartialStringValid (page 211)

stringForObjectValue
Returns the string that textually represents the cell’s object for display and for editing.

public String stringForObjectValue(Object anObject)

Discussion
First tests the passed-in object to see if it’s of the correct class. If it isn’t, returns null; if it is of the right class,
returns a properly formatted and, if necessary, localized string. If a string cannot be created for anObject,
an NSFormatter.FormattingException is thrown.

See Also
attributedStringForObjectValue (page 211)
objectValueForString (page 212)

Constants

The following constants specify predefined date and time format styles.The format for these date and time
styles is not exact because they depend on the locale, user preference settings, and the operating system
version. Do not use these constants if you want an exact format.

Date and Time Format Styles

212 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

NSDateFormatterNoStyle
Specifies no style. Equal to kCFDateFormatterNoStyle. Available in Mac OS X version 10.4 and
later.

NSDateFormatterShortStyle
Specifies a short style, typically numeric only, such as “11/23/37” or “3:30pm”. Equal to
kCFDateFormatterShortStyle. Available in Mac OS X version 10.4 and later.

NSDateFormatterMediumStyle
Specifies a medium style, typically with abbreviated text, such as “Nov 23, 1937”. Equal to
kCFDateFormatterMediumStyle. Available in Mac OS X version 10.4 and later.

NSDateFormatterLongStyle
Specifies a long style, typically with full text, such as “November 23, 1937” or “3:30:32pm”. Equal to
kCFDateFormatterLongStyle. Available in Mac OS X version 10.4 and later.

NSDateFormatterFullStyle
Specifies a full style with complete details, such as “Tuesday, April 12, 1952 AD” or “3:30:42pm PST”.
Equal to kCFDateFormatterFullStyle. Available in Mac OS X version 10.4 and later.

Date Formatter Behavior

NSDateFormatterBehaviorDefault
Specifies default formatting behavior.

NSDateFormatterBehavior10_0
Specifies formatting behavior equivalent to that in Mac OS X 10.0.

NSDateFormatterBehavior10_4
Specifies formatting behavior equivalent for Mac OS X 10.4.

Constants 213
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

214 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Low-Level File Management Programming Topics

Overview

NSHFSFileTypes supports an environment in which the type of a file may be indicated by either a filename
extension or an HFS file type.

Tasks

Constructors

NSHFSFileTypes (page 215)
Creates an NSHFSFileTypes object.

Working with HFS File Types

fileTypeForHFSTypeCode (page 216)
Returns a string that encodes typeCode.

hfsTypeCodeFromFileType (page 216)
Given a string of the type encoded by fileTypeForHFSTypeCode (page 216), returns the
corresponding HFS file type code.

hfsTypeOfFile (page 216)
Returns a string encoding the file type of filePath, or null if unsuccessful.

Constructors

NSHFSFileTypes
Creates an NSHFSFileTypes object.

Overview 215
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

NSHFSFileTypes

public NSHFSFileTypes()

Discussion
All of its methods are static, so there is no need to create instances.

Static Methods

fileTypeForHFSTypeCode
Returns a string that encodes typeCode.

public static String fileTypeForHFSTypeCode(int typeCode)

hfsTypeCodeFromFileType
Given a string of the type encoded by fileTypeForHFSTypeCode (page 216), returns the corresponding
HFS file type code.

public static int hfsTypeCodeFromFileType(String fileType)

Discussion
If this cannot be done, 0 is returned.

hfsTypeOfFile
Returns a string encoding the file type of filePath, or null if unsuccessful.

public static String hfsTypeOfFile(String filePath)

216 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

NSHFSFileTypes

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.3 and later.

Companion guide Collections Programming Topics for Cocoa

Overview

NSIndexSet manages an immutable collection of unique unsigned integers, also known as indexes because
of the way they are used. You use NSIndexSet in your code to store indexes into some other data structure.
For example, given an NSArray object, you could use an index set to identify a subset of objects in that array.

Each index value can appear only once in the index set. This is an important concept to understand and is
why you would not use NSIndexSet to store an arbitrary collection of integer values. To illustrate how this
works, if you created a new NSIndexSet with the values 4, 5, 2, and 5, the resulting set would only have the
values 4, 5, and 2 in it. Because index values are always maintained in sorted order, the actual order of the
values when you created the set would be 2, 4, and then 5.

In most cases, using an NSIndexSet is more efficient than storing a collection of individual integers. Internally,
indexes are represented using ranges. For maximum performance and efficiency, overlapping ranges in an
index set are automatically coalesced—that is, ranges merge rather than overlap. Thus, the more contiguous
the indexes in the set, the fewer ranges are required to specify those indexes.

NSIndexSet is not intended to be subclassed.

The mutable subclass of NSIndexSet is NSMutableIndexSet (page 329).

Tasks

Constructors

NSIndexSet (page 218)
Creates and returns an NSIndexSet containing the indexes specified by NSRange.ZeroRange.

Overview 217
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

NSIndexSet

Testing an Index Set

isEqualToIndexSet (page 222)
Returns true if the receiver contains the same indexes as indexSet.

containsIndex (page 219)
Returns true if the receiver contains the index represented by value.

containsIndexes (page 219)
Returns true if the receiver contains all of the indexes present in indexSet.

containsIndexesInRange (page 220)
Returns true if the receiver contains all the indexes in the range specified by range.

intersectsIndexesInRange (page 222)
Returns true if the receiver contains any indexes in the range specified by range.

Getting Information About an Index Set

count (page 220)
Returns the number of indexes in the receiver or 0 if it is empty.

Accessing Indexes

firstIndex (page 220)
Returns the first index in the index set or NotFound if the index set is empty.

lastIndex (page 222)
Returns the last index in the index set or NotFound if the index set is empty.

indexGreaterThanIndex (page 220)
Returns the next closest index that is greater than value or NotFound if value is equal to or beyond
the last index in the set.

indexLessThanIndex (page 221)
Returns the next closest index that is less than value or NotFound if value is equal to or before the
first index in the set.

indexGreaterThanOrEqualToIndex (page 221)
Returns the next closest index that is greater than or equal to value or NotFound if value is beyond
the last index in the set.

indexLessThanOrEqualToIndex (page 221)
Returns the next closest index that is less than or equal to value or NotFound if value is before the
first index in the set.

Constructors

NSIndexSet
Creates and returns an NSIndexSet containing the indexes specified by NSRange.ZeroRange.

218 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

NSIndexSet

public NSIndexSet()

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSIndexSet containing a single index, value.

public NSIndexSet(int value)

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSIndexSet containing the indexes specified by range.

public NSIndexSet(NSRange range)

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSIndexSet containing the indexes in indexSet.

public NSIndexSet(NSIndexSet indexSet)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

containsIndex
Returns true if the receiver contains the index represented by value.

public boolean containsIndex(int value)

Availability
Available in Mac OS X v10.3 and later.

See Also
containsIndexes (page 219)
containsIndexesInRange (page 220)

containsIndexes
Returns true if the receiver contains all of the indexes present in indexSet.

public boolean containsIndexes(NSIndexSet indexSet)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 219
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

NSIndexSet

See Also
containsIndex (page 219)
containsIndexesInRange (page 220)

containsIndexesInRange
Returns true if the receiver contains all the indexes in the range specified by range.

public boolean containsIndexesInRange(NSRange range)

Discussion
For example, if an index set contains indexes 20 through 30, this method would return true for the range
(20, 8) and false for the range (20, 14).

Availability
Available in Mac OS X v10.3 and later.

See Also
containsIndex (page 219)
containsIndexes (page 219)
intersectsIndexesInRange (page 222)

count
Returns the number of indexes in the receiver or 0 if it is empty.

public int count()

Availability
Available in Mac OS X v10.3 and later.

firstIndex
Returns the first index in the index set or NotFound if the index set is empty.

public int firstIndex()

Availability
Available in Mac OS X v10.3 and later.

See Also
lastIndex (page 222)

indexGreaterThanIndex
Returns the next closest index that is greater than value or NotFound if value is equal to or beyond the
last index in the set.

public int indexGreaterThanIndex(int value)

220 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

NSIndexSet

Availability
Available in Mac OS X v10.3 and later.

See Also
indexLessThanIndex (page 221)
indexGreaterThanOrEqualToIndex (page 221)
indexLessThanOrEqualToIndex (page 221)

indexGreaterThanOrEqualToIndex
Returns the next closest index that is greater than or equal to value or NotFound if value is beyond the
last index in the set.

public int indexGreaterThanOrEqualToIndex(int value)

Availability
Available in Mac OS X v10.3 and later.

See Also
indexGreaterThanIndex (page 220)
indexLessThanIndex (page 221)
indexLessThanOrEqualToIndex (page 221)

indexLessThanIndex
Returns the next closest index that is less than value or NotFound if value is equal to or before the first
index in the set.

public int indexLessThanIndex(int value)

Availability
Available in Mac OS X v10.3 and later.

See Also
indexGreaterThanIndex (page 220)
indexGreaterThanOrEqualToIndex (page 221)
indexLessThanOrEqualToIndex (page 221)

indexLessThanOrEqualToIndex
Returns the next closest index that is less than or equal to value or NotFound if value is before the first
index in the set.

public int indexLessThanOrEqualToIndex(int value)

Availability
Available in Mac OS X v10.3 and later.

See Also
indexGreaterThanIndex (page 220)

Instance Methods 221
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

NSIndexSet

indexLessThanIndex (page 221)
indexGreaterThanOrEqualToIndex (page 221)

intersectsIndexesInRange
Returns true if the receiver contains any indexes in the range specified by range.

public boolean intersectsIndexesInRange(NSRangerange

Availability
Available in Mac OS X v10.3 and later.

See Also
containsIndexesInRange (page 220)

isEqualToIndexSet
Returns true if the receiver contains the same indexes as indexSet.

public boolean isEqualToIndexSet(NSIndexSet indexSet)

Availability
Available in Mac OS X v10.3 and later.

lastIndex
Returns the last index in the index set or NotFound if the index set is empty.

public int lastIndex()

Availability
Available in Mac OS X v10.3 and later.

See Also
firstIndex (page 220)

Constants

NSIndexSet provides the following constant as a convenience; you can use it to compare to values returned
by some NSIndexSet methods:

DescriptionConstant

Returned when an object is not found in an NSIndexSet.NotFound

222 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

NSIndexSet

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

Specifies an object in a collection (or container) by index number. The script terms first and front specify
the object with index 0, while “last” specifies the object with index of count minus 1. A negative index indicates
a location by counting backward from the last object in the collection.

You don’t normally subclass NSIndexSpecifier.

Tasks

Constructors

NSIndexSpecifier (page 223)
Returns an NSIndexSpecifier with no data.

Accessing Index Information

index (page 224)
Returns the index number encapsulated with the receiver for the specified object in the container.

setIndex (page 224)
Sets index as the index number encapsulated by the receiver for the specified object in the container.

Constructors

NSIndexSpecifier
Returns an NSIndexSpecifier with no data.

public NSIndexSpecifier()

Overview 223
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 35

NSIndexSpecifier

Discussion
Do not use this constructor.

Returns an NSIndexSpecifier initialized with container specifier specifier, key key, and the class description
of the object specifier classDescription, derived from the value of the specifier’s key.

public NSIndexSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key)

Discussion
The receiver’s child specifier reference is set to null. You use the setIndex (page 224) method to set the
zero-based index value for the specifier.

Returns an NSIndexSpecifier initialized with container specifier specifier and key key.

public NSIndexSpecifier(NSScriptObjectSpecifier specifier, String key)

Discussion
The class description of container is set automatically.

Returns an NSIndexSpecifier initialized with an index value of index for container specifier specifier, key
key, and the class description of the object specifier classDescription, derived from the value of the
specifier’s key.

public NSIndexSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key, int index)

Instance Methods

index
Returns the index number encapsulated with the receiver for the specified object in the container.

public int index()

setIndex
Sets index as the index number encapsulated by the receiver for the specified object in the container.

public void setIndex(int index)

224 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 35

NSIndexSpecifier

Inherits from NSCoder : NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.2 and later.

Companion guide Archives and Serializations Programming Guide for Cocoa

Overview

NSKeyedArchiver, a concrete subclass of NSCoder, provides a way to encode objects (and scalar values) into
an architecture-independent format that can be stored in a file. When you archive a set of objects, the class
information and instance variables for each object are written to the archive. NSKeyedArchiver’s companion
class, NSKeyedUnarchiver, decodes the data in an archive and creates a set of objects equivalent to the
original set.

A keyed archive differs from a non-keyed archive in that all the objects and values encoded into the archive
are given names, or keys. When decoding a non-keyed archive, values have to be decoded in the same order
in which they were encoded. When decoding a keyed archive, because values are requested by name, values
can be decoded out of sequence or not at all. Keyed archives, therefore, provide better support for forward
and backward compatibility.

The keys given to encoded values must be unique only within the scope of the current object being encoded.
A keyed archive is hierarchical, so the keys used by object A to encode its instance variables do not conflict
with the keys used by object B, even if A and B are instances of the same class. Within a single object, however,
the keys used by a subclass can conflict with keys used in its superclasses.

An NSArchiver object can write the archive data to a file or to a mutable-data object (NSMutableData) that
you provide.

Tasks

Constructors

NSKeyedArchiver (page 228)
Creates an empty NSKeyedArchiver.

Overview 225
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

Archiving Data

archivedDataWithRootObject (page 229)
Returns a data object containing the encoded form of the object graph whose root object is
rootObject.

archiveRootObjectToFile (page 229)
Archives rootObject by encoding it into a data object and atomically writes the resulting data object
to the file path.

finishEncoding (page 236)
Tells the receiver that you have finished encoding objects, allowing it to construct the final data
stream.

outputFormat (page 236)
Returns the format in which the receiver encodes its data.

setOutputFormat (page 237)
Sets the format in which the receiver encodes its data.

Encoding Data

encodeBoolForKey (page 230)
Encodes boolv and associates it with the string key.

encodeByte (page 231)
Encodes bytev.

encodeByteForKey (page 231)
Encodes bytev and associates it with the string key.

encodeChar (page 231)
Encodes charv.

encodeCharForKey (page 231)
Encodes charv and associates it with the string key.

encodeConditionalObject (page 232)
Encodes a reference to objv only if objv has been unconditionally encoded elsewhere in the archive.

encodeConditionalObjectForKey (page 232)
Encodes a reference to objv and associates it with the string key only if objv has been unconditionally
encoded elsewhere in the archive with encodeObjectForKey (page 235).

encodeDataObject (page 232)
Encodes datav.

encodeDouble (page 232)
Encodes realv.

encodeDoubleForKey (page 233)
Encodes realv and associates it with the string key.

encodeFloat (page 233)
Encodes realv.

encodeFloatForKey (page 233)
Encodes realv and associates it with the string key.

226 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

encodeInt (page 233)
Encodes intv.

encodeIntForKey (page 234)
Encodes intv and associates it with the string key.

encodeLong (page 234)
Encodes longv.

encodeLongForKey (page 234)
Encodes longv and associates it with the string key.

encodeObject (page 234)
Encodes objv.

encodeObjectForKey (page 235)
Encodes objv and associates it with the string key.

encodePointForKey (page 235)
Encodes pointv and associates it with the string key.

encodeRectForKey (page 235)
Encodes rectv and associates it with the string key.

encodeShort (page 235)
Encodes shortv.

encodeShortForKey (page 236)
Encodes shortv and associates it with the string key.

encodeSizeForKey (page 236)
Encodes sizev and associates it with the string key.

Managing Delegates

delegate (page 230)
Returns the receiver’s delegate.

setDelegate (page 237)
Sets the receiver’s delegate.

Managing Classes and Class Names

setGlobalClassNameForClass (page 229)
Adds a class translation mapping to NSKeyedArchiver whereby instances of cls are encoded with
the class name codedName instead of their real class names.

globalClassNameForClass (page 229)
Returns the class name with which NSKeyedArchiver encodes instances of cls.

setClassNameForClass (page 237)
Adds a class translation mapping to the receiver whereby instances of cls are encoded with the class
name codedName instead of their real class names.

classNameForClass (page 230)
Returns the class name with which the receiver encodes instances of cls.

Tasks 227
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

Querying an Archiver

versionForClassName (page 238)
Returns the current class version number for the class named className.

Encoding objects

archiverDidEncodeObject (page 238) delegate method
Informs the delegate that object has been encoded.

archiverWillEncodeObject (page 238) delegate method
Informs the delegate that object is about to be encoded.

archiverWillReplaceObject (page 239) delegate method
Informs the delegate that newObject is being substituted for object.

Finishing encoding

archiverDidFinish (page 238) delegate method
Notifies the delegate that encoding has finished.

archiverWillFinish (page 239) delegate method
Notifies the delegate that encoding is about to finish.

Constructors

NSKeyedArchiver
Creates an empty NSKeyedArchiver.

public NSKeyedArchiver()

Discussion
Use the other constructor or the static methods archivedDataWithRootObject (page 229) or
archiveRootObjectToFile (page 229), instead.

Availability
Available in Mac OS X v10.2 and later.

Creates an NSKeyedArchiver with the data object as its archive and prepares the NSKeyedArchiver for a
subsequent encode operation.

public NSKeyedArchiver(NSMutableData data)

Availability
Available in Mac OS X v10.2 and later.

228 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

Static Methods

archivedDataWithRootObject
Returns a data object containing the encoded form of the object graph whose root object is rootObject.

public static NSData archivedDataWithRootObject(Object rootObject)

Discussion
The format of the archive is NSPropertyList.PropertyListBinaryFormat.

Availability
Available in Mac OS X v10.2 and later.

archiveRootObjectToFile
Archives rootObject by encoding it into a data object and atomically writes the resulting data object to
the file path.

public static boolean archiveRootObjectToFile(Object rootObject, String path)

Discussion
Returns true upon success. The format of the archive is NSPropertyList.PropertyListBinaryFormat.

Availability
Available in Mac OS X v10.2 and later.

globalClassNameForClass
Returns the class name with which NSKeyedArchiver encodes instances of cls.

public static String globalClassNameForClass(Class cls)

Discussion
Returns null if NSKeyedArchiver does not have a translation mapping for cls.

Availability
Available in Mac OS X v10.2 and later.

See Also
setGlobalClassNameForClass (page 229)
classNameForClass (page 230)

setGlobalClassNameForClass
Adds a class translation mapping to NSKeyedArchiver whereby instances of cls are encoded with the class
name codedName instead of their real class names.

public static void setGlobalClassNameForClass(String codedName, Class cls)

Static Methods 229
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

Discussion
When encoding, the class’s translation mapping is used only if no translation is found first in an instance’s
separate translation map.

Availability
Available in Mac OS X v10.2 and later.

See Also
globalClassNameForClass (page 229)
setClassNameForClass (page 237)

Instance Methods

classNameForClass
Returns the class name with which the receiver encodes instances of cls.

public String classNameForClass(Class cls)

Discussion
Returns null if the receiver does not have a translation mapping for cls. The class’s separate translation
map is not searched.

Availability
Available in Mac OS X v10.2 and later.

See Also
setClassNameForClass (page 237)
globalClassNameForClass (page 229)

delegate
Returns the receiver’s delegate.

public Object delegate()

Availability
Available in Mac OS X v10.2 and later.

See Also
setDelegate (page 237)

encodeBoolForKey
Encodes boolv and associates it with the string key.

public void encodeBoolForKey(boolean boolv, String key)

230 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeBoolForKey (page 246) (NSKeyedUnarchiver)

encodeByte
Encodes bytev.

public void encodeByte(byte bytev)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeByte (page 247) (NSKeyedUnarchiver)

encodeByteForKey
Encodes bytev and associates it with the string key.

public void encodeByteForKey(byte bytev, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeByteForKey (page 247) (NSKeyedUnarchiver)

encodeChar
Encodes charv.

public void encodeChar(char charv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeChar (page 247) (NSKeyedUnarchiver)

encodeCharForKey
Encodes charv and associates it with the string key.

public void encodeCharForKey(char charv, String key)

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 231
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

See Also
decodeCharForKey (page 247) (NSKeyedUnarchiver)

encodeConditionalObject
Encodes a reference to objv only if objv has been unconditionally encoded elsewhere in the archive.

public void encodeConditionalObject(Object objv)

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeConditionalObjectForKey (page 232)
encodeObject (page 234)
encodeObjectForKey (page 235)

encodeConditionalObjectForKey
Encodes a reference to objv and associates it with the string key only if objv has been unconditionally
encoded elsewhere in the archive with encodeObjectForKey (page 235).

public void encodeConditionalObjectForKey(Object objv, String key)

Availability
Available in Mac OS X v10.2 and later.

encodeDataObject
Encodes datav.

public void encodeDataObject(NSData datav)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeDataObject (page 248) (NSKeyedUnarchiver)

encodeDouble
Encodes realv.

public void encodeDouble(double realv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeDouble (page 248) (NSKeyedUnarchiver)

232 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

encodeDoubleForKey
Encodes realv and associates it with the string key.

public void encodeDoubleForKey(double realv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeDoubleForKey (page 248) (NSKeyedUnarchiver)
decodeFloatForKey (page 249) (NSKeyedUnarchiver)

encodeFloat
Encodes realv.

public void encodeFloat(float realv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeFloat (page 248) (NSKeyedUnarchiver)

encodeFloatForKey
Encodes realv and associates it with the string key.

public void encodeFloatForKey(float realv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeFloatForKey (page 249) (NSKeyedUnarchiver)
decodeDoubleForKey (page 248) (NSKeyedUnarchiver)

encodeInt
Encodes intv.

public void encodeInt(int intv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeInt (page 249) (NSKeyedUnarchiver)

Instance Methods 233
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

encodeIntForKey
Encodes intv and associates it with the string key.

public void encodeIntForKey(int intv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeIntForKey (page 249) (NSKeyedUnarchiver)
decodeShortForKey (page 252) (NSKeyedUnarchiver)
decodeLongForKey (page 250) (NSKeyedUnarchiver)

encodeLong
Encodes longv.

public void encodeLong(long longv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeLong (page 250) (NSKeyedUnarchiver)

encodeLongForKey
Encodes longv and associates it with the string key.

public void encodeLongForKey(long longv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeLongForKey (page 250) (NSKeyedUnarchiver)
decodeShortForKey (page 252) (NSKeyedUnarchiver)
decodeIntForKey (page 249) (NSKeyedUnarchiver)

encodeObject
Encodes objv.

public void encodeObject(Object objv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeObject (page 250) (NSKeyedUnarchiver)

234 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

encodeObjectForKey
Encodes objv and associates it with the string key.

public void encodeObjectForKey(Object objv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeObjectForKey (page 251) (NSKeyedUnarchiver)

encodePointForKey
Encodes pointv and associates it with the string key.

public void encodePointForKey(NSPoint pointv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodePointForKey (page 251) (NSKeyedUnarchiver)

encodeRectForKey
Encodes rectv and associates it with the string key.

public void encodeRectForKey(NSRect rectv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeRectForKey (page 251) (NSKeyedUnarchiver)

encodeShort
Encodes shortv.

public void encodeShort(short shortv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeShort (page 251) (NSKeyedUnarchiver)

Instance Methods 235
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

encodeShortForKey
Encodes shortv and associates it with the string key.

public void encodeShortForKey(short shortv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeShortForKey (page 252) (NSKeyedUnarchiver)
decodeIntForKey (page 249) (NSKeyedUnarchiver)
decodeLongForKey (page 250) (NSKeyedUnarchiver)

encodeSizeForKey
Encodes sizev and associates it with the string key.

public void encodeSizeForKey(NSSize sizev, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeSizeForKey (page 252) (NSKeyedUnarchiver)

finishEncoding
Tells the receiver that you have finished encoding objects, allowing it to construct the final data stream.

public void finishEncoding()

Discussion
No more values can be encoded after this method is called. You must call this method when finished.

Availability
Available in Mac OS X v10.2 and later.

See Also
NSKeyedArchiver (page 228)

outputFormat
Returns the format in which the receiver encodes its data.

public int outputFormat()

Discussion
The available formats are NSPropertyList.PropertyListXMLFormat and
NSPropertyList.PropertyListBinaryFormat.

236 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

Availability
Available in Mac OS X v10.2 and later.

See Also
setOutputFormat (page 237)

setClassNameForClass
Adds a class translation mapping to the receiver whereby instances of cls are encoded with the class name
codedName instead of their real class names.

public void setClassNameForClass(String codedName, Class cls)

Discussion
When encoding, the receiver’s translation map overrides any translation that may also be present in the
class’s map.

Availability
Available in Mac OS X v10.2 and later.

See Also
classNameForClass (page 230)
setGlobalClassNameForClass (page 229)

setDelegate
Sets the receiver’s delegate.

public void setDelegate(Object delegate)

Availability
Available in Mac OS X v10.2 and later.

See Also
delegate (page 230)

setOutputFormat
Sets the format in which the receiver encodes its data.

public void setOutputFormat(int format)

Discussion
format can be NSPropertyList.PropertyListXMLFormat or
NSPropertyList.PropertyListBinaryFormat.

Availability
Available in Mac OS X v10.2 and later.

See Also
outputFormat (page 236)

Instance Methods 237
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

versionForClassName
Returns the current class version number for the class named className.

public int versionForClassName(String className)

Discussion
Keyed archives do not record class version numbers like non-keyed archives do. Objects can explicitly encode
and decode version numbers if desired.

Availability
Available in Mac OS X v10.2 and later.

Delegate Methods

archiverDidEncodeObject
Informs the delegate that object has been encoded.

public abstract void archiverDidEncodeObject(NSKeyedArchiver archiver, Object
object)

Discussion
The delegate might restore some state it had modified previously, or use this opportunity to keep track of
the objects that are encoded. object may be null.

This method is not called for conditional objects until they are actually encoded (if ever).

Availability
Available in Mac OS X v10.2 and later.

archiverDidFinish
Notifies the delegate that encoding has finished.

public abstract void archiverDidFinish(NSKeyedArchiver archiver)

Availability
Available in Mac OS X v10.2 and later.

archiverWillEncodeObject
Informs the delegate that object is about to be encoded.

public abstract Object archiverWillEncodeObject(NSKeyedArchiver archiver, Object
object)

Discussion
The delegate either returns object or can return a different object to be encoded instead. The delegate can
also modify the coder state. If the delegate returns null, null is encoded.

238 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

This method is not called for an object once a replacement mapping has been set up for that object (either
explicitly, or because the object has previously been encoded). This method is also not called when null is
about to be encoded.

This method is called whether or not the object is being encoded conditionally.

Availability
Available in Mac OS X v10.2 and later.

archiverWillFinish
Notifies the delegate that encoding is about to finish.

public abstract void archiverWillFinish(NSKeyedArchiver archiver)

Availability
Available in Mac OS X v10.2 and later.

archiverWillReplaceObject
Informs the delegate that newObject is being substituted for object.

public abstract void archiverWillReplaceObject(NSKeyedArchiver archiver, Object
object, Object newObject)

Discussion
This method is called even when the delegate itself is doing, or has done, the substitution. The delegate may
use this method if it is keeping track of the encoded or decoded objects.

Availability
Available in Mac OS X v10.2 and later.

Delegate Methods 239
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

240 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

Inherits from NSCoder : NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.2 and later.

Companion guide Archives and Serializations Programming Guide for Cocoa

Overview

NSKeyedUnarchiver, a concrete subclass of NSCoder, defines methods for decoding a set of named objects
(and scalar values) from a keyed archive. Such archives are produced by instances of the NSKeyedArchiver
class.

A keyed archive is encoded as a hierarchy of objects. Each object in the hierarchy serves as a namespace into
which other objects are encoded. The objects available for decoding are restricted to those that were encoded
within the immediate scope of a particular object. Objects encoded elsewhere in the hierarchy, whether
higher than, lower than, or parallel to this particular object, are not accessible. In this way, the keys used by
a particular object to encode its instance variables need to be unique only within the scope of that object.

If you invoke one of the decode... methods of this class using a key that does not exist in the archive, a
non-positive value is returned. This value varies by decoded type. For example, if a key does not exist in an
archive, decodeBoolForKey (page 246) returns false, decodeIntForKey (page 249) returns 0, and
decodeObjectForKey (page 251) returns null.

NSKeyedUnarchiver supports limited type coercion. A value encoded as any type of integer, whether a
standard int or an explicit 32-bit or 64-bit integer, can be decoded using any of the integer decode methods.
Likewise, a value encoded as a float or double can be decoded as either a float or a double value. If an
encoded value is too large to fit within the coerced type, the decoding method throws a RangeException.
Further, when trying to coerce a value to an incompatible type, for example decoding an int as a float,
the decoding method throws an InvalidUnarchiveOperationException.

Tasks

Constructors

NSKeyedUnarchiver (page 244)
Creates an empty NSKeyedUnarchiver.

Overview 241
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

Unarchiving Data

unarchiveObjectWithData (page 245)
Decodes the object graph previously encoded by NSKeyedArchiver and stored in data.

unarchiveObjectWithFile (page 245)
Decodes the object graph previously encoded by NSKeyedArchiver written to the file path.

Decoding Data

containsValueForKey (page 246)
Returns a Boolean value that indicates whether the archive contains a value for a string within the
current decoding scope.

decodeBoolForKey (page 246)
Decodes a boolean value associated with the string key.

decodeByte (page 247)
Decodes a byte.

decodeByteForKey (page 247)
Decodes a byte associated with the string key.

decodeChar (page 247)
Decodes a char value.

decodeCharForKey (page 247)
Decodes a char value associated with the string key.

decodeDataObject (page 248)
Decodes an NSData object.

decodeDouble (page 248)
Decodes a double-precision floating-point value.

decodeDoubleForKey (page 248)
Decodes a double-precision floating-point value associated with the string key.

decodeFloat (page 248)
Decodes a single-precision floating-point value.

decodeFloatForKey (page 249)
Decodes a single-precision floating-point value associated with the string key.

decodeInt (page 249)
Decodes an integer value.

decodeIntForKey (page 249)
Decodes an integer value associated with the string key.

decodeLong (page 250)
Decodes a long value.

decodeLongForKey (page 250)
Decodes a long value associated with the string key.

decodeObject (page 250)
Decodes an arbitrary Object.

decodeObjectForKey (page 251)
Decodes an object associated with the string key.

242 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

decodePointForKey (page 251)
Decodes an NSPoint associated with the string key.

decodeRectForKey (page 251)
Decodes an NSRect associated with the string key.

decodeShort (page 251)
Decodes a short value.

decodeShortForKey (page 252)
Decodes a short value associated with the string key.

decodeSizeForKey (page 252)
Decodes an NSSize associated with the string key.

finishDecoding (page 253)
Tells the receiver that you are finished decoding objects, allowing the receiver to notify its delegate
and to perform any final operations on the archive.

Managing Delegates

setDelegate (page 253)
Sets the receiver’s delegate.

delegate (page 252)
Returns the receiver’s delegate.

Managing Class Names

setGlobalClassForClassName (page 245)
Adds a class translation mapping to NSKeyedUnarchiver whereby encoded objects with the class
name codedName are decoded as instances of the class cls instead.

globalClassForClassName (page 244)
Returns the class from which NSKeyedUnarchiver instantiates an encoded object with the class name
codedName.

setClassForClassName (page 253)
Adds a class translation mapping to the receiver whereby encoded objects with the class name
codedName are decoded as instances of the class cls instead.

classForClassName (page 246)
Returns the class from which the receiver instantiates an encoded object with the class name
codedName.

Querying an Unarchiver

versionForClassName (page 253)
Returns the current class version number for the class named className.

Tasks 243
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

Decoding objects

unarchiverCannotDecodeObject (page 254) delegate method
Informs the delegate that the named class, name, is not available during decoding.

unarchiverDidDecodeObject (page 254) delegate method
Informs the delegate that object has been decoded.

unarchiverWillReplaceObject (page 255) delegate method
Informs the delegate that newObject is being substituted for object.

Finishing decoding

unarchiverDidFinish (page 254) delegate method
Notifies the delegate that decoding has finished.

unarchiverWillFinish (page 255) delegate method
Notifies the delegate that decoding is about to finish.

Constructors

NSKeyedUnarchiver
Creates an empty NSKeyedUnarchiver.

public NSKeyedUnarchiver()

Discussion
Use the other constructor or the static methods unarchiveObjectWithData (page 245) or
unarchiveObjectWithFile (page 245), instead.

Availability
Available in Mac OS X v10.2 and later.

Creates an NSKeyedUnarchiver with the data object as its archive and prepare the NSKeyedUnarchiver for
a subsequent decode operation.

public NSKeyedUnarchiver(NSData data)

Availability
Available in Mac OS X v10.2 and later.

Static Methods

globalClassForClassName
Returns the class from which NSKeyedUnarchiver instantiates an encoded object with the class name
codedName.

244 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

public static Class globalClassForClassName(String codedName)

Discussion
Returns null if NSKeyedUnarchiver does not have a translation mapping for codedName.

Availability
Available in Mac OS X v10.2 and later.

See Also
setGlobalClassForClassName (page 245)
classForClassName (page 246)

setGlobalClassForClassName
Adds a class translation mapping to NSKeyedUnarchiver whereby encoded objects with the class name
codedName are decoded as instances of the class cls instead.

public static void setGlobalClassForClassName(Class cls, String codedName)

Discussion
When decoding, the class’s translation mapping is used only if no translation is found first in an instance’s
separate translation map.

Availability
Available in Mac OS X v10.2 and later.

See Also
globalClassForClassName (page 244)
setClassForClassName (page 253)

unarchiveObjectWithData
Decodes the object graph previously encoded by NSKeyedArchiver and stored in data.

public static Object unarchiveObjectWithData(NSData data)

Availability
Available in Mac OS X v10.2 and later.

unarchiveObjectWithFile
Decodes the object graph previously encoded by NSKeyedArchiver written to the file path.

public static Object unarchiveObjectWithFile(String path)

Availability
Available in Mac OS X v10.2 and later.

Static Methods 245
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

Instance Methods

classForClassName
Returns the class from which the receiver instantiates an encoded object with the class name codedName.

public Class classForClassName(String codedName)

Discussion
Returns null if the receiver does not have a translation mapping for codedName. The class’s separate
translation map is not searched.

Availability
Available in Mac OS X v10.2 and later.

See Also
setClassForClassName (page 253)
globalClassForClassName (page 244)

containsValueForKey
Returns a Boolean value that indicates whether the archive contains a value for a string within the current
decoding scope.

public boolean containsValueForKey(String key)

Discussion
The string is represented by key .

Availability
Available in Mac OS X v10.2 and later.

decodeBoolForKey
Decodes a boolean value associated with the string key.

public boolean decodeBoolForKey(String key)

Discussion
Returns false if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeBoolForKey (page 230) (NSKeyedArchiver)

246 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

decodeByte
Decodes a byte.

public byte decodeByte()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeByte (page 231) (NSKeyedArchiver)

decodeByteForKey
Decodes a byte associated with the string key.

public byte decodeByteForKey(String key)

Discussion
Returns 0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeByteForKey (page 231) (NSKeyedArchiver)

decodeChar
Decodes a char value.

public char decodeChar()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeChar (page 231) (NSKeyedArchiver)

decodeCharForKey
Decodes a char value associated with the string key.

public char decodeCharForKey(String key)

Discussion
Returns 0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 247
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

See Also
encodeCharForKey (page 231) (NSKeyedArchiver)

decodeDataObject
Decodes an NSData object.

public NSData decodeDataObject()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeDataObject (page 232) (NSKeyedArchiver)

decodeDouble
Decodes a double-precision floating-point value.

public double decodeDouble()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeDouble (page 232) (NSKeyedArchiver)

decodeDoubleForKey
Decodes a double-precision floating-point value associated with the string key.

public double decodeDoubleForKey(String key)

Discussion
If the archived value was encoded as single-precision, the type is coerced. Returns 0.0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeDoubleForKey (page 233) (NSKeyedArchiver)
encodeFloatForKey (page 233) (NSKeyedArchiver)

decodeFloat
Decodes a single-precision floating-point value.

public float decodeFloat()

248 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeFloat (page 233) (NSKeyedArchiver)

decodeFloatForKey
Decodes a single-precision floating-point value associated with the string key.

public float decodeFloatForKey(String key)

Discussion
If the archived value was encoded as double precision, the type is coerced, loosing precision. If the archived
value is too large for single precision, the method throws a RangeException. Returns 0.0 if key does not
exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeFloatForKey (page 233) (NSKeyedArchiver)
encodeDoubleForKey (page 233) (NSKeyedArchiver)

decodeInt
Decodes an integer value.

public int decodeInt()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeInt (page 233) (NSKeyedArchiver)

decodeIntForKey
Decodes an integer value associated with the string key.

public int decodeIntForKey(String key)

Discussion
If the archived value was encoded with a different size but is still an integer, the type is coerced. If the archived
value is too large to fit into the default size for an integer, the method throws a RangeException. Returns
0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 249
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

See Also
encodeIntForKey (page 234) (NSKeyedArchiver)
encodeShortForKey (page 236) (NSKeyedArchiver)
encodeLongForKey (page 234) (NSKeyedArchiver)

decodeLong
Decodes a long value.

public long decodeLong()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeLong (page 234) (NSKeyedArchiver)

decodeLongForKey
Decodes a long value associated with the string key.

public long decodeLongForKey(String key)

Discussion
Returns 0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeLongForKey (page 234) (NSKeyedArchiver)
encodeShortForKey (page 236) (NSKeyedArchiver)
encodeIntForKey (page 234) (NSKeyedArchiver)

decodeObject
Decodes an arbitrary Object.

public Object decodeObject()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeObject (page 234)
encodeConditionalObject (page 232)

250 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

decodeObjectForKey
Decodes an object associated with the string key.

public Object decodeObjectForKey(String key)

Discussion
Returns null if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeObjectForKey (page 235) (NSKeyedArchiver)

decodePointForKey
Decodes an NSPoint associated with the string key.

public NSPoint decodePointForKey(String key)

Discussion
Returns NSPoint.ZeroPoint if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodePointForKey (page 235) (NSKeyedArchiver)

decodeRectForKey
Decodes an NSRect associated with the string key.

public NSRect decodeRectForKey(String key)

Discussion
Returns NSRect.ZeroRect if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeRectForKey (page 235) (NSKeyedArchiver)

decodeShort
Decodes a short value.

public short decodeShort()

Instance Methods 251
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeShort (page 235) (NSKeyedArchiver)

decodeShortForKey
Decodes a short value associated with the string key.

public short decodeShortForKey(String key)

Discussion
Returns 0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeShortForKey (page 236) (NSKeyedArchiver)
encodeIntForKey (page 234) (NSKeyedArchiver)
encodeLongForKey (page 234) (NSKeyedArchiver)

decodeSizeForKey
Decodes an NSSize associated with the string key.

public NSSize decodeSizeForKey(String key)

Discussion
Returns NSSize.ZeroSize if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeSizeForKey (page 236) (NSKeyedArchiver)

delegate
Returns the receiver’s delegate.

public Object delegate()

Availability
Available in Mac OS X v10.2 and later.

See Also
setDelegate (page 253)

252 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

finishDecoding
Tells the receiver that you are finished decoding objects, allowing the receiver to notify its delegate and to
perform any final operations on the archive.

public void finishDecoding()

Discussion
Once this method is invoked, the receiver cannot decode any further values.

Availability
Available in Mac OS X v10.2 and later.

setClassForClassName
Adds a class translation mapping to the receiver whereby encoded objects with the class name codedName
are decoded as instances of the class cls instead.

public void setClassForClassName(Class cls, String codedName)

Discussion
When decoding, the receiver’s translation map overrides any translation that may also be present in the
class’s map.

Availability
Available in Mac OS X v10.2 and later.

See Also
classForClassName (page 246)
setGlobalClassForClassName (page 245)

setDelegate
Sets the receiver’s delegate.

public void setDelegate(Object delegate)

Availability
Available in Mac OS X v10.2 and later.

See Also
delegate (page 252)

versionForClassName
Returns the current class version number for the class named className.

public int versionForClassName(String className)

Instance Methods 253
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

Discussion
Keyed archives do not record class version numbers like non-keyed archives do, so the value returned by
this method is not the version number for the class in the archive. Objects can explicitly encode and decode
version numbers if desired.

Availability
Available in Mac OS X v10.2 and later.

Delegate Methods

unarchiverCannotDecodeObject
Informs the delegate that the named class, name, is not available during decoding.

public abstract Class unarchiverCannotDecodeObject(NSKeyedUnarchiver unarchiver,
String name, NSArray classNames)

Discussion
The delegate may, for example, load some code to introduce the class to the runtime and return the class,
or substitute a different class object. If the delegate returns null, unarchiving aborts and the method throws
an InvalidUnarchiveOperationException. The first element in classNames is the class name string
of the encoded object, the second element is the class name of its immediate superclass, and so on.

Availability
Available in Mac OS X v10.2 and later.

unarchiverDidDecodeObject
Informs the delegate that object has been decoded.

public abstract Object unarchiverDidDecodeObject(NSKeyedUnarchiver unarchiver,
Object object)

Discussion
The delegate can either return object or return a different object to replace the decoded one. object may
be null. If the delegate returns null, null is the result of decoding the object.

The delegate may use this method to keep track of the decoded objects.

Availability
Available in Mac OS X v10.2 and later.

unarchiverDidFinish
Notifies the delegate that decoding has finished.

public abstract void unarchiverDidFinish(NSKeyedUnarchiver unarchiver)

Availability
Available in Mac OS X v10.2 and later.

254 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

unarchiverWillFinish
Notifies the delegate that decoding is about to finish.

public abstract void unarchiverWillFinish(NSKeyedUnarchiver unarchiver)

Availability
Available in Mac OS X v10.2 and later.

unarchiverWillReplaceObject
Informs the delegate that newObject is being substituted for object.

public abstract void unarchiverWillReplaceObject(NSKeyedUnarchiver unarchiver,
Object object, Object newObject)

Discussion
This method is called even when the delegate itself is doing, or has done, the substitution with
unarchiverDidDecodeObject (page 254).

The delegate may use this method if it is keeping track of the encoded or decoded objects.

Availability
Available in Mac OS X v10.2 and later.

Delegate Methods 255
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

256 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Key-Value Coding Programming Guide

Overview

The NSKeyValue class provides methods for modifying the properties of an object using key-value coding.
This class goes beyond the capabilities of the NSKeyValueCoding interface by taking advantage of the
information available for an object’s NSClassDescription. A class description identifies by name (or key) the
properties (or attributes) that can be accessed for objects of a given class. Properties can contain multiple
values or consist of one-to-one or one-to-many relationships with other objects. NSKeyValue uses this
information to provide convenient methods for accessing individual elements of array properties and for
automatically managing reciprocal relationships between objects.

Tasks

Constructors

NSKeyValue (page 259)
Returns an empty NSKeyValue.

Getting Values

valueAtIndexInPropertyWithKey (page 263)
Returns the contents of location index of the to-many property identified by key for anObject.

valueForKey (page 263)
Returns the property identified by key for anObject.

valueForKeyPath (page 263)
Returns the value of anObject for the derived property identified by keyPath.

valuesForKeys (page 263)
Returns a dictionary containing the property values for anObject identified by each element of keys.

valueWithNameInPropertyWithKey (page 264)
Retrieves a single value from a multi-value key for the object anObject.

Overview 257
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

NSKeyValue

valueWithUniqueIDInPropertyWithKey (page 264)
Retrieves a single value from a multi-value key for the object anObject.

coerceValueForKey (page 260)
Returns value coerced to the proper data type needed for the property identified by key for
anObject.

Setting Values

takeStoredValueForKey (page 261)
Sets anObject’s property identified by key to value.

takeValueForKey (page 262)
Sets the property of anObject identified by key to value.

takeValueForKeyPath (page 262)
Sets the property of anObject identified by keyPath to value.

Adding

addObjectToBothSidesOfRelationshipWithKey (page 259)
Sets or adds value as the destination for the relationship identified by key for anObject and also
sets or adds anObject for any reciprocal relationship with value, if there is one.

addObjectToPropertyWithKey (page 259)
Adds value to anObject’s to-many property identified by key, without setting a reciprocal
relationship.

insertValueAtIndexInPropertyWithKey (page 260)
Inserts value at location index of the to-many property identified by key for anObject.

insertValueInPropertyWithKey (page 260)
Inserts a single value in a multivalue key at a reasonable index for anObject.

Removing

removeObjectFromBothSidesOfRelationshipWithKey (page 261)
Removes value as the destination of the relationship identified by key for anObject and also removes
anObject for any reciprocal relationship with value, if there is one.

removeObjectFromPropertyWithKey (page 261)
Removes value from the to-many property identified by key for anObject.

removeValueAtIndexFromPropertyWithKey (page 261)
Removes the value at location index of the to-many property identified by key for anObject.

Replacing

replaceValueAtIndexInPropertyWithKeyWithValue (page 261)
Replaces the contents of location index of the to-many property identified by key for anObject
with the value value.

258 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

NSKeyValue

Using Metadata

classDescription (page 260)
Returns the NSClassDescription object for anObject.

objectSpecifier (page 260)
Returns the object specifier for anObject.

Constructors

NSKeyValue
Returns an empty NSKeyValue.

public NSKeyValue()

Discussion
NSKeyValue contains only static methods, so you do not need to create instances.

Static Methods

addObjectToBothSidesOfRelationshipWithKey
Sets or adds value as the destination for the relationship identified by key for anObject and also sets or
adds anObject for any reciprocal relationship with value, if there is one.

public static void addObjectToBothSidesOfRelationshipWithKey(Object anObject, Object
value, String key)

Discussion
This method removes any previous link anObject has for relationship key. For example, if an Employee
object belongs to the Research department, invoking this method with the Maintenance department as the
new value removes the Employee from the Research department employee list as well as setting the
Employee’s department to Maintenance.

See Also
removeObjectFromBothSidesOfRelationshipWithKey (page 261)

addObjectToPropertyWithKey
Adds value to anObject’s to-many property identified by key, without setting a reciprocal relationship.

public static void addObjectToPropertyWithKey(Object anObject, Object value, String
key)

Discussion
The key property should be an NSMutableArray.

Constructors 259
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

NSKeyValue

See Also
removeObjectFromPropertyWithKey (page 261)

classDescription
Returns the NSClassDescription object for anObject.

public static NSClassDescription classDescription(Object anObject)

coerceValueForKey
Returns value coerced to the proper data type needed for the property identified by key for anObject.

public static Object coerceValueForKey(Object anObject, Object value, String key)

Discussion
If anObject does not have an NSScriptClassDescription, which allows properties to be typed, registered as
its class description, value is returned unchanged.

insertValueAtIndexInPropertyWithKey
Inserts value at location index of the to-many property identified by key for anObject.

public static void insertValueAtIndexInPropertyWithKey(Object anObject, Object
value, int index, String key)

Discussion
The key property should be an NSMutableArray.

See Also
removeValueAtIndexFromPropertyWithKey (page 261)
replaceValueAtIndexInPropertyWithKeyWithValue (page 261)
valueAtIndexInPropertyWithKey (page 263)

insertValueInPropertyWithKey
Inserts a single value in a multivalue key at a reasonable index for anObject.

public static void insertValueInPropertyWithKey(Object anObject, Object value,
String key)

Discussion
The method insertIn<Key> is invoked on anObject if it exists. Otherwise, throws an
NSUnknownKeyException. This is part of Cocoa’s scripting support for inserting newly-created objects into
containers without explicitly specifying a location.

objectSpecifier
Returns the object specifier for anObject.

260 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

NSKeyValue

public static NSScriptObjectSpecifier objectSpecifier(Object anObject)

removeObjectFromBothSidesOfRelationshipWithKey
Removes value as the destination of the relationship identified by key for anObject and also removes
anObject for any reciprocal relationship with value, if there is one.

public static void removeObjectFromBothSidesOfRelationshipWithKey(Object anObject,
Object value, String key)

See Also
addObjectToBothSidesOfRelationshipWithKey (page 259)

removeObjectFromPropertyWithKey
Removes value from the to-many property identified by key for anObject.

public static void removeObjectFromPropertyWithKey(Object anObject, Object value,
String key)

See Also
addObjectToPropertyWithKey (page 259)

removeValueAtIndexFromPropertyWithKey
Removes the value at location index of the to-many property identified by key for anObject.

public static void removeValueAtIndexFromPropertyWithKey(Object anObject, int index,
String key)

See Also
insertValueAtIndexInPropertyWithKey (page 260)

replaceValueAtIndexInPropertyWithKeyWithValue
Replaces the contents of location index of the to-many property identified by key for anObject with the
value value.

public static void replaceValueAtIndexInPropertyWithKeyWithValue(Object anObject,
int index, String key, Object value)

See Also
insertValueAtIndexInPropertyWithKey (page 260)

takeStoredValueForKey
Sets anObject’s property identified by key to value.

public static void takeStoredValueForKey(Object anObject, Object value, String key)

Static Methods 261
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

NSKeyValue

Discussion
Similar to the implementation of takeValueForKey (page 262), but it resolves key with a different method
instance variable search order:

1. Searches for a private accessor method based on key (a method preceded by an underbar). For example,
with a key of “lastName”, takeStoredValueForKey looks for a method named _setLastName.

2. If a private accessor is not found, searches for an instance variable based on key and sets its value directly.
For example, with a key of “lastName”, takeStoredValueForKey looks for an instance variable named
_lastName or lastName.

3. If neither a private accessor nor an instance variable is found, takeStoredValueForKey searches for
a public accessor method based on key. For the key “lastName”, this would be setLastName.

takeValueForKey
Sets the property of anObject identified by key to value.

public static void takeValueForKey(Object anObject, Object value, String key)

Discussion
The default implementation works as follows:

1. Searches for a public accessor method of the form setKey, invoking it if there is one.

2. If a public accessor method is not found, searches for a private accessor method of the form _setKey,
invoking it if there is one.

3. If an accessor method is not found, takeValueForKey searches for an instance variable based on key
and sets value directly. For the key “lastName”, this would be _lastName or lastName.

See Also
valueForKey (page 263)

takeValueForKeyPath
Sets the property of anObject identified by keyPath to value.

public static void takeValueForKeyPath(Object anObject, Object value, String keyPath)

Discussion
A key path has the form relationship.property (with one or more relationships). The default implementation
gets the destination object for each relationship using valueForKey (page 263) and sends the final object
a takeValueForKey (page 262) message with value and property.

See Also
valueForKeyPath (page 263)

262 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

NSKeyValue

valueAtIndexInPropertyWithKey
Returns the contents of location index of the to-many property identified by key for anObject.

public static Object valueAtIndexInPropertyWithKey(Object anObject, int index,
String key)

See Also
insertValueAtIndexInPropertyWithKey (page 260)

valueForKey
Returns the property identified by key for anObject.

public static Object valueForKey(Object anObject, String key)

Discussion
The default implementation works as follows:

1. Searches for a public accessor method based on key. For example, with a key of “lastName”,
valueForKey looks for a method named getLastName or lastName.

2. If a public accessor method is not found, searches for a private accessor method based on key (a method
preceded by an underbar). For example, with a key of “lastName”, valueForKey looks for a method
named _getLastName or _lastName.

3. If an accessor method is not found, valueForKey searches for an instance variable based on key and
returns its value directly. For the key “lastName”, this would be _lastName or lastName.

See Also
takeValueForKey (page 262)

valueForKeyPath
Returns the value of anObject for the derived property identified by keyPath.

public static Object valueForKeyPath(Object anObject, String keyPath)

Discussion
A key path has the form relationship.property (with one or more relationships). The default implementation
gets the destination object for each relationship using valueForKey (page 263) and returns the result of a
valueForKey (page 263) message to the final object.

See Also
takeValueForKeyPath (page 262)

valuesForKeys
Returns a dictionary containing the property values for anObject identified by each element of keys.

public static NSDictionary valuesForKeys(Object anObject, NSArray keys)

Static Methods 263
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

NSKeyValue

Discussion
The default implementation invokes valueForKey (page 263) for each key in keys, substituting NSNulls in
the dictionary for returned null values.

valueWithNameInPropertyWithKey
Retrieves a single value from a multi-value key for the object anObject.

public static Object valueWithNameInPropertyWithKey(Object anObject, String name,
String key)

Discussion
The method valueIn<Key>WithName is invoked on anObject if it exists. Otherwise, an exception is thrown.

valueWithUniqueIDInPropertyWithKey
Retrieves a single value from a multi-value key for the object anObject.

public static Object valueWithUniqueIDInPropertyWithKey(Object anObject, Object
uniqueID, String key)

Discussion
The method valueIn<Key>WithUniqueID is invoked on anObject if it exists. Otherwise, an exception is
thrown. The declared type of uniqueID in the constructed method must be Object, String, or one of the
scalar types that can be encapsulated by the numeric classes, such as Integer or Double.

Constants

The following constant is defined in this informal interface.

DescriptionConstant

Can be thrown by key-value coding methods that want to explicitly
disallow certain manipulations or accesses. For instance, a
takeValueForKey method for a read-only key can throw this
exception.

OperationNot-
SupportedForKeyException

264 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

NSKeyValue

Inherits from NSScriptWhoseTest : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

Instances of this class perform logical operations of AND, OR, and NOT on Boolean expressions represented
by NSSpecifierTests. These operators are equivalent to “&&”, “||”, and “!” in the C language. For AND and OR
operations, an NSLogicalTest is typically initialized with an array containing two or more NSSpecifierTests.
isTrue (page 558), inherited from NSScriptWhoseTest, evaluates the array in a manner appropriate to the
logical operation. For NOT operations, an NSLogicalTest is initialized with only one NSSpecifierTest; it simply
reverses the Boolean outcome of the isTrue (page 558) method.

You don’t normally subclass NSLogicalTest.

Constants

The following constants are defined by NSLogicalTest:

DescriptionConstant

Specifies a logical AND test.AndLogicalTest

Specifies a logical NOT test.NotLogicalTest

Specifies a logical OR test.OrLogicalTest

Tasks

Constructors

NSLogicalTest (page 266)
Returns an NSLogicalTest with no data.

Overview 265
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

NSLogicalTest

Constructors

NSLogicalTest
Returns an NSLogicalTest with no data.

public NSLogicalTest()

Discussion
Do not use this constructor.

Returns an NSLogicalTest initialized with logical test of type testType and argument anObject.

public NSLogicalTest(int testType, Object anObject)

Discussion
If testType is NotLogicalTest, anObject is a single NSScriptWhoseTest object. For other testType
values, anObject is an NSArray object holding two or more NSScriptWhoseTest objects.

266 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

NSLogicalTest

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.

Overview

NSMetadataItem encapsulates the metadata associated with a file, providing a simple interface to retrieve
the available attribute names and values.

Tasks

Constructors

NSMetadataItem (page 267)

Getting Item Attributes

attributes (page 268)
Returns an array containing the attribute names of the receiver’s values.

valueForAttribute (page 268)
Returns the receiver’s metadata attribute name specified by key.

valuesForAttributes (page 268)
Returns a dictionary containing the key-value pairs for the attribute names specified by keys.

Constructors

NSMetadataItem
public NSMetadataItem()

Overview 267
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

NSMetadataItem

Discussion
Creates an empty NSMetadataItem object.

Instance Methods

attributes
Returns an array containing the attribute names of the receiver’s values.

public NSArray attributes()

Availability
Available in Mac OS X v10.4 and later.

valueForAttribute
Returns the receiver’s metadata attribute name specified by key.

public Object valueForAttribute(String key)

Availability
Available in Mac OS X v10.4 and later.

valuesForAttributes
Returns a dictionary containing the key-value pairs for the attribute names specified by keys.

public NSDictionary valuesForAttributes(NSArray keys)

Availability
Available in Mac OS X v10.4 and later.

268 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

NSMetadataItem

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.

Overview

NSMetadataQuery provides an object-oriented encapsulation of the MDQuery functionality for querying the
Spotlight metadata.

NSMetadataQuery provides the metadata query results in several ways:

 ■ As individual attribute values for requested attributes.

 ■ As value lists that contain the distinct values for given attributes in the query results.

 ■ A result array proxy, containing all the query results. This is suitable for use with Cocoa bindings.

 ■ As a hierarchical collection of results, grouping together items with the same values for specified grouping
attributes. This is also suitable for use with Cocoa bindings.

Tasks

Constructors

NSMetadataQuery (page 271)

Setting the Search Scope

searchScopes (page 275)
Returns an array containing the receiver’s search scopes.

setSearchScopes (page 277)
Sets the locations searched by the receiver.

Overview 269
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

Setting the Delegate

delegate (page 272)
Returns the delegate used by the receiver, or null if there is none.

setDelegate (page 276)
Sets the receiver’s delegate to delegate.

Setting the Query Attributes

predicate (page 274)
Returns the predicate the receiver uses to filter query results.

setPredicate (page 277)
Sets the predicate used by the receiver to filter the query results.

sortDescriptors (page 278)
Returns an array containing the receiver’s sort descriptors.

setSortDescriptors (page 277)
Sets the sort descriptors used by the receiver to descriptors.

valueListAttributes (page 279)
Returns an array containing the value list attributes the receiver generates.

setValueListAttributes (page 278)
Sets the value list attributes for the receiver to the specified attribute names.

groupingAttributes (page 273)
Returns the receiver’s grouping attributes.

setGroupingAttributes (page 276)
Sets the receiver’s grouping attributes to the attribute names specified in attrs.

notificationBatchingInterval (page 274)
Returns the interval that the receiver provides notification of updated query results.

setNotificationBatchingInterval (page 276)
Sets the interval between update notifications sent by the receiver to timeInterval.

Running the Query

startQuery (page 278)
Attempts to start the query, returning true if successful.

stopQuery (page 279)
Stops the receiver’s current query from gathering any further results.

isStarted (page 274)
Returns a Boolean value that indicates whether the receiver has received a startQuery (page 278)
message.

isGathering (page 273)
Returns a Boolean value that indicates whether the receiver is in the initial gathering phase of the
query.

270 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

isStopped (page 274)
Returns a Boolean value that indicates whether the receiver has received a stopQuery (page 279)
message.

Getting Query Results

resultCount (page 275)
Returns the number of results returned by the receiver.

resultAtIndex (page 275)
Returns the query result at idx.

results (page 275)
Returns an array representation of the result objects for the receiver.

disableUpdates (page 272)
Disables updates to the query results.

enableUpdates (page 272)
Enables updates to the query results.

indexOfResult (page 273)
Returns the index of result in the receiver’s results array.

valueLists (page 279)
Returns a dictionary containing the value lists generated by the receiver.

groupedResults (page 272)
Returns an array containing hierarchical groups of query results based on the receiver’s grouping
attributes.

valueOfAttributeForResultAtIndex (page 279)
Returns the value for the attribute name attrName at the index in the results specified by idx.

Constructors

NSMetadataQuery
public NSMetadataQuery()

Discussion
Creates an empty NSMetadataQuery object.

Availability
Available in Mac OS X v10.4 and later.

Constructors 271
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

Instance Methods

delegate
Returns the delegate used by the receiver, or null if there is none.

public Object delegate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDelegate (page 276)

disableUpdates
Disables updates to the query results.

public void disableUpdates()

Discussion
This method should be called before iterating over query results that could change due to live updates.

Availability
Available in Mac OS X v10.4 and later.

See Also
enableUpdates (page 272)

enableUpdates
Enables updates to the query results.

public void enableUpdates()

Discussion
This method should be called when finished iterating over the query results.

Availability
Available in Mac OS X v10.4 and later.

See Also
disableUpdates (page 272)

groupedResults
Returns an array containing hierarchical groups of query results based on the receiver’s grouping attributes.

public NSArray groupedResults()

272 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

Availability
Available in Mac OS X v10.4 and later.

See Also
groupingAttributes (page 273)
setGroupingAttributes (page 276)

groupingAttributes
Returns the receiver’s grouping attributes.

public NSArray groupingAttributes()

Availability
Available in Mac OS X v10.4 and later.

See Also
setGroupingAttributes (page 276)

indexOfResult
Returns the index of result in the receiver’s results array.

public int indexOfResult(Object result)

Availability
Available in Mac OS X v10.4 and later.

See Also
resultAtIndex (page 275)

isGathering
Returns a Boolean value that indicates whether the receiver is in the initial gathering phase of the query.

public boolean isGathering()

Discussion
Queries have two phases: the initial gathering phase that collects all currently matching results and a second
live-update phase.

Availability
Available in Mac OS X v10.4 and later.

See Also
isStarted (page 274)
isStopped (page 274)

Instance Methods 273
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

isStarted
Returns a Boolean value that indicates whether the receiver has received a startQuery (page 278) message.

public boolean isStarted()

Availability
Available in Mac OS X v10.4 and later.

See Also
isGathering (page 273)
isStopped (page 274)

isStopped
Returns a Boolean value that indicates whether the receiver has received a stopQuery (page 279) message.

public boolean isStopped()

Availability
Available in Mac OS X v10.4 and later.

See Also
isGathering (page 273)
isStarted (page 274)

notificationBatchingInterval
Returns the interval that the receiver provides notification of updated query results.

public double notificationBatchingInterval()

Discussion
The default is 1.0.

Availability
Available in Mac OS X v10.4 and later.

See Also
setNotificationBatchingInterval (page 276)

predicate
Returns the predicate the receiver uses to filter query results.

public NSPredicate predicate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setPredicate (page 277)

274 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

resultAtIndex
Returns the query result at idx.

public Object resultAtIndex(int idx)

Discussion
For performance reasons, you should use this method when retrieving a specific result, rather than they array
returned by results (page 275).

Availability
Available in Mac OS X v10.4 and later.

See Also
indexOfResult (page 273)

resultCount
Returns the number of results returned by the receiver.

public int resultCount()

Discussion
For performance reasons, you should use this method, rather than invoking count on results (page 275).

Availability
Available in Mac OS X v10.4 and later.

results
Returns an array representation of the result objects for the receiver.

public NSArray results()

Discussion
The results array is a proxy object that is primarily intended for use with Cocoa bindings. While it is possible
to copy the proxy array and receive a “snapshot” of the complete current query results, it is generally not
recommended due to performance and memory issues. To access individual result array elements you should
instead use the resultCount (page 275) and resultAtIndex (page 275) methods.

Availability
Available in Mac OS X v10.4 and later.

See Also
groupedResults (page 272)

searchScopes
Returns an array containing the receiver’s search scopes.

public NSArray searchScopes()

Instance Methods 275
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

Discussion
The array can contain NSString or NSURL objects that represent file system directories or the search scopes
specified in “Constants” (page 280). An empty array indicates that there is no limitation on where the receiver
searches.

Availability
Available in Mac OS X v10.4 and later.

See Also
setSearchScopes (page 277)

setDelegate
Sets the receiver’s delegate to delegate.

public void setDelegate(Object delegate)

Availability
Available in Mac OS X v10.4 and later.

See Also
delegate (page 272)

setGroupingAttributes
Sets the receiver’s grouping attributes to the attribute names specified in attrs.

public void setGroupingAttributes(NSArray attrs)

Discussion
Invoking this method on a receiver running a query causes the existing query to stop, all current results are
discarded, and a new query is started immediately.

Availability
Available in Mac OS X v10.4 and later.

See Also
groupingAttributes (page 273)

setNotificationBatchingInterval
Sets the interval between update notifications sent by the receiver to timeInterval.

public void setNotificationBatchingInterval(double timeInterval)

Discussion
The default is 1.0.

Availability
Available in Mac OS X v10.4 and later.

276 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

See Also
notificationBatchingInterval (page 274)

setPredicate
Sets the predicate used by the receiver to filter the query results.

public void setPredicate(NSPredicate predicate)

Discussion
The predicate is represented by predicate. You must set a predicate before starting a query. Invoking this
method on a receiver running a query causes the existing query to stop, all current results are discarded, and
a new query is started immediately.

Availability
Available in Mac OS X v10.4 and later.

See Also
setPredicate (page 277)

setSearchScopes
Sets the locations searched by the receiver.

public void setSearchScopes(NSArray scopes)

Discussion
By default the receiver has no limitation on its search scope. The scopes parameter is an array of NSString
or NSURL objects that specify file system directories. You can also include the predefined search scopes
specified in “Constants” (page 280). If scopes is an empty array, the receiver removes any search scope
limitations.

Availability
Available in Mac OS X v10.4 and later.

See Also
searchScopes (page 275)

setSortDescriptors
Sets the sort descriptors used by the receiver to descriptors.

public void setSortDescriptors(NSArray descriptors)

Discussion
Invoking this method on the receiver running a query causes the existing query to stop, all current results
are discarded, and a new query is started immediately.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 277
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

See Also
sortDescriptors (page 278)

setValueListAttributes
Sets the value list attributes for the receiver to the specified attribute names.

public void setValueListAttributes(NSArray attrs)

Discussion
The attribute names are passed in the attrs array. The query will collect the values of these attributes into
uniqued lists that can be used to summarize the results of the query. If attrs is null, no value lists are
generated. Note that value list collection increases CPU usage and significantly increases the memory usage
of an NSMetadataQuery.

Invoking this method on the receiver running a query causes the existing query to stop, all current results
are discarded, and a new query is started immediately.

Availability
Available in Mac OS X v10.4 and later.

See Also
valueListAttributes (page 279)

sortDescriptors
Returns an array containing the receiver’s sort descriptors.

public NSArray sortDescriptors()

Availability
Available in Mac OS X v10.4 and later.

See Also
setSortDescriptors (page 277)

startQuery
Attempts to start the query, returning true if successful.

public boolean startQuery()

Discussion
A query can’t be started if the receiver is already running a query or no predicate has been specified.

Availability
Available in Mac OS X v10.4 and later.

See Also
stopQuery (page 279)

278 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

stopQuery
Stops the receiver’s current query from gathering any further results.

public void stopQuery()

Discussion
The receiver will first complete gathering any unprocessed results. If a query is stopped before the gathering
phase finishes, it will not post an NSMetadataQueryDidStartGatheringNotification notification.

You would call this function to stop a query that is generating too many results to be useful, but still want
to access the available results. If the receiver is sent a startQuery (page 278) after receiving this message,
the existing results are discarded.

Availability
Available in Mac OS X v10.4 and later.

See Also
startQuery (page 278)

valueListAttributes
Returns an array containing the value list attributes the receiver generates.

public NSArray valueListAttributes()

Availability
Available in Mac OS X v10.4 and later.

See Also
setValueListAttributes (page 278)

valueLists
Returns a dictionary containing the value lists generated by the receiver.

public NSDictionary valueLists()

Discussion
The values are arrays of NSMetadataQueryAttributeValueTuple.

Availability
Available in Mac OS X v10.4 and later.

valueOfAttributeForResultAtIndex
Returns the value for the attribute name attrName at the index in the results specified by idx.

public Object valueOfAttributeForResultAtIndex(String attrName, int idx)

Instance Methods 279
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

Discussion
Values can only be returned for attribute names that are specified to setValueListAttributes (page 278),
as a sorting key in a specified sort descriptor, or as one of the grouping attributes specified set for the query.

Availability
Available in Mac OS X v10.4 and later.

Constants

The following constants specify the predefined search scopes used by setSearchScopes (page 277):

DescriptionConstant

Search the user’s home directory.
Available for Mac OS X v10.4 and later.

NSMetadataQueryUserHomeScope

Search all local mounted volumes, including the user home
directory. The user’s home directory is searched even if it is a remote
volume.
Available for Mac OS X v10.4 and later.

NSMetadataQueryLocal-
ComputerScope

Search all user-mounted remote volumes.
Available for Mac OS X v10.4 and later.

NSMetadataQueryNetworkScope

In addition to the requested metadata attributes, a query result also includes the following attribute:

DescriptionConstant

An NSNumber with a floating point value between 0.0 and 1.0 inclusive. The
relevance value indicates the relevance of the content of a result object. The
relevance is computed based on the value of the result itself, not on its
relevance to the other results returned by the query. If the value is not
computed it is treated as an attribute on the item that does not exist.
Available for Mac OS X v10.4 and later.

NSMetadataQuery-
ResultContent-
RelevanceAttribute

Notifications

NSMetadataQueryDidFinishGatheringNotification

Posted when the receiver has finished with the initial result-gathering phase of the query.

NSMetadataQueryDidStartGatheringNotification

Posted when the receiver begins with the initial result-gathering phase of the query.

280 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

NSMetadataQueryDidUpdateNotification

Posted when the receiver’s results have changed during the live-update phase of the query.

NSMetadataQueryGatheringProgressNotification

Posted as the receiver’s is collecting results during the initial result-gathering phase of the query.

Notifications 281
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

282 Notifications
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.

Overview

NSMetadataQueryAttributeValueTuple encapsulates the attribute name and value of a metadata attribute.
They are returned by NSMetadataQuery as the results in the value lists. Each instance contains the attribute
name, the value, and the number of instances of that value that exist for the attribute name.

Tasks

Constructors

NSMetadataQueryAttributeValueTuple (page 283)

Getting Attribute Information

attribute (page 284)
Returns the receiver’s attribute name.

count (page 284)
Returns the number of instances of the value that exist for the attribute name of the receiver.

value (page 284)
Returns the receiver’s attribute value.

Constructors

NSMetadataQueryAttributeValueTuple
public NSMetadataQueryAttributeValueTuple()

Overview 283
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 42

NSMetadataQueryAttributeValueTuple

Discussion
Creates an empty NSMetadataQueryAttributeValueTuple object.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

attribute
Returns the receiver’s attribute name.

public String attribute()

Availability
Available in Mac OS X v10.4 and later.

count
Returns the number of instances of the value that exist for the attribute name of the receiver.

public int count()

Availability
Available in Mac OS X v10.4 and later.

value
Returns the receiver’s attribute value.

public Object value()

Availability
Available in Mac OS X v10.4 and later.

284 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 42

NSMetadataQueryAttributeValueTuple

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.

Overview

NSMetadataQueryResultGroup encapsulates a collection of grouped attribute results returned by an
NSMetadataQuery.

Tasks

Constructors

NSMetadataQueryResultGroup (page 286)

Getting Result Values

attribute (page 286)
Returns the attribute name for the receiver’s result group.

resultAtIndex (page 286)
Returns the query result at idx.

resultCount (page 286)
Returns the number of results returned by the receiver.

results (page 287)
Returns an array representation of the result objects for the receiver.

subgroups (page 287)
Returns an array containing the subgroups of the receiver.

value (page 287)
Returns the value of the attribute name for the receiver.

Overview 285
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 43

NSMetadataQueryResultGroup

Constructors

NSMetadataQueryResultGroup
public NSMetadataQueryResultGroup()

Discussion
Creates an empty NSMetadataQueryResultGroup object.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

attribute
Returns the attribute name for the receiver’s result group.

public String attribute()

Availability
Available in Mac OS X v10.4 and later.

resultAtIndex
Returns the query result at idx.

public Object resultAtIndex(int idx)

Discussion
For performance reasons, you should use this method when retrieving a specific result, rather than they array
returned by results (page 287).

Availability
Available in Mac OS X v10.4 and later.

resultCount
Returns the number of results returned by the receiver.

public int resultCount()

Discussion
For performance reasons, you should use this method, rather than invoking count on results (page 287).

Availability
Available in Mac OS X v10.4 and later.

286 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 43

NSMetadataQueryResultGroup

results
Returns an array representation of the result objects for the receiver.

public NSArray results()

Discussion
The results array is a proxy object that is primarily intended for use with Cocoa bindings. While it is possible
to copy the proxy array and receive a “snapshot” of the complete current query results, it is generally not
recommended due to performance and memory issues. To access individual result array elements you should
instead use the resultCount (page 286) and resultAtIndex (page 286) methods.

Availability
Available in Mac OS X v10.4 and later.

subgroups
Returns an array containing the subgroups of the receiver.

public NSArray subgroups()

Availability
Available in Mac OS X v10.4 and later.

value
Returns the value of the attribute name for the receiver.

public Object value()

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 287
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 43

NSMetadataQueryResultGroup

288 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 43

NSMetadataQueryResultGroup

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

Specifies the middle object in a collection or, if not a one-to-many relationship, the sole object. You don’t
normally subclass NSMiddleSpecifier.

Tasks

Constructors

NSMiddleSpecifier (page 289)
Returns an NSMiddleSpecifier with no data.

Constructors

NSMiddleSpecifier
Returns an NSMiddleSpecifier with no data.

public NSMiddleSpecifier()

Discussion
Do not use this constructor.

Returns an NSMiddleSpecifier initialized with container specifier specifier, key key, and the class description
of the object specifier classDescription, derived from the value of the specifier’s key.

public NSMiddleSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key)

Discussion
The receiver’s child specifier reference is set to null.

Overview 289
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 44

NSMiddleSpecifier

Returns an NSMiddleSpecifier initialized with container specifier specifier and key key.

public NSMiddleSpecifier(NSScriptObjectSpecifier specifier, String key)

Discussion
The class description of the container is set automatically.

290 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 44

NSMiddleSpecifier

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An instance of NSMoveCommand moves the specified scriptable object or objects; for example, it may move
words to a new location in a document or a file to a new directory.

NSMoveCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Move
command through key-value coding. Most applications don’t need to subclass NSMoveCommand or invoke
its methods.

When an instance of NSMoveCommand is executed, it does not make copies of moved objects. It removes
objects from the source container or containers, then inserts them into the destination container.

Tasks

Constructors

NSMoveCommand (page 292)
Returns an NSMoveCommand with no data.

Working with Specifiers

keySpecifier (page 292)
Returns a specifier for the object or objects to be moved.

setReceiversSpecifier (page 292)
Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers
of the Move command.

Overview 291
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 45

NSMoveCommand

Constructors

NSMoveCommand
Returns an NSMoveCommand with no data.

public NSMoveCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSMoveCommand with the command description supplied bycommandDescription.

public NSMoveCommand(NSScriptCommandDescription commandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

keySpecifier
Returns a specifier for the object or objects to be moved.

public NSScriptObjectSpecifier keySpecifier()

Discussion
Note that this specifier may be different than the specifier set by setReceiversSpecifier (page 292),
which sets the container specifier. For example, for a command such as move the third circle to the
location of the first circle, the receiver might identify a document (which has a list of graphics),
while the key specifier identifies the particular graphic to be moved.

setReceiversSpecifier
Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers of the
Move command.

public void setReceiversSpecifier(NSScriptObjectSpecifier receiversRef)

Discussion
This method overrides setReceiversSpecifier (page 525) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRef is a specifier for the third
paragraph of the first document, the receiver specifier is the first document while the key
specifier is the third paragraph.

292 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 45

NSMoveCommand

Inherits from NSArray : NSObject

Implements NSCoding (NSArray)

Package: com.apple.cocoa.foundation

Companion guides Collections Programming Topics for Cocoa
Key-Value Coding Programming Guide

Class at a Glance

An NSMutableArray stores a modifiable array of objects.

Principal Attributes

 ■ A count of the number of objects in the array

 ■ The list of objects contained in the array

NSMutableArray (page 295)
Creates a mutable array.

Commonly Used Methods

insertObjectAtIndex (page 297)
Inserts an object at a specified index.

removeObject (page 298)
Removes all occurrences of an object.

removeObjectAtIndex (page 299)
Removes the object at a given index.

replaceObjectAtIndex (page 300)
Replaces the object at a given index.

Class at a Glance 293
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

Overview

The NSMutableArray class declares the programmatic interface to objects that manage a modifiable array of
objects. This class adds insertion and deletion operations to the basic array-handling behavior inherited from
NSArray.

NSMutableArray methods are conceptually based on these primitive methods:

addObject (page 296)
insertObjectAtIndex (page 297)
removeLastObject (page 298)
removeObjectAtIndex (page 299)
replaceObjectAtIndex (page 300)

The other methods in its interface provide convenient ways of inserting an object into a specific slot in the
array and removing an object based on its identity or position in the array.

Tasks

Constructors

NSMutableArray (page 295)

Adding and Replacing Objects

addObject (page 296)
Inserts anObject at the end of the receiver.

addObjectsFromArray (page 296)
Adds the objects contained in otherArray to the end of the receiver’s array of objects.

insertObjectAtIndex (page 297)
Inserts anObject into the receiver at index.

insertObjectsAtIndexes (page 297)
Inserts the objects in objects into the receiver at the indexes specified by indexes.

replaceObjectAtIndex (page 300)
Replaces the object at index with anObject.

replaceObjectsAtIndexes (page 300)
Replaces the objects in the receiver at the locations specified by indexes with the objects from
objects.

replaceObjectsInRange (page 301)
Replaces the objects in the receiver specified by aRange with the objects in otherArray specified
by otherRange.

294 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

setArray (page 301)
Sets the receiver’s elements to those in otherArray.

Removing Objects

filterUsingPredicate (page 296)

removeAllObjects (page 297)
Empties the receiver of all its elements.

removeIdenticalObject (page 298)
This method has been deprecated.

removeLastObject (page 298)
Removes the object with the highest-valued index in the receiver.

removeObject (page 298)
Removes all occurrences of anObject throughout the receiver.

removeObjectAtIndex (page 299)
Removes the object at index and moves all elements beyond index by subtracting 1 from their
indices to fill the gap.

removeObjectsAtIndexes (page 299)
Removes the objects at the specified indexes from the receiver.

removeObjectsInArray (page 299)
This method is similar to removeObject (page 298), but allows you to efficiently remove large sets
of objects with a single operation.

removeObjectsInRange (page 300)
Removes each of the objects within the specified range, aRange, in the receiver using
removeObjectAtIndex (page 299).

Rearranging Objects

sortUsingDescriptors (page 301)
Sorts the receiver as specified by sortDescriptors.

sortUsingSelector (page 302)
Sorts the receiver’s elements in ascending order, as determined by the comparison method specified
by the selector selector.

Constructors

NSMutableArray
public NSMutableArray()

Discussion
Creates an empty array.

Constructors 295
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

public NSMutableArray(Object anObject)

Discussion
Creates an array containing the single element anObject.

public NSMutableArray(Object[] objects)

Discussion
Creates an array containing objects.

public NSMutableArray(NSArray anArray)

Discussion
Creates an array containing the objects in anArray.

Instance Methods

addObject
Inserts anObject at the end of the receiver.

public void addObject(Object anObject)

Discussion
If anObject is null, an InvalidArgumentException is thrown.

See Also
addObjectsFromArray (page 296)
removeObject (page 298)
setArray (page 301)

addObjectsFromArray
Adds the objects contained in otherArray to the end of the receiver’s array of objects.

public void addObjectsFromArray(NSArray otherArray)

See Also
setArray (page 301)
removeObject (page 298)

filterUsingPredicate
public void filterUsingPredicate(NSPredicate predicate)

Discussion
Evaluates the predicate against the receiver’s content and leaves only objects that match.

Availability
Available in Mac OS X v10.4 and later.

296 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

insertObjectAtIndex
Inserts anObject into the receiver at index.

public void insertObjectAtIndex(Object anObject, int index)

Discussion
If index is already occupied, the objects at index and beyond are shifted by adding 1 to their indices to
make room. index cannot be greater than the number of elements in the array. This method throws an
InvalidArgumentException if anObject is null and throws a RangeException if index is greater than
the number of elements in the array.

Note that NSArrays are not like C arrays. That is, even though you specify a size when you create an array,
the specified size is regarded as a “hint”; the actual size of the array is still 0. Because of this fact, you can only
insert new objects in ascending order—with no gaps. Once you add two objects, the array’s size is 2, so you
can add objects at indices 0, 1, or 2. Index 3 is illegal and out of bounds; if you try to add an object at index
3 (when the size of the array is 2), NSMutableArray throws an exception.

See Also
removeObjectAtIndex (page 299)

insertObjectsAtIndexes
Inserts the objects in objects into the receiver at the indexes specified by indexes.

public void insertObjectsAtIndexes(NSArray objects, NSIndexSet indexes)

Discussion
Each object in objects is inserted into the receiver in turn at the corresponding location specified in indexes
after earlier insertions have been made.

The locations specified by indexes may only exceed the bounds of the receiver if one location specifies the
count of the array or the count of the array after preceding insertions, and other locations exceeding the
bounds do so in a contiguous fashion from that location.

Availability
Available in Mac OS X version 10.4 and later.

See Also
insertObjectAtIndex (page 297)

removeAllObjects
Empties the receiver of all its elements.

public void removeAllObjects()

See Also
removeObject (page 298)
removeLastObject (page 298)
removeObjectAtIndex (page 299)
removeIdenticalObject (page 298)

Instance Methods 297
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

removeIdenticalObject
This method has been deprecated.

public void removeIdenticalObject(Object anObject)

This method has been deprecated.

public void removeIdenticalObject(Object anObject, NSRange aRange)

See Also
removeAllObjects (page 297)
removeLastObject (page 298)
removeObject (page 298)
removeObjectAtIndex (page 299)

removeLastObject
Removes the object with the highest-valued index in the receiver.

public void removeLastObject()

Discussion
removeLastObject throws a RangeException if there are no objects in the receiver.

See Also
removeAllObjects (page 297)
removeObject (page 298)
removeObjectAtIndex (page 299)
removeIdenticalObject (page 298)

removeObject
Removes all occurrences of anObject throughout the receiver.

public void removeObject(Object anObject)

Discussion
This method uses indexOfObject (page 63) to locate matches and then removes them by using
removeObjectAtIndex (page 299). Thus, matches are determined on the basis of an object’s response to
the equals message.

Removes all occurrences of anObject in the specified range, aRange, of the receiver.

public void removeObject(Object anObject, NSRange aRange)

Discussion
This method uses indexOfObject (page 63) to locate matches and then removes them by using
removeObjectAtIndex (page 299). Thus, matches are determined on the basis of an object’s response to
the equals message.

See Also
removeAllObjects (page 297)

298 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

removeLastObject (page 298)
removeObjectAtIndex (page 299)
removeIdenticalObject (page 298)
removeObjectsInArray (page 299)

removeObjectAtIndex
Removes the object at index and moves all elements beyond index by subtracting 1 from their indices to
fill the gap.

public void removeObjectAtIndex(int index)

Discussion
This method throws a RangeException if index is beyond the end of the receiver.

See Also
insertObjectAtIndex (page 297)
removeAllObjects (page 297)
removeLastObject (page 298)
removeObject (page 298)
removeIdenticalObject (page 298)

removeObjectsAtIndexes
Removes the objects at the specified indexes from the receiver.

public void removeObjectsAtIndexes(NSIndexSet indexes)

Discussion
This method is similar to removeObjectAtIndex (page 299), but allows you to efficiently remove multiple
objects with a single operation. indexes specifies the locations of objects to be removed given the state of
the receiver when the method is invoked.

The locations specified by indexes must lie within the bounds of the receiver.

Availability
Available in Mac OS X version 10.4 and later.

See Also
removeObjectAtIndex (page 299)

removeObjectsInArray
This method is similar to removeObject (page 298), but allows you to efficiently remove large sets of objects
with a single operation.

public void removeObjectsInArray(NSArray otherArray)

Instance Methods 299
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

Discussion
It assumes that all elements in otherArray—which are the objects to be removed—respond to hash and
equals.

See Also
removeAllObjects (page 297)
removeIdenticalObject (page 298)

removeObjectsInRange
Removes each of the objects within the specified range, aRange, in the receiver using
removeObjectAtIndex (page 299).

public void removeObjectsInRange(NSRange aRange)

replaceObjectAtIndex
Replaces the object at index with anObject.

public void replaceObjectAtIndex(int index, Object anObject)

Discussion
This method throws an InvalidArgumentException if anObject is null and throws a RangeException
if index is beyond the end of the receiver.

See Also
insertObjectAtIndex (page 297)
removeObjectAtIndex (page 299)

replaceObjectsAtIndexes
Replaces the objects in the receiver at the locations specified by indexes with the objects from objects.

public void replaceObjectsAtIndexes(NSIndexSet indexes, NSArray objects)

Discussion
The count of locations in indexes must equal the count of objects.

Availability
Available in Mac OS X version 10.4 and later.

See Also
insertObjectAtIndex (page 297)
removeObjectAtIndex (page 299)
replaceObjectAtIndex (page 300)

300 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

replaceObjectsInRange
Replaces the objects in the receiver specified by aRange with the objects in otherArray specified by
otherRange.

public void replaceObjectsInRange(NSRange aRange, NSArray otherArray, NSRange
otherRange)

Discussion
aRange and otherRange don’t have to be equal; if aRange is greater than otherRange, the extra objects
in the receiver are removed. If otherRange is greater than aRange, the extra objects from otherArray are
inserted into the receiver.

See Also
insertObjectAtIndex (page 297)
removeObjectAtIndex (page 299)
replaceObjectAtIndex (page 300)

setArray
Sets the receiver’s elements to those in otherArray.

public void setArray(NSArray otherArray)

Discussion
Shortens the receiver, if necessary, so that it contains no more than the number of elements in otherArray.
Replaces existing elements in the receiver with the elements in otherArray. Finally, if there are more
elements in otherArray than there are in the receiver, the additional items are then added.

See Also
addObjectsFromArray (page 296)
insertObjectAtIndex (page 297)

sortUsingDescriptors
Sorts the receiver as specified by sortDescriptors.

public void sortUsingDescriptors(NSArray sortDescriptors)

Discussion
See NSSortDescriptor (page 581) for additional information.

Availability
Available in Mac OS X v10.3 and later.

See Also
sortUsingSelector (page 302)
sortedArrayUsingDescriptors (page 65) (NSArray)

Instance Methods 301
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

sortUsingSelector
Sorts the receiver’s elements in ascending order, as determined by the comparison method specified by the
selector selector.

public void sortUsingSelector(NSSelector selector)

Discussion
The selector message is sent to each object in the array and has as its single argument another object in
the array. The selector method is used to compare two elements at a time and should return
OrderedAscending if the receiver is smaller than the argument, OrderedDescending if the receiver is
larger than the argument, and OrderedSame if they are equal.

See Also
sortUsingDescriptors (page 301)
sortedArrayUsingSelector (page 65) (NSArray)

302 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

Inherits from NSAttributedString : NSObject

Implements NSCoding (NSAttributedString)

Package: com.apple.cocoa.foundation

Companion guide Attributed Strings Programming Guide

Overview

NSMutableAttributedString declares the programmatic interface to objects that manage mutable attributed
strings. You can add and remove characters (raw strings) and attributes separately or together as attributed
strings. See the class description for NSAttributedString (page 67) for more information about attributed
strings.

When working with the Application Kit, you must also clean up changed attributes using the various fix...
methods.

NSMutableAttributedString adds two primitive methods to those of NSAttributedString. These primitive
methods provide the basis for all the other methods in its class. The primitive
replaceCharactersInRange (page 312) method replaces a range of characters with those from a string,
leaving all attribute information outside that range intact. The primitive setAttributesInRange (page
312) method sets attributes and values for a given range of characters, replacing any previous attributes and
values for that range.

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to encapsulate
the paragraph or ruler attributes used by the NSAttributedString classes.

Note that the default font for NSAttributedString objects is Helvetica 12-point, which differs from the Mac
OS X system font Lucida Grande, so you may wish to create the string with non-default attributes suitable
for your application.

Tasks

Constructors

NSMutableAttributedString (page 305)
Creates an empty NSMutableAttributedString.

Overview 303
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

Retrieving Character Information

mutableStringReference (page 310)
Returns the character contents of the receiver as an NSMutableStringReference object.

Changing Characters

deleteCharactersInRange (page 308)
Deletes the characters in aRange along with their associated attributes.

Changing Attributes

setAttributesInRange (page 312)
Sets the attributes for the characters in aRange to attributes.

addAttributeInRange (page 306)
Adds an attribute with the given name and value to the characters in aRange.

addAttributesInRange (page 307)
Adds the collection of attributes in attributes to the characters in aRange.

removeAttributeInRange (page 311)
Removes the attribute named name from the characters in aRange.

Changing Characters and Attributes

appendAttributedString (page 307)
Adds the characters and attributes of attributedString to the end of the receiver.

applyFontTraitsInRange (page 307)
Applies the font attributes specified by mask to the characters in aRange.

fixAttachmentAttributeInRange (page 308)
Cleans up attachment attributes in aRange, removing all attachment attributes assigned to characters
other than NSTextAttachment.AttachmentCharacter.

fixAttributesInRange (page 308)
Invokes the other fix... methods, allowing you to clean up an attributed string with a single
message.

fixFontAttributeInRange (page 309)
Fixes the font attribute in aRange, assigning default fonts to characters with illegal fonts for their
scripts and otherwise correcting font attribute assignments.

fixParagraphStyleAttributeInRange (page 309)
Fixes the paragraph style attributes in aRange, assigning the first paragraph style attribute value in
each paragraph to all characters of the paragraph.

insertAttributedStringAtIndex (page 310)
Inserts the characters and attributes of attributedString into the receiver, so the new characters
and attributes begin at index and the existing characters and attributes from index to the end are
shifted by the length of attributedString.

304 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

readFromData (page 310)

readFromURL (page 310)
Sets the contents of receiver from the file at url.

replaceCharactersInRange (page 312)
Replaces the characters and attributes in aRange with the characters and attributes of
attributedString.

setAlignmentInRange (page 312)
Sets the alignment characteristic of the paragraph style attribute for the characters in aRange to
alignment.

setAttributedString (page 312)
Replaces the receiver’s entire contents with the characters and attributes of attributedString.

subscriptRange (page 313)
Decrements the value of the superscript attribute for characters in aRange by 1.

superscriptRange (page 313)
Increments the value of the superscript attribute for characters in aRange by 1.

unscriptRange (page 313)
Removes the superscript attribute from the characters in aRange.

updateAttachmentsFromPath (page 314)
Updates all attachments based on files contained in the RTFD file package at path.

Grouping Changes

beginEditing (page 307)
Overridden by subclasses to buffer or optimize a series of changes to the receiver’s characters or
attributes, until it receives a matching endEditing (page 308) message, upon which it can consolidate
changes and notify any observers that it has changed.

endEditing (page 308)
Overridden by subclasses to consolidate changes made since a previous beginEditing (page 307)
message and to notify any observers of the changes.

Constructors

NSMutableAttributedString
Creates an empty NSMutableAttributedString.

public NSMutableAttributedString()

Creates an NSMutableAttributedString with the characters and attributes of attributedString.

public NSMutableAttributedString(NSAttributedString attributedString)

Creates an NSMutableAttributedString with the contents of aData, returning document properties in
attributes.

Constructors 305
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

public NSMutableAttributedString(NSData aData, NSMutableDictionary attributes)

Creates an NSMutableAttributedString from the HTML contained in data and base URL aURL.

public NSMutableAttributedString(NSData data, java.net.url aURL, NSMutableDictionary
attributes)

Discussion
Also returns in attributes a dictionary containing document-level attributes described in
NSAttributedString’s “Constants” (page 75). Returns null if the file at aURL can’t be decoded.

Creates an NSMutableAttributedString from wrapper, an NSFileWrapper object containing an RTFD document.

public NSMutableAttributedString(NSFileWrapper wrapper, NSMutableDictionary
attributes)

Discussion
Also returns in attributes a dictionary containing document-level attributes described in
NSAttributedString’s “Constants” (page 75). Returns null if wrapper can’t be interpreted as an RTFD
document.

Creates an NSMutableAttributedString with the characters of string

public NSMutableAttributedString(String string)

Discussion
and no attribute information

Creates an NSMutableAttributedString with the characters of aString and the attributes of attributes.

public NSMutableAttributedString(String aString, NSDictionary attributes)

Creates an NSMutableAttributedString with the contents of aURL, returning document properties, which are
described in NSAttributedString’s “Constants” (page 75), in attributes.

public NSMutableAttributedString(java.net.URL aURL, NSMutableDictionary attributes)

Creates an NSMutableAttributedString with the contents of aURL, returning document properties, which are
described in NSAttributedString’s “Constants” (page 75), in attributes.

public NSMutableAttributedString(NSData aURL, NSDictionary options,
NSMutableDictionary attributes)

Discussion
options can contain one of the values described in readFromURL (page 310).

Instance Methods

addAttributeInRange
Adds an attribute with the given name and value to the characters in aRange.

public void addAttributeInRange(String name, Object value, NSRange aRange)

306 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

Discussion
Throws an InvalidArgumentException if name or value is null and a RangeException if any part of
aRange lies beyond the end of the receiver’s characters.

See Also
addAttributesInRange (page 307)
removeAttributeInRange (page 311)

addAttributesInRange
Adds the collection of attributes in attributes to the characters in aRange.

public void addAttributesInRange(NSDictionary attributes, NSRange aRange)

Discussion
Throws an InvalidArgumentException if attributes is null and a RangeException if any part of
aRange lies beyond the end of the receiver’s characters.

See Also
addAttributeInRange (page 306)
removeAttributeInRange (page 311)

appendAttributedString
Adds the characters and attributes of attributedString to the end of the receiver.

public void appendAttributedString(NSAttributedString attributedString)

See Also
insertAttributedStringAtIndex (page 310)

applyFontTraitsInRange
Applies the font attributes specified by mask to the characters in aRange.

public void applyFontTraitsInRange(int mask, NSRange aRange)

Discussion
See the NSFontManager class specification for a description of the font traits available. Throws a
RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
setAlignmentInRange (page 312)

beginEditing
Overridden by subclasses to buffer or optimize a series of changes to the receiver’s characters or attributes,
until it receives a matching endEditing (page 308) message, upon which it can consolidate changes and
notify any observers that it has changed.

Instance Methods 307
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

public void beginEditing()

Discussion
You can nest pairs of beginEditing and endEditing (page 308) messages.

deleteCharactersInRange
Deletes the characters in aRange along with their associated attributes.

public void deleteCharactersInRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
replaceCharactersInRange (page 312)

endEditing
Overridden by subclasses to consolidate changes made since a previous beginEditing (page 307) message
and to notify any observers of the changes.

public void endEditing()

Discussion
NSMutableAttributedString’s implementation does nothing. NSTextStorage, for example, overrides this
method to invoke fixAttributesInRange and to inform its NSLayoutManagers that they need to re-lay
the text.

See Also
processEditing (NSTextStorage)

fixAttachmentAttributeInRange
Cleans up attachment attributes in aRange, removing all attachment attributes assigned to characters other
than NSTextAttachment.AttachmentCharacter.

public void fixAttachmentAttributeInRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
fixFontAttributeInRange (page 309)
fixParagraphStyleAttributeInRange (page 309)
fixAttributesInRange (page 308)

fixAttributesInRange
Invokes the other fix... methods, allowing you to clean up an attributed string with a single message.

308 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

public void fixAttributesInRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
fixAttachmentAttributeInRange (page 308)
fixFontAttributeInRange (page 309)
fixParagraphStyleAttributeInRange (page 309)

fixFontAttributeInRange
Fixes the font attribute in aRange, assigning default fonts to characters with illegal fonts for their scripts and
otherwise correcting font attribute assignments.

public void fixFontAttributeInRange(NSRange aRange)

Discussion
For example, Kanji characters assigned a Latin font are reassigned an appropriate Kanji font. Throws a
RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
fixParagraphStyleAttributeInRange (page 309)
fixAttachmentAttributeInRange (page 308)
fixAttributesInRange (page 308)

fixParagraphStyleAttributeInRange
Fixes the paragraph style attributes in aRange, assigning the first paragraph style attribute value in each
paragraph to all characters of the paragraph.

public void fixParagraphStyleAttributeInRange(NSRange aRange)

Discussion
This method extends the range as needed to cover the last paragraph partially contained. A paragraph is
delimited by any of these characters, the longest possible sequence being preferred to any shorter:

U+000D (\r or CR)
U+000A (\n or LF)
U+2028 (Unicode line separator)
U+2029 (Unicode paragraph separator) \r\n, in that order (also known as CRLF)

Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
fixFontAttributeInRange (page 309)
fixAttachmentAttributeInRange (page 308)
fixAttributesInRange (page 308)

Instance Methods 309
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

insertAttributedStringAtIndex
Inserts the characters and attributes of attributedString into the receiver, so the new characters and
attributes begin at index and the existing characters and attributes from index to the end are shifted by
the length of attributedString.

public void insertAttributedStringAtIndex(NSAttributedString attributedString, int
index)

Discussion
Throws a RangeException if index lies beyond the end of the receiver’s characters.

See Also
appendAttributedString (page 307)

mutableStringReference
Returns the character contents of the receiver as an NSMutableStringReference object.

public NSMutableStringReference mutableStringReference()

Discussion
The receiver tracks changes to this string and keeps its attribute mappings up to date.

readFromData
public boolean readFromData(NSData data, NSDictionary options, NSMutableDictionary

dict)

Discussion
Sets the contents of the receiver from the stream at data. options can contain one of the values described
in readFromURL (page 310).

On return, the documentAttributes dictionary (if provided) contains the various keys described in the
“Constants” (page 75) section of NSAttributedString.

Availability
Available in Mac OS X v10.3 and later.

readFromURL
Sets the contents of receiver from the file at url.

public boolean readFromURL(java.net.URL url, NSDictionary options,
NSMutableDictionary documentAttributes)

Discussion
Filter services can be used to convert the contents of the URL into a format recognized by Cocoa. options
can contain:

310 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

DescriptionKey

For plain text documents; the unsigned int to be used if the encoding cannot be
determined

CharacterEncoding

For HTML documents; java.net.URL containing base URLBaseURL

NSDictionary containing attributes to be applied to plain filesDefaultAttributes

Starting with Mac OS X v10.3, these options keys are recognized for HTML documents, both by this method
as well as the NSAttributedString constructor with an options parameter:

DescriptionKey

An integer. If present and positive, forces WebKit-based HTML importing be
used; behavior in this case may differ from HTML import in Mac OS X v10.2 and
before, particularly for tables.

"UseWebKit"

String containing the name, IANA or otherwise, of a text encoding to be used
if the encoding cannot be determined from the document. Mutually exclusive
with "CharacterEncoding".

"TextEncodingName"

A float. Time in seconds to wait for a document to finish loading."Timeout"

WebPreferences. If WebKit-based HTML importing is used, specifies a
WebPreferences object. If not present, a default set of preferences is used.

"WebPreferences"

NSObject. If WebKit-based HTML importing is used, specifies an object to serve
as the WebResourceLoadDelegate. If not present, a default delegate will be
used that will permit the loading of subsidiary resources but will not respond
to authentication challenges.

"WebResourceLoad-
Delegate"

On return, the documentAttributes dictionary (if provided) contains the various keys described in the
“Constants” (page 75) section of NSAttributedString.

removeAttributeInRange
Removes the attribute named name from the characters in aRange.

public void removeAttributeInRange(String name, NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
addAttributeInRange (page 306)
addAttributesInRange (page 307)

Instance Methods 311
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

replaceCharactersInRange
Replaces the characters and attributes in aRange with the characters and attributes of attributedString.

public void replaceCharactersInRange(NSRange aRange, NSAttributedString
attributedString)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

Replaces the characters in aRange with the characters of aString.

public void replaceCharactersInRange(NSRange aRange, String aString)

Discussion
The new characters inherit the attributes of the first replaced character from aRange. Where the length of
aRange is 0, the new characters inherit the attributes of the character preceding aRange if it has any, otherwise
of the character following aRange.

Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
insertAttributedStringAtIndex (page 310)
deleteCharactersInRange (page 308)

setAlignmentInRange
Sets the alignment characteristic of the paragraph style attribute for the characters in aRange to alignment.

public void setAlignmentInRange(int alignment, NSRange aRange)

Discussion
When attribute fixing takes place, this change will affect only paragraphs whose first character was included
in aRange. Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
applyFontTraitsInRange (page 307)
fixParagraphStyleAttributeInRange (page 309)

setAttributedString
Replaces the receiver’s entire contents with the characters and attributes of attributedString.

public void setAttributedString(NSAttributedString attributedString)

See Also
appendAttributedString (page 307)

setAttributesInRange
Sets the attributes for the characters in aRange to attributes.

312 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

public void setAttributesInRange(NSDictionary attributes, NSRange aRange)

Discussion
These new attributes replace any attributes previously associated with the characters in aRange. Throws a
RangeException if any part of aRange lies beyond the end of the receiver’s characters.

To set attributes for a zero-length NSMutableAttributedString displayed in a text view, use the NSTextView
method setTypingAttributes.

See Also
addAttributesInRange (page 307)
removeAttributeInRange (page 311)

subscriptRange
Decrements the value of the superscript attribute for characters in aRange by 1.

public void subscriptRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
superscriptRange (page 313)
unscriptRange (page 313)

superscriptRange
Increments the value of the superscript attribute for characters in aRange by 1.

public void superscriptRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
subscriptRange (page 313)
unscriptRange (page 313)

unscriptRange
Removes the superscript attribute from the characters in aRange.

public void unscriptRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
subscriptRange (page 313)
superscriptRange (page 313)

Instance Methods 313
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

updateAttachmentsFromPath
Updates all attachments based on files contained in the RTFD file package at path.

public void updateAttachmentsFromPath(String path)

See Also
updateFromPath (NSFileWrapper)

314 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

Inherits from NSCharacterSet : NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide String Programming Guide for Cocoa

Overview

The NSMutableCharacterSet class declares the programmatic interface to objects that manage a modifiable
set of Unicode characters. You can add or remove characters from a mutable character set as numeric values
in NSRanges or as character values in strings, combine character sets by union or intersection, and invert a
character set.

Mutable character sets are less efficient to use than immutable character sets. If you don’t need to change
a character set after creating it, create an immutable copy with copy and use that.

NSMutableCharacterSet defines no primitive methods. Subclasses must implement all methods declared by
this class in addition to the primitives of NSCharacterSet.

Tasks

Constructors

NSMutableCharacterSet (page 316)
Creates an empty NSMutableCharacterSet.

Adding and Removing Characters

addCharacter (page 317)
Adds the character aChar to the receiver.

removeCharacter (page 318)
Removes the character aChar from the receiver.

addCharactersInRange (page 317)
Adds the characters whose integer values are given by aRange to the receiver.

Overview 315
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48

NSMutableCharacterSet

removeCharactersInRange (page 318)
Removes from the receiver the characters whose integer values are given by aRange.

addCharactersInString (page 317)
Adds the characters in aString to those in the receiver.

removeCharactersInString (page 318)
Removes the characters in aString from those in the receiver.

Combining Character Sets

intersectCharacterSet (page 317)
Modifies the receiver so it contains only characters that exist in both the receiver and otherSet.

subtractCharacterSet (page 318)
Removes the characters in otherSet from those in the receiver.

unionCharacterSet (page 319)
Modifies the receiver so it contains all characters that exist in either the receiver or otherSet.

Inverting a Character Set

invertCharacterSet (page 318)
Replaces all the characters in the receiver with all the characters it didn’t previously contain.

Constructors

NSMutableCharacterSet
Creates an empty NSMutableCharacterSet.

public NSMutableCharacterSet()

Creates a mutable character set containing characters determined by the bitmap representation data.

public NSMutableCharacterSet(NSData data)

Discussion
This method is useful for creating a mutable character set object with data from a file or other external data
source.

Creates a mutable character set containing characters whose Unicode values are given by aRange.

public NSMutableCharacterSet(NSRange aRange)

Discussion
aRange.location is the value of the first character, and aRange.location + aRange.length – 1 is the
value of the last. Returns an empty mutable character set if aRange.length is 0.

Creates a mutable character set containing the characters in aString.

316 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48

NSMutableCharacterSet

public NSMutableCharacterSet(String aString)

Discussion
Returns an empty mutable character set if aString is empty.

Instance Methods

addCharacter
Adds the character aChar to the receiver.

public void addCharacter(char aChar)

See Also
removeCharacter (page 318)

addCharactersInRange
Adds the characters whose integer values are given by aRange to the receiver.

public void addCharactersInRange(NSRange aRange)

Discussion
aRange.location is the value of the first character to add; aRange.location + aRange.length – 1 is
the value of the last. If aRange.length is 0 this method has no effect.

See Also
removeCharactersInRange (page 318)
addCharactersInString (page 317)

addCharactersInString
Adds the characters in aString to those in the receiver.

public void addCharactersInString(String aString)

Discussion
This method has no effect if aString is empty.

See Also
removeCharactersInString (page 318)
addCharactersInRange (page 317)

intersectCharacterSet
Modifies the receiver so it contains only characters that exist in both the receiver and otherSet.

public void intersectCharacterSet(NSCharacterSet otherSet)

Instance Methods 317
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48

NSMutableCharacterSet

See Also
unionCharacterSet (page 319)

invertCharacterSet
Replaces all the characters in the receiver with all the characters it didn’t previously contain.

public void invertCharacterSet()

removeCharacter
Removes the character aChar from the receiver.

public void removeCharacter(char aChar)

See Also
addCharacter (page 317)

removeCharactersInRange
Removes from the receiver the characters whose integer values are given by aRange.

public void removeCharactersInRange(NSRange aRange)

Discussion
aRange.location is the value of the first character to remove, and aRange.location + aRange.length
– 1 is the value of the last. If aRange.length is 0 this method has no effect.

See Also
addCharactersInRange (page 317)
removeCharactersInString (page 318)

removeCharactersInString
Removes the characters in aString from those in the receiver.

public void removeCharactersInString(String aString)

Discussion
This method has no effect if aString is empty.

See Also
addCharactersInString (page 317)
removeCharactersInRange (page 318)

subtractCharacterSet
Removes the characters in otherSet from those in the receiver.

318 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48

NSMutableCharacterSet

public void subtractCharacterSet(NSCharacterSet otherSet)

unionCharacterSet
Modifies the receiver so it contains all characters that exist in either the receiver or otherSet.

public void unionCharacterSet(NSCharacterSet otherSet)

See Also
intersectCharacterSet (page 317)

Instance Methods 319
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48

NSMutableCharacterSet

320 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48

NSMutableCharacterSet

Inherits from NSData : NSObject

Implements NSCoding (NSData)

Package: com.apple.cocoa.foundation

Companion guide Binary Data Programming Guide for Cocoa

Class at a Glance

An NSMutableData object stores mutable data in the form of bytes. The size of the data is subject to a 2GB
limit.

Principal Attributes

 ■ A count of the number of bytes in the mutable data object

 ■ The sequence of bytes contained in the mutable data object

NSMutableData (page 322)
Creates an NSMutableData object.

Primitive Methods

setLength (page 323)
Extends or truncates the number of bytes in the NSMutableData object.

Overview

NSMutableData (and its superclass NSData) provide data objects, object-oriented wrappers for byte buffers.
Data objects let simple allocated buffers (that is, data with no embedded pointers) take on the behavior of
Foundation objects. They are typically used for data storage and are also useful in Distributed Objects
applications, where data contained in data objects can be copied or moved between applications. NSData
creates static data objects, and NSMutableData creates dynamic data objects. You can easily convert one
type of data object to the other with the constructor that takes an NSData or NSMutableData as an argument.

Class at a Glance 321
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 49

NSMutableData

Tasks

Constructors

NSMutableData (page 322)

Adjusting Capacity

increaseLengthBy (page 323)
Increases the length of the receiver by extraLength.

setLength (page 323)
Extends or truncates a mutable data object to length.

Adding Data

appendData (page 323)
Appends the contents of a data object otherData to the receiver.

Modifying Data

resetBytesInRange (page 323)
Specifies a range within the contents of the receiver to be replaced by zeros.

setData (page 323)
Replaces the entire contents of the receiver with the contents of aData.

Constructors

NSMutableData
public NSMutableData()

Discussion
Creates an empty data object. This method is declared primarily for the use of mutable subclasses of NSData.

public NSMutableData(java.net.URL aURL)

Discussion
Creates a data object with the data from the location specified by aURL.

public NSMutableData(NSData aData)

322 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 49

NSMutableData

Discussion
Creates a data object containing the contents of another data object, aData.

public NSMutableData(int length)

Discussion
Creates data object with enough memory to hold length bytes. Fills the object with zeros up to length.

Instance Methods

appendData
Appends the contents of a data object otherData to the receiver.

public void appendData(NSData otherData)

increaseLengthBy
Increases the length of the receiver by extraLength.

public void increaseLengthBy(int extraLength)

Discussion
The additional bytes are all set to 0.

See Also
setLength (page 323)

resetBytesInRange
Specifies a range within the contents of the receiver to be replaced by zeros.

public void resetBytesInRange(NSRange range)

Discussion
If the location of range isn’t within the receiver’s range of bytes, a RangeException is thrown. The receiver
is resized to accommodate the new bytes, if necessary.

setData
Replaces the entire contents of the receiver with the contents of aData.

public void setData(NSData aData)

setLength
Extends or truncates a mutable data object to length.

Instance Methods 323
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 49

NSMutableData

public void setLength(int length)

Discussion
If the mutable data object is extended, the additional bytes are filled with zeros.

See Also
increaseLengthBy (page 323)

324 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 49

NSMutableData

Inherits from NSDictionary : NSObject

Implements NSCoding (NSDictionary)

Package: com.apple.cocoa.foundation

Companion guide Collections Programming Topics for Cocoa

Class at a Glance

An NSDictionary object stores a mutable set of entries.

Principal Attributes

 ■ A count of the number of entries in the dictionary

 ■ The set of keys contained in the dictionary

 ■ The objects that correspond to the keys in the dictionary

NSMutableDictionary (page 326)
Creates a new dictionary.

Commonly Used Methods

removeObjectForKey (page 327)
Removes the specified entry from the dictionary.

removeObjectsForKeys (page 327)
Removes multiple entries from the dictionary.

Overview

The NSMutableDictionary class declares the programmatic interface to objects that manage mutable
associations of keys and values. With its two efficient primitive methods—setObjectForKey (page 328) and
removeObjectForKey (page 327)—this class adds modification operations to the basic operations it inherits
from NSDictionary.

Class at a Glance 325
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 50

NSMutableDictionary

The other methods declared here operate by invoking one or both of these primitives. The nonprimitive
methods provide convenient ways of adding or removing multiple entries at a time.

Tasks

Constructors

NSMutableDictionary (page 326)

Adding and Removing Entries

addEntriesFromDictionary (page 327)
Adds the entries from otherDictionary to the receiver.

removeAllObjects (page 327)
Empties the receiver of its entries.

removeObjectForKey (page 327)
Removes aKey and its associated value object from the receiver.

removeObjectsForKeys (page 327)
Removes one or more entries from the receiver.

setDictionary (page 328)
Sets the receiver to entries in otherDictionary.

setObjectForKey (page 328)
Adds an entry to the receiver, consisting of aKey and its corresponding value object anObject.

Constructors

NSMutableDictionary
public NSMutableDictionary()

Discussion
Creates and returns an empty mutable dictionary.

public NSMutableDictionary(NSDictionary otherDictionary)

Discussion
Creates a mutable dictionary containing the keys and values found in otherDictionary.

326 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 50

NSMutableDictionary

Instance Methods

addEntriesFromDictionary
Adds the entries from otherDictionary to the receiver.

public void addEntriesFromDictionary(NSDictionary otherDictionary)

Discussion
Each value object from otherDictionary is added directly to the receiver.

See Also
setObjectForKey (page 328)

removeAllObjects
Empties the receiver of its entries.

public void removeAllObjects()

See Also
removeObjectForKey (page 327)
removeObjectsForKeys (page 327)

removeObjectForKey
Removes aKey and its associated value object from the receiver.

public void removeObjectForKey(Object aKey)

Discussion
Does nothing if aKey does not exist.

See Also
removeAllObjects (page 327)
removeObjectsForKeys (page 327)

removeObjectsForKeys
Removes one or more entries from the receiver.

public void removeObjectsForKeys(NSArray keyArray)

Discussion
The entries are identified by the keys in keyArray. If a key in keyArray does not exist, the entry is ignored.

See Also
removeObjectForKey (page 327)
removeObjectForKey (page 327)

Instance Methods 327
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 50

NSMutableDictionary

setDictionary
Sets the receiver to entries in otherDictionary.

public void setDictionary(NSDictionary otherDictionary)

Discussion
setDictionary does this by removing all entries from the receiver (with removeAllObjects (page 327)),
then adding each entry from otherDictionary into the receiver.

setObjectForKey
Adds an entry to the receiver, consisting of aKey and its corresponding value object anObject.

public void setObjectForKey(Object anObject, Object aKey)

Discussion
The value object is added directly to the dictionary. Throws an InvalidArgumentException if the key or
value object is null.

See Also
removeObjectForKey (page 327)

328 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 50

NSMutableDictionary

Inherits from NSIndexSet : NSObject

Implements NSCoding (NSIndexSet)

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.3 and later.

Companion guide Collections Programming Topics for Cocoa

Overview

NSMutableIndexSet manages a mutable collection of unsigned integers. This collection is referred to as an
index set and is composed of a series of indexes. A given index can appear only once in an index set. The
values in an index set are always sorted, so the order in which values are added is irrelevant.

Internally, indexes are represented in ranges. Thus, an index set includes the integer members of a range or
of many ranges. For maximum performance and efficiency, overlapping ranges in an index set are automatically
coalesced (ranges merge rather than overlap).

NSMutableIndexSet is not intended to be subclassed.

Tasks

Constructors

NSMutableIndexSet (page 330)
Creates and returns an NSMutableIndexSet containing the indexes specified by NSRange.ZeroRange.

Adding Indexes

addIndex (page 331)
Adds the index specified by value to the receiver.

addIndexes (page 331)

addIndexesInRange (page 331)
Adds the indexes specified by range to the receiver.

Overview 329
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51

NSMutableIndexSet

Removing Indexes

removeIndex (page 332)
Removes the index specified by value from the receiver.

removeIndexes (page 332)
Removes the indexes contained in indexSet from the receiver.

removeAllIndexes (page 332)
Removes all the indexes from the receiver.

removeIndexesInRange (page 332)
Removes the indexes specified by range from the receiver.

Shifting Indexes in an Index Set

shiftIndexes (page 333)

Constructors

NSMutableIndexSet
Creates and returns an NSMutableIndexSet containing the indexes specified by NSRange.ZeroRange.

public NSMutableIndexSet()

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSMutableIndexSet containing a single index, value.

public NSMutableIndexSet(int value)

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSMutableIndexSet containing the indexes specified by range.

public NSMutableIndexSet(NSRange range)

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSMutableIndexSet containing the indexes in indexSet.

public NSMutableIndexSet(NSIndexSet indexSet)

Availability
Available in Mac OS X v10.3 and later.

330 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51

NSMutableIndexSet

Instance Methods

addIndex
Adds the index specified by value to the receiver.

public void addIndex(int value)

Discussion
This method throws a RangeException if the addition of value to the index set would exceed the maximum
range allowed by NSIndexSet.

Availability
Available in Mac OS X v10.3 and later.

See Also
addIndexes (page 331)
addIndexesInRange (page 331)

addIndexes
public void addIndexes(NSIndexSet indexSet)

Discussion
Adds the indexes specified by indexSet to the receiver.

Availability
Available in Mac OS X v10.3 and later.

See Also
addIndex (page 331)
addIndexesInRange (page 331)

addIndexesInRange
Adds the indexes specified by range to the receiver.

public void addIndexesInRange(NSRange range)

Discussion
This method throws a RangeException if the addition of the indexes specified by range would exceed the
maximum range allowed by NSIndexSet.

Availability
Available in Mac OS X v10.3 and later.

See Also
addIndex (page 331)
addIndexes (page 331)

Instance Methods 331
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51

NSMutableIndexSet

removeAllIndexes
Removes all the indexes from the receiver.

public void removeAllIndexes()

Availability
Available in Mac OS X v10.3 and later.

See Also
removeIndex (page 332)
removeIndexes (page 332)
removeIndexesInRange (page 332)

removeIndex
Removes the index specified by value from the receiver.

public void removeIndex(int value)

Availability
Available in Mac OS X v10.3 and later.

See Also
removeAllIndexes (page 332)
removeIndexes (page 332)
removeIndexesInRange (page 332)

removeIndexes
Removes the indexes contained in indexSet from the receiver.

public void removeIndexes(NSIndexSet indexSet)

Availability
Available in Mac OS X v10.3 and later.

See Also
removeIndex (page 332)
removeAllIndexes (page 332)
removeIndexesInRange (page 332)

removeIndexesInRange
Removes the indexes specified by range from the receiver.

public void removeIndexesInRange(NSRange range)

Availability
Available in Mac OS X v10.3 and later.

332 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51

NSMutableIndexSet

See Also
removeIndex (page 332)
removeIndexes (page 332)
removeAllIndexes (page 332)

shiftIndexes
public void shiftIndexes(int index, int delta)

Discussion
For a positive delta, shifts the indexes in [index, INT_MAX] to the right, thereby inserting an "empty space"
in the range [index, delta]. For a negative delta, shifts the indexes in [index, INT_MAX] to the left, thereby
deleting the indexes in the range [index - delta, delta].

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 333
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51

NSMutableIndexSet

334 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51

NSMutableIndexSet

Inherits from NSPoint : Object

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities

Overview

An NSMutablePoint is an object representing a point that can be changed in a coordinate system. The main
purpose for NSMutablePoints is to provide a way for methods to return coordinate values in an “out” parameter.
The client creates and passes in one or more NSMutablePoints to a method and gets back changed objects
when the method returns. NSMutablePoints are also useful for performance reasons; instead of creating
multiple NSPoints in a loop, you can create just one NSMutablePoint and reuse it.

Tasks

Constructors

NSMutablePoint (page 336)

Accessing and Setting Coordinate Values

setX (page 336)
Sets the x coordinate of the receiver to newX.

setY (page 337)
Sets the y coordinate of the receiver to newY.

x (page 337)
Returns the x coordinate of the receiver.

y (page 337)
Returns the y coordinate of the receiver.

Overview 335
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 52

NSMutablePoint

Copying

clone (page 336)
Creates and returns a copy of the receiver.

Constructors

NSMutablePoint
public NSMutablePoint()

Discussion
This constructor initializes the x and y coordinates to 0.

public NSMutablePoint(float x, float y)

Discussion
Initializes the NSMutablePoint with the horizontal coordinate x and the vertical coordinate y.

public NSMutablePoint(NSPoint aPoint)

Discussion
Initializes the new NSMutablePoint with the coordinate values of NSPoint aPoint; this constructor is used
in cloning the receiver.

public NSMutablePoint(java.awt.Point javaPoint)

Discussion
Initializes the NSMutablePoint with the values extracted from an AWT Point object, javaPoint.

Instance Methods

clone
Creates and returns a copy of the receiver.

public Object clone()

setX
Sets the x coordinate of the receiver to newX.

public void setX(float newX)

Discussion
Throws an IllegalArgumentException if newX is NaN (that is, not a valid float value).

336 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 52

NSMutablePoint

See Also
x (page 337)

setY
Sets the y coordinate of the receiver to newY.

public void setY(float newY)

Discussion
Throws an IllegalArgumentException if newY is NaN (that is, not a valid float value).

See Also
y (page 337)

x
Returns the x coordinate of the receiver.

public float x()

Discussion
NSMutablePoint overrides this method because implementation details make overriding necessary.

See Also
setX (page 336)

y
Returns the y coordinate of the receiver.

public float y()

Discussion
NSMutablePoint overrides this method because implementation details make overriding necessary.

See Also
setY (page 337)

Instance Methods 337
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 52

NSMutablePoint

338 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 52

NSMutablePoint

Inherits from NSRange : Object

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities

Overview

An NSMutableRange is an object representing a range that can be changed. A range is a measurement of a
segment of something linear, such as a byte stream. You can change an NSMutableRange’s two primary
values, its location and its length. The methods of NSMutableRange also enable you to alter an
NSMutableRange based on its union or intersection with another NSRange object.

The main purpose for NSMutableRanges is to provide a way for methods to return range values in an “out”
parameter. A client creates and passes in one or more NSMutableRanges to a method and gets back changed
objects when the method returns. NSMutableRanges are also useful for performance reasons; instead of
creating multiple NSRanges in a loop, you can create just one NSMutableRange and reuse it.

Tasks

Constructors

NSMutableRange (page 340)

Accessing and Setting Range Elements

length (page 341)
Returns the length of the receiver, its distance from its starting location.

setLength (page 341)
Sets the length of the receiver to newLength.

location (page 341)
Returns the starting location of the receiver.

setLocation (page 341)
Sets the length of the receiver to newLocation.

Overview 339
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 53

NSMutableRange

Transforming Mutable Ranges

clone (page 340)
Creates and returns a copy of the receiver.

intersectRange (page 340)
Changes the receiver to the range resulting from the intersection of aRange and the receiver before
the operation.

unionRange (page 342)
Changes the receiver to the range resulting from the union of aRange and the receiver.

Constructors

NSMutableRange
public NSMutableRange()

Discussion
Initializes the object to an empty NSMutableRange.

public NSMutableRange(int location, int length)

Discussion
Initializes the NSMutableRange with the range elements of location and length. Throws an
IllegalArgumentException if either integer is negative.

public NSMutableRange(NSRange aRange)

Discussion
Initializes the new NSMutableRange with the location and length values of aRange; this constructor is used
in cloning the receiver.

Instance Methods

clone
Creates and returns a copy of the receiver.

public Object clone()

intersectRange
Changes the receiver to the range resulting from the intersection of aRange and the receiver before the
operation.

public void intersectRange(NSRange aRange)

340 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 53

NSMutableRange

Discussion
Sets the receiver to an empty range if they do not intersect.

See Also
unionRange (page 342)

length
Returns the length of the receiver, its distance from its starting location.

public int length()

Discussion
NSMutableRange overrides this method because of internal implementation requirements.

See Also
location (page 341)

location
Returns the starting location of the receiver.

public int location()

Discussion
NSMutableRange overrides this method because of internal implementation requirements.

See Also
length (page 341)

setLength
Sets the length of the receiver to newLength.

public void setLength(int newLength)

Discussion
Throws an IllegalArgumentException if newLength is a negative value.

See Also
setLocation (page 341)

setLocation
Sets the length of the receiver to newLocation.

public void setLocation(int newLocation)

Discussion
Throws an IllegalArgumentException if newLocation is a negative value.

Instance Methods 341
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 53

NSMutableRange

See Also
setLength (page 341)

unionRange
Changes the receiver to the range resulting from the union of aRange and the receiver.

public void unionRange(NSRange aRange)

Discussion
The result is a range with the lowest starting location and the highest ending location of the two NSRanges.

See Also
intersectRange (page 340)

342 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 53

NSMutableRange

Inherits from NSRect : Object

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities

Overview

An NSMutableRect is an object representing a rectangle that can be modified. The elemental attributes of a
rectangle are its origin (its starting x coordinate and y coordinate) and its size (its width and height as measured
from the origin). The methods of NSMutableRect allow you to change these elemental values. They also let
you inset and offset rectangles by specific amounts and alter an NSMutableRect based on its union or
intersection with another NSRect object.

The main purpose for NSMutableRects is to provide a way for methods to return rectangle values in an “out”
parameter. A client creates and passes in one or more NSMutableRects to a method and gets back converted
objects when the method returns. NSMutableRects are also useful for performance reasons; instead of creating
multiple NSRects in a loop, you can create just one NSMutablePoint and reuse it.

Tasks

Constructors

NSMutableRect (page 344)

Accessing and Setting Coordinate Values

setOrigin (page 347)
Sets the origin point of the receiver to newOrigin.

x (page 348)
Returns the origin x coordinate of the receiver.

y (page 349)
Returns the origin y coordinate of the receiver.

setX (page 347)
Sets the x-coordinate of the receiver to newX.

Overview 343
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54

NSMutableRect

setY (page 348)
Sets the y-coordinate of the receiver to newY.

Accessing and Setting Size Values

height (page 345)
Returns the height dimension of the receiver.

setHeight (page 347)
Sets the width of the receiver to newHeight.

setSize (page 347)
Sets the size of the receiver to newSize.

width (page 348)
Returns the width of the receiver.

setWidth (page 347)
Sets the width of the receiver to newWidth.

Transforming Mutable Rectangles

insetRect (page 346)
Modifies the receiver to be inset from both upper and lower edges by vertDistance and from both
left and right edges by horizDistance.

intersectRect (page 346)
Modifies the receiver to be the intersection of itself and otherRectangle.

makeIntegral (page 346)
Changes the receiver so that its origin and size are rounded to the nearest integer, ensuring that the
receiver completely contains the original rectangle.

offsetRect (page 346)
Changes the receiver so that its x coordinate is moved by horizOffset and its y coordinate is moved
by vertOffset.

unionRect (page 348)
Modifies the receiver to be the union of itself and otherRectangle.

Copying

clone (page 345)
Creates and returns a copy of the receiver.

Constructors

NSMutableRect
public NSMutableRect()

344 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54

NSMutableRect

Discussion
Initializes an empty mutable rectangle (that is, a rectangle with at least one dimension of 0).

public NSMutableRect(float x, float y, float w, float h)

Discussion
Initializes an NSMutableRect from a starting x coordinate (x), a starting y coordinate (y), a width value (w),
and a height value (h). If either width and height is 0, it initializes an empty rectangle.

public NSMutableRect(NSPoint aPoint, NSSize aSize)

Discussion
Initializes an NSMutableRect from an NSPoint object, aPoint, and an NSSize object, aSize.

public NSMutableRect(NSPoint pointOne, NSPoint pointTwo)

Discussion
Initializes an NSMutableRect from two NSPoint objects, pointOne and pointTwo. Creates the smallest
rectangle containing the two points.

public NSMutableRect(java.awt.Rectangle javaRectangle)

Discussion
Initializes an NSMutableRect from an AWT Rectangle object, javaRectangle.

public NSMutableRect(NSRect aRectangle)

Discussion
Initializes an NSMutableRect from an NSRect object, aRectangle; this constructor is used in cloning the
receiver.

Instance Methods

clone
Creates and returns a copy of the receiver.

public Object clone()

height
Returns the height dimension of the receiver.

public float height()

Discussion
NSMutableRect overrides this method because implementation details make overriding necessary.

See Also
setHeight (page 347)
width (page 348)

Instance Methods 345
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54

NSMutableRect

insetRect
Modifies the receiver to be inset from both upper and lower edges by vertDistance and from both left
and right edges by horizDistance.

public void insetRect(float vertDistance, float horizDistance)

Discussion
The values vertDistance and horizDistance can be negative. An IllegalArgumentException is
thrown if the resulting width or height would be negative.

See Also
offsetRect (page 346)

intersectRect
Modifies the receiver to be the intersection of itself and otherRectangle.

public void intersectRect(NSRect otherRectangle)

Discussion
If either the receiver or otherRectangle has an empty dimension, it modifies the receiver to be an empty
rectangle (all dimensions) at point {0.0f, 0.0f }.

See Also
unionRect (page 348)

makeIntegral
Changes the receiver so that its origin and size are rounded to the nearest integer, ensuring that the receiver
completely contains the original rectangle.

public void makeIntegral()

Discussion
The x coordinate and the y coordinate are rounded down, and the height and width are rounded up. If the
receiver has an empty dimension, it is modified to be an empty rectangle (all dimensions) at point {0.0f, 0.0f }.

offsetRect
Changes the receiver so that its x coordinate is moved by horizOffset and its y coordinate is moved by
vertOffset.

public void offsetRect(float horizOffset, float vertOffset)

Discussion
Both arguments can be negative values.

See Also
insetRect (page 346)

346 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54

NSMutableRect

setHeight
Sets the width of the receiver to newHeight.

public void setHeight(float newHeight)

Discussion
Throws an IllegalArgumentException if newHeight is NaN (an invalid float value) or is a negative value.

See Also
height (page 345)
setWidth (page 347)

setOrigin
Sets the origin point of the receiver to newOrigin.

public void setOrigin(NSPoint newOrigin)

See Also
origin (page 487) (NSRect)

setSize
Sets the size of the receiver to newSize.

public void setSize(NSSize newSize)

See Also
size (page 489) (NSRect)

setWidth
Sets the width of the receiver to newWidth.

public void setWidth(float newWidth)

Discussion
Throws an IllegalArgumentException if newWidth is NaN (an invalid float value) or is a negative value.

See Also
setHeight (page 347)
width (page 348)

setX
Sets the x-coordinate of the receiver to newX.

public void setX(float newX)

Instance Methods 347
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54

NSMutableRect

Discussion
Throws an IllegalArgumentException if newX is NaN (an invalid float value) or is a negative value.

See Also
setY (page 348)
x (page 348)

setY
Sets the y-coordinate of the receiver to newY.

public void setY(float newY)

Discussion
Throws an IllegalArgumentException if newY is NaN (an invalid float value) or is a negative value.

See Also
setX (page 347)
y (page 349)

unionRect
Modifies the receiver to be the union of itself and otherRectangle.

public void unionRect(NSRect otherRectangle)

Discussion
If the receiver and otherRectangle both have an empty dimension, it modifies the receiver to be an empty
rectangle (all dimensions) at point {0.0f, 0.0f }. If otherRectangle has an empty dimension, but the receiver
doesn’t, the receiver is unchanged.

See Also
intersectRect (page 346)

width
Returns the width of the receiver.

public float width()

Discussion
NSMutableRect overrides this method because implementation details make overriding necessary.

See Also
height (page 345)

x
Returns the origin x coordinate of the receiver.

348 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54

NSMutableRect

public float x()

Discussion
NSMutableRect overrides this method because implementation details make overriding necessary.

See Also
setX (page 347)
y (page 349)

y
Returns the origin y coordinate of the receiver.

public float y()

Discussion
NSMutablePoint overrides this method because implementation details make overriding necessary.

See Also
x (page 348)
setY (page 348)

Instance Methods 349
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54

NSMutableRect

350 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54

NSMutableRect

Inherits from NSSet : NSObject

Implements NSCoding (NSSet)

Package: com.apple.cocoa.foundation

Companion guide Collections Programming Topics for Cocoa

Class at a Glance

An NSMutableSet object stores a modifiable set of objects.

Principal Attributes

 ■ The objects that make up the set

NSMutableSet (page 353)
Creates a new set.

Commonly Used Methods

addObject (page 353)
Adds an object to the set, if it isn’t already a member.

removeObject (page 354)
Removes an object from the set.

Primitive Methods

addObject (page 353)
Adds an object to the set, if it isn’t already a member.

removeObject (page 354)
Removes an object from the set.

Class at a Glance 351
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet

Overview

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of
objects. NSMutableSet provides support for the mathematical concept of a set. A set, both in its mathematical
sense and in the NSMutableSet implementation, is an unordered collection of distinct elements. The NSSet
class supports creating and managing immutable sets.

Objects are added to an NSMutableSet with addObject (page 353), which adds a single object to the set;
addObjectsFromArray (page 353), which adds all objects from a specified array to the set; orunionSet (page
355), which adds all the objects from another set.

Objects are removed from an NSMutableSet using any of the methods intersectSet (page 353),
removeAllObjects (page 354), removeObject (page 354), or subtractSet (page 354).

Tasks

Constructors

NSMutableSet (page 353)

Adding and Removing Entries

addObject (page 353)
Adds the specified object to the receiver if it is not already a member.

removeObject (page 354)
Removes anObject from the receiver.

removeAllObjects (page 354)
Empties the receiver of all of its members.

addObjectsFromArray (page 353)
Adds each object contained in anArray to the receiver, if that object is not already a member.

Combining and Recombining Sets

unionSet (page 355)
Adds each object contained in otherSet to the receiver, if that object is not already a member.

subtractSet (page 354)
Removes from the receiver each object contained in otherSet that is also present in the receiver.

intersectSet (page 353)
Removes from the receiver each object that isn’t a member of otherSet.

setSet (page 354)
Empties the receiver, then adds each object contained in otherSet to the receiver.

352 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet

Constructors

NSMutableSet
public NSMutableSet()

Discussion
Returns an empty mutable set.

public NSMutableSet(NSSet aSet)

Discussion
Returns a mutable set containing those objects contained within the set aSet.

Instance Methods

addObject
Adds the specified object to the receiver if it is not already a member.

public void addObject(Object anObject)

Discussion
If anObject is already present in the set, this method has no effect on either the set or anObject.

See Also
addObjectsFromArray (page 353)
unionSet (page 355)

addObjectsFromArray
Adds each object contained in anArray to the receiver, if that object is not already a member.

public void addObjectsFromArray(NSArray anArray)

Discussion
If a given element of the array is already present in the set, this method has no effect on either the set or the
array element.

See Also
addObject (page 353)
unionSet (page 355)

intersectSet
Removes from the receiver each object that isn’t a member of otherSet.

Constructors 353
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet

public void intersectSet(NSSet otherSet)

See Also
removeObject (page 354)
removeAllObjects (page 354)
subtractSet (page 354)

removeAllObjects
Empties the receiver of all of its members.

public void removeAllObjects()

See Also
removeObject (page 354)
subtractSet (page 354)
intersectSet (page 353)

removeObject
Removes anObject from the receiver.

public void removeObject(Object anObject)

See Also
removeObject (page 354)
subtractSet (page 354)
intersectSet (page 353)

setSet
Empties the receiver, then adds each object contained in otherSet to the receiver.

public void setSet(NSSet otherSet)

subtractSet
Removes from the receiver each object contained in otherSet that is also present in the receiver.

public void subtractSet(NSSet otherSet)

Discussion
If any member of otherSet isn’t present in the receiving set, this method has no effect on either the receiver
or the otherSet member.

See Also
removeObject (page 354)
removeAllObjects (page 354)
intersectSet (page 353)

354 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet

unionSet
Adds each object contained in otherSet to the receiver, if that object is not already a member.

public void unionSet(NSSet otherSet)

Discussion
If any member of otherSet is already present in the receiver, this method has no effect on either the receiver
or the otherSet member.

See Also
addObject (page 353)
addObjectsFromArray (page 353)

Instance Methods 355
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet

356 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet

Inherits from NSSize : Object

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities

Overview

An NSMutableSize is an object representing a dimension that can be changed. The main purpose for
NSMutableSizes is to provide a way for methods to return size values in an “out” parameter. The client creates
and passes in one or more NSMutableSizes to a method and gets back changed objects when the method
returns. NSMutableSizes are also useful for performance reasons; instead of creating multiple NSSizes in a
loop, you can create just one NSMutableSize and reuse it.

Tasks

Constructors

NSMutableSize (page 358)

Accessing and Setting Dimensions

height (page 358)
Returns the height dimension of the receiver.

setHeight (page 359)
Sets the height dimension of the receiver to newHeight.

width (page 359)
Returns the width of the receiver.

setWidth (page 359)
Sets the width dimension of the receiver to newWidth.

Overview 357
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 56

NSMutableSize

Copying

clone (page 358)
Creates and returns a copy of the receiver.

Constructors

NSMutableSize
NSMutableSize()

Discussion
Initializes an “empty” NSMutableSize (one whose height or width is 0).

NSMutableSize(float w, float h)

Discussion
Initializes the NSMutableSize with the width dimension w and the height dimension y; it throws an
IllegalArgumentException if either value is negative.

NSMutableSize(NSSize aSize)

Discussion
Initializes the new NSMutableSize with the width and height values of an existing NSSize aSize; this
constructor is used in cloning the receiver.

NSMutableSize(java.awt.Dimension dimension)

Discussion
Initializes an NSMutableSize with the values extracted from an AWT Dimension object, dimension.

Instance Methods

clone
Creates and returns a copy of the receiver.

public Object clone()

height
Returns the height dimension of the receiver.

public float height()

Discussion
NSMutableSize overrides this method because implementation details make overriding necessary

358 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 56

NSMutableSize

See Also
setHeight (page 359)
width (page 359)

setHeight
Sets the height dimension of the receiver to newHeight.

public void setHeight(float newHeight)

Discussion
Throws an IllegalArgumentException if newHeight is negative or is NaN (an invalid float value).

See Also
height (page 358)

setWidth
Sets the width dimension of the receiver to newWidth.

public void setWidth(float newWidth)

Discussion
Throws an IllegalArgumentException if newWidth is negative or is NaN (an invalid float value).

See Also
width (page 359)

width
Returns the width of the receiver.

public float width()

Discussion
NSMutableSize overrides this method because implementation details make overriding necessary.

See Also
height (page 358)
setWidth (page 359)

Instance Methods 359
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 56

NSMutableSize

360 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 56

NSMutableSize

Inherits from NSStringReference : NSObject

Package: com.apple.cocoa.foundation

Companion guide String Programming Guide for Cocoa

Overview

The NSMutableStringReference class declares the programmatic interface to an object that manages a mutable
string—that is, a string whose contents can be edited. To construct and manage an immutable string—or a
string that cannot be changed after it has been created—use an object of the NSStringReference class.

An immutable string is implemented as an array of Unicode characters (in other words, as a text string). The
NSMutableStringReference class adds one primitive method—replaceCharactersInRange (page 363)—to
the basic string-handling behavior inherited from NSStringReference. All other methods that modify a string
work through this method. For example, insertStringAtIndex (page 363) simply replaces the characters
in a range of 0 length, while deleteCharactersInRange (page 363) replaces the characters in a given range
with no characters.

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to encapsulate
the paragraph or ruler attributes used by the NSAttributedString classes.

Tasks

Constructors

NSMutableStringReference (page 362)
Creates an empty NSMutableStringReference.

Modifying a String

appendString (page 362)
Adds the characters of aString to the end of the receiver.

deleteCharactersInRange (page 363)
Removes the characters in aRange from the receiver.

insertStringAtIndex (page 363)
Inserts the characters of aString into the receiver, so the new characters begin at anIndex and the
existing characters from anIndex to the end are shifted by the length of aString.

Overview 361
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 57

NSMutableStringReference

replaceCharactersInRange (page 363)
Replaces the characters from aRange with those in aString.

replaceOccurrencesOfString (page 364)
This method replaces all occurrences of target with replacement, in the specified searchRange
of the receiver.

setString (page 364)
Replaces the characters of the receiver with those in aString.

Constructors

NSMutableStringReference
Creates an empty NSMutableStringReference.

public NSMutableStringReference()

Creates a new NSMutableStringReference by converting the bytes in aData into Unicode characters.

public NSMutableStringReference(NSData aData, int encoding)

Discussion
aData must be an NSData object containing bytes in encoding and the default plain text format (that is,
pure content with no attributes or other markups) for that encoding.

Creates a new NSMutableStringReference by reading characters from the location named by aURL.

public NSMutableStringReference(java.net.URL aURL)

Discussion
If the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode characters;
otherwise interprets the contents as characters in the default C-string encoding. Returns null if the location
can’t be opened.

Creates a new NSMutableStringReference by converting the bytes at aURL into Unicode characters.

public NSMutableStringReference(java.net.URL aURL, int encoding)

Discussion
aURL must contain bytes in encoding and the default plain text format (that is, pure content with no
attributes or other markups) for that encoding.

Instance Methods

appendString
Adds the characters of aString to the end of the receiver.

public void appendString(String aString)

362 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 57

NSMutableStringReference

Discussion
aString may not be null.

Adds the characters of aStringReference to the end of the receiver.

public void appendString(NSStringReference aStringReference)

Discussion
aStringReference may not be null.

deleteCharactersInRange
Removes the characters in aRange from the receiver.

public void deleteCharactersInRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the string. This method treats the
length of the string as a valid range value that returns an empty string.

insertStringAtIndex
Inserts the characters of aString into the receiver, so the new characters begin at anIndex and the existing
characters from anIndex to the end are shifted by the length of aString.

public void insertStringAtIndex(String aString, int anIndex)

Discussion
aString may not be null. Throws a RangeException if anIndex lies beyond the end of the string. This
method treats the length of the string as a valid index value that returns an empty string.

Inserts the characters of aStringReference into the receiver, so the new characters begin at anIndex and
the existing characters from anIndex to the end are shifted by the length of aStringReference.

public void insertStringAtIndex(NSStringReference aStringReference, int anIndex)

Discussion
aStringReference may not be null. Throws a RangeException if anIndex lies beyond the end of the
string.

replaceCharactersInRange
Replaces the characters from aRange with those in aString.

public void replaceCharactersInRange(NSRange aRange, String aString)

Discussion
aString may not be null. Throws a RangeException if any part of aRange lies beyond the end of the
receiver. This method treats the length of the string as a valid range value that returns an empty string.

Replaces the characters from aRange with those in aStringReference.

Instance Methods 363
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 57

NSMutableStringReference

public void replaceCharactersInRange(NSRange aRange, NSStringReference
aStringReference)

Discussion
aStringReference may not be null. Throws a RangeException if any part of aRange lies beyond the
end of the receiver. This method treats the length of the string as a valid range value that returns an empty
string.

replaceOccurrencesOfString
This method replaces all occurrences of target with replacement, in the specified searchRange of the
receiver.

public void replaceOccurrencesOfString(String target, String replacement, int opts,
NSRange searchRange)

Discussion
Throws an InvalidArgumentException if any of the arguments are null. Throws a RangeException if
any part of searchRange lies beyond the end of the receiver. This method treats the length of the string as
a valid range value that returns an empty string. If opts is BackwardsSearch, the search is done from the
end of the range. If opts is AnchoredSearch, only anchored (but potentially multiple) instances are replaced.
LiteralSearch and CaseInsensitiveSearch also apply. Specify searchRange as new NSRange(0,
receiver.length()) to process the entire string.

Availability
Available in Mac OS X v10.2 and later.

setString
Replaces the characters of the receiver with those in aString.

public void setString(String aString)

Discussion
aString may not be null.

Replaces the characters of the receiver with those in aStringReference.

public void setString(NSStringReference aStringReference)

Discussion
aStringReference may not be null.

364 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 57

NSMutableStringReference

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Key-Value Coding Programming Guide

Overview

NSNamedValueSequence manages a set of keys, allowing you to assign scalar and object values to them.

The class is similar to an NSMutableDictionary, but NSNamedValueSequence is created with a fixed number
of elements, and it defines convenient methods such as getFloatWithName (page 367) and
setFloatWithName (page 368). If you request a value for an undefined key, a default value of 0 or null is
returned. After the object reaches its capacity of keys, attempts to define additional keys fail.
NSNamedValueSequence objects cannot be resized, nor can keys be deleted.

Tasks

Constructors

NSNamedValueSequence (page 366)
Creates an empty NSNamedValueSequence object with the capacity size.

Getting Values

getBooleanWithName (page 367)
Returns the boolean value associated with key.

getByteWithName (page 367)
Returns the byte value associated with key.

getCharWithName (page 367)
Returns the char value associated with key.

getDoubleWithName (page 367)
Returns the double value associated with key.

getFloatWithName (page 367)
Returns the float value associated with key.

Overview 365
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

getIntWithName (page 367)
Returns the int value associated with key.

getLongWithName (page 367)
Returns the long value associated with key.

getObjectWithName (page 368)
Returns the Object value associated with key.

getShortWithName (page 368)
Returns the short value associated with key.

Setting Values

setBooleanWithName (page 368)
Sets the value of key to value.

setByteWithName (page 368)
Sets the value of key to value.

setCharWithName (page 368)
Sets the value of key to value.

setDoubleWithName (page 368)
Sets the value of key to value.

setFloatWithName (page 368)
Sets the value of key to value.

setIntWithName (page 368)
Sets the value of key to value.

setLongWithName (page 369)
Sets the value of key to value.

setObjectWithName (page 369)
Sets the value of key to value.

setShortWithName (page 369)
Sets the value of key to value.

Constructors

NSNamedValueSequence
Creates an empty NSNamedValueSequence object with the capacity size.

public NSNamedValueSequence(int size)

Discussion
An instance cannot be resized after being created, so make sure you allocate enough space for all the keys
you expect to use.

366 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

Instance Methods

getBooleanWithName
Returns the boolean value associated with key.

public boolean getBooleanWithName(String key)

getByteWithName
Returns the byte value associated with key.

public byte getByteWithName(String key)

getCharWithName
Returns the char value associated with key.

public char getCharWithName(String key)

getDoubleWithName
Returns the double value associated with key.

public double getDoubleWithName(String key)

getFloatWithName
Returns the float value associated with key.

public float getFloatWithName(String key)

getIntWithName
Returns the int value associated with key.

public int getIntWithName(String key)

getLongWithName
Returns the long value associated with key.

public long getLongWithName(String key)

Instance Methods 367
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

getObjectWithName
Returns the Object value associated with key.

public Object getObjectWithName(String key)

getShortWithName
Returns the short value associated with key.

public short getShortWithName(String key)

setBooleanWithName
Sets the value of key to value.

public void setBooleanWithName(boolean value, String key)

setByteWithName
Sets the value of key to value.

public void setByteWithName(byte value, String key)

setCharWithName
Sets the value of key to value.

public void setCharWithName(char value, String key)

setDoubleWithName
Sets the value of key to value.

public void setDoubleWithName(double value, String key)

setFloatWithName
Sets the value of key to value.

public void setFloatWithName(float value, String key)

setIntWithName
Sets the value of key to value.

public void setIntWithName(int value, String key)

368 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

setLongWithName
Sets the value of key to value.

public void setLongWithName(long value, String key)

setObjectWithName
Sets the value of key to value.

public void setObjectWithName(Object value, String key)

setShortWithName
Sets the value of key to value.

public void setShortWithName(short value, String key)

Instance Methods 369
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

370 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.2 and later.

Companion guide Cocoa Scripting Guide

Overview

Specifies an object in a collection (or container) by name. For example, the following script specifies both an
application and a window by name. In this script, the named window’s implicitly specified container is the
Finder application’s list of open windows.

tell application "Finder" -- specifies an application by name
 close window "Reports" -- specifies a window by name
end tell

This specifier works only for objects that have a name property. You don’t normally subclass NSNameSpecifier.

The evaluation of NSNameSpecifiers follows these steps until the specified object is found:

1. If the container implements a method whose selector matches the relevant valueIn<Key>WithName
pattern established by scripting key-value coding, the method is invoked. This method can potentially
be very fast, and it may be relatively easy to implement.

2. As is the case when evaluating any script object specifier, the container of the specified object is given
a chance to evaluate the object specifier. If the container class implements the
indicesOfObjectsByEvaluatingObjectSpecifier method, the method is invoked. This method
can potentially be very fast, but it is relatively difficult to implement.

3. An NSWhoseSpecifier that specifies the first object whose relevant 'pnam' attribute matches the name
is synthesized and evaluated. The NSWhoseSpecifier must search through all of the keyed elements in
the container, looking for a match. The search is potentially very slow.

Overview 371
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 59

NSNameSpecifier

Tasks

Constructors

NSNameSpecifier (page 372)
Creates an NSNameSpecifier with no data.

Accessing a Name Specifier

name (page 373)
Returns the name encapsulated by the receiver for the specified object in the container.

setName (page 373)
Sets the name encapsulated with the receiver for the specified object in the container.

Constructors

NSNameSpecifier
Creates an NSNameSpecifier with no data.

public NSNameSpecifier()

Discussion
Do not use this constructor.

Availability
Available in Mac OS X v10.2 and later.

Returns a newly created unnamed NSNameSpecifier with container specifier container and key property.

public NSNameSpecifier(NSScriptObjectSpecifier container, String property)

Discussion
The class description of container is set automatically. Use setName (page 373) to assign a name to the
returned object.

Availability
Available in Mac OS X v10.2 and later.

Creates an unnamed NSNameSpecifier initialized with container specifier container, key property, and
the class description of the object specifier classDescription, derived from the value of the specifier’s
key.

public NSNameSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier container, String property)

372 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 59

NSNameSpecifier

Discussion
The receiver’s child specifier reference is set to null. Use setName (page 373) to assign a name to the returned
object.

Availability
Available in Mac OS X v10.2 and later.

Creates an NSNameSpecifier named name initialized with container specifier container, key property,
and the class description of the object specifier classDescription, derived from the value of the specifier’s
key.

public NSNameSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier container, String property, String name)

Discussion
The receiver’s child specifier reference is set to null.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods

name
Returns the name encapsulated by the receiver for the specified object in the container.

public String name()

Availability
Available in Mac OS X v10.2 and later.

See Also
setName (page 373)

setName
Sets the name encapsulated with the receiver for the specified object in the container.

public void setName(String name)

Availability
Available in Mac OS X v10.2 and later.

See Also
name (page 373)

Instance Methods 373
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 59

NSNameSpecifier

374 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 59

NSNameSpecifier

Inherits from NSObject

Implements NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.

Companion guide Bonjour Overview

Overview

The NSNetService class represents a network service that your application publishes or uses as a client. This
class and the NSNetServiceBrowser class use multicast DNS to convey information about network services
to and from your application. The API of NSNetService provides a convenient way to publish the services
offered by your application and to resolve the socket address for a service.

The types of services you access using NSNetService are the same types that you access directly using BSD
sockets. HTTP and FTP are two services commonly provided by systems. (For a list of common services and
the ports used by those services, see the file /etc/services.) Applications can also define their own custom
services to provide specific data to clients.

You can use the NSNetService class as either a publisher of a service or as a client of a service. If your application
publishes a service, your code must acquire a port and prepare a socket to communicate with clients. Once
your socket is ready, you use the NSNetService class to notify clients that your service is ready. If your
application is the client of a network service, you can either create an NSNetService object directly (if you
know the exact host and port information) or you can use an NSNetServiceBrowser object to browse for
services.

To publish a service, you must initialize your NSNetService object with the service name, domain, type, and
port information. All of this information must be valid for the socket created by your application. Once
initialized, you call the publish (page 380) method to broadcast your service information out to the network.

When connecting to a service, you would normally use the NSNetServiceBrowser class to locate the service
on the network and obtain the corresponding NSNetService object. Once you have the object, you proceed
to call the resolveWithTimeout (page 381) method to verify that the service is available and ready for your
application. If it is, the addresses (page 378) method returns the socket information you can use to connect
to the service.

The methods of NSNetService operate asynchronously so that your application is not impacted by the speed
of the network. All information about a service is returned to your application through the NSNetService
object’s delegate. You must provide a delegate object to respond to messages and to handle errors
appropriately.

Overview 375
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

Tasks

Constructors

NSNetService (page 378)
Creates an NSNetService object as a network service of the specified type at the socket location
specified by domain, name, and port.

Managing Delegates

delegate (page 379)
Returns the receiver’s delegate.

setDelegate (page 382)
Sets the receiver’s delegate.

Maintaining Run Loops

removeFromRunLoop (page 380)
Removes the service from the specified run loop.

scheduleInRunLoop (page 381)
Adds the service to the specified run loop.

Getting Information About a Service

addresses (page 378)
Returns an NSArray containing NSData objects, each of which contains a socket address for the service.

domain (page 379)
Returns the domain name of the service.

hostName (page 379)
Returns the host name of the computer providing the service.

name (page 380)
Returns the name of the service.

type (page 383)
Returns the type of the service.

protocolSpecificInformation (page 380)
This method has been deprecated. Use TXTRecordData (page 383) instead.

setProtocolSpecificInformation (page 382)
This method has been deprecated. Use setTXTRecordData (page 382) instead.

setTXTRecordData (page 382)
Sets the TXT record for the receiver.

TXTRecordData (page 383)
Returns the TXT record for the receiver.

376 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

Working with a Service

publish (page 380)
Attempts to advertise the receiver’s service on the network.

resolve (page 381)
This method has been deprecated. Use resolveWithTimeout (page 381) instead.

resolveWithTimeout (page 381)
Starts a resolve process of a finite duration for the receiver.

stop (page 383)
Halts a currently running attempt to publish or resolve a service.

Availability notifications

netServiceDidNotPublish (page 384) delegate method
Notifies the delegate that the service offered by sender could not be published.

netServiceDidPublish (page 384) delegate method
Notifies the delegate that the service offered by sender was successfully published.

netServiceWillPublish (page 385) delegate method
Notifies the delegate that the network is ready to publish the service.

Resolving services

netServiceDidNotResolve (page 384) delegate method
Informs the delegate that an error occurred during resolution of sender.

netServiceDidResolveAddress (page 384) delegate method
Informs the delegate that the address for sender was resolved.

netServiceDidUpdateTXTRecordData (page 385) delegate method
Notifies the delegate that the TXT record for sender has been updated.

netServiceWillResolve (page 385) delegate method
Notifies the delegate that the network is ready to resolve the service.

Stopping services

netServiceDidStop (page 385) delegate method
Informs the delegate that a publish (page 380) or resolveWithTimeout (page 381) request was
stopped.

Tasks 377
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

Constructors

NSNetService
public NSNetService()

Discussion
The default constructor for the NSNetService object.

public com.apple.cocoa.foundation.NSNetService(String domain, String type, String
name)

Discussion
Creates an NSNetService object for a network service of the specified type and sets the initial domain and
service name. After using this constructor, you can call resolve (page 381) to resolve the service location.

You cannot use this constructor to publish a service. The constructor passes an invalid port number, which
prevents the service from being registered.

Creates an NSNetService object as a network service of the specified type at the socket location specified
by domain, name, and port.

public NSNetService(java.lang.String domain, java.lang.String type, java.lang.String
name, int port)

Discussion
You can use this constructor to create a service you wish to publish on the network.

When publishing a service, you must provide valid arguments to advertise your service correctly. The name
parameter identifies your service to the network and must be unique. The port parameter must contain a
port number acquired by your application for the service.

It is preferable to use a NSNetServiceBrowser object to obtain the local registration domain in which to
publish your service. To use the default domain, simply pass an empty string to the domain parameter. If the
host computer has access to multiple registration domains, you must create separate NSNetService objects
for each domain. If you attempt to publish in a domain for which you do not have registration authority,
your request may be denied.

The type parameter must contain both the service type and transport layer information. To ensure that the
mDNS repsonder searches for services, as opposed to hosts, prefix both the service name and transport layer
name with an underscore character (“_”). For example, to search for an HTTP service on TCP, you would pass
the string “_http._tcp.” to the type parameter. Note that the period character at the end of the string is
required. It indicates that the domain name is an absolute name.

Instance Methods

addresses
Returns an NSArray containing NSData objects, each of which contains a socket address for the service.

378 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

public NSArray addresses()

Discussion
Each NSData object in the returned array contains an appropriate sockaddr structure that you can use to
connect to the socket. The exact type of this structure depends on the service to which you are connecting.

It is possible for a single service to resolve to more than one address or not resolve to any addresses. A service
might resolve to multiple addresses if the computer publishing the service is currently multihoming. If no
addresses were resolved for the service, the returned NSArray contains zero elements.

Availability
Available in Mac OS X v10.4 and later.

See Also
resolve (page 381)

delegate
Returns the receiver’s delegate.

public Object delegate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDelegate (page 382)

domain
Returns the domain name of the service.

public String domain()

Discussion
This can be an explicit domain name or it can contain the generic local domain name @"local." (note the
trailing period, which indicates an absolute name).

Availability
Available in Mac OS X v10.4 and later.

hostName
Returns the host name of the computer providing the service.

public String hostName()

Discussion
Returns null if a successful resolve has not occurred.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 379
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

name
Returns the name of the service.

public String name()

Availability
Available in Mac OS X v10.4 and later.

protocolSpecificInformation
This method has been deprecated. Use TXTRecordData (page 383) instead.

public String protocolSpecificInformation()

Discussion
Returns any protocol-specific data associated with the service.

This method is provided for legacy support of older zeroconf-style clients and its use is discouraged.

Availability
Deprecated in Mac OS X v10.4.

See Also
setProtocolSpecificInformation (page 382)

publish
Attempts to advertise the receiver’s service on the network.

public void publish()

Discussion
This method returns immediately, with success or failure indicated by the callbacks to the delegate.

Availability
Available in Mac OS X v10.4 and later.

See Also
stop (page 383)

removeFromRunLoop
Removes the service from the specified run loop.

public void removeFromRunLoop(NSRunLoop aRunLoop, String mode)

Discussion
You can use this method in conjunction with scheduleInRunLoop (page 381) to transfer the service to a
different run loop. Although it is possible to remove an NSNetService completely from any run loop and then
attempt actions on it, it is an error to do so.

Possible values for mode are discussed in the “Constants” (page 503) section of NSRunLoop.

380 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

Availability
Available in Mac OS X v10.4 and later.

See Also
scheduleInRunLoop (page 381)

resolve
This method has been deprecated. Use resolveWithTimeout (page 381) instead.

public void resolve()

Discussion
Attempts to determine at least one address for the receiver. This method returns immediately, with success
or failure indicated by the callbacks to the delegate.

In Mac OS X v10.4, this method calls resolveWithTimeout (page 381) with a timeout value of 5.

Availability
Deprecated in Mac OS X v10.4.

See Also
addresses (page 378)
stop (page 383)
resolveWithTimeout (page 381)

resolveWithTimeout
Starts a resolve process of a finite duration for the receiver.

public void resolveWithTimeout(double timeout)

Availability
Available in Mac OS X v10.4 and later.

See Also
addresses (page 378)
stop (page 383)

scheduleInRunLoop
Adds the service to the specified run loop.

public void scheduleInRunLoop(NSRunLoop aRunLoop, String mode)

Discussion
You can use this method in conjunction with removeFromRunLoop (page 380) to transfer the service to a
different run loop. You should not attempt to run the service on multiple run loops.

Possible values for mode are discussed in the “Constants” (page 503) section of NSRunLoop.

Instance Methods 381
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

Availability
Available in Mac OS X v10.4 and later.

See Also
removeFromRunLoop (page 380)

setDelegate
Sets the receiver’s delegate.

public void setDelegate(Object delegate)

Discussion
The delegate is not retained.

Availability
Available in Mac OS X v10.4 and later.

See Also
delegate (page 379)

setProtocolSpecificInformation
This method has been deprecated. Use setTXTRecordData (page 382) instead.

public void setProtocolSpecificInformation(String specificInformation)

Discussion
Attaches protocol-specific data to the service.

This method retains the string in specificInformation and releases the previous string. This method is
provided for legacy support of older zeroconf-style clients and its use is discouraged.

Availability
Deprecated in Mac OS X v10.4.

See Also
protocolSpecificInformation (page 380)

setTXTRecordData
Sets the TXT record for the receiver.

public boolean setTXTRecordData(NSData recordData)

Discussion
Returns true when recordData is successfully set as the TXT record; otherwise, it returns false.

Availability
Available in Mac OS X v10.4 and later.

382 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

See Also
TXTRecordData (page 383)

stop
Halts a currently running attempt to publish or resolve a service.

public void stop()

Discussion
This method results in the sending of a netServiceDidStop (page 385) message to the delegate.

Availability
Available in Mac OS X v10.4 and later.

TXTRecordData
Returns the TXT record for the receiver.

public NSData TXTRecordData()

Availability
Available in Mac OS X v10.4 and later.

See Also
setTXTRecordData (page 382)

type
Returns the type of the service.

public String type()

Availability
Available in Mac OS X v10.4 and later.

Constants

When an error occurs, the delegate error-handling methods return a dictionary with the following keys.

DescriptionConstant

This key identifies the error that occurred during the most recent
operation.

NSNetServicesErrorCode

This key identifies the originator of the error, which is either the
NSNetService object or the mach network layer. For most errors, you
should not need the value provided by this key.

NSNetServicesErrorDomain

Constants 383
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

Delegate Methods

netServiceDidNotPublish
Notifies the delegate that the service offered by sender could not be published.

public abstract void netServiceDidNotPublish(NSNetService sender, NSDictionary
errorDict)

Discussion
This method may be called long after a netServiceWillPublish (page 385) message has been delivered
to the delegate. You can use the dictionary keys NSNetServicesErrorCode and
NSNetServicesErrorDomain to retrieve the error information from errorDict.

Availability
Available in Mac OS X v10.4 and later.

netServiceDidNotResolve
Informs the delegate that an error occurred during resolution of sender.

public abstract void netServiceDidNotResolve(NSNetService sender, NSDictionary
errorDict)

Discussion
You can use the dictionary keys NSNetServicesErrorCode and NSNetServicesErrorDomain to retrieve
the error information from errorDict.

Clients may try to resolve again upon receiving this error. For example, a DNS rotary may yield different IP
addresses on different resolution requests.

Availability
Available in Mac OS X v10.4 and later.

netServiceDidPublish
Notifies the delegate that the service offered by sender was successfully published.

public abstract void netServiceDidPublish(NSNetService sender

Availability
Available in Mac OS X v10.4 and later.

netServiceDidResolveAddress
Informs the delegate that the address for sender was resolved.

public abstract void netServiceDidResolveAddress(NSNetService sender)

384 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

Discussion
The delegate can use the addresses (page 378) method to retrieve the service’s address.

Availability
Available in Mac OS X v10.4 and later.

See Also
addresses (page 378)

netServiceDidStop
Informs the delegate that a publish (page 380) or resolveWithTimeout (page 381) request was stopped.

public abstract void netServiceDidStop(NSNetService sender)

Availability
Available in Mac OS X v10.4 and later.

See Also
stop (page 383)

netServiceDidUpdateTXTRecordData
Notifies the delegate that the TXT record for sender has been updated.

public abstract void netServiceDidUpdateTXTRecordData(NSNetService sender, NSData
data)

Discussion
The data parameter contains the new TXT record.

Availability
Available in Mac OS X v10.4 and later.

netServiceWillPublish
Notifies the delegate that the network is ready to publish the service.

public abstract void netServiceWillPublish(NSNetService sender)

Discussion
Publication of the service proceeds asynchronously and may still generate a call to the delegate’s
netServiceDidNotPublish (page 384) method if an error occurs.

Availability
Available in Mac OS X v10.4 and later.

netServiceWillResolve
Notifies the delegate that the network is ready to resolve the service.

Delegate Methods 385
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

public abstract void netServiceWillResolve(NSNetService sender)

Discussion
Resolution of the service proceeds asynchronously and may still generate a call to the delegate’s
netServiceDidNotResolve (page 384) method if an error occurs.

Availability
Available in Mac OS X v10.4 and later.

386 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

Inherits from NSObject

Implements NSObject

Package: com.apple.cocoa.foundation

Availability Availabile in Mac OS X v10.4 and later.

Companion guide Bonjour Overview

Overview

The NSNetServiceBrowser class defines an interface for finding published services on a network using multicast
DNS. Services can range from standard services, such as HTTP and FTP, to custom services defined by other
applications. You can use a NSNetServiceBrowser object in your code to obtain the list of accessible domains
and then to obtain an instance of the NSNetService class for each discovered service. Each NSNetServiceBrowser
object performs one search at a time, so if you want to perform multiple simultaneous searches, use multiple
NSNetServiceBrowser objects.

A NSNetServiceBrowser object performs all searches asynchronously using the current run loop to execute
the search in the background. Results from a search are returned through the associated delegate object,
which your client application must provide. Searching proceeds in the background until the object sent a
stop (page 392) message.

To use a NSNetServiceBrowser object to search for services, you allocate it, initialize it, and assign a delegate.
(If you wish, you can also use the scheduleInRunLoop (page 390) and removeFromRunLoop (page 390)
methods to execute searches on a run loop other than the current one.) Once your object is ready, you begin
by gathering the list of accessible domains using either the searchForRegistrationDomains (page 391)
or searchForBrowsableDomains (page 391) methods. From the list of returned domains, you can pick one
and use the searchForServicesOfType (page 391) method to search for services in that domain.

NSNetServiceBrowser provides two ways to search for domains. In most cases, your client should use the
searchForRegistrationDomains (page 391) method to search only for local domains to which the host
machine has registration authority. This is the preferred method for accessing domains as it guarantees that
the host machine can connect to services in the returned domains. Access to domains outside this list may
be more limited.

Overview 387
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 61

NSNetServiceBrowser

Tasks

Constructors

NSNetServiceBrowser (page 389)

Managing Delegates

delegate (page 389)
Returns the receiver’s delegate.

setDelegate (page 392)
Sets the receiver’s delegate.

Maintaining Run Loops

removeFromRunLoop (page 390)
Removes the NSNetServiceBrowser from the specified run loop.

scheduleInRunLoop (page 390)
Adds the NSNetServiceBrowser to the specified run loop.

Working with a Service Browser

searchForAllDomains (page 390)
This method has been deprecated. Use searchForBrowsableDomains (page 391) or
searchForRegistrationDomains (page 391).

searchForBrowsableDomains (page 391)
Initiates a search for domains visible to the host. This method returns immediately.

searchForRegistrationDomains (page 391)
Initiates a search for domains in which the host may register services.

searchForServicesOfType (page 391)
Starts a search for services of type type within a specific domain, domainString.

stop (page 392)
Halts a currently running search or resolution.

Searching

netServiceBrowser (page 393) delegate method
Sent by aNetServiceBrowser whenever an error prevented a search from occurring.

netServiceBrowserDidStopSearch (page 393) delegate method
Informs the delegate that the current search was stopped.

388 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 61

NSNetServiceBrowser

netServiceBrowserWillSearch (page 394) delegate method
Sent by aNetServiceBrowser to indicate a search is commencing.

Working with domains

netServiceBrowserDidFindDomain (page 393) delegate method
Sent by aNetServiceBrowser each time it finds a domain.

netServiceDidRemoveDomain (page 394) delegate method
Sent by aNetServiceBrowser whenever a domain disappears or becomes unavailable.

Working with services

netServiceDidFindService (page 394) delegate method
Sent by aNetServiceBrowser each time it finds a service.

netServiceDidRemoveService (page 395) delegate method
Sent by aNetServiceBrowser whenever a service disappears or becomes unavailable.

Constructors

NSNetServiceBrowser
public NSNetServiceBrowser()

Discussion
The constructor for the NSNetServiceBrowser object.

Instance Methods

delegate
Returns the receiver’s delegate.

public Object delegate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDelegate (page 392)

Constructors 389
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 61

NSNetServiceBrowser

removeFromRunLoop
Removes the NSNetServiceBrowser from the specified run loop.

public void removeFromRunLoop(NSRunLoop aRunLoop, String mode)

Discussion
You can use this method in conjunction with scheduleInRunLoop (page 390) to transfer the service to a
run loop other than the default one. Although it is possible to remove an NSNetService completely from any
run loop and then attempt actions on it, it is an error to do so.

Possible values for mode are discussed in the “Constants” (page 503) section of NSRunLoop.

Availability
Available in Mac OS X v10.4 and later.

See Also
scheduleInRunLoop (page 390)

scheduleInRunLoop
Adds the NSNetServiceBrowser to the specified run loop.

public void scheduleInRunLoop(NSRunLoop aRunLoop, String mode)

Discussion
You can use this method in conjunction with removeFromRunLoop (page 390) to transfer the service to a
run loop other than the default one. You should not attempt to run the service on multiple run loops.

Possible values for mode are discussed in the “Constants” (page 503) section of NSRunLoop.

Availability
Available in Mac OS X v10.4 and later.

See Also
removeFromRunLoop (page 390)

searchForAllDomains
This method has been deprecated. Use searchForBrowsableDomains (page 391) or
searchForRegistrationDomains (page 391).

public void searchForAllDomains()

Discussion
Initiates a search for all domains that are visible to the host.

This method returns immediately, sending a netServiceBrowserWillSearch (page 394) message to the
delegate if the network was ready to initiate the search. The delegate receives a subsequent
netServiceBrowserDidFindDomain (page 393) message for each domain discovered.

This method may find domains in which the localhost does not have registration authority.

390 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 61

NSNetServiceBrowser

Availability
Deprecated in Mac OS X v10.4.

See Also
searchForRegistrationDomains (page 391)
netServiceBrowserDidFindDomain (page 393)

searchForBrowsableDomains
Initiates a search for domains visible to the host. This method returns immediately.

public void searchForBrowsableDomains()

Discussion
The delegate receives anetServiceBrowserDidFindDomain (page 393) message for each domain discovered.

Availability
Available in Mac OS X v10.4 and later.

See Also
searchForRegistrationDomains (page 391)

searchForRegistrationDomains
Initiates a search for domains in which the host may register services.

public void searchForRegistrationDomains()

Discussion
This method returns immediately, sending a netServiceBrowserWillSearch (page 394) message to the
delegate if the network was ready to initiate the search. The delegate receives a subsequent
netServiceBrowserDidFindDomain (page 393) message for each domain discovered.

Most NSNetService clients do not have to use this API—it is sufficient to publish your NSNetService with the
empty string which will register it in any available registration domains automatically.

Availability
Available in Mac OS X v10.4 and later.

See Also
searchForBrowsableDomains (page 391)
searchForServicesOfType (page 391)
netServiceBrowserDidFindDomain (page 393)
netServiceBrowserWillSearch (page 394)

searchForServicesOfType
Starts a search for services of type type within a specific domain, domainString.

public void searchForServicesOfType(String type, String domainString)

Instance Methods 391
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 61

NSNetServiceBrowser

Discussion
This method returns immediately, sending a netServiceBrowserWillSearch (page 394) message to the
delegate if the network was ready to initiate the search.The delegate receives subsequent
netServiceDidFindService (page 394) messages for each service discovered.

The type argument must contain both the service type and transport layer information. To ensure that the
mDNS responder searches for services, rather than hosts, make sure to prefix both the service name and
transport layer name with an underscore character (“_”). For example, to search for an HTTP service on TCP,
you would use the type string “_http._tcp.“. Note that the period character at the end is required.

The domainString argument can be an explicit domain name, the generic local domain @"local." (note
trailing period, which indicates an absolute name), or the empty string (@""), which indicates the default
registration domain. Usually, you pass in an empty string. Note that it is acceptable to use an empty string
for the domainString argument when publishing or browsing a service, but do not rely on this for resolution.

Availability
Available in Mac OS X v10.4 and later.

See Also
netServiceDidFindService (page 394)
netServiceBrowserWillSearch (page 394)

setDelegate
Sets the receiver’s delegate.

public void setDelegate(Object delegate)

Discussion
The delegate is not retained. You must specify a delegate. The NSNetServiceBrowser calls the methods of
your delegate to receive information about discovered domains and services.

Availability
Available in Mac OS X v10.4 and later.

See Also
delegate (page 389)

stop
Halts a currently running search or resolution.

public void stop()

Discussion
Invoking this method sends a netServiceBrowserDidStopSearch (page 393) message to the delegate
and causes the browser to discard any pending search results.

Availability
Available in Mac OS X v10.4 and later.

See Also
netServiceBrowserDidStopSearch (page 393)

392 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 61

NSNetServiceBrowser

Delegate Methods

netServiceBrowser
Sent by aNetServiceBrowser whenever an error prevented a search from occurring.

public abstract void netServiceBrowser(NSNetServiceBrowser aNetServiceBrowser,
NSDictionary errorDict)

Discussion
You can use the dictionary keys NSNetServicesErrorCode and NSNetServicesErrorDomain to retrieve
the error information from the dictionary.

Availability
Available in Mac OS X v10.4 and later.

See Also
netServiceBrowserWillSearch (page 394)

netServiceBrowserDidFindDomain
Sent by aNetServiceBrowser each time it finds a domain.

puublic abstract void netServiceBrowserDidFindDomain(NSNetServiceBrowser
aNetServiceBrowser, String domainString, boolean moreComing)

Discussion
Use this message to accumulate the list of domain names. If moreComing is true, the browser is waiting to
return additional domains. If your client displays a list of domains to the user, you should wait until this
parameter is false, and then do a bulk update of your user interface elements.

Availability
Available in Mac OS X v10.4 and later.

See Also
searchForBrowsableDomains (page 391)
searchForRegistrationDomains (page 391)

netServiceBrowserDidStopSearch
Informs the delegate that the current search was stopped.

public abstract void netServiceBrowserDidStopSearch(NSNetServiceBrowser
aNetServiceBrowser)

Discussion
The NSNetServiceBrowser object in aNetServiceBrowser sends this message to your delegate in response
to receiving a stop (page 392) message from the browser client. Use this message to perform any necessary
cleanup.

Delegate Methods 393
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 61

NSNetServiceBrowser

Availability
Available in Mac OS X v10.4 and later.

See Also
stop (page 392)

netServiceBrowserWillSearch
Sent by aNetServiceBrowser to indicate a search is commencing.

public abstract void netServiceBrowserWillSearch(NSNetServiceBrowser
aNetServiceBrowser)

Discussion
This message is sent to the delegate only if the underlying network layer was in a state to begin a search.
Your delegate can use this notification to prepare its data structures to receive data.

Availability
Available in Mac OS X v10.4 and later.

See Also
netServiceBrowser (page 393)

netServiceDidFindService
Sent by aNetServiceBrowser each time it finds a service.

public abstract void netServiceDidFindService(NSNetServiceBrowser aNetServiceBrowser,
NSNetService aNetService,

Discussion
The aNetService argument contains the service that was discovered. You can use this object to connect
to and start using the service. If moreComing is true, the browser is waiting to return additional service
objects. If your client displays a list of services to the user, you should wait until this parameter is false and
then do a bulk update of your user interface elements.

Availability
Available in Mac OS X v10.4 and later.

See Also
searchForServicesOfType (page 391)

netServiceDidRemoveDomain
Sent by aNetServiceBrowser whenever a domain disappears or becomes unavailable.

public abstract void netServiceDidRemoveDomain(NSNetServiceBrowser
aNetServiceBrowser, String domainString, boolean moreComing)

394 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 61

NSNetServiceBrowser

Discussion
Use this message to update the list of available domains. If moreComing is true, the browser has additional
domain names for your delegate to remove. If your client displays a list of the current domains to the user,
you should wait until this parameter is false, and then do a bulk update of your user interface elements.

Availability
Available in Mac OS X v10.4 and later.

netServiceDidRemoveService
Sent by aNetServiceBrowser whenever a service disappears or becomes unavailable.

public abstract void netServiceDidRemoveService(NSNetServiceBrowser
aNetServiceBrowser, NSNetService aNetService, boolean moreComing)

Discussion
Use this message to update the list of available services. If moreComing is true, the browser has additional
services for your delegate to remove. If your client displays a list of the current services to the user, you should
wait until this parameter is false, and then do a bulk update of your user interface elements.

Availability
Available in Mac OS X v10.4 and later.

Delegate Methods 395
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 61

NSNetServiceBrowser

396 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 61

NSNetServiceBrowser

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide Notification Programming Topics for Cocoa

Overview

NSNotification objects encapsulate information so that it can be broadcast to other objects by an
NSNotificationCenter object. An NSNotification object (referred to as a notification) contains a name, an
object, and an optional dictionary. The name is a tag identifying the notification. The object is any object
that the poster of the notification wants to send to observers of that notification (typically, it is the object
that posted the notification). The dictionary stores other related objects, if any. NSNotification objects are
immutable objects.

You can create a notification object with the constructor. However, you don’t usually create your own
notifications directly. The NSNotificationCenter method postNotification (page 403) allows you to
conveniently post a notification without creating it first.

Creating Subclasses

You can subclass NSNotification to contain information in addition to the notification name, object, and
dictionary. This extra data must be agreed upon between notifiers and observers.

Tasks

Constructors

NSNotification (page 398)
Throws an IllegalArgumentException.

Obtaining Information About a Notification

name (page 398)
Returns the name of the receiver.

Overview 397
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 62

NSNotification

object (page 399)
Returns the object associated with the receiver.

userInfo (page 399)
Returns the NSDictionary associated with the receiver or null if there is no such object.

Constructors

NSNotification
Throws an IllegalArgumentException.

public NSNotification()

Discussion
Use one of the other constructors to create an instance.

Availability
Deprecated in Mac OS X v10.3 and later.

Creates a notification object that associates the name aName with the object anObject.

public NSNotification(String aName, Object anObject)

Discussion
aName may not be null.

Creates a notification object that associates the name aName with the object anObject and the dictionary
of arbitrary data userInfo.

public NSNotification(String aName, Object anObject, NSDictionary userInfo)

Discussion
The dictionary userInfo may be null. aName may not be null.

See Also
postNotification (page 403) (NSNotificationCenter)

Instance Methods

name
Returns the name of the receiver.

public String name()

Discussion
Examples of this might be “PortIsInvalid” or “PhoneRinging.” Typically, you invoke this method on the
notification object passed to your notification-handler method. (You specify a notification-handler method
when you register to receive the notification.)

398 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 62

NSNotification

Notification names can be any string. To avoid name collisions, however, you might want to use a prefix
that’s specific to your application.

object
Returns the object associated with the receiver.

public Object object()

Discussion
This is often the object that posted this notification. It may be null.

Typically, you invoke this method on the notification object passed in to your notification-handler method.
(You specify a notification-handler method when you register to receive the notification.)

userInfo
Returns the NSDictionary associated with the receiver or null if there is no such object.

public NSDictionary userInfo()

Discussion
The NSDictionary stores any additional objects that objects receiving the notification might use. For example,
in the Application Kit, NSControl objects post the ControlTextDidChangeNotification whenever the
field editor (an NSText object) changes text inside the NSControl. This notification provides both the NSControl
object and the field editor to objects registered to receive them. The field editor is returned when you access
the dictionary.

Instance Methods 399
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 62

NSNotification

400 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 62

NSNotification

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Notification Programming Topics for Cocoa

Class at a Glance

NSNotificationCenter provides a way for objects that don’t know about each other to communicate. It receives
NSNotification objects and broadcasts them to all interested objects.

Principal Attributes

 ■ A table containing objects that want to receive notifications, the notifications they want to receive, and
the objects they want to receive these notifications from.

Each task has a default notification center. You typically don’t create your own.

Commonly Used Methods

defaultCenter (page 403)
Accesses the default notification center.

addObserver (page 403)
Registers an object to receive a notification.

postNotification (page 403)
Posts a notification.

removeObserver (page 404)
Specifies that an object no longer wants to receive notifications.

Overview

An NSNotificationCenter object (or simply, notification center) is essentially a notification dispatch table. It
notifies all observers of notifications meeting specific criteria. This information is encapsulated in NSNotification
objects, also known as notifications. Client objects register themselves with the notification center as observers
of specific notifications posted by other objects. When an event occurs, an object posts an appropriate

Class at a Glance 401
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 63

NSNotificationCenter

notification to the notification center. The notification center dispatches a message to each registered
observer, passing the notification as the sole argument. The order in which observers receive notifications
is undefined. It is possible for the posting object and the observing object to be the same.

An NSNotificationCenter object delivers notifications to observers synchronously. In other words the
postNotification (page 403) method does not return until all observers have received and processed the
notification. To send notifications asynchronously use NSNotificationQueue (page 405). In a multithreaded
application, notifications are always delivered in the thread in which the notification was posted, which may
not be the same thread in which an observer registered itself.

An NSNotificationCenter object can only deliver notifications within a single task. If you want to post a
notification to other tasks or receive notifications from other tasks, use NSDistributedNotificationCenter (page
159).

Tasks

Constructors

NSNotificationCenter (page 403)
Creates an empty NSNotificationCenter.

Accessing the Default Center

defaultCenter (page 403)
Returns the current task’s notification center, which is used for system notifications.

Adding and Removing Observers

addObserver (page 403)
Registers anObserver to receive notifications with the name notificationName and/or containing
anObject.

removeObserver (page 404)
Removes anObserver from all notification associations in the receiver.

Posting Notifications

postNotification (page 403)
Posts notification to the receiver.

402 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 63

NSNotificationCenter

Constructors

NSNotificationCenter
Creates an empty NSNotificationCenter.

public NSNotificationCenter()

Discussion
This center is not the default notification center. To obtain the default center, use defaultCenter (page
403).

Static Methods

defaultCenter
Returns the current task’s notification center, which is used for system notifications.

public static NSNotificationCenter defaultCenter()

Instance Methods

addObserver
Registers anObserver to receive notifications with the name notificationName and/or containing
anObject.

public void addObserver(Object anObserver, NSSelector aSelector, String
notificationName, Object anObject)

Discussion
When a notification of name notificationName containing the object anObject is posted, anObserver
receives an aSelectormessage with this notification as the argument. The method for the selector specified
in aSelectormust have one and only one argument. If notificationName is null, the notification center
notifies the observer of all notifications with an object matching anObject. (The objects are matched by
comparing their pointers.) If anObject is null, the notification center notifies the observer of all notifications
with the name notificationName. anObserver may not be null.

postNotification
Posts notification to the receiver.

public void postNotification(NSNotification notification)

Constructors 403
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 63

NSNotificationCenter

Discussion
You can create notificationwith the NSNotification constructor. An exception is thrown if notification
is null.

Creates a notification with the name notificationName, associates it with the object anObject, and posts
it to the notification center.

public void postNotification(String notificationName, Object anObject)

Discussion
anObject is typically the object posting the notification. It may be null.

Creates a notification with the name notificationName, associates it with the object anObject and
dictionary userInfo, and posts it to the notification center.

public void postNotification(String notificationName, Object anObject, NSDictionary
userInfo)

Discussion
This method is the preferred method for posting notifications. anObject is typically the object posting the
notification. It may be null. userInfo also may be null.

removeObserver
Removes anObserver from all notification associations in the receiver.

public void removeObserver(Object anObserver)

Discussion
anObserver may not be null.

Removes anObserver as the observer of notifications with the name notificationName and object
anObject from the receiver.

public void removeObserver(Object anObserver, String notificationName, Object
anObject)

Discussion
anObserver may not be null.

If notificationName is null, anObserver is removed as an observer of all notifications containing
anObject. If anObject is null, anObserver is removed as an observer of notificationName containing
any object. For example, if you wanted to unregister someObserver from all notifications it had previously
registered for, you would sent this message:

NSNotificationCenter.defaultCenter().removeObserver(someObserver, null, null);

404 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 63

NSNotificationCenter

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Notification Programming Topics for Cocoa

Overview

NSNotificationQueue objects (or simply notification queues) act as buffers for notification centers (instances
of NSNotificationCenter). Whereas a notification center distributes notifications when posted, notifications
placed into the queue can be delayed until the end of the current pass through the run loop or until the run
loop is idle. Duplicate notifications can also be coalesced so that only one notification is sent although multiple
notifications are posted. A notification queue maintains notifications (instances of NSNotification) generally
in a first in first out (FIFO) order. When a notification rises to the front of the queue, the queue posts it to the
notification center, which in turn dispatches the notification to all objects registered as observers.

Every thread has a default notification queue, which is associated with the default notification center for the
task. You can create your own notification queues and have multiple queues per center and thread.

Tasks

Constructors

NSNotificationQueue (page 406)
Creates an NSNotificationQueue that uses the application’s default notification center to post
notifications.

Creating and Initializing Notification Queues

defaultQueue (page 406)
Returns the default NSNotificationQueue object for the current thread.

Inserting and Removing Notifications from a Queue

dequeueMatchingNotifications (page 406)
Removes all notifications from the receiver that match the attributes of notification as specified
by coalesceMask.

Overview 405
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 64

NSNotificationQueue

enqueueNotification (page 407)
Puts notification in the receiver.

enqueueNotificationWithCoalesceMaskForModes (page 407)
Puts notification in the receiver.

Constructors

NSNotificationQueue
Creates an NSNotificationQueue that uses the application’s default notification center to post notifications.

public NSNotificationQueue()

Creates an NSNotificationQueue that uses the notification center specified in notificationCenter to post
notifications.

public NSNotificationQueue(NSNotificationCenter notificationCenter)

Static Methods

defaultQueue
Returns the default NSNotificationQueue object for the current thread.

public static NSNotificationQueue defaultQueue()

Discussion
This object always uses the default notification center object for the same task.

Instance Methods

dequeueMatchingNotifications
Removes all notifications from the receiver that match the attributes of notification as specified by
coalesceMask.

public void dequeueMatchingNotifications(NSNotification notification, int
coalesceMask)

Discussion
The mask is created by combining the constants NotificationNoCoalescing,
NotificationCoalescingOnName, and NotificationCoalescingOnSender.

406 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 64

NSNotificationQueue

enqueueNotification
Puts notification in the receiver.

public void enqueueNotification(NSNotification notification, int postingStyle)

Discussion
The queue posts notification to the notification center at the time indicated by postingStyle. The
notification queue posts in NSRunLoop.DefaultRunLoopMode, and it coalesces only notifications in the
queue that match both the notification’s name and object.

This method invokes enqueueNotificationWithCoalesceMaskForModes (page 407).

enqueueNotificationWithCoalesceMaskForModes
Puts notification in the receiver.

public void enqueueNotificationWithCoalesceMaskForModes(NSNotification notification,
int postingStyle, int coalesceMask, NSArray modes)

Discussion
The queue posts notification to the notification center at the time indicated by postingStyle, but only
if the run loop is in a mode identified by one of the string objects in the modes array. The notification queue
coalesces related notifications in the queue as specified by coalesceMask (set using the constants
NotificationNoCoalescing, NotificationCoalescingOnName, and
NotificationCoalescingOnSender). If modes is null, the notification queue posts in
NSRunLoop.DefaultRunLoopMode.

Constants

These constants specify how notifications are coalesced. They’re used in the third argument of
enqueueNotificationWithCoalesceMaskForModes (page 407). You can OR them together to specify
more than one.

DescriptionConstant

Do not coalesce notifications in the queue.NotificationNoCoalescing

Coalesce notifications with the same name.NotificationCoalescingOnName

Coalesce notifications with the same object.NotificationCoalescingOnSender

These constants specify when notifications are posted. They’re used in both enqueueNotification (page
407) and enqueueNotificationWithCoalesceMaskForModes (page 407):

DescriptionConstant

The notification is posted at the end of the current notification callout or timer.PostASAP

The notification is posted when the run loop is idle.PostWhenIdle

Constants 407
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 64

NSNotificationQueue

DescriptionConstant

The notification is posted immediately after coalescing.PostNow

408 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 64

NSNotificationQueue

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide Number and Value Programming Topics for Cocoa

Overview

The NSNull class defines a unique object used to represent null values in collection objects (which don’t allow
null values).

Tasks

Constructors

NSNull (page 409)
Returns the unique instance of NSNull.

Obtaining an Instance

nullValue (page 410)
Returns the unique instance of NSNull.

Constructors

NSNull
Returns the unique instance of NSNull.

public NSNull()

Overview 409
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 65

NSNull

Static Methods

nullValue
Returns the unique instance of NSNull.

public static NSNull nullValue()

410 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 65

NSNull

Inherits from NSFormatter : NSObject

Implements NSCoding (NSNumberFormatter)

Package: com.apple.cocoa.foundation

Companion guide Data Formatting Programming Guide for Cocoa

Overview

Instances of NSNumberFormatter format the textual representation of cells that contain Numbers and convert
textual representations of numeric values into Numbers. The representation encompasses integers, floats,
and doubles; floats and doubles can be formatted to a specified decimal position. NSNumberFormatters can
also impose ranges on the numeric values cells can accept.

Tasks

Constructors

NSNumberFormatter (page 413)
Creates an NSNumberFormatter with a format of “#,##0.00;0.00;–#,##0.00”.

Setting and Getting Formats

negativeFormat (page 416)
Returns a String containing the format used by the receiver to display negative numbers.

setNegativeFormat (page 419)
Sets the format the receiver uses to display negative values to aFormat.

positiveFormat (page 416)
Returns a String containing the format used by the receiver to display positive numbers.

setPositiveFormat (page 419)
Sets the format the receiver uses to display positive values to aFormat.

format (page 415)
Returns a String containing the format being used by the receiver.

setFormat (page 418)
Sets the receiver’s format to the string aFormat.

Overview 411
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

Setting and Getting Characteristics for Displaying Values

textAttributesForNegativeValues (page 421)
Returns an NSDictionary containing the text attributes that have been set for negative values.

setTextAttributesForNegativeValues (page 420)
Sets the text attributes to be used in displaying negative values to newAttributes.

textAttributesForPositiveValues (page 421)
Returns an NSDictionary containing the text attributes that have been set for positive values.

setTextAttributesForPositiveValues (page 420)
Sets the text attributes to be used in displaying positive values to newAttributes.

attributedStringForZero (page 415)
Returns the NSAttributedString used to display zero values.

setAttributedStringForZero (page 418)
Sets the NSAttributedString the receiver uses to display zero values to newAttributedString.

attributedStringForNil (page 414)
Returns the NSAttributedString used to display null values.

setAttributedStringForNil (page 417)
Sets the NSAttributedString the receiver uses to display null values to newAttributedString.

attributedStringForNotANumber (page 414)
Returns the NSAttributedString used to display “not a number” values.

setAttributedStringForNotANumber (page 417)
Sets the NSAttributedString the receiver uses to display “not a number” values to
newAttributedString.

attributedStringForObjectValue (page 414)
Return an NSAttributedString if the string for display should have some attributes.

Setting and Getting Separators

hasThousandSeparators (page 415)
Returns true to indicate that the receiver’s format includes thousand separators, false otherwise.

setHasThousandSeparators (page 419)
Sets according to flag whether the receiver uses thousand separators.

thousandSeparator (page 421)
Returns a String containing the character the receiver uses to represent thousand separators.

setThousandSeparator (page 420)
Sets the character the receiver uses as a thousand separator to newSeparator.

decimalSeparator (page 415)
Returns a String containing the character the receiver uses to represent decimal separators.

setDecimalSeparator (page 418)
Sets the character the receiver uses as a decimal separator to newSeparator. If newSeparator
contains multiple characters, only the first one is used. If you don’t have decimal separators enabled
through another means (such as setFormat (page 418)), using this method enables them.

412 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

Enabling Localization

localizesFormat (page 416)
Returns true to indicate that the receiver localizes formats, false otherwise.

setLocalizesFormat (page 419)
Sets according to flag whether the dollar sign character ($), decimal separator character (.), and
thousand separator character (,) are converted to appropriately localized characters as specified by
the user’s localization preference.

Setting and Getting Float Behavior

allowsFloats (page 414)
Returns true if the receiver allows as input floating-point values (that is, values that include the period
character [.]), false otherwise.

setAllowsFloats (page 417)
Sets according to flag whether the receiver allows as input floating-point values (that is, values that
include the period character [.]).

String Manipulation

isPartialStringValid (page 416)
Since this method is invoked each time the user presses a key while the cursor is in the cell, it lets you
verify the cell text as the user types it.

objectValueForString (page 416)
Returns an object created from aString.

replacementStringForString (page 417)
Checks whether aString is a valid string for the cell.

stringForObjectValue (page 420)
Returns the string that textually represents the cell’s object for display and for editing.

Constructors

NSNumberFormatter
Creates an NSNumberFormatter with a format of “#,##0.00;0.00;–#,##0.00”.

public NSNumberFormatter()

See Also
setFormat (page 418)

Constructors 413
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

Instance Methods

allowsFloats
Returns true if the receiver allows as input floating-point values (that is, values that include the period
character [.]), false otherwise.

public boolean allowsFloats()

Discussion
When this method returns false, only integer values can be provided as input. The default is true.

See Also
setAllowsFloats (page 417)

attributedStringForNil
Returns the NSAttributedString used to display null values.

public NSAttributedString attributedStringForNil()

Discussion
By default null values are displayed as an empty string.

See Also
setAttributedStringForNil (page 417)

attributedStringForNotANumber
Returns the NSAttributedString used to display “not a number” values.

public NSAttributedString attributedStringForNotANumber()

Discussion
By default “not a number” values are displayed as the string “NaN”.

See Also
setAttributedStringForNotANumber (page 417)

attributedStringForObjectValue
Return an NSAttributedString if the string for display should have some attributes.

public NSAttributedString attributedStringForObjectValue(Object anObject,
NSDictionary attributes)

Discussion
For instance, you might want negative values in a financial application to appear in red text. Invoke your
implementation of stringForObjectValue (page 420) to get the nonattributed string. Then create an
NSAttributedString with it. The default attributes for text in the cell are passed in with attributes; use this

414 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

NSDictionary to reset the attributes of the string when a change in value warrants it (for example, a negative
value becomes positive). If an NSAttributedString cannot be created for anObject, an
NSFormatter.FormattingException is thrown. For information on creating attributed strings, see the
NSAttributedString (page 67) class.

attributedStringForZero
Returns the NSAttributedString used to display zero values.

public NSAttributedString attributedStringForZero()

Discussion
By default zero values are displayed according to the format specified for positive values; for more discussion
of this subject see “Data Formatting”.

See Also
setAttributedStringForZero (page 418)

decimalSeparator
Returns a String containing the character the receiver uses to represent decimal separators.

public String decimalSeparator()

Discussion
Note that the return value doesn’t indicate whether decimal separators are enabled.

See Also
setDecimalSeparator (page 418)

format
Returns a String containing the format being used by the receiver.

public String format()

See Also
setFormat (page 418)

hasThousandSeparators
Returns true to indicate that the receiver’s format includes thousand separators, false otherwise.

public boolean hasThousandSeparators()

Discussion
The default is false.

See Also
setHasThousandSeparators (page 419)

Instance Methods 415
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

isPartialStringValid
Since this method is invoked each time the user presses a key while the cursor is in the cell, it lets you verify
the cell text as the user types it.

public boolean isPartialStringValid(String partialString)

Discussion
partialString is the text currently in the cell. Return true if typed text is acceptable and false if it is
not. If you return false, the cell displays partialString minus the last character typed.

See Also
replacementStringForString (page 417)

localizesFormat
Returns true to indicate that the receiver localizes formats, false otherwise.

public boolean localizesFormat()

Discussion
The default is false.

See Also
setLocalizesFormat (page 419)

negativeFormat
Returns a String containing the format used by the receiver to display negative numbers.

public String negativeFormat()

See Also
setNegativeFormat (page 419)
setFormat (page 418)

objectValueForString
Returns an object created from aString.

public Object objectValueForString(String aString)

Discussion
If an object cannot be created from aString, an NSFormatter.ParsingException is thrown.

See Also
stringForObjectValue (page 420)

positiveFormat
Returns a String containing the format used by the receiver to display positive numbers.

416 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

public String positiveFormat()

See Also
setPositiveFormat (page 419)
setFormat (page 418)

replacementStringForString
Checks whether aString is a valid string for the cell.

public String replacementStringForString(String aString)

Discussion
If it is, returns it unmodified. Otherwise, corrects it and returns the modified string. For example, this method
might convert all lowercase letters to uppercase or insert separator characters in a telephone number.

See Also
isPartialStringValid (page 416)

setAllowsFloats
Sets according to flag whether the receiver allows as input floating-point values (that is, values that include
the period character [.]).

public void setAllowsFloats(boolean flag)

Discussion
By default, floating point values are allowed as input.

See Also
allowsFloats (page 414)

setAttributedStringForNil
Sets the NSAttributedString the receiver uses to display null values to newAttributedString.

public void setAttributedStringForNil(NSAttributedString newAttributedString)

See Also
attributedStringForNil (page 414)

setAttributedStringForNotANumber
Sets the NSAttributedString the receiver uses to display “not a number” values to newAttributedString.

public void setAttributedStringForNotANumber(NSAttributedString newAttributedString)

See Also
attributedStringForNotANumber (page 414)

Instance Methods 417
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

setAttributedStringForZero
Sets the NSAttributedString the receiver uses to display zero values to newAttributedString.

public void setAttributedStringForZero(NSAttributedString newAttributedString)

See Also
attributedStringForZero (page 415)

setDecimalSeparator
Sets the character the receiver uses as a decimal separator to newSeparator. If newSeparator contains
multiple characters, only the first one is used. If you don’t have decimal separators enabled through another
means (such as setFormat (page 418)), using this method enables them.

public void setDecimalSeparator(String newSeparator)

See Also
decimalSeparator (page 415)

setFormat
Sets the receiver’s format to the string aFormat.

public void setFormat(String aFormat)

Discussion
aFormat can consist of one, two, or three parts separated by “;”. The first part of the string represents the
positive format, the second part of the string represents the zero value, and the last part of the string represents
the negative format. If the string has just two parts, the first one becomes the positive format, and the second
one becomes the negative format. If the string has just one part, it becomes the positive format, and default
formats are provided for zero and negative values based on the positive format. For more discussion of this
subject, see “Data Formatting”.

The following code excerpt shows the three different approaches for setting an NSNumberFormatter object’s
format using setFormat:

NSNumberFormatter numberFormatter = new NSNumberFormatter();

// specify just positive format
numberFormatter.setFormat("$#,##0.00");

// specify positive and negative formats
numberFormatter.setFormat("$#,##0.00;($#,##0.00)");

// specify positive, zero, and negative formats
numberFormatter.setFormat("$#,###.00;0.00;($#,##0.00)");

See Also
format (page 415)

418 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

setHasThousandSeparators
Sets according to flag whether the receiver uses thousand separators.

public void setHasThousandSeparators(boolean flag)

Discussion
When flag is false, thousand separators are disabled for both positive and negative formats (even if you’ve
set them through another means, such as setFormat (page 418)). When flag is true, thousand separators
are used. In addition to using this method to add thousand separators to your format, you can also use it to
disable thousand separators if you’ve set them using another method. The default is false (though you in
effect change this setting to true when you set thousand separators through any means, such as
setFormat (page 418)).

See Also
hasThousandSeparators (page 415)

setLocalizesFormat
Sets according to flag whether the dollar sign character ($), decimal separator character (.), and thousand
separator character (,) are converted to appropriately localized characters as specified by the user’s localization
preference.

public void setLocalizesFormat(boolean flag)

Discussion
While the currency-symbol part of this feature may be useful in certain types of applications, it’s probably
more likely that you would tie a particular application to a particular currency (that is, that you would
“hard-code” the currency symbol and separators instead of having them dynamically change based on the
user’s configuration). The reason for this, of course, is that NSNumberFormatter doesn’t perform currency
conversions, it just formats numeric data. You wouldn’t want one user interpreting the value "56324" as US
currency and another user who’s accessing the same data interpreting it as Japanese currency, simply based
on each user’s localization preferences.

See Also
localizesFormat (page 416)

setNegativeFormat
Sets the format the receiver uses to display negative values to aFormat.

public void setNegativeFormat(String aFormat)

See Also
negativeFormat (page 416)
setFormat (page 418)

setPositiveFormat
Sets the format the receiver uses to display positive values to aFormat.

Instance Methods 419
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

public void setPositiveFormat(String aFormat)

See Also
positiveFormat (page 416)
setFormat (page 418)

setTextAttributesForNegativeValues
Sets the text attributes to be used in displaying negative values to newAttributes.

public void setTextAttributesForNegativeValues(NSDictionary newAttributes)

See Also
textAttributesForNegativeValues (page 421)

setTextAttributesForPositiveValues
Sets the text attributes to be used in displaying positive values to newAttributes.

public void setTextAttributesForPositiveValues(NSDictionary newAttributes)

See Also
textAttributesForPositiveValues (page 421)

setThousandSeparator
Sets the character the receiver uses as a thousand separator to newSeparator.

public void setThousandSeparator(String newSeparator)

Discussion
If newSeparator contains multiple characters, only the first one is used. If you don’t have thousand separators
enabled through any other means (such as setFormat (page 418)), using this method enables them.

See Also
thousandSeparator (page 421)

stringForObjectValue
Returns the string that textually represents the cell’s object for display and for editing.

public String stringForObjectValue(Object anObject)

Discussion
First tests the passed-in object to see if it’s of the correct class. If it isn’t, returns null; if it is of the correct
class, returns a properly formatted and, if necessary, localized string. If a string cannot be created for anObject,
an NSFormatter.FormattingException is thrown.

See Also
attributedStringForObjectValue (page 414)

420 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

objectValueForString (page 416)

textAttributesForNegativeValues
Returns an NSDictionary containing the text attributes that have been set for negative values.

public NSDictionary textAttributesForNegativeValues()

See Also
setTextAttributesForNegativeValues (page 420)

textAttributesForPositiveValues
Returns an NSDictionary containing the text attributes that have been set for positive values.

public NSDictionary textAttributesForPositiveValues()

See Also
setTextAttributesForPositiveValues (page 420)

thousandSeparator
Returns a String containing the character the receiver uses to represent thousand separators.

public String thousandSeparator()

Discussion
By default this is the comma character (,). Note that the return value doesn’t indicate whether thousand
separators are enabled.

See Also
setThousandSeparator (page 420)

Instance Methods 421
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

422 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 66

NSNumberFormatter

Inherits from Object

Implements Cloneable
NSKeyValueCoding
java.io.Serializable

Package: com.apple.cocoa.foundation

Companion guide Cocoa Fundamentals Guide

Overview

NSObject is the root class of most Objective-C class hierarchies. NSObject, along with java.lang.Object, is the
root class for all things Cocoa in Java.

Interfaces Implemented

NSKeyValueCoding
takeValueForKey (page 689)
valueForKey (page 690)

Tasks

Constructors

NSObject (page 424)
Creates an NSObject. You should create instances of concrete subclasses instead of NSObject.

Creating, Copying, and Deallocating Objects

clone (page 424)
Returns a new instance that’s a copy of the receiver.

mutableClone (page 425)
Returns a new instance that’s a mutable copy of the receiver. The copy returned is mutable whether
the original is mutable or not.

Overview 423
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 67

NSObject

Comparing Objects

equals (page 424)
Returns true if the receiver and anObject are equal, false otherwise.

hashCode (page 425)
Returns an integer that can be used as a table address in a hash table structure.

Describing Objects

toString (page 426)
Returns a string that represents the contents of the receiving class.

Key Value Coding

takeValueForKey (page 425)
Sets the value for the property identified by key to value.

valueForKey (page 426)
Returns the value for the property identified by key.

Constructors

NSObject
Creates an NSObject. You should create instances of concrete subclasses instead of NSObject.

public NSObject()

Instance Methods

clone
Returns a new instance that’s a copy of the receiver.

public Object clone()

Discussion
The copy returned is immutable if applicable to the receiver; otherwise the exact nature of the copy is
determined by the class. Throws java.lang.CloneNotSupportedException.

equals
Returns true if the receiver and anObject are equal, false otherwise.

424 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 67

NSObject

public boolean equals(Object anObject)

Discussion
NSObject’s implementation compares the id of anObject and the receiver to determine equality. Subclasses
can override this method to redefine what it means for objects to be equal. For example, a container object
might define two containers as equal if they contain the same contents. See the NSData (page 131),
NSDictionary (page 153), NSArray (page 55), and java.lang.String class specifications for examples of
the use of this method. If subclasses override equals, they must also override hashCode (page 425) to ensure
that all objects that return true for equals also return the same value for hashCode. Note that equality as
defined by this method is not necessarily reflexive. For example, A is equal to B does not imply B is equal to
A, especially if B is a subclass of A.

hashCode
Returns an integer that can be used as a table address in a hash table structure.

public int hashCode()

Discussion
NSObject’s implementation returns a value based on the object’s id. If two objects are equal (as determined
by the equals (page 424) method), they must return the same hash value. This last point is particularly
important if you define hashCode in a subclass and intend to put instances of that subclass into a collection.

mutableClone
Returns a new instance that’s a mutable copy of the receiver. The copy returned is mutable whether the
original is mutable or not.

public Object mutableClone()

takeValueForKey
Sets the value for the property identified by key to value.

public void takeValueForKey(Object value, String key)

Discussion
The default implementation works as follows:

1. Searches for a public accessor method of the form setKey, invoking it if there is one.

2. If a public accessor method isn’t found, searches for a private accessor method of the form _setKey,
invoking it if there is one.

3. If an accessor method isn’t found, takeValueForKey searches for an instance variable based on key
and sets the value directly. If the key is “lastName”, it searches for an instance variable named _lastName
or lastName.

Instance Methods 425
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 67

NSObject

toString
Returns a string that represents the contents of the receiving class.

public String toString()

Discussion
NSObject’s implementation of this method simply prints the name of the class.

valueForKey
Returns the value for the property identified by key.

public Object valueForKey(String key)

Discussion
The default implementation works as follows:

1. Searches for a public accessor method based on key. For example, with a key of “lastName”, valueForKey
looks for a method named getLastName or lastName.

2. If a public accessor method isn’t found, searches for a private accessor method based on key (a method
preceded by an underbar). For example, with a key of “lastName”, valueForKey looks for a method
named _getLastName or _lastName.

3. If an accessor method isn’t found, valueForKey searches for an instance variable based on key and
returns its value directly. For the key “lastName”, this would be _lastName or lastName.

426 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 67

NSObject

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Low-Level File Management Programming Topics

Overview

The NSPathUtilities class provides numerous methods for manipulating file paths. The capabilities include
dividing file paths into individual path components, combining individual path components into a full file
path, obtaining paths to standard locations in the file system, and retrieving and setting file attributes.

Tasks

Constructors

NSPathUtilities (page 429)
Creates a new NSPathUtilities object.

Obtaining Standard Paths

searchPathForDirectoriesInDomains (page 432)
Creates a list of path strings for the specified directories in the specified domains.

temporaryDirectory (page 436)
Returns the path to the system’s temporary directory.

Converting Between Paths and URLs

URLWithPath (page 436)
Returns a newly created URL referencing the file or directory at path.

pathFromURL (page 431)
Returns the path of aURL conforming to RFC 1808.

Overview 427
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

Getting and Setting File Attributes

fileAttributes (page 429)
Returns an NSDictionary containing various objects that represent the POSIX attributes of the file
specified at path.

setFileAttributes (page 432)
Changes the attributes of the file or directory specified by path.

Manipulating Path Strings

displayNameAtPath (page 429)
Returns the name of the file or directory at path in a form appropriate for presentation to the user.

isAbsolutePath (page 430)
Interprets aString as a path, returning true if it represents an absolute path, false if it represents
a relative path.

lastPathComponent (page 430)
Returns the last path component of aString.

pathComponents (page 430)
Interprets aString as a path, returning an array of strings containing, in order, each path component
of aString.

pathExtension (page 431)
Interprets aString as a path, returning the extension of aString, if any (not including the extension
divider).

pathWithComponents (page 431)
Returns a string built from the strings in components, by concatenating them with a path separator
between each pair.

pathsMatchingExtensions (page 431)
Returns an array containing all the elements from the pathNames array that have filename extensions
from the filterTypes array.

stringByAbbreviatingWithTildeInPath (page 432)
Returns a string representing aString as a path, with a tilde, “~”, substituted for the full path to the
current user’s home directory, or “~user” for a user other than the current user.

stringByAppendingPathComponent (page 433)
Returns a string made by appending aString1 with aString2, preceded if necessary by a path
separator.

stringByAppendingPathExtension (page 433)
Returns a string made by appending to aString1 an extension separator followed by aString2.

stringByDeletingLastPathComponent (page 434)
Returns a string made by deleting the last path component from aString, along with any final path
separator.

stringByDeletingPathExtension (page 434)
Returns a string made by deleting the extension (if any, and only the last) from aString.

stringByExpandingTildeInPath (page 435)
Returns a string made by expanding the initial component of aString, if it begins with “~” or “~user”,
to its full path value.

428 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

stringByResolvingSymlinksInPath (page 435)
Expands an initial tilde expression in aPath, then resolves all symbolic links and references to current
or parent directories if possible, returning a standardized path.

stringByStandardizingPath (page 435)
Returns a string representing the path of aString, with extraneous path components removed.

stringsByAppendingPaths (page 436)
Returns an array of strings made by separately appending each string in paths to aString, preceded
if necessary by a path separator.

Constructors

NSPathUtilities
Creates a new NSPathUtilities object.

public NSPathUtilities()

Discussion
All the NSPathUtilities methods are static, so there is no need to create instances of NSPathUtilities.

Static Methods

displayNameAtPath
Returns the name of the file or directory at path in a form appropriate for presentation to the user.

public static String displayNameAtPath(String path)

fileAttributes
Returns an NSDictionary containing various objects that represent the POSIX attributes of the file specified
at path.

public static NSDictionary fileAttributes(String path, boolean flag)

Discussion
You access these objects using the keys described in the “Constants” (page 437) section.

If flag is true and path is a symbolic link, the attributes of the linked-to file are returned; if the link points
to a nonexistent file, this method returns null. If flag is false, the attributes of the symbolic link are
returned.

See Also
setFileAttributes (page 432)

Constructors 429
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

isAbsolutePath
Interprets aString as a path, returning true if it represents an absolute path, false if it represents a relative
path.

public static boolean isAbsolutePath(String aString)

lastPathComponent
Returns the last path component of aString.

public static String lastPathComponent(String aString)

Discussion
The following table illustrates the effect of lastPathComponent on a variety of different paths:

String ReturnedValue of aString

“scratch.tiff”“/tmp/scratch.tiff”

“scratch”“/tmp/scratch”

“tmp”“/tmp/”

“scratch”“scratch”

“/”“/”

pathComponents
Interprets aString as a path, returning an array of strings containing, in order, each path component of
aString.

public static NSArray pathComponents(String aString)

Discussion
The strings in the array appear in the order they did in aString. If aString begins or ends with the path
separator, then the first or last component, respectively, contains the separator. Empty components (caused
by consecutive path separators) are deleted.

If aString begins with a slash—for example, “/tmp/scratch”—the array has these contents:

Path ComponentIndex

“/”0

“tmp”1

“scratch”2

If aString has no separators—for example, “scratch”—the array contains aString itself, in this case
“scratch”.

430 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

See Also
pathWithComponents (page 431)
stringByStandardizingPath (page 435)

pathExtension
Interprets aString as a path, returning the extension of aString, if any (not including the extension divider).

public static String pathExtension(String aString)

Discussion
The following table illustrates the effect of pathExtension on a variety of different paths:

String ReturnedValue of aString

“tiff”“/tmp/scratch.tiff”

“” (an empty string)“/tmp/scratch”

“” (an empty string)“/tmp/”

“tiff”“/tmp/scratch..tiff”

pathFromURL
Returns the path of aURL conforming to RFC 1808.

public static String pathFromURL(java.net.URL aURL)

Discussion
If aURL does not conform to RFC 1808, returns null.

pathsMatchingExtensions
Returns an array containing all the elements from the pathNames array that have filename extensions from
the filterTypes array.

public static NSArray pathsMatchingExtensions(NSArray pathNames, NSArray filterTypes)

Discussion
The extensions in filterTypes should not include the dot (“.”) character.

pathWithComponents
Returns a string built from the strings in components, by concatenating them with a path separator between
each pair.

public static String pathWithComponents(NSArray components)

Static Methods 431
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

Discussion
To create an absolute path, use a slash mark (/) as the first component. To include a trailing path divider,
use an empty string as the last component. This method doesn’t clean up the path created; use
stringByStandardizingPath (page 435) to resolve empty components, references to the parent directory,
and so on.

See Also
pathComponents (page 430)

searchPathForDirectoriesInDomains
Creates a list of path strings for the specified directories in the specified domains.

public static NSArray searchPathForDirectoriesInDomains(int directory, int
domainMask, boolean expandTilde)

Discussion
The list is in the order in which you should search the directories. The list of values for directory and
domainMask is described in “Constants” (page 437). If expandTilde is true, tildes are expanded as described
in stringByExpandingTildeInPath (page 435).

setFileAttributes
Changes the attributes of the file or directory specified by path.

public static boolean setFileAttributes(String path, NSDictionary attributes)

Discussion
The attributes that you can change include the owner, group, file permissions, and modification date. (The
list of file attribute keys are given in the “Constants” (page 437) section; their values cannot all be changed,
however.) As in the POSIX standard, the application either must own the file or directory or must be running
as superuser for attribute changes to take effect. The method attempts to make all changes specified in
attributes and ignores any rejection of an attempted modification. If all changes succeed, it returns true.
If any change fails, the method returns false, but it is undefined whether any changes actually occurred.

The FilePosixPermissions value must be initialized with the code representing the POSIX file-permissions
bit pattern. FileHFSCreatorCode and FileHFSTypeCode will only be heeded when path specifies a file.

You can change single attributes or any combination of attributes; you need not specify keys for all attributes.

See Also
fileAttributes (page 429)

stringByAbbreviatingWithTildeInPath
Returns a string representing aString as a path, with a tilde, “~”, substituted for the full path to the current
user’s home directory, or “~user” for a user other than the current user.

public static String stringByAbbreviatingWithTildeInPath(String aString)

Discussion
Returns aString unaltered if it doesn’t begin with the user’s home directory.

432 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

See Also
stringByExpandingTildeInPath (page 435)

stringByAppendingPathComponent
Returns a string made by appending aString1 with aString2, preceded if necessary by a path separator.

public static String stringByAppendingPathComponent(String aString1, String aString2)

Discussion
The following table illustrates the effect of this method on a variety of different paths, assuming that aString2
is supplied as “scratch.tiff”:

Resulting StringValue of aString1

“/tmp/scratch.tiff”“/tmp”

“/tmp/scratch.tiff”“/tmp/”

“/scratch.tiff”“/”

“scratch.tiff”“” (an empty string)

This method may fail to append if PATH_MAX is exceeded. Its failure mode is to return the original string
passed to the method as string1, rather than a string with anything appended to it. The method also logs
in console.log the fact that the attempt failed.

See Also
stringsByAppendingPaths (page 436)
stringByAppendingPathExtension (page 433)
stringByDeletingLastPathComponent (page 434)

stringByAppendingPathExtension
Returns a string made by appending to aString1 an extension separator followed by aString2.

public static String stringByAppendingPathExtension(String aString1, String aString2)

Discussion
The following table illustrates the effect of this method on a variety of different paths, assuming that aString2
is supplied as "tiff":

Resulting StringValue of aString

“/tmp/scratch.old.tiff”“/tmp/scratch.old”

“/tmp/scratch..tiff”“/tmp/scratch.”

“/tmp/.tiff”“/tmp/”

“scratch.tiff”“scratch”

Static Methods 433
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

See Also
stringByAppendingPathComponent (page 433)
stringByDeletingPathExtension (page 434)

stringByDeletingLastPathComponent
Returns a string made by deleting the last path component from aString, along with any final path separator.

public static String stringByDeletingLastPathComponent(String aString)

Discussion
If aString represents the root path, however, it’s returned unaltered. The following table illustrates the
effect of this method on a variety of different paths:

Resulting StringValue of aString

“/tmp”“/tmp/scratch.tiff”

“/tmp”“/tmp/lock/”

“/”“/tmp/”

“/”“/tmp”

“/”“/”

“” (an empty string)“scratch.tiff”

See Also
stringByDeletingPathExtension (page 434)
stringByAppendingPathComponent (page 433)

stringByDeletingPathExtension
Returns a string made by deleting the extension (if any, and only the last) from aString.

public static String stringByDeletingPathExtension(String aString)

Discussion
Strips any trailing path separator before checking for an extension. If aString represents the root path,
however, it’s returned unaltered. The following table illustrates the effect of this method on a variety of
different paths:

Resulting StringValue of aString

“/tmp/scratch”“/tmp/scratch.tiff”

“/tmp”“/tmp/”

“scratch”“scratch.bundle/”

434 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

Resulting StringValue of aString

“scratch.”“scratch..tiff”

“” (an empty string)“.tiff”

“/”“/”

See Also
pathExtension (page 431)
stringByDeletingLastPathComponent (page 434)

stringByExpandingTildeInPath
Returns a string made by expanding the initial component of aString, if it begins with “~” or “~user”, to
its full path value.

public static String stringByExpandingTildeInPath(String aString)

Discussion
Returns aString unaltered if that component can’t be expanded.

See Also
stringByAbbreviatingWithTildeInPath (page 432)

stringByResolvingSymlinksInPath
Expands an initial tilde expression in aPath, then resolves all symbolic links and references to current or
parent directories if possible, returning a standardized path.

public static String stringByResolvingSymlinksInPath(String aPath)

Discussion
If the original path is absolute, all symbolic links are guaranteed to be removed; if it’s a relative path, symbolic
links that can’t be resolved are left unresolved in the returned string. Returns this if an error occurs.

If the name of aPath begins with /private, this method strips off the /private designator, provided the
result is the name of an existing file.

See Also
stringByStandardizingPath (page 435)
stringByExpandingTildeInPath (page 435)

stringByStandardizingPath
Returns a string representing the path of aString, with extraneous path components removed.

public static String stringByStandardizingPath(String aString)

Static Methods 435
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

Discussion
If stringByStandardizingPath detects symbolic links in a pathname, the
stringByResolvingSymlinksInPath (page 435) method is called to resolve them. If an invalid pathname
is provided, stringByStandardizingPath may attempt to resolve it by calling
stringByResolvingSymlinksInPath, and the results are undefined. If any other kind of error is encountered
(such as a path component not existing), this is returned.

This method can make the following changes in the provided string:

 ■ Expand an initial tilde expression using stringByExpandingTildeInPath (page 435).

 ■ Reduce empty components and references to the current directory (that is, the sequences “//” and “/./”)
to single path separators.

 ■ In absolute paths only, resolve references to the parent directory (that is, the component “..”) to the real
parent directory if possible using stringByResolvingSymlinksInPath (page 435), which consults
the file system to resolve each potential symbolic link.

In relative paths, because symbolic links can’t be resolved, references to the parent directory are left in
place.

 ■ Remove an initial component of “/private” from the path if the result still indicates an existing file or
directory (checked by consulting the file system).

See Also
stringByExpandingTildeInPath (page 435)
stringByResolvingSymlinksInPath (page 435)

stringsByAppendingPaths
Returns an array of strings made by separately appending each string in paths to aString, preceded if
necessary by a path separator.

public static NSArray stringsByAppendingPaths(String aString, NSArray paths)

Discussion
See stringByAppendingPathComponent (page 433) for an individual example.

temporaryDirectory
Returns the path to the system’s temporary directory.

public static String temporaryDirectory()

URLWithPath
Returns a newly created URL referencing the file or directory at path.

public static java.net.URL URLWithPath(String path)

436 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

Constants

The following constants for directory locations are provided by NSPathUtilities:

DescriptionConstant

System and network administration applications.AdminApplicationDirectory

All directories where applications can occur.AllApplicationsDirectory

All directories where resources can occur.AllLibrariesDirectory

Supported applications (/Applications).ApplicationDirectory

Unsupported applications and demonstration versions.DemoApplicationDirectory

Developer applications (/Developer/Applications).DeveloperApplicationDirectory

Developer resources (/Developer).DeveloperDirectory

Documentation.DocumentationDirectory

Various user-visible documentation, support, and configuration
files (/Library).

LibraryDirectory

User home directories (/Users).UserDirectory

The following masks are provided for working with paths:

DescriptionConstant

All domains. Includes all of the below and future items.AllDomainsMask

Local to the current machine—the place to install items available to everyone on
this machine (/Local).

LocalDomainMask

Publicly available location in the local are a network—the place to install items
available on the network (/Network).

NetworkDomainMask

Provided by Apple—can’t be modified (/System).SystemDomainMask

The user’s home directory—the place to install user’s personal items (~).UserDomainMask

The following are keys used to access attributes of a mounted file system:

Value TypeKey

intFileSystemSize (in an appropriate unit, usually bytes)

intFileSystemFreeSize (in an appropriate unit, usually bytes)

intFileSystemNodes

Constants 437
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

Value TypeKey

intFileSystemFreeNodes

intFileSystemNumber

The following are keys used to access file attributes contained in the attribute dictionaries returned from
fileAttributes (page 429) and passed to setFileAttributes (page 432):

Value TypeKey

intFileSize
(in bytes)

NSDateFileModificationDate

StringFileOwnerAccountName

StringFileGroupOwnerAccountName

intFileReferenceCount
(number of hard links)

intFileDeviceIdentifier

intFilePosixPermissions

String (see below for possible values)FileType

booleanFileExtensionHidden

int (see “HFS File Types”)FileHFSCreatorCode

int (see “HFS File Types”)FileHFSTypeCode

intFileSystemFileNumber

booleanFileImmutable

booleanFileAppendOnly

NSDateFileCreationDate

intFileOwnerAccountID

intFileGroupOwnerAccountID

The following constants are the possible values for the FileType attribute key:

DescriptionConstant

DirectoryFileTypeDirectory

438 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

DescriptionConstant

Regular fileFileTypeRegular

Symbolic linkFileTypeSymbolicLink

SocketFileTypeSocket

Character special fileFileTypeCharacterSpecial

Block special fileFileTypeBlockSpecial

UnknownFileTypeUnknown

Constants 439
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

440 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 68

NSPathUtilities

Inherits from Object

Implements Cloneable

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities

Overview

An NSPoint represents a location in a coordinate system. It has two primary values, an x-coordinate (horizontal)
and a y-coordinate (vertical). The methods of NSPoint give access to these values, convert between an NSPoint
and its string representation, measure the distance between two NSPoints, and compare two NSPoints for
equality.

Tasks

Constructors

NSPoint (page 442)

Accessing Coordinate Values

x (page 444)
Returns the x-coordinate of the receiver.

y (page 444)
Returns the y-coordinate of the receiver.

Converting Points

hashCode (page 443)
Provide an appropriate hash code useful for storing the receiver in a hash-based data structure.

fromString (page 443)

Overview 441
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 69

NSPoint

toAWTPoint (page 444)
Returns the receiver as a AWT Point object.

toString (page 444)
Returns the receiver as converted to a string object in the form of “{x, y}” where x is the float
representation of the x-coordinate value and y is the float representation of the y-coordinate value.

Finding the Distance Between Points

distanceToPoint (page 443)
Computes and returns the distance between aPoint and the receiver.

Testing Points

equals (page 443)
Returns whether otherObject is an NSPoint and has the same x-coordinate and y-coordinate values
as the receiver.

isEqualToPoint (page 444)
Returns whether aPoint has the same x-coordinate and y-coordinate as the receiver.

Copying

clone (page 443)
Creates and returns a copy of the receiver.

Constructors

NSPoint
public NSPoint()

Discussion
Initializes both x and y coordinates to zero.

public NSPoint(float x, float y)

Discussion
Initializes the NSPoint with the horizontal coordinate x and the vertical coordinate y.

public NSPoint(NSPoint aPoint)

Discussion
Initializes the new NSPoint with the coordinate values of existing NSPoint aPoint; this constructor is used
in cloning the receiver.

public NSPoint(java.awt.Point javaPoint)

442 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 69

NSPoint

Discussion
Initializes the NSPoint with the values extracted from an AWT Point object.

Static Methods

fromString
public static NSPoint fromString(String pointAsString)

Discussion
Creates an NSPoint from the string pointAsString, which must be of the form “{x , y}” where x is a float
representation of the x-coordinate and y is a float representation of the y-coordinate. Throws an
IllegalArgumentException if the string is improperly formatted.

See Also
toString (page 444)

Instance Methods

clone
Creates and returns a copy of the receiver.

public Object clone()

distanceToPoint
Computes and returns the distance between aPoint and the receiver.

public float distanceToPoint(NSPoint aPoint)

equals
Returns whether otherObject is an NSPoint and has the same x-coordinate and y-coordinate values as the
receiver.

public boolean equals(Object otherObject)

See Also
isEqualToPoint (page 444)

hashCode
Provide an appropriate hash code useful for storing the receiver in a hash-based data structure.

Static Methods 443
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 69

NSPoint

public int hashCode()

Discussion
This value is the sum of the receiver’s x-coordinate and y-coordinate, rounded to the nearest integer.

isEqualToPoint
Returns whether aPoint has the same x-coordinate and y-coordinate as the receiver.

public boolean isEqualToPoint(NSPoint aPoint)

See Also
equals (page 443)

toAWTPoint
Returns the receiver as a AWT Point object.

public java.awt.Point toAWTPoint()

Discussion
The float values of the x-coordinate and the y-coordinate are rounded down to the nearest integer (that is,
the point is moved “down” and to the “left” to the nearest integer).

See Also
toString (page 444)

toString
Returns the receiver as converted to a string object in the form of “{x, y}” where x is the float representation
of the x-coordinate value and y is the float representation of the y-coordinate value.

public String toString()

See Also
fromString (page 443)

x
Returns the x-coordinate of the receiver.

public float x()

y
Returns the y-coordinate of the receiver.

public float y()

444 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 69

NSPoint

Constants

NSPoint provides the following constant as a convenience; you can use it to compare values returned by
some NSPoint methods:

DescriptionConstant

An NSPoint with both x and y coordinates set to zero.ZeroPoint

Constants 445
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 69

NSPoint

446 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 69

NSPoint

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Run Loops

Overview

NSPort is an abstract class that represents a communication channel to or from another NSPort, which typically
resides in a different thread or task.

To receive incoming messages, NSPorts must be added to an NSRunLoop as input sources.

Tasks

Constructors

NSPort (page 448)
Creates a new NSPort object capable of both sending and receiving messages.

Validation

invalidate (page 448)
Marks the receiver as invalid.

isValid (page 448)
Returns false if the receiver is known to be invalid, true otherwise (an NSPort only notes that it has
become invalid when it tries to send or receive a message).

Setting the Delegate

setDelegate (page 449)

delegate (page 448)
Returns the receiver’s delegate.

Overview 447
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 70

NSPort

Constructors

NSPort
Creates a new NSPort object capable of both sending and receiving messages.

public NSPort()

Creates a newly allocated NSPort object to use the Mach port machPort.

public NSPort(int machPort)

Discussion
Depending on the access rights for machPort, the new NSPort may only be able to send messages.

Instance Methods

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 449)

invalidate
Marks the receiver as invalid.

public void invalidate()

See Also
isValid (page 448)

isValid
Returns false if the receiver is known to be invalid, true otherwise (an NSPort only notes that it has become
invalid when it tries to send or receive a message).

public boolean isValid()

Discussion
An NSPort becomes invalid when its underlying communication resource, which is operating system
dependent, is closed or damaged.

See Also
invalidate (page 448)

448 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 70

NSPort

setDelegate
public void setDelegate(Object anObject)

Discussion
Sets the receiver’s delegate to anObject.

See Also
delegate (page 448)

Instance Methods 449
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 70

NSPort

450 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 70

NSPort

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

Instances of NSPositionalSpecifier specify an insertion point in a container relative to another object in the
container, for example, before first word or after paragraph 4. The container is specified by an
instance of NSScriptObjectSpecifier. NSPositionalSpecifiers commonly encapsulate object specifiers used as
arguments to the make (create) and move commands and indicate where the created or moved object is
to be inserted relative to the object represented by an object specifier. For example, the following snippet
of Objective-C code illustrates the object specifiers and the positional specifier created to represent the script
statement move word 1 after word 5.

 NSPositionalSpecifier *posSpec;
 NSScriptObjectSpecifier *spec;
 NSScriptCommand *command;
 spec = [[[NSIndexSpecifier allocWithZone:[self zone]]
 initWithContainerClassDescription:nil containerSpecifier:nil key:
 @"orderedDocuments" index:0]
 autorelease];
 spec = [[[NSPropertySpecifier allocWithZone:[self zone]]
 initWithContainerClassDescription:nil containerSpecifier:spec
key:@"textStorage"]
 autorelease];
 spec = [[[NSIndexSpecifier allocWithZone:[self zone]]
 initWithContainerClassDescription:nil containerSpecifier:spec
key:@"words" index: 0]
 autorelease];
 command = [moveCommandDef createCommandInstanceWithZone:[self zone]];
 [command setReceiversSpecifier:spec];
 spec = [[[NSIndexSpecifier allocWithZone:[self zone]]
 initWithContainerClassDescription:nil containerSpecifier:nil key:
 @"orderedDocuments" index:0]
 autorelease];
 spec = [[[NSPropertySpecifier allocWithZone:[self zone]]
 initWithContainerClassDescription:nil containerSpecifier:spec
key:@"textStorage"]
 autorelease];
 spec = [[[NSIndexSpecifier allocWithZone:[self zone]]
 initWithContainerClassDescription:nil containerSpecifier:spec
key:@"words" index: 4]
 autorelease];
/* Here the positional specifier is created, encapsulating the ’word 5’ object

Overview 451
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 71

NSPositionalSpecifier

 * specifier, and set as the argument of the command
*/
 posSpec = [[[NSPositionalSpecifier allocWithZone:[self zone]]
 initWithPosition:NSPositionAfter objectSpecifier:spec]
 autorelease];
 [command setArguments:[NSDictionary dictionaryWithObjectsAndKeys:posSpec,
 @"ToLocation", nil]];

The public interface of NSPositionalSpecifier allows you to access the container of the object specified in the
argument (insertionContainer (page 453)) as well as the insertion key of the object (insertionKey (page
453)) and the position of the object in the insertion key of this container (insertionIndex (page 453)).
Invoking any one of these messages causes the NSPositionalSpecifier to be evaluated if it hasn’t been already.

You don’t normally subclass NSPositionalSpecifier.

Tasks

Constructors

NSPositionalSpecifier (page 453)
Returns an NSPositionalSpecifier with no data.

Accessing Information About a Positional Specifier

insertionContainer (page 453)
Returns the container identified by the receiver.

insertionIndex (page 453)
Returns the index identified by the receiver.

insertionKey (page 453)
Returns the key identified by the receiver.

insertionReplaces (page 454)
Returns true if evaluation has been successful and the object to be inserted should actually replace
the keyed, indexed object in the insertion container, instead of being inserted before it, or false
otherwise. If this object has never been evaluated, evaluation is attempted.

setInsertionClassDescription (page 454)
Sets the class description for the object or objects to be inserted. This message can be sent at any
time after object initialization, but must be sent before evaluation to have any effect.

Evaluating a Positional Specifier

evaluate (page 453)
Causes the receiver to evaluate its position.

452 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 71

NSPositionalSpecifier

Constructors

NSPositionalSpecifier
Returns an NSPositionalSpecifier with no data.

public NSPositionalSpecifier()

Discussion
Do not use this constructor.

Returns an NSPositionalSpecifier with position specified by position and object specifier set to specifier.

public NSPositionalSpecifier(int position, NSScriptObjectSpecifier specifier)

Discussion
See “Constants” (page 454) for possible values for position.

Instance Methods

evaluate
Causes the receiver to evaluate its position.

public void evaluate()

Discussion
Calling insertionContainer (page 453), insertionKey (page 453), insertionIndex (page 453), or
insertionReplaces (page 454) also causes the receiver to be evaluated, if it hasn’t already been evaluated.

insertionContainer
Returns the container identified by the receiver.

public Object insertionContainer()

insertionIndex
Returns the index identified by the receiver.

public int insertionIndex()

insertionKey
Returns the key identified by the receiver.

public String insertionKey()

Constructors 453
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 71

NSPositionalSpecifier

insertionReplaces
Returns true if evaluation has been successful and the object to be inserted should actually replace the
keyed, indexed object in the insertion container, instead of being inserted before it, or false otherwise. If
this object has never been evaluated, evaluation is attempted.

public boolean insertionReplaces()

Availability
Available in Mac OS X v10.2 and later.

setInsertionClassDescription
Sets the class description for the object or objects to be inserted. This message can be sent at any time after
object initialization, but must be sent before evaluation to have any effect.

public void setInsertionClassDescription(NSScriptClassDescription classDescription)

Availability
Available in Mac OS X v10.2 and later.

Constants

The following constants are defined by NSPositionalSpecifier:

DescriptionConstant

Specifies a position after another object.PositionAfter

Specifies a position before another object.PositionBefore

Specifies a position at the beginning of a collection.PositionBeginning

Specifies a position at the end of a collection.PositionEnd

Specifies a position in the place of another object.PositionReplace

454 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 71

NSPositionalSpecifier

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.

Companion guide Predicate Programming Guide

Overview

The NSPredicate class is used to define logical conditions used to constrain a search either for a fetch or for
in-memory filtering.

You use predicates to represent logical conditions, used for describing objects in persistent stores and
in-memory filtering of objects. You often create predicates from a format string which is parsed by the class
methods on NSPredicate; examples include:

 ■ Simple comparisons, such as grade == "7" or firstName like "Shaffiq"

 ■ Case/diacritic insensitive lookups, such as name contains[cd] "itroen"

 ■ Logical operations, such as (firstName like "Mark") OR (lastName like"Adderley")

You can create predicates for relationships, such as:

 ■ group.name matches "work*"

 ■ ALL children.age > 12

 ■ ANY children.age > 12

You can also create predicates for operations, such as @sum.items.price < 1000.

In general, the order for like and matches predicates is propertyName OPERATOR pattern.

It is also common to create predicates directly—this is more efficient, more (type-)safe, and it avoids localization
issues.

You can also create predicates that include variables, so that they can be pre-defined (in a tool) before
substituting concrete values at runtime. For predicates that use variables, evaluation is a two step process
(see predicateWithSubstitutionVariables (page 458) and evaluateWithObject (page 457)).

Overview 455
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 72

NSPredicate

Tasks

Constructors

NSPredicate (page 456)

Creating Predicates

predicateWithFormat (page 457)
Returns a new predicate by substituting the values in arguments into predicateFormat in the
order they appear, and parsing the result.

predicateWithSubstitutionVariables (page 458)
Returns a copy of the receiver with the receiver’s variables substituted by values specified in the
substitution variables dictionary.

predicateWithValue (page 457)

Evaluating

evaluateWithObject (page 457)
Returns true if object matches the conditions specified by the receiver; otherwise false

Getting Format Information

predicateFormat (page 457)

Constructors

NSPredicate
public NSPredicate()

Discussion
Creates an empty NSPredicate object.

Availability
Available in Mac OS X v10.4 and later.

456 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 72

NSPredicate

Static Methods

predicateWithFormat
Returns a new predicate by substituting the values in arguments into predicateFormat in the order they
appear, and parsing the result.

public static NSPredicate predicateWithFormat(String predicateFormat, NSArray
arguments)

Availability
Available in Mac OS X v10.4 and later.

predicateWithValue
public static NSPredicate predicateWithValue(boolean value)

Discussion
Returns a predicate that always evaluates to value.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

evaluateWithObject
Returns true if object matches the conditions specified by the receiver; otherwise false

public boolean evaluateWithObject(Object object)

Discussion
.

Availability
Available in Mac OS X v10.4 and later.

predicateFormat
public String predicateFormat()

Discussion
Returns the receiver’s format string.

Availability
Available in Mac OS X v10.4 and later.

Static Methods 457
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 72

NSPredicate

predicateWithSubstitutionVariables
Returns a copy of the receiver with the receiver’s variables substituted by values specified in the substitution
variables dictionary.

public NSPredicate predicateWithSubstitutionVariables(NSDictionary variables)

Discussion
The substitution variables dictionary is specified by variables which must contain key-value pairs for all
variables in the predicate.

The receiver itself is not modified by this method, so you can reuse it for any number of substitutions.

Availability
Available in Mac OS X v10.4 and later.

458 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 72

NSPredicate

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guides Archives and Serializations Programming Guide for Cocoa
Property List Programming Guide

Overview

The NSPropertyListSerialization class provides methods that convert property list objects to and from several
serialized formats. Property list objects include NSData, NSString, NSArray, NSDictionary, NSDate, and number
objects.

Tasks

Constructors

NSPropertyListSerialization (page 460)
Creates a new NSPropertyListSerialization object.

Serializing Property Lists

XMLDataFromPropertyList (page 462)
Creates a data object, serializes aPropertyList into it in XML format, and returns the data object.

dataFromPropertyList (page 460)
Creates a data object, serializes aPropertyList into it, and returns the data object.

stringFromPropertyList (page 462)
Creates an old-style string representation (non-XML) of aPropertyList.

Testing Property Lists

propertyListIsValidForFormat (page 462)
Returns true if plist is a valid property list in format format, false otherwise.

Overview 459
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 73

NSPropertyListSerialization

Deserializing Property Lists

propertyListFromData (page 461)
Returns a property list object corresponding to the representation in serialization or null if
serialization does not represent a property list.

propertyListFromString (page 461)
Returns a property list object corresponding to the representation in serialization or null if
serialization does not represent a property list.

propertyListFromXMLData (page 462)
Returns a property list object corresponding to the XML representation in serialization or null
if serialization does not represent a property list.

Constructors

NSPropertyListSerialization
Creates a new NSPropertyListSerialization object.

public NSPropertyListSerialization()

Discussion
All the NSPropertyListSerialization methods are static, so there is no need to create instances of
NSPropertyListSerialization.

Availability
Available in Mac OS X v10.2 and later.

Static Methods

dataFromPropertyList
Creates a data object, serializes aPropertyList into it, and returns the data object.

public static NSData dataFromPropertyList(Object aPropertyList)

Discussion
aPropertyList must be a kind of NSData, string, NSArray, or NSDictionary. Container objects must also
contain only these kinds of objects.

Availability
Deprecated in Mac OS X v10.2 and later.

See Also
propertyListFromData (page 461)

Returns an NSData object in the property list format specified by plist or null if plist does not represent
a valid property list.

460 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 73

NSPropertyListSerialization

public static NSData dataFromPropertyList(Object plist, int format, String[]
errorString)

Discussion
plist must be a kind of NSData, string, number, NSDate, NSArray, or NSDictionary. Container objects must
also contain only these kinds of objects. On return, if the conversion is successful, errorString is null. If
the conversion fails, errorString points to a string describing the nature of the error. Possible values for
format are described in “Constants” (page 463).

Availability
Available in Mac OS X v10.2 and later.

See Also
propertyListFromData (page 461)

propertyListFromData
Returns a property list object corresponding to the representation in serialization or null if
serialization does not represent a property list.

public static Object propertyListFromData(NSData serialization)

Discussion
If the property list object is a dictionary or an array, the recomposed object is made immutable.

Availability
Deprecated in Mac OS X v10.2 and later.

See Also
dataFromPropertyList (page 460)

Returns a property list object corresponding to the representation in data, or null if data does not represent
a valid property list in a supported format.

public static Object propertyListFromData(NSData data, int opt, int[] format,
String[] errorString)

Discussion
The mutability option opt determines whether the property list’s containers and/or leaves are mutable. If
the property list is valid, the format is returned in the first element of the array format. Possible values for
opt and format are described in “Constants” (page 463).

Availability
Available in Mac OS X v10.2 and later.

See Also
dataFromPropertyList (page 460)

propertyListFromString
Returns a property list object corresponding to the representation in serialization or null if
serialization does not represent a property list.

Static Methods 461
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 73

NSPropertyListSerialization

public static Object propertyListFromString(String serialization)

Discussion
If the property list object is a dictionary or an array, the recomposed object is made immutable. This method
can parse both XML and non-XML style property list strings.

See Also
stringFromPropertyList (page 462)

propertyListFromXMLData
Returns a property list object corresponding to the XML representation in serialization or null if
serialization does not represent a property list.

public static Object propertyListFromXMLData(NSData serialization)

Discussion
If the property list object is a dictionary or an array, the recomposed object is made immutable.

Availability
Deprecated in Mac OS X v10.2 and later.

See Also
XMLDataFromPropertyList (page 462)

propertyListIsValidForFormat
Returns true if plist is a valid property list in format format, false otherwise.

public static boolean propertyListIsValidForFormat(Object plist, int format)

Discussion
Possible values for format are listed in “Constants” (page 463).

Availability
Available in Mac OS X v10.2 and later.

stringFromPropertyList
Creates an old-style string representation (non-XML) of aPropertyList.

public static String stringFromPropertyList(Object aPropertyList)

Discussion
aPropertyList must be a kind of NSData, NSString, NSDate, number class, NSArray, or NSDictionary.
Container objects must also contain only these same kinds of objects. When read back by
propertyListFromString (page 461), NSDate and numerical values are interpreted as strings.

XMLDataFromPropertyList
Creates a data object, serializes aPropertyList into it in XML format, and returns the data object.

462 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 73

NSPropertyListSerialization

public static NSData XMLDataFromPropertyList(Object aPropertyList)

Discussion
aPropertyList must be a kind of NSData, string, NSDate, number, NSArray, or NSDictionary. Container
objects must also contain only these same kinds of objects.

Note that XML can handle more data types than the binary serialization created by
dataFromPropertyList (page 460).

Availability
Deprecated in Mac OS X v10.2 and later.

See Also
propertyListFromXMLData (page 462)

Constants

The following table describes the constants used to specify mutability options in property lists:

DescriptionConstant

Causes the returned property list to contain immutable
objects.

PropertyListImmutable

Causes the returned property list to have mutable containers
but immutable leaves.

PropertyListMutableContainers

Causes the returned property list to have mutable containers
and leaves.

PropertyListMutable-
ContainersAndLeaves

The following table describes the constants used to specify property list serialization format:

DescriptionConstant

Specifies the old-style ASCII property list format inherited from the
OpenStep APIs.

PropertyListOpenStepFormat

Specifies the XML property list format.PropertyListXMLFormat

Specifies the binary property list format.PropertyListBinaryFormat

Constants 463
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 73

NSPropertyListSerialization

464 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 73

NSPropertyListSerialization

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

Specifies a simple attribute value, a one-to-one relationship, or all elements of a to-many relationship. You
don’t normally subclass NSPropertySpecifier.

Tasks

Constructors

NSPropertySpecifier (page 465)
Returns an NSPropertySpecifier with no data.

Constructors

NSPropertySpecifier
Returns an NSPropertySpecifier with no data.

public NSPropertySpecifier()

Discussion
Do not use this constructor.

Returns an NSPropertySpecifier initialized with container specifier specifier, key key, and the class
description of the object specifier classDescription, derived from the value of the specifier’s key.

public NSPropertySpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key)

Discussion
The receiver’s child specifier reference is set to null.

Overview 465
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 74

NSPropertySpecifier

Returns an NSPropertySpecifier initialized with container specifier specifier and key key.

public NSPropertySpecifier(NSScriptObjectSpecifier specifier, String key)

Discussion
The class description of the container is set automatically.

466 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 74

NSPropertySpecifier

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An instance of NSQuitCommand quits the specified application. The command may optionally specify how
to handle modified documents (automatically save changes, don’t save them, or ask the user).

NSQuitCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSQuitCommand or call its methods.

Tasks

Constructors

NSQuitCommand (page 467)
Returns an NSQuitCommand with no data.

Accessing Options

saveOptions (page 468)
Returns a constant indicating how to deal with closing any modified documents.

Constructors

NSQuitCommand
Returns an NSQuitCommand with no data.

public NSQuitCommand()

Discussion
Do not use this constructor.

Overview 467
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 75

NSQuitCommand

Initializes an instance of NSQuitCommand with the command description supplied by commandDescription.

public NSQuitCommand(NSScriptCommandDescription commandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

saveOptions
Returns a constant indicating how to deal with closing any modified documents.

public int saveOptions()

Discussion
The default value returned is SaveOptionsAsk. See “Constants” (page 112) in NSCloseCommand for a list of
possible return values.

468 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 75

NSQuitCommand

Inherits from NSScriptObjectSpecifier

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

Specifies an arbitrary object in a collection or, if not a one-to-many relationship, the sole object.

Tasks

Constructors

NSRandomSpecifier (page 469)
Returns an NSRandomSpecifier with no data.

Constructors

NSRandomSpecifier
Returns an NSRandomSpecifier with no data.

public NSRandomSpecifier()

Discussion
Do not use this constructor.

Returns an NSRandomSpecifier initialized with container specifier specifier, key key, and the class
description of the object specifier classDescription, derived from the value of the specifier’s key.

public NSRandomSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key)

Discussion
The receiver’s child specifier reference is set to null.

Returns an NSRandomSpecifier initialized with container specifier specifier and key key.

Overview 469
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 76

NSRandomSpecifier

public NSRandomSpecifier(NSScriptObjectSpecifier specifier, String key)

Discussion
The class description of the container is set automatically.

470 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 76

NSRandomSpecifier

Inherits from Object

Implements Cloneable

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities

Overview

An NSRange represents a range, a measurement of a segment of something linear, such as a byte stream.
An NSRange has two primary values, a location and a length. The methods of NSRange give access to these
values; convert between NSRanges and their string representations; test and compare ranges; and create
ranges based on operations involving the union, intersection, and subtraction of two ranges.

Tasks

Constructors

NSRange (page 472)

Accessing Range Elements

length (page 474)
Returns the length of the receiver from its starting location.

location (page 475)
Returns the starting location of the receiver.

locationInRange (page 475)
Returns whether the location aLocation comes after or matches the starting location and comes
before the ending location of the receiver.

Manipulating Ranges

clone (page 473)
Creates and returns a copy of the receiver.

Overview 471
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 77

NSRange

rangeByIntersectingRange (page 475)
Returns an NSRange that is the intersection of aRange and the receiver.

rangeByUnioningRange (page 476)
Returns an NSRange that is the union of aRange and the receiver (a range constructed from the lowest
starting location and the highest ending location of both NSRanges).

subtractRange (page 476)
Returns the ranges resulting from the subtraction of otherRange from the receiver by modifying
the mutable ranges resultRange1 and resultRange2 (provided by the caller).

Testing Ranges

equals (page 473)
Returns whether otherObject is an NSRange and is equal in location and length to the receiver.

hashCode (page 473)
Provides an appropriate hash code useful for storing the receiver in a hash-based data structure.

intersectsRange (page 474)
Returns whether the range aRange intersects the receiver.

isEmpty (page 474)
Returns whether the length of the receiver is 0.

isEqualToRange (page 474)
Returns whether the range aRange is equal in both location and length to the receiver.

isSubrangeOfRange (page 474)
Returns whether the receiver’s endpoints match or fall within those of range aRange.

maxRange (page 475)
Returns the extent of the receiver (its starting location plus its length).

Converting Between Strings and NSRanges

fromString (page 473)

toString (page 476)
Returns a String representing the receiver’s starting location and length.

Constructors

NSRange
public NSRange()

Discussion
Returns an empty NSRange.

public NSRange(int location, int length)

472 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 77

NSRange

Discussion
Initializes the NSRange with the range elements of location and length; it throws an
IllegalArgumentException if either integer is negative.

public NSRange(NSRange aRange)

Discussion
Initializes the new NSRange with the location and length values of aRange; this constructor is used in cloning
the receiver.

Static Methods

fromString
public static NSRange fromString(String rangeAsString)

Discussion
Creates an NSRange from the string rangeAsString, which must be of the form “{loc, len}” where loc is a
number representing the starting location of the range and len is the range’s length. Throws an
IllegalArgumentException if the string is improperly formatted.

See Also
toString (page 476)

Instance Methods

clone
Creates and returns a copy of the receiver.

public Object clone()

equals
Returns whether otherObject is an NSRange and is equal in location and length to the receiver.

public boolean equals(Object otherObject)

See Also
isEqualToRange (page 474)
isSubrangeOfRange (page 474)

hashCode
Provides an appropriate hash code useful for storing the receiver in a hash-based data structure.

Static Methods 473
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 77

NSRange

public int hashCode()

Discussion
This value is the sum of the receiver’s location and length.

intersectsRange
Returns whether the range aRange intersects the receiver.

public boolean intersectsRange(NSRange aRange)

See Also
rangeByIntersectingRange (page 475)

isEmpty
Returns whether the length of the receiver is 0.

public boolean isEmpty()

See Also
maxRange (page 475)

isEqualToRange
Returns whether the range aRange is equal in both location and length to the receiver.

public boolean isEqualToRange(NSRange aRange)

See Also
equals (page 473)
isSubrangeOfRange (page 474)

isSubrangeOfRange
Returns whether the receiver’s endpoints match or fall within those of range aRange.

public boolean isSubrangeOfRange(NSRange aRange)

See Also
intersectsRange (page 474)

length
Returns the length of the receiver from its starting location.

public int length()

474 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 77

NSRange

See Also
location (page 475)

location
Returns the starting location of the receiver.

public int location()

See Also
length (page 474)

locationInRange
Returns whether the location aLocation comes after or matches the starting location and comes before
the ending location of the receiver.

public boolean locationInRange(int aLocation)

See Also
intersectsRange (page 474)
location (page 475)

maxRange
Returns the extent of the receiver (its starting location plus its length).

public int maxRange()

Discussion
This number is 1 greater than the last location in the range.

See Also
isEmpty (page 474)
length (page 474)
location (page 475)

rangeByIntersectingRange
Returns an NSRange that is the intersection of aRange and the receiver.

public NSRange rangeByIntersectingRange(NSRange aRange)

Discussion
If the ranges do not intersect, returns an empty range (see isEmpty (page 474)).

See Also
rangeByUnioningRange (page 476)
subtractRange (page 476)

Instance Methods 475
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 77

NSRange

rangeByUnioningRange
Returns an NSRange that is the union of aRange and the receiver (a range constructed from the lowest
starting location and the highest ending location of both NSRanges).

public NSRange rangeByUnioningRange(NSRange aRange)

See Also
rangeByIntersectingRange (page 475)
subtractRange (page 476)

subtractRange
Returns the ranges resulting from the subtraction of otherRange from the receiver by modifying the mutable
ranges resultRange1 and resultRange2 (provided by the caller).

public void subtractRange(NSRange otherRange, NSMutableRange resultRange1,
NSMutableRange resultRange2)

Discussion
Either or both of the result ranges might be empty when this method returns.

See Also
isSubrangeOfRange (page 474)

toString
Returns a String representing the receiver’s starting location and length.

public String toString()

Discussion
The string has the form “{loc, len}”, where loc is the starting location of the range and len is its length.

See Also
fromString (page 473)

Constants

NSRange provides the following constant as a convenience; you can use it to compare values returned by
some NSRange methods:

DescriptionConstant

An NSRange set to 0 in location and lengthZeroRange

476 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 77

NSRange

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

Specifies a range (that is, an uninterrupted series) of objects in a container through two delimiting objects.
The range is represented by two object specifiers, a start specifier and an end specifier, which can be of any
specifier type (such as NSIndexSpecifier or NSWhoseSpecifier). These specifiers are evaluated in the context
of the same container object as the range specifier itself.

You don’t normally subclass NSRangeSpecifier.

Tasks

Constructors

NSRangeSpecifier (page 478)
Returns an NSRangeSpecifier with no data.

Accessing a Range Specifier

endSpecifier (page 478)
Returns the object specifier representing the last object of the range.

setEndSpecifier (page 479)
Sets the object specifier representing the last object of the range to endSpec.

setStartSpecifier (page 479)
Sets the object specifier representing the first object of the range to startSpec.

startSpecifier (page 479)
Returns the object specifier representing the first object of the range.

Overview 477
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 78

NSRangeSpecifier

Constructors

NSRangeSpecifier
Returns an NSRangeSpecifier with no data.

public NSRangeSpecifier()

Discussion
Do not use this constructor.

Returns an NSRangeSpecifier initialized with container specifier specifier, key key, and the class description
of the object specifier classDescription, derived from the value of the specifier’s key.

public NSRangeSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key)

Discussion
The receiver’s child specifier reference is set to null. You use the setStartSpecifier (page 479) and
setEndSpecifier (page 479) methods to set the start and end specifiers for the range.

Returns an NSRangeSpecifier initialized with container specifier specifier and key key.

public NSRangeSpecifier(NSScriptObjectSpecifier specifier, String key)

Discussion
The class description of the container is set automatically. You use the setStartSpecifier (page 479) and
setEndSpecifier (page 479) methods to set the start and end specifiers for the range.

Returns an NSRangeSpecifier initialized with container specifier specifier, key key, and the class description
of the object specifier classDescription, derived from the value of the specifier’s key. The start and end
specifiers are set based on the startSpec and endSpec parameters.

public NSRangeSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key, NSScriptObjectSpecifier startSpec,
NSScriptObjectSpecifier endSpec)

Discussion
The receiver’s child specifier reference is set to null.

Instance Methods

endSpecifier
Returns the object specifier representing the last object of the range.

public NSScriptObjectSpecifier endSpecifier()

478 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 78

NSRangeSpecifier

setEndSpecifier
Sets the object specifier representing the last object of the range to endSpec.

public void setEndSpecifier(NSScriptObjectSpecifier endSpec)

setStartSpecifier
Sets the object specifier representing the first object of the range to startSpec.

public void setStartSpecifier(NSScriptObjectSpecifier startSpec)

startSpecifier
Returns the object specifier representing the first object of the range.

public NSScriptObjectSpecifier startSpecifier()

Instance Methods 479
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 78

NSRangeSpecifier

480 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 78

NSRangeSpecifier

Inherits from Object

Implements Cloneable

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities

Overview

An NSRect object represents a rectangle. The elemental attributes of a rectangle are its origin (its starting x
coordinate and y coordinate) and its size (width and height as measured from the origin). An NSRect with
height or width of 0 or less is considered an “empty” rectangle. The methods of NSRect give you access to
these values and to computed values, and they allow you to compare rectangles and perform various tests,
such as determining whether a point falls in a rectangle. They also convert NSRects between string objects
and AWT rectangles, and they yield new NSRects based on intersection, union, inset, offset, and other
operations.

Tasks

Constructors

NSRect (page 483)

Accessing Elemental Values

height (page 485)
Returns the height dimension of the receiver.

origin (page 487)
Returns the origin of the receiver, the point from which the dimensions of the receiver are measured.

size (page 489)
Returns the size of the receiver.

width (page 490)
Returns the width of the receiver.

Overview 481
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

x (page 490)
Returns the origin x coordinate of the receiver.

y (page 490)
Returns the origin y coordinate of the receiver.

Accessing Computed Values

maxX (page 486)
Returns the farthest extent of the receiver along the x axis in the current coordinate system; or, to
put it another way, the x coordinate value of the receiver’s right edge.

maxY (page 487)
Returns the farthest extent of the receiver along the y axis in the current coordinate system; or, to
put it another way, the y coordinate value of the receiver’s top edge (or bottom, if the coordinate
system is flipped).

midX (page 487)
Returns the extent of the receiver along the x axis halfway between its origin x coordinate and the x
coordinate of its right edge.

midY (page 487)
Returns the extent of the receiver along the y axis halfway between its origin y coordinate and the y
coordinate of its upper edge (or bottom edge, if used in a flipped coordinate system).

Testing and Comparing Rectangles

containsPoint (page 484)
Returns whether the receiver contains the point aPoint.

equals (page 485)
Returns whether otherObject is an NSRect and is equal in origin and size to the receiver.

hashCode (page 485)
Provides an appropriate hash code useful for storing the receiver in any hash-based data structure.

intersectsRect (page 485)
Returns whether the receiver intersects rectangle aRect.

isEmpty (page 486)
Returns whether either dimension (width or height) of the receiver is 0.

isEqualToRect (page 486)
Returns whether the NSRect aRect is equal in origin and size to the receiver.

isSubrectOfRect (page 486)
Returns whether the receiver is entirely enclosed by rectangle aRect.

Deriving Rectangles

rectByInsettingRect (page 488)
Returns an NSRect that is the result of insetting the receiver horizInset units horizontally and
vertInset units vertically from all edges.

482 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

rectByIntersectingRect (page 488)
Returns an NSRect that is the result of the intersection of the receiver with otherRect.

rectByMakingIntegral (page 488)
Returns an NSRect that is the result of rounding down the receiver’s x coordinate and y coordinate
to the nearest integer and rounding up the receiver’s height and width to the nearest integer.

rectByOffsettingRect (page 488)
Returns an NSRect that is the result of offsetting the receiver horizInset units horizontally and
vertInset units vertically.

rectByUnioningRect (page 488)
Returns an NSRect that is the result of the union of the receiver with otherRect, which is a rectangle
that contains the two NSRects combined.

sliceRect (page 489)
Makes two smaller rectangles from the receiver and returns them by modifying two mutable rectangles
passed in as arguments.

Transforming NSRects

fromString (page 484)

toString (page 490)
Returns the receiver as converted to a string object.

toAWTRectangle (page 490)
Returns the receiver as a AWT Rectangle object.

Copying

clone (page 484)
Creates and returns a copy of the receiver.

Constructors

NSRect
public NSRect()

Discussion
Initializes an empty rectangle (that is, a rectangle with at least one dimension of 0).

public NSRect(float x, float y, float w, float h)

Discussion
Initializes an NSRect from a starting x coordinate (x), a starting y coordinate (y), a width value (w), and a height
value (h). If either width or height is 0, initializes an empty rectangle. Throws an IllegalArgumentException
if any argument is not a valid float value (NaN).

Constructors 483
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

public NSRect(NSPoint aPoint, NSSize aSize)

Discussion
Initializes an NSRect from an NSPoint object, aPoint, and an NSSize object, aSize.

public NSRect(NSPoint pointOne, NSPoint pointTwo)

Discussion
Initializes an NSRect from two NSPoint objects, pointOne and pointTwo, creating the smallest rectangle
whose opposite corners touch the two points.

public NSRect(java.awt.Rectangle aRectangle)

Discussion
Initializes an NSRect from an AWT Rectangle object, aRectangle.

public NSRect(NSRect aRectangle)

Discussion
Initializes an NSRect from another NSRect object, aRectangle; this constructor is used in cloning the receiver.

Static Methods

fromString
public static NSRect fromString(String rectAsString)

Discussion
Creates an NSRect from the string rectAsString, which must be of the form “{{x, y}, {w, h}}”, where x is a
float representation of the origin x coordinate, y is a float representation of the origin y coordinate, w is a
float representation of the width, and h is a float representation of the height. Throws an
IllegalArgumentException if the string is improperly formatted.

See Also
toString (page 490)

Instance Methods

clone
Creates and returns a copy of the receiver.

public Object clone()

containsPoint
Returns whether the receiver contains the point aPoint.

484 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

public boolean containsPoint(NSPoint aPoint, boolean isFlipped)

Discussion
If isFlipped is true, the measurements occur in a flipped coordinate system (where the y axis extends
down instead of up). If aPoint occurs inside or coincides with the receiver’s x axis or y axis and falls within
the opposite edges of the rectangle, it is considered to be contained by the rectangle.

See Also
intersectsRect (page 485)
isSubrectOfRect (page 486)

equals
Returns whether otherObject is an NSRect and is equal in origin and size to the receiver.

public boolean equals(Object otherObject)

See Also
isEqualToRect (page 486)

hashCode
Provides an appropriate hash code useful for storing the receiver in any hash-based data structure.

public int hashCode()

Discussion
This value is the sum of the receiver’s origin x coordinate, its origin y coordinate, half of its width, and half
of its height, rounded to the nearest integer.

height
Returns the height dimension of the receiver.

public float height()

See Also
maxY (page 487)
midY (page 487)
size (page 489)
width (page 490)

intersectsRect
Returns whether the receiver intersects rectangle aRect.

public boolean intersectsRect(NSRect aRect)

Instance Methods 485
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

Discussion
Alignment of outer edges is not considered an intersection. Returns false if either NSRect is an empty
rectangle.

See Also
containsPoint (page 484)
isSubrectOfRect (page 486)
rectByIntersectingRect (page 488)

isEmpty
Returns whether either dimension (width or height) of the receiver is 0.

public boolean isEmpty()

isEqualToRect
Returns whether the NSRect aRect is equal in origin and size to the receiver.

public boolean isEqualToRect(NSRect aRect)

See Also
equals (page 485)

isSubrectOfRect
Returns whether the receiver is entirely enclosed by rectangle aRect.

public boolean isSubrectOfRect(NSRect aRect)

Discussion
Coincidence of x axes and y axes or the edges opposite the x axis or y axis are acceptable. Returns false if
either NSRect is an empty rectangle. By reversing receiver and argument, you can use this method as a virtual
“containsRect”.

See Also
containsPoint (page 484)
intersectsRect (page 485)

maxX
Returns the farthest extent of the receiver along the x axis in the current coordinate system; or, to put it
another way, the x coordinate value of the receiver’s right edge.

public float maxX()

Discussion
This value is the sum of the receiver’s origin x coordinate and its width.

486 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

See Also
maxY (page 487)

maxY
Returns the farthest extent of the receiver along the y axis in the current coordinate system; or, to put it
another way, the y coordinate value of the receiver’s top edge (or bottom, if the coordinate system is flipped).

public float maxY()

Discussion
This value is the sum of the receiver’s origin y coordinate and its height.

See Also
maxX (page 486)

midX
Returns the extent of the receiver along the x axis halfway between its origin x coordinate and the x coordinate
of its right edge.

public float midX()

See Also
midY (page 487)

midY
Returns the extent of the receiver along the y axis halfway between its origin y coordinate and the y coordinate
of its upper edge (or bottom edge, if used in a flipped coordinate system).

public float midY()

See Also
midX (page 487)

origin
Returns the origin of the receiver, the point from which the dimensions of the receiver are measured.

public NSPoint origin()

See Also
x (page 490)
y (page 490)

Instance Methods 487
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

rectByInsettingRect
Returns an NSRect that is the result of insetting the receiver horizInset units horizontally and vertInset
units vertically from all edges.

public NSRect rectByInsettingRect(float horizInset, float vertInset)

See Also
rectByOffsettingRect (page 488)

rectByIntersectingRect
Returns an NSRect that is the result of the intersection of the receiver with otherRect.

public NSRect rectByIntersectingRect(NSRect otherRect)

Discussion
Returns ZeroRect if either receiver or otherRect is an empty rectangle or the two NSRects do not intersect
at all.

See Also
rectByUnioningRect (page 488)

rectByMakingIntegral
Returns an NSRect that is the result of rounding down the receiver’s x coordinate and y coordinate to the
nearest integer and rounding up the receiver’s height and width to the nearest integer.

public NSRect rectByMakingIntegral()

Discussion
The resulting rectangle thus completely encloses the original. Returns ZeroRect if the receiver is an empty
rectangle.

See Also
toAWTRectangle (page 490)

rectByOffsettingRect
Returns an NSRect that is the result of offsetting the receiver horizInset units horizontally and vertInset
units vertically.

public NSRect rectByOffsettingRect(float horizOffset, float vertOffset)

Discussion
This method affects the origin only, while rectByInsettingRect (page 488) affects all edges.

rectByUnioningRect
Returns an NSRect that is the result of the union of the receiver with otherRect, which is a rectangle that
contains the two NSRects combined.

488 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

public NSRect rectByUnioningRect(NSRect otherRect)

Discussion
Returns ZeroRect if both receiver and otherRect are empty rectangles. If one of the two rectangles, the
receiver and otherRect, is an empty rectangle, a copy of the other rectangle is returned.

See Also
rectByIntersectingRect (page 488)

size
Returns the size of the receiver.

public NSSize size()

Discussion
The NSSize object encapsulates the width and height of the receiver.

See Also
height (page 485)
origin (page 487)
width (page 490)

sliceRect
Makes two smaller rectangles from the receiver and returns them by modifying two mutable rectangles
passed in as arguments.

public void sliceRect(float thickness, int edge, NSMutableRect rect1, NSMutableRect
rect2)

Discussion
One of these NSMutableRects has the width or height thickness as determined by the constant edge. One
modified rectangle is returned in rect1 and the other in rect2; which rectangle goes where is also determined
by edge. Here is a summary of how the edge constant and the other arguments interact:

DescriptionConstant

The rectangle is sliced vertically, and the rectangle with the width of thickness is placed in
rect1.

MinXEdge

The rectangle is sliced horizontally, and the rectangle with the height of thickness is placed
in rect2.

MaxXEdge

The rectangle is sliced horizontally, and the rectangle with the height of thickness is placed
in rect1.

MinYEdge

The rectangle is sliced vertically, and the rectangle with the width of thickness is placed in
rect2.

MaxYEdge

If thickness is greater than the width or height of the receiver (as determined by edge), it is made the same
width or height as the receiver. This method does not affect the receiver.

Instance Methods 489
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

toAWTRectangle
Returns the receiver as a AWT Rectangle object.

public java.awt.Rectangle toAWTRectangle()

Discussion
This method calls rectByMakingIntegral (page 488) to round the receiver’s float values to appropriate
integers.

See Also
toString (page 490)

toString
Returns the receiver as converted to a string object.

public String toString()

Discussion
The string has the form of “{{x, y}, {w, h}}”, where x is the origin x coordinate, y is the origin y coordinate, w is
the width, and h is the height.

See Also
fromString (page 484)

width
Returns the width of the receiver.

public float width()

See Also
height (page 485)
size (page 489)

x
Returns the origin x coordinate of the receiver.

public float x()

See Also
origin (page 487)
y (page 490)

y
Returns the origin y coordinate of the receiver.

public float y()

490 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

See Also
origin (page 487)
x (page 490)

Constants

NSRect provides the following constant as a convenience; you can use it to compare values returned by many
NSRect methods:

DescriptionConstant

An NSRect set to 0 in width and height.ZeroRect

The following constants can be used to specify window edges:

DescriptionConstant

The left edge of a window.MinXEdge

The bottom edge of a window.MinYEdge

The right edge of a window.MaxXEdge

The top edge of a window.MaxYEdge

Constants 491
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

492 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 79

NSRect

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

Specifies an object in a collection by its position relative to another object. You don’t normally subclass
NSRelativeSpecifier.

Tasks

Constructors

NSRelativeSpecifier (page 494)
Returns an NSRelativeSpecifier with no data.

Accessing a Relative Specifier

baseSpecifier (page 494)
Returns a specifier for the base object—the object to which the relative specifier is related.

relativePosition (page 495)
Returns the relative position encapsulated by the receiver.

setBaseSpecifier (page 495)
Sets the specifier for the base object, baseSpecifier—the object to which the relative specifier is
related.

setRelativePosition (page 495)
Sets the relative position encapsulated by the receiver.

Overview 493
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 80

NSRelativeSpecifier

Constructors

NSRelativeSpecifier
Returns an NSRelativeSpecifier with no data.

public NSRelativeSpecifier()

Discussion
Do not use this constructor.

Returns an NSRelativeSpecifier initialized with container specifier specifier, key key, and the class description
of the object specifier classDescription, derived from the value of the specifier’s key.

public NSRelativeSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key)

Discussion
The receiver’s child specifier reference is set to null. You use the setBaseSpecifier (page 495) method
to set the base specifier and the setRelativePosition (page 495) method to set the relative position
encapsulated by the object.

Returns an NSRelativeSpecifier initialized with container specifier specifier and key key.

public NSRelativeSpecifier(NSScriptObjectSpecifier specifier, String key)

Discussion
The class description of the container is set automatically. You use the setBaseSpecifier (page 495) method
to set the base specifier and the setRelativePosition (page 495) method to set the relative position
encapsulated by the object.

Returns an NSRelativeSpecifier initialized with container specifier specifier, key key, and the class description
of the object specifier classDescription, derived from the value of the specifier’s key. The relative position
is set according to the relPos parameter and the base specifier according to the baseSpecifier parameter.

public NSRelativeSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key, int relPos,
NSScriptObjectSpecifier baseSpecifier)

Discussion
The receiver’s child specifier reference is set to null.

Instance Methods

baseSpecifier
Returns a specifier for the base object—the object to which the relative specifier is related.

public NSScriptObjectSpecifier baseSpecifier()

494 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 80

NSRelativeSpecifier

relativePosition
Returns the relative position encapsulated by the receiver.

public int relativePosition()

Discussion
See “Constants” (page 495) for a list of possible return values.

setBaseSpecifier
Sets the specifier for the base object, baseSpecifier—the object to which the relative specifier is related.

public void setBaseSpecifier(NSScriptObjectSpecifier baseSpecifier)

setRelativePosition
Sets the relative position encapsulated by the receiver.

public void setRelativePosition(int relPos)

Discussion
See “Constants” (page 495) for a list of possible values for relPos.

Constants

The following constants are defined by NSRelativeSpecifier and are used by relativePosition (page 495)
and setRelativePosition (page 495):

DescriptionConstant

Specifies a position after another object.RelativeAfter

Specifies a position before another object.RelativeBefore

Constants 495
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 80

NSRelativeSpecifier

496 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 80

NSRelativeSpecifier

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Run Loops

Overview

The NSRunLoop class declares the programmatic interface to objects that manage input sources. An
NSRunLoop processes input for sources such as mouse and keyboard events from the window system,
NSPorts, NSTimers, and NSConnections.

In general, your application does not need to either create or explicitly manage NSRunLoop objects. Each
NSThread, including the application’s main thread, has an NSRunLoop object automatically created for it. If
you need to access the current thread’s default run loop, you do so with the class method
currentRunLoop (page 499).

Warning: The NSRunLoop class is generally not considered to be thread-safe and its methods should
only be called within the context of the current thread. You should never try to call the methods of an
NSRunLoop object running in a different thread, as doing so might cause unexpected results.

Tasks

Constructors

NSRunLoop (page 499)
Creates and returns a new NSRunLoop instance.

Accessing the Current Run Loop

allModes (page 500)
Returns an array of strings of all the modes defined in the current run loop.

currentRunLoop (page 499)
Returns the NSRunLoop for the current thread.

currentMode (page 501)
Returns the current input mode.

Overview 497
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 81

NSRunLoop

limitDateForMode (page 501)
Performs one pass through the run loop in mode mode and returns the date at which the next timer
is scheduled to fire.

Managing Timers

addTimerForMode (page 500)
Registers the timer aTimer with input mode mode.

containsTimerForMode (page 500)
Returns true if aTimer is a member of input mode mode.

removeTimerForMode (page 502)
Removes aTimer from input mode mode.

timersForMode (page 503)
Returns an empty array.

Managing Ports

addPortForMode (page 499)
Adds aPort to be monitored by the receiver in the input mode mode.

containsPortForMode (page 500)
Returns true if aPort is a member of input mode mode.

portsForMode (page 502)
Returns an empty array.

removePortForMode (page 502)
Removes aPort from the list of ports being monitored by the receiver in input mode mode.

Running a Loop

run (page 502)
Runs the loop in DefaultRunLoopMode by repeatedly invoking runModeBeforeDate (page 502)
until all input sources have been removed.

runModeBeforeDate (page 502)
Runs the loop once, blocking for input in mode mode until limitDate.

runModeUntilDate (page 503)
Runs the loop in mode modeby repeatedly invoking runModeBeforeDate (page 502) until limitDate
or until all input sources have been removed.

acceptInputForMode (page 499)
Runs the loop once, blocking for input in mode mode until limitDate.

Sending Messages

performSelectorWithOrder (page 501)
Schedules the sending of an aSelector message.

498 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 81

NSRunLoop

cancelPerformSelectorWithOrder (page 500)
Cancels the sending of a message previously scheduled using performSelectorWithOrder (page
501).

Constructors

NSRunLoop
Creates and returns a new NSRunLoop instance.

public NSRunLoop()

Discussion
Only one run loop is allowed per thread, so if a run loop already exists in the current thread, this method
returns null. Use currentRunLoop (page 499) instead.

Static Methods

currentRunLoop
Returns the NSRunLoop for the current thread.

public static NSRunLoop currentRunLoop()

Discussion
If a run loop does not exist in the thread, one is created and returned.

See Also
currentMode (page 501)

Instance Methods

acceptInputForMode
Runs the loop once, blocking for input in mode mode until limitDate.

public void acceptInputForMode(String mode, NSDate limitDate)

See Also
runModeBeforeDate (page 502)

addPortForMode
Adds aPort to be monitored by the receiver in the input mode mode.

Constructors 499
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 81

NSRunLoop

public void addPortForMode(NSPort aPort, String mode)

Discussion
The receiver maintains a count of the number of ports added, and the same number must be removed.

See Also
removePortForMode (page 502)

addTimerForMode
Registers the timer aTimer with input mode mode.

public void addTimerForMode(NSTimer aTimer, String mode)

Discussion
The run loop causes the timer to fire on or after its scheduled fire date. Timers have a message associated
with them. When a timer fires, it sends its message to the appropriate object. To remove a timer from a mode,
send the invalidate (page 612) message to the timer.

allModes
Returns an array of strings of all the modes defined in the current run loop.

public NSArray allModes()

cancelPerformSelectorWithOrder
Cancels the sending of a message previously scheduled using performSelectorWithOrder (page 501).

public void cancelPerformSelectorWithOrder(NSSelector aSelector, Object target,
Object anArgument)

Discussion
The aSelector message with argument anArgument will not be sent to target.

containsPortForMode
Returns true if aPort is a member of input mode mode.

public boolean containsPortForMode(NSPort aPort, String mode)

Discussion
Returns false otherwise.

containsTimerForMode
Returns true if aTimer is a member of input mode mode.

public boolean containsTimerForMode(NSTimer aTimer, String mode)

500 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 81

NSRunLoop

Discussion
Returns false otherwise.

currentMode
Returns the current input mode.

public String currentMode()

Discussion
The current mode is set by the methods that run the run loop, such as acceptInputForMode (page 499)
and runModeBeforeDate (page 502).

The currentMode method returns the current input mode ONLY while the receiver is running. Otherwise,
currentMode returns null.

See Also
currentRunLoop (page 499)
limitDateForMode (page 501)
run (page 502)
runModeUntilDate (page 503)

limitDateForMode
Performs one pass through the run loop in mode mode and returns the date at which the next timer is
scheduled to fire.

public NSDate limitDateForMode(String mode)

Discussion
Returns null if there are no input sources for this mode. The run loop is entered with an immediate timeout,
so the run loop does not block, waiting for input, if no input sources need processing.

performSelectorWithOrder
Schedules the sending of an aSelector message.

public void performSelectorWithOrder(NSSelector aSelector, Object target, Object
anArgument, int order, NSArray modes)

Discussion
The aSelector message is sent to target with argument anArgument at the start of the next run loop
iteration in any of the input modes specified in modes. order assigns a priority to the messages. If multiple
messages are scheduled to be sent, the messages with a lower order value are sent before messages with a
higher order value.

This method returns before the aSelector message is sent. The aSelector method should not have a
significant return value and should take a single argument of type Object.

Use this method if you want multiple messages to be sent after the current event has been processed and
you want to make sure these messages are sent in a certain order.

Instance Methods 501
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 81

NSRunLoop

See Also
cancelPerformSelectorWithOrder (page 500)

portsForMode
Returns an empty array.

public NSArray portsForMode(String aString)

removePortForMode
Removes aPort from the list of ports being monitored by the receiver in input mode mode.

public void removePortForMode(NSPort aPort, String mode)

Discussion
The receiver maintains a count of the ports added, and the same number of ports must be removed. Ports
are automatically removed from input modes if they are detected to be invalid.

See Also
addPortForMode (page 499)

removeTimerForMode
Removes aTimer from input mode mode.

public void removeTimerForMode(NSTimer aTimer, String mode)

See Also
addTimerForMode (page 500)

run
Runs the loop in DefaultRunLoopMode by repeatedly invoking runModeBeforeDate (page 502) until all
input sources have been removed.

public void run()

Discussion
If there are no input sources in the run loop, it exits immediately.

See Also
runModeUntilDate (page 503)

runModeBeforeDate
Runs the loop once, blocking for input in mode mode until limitDate.

public boolean runModeBeforeDate(String mode, NSDate limitDate)

502 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 81

NSRunLoop

Discussion
The method returns after either the first input is processed or limitDate is reached. Returns false without
starting the run loop if there are no input sources in mode; otherwise returns true.

See Also
run (page 502)
runModeUntilDate (page 503)

runModeUntilDate
Runs the loop in mode mode by repeatedly invoking runModeBeforeDate (page 502) until limitDate or
until all input sources have been removed.

public boolean runModeUntilDate(String mode, NSDate limitDate)

Discussion
If there are no input sources in the run loop, it exits immediately, returning false.

See Also
run (page 502)

timersForMode
Returns an empty array.

public NSArray timersForMode(String mode)

Constants

Cocoa defines the following run loop modes:

DescriptionInput mode

Use this mode to deal with input sources other than
NSConnections. This mode is the most commonly used run-loop
mode.

DefaultRunLoopMode

Use this mode when waiting for input from a modal panel, such
as NSSavePanel or NSOpenPanel.

NSApplication.Modal-
PanelRunLoopMode

Use this mode for event-tracking loops.NSApplication.Event-
TrackingRunLoopMode

Constants 503
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 81

NSRunLoop

504 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 81

NSRunLoop

Inherits from Object

Package: com.apple.cocoa.foundation

Companion guide Code Loading Programming Topics for Cocoa

Overview

The NSRuntime class provides methods to load Objective-C dynamic libraries into Java applications. It manages
a list of directories that are searched when you attempt to load a library without providing its absolute path.

Libraries must have an initialization function named basenameInitialization where basename is the
name of the library without the standard lib and .dylib prefix and suffix. For example, when creating a
library named libMyCode.dylib, create a function named MyCodeInitialization to initialize the library
when it gets loaded. The function takes no arguments.

Tasks

Working with Libraries

addPathToLibrarySearchPaths (page 505)
Adds path to the list of directories searched when loading libraries with loadLibrary (page 506).

librarySearchPaths (page 506)
Returns the list of directories searched by loadLibrary (page 506).

loadLibrary (page 506)
Loads the Objective-C dynamic library name into the application.

nextRootPath (page 506)
Returns the value of the NEXT_ROOT environment variable.

Static Methods

addPathToLibrarySearchPaths
Adds path to the list of directories searched when loading libraries with loadLibrary (page 506).

public static void addPathToLibrarySearchPaths(String path)

Overview 505
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 82

NSRuntime

Discussion
path must be an absolute path.

librarySearchPaths
Returns the list of directories searched by loadLibrary (page 506).

public static String[] librarySearchPaths()

Discussion
The initial list includes the Resources directory of the application’s bundle, /usr/local/lib/java, and
/usr/lib/java. Additional paths are added to the list using addPathToLibrarySearchPaths (page 505).

loadLibrary
Loads the Objective-C dynamic library name into the application.

public static void loadLibrary(String name)

Discussion
name can be either the absolute path to the library or just the library name. If just the library name is given,
either with or without the standard prefix lib or suffix .dylib, NSRuntime searches through the directories
returned by librarySearchPaths (page 506) until it finds the library. After the library is loaded, NSRuntime
initializes the library by calling the function basenameInitialization where basename is the library’s
name with the prefix and suffix stripped off.

If the library is not found or if the library lacks an initialization function, the application exits with an
UnsatisfiedLinkError error.

nextRootPath
Returns the value of the NEXT_ROOT environment variable.

public static String nextRootPath()

Discussion
This variable is no longer used.

506 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 82

NSRuntime

Inherits from NSClassDescription : NSObject

Package: com.apple.cocoa.foundation

Companion guides Cocoa Scripting Guide
Key-Value Coding Programming Guide

Overview

NSScriptClassDescription is one of the classes in Cocoa’s scripting support that encapsulates an application’s
scripting information.

Encapsulating Scripting Information

Scripting information includes descriptions of the attributes and relationships of the scriptable objects in an
application and of the commands the application supports. This information specifies the operations a scripter
can perform to control the application from a script. For example, a scriptable document object for a drawing
application might support attributes (one of each) such as filename and file type, and relationships
(possibly many of each) such as collections of circles, rectangles, and lines.

Scripting information is provided in one of two standard formats: the script suite format or the sdef (scripting
definition) format. For more information on these formats, see NSScriptSuiteRegistry (page 549).

Scripting information is collected automatically by an instance of NSScriptSuiteRegistry, which creates an
NSScriptClassDescription for each class description it finds and caches these objects in memory.

As with many of the classes in Cocoa’s built-in scripting support, your application may never need to directly
access NSScriptClassDescription. One case where you might need access to a class description is if you override
objectSpecifier in a scriptable class. For more information on how to do this, see the examples in the
Class Description for NSScriptObjectSpecifier (page 539).

Another case where your application may need access to class description information is if you override
indicesOfObjectsByEvaluatingWithContainer in a specifier class.

Although you can subclass NSScriptClassDescription, it is unlikely that you would need to.

Specifying Subcontainers Implicitly

Cocoa Scripting provides support for implicitly specified subcontainers. Without this feature, an AppleScript
writer would have to write statements like the following

Overview 507
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 83

NSScriptClassDescription

fourth word of text of front document

to refer to that specific word in, for example, a TextEdit document. Developers of scripter-friendly applications
will want to save scripters the trouble of writing full references to objects in situations where part of the
reference can be safely assumed. To continue the example, the reference

fourth word of front document

could be a perfectly acceptable reference to the same word in a TextEdit document, since text is the obvious
container of words in a document. That is, it's appropriate to allow of text to be implicitly specified by
context, instead of explicitly specified in the script.

To support implicitly specified subcontainers, a new DefaultSubcontainerAttribute entry is now allowed
in class dictionaries within .scriptSuite property list files. The value of the entry must be the key of one
of the entries in the Attributes or ToOneRelationships dictionary of the class. For example, the TextEdit
application’s TextEdit.scriptSuite file includes a new entry in its document dictionary to support
implicitly specified text storage. The following is an excerpt from that file:

{
 [...]
 "Classes" = {
 [...]
 "Document" = {
 "Superclass" = "NSCoreSuite.NSDocument";
 "AppleEventCode" = "docu";
 "DefaultSubcontainerAttribute" = "textStorage";
 "ToOneRelationships" = {
 "textStorage" = {
 "Type" = "NSTextStorage";
 "AppleEventCode" = "ctxt";
 };
 };
 };
 };
}

If an attribute or to-one relation is declared to be the default subcontainer for a container class, an appropriate
NSPropertySpecifier will be inserted into the object specifier containment chain when a reference form using
that container class would otherwise be invalid.

Tasks

Constructors

NSScriptClassDescription (page 510)
Returns an NSScriptClassDescription with no data.

Getting an NSScriptClassDescription

classDescriptionForKey (page 511)
Returns the NSScriptClassDescription for the type of the attribute or relationship identified by key.

508 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 83

NSScriptClassDescription

superclassDescription (page 513)
Returns the NSScriptClassDescription object for the superclass of the receiver’s class or null if the
class has no superclass.

Getting Basic Information

className (page 511)
Returns the class name associated with the receiver.

defaultSubcontainerAttributeKey (page 511)
Returns the value of the DefaultSubcontainerAttribute entry of the class dictionary from which the
NSScriptClassDescription instance was instantiated.

isLocationRequiredToCreateForKey (page 511)

suiteName (page 513)
Returns the name of the receiver’s suite.

Getting and Comparing Apple Event Codes

appleEventCode (page 510)
Returns the four-character Apple event code associated with the receiver.

appleEventCodeForKey (page 510)
Returns the four-character Apple event code associated with the attribute or relationship identified
by key in the receiver or, if no such attribute or relationship exists in the receiver, in the class
description for the receiver’s superclass.

matchesAppleEventCode (page 512)
Returns a Boolean value that indicates whether the receiver’s primary four-character Apple event
code or any of its secondary codes ("synonyms") matches code.

Getting Attribute and Relationship Information

isReadOnlyKey (page 512)
Returns a Boolean value that indicates whether the attribute, one-to-one relationship, or one-to-many
relationship identified by key is read-only.

keyWithAppleEventCode (page 512)
Returns the key of an attribute, one-to-one relationship, or one-to-many relationship identified by
the given four-character Apple event code, code.

typeForKey (page 513)
Returns the type of the attribute or relationship identified by key, such as “NSString”.

Getting Command Information

selectorForCommand (page 513)
Returns the selector associated with command description commandDesc.

Tasks 509
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 83

NSScriptClassDescription

supportsCommand (page 513)
Returns a Boolean value that indicates whether the receiver or the NSScriptClassDescription of any
superclass of the receiver’s class supports the command described by commandDesc among its
supported commands.

Constructors

NSScriptClassDescription
Returns an NSScriptClassDescription with no data.

public NSScriptClassDescription()

Discussion
Do not use this constructor.

Returns an NSScriptClassDescription object initialized for suite suiteName and class className and
encapsulating the information in descriptions.

public NSScriptClassDescription(String suiteName, String className, NSDictionary
descriptions)

Discussion
This information includes attributes, relationships of various kinds, and Apple event code synonyms. Registers
this with the application’s NSScriptSuiteRegistry by Apple event code and also registers each key from the
descriptions dictionary by Apple event code. Returns null if the event code value for the class description
itself is missing or is not a string. Also returns null if the superclass name or any of the subdictionaries of
descriptions are not of the right type.

Instance Methods

appleEventCode
Returns the four-character Apple event code associated with the receiver.

public int appleEventCode()

See Also
appleEventCodeForKey (page 510)
matchesAppleEventCode (page 512)

appleEventCodeForKey
Returns the four-character Apple event code associated with the attribute or relationship identified by key
in the receiver or, if no such attribute or relationship exists in the receiver, in the class description for the
receiver’s superclass.

510 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 83

NSScriptClassDescription

public int appleEventCodeForKey(String key)

Discussion
Returns 0 if the attribute or relationship doesn’t exist in the class description of any superclass.

See Also
appleEventCode (page 510)
matchesAppleEventCode (page 512)

classDescriptionForKey
Returns the NSScriptClassDescription for the type of the attribute or relationship identified by key.

public NSScriptClassDescription classDescriptionForKey(String key)

Discussion
Returns null if no type is assigned or if no NSScriptClassDescription object exists for the type.

See Also
superclassDescription (page 513)

className
Returns the class name associated with the receiver.

public String className()

See Also
suiteName (page 513)

defaultSubcontainerAttributeKey
Returns the value of the DefaultSubcontainerAttribute entry of the class dictionary from which the
NSScriptClassDescription instance was instantiated.

public String defaultSubcontainerAttributeKey()

Discussion
Returns null if the there was no such entry.

Availability
Available in Mac OS X v10.2 and later.

isLocationRequiredToCreateForKey
public boolean isLocationRequiredToCreateForKey(String toManyRelationshipKey)

Instance Methods 511
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 83

NSScriptClassDescription

Discussion
Returns true if creation of objects for the relationship specified by the key, in containers of the class described
by the NSScriptClassDescription, requires an explicitly specified insertion location. For example,
NSMakeCommand uses this method to determine whether or not a specific Make command must have an
at parameter.

Availability
Available in Mac OS X v10.2 and later.

isReadOnlyKey
Returns a Boolean value that indicates whether the attribute, one-to-one relationship, or one-to-many
relationship identified by key is read-only.

public boolean isReadOnlyKey(String key)

Discussion
If the receiver does not have an attribute or relationship for key, the method queries the superclass’s
NSScriptClassDescription (if such exists) for this value. Returns false if the receiver or any superclass
NSScriptClassDescription does not have a property for key.

See Also
keyWithAppleEventCode (page 512)
typeForKey (page 513)

keyWithAppleEventCode
Returns the key of an attribute, one-to-one relationship, or one-to-many relationship identified by the given
four-character Apple event code, code.

public String keyWithAppleEventCode(int code)

Discussion
If it cannot find a matching key, it checks its superclasses. Returns null if it cannot find any such attribute
or relationship.

See Also
isReadOnlyKey (page 512)
typeForKey (page 513)

matchesAppleEventCode
Returns a Boolean value that indicates whether the receiver’s primary four-character Apple event code or
any of its secondary codes ("synonyms") matches code.

public boolean matchesAppleEventCode(int code)

See Also
appleEventCode (page 510)
appleEventCodeForKey (page 510)

512 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 83

NSScriptClassDescription

selectorForCommand
Returns the selector associated with command description commandDesc.

public NSSelector selectorForCommand(NSScriptCommandDescription commandDesc)

Discussion
If the receiver does not have a selector for commandDesc, the method checks if the any of the superclass
NSScriptClassDescriptions (if such exist) has a selector. Returns NULL if no selector is found for the receiver
or any superclass NSScriptClassDescription.

See Also
supportsCommand (page 513)

suiteName
Returns the name of the receiver’s suite.

public String suiteName()

See Also
className (page 511)

superclassDescription
Returns the NSScriptClassDescription object for the superclass of the receiver’s class or null if the class has
no superclass.

public NSScriptClassDescription superclassDescription()

Discussion
The superclass’s NSScriptClassDescription can be in the same suite as the receiver or in a different suite.

See Also
classDescriptionForKey (page 511)

supportsCommand
Returns a Boolean value that indicates whether the receiver or the NSScriptClassDescription of any superclass
of the receiver’s class supports the command described by commandDesc among its supported commands.

public boolean supportsCommand(NSScriptCommandDescription commandDesc)

See Also
selectorForCommand (page 513)

typeForKey
Returns the type of the attribute or relationship identified by key, such as “NSString”.

public String typeForKey(String key)

Instance Methods 513
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 83

NSScriptClassDescription

Discussion
The attributes and relationships of the receiver are searched first, then the attributes and relationships of the
NSScriptClassDescription of any superclass (if such exist). Returns null if no type is found.

See Also
isReadOnlyKey (page 512)
keyWithAppleEventCode (page 512)

514 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 83

NSScriptClassDescription

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

Provides a mechanism for converting one kind of scripting data to another.

A shared instance of this class coerces (converts) object values to objects of another class, using information
supplied by classes that register with it. Coercions frequently are required during key-value coding.

Tasks

Constructors

NSScriptCoercionHandler (page 516)
Returns an NSScriptCoercionHandler with no data.

Accessing the Application’s Handler

sharedCoercionHandler (page 516)
Returns the shared NSScriptCoercionHandler for the application.

Working with Handlers

coerceValueToClass (page 516)
Returns an object of the class toClass representing the value specified by value.

registerCoercer (page 516)
Registers coercer to handle coercions (conversions) from class fromClass to class toClass.

Overview 515
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 84

NSScriptCoercionHandler

Constructors

NSScriptCoercionHandler
Returns an NSScriptCoercionHandler with no data.

public NSScriptCoercionHandler()

Discussion
Do not use this constructor.

Static Methods

sharedCoercionHandler
Returns the shared NSScriptCoercionHandler for the application.

public static NSScriptCoercionHandler sharedCoercionHandler()

Instance Methods

coerceValueToClass
Returns an object of the class toClass representing the value specified by value.

public Object coerceValueToClass(Object value, Class toClass)

Discussion
Returns null if an error occurs. The object is autoreleased, so you must retain it until you are finished with
it.

registerCoercer
Registers coercer to handle coercions (conversions) from class fromClass to class toClass.

public void registerCoercer(Object coercer, NSSelector selector, Class fromClass,
Class toClass)

Discussion
selector should take two arguments. The first is the value to be converted. The second is the class to
convert it to. coercer should typically be a class object and selector a factory method.

516 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 84

NSScriptCoercionHandler

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An NSScriptCommand represents a scripting statement, such as set word 5 of the front document
to word 1 of the second document, and contains the information needed to perform the operation
specified by the statement.

When an Apple event reaches a Cocoa application, Cocoa’s built-in scripting support transforms it into a
script command (that is, an NSScriptCommand) and executes the command in the context of the application.
Executing a command means either invoking the selector associated with the command on the object or
objects designated to receive the command, or having the command perform its default implementation
method (performDefaultImplementation (page 523)).

The process of transforming an Apple event into a script command depends on use of the application’s
scripting information, which is specified by either an sdef (script definition) file or one or more script suites.
In its scripting information, the application describes the scripting commands, properties, and classes it
supports. The documentation for NSScriptCommandDescription (page 529) and NSScriptSuiteRegistry (page
549) provides more information about how scripting information is used.

If the Apple event has any arguments, the script command encapsulates them. The receivers and arguments
can initially be NSScriptObjectSpecifiers, in which case they are evaluated, and the command uses the resulting
object or objects. (In the example above, word 1 of the second document evaluates to an argument,
and word 5 of the front document evaluates to the receiver of the command.)

An NSScriptCommand also ensures that the receivers, the selector, and the arguments exist and are valid
before executing the command. It consults NSScriptClassDescription (page 507) for this “sanity check.” When
it executes a command, it checks whether the receiver has designated a method to handle this command
in the SupportedCommands section of the receiver’s suite definition. If so, the command invokes this method;
otherwise, it invokes its own performDefaultImplementation (page 523) method.

As part of Cocoa’s standard scripting implementation, NSScriptCommand and its subclasses can handle the
default command set in the Core (or Standard) suite for most applications without any subclassing. The Core
suite includes the copy, count, create, delete, exists, get, move, set, open, close, and print
commands. However, if your scriptable application, framework, or bundle has special requirements for any
of these commands, you can do one of two things: supply a method to handle the command and describe
the command in the scripting information you supply for the application; or create a subclass of
NSScriptCommand or one of its subclasses and override performDefaultImplementation (page 523). For
more information on working with script commands, see “Script Commands in Cocoa Scripting”.

Overview 517
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

Your application most likely calls methods of NSScriptCommand when a command handler method needs
to extract the command arguments.

Tasks

Constructors

NSScriptCommand (page 520)
Returns an NSScriptCommand with no data.

Obtaining the Current Command

currentCommand (page 520)
If a command is being executed in the current thread by Cocoa Scripting's built-in Apple event
handling, return the command.

Obtaining the Apple Event

appleEvent (page 521)
If the receiver was constructed by Cocoa Scripting's built-in Apple event handling, returns the Apple
event descriptor from which it was constructed.

Executing Commands

executeCommand (page 522)
Executes the command if it is valid and returns the result, if any.

performDefaultImplementation (page 523)
Overridden by subclasses to provide a default implementation for the command represented by the
receiver.

Getting and Setting Receivers

evaluatedReceivers (page 522)
Returns the object or objects to which the command is to be sent (called both the “receivers” or
“targets” of script commands).

receiversSpecifier (page 523)
Returns the object specifier that, when evaluated, yields the receiver or receivers of the command.

setReceiversSpecifier (page 525)
Sets the object specifier to receiversSpec that, when evaluated, indicates the receiver or receivers
of the command.

518 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

Getting and Setting Arguments

arguments (page 521)
Returns the arguments of the command.

evaluatedArguments (page 522)
Returns a dictionary containing the arguments of the command, evaluated from object specifiers to
objects if necessary. The keys in the dictionary are the argument names.

setArguments (page 525)
Sets the arguments of the command to args.

Getting and Setting Parameters

directParameter (page 521)
Returns the object that corresponds to the keyDirectObject parameter of the Apple event from
which the receiver derives, or null if the event doesn’t contain a direct parameter.

setDirectParameter (page 525)
Sets the object to directParameter that corresponds to the keyDirectObject parameter of the
Apple event from which the receiver derives. You don’t normally override this method.

Getting Information About the Command

commandDescription (page 521)
Returns the command description for the command.

isWellFormed (page 523)
Returns a Boolean value that indicates whether the receiver is well formed according to its command
description.

Managing Script Execution Problems

scriptErrorNumber (page 524)
Returns the script error number, if any, associated with execution of the command.

setScriptErrorNumber (page 526)
Sets a script error number to errorNumber that is associated with the execution of the command.

scriptErrorString (page 524)
Returns the script error string, if any, associated with execution of the command.

setScriptErrorString (page 526)
Sets a script error string to errorString that is associated with execution of the command.

Suspending and Resuming Commands

suspendExecution (page 526)
Suspends the execution of the receiver, if the receiver is being executed in the current thread by
Cocoa Scripting's built-in Apple event handling (that is, the receiver would be returned by
NSScriptCommand.currentCommand()).

Tasks 519
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

resumeExecutionWithResult (page 524)
If a successful, unmatched, invocation of suspendExecution (page 526) has been made, resume the
execution of the command.

Constructors

NSScriptCommand
Returns an NSScriptCommand with no data.

public NSScriptCommand()

Discussion
Do not use this constructor.

Returns an NSScriptCommand object initialized with the command description commandDesc.

public NSScriptCommand(NSScriptCommandDescription commandDesc)

Discussion
To make this command object usable, you must set its receiving objects and arguments (if any) after invoking
this method.

See Also
setArguments (page 525)
setReceiversSpecifier (page 525)

Static Methods

currentCommand
If a command is being executed in the current thread by Cocoa Scripting's built-in Apple event handling,
return the command.

public static NSScriptCommand currentCommand()

Discussion
A command is being executed in the current thread by Cocoa Scripting's built-in Apple event handling if an
instance of NSScriptCommand is handling an executeCommand (page 522) message at this instant as the
result of the dispatch of an Apple event. Returns null otherwise. setScriptErrorNumber (page 526) and
setScriptErrorString (page 526) messages sent to the returned command object will affect the reply
event sent to the sender of the event from which the command was constructed, if the sender has requested
a reply.

A suspended command is not considered the current command. If a command is suspended and no other
command is being executed in the current thread, currentCommand returns null.

Availability
Available in Mac OS X v10.3 and later.

520 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

Instance Methods

appleEvent
If the receiver was constructed by Cocoa Scripting's built-in Apple event handling, returns the Apple event
descriptor from which it was constructed.

public NSAppleEventDescriptor appleEvent()

Discussion
The effects of mutating this descriptor are undefined, although it may be copied.

Availability
Available in Mac OS X v10.3 and later.

arguments
Returns the arguments of the command.

public NSDictionary arguments()

Discussion
If there are no arguments, returns an empty NSDictionary. When you subclass NSScriptCommand or one of
its subclasses, you rarely call this method because it returns the arguments directly, without evaluating any
arguments that are object specifiers. If any of a command’s arguments may be object specifiers, which is
generally the case, call evaluatedArguments (page 522) instead.

See Also
setArguments (page 525)

commandDescription
Returns the command description for the command.

public NSScriptCommandDescription commandDescription()

Discussion
Once a command is created, its command description is immutable.

See Also
isWellFormed (page 523)

directParameter
Returns the object that corresponds to the keyDirectObject parameter of the Apple event from which
the receiver derives, or null if the event doesn’t contain a direct parameter.

public Object directParameter()

Instance Methods 521
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

Discussion
For example, the direct parameter of a Print Documents Apple event contains a list of documents. This method
may return the same object or objects returned by receiversSpecifier (page 523).

See Also
setDirectParameter (page 525)

evaluatedArguments
Returns a dictionary containing the arguments of the command, evaluated from object specifiers to objects
if necessary. The keys in the dictionary are the argument names.

public NSDictionary evaluatedArguments()

Discussion
Arguments initially can be either a normal object or an object specifier such as word 5 (represented as an
instance of an NSScriptObjectSpecifier subclass). If arguments are object specifiers, the receiver evaluates
them before using the referenced objects. Returns null if the command is not well formed. Also returns
null if an object specifier does not evaluate to an object or if there is no type defined for the argument in
the command description.

See Also
isWellFormed (page 523)
arguments (page 521)
setArguments (page 525)

evaluatedReceivers
Returns the object or objects to which the command is to be sent (called both the “receivers” or “targets” of
script commands).

public Object evaluatedReceivers()

Discussion
It evaluates receivers, which are always object specifiers, to a proper object. If the command does not specify
a receiver, or if the receiver doesn’t accept the command, it returns null.

See Also
receiversSpecifier (page 523)
setReceiversSpecifier (page 525)

executeCommand
Executes the command if it is valid and returns the result, if any.

public Object executeCommand()

Discussion
Before this method executes the command, it evaluates all object specifiers involved in the command,
validates that the receivers can actually handle the command, and verifies that the types of any arguments
that were initially object specifiers are valid.

522 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

You shouldn’t have to override this method. If the command’s receivers want to handle the command
themselves, this method invokes their defined handler. Otherwise, it invokes
performDefaultImplementation (page 523).

See Also
evaluatedArguments (page 522)
evaluatedReceivers (page 522)

isWellFormed
Returns a Boolean value that indicates whether the receiver is well formed according to its command
description.

public boolean isWellFormed()

Discussion
The method ensures that there is a description of the command and that the number of arguments and the
types of nonspecifier arguments conform to the command description.

See Also
commandDescription (page 521)

performDefaultImplementation
Overridden by subclasses to provide a default implementation for the command represented by the receiver.

public Object performDefaultImplementation()

Discussion
Do not invoke this method directly. executeCommand (page 522) invokes this method when the command
being executed is not supported by the class of the objects receiving the command. The default
implementation returns null.

You need to create a subclass of NSScriptCommand only if you need to provide a default implementation
of a command.

receiversSpecifier
Returns the object specifier that, when evaluated, yields the receiver or receivers of the command.

public NSScriptObjectSpecifier receiversSpecifier()

Discussion
The receiver is typically a container. For example, if the original command is get the third paragraph
of the first document, the receiver specifier is the first document—it’s the document that knows
how to get or set words or paragraphs it contains.

See Also
evaluatedReceivers (page 522)
setReceiversSpecifier (page 525)

Instance Methods 523
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

resumeExecutionWithResult
If a successful, unmatched, invocation ofsuspendExecution (page 526) has been made, resume the execution
of the command.

public void resumeExecutionWithResult(Object result)

Discussion
Otherwise, does nothing. The value for result is dependent on the segment of command execution that
was suspended:

 ■ If suspendExecutionwas invoked from within a command handler of one of the command's receivers,
result is considered to be the return value of the handler. Unless the command has received a
setScriptErrorNumber (page 526) message with a nonzero error number, execution of the command
will continue and the command handlers of other receivers will be invoked.

 ■ IfsuspendExecutionwas invoked from within an override ofperformDefaultImplementation (page
523) the result is treated as if it were the return value of the invocation of
performDefaultImplementation.

resumeExecutionWithResult may be invoked in any thread, not just the one in which the corresponding
invocation of suspendExecution (page 526) occurred.

Important: The script command handler that is being executed when suspendExecution is invoked must
return before you invoke resumeExecutionWithResult. That is, it is not valid to suspend a command’s
execution and then resume it immediately.

Availability
Available in Mac OS X v10.3 and later.

scriptErrorNumber
Returns the script error number, if any, associated with execution of the command.

public int scriptErrorNumber()

Discussion
When you subclass NSScriptCommand or one of its subclasses, you shouldn’t need to override this method.

For error conditions specific to your application you can define your own error return values. For some
common errors, you may want to return error values defined in MacErrors.h, a header in
CarbonCore.framework (a subframework of CoreServices.framework). Look for error constants that
start with “errAE”. For example, errAEEventNotHandled indicates a handler wasn’t able to handle the
Apple event.

See Also
setScriptErrorNumber (page 526)

scriptErrorString
Returns the script error string, if any, associated with execution of the command.

524 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

public String scriptErrorString()

Discussion
When you subclass NSScriptCommand or one of its subclasses, you shouldn’t need to override this method.

See Also
setScriptErrorString (page 526)

setArguments
Sets the arguments of the command to args.

public void setArguments(NSDictionary args)

Discussion
Each argument in the dictionary is identified by the same name key used for the argument in the command’s
class declaration in the script suite file.

See Also
arguments (page 521)
evaluatedArguments (page 522)

setDirectParameter
Sets the object to directParameter that corresponds to the keyDirectObject parameter of the Apple
event from which the receiver derives. You don’t normally override this method.

public void setDirectParameter(Object directParameter)

See Also
directParameter (page 521)

setReceiversSpecifier
Sets the object specifier to receiversSpec that, when evaluated, indicates the receiver or receivers of the
command.

public void setReceiversSpecifier(NSScriptObjectSpecifier receiversSpec)

Discussion
If you create a subclass of NSScriptCommand, you don’t necessarily need to override this method, though
some of Cocoa’s subclasses do. An override should perform the same function as the superclass method,
with a critical difference: it causes the container specifier part of the passed-in object specifier to become
the receiver specifier of the command, and the key part of the passed-in object specifier to become the key
specifier. In an override, for example, if receiversRef is a specifier for the third rectangle of the
first document, the receiver specifier is the first document while the key specifier is the third
rectangle.

See Also
evaluatedReceivers (page 522)
receiversSpecifier (page 523)

Instance Methods 525
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

setScriptErrorNumber
Sets a script error number to errorNumber that is associated with the execution of the command.

public void setScriptErrorNumber(int errorNumber)

Discussion
If you override performDefaultImplementation (page 523) and an error occurs, you should call this
method to supply an appropriate error number. In fact, any script handler should call this method when an
error occurs. The error number you supply is returned in the reply Apple event.

See Also
scriptErrorNumber (page 524)

setScriptErrorString
Sets a script error string to errorString that is associated with execution of the command.

public void setScriptErrorString(String errorString)

Discussion
If you override performDefaultImplementation (page 523) and an error occurs, you should call this
method to supply a string that provides a useful explanation. In fact, any script handler should call this method
when an error occurs.

See Also
scriptErrorString (page 524)

suspendExecution
Suspends the execution of the receiver, if the receiver is being executed in the current thread by Cocoa
Scripting's built-in Apple event handling (that is, the receiver would be returned by
NSScriptCommand.currentCommand()).

public void suspendExecution()

Discussion
Otherwise, does nothing. A matching invocation of resumeExecutionWithResult (page 524) must be
made.

Important: The script command handler that is being executed when this method is invoked must return
before the subsequent invocation of resumeExecutionWithResult (page 524). That is, it is not valid to
suspend a command’s execution and then resume it immediately.

Another command can execute while a command is suspended.

Availability
Available in Mac OS X v10.3 and later.

526 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

Constants

NSScriptCommand uses the following error codes for general command execution problems:

DescriptionConstant

No error.NoScriptError

The object or objects specified by the direct parameter to a
command could not be found.

ReceiverEvaluationScriptError

The object or objects specified by a key (for commands that
support key specifiers) could not be found.

KeySpecifierEvaluationScriptError

The object specified by an argument could not be found.ArgumentEvaluationScriptError

The receivers don’t support the command sent to them.ReceiversCantHandle-
CommandScriptError

An argument (or more than one argument) is missing.RequiredArguments-
MissingScriptError

An argument (or more than one argument) is of the wrong
type or is otherwise invalid.

ArgumentsWrongScriptError

An unidentified error occurred; indicates an error in the
scripting support of your application.

UnknownKeyScriptError

An unidentified internal error occurred; indicates an error in
the scripting support of your application.

InternalScriptError

The implementation of a scripting command signaled an error.OperationNotSupportedForKey-
ScriptError

Could not create the script command; an invalid or
unrecognized Apple event was received.

CannotCreateScriptCommandError

Constants 527
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

528 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 85

NSScriptCommand

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An instance of NSScriptCommandDescription describes a script command that a Cocoa application, framework,
or bundle supports.

For example, commands in AppleScript’s Core suite include clone, count, create, delete, exists, get,
move, set, open, close, and save. An NSScriptCommandDescription describes the name, class, argument
types, and return type of a supported command.

Scripting information is provided in one of two standard formats: the script suite format or the sdef (scripting
definition) format. For more information on these formats, see Sdef Scriptability Guide for Cocoa.

Cocoa’s scripting support automatically creates an NSScriptSuiteRegistry (page 549) when an application
needs it, and this object loads the scripting information for the application. It creates an
NSScriptCommandDescription for each command description, registers the Apple events that correspond
to each command, and caches them in memory.

The API of NSScriptCommandDescription is primarily used by Cocoa’s built-in scripting support to encapsulate
information about script command definitions. Although you can subclass NSScriptCommandDescription,
it is unlikely that you would need to.

Tasks

Constructors

NSScriptCommandDescription (page 530)
Returns an NSScriptCommandDescription with no data.

Getting Basic Information

appleEventClassCode (page 531)
Returns the four-character code for the Apple event class associated with the receiver.

Overview 529
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 86

NSScriptCommandDescription

appleEventCode (page 531)
Returns the four-character Apple event code value associated with the receiver.

commandClassName (page 532)
Returns the name of the class of the command (for example, “NSGetCommand”).

commandName (page 532)
Returns the name of the command.

suiteName (page 533)
Returns the name of the suite that defines the command described by the receiver.

Creating Commands

createCommandInstance (page 532)
Creates and returns an NSScriptCommand (page 517) object representing the command defined by
the receiver.

Getting Argument Information

appleEventCodeForArgumentWithName (page 531)
Returns the four-character Apple event code for the command argument argument.

argumentNames (page 532)
Returns the names (or keys) for all arguments of the receiver’s command.

isOptionalArgumentWithName (page 533)
Returns a Boolean value that indicates whether the command argument identified by the key argument
is an optional argument.

typeForArgumentWithName (page 533)
Returns the type of the command argument identified by the key name.

Getting Return-type Information

appleEventCodeForReturnType (page 532)
Returns the four-character Apple event code value that identifies the command’s return type.

returnType (page 533)
Returns the return type of the command (for example, “NSNumber” or “NSDictionary”).

Constructors

NSScriptCommandDescription
Returns an NSScriptCommandDescription with no data.

public NSScriptCommandDescription()

530 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 86

NSScriptCommandDescription

Discussion
Do not use this constructor.

Returns an NSScriptCommandDescription object initialized with suitesuiteName and commandcommandName
and encapsulating the information in commandDescriptions.

public NSScriptCommandDescription(String suiteName, String commandName, NSDictionary
commandDescriptions)

Discussion
Registers this with the registry (that is, the application’s single instance of NSScriptSuiteRegistry) by Apple
event code and also registers all arguments with the registry. Returns null if the event code value or class
name for the command description is missing; also returns null if the return type or argument values are
of the wrong type.

Instance Methods

appleEventClassCode
Returns the four-character code for the Apple event class associated with the receiver.

public int appleEventClassCode()

Discussion
For example, commands in AppleScript’s Core suite, such as Clone, Count, and Create, have a four-character
code of ‘core’. This code and the event ID code returned by appleEventCode (page 531) together specify
the necessary information for identifying and dispatching an Apple event.

appleEventCode
Returns the four-character Apple event code value associated with the receiver.

public int appleEventCode()

Discussion
This value is the event ID and, together with the event class code returned by appleEventClassCode (page
531), specifies the necessary information for identifying and dispatching an Apple event.

See Also
appleEventCodeForArgumentWithName (page 531)
appleEventCodeForReturnType (page 532)

appleEventCodeForArgumentWithName
Returns the four-character Apple event code for the command argument argument.

public int appleEventCodeForArgumentWithName(String argument)

See Also
argumentNames (page 532)

Instance Methods 531
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 86

NSScriptCommandDescription

appleEventCodeForReturnType
Returns the four-character Apple event code value that identifies the command’s return type.

public int appleEventCodeForReturnType()

See Also
appleEventCodeForArgumentWithName (page 531)
returnType (page 533)

argumentNames
Returns the names (or keys) for all arguments of the receiver’s command.

public NSArray argumentNames()

Discussion
If there are no arguments for the command, returns an empty array.

commandClassName
Returns the name of the class of the command (for example, “NSGetCommand”).

public String commandClassName()

Discussion
This class is always a subclass of NSScriptCommand (page 517) or NSScriptCommand itself.

See Also
commandName (page 532)

commandName
Returns the name of the command.

public String commandName()

Discussion
This is the command name as it appears in the script suite and may not be the same as it appears to the
scripter. For example, Cocoa’s core suite defines the Create command to implement what a scripter calls
make.

See Also
commandClassName (page 532)

createCommandInstance
Creates and returns an NSScriptCommand (page 517) object representing the command defined by the
receiver.

public NSScriptCommand createCommandInstance()

532 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 86

NSScriptCommandDescription

Discussion
This object is instantiated from the appropriate subclass of NSScriptCommand or from NSScriptCommand
itself.

isOptionalArgumentWithName
Returns a Boolean value that indicates whether the command argument identified by the key argument is
an optional argument.

public boolean isOptionalArgumentWithName(String argument)

Discussion
Returns false if there is no argument by that name.

See Also
argumentNames (page 532)

returnType
Returns the return type of the command (for example, “NSNumber” or “NSDictionary”).

public String returnType()

See Also
appleEventCodeForReturnType (page 532)

suiteName
Returns the name of the suite that defines the command described by the receiver.

public String suiteName()

See Also
appleEventCode (page 531)

typeForArgumentWithName
Returns the type of the command argument identified by the key name.

public String typeForArgumentWithName(String name)

Discussion
Returns null if there is no such argument.

Instance Methods 533
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 86

NSScriptCommandDescription

534 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 86

NSScriptCommandDescription

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An NSScriptExecutionContext is a shared instance (there is only one instance of the class) that represents
the context in which the current script command is executed. NSScriptExecutionContext tracks global state
relating to the command being executed, especially the top-level container object (that is, the container
implied by a specifier object that specifies no container) used in an evaluation of an NSScriptObjectSpecifier.

In most cases, the top-level container for a complete series of nested object specifiers is automatically set to
the application object (NSApplication.sharedApplication()), and you can get this object with the
topLevelObject (page 538) method. But you can also set this top-level container to something else (using
setTopLevelObject (page 538)) if the situation warrants it. There are also occasions for two special kinds
of top-level container:

 ■ An object that is being tested inside a “whose” qualifier (an instance of NSSpecifierTest). The
NSWhoseSpecifier object containing this qualifier invokes setObjectBeingTested (page 537) for each
object in the collection involved in the test. The NSSpecifierTest then invokes objectBeingTested (page
537) to get this object.

 ■ An object specifier that is being tested inside a range specifier (NSRangeSpecifier). An NSRangeSpecifier
contains a “start” and an “end” specifier to mark off the range; these specifiers are evaluated against the
top-level range container.

In object-specifier evaluation, NSScriptObjectSpecifier’s containerIsObjectBeingTested (page 544) and
containerIsRangeContainerObject (page 544) are invoked to determine whether
objectBeingTested (page 537), rangeContainerObject (page 537), or topLevelObject (page 538)
should be invoked to obtain the top-level container for the current evaluation.

It is unlikely that you will need to subclass NSScriptExecutionContext.

Overview 535
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 87

NSScriptExecutionContext

Tasks

Constructors

NSScriptExecutionContext (page 536)
Returns an NSScriptCommandExecutionContext with no data.

Getting the Current Context

sharedScriptExecutionContext (page 537)
Returns the shared NSScriptExecutionContext instance, creating it first if it doesn’t exist.

Getting and Setting the Container Object

topLevelObject (page 538)
Returns the top-level object for an object-specifier evaluation.

setTopLevelObject (page 538)
Sets the top-level object for an object-specifier evaluation.

objectBeingTested (page 537)
Returns the top-level container object currently being tested in a “whose” qualifier.

setObjectBeingTested (page 537)
Sets the top-level container object currently being tested in a “whose” qualifier to object.

rangeContainerObject (page 537)
Returns the top-level container object for an object specifier (encapsulated in an NSRangeSpecifier)
that represents the first or last element in a range of elements.

setRangeContainerObject (page 537)
Sets the top-level container object for a range-specifier evaluation to container.

Constructors

NSScriptExecutionContext
Returns an NSScriptCommandExecutionContext with no data.

public NSScriptExecutionContext()

Discussion
Do not use this constructor.

536 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 87

NSScriptExecutionContext

Static Methods

sharedScriptExecutionContext
Returns the shared NSScriptExecutionContext instance, creating it first if it doesn’t exist.

public static NSScriptExecutionContext sharedScriptExecutionContext()

Instance Methods

objectBeingTested
Returns the top-level container object currently being tested in a “whose” qualifier.

public Object objectBeingTested()

Discussion
Returns null if such an object does not exist.

See Also
setObjectBeingTested (page 537)
containerIsObjectBeingTested (page 544) (NSScriptObjectSpecifier)

rangeContainerObject
Returns the top-level container object for an object specifier (encapsulated in an NSRangeSpecifier) that
represents the first or last element in a range of elements.

public Object rangeContainerObject()

See Also
setObjectBeingTested (page 537)
containerIsRangeContainerObject (page 544) (NSScriptObjectSpecifier)

setObjectBeingTested
Sets the top-level container object currently being tested in a “whose” qualifier to object.

public void setObjectBeingTested(Object object)

See Also
objectBeingTested (page 537)

setRangeContainerObject
Sets the top-level container object for a range-specifier evaluation to container.

Static Methods 537
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 87

NSScriptExecutionContext

public void setRangeContainerObject(Object container)

Discussion
Instances of NSRangeSpecifier contain object specifiers representing the first or last element in a range of
elements, and these specifiers are evaluated in the context of container.

See Also
rangeContainerObject (page 537)

setTopLevelObject
Sets the top-level object for an object-specifier evaluation.

public void setTopLevelObject(Object anObject)

See Also
topLevelObject (page 538)

topLevelObject
Returns the top-level object for an object-specifier evaluation.

public Object topLevelObject()

Discussion
For applications, this object is automatically set to the application object, but can be set to some other
container object.

See Also
setTopLevelObject (page 538)

538 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 87

NSScriptExecutionContext

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

NSScriptObjectSpecifier is the abstract superclass for classes that instantiate objects called “object specifiers.”
An object specifier represents an AppleScript reference form, which is a natural-language expression such
as words 10 through 20 or front document or words whose color is red. The scripting system
maps these words or phrases to attributes and relationships of scriptable objects. A reference form rarely
occurs in isolation; usually a script statement consists of a series of reference forms preceded by a command
and typically connected to each other by “of,” such as:

get words whose color is blue of paragraph 10 of front document

The expression words whose color is blue of paragraph 10 of front document specifies a path
through the object hierarchy of an application (a document-based application in this case), though each
scripting object need not correspond to a separate application object. At the end of this path is the object
or objects that are the target (or “receiver”) of the get command. When the command is executed, the
requested values are extracted from the receiver—in this case, an array of blue words (if any exist in paragraph
10)—and are returned. Reference forms (and object specifiers) can indicate command arguments as well as
command receivers, for example:

set first word of paragraphs 2 through last of front document to font of first
 word of front document

In this case, the reference forms up to front document evaluate to the receiver of the command and the
reference forms starting with font of first word evaluate to the command’s argument.

A script command (NSScriptCommand) arrives in a scriptable application with the receiver or receivers set
as object specifiers and any arguments possibly set as object specifiers (arguments can be actual objects as
well). To represent a series of reference forms, each object specifier is nested inside its “container” object
specifier; the innermost object specifier indicates the final object to be evaluated, while the topmost object
is usually the application itself. An object specifier keeps references not only to its container (or “parent”)
specifier but also to its “child” specifier. Although the chain of references is bidirectional, the child specifier
“owns” its parent container.

For an example of nested references, take the statement set color of paragraphs 2 thru 3 of
front document to blue; as container specifiers mapped to reference forms, this statement could be
depicted as the following:

Overview 539
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 88

NSScriptObjectSpecifier

Figure 88-1 Reference forms and nested object specifiers

Set color of paragraphs 2 thru 3 of front document to blue

color paragraphs
2 thru 3

front
document

application "foo"
(implicit)

Property Range IndexReference Forms:

These reference forms are represented by instances of the appropriate NSScriptObjectSpecifier subclasses:
NSPropertySpecifier (page 465), NSRangeSpecifier (page 477), and NSIndexSpecifier (page 223). Most subclasses
add an appropriate instance variable (such as an index number or an NSRange value) and then implement
accessor methods and an initializer for that instance variable. Each of these object specifiers except for
NSPropertySpecifier deals with identifying objects in collections (NSArray).

The keys to an attribute or relationship are often not the same words expressed by the corresponding
reference forms. For example, the key for an array of document objects is orderedDocuments, but the actual
scripting term used is document. The mapping between key name and script name is done through the
information contained in the scripting information provided for scriptable classes used in an application.
When the Apple event translator converts an Apple event into an NSScriptCommand, it consults the
appropriate terminology for the mapping between the scripting name and the key of the related class,
attribute, or relationship. Armed with this key, it can then locate the language-independent information
(specifically, class and command descriptions) needed to compose the NSScriptCommand, including its
arguments and receivers.

In the normal course of script-command execution, an application invokes evaluatedReceivers (page
522) on an NSScriptCommand to get the receiver or receivers of the command and invokes
evaluatedArguments (page 522) to get any arguments of the command. These methods in turn invoke
objectsByEvaluatingSpecifier (page 545) on the object specifiers representing command arguments
or receivers. The object specifier receiving the message is the innermost specifier as nested in its containers
(color in the above example). The objectsByEvaluatingSpecifier (page 545) method goes up the
chain of nested containers by asking each specifier for its container until it comes to the top-level object
specifier, which has no container. The top-level object is usually the application object
(NSApplication.sharedApplication()), but it can be an object specifier involved in a whose clause
(NSWhoseSpecifier) or the container for a range evaluation. The method then invokes
objectsByEvaluatingWithContainers (page 546) on this top-level specifier, which then proceeds down
the chain of nested specifiers, evaluating each through key-value coding and using the evaluated object as
the basis for the next evaluation. Evaluating the innermost specifier yields the real command receiver or
receivers or any object used as a command argument.

It is unlikely that you would ever need to create your own subclass of NSScriptObjectSpecifier; the set of valid
AppleScript reference forms is determined by Apple Computer and object specifier classes are already
implemented for this set. If for some reason you do need to create a subclass, you must override the primitive
method indicesOfObjectsByEvaluatingWithContainer (page 545) to return indices to the elements
within the container whose values are matched with the child specifier’s key. In addition, you probably need
to declare any special instance variables and implement an initializer that invokes super’s constructor, and
initializes these variables.

540 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 88

NSScriptObjectSpecifier

Other Classes Used in Object-Specifier Evaluation

In addition to the concrete subclasses of NSScriptObjectSpecifier mentioned in the previous section, Cocoa
frameworks include a handful of other classes that assist the object-specifier classes in evaluation. Instances
of these classes help to indicate relative position (NSPositionalSpecifier (page 451)) and represent Boolean
and logical expressions in which object specifiers are involved.

Boolean Expressions and Logical Operations

A script statement can contain filter reference forms, which identify objects in containers based on the
conditions specified in Boolean expressions. These expressions can be linked together by logical operators
(AND, OR, NOT) and return the appropriate combined true or false value. Filter reference forms begin with
the words whose or where, as in get words where color is blue or color is red of front
document. These reference forms can contain phrases such as is, is equal to or is greater than as
well as their symbolic equivalents (such as = and >).

Instances of the NSWhoseSpecifier class represent filter reference forms in Cocoa (see the class description
of NSWhoseSpecifier (page 675) for more information). These instances hold a “test” instance variable, which
is an NSScriptWhoseTest object. For more information, see the class description for NSScriptWhoseTest (page
557) and the descriptions in NSComparisonMethods (page 685).

You shouldn’t need to subclass NSScriptObjectSpecifier, and you should rarely need to subclass any of its
subclasses.

Tasks

Constructors

NSScriptObjectSpecifier (page 543)
Returns an NSScriptObjectSpecifier with no data.

Evaluating an Object Specifier

indicesOfObjectsByEvaluatingWithContainer (page 545)

objectsByEvaluatingSpecifier (page 545)

objectsByEvaluatingWithContainers (page 546)

Getting, Testing, and Setting Containers

containerClassDescription (page 543)

Tasks 541
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 88

NSScriptObjectSpecifier

containerIsObjectBeingTested (page 544)
If the receiver’s container specifier is null, returns a Boolean value that indicates whether the receiver’s
container is the object involved in a specifier test.

containerIsRangeContainerObject (page 544)
If the receiver’s container specifier is null, returns a Boolean value that indicates whether the container
for the receiver contains the range of elements represented by an NSRangeSpecifier.

containerSpecifier (page 544)

setContainerClassDescription (page 546)

setContainerIsObjectBeingTested (page 547)

setContainerSpecifier (page 547)

setContainerIsRangeContainerObject (page 547)

Getting and Setting Child References

childSpecifier (page 543)

setChildSpecifier (page 546)

Getting and Setting Object Keys

key (page 545)

keyClassDescription (page 545)

setKey (page 548)

Getting Evaluation Errors

evaluationErrorSpecifier (page 545)

evaluationErrorNumber (page 544)

setEvaluationErrorNumber (page 547)

542 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 88

NSScriptObjectSpecifier

Constructors

NSScriptObjectSpecifier
Returns an NSScriptObjectSpecifier with no data.

public NSScriptObjectSpecifier()

Discussion
Do not use this constructor.

Returns an NSScriptObjectSpecifier initialized with container specifier specifier, key key, and the class
description of the object specifier classDescription, derived from the value of the specifier’s key.

public NSScriptObjectSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key)

Discussion
The receiver’s child specifier reference is set to null.

Returns a newly created NSScriptObjectSpecifier with container specifier specifier and key key.

public NSScriptObjectSpecifier(NSScriptObjectSpecifier specifier, String key)

Discussion
The class description of the container is set automatically.

Instance Methods

childSpecifier
public NSScriptObjectSpecifier childSpecifier()

Discussion
Returns the receiver’s child reference, that is, the object specifier evaluating to the object or objects that the
receiver contains.

See Also
setChildSpecifier (page 546)

containerClassDescription
public NSScriptClassDescription containerClassDescription()

Discussion
Returns the class description of the object indicated by the receiver’s container specifier.

See Also
setContainerClassDescription (page 546)

Constructors 543
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 88

NSScriptObjectSpecifier

containerIsObjectBeingTested
If the receiver’s container specifier is null, returns a Boolean value that indicates whether the receiver’s
container is the object involved in a specifier test.

public boolean containerIsObjectBeingTested()

Discussion
An example of a specifier test is whose color is blue). If the returned value is true, then the top-level
object is the object being tested (that is, the specifier has no container specifier).

See Also
objectBeingTested (page 537) (NSScriptExecutionContext)

containerIsRangeContainerObject
If the receiver’s container specifier is null, returns a Boolean value that indicates whether the container for
the receiver contains the range of elements represented by an NSRangeSpecifier.

public boolean containerIsRangeContainerObject()

See Also
setContainerIsRangeContainerObject (page 547)

containerSpecifier
public NSScriptObjectSpecifier containerSpecifier()

Discussion
Returns the receiver’s container specifier, which is the object specifier that must be evaluated to provide a
context for the evaluation of the receiver.

See Also
childSpecifier (page 543)
containerClassDescription (page 543)
setContainerSpecifier (page 547)

evaluationErrorNumber
public int evaluationErrorNumber()

Discussion
Returns the constant identifying the type of error that caused evaluation to fail. This error code could be
associated with the receiver or any container specifier “above” the receiver. Possible return values are defined
in “Constants” (page 548).

See Also
evaluationErrorSpecifier (page 545)

544 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 88

NSScriptObjectSpecifier

evaluationErrorSpecifier
public NSScriptObjectSpecifier evaluationErrorSpecifier()

Discussion
Returns the object specifier in which an evaluation error occurred. The object specifier failing to evaluate
could be the receiver or any container specifier “above” the receiver.

See Also
evaluationErrorNumber (page 544)

indicesOfObjectsByEvaluatingWithContainer
public int[] indicesOfObjectsByEvaluatingWithContainer(Object specifier)

Discussion
Returns an array of indices identifying objects in the key of the container specifier that are identified by
the receiver of the message. The method uses key-value coding to obtain values based on the receiver’s key.
It returns –1 if all objects in the container (or the sole object) match the value of the receiver’s key. This
method is invoked by objectsByEvaluatingWithContainers (page 546). The default implementation
returns –1.

key
public String key()

Discussion
Returns the key of the receiver.

See Also
keyClassDescription (page 545)
setKey (page 548)

keyClassDescription
public NSScriptClassDescription keyClassDescription()

Discussion
Returns the class description of the objects specified by the receiver.

See Also
key (page 545)
setKey (page 548)

objectsByEvaluatingSpecifier
public Object objectsByEvaluatingSpecifier()

Instance Methods 545
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 88

NSScriptObjectSpecifier

Discussion
Recursively obtains the next container in a nested series of object specifiers until it reaches the top-level
container specifier (which is either an NSWhoseSpecifier or the application object), after which it begins
evaluating each object specifier (objectsByEvaluatingWithContainers (page 546)) going in the opposite
direction (top-level to innermost) as it unwinds from the stack. Returns the actual object represented by the
nested series of object specifiers. Returns null if a container specifier could not be evaluated or if no top-level
container specifier could be found. Thus null can be a valid value or can indicate an error; you can use
evaluationErrorNumber (page 544) to determine if and which error occurred and
evaluationErrorSpecifier (page 545) to find the container specifier responsible for the error. In the
normal course of command processing, this method is invoked by NSScriptCommand’s
evaluatedArguments (page 522) and evaluatedReceivers (page 522), which take as message receiver
the innermost object specifier.

See Also
indicesOfObjectsByEvaluatingWithContainer (page 545)

objectsByEvaluatingWithContainers
public Object objectsByEvaluatingWithContainers(Object containers)

Discussion
Returns the actual object or objects specified by the receiver as evaluated in the context of its container
object or objects (containers). Invokes indicesOfObjectsByEvaluatingWithContainer (page 545)
on this to get an array of pointers to indices of elements in containers that have values paired with the
message receiver’s key. This method then uses key-value coding to obtain the object or objects associated
with the key; it returns these objects or null if there are no matching values in containers. If there are multiple
matching values, they are returned in an NSArray; if matching values are null, NSNulls are substituted. If
containers is an NSArray, the method recursively evaluates each element in the array and returns an
NSArray with evaluated objects (including NSNulls) in their corresponding slots.

See Also
objectsByEvaluatingSpecifier (page 545)

setChildSpecifier
public void setChildSpecifier(NSScriptObjectSpecifier child)

Discussion
Sets the receiver’s child reference to child. Do not invoke this method directly; it is automatically invoked
by setContainerSpecifier (page 547).

See Also
childSpecifier (page 543)

setContainerClassDescription
public void setContainerClassDescription(NSScriptClassDescription classDescription)

Discussion
Sets the class description of the receiver’s container specifier to classDescription.

546 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 88

NSScriptObjectSpecifier

See Also
containerClassDescription (page 543)

setContainerIsObjectBeingTested
public void setContainerIsObjectBeingTested(boolean flag)

Discussion
If the receiver’s container specifier is null and flag is true, sets the receiver’s container to be an object
involved in a filter reference (for example, whose color is blue). If the receiver’s container specifier is
null and flag is false, sets the receiver’s container to be the top-level object.

If this method is invoked with an argument of true setContainerIsRangeContainerObject (page 547)
should not also be invoked with an argument of true.

See Also
containerIsObjectBeingTested (page 544)

setContainerIsRangeContainerObject
public void setContainerIsRangeContainerObject(boolean flag)

Discussion
If the receiver’s container specifier is null and flag is true, sets the receiver’s container to be the container
for a range specifier. If the receiver’s container specifier is null and flag is false, sets the receiver’s container
to be the top-level object.If this method is invoked with an argument of true,
setContainerIsObjectBeingTested (page 547) should not also be invoked with an argument of true.

See Also
containerIsRangeContainerObject (page 544)

setContainerSpecifier
public void setContainerSpecifier(NSScriptObjectSpecifier objSpecifier)

Discussion
Sets the container specifier of the receiver to objSpecifier.

See Also
containerSpecifier (page 544)

setEvaluationErrorNumber
public void setEvaluationErrorNumber(int error)

Discussion
Sets the value of the evaluation error to error.

See Also
evaluationErrorNumber (page 544)

Instance Methods 547
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 88

NSScriptObjectSpecifier

setKey
public void setKey(String key)

Discussion
Sets the key of the receiver to key.

See Also
key (page 545)
keyClassDescription (page 545)

Constants

NSScriptObjectSpecifier provides the following constants for error codes for specific problems evaluating
specifiers:

DescriptionConstant

No error encountered.NoSpecifierError

Someone called evaluate with null.NoTopLevelContainersSpecifierError

Error evaluating container specifier.ContainerSpecifierError

Receivers do not understand the key.UnknownKeySpecifierError

Index out of bounds.InvalidIndexSpecifierError

Other internal error.InternalSpecifierError

Attempt made to perform an unsupported operation
on some key.

OperationNotSupportedForKey-
SpecifierError

548 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 88

NSScriptObjectSpecifier

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

NSScriptSuiteRegistry functions as the top-level repository of scripting information for an application at
runtime.

NSScriptSuiteRegistry is a key player in Cocoa’s built-in scripting support. To take advantage of that support,
each application supplies scripting information (or metadata) in one of two standard formats: the script suite
format or the sdef (scripting definition) format. For information on these formats, and on how to create script
suite and sdef files, see Sdef Scriptability Guide for Cocoa.

An application’s scripting information specifies what a scripter can do with the application, including which
objects, properties, and commands are available. When a user executes a script, the appropriate scripting
component (most commonly the AppleScript component) converts command lines from the script (such as
close the first document) into Apple events that are sent to the targeted application. Using the
information stored in NSScriptSuiteRegistry, Cocoa automatically converts incoming Apple events into script
commands (based on NSScriptCommand (page 517) or a subclass) that manipulate objects in the application.

One instance of NSScriptSuiteRegistry is shared among the objects of an application. Scripting information
is collected when an application first needs to respond to an Apple event other than the core events (open
documents, print documents, open application, print documents, reopen, and quit). An
NSScriptSuiteRegistry is automatically created to load the scripting information:

 ■ For applications that supply scripting information in script suites, the NSScriptSuiteRegistry loads the
script suite files (matching pairs of files with the extensions .scriptSuite and .scriptTerminology)
for the application, for all imported frameworks, and for all loaded bundles.

 ■ For applications in Mac OS version 10.4 that supply scripting information in an sdef file, the
NSScriptSuiteRegistry loads information from the specified file.

The scripting information provided by an application has two main parts: one for “class descriptions” and
the other for “command descriptions.” A class description defines the attributes and relationships of a
scriptable object; it also lists the script commands supported by the object. A command description defines
each command in this suite, including its class (NSScriptCommand or subclass), return type, and argument
names and types. Scripting information may contain additional declarations, such as enumerations.

When an NSScriptSuiteRegistry loads scripting information, it creates NSScriptClassDescriptions and
NSScriptCommandDescriptions from the contents. It also caches the corresponding four-character Apple
event codes. It registers class descriptions with the central class registry maintained by NSClassDescription,

Overview 549
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 89

NSScriptSuiteRegistry

and it registers to handle incoming Apple events that represent the defined commands. An application’s
scripting information also maps scripting terminology—the English-like words and phrases a scripter can
use in a script, such as the first word in the first paragraph—to the class and command
descriptions used to implement scripting support in the application.

The public methods of NSScriptSuiteRegistry are used primarily by Cocoa’s built-in scripting support to access
scripting information from all loaded suites. You should rarely need to create a subclass of
NSScriptSuiteRegistry.

Tasks

Constructors

NSScriptSuiteRegistry (page 551)
Returns an NSScriptSuiteRegistry with no data.

Getting and Setting the Shared Instance

setSharedScriptSuiteRegistry (page 552)
Sets the single, shared instance of NSScriptSuiteRegistry to registry.

sharedScriptSuiteRegistry (page 552)
Returns the single, shared instance of NSScriptSuiteRegistry, creating it first if it doesn’t exist.

Getting Suite Information

suiteForAppleEventCode (page 555)
Returns the name of the suite definition associated with the given four-character Apple event code,
code.

suiteNames (page 555)
Returns the names of the suite definitions currently loaded by the application.

Getting and Registering Class Descriptions

classDescriptionsInSuite (page 553)
Returns the class descriptions contained in the suite identified by suiteName.

classDescriptionWithAppleEventCode (page 553)
Returns the class description associated with the given four-character Apple event code, code.

registerClassDescription (page 555)
Registers class description classDescription for use by Cocoa’s built-in scripting support by storing
it in a per-suite internal dictionary under the class name.

550 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 89

NSScriptSuiteRegistry

Getting and Registering Command Descriptions

commandDescriptionsInSuite (page 553)
Returns the command descriptions contained in the suite identified by suiteName.

commandDescriptionWithAppleEventCodes (page 554)
Returns the command description identified by a suite’s four-character Apple event code of the class
(eventClass) and the four-character Apple event code of the command (commandCode).

registerCommandDescription (page 555)
Registers command description commandDesc for use by Cocoa’s built-in scripting support by storing
it in a per-suite internal dictionary under the command name.

Getting Other Suite Information

aeteResource (page 552)
Returns an NSData object that contains data in ‘aete’ resource format describing the suites currently
known to the application.

appleEventCodeForSuite (page 552)
Returns the Apple event code associated with the suite named suiteName, such as ‘core’ for the
Core suite.

bundleForSuite (page 553)
Returns the bundle containing the suite-definition property list (extension .scriptSuite) identified
by suiteName.

Loading Suites

loadSuiteWithDictionary (page 554)
Loads the suite definition encapsulated in dictionary; previously, this suite definition was parsed
from a .scriptSuite property list contained in a framework or in bundle.

loadSuitesFromBundle (page 554)
Loads the suite definitions in bundle aBundle, invoking loadSuiteWithDictionary (page 554) for
each suite found.

Constructors

NSScriptSuiteRegistry
Returns an NSScriptSuiteRegistry with no data.

public NSScriptSuiteRegistry()

Discussion
Do not use this constructor.

Constructors 551
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 89

NSScriptSuiteRegistry

Static Methods

setSharedScriptSuiteRegistry
Sets the single, shared instance of NSScriptSuiteRegistry to registry.

public static void setSharedScriptSuiteRegistry(NSScriptSuiteRegistry registry)

sharedScriptSuiteRegistry
Returns the single, shared instance of NSScriptSuiteRegistry, creating it first if it doesn’t exist.

public static NSScriptSuiteRegistry sharedScriptSuiteRegistry()

Discussion
If it creates an instance, the method loads suite definitions in all frameworks and other bundles that the
application currently imports or includes. If in reading a .scriptSuite property list an exception is thrown
because of parsing errors, it handles the exception by printing a line of information to the console.

See Also
loadSuiteWithDictionary (page 554)

Instance Methods

aeteResource
Returns an NSData object that contains data in ‘aete’ resource format describing the suites currently known
to the application.

public NSData aeteResource(String languageName)

Discussion
This method is typically invoked to implement the Get AETE Apple event. The languageName argument is
the name of a language for which a localized resource directory (such as English.lproj) exists. This
language indication specifies the set of .scriptTerminology files to be used to generate the data.
NSScriptSuiteRegistry does not create an ‘aete’ unless this method is called.

See Also
appleEventCodeForSuite (page 552)

appleEventCodeForSuite
Returns the Apple event code associated with the suite named suiteName, such as ‘core’ for the Core
suite.

public int appleEventCodeForSuite(String suiteName)

552 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 89

NSScriptSuiteRegistry

See Also
suiteForAppleEventCode (page 555)

bundleForSuite
Returns the bundle containing the suite-definition property list (extension .scriptSuite) identified by
suiteName.

public NSBundle bundleForSuite(String suiteName)

classDescriptionsInSuite
Returns the class descriptions contained in the suite identified by suiteName.

public NSDictionary classDescriptionsInSuite(String suiteName)

Discussion
Each class description (instance of NSScriptClassDescription) in the returned dictionary is identified by class
name.

See Also
classDescriptionWithAppleEventCode (page 553)
registerClassDescription (page 555)

classDescriptionWithAppleEventCode
Returns the class description associated with the given four-character Apple event code, code.

public NSScriptClassDescription classDescriptionWithAppleEventCode(int code)

Discussion
Overriding behavior is important here. Multiple classes can have the same code if the classes have an
uninterrupted linear inheritance from one another. For example, if class B is a subclass of A and class C is a
subclass of B, and all three classes have the same four-character Apple event code, then this method returns
the class description for class C.

See Also
classDescriptionsInSuite (page 553)
registerClassDescription (page 555)

commandDescriptionsInSuite
Returns the command descriptions contained in the suite identified by suiteName.

public NSDictionary commandDescriptionsInSuite(String suiteName)

Discussion
Each command description (instance of NSScriptCommandDescription) in the returned dictionary is identified
by command name.

Instance Methods 553
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 89

NSScriptSuiteRegistry

See Also
commandDescriptionWithAppleEventCodes (page 554)
registerCommandDescription (page 555)

commandDescriptionWithAppleEventCodes
Returns the command description identified by a suite’s four-character Apple event code of the class
(eventClass) and the four-character Apple event code of the command (commandCode).

public NSScriptCommandDescription commandDescriptionWithAppleEventCodes(int
eventClass, int commandCode)

See Also
commandDescriptionsInSuite (page 553)
registerCommandDescription (page 555)

loadSuitesFromBundle
Loads the suite definitions in bundle aBundle, invoking loadSuiteWithDictionary (page 554) for each
suite found.

public void loadSuitesFromBundle(NSBundle aBundle)

Discussion
If errors occur while method is parsing a suite-definition file, the method logs error messages to the console.

loadSuiteWithDictionary
Loads the suite definition encapsulated in dictionary; previously, this suite definition was parsed from a
.scriptSuite property list contained in a framework or in bundle.

public void loadSuiteWithDictionary(NSDictionary dictionary, NSBundle bundle)

Discussion
The method extracts information from the dictionary and caches it in various internal collection objects. If
keys are missing or values are of the wrong type, it logs messages to the console. It also registers class
descriptions and command descriptions. In registering a class description, it invokes NSClassDescription’s
class method registerClassDescription (page 107). In registering a command description, it arranges
for the Apple event translator to handle incoming Apple events that represent the defined commands.

This method is invoked when the shared instance is initialized and when bundles are loaded at runtime. Prior
to invoking it, NSScriptSuiteRegistry creates the dictionary argument from the .scriptSuite property list.
If you invoke this method in your code, you should try to do it before the application receives its first Apple
event.

See Also
loadSuitesFromBundle (page 554)
registerClassDescription (page 555)
registerCommandDescription (page 555)
sharedScriptSuiteRegistry (page 552)

554 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 89

NSScriptSuiteRegistry

registerClassDescription
Registers class description classDescription for use by Cocoa’s built-in scripting support by storing it in
a per-suite internal dictionary under the class name.

public void registerClassDescription(NSScriptClassDescription classDescription)

See Also
loadSuiteWithDictionary (page 554)
registerCommandDescription (page 555)

registerCommandDescription
Registers command description commandDesc for use by Cocoa’s built-in scripting support by storing it in
a per-suite internal dictionary under the command name.

public void registerCommandDescription(NSScriptCommandDescription commandDesc)

See Also
loadSuiteWithDictionary (page 554)
registerClassDescription (page 555)

suiteForAppleEventCode
Returns the name of the suite definition associated with the given four-character Apple event code, code.

public String suiteForAppleEventCode(int code)

See Also
suiteNames (page 555)

suiteNames
Returns the names of the suite definitions currently loaded by the application.

public NSArray suiteNames()

See Also
suiteForAppleEventCode (page 555)

Instance Methods 555
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 89

NSScriptSuiteRegistry

556 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 89

NSScriptSuiteRegistry

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

NSScriptWhoseTest is an abstract class whose sole method is isTrue (page 558). Two concrete subclasses
of NSScriptWhoseTest generate objects representing Boolean expressions comparing one object with another
and objects representing multiple Boolean expressions connected by logical operators (OR, AND, NOT). These
classes are, respectively, NSSpecifierTest (page 585) and NSLogicalTest (page 265). In evaluating itself, an
NSWhoseSpecifier invokes the isTrue (page 558) method of its “test” object.

You shouldn’t need to subclass NSScriptWhoseTest, and you should rarely need to subclass one of its
subclasses.

Tasks

Constructors

NSScriptWhoseTest (page 557)
Returns an NSScriptWhoseTest with no data.

Evaluating a Test

isTrue (page 558)
Returns true if the test represented by the receiver evaluates to true.

Constructors

NSScriptWhoseTest
Returns an NSScriptWhoseTest with no data.

Overview 557
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 90

NSScriptWhoseTest

public NSScriptWhoseTest()

Discussion
Do not use this constructor.

Instance Methods

isTrue
Returns true if the test represented by the receiver evaluates to true.

public boolean isTrue()

558 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 90

NSScriptWhoseTest

Inherits from Object

Package: com.apple.cocoa.foundation

Companion guide Cocoa-Java Integration Guide

Overview

An NSSelector object (also called a selector) specifies a method signature, which is a method’s name and
parameter list. You can later apply a selector on any object, and it performs the method that matches the
selector, if there is one.

NSSelector is the Java implementation of the Objective-C type SEL, described in the “Selectors” section of
The Objective-C Programming Language.

For details on using NSSelector, see “Method Selectors” and “Using NSSelector”.

Tasks

Constructors

NSSelector (page 560)
Deprecated.

Invoking a Selector

invoke (page 560)

invoke (page 562)

Accessing Information About a Selector

equals (page 561)
Returns whether anObject equals the method that matches the receiver.

Overview 559
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 91

NSSelector

implementedByClass (page 561)
Returns whether the class targetClass implements a method that matches the receiver.

implementedByObject (page 561)
Returns whether the object target implements a method that matches the receiver.

methodOnClass (page 563)
Returns the method on the class targetClass that matches the receiver. If targetClass has no
method that matches the receiver, this method throws NoSuchMethodException.

methodOnObject (page 563)
Returns the method on the object target that matches the receiver. If target has no method that
matches the receiver, this method throws NoSuchMethodException.

name (page 563)
Returns the name of the method specified by the receiver.

parameterTypes (page 563)
Copies and returns the array of parameter types specified by the receiver.

toString (page 563)
Returns a string containing the receiver’s class (“NSSelector”) and the name of the method the receiver
specifies.

Constructors

NSSelector
Deprecated.

public NSSelector(String methodName)

Creates a selector for the method that's named methodName and takes parameters parameterTypes.

public NSSelector(String methodName, Class[] parameterTypes)

Discussion
To create a selector for a method that takes no arguments, use null for parameterTypes. For an example,
see “Using NSSelector”.

Static Methods

invoke
public static Object invoke(String methodName, Class[] parameterTypes, Object

target, Object[] arguments)

Discussion
Creates and applies a selector that has any number of arguments. This method creates a selector with
methodName and the parameter types in the array parameterTypes, applies that selector to target with
the arguments in the array arguments, and returns the result. To apply a method that takes no arguments,

560 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 91

NSSelector

use null for the arrays parameterTypes and arguments. As part of its implementation, this method uses
the NSSelector constructor and the instance method invoke (page 562). For more information, see those
method descriptions.

public static Object invoke(String methodName, Class parameterType, Object target,
Object argument)

Discussion
Creates and applies a selector that has one argument. This method creates a selector with methodName and
parameterType, applies that selector to target with argument, and returns the result. As part of its
implementation, this method uses the NSSelector constructor and the instance method invoke (page 562).
For more information, see those method descriptions.

public static Object invoke(String methodName, Class parameterType1, Class
parameterType2, Object target, Object argument1, Object argument2)

Discussion
Creates and applies a selector that has two arguments. This method creates a selector with methodName and
the parameter types parameterType1 and parameterType2, applies that selector to target with the
arguments argument1 and argument2, and returns the result. As part of its implementation, this method
uses the NSSelector constructor and the instance method invoke (page 562). For more information, see those
method descriptions.

Instance Methods

equals
Returns whether anObject equals the method that matches the receiver.

public boolean equals(Object anObject)

implementedByClass
Returns whether the class targetClass implements a method that matches the receiver.

public boolean implementedByClass(Class targetClass)

implementedByObject
Returns whether the object target implements a method that matches the receiver.

public boolean implementedByObject(Object target)

Discussion
As part of its implementation, this method uses implementedByClass (page 561).

Instance Methods 561
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 91

NSSelector

invoke
public Object invoke(Object target, Object[] arguments)

Discussion
Invokes the method specified by the receiver on target with arguments and returns the result. If that
method is void, it returns null. Note that the method may be a static or instance method.

The invoke method can’t handle arguments or return values of primitive types (such as boolean, int, or
float). If the method matching the selector returns a value of a primitive type, invoke returns the value in
an object of the corresponding wrapper type (such as Boolean, Integer, or Float). To pass an argument of a
primitive type to invoke, use an object of the corresponding wrapper class. invoke converts the object
back to the primitive type when it invokes the method.

invoke throws an exception in the following cases:

 ■ If target has no method that matches the selector, it throws NoSuchMethodException.

 ■ If a method matches the selector but is inaccessible to target, it throws IllegalAccessException.

 ■ If it can’t convert an argument to the type specified in the selector, it throws
IllegalArgumentException.

 ■ If the invoked method throws an exception, it wraps that exception in a
java.lang.reflect.InvocationTargetException and throws the new exception without
completing.

As part of its implementation, this method uses methodOnClass (page 563).

For an example, see “Using NSSelector”.

public Object invoke(Object target)

Discussion
Invokes the method specified by the selector on target with no arguments and returns the result. If that
method is void, it returns null. Note that the method may be a static or instance method.

As part of its implementation, this method calls the invoke (page 562) instance method which takes an array
of arguments. For more information, see that method’s description.

public Object invoke(Object target, Object argument)

Discussion
Invokes the method specified by the receiver on target with one argument (argument) and returns the
result. If that method is void, it returns null. Note that the method may be a static or instance method.

As part of its implementation, this method calls the invoke (page 562) instance method, which takes an array
of arguments. For more information, see that method’s description.

public Object invoke(Object target, Object argument1, Object argument2)

Discussion
Invokes the method specified by the receiver on target with two arguments (argument1 and argument2)
and returns the result. If that method is void, it returns null. Note that the method may be a static or
instance method.

562 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 91

NSSelector

As part of its implementation, this method calls the invoke (page 562) instance method, which takes an array
of arguments. For more information, see that method’s description.

methodOnClass
Returns the method on the class targetClass that matches the receiver. If targetClass has no method
that matches the receiver, this method throws NoSuchMethodException.

public java.lang.reflect.Method methodOnClass(Class targetClass)

methodOnObject
Returns the method on the object target that matches the receiver. If target has no method that matches
the receiver, this method throws NoSuchMethodException.

public java.lang.reflect.Method methodOnObject(Object target)

name
Returns the name of the method specified by the receiver.

public String name()

parameterTypes
Copies and returns the array of parameter types specified by the receiver.

public Class[] parameterTypes()

toString
Returns a string containing the receiver’s class (“NSSelector”) and the name of the method the receiver
specifies.

public String toString()

Instance Methods 563
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 91

NSSelector

564 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 91

NSSelector

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide Collections Programming Topics for Cocoa

Class at a Glance

An NSSet object stores an immutable set of objects.

Principal Attributes

 ■ The objects that make up the set.

"NSSet" (page 567)
Creates a set.

Commonly Used Methods

allObjects (page 568)
Returns an array containing the set’s member objects.

count (page 568)
Returns the number of objects in the set.

containsObject (page 568)
Indicates whether a given object is present in the set.

Primitive Methods

count (page 568)
member (page 569)
objectEnumerator (page 570)

Class at a Glance 565
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 92

NSSet

Overview

The NSSet and NSMutableSet classes declare the programmatic interface to an object that manages a set of
objects. NSSet provides support for the mathematical concept of a set. A set, both in its mathematical sense
and in the implementation of NSSet, is an unordered collection of distinct elements. The NSMutableSet class
is provided for sets whose contents may be altered.

The mutable subclass of NSSet is NSMutableSet (page 351).

NSSet declares the programmatic interface for static sets of objects. You establish a static set’s entries when
it’s created, and thereafter the entries can’t be modified. NSMutableSet, on the other hand, declares a
programmatic interface for dynamic sets of objects. A dynamic—or mutable—set allows the addition and
deletion of entries at any time, automatically allocating memory as needed.

Use sets as an alternative to arrays when the order of elements isn’t important and performance in testing
whether an object is contained in the set is a consideration—while arrays are ordered, testing for membership
is slower than with sets.

Objects added to a set are not copied; rather, an object is added directly to a set.

NSSet provides methods for querying the elements of the set. allObjects (page 568) returns an array
containing the objects in a set. anyObject (page 568) returns some object in the set. count (page 568) returns
the number of objects currently in the set. member (page 569) returns the object in the set that is equal to a
specified object. Additionally, intersectsSet (page 569) tests for set intersection, isEqualToSet (page
569) tests for set equality, and isSubsetOfSet (page 569) tests for one set being a subset of another.

The objectEnumerator (page 570) method provides for traversing elements of the set one by one.

Tasks

Constructors

NSSet (page 567)

Counting Entries

count (page 568)
Returns the number of members in the receiver.

Accessing the Members

allObjects (page 568)
Returns an array containing the receiver’s members, or an empty array if the receiver has no members.

anyObject (page 568)
Returns one of the objects in the receiver, or null if the receiver contains no objects.

566 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 92

NSSet

containsObject (page 568)
Returns true if anObject is present in the receiver, false otherwise.

member (page 569)
If anObject is present in the receiver (as determined by equals (page 424)), the object in the receiver
is returned.

objectEnumerator (page 570)
Returns an enumerator object that lets you access each object in the receiver.

Comparing Sets

isSubsetOfSet (page 569)
Returns true if every object in the receiver is also present in otherSet, false otherwise.

intersectsSet (page 569)
Returns true if at least one object in the receiver is also present in otherSet, false otherwise.

isEqualToSet (page 569)
Compares the receiving set to otherSet.

Joining Sets

setByIntersectingSet (page 570)
Returns a set with all objects that are in both the receiver and otherSet.

setBySubtractingSet (page 570)
Returns a set with all objects that are in the receiver but not in otherSet.

setByUnioningSet (page 570)
Returns a set with all objects that are in either the receiver or otherSet or both.

Constructors

NSSet
public NSSet()

Discussion
Returns an empty set.

public NSSet(Object anObject)

Discussion
Returns a set containing a single member, anObject.

public NSSet(Object[] objects)

Discussion
Returns a set containing those objects in objects.

public NSSet(NSSet aSet)

Constructors 567
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 92

NSSet

Discussion
Returns a set containing those objects contained within the set aSet.

Instance Methods

allObjects
Returns an array containing the receiver’s members, or an empty array if the receiver has no members.

public NSArray allObjects()

Discussion
The order of the objects in the array isn’t defined.

See Also
anyObject (page 568)
objectEnumerator (page 570)

anyObject
Returns one of the objects in the receiver, or null if the receiver contains no objects.

public Object anyObject()

Discussion
The object returned is chosen at the receiver’s convenience—the selection is not guaranteed to be random.

See Also
allObjects (page 568)
objectEnumerator (page 570)

containsObject
Returns true if anObject is present in the receiver, false otherwise.

public boolean containsObject(Object anObject)

See Also
member (page 569)

count
Returns the number of members in the receiver.

public int count()

568 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 92

NSSet

intersectsSet
Returns true if at least one object in the receiver is also present in otherSet, false otherwise.

public boolean intersectsSet(NSSet otherSet)

See Also
isEqualToSet (page 569)
isSubsetOfSet (page 569)

isEqualToSet
Compares the receiving set to otherSet.

public boolean isEqualToSet(NSSet otherSet)

Discussion
If the contents of otherSet are equal to the contents of the receiver, this method returns true. If not, it
returns false.

Two sets have equal contents if they each have the same number of members and if each member of one
set is present in the other.

See Also
intersectsSet (page 569)
equals (page 424) (NSObject)
isSubsetOfSet (page 569)

isSubsetOfSet
Returns true if every object in the receiver is also present in otherSet, false otherwise.

public boolean isSubsetOfSet(NSSet otherSet)

See Also
intersectsSet (page 569)
isEqualToSet (page 569)

member
If anObject is present in the receiver (as determined by equals (page 424)), the object in the receiver is
returned.

public Object member(Object anObject)

Discussion
Otherwise, returns null. If you override equals, you must also override the hash method for the member
method to work on a set of objects of your class.

Instance Methods 569
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 92

NSSet

objectEnumerator
Returns an enumerator object that lets you access each object in the receiver.

public java.util.Enumeration objectEnumerator()

Discussion
When this method is used with mutable subclasses of NSSet, your code shouldn’t modify the receiver during
enumeration. If you intend to modify the receiver, use the allObjects (page 568) method to create a
“snapshot” of the set’s members. Enumerate the snapshot, but make your modifications to the original set.

See Also
nextElement (page 167) (NSEnumerator)

setByIntersectingSet
Returns a set with all objects that are in both the receiver and otherSet.

public NSSet setByIntersectingSet(NSSet otherSet)

See Also
intersectsSet (page 569)
isSubsetOfSet (page 569)
isEqualToSet (page 569)
setBySubtractingSet (page 570)
setByUnioningSet (page 570)

setBySubtractingSet
Returns a set with all objects that are in the receiver but not in otherSet.

public NSSet setBySubtractingSet(NSSet otherSet)

See Also
intersectsSet (page 569)
isSubsetOfSet (page 569)
isEqualToSet (page 569)
setByIntersectingSet (page 570)
setByUnioningSet (page 570)

setByUnioningSet
Returns a set with all objects that are in either the receiver or otherSet or both.

public NSSet setByUnioningSet(NSSet otherSet)

Discussion
If an object is in both, the set contains only one copy.

See Also
intersectsSet (page 569)

570 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 92

NSSet

isSubsetOfSet (page 569)
isEqualToSet (page 569)
setByIntersectingSet (page 570)
setBySubtractingSet (page 570)

Instance Methods 571
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 92

NSSet

572 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 92

NSSet

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

An instance of NSSetCommand sets one or more attributes or relationships to one or more values; for example,
it may set the (x, y) coordinates for a window’s position or set the name of a document.

NSSetCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Set
command through key-value coding. Most applications don’t need to subclass NSSetCommand or call its
methods.

NSSetCommand uses available scripting class descriptions to determine whether it should set a value for an
attribute (or property), or set a value for all elements (to-many objects). For the latter, it invokes
replaceValueAtIndex:inPropertyWithKey:withValue:; for the former, it invokessetValue:forKey:
(or, if the receiver overrides takeValue:forKey:, it invokes that method, to support backward binary
compatibility.)

Tasks

Constructors

NSSetCommand (page 574)
Returns an NSSetCommand with no data.

Working with Specifiers

keySpecifier (page 574)
Returns a specifier that identifies the attribute or relationship that is to be set for the receiver of the
Set command.

setReceiversSpecifier (page 574)
Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers
of the Set command.

Overview 573
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 93

NSSetCommand

Constructors

NSSetCommand
Returns an NSSetCommand with no data.

public NSSetCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSSetCommand with the command description supplied by commandDesc.

public NSSetCommand(NSScriptCommandDescription commandDesc)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

keySpecifier
Returns a specifier that identifies the attribute or relationship that is to be set for the receiver of the Set
command.

public NSScriptObjectSpecifier keySpecifier()

setReceiversSpecifier
Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers of the Set
command.

public void setReceiversSpecifier(NSScriptObjectSpecifier receiversRef)

Discussion
When the command is executed, it sets attributes or relationships in the specified receivers.

This method overrides setReceiversSpecifier (page 525) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRef is a specifier for the color of
the third rectangle, the receiver specifier is the third rectangle, while the key specifier is the
color.

574 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 93

NSSetCommand

Inherits from Object

Implements Cloneable

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities

Overview

An NSSize object represents a dimension, a specification of width and height. An NSSize, together with an
NSPoint, can be used to represent a rectangle (NSRect). The methods of NSSize allow you to access the height
and width of an object, to compare and test NSSizes, to convert NSSizes to AWT Dimension objects, and to
convert NSSizes to and from string objects.

Tasks

Constructors

NSSize (page 576)

Accessing Dimensions

height (page 577)
Returns the height dimension of the receiver.

width (page 578)
Returns the width of the receiver.

Testing NSSizes

equals (page 577)
Returns whether otherObject is an NSSize and is equal in width and height to the receiver.

hashCode (page 577)
Provides an appropriate hash code useful for storing the receiver in a hash-based data structure.

Overview 575
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 94

NSSize

isEmpty (page 578)
Returns whether either dimension (width or height) of the receiver is 0.

isEqualToSize (page 578)
Returns whether the NSSize aSize is equal in width and height to the receiver.

Transforming NSSizes

toAWTDimension (page 578)
Returns the receiver as an AWT Dimension object.

toString (page 578)
Returns the receiver as converted to a string object.

fromString (page 577)

Copying

clone (page 577)
Creates and returns a copy of the receiver.

Constructors

NSSize
public NSSize()

Discussion
Initializes the instance to a dimensionless NSSize.

public NSSize(float w, float h)

Discussion
Initializes the NSSize with the width dimension w and the height dimension y.

Normally, the values of w and h are non-negative. The constructors that create an NSSize do not prevent you
from setting a negative value for these attributes. If the value of w or h is negative, however, the behavior of
some methods may be undefined.

public NSSize(NSSize aSize)

Discussion
Initializes the new NSSize with the width and height values of an existing NSSize, aSize; this constructor is
used in cloning the receiver.

public NSSize(java.awt.Dimension javaDimension)

Discussion
Initializes the NSSize with the values extracted from an AWT Dimension object, javaDimension.

576 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 94

NSSize

Static Methods

fromString
public static NSSize fromString(String sizeAsString)

Discussion
Creates an NSSize from the string sizeAsString, which must be of the form “{w, h}” where w is a float
representation of the width and h is a float representation of the height. Throws an
IllegalArgumentException if the string is improperly formatted.

See Also
toString (page 578)

Instance Methods

clone
Creates and returns a copy of the receiver.

public Object clone()

equals
Returns whether otherObject is an NSSize and is equal in width and height to the receiver.

public boolean equals(Object otherObject)

See Also
isEqualToSize (page 578)

hashCode
Provides an appropriate hash code useful for storing the receiver in a hash-based data structure.

public int hashCode()

Discussion
This value is the sum of the receiver’s width and height, rounded to the nearest integer.

height
Returns the height dimension of the receiver.

public float height()

Static Methods 577
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 94

NSSize

See Also
width (page 578)

isEmpty
Returns whether either dimension (width or height) of the receiver is 0.

public boolean isEmpty()

isEqualToSize
Returns whether the NSSize aSize is equal in width and height to the receiver.

public boolean isEqualToSize(NSSize aSize)

See Also
equals (page 577)

toAWTDimension
Returns the receiver as an AWT Dimension object.

public java.awt.Dimension toAWTDimension()

Discussion
The float values of width and height are rounded up to the nearest integers with which the resulting Dimension
object can enclose the original size.

See Also
toString (page 578)

toString
Returns the receiver as converted to a string object.

public String toString()

Discussion
The string has the form of “{w, h}”, where w is the float representation of width and h is the float representation
of height.

See Also
fromString (page 577)

width
Returns the width of the receiver.

public float width()

578 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 94

NSSize

See Also
height (page 577)

Constants

NSSize provides the following constant as a convenience; you can use it to compare values returned by some
NSSize methods:

DescriptionConstant

An NSSize set to 0 in both dimensionsZeroSize

Constants 579
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 94

NSSize

580 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 94

NSSize

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.3 and later.

Companion guide Sort Descriptor Programming Topics

Overview

NSSortDescriptor describes how an array of objects should be sorted. Objects of this class do not actually
sort the array, the sort methods are defined as a category on NSArray and NSMutableArray. Instances of
NSSortDescriptor are immutable.

You construct objects of this class by specifying the property key to be compared, the order of the sort
(ascending or descending), and a selector that is used to perform the comparison. If null, the selector parameter
defaults to the selector compare. The three-argument constructor allows you to specify other comparison
selectors such as caseInsensitiveCompare and localizedCompare. Sorting throws an exception if the
objects to be sorted do not respond to the sort descriptor’s comparison selector.

Tasks

Constructors

NSSortDescriptor (page 582)
Creates and returns an empty NSSortDescriptor.

Getting Information About a Sort Descriptor

ascending (page 582)
Returns a Boolean value that indicates whether the receiver will sort items in ascending order.

key (page 583)
Returns the receiver’s property key.

selector (page 583)
Returns the selector the receiver will use when comparing objects.

Overview 581
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 95

NSSortDescriptor

Using Sort Descriptors

compareObjects (page 583)

reversedSortDescriptor (page 583)
Returns a copy of the receiver with the sort order reversed.

Constructors

NSSortDescriptor
Creates and returns an empty NSSortDescriptor.

public NSSortDescriptor()

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSSortDescriptor with the property key specified by key, sort order specified by
ascending, and the default selector compare.

public NSSortDescriptor(String key, boolean ascending)

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSSortDescriptor with the property key specified by key, sort order specified by
ascending, and the selector specified by selector.

public NSSortDescriptor(String key, boolean ascending, NSSelector selector)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

ascending
Returns a Boolean value that indicates whether the receiver will sort items in ascending order.

public boolean ascending()

Availability
Available in Mac OS X v10.3 and later.

582 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 95

NSSortDescriptor

compareObjects
public int compareObjects(Object object1, Object object2)

Discussion
Compares object1with object2, using the selector specified by the receiver. Returns OrderedAscending
if object1 is less than object2, OrderedDescending if object1 is greater than object2, or OrderedSame
if object1 is equal to object2.

Availability
Available in Mac OS X v10.3 and later.

key
Returns the receiver’s property key.

public String key()

Discussion
This key specifies the property that is compared during sorting.

Availability
Available in Mac OS X v10.3 and later.

reversedSortDescriptor
Returns a copy of the receiver with the sort order reversed.

public Object reversedSortDescriptor()

Availability
Available in Mac OS X v10.3 and later.

selector
Returns the selector the receiver will use when comparing objects.

public NSSelector selector()

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 583
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 95

NSSortDescriptor

584 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 95

NSSortDescriptor

Inherits from NSScriptWhoseTest : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

Instances of this class represent a Boolean expression; they evaluate an object specifier and compare the
resulting object to another object using a given comparison method. For more information on NSSpecifierTest,
see the method description for its constructors.

When an NSSpecifierTest is properly initialized, it holds two objects:

 ■ A “value” or “test” object (object2) used as the basis of the comparison; this object can be a regular
object or object specifier (such as “blue” in “words whose color is blue”).

 ■ An object specifier (object1) evaluating to the container (“words”).

The instance also encapsulates a selector identifying the method performing this comparison. The interface
NSComparisonMethods (page 685) defines a set of comparison methods useful for this purpose, while
NSScriptingComparisonMethods (page 691) describes additional methods you may need to use for scripting.

The test object is compared, using the selector, against each object in the container. Specifiers in these tests
usually have containerIsObjectBeingTested (page 544) invoked on their topmost container.

You should rarely need to subclass NSSpecifierTest.

Constants

The following constants are defined by NSSpecifierTest and are passed to the constructor to specify the
comparison operator:

DescriptionConstant

Binary comparison operator that results in true if the two objects are
equal.

EqualToComparison

Binary comparison operator that results in true if the value of the test
object is equal to or less than the value of the other object.

LessThanOrEqual-
ToComparison

Overview 585
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 96

NSSpecifierTest

DescriptionConstant

Binary comparison operator that results in true if the value of the test
object is less than the value of the other object.

LessThanComparison

Binary comparison operator that results in true if the value of the test
object is greater than or equal to the value of the other object.

GreaterThanOrEqual-
ToComparison

Binary comparison operator that results in true if the value of the test
object is greater than the value of the other object.

GreaterThanComparison

Binary containment operator that results in true if the test object is a
list or string that matches the beginning of the other object (which is
also a list or string).

BeginsWithComparison

Binary containment operator that results in true if the test object is a
list or string that matches the end of the other object (which is also a list
or string).

EndsWithComparison

Binary containment operator that results in true if the test object is a
list or string that matches the other object (which is also a list or string)
at any location.

ContainsComparison

Tasks

Constructors

NSSpecifierTest (page 586)
Returns an NSSpecifierTest with no data.

Constructors

NSSpecifierTest
Returns an NSSpecifierTest with no data.

public NSSpecifierTest()

Discussion
Do not use this constructor.

Initializes an instance of NSSpecifierTest with the object specifier supplied by obj1, the test object supplied
by obj2, and the comparison operation specified by compOp

public NSSpecifierTest(NSScriptObjectSpecifier obj1, int compOp, Object obj2)

Discussion
. Possible comparison operations are described in “Constants” (page 585).

586 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 96

NSSpecifierTest

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Spell Checking

Overview

The NSSpellServer class gives you a way to make your particular spelling checker a service that’s available to
any application. A service is an application that declares its availability in a standard way, so that any other
applications that wish to use it can do so. If you build a spelling checker that makes use of the NSSpellServer
class and list it as an available service, then users of any application that makes use of NSSpellChecker or
includes a Services menu will see your spelling checker as one of the available dictionaries.

Tasks

Constructors

NSSpellServer (page 588)
Creates an empty NSSpellServer.

Registering Your Service

registerLanguage (page 589)
Notifies the receiver of a language your spelling checker can check.

Assigning a Delegate

setDelegate (page 589)
Assigns a delegate, anObject, to the receiver.

delegate (page 588)
Returns the receiver’s delegate.

Overview 587
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 97

NSSpellServer

Running the Service

run (page 589)
Causes the receiver to start listening for spell-checking requests.

Checking User Dictionaries

isWordInUserDictionaries (page 589)
Indicates whether word is in the user’s list of learned words or the document’s list of words to ignore.

Checking spelling

spellServerDidForgetWord (page 590) delegate method
Notifies the delegate that sender has removed word from the user’s list of acceptable words in the
language, language.

spellServerDidLearnWord (page 590) delegate method
Notifies the delegate that sender has added word to the user’s list of acceptable words in the
language, language.

spellServerSuggestCompletionsForPartialWordRange (page 590) delegate method
This delegate method returns an array of possible word completions from the spell checker, based
off a partially completed string string and a given range range.

spellServerSuggestGuessesForWord (page 590) delegate method
Gives the delegate the opportunity to suggest guesses to sender for the correct spelling of the
misspelled word, word in the language, language.

Constructors

NSSpellServer
Creates an empty NSSpellServer.

public NSSpellServer()

Instance Methods

delegate
Returns the receiver’s delegate.

public Object delegate()

See Also
setDelegate (page 589)

588 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 97

NSSpellServer

isWordInUserDictionaries
Indicates whether word is in the user’s list of learned words or the document’s list of words to ignore.

public boolean isWordInUserDictionaries(String word, boolean flag)

Discussion
If true, the word is acceptable to the user. flag indicates whether the comparison is to be case-sensitive.

registerLanguage
Notifies the receiver of a language your spelling checker can check.

public boolean registerLanguage(String language, String vendor)

Discussion
language is the English name of a language on Apple’s list of languages. vendor identifies the vendor (to
distinguish your spelling checker from those that others may offer for the same language). If your spelling
checker supports more than one language, it should invoke this method once for each language. Registering
a language-vendor combination causes it to appear in the Spelling Panel’s pop-up list of spelling checkers.

Returns true if the language is registered, false if for some reason it can’t be registered.

run
Causes the receiver to start listening for spell-checking requests.

public void run()

Discussion
This method starts a loop that never returns; you need to set the NSSpellServer’s delegate before sending
this message.

See Also
setDelegate (page 589)

setDelegate
Assigns a delegate, anObject, to the receiver.

public void setDelegate(Object anObject)

Discussion
Because the delegate is where the real work is done, this step is essential before telling the NSSpellServer to
run.

See Also
delegate (page 588)
run (page 589)

Instance Methods 589
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 97

NSSpellServer

Delegate Methods

spellServerDidForgetWord
Notifies the delegate that sender has removed word from the user’s list of acceptable words in the language,
language.

public abstract void spellServerDidForgetWord(NSSpellServer sender, String word,
String language)

Discussion
If your delegate maintains a similar auxiliary word list, you may wish to edit the list accordingly.

spellServerDidLearnWord
Notifies the delegate that sender has added word to the user’s list of acceptable words in the language,
language.

public abstract void spellServerDidLearnWord(NSSpellServer sender, String word,
String language)

Discussion
If your delegate maintains a similar auxiliary word list, you may wish to edit the list accordingly.

spellServerSuggestCompletionsForPartialWordRange
This delegate method returns an array of possible word completions from the spell checker, based off a
partially completed string string and a given range range.

public abstract NSArray
spellServerSuggestCompletionsForPartialWordRange(NSSpellServer sender, NSRange
range, String string, String language)

Discussion
See completionsForPartialWordRange in NSSpellChecker for more information.

Availability
Available in Mac OS X v10.3 and later.

spellServerSuggestGuessesForWord
Gives the delegate the opportunity to suggest guesses to sender for the correct spelling of the misspelled
word, word in the language, language.

public abstract NSArray spellServerSuggestGuessesForWord(NSSpellServer sender,
String word, String language)

Discussion
Returns the guesses as an array of Strings.

590 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 97

NSSpellServer

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide String Programming Guide for Cocoa

Overview

The NSStringReference class declares the programmatic interface for an object that manages immutable
strings. (An immutable string is a text string that is defined when it is created and subsequently cannot be
changed. An immutable string is implemented as an array of Unicode characters (in other words, a text string).

The mutable subclass of NSStringReference is NSMutableStringReference (page 361).

The NSStringReference class has two primitive methods—length (page 600) and characterAtIndex (page
597)—that provide the basis for all other methods in its interface. The length (page 600) method returns the
total number of Unicode characters in the string. characterAtIndex (page 597) gives access to each character
in the string by index, with index values starting at 0.

NSStringReference declares methods for finding and comparing strings. It also declares methods for reading
numeric values from strings, for combining strings in various ways, and for converting a string to different
forms (such as encoding and case changes).

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to encapsulate
the paragraph or ruler attributes used by the NSAttributedString classes.

String Objects

NSStringReference objects represent character strings in frameworks. Representing strings as objects allows
you to use strings wherever you use other objects. It also provides the benefits of encapsulation, so that
string objects can use whatever encoding and storage are needed for efficiency while simply appearing as
arrays of characters. The two classes, NSStringReference and NSMutableStringReference, declare the
programmatic interface for noneditable and editable strings, respectively.

Overview 591
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

Note: An immutable string is a text string that is defined when it is created and subsequently cannot be
changed. An immutable string is implemented as an array of Unicode characters (in other words, a text string).
To create and manage an immutable string, use the NSStringReference class. To construct and manage a
string that can be changed after it has been created, use NSMutableStringReference.

The objects you create using NSStringReference and NSMutableStringReference are referred to as string
objects (or, when no confusion will result, merely as strings). The term C string refers to the standard char
* type.

A string object presents itself as an array of Unicode characters (Unicode is a registered trademark of Unicode,
Inc.). You can determine how many characters a string object contains with the length (page 600) method
and can retrieve a specific character with the characterAtIndex (page 597) method. These two “primitive”
methods provide basic access to a string object. Most use of strings, however, is at a higher level, with the
strings being treated as single entities: You compare strings against one another, search them for substrings,
combine them into new strings, and so on. If you need to access string objects character by character, you
must understand the Unicode character encoding, specifically issues related to composed character sequences.
For details see The Unicode Standard, Version 4.0 (The Unicode Consortium, Boston: Addison-Wesley, 2003,
ISBN 0-321-18578-1) and the Unicode Consortium web site: http://www.unicode.org/.

Over distributed-object connections, mutable string objects are passed by-reference and immutable string
objects are passed by-copy.

Subclassing Notes

It is possible to subclass NSString (and NSMutableString), but doing so requires providing storage facilities
for the string (which is not inherited by subclasses) and implementing two primitive methods. The abstract
NSString and NSMutableString classes are the public interface of a class cluster consisting mostly of private,
concrete classes that create and return a string object appropriate for a given situation. Making your own
concrete subclass of this cluster imposes certain requirements (discussed in “Methods to Override” (page
592)).

Make sure your reasons for subclassing NSString so are valid. Instances of your subclass should represent a
string and not something else. Thus the only attributes the subclass should have are the length of the character
buffer it’s managing and access to individual characters in the buffer. Valid reasons for making a subclass of
NSString include providing a different backing store (perhaps for better performance) or implementing some
aspect of object behavior differently, such as memory management. If your purpose is to add non-essential
attributes or metadata to your subclass of NSString, a better alternative would be object composition (see
“Alternatives to Subclassing” (page 593)). Cocoa already provides an example of this with the NSAttributedString
class.

Methods to Override

Any subclass of NSString must override the primitive instance methods length (page 600) and
characterAtIndex (page 597). These methods must operate on the backing store that you provide for the
characters of the string. For this backing store you can use a static array, a dynamically allocated buffer, a
standard NSString object, or some other data type or mechanism. You may also choose to override, partially
or fully, any other NSString method for which you want to provide an alternative implementation.

592 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

You might want to implement an constructor for your subclass that is suited to the backing store that the
subclass is managing. The NSString class adopts the NSCopying, NSMutableCopying, and NSCoding interfaces;
if you want instances of your own custom subclass created from copying or coding, override the methods
in these interfaces.

Alternatives to Subclassing

Often a better and easier alternative to making a subclass of NSString—or of any other abstract, public class
of a class cluster, for that matter—is object composition. This is especially the case when your intent is to
add to the subclass metadata or some other attribute that is not essential to a string object. In object
composition, you would have an NSString object as one instance variable of your custom class (a subclass
of NSObject typically) and one or more instance variables that store the metadata that you want for the
custom object. Then just design your subclass interface to include accessor methods for the embedded string
object and the metadata.

If the behavior you want to add supplements that of the existing class, you could write a category on NSString.
Keep in mind, however, that this category will be in effect for all instances of NSString that you use, and this
might have unintended consequences.

Tasks

Constructors

NSStringReference (page 595)
Creates an empty NSStringReference.

Getting a String’s Length

length (page 600)
Returns the number of Unicode characters in the receiver.

Accessing Characters

characterAtIndex (page 597)
Returns the character at the array position given by index.

Dividing Strings

componentsSeparatedByString (page 597)
Returns an NSArray containing substrings from the receiver that have been divided by separator.

substringWithRange (page 602)
Returns a string object containing the characters of the receiver that lie within aRange.

Tasks 593
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

Finding Characters and Substrings

rangeOfString (page 601)
Returns an NSRange giving the location and length of the first occurrence of subString within the
receiver.

Determining Line and Paragraph Ranges

lineRangeForRange (page 600)
Returns the smallest range of characters representing the lines containing aRange, including the
characters that terminate the lines.

paragraphRangeForRange (page 601)
Returns the smallest range of characters representing the paragraph containing aRange, including
the characters that terminate the paragraph.

Identifying and Comparing Strings

hasPrefix (page 600)
Returns true if aString matches the beginning characters of the receiver, false otherwise.

hasSuffix (page 600)
Returns true if aString matches the ending characters of the receiver, false otherwise.

string (page 602)
Returns a Java String version of the receiver.

Getting a Shared Prefix

commonPrefixWithString (page 597)
Returns a string containing characters the receiver and aString have in common, starting from the
beginning of each up to the first characters that aren’t equivalent.

Getting Strings with Mapping

decomposedStringWithCanonicalMapping (page 599)
Returns a string made by normalizing the receiver’s contents.

decomposedStringWithCompatibilityMapping (page 599)
Returns a string made by normalizing the receiver’s contents.

precomposedStringWithCanonicalMapping (page 601)
Returns a string made by normalizing the receiver’s contents.

precomposedStringWithCompatibilityMapping (page 601)
Returns a string made by normalizing the receiver’s contents.

594 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

Working with Encodings

availableStringEncodings (page 596)
Returns a zero-terminated list of the encodings string objects support in the application’s environment.

defaultCStringEncoding (page 596)
Returns the C-string encoding assumed for any method accepting a C string as an argument

localizedNameOfStringEncoding (page 596)
Returns a human-readable string giving the name of encoding in the current locale’s language.

canBeConvertedToEncoding (page 597)
Returns true if the receiver can be converted to encoding without loss of information. Returns
false if characters would have to be changed or deleted in the process of changing encodings.

dataUsingEncoding (page 598)
Returns an NSData object containing a representation of the receiver in encoding.

fastestEncoding (page 599)
Returns the fastest encoding to which the receiver may be converted without loss of information.

smallestEncoding (page 602)
Returns the smallest encoding to which the receiver can be converted without loss of information.

Deprecated

writeToURL (page 603)
This method is deprecated.

Constructors

NSStringReference
Creates an empty NSStringReference.

public NSStringReference()

Creates a new NSStringReference by converting the bytes in aData into Unicode characters.

public NSStringReference(NSData aData, int encoding)

Discussion
aData must be an NSData object containing bytes in encoding and the default plain text format (that is,
pure content with no attributes or other markups) for that encoding.

Creates a new NSStringReference by reading characters from the location named by aURL.

public NSStringReference(java.net.URL aURL)

Discussion
If the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode characters;
otherwise interprets the contents as characters in the default C-string encoding. Returns null if the location
can’t be opened.

Constructors 595
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

Creates a new NSStringReference by converting the bytes at aURL into Unicode characters.

public NSStringReference(java.net.URL aURL, int encoding)

Discussion
aURL must contain bytes in encoding and the default plain text format (that is, pure content with no
attributes or other markups) for that encoding.

Static Methods

availableStringEncodings
Returns a zero-terminated list of the encodings string objects support in the application’s environment.

public static NSArray availableStringEncodings()

Discussion
Among the more commonly used are:

ASCIIStringEncoding

NEXTSTEPStringEncoding

UnicodeStringEncoding

ISOLatin1StringEncoding

ISOLatin2StringEncoding

SymbolStringEncoding

See the “Constants” (page 603) section for a larger list and descriptions of many supported encodings.

See Also
localizedNameOfStringEncoding (page 596)

defaultCStringEncoding
Returns the C-string encoding assumed for any method accepting a C string as an argument

public static int defaultCStringEncoding()

Discussion
. (These methods use ...CString... in the keywords for such arguments.) The default C-string encoding
is determined from system information and can’t be changed programmatically for an individual process.

localizedNameOfStringEncoding
Returns a human-readable string giving the name of encoding in the current locale’s language.

public static String localizedNameOfStringEncoding(int encoding)

596 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

Instance Methods

canBeConvertedToEncoding
Returns true if the receiver can be converted to encoding without loss of information. Returns false if
characters would have to be changed or deleted in the process of changing encodings.

public boolean canBeConvertedToEncoding(int encoding)

Discussion
If you plan to actually convert a string, dataUsingEncoding returns null on failure, so you can avoid the
overhead of invoking this method yourself by simply trying to convert the string.

See Also
dataUsingEncoding (page 598)

characterAtIndex
Returns the character at the array position given by index.

public char characterAtIndex(int index)

Discussion
Throws a RangeException if index lies beyond the end of the receiver.

commonPrefixWithString
Returns a string containing characters the receiver and aString have in common, starting from the beginning
of each up to the first characters that aren’t equivalent.

public String commonPrefixWithString(String aString, int mask)

Discussion
The returned string is based on the characters of the receiver. For example, if the receiver is “Ma¨dchen” and
aString is “Mädchenschule”, the string returned is “Ma¨dchen”, not “Mädchen”. The following search options
may be specified in mask by combining them with the C bitwise OR operator:

CaseInsensitiveSearch

LiteralSearch

See “Strings” for details on these options.

See Also
hasPrefix (page 600)

componentsSeparatedByString
Returns an NSArray containing substrings from the receiver that have been divided by separator.

Instance Methods 597
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

public NSArray componentsSeparatedByString(String separator)

Discussion
The substrings in the array appear in the order they did in the receiver. If the string begins or ends with the
separator, the first or last substring, respectively, is empty. For example, this code excerpt:

NSStringReference list = "wrenches, hammers, saws";
NSArray listItems = [list.componentsSeparatedByString (", ")];

produces an array with these contents:

SubstringIndex

wrenches0

hammers1

saws2

If list begins with a comma and space—for example, “, wrenches, hammers, saws”—the array has these
contents:

SubstringIndex

(empty string)0

wrenches1

hammers2

saws3

If list has no separators—for example, “wrenches”—the array contains the string itself, in this case
“wrenches”.

See Also
componentsJoinedByString (page 61) (NSArray)

dataUsingEncoding
Returns an NSData object containing a representation of the receiver in encoding.

public NSData dataUsingEncoding(int encoding, boolean flag)

Discussion
Returns null if flag is false and the receiver can’t be converted without losing some information (such
as accents or case). If flag is true and the receiver can’t be converted without losing some information,
some characters may be removed or altered in conversion. For example, in converting a character from
UnicodeStringEncoding to ASCIIStringEncoding, the character ‘Á’ becomes ‘A’, losing the accent.

598 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

This method creates an external representation (with a byte order marker, if necessary, to indicate endianness)
to ensure that the resulting NSData object can be written out to a file safely. The result of this method, when
lossless conversion is made, is the default “plain text” format for encoding and is the recommended way to
save or transmit a string object.

See Also
availableStringEncodings (page 596)
canBeConvertedToEncoding (page 597)

decomposedStringWithCanonicalMapping
Returns a string made by normalizing the receiver’s contents.

public String decomposedStringWithCanonicalMapping()

Discussion
This method normalizes the string using the Unicode Normalization Form D.

Availability
Available in Mac OS X v10.2 and later.

See Also
precomposedStringWithCanonicalMapping (page 601)
decomposedStringWithCompatibilityMapping (page 599)

decomposedStringWithCompatibilityMapping
Returns a string made by normalizing the receiver’s contents.

public String decomposedStringWithCompatibilityMapping()

Discussion
This method normalizes the string using the Unicode Normalization Form KD.

Availability
Available in Mac OS X v10.2 and later.

See Also
precomposedStringWithCompatibilityMapping (page 601)
decomposedStringWithCanonicalMapping (page 599)

fastestEncoding
Returns the fastest encoding to which the receiver may be converted without loss of information.

public int fastestEncoding()

Discussion
“Fastest” applies to retrieval of characters from the string. This encoding may not be space efficient.

Instance Methods 599
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

See Also
smallestEncoding (page 602)

hasPrefix
Returns true if aString matches the beginning characters of the receiver, false otherwise.

public boolean hasPrefix(String aString)

Discussion
Returns false if aString is empty. This method is a convenience for comparing strings using the
AnchoredSearch option. See “Strings” for more information.

See Also
hasSuffix (page 600)

hasSuffix
Returns true if aString matches the ending characters of the receiver, false otherwise.

public boolean hasSuffix(String aString)

Discussion
Returns false if aString is empty. This method is a convenience for comparing strings using the
AnchoredSearch and BackwardsSearch options. See “Strings” for more information.

See Also
hasPrefix (page 600)

length
Returns the number of Unicode characters in the receiver.

public int length()

Discussion
This number includes the individual characters of composed character sequences, so you can’t use this
method to determine if a string will be visible when printed or how long it will appear.

lineRangeForRange
Returns the smallest range of characters representing the lines containing aRange, including the characters
that terminate the lines.

public NSRange lineRangeForRange(NSRange aRange)

See Also
paragraphRangeForRange (page 601)
substringWithRange (page 602)

600 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

paragraphRangeForRange
Returns the smallest range of characters representing the paragraph containing aRange, including the
characters that terminate the paragraph.

public NSRange paragraphRangeForRange(NSRange range)

Availability
Available in Mac OS X v10.3 and later.

See Also
lineRangeForRange (page 600)

precomposedStringWithCanonicalMapping
Returns a string made by normalizing the receiver’s contents.

public String precomposedStringWithCanonicalMapping()

Discussion
This method normalizes the string using the Unicode Normalization Form C.

Availability
Available in Mac OS X v10.2 and later.

See Also
precomposedStringWithCompatibilityMapping (page 601)
decomposedStringWithCanonicalMapping (page 599)

precomposedStringWithCompatibilityMapping
Returns a string made by normalizing the receiver’s contents.

public String precomposedStringWithCompatibilityMapping()

Discussion
This method normalizes the string using the Unicode Normalization Form KC.

Availability
Available in Mac OS X v10.2 and later.

See Also
precomposedStringWithCanonicalMapping (page 601)
decomposedStringWithCompatibilityMapping (page 599)

rangeOfString
Returns an NSRange giving the location and length of the first occurrence of subString within the receiver.

public NSRange rangeOfString(String subString)

Instance Methods 601
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

Discussion
If subString isn’t found, returns a range of {NSArray.NotFound, 0}. The length of the returned range and
that of subString may differ if equivalent composed character sequences are matched.

Returns a range of {NSArray.NotFound, 0} if subString is the null string or empty.

Returns an NSRange giving the location and length of the first occurrence of subString within aRange in
the receiver.

public NSRange rangeOfString(String subString, int mask, NSRange aRange)

Discussion
If subString isn’t found, returns a range of {NSArray.NotFound, 0}. The length of the returned range and
that of subString may differ if equivalent composed character sequences are matched. The following
options may be specified in mask by combining them with the C bitwise OR operator:

CaseInsensitiveSearch

LiteralSearch

BackwardsSearch

AnchoredSearch

See “Strings” for details on these options. Throws a RangeException if any part of aRange lies beyond the
end of the string. Returns a range of {NSArray.NotFound, 0} if subString is the null string or empty.

smallestEncoding
Returns the smallest encoding to which the receiver can be converted without loss of information.

public int smallestEncoding()

Discussion
This encoding may not be the fastest for accessing characters, but is very space-efficient. This method itself
may take some time to execute.

See Also
fastestEncoding (page 599)

string
Returns a Java String version of the receiver.

public String string()

substringWithRange
Returns a string object containing the characters of the receiver that lie within aRange.

public String substringWithRange(NSRange aRange)

602 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver. This method treats
the length of the string as a valid range value that returns an empty string.

writeToURL
public boolean writeToURL(java.net.URL aURL, boolean atomically)

Discussion
Writes the contents of the receiver to the location specified by aURL.

If atomically is true, the receiver is written to an auxiliary location, and then the auxiliary location is
renamed to aURL. If atomically is false, the receiver is written directly to aURL. The true option guarantees
that aURL, if it exists at all, won’t be corrupted even if the system should crash during writing.

This method returns true if the location is written successfully, and false otherwise.

The atomically parameter is ignored if aURL is not of a type that can be accessed atomically.

See Also
defaultCStringEncoding (page 596)

This method is deprecated.

public boolean writeToURL(java.net.URL aURL, boolean atomically, int encoding)

Discussion

Writes the contents of the receiver, converted into encoding encoding, to the location specified by aURL,
writing atomically if atomically is true and aURL supports it. Returns true if the location is written
successfully, and false otherwise.

Availability
Deprecated.
Available in Mac OS X v10.0 and later. Deprecated in Mac OS X v10.4.

Constants

The following constants are provided by NSStringReference as possible string encodings. This is an incomplete
list.

DescriptionConstant

Strict 7-bit ASCII encoding within 8-bit chars; ASCII values 0..127 onlyASCIIStringEncoding

ISO 2022 Japanese encoding for emailISO2022JPStringEncoding

8-bit ISO Latin 1 encodingISOLatin1StringEncoding

8-bit ISO Latin 2 encodingISOLatin2StringEncoding

Constants 603
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

DescriptionConstant

8-bit EUC encoding for Japanese textJapaneseEUCStringEncoding

Classic Macintosh Roman encodingMacOSRomanStringEncoding

8-bit ASCII encoding with NEXTSTEP extensionsNEXTSTEPStringEncoding

7-bit verbose ASCII to represent all Unicode charactersNonLossyASCIIStringEncoding

8-bit Shift-JIS encoding for Japanese textShiftJISStringEncoding

8-bit Adobe Symbol encoding vectorSymbolStringEncoding

An 8-bit representation of Unicode characters, suitable for
transmission or storage by ASCII-based systems

UTF8StringEncoding

The canonical Unicode encoding for string objectsUnicodeStringEncoding

Microsoft Windows codepage 1250; equivalent to WinLatin2WindowsCP1250StringEncoding

Microsoft Windows codepage 1251, encoding Cyrillic characters;
equivalent to AdobeStandardCyrillic font encoding

WindowsCP1251StringEncoding

Microsoft Windows codepage 1252; equivalent to WinLatin1WindowsCP1252StringEncoding

Microsoft Windows codepage 1253, encoding Greek charactersWindowsCP1253StringEncoding

Microsoft Windows codepage 1254, encoding Turkish charactersWindowsCP1254StringEncoding

604 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 98

NSStringReference

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Interacting with the Operating System

Overview

The NSSystem class provides methods to access process-wide information. The class object can return such
information as the host name, the user’s name and home directory, the process name and its arguments,
and the process’s environment variables. The class also provides a method, log (page 608), to send strings
to stderr.

Tasks

Constructors

NSSystem (page 606)
Creates a new NSSystem instance.

Getting User Information

currentFullUserName (page 607)
Returns the full name of the current user.

currentHomeDirectory (page 607)
Returns a path to the current user’s home directory.

currentUserName (page 607)
Returns the logon name of the current user.

homeDirectoryForUser (page 608)
Returns a path to the home directory for the user specified by userName.

Getting Framework Information

foundationVersionNumber (page 607)
Returns the version number for the Foundation framework.

Overview 605
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 99

NSSystem

Getting Process Information

arguments (page 607)
Returns the command line arguments as an array of strings.

environment (page 607)
Returns a dictionary of variables for the environment from which the process was launched.

processName (page 609)
Returns the name of the process.

Getting Host Information

hostName (page 608)
Returns the name of the host system.

operatingSystem (page 608)
Returns a constant to indicate the operating system on which the process is executing.

operatingSystemName (page 608)
Returns a string containing the name of the operating system on which the process is executing.

operatingSystemVersionString (page 608)
Returns a string containing the version of the operating system on which the process is executing.

Logging and Setting Arguments

log (page 608)
Logs aString to stderr.

setArguments (page 609)
Modifies the process’s arguments to the elements of args.

setProcessName (page 609)
Sets the name of the process to newName.

Constructors

NSSystem
Creates a new NSSystem instance.

public NSSystem()

Discussion
All of the NSSystem methods are static, so there is no need create individual instances.

606 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 99

NSSystem

Static Methods

arguments
Returns the command line arguments as an array of strings.

public static NSArray arguments()

currentFullUserName
Returns the full name of the current user.

public static String currentFullUserName()

See Also
currentUserName (page 607)

currentHomeDirectory
Returns a path to the current user’s home directory.

public static String currentHomeDirectory()

See Also
homeDirectoryForUser (page 608)

currentUserName
Returns the logon name of the current user.

public static String currentUserName()

See Also
currentFullUserName (page 607)

environment
Returns a dictionary of variables for the environment from which the process was launched.

public static NSDictionary environment()

Discussion
The dictionary keys are the environment variable names.

foundationVersionNumber
Returns the version number for the Foundation framework.

Static Methods 607
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 99

NSSystem

public static double foundationVersionNumber()

homeDirectoryForUser
Returns a path to the home directory for the user specified by userName.

public static String homeDirectoryForUser(String userName)

See Also
currentHomeDirectory (page 607)

hostName
Returns the name of the host system.

public static String hostName()

log
Logs aString to stderr.

public static void log(String aString)

operatingSystem
Returns a constant to indicate the operating system on which the process is executing.

public static int operatingSystem()

Discussion
See “Constants” (page 610) for a list of possible values.

operatingSystemName
Returns a string containing the name of the operating system on which the process is executing.

public static String operatingSystemName()

Discussion
In Mac OS X, this returns the string "NSMACHOperatingSystem".

operatingSystemVersionString
Returns a string containing the version of the operating system on which the process is executing.

public static String operatingSystemVersionString()

608 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 99

NSSystem

Discussion
This string is human readable, localized, and is appropriate for displaying to the user or using in bug emails
and such. This string is NOT appropriate for parsing

Availability
Available in Mac OS X v10.2 and later.

processName
Returns the name of the process.

public static String processName()

Discussion
This name is used to register application defaults and is in error messages. It does not uniquely identify the
process.

See Also
setProcessName (page 609)

setArguments
Modifies the process’s arguments to the elements of args.

public static void setArguments(String[] args)

Discussion
A “java” argument is automatically inserted as the process’s first argument.

Modifies the process’s arguments to the elements of args.

public static void setArguments(NSArray args)

See Also
arguments (page 607)

setProcessName
Sets the name of the process to newName.

public static void setProcessName(String newName)

Discussion

Warning: User defaults and other aspects of the environment might depend on the process name, so
be very careful if you change it. Setting the process name in this manner is not thread-safe.

See Also
processName (page 609)

Static Methods 609
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 99

NSSystem

Constants

The following constants are provided by NSSystem as return values from operatingSystem (page 608):

DescriptionConstant

Indicates the HP UX operating system.HPUXOperatingSystem

Indicates the Mac OS X operating system.MACHOperatingSystem

Indicates the Solaris operating system.SolarisOperatingSystem

Indicates the Windows 95 operating system.Windows95OperatingSystem

Indicates the Windows NT operating system.WindowsNTOperatingSystem

The following constant can be used to determine if you are using a version of the Foundation framework
newer than the version delivered in Mac OS X v10.0:

DescriptionConstant

The Foundation framework included in Mac OS X v10.0.FoundationVersionNumber10_0

The Foundation framework included in Mac OS X v10.1.FoundationVersionNumber10_1

610 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 99

NSSystem

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guides Timer Programming Topics for Cocoa
Run Loops

Overview

NSTimer creates timer objects or, more simply, timers. A timer waits until a certain time interval has elapsed
and then fires, sending a specified message to a specified object. For example, you could create an NSTimer
that sends a message to a window, telling it to update itself after a certain time interval.

If you specify in the constructor that the timer should repeat, it automatically reschedules itself after it fires.
If you specify that the timer should not repeat, it is automatically invalidated after it fires.

To request the removal of a timer from an NSRunLoop, send the timer the invalidate (page 612) message
from the same thread on which the timer was installed. This message immediately disables the timer, so it
no longer affects the NSRunLoop. The NSRunLoop removes and releases the timer, either just before the
invalidate (page 612) method returns or at some later point.

Tasks

Constructors

NSTimer (page 612)
Returns an empty NSTimer.

Stopping a Timer

invalidate (page 612)
Stops the receiver from ever firing again and requests its removal from its NSRunLoop.

Information About a Timer

isValid (page 613)
Returns true if the receiver is currently valid, false otherwise.

Overview 611
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 100

NSTimer

timeInterval (page 613)
Returns the receiver’s time interval.

userInfo (page 613)
Returns the userInfo object, containing additional data the target may use when the receiver is
fired.

Constructors

NSTimer
Returns an empty NSTimer.

public NSTimer()

Creates a new NSTimer that, when added to a run loop, will fire after seconds.

public NSTimer(double seconds, Object target, NSSelector aSelector, Object userInfo,
boolean repeats)

Discussion
Upon firing, the timer sends aSelector to target. The aSelectormethod must have the following syntax:

public void myTimerFireMethod(NSTimer* theTimer)

The timer passes itself as the argument to aSelector. To pass more information to the target, use userInfo.
The target gets userInfo by sending userInfo (page 613) to the timer.

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval. If repeats is true, the
timer will repeatedly reschedule itself until invalidated. If repeats is false, the timer will be invalidated
after it fires.

Instance Methods

invalidate
Stops the receiver from ever firing again and requests its removal from its NSRunLoop.

public void invalidate()

Discussion
This is the only way to remove a timer from an NSRunLoop. The NSRunLoop removes and releases the timer,
either just before the invalidate (page 612) method returns or at some later point.

You must send this message from the thread on which the timer was installed. If you send this message from
another thread, the input source associated with the timer may not be removed from its run loop, which
could prevent the thread from exiting properly.

612 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 100

NSTimer

isValid
Returns true if the receiver is currently valid, false otherwise.

public boolean isValid()

timeInterval
Returns the receiver’s time interval.

public double timeInterval()

userInfo
Returns the userInfo object, containing additional data the target may use when the receiver is fired.

public Object userInfo()

Discussion
Do not invoke this method after the timer is invalidated. Use isValid (page 613) to test whether the timer
is valid.

Instance Methods 613
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 100

NSTimer

614 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 100

NSTimer

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide Date and Time Programming Guide for Cocoa

Overview

NSTimeZone is an abstract class that defines the behavior of time zone objects. Time zone objects represent
geopolitical regions. Consequently, these objects have names for these regions. Time zone objects also
represent a temporal offset, either plus or minus, from Greenwich Mean Time (GMT) and an abbreviation
(such as PST for Pacific Standard Time).

NSTimeZone provides several static methods to get time zone objects: timeZoneWithName (page 619),
timeZoneWithNameAndData (page 620), and timeZoneForSecondsFromGMT (page 619). The class also
permits you to set the default time zone within your application (setDefaultTimeZone (page 619)). You
can access this default time zone at any time with the defaultTimeZone (page 618) static method, and with
the localTimeZone (page 618) static method, you can get a relative time zone object that decodes itself to
become the default time zone for any locale in which it finds itself.

Some NSGregorianDate methods return date objects that are automatically bound to time zone objects.
These date objects use the functionality of NSTimeZone to adjust dates for the proper locale. Unless you
specify otherwise, objects returned from NSGregorianDate are bound to the default time zone for the current
locale.

Tasks

Constructors

NSTimeZone (page 617)

Getting Time Zones

timeZoneWithName (page 619)
Returns the time zone object identified by the name aTimeZoneName.

Overview 615
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 101

NSTimeZone

timeZoneWithNameAndData (page 620)
Returns the time zone with the name aTimeZoneName whose data has been initialized using the
contents of data.

timeZoneForSecondsFromGMT (page 619)
Returns a time zone object offset from Greenwich Mean Time by seconds.

Getting the Default Time Zone

localTimeZone (page 618)
Returns an object that forwards all messages to the default time zone for your application.

defaultTimeZone (page 618)
Returns the default time zone set for your application.

setDefaultTimeZone (page 619)
Sets the default time zone for your application to aTimeZone.

resetSystemTimeZone (page 619)
Clears the previously determined system time zone, if any.

systemTimeZone (page 619)
Returns the time zone currently used by the system.

Getting Time Zone Information

abbreviationDictionary (page 618)
Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

knownTimeZoneNames (page 618)
Returns an array of strings listing the names of all the time zones known to the system.

Getting Information About a Specific Time Zone

abbreviation (page 620)
Returns the abbreviation for the receiver, such as “EDT” (Eastern Daylight Time).

abbreviationForDate (page 620)
Returns the abbreviation for the receiver at the specified date.

name (page 621)
Returns the geopolitical region name that identifies the receiver.

secondsFromGMT (page 622)
Returns the current difference in seconds between the receiver and Greenwich Mean Time.

secondsFromGMTForDate (page 622)
Returns the difference in seconds between the receiver and Greenwich Mean Time at aDate.

isDaylightSavingTime (page 621)
Returns true if the receiver is currently using daylight savings time.

isDaylightSavingTimeForDate (page 621)
Returns true if the receiver uses daylight savings time at aDate.

616 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 101

NSTimeZone

data (page 620)
Returns the data that stores the information used by the receiver.

Comparing Time Zones

equals (page 621)
Returns true if anObject is an instance of NSTimeZone and satisfies isEqualToTimeZone (page
621).

isEqualToTimeZone (page 621)
Returns true if aTimeZone and the receiver have the same name and data.

Describing a Time Zone

toString (page 622)

hashCode (page 621)
Returns an integer that can be used as a table address in a hash table structure.

Constructors

NSTimeZone
public NSTimeZone()

Discussion
This constructor has been deprecated. Use any of the timeZone... static methods instead.

public NSTimeZone(int seconds)

Discussion
This constructor has been deprecated. Use timeZoneForSecondsFromGMT (page 619) instead.

public NSTimeZone(String aTimeZoneName, NSData data)

Discussion
This constructor has been deprecated. Use timeZoneWithNameAndData (page 620) instead.

public NSTimeZone(String aTimeZoneName, boolean isAbbrev)

Discussion
This constructor has been deprecated. Use timeZoneWithName (page 619) instead.

Constructors 617
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 101

NSTimeZone

Static Methods

abbreviationDictionary
Returns a dictionary holding the mappings of time zone abbreviations to time zone names.

public static NSDictionary abbreviationDictionary()

Discussion
More than one time zone may have the same abbreviation. For example, US/Pacific and Canada/Pacific both
use the abbreviation “PST.” In these cases abbreviationDictionary chooses a single name to map the
abbreviation to.

defaultTimeZone
Returns the default time zone set for your application.

public static NSTimeZone defaultTimeZone()

Discussion
If no default time zone has been set, this method invokes systemTimeZone (page 619) and returns the system
time zone.

See Also
localTimeZone (page 618)
setDefaultTimeZone (page 619)
systemTimeZone (page 619)

knownTimeZoneNames
Returns an array of strings listing the names of all the time zones known to the system.

public static NSArray knownTimeZoneNames()

localTimeZone
Returns an object that forwards all messages to the default time zone for your application.

public static NSTimeZone localTimeZone()

Discussion
This behavior is particularly useful for NSGregorianDate objects that are archived or sent as distributed objects
and may be interpreted in different locales.

See Also
defaultTimeZone (page 618)
setDefaultTimeZone (page 619)

618 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 101

NSTimeZone

resetSystemTimeZone
Clears the previously determined system time zone, if any.

public static void resetSystemTimeZone()

Discussion
This method also resets the default time zone if it is the same as the system time zone. Subsequent calls to
systemTimeZone (page 619) will attempt to redetermine the system time zone.

setDefaultTimeZone
Sets the default time zone for your application to aTimeZone.

public static void setDefaultTimeZone(NSTimeZone aTimeZone)

Discussion
There can be only one default time zone, so by setting a new default time zone, you lose the previous one.

See Also
defaultTimeZone (page 618)
localTimeZone (page 618)

systemTimeZone
Returns the time zone currently used by the system.

public static NSTimeZone systemTimeZone()

Discussion
If it can’t figure out the current time zone, returns the GMT time zone.

timeZoneForSecondsFromGMT
Returns a time zone object offset from Greenwich Mean Time by seconds.

public static Object timeZoneForSecondsFromGMT(int seconds)

Discussion
The name of the new time zone is GMT +/– the offset, in hours and minutes. Time zones created with this
method never have daylight savings, and the offset is constant no matter the date.

See Also
timeZoneWithName (page 619)

timeZoneWithName
Returns the time zone object identified by the name aTimeZoneName.

public static Object timeZoneWithName(String aTimeZoneName, boolean flag)

Static Methods 619
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 101

NSTimeZone

Discussion
It searches the time zone information directory for matching names. Returns null if there is no match for
the name.

See Also
timeZoneForSecondsFromGMT (page 619)
knownTimeZoneNames (page 618)

timeZoneWithNameAndData
Returns the time zone with the name aTimeZoneName whose data has been initialized using the contents
of data.

public static Object timeZoneWithNameAndData(String aTimeZoneName, NSData data)

Discussion
You should not call this method directly—use timeZoneWithName (page 619) to get the time zone object
for a given name.

See Also
timeZoneWithName (page 619)

Instance Methods

abbreviation
Returns the abbreviation for the receiver, such as “EDT” (Eastern Daylight Time).

public String abbreviation()

Discussion
Invokes abbreviationForDate (page 620) with the current date as the argument.

abbreviationForDate
Returns the abbreviation for the receiver at the specified date.

public String abbreviationForDate(NSDate aDate)

Discussion
Note that the abbreviation may be different at different dates. For example, during daylight savings time the
US/Eastern time zone has an abbreviation of “EDT.” At other times, its abbreviation is “EST.”

data
Returns the data that stores the information used by the receiver.

public NSData data()

620 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 101

NSTimeZone

Discussion
This data should be treated as an opaque object.

equals
Returns true if anObject is an instance of NSTimeZone and satisfies isEqualToTimeZone (page 621).

public boolean equals(Object anObject)

Discussion
Returns false otherwise.

hashCode
Returns an integer that can be used as a table address in a hash table structure.

public int hashCode()

isDaylightSavingTime
Returns true if the receiver is currently using daylight savings time.

public boolean isDaylightSavingTime()

Discussion
This method invokes isDaylightSavingTimeForDate (page 621) with the current date as the argument.

isDaylightSavingTimeForDate
Returns true if the receiver uses daylight savings time at aDate.

public boolean isDaylightSavingTimeForDate(NSDate aDate)

isEqualToTimeZone
Returns true if aTimeZone and the receiver have the same name and data.

public boolean isEqualToTimeZone(NSTimeZone aTimeZone)

name
Returns the geopolitical region name that identifies the receiver.

public String name()

Instance Methods 621
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 101

NSTimeZone

secondsFromGMT
Returns the current difference in seconds between the receiver and Greenwich Mean Time.

public int secondsFromGMT()

secondsFromGMTForDate
Returns the difference in seconds between the receiver and Greenwich Mean Time at aDate.

public int secondsFromGMTForDate(NSDate aDate)

Discussion
This difference may be different from the current difference if the time zone changes its offset from GMT at
different points in the year—for example, the U.S. time zones change with daylight savings time.

toString
public String toString()

Discussion
Returns a string description of the receiver, including the name, abbreviation, offset from GMT, and whether
or not daylight savings time is currently in effect.

622 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 101

NSTimeZone

Inherits from NSCoder : NSObject

Package: com.apple.cocoa.foundation

Companion guide Archives and Serializations Programming Guide for Cocoa

Overview

NSUnarchiver, a concrete subclass of NSCoder, defines methods for decoding a set of objects from an archive.
Such archives are produced by objects of the NSArchiver (page 47) class.

Tasks

Constructors

NSUnarchiver (page 624)
Creates an empty NSUnarchiver.

Decoding Objects

decodeByte (page 627)
Decodes and returns a byte value that was previously encoded with encodeByte (page 51).

decodeChar (page 627)
Decodes and returns a char value that was previously encoded with encodeChar (page 51).

decodeDataObject (page 627)
Decodes and returns an NSData object that was previously encoded with encodeDataObject (page
52).

decodeDouble (page 627)
Decodes and returns a double value that was previously encoded with encodeDouble (page 52).

decodeFloat (page 628)
Decodes and returns a float value that was previously encoded with encodeFloat (page 52).

decodeInt (page 628)
Decodes and returns an int value that was previously encoded with encodeInt (page 53).

decodeLong (page 628)
Decodes and returns a long value that was previously encoded with encodeLong (page 53).

Overview 623
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 102

NSUnarchiver

decodeObject (page 628)
Decodes and returns an Object object that was previously encoded with encodeObject (page 53).

decodeShort (page 628)
Decodes and returns a short value that was previously encoded with encodeShort (page 53).

unarchiveObjectWithData (page 626)
Decodes and returns the object archived in data.

unarchiveObjectWithFile (page 626)
Decodes and returns the object archived in the file path.

Managing an NSUnarchiver

isAtEnd (page 628)
Returns true if the receiver has reached the end of the encoded data while decoding, false if more
data follows.

data (page 627)
Returns the archive data.

versionForClassName (page 629)
Returns the version number for the archived implementation of the class named className or
NSArray.NotFound if no class named className exists in the archive.

Substituting Classes or Objects

classNameGloballyDecodedForArchiveClassName (page 625)
Returns the name of the class used when instantiating objects whose ostensible class, according to
the archived data, is nameInArchive.

globallyDecodeClassNameAsClassName (page 625)
Instructs instances of NSUnarchiver to use the class named trueName when instantiating objects
whose ostensible class, according to the archived data, is nameInArchive.

classNameDecodedForArchiveClassName (page 626)
Returns the name of the class that will be used when instantiating objects whose ostensible class,
according to the archived data, is nameInArchive.

decodeClassNameAsClassName (page 627)
Instructs the receiver to use the class named trueName when instantiating objects whose ostensible
class, according to the archived data, is nameInArchive.

replaceObject (page 628)
Causes the receiver to substitute newObject for object whenever object is extracted from the
archive.

Constructors

NSUnarchiver
Creates an empty NSUnarchiver.

624 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 102

NSUnarchiver

public NSUnarchiver()

Discussion
Use the other constructor or the static methods unarchiveObjectWithData (page 626) or
unarchiveObjectWithFile (page 626), instead.

Creates an NSUnarchiver from the data object data and prepares the NSUnarchiver for a subsequent invocation
of decodeObject (page 628).

public NSUnarchiver(NSData data)

Discussion
Throws an InvalidArgumentException if data is null.

Static Methods

classNameGloballyDecodedForArchiveClassName
Returns the name of the class used when instantiating objects whose ostensible class, according to the
archived data, is nameInArchive.

public static String classNameGloballyDecodedForArchiveClassName(String
nameInArchive)

Discussion
This method returns nameInArchive if no substitute name has been specified using the static method (not
the instance method) globallyDecodeClassNameAsClassName (page 625).

Note that each individual instance of NSUnarchiver can be given its own class name mappings by invoking
the instance method decodeClassNameAsClassName (page 627). The NSUnarchiver class has no information
about these instance-specific mappings, however, so they don’t affect the return value of
classNameGloballyDecodedForArchiveClassName.

See Also
classNameDecodedForArchiveClassName (page 626)

globallyDecodeClassNameAsClassName
Instructs instances of NSUnarchiver to use the class named trueName when instantiating objects whose
ostensible class, according to the archived data, is nameInArchive.

public static void globallyDecodeClassNameAsClassName(String nameInArchive, String
trueName)

Discussion
This method enables easy conversion of unarchived data when the name of a class has changed since the
archive was created.

Note that there is also an instance method of a similar name. An instance of NSUnarchiver can maintain its
own mapping of class names. However, if both the class method and the instance method have been invoked
using an identical value for nameInArchive, the class method takes precedence.

Static Methods 625
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 102

NSUnarchiver

See Also
classNameGloballyDecodedForArchiveClassName (page 625)
decodeClassNameAsClassName (page 627)

unarchiveObjectWithData
Decodes and returns the object archived in data.

public static Object unarchiveObjectWithData(NSData data)

Discussion
This method invokes decodeObject to create a temporary NSUnarchiver that decodes the object. If the
archived object is the root of a graph of objects, the entire graph is unarchived.

Archives are produced by objects of the NSArchiver (page 47) class.

See Also
encodeRootObject (page 53) (NSArchiver)

unarchiveObjectWithFile
Decodes and returns the object archived in the file path.

public static Object unarchiveObjectWithFile(String path)

Discussion
This convenience method reads the file and then invokes unarchiveObjectWithData (page 626).

Archives are produced by objects of the NSArchiver (page 47) class.

Instance Methods

classNameDecodedForArchiveClassName
Returns the name of the class that will be used when instantiating objects whose ostensible class, according
to the archived data, is nameInArchive.

public String classNameDecodedForArchiveClassName(String nameInArchive)

Discussion
This method returns nameInArchive unless a substitute name has been specified using the instance method
(not the static method) decodeClassNameAsClassName (page 627).

See Also
classNameGloballyDecodedForArchiveClassName (page 625)

626 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 102

NSUnarchiver

data
Returns the archive data.

public NSData data()

Discussion
The returned data object is the same one specified as the argument to the constructor.

decodeByte
Decodes and returns a byte value that was previously encoded with encodeByte (page 51).

public byte decodeByte()

decodeChar
Decodes and returns a char value that was previously encoded with encodeChar (page 51).

public char decodeChar()

decodeClassNameAsClassName
Instructs the receiver to use the class named trueName when instantiating objects whose ostensible class,
according to the archived data, is nameInArchive.

public void decodeClassNameAsClassName(String nameInArchive, String trueName)

Discussion
This method enables easy conversion of unarchived data when the name of a class has changed since the
archive was created.

See Also
classNameDecodedForArchiveClassName (page 626)
globallyDecodeClassNameAsClassName (page 625)

decodeDataObject
Decodes and returns an NSData object that was previously encoded with encodeDataObject (page 52).

public NSData decodeDataObject()

decodeDouble
Decodes and returns a double value that was previously encoded with encodeDouble (page 52).

public double decodeDouble()

Instance Methods 627
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 102

NSUnarchiver

decodeFloat
Decodes and returns a float value that was previously encoded with encodeFloat (page 52).

public float decodeFloat()

decodeInt
Decodes and returns an int value that was previously encoded with encodeInt (page 53).

public int decodeInt()

decodeLong
Decodes and returns a long value that was previously encoded with encodeLong (page 53).

public long decodeLong()

decodeObject
Decodes and returns an Object object that was previously encoded with encodeObject (page 53).

public Object decodeObject()

decodeShort
Decodes and returns a short value that was previously encoded with encodeShort (page 53).

public short decodeShort()

isAtEnd
Returns true if the receiver has reached the end of the encoded data while decoding, false if more data
follows.

public boolean isAtEnd()

Discussion
You can invoke this method after invoking decodeObject to discover whether the archive contains extra
data following the encoded object graph. If it does, you can either ignore this anomaly or consider it an error.

replaceObject
Causes the receiver to substitute newObject for object whenever object is extracted from the archive.

public void replaceObject(Object object, Object newObject)

628 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 102

NSUnarchiver

Discussion
newObject can be of a different class from object, and the class mappings set by
classNameGloballyDecodedForArchiveClassName (page 625) and
decodeClassNameAsClassName (page 627) are ignored.

versionForClassName
Returns the version number for the archived implementation of the class named className or
NSArray.NotFound if no class named className exists in the archive.

public int versionForClassName(String className)

Discussion
The class version number of each encoded object is written to the archive so that newer versions of the class
can detect and properly decode older archived versions.

Instance Methods 629
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 102

NSUnarchiver

630 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 102

NSUnarchiver

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Undo Architecture

Overview

NSUndoManager is a general-purpose recorder of operations for undo and redo. You register an undo
operation by specifying the object that’s changing (or the owner of that object), along with a method to
invoke to revert its state, and the arguments for that method. NSUndoManager groups all operations within
a single cycle of the run loop, so that performing an undo reverts all changes that occurred during the loop.
Also, when performing undo an NSUndoManager saves the operations reverted so that you can redo the
undos.

NSUndoManager is implemented as a class of the Foundation framework because executables other than
applications might want to revert changes to their states. For example, you might have an interactive
command-line tool with undo and redo commands, or there could be distributed object implementations
that can revert operations “over the wire.” However, users typically see undo and redo as application features.
The Application Kit implements undo and redo in its NSTextView object and makes it easy to implement it
in objects along the responder chain.

Tasks

Constructors

NSUndoManager (page 634)
Creates an empty NSUndoManager.

Registering Undo Operations

registerUndoWithTarget (page 638)
Records a single undo operation for target, so that when an undo is performed it is sent aSelector
with anObject as the sole argument.

registerUndoWithTargetAndArguments (page 639)
Records a single undo operation for target, so that when an undo is performed it is sent aSelector
with multiple arguments specified in objects.

Overview 631
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

Checking Undo Ability

canUndo (page 635)
Returns true if the receiver has any actions to undo, false if it doesn’t.

canRedo (page 634)
Returns true if the receiver has any actions to redo, false if it doesn’t.

Performing Undo and Redo

undo (page 641)
Closes the top-level undo group if necessary and invokes undoNestedGroup.

undoNestedGroup (page 642)
Performs the undo operations in the last undo group (whether top-level or nested), recording the
operations on the redo stack as a single group.

redo (page 637)
Performs the operations in the last group on the redo stack, if there are any, recording them on the
undo stack as a single group.

Limiting the Undo Stack

setLevelsOfUndo (page 640)
Sets the maximum number of top-level undo groups the receiver holds to anInt.

levelsOfUndo (page 637)
Returns the maximum number of top-level undo groups the receiver holds.

Creating Undo Groups

beginUndoGrouping (page 634)
Marks the beginning of an undo group.

endUndoGrouping (page 635)
Marks the end of an undo group.

enableUndoRegistration (page 635)
Enables the recording of undo operations.

groupsByEvent (page 636)
Returns true if the receiver automatically creates undo groups around each pass of the run loop,
false if it doesn’t.

setGroupsByEvent (page 640)
Sets a Boolean value that specifies whether the receiver automatically groups undo operations during
the run loop.

groupingLevel (page 636)
Returns the number of nested undo groups (or redo groups, if Redo was last invoked) in the current
event loop.

632 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

Disabling Undo

disableUndoRegistration (page 635)
Disables the recording of undo operations by registerUndoWithTarget.

isUndoRegistrationEnabled (page 637)
Returns a Boolean value that indicates whether the recording of undo operations is enabled.

Checking Whether Undo or Redo Is Being Performed

isUndoing (page 637)
Returns true if the receiver is in the process of performing its undo or undoNestedGroup method,
false otherwise.

isRedoing (page 636)
Returns true if the receiver is in the process of performing its redo method, false otherwise.

Clearing Undo Operations

removeAllActions (page 639)
Clears the undo and redo stacks and reenables the receiver.

removeAllActionsWithTarget (page 639)
Clears the undo and redo stacks of all operations involving target as the recipient of the undo
message.

Setting and Getting the Action Name

setActionName (page 640)
Sets the name of the action associated with the Undo or Redo command to actionName.

redoActionName (page 638)
Returns the name identifying the redo action.

undoActionName (page 641)
Returns the name identifying the undo action.

Getting and Localizing Menu Item Title

redoMenuItemTitle (page 638)
Returns the complete title of the Redo menu command, for example, “Redo Paste.”

undoMenuItemTitle (page 642)
Returns the complete title of the Undo menu command, for example, “Undo Paste.”

redoMenuTitleForUndoActionName (page 638)
Returns the complete, localized title of the Redo menu command for the action identified by
actionName.

Tasks 633
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

undoMenuTitleForUndoActionName (page 642)
Returns the complete, localized title of the Undo menu command for the action identified by
actionName.

Working with Run Loops

runLoopModes (page 639)
Returns the modes governing the types of input handled during a cycle of the run loop.

setRunLoopModes (page 641)
Sets the modes that determine the types of input handled during a cycle of the run loop.

Constructors

NSUndoManager
Creates an empty NSUndoManager.

public NSUndoManager()

Instance Methods

beginUndoGrouping
Marks the beginning of an undo group.

public void beginUndoGrouping()

Discussion
All individual undo operations before a subsequent endUndoGrouping (page 635) message are grouped
together and reversed by a later undo (page 641) message. By default undo groups are begun automatically
at the start of the event loop, but you can begin your own undo groups with this method, and nest them
within other groups.

This method posts an CheckpointNotification (page 643) unless a top-level undo is in progress. It posts
an DidOpenUndoGroupNotification (page 643) if a new group was successfully created.

canRedo
Returns true if the receiver has any actions to redo, false if it doesn’t.

public boolean canRedo()

634 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

Discussion
Because any undo operation registered clears the redo stack, this method posts an
CheckpointNotification (page 643) to allow clients to apply their pending operations before testing the
redo stack.

See Also
canUndo (page 635)
redo (page 637)

canUndo
Returns true if the receiver has any actions to undo, false if it doesn’t.

public boolean canUndo()

Discussion
This fact does not mean you can safely invoke undo (page 641) or undoNestedGroup (page 642)—you may
have to close open undo groups first.

See Also
canRedo (page 634)
enableUndoRegistration (page 635)
registerUndoWithTarget (page 638)

disableUndoRegistration
Disables the recording of undo operations by registerUndoWithTarget.

public void disableUndoRegistration()

Discussion
This method can be invoked multiple times by multiple clients. enableUndoRegistration (page 635) must
be invoked an equal number of times to reenable undo registration.

enableUndoRegistration
Enables the recording of undo operations.

public void enableUndoRegistration()

Discussion
Because undo registration is enabled by default, it is often used to balance a prior
disableUndoRegistration (page 635) message. Undo registration isn’t actually reenabled until an enable
message balances the last disable message in effect. Throws an InternalInconsistencyException if
invoked while no disableUndoRegistration (page 635) message is in effect.

endUndoGrouping
Marks the end of an undo group.

Instance Methods 635
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

public void endUndoGrouping()

Discussion
All individual undo operations back to the matching beginUndoGrouping (page 634) message are grouped
together and reversed by a later undo (page 641) or undoNestedGroup (page 642) message. Undo groups
can be nested, thus providing functionality similar to nested transactions. Throws an
InternalInconsistencyException if there’s no beginUndoGrouping (page 634) message in effect.

This method posts an CheckpointNotification (page 643) and an
WillCloseUndoGroupNotification (page 643) just before the group is closed.

See Also
levelsOfUndo (page 637)

groupingLevel
Returns the number of nested undo groups (or redo groups, if Redo was last invoked) in the current event
loop.

public int groupingLevel()

Discussion
If 0 is returned, there is no open undo or redo group.

See Also
levelsOfUndo (page 637)
setLevelsOfUndo (page 640)

groupsByEvent
Returns true if the receiver automatically creates undo groups around each pass of the run loop, false if
it doesn’t.

public boolean groupsByEvent()

Discussion
The default is true.

See Also
beginUndoGrouping (page 634)
setGroupsByEvent (page 640)

isRedoing
Returns true if the receiver is in the process of performing its redo method, false otherwise.

public boolean isRedoing()

See Also
isUndoing (page 637)

636 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

isUndoing
Returns true if the receiver is in the process of performing its undo or undoNestedGroup method, false
otherwise.

public boolean isUndoing()

See Also
isRedoing (page 636)

isUndoRegistrationEnabled
Returns a Boolean value that indicates whether the recording of undo operations is enabled.

public boolean isUndoRegistrationEnabled()

Discussion
Undo registration is enabled by default.

See Also
disableUndoRegistration (page 635)
enableUndoRegistration (page 635)

levelsOfUndo
Returns the maximum number of top-level undo groups the receiver holds.

public int levelsOfUndo()

Discussion
When ending an undo group results in the number of groups exceeding this limit, the oldest groups are
dropped from the stack. A limit of 0 indicates no limit, so old undo groups are never dropped. The default
is 0.

See Also
enableUndoRegistration (page 635)
setLevelsOfUndo (page 640)

redo
Performs the operations in the last group on the redo stack, if there are any, recording them on the undo
stack as a single group.

public void redo()

Discussion
Throws an InternalInconsistencyException if the method is invoked during an undo operation.

This method posts an CheckpointNotification (page 643) and WillRedoChangeNotification (page
643) before it performs the redo operation, and it posts the DidRedoChangeNotification (page 643) after
it performs the redo operation.

Instance Methods 637
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

See Also
registerUndoWithTarget (page 638)

redoActionName
Returns the name identifying the redo action.

public String redoActionName()

Discussion
For example, if the menu title is “Redo Delete,” the string returned is “Delete.” Returns an empty string if no
action name has been assigned or null if there is nothing to redo.

See Also
setActionName (page 640)
undoActionName (page 641)

redoMenuItemTitle
Returns the complete title of the Redo menu command, for example, “Redo Paste.”

public String redoMenuItemTitle()

Discussion
Returns “Redo” if no action name has been assigned or null if there is nothing to redo.

See Also
undoMenuItemTitle (page 642)

redoMenuTitleForUndoActionName
Returns the complete, localized title of the Redo menu command for the action identified by actionName.

public String redoMenuTitleForUndoActionName(String actionName)

Discussion
Override this method if you want to customize the localization behavior. This method is invoked by
redoMenuItemTitle (page 638).

See Also
undoMenuTitleForUndoActionName (page 642)

registerUndoWithTarget
Records a single undo operation for target, so that when an undo is performed it is sent aSelector with
anObject as the sole argument.

public void registerUndoWithTarget(Object target, NSSelector aSelector, Object
anObject)

638 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

Discussion
Also clears the redo stack. See “Registering Undo Operations” for more information.

Throws an InternalInconsistencyException if invoked when no undo group has been established
using beginUndoGrouping (page 634). Undo groups are normally set by default, so you should rarely need
to begin a top-level undo group explicitly.

See Also
undoNestedGroup (page 642)
groupingLevel (page 636)

registerUndoWithTargetAndArguments
Records a single undo operation for target, so that when an undo is performed it is sent aSelector with
multiple arguments specified in objects.

public void registerUndoWithTargetAndArguments(Object target, NSSelector aSelector,
Object[] objects)

See Also
registerUndoWithTarget (page 638)

removeAllActions
Clears the undo and redo stacks and reenables the receiver.

public void removeAllActions()

See Also
enableUndoRegistration (page 635)
removeAllActionsWithTarget (page 639)

removeAllActionsWithTarget
Clears the undo and redo stacks of all operations involving target as the recipient of the undo message.

public void removeAllActionsWithTarget(Object target)

Discussion
Doesn’t reenable the receiver if it’s disabled. An object that shares an NSUndoManager with other clients
should invoke this message in its implementation of dealloc.

See Also
enableUndoRegistration (page 635)
removeAllActions (page 639)

runLoopModes
Returns the modes governing the types of input handled during a cycle of the run loop.

Instance Methods 639
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

public NSArray runLoopModes()

Discussion
By default, the sole run-loop mode is NSRunLoop.DefaultRunLoopMode (which excludes data from
NSConnections).

See Also
setRunLoopModes (page 641)

setActionName
Sets the name of the action associated with the Undo or Redo command to actionName.

public void setActionName(String actionName)

Discussion
If actionName is an empty string, the action name currently associated with the menu command is removed.
There is no effect if actionName is null.

See Also
redoActionName (page 638)
undoActionName (page 641)

setGroupsByEvent
Sets a Boolean value that specifies whether the receiver automatically groups undo operations during the
run loop.

public void setGroupsByEvent(boolean flag)

Discussion
If flag is true, the receiver creates undo groups around each pass through the run loop; if flag is false it
doesn’t. The default is true.

If you turn automatic grouping off, you must close groups explicitly before invoking either undo (page 641)
or undoNestedGroup (page 642).

See Also
groupingLevel (page 636)
groupsByEvent (page 636)

setLevelsOfUndo
Sets the maximum number of top-level undo groups the receiver holds to anInt.

public void setLevelsOfUndo(int anInt)

Discussion
When ending an undo group results in the number of groups exceeding this limit, the oldest groups are
dropped from the stack. A limit of 0 indicates no limit, so that old undo groups are never dropped. The default
is 0.

640 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

If invoked with a limit below the prior limit, old undo groups are immediately dropped.

See Also
enableUndoRegistration (page 635)
levelsOfUndo (page 637)

setRunLoopModes
Sets the modes that determine the types of input handled during a cycle of the run loop.

public void setRunLoopModes(NSArray modes)

Discussion
By default, the sole run-loop mode is NSRunLoop.DefaultRunLoopMode (which excludes data from
NSConnections). With this method, you could limit the input to data received during a mouse-tracking session
by setting the mode to NSApplication.EventTrackingRunLoopMode, or you could limit it to data received
from a modal panel with NSApplication.ModalPanelRunLoopMode.

See Also
runLoopModes (page 639)

undo
Closes the top-level undo group if necessary and invokes undoNestedGroup.

public void undo()

Discussion
It also invokes endUndoGrouping (page 635) if the nesting level is 1. Throws an
InternalInconsistencyException if more than one undo group is open (that is, if the last group isn’t
at the top level).

This method posts an CheckpointNotification (page 643).

See Also
enableUndoRegistration (page 635)
groupingLevel (page 636)

undoActionName
Returns the name identifying the undo action.

public String undoActionName()

Discussion
For example, if the menu title is “Undo Delete,” the string returned is “Delete.” Returns an empty string if no
action name has been assigned or null if there is nothing to undo.

See Also
redoActionName (page 638)
setActionName (page 640)

Instance Methods 641
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

undoMenuItemTitle
Returns the complete title of the Undo menu command, for example, “Undo Paste.”

public String undoMenuItemTitle()

Discussion
Returns “Undo” if no action name has been assigned or null if there is nothing to undo.

See Also
redoMenuItemTitle (page 638)

undoMenuTitleForUndoActionName
Returns the complete, localized title of the Undo menu command for the action identified by actionName.

public String undoMenuTitleForUndoActionName(String actionName)

Discussion
Override this method if you want to customize the localization behavior. This method is invoked by
undoMenuItemTitle (page 642).

See Also
redoMenuTitleForUndoActionName (page 638)

undoNestedGroup
Performs the undo operations in the last undo group (whether top-level or nested), recording the operations
on the redo stack as a single group.

public void undoNestedGroup()

Discussion
Throws an InternalInconsistencyException if any undo operations have been registered since the
last enableUndoRegistration (page 635) message.

This method posts an CheckpointNotification (page 643) and WillUndoChangeNotification (page
643) before it performs the undo operation, and it posts an DidUndoChangeNotification (page 643) after
it performs the undo operation.

See Also
undo (page 641)

Constants

NSUndoManager provides the following constant as a convenience; you can use it to compare to values
returned by some NSUndoManager methods:

642 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

DescriptionConstant

Used with NSRunLoop’s performSelectorWithOrder (page
501).

UndoCloseGroupingRunLoopOrdering

Notifications

CheckpointNotification
Posted whenever an NSUndoManager opens or closes an undo group (except when it opens a top-level
group) and when checking the redo stack in canRedo (page 634). The notification object is the
NSUndoManager. This notification does not contain a userInfo dictionary.

DidOpenUndoGroupNotification
Posted whenever an NSUndoManager opens an undo group, which occurs in the implementation of the
beginUndoGrouping (page 634) method. The notification object is the NSUndoManager. This notification
does not contain a userInfo dictionary.

DidRedoChangeNotification
Posted just after an NSUndoManager performs a redo operation (redo (page 637)). The notification object
is the NSUndoManager. This notification does not contain a userInfo dictionary.

DidUndoChangeNotification
Posted just after an NSUndoManager performs an undo operation. If you invoke undo (page 641) or
undoNestedGroup (page 642), this notification is posted. The notification object is the NSUndoManager.
This notification does not contain a userInfo dictionary.

WillCloseUndoGroupNotification
Posted before an NSUndoManager closes an undo group, which occurs in the implementation of the
endUndoGrouping (page 635) method. The notification object is the NSUndoManager. This notification does
not contain a userInfo dictionary.

WillRedoChangeNotification
Posted just before an NSUndoManager performs a redo operation (redo (page 637)). The notification object
is the NSUndoManager. This notification does not contain a userInfo dictionary.

WillUndoChangeNotification
Posted just before an NSUndoManager performs an undo operation. If you invoke undo (page 641) or
undoNestedGroup (page 642), this notification is posted. The notification object is the NSUndoManager.
This notification does not contain a userInfo dictionary.

Notifications 643
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

644 Notifications
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 103

NSUndoManager

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.2 and later.

Companion guide Cocoa Scripting Guide

Overview

Specifies an object in a collection (or container) by unique ID. This specifier works only for objects that have
an ID property. The unique ID object passed into NSUniqueIDSpecifiers must be either a number object, such
as an Integer, or a String. The exact type should match the scripting dictionary declaration of the ID attribute
for the relevant scripting class.

You can expect that the ID property will be read only for any object that supports it. Therefore a scripter can
obtain the unique ID for an object and refer to the object by the ID, but cannot set the unique ID.

You don’t normally subclass NSUniqueIDSpecifier.

The evaluation of NSUniqueIDSpecifiers follows these steps until the specified object is found:

1. If the container implements a method whose selector matches the relevantvalueIn<Key>WithUniqueID
pattern established by scripting key-value coding, the method is invoked. This method can potentially
be very fast, and it may be relatively easy to implement.

2. As is the case when evaluating any script object specifier, the container of the specified object is given
a chance to evaluate the object specifier. If the container class implements the
indicesOfObjectsByEvaluatingObjectSpecifier method, the method is invoked. This method
can potentially be very fast, but it is relatively difficult to implement.

3. An NSWhoseSpecifier that specifies the first object whose relevant 'ID ' attribute matches the ID is
synthesized and evaluated. The NSWhoseSpecifier must search through all of the keyed elements in the
container, looking for a match. The search is potentially very slow.

Overview 645
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 104

NSUniqueIDSpecifier

Tasks

Constructors

NSUniqueIDSpecifier (page 646)
Creates an NSUniqueIDSpecifier with no data.

Accessing Unique ID Information

setUniqueID (page 647)
Sets the ID encapsulated by the receiver.

uniqueID (page 647)
Returns the ID encapsulated by the receiver.

Constructors

NSUniqueIDSpecifier
Creates an NSUniqueIDSpecifier with no data.

public NSUniqueIDSpecifier()

Discussion
Do not use this constructor.

Availability
Available in Mac OS X v10.2 and later.

Returns a newly created unidentified NSUniqueIDSpecifier with container specifier container and key
property.

public NSUniqueIDSpecifier(NSScriptObjectSpecifier container, String property)

Discussion
The class description of container is set automatically. Use setUniqueID (page 647) to assign an ID to the
returned object.

Availability
Available in Mac OS X v10.2 and later.

Creates an unidentified NSUniqueIDSpecifier initialized with container specifier container, key property,
and the class description of the object specifier classDescription, derived from the value of the specifier’s
key.

public NSUniqueIDSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier container, String property)

646 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 104

NSUniqueIDSpecifier

Discussion
The receiver’s child specifier reference is set to null. Use setUniqueID (page 647) to assign a name to the
returned object.

Availability
Available in Mac OS X v10.2 and later.

Creates an NSUniqueIDSpecifier with the ID uniqueID initialized with container specifier container, key
property, and the class description of the object specifier classDescription, derived from the value of
the specifier’s key.

public NSUniqueIDSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier container, String property, String uniqueID)

Discussion
The receiver’s child specifier reference is set to null.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods

setUniqueID
Sets the ID encapsulated by the receiver.

public void setUniqueID(Object uniqueID)

Discussion
uniqueID must be an instance of NSNumber or NSString. The type should match the declared type of the
attribute of the specified scriptable class whose four-character code is 'ID '. Although NSUniqueIDSpecifier
supports setting the unique ID, the ID for a specified object is likely to remain static over the life of the object.

Availability
Available in Mac OS X v10.2 and later.

See Also
uniqueID (page 647)

uniqueID
Returns the ID encapsulated by the receiver.

public Object uniqueID()

Availability
Available in Mac OS X v10.2 and later.

See Also
setUniqueID (page 647)

Instance Methods 647
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 104

NSUniqueIDSpecifier

648 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 104

NSUniqueIDSpecifier

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide User Defaults Programming Topics for Cocoa

Class at a Glance

The NSUserDefaults class provides a programmatic interface for interacting with the defaults system.

Principal Attributes

 ■ A dictionary of defaults

Commonly Used Methods

objectForKey (page 658)
Returns the default value for the specified key.

setObjectForKey (page 662)
Sets the default value for the specified key.

removeObjectForKey (page 660)
Removes the default entry identified by the specified key.

registerDefaults (page 660)
Adds the specified defaults to the RegistrationDomain—a cache of application-provided defaults
that are used unless a user overrides them.

Overview

The NSUserDefaults class provides a programmatic interface for interacting with the defaults system. The
defaults system allows an application to customize its behavior to match a user’s preferences. For example,
you can allow users to determine what units of measurement your application displays or how often documents
are automatically saved. Applications record such preferences by assigning values to a set of parameters in
a user’s defaults database. The parameters are referred to as defaults since they’re commonly used to determine
an application’s default state at startup or the way it acts by default.

A defaults database is created automatically for each user.

Class at a Glance 649
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

At runtime, you use an NSUserDefaults object to read the defaults that your application uses from a user’s
defaults database. NSUserDefaults caches the information to avoid having to open the user’s defaults database
each time you need a default value. The synchronize (page 664) method, which is automatically invoked
at periodic intervals, keeps the in-memory cache in sync with a user’s defaults database.

If your application supports managed environments, you can use an NSUserDefaults object to determine
which preferences are managed by an administrator for the benefit of the user. Managed environments
correspond to computer labs or classrooms where an administrator or teacher may want to configure the
systems in a particular way. In these situations, the teacher can establish a set of default preferences and
force those preferences on users. If a preference is managed in this manner, applications should prevent
users from editing that preference by disabling any appropriate controls.

A default’s value can be only property list objects: NSData, string, number, NSDate, NSArray, or NSDictionary.

Warning: User defaults are not thread safe.

Tasks

Constructors

NSUserDefaults (page 653)
Creates an NSUserDefaults for the current user account and with the argument and registration
domains set up.

Getting the Shared Instance

standardUserDefaults (page 653)
Returns the shared defaults object.

resetStandardUserDefaults (page 653)
Synchronizes any changes made to the shared user defaults object and releases it from memory.

Getting a Default

arrayForKey (page 654)
Invokes objectForKey (page 658) with key defaultName.

booleanForKey (page 655)
Invokes stringForKey (page 664) with key defaultName.

dataForKey (page 655)
Invokes objectForKey (page 658) with key defaultName.

dictionaryForKey (page 655)
Invokes objectForKey (page 658) with key defaultName.

doubleForKey (page 656)
Invokes stringForKey (page 664) with key defaultName.

650 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

floatForKey (page 656)
Invokes stringForKey (page 664) with key defaultName.

integerForKey (page 657)
Invokes stringForKey (page 664) with key defaultName.

longForKey (page 657)
Invokes stringForKey (page 664) with key defaultName.

objectForKey (page 658)
Returns the value of the first occurrence of the default identified by defaultName, searching the
domains included in the search list in the order they’re listed.

objectForKeyInDomain (page 658)
Returns the value for defaultName in the domain domainName.

stringForKey (page 664)
Invokes objectForKey (page 658) with key defaultName.

Setting and Removing Defaults

removeObjectForKey (page 660)
Removes the value for the default identified by defaultName in the standard application domain.

removeObjectForKeyInDomain (page 660)
Deletes defaultName from the domain domainName for the current user on any host.

setBooleanForKey (page 661)
Sets the value of the default identified by defaultName to a string representation of true or false,
depending on value.

setDoubleForKey (page 662)
Sets the value of the default identified by defaultName to a string representation of value.

setFloatForKey (page 662)
Sets the value of the default identified by defaultName to a string representation of value.

setIntegerForKey (page 662)
Sets the value of the default identified by defaultName to a string representation of value.

setLongForKey (page 662)
Sets the value of the default identified by defaultName to a string representation of value.

setObjectForKey (page 662)
Sets the value of the default identified by defaultName in the standard application domain.

setObjectForKeyInDomain (page 663)
Sets value as the value for defaultName in the domain domainName for the current user on any
host.

Accessing Managed Environment Keys

objectIsForcedForKey (page 658)
Determines whether key is managed by an administrator.

objectIsForcedForKeyInDomain (page 659)
Determines whether key is managed by an administrator.

Tasks 651
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

Setting and Getting the Search List

setSearchList (page 663)
This method has been deprecated.

searchList (page 661)
This method has been deprecated.

dictionaryRepresentation (page 656)
Returns a dictionary that contains a union of all key-value pairs in the domains in the search list.

Maintaining Persistent Domains

persistentDomainForName (page 659)
Returns a dictionary representing the persistent domain identified by domainName.

persistentDomainNames (page 659)
Returns an array containing the names of the current persistent domains.

removePersistentDomainForName (page 660)
Removes the persistent domain identified by domainName from the user’s defaults.

setPersistentDomainForName (page 663)
Sets the dictionary to domain for the persistent domain named domainName.

synchronize (page 664)
Saves any modifications to the persistent domains and updates all persistent domains that were not
modified to what is on disk.

Maintaining Volatile Domains

removeVolatileDomainForName (page 661)
Removes the volatile domain identified by domainName from the user’s defaults.

setVolatileDomainForName (page 664)
Sets the dictionary for the volatile domain named domainName to domain.

volatileDomainForName (page 665)
Returns a dictionary representing the volatile domain identified by domainName.

volatileDomainNames (page 665)
Returns an array containing the names of the current volatile domains.

Registering Defaults

registerDefaults (page 660)
Adds the contents of dictionary to the registration domain.

Maintaining Suites

addSuiteNamed (page 654)
Inserts a new domain, suiteName, into the receiver’s search list.

652 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

removeSuiteNamed (page 661)
Removes the suiteName domain from the receiver’s search list.

Constructors

NSUserDefaults
Creates an NSUserDefaults for the current user account and with the argument and registration domains set
up.

public NSUserDefaults()

Discussion
This constructor does not put anything in the search list.

See Also
standardUserDefaults (page 653)

Static Methods

resetStandardUserDefaults
Synchronizes any changes made to the shared user defaults object and releases it from memory.

public static void resetStandardUserDefaults()

Discussion
A subsequent invocation of standardUserDefaults (page 653) creates a new shared user defaults object
with the standard search list.

standardUserDefaults
Returns the shared defaults object.

public static NSUserDefaults standardUserDefaults()

Discussion
If it does not exist yet, it is created with a search list containing the names of the following domains, in this
order:

 ■ ArgumentDomain, consisting of defaults parsed from the application’s arguments

 ■ A domain identified by the application’s bundle identifier

 ■ GlobalDomain, consisting of defaults meant to be seen by all applications

 ■ Separate domains for each of the user’s preferred languages

Constructors 653
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

 ■ RegistrationDomain, a set of temporary defaults whose values can be set by the application to ensure
that searches will always be successful

The defaults are initialized for the current user. Subsequent modifications to the standard search list remain
in effect even when this method is invoked again—the search list is guaranteed to be standard only the first
time this method is invoked. The shared instance is provided as a convenience.

Instance Methods

addSuiteNamed
Inserts a new domain, suiteName, into the receiver’s search list.

public void addSuiteNamed(String suiteName)

Discussion
The suite domain is inserted after the application domain.

The suiteName domain is similar to a bundle identifier string, but is not tied to a particular application or
bundle. A suite can be used to hold preferences that are shared between multiple applications.

See Also
standardUserDefaults (page 653)
removeSuiteNamed (page 661)

arrayForKey
Invokes objectForKey (page 658) with key defaultName.

public NSArray arrayForKey(String defaultName)

Discussion
Returns the value associated with defaultName if it’s an NSArray object and null otherwise.

See Also
booleanForKey (page 655)
dataForKey (page 655)
dictionaryForKey (page 655)
doubleForKey (page 656)
floatForKey (page 656)
integerForKey (page 657)
longForKey (page 657)
objectForKey (page 658)
stringForKey (page 664)

654 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

booleanForKey
Invokes stringForKey (page 664) with key defaultName.

public boolean booleanForKey(String defaultName)

Discussion
Returns true if the value associated with defaultName is an String containing the word “yes” in uppercase
or lowercase or responds to the intValuemessage by returning a nonzero value. Otherwise, returns false.

See Also
arrayForKey (page 654)
dataForKey (page 655)
dictionaryForKey (page 655)
doubleForKey (page 656)
floatForKey (page 656)
integerForKey (page 657)
longForKey (page 657)
objectForKey (page 658)
stringForKey (page 664)

dataForKey
Invokes objectForKey (page 658) with key defaultName.

public NSData dataForKey(String defaultName)

Discussion
Returns the corresponding value if it’s an NSData object and null otherwise.

See Also
arrayForKey (page 654)
booleanForKey (page 655)
dictionaryForKey (page 655)
doubleForKey (page 656)
floatForKey (page 656)
integerForKey (page 657)
longForKey (page 657)
objectForKey (page 658)
stringForKey (page 664)

dictionaryForKey
Invokes objectForKey (page 658) with key defaultName.

public NSDictionary dictionaryForKey(String defaultName)

Discussion
Returns the corresponding value if it’s an NSDictionary object and null otherwise.

Instance Methods 655
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

See Also
arrayForKey (page 654)
booleanForKey (page 655)
dataForKey (page 655)
doubleForKey (page 656)
floatForKey (page 656)
integerForKey (page 657)
longForKey (page 657)
objectForKey (page 658)
stringForKey (page 664)

dictionaryRepresentation
Returns a dictionary that contains a union of all key-value pairs in the domains in the search list.

public NSDictionary dictionaryRepresentation()

Discussion
As with objectForKey (page 658), key-value pairs in domains that are earlier in the search list take precedence.
The combined result doesn’t preserve information about which domain each entry came from.

See Also
searchList (page 661)

doubleForKey
Invokes stringForKey (page 664) with key defaultName.

public double doubleForKey(String defaultName)

Discussion
Returns 0 if no string is returned. Otherwise, the resulting string is sent a doubleValue message, which
provides this method’s return value.

See Also
arrayForKey (page 654)
booleanForKey (page 655)
dataForKey (page 655)
dictionaryForKey (page 655)
integerForKey (page 657)
floatForKey (page 656)
longForKey (page 657)
objectForKey (page 658)
stringForKey (page 664)

floatForKey
Invokes stringForKey (page 664) with key defaultName.

656 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

public float floatForKey(String defaultName)

Discussion
Returns 0 if no string is returned. Otherwise, the resulting string is sent a floatValue message, which
provides this method’s return value.

See Also
arrayForKey (page 654)
booleanForKey (page 655)
dataForKey (page 655)
dictionaryForKey (page 655)
doubleForKey (page 656)
integerForKey (page 657)
longForKey (page 657)
objectForKey (page 658)
stringForKey (page 664)

integerForKey
Invokes stringForKey (page 664) with key defaultName.

public int integerForKey(String defaultName)

Discussion
Returns 0 if no string is returned. Otherwise, the resulting string is sent an intValuemessage, which provides
this method’s return value.

See Also
arrayForKey (page 654)
booleanForKey (page 655)
dataForKey (page 655)
doubleForKey (page 656)
dictionaryForKey (page 655)
floatForKey (page 656)
longForKey (page 657)
objectForKey (page 658)
stringForKey (page 664)

longForKey
Invokes stringForKey (page 664) with key defaultName.

public long longForKey(String defaultName)

Discussion
Returns 0 if no string is returned. Otherwise, the resulting string is sent a longValuemessage, which provides
this method’s return value.

See Also
arrayForKey (page 654)

Instance Methods 657
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

booleanForKey (page 655)
dataForKey (page 655)
doubleForKey (page 656)
dictionaryForKey (page 655)
floatForKey (page 656)
integerForKey (page 657)
objectForKey (page 658)
stringForKey (page 664)

objectForKey
Returns the value of the first occurrence of the default identified by defaultName, searching the domains
included in the search list in the order they’re listed.

public Object objectForKey(String defaultName)

Discussion
Returns null if the default isn’t found.

See Also
arrayForKey (page 654)
booleanForKey (page 655)
dataForKey (page 655)
dictionaryForKey (page 655)
doubleForKey (page 656)
floatForKey (page 656)
longForKey (page 657)
stringForKey (page 664)

objectForKeyInDomain
Returns the value for defaultName in the domain domainName.

public Object objectForKeyInDomain(String defaultName, String domainName)

Discussion
Only the defaults defined in the domainName for the current user for any host are searched. If defaultName
is not found, null is returned.

See Also
removeObjectForKeyInDomain (page 660)
setObjectForKeyInDomain (page 663)

objectIsForcedForKey
Determines whether key is managed by an administrator.

public boolean objectIsForcedForKey(String key)

658 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

Discussion
Returns true if the value of key is managed by an administrator; otherwise returns false. This method
assumes that key is a preference associated with the current user and application. For managed keys, the
application should disable any user interface that allows the user to modify the value of key.

Availability
Available in Mac OS X v10.2 and later.

See Also
objectIsForcedForKeyInDomain (page 659)

objectIsForcedForKeyInDomain
Determines whether key is managed by an administrator.

public boolean objectIsForcedForKeyInDomain(String key, String domain)

Discussion
Returns true if the value of key in the specified domain is managed by an administrator; otherwise returns
false. This method assumes that key is a preference associated with the current user. For managed keys,
the application should disable any user interface that allows the user to modify the value of key.

Availability
Available in Mac OS X v10.2 and later.

See Also
objectIsForcedForKey (page 658)

persistentDomainForName
Returns a dictionary representing the persistent domain identified by domainName.

public NSDictionary persistentDomainForName(String domainName)

Discussion
The keys in the dictionary are names of defaults, and the value corresponding to each key is a property list
object (NSData, String, Number, NSDate, NSArray, or NSDictionary). domainName should be your application’s
bundle identifier.

See Also
removePersistentDomainForName (page 660)
setPersistentDomainForName (page 663)

persistentDomainNames
Returns an array containing the names of the current persistent domains.

public NSArray persistentDomainNames()

Instance Methods 659
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

Discussion
You can get each domain by using the domain names in the array as arguments to
persistentDomainForName (page 659).

See Also
removePersistentDomainForName (page 660)
setPersistentDomainForName (page 663)

registerDefaults
Adds the contents of dictionary to the registration domain.

public void registerDefaults(NSDictionary dictionary)

Discussion
If there is no registration domain, it’s created using dictionary, and RegistrationDomain is added to
the end of the search list.

removeObjectForKey
Removes the value for the default identified by defaultName in the standard application domain.

public void removeObjectForKey(String defaultName)

Discussion
Removing a default has no effect on the value returned by the objectForKey (page 658) method if the same
key exists in a domain that precedes the standard application domain in the search list.

See Also
setObjectForKey (page 662)

removeObjectForKeyInDomain
Deletes defaultName from the domain domainName for the current user on any host.

public void removeObjectForKeyInDomain(String defaultName, String domainName)

Discussion
If domainName is part of the receiver’s search list, posts an UserDefaultsDidChangeNotification (page
667).

See Also
objectForKeyInDomain (page 658)
setObjectForKeyInDomain (page 663)

removePersistentDomainForName
Removes the persistent domain identified by domainName from the user’s defaults.

public void removePersistentDomainForName(String domainName)

660 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

Discussion
The first time a persistent domain is changed after synchronize (page 664), a
UserDefaultsDidChangeNotification (page 667) is posted. domainName should be your application’s
bundle identifier.

See Also
setPersistentDomainForName (page 663)

removeSuiteNamed
Removes the suiteName domain from the receiver’s search list.

public void removeSuiteNamed(String suiteName)

See Also
addSuiteNamed (page 654)

removeVolatileDomainForName
Removes the volatile domain identified by domainName from the user’s defaults.

public void removeVolatileDomainForName(String domainName)

See Also
setVolatileDomainForName (page 664)

searchList
This method has been deprecated.

public NSArray searchList()

See Also
setSearchList (page 663)
dictionaryRepresentation (page 656)

setBooleanForKey
Sets the value of the default identified by defaultName to a string representation of true or false,
depending on value.

public void setBooleanForKey(boolean value, String defaultName)

Discussion
Invokes setObjectForKey (page 662) as part of its implementation.

See Also
booleanForKey (page 655)

Instance Methods 661
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

setDoubleForKey
Sets the value of the default identified by defaultName to a string representation of value.

public void setDoubleForKey(double value, String defaultName)

Discussion
Invokes setObjectForKey (page 662) as part of its implementation.

See Also
doubleForKey (page 656)

setFloatForKey
Sets the value of the default identified by defaultName to a string representation of value.

public void setFloatForKey(float value, String defaultName)

Discussion
Invokes setObjectForKey (page 662) as part of its implementation.

See Also
floatForKey (page 656)

setIntegerForKey
Sets the value of the default identified by defaultName to a string representation of value.

public void setIntegerForKey(int value, String defaultName)

Discussion
Invokes setObjectForKey (page 662) as part of its implementation.

See Also
integerForKey (page 657)

setLongForKey
Sets the value of the default identified by defaultName to a string representation of value.

public void setLongForKey(long value, String defaultName)

Discussion
Invokes setObjectForKey (page 662) as part of its implementation.

See Also
longForKey (page 657)

setObjectForKey
Sets the value of the default identified by defaultName in the standard application domain.

662 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

public void setObjectForKey(Object value, String defaultName)

Discussion
Setting a default has no effect on the value returned by the objectForKey (page 658) method if the same
key exists in a domain that precedes the application domain in the search list.

See Also
removeObjectForKey (page 660)

setObjectForKeyInDomain
Sets value as the value for defaultName in the domain domainName for the current user on any host.

public void setObjectForKeyInDomain(Object value, String defaultName, String
domainName)

Discussion
If domainName is part of the receiver’s search list, it posts an UserDefaultsDidChangeNotification (page
667).

See Also
objectForKeyInDomain (page 658)
removeObjectForKeyInDomain (page 660)

setPersistentDomainForName
Sets the dictionary to domain for the persistent domain named domainName.

public void setPersistentDomainForName(NSDictionary domain, String domainName)

Discussion
The first time a persistent domain is changed after synchronize (page 664), a
UserDefaultsDidChangeNotification (page 667) is posted. domainName should be your application’s
bundle identifier.

See Also
persistentDomainForName (page 659)
persistentDomainNames (page 659)

setSearchList
This method has been deprecated.

public void setSearchList(NSArray array)

See Also
searchList (page 661)

Instance Methods 663
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

setVolatileDomainForName
Sets the dictionary for the volatile domain named domainName to domain.

public void setVolatileDomainForName(NSDictionary domain, String domainName)

Discussion
This method throws an InvalidArgumentException if a volatile domain with domainName already exists.

See Also
volatileDomainForName (page 665)
volatileDomainNames (page 665)

stringForKey
Invokes objectForKey (page 658) with key defaultName.

public String stringForKey(String defaultName)

Discussion
Returns the corresponding value if it’s a String object and null otherwise.

See Also
arrayForKey (page 654)
booleanForKey (page 655)
dataForKey (page 655)
dictionaryForKey (page 655)
doubleForKey (page 656)
floatForKey (page 656)
integerForKey (page 657)
longForKey (page 657)
objectForKey (page 658)

synchronize
Saves any modifications to the persistent domains and updates all persistent domains that were not modified
to what is on disk.

public boolean synchronize()

Discussion
Returns false if it could not save data to disk. Because synchronize is automatically invoked at periodic
intervals, use this method only if you cannot wait for the automatic synchronization (for example, if your
application is about to exit) or if you want to update user defaults to what is on disk even though you have
not made any changes.

See Also
persistentDomainForName (page 659)
persistentDomainNames (page 659)
removePersistentDomainForName (page 660)
setPersistentDomainForName (page 663)

664 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

volatileDomainForName
Returns a dictionary representing the volatile domain identified by domainName.

public NSDictionary volatileDomainForName(String domainName)

Discussion
The keys in the dictionary are names of defaults, and the value corresponding to each key is a property list
object (NSData, String, Number, NSDate, NSArray, or NSDictionary).

See Also
removeVolatileDomainForName (page 661)
setVolatileDomainForName (page 664)

volatileDomainNames
Returns an array containing the names of the current volatile domains.

public NSArray volatileDomainNames()

Discussion
You can get each domain by using the domain names in the array as arguments to
volatileDomainForName (page 665).

See Also
removeVolatileDomainForName (page 661)
setVolatileDomainForName (page 664)

Constants

NSUserDefaults provides the following constants as a convenience. They provide access to values of the keys
to the locale dictionary, which is discussed in “User Defaults”.

DescriptionConstant

An array of strings that specify how the morning and afternoon designations
are printed. The defaults are AM and PM.

AMPMDesignation

A string that specifies the symbol used to denote currency in this language.
The default is “$”.

CurrencySymbol

A format string that specifies how dates are printed using the date format
specifiers. The default is to use weekday names with full month names and
full years, as in “Saturday, March 24, 2001.”

DateFormatString

Constants 665
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

DescriptionConstant

A string that specifies how to use ambiguous numbers in date strings.
Specify this value as a permutation of the letters M (month), D (day), Y
(year), and H (hour). For example, MDYH treats “2/3/01 10” as the 3rd day
of February 2001 at 10:00 am, whereas DMYH treats the same value as the
2nd day of March 2001 at 10:00 am. If fewer numbers are specified than
are needed, the numbers are prioritized to satisfy day first, then month,
and then year. For example, if you supply only the value 12, it means the
12th day of this month in this year because the day must be specified. If
you supply “2 12” it means either February 12 or December 2, depending
on if the ordering is “MDYH” or “DMYH.”

DateTimeOrdering

Strings that identify the decimal digits in addition to or instead of the ASCII
digits.

DecimalDigits

A string that specifies the decimal separator. The decimal separator
separates the ones place from the tenths place. The default is “.”.

DecimalSeparator

An array of strings that denote a time in the past. These are adjectives that
modify values from YearMonthWeekDesignations. The defaults are
“prior,” “last,” “past,” and “ago.”

EarlierTimeDesignations

Strings that identify the time of day. These strings should be bound to an
hour. The default is this array of arrays: (0, midnight), (10, morning), (12,
noon, lunch), (14, afternoon), (19, dinner).

HourNameDesignations

A string containing a three-letter abbreviation for currency, following the
ISO 4217 standard.

International-
CurrencyString

An array of strings that denotes a time in the future. This array is an adjective
that modifies a value from YearMonthWeekDesignations. The default
is (next).

LaterTimeDesignations

An array that specifies the full names for the months.MonthNameArray

A format string that specifies how negative numbers are printed when
representing a currency value. The default is “–$9,999.00”.

NegativeCurrency-
FormatString

A string that identifies the day after today. The default is (tomorrow).NextDayDesignations

A string that identifies the day after tomorrow. The default is (nextday).NextNextDayDesignations

A format string that specifies how positive numbers are printed when
representing a currency value. The default is “$9,999.00”.

PositiveCurrency-
FormatString

A string that identifies the day before today. The default is (yesterday).PriorDayDesignations

A format string that specifies how dates are abbreviated. The default is to
separate the day month and year with slashes and to put the day first, as
in 31/10/01.

ShortDateFormatString

An array that specifies the abbreviations for the months.ShortMonthNameArray

666 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

DescriptionConstant

A format string that specifies how times and dates are abbreviated. The
default is to use dashes to separate the day, month, and year and to use a
12-hour clock, as in “31-Jan-01 1:30 PM. “

ShortTimeDate-
FormatString

An array that specifies the abbreviations for the days of the week. Sunday
should be the first day of the week.

ShortWeekDayNameArray

A string that identifies what this day is called. The default is (today, now).ThisDayDesignations

A string that specifies the separator character for the thousands place of a
decimal number. The default is a comma.

ThousandsSeparator

A format string that specifies how dates with times are printed. The default
is to use full month names and days with a 24-hour clock, as in “Sunday,
January 01, 2001 23:00:00 Pacific Standard Time.”

TimeDateFormatString

A format string that specifies how dates with times are printed. The default
is to use a 12-hour clock.

TimeFormatString

An array that gives the names for the days of the week. Sunday should be
the first day of the week.

WeekDayNameArray

An array of strings that specifies the words for year, month, and week in
the current locale. The defaults are “year,” “month,” and “week.”

YearMonthWeek-
Designations

Notifications

UserDefaultsDidChangeNotification
This notification is posted the first time after a synchronize when a change is made to defaults in a persistent
domain.

The notification object is the NSUserDefaults instance. This notification does not contain a userInfodictionary.

Notifications 667
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

668 Notifications
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 105

NSUserDefaults

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.3 and later.

Companion guide Value Transformer Programming Guide

Overview

NSValueTransformer is an abstract class that is used by the Cocoa Bindings technology to transform values
from one representation to another.

An application creates a subclass of NSValueTransformer, overriding the necessary methods to provide the
required custom transformation.

Tasks

Constructors

NSValueTransformer (page 670)
Creates and returns an empty NSValueTransformer.

Using Name-based Registry

setValueTransformerForName (page 670)
Registers the value transformer specified by transformer as handling transformations with the
identifier name.

valueTransformerForName (page 671)
Returns the value transformer identified by name in the shared registry or null if not found.

valueTransformerNames (page 671)
Returns an array of all the registered value transformers.

Overview 669
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 106

NSValueTransformer

Getting Information About a Transformer

allowsReverseTransformation (page 670)
Returns a Boolean value that indicates whether the value transformer can reverse a transformation.

transformedValueClass (page 671)
Returns the class of the value returned by the transformer.

Using Transformers

transformedValue (page 672)
Returns the result of transforming value.

reverseTransformedValue (page 671)
Returns the result of the reverse transformation of value.

Constructors

NSValueTransformer
Creates and returns an empty NSValueTransformer.

public NSValueTransformer()

Availability
Available in Mac OS X v10.3 and later.

Static Methods

allowsReverseTransformation
Returns a Boolean value that indicates whether the value transformer can reverse a transformation.

public static boolean allowsReverseTransformation()

Discussion
Subclasses should override this method and return true if it supports reverse value transformations.

Availability
Available in Mac OS X v10.3 and later.

setValueTransformerForName
Registers the value transformer specified by transformer as handling transformations with the identifier
name.

670 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 106

NSValueTransformer

public static void setValueTransformerForName(NSValueTransformer transformer, String
name)

Availability
Available in Mac OS X v10.3 and later.

See Also
valueTransformerForName (page 671)

transformedValueClass
Returns the class of the value returned by the transformer.

public static Class transformedValueClass()

Discussion
Subclasses should override this method and return the appropriate class.

Availability
Available in Mac OS X v10.3 and later.

valueTransformerForName
Returns the value transformer identified by name in the shared registry or null if not found.

public static NSValueTransformer valueTransformerForName(String name)

Availability
Available in Mac OS X v10.3 and later.

See Also
setValueTransformerForName (page 670)

valueTransformerNames
Returns an array of all the registered value transformers.

public static NSArray valueTransformerNames()

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

reverseTransformedValue
Returns the result of the reverse transformation of value.

Instance Methods 671
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 106

NSValueTransformer

public Object reverseTransformedValue(Object value)

Discussion
The default implementation throws an exception if allowsReverseTransformation (page 670) returns
false; otherwise it will invoke transformedValue (page 672) with value.

Subclasses should override this method if they require more complex reverse transformations than, for
example, negation. If your value transformer converts a nonlocalized string to a localized string, your
implementation of this method might return a nonlocalized version of the string passed to it.

Availability
Available in Mac OS X v10.3 and later.

See Also
transformedValue (page 672)

transformedValue
Returns the result of transforming value.

public Object transformedValue(Object value)

Discussion
Override this method in your implementation to transform and return an object based on value. The default
implementation simply returns value.

Availability
Available in Mac OS X v10.3 and later.

See Also
reverseTransformedValue (page 671)

Constants

The following named value transformers are defined by NSValueTransformer:

DescriptionConstant

This value transformer negates a boolean value, transforming true to
false and false to true. This transformer is reversible.

NegateBoolean-
TransformerName

This value transformer returns true if the value is null. This transformer
is not reversible.

IsNilTransformerName

This value transformer returns true if the value is non-null.This
transformer is not reversible.

IsNotNilTransformerName

672 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 106

NSValueTransformer

DescriptionConstant

This value transformer returns an object created by attempting to
unarchive the data in the NSData object passed as the value. The reverse
transformation returns an NSData instance created by archiving the value.
The archived object must implement the NSCoding protocol using
sequential archiving in order to be unarchived and archived with this
transformer.

UnarchiveFromData-
TransformerName

Constants 673
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 106

NSValueTransformer

674 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 106

NSValueTransformer

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

NSWhoseSpecifier specifies every object in a collection (or every element in a container) that matches the
condition defined by a single Boolean expression or multiple Boolean expressions connected by logical
operators. NSWhoseSpecifier is unique among object specifiers in that its top-level container is typically not
the application object but an evaluated object specifier involved in the tested-for condition. An
NSWhoseSpecifier encapsulates a “test” object for defining this condition. A test object is instantiated from
a subclass of the abstract NSScriptWhoseTest class, whose one declared method is isTrue (page 558). See
“Boolean Expressions and Logical Operations” (page 541) in NSScriptObjectSpecifier and the descriptions in
NSComparisonMethods (page 685) and NSScriptingComparisonMethods (page 691) for more information.

The set of elements specified by an NSWhoseSpecifier can be a subset of those that pass the
NSWhoseSpecifier’s test. This subset is specified by the various subelement properties of the NSWhoseSpecifier.
Consider as an example the specifier paragraphs where color of third word is blue. This would
be represented by an NSWhoseSpecifier that uses a test specifier and another object specifier to identify a
subset of the objects with the specified property. That is, the specifier’s property is paragraphs; the test
specifier is an index specifier with property words and index 3; and the qualifier is a key value qualifier for
key color and value [NSColor blueColor]. The test object specifier (word at index 3) is evaluated
for each object (paragraph) using that object as the container; the resulting objects (if any) are tested with
the qualifier (color blue).

NSScriptWhoseSpecifier is part of Cocoa’s built-in script handling. You don’t normally subclass it.

Tasks

Constructors

NSWhoseSpecifier (page 676)
Returns an NSWhoseSpecifier with no data.

Overview 675
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 107

NSWhoseSpecifier

Accessing Information About a Whose Specifier

endSubelementIdentifier (page 677)
Returns the end subelement identifier for the specifier, or NoSubelement if there is none.

endSubelementIndex (page 677)
Returns the index position of the last subelement within the range of objects being tested that passes
the specifier’s test.

setEndSubelementIdentifier (page 677)
Sets the end subelement identifier for the specifier to the value of subelement.

setEndSubelementIndex (page 677)
Sets the index position to index of the last subelement within the range of objects being tested that
pass the specifier’s test.

setStartSubelementIdentifier (page 677)
Sets the start subelement identifier for the specifier to the value of subelement.

setStartSubelementIndex (page 678)
Sets the index position to index of the first subelement within the range of objects being tested that
passes the specifier’s test.

setTest (page 678)
Sets the test object to test that is encapsulated by the receiver.

startSubelementIdentifier (page 678)
Returns the start subelement identifier for the specifier.

startSubelementIndex (page 678)
Returns the index position of the first subelement within the range of objects being tested that pass
the specifier’s test.

test (page 678)
Returns the test object encapsulated by the receiver.

Constructors

NSWhoseSpecifier
Returns an NSWhoseSpecifier with no data.

public NSWhoseSpecifier()

Discussion
Do not use this constructor.

Constructs an NSWhoseSpecifier with the class description, container specifier, and key supplied by
classDescription, specifier, and key, respectively.

public NSWhoseSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key)

Constructs an NSWhoseSpecifier with the class description, container specifier, key, and whose test supplied
by classDescription, specifier, key, and test, respectively.

676 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 107

NSWhoseSpecifier

public NSWhoseSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key, NSScriptWhoseTest test)

Constructs an NSWhoseSpecifier with the class description and key supplied by specifier and key,
respectively.

public NSWhoseSpecifier(NSScriptObjectSpecifier specifier, String key)

Instance Methods

endSubelementIdentifier
Returns the end subelement identifier for the specifier, or NoSubelement if there is none.

public int endSubelementIdentifier()

Discussion
See “Constants” (page 679) for a list of possible return values.

endSubelementIndex
Returns the index position of the last subelement within the range of objects being tested that passes the
specifier’s test.

public int endSubelementIndex()

setEndSubelementIdentifier
Sets the end subelement identifier for the specifier to the value of subelement.

public void setEndSubelementIdentifier(int subelement)

Discussion
See “Constants” (page 679) for a list of possible values for subelement.

setEndSubelementIndex
Sets the index position to index of the last subelement within the range of objects being tested that pass
the specifier’s test.

public void setEndSubelementIndex(int index)

Discussion
Used only if the end subelement identifier is IndexSubelement.

setStartSubelementIdentifier
Sets the start subelement identifier for the specifier to the value of subelement.

Instance Methods 677
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 107

NSWhoseSpecifier

public void setStartSubelementIdentifier(int subelement)

Discussion
See “Constants” (page 679) for a list of possible values for subelement.

setStartSubelementIndex
Sets the index position to index of the first subelement within the range of objects being tested that passes
the specifier’s test.

public void setStartSubelementIndex(int index)

Discussion
Used only if the start subelement identifier is IndexSubelement.

setTest
Sets the test object to test that is encapsulated by the receiver.

public void setTest(NSScriptWhoseTest test)

startSubelementIdentifier
Returns the start subelement identifier for the specifier.

public int startSubelementIdentifier()

Discussion
See “Constants” (page 679) for a list of possible return values.

startSubelementIndex
Returns the index position of the first subelement within the range of objects being tested that pass the
specifier’s test.

public int startSubelementIndex()

test
Returns the test object encapsulated by the receiver.

public NSScriptWhoseTest test()

678 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 107

NSWhoseSpecifier

Constants

The following constants are defined by NSWhoseSpecifier and are used by
startSubelementIdentifier (page 678), setStartSubelementIdentifier (page 677),
endSubelementIdentifier (page 677), andsetEndSubelementIdentifier (page 677). NSWhoseSpecifier
uses these constants to specify subelements within the collection of objects being tested that pass the
specifier’s test.

DescriptionConstant

An element at a given index that meets the specifier test.IndexSubelement

Every element that meets the specifier test.EverySubelement

The middle element that meets the specifier test.MiddleSubelement

Any element that meets the specifier test.RandomSubelement

No subelement met the specifier test. Valid only for specifying the end subelement.;
that is, there is no end, so consider all elements.

NoSubelement

Constants 679
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 107

NSWhoseSpecifier

680 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 107

NSWhoseSpecifier

681
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

PART II

Interfaces

682
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

PART II

Interfaces

Implemented by Various Cocoa classes

Package: com.apple.cocoa.foundation

Companion guide Archives and Serializations Programming Guide for Cocoa

Overview

The NSCoding interface is adopted by classes that can be coded with an NSCoder object. Although the
interface technically contains no methods, Java classes must implement the following two methods to be
codable:

protected ClassName(NSCoder decoder, long token);
protected void encodeWithCoder(NSCoder encoder);

The first is a constructor method where ClassName is replaced with the name of your class. It is invoked
when decoding an object. The method must invoke a similar method of its super class if the super class also
implements NSCoding; otherwise, the method needs to invoke another constructor of the super class. The
second method is invoked when encoding an object. The method must invoke the some method of its super
class if the super class also implements NSCoding.

NSCoding is independent of Java’s own serialization protocol, java.io.Serializable. Unlike
java.io.Serializable, NSCoding does not mark classes for automatic coding; instead, each class handles
its own encoding and decoding operations with the methods described above.

Overview 683
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 108

NSCoding

684 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 108

NSCoding

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

This interface defines a set of default comparison methods useful for the comparisons in NSSpecifierTest (page
585). However, if you have scriptable objects that need to perform comparisons for scripting purposes, you
may need to implement some of the methods declared in NSScriptingComparisonMethods (page 691).

Tasks

Performing Comparisons

doesContain (page 686)
Returns true if the receiver contains object, false otherwise.

isCaseInsensitiveLike (page 686)
Returns true if the receiver is considered to be “like” aString when the case of characters in the
receiver is ignored, false otherwise.

isEqualTo (page 686)
Returns true if the receiver is equal to object, false otherwise.

isGreaterThan (page 686)
Returns true if the receiver is greater than object, false otherwise.

isGreaterThanOrEqualTo (page 686)
Returns true if the receiver is greater than or equal to object, false otherwise.

isLessThan (page 687)
Returns true if the receiver is less than object, false otherwise.

isLessThanOrEqualTo (page 687)
Returns true if the receiver is less than or equal to object, false otherwise.

isLike (page 687)
Returns true if the receiver is considered to be “like” object, false otherwise.

isNotEqualTo (page 687)
Returns true if the receiver is not equal to object, false otherwise.

Overview 685
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 109

NSComparisonMethods
(informal protocol)

Instance Methods

doesContain
Returns true if the receiver contains object, false otherwise.

public abstract boolean doesContain(Object object)

Discussion
Currently, doesContain messages are never sent to any object from within Cocoa itself.

isCaseInsensitiveLike
Returns true if the receiver is considered to be “like” aString when the case of characters in the receiver
is ignored, false otherwise.

public abstract boolean isCaseInsensitiveLike(String aString)

Discussion
Currently, isCaseInsensitiveLike messages are never sent to any object from within Cocoa itself.

isEqualTo
Returns true if the receiver is equal to object, false otherwise.

public abstract boolean isEqualTo(Object object)

Discussion
During the evaluation of an NSWhoseSpecifier that contains a test whose operator is NSEqualToComparison,
an isEqualTo message may be sent to each potentially specified object, if neither the potentially specified
object nor the object being tested against implements a scriptingIsEqualTo (page 693) method.

isGreaterThan
Returns true if the receiver is greater than object, false otherwise.

public abstract boolean isGreaterThan(Object object)

Discussion
During the evaluation of an NSWhoseSpecifier that contains a test whose operator is
NSSpecifierTest.GreaterThanComparison, anisGreaterThanmessage may be sent to each potentially
specified object, if the potentially specified object does not implement a scriptingIsGreaterThan (page
693) method and the object being tested against does not implement a
scriptingIsLessThanOrEqualTo (page 693) method.

isGreaterThanOrEqualTo
Returns true if the receiver is greater than or equal to object, false otherwise.

686 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 109

NSComparisonMethods

public abstract boolean isGreaterThanOrEqualTo(Object object)

Discussion
During the evaluation of an NSWhoseSpecifier that contains a test whose operator is
NSSpecifierTest.GreaterThanOrEqualToComparison, anisGreaterThanOrEqualTo message may
be sent to each potentially specified object, if the potentially specified object does not implement a
scriptingIsGreaterThanOrEqualTo (page 693) method and the object being tested against does not
implement a scriptingIsLessThan (page 693) method.

isLessThan
Returns true if the receiver is less than object, false otherwise.

public abstract boolean isLessThan(Object object)

Discussion
During the evaluation of an NSWhoseSpecifier that contains a test whose operator is
NSSpecifierTest.LessThanComparison, an isLessThan message may be sent to each potentially
specified object, if the potentially specified object does not implement a scriptingIsLessThan (page 693)
method and the object being tested against does not implement a
scriptingIsGreaterThanOrEqualTo (page 693) method.

isLessThanOrEqualTo
Returns true if the receiver is less than or equal to object, false otherwise.

public abstract boolean isLessThanOrEqualTo(Object object)

Discussion
During the evaluation of an NSWhoseSpecifier that contains a test whose operator is
NSSpecifierTest.LessThanOrEqualToComparison, an isLessThanOrEqualTomessage may be sent
to each potentially specified object, if the potentially specified object does not implement a
scriptingIsLessThanOrEqualTo (page 693) method and the object being tested against does not
implement a scriptingIsGreaterThan (page 693) method.

isLike
Returns true if the receiver is considered to be “like” object, false otherwise.

public abstract boolean isLike(String object)

Discussion
Currently, isLike messages are never sent to any object from within Cocoa itself.

isNotEqualTo
Returns true if the receiver is not equal to object, false otherwise.

public abstract boolean isNotEqualTo(Object object)

Instance Methods 687
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 109

NSComparisonMethods

Discussion
Currently, isNotEqualTo messages are never sent to any object from within Cocoa itself.

688 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 109

NSComparisonMethods

Package: com.apple.cocoa.foundation

Companion guide Key-Value Coding Programming Guide

Overview

The NSKeyValueCoding interface defines a mechanism in which the properties of an object are accessed
indirectly by name (or key), rather than directly through invocation of an accessor method or as instance
variables. Thus, all of an object’s properties can be accessed in a consistent manner.

The basic method for accessing an object’s value is valueForKey (page 690), which returns the value for the
property identified by the specified key. The default implementation uses the accessor methods normally
implemented by objects (or to access instance variables directly if need be).

Tasks

Getting Values

valueForKey (page 690)
Returns the value for the property identified by key.

Setting Values

takeValueForKey (page 689)
Sets the value for the property identified by key to value.

Instance Methods

takeValueForKey
Sets the value for the property identified by key to value.

public abstract void takeValueForKey(Object value, String key)

Overview 689
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 110

NSKeyValueCoding
(informal protocol)

Discussion
The default implementation works as follows:

1. Searches for a public accessor method of the form setKey, invoking it if there is one.

2. If a public accessor method is not found, searches for a private accessor method of the form _setKey,
invoking it if there is one.

3. If an accessor method is not found takeValueForKey searches for an instance variable based on key
and sets the value directly. For the key “lastName”, this would be _lastName or lastName.

valueForKey
Returns the value for the property identified by key.

public abstract Object valueForKey(String key)

Discussion
The default implementation works as follows:

1. Searches for a public accessor method based on key. For example, with a key of “lastName”, valueForKey
looks for a method named getLastName or lastName.

2. If a public accessor method is not found, searches for a private accessor method based on key (a method
preceded by an underbar). For example, with a key of “lastName”, valueForKey looks for a method
named _getLastName or _lastName.

3. If an accessor method is not found valueForKey searches for an instance variable based on key and
returns its value directly. For the key “lastName”, this would be _lastName or lastName.

Constants

These constants define the available array operators. See “Set and Array Operators” for more information.

690 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 110

NSKeyValueCoding

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide

Overview

This interface defines a set of methods useful for comparing script objects.

Often the correct way to compare two objects for scripting is different from the correct way to compare
objects programmatically. This interface defines a set of methods that can be implemented to perform a
comparison appropriate for scripting that is independent of other methods for doing comparisons.

Cocoa’s scripting support uses these scripting comparison methods, if available, in the process of evaluating
specifier tests. If the first object being tested implements the appropriate method for the comparison
operation, it will be used. If the first object doesn’t implement the appropriate method but the second object
implements the inverse, the inverted comparison is performed. For example, instead of determining whether
object one is less than object two, Cocoa determines whether object two is greater than object one (but only
for the operations is equal, is less than or equal, is less than, is greater than or equal,
or is greater than). If neither of the objects implements the appropriate method, Cocoa falls back on
similar comparison operators in the protocol NSComparisonMethods (page 685) (but again, only for the
operations is equal, is less than or equal, is less than, is greater than or equal, or is
greater than).

Cocoa provides default implementations of these scripting comparison methods for NSStringReference and
NSAttributedString. You should define implementations of these methods for any of your scriptable objects
that need to perform comparisons for scripting purposes that are different than the comparisons provided
by NSComparisonMethods (page 685). If none require different comparison methods, you can implement
only the methods you need from “NSComparisonMethods.”

Tasks

Performing Comparisons

scriptingBeginsWith (page 692)
Returns true if, in a scripting comparison, the compared object matches the beginning of object.
A default implementation is provided for NSStringReference and NSAttributedString.

scriptingContains (page 692)
Returns true if, in a scripting comparison, the compared object contains object. A default
implementation is provided for NSStringReference and NSAttributedString.

Overview 691
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 111

NSScriptingComparisonMethods
(informal protocol)

scriptingEndsWith (page 692)
Returns true if, in a scripting comparison, the compared object matches the end of object. A default
implementation is provided for NSStringReference and NSAttributedString.

scriptingIsEqualTo (page 693)
Returns true if, in a scripting comparison, the compared object is equal to object. A default
implementation is provided for NSStringReference and NSAttributedString.

scriptingIsGreaterThan (page 693)
Returns true if, in a scripting comparison, the compared object is greater than object. A default
implementation is provided for NSStringReference and NSAttributedString.

scriptingIsGreaterThanOrEqualTo (page 693)
Returns true if, in a scripting comparison, the compared object is greater than or equal to object.
A default implementation is provided for NSStringReference and NSAttributedString.

scriptingIsLessThan (page 693)
Returns true if, in a scripting comparison, the compared object is less than object. A default
implementation is provided for NSStringReference and NSAttributedString.

scriptingIsLessThanOrEqualTo (page 693)
Returns true if, in a scripting comparison, the compared object is less than or equal to object. A
default implementation is provided for NSStringReference and NSAttributedString.

Instance Methods

scriptingBeginsWith
Returns true if, in a scripting comparison, the compared object matches the beginning of object. A default
implementation is provided for NSStringReference and NSAttributedString.

public abstract boolean scriptingBeginsWith(Object object)

scriptingContains
Returns true if, in a scripting comparison, the compared object contains object. A default implementation
is provided for NSStringReference and NSAttributedString.

public abstract boolean scriptingContains(Object object)

scriptingEndsWith
Returns true if, in a scripting comparison, the compared object matches the end of object. A default
implementation is provided for NSStringReference and NSAttributedString.

public abstract boolean scriptingEndsWith(Object object)

692 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 111

NSScriptingComparisonMethods

scriptingIsEqualTo
Returns true if, in a scripting comparison, the compared object is equal to object. A default implementation
is provided for NSStringReference and NSAttributedString.

public abstract boolean scriptingIsEqualTo(Object object)

scriptingIsGreaterThan
Returns true if, in a scripting comparison, the compared object is greater than object. A default
implementation is provided for NSStringReference and NSAttributedString.

public abstract boolean scriptingIsGreaterThan(Object object)

scriptingIsGreaterThanOrEqualTo
Returns true if, in a scripting comparison, the compared object is greater than or equal to object. A default
implementation is provided for NSStringReference and NSAttributedString.

public abstract boolean scriptingIsGreaterThanOrEqualTo(Object object)

scriptingIsLessThan
Returns true if, in a scripting comparison, the compared object is less than object. A default implementation
is provided for NSStringReference and NSAttributedString.

public abstract boolean scriptingIsLessThan(Object object)

scriptingIsLessThanOrEqualTo
Returns true if, in a scripting comparison, the compared object is less than or equal to object. A default
implementation is provided for NSStringReference and NSAttributedString.

public abstract boolean scriptingIsLessThanOrEqualTo(Object object)

Instance Methods 693
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 111

NSScriptingComparisonMethods

694 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 111

NSScriptingComparisonMethods

Package: com.apple.cocoa.foundation

Companion guides Cocoa Scripting Guide
Key-Value Coding Programming Guide

Overview

Cocoa scriptability support takes advantage of key-value coding to get and set information in scriptable
objects. The methods in this interface provide additional capabilities for working with key-value coding,
including getting and setting key values by index in multivalue keys and coercing (or converting) a key value.
Additional methods allow the implementer of a scriptable container class to provide fast access to elements
that are being referenced by name and unique ID.

Tasks

Accessing Values

coerceValueForKey (page 696)
Uses type info from the class description and NSScriptCoercionHandler to attempt to convert value
for key to the proper type, if necessary.

valueAtIndexInPropertyWithKey (page 697)
Retrieves a single value from a multivalue key.

valueWithNameInPropertyWithKey (page 697)
Retrieves a single value from a multi-value key.

valueWithUniqueIDInPropertyWithKey (page 697)
Retrieves a single value from a multi-value key.

Inserting Values

insertValueAtIndexInPropertyWithKey (page 696)
Inserts a single value in a multivalue key at the specified index.

insertValueInPropertyWithKey (page 696)
Inserts a single value in a multivalue key.

Overview 695
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 112

NSScriptingKeyValueCoding
(informal protocol)

Updating Values

removeValueAtIndexFromPropertyWithKey (page 696)
Removes a single value at the specified index from a multivalue key.

replaceValueAtIndexInPropertyWithKey (page 697)
Replaces a single value in a multivalue key at the specified index.

Instance Methods

coerceValueForKey
Uses type info from the class description and NSScriptCoercionHandler to attempt to convert value for key
to the proper type, if necessary.

public abstract Object coerceValueForKey(Object value, String key)

Discussion
The method coerceValueFor<Key> is used if it exists.

insertValueAtIndexInPropertyWithKey
Inserts a single value in a multivalue key at the specified index.

public abstract void insertValueAtIndexInPropertyWithKey(Object value, int index,
String key)

Discussion
The method insertIn<Key>AtIndex is invoked if it exists.

insertValueInPropertyWithKey
Inserts a single value in a multivalue key.

public abstract void insertValueInPropertyWithKey(Object value, String key)

Discussion
The method insertIn<Key> is used if it exists. Otherwise, throws an exception. This is part of Cocoa’s
scripting support for inserting newly-created objects into containers without explicitly specifying a location.

Availability
Available in Mac OS X v10.2 and later.

removeValueAtIndexFromPropertyWithKey
Removes a single value at the specified index from a multivalue key.

public abstract void removeValueAtIndexFromPropertyWithKey(int index, String key)

696 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 112

NSScriptingKeyValueCoding

Discussion
The method removeFrom<Key>AtIndex is invoked if it exists.

replaceValueAtIndexInPropertyWithKey
Replaces a single value in a multivalue key at the specified index.

public abstract void replaceValueAtIndexInPropertyWithKey(int index, String key,
Object value)

Discussion
The method replaceIn<Key>AtIndex is invoked if it exists.

valueAtIndexInPropertyWithKey
Retrieves a single value from a multivalue key.

public abstract Object valueAtIndexInPropertyWithKey(int index, String key)

Discussion
This actually works with a single-value key as well if index is 0. The method valueIn<Key>AtIndex is used
if it exists.

valueWithNameInPropertyWithKey
Retrieves a single value from a multi-value key.

public abstract Object valueWithNameInPropertyWithKey(String name, String key)

Discussion
The method valueIn<Key>WithName is used if it exists. Otherwise, an exception is thrown.

Availability
Available in Mac OS X v10.2 and later.

valueWithUniqueIDInPropertyWithKey
Retrieves a single value from a multi-value key.

public abstract Object valueWithUniqueIDInPropertyWithKey(Object uniqueID, String
key)

Discussion
The method valueIn<Key>WithUniqueID is invoked if it exists. Otherwise, an exception is thrown. The
declared type of uniqueID in the constructed method must be Object, String, or one of the scalar types that
can be encapsulated by the numeric classes, such as Integer or Double.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 697
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 112

NSScriptingKeyValueCoding

698 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 112

NSScriptingKeyValueCoding

A

abbreviation instance method 620
abbreviationDictionary class method 618
abbreviationForDate instance method 620
acceptInputForMode instance method 499
addAttributeInRange instance method 306
addAttributesInRange instance method 307
addCharacter instance method 317
addCharactersInRange instance method 317
addCharactersInString instance method 317
addEntriesFromDictionary instance method 327
addIndex instance method 331
addIndexes instance method 331
addIndexesInRange instance method 331
addObject instance method 296, 353
addObjectsFromArray instance method 296, 353
addObjectToBothSidesOfRelationshipWithKey

class method 259
addObjectToPropertyWithKey class method 259
addObserver instance method 162, 403
addPathToLibrarySearchPaths class method 505
addPortForMode instance method 499
addresses instance method 378
addSuiteNamed instance method 654
addTimerForMode instance method 500
AdminApplicationDirectory constant 437
aeteResource instance method 552
AllApplicationsDirectory constant 437
allBundles class method 84
AllDomainsMask constant 437
allFrameworks class method 84
allKeys instance method 156
allKeysForObject instance method 156
AllLibrariesDirectory constant 437
allModes instance method 500
allObjects instance method 568
allowsFloats instance method 414
allowsKeyedCoding instance method 116
allowsNaturalLanguage instance method 211
allowsReverseTransformation class method 670

allValues instance method 156
alphanumericCharacterSet class method 98
AMPMDesignation constant 665
AndLogicalTest constant 265
anyObject instance method 568
appendAttributedString instance method 307
appendData instance method 323
appendString instance method 362
appleEvent instance method 521
appleEventClassCode instance method 531
appleEventCode instance method 510, 531
appleEventCodeForArgumentWithName instance

method 531
appleEventCodeForKey instance method 510
appleEventCodeForReturnType instance method 532
appleEventCodeForSuite instance method 552
AppleScriptErrorAppName constant 46
AppleScriptErrorBriefMessage constant 46
AppleScriptErrorMessage constant 46
AppleScriptErrorNumber constant 46
AppleScriptErrorRange constant 46
ApplicationDirectory constant 437
applyFontTraitsInRange instance method 307
archivedDataWithRootObject class method 49, 229
archiverDidEncodeObject delegate method 238
archiverDidFinish delegate method 238
archiveRootObjectToFile class method 50, 229
archiverWillEncodeObject delegate method 238
archiverWillFinish delegate method 239
archiverWillReplaceObject delegate method 239
ArgumentEvaluationScriptError constant 527
argumentNames instance method 532
arguments class method 607
arguments instance method 184, 521
ArgumentsWrongScriptError constant 527
arrayByAddingObject instance method 60
arrayByAddingObjectsFromArray instance method

61
arrayForKey instance method 654
ascending instance method 582
ASCIIStringEncoding constant 603
AttachmentAttributeName constant 75

699
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Index

attribute instance method 284, 286
attributeAtIndex instance method 70
attributeDescriptorForKeyword instance method

36
attributedStringForNil instance method 414
attributedStringForNotANumber instance method

414
attributedStringForObjectValue instance method

188, 211, 414
attributedStringForZero instance method 415
attributedSubstringWithRange instance method 71
attributeKeys instance method 107
attributes instance method 268
attributesAtIndex instance method 71
availableStringEncodings class method 596

B

BackgroundColorAttributeName constant 75
BaselineOffsetAttributeName constant 75
baseSpecifier instance method 494
beginEditing instance method 307
BeginsWithComparison constant 586
beginUndoGrouping instance method 634
bitmapRepresentation instance method 102
booleanForKey instance method 655
booleanValue instance method 37
BottomMargin constant 76
builtInPlugInsPath instance method 87
bundleForClass class method 84
bundleForSuite instance method 553
bundleIdentifier instance method 87
bundlePath instance method 87
bundleWithIdentifier class method 85
bundleWithPath class method 85
bytes instance method 134

C

canBeConvertedToEncoding instance method 597
cancelPerformSelectorWithOrder instance method

500
CannotCreateScriptCommandError constant 527
canRedo instance method 634
canUndo instance method 635
capitalizedLetterCharacterSet class method 98
characterAtIndex instance method 597
CharacterEncoding constant 77
characterIsMember instance method 102

characterSetByIntersectingCharacterSet instance
method 102

characterSetByInvertingCharacterSet instance
method 102

characterSetBySubtractingCharacterSet instance
method 102

characterSetByUnioningCharacterSet instance
method 102

characterSetWithContentsOfFile class method 98
CheckpointNotification notification 643
childSpecifier instance method 543
classDescription class method 260
classDescriptionForClass class method 106
classDescriptionForKey instance method 511
ClassDescriptionNeededForClassNotification

notification 108
classDescriptionsInSuite instance method 553
classDescriptionWithAppleEventCode instance

method 553
classForClassName instance method 246
className instance method 511
classNameDecodedForArchiveClassName instance

method 626
classNameEncodedForTrueClassName instance

method 51
classNameForClass instance method 230
classNameGloballyDecodedForArchiveClassName

class method 625
classNameGloballyEncodedForTrueClassName class

method 50
clone instance method 336, 340, 345, 358, 424, 443, 473,

484, 577
CocoaRTFVersion constant 77
code instance method 171
coerceToDescriptorType instance method 37
coerceValueForKey class method 260
coerceValueForKey interface method 696
coerceValueToClass instance method 516
commandClassName instance method 532
commandDescription instance method 521
commandDescriptionsInSuite instance method 553
commandDescriptionWithAppleEventCodes instance

method 554
commandName instance method 532
commonPrefixWithString instance method 597
compare instance method 142
compareObjects instance method 583
compile instance method 45
componentsJoinedByString instance method 61
componentsSeparatedByString class method 59
componentsSeparatedByString instance method 597
constantValue instance method 184
ConstantValueExpressionType constant 186

700
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

containerClassDescription instance method 543
containerIsObjectBeingTested instance method

544
containerIsRangeContainerObject instance method

544
containerSpecifier instance method 544
ContainerSpecifierError constant 548
containsAttachments instance method 71
ContainsComparison constant 586
containsIndex instance method 219
containsIndexes instance method 219
containsIndexesInRange instance method 220
containsObject instance method 61, 568
containsPoint instance method 484
containsPortForMode instance method 500
containsTimerForMode instance method 500
containsValueForKey instance method 116, 246
controlCharacterSet class method 98
Converted constant 77
count instance method 61, 157, 220, 284, 568
createClassDescription instance method 130
createCommandInstance instance method 532
CurrencySymbol constant 665
currentCommand class method 520
currentFullUserName class method 607
currentHomeDirectory class method 607
currentMode instance method 501
currentRunLoop class method 499
currentTimeIntervalSinceReferenceDate class

method 141
currentUserName class method 607
CursorAttributeName constant 75

D

data instance method 37, 51, 620, 627
dataForKey instance method 655
dataFromPropertyList class method 460
dataUsingEncoding instance method 598
dataWithContentsOfMappedFile class method 133
dateByAddingGregorianUnits instance method 200
dateByAddingTimeInterval instance method 142
DateFor1970 constant 145
dateFormat instance method 211
DateFormatString constant 665
DateTimeOrdering constant 666
dayOfCommonEra instance method 200
dayOfMonth instance method 201
dayOfWeek instance method 201
dayOfYear instance method 202
decimalDigitCharacterSet class method 99
DecimalDigits constant 666

DecimalLossOfPrecisionNotification notification
149

DecimalSeparator constant 666
decimalSeparator instance method 415
decodeBoolForKey instance method 117, 246
decodeByte instance method 117, 247, 627
decodeByteForKey instance method 117, 247
decodeChar instance method 117, 247, 627
decodeCharForKey instance method 118, 247
decodeClassNameAsClassName instance method 627
decodeDataObject instance method 118, 248, 627
decodeDouble instance method 118, 248, 627
decodeDoubleForKey instance method 118, 248
decodeFloat instance method 119, 248, 628
decodeFloatForKey instance method 119, 249
decodeInt instance method 119, 249, 628
decodeIntForKey instance method 119, 249
decodeLong instance method 119, 250, 628
decodeLongForKey instance method 120, 250
decodeObject instance method 120, 250, 628
decodeObjectForKey instance method 120, 251
decodePointForKey instance method 251
decodeRectForKey instance method 251
decodeShort instance method 120, 251, 628
decodeShortForKey instance method 121, 252
decodeSizeForKey instance method 252
decomposableCharacterSet class method 99
decomposedStringWithCanonicalMapping instance

method 599
decomposedStringWithCompatibilityMapping

instance method 599
defaultCenter class method 161, 403
defaultCStringEncoding class method 596
defaultQueue class method 406
defaultRoundingMode class method 148
DefaultRunLoopMode constant 503
defaultSubcontainerAttributeKey instance method

511
defaultTimeZone class method 618
delegate instance method 230, 252, 272, 379, 389, 448,

588
deleteCharactersInRange instance method 308, 363
DemoApplicationDirectory constant 437
dequeueMatchingNotifications instance method

406
descriptorAtIndex instance method 37
descriptorForKeyword instance method 37
descriptorType instance method 38
descriptorWithBoolean class method 35
descriptorWithEnumCode class method 35
descriptorWithInt32 class method 35
descriptorWithString class method 35
descriptorWithTypeCode class method 35

701
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

DeveloperApplicationDirectory constant 437
DeveloperDirectory constant 437
developmentLocalization instance method 87
dictionaryForKey instance method 655
dictionaryRepresentation instance method 656
DidOpenUndoGroupNotification notification 643
DidRedoChangeNotification notification 643
DidUndoChangeNotification notification 643
directParameter instance method 521
disableUndoRegistration instance method 635
disableUpdates instance method 272
displayNameAtPath class method 429
distanceToPoint instance method 443
distantFuture class method 141
distantPast class method 141
docFormatFromRange instance method 71
DocumentationDirectory constant 437
DocumentType constant 76
doesContain interface method 686
domain instance method 171, 379
doubleClickAtIndex instance method 72
doubleForKey instance method 656

E

earlierDate instance method 142
EarlierTimeDesignations constant 666
editingStringForObjectValue instance method 189
enableUndoRegistration instance method 635
enableUpdates instance method 272
encodeBoolForKey instance method 121, 230
encodeByte instance method 51, 121, 231
encodeByteForKey instance method 121, 231
encodeChar instance method 51, 122, 231
encodeCharForKey instance method 122, 231
encodeClassNameIntoClassName instance method 51
encodeConditionalObject instance method 52, 232
encodeConditionalObjectForKey instance method

122, 232
encodeDataObject instance method 52, 122, 232
encodeDouble instance method 52, 123, 232
encodeDoubleForKey instance method 123, 233
encodeFloat instance method 52, 123, 233
encodeFloatForKey instance method 123, 233
encodeInt instance method 53, 124, 233
encodeIntForKey instance method 124, 234
encodeLong instance method 53, 124, 234
encodeLongForKey instance method 124, 234
encodeObject instance method 53, 125, 234
encodeObjectForKey instance method 125, 235
encodePointForKey instance method 235
encodeRectForKey instance method 235

encodeRootObject instance method 53
encodeShort instance method 53, 125, 235
encodeShortForKey instance method 125, 236
encodeSizeForKey instance method 236
endEditing instance method 308
endSpecifier instance method 478
endSubelementIdentifier instance method 677
endSubelementIndex instance method 677
EndsWithComparison constant 586
endUndoGrouping instance method 635
enqueueNotification instance method 407
enqueueNotificationWithCoalesceMaskForModes

instance method 407
enumCodeValue instance method 38
environment class method 607
equals instance method 143, 202, 424, 443, 473, 485,

561, 577, 621
EqualToComparison constant 585
evaluate instance method 453
evaluatedArguments instance method 522
EvaluatedObjectExpressionType constant 186
evaluatedReceivers instance method 522
evaluateWithObject instance method 457
evaluationErrorNumber instance method 544
evaluationErrorSpecifier instance method 545
eventClass instance method 38
eventID instance method 38
EverySubelement constant 679
executablePath instance method 87
execute instance method 45
executeAppleEvent instance method 45
executeCommand instance method 522
ExpansionAttributeName constant 75
expressionForConstantValue class method 182
expressionForEvaluatedObject class method 183
expressionForFunction class method 183
expressionForKeyPath class method 183
expressionForVariable class method 184
expressionType instance method 184
expressionValueWithObject instance method 185

F

fastestEncoding instance method 599
fileAttributes class method 429
FileDeviceIdentifier constant 438
FileExtensionHidden constant 438
FileGroupOwnerAccountName constant 438
FileHFSCreatorCode constant 438
FileHFSTypeCode constant 438
FileModificationDate constant 438
FileOwnerAccountName constant 438

702
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

FilePosixPermissions constant 438
FileReferenceCount constant 438
FileSize constant 438
FileType constant 438
FileTypeBlockSpecial constant 439
FileTypeCharacterSpecial constant 439
FileTypeDirectory constant 438
fileTypeForHFSTypeCode class method 216
FileTypeRegular constant 439
FileTypeSocket constant 439
FileTypeSymbolicLink constant 439
FileTypeUnknown constant 439
filteredArrayUsingPredicate instance method 62
filterUsingPredicate instance method 296
finishDecoding instance method 253
finishEncoding instance method 236
firstIndex instance method 220
firstObjectCommonWithArray instance method 62
fixAttachmentAttributeInRange instance method

308
fixAttributesInRange instance method 308
fixFontAttributeInRange instance method 309
fixParagraphStyleAttributeInRange instance

method 309
floatForKey instance method 656
FontAttributeName constant 75
fontAttributesInRange instance method 72
ForegroundColorAttributeName constant 75
format instance method 415
FormattingException constructor method 191
foundationVersionNumber class method 607
FoundationVersionNumber10_0 constant 610
FoundationVersionNumber10_1 constant 610
fromString class method 443, 473, 484, 577
function instance method 185
FunctionExpressionType constant 186

G

getBooleanWithName instance method 367
getByteWithName instance method 367
getCharWithName instance method 367
getDoubleWithName instance method 367
getFloatWithName instance method 367
getIntWithName instance method 367
getLongWithName instance method 367
getNotANumberValue class method 148
getObjCEnumerator instance method 166
getObjects instance method 62
getObjectWithName instance method 368
getShortWithName instance method 368
getStackTrace class method 176

globalClassForClassName class method 244
globalClassNameForClass class method 229
globallyDecodeClassNameAsClassName class method

625
globallyEncodeClassNameIntoClassName class

method 50
GreaterThanComparison constant 586
GreaterThanOrEqualToComparison constant 586
gregorianUnitsSinceDate instance method 202
groupedResults instance method 272
groupingAttributes instance method 273
groupingLevel instance method 636
groupsByEvent instance method 636

H

hashCode instance method 143, 203, 425, 443, 473, 485,
577, 621

hasMoreElements instance method 166
hasPrefix instance method 600
hasSuffix instance method 600
hasThousandSeparators instance method 415
height instance method 345, 358, 485, 577
hfsTypeCodeFromFileType class method 216
hfsTypeOfFile class method 216
homeDirectoryForUser class method 608
hostName class method 608
hostName instance method 379
HourNameDesignations constant 666
hourOfDay instance method 203
HPUXOperatingSystem constant 610
HyphenationFactor constant 76

I

illegalCharacterSet class method 99
implementedByClass instance method 561
implementedByObject instance method 561
InconsistentArchiveException constant 126
increaseLengthBy instance method 323
index instance method 224
indexGreaterThanIndex instance method 220
indexGreaterThanOrEqualToIndex instance method

221
indexLessThanIndex instance method 221
indexLessThanOrEqualToIndex instance method 221
indexOfIdenticalObject instance method 62
indexOfObject instance method 63
indexOfResult instance method 273
IndexSubelement constant 679

703
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

indicesOfObjectsByEvaluatingWithContainer
instance method 545

infoDictionary instance method 87
insertAttributedStringAtIndex instance method

310
insertDescriptor instance method 38
insertionContainer instance method 453
insertionIndex instance method 453
insertionKey instance method 453
insertionReplaces instance method 454
insertObjectAtIndex instance method 297
insertObjectsAtIndexes instance method 297
insertStringAtIndex instance method 363
insertValueAtIndexInPropertyWithKey class

method 260
insertValueAtIndexInPropertyWithKey interface

method 696
insertValueInPropertyWithKey class method 260
insertValueInPropertyWithKey interface method

696
insetRect instance method 346
int32Value instance method 39
integerForKey instance method 657
InternalScriptError constant 527
InternalSpecifierError constant 548
InternationalCurrencyString constant 666
intersectCharacterSet instance method 317
intersectRange instance method 340
intersectRect instance method 346
intersectSet instance method 353
intersectsIndexesInRange instance method 222
intersectsRange instance method 474
intersectsRect instance method 485
intersectsSet instance method 569
IntRef constructor method 207
InvalidArchiveOperationException constant 126
invalidate instance method 448, 612
invalidateClassDescriptionCache class method

107
InvalidIndexSpecifierError constant 548
InvalidUnarchiveOperationException constant

126
inverseForRelationshipKey instance method 107
invertCharacterSet instance method 318
invoke class method 560
invoke instance method 562
isAbsolutePath class method 430
isAtEnd instance method 628
isCaseInsensitiveLike interface method 686
isCompiled instance method 45
isDaylightSavingTime instance method 621
isDaylightSavingTimeForDate instance method 621
isEmpty instance method 474, 486, 578

isEqualTo interface method 686
isEqualToArray instance method 63
isEqualToAttributedString instance method 72
isEqualToData instance method 134
isEqualToDate instance method 143
isEqualToDictionary instance method 157
isEqualToGregorianDate instance method 203
isEqualToIndexSet instance method 222
isEqualToPoint instance method 444
isEqualToRange instance method 474
isEqualToRect instance method 486
isEqualToSet instance method 569
isEqualToSize instance method 578
isEqualToTimeZone instance method 621
isGathering instance method 273
isGreaterThan interface method 686
isGreaterThanOrEqualTo interface method 686
isLessThan interface method 687
isLessThanOrEqualTo interface method 687
isLike interface method 687
isLoaded instance method 88
isLocationRequiredToCreateForKey instance

method 511
IsNilTransformerName constant 672
isNotEqualTo interface method 687
IsNotNilTransformerName constant 672
ISO2022JPStringEncoding constant 603
ISOLatin1StringEncoding constant 603
ISOLatin2StringEncoding constant 603
isOptionalArgumentWithName instance method 533
isPartialStringValid instance method 189, 211, 416
isReadOnlyKey instance method 512
isRedoing instance method 636
isStarted instance method 274
isStopped instance method 274
isSubrangeOfRange instance method 474
isSubrectOfRect instance method 486
isSubsetOfSet instance method 569
isSupersetOfSet instance method 103
isTrue instance method 558
isUndoing instance method 637
isUndoRegistrationEnabled instance method 637
isValid instance method 448, 613
isWellFormed instance method 523
isWordInUserDictionaries instance method 589

J

JapaneseEUCStringEncoding constant 604

704
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

K

KernAttributeName constant 75
key instance method 545, 583
keyClassDescription instance method 545
keyEnumerator instance method 157
keyPath instance method 185
KeyPathExpressionType constant 186
keySpecifier instance method 110, 152, 292, 574
KeySpecifierEvaluationScriptError constant 527
keyWithAppleEventCode instance method 512
keywordForDescriptorAtIndex instance method 39
knownTimeZoneNames class method 618

L

lastIndex instance method 222
lastObject instance method 63
lastPathComponent class method 430
laterDate instance method 143
LaterTimeDesignations constant 666
LeftMargin constant 76
length instance method 72, 134, 341, 474, 600
LessThanComparison constant 586
LessThanOrEqualToComparison constant 585
letterCharacterSet class method 100
levelsOfUndo instance method 637
LibraryDirectory constant 437
librarySearchPaths class method 506
LigatureAttributeName constant 75
limitDateForMode instance method 501
lineBreakBeforeIndex instance method 73
lineBreakByHyphenatingBeforeIndex instance

method 73
lineRangeForRange instance method 600
listDescriptor class method 36
load instance method 88
loadLibrary class method 506
loadSuitesFromBundle instance method 554
loadSuiteWithDictionary instance method 554
LocalDomainMask constant 437
localizations instance method 88
localizedDescription instance method 171
localizedFailureReason instance method 172
LocalizedFailureReasonErrorKey constant 174
localizedInfoDictionary instance method 88
localizedNameOfStringEncoding class method 596
localizedRecoveryOptions instance method 172
LocalizedRecoveryOptionsErrorKey constant 174
localizedRecoverySuggestion instance method 172
LocalizedRecoverySuggestionErrorKey constant

174

localizedString class method 85
localizedStringForKey instance method 89
localizesFormat instance method 416
LocalNotificationCenterType constant 164
localTimeZone class method 618
location instance method 341, 475
locationInRange instance method 475
log class method 608
longForKey instance method 657
lowercaseLetterCharacterSet class method 100

M

MachErrorDomain constant 174
MACHOperatingSystem constant 610
MacOSRomanStringEncoding constant 604
mainBundle class method 86
makeIntegral instance method 346
matchesAppleEventCode instance method 512
maxRange instance method 475
maxX instance method 486
MaxXEdge constant 491
maxY instance method 487
MaxYEdge constant 491
member instance method 569
methodOnClass instance method 563
methodOnObject instance method 563
microsecondOfSecond instance method 204
MiddleSubelement constant 679
midX instance method 487
midY instance method 487
millisecondsToTimeInterval class method 141
minuteOfHour instance method 204
MinXEdge constant 491
MinYEdge constant 491
MonthNameArray constant 666
monthOfYear instance method 204
mutableClone instance method 425
mutableStringReference instance method 310

N

name instance method 176, 373, 380, 398, 563, 621
NegateBooleanTransformerName constant 672
NegativeCurrencyFormatString constant 666
negativeFormat instance method 416
netServiceBrowser delegate method 393
netServiceBrowserDidFindDomaindelegate method

393

705
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

netServiceBrowserDidStopSearchdelegate method
393

netServiceBrowserWillSearchdelegate method 394
netServiceDidFindService delegate method 394
netServiceDidNotPublish delegate method 384
netServiceDidNotResolve delegate method 384
netServiceDidPublish delegate method 384
netServiceDidRemoveDomain delegate method 394
netServiceDidRemoveService delegate method 395
netServiceDidResolveAddressdelegate method 384
netServiceDidStop delegate method 385
netServiceDidUpdateTXTRecordData delegate

method 385
netServiceWillPublish delegate method 385
netServiceWillResolve delegate method 385
NetworkDomainMask constant 437
NextDayDesignations constant 666
nextElement instance method 167
NextNextDayDesignations constant 666
nextRootPath class method 506
NEXTSTEPStringEncoding constant 604
nextWordFromIndex instance method 73
nonBaseCharacterSet class method 100
NonLossyASCIIStringEncoding constant 604
NoScriptError constant 527
NoSpecifierError constant 548
NoSubelement constant 679
NotANumberConversionNotification notification

150
NotFound constant 66, 222
notificationBatchingInterval instance method

274
notificationCenterForType class method 161
NotificationCoalescingOnName constant 407
NotificationCoalescingOnSender constant 407
NotificationDeliverImmediately constant 164
NotificationNoCoalescing constant 407
NotificationPostToAllSessions constant 164
NotificationSuspensionBehaviorCoalesce

constant 164
NotificationSuspensionBehaviorDeliverImmediately

constant 164
NotificationSuspensionBehaviorDrop constant

164
NotificationSuspensionBehaviorHold constant

164
NotLogicalTest constant 265
NoTopLevelContainersSpecifierError constant

548
NoUnderlineStyle constant 76
NSAppleEventDescriptor constructor method 34
NSAppleScript constructor method 44
NSArchiver constructor method 49

NSArray constructor method 59
NSAttributedString constructor method 69
NSBundle constructor method 84
NSCharacterSet constructor method 97
NSClassDescription constructor method 106
NSCloneCommand constructor method 110
NSCloseCommand constructor method 111
NSCocoaErrorDomain constant 174
NSCoder constructor method 116
NSCountCommand constructor method 127
NSCreateCommand constructor method 130
NSData constructor method 133
NSDate constructor method 140
NSDeleteCommand constructor method 152
NSDictionary constructor method 155
NSDistributedNotificationCenter constructor

method 161
NSDocFormatTextDocumentType constant 77
NSError constructor method 170
NSException constructor method 176
NSExistsCommand constructor method 179
NSExpression constructor method 182
NSFormatter constructor method 188
NSGetCommand constructor method 195
NSGregorianDate constructor method 199
NSGregorianDateFormatter constructor method 210
NSHFSFileTypes constructor method 215
NSHTMLTextDocumentType constant 77
NSIndexSet constructor method 218
NSIndexSpecifier constructor method 223
NSKeyedArchiver constructor method 228
NSKeyedUnarchiver constructor method 244
NSKeyValue constructor method 259
NSLogicalTest constructor method 266
NSMacSimpleTextDocumentType constant 77
NSMetadataItem constructor method 267
NSMetadataQuery constructor method 271
NSMetadataQueryAttributeValueTuple constructor

method 283
NSMetadataQueryDidFinishGatheringNotification

notification 280
NSMetadataQueryDidStartGatheringNotification

notification 280
NSMetadataQueryDidUpdateNotification

notification 281
NSMetadataQueryGatheringProgressNotification

notification 281
NSMetadataQueryLocalComputerScope constant 280
NSMetadataQueryNetworkScope constant 280
NSMetadataQueryResultContentRelevanceAttribute

constant 280
NSMetadataQueryResultGroup constructor method

286

706
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

NSMetadataQueryUserHomeScope constant 280
NSMiddleSpecifier constructor method 289
NSMoveCommand constructor method 292
NSMutableArray constructor method 295
NSMutableAttributedString constructor method 305
NSMutableCharacterSet constructor method 316
NSMutableData constructor method 322
NSMutableDictionary constructor method 326
NSMutableIndexSet constructor method 330
NSMutablePoint constructor method 336
NSMutableRange constructor method 340
NSMutableRect constructor method 344
NSMutableSet constructor method 353
NSMutableSize constructor method 358
NSMutableStringReference constructor method 362
NSNamedValueSequence constructor method 366
NSNameSpecifier constructor method 372
NSNetService constructor method 378
NSNetServiceBrowser constructor method 389
NSNetServicesErrorCode constant 383
NSNetServicesErrorDomain constant 383
NSNotification constructor method 398
NSNotificationCenter constructor method 403
NSNotificationQueue constructor method 406
NSNull constructor method 409
NSNumberFormatter constructor method 413
NSObject constructor method 424
NSPathUtilities constructor method 429
NSPlainTextDocumentType constant 77
NSPoint constructor method 442
NSPort constructor method 448
NSPositionalSpecifier constructor method 453
NSPredicate constructor method 456
NSPropertyListSerialization constructor method

460
NSPropertySpecifier constructor method 465
NSQuitCommand constructor method 467
NSRandomSpecifier constructor method 469
NSRange constructor method 472
NSRangeSpecifier constructor method 478
NSRect constructor method 483
NSRelativeSpecifier constructor method 494
NSRTFDTextDocumentType constant 77
NSRTFTextDocumentType constant 77
NSRunLoop constructor method 499
NSScriptClassDescription constructor method 510
NSScriptCoercionHandler constructor method 516
NSScriptCommand constructor method 520
NSScriptCommandDescription constructor method

530
NSScriptExecutionContext constructor method 536
NSScriptObjectSpecifier constructor method 543
NSScriptSuiteRegistry constructor method 551

NSScriptWhoseTest constructor method 557
NSSelector constructor method 560
NSSet constructor method 567
NSSetCommand constructor method 574
NSSize constructor method 576
NSSortDescriptor constructor method 582
NSSpecifierTest constructor method 586
NSSpellServer constructor method 588
NSStringReference constructor method 595
NSSystem constructor method 606
NSTimer constructor method 612
NSTimeZone constructor method 617
NSUnarchiver constructor method 624
NSUndoManager constructor method 634
NSUniqueIDSpecifier constructor method 646
NSURLErrorDomain constant 174
NSUserDefaults constructor method 653
NSValueTransformer constructor method 670
NSWhoseSpecifier constructor method 676
NSWordMLTextDocumentType constant 77
nullDescriptor class method 36
nullValue class method 410
numberOfItems instance method 39

O

object instance method 399
objectAtIndex instance method 64
objectBeingTested instance method 537
objectEnumerator instance method 64, 158, 570
objectForInfoDictionaryKey instance method 89
objectForKey instance method 158, 658
objectForKeyInDomain instance method 658
objectIsForcedForKey instance method 658
objectIsForcedForKeyInDomain instance method

659
objectsAtIndexes instance method 64
objectsByEvaluatingSpecifier instance method

545
objectsByEvaluatingWithContainers instance

method 546
objectsForKeys instance method 158
objectSpecifier class method 260
objectValueForString instance method 189, 212, 416
ObliquenessAttributeName constant 75
offsetRect instance method 346
operand instance method 185
operatingSystem class method 608
operatingSystemName class method 608
operatingSystemVersionString class method 608
OperationNotSupportedForKeyException constant

264

707
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

OperationNotSupportedForKeyScriptError
constant 527

OperationNotSupportedForKeySpecifierError
constant 548

origin instance method 487
OrLogicalTest constant 265
OSStatusErrorDomain constant 174
outputFormat instance method 236

P

PaperSize constant 76
paragraphRangeForRange instance method 601
ParagraphStyleAttributeName constant 75
paramDescriptorForKeyword instance method 39
parameterTypes instance method 563
ParsingException constructor method 193
pathComponents class method 430
pathExtension class method 431
pathForAuxiliaryExecutable instance method 89
pathForResource instance method 90
pathFromURL class method 431
pathsForResources instance method 91
pathsMatchingExtensions class method 431
pathWithComponents class method 431
performDefaultImplementation instance method

523
performSelectorWithOrder instance method 501
persistentDomainForName instance method 659
persistentDomainNames instance method 659
pop class method 80
portsForMode instance method 502
PositionAfter constant 454
PositionBefore constant 454
PositionBeginning constant 454
PositionEnd constant 454
PositionReplace constant 454
PositiveCurrencyFormatString constant 666
positiveFormat instance method 416
POSIXErrorDomain constant 174
PostASAP constant 407
postNotification instance method 162, 403
PostNow constant 408
PostWhenIdle constant 407
precomposedStringWithCanonicalMapping instance

method 601
precomposedStringWithCompatibilityMapping

instance method 601
predicate instance method 274
predicateFormat instance method 457
predicateWithFormat class method 457

predicateWithSubstitutionVariables instance
method 458

predicateWithValue class method 457
preferredLocalizations class method 86
preferredLocalizations instance method 91
principalClass instance method 91
PriorDayDesignations constant 666
privateFrameworksPath instance method 92
processName class method 609
PropertyListBinaryFormat constant 463
propertyListFromData class method 461
propertyListFromString class method 461
propertyListFromXMLData class method 462
PropertyListImmutable constant 463
propertyListIsValidForFormat class method 462
PropertyListMutableContainers constant 463
PropertyListMutableContainersAndLeaves

constant 463
PropertyListOpenStepFormat constant 463
PropertyListXMLFormat constant 463
protocolSpecificInformation instance method 380
publish instance method 380
punctuationCharacterSet class method 100
push class method 80

R

RandomSubelement constant 679
rangeByIntersectingRange instance method 475
rangeByUnioningRange instance method 476
rangeContainerObject instance method 537
rangeOfString instance method 601
readFromData instance method 310
readFromURL instance method 310
ReceiverEvaluationScriptError constant 527
ReceiversCantHandleCommandScriptError constant

527
receiversSpecifier instance method 523
recordDescriptor class method 36
recoveryAttempter instance method 173
RecoveryAttempterErrorKey constant 174
rectByInsettingRect instance method 488
rectByIntersectingRect instance method 488
rectByMakingIntegral instance method 488
rectByOffsettingRect instance method 488
rectByUnioningRect instance method 488
redo instance method 637
redoActionName instance method 638
redoMenuItemTitle instance method 638
redoMenuTitleForUndoActionName instance method

638
registerClassDescription class method 107

708
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

registerClassDescription instance method 555
registerCoercer instance method 516
registerCommandDescription instance method 555
registerDefaults instance method 660
registerLanguage instance method 589
registerUndoWithTarget instance method 638
registerUndoWithTargetAndArguments instance

method 639
RelativeAfter constant 495
RelativeBefore constant 495
relativePosition instance method 495
removeAllActions instance method 639
removeAllActionsWithTarget instance method 639
removeAllIndexes instance method 332
removeAllObjects instance method 297, 327, 354
removeAttributeInRange instance method 311
removeCharacter instance method 318
removeCharactersInRange instance method 318
removeCharactersInString instance method 318
removeDescriptorAtIndex instance method 39
removeDescriptorWithKeyword instance method 40
removeFromRunLoop instance method 380, 390
removeIdenticalObject instance method 298
removeIndex instance method 332
removeIndexes instance method 332
removeIndexesInRange instance method 332
removeLastObject instance method 298
removeObject instance method 298, 354
removeObjectAtIndex instance method 299
removeObjectForKey instance method 327, 660
removeObjectForKeyInDomain instance method 660
removeObjectFromBothSidesOfRelationshipWithKey

class method 261
removeObjectFromPropertyWithKey class method

261
removeObjectsAtIndexes instance method 299
removeObjectsForKeys instance method 327
removeObjectsInArray instance method 299
removeObjectsInRange instance method 300
removeObserver instance method 404
removeParamDescriptorWithKeyword instance

method 40
removePersistentDomainForName instance method

660
removePortForMode instance method 502
removeSuiteNamed instance method 661
removeTimerForMode instance method 502
removeValueAtIndexFromPropertyWithKey class

method 261
removeValueAtIndexFromPropertyWithKey interface

method 696
removeVolatileDomainForName instance method 661

replaceCharactersInRange instance method 312,
363

replacementStringForString instance method 190,
212, 417

replaceObject instance method 54, 628
replaceObjectAtIndex instance method 300
replaceObjectsAtIndexes instance method 300
replaceObjectsInRange instance method 301
replaceOccurrencesOfString instance method 364
replaceValueAtIndexInPropertyWithKey interface

method 697
replaceValueAtIndexInPropertyWithKeyWithValue

class method 261
RequiredArgumentsMissingScriptError constant

527
resetBytesInRange instance method 323
resetStandardUserDefaults class method 653
resetSystemTimeZone class method 619
resolve instance method 381
resolvedKeyDictionary instance method 130
resolveWithTimeout instance method 381
resourcePath instance method 92
resultAtIndex instance method 275, 286
resultCount instance method 275, 286
results instance method 275, 287
resumeExecutionWithResult instance method 524
returnID instance method 40
returnType instance method 533
reversedSortDescriptor instance method 583
reverseObjectEnumerator instance method 65
reverseTransformedValue instance method 671
richTextSource instance method 46
RightMargin constant 76
RoundBankers constant 149
RoundDown constant 149
RoundPlain constant 149
RoundUp constant 149
RTFDFileWrapperFromRange instance method 74
RTFFromRange instance method 74
rulerAttributesInRange instance method 74
run instance method 502, 589
runLoopModes instance method 639
runModeBeforeDate instance method 502
runModeUntilDate instance method 503

S

saveOptions instance method 112, 468
SaveOptionsAsk constant 112
SaveOptionsNo constant 112
SaveOptionsYes constant 112
scheduleInRunLoop instance method 381, 390

709
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

scriptErrorNumber instance method 524
scriptErrorString instance method 524
scriptingBeginsWith interface method 692
scriptingContains interface method 692
scriptingEndsWith interface method 692
scriptingIsEqualTo interface method 693
scriptingIsGreaterThan interface method 693
scriptingIsGreaterThanOrEqualTo interface method

693
scriptingIsLessThan interface method 693
scriptingIsLessThanOrEqualTo interface method

693
searchForAllDomains instance method 390
searchForBrowsableDomains instance method 391
searchForRegistrationDomains instance method

391
searchForServicesOfType instance method 391
searchList instance method 661
searchPathForDirectoriesInDomains class method

432
searchScopes instance method 275
secondOfMinute instance method 205
secondsFromGMT instance method 622
secondsFromGMTForDate instance method 622
selector instance method 583
selectorForCommand instance method 513
setActionName instance method 640
setAlignmentInRange instance method 312
setAllowsFloats instance method 417
setArguments class method 609
setArguments instance method 525
setArray instance method 301
setAttributeDescriptor instance method 40
setAttributedString instance method 312
setAttributedStringForNil instance method 417
setAttributedStringForNotANumber instance

method 417
setAttributedStringForZero instance method 418
setAttributesInRange instance method 312
setBaseSpecifier instance method 495
setBooleanForKey instance method 661
setBooleanWithName instance method 368
setByIntersectingSet instance method 570
setBySubtractingSet instance method 570
setByteWithName instance method 368
setByUnioningSet instance method 570
setCharWithName instance method 368
setChildSpecifier instance method 546
setClassForClassName instance method 253
setClassNameForClass instance method 237
setContainerClassDescription instance method

546

setContainerIsObjectBeingTested instance method
547

setContainerIsRangeContainerObject instance
method 547

setContainerSpecifier instance method 547
setData instance method 323
setDecimalSeparator instance method 418
setDefaultRoundingMode class method 148
setDefaultTimeZone class method 619
setDelegate instance method 237, 253, 276, 382, 392,

449, 589
setDescriptor instance method 40
setDictionary instance method 328
setDirectParameter instance method 525
setDoubleForKey instance method 662
setDoubleWithName instance method 368
setEndSpecifier instance method 479
setEndSubelementIdentifier instance method 677
setEndSubelementIndex instance method 677
setEvaluationErrorNumber instance method 547
setFileAttributes class method 432
setFloatForKey instance method 662
setFloatWithName instance method 368
setFormat instance method 418
setGlobalClassForClassName class method 245
setGlobalClassNameForClass class method 229
setGroupingAttributes instance method 276
setGroupsByEvent instance method 640
setHasThousandSeparators instance method 419
setHeight instance method 347, 359
setIndex instance method 224
setInsertionClassDescription instance method

454
setIntegerForKey instance method 662
setIntWithName instance method 368
setKey instance method 548
setLength instance method 323, 341
setLevelsOfUndo instance method 640
setLocalizesFormat instance method 419
setLocation instance method 341
setLongForKey instance method 662
setLongWithName instance method 369
setName instance method 373
setNegativeFormat instance method 419
setNotANumberValue class method 148
setNotificationBatchingInterval instance method

276
setObjectBeingTested instance method 537
setObjectForKey instance method 328, 662
setObjectForKeyInDomain instance method 663
setObjectWithName instance method 369
setOrigin instance method 347
setOutputFormat instance method 237

710
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

setParamDescriptor instance method 41
setPersistentDomainForName instance method 663
setPositiveFormat instance method 419
setPredicate instance method 277
setProcessName class method 609
setProtocolSpecificInformation instance method

382
setRangeContainerObject instance method 537
setReceiversSpecifier instance method 110, 152,

292, 525, 574
setRelativePosition instance method 495
setRunLoopModes instance method 641
setScriptErrorNumber instance method 526
setScriptErrorString instance method 526
setSearchList instance method 663
setSearchScopes instance method 277
setSet instance method 354
setSharedScriptSuiteRegistry class method 552
setShortWithName instance method 369
setShouldRaiseForNotANumberArgument class

method 148
setSize instance method 347
setSortDescriptors instance method 277
setStartSpecifier instance method 479
setStartSubelementIdentifier instance method

677
setStartSubelementIndex instance method 678
setString instance method 364
setSuspended instance method 163
setTest instance method 678
setTextAttributesForNegativeValues instance

method 420
setTextAttributesForPositiveValues instance

method 420
setThousandSeparator instance method 420
setTopLevelObject instance method 538
setTXTRecordData instance method 382
setUniqueID instance method 647
setValueListAttributes instance method 278
setValueTransformerForName class method 670
setVolatileDomainForName instance method 664
setWidth instance method 347, 359
setX instance method 336, 347
setY instance method 337, 348
ShadowAttributeName constant 75
sharedCoercionHandler class method 516
sharedFrameworksPath instance method 92
sharedScriptExecutionContext class method 537
sharedScriptSuiteRegistry class method 552
sharedSupportPath instance method 93
shiftIndexes instance method 333
ShiftJISStringEncoding constant 604
ShortDateFormatString constant 666

ShortMonthNameArray constant 666
ShortTimeDateFormatString constant 667
ShortWeekDayNameArray constant 667
shouldRaiseForNotANumberArgument class method

149
SingleUnderlineStyle constant 76
size instance method 489
sliceRect instance method 489
smallestEncoding instance method 602
SolarisOperatingSystem constant 610
sortDescriptors instance method 278
sortedArrayUsingDescriptors instance method 65
sortedArrayUsingSelector instance method 65
sortUsingDescriptors instance method 301
sortUsingSelector instance method 302
source instance method 46
spellServerDidForgetWord delegate method 590
spellServerDidLearnWord delegate method 590
spellServerSuggestCompletionsForPartialWordRange

delegate method 590
spellServerSuggestGuessesForWord delegate

method 590
standardUserDefaults class method 653
startQuery instance method 278
startSpecifier instance method 479
startSubelementIdentifier instance method 678
startSubelementIndex instance method 678
stop instance method 383, 392
stopQuery instance method 279
StrikethroughColorAttributeName constant 75
StrikethroughStyleAttributeName constant 75
string instance method 602
stringByAbbreviatingWithTildeInPath class

method 432
stringByAppendingPathComponent class method 433
stringByAppendingPathExtension class method 433
stringByDeletingLastPathComponent class method

434
stringByDeletingPathExtension class method 434
stringByExpandingTildeInPath class method 435
stringByResolvingSymlinksInPath class method

435
stringByStandardizingPath class method 435
stringForKey instance method 664
stringForObjectValue instance method 190, 212, 420
stringFromPropertyList class method 462
stringReference instance method 74
stringsByAppendingPaths class method 436
stringValue instance method 41
StrokeColorAttributeName constant 75
StrokeWidthAttributeName constant 75
subarrayWithRange instance method 66
subdataWithRange instance method 134

711
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

subgroups instance method 287
subscriptRange instance method 313
substringWithRange instance method 602
subtractCharacterSet instance method 318
subtractRange instance method 476
subtractSet instance method 354
suiteForAppleEventCode instance method 555
suiteName instance method 513, 533
suiteNames instance method 555
superclassDescription instance method 513
SuperscriptAttributeName constant 75
superscriptRange instance method 313
supportsCommand instance method 513
suspended instance method 163
suspendExecution instance method 526
symbolCharacterSet class method 101
SymbolStringEncoding constant 604
synchronize instance method 664
SystemDomainMask constant 437
systemTimeZone class method 619
systemVersion instance method 126

T

takeStoredValueForKey class method 261
takeValueForKey class method 262
takeValueForKey instance method 425
takeValueForKey interface method 689
takeValueForKeyPath class method 262
temporaryDirectory class method 436
test instance method 678
textAttributesForNegativeValues instance method

421
textAttributesForPositiveValues instance method

421
ThisDayDesignations constant 667
thousandSeparator instance method 421
ThousandsSeparator constant 667
TimeDateFormatString constant 667
TimeFormatString constant 667
timeInterval instance method 613
TimeIntervalSince1970 constant 145
timeIntervalSinceDate instance method 144
timeIntervalSinceNow instance method 144
timeIntervalSinceReferenceDate instance method

144
timeIntervalToMilliseconds class method 142
timersForMode instance method 503
timeZone instance method 205
timeZoneForSecondsFromGMT class method 619
timeZoneWithName class method 619
timeZoneWithNameAndData class method 620

toAWTDimension instance method 578
toAWTPoint instance method 444
toAWTRectangle instance method 490
toManyRelationshipKeys instance method 108
ToolTipAttributeName constant 75
toOneRelationshipKeys instance method 108
topLevelObject instance method 538
TopMargin constant 76
toString instance method 144, 176, 205, 426, 444, 476,

490, 563, 578, 622
transactionID instance method 41
transformedValue instance method 672
transformedValueClass class method 671
TXTRecordData instance method 383
type instance method 383
typeCodeValue instance method 41
typeForArgumentWithName instance method 533
typeForKey instance method 513

U

UnarchiveFromDataTransformerName constant 673
unarchiveObjectWithData class method 245, 626
unarchiveObjectWithFile class method 245, 626
unarchiverCannotDecodeObject delegate method

254
unarchiverDidDecodeObject delegate method 254
unarchiverDidFinish delegate method 254
unarchiverWillFinish delegate method 255
unarchiverWillReplaceObjectdelegate method 255
UnderlineByWordMask constant 76
UnderlineColorAttributeName constant 76
UnderlinePatternDash constant 76
UnderlinePatternDashDot constant 76
UnderlinePatternDashDotDot constant 76
UnderlinePatternDot constant 76
UnderlinePatternSolid constant 76
UnderlineStrikethroughMask constant 76
UnderlineStyleAttributeName constant 76
UnderlineStyleDouble constant 76
UnderlineStyleNone constant 76
UnderlineStyleSingle constant 76
UnderlineStyleThick constant 76
undo instance method 641
undoActionName instance method 641
UndoCloseGroupingRunLoopOrdering constant 643
undoMenuItemTitle instance method 642
undoMenuTitleForUndoActionName instance method

642
undoNestedGroup instance method 642
UnicodeStringEncoding constant 604
unionCharacterSet instance method 319

712
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

unionRange instance method 342
unionRect instance method 348
unionSet instance method 355
uniqueID instance method 647
UnknownKeyScriptError constant 527
UnknownKeySpecifierError constant 548
unscriptRange instance method 313
updateAttachmentsFromPath instance method 314
uppercaseLetterCharacterSet class method 101
URLWithPath class method 436
UserDefaultsDidChangeNotification notification

667
UserDirectory constant 437
UserDomainMask constant 437
userInfo instance method 173, 177, 399, 613
UTF8StringEncoding constant 604

V

value instance method 284, 287
valueAtIndexInPropertyWithKey class method 263
valueAtIndexInPropertyWithKey interface method

697
valueForAttribute instance method 268
valueForKey class method 263
valueForKey instance method 426
valueForKey interface method 690
valueForKeyPath class method 263
valueListAttributes instance method 279
valueLists instance method 279
valueOfAttributeForResultAtIndex instance

method 279
valuesForAttributes instance method 268
valuesForKeys class method 263
valueTransformerForName class method 671
valueTransformerNames class method 671
valueWithNameInPropertyWithKey class method 264
valueWithNameInPropertyWithKey interface method

697
valueWithUniqueIDInPropertyWithKey class method

264
valueWithUniqueIDInPropertyWithKey interface

method 697
variable instance method 186
VariableExpressionType constant 186
versionForClassName instance method 54, 126, 238,

253, 629
ViewMode constant 77
ViewSize constant 77
ViewZoom constant 77
volatileDomainForName instance method 665
volatileDomainNames instance method 665

W

WeekDayNameArray constant 667
whitespaceAndNewlineCharacterSet class method

101
whitespaceCharacterSet class method 101
width instance method 348, 359, 490, 578
WillCloseUndoGroupNotification notification 643
WillRedoChangeNotification notification 643
WillUndoChangeNotification notification 643
Windows95OperatingSystem constant 610
WindowsCP1250StringEncoding constant 604
WindowsCP1251StringEncoding constant 604
WindowsCP1252StringEncoding constant 604
WindowsCP1253StringEncoding constant 604
WindowsCP1254StringEncoding constant 604
WindowsNTOperatingSystem constant 610
writeToURL instance method 135, 603

X

x instance method 337, 348, 444, 490
XMLDataFromPropertyList class method 462

Y

y instance method 337, 349, 444, 490
YearMonthWeekDesignations constant 667
yearOfCommonEra instance method 205

Z

ZeroPoint constant 445
ZeroRange constant 476
ZeroRect constant 491

713
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

	Foundation Reference for Java
	Contents
	Figures
	Introduction
	Part I: Classes
	NSAppleEventDescriptor
	Overview
	Tasks
	Constructors
	Creating an Event Descriptor
	Getting Information About an Event Descriptor
	Working with List Descriptors
	Working with Record Descriptors
	Working with Apple Event Descriptors

	Constructors
	Static Methods
	descriptorWithBoolean
	descriptorWithEnumCode
	descriptorWithInt32
	descriptorWithString
	descriptorWithTypeCode
	listDescriptor
	nullDescriptor
	recordDescriptor

	Instance Methods
	attributeDescriptorForKeyword
	booleanValue
	coerceToDescriptorType
	data
	descriptorAtIndex
	descriptorForKeyword
	descriptorType
	enumCodeValue
	eventClass
	eventID
	insertDescriptor
	int32Value
	keywordForDescriptorAtIndex
	numberOfItems
	paramDescriptorForKeyword
	removeDescriptorAtIndex
	removeDescriptorWithKeyword
	removeParamDescriptorWithKeyword
	returnID
	setAttributeDescriptor
	setDescriptor
	setParamDescriptor
	stringValue
	transactionID
	typeCodeValue

	NSAppleScript
	Overview
	Tasks
	Constructors
	Getting Information About a Script
	Compiling and Executing a Script

	Constructors
	Instance Methods
	compile
	execute
	executeAppleEvent
	isCompiled
	richTextSource
	source

	Constants

	NSArchiver
	Class at a Glance
	Overview
	Tasks
	Constructors
	Archiving Data
	Getting the Archived Data
	Substituting Classes or Objects

	Constructors
	Static Methods
	archivedDataWithRootObject
	archiveRootObjectToFile
	classNameGloballyEncodedForTrueClassName
	globallyEncodeClassNameIntoClassName

	Instance Methods
	classNameEncodedForTrueClassName
	data
	encodeByte
	encodeChar
	encodeClassNameIntoClassName
	encodeConditionalObject
	encodeDataObject
	encodeDouble
	encodeFloat
	encodeInt
	encodeLong
	encodeObject
	encodeRootObject
	encodeShort
	replaceObject
	versionForClassName

	NSArray
	Class at a Glance
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations
	Alternatives to Subclassing

	Tasks
	Constructors
	Querying the Array
	Comparing Arrays
	Deriving New Arrays
	Sorting Arrays
	Working with String Elements

	Constructors
	Static Methods
	componentsSeparatedByString

	Instance Methods
	arrayByAddingObject
	arrayByAddingObjectsFromArray
	componentsJoinedByString
	containsObject
	count
	filteredArrayUsingPredicate
	firstObjectCommonWithArray
	getObjects
	indexOfIdenticalObject
	indexOfObject
	isEqualToArray
	lastObject
	objectAtIndex
	objectEnumerator
	objectsAtIndexes
	reverseObjectEnumerator
	sortedArrayUsingDescriptors
	sortedArrayUsingSelector
	subarrayWithRange

	Constants

	NSAttributedString
	Overview
	Tasks
	Constructors
	Retrieving Character Information
	Retrieving Attribute Information
	Comparing Attributed Strings
	Extracting a Substring
	Retrieving General Information
	Generating Data

	Constructors
	Instance Methods
	attributeAtIndex
	attributedSubstringWithRange
	attributesAtIndex
	containsAttachments
	docFormatFromRange
	doubleClickAtIndex
	fontAttributesInRange
	isEqualToAttributedString
	length
	lineBreakBeforeIndex
	lineBreakByHyphenatingBeforeIndex
	nextWordFromIndex
	RTFDFileWrapperFromRange
	RTFFromRange
	rulerAttributesInRange
	stringReference

	Constants

	NSAutoreleasePool
	Overview
	Tasks
	Creating a Pool
	Freeing a Pool

	Static Methods
	pop
	push

	NSBundle
	Overview
	Tasks
	Constructors
	Getting an NSBundle
	Getting a Bundled Class
	Finding a Resource
	Getting the Bundle Directory
	Getting Bundle Information
	Managing Localized Resources
	Loading a Bundle’s Code
	Managing Localizations

	Constructors
	Static Methods
	allBundles
	allFrameworks
	bundleForClass
	bundleWithIdentifier
	bundleWithPath
	localizedString
	mainBundle
	preferredLocalizations

	Instance Methods
	builtInPlugInsPath
	bundleIdentifier
	bundlePath
	developmentLocalization
	executablePath
	infoDictionary
	isLoaded
	load
	localizations
	localizedInfoDictionary
	localizedStringForKey
	objectForInfoDictionaryKey
	pathForAuxiliaryExecutable
	pathForResource
	pathsForResources
	preferredLocalizations
	principalClass
	privateFrameworksPath
	resourcePath
	sharedFrameworksPath
	sharedSupportPath

	NSCharacterSet
	Overview
	Tasks
	Constructors
	Creating a Standard Character Set
	Opening a Character Set File
	Testing Set Membership
	Getting a Binary Representation
	Deriving New Character Sets

	Constructors
	Static Methods
	alphanumericCharacterSet
	capitalizedLetterCharacterSet
	characterSetWithContentsOfFile
	controlCharacterSet
	decimalDigitCharacterSet
	decomposableCharacterSet
	illegalCharacterSet
	letterCharacterSet
	lowercaseLetterCharacterSet
	nonBaseCharacterSet
	punctuationCharacterSet
	symbolCharacterSet
	uppercaseLetterCharacterSet
	whitespaceAndNewlineCharacterSet
	whitespaceCharacterSet

	Instance Methods
	bitmapRepresentation
	characterIsMember
	characterSetByIntersectingCharacterSet
	characterSetByInvertingCharacterSet
	characterSetBySubtractingCharacterSet
	characterSetByUnioningCharacterSet
	isSupersetOfSet

	NSClassDescription
	Overview
	Tasks
	Constructors
	Working with Class Descriptions
	Attribute Keys
	Relationship Keys

	Constructors
	Static Methods
	classDescriptionForClass
	invalidateClassDescriptionCache
	registerClassDescription

	Instance Methods
	attributeKeys
	inverseForRelationshipKey
	toManyRelationshipKeys
	toOneRelationshipKeys

	Notifications
	ClassDescriptionNeededForClassNotification

	NSCloneCommand
	Overview
	Tasks
	Constructors
	Working with Specifiers

	Constructors
	Instance Methods
	keySpecifier
	setReceiversSpecifier

	NSCloseCommand
	Overview
	Tasks
	Constructors
	Accessing Save Options

	Constructors
	Instance Methods
	saveOptions

	Constants

	NSCoder
	Overview
	Tasks
	Constructors
	Testing Coder
	Encoding Data
	Decoding Data
	Getting Version Information

	Constructors
	Instance Methods
	allowsKeyedCoding
	containsValueForKey
	decodeBoolForKey
	decodeByte
	decodeByteForKey
	decodeChar
	decodeCharForKey
	decodeDataObject
	decodeDouble
	decodeDoubleForKey
	decodeFloat
	decodeFloatForKey
	decodeInt
	decodeIntForKey
	decodeLong
	decodeLongForKey
	decodeObject
	decodeObjectForKey
	decodeShort
	decodeShortForKey
	encodeBoolForKey
	encodeByte
	encodeByteForKey
	encodeChar
	encodeCharForKey
	encodeConditionalObjectForKey
	encodeDataObject
	encodeDouble
	encodeDoubleForKey
	encodeFloat
	encodeFloatForKey
	encodeInt
	encodeIntForKey
	encodeLong
	encodeLongForKey
	encodeObject
	encodeObjectForKey
	encodeShort
	encodeShortForKey
	systemVersion
	versionForClassName

	Constants

	NSCountCommand
	Overview
	Tasks
	Constructors

	Constructors

	NSCreateCommand
	Overview
	Tasks
	Constructors
	Getting Information About a Create Command

	Constructors
	Instance Methods
	createClassDescription
	resolvedKeyDictionary

	NSData
	Class at a Glance
	Overview
	Tasks
	Constructors
	Creating Data Objects
	Accessing Data
	Testing Data
	Storing Data

	Constructors
	Static Methods
	dataWithContentsOfMappedFile

	Instance Methods
	bytes
	isEqualToData
	length
	subdataWithRange
	writeToURL

	NSDate
	Class at a Glance
	Overview
	Subclassing Notes
	Methods to Override
	Special Considerations

	Tasks
	Constructors
	Creating an NSDate Instance
	Comparing Dates
	Getting Time Intervals
	Representing Dates as Strings
	Working with Milliseconds

	Constructors
	Static Methods
	currentTimeIntervalSinceReferenceDate
	distantFuture
	distantPast
	millisecondsToTimeInterval
	timeIntervalToMilliseconds

	Instance Methods
	compare
	dateByAddingTimeInterval
	earlierDate
	equals
	hashCode
	isEqualToDate
	laterDate
	timeIntervalSinceDate
	timeIntervalSinceNow
	timeIntervalSinceReferenceDate
	toString

	Constants

	NSDecimalMappingBehavior
	Overview
	Tasks
	Modifying Behavior
	Error Handling

	Static Methods
	defaultRoundingMode
	getNotANumberValue
	setDefaultRoundingMode
	setNotANumberValue
	setShouldRaiseForNotANumberArgument
	shouldRaiseForNotANumberArgument

	Constants
	Notifications
	DecimalLossOfPrecisionNotification
	NotANumberConversionNotification

	NSDeleteCommand
	Overview
	Tasks
	Constructors
	Working with Specifiers

	Constructors
	Instance Methods
	keySpecifier
	setReceiversSpecifier

	NSDictionary
	Class at a Glance
	Overview
	Tasks
	Constructors
	Counting Entries
	Comparing Dictionaries
	Accessing Keys and Values

	Constructors
	Instance Methods
	allKeys
	allKeysForObject
	allValues
	count
	isEqualToDictionary
	keyEnumerator
	objectEnumerator
	objectForKey
	objectsForKeys

	NSDistributedNotificationCenter
	Class at a Glance
	Overview
	Tasks
	Constructors
	Accessing Distributed Notification Centers
	Adding and Removing Observers
	Posting Notifications
	Suspending and Enabling Notification Delivery

	Constructors
	Static Methods
	defaultCenter
	notificationCenterForType

	Instance Methods
	addObserver
	postNotification
	setSuspended
	suspended

	Constants

	NSEnumerator
	Class at a Glance
	Overview
	Tasks
	Getting the Objects
	Querying Enumerators

	Instance Methods
	getObjCEnumerator
	hasMoreElements
	nextElement

	NSError
	Overview
	Tasks
	Constructors
	Getting Error Properties
	Getting a Localized Error Description
	Getting the Error Recovery Attempter

	Constructors
	Instance Methods
	code
	domain
	localizedDescription
	localizedFailureReason
	localizedRecoveryOptions
	localizedRecoverySuggestion
	recoveryAttempter
	userInfo

	Constants

	NSException
	Overview
	Tasks
	Constructors
	Querying an NSException

	Constructors
	Static Methods
	getStackTrace

	Instance Methods
	name
	toString
	userInfo

	NSExistsCommand
	Overview
	Tasks
	Constructors

	Constructors

	NSExpression
	Overview
	Tasks
	Constructors
	Constructors and Initialization
	Getting Information About an Expression
	Evaluating an Expression

	Constructors
	Static Methods
	expressionForConstantValue
	expressionForEvaluatedObject
	expressionForFunction
	expressionForKeyPath
	expressionForVariable

	Instance Methods
	arguments
	constantValue
	expressionType
	expressionValueWithObject
	function
	keyPath
	operand
	variable

	Constants

	NSFormatter
	Overview
	Subclassing Notes

	Tasks
	Constructors
	Textual Representation of Cell Content
	Object Equivalent to Textual Representation
	Dynamic Cell Editing

	Constructors
	Instance Methods
	attributedStringForObjectValue
	editingStringForObjectValue
	isPartialStringValid
	objectValueForString
	replacementStringForString
	stringForObjectValue

	NSFormatter.FormattingException
	Overview
	Tasks
	Constructors

	Constructors

	NSFormatter.ParsingException
	Overview
	Tasks
	Constructors

	Constructors

	NSGetCommand
	Overview
	Tasks
	Constructors

	Constructors

	NSGregorianDate
	Overview
	Tasks
	Constructors
	Retrieving Date Elements
	Adjusting a Date
	Computing Date Intervals
	Comparing Dates
	Representing Dates as Strings
	Getting the Time Zone

	Constructors
	Instance Methods
	dateByAddingGregorianUnits
	dayOfCommonEra
	dayOfMonth
	dayOfWeek
	dayOfYear
	equals
	gregorianUnitsSinceDate
	hashCode
	hourOfDay
	isEqualToGregorianDate
	microsecondOfSecond
	minuteOfHour
	monthOfYear
	secondOfMinute
	timeZone
	toString
	yearOfCommonEra

	NSGregorianDate.IntRef
	Overview
	Tasks
	Constructors

	Constructors

	NSGregorianDateFormatter
	Overview
	Tasks
	Constructors
	Getting Behavior
	Getting and Setting Attributes
	String Manipulation

	Constructors
	Instance Methods
	allowsNaturalLanguage
	attributedStringForObjectValue
	dateFormat
	isPartialStringValid
	objectValueForString
	replacementStringForString
	stringForObjectValue

	Constants

	NSHFSFileTypes
	Overview
	Tasks
	Constructors
	Working with HFS File Types

	Constructors
	Static Methods
	fileTypeForHFSTypeCode
	hfsTypeCodeFromFileType
	hfsTypeOfFile

	NSIndexSet
	Overview
	Tasks
	Constructors
	Testing an Index Set
	Getting Information About an Index Set
	Accessing Indexes

	Constructors
	Instance Methods
	containsIndex
	containsIndexes
	containsIndexesInRange
	count
	firstIndex
	indexGreaterThanIndex
	indexGreaterThanOrEqualToIndex
	indexLessThanIndex
	indexLessThanOrEqualToIndex
	intersectsIndexesInRange
	isEqualToIndexSet
	lastIndex

	Constants

	NSIndexSpecifier
	Overview
	Tasks
	Constructors
	Accessing Index Information

	Constructors
	Instance Methods
	index
	setIndex

	NSKeyedArchiver
	Overview
	Tasks
	Constructors
	Archiving Data
	Encoding Data
	Managing Delegates
	Managing Classes and Class Names
	Querying an Archiver
	Encoding objects
	Finishing encoding

	Constructors
	Static Methods
	archivedDataWithRootObject
	archiveRootObjectToFile
	globalClassNameForClass
	setGlobalClassNameForClass

	Instance Methods
	classNameForClass
	delegate
	encodeBoolForKey
	encodeByte
	encodeByteForKey
	encodeChar
	encodeCharForKey
	encodeConditionalObject
	encodeConditionalObjectForKey
	encodeDataObject
	encodeDouble
	encodeDoubleForKey
	encodeFloat
	encodeFloatForKey
	encodeInt
	encodeIntForKey
	encodeLong
	encodeLongForKey
	encodeObject
	encodeObjectForKey
	encodePointForKey
	encodeRectForKey
	encodeShort
	encodeShortForKey
	encodeSizeForKey
	finishEncoding
	outputFormat
	setClassNameForClass
	setDelegate
	setOutputFormat
	versionForClassName

	Delegate Methods
	archiverDidEncodeObject
	archiverDidFinish
	archiverWillEncodeObject
	archiverWillFinish
	archiverWillReplaceObject

	NSKeyedUnarchiver
	Overview
	Tasks
	Constructors
	Unarchiving Data
	Decoding Data
	Managing Delegates
	Managing Class Names
	Querying an Unarchiver
	Decoding objects
	Finishing decoding

	Constructors
	Static Methods
	globalClassForClassName
	setGlobalClassForClassName
	unarchiveObjectWithData
	unarchiveObjectWithFile

	Instance Methods
	classForClassName
	containsValueForKey
	decodeBoolForKey
	decodeByte
	decodeByteForKey
	decodeChar
	decodeCharForKey
	decodeDataObject
	decodeDouble
	decodeDoubleForKey
	decodeFloat
	decodeFloatForKey
	decodeInt
	decodeIntForKey
	decodeLong
	decodeLongForKey
	decodeObject
	decodeObjectForKey
	decodePointForKey
	decodeRectForKey
	decodeShort
	decodeShortForKey
	decodeSizeForKey
	delegate
	finishDecoding
	setClassForClassName
	setDelegate
	versionForClassName

	Delegate Methods
	unarchiverCannotDecodeObject
	unarchiverDidDecodeObject
	unarchiverDidFinish
	unarchiverWillFinish
	unarchiverWillReplaceObject

	NSKeyValue
	Overview
	Tasks
	Constructors
	Getting Values
	Setting Values
	Adding
	Removing
	Replacing
	Using Metadata

	Constructors
	Static Methods
	addObjectToBothSidesOfRelationshipWithKey
	addObjectToPropertyWithKey
	classDescription
	coerceValueForKey
	insertValueAtIndexInPropertyWithKey
	insertValueInPropertyWithKey
	objectSpecifier
	removeObjectFromBothSidesOfRelationshipWithKey
	removeObjectFromPropertyWithKey
	removeValueAtIndexFromPropertyWithKey
	replaceValueAtIndexInPropertyWithKeyWithValue
	takeStoredValueForKey
	takeValueForKey
	takeValueForKeyPath
	valueAtIndexInPropertyWithKey
	valueForKey
	valueForKeyPath
	valuesForKeys
	valueWithNameInPropertyWithKey
	valueWithUniqueIDInPropertyWithKey

	Constants

	NSLogicalTest
	Overview
	Constants
	Tasks
	Constructors

	Constructors

	NSMetadataItem
	Overview
	Tasks
	Constructors
	Getting Item Attributes

	Constructors
	Instance Methods
	attributes
	valueForAttribute
	valuesForAttributes

	NSMetadataQuery
	Overview
	Tasks
	Constructors
	Setting the Search Scope
	Setting the Delegate
	Setting the Query Attributes
	Running the Query
	Getting Query Results

	Constructors
	Instance Methods
	delegate
	disableUpdates
	enableUpdates
	groupedResults
	groupingAttributes
	indexOfResult
	isGathering
	isStarted
	isStopped
	notificationBatchingInterval
	predicate
	resultAtIndex
	resultCount
	results
	searchScopes
	setDelegate
	setGroupingAttributes
	setNotificationBatchingInterval
	setPredicate
	setSearchScopes
	setSortDescriptors
	setValueListAttributes
	sortDescriptors
	startQuery
	stopQuery
	valueListAttributes
	valueLists
	valueOfAttributeForResultAtIndex

	Constants
	Notifications
	NSMetadataQueryDidFinishGatheringNotification
	NSMetadataQueryDidStartGatheringNotification
	NSMetadataQueryDidUpdateNotification
	NSMetadataQueryGatheringProgressNotification

	NSMetadataQueryAttributeValueTuple
	Overview
	Tasks
	Constructors
	Getting Attribute Information

	Constructors
	Instance Methods
	attribute
	count
	value

	NSMetadataQueryResultGroup
	Overview
	Tasks
	Constructors
	Getting Result Values

	Constructors
	Instance Methods
	attribute
	resultAtIndex
	resultCount
	results
	subgroups
	value

	NSMiddleSpecifier
	Overview
	Tasks
	Constructors

	Constructors

	NSMoveCommand
	Overview
	Tasks
	Constructors
	Working with Specifiers

	Constructors
	Instance Methods
	keySpecifier
	setReceiversSpecifier

	NSMutableArray
	Class at a Glance
	Overview
	Tasks
	Constructors
	Adding and Replacing Objects
	Removing Objects
	Rearranging Objects

	Constructors
	Instance Methods
	addObject
	addObjectsFromArray
	filterUsingPredicate
	insertObjectAtIndex
	insertObjectsAtIndexes
	removeAllObjects
	removeIdenticalObject
	removeLastObject
	removeObject
	removeObjectAtIndex
	removeObjectsAtIndexes
	removeObjectsInArray
	removeObjectsInRange
	replaceObjectAtIndex
	replaceObjectsAtIndexes
	replaceObjectsInRange
	setArray
	sortUsingDescriptors
	sortUsingSelector

	NSMutableAttributedString
	Overview
	Tasks
	Constructors
	Retrieving Character Information
	Changing Characters
	Changing Attributes
	Changing Characters and Attributes
	Grouping Changes

	Constructors
	Instance Methods
	addAttributeInRange
	addAttributesInRange
	appendAttributedString
	applyFontTraitsInRange
	beginEditing
	deleteCharactersInRange
	endEditing
	fixAttachmentAttributeInRange
	fixAttributesInRange
	fixFontAttributeInRange
	fixParagraphStyleAttributeInRange
	insertAttributedStringAtIndex
	mutableStringReference
	readFromData
	readFromURL
	removeAttributeInRange
	replaceCharactersInRange
	setAlignmentInRange
	setAttributedString
	setAttributesInRange
	subscriptRange
	superscriptRange
	unscriptRange
	updateAttachmentsFromPath

	NSMutableCharacterSet
	Overview
	Tasks
	Constructors
	Adding and Removing Characters
	Combining Character Sets
	Inverting a Character Set

	Constructors
	Instance Methods
	addCharacter
	addCharactersInRange
	addCharactersInString
	intersectCharacterSet
	invertCharacterSet
	removeCharacter
	removeCharactersInRange
	removeCharactersInString
	subtractCharacterSet
	unionCharacterSet

	NSMutableData
	Class at a Glance
	Overview
	Tasks
	Constructors
	Adjusting Capacity
	Adding Data
	Modifying Data

	Constructors
	Instance Methods
	appendData
	increaseLengthBy
	resetBytesInRange
	setData
	setLength

	NSMutableDictionary
	Class at a Glance
	Overview
	Tasks
	Constructors
	Adding and Removing Entries

	Constructors
	Instance Methods
	addEntriesFromDictionary
	removeAllObjects
	removeObjectForKey
	removeObjectsForKeys
	setDictionary
	setObjectForKey

	NSMutableIndexSet
	Overview
	Tasks
	Constructors
	Adding Indexes
	Removing Indexes
	Shifting Indexes in an Index Set

	Constructors
	Instance Methods
	addIndex
	addIndexes
	addIndexesInRange
	removeAllIndexes
	removeIndex
	removeIndexes
	removeIndexesInRange
	shiftIndexes

	NSMutablePoint
	Overview
	Tasks
	Constructors
	Accessing and Setting Coordinate Values
	Copying

	Constructors
	Instance Methods
	clone
	setX
	setY
	x
	y

	NSMutableRange
	Overview
	Tasks
	Constructors
	Accessing and Setting Range Elements
	Transforming Mutable Ranges

	Constructors
	Instance Methods
	clone
	intersectRange
	length
	location
	setLength
	setLocation
	unionRange

	NSMutableRect
	Overview
	Tasks
	Constructors
	Accessing and Setting Coordinate Values
	Accessing and Setting Size Values
	Transforming Mutable Rectangles
	Copying

	Constructors
	Instance Methods
	clone
	height
	insetRect
	intersectRect
	makeIntegral
	offsetRect
	setHeight
	setOrigin
	setSize
	setWidth
	setX
	setY
	unionRect
	width
	x
	y

	NSMutableSet
	Class at a Glance
	Overview
	Tasks
	Constructors
	Adding and Removing Entries
	Combining and Recombining Sets

	Constructors
	Instance Methods
	addObject
	addObjectsFromArray
	intersectSet
	removeAllObjects
	removeObject
	setSet
	subtractSet
	unionSet

	NSMutableSize
	Overview
	Tasks
	Constructors
	Accessing and Setting Dimensions
	Copying

	Constructors
	Instance Methods
	clone
	height
	setHeight
	setWidth
	width

	NSMutableStringReference
	Overview
	Tasks
	Constructors
	Modifying a String

	Constructors
	Instance Methods
	appendString
	deleteCharactersInRange
	insertStringAtIndex
	replaceCharactersInRange
	replaceOccurrencesOfString
	setString

	NSNamedValueSequence
	Overview
	Tasks
	Constructors
	Getting Values
	Setting Values

	Constructors
	Instance Methods
	getBooleanWithName
	getByteWithName
	getCharWithName
	getDoubleWithName
	getFloatWithName
	getIntWithName
	getLongWithName
	getObjectWithName
	getShortWithName
	setBooleanWithName
	setByteWithName
	setCharWithName
	setDoubleWithName
	setFloatWithName
	setIntWithName
	setLongWithName
	setObjectWithName
	setShortWithName

	NSNameSpecifier
	Overview
	Tasks
	Constructors
	Accessing a Name Specifier

	Constructors
	Instance Methods
	name
	setName

	NSNetService
	Overview
	Tasks
	Constructors
	Managing Delegates
	Maintaining Run Loops
	Getting Information About a Service
	Working with a Service
	Availability notifications
	Resolving services
	Stopping services

	Constructors
	Instance Methods
	addresses
	delegate
	domain
	hostName
	name
	protocolSpecificInformation
	publish
	removeFromRunLoop
	resolve
	resolveWithTimeout
	scheduleInRunLoop
	setDelegate
	setProtocolSpecificInformation
	setTXTRecordData
	stop
	TXTRecordData
	type

	Constants
	Delegate Methods
	netServiceDidNotPublish
	netServiceDidNotResolve
	netServiceDidPublish
	netServiceDidResolveAddress
	netServiceDidStop
	netServiceDidUpdateTXTRecordData
	netServiceWillPublish
	netServiceWillResolve

	NSNetServiceBrowser
	Overview
	Tasks
	Constructors
	Managing Delegates
	Maintaining Run Loops
	Working with a Service Browser
	Searching
	Working with domains
	Working with services

	Constructors
	Instance Methods
	delegate
	removeFromRunLoop
	scheduleInRunLoop
	searchForAllDomains
	searchForBrowsableDomains
	searchForRegistrationDomains
	searchForServicesOfType
	setDelegate
	stop

	Delegate Methods
	netServiceBrowser
	netServiceBrowserDidFindDomain
	netServiceBrowserDidStopSearch
	netServiceBrowserWillSearch
	netServiceDidFindService
	netServiceDidRemoveDomain
	netServiceDidRemoveService

	NSNotification
	Overview
	Creating Subclasses

	Tasks
	Constructors
	Obtaining Information About a Notification

	Constructors
	Instance Methods
	name
	object
	userInfo

	NSNotificationCenter
	Class at a Glance
	Overview
	Tasks
	Constructors
	Accessing the Default Center
	Adding and Removing Observers
	Posting Notifications

	Constructors
	Static Methods
	defaultCenter

	Instance Methods
	addObserver
	postNotification
	removeObserver

	NSNotificationQueue
	Overview
	Tasks
	Constructors
	Creating and Initializing Notification Queues
	Inserting and Removing Notifications from a Queue

	Constructors
	Static Methods
	defaultQueue

	Instance Methods
	dequeueMatchingNotifications
	enqueueNotification
	enqueueNotificationWithCoalesceMaskForModes

	Constants

	NSNull
	Overview
	Tasks
	Constructors
	Obtaining an Instance

	Constructors
	Static Methods
	nullValue

	NSNumberFormatter
	Overview
	Tasks
	Constructors
	Setting and Getting Formats
	Setting and Getting Characteristics for Displaying Values
	Setting and Getting Separators
	Enabling Localization
	Setting and Getting Float Behavior
	String Manipulation

	Constructors
	Instance Methods
	allowsFloats
	attributedStringForNil
	attributedStringForNotANumber
	attributedStringForObjectValue
	attributedStringForZero
	decimalSeparator
	format
	hasThousandSeparators
	isPartialStringValid
	localizesFormat
	negativeFormat
	objectValueForString
	positiveFormat
	replacementStringForString
	setAllowsFloats
	setAttributedStringForNil
	setAttributedStringForNotANumber
	setAttributedStringForZero
	setDecimalSeparator
	setFormat
	setHasThousandSeparators
	setLocalizesFormat
	setNegativeFormat
	setPositiveFormat
	setTextAttributesForNegativeValues
	setTextAttributesForPositiveValues
	setThousandSeparator
	stringForObjectValue
	textAttributesForNegativeValues
	textAttributesForPositiveValues
	thousandSeparator

	NSObject
	Overview
	Interfaces Implemented
	Tasks
	Constructors
	Creating, Copying, and Deallocating Objects
	Comparing Objects
	Describing Objects
	Key Value Coding

	Constructors
	Instance Methods
	clone
	equals
	hashCode
	mutableClone
	takeValueForKey
	toString
	valueForKey

	NSPathUtilities
	Overview
	Tasks
	Constructors
	Obtaining Standard Paths
	Converting Between Paths and URLs
	Getting and Setting File Attributes
	Manipulating Path Strings

	Constructors
	Static Methods
	displayNameAtPath
	fileAttributes
	isAbsolutePath
	lastPathComponent
	pathComponents
	pathExtension
	pathFromURL
	pathsMatchingExtensions
	pathWithComponents
	searchPathForDirectoriesInDomains
	setFileAttributes
	stringByAbbreviatingWithTildeInPath
	stringByAppendingPathComponent
	stringByAppendingPathExtension
	stringByDeletingLastPathComponent
	stringByDeletingPathExtension
	stringByExpandingTildeInPath
	stringByResolvingSymlinksInPath
	stringByStandardizingPath
	stringsByAppendingPaths
	temporaryDirectory
	URLWithPath

	Constants

	NSPoint
	Overview
	Tasks
	Constructors
	Accessing Coordinate Values
	Converting Points
	Finding the Distance Between Points
	Testing Points
	Copying

	Constructors
	Static Methods
	fromString

	Instance Methods
	clone
	distanceToPoint
	equals
	hashCode
	isEqualToPoint
	toAWTPoint
	toString
	x
	y

	Constants

	NSPort
	Overview
	Tasks
	Constructors
	Validation
	Setting the Delegate

	Constructors
	Instance Methods
	delegate
	invalidate
	isValid
	setDelegate

	NSPositionalSpecifier
	Overview
	Tasks
	Constructors
	Accessing Information About a Positional Specifier
	Evaluating a Positional Specifier

	Constructors
	Instance Methods
	evaluate
	insertionContainer
	insertionIndex
	insertionKey
	insertionReplaces
	setInsertionClassDescription

	Constants

	NSPredicate
	Overview
	Tasks
	Constructors
	Creating Predicates
	Evaluating
	Getting Format Information

	Constructors
	Static Methods
	predicateWithFormat
	predicateWithValue

	Instance Methods
	evaluateWithObject
	predicateFormat
	predicateWithSubstitutionVariables

	NSPropertyListSerialization
	Overview
	Tasks
	Constructors
	Serializing Property Lists
	Testing Property Lists
	Deserializing Property Lists

	Constructors
	Static Methods
	dataFromPropertyList
	propertyListFromData
	propertyListFromString
	propertyListFromXMLData
	propertyListIsValidForFormat
	stringFromPropertyList
	XMLDataFromPropertyList

	Constants

	NSPropertySpecifier
	Overview
	Tasks
	Constructors

	Constructors

	NSQuitCommand
	Overview
	Tasks
	Constructors
	Accessing Options

	Constructors
	Instance Methods
	saveOptions

	NSRandomSpecifier
	Overview
	Tasks
	Constructors

	Constructors

	NSRange
	Overview
	Tasks
	Constructors
	Accessing Range Elements
	Manipulating Ranges
	Testing Ranges
	Converting Between Strings and NSRanges

	Constructors
	Static Methods
	fromString

	Instance Methods
	clone
	equals
	hashCode
	intersectsRange
	isEmpty
	isEqualToRange
	isSubrangeOfRange
	length
	location
	locationInRange
	maxRange
	rangeByIntersectingRange
	rangeByUnioningRange
	subtractRange
	toString

	Constants

	NSRangeSpecifier
	Overview
	Tasks
	Constructors
	Accessing a Range Specifier

	Constructors
	Instance Methods
	endSpecifier
	setEndSpecifier
	setStartSpecifier
	startSpecifier

	NSRect
	Overview
	Tasks
	Constructors
	Accessing Elemental Values
	Accessing Computed Values
	Testing and Comparing Rectangles
	Deriving Rectangles
	Transforming NSRects
	Copying

	Constructors
	Static Methods
	fromString

	Instance Methods
	clone
	containsPoint
	equals
	hashCode
	height
	intersectsRect
	isEmpty
	isEqualToRect
	isSubrectOfRect
	maxX
	maxY
	midX
	midY
	origin
	rectByInsettingRect
	rectByIntersectingRect
	rectByMakingIntegral
	rectByOffsettingRect
	rectByUnioningRect
	size
	sliceRect
	toAWTRectangle
	toString
	width
	x
	y

	Constants

	NSRelativeSpecifier
	Overview
	Tasks
	Constructors
	Accessing a Relative Specifier

	Constructors
	Instance Methods
	baseSpecifier
	relativePosition
	setBaseSpecifier
	setRelativePosition

	Constants

	NSRunLoop
	Overview
	Tasks
	Constructors
	Accessing the Current Run Loop
	Managing Timers
	Managing Ports
	Running a Loop
	Sending Messages

	Constructors
	Static Methods
	currentRunLoop

	Instance Methods
	acceptInputForMode
	addPortForMode
	addTimerForMode
	allModes
	cancelPerformSelectorWithOrder
	containsPortForMode
	containsTimerForMode
	currentMode
	limitDateForMode
	performSelectorWithOrder
	portsForMode
	removePortForMode
	removeTimerForMode
	run
	runModeBeforeDate
	runModeUntilDate
	timersForMode

	Constants

	NSRuntime
	Overview
	Tasks
	Working with Libraries

	Static Methods
	addPathToLibrarySearchPaths
	librarySearchPaths
	loadLibrary
	nextRootPath

	NSScriptClassDescription
	Overview
	Encapsulating Scripting Information
	Specifying Subcontainers Implicitly

	Tasks
	Constructors
	Getting an NSScriptClassDescription
	Getting Basic Information
	Getting and Comparing Apple Event Codes
	Getting Attribute and Relationship Information
	Getting Command Information

	Constructors
	Instance Methods
	appleEventCode
	appleEventCodeForKey
	classDescriptionForKey
	className
	defaultSubcontainerAttributeKey
	isLocationRequiredToCreateForKey
	isReadOnlyKey
	keyWithAppleEventCode
	matchesAppleEventCode
	selectorForCommand
	suiteName
	superclassDescription
	supportsCommand
	typeForKey

	NSScriptCoercionHandler
	Overview
	Tasks
	Constructors
	Accessing the Application’s Handler
	Working with Handlers

	Constructors
	Static Methods
	sharedCoercionHandler

	Instance Methods
	coerceValueToClass
	registerCoercer

	NSScriptCommand
	Overview
	Tasks
	Constructors
	Obtaining the Current Command
	Obtaining the Apple Event
	Executing Commands
	Getting and Setting Receivers
	Getting and Setting Arguments
	Getting and Setting Parameters
	Getting Information About the Command
	Managing Script Execution Problems
	Suspending and Resuming Commands

	Constructors
	Static Methods
	currentCommand

	Instance Methods
	appleEvent
	arguments
	commandDescription
	directParameter
	evaluatedArguments
	evaluatedReceivers
	executeCommand
	isWellFormed
	performDefaultImplementation
	receiversSpecifier
	resumeExecutionWithResult
	scriptErrorNumber
	scriptErrorString
	setArguments
	setDirectParameter
	setReceiversSpecifier
	setScriptErrorNumber
	setScriptErrorString
	suspendExecution

	Constants

	NSScriptCommandDescription
	Overview
	Tasks
	Constructors
	Getting Basic Information
	Creating Commands
	Getting Argument Information
	Getting Return-type Information

	Constructors
	Instance Methods
	appleEventClassCode
	appleEventCode
	appleEventCodeForArgumentWithName
	appleEventCodeForReturnType
	argumentNames
	commandClassName
	commandName
	createCommandInstance
	isOptionalArgumentWithName
	returnType
	suiteName
	typeForArgumentWithName

	NSScriptExecutionContext
	Overview
	Tasks
	Constructors
	Getting the Current Context
	Getting and Setting the Container Object

	Constructors
	Static Methods
	sharedScriptExecutionContext

	Instance Methods
	objectBeingTested
	rangeContainerObject
	setObjectBeingTested
	setRangeContainerObject
	setTopLevelObject
	topLevelObject

	NSScriptObjectSpecifier
	Overview
	Other Classes Used in Object-Specifier Evaluation
	Boolean Expressions and Logical Operations

	Tasks
	Constructors
	Evaluating an Object Specifier
	Getting, Testing, and Setting Containers
	Getting and Setting Child References
	Getting and Setting Object Keys
	Getting Evaluation Errors

	Constructors
	Instance Methods
	childSpecifier
	containerClassDescription
	containerIsObjectBeingTested
	containerIsRangeContainerObject
	containerSpecifier
	evaluationErrorNumber
	evaluationErrorSpecifier
	indicesOfObjectsByEvaluatingWithContainer
	key
	keyClassDescription
	objectsByEvaluatingSpecifier
	objectsByEvaluatingWithContainers
	setChildSpecifier
	setContainerClassDescription
	setContainerIsObjectBeingTested
	setContainerIsRangeContainerObject
	setContainerSpecifier
	setEvaluationErrorNumber
	setKey

	Constants

	NSScriptSuiteRegistry
	Overview
	Tasks
	Constructors
	Getting and Setting the Shared Instance
	Getting Suite Information
	Getting and Registering Class Descriptions
	Getting and Registering Command Descriptions
	Getting Other Suite Information
	Loading Suites

	Constructors
	Static Methods
	setSharedScriptSuiteRegistry
	sharedScriptSuiteRegistry

	Instance Methods
	aeteResource
	appleEventCodeForSuite
	bundleForSuite
	classDescriptionsInSuite
	classDescriptionWithAppleEventCode
	commandDescriptionsInSuite
	commandDescriptionWithAppleEventCodes
	loadSuitesFromBundle
	loadSuiteWithDictionary
	registerClassDescription
	registerCommandDescription
	suiteForAppleEventCode
	suiteNames

	NSScriptWhoseTest
	Overview
	Tasks
	Constructors
	Evaluating a Test

	Constructors
	Instance Methods
	isTrue

	NSSelector
	Overview
	Tasks
	Constructors
	Invoking a Selector
	Accessing Information About a Selector

	Constructors
	Static Methods
	invoke

	Instance Methods
	equals
	implementedByClass
	implementedByObject
	invoke
	methodOnClass
	methodOnObject
	name
	parameterTypes
	toString

	NSSet
	Class at a Glance
	Overview
	Tasks
	Constructors
	Counting Entries
	Accessing the Members
	Comparing Sets
	Joining Sets

	Constructors
	Instance Methods
	allObjects
	anyObject
	containsObject
	count
	intersectsSet
	isEqualToSet
	isSubsetOfSet
	member
	objectEnumerator
	setByIntersectingSet
	setBySubtractingSet
	setByUnioningSet

	NSSetCommand
	Overview
	Tasks
	Constructors
	Working with Specifiers

	Constructors
	Instance Methods
	keySpecifier
	setReceiversSpecifier

	NSSize
	Overview
	Tasks
	Constructors
	Accessing Dimensions
	Testing NSSizes
	Transforming NSSizes
	Copying

	Constructors
	Static Methods
	fromString

	Instance Methods
	clone
	equals
	hashCode
	height
	isEmpty
	isEqualToSize
	toAWTDimension
	toString
	width

	Constants

	NSSortDescriptor
	Overview
	Tasks
	Constructors
	Getting Information About a Sort Descriptor
	Using Sort Descriptors

	Constructors
	Instance Methods
	ascending
	compareObjects
	key
	reversedSortDescriptor
	selector

	NSSpecifierTest
	Overview
	Constants
	Tasks
	Constructors

	Constructors

	NSSpellServer
	Overview
	Tasks
	Constructors
	Registering Your Service
	Assigning a Delegate
	Running the Service
	Checking User Dictionaries
	Checking spelling

	Constructors
	Instance Methods
	delegate
	isWordInUserDictionaries
	registerLanguage
	run
	setDelegate

	Delegate Methods
	spellServerDidForgetWord
	spellServerDidLearnWord
	spellServerSuggestCompletionsForPartialWordRange
	spellServerSuggestGuessesForWord

	NSStringReference
	Overview
	String Objects
	Subclassing Notes
	Methods to Override
	Alternatives to Subclassing

	Tasks
	Constructors
	Getting a String’s Length
	Accessing Characters
	Dividing Strings
	Finding Characters and Substrings
	Determining Line and Paragraph Ranges
	Identifying and Comparing Strings
	Getting a Shared Prefix
	Getting Strings with Mapping
	Working with Encodings
	Deprecated

	Constructors
	Static Methods
	availableStringEncodings
	defaultCStringEncoding
	localizedNameOfStringEncoding

	Instance Methods
	canBeConvertedToEncoding
	characterAtIndex
	commonPrefixWithString
	componentsSeparatedByString
	dataUsingEncoding
	decomposedStringWithCanonicalMapping
	decomposedStringWithCompatibilityMapping
	fastestEncoding
	hasPrefix
	hasSuffix
	length
	lineRangeForRange
	paragraphRangeForRange
	precomposedStringWithCanonicalMapping
	precomposedStringWithCompatibilityMapping
	rangeOfString
	smallestEncoding
	string
	substringWithRange
	writeToURL

	Constants

	NSSystem
	Overview
	Tasks
	Constructors
	Getting User Information
	Getting Framework Information
	Getting Process Information
	Getting Host Information
	Logging and Setting Arguments

	Constructors
	Static Methods
	arguments
	currentFullUserName
	currentHomeDirectory
	currentUserName
	environment
	foundationVersionNumber
	homeDirectoryForUser
	hostName
	log
	operatingSystem
	operatingSystemName
	operatingSystemVersionString
	processName
	setArguments
	setProcessName

	Constants

	NSTimer
	Overview
	Tasks
	Constructors
	Stopping a Timer
	Information About a Timer

	Constructors
	Instance Methods
	invalidate
	isValid
	timeInterval
	userInfo

	NSTimeZone
	Overview
	Tasks
	Constructors
	Getting Time Zones
	Getting the Default Time Zone
	Getting Time Zone Information
	Getting Information About a Specific Time Zone
	Comparing Time Zones
	Describing a Time Zone

	Constructors
	Static Methods
	abbreviationDictionary
	defaultTimeZone
	knownTimeZoneNames
	localTimeZone
	resetSystemTimeZone
	setDefaultTimeZone
	systemTimeZone
	timeZoneForSecondsFromGMT
	timeZoneWithName
	timeZoneWithNameAndData

	Instance Methods
	abbreviation
	abbreviationForDate
	data
	equals
	hashCode
	isDaylightSavingTime
	isDaylightSavingTimeForDate
	isEqualToTimeZone
	name
	secondsFromGMT
	secondsFromGMTForDate
	toString

	NSUnarchiver
	Overview
	Tasks
	Constructors
	Decoding Objects
	Managing an NSUnarchiver
	Substituting Classes or Objects

	Constructors
	Static Methods
	classNameGloballyDecodedForArchiveClassName
	globallyDecodeClassNameAsClassName
	unarchiveObjectWithData
	unarchiveObjectWithFile

	Instance Methods
	classNameDecodedForArchiveClassName
	data
	decodeByte
	decodeChar
	decodeClassNameAsClassName
	decodeDataObject
	decodeDouble
	decodeFloat
	decodeInt
	decodeLong
	decodeObject
	decodeShort
	isAtEnd
	replaceObject
	versionForClassName

	NSUndoManager
	Overview
	Tasks
	Constructors
	Registering Undo Operations
	Checking Undo Ability
	Performing Undo and Redo
	Limiting the Undo Stack
	Creating Undo Groups
	Disabling Undo
	Checking Whether Undo or Redo Is Being Performed
	Clearing Undo Operations
	Setting and Getting the Action Name
	Getting and Localizing Menu Item Title
	Working with Run Loops

	Constructors
	Instance Methods
	beginUndoGrouping
	canRedo
	canUndo
	disableUndoRegistration
	enableUndoRegistration
	endUndoGrouping
	groupingLevel
	groupsByEvent
	isRedoing
	isUndoing
	isUndoRegistrationEnabled
	levelsOfUndo
	redo
	redoActionName
	redoMenuItemTitle
	redoMenuTitleForUndoActionName
	registerUndoWithTarget
	registerUndoWithTargetAndArguments
	removeAllActions
	removeAllActionsWithTarget
	runLoopModes
	setActionName
	setGroupsByEvent
	setLevelsOfUndo
	setRunLoopModes
	undo
	undoActionName
	undoMenuItemTitle
	undoMenuTitleForUndoActionName
	undoNestedGroup

	Constants
	Notifications
	CheckpointNotification
	DidOpenUndoGroupNotification
	DidRedoChangeNotification
	DidUndoChangeNotification
	WillCloseUndoGroupNotification
	WillRedoChangeNotification
	WillUndoChangeNotification

	NSUniqueIDSpecifier
	Overview
	Tasks
	Constructors
	Accessing Unique ID Information

	Constructors
	Instance Methods
	setUniqueID
	uniqueID

	NSUserDefaults
	Class at a Glance
	Overview
	Tasks
	Constructors
	Getting the Shared Instance
	Getting a Default
	Setting and Removing Defaults
	Accessing Managed Environment Keys
	Setting and Getting the Search List
	Maintaining Persistent Domains
	Maintaining Volatile Domains
	Registering Defaults
	Maintaining Suites

	Constructors
	Static Methods
	resetStandardUserDefaults
	standardUserDefaults

	Instance Methods
	addSuiteNamed
	arrayForKey
	booleanForKey
	dataForKey
	dictionaryForKey
	dictionaryRepresentation
	doubleForKey
	floatForKey
	integerForKey
	longForKey
	objectForKey
	objectForKeyInDomain
	objectIsForcedForKey
	objectIsForcedForKeyInDomain
	persistentDomainForName
	persistentDomainNames
	registerDefaults
	removeObjectForKey
	removeObjectForKeyInDomain
	removePersistentDomainForName
	removeSuiteNamed
	removeVolatileDomainForName
	searchList
	setBooleanForKey
	setDoubleForKey
	setFloatForKey
	setIntegerForKey
	setLongForKey
	setObjectForKey
	setObjectForKeyInDomain
	setPersistentDomainForName
	setSearchList
	setVolatileDomainForName
	stringForKey
	synchronize
	volatileDomainForName
	volatileDomainNames

	Constants
	Notifications
	UserDefaultsDidChangeNotification

	NSValueTransformer
	Overview
	Tasks
	Constructors
	Using Name-based Registry
	Getting Information About a Transformer
	Using Transformers

	Constructors
	Static Methods
	allowsReverseTransformation
	setValueTransformerForName
	transformedValueClass
	valueTransformerForName
	valueTransformerNames

	Instance Methods
	reverseTransformedValue
	transformedValue

	Constants

	NSWhoseSpecifier
	Overview
	Tasks
	Constructors
	Accessing Information About a Whose Specifier

	Constructors
	Instance Methods
	endSubelementIdentifier
	endSubelementIndex
	setEndSubelementIdentifier
	setEndSubelementIndex
	setStartSubelementIdentifier
	setStartSubelementIndex
	setTest
	startSubelementIdentifier
	startSubelementIndex
	test

	Constants

	Part II: Interfaces
	NSCoding
	Overview

	NSComparisonMethods
	Overview
	Tasks
	Performing Comparisons

	Instance Methods
	doesContain
	isCaseInsensitiveLike
	isEqualTo
	isGreaterThan
	isGreaterThanOrEqualTo
	isLessThan
	isLessThanOrEqualTo
	isLike
	isNotEqualTo

	NSKeyValueCoding
	Overview
	Tasks
	Getting Values
	Setting Values

	Instance Methods
	takeValueForKey
	valueForKey

	Constants

	NSScriptingComparisonMethods
	Overview
	Tasks
	Performing Comparisons

	Instance Methods
	scriptingBeginsWith
	scriptingContains
	scriptingEndsWith
	scriptingIsEqualTo
	scriptingIsGreaterThan
	scriptingIsGreaterThanOrEqualTo
	scriptingIsLessThan
	scriptingIsLessThanOrEqualTo

	NSScriptingKeyValueCoding
	Overview
	Tasks
	Accessing Values
	Inserting Values
	Updating Values

	Instance Methods
	coerceValueForKey
	insertValueAtIndexInPropertyWithKey
	insertValueInPropertyWithKey
	removeValueAtIndexFromPropertyWithKey
	replaceValueAtIndexInPropertyWithKey
	valueAtIndexInPropertyWithKey
	valueWithNameInPropertyWithKey
	valueWithUniqueIDInPropertyWithKey

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

