Foundation Reference for Java
(Legacy)

Cocoa > Java

¢

2006-07-24

.

[

Apple Inc.

© 1997, 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, AppleScript, Bonjour,
Carbon, Cocoa, Logic, Mac, Mac OS, Macintosh,
Objective-C, and Xcode are trademarks of Apple
Inc,, registered in the United States and other
countries.

Finder, Numbers, and Spotlight are trademarks
of Apple Inc.

Adobe, Acrobat, and PostScript are trademarks
or registered trademarks of Adobe Systems
Incorporated in the U.S. and/or other countries.

Helvetica and Times are registered trademarks
of Heidelberger Druckmaschinen AG, available
from Linotype Library GmbH.

Java and all Java-based trademarks are
trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other
countries.

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction The Foundation Framework 25

Introduction 25

Part | Classes 29

Chapter 1 NSAppleEventDescriptor 31

Overview 31

Tasks 32
Constructors 34
Static Methods 35
Instance Methods 36

Chapter 2 NSAppleScript 43

Overview 43

Tasks 44
Constructors 44
Instance Methods 45
Constants 46

Chapter 3 NSArchiver 47

Class at a Glance 47
Overview 47

Tasks 48
Constructors 49
Static Methods 49
Instance Methods 51

Chapter 4 NSArray 55

Class at a Glance 55
Overview 55

Tasks 57
Constructors 59
Static Methods 59
Instance Methods 60
Constants 66

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 5

CONTENTS

NSAttributedString 67

Chapter 6

Overview 67

Tasks 67
Constructors 69
Instance Methods 70
Constants 75

NSAutoreleasePool 79

Chapter 7

Overview 79
Tasks 79
Static Methods 80

NSBundle 81

Chapter 8

Overview 81

Tasks 81
Constructors 84
Static Methods 84
Instance Methods 87

NSCharacterSet 95

Chapter 9

Overview 95

Tasks 95
Constructors 97
Static Methods 98
Instance Methods 102

NSClassDescription 105

Chapter 10

Overview 105

Tasks 105
Constructors 106
Static Methods 106
Instance Methods 107
Notifications 108

NSCloneCommand 109

Overview 109

Tasks 109
Constructors 110
Instance Methods 110

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 11

CONTENTS

NSCloseCommand 111

Chapter 12

Overview 111

Tasks 111
Constructors 111
Instance Methods 112
Constants 112

NSCoder 113

Chapter 13

Overview 113

Tasks 113
Constructors 116
Instance Methods 116
Constants 126

NSCountCommand 127

Chapter 14

Overview 127
Tasks 127
Constructors 127

NSCreateCommand 129

Chapter 15

Overview 129

Tasks 129
Constructors 130
Instance Methods 130

NSData 131

Chapter 16

Class at a Glance 131
Overview 132

Tasks 132
Constructors 133
Static Methods 133
Instance Methods 134

NSDate 137

Class at a Glance 137
Overview 138

Tasks 139
Constructors 140
Static Methods 141
Instance Methods 142

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Constants 145

Chapter 17 NSDecimalMappingBehavior 147

Overview 147
Tasks 147

Static Methods 148
Constants 149
Notifications 149

Chapter 18 NSDeleteCommand 151

Overview 151

Tasks 151
Constructors 152
Instance Methods 152

Chapter 19 NSDictionary 153

Class at a Glance 153
Overview 154

Tasks 154
Constructors 155
Instance Methods 156

Chapter 20 NSDistributedNotificationCenter 159

Class at a Glance 159
Overview 159

Tasks 160
Constructors 161
Static Methods 161
Instance Methods 162
Constants 164

Chapter 21 NSEnumerator 165

Class at a Glance 165
Overview 165

Tasks 166

Instance Methods 166

Chapter 22 NSError 169

Overview 169
Tasks 169

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Constructors 170
Instance Methods 171
Constants 173

Chapter 23 NSException 175

Overview 175

Tasks 175
Constructors 176
Static Methods 176
Instance Methods 176

Chapter 24 NSExistsCommand 179

Overview 179
Tasks 179
Constructors 179

Chapter 25 NSExpression 181

Overview 181

Tasks 181
Constructors 182
Static Methods 182
Instance Methods 184
Constants 186

Chapter 26 NSFormatter 187

Overview 187

Tasks 187
Constructors 188
Instance Methods 188

Chapter 27 NSFormatter.FormattingException 191

Overview 191
Tasks 191
Constructors 191

Chapter 28 NSFormatter.ParsingException 193

Overview 193
Tasks 193
Constructors 193

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 29 NSGetCommand 195

Overview 195
Tasks 195
Constructors 195

Chapter 30 NSGregorianDate 197

Overview 197

Tasks 197
Constructors 199
Instance Methods 200

Chapter 31 NSGregorianDate.IntRef 207

Overview 207
Tasks 207
Constructors 207

Chapter 32 NSGregorianDateFormatter 209

Overview 209

Tasks 209
Constructors 210
Instance Methods 211
Constants 212

Chapter 33 NSHFSFileTypes 215

Overview 215
Tasks 215
Constructors 215
Static Methods 216

Chapter 34 NSIndexSet 217

Overview 217

Tasks 217
Constructors 218
Instance Methods 219
Constants 222

Chapter 35 NSIindexSpecifier 223

Overview 223
Tasks 223

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Constructors 223
Instance Methods 224

Chapter 36 NSKeyedArchiver 225

Overview 225

Tasks 225
Constructors 228
Static Methods 229
Instance Methods 230
Delegate Methods 238

Chapter 37 NSKeyedUnarchiver 241

Overview 241

Tasks 241
Constructors 244
Static Methods 244
Instance Methods 246
Delegate Methods 254

Chapter 38 NSKeyValue 257

Overview 257
Tasks 257
Constructors 259
Static Methods 259
Constants 264

Chapter 39 NSLogicalTest 265

Overview 265
Constants 265
Tasks 265
Constructors 266

Chapter 40 NSMetadataltem 267

Overview 267

Tasks 267
Constructors 267
Instance Methods 268

Chapter 41 NSMetadataQuery 269

Overview 269

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 42

CONTENTS

Tasks 269
Constructors 271
Instance Methods 272
Constants 280
Notifications 280

NSMetadataQueryAttributeValueTuple 283

Chapter 43

Overview 283

Tasks 283
Constructors 283
Instance Methods 284

NSMetadataQueryResultGroup 285

Chapter 44

Overview 285

Tasks 285
Constructors 286
Instance Methods 286

NSMiddleSpecifier 289

Chapter 45

Overview 289
Tasks 289
Constructors 289

NSMoveCommand 291

Chapter 46

Overview 291

Tasks 291
Constructors 292
Instance Methods 292

NSMutableArray 293

Chapter 47

Class at a Glance 293
Overview 294

Tasks 294
Constructors 295
Instance Methods 296

NSMutableAttributedString 303

10

Overview 303
Tasks 303
Constructors 305

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Instance Methods 306

Chapter 48 NSMutableCharacterSet 315

Overview 315

Tasks 315
Constructors 316
Instance Methods 317

Chapter 49 NSMutableData 321

Class at a Glance 321
Overview 321

Tasks 322
Constructors 322
Instance Methods 323

Chapter 50 NSMutableDictionary 325

Class at a Glance 325
Overview 325

Tasks 326
Constructors 326
Instance Methods 327

Chapter 51 NSMutablelndexSet 329

Overview 329

Tasks 329
Constructors 330
Instance Methods 331

Chapter 52 NSMutablePoint 335

Overview 335

Tasks 335
Constructors 336
Instance Methods 336

Chapter 53 NSMutableRange 339

Overview 339

Tasks 339
Constructors 340
Instance Methods 340

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 54

CONTENTS

NSMutableRect 343

Chapter 55

Overview 343

Tasks 343
Constructors 344
Instance Methods 345

NSMutableSet 351

Chapter 56

Class at a Glance 351
Overview 352

Tasks 352
Constructors 353
Instance Methods 353

NSMutableSize 357

Chapter 57

Overview 357

Tasks 357
Constructors 358
Instance Methods 358

NSMutableStringReference 361

Chapter 58

Overview 361

Tasks 361
Constructors 362
Instance Methods 362

NSNamedValueSequence 365

Chapter 59

Overview 365

Tasks 365
Constructors 366
Instance Methods 367

NSNameSpecifier 371

Chapter 60

Overview 371

Tasks 372
Constructors 372
Instance Methods 373

NSNetService 375

12

Overview 375

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 61

CONTENTS

Tasks 376
Constructors 378
Instance Methods 378
Constants 383
Delegate Methods 384

NSNetServiceBrowser 387

Chapter 62

Overview 387

Tasks 388
Constructors 389
Instance Methods 389
Delegate Methods 393

NSNotification 397

Chapter 63

Overview 397

Tasks 397
Constructors 398
Instance Methods 398

NSNotificationCenter 401

Chapter 64

Class at a Glance 401
Overview 401

Tasks 402
Constructors 403
Static Methods 403
Instance Methods 403

NSNotificationQueue 405

Chapter 65

Overview 405

Tasks 405
Constructors 406
Static Methods 406
Instance Methods 406
Constants 407

NSNull 409

Overview 409
Tasks 409
Constructors 409
Static Methods 410

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

13

CONTENTS

Chapter 66 NSNumberFormatter 411

Overview 411

Tasks 411
Constructors 413
Instance Methods 414

Chapter 67 NSObject 423

Overview 423

Interfaces Implemented 423
Tasks 423

Constructors 424

Instance Methods 424

Chapter 68 NSPathUtilities 427

Overview 427
Tasks 427
Constructors 429
Static Methods 429
Constants 437

Chapter 69 NSPoint 441

Overview 441

Tasks 441
Constructors 442
Static Methods 443
Instance Methods 443
Constants 445

Chapter 70 NSPort 447

Overview 447

Tasks 447
Constructors 448
Instance Methods 448

Chapter 71 NSPositionalSpecifier 451

Overview 451

Tasks 452
Constructors 453
Instance Methods 453
Constants 454

14
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 72

CONTENTS

NSPredicate 455

Chapter 73

Overview 455

Tasks 456
Constructors 456
Static Methods 457
Instance Methods 457

NSPropertyListSerialization 459

Chapter 74

Overview 459
Tasks 459
Constructors 460
Static Methods 460
Constants 463

NSPropertySpecifier 465

Chapter 75

Overview 465
Tasks 465
Constructors 465

NSQuitCommand 467

Chapter 76

Overview 467

Tasks 467
Constructors 467
Instance Methods 468

NSRandomSpecifier 469

Chapter 77

Overview 469
Tasks 469
Constructors 469

NSRange 471

Overview 471

Tasks 471
Constructors 472
Static Methods 473
Instance Methods 473
Constants 476

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

15

CONTENTS

Chapter 78 NSRangeSpecifier 477

Overview 477

Tasks 477
Constructors 478
Instance Methods 478

Chapter 79 NSRect 481

Overview 481

Tasks 481
Constructors 483
Static Methods 484
Instance Methods 484
Constants 491

Chapter 80 NSRelativeSpecifier 493

Overview 493

Tasks 493
Constructors 494
Instance Methods 494
Constants 495

Chapter 81 NSRunLoop 497

Overview 497

Tasks 497
Constructors 499
Static Methods 499
Instance Methods 499
Constants 503

Chapter 82 NSRuntime 505

Overview 505
Tasks 505
Static Methods 505

Chapter 83 NSScriptClassDescription 507

Overview 507

Tasks 508
Constructors 510
Instance Methods 510

16
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Chapter 84

CONTENTS

NSScriptCoercionHandler 515

Chapter 85

Overview 515

Tasks 515
Constructors 516
Static Methods 516
Instance Methods 516

NSScriptCommand 517

Chapter 86

Overview 517

Tasks 518
Constructors 520
Static Methods 520
Instance Methods 521
Constants 527

NSScriptCommandDescription 529

Chapter 87

Overview 529

Tasks 529
Constructors 530
Instance Methods 531

NSScriptExecutionContext 535

Chapter 88

Overview 535

Tasks 536
Constructors 536
Static Methods 537
Instance Methods 537

NSScriptObjectSpecifier 539

Chapter 89

Overview 539

Tasks 541
Constructors 543
Instance Methods 543
Constants 548

NSScriptSuiteRegistry 549

Overview 549
Tasks 550
Constructors 551
Static Methods 552

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

17

Chapter 90

CONTENTS

Instance Methods 552

NSScriptWhoseTest 557

Chapter 91

Overview 557

Tasks 557
Constructors 557
Instance Methods 558

NSSelector 559

Chapter 92

Overview 559

Tasks 559
Constructors 560
Static Methods 560
Instance Methods 561

NSSet 565

Chapter 93

Class at a Glance 565
Overview 566

Tasks 566
Constructors 567
Instance Methods 568

NSSetCommand 573

Chapter 94

Overview 573

Tasks 573
Constructors 574
Instance Methods 574

NSSize 575

Chapter 95

Overview 575

Tasks 575
Constructors 576
Static Methods 577
Instance Methods 577
Constants 579

NSSortDescriptor 581

18

Overview 581
Tasks 581
Constructors 582

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 96

Instance Methods 582

NSSpecifierTest 585

Chapter 97

Overview 585
Constants 585
Tasks 586
Constructors 586

NSSpellServer 587

Chapter 98

Overview 587

Tasks 587
Constructors 588
Instance Methods 588
Delegate Methods 590

NSStringReference 591

Chapter 99

Overview 591

Tasks 593
Constructors 595
Static Methods 596
Instance Methods 597
Constants 603

NSSystem 605

Chapter 100

Overview 605
Tasks 605
Constructors 606
Static Methods 607
Constants 610

NSTimer 611

Chapter 101

Overview 611

Tasks 611
Constructors 612
Instance Methods 612

NSTimeZone 615

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Overview 615
Tasks 615
Constructors 617

19

CONTENTS

Chapter 102

Static Methods 618
Instance Methods 620

NSUnarchiver 623

Chapter 103

Overview 623

Tasks 623
Constructors 624
Static Methods 625
Instance Methods 626

NSUndoManager 631

Chapter 104

Overview 631

Tasks 631
Constructors 634
Instance Methods 634
Constants 642
Notifications 643

NSUniquelDSpecifier 645

Chapter 105

Overview 645

Tasks 646
Constructors 646
Instance Methods 647

NSUserDefaults 649

Chapter 106

Class at a Glance 649
Overview 649

Tasks 650
Constructors 653
Static Methods 653
Instance Methods 654
Constants 665
Notifications 667

NSValueTransformer 669

20

Overview 669

Tasks 669
Constructors 670
Static Methods 670
Instance Methods 671
Constants 672

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Chapter 107 NSWhoseSpecifier 675

Overview 675

Tasks 675
Constructors 676
Instance Methods 677
Constants 679

Part I Interfaces 681

Chapter 108 NSCoding 683

Overview 683

Chapter 109 NSComparisonMethods 685

Overview 685
Tasks 685
Instance Methods 686

Chapter 110 NSKeyValueCoding 689

Overview 689

Tasks 689

Instance Methods 689
Constants 690

Chapter 1M1 NSScriptingComparisonMethods 691

Overview 691
Tasks 691
Instance Methods 692

Chapter 112 NSScriptingKeyValueCoding 695

Overview 695
Tasks 695
Instance Methods 696

Index 699

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

22

CONTENTS

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Figures

Introduction The Foundation Framework 25

Figure I-1 The Foundation framework class hierarchy 26
Chapter 88 NSScriptObjectSpecifier 539

Figure 88-1 Reference forms and nested object specifiers 540

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

23

24

FIGURES

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

Package: com.apple.cocoa.foundation

Introduction

Important: The Java API for the Foundation framework is deprecated in Mac OS X version 10.4 and later.
You should use the Objective-C API, documented in Foundation Framework Reference, to develop Cocoa
applications.

The Foundation framework defines a base layer of Java classes. In addition to providing a set of useful primitive
object classes, it introduces several paradigms that define functionality not covered by the Java language.
The Foundation framework is designed with these goals in mind:

= Provide a small set of basic utility classes.
= Make software development easier by introducing consistent conventions for things such as deallocation.
m Support Unicode strings, object persistence, and object distribution.

= Provide a level of OS independence, to enhance portability.

The Foundation framework includes the root object class, classes representing basic data types such as strings
and byte arrays, collection classes for storing other objects, classes representing system information such as
dates, and classes representing communication ports. See Figure I-1 (page 26) for a list of those classes that
make up the Foundation framework.

The Foundation framework introduces several paradigms to avoid confusion in common situations, and to
introduce a level of consistency across class hierarchies. This consistency is done with some standard policies,
such as that for object ownership (that is, who is responsible for disposing of objects), and with abstract
classes like NSEnumerator. These new paradigms reduce the number of special and exceptional cases in an
APl and allow you to code more efficiently by reusing the same mechanisms with various kinds of objects.

Foundation Framework Classes

The Foundation class hierarchy is rooted in the Foundation framework’s NSObject class (see Figure I-1 (page
26)). The remainder of the Foundation framework consists of several related groups of classes as well as a
few individual classes. NSStringReference and NSMutableStringReference, for example, act as brokers for
instances of various subclasses optimized for different kinds of storage needs. Depending on the method
you use to create a string, an instance of the appropriate optimized class will be returned to you.

Introduction 25
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

26

INTRODUCTION

The Foundation Framework

Figure I-1 The Foundation framework class hierarchy
java.lang Value Objects
— Object NSDecimalMappingBehavior
Throwable NSPoint ———————— NSMutablePoint
. NSRange ——— — NSMutableRange
EXCFF’“O” NSRect —————— NSMutableRect
RuntimeException NSSize ——— — NSMutableSize
e NSData ——— — NSMutableData
e NSDate ——— — NSGregorianDate
e NSNull
T NSTimeZone
—— NSValueTransformer
Strings
e NSAttributedString ————— NSMutableAttributedString
_| NSStringReference —— NSMutableStringReference
NSDateFormatter
—— NSFormatter
. NSSortDescriptor NSNumberFormatter
— NSObject Collections
NSArray ——— — NSMutableArray
NSCharacterSet ——— NSMutableCharacterSet
NSDictionary — — NSMutableDictionary

NSEnumerator
NSSet ———— — NSMutableSet
NSIndexSet ————————— NSMutableIndexSet

-

Key-Value Coding

NSKeyValue
NSNamedValueSequence
NSPropertyListSerialization

Operating-System Services

NSError
NSRunLoop
NSRuntime
NSSpellServer
NSSystem
NSTimer
NSUserDefaults

NSBundle

NSHFSFileTypes

NSMetadataltem

NSMetadataQuery
NSMetsdataQueryAttributeValueTuple
NSMetadataQueryResultGroup
NSPathUtilities

File System

LT TR AH

Interprocess Communication

—— NSPort

Predicates

NSExpression
NSPredicate

Introduction
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

Java Foundation Continued

java.lang Notifications
— Object —— [~ NSNotification
Th ! bi — NSNotificationCenter —— NSDisributedNotificationCenter
rlowa e — NSNotificationQueue
Exception
RuntimeException — Archiving and Serialization

NSArchiver

|l NSCoder NSKeyedArchiver
NSKeyedUnarchiver
NSUnarchiver

Language Services

—— NSSelector
L NSAutoreleasePool
|— NSUndoManager
L NSException
|:' NSFormatter.FormattingException
! NSFormatter.ParsingException
— NSClassDescription

- NSObject —————————— Scripting
'— NSScriptClassDescription

— NSCloneCommand
— NSCloseCommand
—NSCountCommand
— NSCreateCommand
— NSDeleteCommand
— NSExistsCommand
—NSGetCommand

— NSMoveCommand
— NSQuitCommand
— NSSetCommand

— NSScriptCommand
— NSScriptCommandDescription
— NSScriptExecutionContext

— NSScriptCoercionHandler

— NSIndexSpecifier

— NSMiddleSpecifier

— NSPropertySpecifier
— NSPositionalSpecifier — NSRandomSpecifier
— NSRangeSpecifier

— NSScriptSuiteRegistry — NSRelatativeSpecifier
— NSWholeSpecifier

i NSLogicalTest
L NSScriptWhoseTest 4ENSSp%cifierTest

— NSScriptObjectSpecifier

Many of these classes have closely related functionality:

= Data storage. NSData provides object-oriented storage for arrays of bytes. NSArray, NSDictionary, and
NSSet provide storage for objects of any class.

m Text and strings. NSCharacterSet represents various groupings of characters that are used by the String
and NSScanner classes. An NSScanner object is used to scan numbers and words from a String object.

m Dates and times. The NSDate and NSTimeZone classes store times and dates. They offer methods for
calculating date and time differences, for displaying dates and times in many formats, and for adjusting
times and dates based on location in the world.

m Application coordination and timing. NSNotification, NSNotificationCenter, and NSNotificationQueue
provide systems that an object can use to notify all interested observers of changes that occur. You can
use an NSTimer object to send a message to another object at specific intervals.

Introduction 27
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

The Foundation Framework

m Object distribution and persistence. The data that an object contains can be represented in an
architecture-independent way using NSPropertyListSerialization. The NSCoder and its subclasses take
this process a step further by allowing class information to be stored along with the data. The resulting
representations are used for archiving and for object distribution.

28 Introduction
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

PART |

Classes

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

29

30

PART |

Classes

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

NSAppleEventDescriptor

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Scriptable Applications Programming Guide for Cocoa
Overview

Important: The information in this document is obsolete and should not be used for new development.

A descriptor is the basic building block for Apple events—every Apple event is a descriptor, where descriptor
is a type of data structure. Descriptors can be used to build arbitrarily complex containers, so that one Apple
event can represent a script statement such as tell application "TextEdit" to get word 3 of
paragraph 6 of document 3.

In working with Apple event descriptors, it can be useful to understand some of the underlying data types.
You'll find terms such as descriptor, descriptor list, Apple event record, and Apple event defined in “Building
an Apple Event” in Apple Events Programming Guide. You'll also find information on the four-character codes
used to identify information within a descriptor.

Cocoa supplies built-in scripting support that converts received Apple events into script commands that
operate on application objects. As a result, most Cocoa applications don’t need to work directly with Apple
event descriptors. However, those applications that do need to construct Apple events or extract information
from them can use NSAppleEventDescriptor. The most common reason to construct an Apple event is to
supply information in a return event. In addition, if you execute an AppleScript script using the NSAppleScript
class, you get an NSAppleEventDescriptor as the return value, from which you extract the necessary
information.

Cocoa doesn't currently provide a mechanism for applications to directly send raw Apple events (though
compiling and executing an AppleScript script with NSAppleScript may result in Apple events being sent).
However, Cocoa applications have full access to the Apple Event Manager C APIs for working with Apple
events. If you need to send Apple events, or if you need more information on some of the Apple event
concepts described here, see Apple Events Programming Guide and Apple Event Manager Reference.

Overview 31
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Tasks

32

CHAPTER 1
NSAppleEventDescriptor

Constructors

NSAppleEventDescriptor (page 34)
Creates an empty NSAppleEventDescriptor.

Creating an Event Descriptor

descriptorWithBoolean (page 35)
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeBoolean
and value specified by booTean.

descriptorWithEnumCode (page 35)
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeEnumerated
and value specified by enumerator.

descriptorWithInt32 (page 35)
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeSInt32
and value specified by signedint.

descriptorWithString (page 35)
Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type
typeUnicodeText and value specified by string.

descriptorWithTypeCode (page 35)

Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeType and
value specified by typeCode.

listDescriptor (page 36)
Creates and returns an instance of NSAppleEventDescriptor initialized as an empty list descriptor.
nullDescriptor (page 36)

Creates and returns an instance of NSAppleEventDescriptor with no parameter or attribute values
set.

recordDescriptor (page 36)
Creates and returns a descriptor for an Apple event record whose data has yet to be set.

Getting Information About an Event Descriptor

data (page 37)

Returns the receiving descriptor’s data as an NSData object.
descriptorType (page 38)

Returns the descriptor type for the receiving descriptor.

coerceToDescriptorType (page 37)
Returns an instance of NSAppleEventDescriptor coerced to the type specified by descType.

number0fItems (page 39)
Returns the number of descriptors in the receiving descriptor list.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
NSAppleEventDescriptor

booleanValue (page 37)
Return the contents of the descriptor, after first coercing it to typeBoolean.

enumCodeValue (page 38)
Return the contents of the descriptor, after first coercing it to typeEnumerated.

int32Value (page 39)
Return the contents of the descriptor, after first coercing it to typeSInt32.

stringValue (page 41)
Return the contents of the descriptor, after first coercing it to typeUnicodeText.

typeCodeValue (page 41)
Return the contents of the descriptor, after first coercing it to typeType.

Working with List Descriptors

descriptorAtIndex (page 37)
Returns an instance of NSAppleEventDescriptor from the position specified by anIndex.

insertDescriptor (page 38)
Inserts the NSAppleEventDescriptor specified by descriptor at the position specified by anIndex.

removeDescriptorAtindex (page 39)
Removes the receiver’s descriptor at the position specified by anIndex.

Working with Record Descriptors

descriptorForKeyword (page 37)
Returns an instance of NSAppleEventDescriptor for the receiver’s descriptor specified by keyword.

keywordForDescriptorAtIndex (page 39)
Returns the keyword for the descriptor at the position specified by anIndex.

removeDescriptorWithKeyword (page 40)
Removes the descriptor in the receiver identified by keyword.

setDescriptor (page 40)
Adds descriptor to the receiver identified by keyword.

Working with Apple Event Descriptors

attributeDescriptorForKeyword (page 36)

Returns an instance of NSAppleEventDescriptor for the attribute specified by keyword.
setAttributeDescriptor (page 40)

Adds descriptor to the receiver as an attribute identified by keyword.

eventClass (page 38)
Returns the event class for the receiving descriptor.

eventID (page 38)
Returns the event ID for the receiving descriptor.

paramDescriptorForKeyword (page 39)
Returns a descriptor for the receiver’s Apple event parameter specified by keyword.

Tasks 33
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
NSAppleEventDescriptor

setParamDescriptor (page 41)
Adds descriptor to the receiver as an Apple event parameter identified by keyword.

removeParamDescriptorWithKeyword (page 40)
Removes the receiver’s parameter descriptor identified by keyword.

returnID (page 40)
Returns the receiver’s return ID (the ID for a reply Apple event).

transactionID (page 41)
Returns the receiver’s transaction ID, if any.

Constructors

34

NSAppleEventDescriptor

Creates an empty NSAppleEventDescriptor.
NSAppleEventDescriptor()

Creates an NSAppleEventDescriptor object with descriptor type specified by descType and data specified
by data.

NSAppleEventDescriptor(int descType, NSData data)
Creates a new NSAppleEventDescriptor object for an Apple event.

NSAppleEventDescriptor(int eventClass, int eventID, NSAppleEventDescriptor
addressDescriptor, int returnID, int transactionlID)

Discussion

Returns nu11 if an error occurs. The event class and event ID for the returned descriptor are set to the values
inthe eventClassand eventIDparameters.The addressDescriptor parameter supplies an Apple event
descriptor that identifies the target application for the Apple event.

The returnlID parameter specifies the return ID for the created Apple event. If you pass a value of
kAutoGenerateReturnID (-1), the Apple Event Manager assigns the created Apple event a return ID that
is unique to the current session. If you pass any other value, the Apple Event Manager assigns that value for
the ID.

The transactionlID parameter specifies the transaction ID for the created Apple event. A transaction is a
sequence of Apple events that are sent back and forth between client and server applications, beginning
with the client’s initial request for a service. All Apple events that are part of a transaction must have the
same transaction ID. You can specify kAnyTransactionID (0) if the Apple event is not one of a series of
interdependent Apple events.

The constants kAutoGenerateReturnIDand kAnyTransactionID are defined in the header
AEDataModel.hin AE.framework, a subframework of ApplicationServices.framework.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
NSAppleEventDescriptor

Static Methods

descriptorWithBoolean

Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeBoolean and
value specified by booTean.

public static NSAppleEventDescriptor descriptorWithBoolean(boolean boolean)

Availability
Available in Mac OS X v10.2 and later.

descriptorWithEnumCode

Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeEnumerated
and value specified by enumerator.

public static NSAppleEventDescriptor descriptorWithEnumCode(int enumerator)

Availability
Available in Mac OS X v10.2 and later.

descriptorWithint32

Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeSInt32 and
value specified by signedint.

public static NSAppleEventDescriptor descriptorWithInt32(int signediInt)

Availability
Available in Mac OS X v10.2 and later.

descriptorWithString

Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeUnicodeText
and value specified by string.

public static NSAppleEventDescriptor descriptorWithString(String string)

Availability
Available in Mac OS X v10.2 and later.

descriptorWithTypeCode

Creates and returns a newly allocated NSAppleEventDescriptor with Apple event type typeType and value
specified by typeCode.

public static NSAppleEventDescriptor descriptorWithTypeCode(int typeCode)

Static Methods 35
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
NSAppleEventDescriptor

Availability
Available in Mac OS X v10.2 and later.

listDescriptor

Creates and returns an instance of NSAppleEventDescriptor initialized as an empty list descriptor.
public static NSAppleEventDescriptor TlistDescriptor()

Discussion
A list descriptor is a descriptor whose data consists of one or more descriptors. You can add items to the list
by calling insertDescriptor (page 38) or remove them with removeDescriptorAtindex (page 39).

nullDescriptor

Creates and returns an instance of NSAppleEventDescriptor with no parameter or attribute values set.
public static NSAppleEventDescriptor nullDescriptor()

Discussion
This method isn't typically called, as most NSAppleEventDescriptor instance methods can't be safely called
on the returned descriptor.

recordDescriptor

Creates and returns a descriptor for an Apple event record whose data has yet to be set.
public static NSAppleEventDescriptor recordDescriptor()

Discussion

A record descriptor is a descriptor whose data is a set of descriptors keyed by four-character codes. You can
add information to the descriptor with methods such as setAttributeDescriptor (page 40),
setDescriptor (page 40),and setParamDescriptor (page 41).

Instance Methods

36

attributeDescriptorForKeyword
Returns an instance of NSAppleEventDescriptor for the attribute specified by keyword.

public NSAppleEventDescriptor attributeDescriptorForKeyword(int keyword)

Discussion
Returns nul1 if any error occurs.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
NSAppleEventDescriptor

booleanValue

Return the contents of the descriptor, after first coercing it to typeBoolean.
public boolean booleanValue()

Availability
Available in Mac OS X v10.2 and later.

coerceToDescriptorType
Returns an instance of NSAppleEventDescriptor coerced to the type specified by descType.

public NSAppleEventDescriptor coerceToDescriptorType(int descType)

Discussion
Returns nul1 if the coercion fails.

data

Returns the receiving descriptor’s data as an NSData object.
public NSData data()

Discussion
Returns nul1 if an error occurs.

descriptorAtindex

Returns an instance of NSAppleEventDescriptor from the position specified by anIndex.
public NSApplekventDescriptor descriptorAtIndex(int anlndex)

Discussion
NSAppleEventDescriptor indices are one-based. Returns nu11 if an error occurs.

See Also
insertDescriptor (page 38)

removeDescriptorAtIindex (page 39)

descriptorForKeyword

Returns an instance of NSAppleEventDescriptor for the receiver’s descriptor specified by keyword.

public NSAppleEventDescriptor descriptorfForKeyword(int keyword)

Discussion
Returns nul1 if an error occurs.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

37

38

CHAPTER 1
NSAppleEventDescriptor

descriptorType

Returns the descriptor type for the receiving descriptor.

public int descriptorType()

enumCodeValue

Return the contents of the descriptor, after first coercing it to typeEnumerated.
public int enumCodeValue()

Availability
Available in Mac OS X v10.2 and later.

eventClass

Returns the event class for the receiving descriptor.
public int eventClass()

Discussion

An Apple event is identified by its event class and event ID, a pair of four-character codes stored as 32-bit
integers. For example, most events in the Standard suite have the four-character code core (defined as the
constant kAECoreSuite in the header AERegistry.hin AE. framework, a subframework of
ApplicationServices.framework).

eventiD

Returns the event ID for the receiving descriptor.
public int eventID()

Discussion

An Apple event is identified by its event class and event ID, a pair of four-character codes stored as 32-bit
integers. For example, the Open Apple event from the Standard suite has the four-character code odoc
(defined as the constant kAEOpen in the header AERegistry.hin AE. framework, a subframework of
ApplicationServices.framework).

insertDescriptor
Inserts the NSAppleEventDescriptor specified by descriptor at the position specified by anIndex.

public void insertDescriptor(NSAppleEventDescriptor descriptor, int anlndex)

Discussion
NSAppleEventDescriptor indices are one-based. The receiver must be a list descriptor. Currently provides no
indication if an error occurs.

See Also
descriptorAtIndex (page 37)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
NSAppleEventDescriptor

removeDescriptorAtindex (page 39)

int32Value

Return the contents of the descriptor, after first coercing it to typeSInt32.
public int int32Value()

Availability
Available in Mac OS X v10.2 and later.

keywordForDescriptorAtindex

Returns the keyword for the descriptor at the position specified by anIndex.
public int keywordForDescriptorAtindex(int anlIndex)

Discussion
NSAppleEventDescriptor indices are one-based. Returns the value 0 if an error occurs.

numberOfitems

Returns the number of descriptors in the receiving descriptor list.
public int numberOfItems()

Discussion
Returns the value 0 if an error occurs.

paramDescriptorForKeyword

Returns a descriptor for the receiver’s Apple event parameter specified by keyworad.
public NSAppleEventDescriptor paramDescriptorForKeyword(int keyword)

Discussion
The receiver must be an Apple event. Returns nu11 if an error occurs.

removeDescriptorAtindex

Removes the receiver’s descriptor at the position specified by anIndex.
public void removeDescriptorAtindex(int anlIndex)

Discussion
NSAppleEventDescriptor indices are one-based. The receiver must be a list descriptor. Currently provides no
indication if an error occurs.

See Also
descriptorAtindex (page 37)

Instance Methods 39
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

40

CHAPTER 1
NSAppleEventDescriptor

insertDescriptor (page 38)

removeDescriptorWithKeyword

Removes the descriptor in the receiver identified by keyword.
public void removeDescriptorWithKeyword(int keyword)

Discussion
The receiver must be an Apple event or Apple event record.

removeParamDescriptorWithKeyword

Removes the receiver’s parameter descriptor identified by keyword.
public void removeParamDescriptorWithKeyword(int keyword)

Discussion
The receiver must be an Apple event or Apple event record.

returniD

Returns the receiver’s return ID (the ID for a reply Apple event).
public int returnID()

Discussion
The receiver must be an Apple event. Returns the value 0 if an error occurs.

setAttributeDescriptor

Adds descriptor to the receiver as an attribute identified by keyword.
public void setAttributeDescriptor(NSAppleEventDescriptor descriptor, int keyword)

Discussion
The receiver must be an Apple event.

setDescriptor
Adds descriptor to the receiver identified by keyword.

public void setDescriptor(NSAppleEventDescriptor descriptor, int keyword)

Discussion
The receiver must be an Apple event or Apple event record.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1
NSAppleEventDescriptor

setParamDescriptor

Adds descriptor to the receiver as an Apple event parameter identified by keyword.
public void setParamDescriptor(NSAppleEventDescriptor descriptor, int keyword)

Discussion
The receiver must be an Apple event or Apple event record.

stringValue

Return the contents of the descriptor, after first coercing it to typeUnicodeText.
public String stringValue()

Availability
Available in Mac OS X v10.2 and later.

transactionlD

Returns the receiver’s transaction ID, if any.
public int transactionlID()

Discussion
For more information on transactions, see the description for NSAppleEventDescriptor (page 34).

typeCodeValue

Return the contents of the descriptor, after first coercing it to typeType.
public int typeCodeValue()

Availability
Available in Mac OS X v10.2 and later.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

1

CHAPTER 1
NSAppleEventDescriptor

42 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

NSAppleScript

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.2 and later.

Companion guide Cocoa Scripting Guide
Overview

The NSAppleScript class provides the ability to load, compile, and execute scripts.

Important: You should access NSAppleScript only from the main thread.

This class provides applications with the ability to

load a script from a text string

compile or execute a script or an individual Apple event

obtain an NSAppleEventDescriptor containing the reply from an executed script or event
obtain an attributed string for a compiled script, suitable for display in a script editor

obtain various kinds of information about any errors that may occur

Important: NSAppleScript provides the -executeAppleEvent method so that you can send an Apple event
to invoke a handler in a script. (In an AppleScript script, a handler is the equivalent of a function.) However,
you cannot use this method to send Apple events to other applications.

When you create an NSAppleScript object, you supply the script as a string. Should an error occur when
compiling or executing the script, several of the methods fill in a dictionary containing error information.
The keys for obtaining error information are described in the “Constants” (page 46) section.

Overview 43
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
NSAppleScript

Tasks

Constructors

NSAppleScript (page 44)
Creates an empty NSAppleScript object.

Getting Information About a Script

isCompiled (page 45)
Returns true if the receiver is already compiled, false otherwise.

source (page 46)
Returns the source code of the receiver if it is available, nu11 otherwise.

richTextSource (page 46)
Returns the syntax-highlighted source code of the receiver if the receiver has been compiled and its
source code is available.

Compiling and Executing a Script

compile (page 45)
Compiles the receiver, if it is not already compiled.

execute (page 45)
Executes the receiver, compiling it first if it is not already compiled.

executeAppleEvent (page 45)
Executes an Apple event in the context of the receiver, as a means of allowing the application to
invoke a handler in the script; compiles the receiver first if it is not already compiled.

Constructors

NSAppleScript

Creates an empty NSAppleScript object.
public NSApplescript()

Discussion
Use the other constructor to create an object with associated AppleScript source code.

Availability
Available in Mac OS X v10.2 and later.

Creates an NSAppleScript object from the AppleScript source code contained in source.

public NSAppleScript(String source)

44 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
NSAppleScript

Availability
Available in Mac OS X v10.2 and later.

Instance Methods

compile

Compiles the receiver, if it is not already compiled.
public boolean compile(NSMutableDictionary erroriInfo)

Discussion
Returns true for success or if the script was already compiled, false and it fills in the error information
dictionary otherwise.

Availability
Available in Mac OS X v10.2 and later.

execute

Executes the receiver, compiling it first if it is not already compiled.
public NSAppleEventDescriptor execute(NSMutableDictionary errorinfo)

Discussion
Returns the result of executing the script, or nu11 and it fills in the error information dictionary for failure.

Availability
Available in Mac OS X v10.2 and later.

executeAppleEvent

Executes an Apple event in the context of the receiver, as a means of allowing the application to invoke a
handler in the script; compiles the receiver first if it is not already compiled.

public NSApplekventDescriptor executeApplekvent(NSAppleEventDescriptor event,
NSMutableDictionary errorinfo)

Discussion
Returns the result of executing the event, or nu11 and it fills in the error information dictionary for failure.
You cannot use this method to send Apple events to other applications.

Availability
Available in Mac OS X v10.2 and later.

isCompiled

Returns true if the receiver is already compiled, false otherwise.

Instance Methods 45
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
NSAppleScript

public boolean isCompiled()

Availability
Available in Mac OS X v10.2 and later.

richTextSource

Returns the syntax-highlighted source code of the receiver if the receiver has been compiled and its source
code is available.

public NSAttributedString richTextSource()

Discussion
Returns nul1 otherwise.

Availability
Available in Mac OS X v10.2 and later.

source

Returns the source code of the receiver if it is available, nu11 otherwise.
public String source()

Availability
Available in Mac OS X v10.2 and later.

Constants

If the result of compi1e (page 45), execute (page 45), or executeAppletvent (page 45), signals failure
(false, null,ornull, respectively), the method puts error information into the mutable dictionary passed
to it. The error info dictionary may contain entries that use any combination of the following keys, including
no entries at all.

Constant Description

AppleScriptErrorMessage A String that supplies a detailed description of the error condition.

AppleScriptErrorNumber The error number.

AppleScriptErrorAppName A String that specifies the name of the application that generated
the error.

AppleScriptErrorBriefMessage | A String that provides a brief description of the error.

AppleScriptErrorRange An NSRange that specifies a range.

46 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

NSArchiver

Inherits from NSCoder : NSObject
Package: com.apple.cocoa.foundation
Companion guide Archives and Serializations Programming Guide for Cocoa

Class at a Glance

An NSArchiver encodes objects into a format that can be written to a file. The archiving process traverses a
set of interconnected objects, making sure to encode each one only once.

Principal Attributes

= An NSMutableData object containing the encoded data

NSArchiver Constructors
Returns an archiver.

Commonly Used Methods

archiveRootObjectToFile (page 50)
Archives a graph of objects to a file.

archivedDatalWlithRootObject (page 49)
Archives a graph of objects into an NSMutableData object.

Overview

NSArchiver, a concrete subclass of NSCoder, provides a way to encode objects into an architecture-independent
format that can be stored in a file. When you archive a set of objects, the class information and instance
variables for each object are written to the archive. NSArchiver’s companion class, NSUnarchiver (page 623),
decodes the data in an archive and creates a set of objects equivalent to the original set.

NSArchiver stores the archive data in a mutable data object (NSMutableData). After encoding the objects,
you can have the NSArchiver object write this mutable data object immediately to a file, or you can retrieve
the mutable data object for some other use.

Class at a Glance 47
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Tasks

48

CHAPTER 3
NSArchiver

Constructors

NSArchiver (page 49)
Creates an empty archiver.

Archiving Data

archivedDataWithRootObject (page 49)
Returns a data object containing the encoded form of the object graph whose root object is
rootObject.

archiveRootObjectToFile (page 50)
Creates a temporary instance of NSArchiver and archives root0bject by encoding it into a data
object and writing the resulting data object to the file path.

classNameGloballyEncodedForTrueClassName (page 50)
Returns the class name globally used to archive instances of the class trueName.

globallyEncodeClassNameIntoClassName (page 50)
Encodes a substitute name globally used for the class named trueName.

encodeRootObject (page 53)
Archives root0bject along with all the objects to which it is connected.

encodeConditionalObject (page 52)
Archives object conditionally.
encodeByte (page 51)
Encodes aByte.

encodeChar (page 51)
Encodes aChar.

encodeDatalbject (page 52)
Encodes aData.

encodeDoubTe (page 52)
Encodes aDouble.

encodeFloat (page 52)
Encodes aFloat.

encodelnt (page 53)
Encodes anint.

encodelong (page 53)
Encodes aLong.

encodeObject (page 53)
Encodes anObject.

encodeShort (page 53)
Encodes aShort.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
NSArchiver

versionForClassName (page 54)
Returns the version number for the current implementation of the class named c7assName or
NSArray.NotFound if no class named c7assName exists.

Getting the Archived Data

data (page 51)
Returns the archived data.

Substituting Classes or Objects

classNameEncodedForTrueClassName (page 51)
Returns the class name used to archive instances of the class trueName.

encodeClassNameIntoClassName (page 51)
Encodes a substitute name for the class named trueName.

replaceObject (page 54)
Causes the NSArchiver to treat subsequent requests to encode object as though they were requests
to encode newObject.

Constructors

NSArchiver

Creates an empty archiver.
public NSArchiver()

Discussion
Use the other constructor, or the static methods archiveRootObjectToFile (page 50) or
archivedDataWithRootObject (page 49), instead.

Creates an archiver, encoding stream and version information into data.
public NSArchiver(NSMutableData data)

Discussion
Throws an InvalidArgumentExceptionif dataisnull.

Static Methods

archivedDataWithRootObject

Returns a data object containing the encoded form of the object graph whose root object is root0bject.

Constructors 49
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

50

CHAPTER 3
NSArchiver

public static NSData archivedDataWithRootObject(0Object rootObject)

Discussion
This method invokes encodeRootObject (page 53) to create a temporary archiver that encodes the object
graph.

See Also
encodeRootObject (page 53)

archiveRootObjectToFile

Creates a temporary instance of NSArchiver and archives root0bject by encoding it into a data object and
writing the resulting data object to the file path.

public static boolean archiveRootObjectToFile(0Object rootObject, String path)

Discussion
This convenience method invokes archivedDatallithRoot0bject (page 49) to get the encoded data.
Returns true upon success.

The archived data should be retrieved from the archive by an NSUnarchiver (page 623) object.

See Also
archivedDatalWlithRootObject (page 49)

classNameGloballyEncodedForTrueClassName

Returns the class name globally used to archive instances of the class trueName.
public static String classNameGloballyEncodedForTrueClassName(String trueName)

See Also
globallyEncodeClassNameIntoClassName (page 50)

classNameEncodedForTrueClassName (page 51)

globallyEncodeClassNamelntoClassName

Encodes a substitute name globally used for the class named trueName.

public static void globallyEncodeClassNameIntoClassName(String trueName, String
inArchiveName)

Discussion

Any subsequently encountered objects of class t rueName are archived as instances of class 7nArchiveName.
It is safest not to invoke this method during the archiving process. Instead, invoke it before
encodeRootObject (page 53).

See Also
classNameGloballyEncodedForTrueClassName (page 50)

encodeClassNameIntoClassName (page51)

Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
NSArchiver

Instance Methods

classNameEncodedForTrueClassName

Returns the class name used to archive instances of the class trueName.
public String classNameEncodedForTrueClassName(String trueName)

See Also
encodeClassNameIntoClassName (page51)

classNameGloballyEncodedForTrueClassName (page 50)

data

Returns the archived data.
public NSMutableData data()

Discussion

The returned data object is the same one specified as the argument to the constructor. It contains whatever
data has been encoded thus far by invocations of the various encoding methods. It is safest not to invoke
this method until after encodeRootObject (page 53) has returned. In other words, although it is possible
for a class to invoke this method from within an encoding method, that method must not alter the data.

encodeByte
Encodes aByte.

public void encodeByte(byte aByte)

Discussion
This method must be matched by a subsequent decodeByte (page 627) message.

encodeChar

Encodes aChar.
public void encodeChar(char aChar)

Discussion
This method must be matched by a subsequent decodeChar (page 627) message.

encodeClassNamelntoClassName

Encodes a substitute name for the class named trueName.

public void encodeClassNameIntoClassName(String trueName, String inArchiveName)

Instance Methods 51
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

52

CHAPTER 3
NSArchiver

Discussion

Any subsequently encountered objects of class t rueName are archived as instances of class 7nArchiveName.
It is safest not to invoke this method during the archiving process . Instead, invoke it before
encodeRootObject (page 53).

See Also
classNameEncodedForTrueClassName (page 51)

globallyEncodeClassNameIntoClassName (page 50)

encodeConditionalObject

Archives object conditionally.
public void encodeConditionalObject(0Object object)

Discussion

This method overrides the superclass implementation to allow object to be encoded only if it is also encoded
unconditionally by another object in the object graph. Conditional encoding lets you encode one part of a
graph detached from the rest. (See “Archives” for more information.)

If objectis null, the NSArchiver encodes it unconditionally as nul1. This method throws an
InvalidArgumentException if no root object has been encoded.

encodeDataObject

Encodes aData.
public void encodeDataObject(NSData aData)

Discussion
This method must be matched by a subsequent decodeDataObject (page 627) message.

encodeDouble

Encodes aDouble.
public void encodeDouble(double aDouble)

Discussion
This method must be matched by a subsequent decodeDouble (page 627) message.

encodeFloat

Encodes afToat.
public void encodeFloat(float aFloat)

Discussion
This method must be matched by a subsequent decodeFloat (page 628) message.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
NSArchiver

encodelnt

Encodes anint.
public void encodelInt(int anint)

Discussion
This method must be matched by a subsequent decodeInt (page 628) message.

encodelong

Encodes aLong.
public void encodelong(long along)

Discussion
This method must be matched by a subsequent decodelong (page 628) message.

encodeObject

Encodes anObject.
public void encodeObject(Object anObject)

Discussion
This method must be matched by a subsequent decodeObject (page 628) message.

encodeRootObject

Archives root0bject along with all the objects to which it is connected.
public void encodeRootObject(0Object rootObject)

Discussion
If any object is encountered more than once while traversing the graph, it is encoded only once, but the
multiple references to it are stored. (See “Archives” for more information.)

This message must not be sent more than once to a given NSArchiver; an InvalidArgumentException is
thrown if a root object has already been encoded. Therefore, don't attempt to reuse an NSArchiver; instead,
create a new one. To encode multiple object graphs, use distinct NSArchivers.

encodeShort

Encodes aShort.
public void encodeShort(short aShort)

Discussion
This method must be matched by a subsequent decodeShort (page 628) message.

Instance Methods 53
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
NSArchiver

replaceObject

Causes the NSArchiver to treat subsequent requests to encode object as though they were requests to
encode newObject.

public void replaceObject(Object object, Object newObject)

Discussion
Both object and newObject must be valid objects.

versionForClassName
Returns the version number for the current implementation of the class named c7assName or
NSArray.NotFound if no class named c7assName exists.

public int versionForClassName(String className)

Discussion
The class version number of each encoded object is written to the archive so that newer versions of the class
can detect and properly decode older archived versions.

54 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

NSArray

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guides Collections Programming Topics for Cocoa

Key-Value Coding Programming Guide
Property List Programming Guide
Predicate Programming Guide

Class at a Glance

An NSArray stores an immutable array of objects. The mutable subclass of NSArray is NSMutableArray (page
293).

Principal Attributes

= A count of the number of objects in the array

= The list of objects contained in the array

NSArray Constructors
Returns an array.

Commonly Used Methods

count (page 61)
Returns the number of objects currently in the array.

objectAtIndex (page 64)
Returns the object located at the specified index.

Overview

NSArray and its subclass NSMutableArray manage collections of objects called arrays. NSArray creates static
arrays, and NSMutableArray creates dynamic arrays.

Class at a Glance 55
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

56

CHAPTER 4
NSArray

NSArray’s two primitive methods—count (page 61) and objectAtIndex (page 64)—provide the basis for
all other methods in its interface. The count method returns the number of elements in the array;
objectAtIndex gives you access to the array elements by index, with index values starting at 0.

The methods objectEnumerator (page 64) and reverseObjectEnumerator (page 65) also grant
sequential access to the elements of the array, differing only in the direction of travel through the elements.
These methods are provided so that arrays can be traversed in a manner similar to that used for objects of
other collection classes in both the Java APl and Foundation, such as java.util.Hashtable or NSDictionary. See
the objectEnumerator method description for a code excerpt that shows how to use these methods to
access the elements of an array.

NSArray provides methods for querying the elements of the array. The index0f0Object (page 63)method
searches the array for the object that matches its argument. To determine whether the search is successful,
each element of the array is sent an equals (page 424) message. Another method,
indexOfIdenticalObject (page 62), is provided for the less common case of determining whether a
specific object is present in the array. The index0OfIdenticalObject method tests each element in the
array to see whether its id matches that of the argument.

NSArray’s filteredArrayUsingPredicate (page 62) method allows you to create a new array from an
existing array filtered using a predicate (see Predicates Programming Guide).

To act on the array as a whole, a variety of other methods are defined. You can extract a subset of the array
(subarrayWithRange (page 66)) or concatenate the elements of an array of Strings into a single string
(componentsdoinedByString (page 61)). In addition, you can compare two arrays using the
iskEqualToArray (page 63)and firstObjectCommonWithArray (page 62) methods. Finally, you can
create new arrays that contain the objects in an existing array and one or more additional objects with
arrayByAddingObject (page 60) and arrayByAddingObjectsFromArray (page 61).

Subclassing Notes

Most developers would not have any reason to subclass NSArray. The class does well what it is designed to
do—maintain an ordered collection of objects. But there are situations where a custom NSArray object might
come in handy. Here are a few possibilities:

= Changing how NSArray stores the elements of its collection. You might do this for performance reasons
or for better compatibility with legacy code.

= Changing how NSArray retains and releases its elements.

= Acquiring more information about what is happening to the collection (for example, statistics gathering).

Methods to Override

Any subclass of NSArray must override the primitive instance methods count (page 61) and
objectAtIndex (page 64). These methods must operate on the backing store that you provide for the
elements of the collection. For this backing store you can use a static array, a standard NSArray object, or
some other data type or mechanism. You may also choose to override, partially or fully, any other NSArray
method for which you want to provide an alternative implementation.

Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Tasks

CHAPTER 4
NSArray

You might want to implement an constructor for your subclass that is suited to the backing store that the
subclass is managing. The NSArray class adopts the NSCopying, NSMutableCopying, and NSCoding interfaces;
if you want instances of your own custom subclass created from copying or coding, override the methods
in these interfaces.

Remember that NSArray is the public interface for a class cluster and what this entails for your subclass. The
primitive methods of NSArray do not include any designated initializers. This means that you must provide
the storage for your subclass and implement the primitive methods that directly act on that storage.

Special Considerations

In most cases your custom NSArray class should conform to Cocoa’s object-ownership conventions. Of course,
if the reason for subclassing NSArray is to implement object-retention behavior different from the norm (for
example, a non-retaining array), then you can ignore this requirement.

Alternatives to Subclassing

Before making a custom class of NSArray, investigate the corresponding Core Foundation type, CFArray.
Because NSArray and CFArray are “toll-free bridged,” you can substitute a CFArray object for a NSArray object
in your code (with appropriate casting). Although they are corresponding types, CFArray and NSArray do not
have identical interfaces orimplementations, and you can sometimes do things with CFArray that you cannot
easily do with NSArray. For example, CFArray provides a set of callbacks, some of which are for implementing
custom retain-release behavior. If you specify NULL implementations for these callbacks, you can easily get
a non-retaining array.

If the behavior you want to add supplements that of the existing class, you could write a category on NSArray.
Keep in mind, however, that this category will be in effect for all instances of NSArray that you use, and this
might have unintended consequences.

Constructors

NSArray (page 59)

Querying the Array

containsObject (page 61)

Returns true if anObject is present in the array.
count (page 61)

Returns the number of objects currently in the array.
getObjects (page 62)

Copies all objects contained in the receiver to aBuffer.

Tasks 57
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

58

CHAPTER 4
NSArray

index0fObject (page 63)
Searches all objects in the receiver for anObject and returns the lowest index whose corresponding
array value is equal to anObject.
indexOfIdenticalObject (page 62)
This method has been deprecated.
lastObject (page 63)
Returns the object in the array with the highest index value.
objectAtIndex (page 64)
Returns the object located at index.
objectsAtIndexes (page 64)
Returns an array containing the objects in the receiver at the specified indexes.

objectEnumerator (page 64)

reverseObjectEnumerator (page 65)
Returns an enumerator object that lets you access each object in the receiver, in order, from the
element at the highest index down to the element at index 0.

Comparing Arrays

firstObjectCommonWithArray (page 62)
Returns the first object contained in the receiver that’s equal to an objectin otherArray.

isEqualToArray (page 63)
Compares the receiving array to otherArray.

Deriving New Arrays

arrayByAddingObject (page 60)
Returns a new array that is a copy of the receiver with an0bject added to the end.
arrayByAddingObjectsFromArray (page 61)
Returns a new array that is a copy of the receiver with the objects contained in otherArray added
to the end.
filteredArrayUsingPredicate (page 62)
Evaluates the predicate against the receiver’s content and returns a new array containing the objects
that match.
subarrayWithRange (page 66)
Returns a new array containing the receiver’s elements that fall within the limits specified by range.

Sorting Arrays

sortedArrayUsingDescriptors (page 65)
Returns a copy of the receiver sorted as specified by sortDescriptors.

sortedArrayUsingSelector (page 65)

Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by the selector selector.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
NSArray

Working with String Elements

componentsJoinedByString (page 61)
Constructs and returns a String that is the result of interposing separator between the elements of
the receiver’s array.

componentsSeparatedByString (page 59)
Returns an NSArray containing substrings from aString that have been divided by separator.

Constructors

NSArray
public NSArray()

Discussion
Creates an empty array. This method is used by mutable subclasses of NSArray.

public NSArray(Object anObject)

Discussion
Creates an array containing the single element an0bject. After an immutable array has been initialized in
this way, it can’t be modified.

public NSArray(Object[] objects)

Discussion
Creates an array containing objects. After an immutable array has been initialized in this way, it can't be
modified.

public NSArray(NSArray anArray)

Discussion
Creates an array containing the objects in anArray. After an immutable array has been initialized in this way,
it can't be modified.

Static Methods

componentsSeparatedByString

Returns an NSArray containing substrings from aString that have been divided by separator.
public static NSArray componentsSeparatedByString(String aString, String separator)

Discussion
The substrings in the array appear in the order they did in aString. If aString begins or ends with the
separator, the first or last substring, respectively, is empty. For example, this code excerpt:

NSStringReference 1list = "wrenches, hammers, saws";

Constructors 59
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
NSArray

NSArray listItems = [list.componentsSeparatedByString (", ")1;

produces an array with these contents:

Index | Substring

0 wrenches
1 hammers
2 Saws

If 77st begins with a comma and space—for example, “, wrenches, hammers, saws”—the array has these
contents:

Index | Substring

0 (empty string)
1 wrenches

2 hammers

3 saws

If 77st has no separators—for example, “wrenches”—the array contains the string itself, in this case
“wrenches’.

See Also
componentsdoinedByString (page 61)

componentsSeparatedByString (page 597) (NSStringReference)

Instance Methods

60

arrayByAddingObject
Returns a new array that is a copy of the receiver with an0bject added to the end.

public NSArray arrayByAddingObject(Object anObject)

Discussion
If anObjectisnull,an InvalidArgumentException is thrown.

See Also
addObject (page 296) (NSMutableArray)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
NSArray

arrayByAddingObjectsFromArray

Returns a new array that is a copy of the receiver with the objects contained in otherArray added to the
end.

public NSArray arrayByAddingObjectsFromArray(NSArray otherArray)

See Also
addObjectsFromArray (page 296) (NSMutableArray)

componentsJoinedByString

Constructs and returns a String that is the result of interposing separator between the elements of the
receiver’s array.

public String componentsJoinedByString(String separator)

Discussion
For example, this code excerpt writes the path System/Library to the console:

NSArray pathArray = new NSArray(new Object[] {"System",
"Library"});

System.out.printin("The path is "+
pathArray.componentsdoinedByString("/") + ".");

Each element in the receiver’s array must handle either description, or if it is not implemented,
toString (page 426). If the receiver has no elements, a String representing an empty string is returned.

See Also
componentsSeparatedByString (page 597) (NSStringReference)

containsObject

Returns true if anObject is present in the array.
public boolean containsObject(0Object anObject)

Discussion
This method determines whether an object is present in the array by sending an equals (page 424) message
to each of the array’s objects (and passing an0Object as the parameter to each equals message).

See Also
index0fObject (page 63)

indexOfIdenticalObject (page 62)

count

Returns the number of objects currently in the array.

public int count()

Instance Methods 61
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

62

CHAPTER 4
NSArray

See Also
objectAtIndex (page 64)

filteredArrayUsingPredicate

Evaluates the predicate against the receiver’s content and returns a new array containing the objects that
match.

public NSArray filteredArrayUsingPredicate(NSPredicate predicate)

Discussion
For more details, see Predicates Programming Guide.

Availability
Available in Mac OS X v10.4 and later.

firstObjectCommonWithArray

Returns the first object contained in the receiver that’s equal to an objectin otherArray.
public Object firstObjectCommonWithArray(NSArray otherArray)

Discussion
If no such object is found, this method returns nu11. This method uses equals (page 424) to check for object
equality.

See Also
containsObject (page 61)

getObjects

Copies all objects contained in the receiver to aBuffer.
public void getObjects(Object[] aBuffer)
Copies the objects contained in the receiver that fall within the specified range to aBuffer.

public void getObjects(0Object[] aBuffer, NSRange aRange)

indexOfldenticalObject
This method has been deprecated.

public int indexOfldenticalObject(Object anObject)
This method has been deprecated.
public int indexO0fldenticalObject(Object anObject, NSRange aRange)

See Also
containsObject (page 61)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
NSArray

index0fObject (page 63)

indexOfObject

Searches all objects in the receiver for anObject and returns the lowest index whose corresponding array
value is equal to anObject.

public int index0fObject(Object anObject)

Discussion
Objects are considered equal if equals (page 424) returns true. If none of the specified objects is equal to
anObject, returns NSArray.NotFound.

Searches the specified range within the receiver for an0Object and returns the lowest index whose
corresponding array value is equal to anObject.

public int index0fObject(0Object anObject, NSRange aRange)

Discussion
Objects are considered equal if equals (page 424) returns true. If none of the specified objects is equal to
anObject, returns NSArray.NotFound.

See Also
containsObject (page 61)

indexOfIdenticalObject (page 62)

isEqualToArray

Compares the receiving array to otherArray.
public boolean isEqualToArray(NSArray otherArray)

Discussion
If the contents of otherArray are equal to the contents of the receiver, this method returns true. If not, it
returns false.

Two arrays have equal contents if they each hold the same number of objects and objects at a given index
in each array satisfy the equals (page 424) test.

lastObject

Returns the object in the array with the highest index value.
public Object TastObject()

Discussion
If the array is empty, TastObject returns null.

See Also
removelastObject (page 298) (NSMutableArray)

Instance Methods 63
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

64

CHAPTER 4
NSArray

objectAtindex

Returns the object located at index.
public Object objectAtIndex(int 7ndex)

Discussion
If index is beyond the end of the array (that is, if 7ndex is greater than or equal to the value returned by
count), a RangeException is thrown.

See Also
count (page 61)

objectEnumerator

public java.util.Enumeration objectEnumerator()

Discussion
Returns an enumerator object that lets you access each object in the receiver, in order, starting with the
element at index 0, as in:

java.util.Enumeration enumerator = myArray.objectEnumerator();

while (enumerator.hasMoreElements()) f{{
Object anObject = enumerator.nextElement();
/* code to act on each element */

}

When this method is used with mutable subclasses of NSArray, your code shouldn’t modify the array during
enumeration.

See Also
reverseObjectEnumerator (page 65)

nextElement (page 167) (NSEnumerator)

objectsAtindexes

Returns an array containing the objects in the receiver at the specified indexes.
public NSArray objectsAtIndexes(NSIndexSet indexes)

Discussion
Throws an exception if any location in indexes exceeds the bounds of the receiver.

Availability
Available in Mac OS X version 10.4 and later.

See Also
count (page 61)

objectAtIndex (page 64)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
NSArray

reverseObjectEnumerator
Returns an enumerator object that lets you access each object in the receiver, in order, from the element at
the highest index down to the element at index 0.

public java.util.Enumeration reverseObjectEnumerator()

Discussion
Your code shouldn’t modify the array during enumeration.

See Also
objectEnumerator (page 64)

nextElement (page 167) (NSEnumerator)

sortedArrayUsingDescriptors

Returns a copy of the receiver sorted as specified by sortDescriptors.
public NSArray sortedArrayUsingDescriptors(NSArray sortDescriptors)

Discussion

The first descriptor specifies the primary key value path to be used in sorting the receiver’s contents. Any
subsequent descriptors are used to further refine sorting of objects with duplicate values. See
NSSortDescriptor (page 581) for additional information.

Availability
Available in Mac OS X v10.3 and later.

See Also
sortedArrayUsingSelector (page 65)

sortedArrayUsingSelector

Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison
method specified by the selector selector.

public NSArray sortedArrayUsingSelector(NSSelector selector)

Discussion
The new array contains references to the receiver’s elements, not copies of them. The retain count is
incremented for each element in the receiving array.

The selector message is sent to each object in the array and has as its single argument another object in
the array. The selector method is used to compare two elements at a time and should return
OrderedAscending if the receiver is smaller than the argument, OrderedDescending if the receiver is
larger than the argument, and OrderedSame if they are equal.

See Also
sortedArrayUsingDescriptors (page 65)

Instance Methods 65
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
NSArray

subarrayWithRange

Returns a new array containing the receiver’s elements that fall within the limits specified by range.
public NSArray subarrayWithRange(NSRange range)

Discussion
If range isn't within the receiver’s range of elements, a RangeException is thrown.

For example, the following code example creates an array containing the elements found in the first half of
wholeArray (assuming wholeArray exists).

NSRange theRange = new NSRange(0, wholeArray.count()/2);
NSArray halfArray = wholeArray.subarrayWithRange(theRange);

Constants

66

NSArray provides the following constant as a convenience; you can use it to compare to values returned by
some NSArray methods:

Constant Description

NotFound | Returned when an object is not found in an NSArray.

Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

NSAttributedString

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide Attributed Strings Programming Guide
Overview

Tasks

NSAttributedString objects manage character strings and associated sets of attributes (for example, font and
kerning) that apply to individual characters or ranges of characters in the string. An association of characters
and their attributes is called an attributed string. The classes NSAttributedString and NSMutableAttributedString
declare the programmatic interface for read-only attributed strings and modifiable attributed strings,
respectively. Methods supporting the drawing of NSAttributedStrings are found in the Application Kit class
NSGraphics. The Application Kit uses a subclass of NSMutableAttributedString, called NSTextStorage, to
provide the storage for the Application Kit's extended text-handling system.

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to encapsulate
the paragraph or ruler attributes used by the NSAttributedString classes.

The mutable subclass of NSAttributedString is NSMutableAttributedString (page 303).

Note that the default font for NSAttributedString objects is Helvetica 12-point, which differs from the Mac
OS X system font Lucida Grande, so you may wish to create the string with non-default attributes suitable
for your application.

Constructors

NSAttributedString (page 69)
Creates an empty NSAttributedString.

Retrieving Character Information

stringReference (page 74)
Returns the character contents of the receiver as an NSStringReference object.

Overview 67
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

68

CHAPTER 5
NSAttributedString

length (page 72)
Returns the length of the receiver’s string object.

Retrieving Attribute Information

attributesAtIndex (page 71)
Returns the attributes for the character at 7index.
attributeAtIndex (page 70)

Returns the value for the attribute named attributeName of the characterat index,ornull if there
is no such attribute.

Comparing Attributed Strings

isEqualToAttributedString (page 72)
Returns true if the receiver is equal to otherString.

Extracting a Substring

attributedSubstringWithRange (page 71)

Returns an NSAttributedString object consisting of the characters and attributes within aRange in
the receiver.

Retrieving General Information

containsAttachments (page 71)
Returns true if the receiver contains any attachment attributes, false otherwise.

doubTeClickAtIndex (page 72)
Returns the range of characters that form a word (or other linguistic unit) surrounding 7ndex, taking
language characteristics into account.

fontAttributesInRange (page 72)
Returns the font attributes in effect for the character at aRange.location.

lTineBreakBeforelIndex (page 73)
Returns the index of the closest character before 7ndex and within aRange that can be placed on a
new line when laying out text.

lineBreakByHyphenatingBeforelIndex (page 73)
Returns the index of the closest character before 7ndex and within aRange that can be placed on a
new line by hyphenating.

nextWordFromIndex (page 73)
Returns the index of the first character of the word after or before 7ndex.

rulerAttributesInRange (page 74)
Returns the ruler (paragraph) attributes in effect for the characters within aRange.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
NSAttributedString

Generating Data

RTFDFileWrapperFromRange (page 74)
Returns an object that contains an RTFD document corresponding to the characters and attributes
within aRange.

RTFFromRange (page 74)
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes
within aRange, omitting all attachment attributes.

docFormatFromRange (page 71)
Returns an NSData object that contains a Microsoft Word-format stream corresponding to the
characters and attributes within the specified range.

Constructors

NSAttributedString

Creates an empty NSAttributedString.

public NSAttributedString()

Creates an NSAttributedString with the characters of aString and no attribute information.
public NSAttributedString(String aString)

Creates an NSAttributedString with the characters of aString and the attributes of attributes.
public NSAttributedString(String aString, NSDictionary attributes)

Creates an NSAttributedString with the characters and attributes of attributedString.
public NSAttributedString(NSAttributedString attributedString)

Creates an NSAttributedString with the contents of aURL, returning document properties, which are described
in “Constants” (page 75),in attributes.

pubTic NSAttributedString(java.net.URL aURL, NSMutableDictionary attributes)

Creates an NSAttributedString with the contents of aDat a, returning document properties, which are described
in “Constants” (page 75), in attributes.

public NSAttributedString(NSData aData, NSMutableDictionary attributes)
Creates an NSAttributedString from wrapper, an NSFileWrapper object containing an RTFD document.
public NSAttributedString(NSFileWrapper wrapper, NSMutableDictionary attributes)

Discussion
Alsoreturnsin attributes adictionary containing document-level attributes described in “Constants” (page
75). Returns nul1 if wrapper can't be interpreted as an RTFD document.

Creates an NSAttributedString from the HTML contained in data and base URL aURL.

Constructors 69
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
NSAttributedString

public NSAttributedString(NSData data, java.net.URL aURL, NSMutableDictionary
attributes)

Discussion
Alsoreturnsin attributes adictionary containing document-level attributes described in “Constants” (page
75). Returns nu11 if the file at aURL can't be decoded.

Creates an NSAttributedString from HTML contained in data.

public NSAttributedString(NSData data, NSDictionary options, NSMutableDictionary
attributes)

Discussion

options can contain one of the values described in NSMutableAttributedString’s readFromURL (page 310)
method. Also returns in attributes a dictionary containing document-level attributes described in
“Constants” (page 75). Returns nul1 if data can’t be decoded.

Instance Methods

70

attributeAtindex

Returns the value for the attribute named attributeName of the character at index, or nul1 if there is no
such attribute.

public Object attributeAtIndex(String attributeName, int index, NSMutableRange
aRange)

Discussion

If the named attribute exists at index and aRangeis non-null, it's filled with a range over which the named
attribute’s value applies. If the named attribute doesn't exist at index and aRangeis non-null, aRangeis
filled instead with the range over which the attribute doesn’t exist. This range isn’t necessarily the maximum
range covered by attributeName, and its extent is implementation-dependent.

Throws an exception if index lies beyond the end of the receiver’s characters.

Returns the value for the attribute named attributeName of the character at ndex, or nul1 if there is no
such attribute.

public Object attributeAtIndex(String attributeName, int index, NSMutableRange
aRange, NSRange rangelimit)

Discussion

If the named attribute exists at 7ndex and aRange is non-nul1, it’s filled with the full range over which the
value of the named attribute is the same as that at index, clipped to rangelimit. If the named attribute
doesn't exist at index and aRangeis non-null, aRange is filled instead with the full range over which the
attribute doesn't exist, clipped to rangel imit.

Throws an exception if index or any part of rangel imit lies beyond the end of the receiver’s characters.

See Also
attributesAtIndex (page71)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
NSAttributedString

attributedSubstringWithRange

Returns an NSAttributedString object consisting of the characters and attributes within aRange in the receiver.
public NSAttributedString attributedSubstringWithRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters. This
method treats the length of the string as a valid range value that returns an empty string.

attributesAtindex

Returns the attributes for the character at 7ndex.
public NSDictionary attributesAtIndex(int 7ndex, NSMutableRange aRange)

Discussion
If aRangeis non-null it's filled with the range over which the attributes and values are the same as those
at 7ndex. This range isn't necessarily the maximum range covered, and its extent is implementation-dependent.

Throws an exception if index lies beyond the end of the receiver’s characters.
Returns the attributes for the character at 7ndex.

public NSDictionary attributesAtIndex(int 7ndex, NSMutableRange aRange, NSRange
rangelimit)

Discussion
If aRangeis non-null, it’s filled with the maximum range over which the attributes and values are the same
as those at index, clipped to rangelimit.

Throws an exception if index or any part of rangel imit lies beyond the end of the receiver’s characters.

See Also
attributeAtIndex (page 70)

containsAttachments

Returns true if the receiver contains any attachment attributes, false otherwise.
public boolean containsAttachments()

Discussion
This method checks only for attachment attributes, not for NSAttachmentCharacter.

docFormatFromRange

Returns an NSData object that contains a Microsoft Word-format stream corresponding to the characters
and attributes within the specified range.

public NSData docFormatFromRange(NSRange range, NSDictionary dict)

Instance Methods 71
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

72

CHAPTER 5
NSAttributedString

Discussion

The range is passed in the range parameter. Also writes the document-level attributes in d7ct, as explained
in “Constants” (page 75). If there are no document-level attributes, dict can be nul11. Throws an
NSRangeException if any part of range lies beyond the end of the receiver’s characters.

Availability
Available in Mac OS X v10.3 and later.

doubleClickAtindex

Returns the range of characters that form a word (or other linguistic unit) surrounding 7 ndex, taking language
characteristics into account.

public NSRange doubleClickAtIndex(int index)

Discussion
Throws a RangeException if index lies beyond the end of the receiver’s characters.

See Also
nextWordFromIndex (page 73)

fontAttributesinRange

Returns the font attributes in effect for the character at aRange.location.
public NSDictionary fontAttributesInRange(NSRange aRange)

Discussion
Use this method to obtain font attributes that are to be copied or pasted with “copy font” operations. Throws
a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
rulerAttributesInRange (page 74)

isEqualToAttributedString

Returns true if the receiver is equal to otherString.
public boolean isEqualToAttributedString(NSAttributedString otherString)

Discussion
Attributed strings must match in both characters and attributes to be equal.

length

Returns the length of the receiver’s string object.
public int Tength()

See Also
Tength (page 600) (NSStringReference)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
NSAttributedString

lineBreakBeforelndex

Returns the index of the closest character before 7ndex and within aRange that can be placed on a new line
when laying out text.

public int lineBreakBeforelIndex(int index, NSRange aRange)

Discussion

In other words, finds the appropriate line break when the character at 7ndex won't fit on the same line as
the character at the beginning of aRange. Returns NSArray.NotFound if no line break is possible before
index.Throws a RangeException if index or any part of aRange lies beyond the end of the receiver’s
characters.

See Also
lineBreakByHyphenatingBeforelIndex (page 73)

lineBreakByHyphenatingBeforelndex

Returns the index of the closest character before 7ndex and within aRange that can be placed on a new line
by hyphenating.

public int TineBreakByHyphenatingBeforelndex(int Tocation, NSRange aRange)

Discussion

In other words, during text layout, finds the appropriate line break by hyphenation (the character index at
which the hyphen glyph should be inserted) when the character at 7ndex won't fit on the same line as the
character at the beginning of aRange.Returns NSArray . NotFound if no line break by hyphenation is possible
before index.Throwsa RangeExceptionif indexorany part of aRange lies beyond the end of the receiver’s
characters.

Availability
Available in Mac OS X v10.3 and later.

See Also
lineBreakBeforelIndex (page 73)

nextWordFromindex

Returns the index of the first character of the word after or before index.
public int nextWordFromIndex(int index, boolean flag)

Discussion

If f1agis true, thisis the first character after 7ndex that begins a word; if f7agis false,it's the first character
before 7ndex that begins a word, whether 7index is located within a word or not. If index lies at either end
of the string and the search direction would progress past that end, it's returned unchanged. This method
is intended for moving the insertion point during editing, not for linguistic analysis or parsing of text.Throws
a RangeException if index lies beyond the end of the receiver’s characters.

See Also
lTineBreakBeforelIndex (page 73)

Instance Methods 73
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

74

CHAPTER 5
NSAttributedString

RTFDFileWrapperFromRange
Returns an object that contains an RTFD document corresponding to the characters and attributes within
aRange.

public Object RTFDFileWrapperFromRange(NSRange aRange, NSDictionary docAttributes)

Discussion

The file wrapper also includes the document-level attributes in docAttributes. If there are no document-level
attributes, docAttributes canbenull.Throws a RangeException if any part of aRange lies beyond the
end of the receiver’s characters.You can save the file wrapper using NSFileWrapper's writeToFile.

See Also
RTFFromRange (page 74)

RTFFromRange
Returns an NSData object that contains an RTF stream corresponding to the characters and attributes within
aRange, omitting all attachment attributes.

public NSData RTFFromRange(NSRange aRange, NSDictionary docAttributes)

Discussion

Also writes the document-level attributes in docAttributes. If there are no document-level attributes,
docAttributes canbenull.Throws a RangeException if any part of aRange lies beyond the end of the
receiver’s characters.When writing data to the pasteboard, you can use the NSData object as the first argument
to NSPasteboard’s setDataForType, with asecond argumentof NSPasteboard.RTFPboardType.Although
this method strips attachments, it leaves the attachment characters in the text itself. NSText's RTFFromRange,
on the other hand, does strip attachment characters when extracting RTF.

See Also
RTFDFiTeWrapperFromRange (page 74)

rulerAttributesinRange
Returns the ruler (paragraph) attributes in effect for the characters within aRange.

public NSDictionary rulerAttributesInRange(NSRange aRange)

Discussion

The only ruler attribute currently defined is that named by NSParagraphStyleAttributeName. Use this
method to obtain attributes that are to be copied or pasted with “copy ruler” operations. Throws a
RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
fontAttributesInRange (page 72)

stringReference

Returns the character contents of the receiver as an NSStringReference object.

public NSStringReference stringReference()

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
NSAttributedString

Discussion

This method doesn’t strip out attachment characters; use NSText’s st ring method to extract just the

linguistically significant characters.

For performance reasons, this method returns the current backing store of the attributed string object. If you
want to maintain a snapshot of this as you manipulate the returned string, you should make a copy of the

appropriate substring.

This primitive method must guarantee efficient access to an attributed string’s characters; subclasses should

implement it to execute in O(1) time.

Constants

NSAttributedString provides the following attribute name constants:

Attribute Identifier Value Class Default Value
AttachmentAttributeName NSTextAttachment | None (no attachment)
BackgroundColorAttributeName NSColor None (no background drawn)
BaselineOffsetAttributeName float 0.0

CursorAttributeName NSCursor IBeamCursor
ExpansionAttributeName float 0 (no expansion)
FontAttributeName NSFont Helvetica 12-point
ForegroundColorAttributeName NSColor Black

KernAttributeName float 0.0

LigatureAttributeName int 1 (standard ligatures)
ObTliquenessAttributeName float 0 (no skew)
ParagraphStyleAttributeName NSParagraphStyle | Object returned by NSParagraphStyle’s

defaultParagraphStyle method

ShadowAttributeName NSShadow null (no shadow)
StrikethroughColorAttributeName | NSColor null (same as foreground color)
StrikethroughStyleAttributeName |int 0 (no strikethrough)
StrokeColorAttributeName NSColor null (same as foreground color)
StrokeWidthAttributeName float 0 (no stroke)
SuperscriptAttributeName int 0

ToolTipAttributeName String null (no tooltip)
Constants 75

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

76

CHAPTER 5
NSAttributedString

Attribute Identifier Value Class Default Value
UnderlineColorAttributeName NSColor null (same as foreground color)
UnderlineStyleAttributeName int None (no underline)

NSAttributedString provides the following constants to use when working with underlines:

Constant

Description

UnderlineByWordMask

Underline skips whitespace characters.

UnderlineStyleNone

No underline.

UnderlineStyleSingle

Single underline drawn below the characters.

UnderlineStyleThick

Thick underline drawn below the characters.

UnderlineStyleDouble

Double underline drawn below the characters.

UnderlinePatternSolid

Draw a solid underline.

UnderlinePatternDot

Draw an underline using a pattern of dots.

UnderlinePatternDash

Draw an underline using a pattern of dashes.

UnderlinePatternDashDot

Draw an underline using a pattern of alternating dashes and dots.

UnderlinePatternDashDotDot

Draw an underline using a pattern of a dash followed by two dots.

The following constants previously used for underline style were deprecated in Mac OS X v10.3:

NoUnderlineStyle
SingleUnderlineStyle

UnderlineStrikethroughMask

The constructors can return a dictionary with the following document-wide attributes:

Constant Description

PaperSize NSSize.

LeftMargin

float, in points.

RightMargin

float, in points.

TopMargin

float, in points.

BottomMargin

float, in points.

HyphenationFactor | float.

DocumentType

How the document was interpreted; one of the values below.

Constants

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
NSAttributedString

Constant

Description

CharacterEncoding

For plain text files only; int specifying NSStringEncoding used to interpret the file.

ViewSize NSSize.
ViewZoom float; 100 == 100% zoom.
ViewMode int; 0 = normal; 1 = page layout (use value of PaperSize).

CocoaRTFVersion

If RTF file, stores the version of Cocoa the file was created with. Number containing
int. Absence of this value indicates RTF file not created by Cocoa or its predecessors.
100 is Mac OS X; lower values are pre-Mac OS X.

Converted

int. Indicates whether the file was converted by a filter service. If missing, 0, or
negative, the file was originally in the format specified by document type. If 1 or
more, it was converted to this type by a filter service.

The following values can be returned for the DocumentType key in the document attributes dictionary:

DocumentType

NSHTMLTextDocumentType

NSMacSimpleTextDocumentType

NSPTainTextDocumentType

NSRTFDTextDocumentType

NSRTFTextDocumentType

NSDocFormatTextDocumentType

NSWordMLTextDocumentType

Constants

77

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
NSAttributedString

78 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

NSAutoreleasePool

Inherits from Object

Package: com.apple.cocoa.foundation

Companion guide Memory Management Programming Guide for Cocoa
Overview

Tasks

An autorelease pool is used to manage Foundation’s autorelease mechanism for Objective-C objects.
NSAutoreleasePool provides Java applications access to autorelease pools. Typically it is not necessary for
Java applications to use NSAutoreleasePools since Java manages garbage collection. However, some situations
require an autorelease pool; for instance, if you start off a thread that calls Cocoa, there won't be a top-level
pool.

You know you need an autorelease pool when you see “no pool in place - just leaking” warnings coming
from your Cocoa Java application. Just wrap pools around the places where you have top-level Java threads
calling into Cocoa. Use code like the following to accomplish this task:

int myPool = NSAutoreleasePool.push();
// Your code here

NSAutoreleasePool.pop(myPool);

Creating a Pool
push (page 80)

Creates an NSAutoreleasePool and returns an identifier to it.
Freeing a Pool

pop (page 80)
Indicates that you are finished using the NSAutoreleasePool identified by poo].

Overview 79
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 6

NSAutoreleasePool

Static Methods

pop

Indicates that you are finished using the NSAutoreleasePool identified by poo].
public static void pop(int pool)

See Also
push (page 80)

push

Creates an NSAutoreleasePool and returns an identifier to it.
public static int push()

See Also
pop (page 80)

80 Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7

NSBundle

Inherits from NSObject
Package: com.apple.cocoa.foundation
Companion guides Bundle Programming Guide

Resource Programming Guide

Overview

Tasks

An NSBundle represents a location in the file system that groups code and resources that can be used in a
program. NSBundles locate program resources, dynamically load executable code, and assist in localization.
You build a bundle in Xcode using one of these project types: Application, Framework, Loadable Bundle,
Palette.

Constructors

NSBundle (page 84)
Creates an empty NSBundle.

Getting an NSBundle

bundleForClass (page 84)
Returns the NSBundle that dynamically loaded aC7ass (a loadable bundle), the NSBundle for the
framework in which aC7ass is defined, or the main bundle object if aC7ass was not dynamically
loaded or is not defined in a framework.
bundleWithIdentifier (page 85)
Returns the previously created NSBundle instance that has the bundle identifier identifier.
bundleWithPath (page 85)
Returns an NSBundle that corresponds to the specified directory ful7Pathornull if fullPath
does not identify an accessible bundle directory.
mainBundle (page 86)

Returns an NSBundle that corresponds to the directory where the application executable is located
or nul1 if this executable is not located in an accessible bundle directory.

Overview 81
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

82

CHAPTER 7
NSBundle

allBundles (page 84)
Returns an array of all the application’s nonframework bundles.

allFrameworks (page 84)
Returns an array of all of the application’s bundles that represent frameworks.

Getting a Bundled Class

principalClass (page 91)
Returns the receiver’s principal class after ensuring that the code containing the definition of that
class is dynamically loaded.

Finding a Resource

pathForResource (page 90)
Returns the full pathname for the resource identified by name with the specified file extension.

pathsForResources (page 91)
Returns an array containing the pathnames for all bundle resources having the specified filename
extension and residing in the resource subdirectory specified by subpath; returns an empty array
if no matching resource files are found.

resourcePath (page 92)
Returns the full pathname of the receiving bundle’s subdirectory containing resources.

Getting the Bundle Directory

bundlePath (page 87)
Returns the full pathname of the receiver’s bundle directory.

Getting Bundle Information

builtInPlugInsPath (page 87)

Returns the full pathname of the receiving bundle’s subdirectory containing plug-ins.
bundleldentifier (page 87)

Returns the receiver’s bundle identifier, which is defined by the CFBundleIdentifier key in the

bundle’s information property list.
executablePath (page 87)

Returns the full pathname of the receiving bundle’s executable file.
infoDictionary (page 87)

Returns a dictionary that contains information about the receiver.
objectForInfoDictionaryKey (page 89)

Returns the value associated with key in the bundle’s property list (Info.plist).
pathForAuxiliaryExecutable (page 89)

Returns the full pathname of the executable executableName in the receiver’s bundle.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
NSBundle

privateFrameworksPath (page 92)
Returns the full pathname of the receiving bundle’s subdirectory containing private frameworks.

sharedFrameworksPath (page 92)
Returns the full pathname of the receiving bundle’s subdirectory containing shared frameworks.

sharedSupportPath (page 93)
Returns the full pathname of the receiving bundle’s subdirectory containing shared support files.

Managing Localized Resources

localizedString (page 85)
Returns the localized version of the string designated by key in the Localizable.strings filein
the application’s main bundle.

localizedStringForKey (page 89)
Returns a localized version of the string designated by key in table tableName.

Loading a Bundle’s Code

load (page 88)
Dynamically loads the bundle’s executable code into a running program, if the code has not already
been loaded.

isLoaded (page 88)
Obtains information about the load status of a bundle.

Managing Localizations

preferredlocalizations (page 86)
Returns the one or more localizations from the list TocalizationsArray that NSBundle prefers to
use to locate resources based on the user’s preferences.
localizations (page 88)
Returns a list of all the localizations contained within the receiver’s bundle.
developmentlocalization (page 87)
Returns the localization used to create the bundle.
preferredlLocalizations (page 91)

Returns one or more localizations contained in the receiver’s bundle that the receiver uses to locate
resources based on the user’s preferences.

localizedInfoDictionary (page 88)
Returns a dictionary with the keys from the bundle’s localized property list (InfoPList.strings).

Tasks 83
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
NSBundle

Constructors

NSBundle

Creates an empty NSBundle.
public NSBundle()
Do not use this constructor. Use bundlelWithPath (page 85) instead.

public NSBundle(String fullPath)

Static Methods

84

allBundles

Returns an array of all the application’s nonframework bundles.
public static NSArray allBundles()

Discussion
This array includes the main bundle and all bundles that have been dynamically created but doesn’t contain
any bundles that represent frameworks.

allFrameworks

Returns an array of all of the application’s bundles that represent frameworks.
public static NSArray allFrameworks()

Discussion

This array includes frameworks that are linked into an application when the application is built and bundles
for frameworks that have been dynamically created. Only frameworks with one or more Objective-C classes
in them are included.

bundleForClass

Returns the NSBundle that dynamically loaded aC7ass (a loadable bundle), the NSBundle for the framework
in which aC7lass is defined, or the main bundle object if aC7ass was not dynamically loaded or is not defined
in a framework.

public static NSBundle bundleForClass(Class aClass)

See Also
mainBundle (page 86)

bundleWithPath (page 85)

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
NSBundle

bundleWithldentifier

Returns the previously created NSBundle instance that has the bundle identifier identifier.
public static NSBundle bundleWithIdentifier(String identifier)

Discussion
The instance must currently exist. Returns nu11 if the requested bundle is not found.

bundleWithPath

Returns an NSBundle that corresponds to the specified directory fullPathornull if fullPath does not
identify an accessible bundle directory.

public static NSBundle bundleWithPath(String fullPath)

Discussion

This method creates and initializes the returned object if there is no existing NSBundle associated with
fullPath, in which case it returns the existing object. fu77Path must be a full pathname for a directory; if
it contains any symbolic links, they must be resolvable. If the directory doesn't exist or the user doesn’t have
access to it, this method returns nul1.

See Also
mainBundle (page 86)

bundleForClass (page 84)

localizedString

Returns the localized version of the string designated by key in the Localizable.strings file in the
application’s main bundle.

public static String localizedString(String key)

Discussion
Returns key if it is not found in the file.

Returns the localized version of the string designated by key in the Localizable.strings file in the
application’s main bundle.

public static String localizedString(String key, String comment)

Discussion
Returns key if it is not found in the file.

Returns the localized version of the string designated by key in table tab7eName in the application’s main
bundle.

public static String localizedString(String key, String tableName, String comment)

Discussion
The argument tabieName specifies the . strings file to search. Returns key if it is not found in the file.

Returns the localized version of the string designated by key in table tableName in bundle.

Static Methods 85
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

86

CHAPTER 7
NSBundle

public static String localizedString(String key, String tableName, NSBundle bundle,
String comment)

Discussion
The argument tab]eName specifies the . strings file to search. Returns key if it is not found in the file.

The comment arguments are not used by these methods. They are used only by the genstrings command-line
tool, which creates . strings files by extracting the arguments of 1ocalizedString invocations in your
source code. Use comment to document the purpose of each key in the .strings file.

See Also
localizedStringForKey (page 89)

mainBundle

Returns an NSBundle that corresponds to the directory where the application executable is located or nul1
if this executable is not located in an accessible bundle directory.

public static NSBundle mainBundle()

Discussion
This method allocates and initializes the returned NSBundle if it doesn't already exist.

In general, the main bundle corresponds to an application file package or application wrapper: a directory
that bears the name of the application and is marked by a “. app” extension.

See Also
bundleForClass (page 84)

bundleWithPath (page 85)

preferredLocalizations

Returns the one or more localizations from the list TocalizationsArray that NSBundle prefers to use to
locate resources based on the user’s preferences.

public static NSArray preferredlLocalizations(NSArray JlocalizationsArray)

Returns the localizations that NSBundle would prefer, given the specified bundle and user preference
localizations.

public static NSArray preferredLocalizations(NSArray localizationsArray, NSArray
preferencesArray)

Discussion

Use the argument TocalizationsArray to specify the supported localizations of the bundle and use
preferencesArray to specify the user’s localization preferences. If you specify nul11 for preferencesArray,
this method uses the current user’s localization preferences. If none of the user-preferred localizations are
available in the bundle, this method chooses one of the bundle localizations and returns it.

Availability
Available in Mac OS X v10.2 and later.

Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
NSBundle

Instance Methods

builtinPluginsPath

Returns the full pathname of the receiving bundle’s subdirectory containing plug-ins.

public String builtInPlugInsPath()

bundleldentifier

Returns the receiver’s bundle identifier, which is defined by the CFBundlelIdentifier key in the bundle’s
information property list.

public String bundleldentifier()

See Also
infoDictionary (page 87)

bundlePath

Returns the full pathname of the receiver’s bundle directory.

public String bundlePath()

developmentLocalization

Returns the localization used to create the bundle.
public String developmentlLocalization()

Discussion
The returned localization corresponds to the value in the CFBundleDevelopmentRegion key of the bundle’s
property list (Info.plist).

Availability
Available in Mac OS X v10.2 and later.

executablePath

Returns the full pathname of the receiving bundle’s executable file.

public String executablePath()

infoDictionary

Returns a dictionary that contains information about the receiver.

Instance Methods 87
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

88

CHAPTER 7
NSBundle

public NSDictionary infoDictionary()

Discussion

This information is extracted from the property list (Info.p11ist) associated with the bundle. The returned
dictionary is empty if no Info.p11st can be found. Common keys for accessing the values of the dictionary
are CFBundleIdentifier, NSMainNibFile,and NSPrincipalClass.

See Also
principalClass (page 91)

isLoaded

Obtains information about the load status of a bundle.
public boolean islLoaded()

Discussion
Returns true if the bundle’s code is currently loaded; otherwise, returns false.

Availability
Available in Mac OS X v10.2 and later.

See Also
load (page 88)

load

Dynamically loads the bundle’s executable code into a running program, if the code has not already been
loaded.

public boolean Toad()

Discussion

A bundle attempts to load its code—if it has any—only once. Returns true if the method successfully loads
the bundle’s code or if the code has already been loaded. Returns false if the method fails to load the code.
You don't need to load a bundle’s executable code to search the bundle’s resources.

See Also
isLoaded (page 88)

principalClass (page 91)

localizations

Returns a list of all the localizations contained within the receiver’s bundle.

public NSArray Tocalizations()

localizedInfoDictionary

Returns a dictionary with the keys from the bundle’s localized property list (InfoPList.strings).

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
NSBundle

public NSDictionary TocalizedInfoDictionary()

Discussion
This method uses the preferred localization for the current user when determining which resources to return.
If the preferred localization is not available, this method chooses the most appropriate localization found in
the bundle.

Availability
Available in Mac OS X v10.2 and later.

localizedStringForKey

Returns a localized version of the string designated by key in table tableName.
public String localizedStringForKey(String key, String value, String tableName)

Discussion

The argument tab]eName specifies the receiver’s string table to search. If tableNameisnull orisan empty
string, the method attempts to use the table in Localizable.strings.The value argument specifies the
value to return if keyis nu11 or if a localized string for key can't be found in the table. If valueisnull or
an empty string, and a localized string is not found in the table, the method returns key. If key and value
are both nul1, the method returns the empty string. For more details about string localization and the
specification of a . strings file, see “Working With Localized Strings.”

Using the user default NSShowNonlLocalizedStrings, you can alter the behavior of
TocalizedStringForKey (page 89) to log a message when the method can't find a localized string. If you
set this default to true (in the global domain or in the application’s domain), then when the method can't
find a localized string in the table, it logs a message to the console and capitalizes key before returning it.

See Also
pathForResource (page 90)

pathsForResources (page 91)

objectForinfoDictionaryKey

Returns the value associated with key in the bundle’s property list (Info.plist).
public Object objectForInfoDictionaryKey(String key)

Discussion
Use of this method is preferred over other access methods because it returns the localized value of a key
when one is available.

Availability
Available in Mac OS X v10.2 and later.

pathForAuxiliaryExecutable

Returns the full pathname of the executable executableName in the receiver’s bundle.

public String pathForAuxiliaryExecutable(String executableName)

Instance Methods 89
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

920

CHAPTER 7
NSBundle

pathForResource

Returns the full pathname for the resource identified by name with the specified file extension.
public String pathForResource(String name, String extension)

Discussion
If extensionisanempty string or nul1, the returned pathname is the first one encountered where the file
name exactly matches name.

The method first looks for a matching resource file in the nonlocalized resource directory (typically Resources)
of the specified bundle. If a matching resource file is not found, it then looks in the top level of any available
language-specific “. 1proj” directories. (The search order for the language-specific directories corresponds
to the user’s preferences.) It does not recurse through other subdirectories at any of these locations. For more
details see “Bundles and Localization”.

Returns the full pathname for the resource identified by name, with the specified filename extension, and
residing in the specific resource subdirectory specified by subpath; returns nul1 if no matching resource
file exists in the bundle.

public String pathForResource(String name, String extension, String subpath)

Discussion
If extensionisan empty string or nul1, the returned pathname is the first one encountered where the file
name exactly matches name.

The argument subpath specifies the name of a specific subdirectory to search within the current bundle’s
general resource directory hierarchy. If subpathis null, this method searches the top-level nonlocalized
resource directory (typically Resources) and the top-level of any language-specific directories. For example,
suppose you have a modern bundle and specify @"Documentation" for the subpath parameter. This
method would first look in the Contents/Resources/Documentation directory of the bundle, followed
by the Documentation subdirectories of each language-specific . 1proj directory. (The search order for the
language-specific directories corresponds to the user’s preferences.) This method does not recurse through
any other subdirectories at any of these locations. For more details see “Bundles and Localization”.

Returns the full pathname for the resource identified by name, with the specified filename extension,
residing in the resource subdirectory specified by subpath, and limited to global resources and those
associated with 7ocalizationName.

pubTic String pathForResource(String name, String extension, String subpath, String
localizationName)

Discussion
This method is equivalent to the three parameter version except that only nonlocalized resources and those
in the language-specific . 1proj directory specified by 7ocalizationName are searched.

See Also
localizedStringForKey (page 89)

pathsForResources (page 91)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
NSBundle

pathsForResources

Returns an array containing the pathnames for all bundle resources having the specified filename extension
and residing in the resource subdirectory specified by subpath; returns an empty array if no matching
resource files are found.

public NSArray pathsForResources(String extension, String subpath)

Discussion
This method provides a means for dynamically discovering multiple bundle resources of the same type. If
extensionisanempty string or nul1l, all bundle resources in the specified resource directory are returned.

The argument subpath specifies the name of a specific subdirectory to search within the current bundle’s
resource directory hierarchy. If subpathis null, this method searches the top-level nonlocalized resource
directory (typically Resources) and the top-level of any language-specific directories. For example, suppose
you have a modern bundle and specify @"Documentation" for the subpath parameter. This method would
first look in the Contents/Resources/Documentation directory of the bundle, followed by the
Documentation subdirectories of each language-specific . 1proj directory. (The search order for the
language-specific directories corresponds to the user’s preferences.) This method does not recurse through
any other subdirectories at any of these locations. For more details see “Bundles and Localization”.

Returns an array containing pathnames for all bundle resources having the specified filename extension,
residing in the resource subdirectory specified by subpath, and limited to global resources and those
associated with 7ocalizationName.

public NSArray pathsfForResources(String extension, String subpath, String
localizationName)

Discussion
This method is equivalent to the two parameter version except that only nonlocalized resources and those
in the language-specific . 1proj directory specified by TocalizationName are searched.

See Also
localizedStringForKey (page 89)

preferredLocalizations

Returns one or more localizations contained in the receiver’s bundle that the receiver uses to locate resources
based on the user’s preferences.

public NSArray preferredlLocalizations()

See Also
preferredlocalizations (page 86)

localizations (page 88)

principalClass

Returns the receiver’s principal class after ensuring that the code containing the definition of that class is
dynamically loaded.

public Class principalClass()

Instance Methods 91
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

92

CHAPTER 7
NSBundle

Discussion

If the receiver encounters errors in loading or if it can't find the executable code file in the bundle directory,
it returns NIL. The principal class typically controls all the other classes in the bundle; it should mediate
between those classes and classes external to the bundle. Classes (and categories) are loaded from just one
file within the bundle directory. NSBundle obtains the name of the code file to load from the dictionary
returned from infoDictionary (page 87), using “NSExecutable” as the key. The NSBundle determines
its principal class in one of two ways:

= It first looks in its own information dictionary, which extracts the information encoded in the bundle’s
property list (Info.p11ist). NSBundle obtains the principal class from the dictionary using the key
NSPrincipalClass. For nonloadable bundles (applications and frameworks), if the principal class is
not specified in the property list, the method returns NI L.

= [f the principal class is not specified in the information dictionary, NSBundle identifies the first class
loaded as the principal class. When several classes are linked into a dynamically loadable file, the default
principal class is the first one listed on the 1d command line. In the following example, Reporter would
be the principal class:

1d -0 myBundle -r Reporter.o NotePad.o Querylist.o

The order of classes in Xcode's project browser is the order in which they will be linked. To designate the
principal class, control-drag the file containing its implementation to the top of the list.

See Also
infoDictionary (page 87)

load (page 88)

privateFrameworksPath

Returns the full pathname of the receiving bundle’s subdirectory containing private frameworks.

public String privateFrameworksPath()

resourcePath

Returns the full pathname of the receiving bundle’s subdirectory containing resources.
public String resourcePath()

See Also
bundlePath (page 87)

sharedFrameworksPath

Returns the full pathname of the receiving bundle’s subdirectory containing shared frameworks.

public String sharedFrameworksPath()

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 7
NSBundle

sharedSupportPath

Returns the full pathname of the receiving bundle’s subdirectory containing shared support files.

public String sharedSupportPath()

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

93

CHAPTER 7
NSBundle

94 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8

NSCharacterSet

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide String Programming Guide for Cocoa
Overview

Tasks

An NSCharacterSet object represents a set of Unicode 3.2 compliant characters. String and NSScanner objects
use NSCharacterSets to group characters together for searching operations, so that they can find any of a
particular set of characters during a search. The two classes, NSCharacterSet and NSMutableCharacterSet,
declare the programmatic interface for static and dynamic character sets, respectively.

The objects you create using these classes are referred to as character set objects (and when no confusion
will result, merely as character sets).

The NSCharacterSet class declares the programmatic interface for an object that manages a set of Unicode
characters (see the NSStringReference (page 591) class specification for information on Unicode).
NSCharacterSet’s principal primitive method, characterIsMember (page 102), provides the basis for all
other instance methods in its interface. A subclass of NSCharacterSet needs only to implement this method
for proper behavior. For optimal performance, a subclass should also override bitmapRepresentation (page
102), which otherwise works by invoking characterIsMember (page 102) for every possible Unicode value.

The mutable subclass of NSCharacterSet is NSMutableCharacterSet (page 315).

Constructors

NSCharacterSet (page 97)
Creates an empty NSCharacterSet.

Creating a Standard Character Set

alphanumericCharacterSet (page 98)
Returns a character set containing the characters in the categories Letters, Marks, and Numbers.

Overview 95
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

96

CHAPTER 8
NSCharacterSet

capitalizedlLetterCharacterSet (page 98)
Returns a character set containing the characters in the category of Titlecase Letters.

controlCharacterSet (page 98)
Returns a character set containing the characters in the categories of Control or Format Characters.

decimalDigitCharacterSet (page 99)
Returns a character set containing the characters in the category of Decimal Numbers.

decomposableCharacterSet (page 99)
Returns a character set containing all individual Unicode characters that can also be represented as
composed character sequences (such as for letters with accents), by the definition of “standard
decomposition” in version 3.2 of the Unicode character encoding standard.

illegalCharacterSet (page 99)
Returns a character set containing values in the category of Non-Characters or that have not yet been
defined in version 3.2 of the Unicode standard.

letterCharacterSet (page 100)
Returns a character set containing the characters in the categories Letters and Marks.

lowercaseletterCharacterSet (page 100)
Returns a character set containing the characters in the category of Lowercase Letters.

nonBaseCharacterSet (page 100)
Returns a character set containing the characters in the category of Marks.

punctuationCharacterSet (page 100)
Returns a character set containing the characters in the category of Punctuation.

symbolCharacterSet (page 101)
Returns a character set containing the characters in the category of Symbols.

uppercaseletterCharacterSet (page 101)
Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase
Letters.

whitespaceAndNewlineCharacterSet (page 101)
Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009)
and the newline and nextline characters (U+000A-U+000D, U+0085).

whitespaceCharacterSet (page 101)

Returns a character set containing only the in-line whitespace characters space (U+0020) and tab
(U+0009).

Opening a Character Set File

characterSetWithContentsOfFile (page 98)
Returns a character set read from the bitmap representation stored in the file at path, which must
end with the extension .bitmap.

Testing Set Membership

characterIsMember (page 102)
Returns true if aCharacterisin the receiving character set, false if it isn't.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8
NSCharacterSet

isSuperset0fSet (page 103)
Returns true if the receiving character set is a superset of theOtherSet, false ifitisn't.

Getting a Binary Representation

bitmapRepresentation (page 102)
Returns an NSData object encoding the receiving character set in binary format.

Deriving New Character Sets

characterSetByIntersectingCharacterSet (page 102)
Returns a character set containing only characters that exist in both the receiver and otherSet.

characterSetByInvertingCharacterSet (page 102)

Returns a character set containing only characters that do not exist in the receiver. Inverting an
immutable character set is much more efficient than inverting a mutable character set.

characterSetBySubtractingCharacterSet (page 102)
Returns a character set containing all the characters in the receiver except for those in otherSet.

characterSetByUnioningCharacterSet (page 102)
Returns a character set containing all characters that exist in either the receiver or otherSet.

Constructors

NSCharacterSet
Creates an empty NSCharacterSet.

public NSCharacterSet()
Creates a character set containing characters determined by the bitmap representation aData.
public NSCharacterSet(NSData aData)

Discussion
This capability is useful for creating a character set object with data from a file or other external data source.

Creates a character set containing characters whose Unicode values are given by aRange.
public NSCharacterSet(NSRange aRange)

Discussion
aRange. locationisthe value of the first character, and aRange. lTocation + aRange. length—-1is the
value of the last. Returns an empty character set if aRange. Tengthis 0.

Creates a character set containing the characters in aString.

public NSCharacterSet(String aString)

Constructors 97
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8
NSCharacterSet

Discussion
Returns an empty character setif aStringis empty.

Static Methods

98

alphanumericCharacterSet

Returns a character set containing the characters in the categories Letters, Marks, and Numbers.
public static NSCharacterSet alphanumericCharacterSet()

Discussion
Informally, this set is the set of all characters used as basic units of alphabets, syllabaries, ideographs, and
digits.

See Also
letterCharacterSet (page 100)

decimalDigitCharacterSet (page 99)

capitalizedLetterCharacterSet
Returns a character set containing the characters in the category of Titlecase Letters.

public static NSCharacterSet capitalizedlLetterCharacterSet()

Availability
Available in Mac OS X v10.2 and later.

See Also
letterCharacterSet (page 100)

uppercaseletterCharacterSet (page 101)

characterSetWithContentsOfFile

Returns a character set read from the bitmap representation stored in the file at path, which must end with
the extension .bitmap.

public static NSCharacterSet characterSetWithContentsOfFile(String path)

Discussion

This method doesn't use filenames to check for the uniqueness of the character sets it creates. To prevent
duplication of character sets in memory, cache them and make them available through an API that checks
whether the requested set has already been loaded.

controlCharacterSet

Returns a character set containing the characters in the categories of Control or Format Characters.

Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8
NSCharacterSet

public static NSCharacterSet controlCharacterSet()

Discussion
These characters are specifically the Unicode values U+0000 to U+001F and U+007F to U+009F.

See Also
illegalCharacterSet (page 99)

decimalDigitCharacterSet

Returns a character set containing the characters in the category of Decimal Numbers.
public static NSCharacterSet decimalDigitCharacterSet()

Discussion
Informally, this set is the set of all characters used to represent the decimal values 0 through 9. These characters
include, for example, the decimal digits of the Indic scripts and Arabic.

See Also
alphanumericCharacterSet (page 98)

decomposableCharacterSet

Returns a character set containing all individual Unicode characters that can also be represented as composed
character sequences (such as for letters with accents), by the definition of “standard decomposition” in version
3.2 of the Unicode character encoding standard.

public static NSCharacterSet decomposableCharacterSet()

Discussion
These characters include compatibility characters as well as precomposed characters.

Note: This character set doesn't currently include the Hangul characters defined in version 2.0 of the Unicode
standard.

See Also
nonBaseCharacterSet (page 100)

illegalCharacterSet

Returns a character set containing values in the category of Non-Characters or that have not yet been defined
in version 3.2 of the Unicode standard.

public static NSCharacterSet illegalCharacterSet()

See Also
controlCharacterSet (page 98)

Static Methods 929
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

100

CHAPTER 8
NSCharacterSet

letterCharacterSet

Returns a character set containing the characters in the categories Letters and Marks.
public static NSCharacterSet letterCharacterSet()

Discussion
Informally, this set is the set of all characters used as letters of alphabets and ideographs.

See Also
alphanumericCharacterSet (page 98)

lTowercaseletterCharacterSet (page 100)
uppercaseletterCharacterSet (page 101)

lowercaselLetterCharacterSet

Returns a character set containing the characters in the category of Lowercase Letters.
public static NSCharacterSet TowercaseletterCharacterSet()

Discussion
Informally, this set is the set of all characters used as lowercase letters in alphabets that make case distinctions.

See Also
uppercaseletterCharacterSet (page 101)

letterCharacterSet (page 100)

nonBaseCharacterSet

Returns a character set containing the characters in the category of Marks.
public static NSCharacterSet nonBaseCharacterSet()

Discussion
This set is also defined as all legal Unicode characters with a nonspacing priority greater than 0. Informally,
this set is the set of all characters used as modifiers of base characters.

See Also
decomposableCharacterSet (page 99)

punctuationCharacterSet

Returns a character set containing the characters in the category of Punctuation.
public static NSCharacterSet punctuationCharacterSet()

Discussion
Informally, this set is the set of all nonwhitespace characters used to separate linguistic units in scripts, such
as periods, dashes, parentheses, and so on.

Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8
NSCharacterSet

symbolCharacterSet

Returns a character set containing the characters in the category of Symbols.
public static NSCharacterSet symbolCharacterSet()

Discussion
These characters include, for example, the dollar sign ($) and the plus (+) sign.

Availability
Available in Mac OS X v10.3 and later.

uppercaselLetterCharacterSet

Returns a character set containing the characters in the categories of Uppercase Letters and Titlecase Letters.
public static NSCharacterSet uppercaseletterCharacterSet()

Discussion
Informally, this set is the set of all characters used as uppercase letters in alphabets that make case distinctions.

See Also
capitalizedlLetterCharacterSet (page 98)

lowercaseletterCharacterSet (page 100)
letterCharacterSet (page 100)

whitespaceAndNewlineCharacterSet

Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009) and the
newline and nextline characters (U+000A-U+000D, U+0085).

public static NSCharacterSet whitespaceAndNewlineCharacterSet()

See Also
whitespaceCharacterSet (page 101)

whitespaceCharacterSet

Returns a character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009).
public static NSCharacterSet whitespaceCharacterSet()

Discussion
This set doesn’t contain the newline or carriage return characters.

See Also
whitespaceAndNewlineCharacterSet (page 101)

Static Methods 101
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8
NSCharacterSet

Instance Methods

102

bitmapRepresentation

Returns an NSData object encoding the receiving character set in binary format.
public NSData bitmapRepresentation()

Discussion
This format is suitable for saving to a file or otherwise transmitting or archiving.

A raw bitmap representation of a character set is a byte array of 2A16 bits (that is, 8192 bytes). The value of
the bit at position n represents the presence in the character set of the character with decimal Unicode value
n.

characterlsMember

Returns true if aCharacterisin the receiving character set, false if it isn't.

public boolean characterIsMember(char aCharacter)

characterSetBylntersectingCharacterSet

Returns a character set containing only characters that exist in both the receiver and otherSet.

public NSCharacterSet characterSetByIntersectingCharacterSet(NSCharacterSet otherSet)

characterSetBylnvertingCharacterSet

Returns a character set containing only characters that do not exist in the receiver. Inverting an immutable
character set is much more efficient than inverting a mutable character set.

public NSCharacterSet characterSetByInvertingCharacterSet()

See Also
invertCharacterSet (page 318) (NSMutableCharacterSet)

characterSetBySubtractingCharacterSet

Returns a character set containing all the characters in the receiver except for those in otherSet.

public NSCharacterSet characterSetBySubtractingCharacterSet(NSCharacterSet otherSet)

characterSetByUnioningCharacterSet

Returns a character set containing all characters that exist in either the receiver or otherSet.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8
NSCharacterSet

public NSCharacterSet characterSetByUnioningCharacterSet(NSCharacterSet otherSet)

isSupersetOfSet

Returns true if the receiving character set is a superset of theOtherSet, false ifitisn’t.
public boolean isSupersetOfSet(NSCharacterSet theOtherSet)

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 103
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 8
NSCharacterSet

104 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9

NSClassDescription

Inherits from NSObject
Package: com.apple.cocoa.foundation
Companion guides Cocoa Scripting Guide

Key-Value Coding Programming Guide

Overview

Tasks

NSClassDescription is an abstract class that provides the interface for querying the relationships and properties
of a class. Concrete subclasses of NSClassDescription provide the available attributes of objects of a particular
class and the relationships between that class and other classes. Defining these relationships between classes
allows for more intelligent and flexible manipulation of objects with key-value coding.

Method implementations for all instance methods of NSClassDescription must be provided by concrete
subclasses. NSClassDescription provides only the implementation for the class methods that maintain the
cache of registered class descriptions. Once created, you must register a class description with the
NSClassDescription method registerClassDescription (page 107).

NSScriptClassDescription, which is used to map the relationships between scriptable classes, is the only
concrete subclass of NSClassDescription provided as part of the Cocoa framework.

Constructors

NSClassDescription (page 106)
Creates an empty NSClassDescription.

Working with Class Descriptions

classDescriptionForClass (page 106)
Returns the NSClassDescription for aC7ass.

invalidateClassDescriptionCache (page 107)
Removes all NSClassDescriptions from the cache. You should rarely need to invoke this method. Use
it whenever a registered NSClassDescription might be replaced by a different version, such as when
you have loaded a new provider of NSClassDescriptions, or when you are about to remove a provider
of NSClassDescriptions.

Overview 105
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9
NSClassDescription

registerClassDescription (page 107)
Registers an NSClassDescription object for aC7ass in the NSClassDescription cache.

Attribute Keys

attributeKeys (page 107)
Overridden by subclasses to return an array of Strings containing the names of immutable values that
instances of this class contain.

Relationship Keys

inversefForRelationshipKey (page 107)
Overridden by subclasses to return the name of the inverse relationship from the relationship specified
by relationshipKey. For a given key that defines the name of the relationship from the receiver’s
class to another class, returns the name of the relationship from the other class to the receiver’s class.

toManyRelationshipKeys (page 108)
Overridden by subclasses to return the keys for the to-many relationship properties of the receiver.

toOneRelationshipKeys (page 108)
Overridden by subclasses to return the keys for the to-one relationship properties of the receiver.

Constructors

NSClassDescription

Creates an empty NSClassDescription.
public NSClassDescription()

Discussion
You should create instances of concrete subclasses instead of NSClassDescription.

Static Methods

106

classDescriptionForClass

Returns the NSClassDescription for aC7ass.
public static NSCTassDescription classDescriptionforClass(Class aClass)

Discussion

If a class description for aC7ass is not found, the method posts a
ClassDescriptionNeededForClassNotification (page 108) on behalfof aClass, allowing an observer
to register a class description. The method then checks for a class description again. Returns nu11 if a class
description is still not found.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9
NSClassDescription

invalidateClassDescriptionCache

Removes all NSClassDescriptions from the cache. You should rarely need to invoke this method. Use it
whenever a registered NSClassDescription might be replaced by a different version, such as when you have
loaded a new provider of NSClassDescriptions, or when you are about to remove a provider of
NSClassDescriptions.

public static void invalidateClassDescriptionCache()

registerClassDescription

Registers an NSClassDescription object for aC7ass in the NSClassDescription cache.

public static void registerClassDescription(NSClassDescription description, Class
aClass)

Discussion
You should rarely need to directly invoke this method.

Instance Methods

attributeKeys
Overridden by subclasses to return an array of Strings containing the names of immutable values that instances
of this class contain.

public NSArray attributeKeys()

Discussion
For example, a class description that describes Movie objects could return the attribute keys title,
dateReleased,and rating.

See Also
toManyRelationshipKeys (page 108)

toOneRelationshipKeys (page 108)

inverseForRelationshipKey

Overridden by subclasses to return the name of the inverse relationship from the relationship specified by
relationshipKey. For a given key that defines the name of the relationship from the receiver’s class to
another class, returns the name of the relationship from the other class to the receiver’s class.

public String inverseForRelationshipKey(String relationshipKey)

Discussion
For example, suppose an Employee class has a relationship named department to a Department class, and
that Department has a relationship named emp1oyees to Employee. The statement:

employee.inverseForRelationshipKey("department");

Instance Methods 107
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 9
NSClassDescription

returns the string employees.

toManyRelationshipKeys

Overridden by subclasses to return the keys for the to-many relationship properties of the receiver.
public NSArray toManyRelationshipKeys()

Discussion
To-many relationship properties contain arrays of objects.

See Also
attributeKeys (page 107)

toOneRelationshipKeys (page 108)

toOneRelationshipKeys

Overridden by subclasses to return the keys for the to-one relationship properties of the receiver.
public NSArray toOneRelationshipKeys()

Discussion
To-one relationship properties are other objects.

See Also
attributeKeys (page 107)

toManyRelationshipKeys (page 108)

Notifications

ClassDescriptionNeededForClassNotification

Posted by classDescriptionForClass (page 106) when a class description cannot be found for a class.

After the notification is processed, classDescriptionForClass (page 106) checks for a class description
again. This checking allows an observer to register class descriptions lazily. The notification is posted only
once for any given class, even if the class description remains undefined.

The notification object is the class object for which the class description is requested. This notification does
not contain a userInfo dictionary.

108 Notifications
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

NSCloneCommand

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide
Overview

Tasks

An instance of NSCloneCommand clones the specified scriptable object or objects (such as words, paragraphs,
images, and so on) and inserts them in the specified location, or the default location if no location is specified.
The cloned scriptable objects typically correspond to objects in the application, but aren’t required to. This
command corresponds to AppleScript’s Duplicate command.

NSCloneCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Clone
command through key-value coding. Most applications don’t need to subclass NSCloneCommand or invoke
its methods.

When an instance of NSCloneCommand is executed, it clones the specified objects by sending them
-copyWithZone: messages.

Constructors

NSCloneCommand (page 110)
Returns an NSCloneCommand with no data.

Working with Specifiers

keySpecifier (page 110)
Returns a specifier for the object or objects to be cloned.
setReceiversSpecifier (page 110)

Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers
of the Clone command.

Overview 109
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 10

NSCloneCommand

Constructors

NSCloneCommand

Returns an NSCloneCommand with no data.
public NSCloneCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSCloneCommand with the command description supplied by
aCommandDescription.

public NSCloneCommand(NSScriptCommandDescription aCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

110

keySpecifier

Returns a specifier for the object or objects to be cloned.
public NSScriptObjectSpecifier keySpecifier()

Discussion

For example, the specifier may indicate that a document’s third rectangle should be cloned. The returned
specifier is valid only in the context of the NSCloneCommand; for example, if you send the specifier a
containerSpecifier (page 544) message, the resultis null.

setReceiversSpecifier

Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers of the
Clone command.

public void setReceiversSpecifier(NSScriptObjectSpecifier receiversRef)

Discussion

This method overrides setReceiversSpecifier (page 525) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRefis a specifier for the third
rectangle of the first document, the receiver specifieris the first document while the key
specifieris the third rectangle.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

NSCloseCommand

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide
Overview

Tasks

An instance of NSCloseCommand closes the specified scriptable object or objects—typically a document or
window (and its associated document, if any). The command may optionally specify a location to save in and
how to handle modified documents (by automatically saving changes, not saving them, or asking the user).

NSCloseCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Close
command through key-value coding. Most applications don't need to subclass NSCloseCommand or call its
methods.

Constructors

NSCloseCommand (page 111)
Returns an NSCloseCommand with no data.

Accessing Save Options

saveOptions (page 112)
Returns a constant indicating how to deal with closing any modified documents.

Constructors

NSCloseCommand

Returns an NSCloseCommand with no data.

public NSCloseCommand()

Overview m
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 11

NSCloseCommand

Discussion
Do not use this constructor.

Initializes an instance of NSCloseCommand with the command description supplied by
aScriptCommandDescription.

public NSCloseCommand(NSScriptCommandDescription aScriptCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional

command.

Instance Methods

saveOptions

Returns a constant indicating how to deal with closing any modified documents.
public int saveOptions()

Discussion
The default value returned is SaveOptionsAsk. See “Constants” (page 112) for a list of possible return values.

Constants

112

The saveOptions (page 112) method returns one of the following constants to indicate how to deal with
saving any modified documents:

Constant Description

SaveOptionsYes | Indicates a modified document should be saved on closing without asking the user.

SaveOptionsNo | Indicates a modified document should not be saved on closing.

SaveOptionsAsk | Indicates the user should be asked before saving any modified documents on closing.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12

NSCoder

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Archives and Serializations Programming Guide for Cocoa
Overview

Tasks

The NSCoder abstract class declares the interface used by concrete subclasses to transfer objects and other
data items between memory and some other format. This capability provides the basis for archiving (where
objects and data items are stored on disk) and distribution (where objects and data items are copied between
different processes or threads). The concrete subclasses provided by Foundation for these purposes are
NSArchiver, NSUnarchiver, NSKeyedArchiver, and NSKeyedUnarchiver. Concrete subclasses of NSCoder are
referred to in general as coder classes, and instances of these classes as coder objects (or simply coders). A
coder object that can only encode values is referred to as an encoder object, and one that can only decode
values as a decoder object.

NSCoder operates on objects, scalars, arrays, structures, and strings. It does not handle types whose
implementation varies across platforms. A coder object stores object type information along with the data,
so an object decoded from a stream of bytes is normally of the same class as the object that was originally
encoded into the stream.

Constructors

NSCoder (page 116)
Creates an empty NSCoder.

Testing Coder

allowsKeyedCoding (page 116)

Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.
containsValueForKey (page 116)

Returns a Boolean value that indicates whether an encoded value is available for a string.

Overview 113
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12
NSCoder

Encoding Data

encodeBoolForKey (page 121)
Encodes boolv and associates it with the string key.

encodeByte (page 121)
Encodes aByte.

encodeByteForKey (page 121)
Encodes bytev and associates it with the string key.

encodeChar (page 122)
Encodes aChar.

encodeCharForKey (page 122)
Encodes charv and associates it with the string key.

encodeConditionalObjectForKey (page 122)
Conditionally encodes a reference to 0bj v and associates it with the string key only if 0bjv has been
unconditionally encoded with encodeObjectForKey (page 125).

encodeDataObject (page 122)
Encodes the NSData object data.

encodeDoubTe (page 123)
Encodes aDouble.

encodeDoubleForKey (page 123)
Encodes realv and associates it with the string key.

encodeFloat (page 123)
Encodes aFToat.

encodeFloatForKey (page 123)
Encodes realv and associates it with the string key.

encodelntForKey (page 124)
Encodes 7ntv and associates it with the string key.

encodelnt (page 124)
Encodes anint.

encodelong (page 124)
Encodes aLong.
encodelongForKey (page 124)
Encodes 7ongv and associates it with the string key.

encodeObject (page 125)
Encodes object.

encodeObjectForKey (page 125)
Encodes the object objv and associates it with the string key.

encodeShort (page 125)
Encodes aShort.

encodeShortForKey (page 125)
Encodes shortvand associates it with the string key.

14 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12
NSCoder

Decoding Data

decodeBoolForKey (page 117)
Decodes and returns a boolean value that was previously encoded with encodeBoolForKey (page
121) and associated with the string key.

decodeByte (page 117)
Decodes and returns a by te value that was previously encoded with encodeByte (page 121).

decodeByteForKey (page 117)
Decodes and returns a by te value that was previously encoded with encodeByteForKey (page 121)
and associated with the string key.

decodeChar (page 117)
Decodes and returns a char value that was previously encoded with encodeChar (page 122).

decodeCharForKey (page 118)
Decodes and returns a char value that was previously encoded with encodeCharForKey (page 122)
and associated with the string key.

decodeDatalbject (page 118)
Decodes and returns an NSData object that was previously encoded with encodeDataObject (page
122). Subclasses must override this method.

decodeDoubTe (page 118)
Decodes and returns a doub1e value that was previously encoded with encodeDouble (page 123).

decodeDoubleForKey (page 118)
Decodes and returns a doub1e value that was previously encoded with either
encodeFloatForKey (page 123)orencodeDoubleForKey (page 123) and associated with the string
key.

decodeFloat (page 119)
Decodes and returns a f1oat value that was previously encoded with encodeFloat (page 123).

decodeFloatForKey (page 119)
Decodes and returns a f1oat value that was previously encoded with encodeFloatForKey (page
123) or encodeDoubleForKey (page 123) and associated with the string key.

decodelnt (page 119)
Decodes and returns an int value that was previously encoded with encodeInt (page 124).

decodelntForKey (page 119)
Decodes and returns an int value that was previously encoded with encodeIntForKey (page 124),
encodeShortForKey (page 125),or encodelLongForKey (page 124) and associated with the string
key.

decodelong (page 119)
Decodes and returns a 1ong value that was previously encoded with encodelong (page 124).

decodelongForKey (page 120)
Decodes and returns a 1ong value that was previously encoded with encodeShortForKey (page
125),encodeIntForKey (page 124), or encodelongForKey (page 124) and associated with the string
key.

decodeObject (page 120)
Decodes an object that was previously encoded with any of the encode. . . methods.

decodeObjectForKey (page 120)
Decodes and returns an object that was previously encoded with encodeObjectForKey (page 125)
orencodeConditionalObjectForKey (page 122) and associated with the string key.

Tasks 115
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12
NSCoder

decodeShort (page 120)
Decodes and returns a short value that was previously encoded with encodeShort (page 125).

decodeShortForKey (page 121)
Decodes and returns a short value that was previously encoded with encodeShortForKey (page
125),encodeIntForKey (page 124),or encodelongForKey (page 124) and associated with the string
key.

Getting Version Information

systemVersion (page 126)
During encoding, this method should return the system version currently in effect.

versionForClassName (page 126)
Returns the version in effect for the class named c7assName or NSArray . NotFound if no class named
className exists.

Constructors

NSCoder

Creates an empty NSCoder.
public NSCoder()

Discussion
NSCoder is an abstract class, so use one of the concrete subclasses instead.

Instance Methods

116

allowsKeyedCoding
Returns a Boolean value that indicates whether the receiver supports keyed coding of objects.

public boolean allowsKeyedCoding()

Discussion
The default implementation returns false. Concrete subclasses that support keyed coding, such as
NSKeyedArchiver, need to override this method to return true.

Availability
Available in Mac OS X v10.2 and later.

containsValueForKey

Returns a Boolean value that indicates whether an encoded value is available for a string.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12
NSCoder

public boolean containsValueForKey(String key)

Discussion
The string is passed as key. Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeBoolForKey

Decodes and returns a boolean value that was previously encoded with encodeBoolForKey (page 121) and
associated with the string key.

public boolean decodeBoolForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeByte

Decodes and returns a by te value that was previously encoded with encodeByte (page 121).
public byte decodeByte()

Discussion
Subclasses must override this method.

decodeByteForKey

Decodes and returns a by te value that was previously encoded with encodeByteForKey (page 121) and
associated with the string key.

public byte decodeByteForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeChar

Decodes and returns a char value that was previously encoded with encodeChar (page 122).
public char decodeChar()

Discussion
Subclasses must override this method.

Instance Methods 17
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

118

CHAPTER 12
NSCoder

decodeCharForKey

Decodes and returns a char value that was previously encoded with encodeCharForKey (page 122) and
associated with the string key.

public char decodeCharForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeDataObject

Decodes and returns an NSData object that was previously encoded with encodeDataObject (page 122).
Subclasses must override this method.

public NSData decodeDataObject()

Discussion

The implementation of your overriding method must match the implementation of your
encodeDataObject (page 122) method. For example, a typical encodeDataObject (page 122) method
encodes the number of bytes of data followed by the bytes themselves. Your override of this method must
read the number of bytes, create an NSData object of the appropriate size, and decode the bytes into the
new NSData object.

decodeDouble

Decodes and returns a doub1e value that was previously encoded with encodeDouble (page 123).
public double decodeDouble()

Discussion
Subclasses must override this method.

decodeDoubleForKey

Decodes and returns a doub1e value that was previously encoded with either encodeFloatForKey (page
123) or encodeDoubleForKey (page 123) and associated with the string key.

public double decodeDoubleForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12
NSCoder

decodeFloat

Decodes and returns a f1oat value that was previously encoded with encodeFloat (page 123).
public float decodeFloat()

Discussion
Subclasses must override this method.

decodeFloatForKey

Decodes and returns a f1oat value that was previously encoded with encodeFloatForKey (page 123) or
encodeDoubleForKey (page 123) and associated with the string key.

public float decodeFloatForKey(String key)

Discussion

If the value was encoded as a doub1e, the extra precision is lost. Also, if the encoded real value does not fit
intoa float, the method throws a RangeException. Subclasses must override this method if they perform
keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeint

Decodes and returns an int value that was previously encoded with encodeInt (page 124).
public int decodelnt()

Discussion
Subclasses must override this method.

decodelntForKey

Decodes and returns an int value that was previously encoded with encodeIntForKey (page 124),
encodeShortForKey (page 125), or encodelongForKey (page 124) and associated with the string key.

pubTic int decodelntForKey(String key);

Discussion
If the encoded integer does not fit into the default integer size, the method throws a RangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodelong

Decodes and returns a 1ong value that was previously encoded with encodelong (page 124).

Instance Methods 19
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

120

CHAPTER 12
NSCoder

public Tong decodelong()

Discussion
Subclasses must override this method.

decodelLongForKey

Decodes and returns a 1ong value that was previously encoded with encodeShortForKey (page 125),
encodeIntForKey (page 124), or encodelongForKey (page 124) and associated with the string key.

public long decodelLongForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeObject

Decodes an object that was previously encoded with any of the encode. . . methods.
public Object decodeObject()

Discussion
Subclasses may need to override this method.

See Also
encodeObject (page 125)

decodeObjectForKey

Decodes and returns an object that was previously encoded with encodeObjectForKey (page 125) or
encodeConditionalObjectForKey (page 122) and associated with the string key.

public Object decodeObjectForKey(String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

decodeShort

Decodes and returns a short value that was previously encoded with encodeShort (page 125).
public short decodeShort()

Discussion
Subclasses must override this method.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12
NSCoder

decodeShortForKey

Decodes and returns a short value that was previously encoded with encodeShortForKey (page 125),
encodelntForKey (page 124), or encodelongForKey (page 124) and associated with the string key.

public short decodeShortForKey(String key)

Discussion
If the encoded integer does not fit into the default integer size, the method throws a RangeException.
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

encodeBoolForKey

Encodes boolv and associates it with the string key.
public void encodeBoolForKey(boolean boolv, String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeBoolForKey (page 117)

encodeByte
Encodes aByte.

public void encodeByte(byte aByte)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeByte (page 117) message.

encodeByteForKey

Encodes bytev and associates it with the string key.
public void encodeByteForKey(byte bytev, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeByteForKey (page 117)

Instance Methods 121
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

122

CHAPTER 12
NSCoder

encodeChar

Encodes aChar.
public void encodeChar(char aChar)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeChar (page 117) message.

encodeCharForKey

Encodes charv and associates it with the string key.
public void encodeCharForKey(char charv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeCharForKey (page 118)

encodeConditionalObjectForKey

Conditionally encodes a reference to 0bj v and associates it with the string key only if 0bjv has been
unconditionally encoded with encodeObjectForKey (page 125).

public void encodeConditionalObjectForKey(Object objv, String key)

Discussion
Subclasses must override this method if they support keyed coding.

The encoded object is decoded with the decodeObjectForKey (page 120) method. If 0bjv was never
encoded unconditionally, decodeObjectForKey (page 120) returns null in place of objv.

Availability
Available in Mac OS X v10.2 and later.

encodeDataObject
Encodes the NSData object data.

public void encodeDataObject(NSData data)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeDataObject (page 118) message.

See Also
encodeObject (page 125)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12
NSCoder

encodeDouble

Encodes aDouble.
public void encodeDouble(double aDouble)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeDouble (page 118) message.

encodeDoubleForKey

Encodes realv and associates it with the string key.
public void encodeDoubleForKey(double realv, String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeDoubleForKey (page 118)

decodeFloatForKey (page 119)

encodeFloat

Encodes afloat.
public void encodeFloat(float aFloat)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeFloat (page 119) message.

encodeFloatForKey

Encodes realvand associates it with the string key.
public void encodeFloatForKey(float realv, String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeFloatForKey (page 119)

Instance Methods 123
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

124

CHAPTER 12
NSCoder

decodeDoubleForKey (page 118)

encodelnt

Encodes anint.
public void encodelnt(int anint)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeInt (page 119) message.

encodelntForKey

Encodes intv and associates it with the string key.
public void encodelntForKey(int intv, String key)

Discussion
Subclasses must override this method if they perform keyed coding.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodelntForKey (page 119)

decodelongForKey (page 120)
decodeShortForKey (page 121)

encodelong

Encodes aLong.
public void encodelong(long along)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodelong (page 119) message.

encodelLongForKey

Encodes 7Tongv and associates it with the string key.
public void encodelongForKey(long JTongv, String key)

Availability
Available in Mac OS X v10.2 and later.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12
NSCoder

See Also
decodelongForKey (page 120)

decodelIntForKey (page 119)
decodeShortForKey (page 121)

encodeObject

Encodes object.
public void encodeObject(0Object object)

Discussion
Subclasses must override this method. For example, NSArchiver detects duplicate objects and encodes a
reference to the original object rather than encode the same object twice.

This method must be matched by a subsequent decodeObject (page 120) message.

encodeObjectForKey

Encodes the object objv and associates it with the string key.
public void encodeObjectForKey(Object objv, String key)

Discussion

Subclasses must override this method to identify multiple encodings of objv and encode a reference to
objvinstead. For example, NSKeyedArchiver detects duplicate objects and encodes a reference to the original
object rather than encode the same object twice.

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeObjectForKey (page 120)

encodeShort

Encodes aShort.
public void encodeShort(short aShort)

Discussion
Subclasses must override this method.

This method must be matched by a subsequent decodeShort (page 120) message.

encodeShortForKey

Encodes shortvand associates it with the string key.

public void encodeShortForKey(short shortv, String key)

Instance Methods 125
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 12
NSCoder

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeShortForKey (page 121)

decodelongForKey (page 120)
decodelntForKey (page 119)

systemVersion

During encoding, this method should return the system version currently in effect.
public int systemVersion()

Discussion
During decoding, this method should return the version that was in effect when the data was encoded.

By default, this method returns the current system version, which is appropriate for encoding but not for
decoding. Subclasses that implement decoding must override this method to return the system version of
the data being decoded.

versionForClassName

Returns the version in effect for the class named c7assName or NSArray.NotFound if no class named
className exists.

public abstract int versionForClassName(String className)

Discussion
When encoding, this method returns the current version number of the class. When decoding, this method
returns the version number of the class being decoded. Subclasses must override this method.

Constants

The following exceptions may be thrown when an error is encountered:

Constant Description

InconsistentArchiveException Archive contains invalid data and may be corrupted

InvalidArchiveOperationException | Attempted to perform an illegal action on a keyed archive, such
as trying to encode a value after finished encoding

InvalidUnarchive- Attempted to perform an illegal action on a keyed archive, such
OperationException as trying to decode a f1oat value as a boolean
126 Constants

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

NSCountCommand

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide
Overview

An instance of NSCountCommand counts the number of objects of a specified class in the specified object
container (such as the number of words in a paragraph or document) and returns the result.

NSCountCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Count
command through key-value coding. Most applications don't need to subclass NSCountCommand or call its
methods.

Tasks

Constructors

NSCountCommand (page 127)
Returns an NSCountCommand with no data.

Constructors

NSCountCommand

Returns an NSCountCommand with no data.
public NSCountCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSCountCommand with the command description supplied by
aScriptCommandDescription.

public NSCountCommand(NSScriptCommandDescription aScriptCommandDescription)

Overview 127
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 13

NSCountCommand

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

128 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

NSCreateCommand

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide
Overview

Tasks

An instance of NSCreateCommand creates the specified scriptable object (such as a document), optionally
supplying the new object with the specified attributes. This command corresponds to AppleScript’s Make
command.

NSCreateCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSCreateCommand or invoke its methods.

If an NSCreateCommand with no argument corresponding to the at parameter is executed (for example,
tell application "Mail" to make new mailbox with properties {name:"testFolder"}),
and the receiver of the command (not necessarily the application object) has a to-many relationship to objects
of the class to be instantiated, and the class description for the receiving class returns false when sent an
islLocationToRequiredToCreateForKey:toManyRelationshipKey message, the NSCreateCommand
creates a new object and sends the receiver an insertValueAtIndexInPropertyWithKey (page 696)
message to place the new object in the container. This is part of Cocoa’s scripting support for inserting
newly-created objects into containers without explicitly specifying a location.

Constructors

NSCreateCommand (page 130)
Returns an NSCreateCommand with no data.

Getting Information About a Create Command

createClassDescription (page 130)
Returns the class description for the class that is to be created.

resolvedKeyDictionary (page 130)

Returns a dictionary that contains the properties that were specified in the Make Apple event script
command that has been converted to this NSCreateCommand.

Overview 129
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 14

NSCreateCommand

Constructors

NSCreateCommand

Returns an NSCreateCommand with no data.
public NSCreateCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSCreateCommand with the command description supplied by
aScriptCommandDescription.

public NSCreateCommand(NSScriptCommandDescription aScriptCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

createClassDescription

Returns the class description for the class that is to be created.

public NSScriptClassDescription createClassDescription()

resolvedKeyDictionary

Returns a dictionary that contains the properties that were specified in the Make Apple event script command
that has been converted to this NSCreateCommand.

public NSDictionary resolvedKeyDictionary()

Discussion

The keys in the dictionary are the names of properties (attributes or relationships, in the script suite) that

have been specified for the command, and the corresponding values in the dictionary are the values that

those properties should take. The required and optional arguments for the Create command are specified
in the core suite definition, NSCoreSuite.scriptSuite.

130 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15

NSData

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guides Binary Data Programming Guide for Cocoa

Property List Programming Guide

Class at a Glance

An NSData object stores immutable data in the form of bytes. The size of the data is subject to a 2GB limit.

Principal Attributes

= A count of the number of bytes in the data object

m The sequence of bytes contained in the data object

NSData (page 133)
Creates a data object.

Commonly Used Methods

length (page 134)
Returns the number of bytes contained by the data object.

Primitive Methods

Tength (page 134)
Returns the number of bytes contained by the data object.

Class at a Glance 131
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15
NSData

Overview

Tasks

132

NSData and its subclass NSMutableData provide data objects, object-oriented wrappers for byte buffers.
Data objects let simple allocated buffers (that is, data with no embedded pointers) take on the behavior of
Foundation objects. NSData creates static data objects, and NSMutableData creates dynamic data objects.
NSData and NSMutableData are typically used for data storage and are also useful in Distributed Objects
applications, where data contained in data objects can be copied or moved between applications.

The mutable subclass of NSData is NSMutableData (page 321).

Constructors

NSData (page 133)

Creating Data Objects

dataWithContentsOfMappedFile (page 133)
Creates and returns a data object from the mapped file specified by 77 7e.

Accessing Data

bytes (page 134)
Returns a byte array of 7ength bytes from the receiver’s contents starting at start.

subdataWithRange (page 134)
Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by
range.

Testing Data

isEqualToData (page 134)
Compares the receiving data object to otherData.

Tength (page 134)
Returns the number of bytes contained in the receiver.

Storing Data

writeToURL (page 135)
Writes the bytes in the receiver to the location specified by aURL.

Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15
NSData

Constructors

NSData
public NSData()

Discussion
Creates an empty data object. This method is declared primarily for the use of mutable subclasses of NSData.

public NSData(bytel[] bytes, int start, int Tength)

Discussion
Creates a data object with 7Tength bytes from the buffer by tes, starting at start.

public NSData(bytel[] bytes)

Discussion
Creates a data object with all the data in the buffer by tes.

public NSData(java.io.File aFile)

Discussion
Creates a data object with the data from the file specified by afi7e.

public NSData(java.net.URL aURL)

Discussion
Creates a data object with the data from the location specified by aURL.

public NSData(NSData aData)

Discussion
Creates a data object containing the contents of another data object, aData.

public NSData(String aString)

Discussion
Deprecated. To create an NSData from a property list use propertylistFromString (page 461); to initialize
an NSData from a file, pass eithera java.io.fileora java.net.url object.

Static Methods

dataWithContentsOfMappedFile

Creates and returns a data object from the mapped file specified by 717 7e.
public static NSData dataWithContentsOfMappedFile(java.io.File file)

Discussion
Returns null if the data object could not be creates. Because of file mapping restrictions, this method should
only be used if the file is guaranteed to exist for the duration of the data object’s existence.

Constructors 133
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15
NSData

This methods assumes mapped files are available from the underlying operating system. A mapped file uses
virtual memory techniques to avoid copying pages of the file into memory until they are actually needed.

Instance Methods

134

bytes

Returns a byte array of 7ength bytes from the receiver’s contents starting at start.

public bytel[] bytes(int start, int Tength)

isEqualToData

Compares the receiving data object to otherData.
public boolean isEqualToData(NSData otherData)

Discussion

If the contents of otherData are equal to the contents of the receiver, this method returns true. If not, it
returns false. Two data objects are equal if they hold the same number of bytes, and if the bytes at the
same position in the objects are the same.

length

Returns the number of bytes contained in the receiver.

public int Tength()

subdataWithRange

Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by range.
public NSData subdataWithRange(NSRange range)

Discussion
If range isn't within the receiver’s range of bytes, a RangeException is thrown.

For example, the following code excerpt initializes a data object, data?2, to contain a subrange of datal:
String myString = "ABCDEFG";

range = new NSRange(2,4);

NSData datal = new NSData(myString.getBytes());

NSData data2 = datal.subdataWithRange(range);

The result of this excerpt is that data2 contains “CDEF”

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15
NSData

writeToURL

Writes the bytes in the receiver to the location specified by aURL.

public boolean writeToURL(java.net.URL aURL, boolean atomically)

Discussion

If atomicallyis true, the data is written to a backup location, and then, assuming no errors occur, the
backup location is renamed to the specified name. Otherwise, the data is written directly to the specified
location. atomicallyisignored if aURL is not of a type the supports atomic writes.

This method returns true if the operation succeeds; otherwise, it returns false.

Instance Methods 135
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 15
NSData

136 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16

NSDate

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guides Date and Time Programming Guide for Cocoa

Property List Programming Guide

Class at a Glance

An NSDate object stores a date and time that can be compared to other dates and times.

Principal Attributes

= Seconds since absolute reference date (1 January 2001, GMT)

Commonly Used Methods

earlierDate (page 142)
Compares the receiver to the argument and returns the earlier of the two.

isEqualToDate (page 143)
Returns true if the receiver and the argument are equal.
laterDate (page 143)
Compares the receiver to the argument and returns the later of the two.

timelntervalSinceNow (page 144)
Returns the number of seconds difference between the receiver and the current date and time.

Primitive Methods

timeIntervalSinceReferenceDate (page 144)

Class at a Glance 137
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16
NSDate

Overview

138

NSDate objects represent a single point in time. NSDate declares the programmatic interface for specific and
relative time values.

The objects you create using NSDate are referred to as date objects. They are immutable objects.

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates,
computing intervals, and similar functionality. NSDate presents a programmatic interface through which
suitable date objects are requested and returned. Date objects returned from NSDate are lightweight and
immutable since they represent an invariant point in time. This class is designed to provide the foundation
for arbitrary calendrical representations. Its subclass NSGregorianDate offers date objects that are suitable
for representing dates according to western calendrical systems.

NSDate’s sole primitive method, timeIntervalSinceReferenceDate (page 144), provides the basis for all
the other methods in the NSDate interface. This method returns a time value relative to an absolute reference
date.

Subclassing Notes

The major reason for subclassing NSDate is to create a class that expresses a calendrical system other than
the western, Gregorian calendar (for which Cocoa provides the NSCalendarDate class). But you could also
require a custom NSDate class for other reasons, such as to get a date and time value that provides a finer
temporal granularity.

Methods to Override

If you want to subclass NSDate to obtain behavior different than that provided by the private or public
subclasses, you must do these things:

m Declare a suitable instance variable to hold the date and time value (relative to an absolute reference
date).

m Overridethe timelntervalSinceReferenceDate (page 144) instance method to provide the correct
date and time value based on your instance variable.

If you are creating a subclass that represents a calendrical system, you must also define methods that partition
past and future periods into the units of this calendar. See the NSCalendarDate class for examples of such
methods.

Because the NSDate class adopts the NSCopying and NSCoding protocols, your subclass must also implement
all of the methods in these protocols.

Special Considerations

Your subclass may use a different reference date than the absolute reference date used by NSDate (the first
instance of 1 January 2001, GMT). If it does, it must still use the absolute reference date in its implementations
of the method timelntervalSinceReferenceDate (page 144).That is, the reference date referred to in

Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Tasks

CHAPTER 16
NSDate

the titles of these methods is the absolute reference date. If you do not use the absolute reference date in
these methods, comparisons between NSDate objects of your subclass and NSDate objects of a private
subclass will not work.

Constructors

NSDate (page 140)
Creates an NSDate set to the current date and time.

Creating an NSDate Instance

distantFuture (page 141)
Creates and returns an object representing a date in the distant future (in terms of centuries).

distantPast (page 141)
Creates and returns an object representing a date in the distant past (in terms of centuries).
dateByAddingTimelInterval (page 142)

Returns an NSDate object that is set to a specified number of seconds, seconds, relative to the
receiver.

Comparing Dates

isEqualToDate (page 143)
Returns true if the two objects compared are NSDate objects and are exactly equal to each other,
false if one of the objects is not of the NSDate class or their date and time values differ.
earlierDate (page 142)
Compares the receiver date to anotherDate,using timelntervalSinceDate (page 144), and returns
the earlier of the two.
laterDate (page 143)
Compares the receiver to anotherDate, using timelntervalSinceDate (page 144), and returns
the later of the two.
compare (page 142)
Compares the receiving date to anotherDate, using timeIntervalSinceDate (page 144), and
returns a value of type int.
equals (page 143)
Returns true if anObject is an instance of NSDate and satisfies isEqualToDate (page 143).
hashCode (page 143)
Returns a hash value for the receiver.

Tasks 139
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16
NSDate

Getting Time Intervals

timelIntervalSinceDate (page 144)
Returns the interval between the receiver and anotherDate.

timelntervalSinceNow (page 144)
Returns the interval between the receiver and the current date and time.

currentTimelntervalSinceReferenceDate (page 141)

Returns the interval between the system’s absolute reference date (the first instant of 1 January 2001,
GMT) and the current date and time

timelntervalSinceReferenceDate (page 144)

Returns the interval between the receiver and the system's absolute reference date, 1 January 2001,
GMT.

Representing Dates as Strings

toString (page 144)
Returns a string representation of the receiver.

Working with Milliseconds

millisecondsToTimelInterval (page 141)
Converts atime span, mi117seconds, measured in milliseconds, to a time interval, which is in seconds.

timelIntervalToMilliseconds (page 142)
Converts a time interval, seconds, which is in seconds, to milliseconds.

Constructors

NSDate

Creates an NSDate set to the current date and time.

public NSDate()

Creates an NSDate relative to the absolute reference date (the first instant of 1 January 2001, GMT) by the
specified number of seconds (plus or minus).

public NSDate(double seconds)
Creates an NSDate relative to refDate by a specified number of seconds (plus or minus).

public NSDate(double seconds, NSDate refDate)

140 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16
NSDate

Static Methods

currentTimelntervalSinceReferenceDate

Returns the interval between the system’s absolute reference date (the first instant of 1 January 2001, GMT)
and the current date and time

public static double currentTimelntervalSinceReferenceDate()

Discussion

See Also
timelIntervalSinceReferenceDate (page 144)

timeIntervalSinceDate (page 144)
timelntervalSinceNow (page 144)

distantFuture

Creates and returns an object representing a date in the distant future (in terms of centuries).
public static Object distantFuture()

Discussion

You can pass this value when an NSDate is required to have the date argument essentially ignored. For
example, the NSWindow method nextEventMatchingMask returns null if an event specified in the event
mask does not happen before the specified date. You can use the object returned by distantFuture as
the date argument to wait indefinitely for the event to occur.

See Also
distantPast (page 141)

distantPast

Creates and returns an object representing a date in the distant past (in terms of centuries).
public static Object distantPast()

Discussion
You can use this object in your code as a control date, a guaranteed temporal boundary.

See Also
distantFuture (page 141)

millisecondsToTimelnterval

Converts a time span, mi777seconds, measured in milliseconds, to a time interval, which is in seconds.

public static double millisecondsToTimelnterval(long milliseconds)

Static Methods M
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16
NSDate

timelntervalToMilliseconds

Converts a time interval, seconds, which is in seconds, to milliseconds.

public static long timelntervalToMilliseconds(double seconds)

Instance Methods

142

compare
Compares the receiving date to anotherDate, using timelntervalSinceDate (page 144), and returns a
value of type int.

public int compare(NSDate anotherDate)

Discussion

If the two dates are exactly equal to each other, this method returns OrderedSame. If the receiving object
in the comparison is more recent than anotherDate, the method returns OrderedDescending. If the
receiving object is older, this method returns OrderedAscending.

This method detects subsecond differences between dates. If you want to compare dates with a less fine
granularity, use timeIntervalSinceDate (page 144) to compare the two dates or use NSGregorianDate
objects instead.

See Also
earlierDate (page 142)

laterDate (page 143)

dateByAddingTimelnterval

Returns an NSDate object that is set to a specified number of seconds, seconds, relative to the receiver.
public NSDate dateByAddingTimelnterval(double seconds)

Discussion
Use a negative value for seconds to have the returned object specify a date before the receiver. The date
returned might have a representation different from the receiver’s.

See Also
timelntervalSinceDate (page 144)

earlierDate

Compares the receiver date to anotherDate, using timelIntervalSinceDate (page 144), and returns the
earlier of the two.

public NSDate earlierDate(NSDate anotherDate)

See Also
compare (page 142)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16
NSDate

laterDate (page 143)

equals

Returns true if anObject is an instance of NSDate and satisfies isEqualToDate (page 143).
public boolean equals(0Object anObject)

Discussion
Returns false otherwise.

hashCode

Returns a hash value for the receiver.
public int hashCode()

Discussion
The hash value is the integer value of the time interval returned from
timelntervalSinceReferenceDate (page 144).

isEqualToDate

Returns true if the two objects compared are NSDate objects and are exactly equal to each other, false if
one of the objects is not of the NSDate class or their date and time values differ.

public boolean isEqualToDate(NSDate anotherDate)

Discussion

This method detects subsecond differences between dates. If you want to compare dates with a less fine
granularity, eitheruse timeIntervalSinceDate (page 144) to compare the two dates or use NSGregorianDate
objects instead.

See Also
compare (page 142)

earlierDate (page 142)
laterDate (page 143)

laterDate
Compares the receiver to anotherDate, using timeIntervalSinceDate (page 144), and returns the later
of the two.

public NSDate TaterDate(NSDate anotherDate)

See Also
compare (page 142)

earlierDate (page 142)

Instance Methods 143
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16
NSDate

timelntervalSinceDate

Returns the interval between the receiver and anotherDate.
public double timelntervalSinceDate(NSDate anotherDate)

Discussion
If the receiver is earlier than anotherDate, the return value is negative.

See Also
timelntervalSinceNow (page 144)

currentTimeIntervalSinceReferenceDate (page 141)

timelntervalSinceNow

Returns the interval between the receiver and the current date and time.
public double timelntervalSinceNow()

Discussion
If the receiver is earlier than the current date and time, the return value is negative.

See Also
timelntervalSinceDate (page 144)

currentTimeIntervalSinceReferenceDate (page 141)

timelntervalSinceReferenceDate

Returns the interval between the receiver and the system’s absolute reference date, 1 January 2001, GMT.
public double timelntervalSinceReferenceDate()

Discussion
If the receiver is earlier than the absolute reference date, the return value is negative.

This method is the primitive method for NSDate. If you subclass NSDate, you must override this method with
your own implementation for it.

See Also
timelntervalSinceDate (page 144)

timelntervalSinceNow (page 144)
currentTimeIntervalSinceReferenceDate (page 141)

toString

Returns a string representation of the receiver.

public String toString()

144 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 16
NSDate

Constants

NSDate provides the following constants as a convenience:

Constant Type Description
DateFor1970 NSDate | Date object for 1 January 1970
TimelntervalSincel970 | double | Seconds from 1 January 1970 to reference date, 1 January 2001

Constants

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

145

CHAPTER 16
NSDate

146 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17

NSDecimalMappingBehavior

Inherits from Object

Package: com.apple.cocoa.foundation

Companion guide Number and Value Programming Topics for Cocoa
Overview

Tasks

The NSDecimalMappingBehavior class controls mapping behavior (rounding mode and not-a-number
treatment) used for converting between the Objective-C class NSDecimalNumber and the Java class
java.math.BigDecimal. The mapping behavior is automatically invoked when a Java object invokes an
Objective-C method that takes (or returns) an NSDecimalNumber value; the Java object sends and receives
the value in the form of a java.math.BigDecimal object.

Modifying Behavior

defaultRoundingMode (page 148)
Returns the way arithmetic methods round off.

setDefaultRoundingMode (page 148)
Sets the way arithmetic methods round off to roundingMode.

Error Handling

getNotANumberValue (page 148)
Returns a value that specifies no number.

setNotANumberValue (page 148)

Sets a value that specifies no number.
setShouldRaiseForNotANumberArgument (page 148)

Sets whether an exception is thrown when NaN is passed to a method.
shouldRaiseForNotANumberArgument (page 149)

Returns whether an exception is thrown when NaN is passed to a method.

Overview 147
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17
NSDecimalMappingBehavior

Static Methods

148

defaultRoundingMode

Returns the way arithmetic methods round off.
public static int defaultRoundingMode()

Discussion
Possible values are described in “Constants” (page 149).

getNotANumberValue

Returns a value that specifies no number.
public static java.math.BigDecimal getNotANumberValue()

Discussion
Any arithmetic method receiving this value as an argument returns this value.

This value can be a useful way of handling nonnumeric data in an input file. It can also be a useful response
to calculation errors.

setDefaultRoundingMode

Sets the way arithmetic methods round off to roundingMode.
public static void setDefaultRoundingMode(int roundingMode)

Discussion
Possible values for roundingMode are described in “Constants” (page 149).

setNotANumberValue

Sets a value that specifies no number.
public static void setNotANumberValue(java.math.BigDecimal aBigDecimal)

Discussion
Any arithmetic method receiving this value as an argument returns this value.

This value can be a useful way of handling nonnumeric data in an input file. It can also be a useful response
to calculation errors.

setShouldRaiseForNotANumberArgument

Sets whether an exception is thrown when NaN is passed to a method.

public static void setShouldRaiseForNotANumberArgument(boolean flag)

Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17
NSDecimalMappingBehavior

Discussion
If flagistrue,an I1legalArgumentException isthrown.If flagis false, the not-a-number value is
returned and a NotANumberConversionNotification (page 150) is posted. Default is false.

See Also
shouldRaiseForNotANumberArgument (page 149)

shouldRaiseForNotANumberArgument

Returns whether an exception is thrown when NaN is passed to a method.
public static boolean shouldRaiseForNotANumberArgument()

Discussion
Defaultis false.

See Also
setShouldRaiseForNotANumberArgument (page 148)

Constants

The following constants are provided by NSDecimalMappingBehavior:

Constant Description

RoundBankers | Methods round to the closest possible return value. When they are caught halfway
between two possibilities, they return the possibility whose last digit is even. In practice,
this means that, over the long run, numbers will be rounded up as often as they are
rounded down; there will be no systematic bias.

RoundDown Methods round their return values down.

RoundPlain Methods round to the closest possible return value. When they are caught halfway
between two positive numbers, they round up; when caught between two negative
numbers, they round down.

RoundUp Methods round their return values up.

Notifications

DecimalLossOfPrecisionNotification

Posted when loss of precision occurs in converting java.math.BigDecimal to NSDecimalNumber. The
notification does not contain a notification object or userinfo dictionary.

Constants 149
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 17
NSDecimalMappingBehavior

NotANumberConversionNotification
Posted when NaN is passed as an argument to a method or the not-a-number value is returned from a method.
The notification does not contain a notification object or userInfo dictionary.

See Also
setShouldRaiseForNotANumberArgument (page 148)

150 Notifications
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

NSDeleteCommand

Inherits from NSScriptCommand : NSObject
Package: com.apple.cocoa.foundation
Companion guides Cocoa Scripting Guide

Key-Value Coding Programming Guide

Overview

An instance of NSDeleteCommand deletes the specified scriptable object or objects (such as words, paragraphs,
and so on).

Suppose, for example, a user executes a script that sends the command delete the third rectangle
in the first document to the Sketch sample application (located in /Developer/Examples/AppKit).
Cocoa creates an NSDeleteCommand to perform the operation.When the command is executed, it uses the
key-value coding mechanism to remove the specified object or objects from their container.

NSDeleteCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSDeleteCommand or call its methods.

Tasks

Constructors

NSDeleteCommand (page 152)
Returns an NSDeleteCommand with no data.

Working with Specifiers

keySpecifier (page 152)
Returns a specifier for the object or objects to be deleted.
setReceiversSpecifier (page 152)

Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers
of the Delete command.

Overview 151
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 18

NSDeleteCommand

Constructors

NSDeleteCommand

Returns an NSDeleteCommand with no data.
public NSDeleteCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSDeleteCommand with the command description supplied by
aScriptCommandDescription.

public NSDeleteCommand(NSScriptCommandDescription aScriptCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

152

keySpecifier

Returns a specifier for the object or objects to be deleted.
public NSScriptObjectSpecifier keySpecifier()

Discussion
Note that this may be different than the specifier or specifiers set by setReceiversSpecifier (page 152).

setReceiversSpecifier

Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers of the
Delete command.

public void setReceiversSpecifier(NSScriptObjectSpecifier receiversRef)

Discussion

This method overrides setReceiversSpecifier (page 525) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRefis a specifier for the third
rectangle of the first document, the receiver specifieris the first document while the key
specifieris the third rectangle.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19

NSDictionary

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guides Collections Programming Topics for Cocoa

Property List Programming Guide

Class at a Glance

An NSDictionary object stores an immutable set of entries.

Principal Attributes

= A count of the number of entries in the dictionary
= The set of keys contained in the dictionary

m The objects that correspond to the keys in the dictionary

NSDictionary (page 155)
Creates a new dictionary.

Commonly Used Methods

count (page 157)
Returns the number of objects currently in the dictionary.
objectForKey (page 158)
Returns the object that corresponds to the specified key.
keyEnumerator (page 157)
Returns an enumerator object that lets you access each key in the dictionary.

Class at a Glance 153
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19
NSDictionary

Overview

Tasks

154

The NSDictionary class declares the programmatic interface to objects that manage immutable associations
of keys and values. Use this class or its subclass NSMutableDictionary when you need a convenient and
efficient way to retrieve data associated with an arbitrary key. (For convenience, we use the term dictionary
to refer to any instance of one of these classes without specifying its exact class membership.)

The mutable subclass of NSDictionary is NSMutableDictionary (page 325).

A key-value pair within a dictionary is called an entry. Each entry consists of one object that represents the
key and a second object that is that key’s value. Within a dictionary, the keys are unique. That is, no two keys
in a single dictionary are equal (as determined by equals (page 424)).

An instance of NSDictionary is an immutable dictionary: you establish its entries when it's created and cannot
modify them afterward. An instance of NSMutableDictionary is a mutable dictionary: you can add or delete
entries at any time, and the object automatically allocates memory as needed.

Internally, a dictionary uses a hash table to organize its storage and to provide rapid access to a value given
the corresponding key. However, the methods defined insulate you from the complexities of working with
hash tables, hashing functions, or the hashed value of keys. The methods described below take keys directly,
not their hashed form.

Methods that add entries to dictionaries—whether during construction (for all dictionaries) or modification
(for mutable dictionaries)—add each value object to the dictionary directly, but copy each key argument
and add the copy to the dictionary.

NSDictionary’s three primitive methods—count (page 157), objectForKey (page 158), and
keyEnumerator (page 157)—provide the basis for all of the other methods in its interface. The count method
returns the number of entries in the dictionary. objectForKey returns the value associated with a given
key. keyEnumerator returns an object that lets you iterate through each of the keys in the dictionary.

The other methods declared here operate by invoking one or more of these primitives. The nonprimitive
methods provide convenient ways of accessing multiple entries at once.

Constructors

NSDictionary (page 155)

Counting Entries

count (page 157)
Returns the number of entries in the receiver.

Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19
NSDictionary

Comparing Dictionaries

isEqualToDictionary (page 157)
Compares the receiving dictionary to otherDictionary.

Accessing Keys and Values

allKeys (page 156)
Returns a new array containing the receiver’s keys or an empty array if the receiver has no entries.

allKeysFor0Object (page 156)
Finds all occurrences of the value anObject in the receiver and returns a new array with the
corresponding keys.

allValues (page 156)
Returns a new array containing the receiver’s values, or an empty array if the receiver has no entries.

keyEnumerator (page 157)
Returns an enumerator object that lets you access each key in the receiver.

objectEnumerator (page 158)
Returns an enumerator object that lets you access each value in the receiver.

objectForKey (page 158)
Returns an entry’s value given its key, or nu11 if no value is associated with akey.

objectsForKeys (page 158)
Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.

Constructors

NSDictionary
public NSDictionary()

Discussion
Creates and returns an empty dictionary.

public NSDictionary(Object[] objects, Objectl[] keys)

Discussion

Creates a dictionary with entries constructed from the contents of the objects and keys arrays. This method
steps through the objects and keys arrays, creating entries in the new dictionary as it goes. Each value
object is added directly to the dictionary. Each key object is copied, and the copy is added to the dictionary.
An InvalidArgumentException is thrown if the objects and keys arrays do not have the same number of
elements.

public NSDictionary(Object anObject, Object aKey)

Discussion
Creates a dictionary containing a single object, an0Object, for a single key, akey.

public NSDictionary(NSDictionary otherDictionary)

Constructors 155
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19
NSDictionary

Discussion
Creates a dictionary containing the keys and values found in otherDictionary.

Instance Methods

156

allKeys

Returns a new array containing the receiver’s keys or an empty array if the receiver has no entries.
public NSArray allKeys()

Discussion
The order of the elements in the array isn't defined.

See Also
allValues (page 156)

allKeysForObject (page 156)

allKeysForObject

Finds all occurrences of the value anObject in the receiver and returns a new array with the corresponding
keys.

public NSArray allKeysForObject(Object anObject)

Discussion
Each object in the receiver is sent an equals (page 424) message to determine if it's equal to anObject. If
no object matching an0Object is found, this method returns an empty array.

See Also
allKeys (page 156)

keyEnumerator (page 157)

allValues

Returns a new array containing the receiver’s values, or an empty array if the receiver has no entries.
public NSArray allValues()

Discussion
The order of the values in the array isn't defined.

See Also
allKeys (page 156)

objectEnumerator (page 158)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19
NSDictionary

count

Returns the number of entries in the receiver.

public int count()

isEqualToDictionary

Compares the receiving dictionary to otherDictionary.
public boolean isEqualToDictionary(NSDictionary otherDictionary)

Discussion
If the contents of otherDictionary are equal to the contents of the receiver, this method returns true. If
not, it returns false.

Two dictionaries have equal contents if they each hold the same number of entries and, for a given key, the
corresponding value objects in each dictionary satisfy the equals (page 424) test.

See Also
equals (page 424) (NSObject)

keyEnumerator

Returns an enumerator object that lets you access each key in the receiver.
public java.util.Enumeration keyEnumerator()

Discussion

java.util.Enumeration enumerator = myDict.keyEnumerator();

while (enumerator.hasMoreElements()) f{{
Object anObject = enumerator.nextElement();
/* code to act on each element */

}

When this method is used with mutable subclasses of NSDictionary, your code shouldn’t modify the entries
during enumeration. If you intend to modify the entries, use the al1Keys (page 156) method to create a
“snapshot” of the dictionary’s keys. Then use this snapshot to traverse the entries, modifying them along the
way.

Note that the objectEnumerator (page 158) method provides a convenient way to access each value in
the dictionary.

See Also
allKeys (page 156)

allKeysForObject (page 156)
objectEnumerator (page 158)
nextElement (page 167) (NSEnumerator)

Instance Methods 157
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 19
NSDictionary

objectEnumerator

Returns an enumerator object that lets you access each value in the receiver.
public java.util.Enumeration objectEnumerator()

Discussion

java.util.Enumeration enumerator = myDict.objectEnumerator();

while (enumerator.hasMoreElements()) f{{
Object anObject = enumerator.nextElement();
/* code to act on each element */

}

When this method is used with mutable subclasses of NSDictionary, your code shouldn’t modify the entries
during enumeration. If you intend to modify the entries, use the al1Values (page 156) method to create a
“snapshot” of the dictionary’s values. Work from this snapshot to modify the values.

See Also
keyEnumerator (page 157)

nextElement (page 167) (NSEnumerator)

objectForKey

Returns an entry’s value given its key, or nu11 if no value is associated with akey.
public Object objectForKey(Object akey)

See Also
allKeys (page 156)

allValues (page 156)

objectsForKeys

Returns the set of objects from the receiver that corresponds to the specified keys as an NSArray.
public NSArray objectsForKeys(NSArray keys, Object anObject)

Discussion

The objects in the returned array and the keys array have a one-for-one correspondence, so that the nth
object in the returned array corresponds to the nth key in keys. If an object isn’t found in the receiver to
correspond to a given key, the marker object, specified by an0bject, is placed in the corresponding element
of the returned array.

158 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

NSDistributedNotificationCenter

Inherits from NSNotificationCenter : NSObject
Package: com.apple.cocoa.foundation
Companion guide Notification Programming Topics for Cocoa

Class at a Glance

NSDistributedNotificationCenter provides a way to send notifications to objects in other tasks. It takes
NSNotification objects and broadcasts them to any objects in other tasks that have registered for the
notification with their task’s default NSDistributedNotificationCenter.

Principal Attributes

= Atable of objects that want to receive notifications, the notifications they want to receive, and identifying
strings they are interested in

Each task has a default distributed notification center. You typically don't create your own.

Commonly Used Methods

defaultCenter (page 161)
Accesses the default notification center.

addObserver (page 162)
Registers an object to receive a notification with a specified behavior when notification delivery is
suspended.

postNotification (page 162)
Creates and posts a notification.

Overview

An NSDistributedNotificationCenter object (or simply, distributed notification center) is a notification center
that can distribute notifications asynchronously to tasks other than the one in which the notification was
posted.

Class at a Glance 159
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Tasks

160

CHAPTER 20
NSDistributedNotificationCenter

Each task has a default distributed notification center that you access with the defaultCenter (page 161)
static method. There may be different types of distributed notification centers. Right now there is a single
type—LocalNotificationCenterType. This type of distributed notification center handles notifications
that can be sent between tasks on a single machine. For communication between tasks on different machines,
use “Distributed Objects”

Posting a distributed notification is an expensive operation. The notification gets sent to a system-wide server
that then distributes it to all the tasks that have objects registered for distributed notifications. The latency
between posting the notification and the notification’s arrival in another task is unbounded. In fact, if too
many notifications are being posted and the server’s queue fills up, notifications can be dropped.

Distributed notifications are delivered via a task’s run loop. A task must be running a run loop in one of the
“common” modes, such as NSRunlLoop.DefaultRunLoopMode, to receive a distributed notification. For

multithreaded applications running in Mac OS X v10.3 and later, distributed notifications are always delivered
to the main thread. For multithreaded applications running in Mac OS X v10.2.8 and earlier, notifications are
delivered to the thread that first used the distributed notifications API, which in most cases is the main thread.

Constructors

NSDistributedNotificationCenter (page 161)
Creates an empty NSDistributedNotificationCenter.

Accessing Distributed Notification Centers

defaultCenter (page 161)
Returns the default distributed notification center, representing the local notification center for the
machine by calling notificationCenterForType (page 161) with an argument of
LocalNotificationCenterType.

notificationCenterForType (page 161)
Returns the distributed notification center for the specified type.

Adding and Removing Observers

addObserver (page 162)
Registers anObserver to receive notifications with the name notificationName and/or the
identifying string anObject.

Posting Notifications

postNotification (page 162)
Creates a notification with the name notificationName, associates it with the string anObject
and dictionary userInfo, and posts it to the notification center with delivery scheduled for
deliverImmediately, as supplied by the invoker.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20
NSDistributedNotificationCenter

Suspending and Enabling Notification Delivery

setSuspended (page 163)
Suspends notification delivery when set to true and resumes immediate notification delivery when
setto false.

suspended (page 163)
Returns true if the notification center is delivering notifications for this application according to their
suspension behavior, false if it is delivering them immediately.

Constructors

NSDistributedNotificationCenter
Creates an empty NSDistributedNotificationCenter.

public NSDistributedNotificationCenter()

Discussion
This center is not the default notification center. To obtain the default center, use defaultCenter (page
161).

Static Methods

defaultCenter

Returns the default distributed notification center, representing the local notification center for the machine
by callingnotificationCenterForType (page 161) with anargumentof LocalNotificationCenterType.

public static NSNotificationCenter defaultCenter()

notificationCenterForType

Returns the distributed notification center for the specified type.

public static NSDistributedNotificationCenter notificationCenterForType(String
type)

Discussion
Currently only one type, LocalNotificationCenterType, is supported.

Constructors 161
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20
NSDistributedNotificationCenter

Instance Methods

162

addObserver

Registers anObserver to receive notifications with the name notificationName and/or the identifying
string anObject.

public void addObserver(0Object anObserver, NSSelector aSelector, String
notificationName, String anObject, int suspensionBehavior)

Discussion

When a notification of name not i ficat ionName with the identifying string anObjectis posted, anObserver
receives an aSelector message with this notification as the argument. The method for the selector specified
in aSelector must have one and only one argument.If notificationNameisnull,the notification center
notifies the observer of all notifications with an identifying string matching anObject.If anObjectisnull,
the notification center notifies the observer of all notifications with the name notificationName. The
suspensionBehavior determines how the notification center handles notifications when notification
delivery has been suspended. The possible values are described in “Constants” (page 164).

See Also
postNotification (page 162)

postNotification

Creates a notification with the name notificationName, associates it with the string anObject and
dictionary userInfo,and posts it to the notification center with delivery scheduled for de7iverImmediately,
as supplied by the invoker.

public void postNotification(String notificationName, String anObject, NSDictionary
userlInfo, boolean deliverImmediately)

Discussion
This method is the preferred method for posting notifications.

The userInfo dictionary is serialized as a property list, so it can be passed to another task. In the receiving
task, it is deserialized back into a dictionary. This serialization imposes some restrictions on the objects that
can be placed in the userInfo dictionary. See “XML Property Lists” for details.

Posting with deliverImmediately setto false allows the normal suspension behavior of the observers
totake place.If deliverImmediatelyissetto true, the notification is delivered immediately to all observers,
regardless of their suspension behavior or suspension state.

Creates a notification with the name notificationName, associates it with the string anObject and
dictionary userInfo, and posts it to the notification center.

public void postNotification(String name, String anObject, NSDictionary userinfo,
int options)

Discussion
Possible values for options are described in the “Constants” (page 164) section. Pass in 0 for no options.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20
NSDistributedNotificationCenter

The userInfo dictionary is serialized as a property list, so it can be passed to another task. In the receiving
task, it is deserialized back into a dictionary. This serialization imposes some restrictions on the objects that
can be placed in the userInfo dictionary. See “XML Property Lists” for details.

Availability
Available in Mac OS X v10.3 and later.

See Also
encodeRootObject (page 53) (NSArchiver)

unarchiveObjectWithData (page 626) (NSUnarchiver)

setSuspended

Suspends notification delivery when set to true and resumes immediate notification delivery when set to
false.

public void setSuspended(boolean suspended)

Discussion

Distributed notification centers enable or suspend notification delivery on a per-task basis. When a task
suspends notification delivery, notifications are delivered according to the suspension behavior of the
observer. When delivery is not suspended, notifications are always delivered immediately. See
“Constants” (page 164) for the available types of suspension behaviors.

NSApplication automatically suspends delivery when the application is not active. Applications based on the
Application Kit should let the Application Kit manage the suspension of distributed notification delivery.
Foundation-only programs may have occasional need to use this method.

See Also
addObserver (page 162)

postNotification (page 162)
suspended (page 163)

suspended
Returns true if the notification center is delivering notifications for this application according to their
suspension behavior, false if it is delivering them immediately.

public boolean suspended()

Discussion
Applications based on the Application Kit should let the Application Kit manage the suspension of distributed
notification delivery. Foundation-only programs may have occasional need to use this method.

See Also
setSuspended (page 163)

Instance Methods 163
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 20

NSDistributedNotificationCenter

Constants

NSDistributedNotificationCenter defines the following notification center type:

Constant

Description

LocalNotificationCenterType

Distributes notifications to all tasks on the sender’s machine.

There are four different types of suspension behavior, each useful in different circumstances:

Constant

Description

Notification-
SuspensionBehaviorDrop

The server does not queue any notifications with this name and object
until setSuspended (page 163) with an argument of false is called.

Notification-
SuspensionBehavior-
Coalesce

The server only queues the last notification of the specified name and
object; earlier notifications are dropped. In cover methods for which
suspension behavior is not an explicit argument, Notification-
SuspensionBehaviorCoalesce is the default.

Notification-
SuspensionBehaviorHold

The server holds all matching notifications until the queue has been filled
(queue size determined by the server), at which point the server may flush
queued notifications.

Notification-
SuspensionBehavior-
DeliverImmediately

The server delivers notifications matching this registration irrespective of
whether setSuspended (page 163) with an argument of true has been
called. When a notification with this suspension behavior is matched, it
has the effect of first flushing any queued notifications. The effect is as if
setSuspended (page 163) with an argument of false were first called if
the application is suspended, followed by the notification in question being
delivered, followed by a transition back to the previous suspended or
unsuspended state.

NSDistributedNotificationCenter defines these constants to specify the behavior of notifications posted using
postNotification (page 162):

Constant

Description

NotificationDeliver-
Immediately

If not set, allows the normal suspension behavior of notification observers
to take place. If set, the notification is delivered immediately to all
observers, regardless of their suspension behavior or suspension state.

NotificationPost-
ToAl1Sessions

If not set, the notification is sent only to applications within the same
login session as the posting process. If set, the notification is posted to
all sessions.

Constants

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

NSEnumerator

Inherits from Object

Implements java.util.Enumeration

Package: com.apple.cocoa.foundation

Companion guide Collections Programming Topics for Cocoa

Class at a Glance

An abstract class whose instances enumerate collections of other objects, such as arrays and dictionaries.

Principal Attributes

m A set of objects to enumerate

= The next object in the enumeration

All creation methods are defined in the collection classes such as NSArray and NSDictionary. These methods
contain the word “Enumerator,” as in NSArray’s objectEnumerator (page 64) method or NSDictionary’s
keyEnumerator (page 157) method.

Commonly Used Methods

nextElement (page 167)
Returns the next object in the collection being enumerated.

Overview

NSEnumerator is a simple abstract class whose subclasses enumerate collections of other objects. Collection
objects—such as arrays, sets, and dictionaries—provide special NSEnumerator objects with which to enumerate
their contents. You send nextElement (page 167) repeatedly to a newly created NSEnumerator object to
have it return the next object in the original collection. When the collection is exhausted, nu11 is returned.
You can't “reset” an enumerator after it's exhausted its collection. To enumerate a collection again, you need
a new enumerator.

Class at a Glance 165
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Tasks

CHAPTER 21

NSEnumerator

Collection classes such as NSArray, NSSet, and NSDictionary include methods that return an enumerator
appropriate to the type of collection. For instance, NSArray has two methods that return an NSEnumerator
object: objectEnumerator (page 64) and reverseObjectEnumerator (page 65). NSDictionary also has
two methods that return an NSEnumerator object: keyEnumerator (page 157)and objectEnumerator (page
158). These methods let you enumerate the contents of an NSDictionary by key or by value, respectively.

Note: It isn’t safe to modify a mutable collection while enumerating through it.

The enumerator subclasses used by NSArray, NSDictionary, and NSSet retain the collection during enumeration.
When the enumeration is exhausted, the collection is released.

Getting the Objects

nextElement (page 167)
Returns the next object from the collection being enumerated.

Querying Enumerators

getObjCEnumerator (page 166)
Returns an integer value identifying the underlying Objective-C enumerator.

hasMoreElements (page 166)
Returns a Boolean value that indicates whether there are more elements in the collection that can
be enumerated by the receiver.

Instance Methods

166

getObjCEnumerator

Returns an integer value identifying the underlying Objective-C enumerator.

public int getObjCEnumerator()

hasMoreElements

Returns a Boolean value that indicates whether there are more elements in the collection that can be
enumerated by the receiver.

public boolean hasMoreETements()

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

NSEnumerator

nextElement

Returns the next object from the collection being enumerated.
public Object nextElement()

Discussion
When nextElement returns null, all objects have been enumerated.

Instance Methods 167
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 21

NSEnumerator

168 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22

NSError

Inherits from

Implements

Package:
Availability

Companion guide

Overview

Tasks

NSObject
NSCoding

com.apple.cocoa.foundation
Available in Mac OS X v10.3 and later.

Error Handling Programming Guide For Cocoa

NSError encapsulates richer and more extensible error information than is possible using only an error code
or error string. The core attributes of an NSError are an error domain (represented by a string), a domain-specific
error code and a user info dictionary containing application specific information.

Several well-known domains are defined corresponding to Mach, POSIX, and OSStatus errors. In addition,
NSError allows an arbitrary user info dictionary to be specified, and provides the means to return a
human-readable description for the error.

NSError is not an abstract class, and can be used directly. Applications may choose to create subclasses of
NSError to provide better localized error strings by overriding TocalizedDescription (page 171).

In general, the presence of an error should be indicated by other means, for example by returning false or
null from the method. The method can then optionally return an NSError object by-reference, in order to

further describe the error.

Constructors

NSError (page 170)

Creates an empty NSError.

Getting Error Properties

code (page 171)

Returns the receiver’s error code.

Overview

169

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22
NSError

domain (page 171)
Returns a string containing the receiver’s error domain.

userInfo (page 173)
Returns an NSDictionary containing the user info associated with the receiver or nu11 if the user info
dictionary has not been set.

Getting a Localized Error Description

localizedDescription (page 171)
Returns a string containing the localized description of the error.

localizedRecoveryOptions (page 172)
Returns an array containing the localized titles of buttons appropriate for displaying in an alert panel.

localizedRecoverySuggestion (page 172)
Returns a string containing the localized recovery suggestion for the error.

localizedFailureReason (page 172)
Returns a string containing the localized explanation of the reason for the error.

Getting the Error Recovery Attempter

recoveryAttempter (page 173)
Returns an object that conforms to the NSErrorRecoveryAttempting informal protocol.

Constructors

170

NSError

Creates an empty NSError.
public NSError()

Availability
Available in Mac OS X v10.3 and later.

Creates an NSError object for doma 7 n with the specified error code and the dictionary of arbitrary data
userlinfo.

public NSError(String domain, int code, NSDictionary dict)

Discussion
The domain must not be nul1.The userInfomay be null.

The doma in can be one of the predefined NSError domains, or an arbitrary string describing a custom domain.

Availability
Available in Mac OS X v10.3 and later.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22
NSError

Instance Methods

code

Returns the receiver’s error code.
public int code()

Discussion
Note that errors are domain specific.

Availability
Available in Mac OS X v10.3 and later.

See Also
localizedDescription (page 171)

domain (page 171)
userInfo (page 173)

domain

Returns a string containing the receiver’s error domain.
public String domain()

Availability
Available in Mac OS X v10.3 and later.

See Also
code (page 171)

localizedDescription (page 171)
userInfo (page 173)

localizedDescription
Returns a string containing the localized description of the error.

public String TlocalizedDescription()

Discussion

By default this method will attempt to return the object in the user info dictionary for the key
LocalizedDescriptionKey. If the user info dictionary doesn’t contain a value for
LocalizedDescriptionKey, a default string will be constructed from the domain and code.

This method can be overridden by subclasses to present customized error strings.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 171
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

172

CHAPTER 22
NSError

See Also
code (page 171)

domain (page 171)
userInfo (page 173)

localizedFailureReason

Returns a string containing the localized explanation of the reason for the error.
public String localizedFailureReason()

Discussion
By default this method will attempt to return the object in the user info dictionary for the key
LocalizedFailureReasonErrorKey.

This method can be overridden by subclasses to present customized error strings.

Availability
Available in Mac OS X v10.4 and later.

See Also
code (page 171)

domain (page 171)
userInfo (page 173)

localizedRecoveryOptions

Returns an array containing the localized titles of buttons appropriate for displaying in an alert panel.
public Array localizedRecoveryOptions()

Discussion

The first string is the title of the right-most and default button, the second the one to the left, and so on. The
recovery options should be appropriate for the recovery suggestion returned by
TocalizedRecoverySuggestion (page 172). By default this method will attempt to return the object in
the user info dictionary for the key LocalizedRecoveryOptionsErrorKey. If the user info dictionary
doesn’t contain a value for LocalizedRecoveryOptionsErrorKey,null isreturned and only an OK button
is displayed..

This method can be overridden by subclasses to present customized recovery suggestion strings.

Availability
Available in Mac OS X 10.4 and later.

localizedRecoverySuggestion

Returns a string containing the localized recovery suggestion for the error.

public String TocalizedRecoverySuggestion()

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 22
NSError

Discussion

This string is suitable for displaying as the secondary message in an alert panel. By default this method will
attempt to return the object in the user info dictionary for the key
LocalizedRecoverySuggestionErrorKey. If the user info dictionary doesn't contain a value for
LocalizedRecoverySuggestionErrorKey, null is returned.

This method can be overridden by subclasses to present customized recovery suggestion strings.

Availability
Available in Mac OS X v10.4 and later.

recoveryAttempter

Returns an object that conforms to the NSErrorRecoveryAttempting informal protocol.
public Object recoverAttempter()

Discussion

The recovery attempter must be an object that can correctly interpret an index into the array returned by
TocalizedRecoveryOptions (page 172). By default this method will attempt to return the object for the
user info dictionary for the key RecoveryAttempterErrorKey. If the user info dictionary doesn’t contain
avalue for RecoveryAttempterErrorKey, null is returned.

Availability
Available in Mac OS X v10.4 and later.

See Also
localizedRecoveryOptions (page 172)

userinfo

Returns an NSDictionary containing the user info associated with the receiver or nu11 if the user info dictionary
has not been set.

public NSDictionary userInfo()

Availability
Available in Mac OS X v10.3 and later.

See Also
code (page 171)

domain (page 171)
localizedDescription (page 171)

Constants

The following keys may exist in the user info dictionary:

Constants 173
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

174

CHAPTER 22
NSError

Constant

Description

LocalizedFailure-
ReasonErrorKey

A localized string representation containing the reason for the failure that,
if present, will be returned by TocalizedFailureReason (page 172). This
string p;rovides a more detailed explanation of the error than the description.
Available in Mac OS X 10.4 and later.

LocalizedRecovery-
SuggestionErrorKey

A string containing the localized recovery suggestion for the error. This string
is suitable for displaying as the secondary message in an alert panel.
Available in Mac OS X 104 and later.

LocalizedRecovery-
OptionskErrorKey

An array containing the localized titles of buttons appropriate for displaying
in an alert panel. The first string is the title of the right-most and default
button, the second the one to the left, and so on. The recovery options should
be appropriate for the recovery suggestion returned by
localizedRecoverySuggestion (page 172).

Available in Mac OS X 10.4 and later.

RecoveryAttempter-
ErrorKey

An object that conforms to the NSErrorRecoveryAttempting informal protocol.
The recovery attempter must be an object that can correctly interpret an
index into the array returned by recoveryAttempter (page 173).
Available in Mac OS X 10.4 and later.

The following error domains are predefined:

Constant

Description

POSIXErrorDomain

POSIX/BSD errors

0SStatusErrorDomain

Mac OS 9/Carbon errors

MachErrorDomain

Mach errors

NSURLErrorDomain

URL loading system errors

NSCocoaErrorDomain

Constants

Application Kit and Foundation Kit errors.
Available in Mac OS X v10.4 and later.

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23

NSException

Inherits from java.lang.RuntimeException

Package: com.apple.cocoa.foundation

Companion guide Exception Programming Topics for Cocoa
Overview

Tasks

NSException is used to implement exception handling and contains information about an exception. An
exception is a special condition that interrupts the normal flow of program execution. Each application can
interrupt the program for different reasons. For example, one application might interpret saving a file in a
directory that is write-protected as an exception. In this sense, the exception is equivalent to an error. Another
application might interpret the user’s keypress (for example, Control-C) as an exception: an indication that
a long-running process should be aborted.

The string constants for exceptions are listed and described in Foundation Types and Constants.

Constructors

NSException (page 176)
Creates an NSException object with a nu11 message string.

Querying an NSException

getStackTrace (page 176)
Returns the stack trace for where anfException was thrown.
name (page 176)
Returns a String used to uniquely identify the receiver.
toString (page 176)
Returns the receiver’s name and reason message, so that formatted strings produce a meaningful
description of the exception.

userInfo (page 177)
Returns an Object containing application-specific data pertaining to the receiver.

Overview 175
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23
NSException

Constructors

NSException

Creates an NSException object with a nu11 message string.

public NSException()

Creates an NSException object with the human-readable message string reason.
public NSException(String reason)

Creates an NSException object named name with the human-readable message string reason and user-defined
userlinfo.

public NSException(String name, String reason, Object userlInfo)

Static Methods

getStackTrace
Returns the stack trace for where anfxception was thrown.
public static String getStackTrace(Throwable anException)

Discussion
The exception’s name and reason message are included in the first line. If anfxception has no name, the
exception’s class is used.

Instance Methods

176

name

Returns a String used to uniquely identify the receiver.

public String name()

toString

Returns the receiver’s name and reason message, so that formatted strings produce a meaningful description
of the exception.

public String toString()

Discussion
If the receiver is not named, the receiver’s class name is used.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23
NSException

userinfo

Returns an Object containing application-specific data pertaining to the receiver.
public Object userInfo()

Discussion
Returns nul1 if no application-specific data exists. As an example, if a method’s return value caused the
exception to be thrown, the return value might be available to the exception handler through this method.

Instance Methods 177
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 23
NSException

178 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24

NSExistsCommand

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide
Overview

An instance of NSExistsCommand determines whether a specified scriptable object, such as a word, paragraph,
or image, exists.

When an instance of NSExistsCommand is executed, it evaluates the receiver specifier for the command to
determine if it specifies any objects.

NSExistsCommand is part of Cocoa’s built-in scripting support. Most applications don’t need to subclass
NSExistsCommand.

Tasks

Constructors

NSExistsCommand (page 179)
Returns an NSExistsCommand with no data.

Constructors

NSExistsCommand

Returns an NSExistsCommand with no data.
public NSExistsCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSExistsCommand with the command description supplied by
aScriptCommandDescription.

Overview 179
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 24
NSExistsCommand

public NSExistsCommand(NSScriptCommandDescription aScriptCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional

command.

180 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.

Companion guide Predicate Programming Guide
Overview

NSExpression is used to represent expressions in a predicate.

Comparison operations in an NSPredicate are based on two expressions, as represented by instances of the
NSExpression class. Expressions are created for constant values, key paths, and so on.

Tasks

Constructors

NSExpression (page 182)
Returns an empty NSExpression object.

Constructors and Initialization

expressionfForConstantValue (page 182)
expressionForEvaluatedObject (page 183)
expressionfForFunction (page 183)

Returns a new expression that invokes a predefined function.

expressionForKeyPath (page 183)

expressionfForVariable (page 184)

Overview 181
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Getting Information About an Expression

arguments (page 184)
Returns the arguments for the receiver—that is, the array of expressions that will be passed as
parameters during invocation of the selector on the operand of a function expression.

constantValue (page 184)
Returns the constant value for the receiver.

expressionType (page 184)
Returns the expression type for the receiver.

function (page 185)
Returns the function for the receiver.

keyPath (page 185)
Returns the key path for the receiver.

operand (page 185)
Returns the operand for the receiver—that is, the object on which the selector will be invoked.

variable (page 186)
Returns the variable for the receiver.

Evaluating an Expression

expressionValueWithObject (page 185)
Evaluates the expression using the specified object and context.

Constructors

NSExpression

Returns an empty NSExpression object.

public NSExpression()

Returns an NSExpression object initialized with the specified expression type.
public NSExpression(int type)

Discussion
The type parameter represents the expression type as shown in “Constants” (page 186).

Static Methods

182

expressionForConstantValue

public static NSExpression expressionForConstantValue(QObject obj)

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Discussion
Returns a new expression that represents a constant value.

Availability
Available in Mac OS X v10.4 and later.

expressionForEvaluatedObject

public static NSExpression expressionForEvaluatedObject()

Discussion
Returns a new expression that represents the object being evaluated.

Availability
Available in Mac OS X v10.4 and later.

expressionForFunction

Returns a new expression that invokes a predefined function.
public static NSExpression expressionForFunction(String name, NSArray parameters)

Discussion
The name parameter can be one of the following predefined functions.

Function | Parameter Returns

avg NSArray of NSExpressions | NSNumber

count NSArray of NSExpressions | NSNumber

max NSArray of NSExpressions | NSNumber
min NSArray of NSExpressions | NSNumber
sum NSArray of NSExpressions | NSNumber

This method throws an exception immediately if the selector is invalid; it throws an exception at runtime if
the parameters are incorrect.

Availability
Available in Mac OS X v10.4 and later.

expressionForKeyPath
public static NSExpression expressionForKeyPath(String keyPath)

Discussion
Returns a new expression that invokes valueForKeyPath (page 263) with keyPath.

Static Methods 183
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Availability
Available in Mac OS X v10.4 and later.

expressionForVariable

public static NSExpression expressionForVariable(String string)

Discussion
Returns a new expression that extracts a value from the variable bindings dictionary.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

arguments

Returns the arguments for the receiver—that is, the array of expressions that will be passed as parameters
during invocation of the selector on the operand of a function expression.

pubTlic NSArray arguments()

Discussion
Throws an exception if not applicable.

Availability
Available in Mac OS X v10.4 and later.

constantValue

Returns the constant value for the receiver.
public Object constantValue()

Discussion
Throws an exception if not applicable.

Availability
Available in Mac OS X v10.4 and later.

expressionType

Returns the expression type for the receiver.
public int expressionType()

Discussion
The expression type is described in “Constants” (page 186).Throws an exception if not applicable.

184 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Availability
Available in Mac OS X v10.4 and later.

expressionValueWithObject

Evaluates the expression using the specified object and context.
public Object expressionValueWithObject(Object object, NSMutableDictionary context)

Discussion
Note that context is mutable—it can be used by expressions to store temporary state for one predicate
evaluation.

Availability
Available in Mac OS X v10.4 and later.

function

Returns the function for the receiver.
public String function()

Discussion
Throws an exception if not applicable.

Availability
Available in Mac OS X v10.4 and later.

keyPath

Returns the key path for the receiver.
public String keyPath()

Discussion
Throws an exception if not applicable.

Availability
Available in Mac OS X v10.4 and later.

operand

Returns the operand for the receiver—that is, the object on which the selector will be invoked.
public NSExpression operand()

Discussion
The object is the result of evaluating a key path or one of the defined functions. Throws an exception if not
applicable.

Instance Methods 185
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 25

NSExpression

Availability
Available in Mac OS X v10.4 and later.

variable

Returns the variable for the receiver.
public String variable()

Discussion
Throws an exception if not applicable.

Availability
Available in Mac OS X v10.4 and later.

Constants

186

These constants describe the possible types of NSExpression:

Constant

Description

ConstantValueExpressionType

An expression that always returns the same value.

EvaluatedObjectExpressionType

An expression that always returns the parameter object itself.

VariableExpressionType

An expression that always returns whatever value is associated
with the key specified by ‘variable’ in the bindings dictionary.

KeyPathExpressionType

An expression that returns something that can be used as a key
path.

FunctionkExpressionType

An expression that returns the result of evaluating a function.

Constants

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26

NSFormatter

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide Data Formatting Programming Guide for Cocoa
Overview

Tasks

NSFormatter is an abstract class that declares an interface for objects that create, interpret, and validate the
textual representation of cell contents. The Foundation framework provides two concrete subclasses of
NSFormatter to generate these objects: NSNumberFormatter (page 411) and NSGregorianDateFormatter (page
209).

Subclassing Notes

NSFormatter is similar to other abstract classes such as NSView or NSDocument in that it is intended for
subclassing. A custom formatter can restrict the input and enhance the display of data in novel ways. For
example, you could have a custom formatter that ensures that serial numbers entered by a user conform to
predefined formats. Before you decide to create a custom formatter, make sure that you cannot configure
the public subclasses NSGregorianDateFormatter (page 209) and NSNumberFormatter (page 411) to satisfy
your requirements.

For instructions on how to create your own custom formatter, see “Creating A Custom Formatter”.

Constructors

NSFormatter (page 188)
NSFormatter is an abstract class; use the constructor of one of its concrete classes instead.

Overview 187
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26
NSFormatter

Textual Representation of Cell Content

stringForObjectValue (page 190)

This method is an abstract method that you must override in your subclass. The default implementation
of this method throws an exception.

attributedStringForObjectValue (page 188)
This method is an abstract method that you must override in your subclass.

editingStringForObjectValue (page 189)
The default implementation of this method invokes stringFor0ObjectValue (page 190).

Object Equivalent to Textual Representation

objectValueForString (page 189)
This method is an abstract method that you must override in your subclass.

Dynamic Cell Editing

isPartialStringValid (page 189)
Since this method is invoked each time the user presses a key while the cell has the keyboard focus,
it lets you verify the cell text as the user types it. partialStringis the text currently in the cell.
replacementStringForString (page 190)
The default implementation of this method returns aString.

Constructors

NSFormatter

NSFormatter is an abstract class; use the constructor of one of its concrete classes instead.

public NSFormatter()

Instance Methods

188

attributedStringForObjectValue

This method is an abstract method that you must override in your subclass.

pubTic abstract NSAttributedString attributedStringForObjectValue(Object anObject,
NSDictionary attributes)

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 26
NSFormatter

Discussion

When implementing a subclass, return an NSAttributedString if the string for display should have some
attributes. For instance, you might want negative values in a financial application to appear in red text. Invoke
your implementation of stringForObjectValue (page 190) to get the nonattributed string. Then create
an NSAttributedString with it. The default attributes for text in the cell are passed in with attributes; use
this NSDictionary to reset the attributes of the string when a change in value warrants it (for example, a
negative value becomes positive) If a NSAttributedString cannot be created for anObject, an
NSFormatter.FormattingException is thrown. For information on creating attributed strings, see the
NSAttributedString (page 67) class.

See Also
editingStringForObjectValue (page 189)

editingStringForObjectValue
The default implementation of this method invokes stringForObjectValue (page 190).

public String editingStringForObjectValue(0Object anObject)

Discussion

When implementing a subclass, override this method only when the string that users see and the string that
they edit are different. In your implementation, return a String that is used for editing, following the logic
recommended for implementing stringForObjectValue. As an example, you would implement this
method if you want the dollar signs in displayed strings removed for editing.

See Also
attributedStringForObjectValue (page 188)

isPartialStringValid

Since this method is invoked each time the user presses a key while the cell has the keyboard focus, it lets
you verify the cell text as the user types it. partialStringis the text currently in the cell.

public boolean isPartialStringValid(String partialString)

Discussion
Return true if it is acceptable and false if it is not. If you return false, the cell displays partialString
minus the last character typed.

See Also
replacementStringForString (page 190)

objectValueForString

This method is an abstract method that you must override in your subclass.
public abstract Object objectValueForString(String aString)

Discussion
When implementing a subclass, return an object you've created from aSt ring.If an object cannot be created
from aString,an NSFormatter.ParsingException is thrown.

Instance Methods 189
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

190

CHAPTER 26
NSFormatter

See Also
stringForObjectValue (page 190)

replacementStringForString

The default implementation of this method returns aString.
public String replacementStringForString(String aString)

Discussion

When implementing a subclass, check whether aStringis a valid string for the cell. If it is, return it unmodified.
Otherwise, correct it and return the modified string. For example, you might convert all lowercase letters to
uppercase or insert separator characters in a telephone number.

See Also
isPartialStringValid (page 189)

stringForObjectValue

This method is an abstract method that you must override in your subclass. The default implementation of
this method throws an exception.

public abstract String stringForObjectValue(0Object anObject)

Discussion

When implementing a subclass, return the String that textually represents the cell’s object for display and —if
editingStringForObjectValue (page 189)is unimplemented—for editing. First test the passed-in object
to see if it's of the correct class. If it isn't, return nu11; but if it is of the right class, return a properly formatted
and, if necessary, localized string. If a string cannot be created for anObject, an
NSFormatter.FormattingException is thrown.

See Also
attributedStringForObjectValue (page 188)

editingStringForObjectValue (page 189)
objectValueForString (page 189)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

NSFormatter.FormattingException

Inherits from java.lang.Exception
Package: com.apple.cocoa.foundation
Companion guides Data Formatting Programming Guide for Cocoa

Exception Programming Topics for Cocoa

Overview

Tasks

FormattingException is a custom exception thrown by the NSFormatter methods
stringForObjectValue (page 190) and attributedStringForObjectValue (page 188) when they
encounter an error trying to convert the object to its string representation.

Constructors

FormattingException (page 191)
Creates a new FormattingException exception with the message reason.

Constructors

FormattingException

Creates a new FormattingException exception with the message reason.

public NSFormatter.FormattingException(String reason)

Overview 191
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 27

NSFormatter.FormattingException

192 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

NSFormatter.ParsingException

Inherits from java.lang.Exception
Package: com.apple.cocoa.foundation
Companion guides Data Formatting Programming Guide for Cocoa

Exception Programming Topics for Cocoa

Overview

Tasks

ParsingException is a custom exception thrown by the NSFormatter method objectValueForString (page
189) when it encounters a problem converting the string to the appropriate object representation.

Constructors

ParsingException (page 193)
Creates a new ParsingException exception with the message reason.

Constructors

ParsingException

Creates a new ParsingException exception with the message reason.

public NSFormatter.ParsingException(String reason)

Overview 193
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 28

NSFormatter.ParsingException

194 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29

NSGetCommand

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide
Overview

An instance of NSGetCommand gets the specified value or object from the specified scriptable object: for
example, the words from a paragraph or the name of a document.

When an instance of NSGetCommand is executed, it evaluates the specified receivers, gathers the specified
data, if any, and packages it in a return Apple event.

NSGetCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Get
command through key-value coding. Most applications don’t need to subclass NSGetCommand or call its
methods.

Tasks

Constructors

NSGetCommand (page 195)
Returns an NSGetCommand with no data.

Constructors

NSGetCommand

Returns an NSGetCommand with no data.
public NSGetCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSGetCommand with the command description supplied by
aScriptCommandDescription.

Overview 195
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 29
NSGetCommand

public NSGetCommand(NSScriptCommandDescription aScriptCommandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional

command.

196 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30

NSGregorianDate

Inherits from NSDate : NSObject

Implements NSCoding (NSDate)

Package: com.apple.cocoa.foundation

Companion guides Date and Time Programming Guide for Cocoa

Data Formatting Programming Guide for Cocoa

Overview

Tasks

NSGregorianDate is a public subclass of NSDate that represents concrete date objects and performs date
computations based on the Gregorian calendar. These objects associate a time interval with a time zone and
are especially suited for representing and manipulating dates according to western calendrical systems.
NSGregorianDates are immutable objects.

An NSGregorianDate object stores a date as the number of seconds relative to the absolute reference date
(the firstinstance of 1 January 2001, GMT). Use the associated time zone to change how the NSGregorianDate
object prints its time interval. The time zone does not change how the time interval is stored. Because the
value is stored independently of the time zone, you can accurately compare NSGregorianDates with any
other NSDate objects or use them to create other NSDate objects. It also means that you can track a date
across different time zones; that is, you can create a new NSGregorianDate object with a different time zone
to see how the particular date is represented in that time zone.

To retrieve conventional elements of an NSGregorianDate object, use the .. .0f. .. methods. For example,
dayOfWeek (page 201) returns a number that indicates the day of the week (0 is Sunday). The
monthOfYear (page 204) method returns a number from 1 through 12 that indicates the month.

To format a date as a string or to parse a date from a string, use an NSGregorianDateFormatter.

Constructors

NSGregorianDate (page 199)

Overview 197
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

198

CHAPTER 30
NSGregorianDate

Retrieving Date Elements

dayOfCommonEra (page 200)

dayOfMonth (page 201)
Returns a number that indicates the day of the month (1 through 31) of the receiver.

dayOfleek (page 201)
Returns a number that indicates the day of the week (0 through 6) of the receiver; 0 indicates Sunday.

dayOfYear (page 202)
Returns a number that indicates the day of the year (1 through 366) of the receiver.

hourOfDay (page 203)
Returns the hour value (0 through 23) of the receiver.
microsecondOfSecond (page 204)
Returns the microseconds value (0 through 999,999) of the receiver.
minuteOfHour (page 204)
Returns the minutes value (0 through 59) of the receiver.
monthOfYear (page 204)
Returns a number that indicates the month of the year (1 through 12) of the receiver.
second0fMinute (page 205)
Returns the seconds value (0 through 59) of the receiver.

yearOfCommonkra (page 205)
Returns a number that indicates the year, including the century, of the receiver (for example, 1995).
The base year of the Common Era is 1 C.E. (which is the same as 1 A.D.).

Adjusting a Date

dateByAddingGregorianUnits (page 200)

Computing Date Intervals

gregorianUnitsSinceDate (page 202)
Computes the calendrical time difference between the receiver and date and returns it in years,
months, days, hours, minutes, and seconds.

Comparing Dates

equals (page 202)
Returns true if anObject is an instance of NSGregorianDate and satisfies
isEqualToGregorianDate (page 203).

hashCode (page 203)
Returns a hash value for the receiver.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30
NSGregorianDate

iskqualToGregorianDate (page 203)
Returns true if the receiver and aGregorianDate represent the same date and have the same time
zone set.

Representing Dates as Strings

toString (page 205)
Returns a string representation of the receiver.

Getting the Time Zone

timeZone (page 205)
Returns the time zone object associated with the receiver.

Constructors

NSGregorianDate
public NSGregorianDate()

Discussion
Creates a new Gregorian date initialized to the current date and time.

public NSGregorianDate(double seconds)

Discussion

Creates a new Gregorian date initialized to the absolute reference date (the first instant of 1 January 2001,
GMT) plus seconds, which may be positive or negative. This constructor sets the date’s time zone to the
default time zone.

public NSGregorianDate(double seconds, NSDate aDate)

Discussion
Creates a new Gregorian date initialized to aDate plus seconds, which may be positive or negative. This
constructor sets the date’s time zone to the default time zone.

public NSGregorianDate(double seconds, NSTimeZone aTlimeZone)

Discussion

Creates a new Gregorian date initialized to the absolute reference date (the first instant of 1 January 2001,
GMT) plus seconds, which may be positive or negative. This constructor sets the date’s time zone to
alimeZone.

public NSGregorianDate(int year, int month, int day, int hour, int minute, int
second, NSTimeZone aTlimeZone)

Constructors 199
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30
NSGregorianDate

Discussion

Creates a new Gregorian date with the specified values for year, month, day, hour, minute, second, and
time zone, a TimeZone. The year value must include the century (for example, 1995 instead of 95). The other
values are the standard ones: 1 through 12 for months, 1 through 31 for days, 0 through 23 for hours, and 0
through 59 for both minutes and seconds.

On days when daylight savings “falls back,” there are two 1:30 AMs. If you use this method there is no way
to create the second 1:30 AM. Instead, you should create the first and then use
dateByAddingGregorianUnits (page 200) to add an hour.

The following code fragment shows a Gregorian date created for 4 July 1994, 9 PM, eastern standard time:

NSGregorianDate fireworks = new NSGregorianDate(1994, 7, 4, 21, 0, O,
new NSTimeZone("EST", true));

Instance Methods

200

dateByAddingGregorianUnits

public NSGregorianDate dateByAddingGregorianUnits(int year, int month, int day,
int hour, int minute, int second)

Discussion
Returns a Gregorian date that is updated with the year, month, day, hour, minute, and second offsets
specified as arguments. The offsets can be positive (future) or negative (past).

This method preserves “clock time” across changes in daylight savings time zones and leap years. For example,
adding one month to a Gregorian date with a time of 12 noon correctly maintains time at 12 noon. One thing
to be aware of is if you add one day to 2:30 AM on the day before daylight savings “springs ahead,” it will
actually result in 1:30 AM on the next day (which is one day, or 24 hours, later).

Note that the arguments are applied in a left-to-right order: year first, then month, then day, and so on. So,
adding one month, four days to 27 April results in 31 May, not 1 June.

The following code fragment shows a Gregorian date created with a date a week later than an existing
Gregorian date:

NSCalendarDate now = new NSGregorianDate();
NSCalendarDate nextWeek =
now.dateByAddingGregorianUnits(0, 0, 7, 0, 0, 0);

See Also
gregorianUnitsSinceDate (page 202)

dayOfCommonEra
public int dayOfCommonEra()

Discussion
Returns the number of days since the beginning of the Common Era. The base year of the Common Erais 1
C.E. (which is the same as 1 A.D.).

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30
NSGregorianDate

See Also
dayOfMonth (page 201)

dayOflWeek (page 201)

dayOfYear (page 202)

hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
secondOfMinute (page 205)
yearOfCommonEra (page 205)

dayOfMonth

Returns a number that indicates the day of the month (1 through 31) of the receiver.
public int dayOfMonth()

See Also
dayOfCommonEra (page 200)

dayOflWeek (page 201)

dayOfYear (page 202)

hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
second0fMinute (page 205)
yearOfCommonEra (page 205)

dayOfWeek

Returns a number that indicates the day of the week (0 through 6) of the receiver; 0 indicates Sunday.
public int dayOfWeek()

See Also
dayOfCommonEra (page 200)

dayOfMonth (page 201)
dayOfYear (page 202)

hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
second0fMinute (page 205)
yearOfCommonEra (page 205)

Instance Methods 201
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

202

CHAPTER 30
NSGregorianDate

dayOfYear

Returns a number that indicates the day of the year (1 through 366) of the receiver.
public int dayOfYear()

See Also
dayOfCommonEra (page 200)

dayOfMonth (page 201)
dayOfleek (page 201)

hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
second0fMinute (page 205)
yearOfCommonEra (page 205)

equals

Returns trueif anObjectis an instance of NSGregorianDate and satisfies isEqualToGregorianDate (page
203).

public boolean equals(0Object anObject)

Discussion
Returns false otherwise.

gregorianUnitsSinceDate

Computes the calendrical time difference between the receiver and date and returns itin years, months,
days, hours, minutes,and seconds.

public void gregorianUnitsSinceDate(NSGregorianDate date, NSGregorianDate.IntRef
years, NSGregorianDate.IntRef months, NSGregorianDate.IntRef days,
NSGregorianDate.IntRef hours, NSGregorianDate.IntRef minutes,
NSGregorianDate.IntRef seconds)

Discussion
NSGregorianDate.IntRef is a local class that contains a single element: the integer value.

You can choose any representation you wish for the time difference by passing nu11 for the arguments you
want to ignore. For example, the following code fragment computes the difference in months, days, and
years between two dates:

NSGregorianDate momsBDay =

new NSGregorianDate(1936, 1, 8, 7, 30, 0, new NSTimeZone("EST", true));
NSGregorianDate dateOfBirth =

new NSGregorianDate(1965, 12, 7, 17, 25, 0, new NSTimeZone("EST", true));

NSGregorianDate.IntRef years = new NSGregorianDate.IntRef();
NSGregorianDate.IntRef months = new NSGregorianDate.IntRef();
NSGregorianDate.IntRef days = new NSGregorianDate.IntRef();

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30
NSGregorianDate

dateOfBirth.gregorianUnitsSinceDate(momsBDay, years, months, days,
null, null, null)

This message returns 29 years, 10 months, and 29 days. If you want to express the years in terms of months,
you pass null for the years argument:

dateOfBirth.gregorianUnitsSinceDate(momsBDay, null, months, days,
null, null, null);

This message returns 358 months and 29 days.

See Also
dateByAddingGregorianUnits (page 200)

hashCode

Returns a hash value for the receiver.
public int hashCode()

Discussion
The hash value is the integer value of the time interval returned from
timelIntervalSinceReferenceDate (page 144) (NSDate).

hourOfDay

Returns the hour value (0 through 23) of the receiver.
public int hour0fDay()

Discussion
On daylight savings “fall back” days, a value of 1 is returned for two consecutive hours, but with a different
time zone (the first in daylight savings time and the second in standard time).

See Also
dayOfCommonEra (page 200)

dayOfMonth (page 201)
dayOfleek (page 201)

dayOfYear (page 202)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
second0fMinute (page 205)
yearOfCommonEra (page 205)

isEqualToGregorianDate

Returns true if the receiver and aGregorianDate represent the same date and have the same time zone
set.

Instance Methods 203
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30
NSGregorianDate

public boolean isEqualToGregorianDate(NSGregorianDate aGregorianDate)

Discussion
Returns false otherwise.

microsecondOfSecond

Returns the microseconds value (0 through 999,999) of the receiver.
public int microsecond0fSecond()

See Also
dayOfCommonEra (page 200)

dayOfMonth (page 201)
dayOfleek (page 201)
dayOfYear (page 202)
hourOfDay (page 203)
minuteOfHour (page 204)
monthOfYear (page 204)
second0fMinute (page 205)
yearOfCommonEra (page 205)

minuteOfHour

Returns the minutes value (0 through 59) of the receiver.
public int minuteOfHour()

See Also
dayOfCommonEra (page 200)

dayOfMonth (page 201)
dayOfWeek (page 201)
dayOfYear (page 202)

hourOfDay (page 203)
microsecond0fSecond (page 204)
monthOfYear (page 204)
second0fMinute (page 205)
yearOfCommonkra (page 205)

monthOfYear

Returns a number that indicates the month of the year (1 through 12) of the receiver.
public int monthOfYear()

See Also
dayOfCommonEra (page 200)

dayOfMonth (page 201)

204 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30
NSGregorianDate

dayOfleek (page 201)

dayOfYear (page 202)

hourOfDay (page 203)
microsecond0fSecond (page 204)
minuteOfHour (page 204)
secondOfMinute (page 205)
yearOfCommonEra (page 205)

secondOfMinute

Returns the seconds value (0 through 59) of the receiver.
public int secondOfMinute()

See Also
dayOfCommonEra (page 200)

dayOfMonth (page 201)
dayOflWeek (page 201)

dayOfYear (page 202)

hourOfDay (page 203)
microsecond0fSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
yearOfCommonEra (page 205)

timeZone

Returns the time zone object associated with the receiver.
NSTimeZone timeZone()

Discussion

You can explicitly set the time zone to an NSTimeZone object using a constructor that takes an NSTimeZone
object as an argument. If you do not specify a time zone for an object at initialization time, NSGregorianDate
uses the default time zone for the locale.

toString

Returns a string representation of the receiver.

String toString()

yearOfCommonEra

Returns a number that indicates the year, including the century, of the receiver (for example, 1995). The base
year of the Common Era is 1 C.E. (which is the same as 1 A.D.).

Instance Methods 205
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 30
NSGregorianDate

public int yearOfCommonEra()

See Also
dayOfCommonEra (page 200)

dayOfMonth (page 201)
dayOfleek (page 201)

dayOfYear (page 202)

hourOfDay (page 203)
microsecondOfSecond (page 204)
minuteOfHour (page 204)
monthOfYear (page 204)
second0fMinute (page 205)

206 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31

NSGregorianDate.IntRef

Inherits from Object

Package: com.apple.cocoa.foundation

Companion guide Date and Time Programming Guide for Cocoa
Overview

The NSGregorianDate.IntRef class is used by the NSGregorianDate method gregorianUnitsSinceDate (page
202) to return the integer values for the number of years, months, and so on separating two dates. The class
contains a single element: the integer value.

Tasks

Constructors

IntRef (page 207)
Creates a new NSGregorianDate.IntRef object.

Constructors

IntRef

Creates a new NSGregorianDate.IntRef object.

public NSGregorianDate.IntRef()

Overview 207
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 31
NSGregorianDate.IntRef

208 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

Inherits from NSFormatter : NSObject

Implements NSCoding (NSFormatter)

Package: com.apple.cocoa.foundation

Companion guide Data Formatting Programming Guide for Cocoa
Overview

Instances of NSGregorianDateFormatter format the textual representation of cells that contain NSDates
(including NSGregorianDates) and convert textual representations of dates and times into NSDates. You can
express the representation of dates and times very flexibly: “Thu 22 Dec 1994" is just as acceptable as
“12/22/94." With natural-language processing for dates enabled, users can also express dates colloquially,
such as “today,” “day after tomorrow,” and “a month from today.”

With Mac OS X version 10.4 and later, NSGregorianDateFormatter has two modes of operation (or behaviors).
By default, instances of NSGregorianDateFormatter have the same behavior as they did on Mac OS X versions
10.0 to 10.3. You can, however, configure instances (or set a default for all instances) to adopt a new behavior
implemented for Mac OS X version 10.4. See Data Formatting for a full description of the old and new
behaviors.

Tasks

Constructors

NSGregorianDateFormatter (page 210)
Creates an empty NSGregorianDateFormatter.

Getting Behavior
allowsNaturallanguage (page 211)

Returns true if the receiver attempts to process dates entered as a vernacular string (“today,” “day
before yesterday,” and so on).

Overview 209
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

Getting and Setting Attributes

dateFormat (page 211)
Returns the date format string used by the receiver.

String Manipulation

attributedStringForObjectValue (page 211)

Returns an NSAttributedString if the string for display should have some attributes.
isPartialStringValid (page 211)

Since this method is invoked each time the user presses a key while the cell has the keyboard focus,

it lets you verify the cell text as the user types it. partialStringis the text currently in the cell.
objectValueForString (page 212)

Returns an object you've created from aString.

replacementStringForString (page 212)
Checks whether aStringis a valid string for the cell.

stringForObjectValue (page 212)
Returns the string that textually represents the cell’s object for display and for editing.

Constructors

210

NSGregorianDateFormatter

Creates an empty NSGregorianDateFormatter.
public NSGregorianDateFormatter()

Discussion

The formatter processes dates entered as expressions in the vernacular (for example, “tomorrow”);
NSGregorianDateFormatter attempts natural-language processing only after it fails to interpret an entered
string according to format.

Creates an NSGregorianDateFormatter instance that uses the date format in its conversions.
public NSGregorianDateFormatter(String format, boolean naturallanguageflag)

Discussion

See “The Calendar Format” for a list of conversion specifiers permitted in date format strings. Set
naturallanguageflagto true if you want the NSGregorianDateFormatter to process dates entered as
expressions in the vernacular (for example, “tomorrow”); NSGregorianDateFormatter attempts natural-language
processing only after it fails to interpret an entered string according to format.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

Instance Methods

allowsNaturalLanguage
Returns true if the receiver attempts to process dates entered as a vernacular string (“today,” “day before
yesterday,” and so on).

public boolean allowsNaturallanguage()

Discussion
Returns false if the receiver does not do any natural-language processing of these date expressions.

attributedStringForObjectValue
Returns an NSAttributedString if the string for display should have some attributes.

public NSAttributedString attributedStringForObjectValue(Object anObject,
NSDictionary attributes)

Discussion

For instance, you might want past dates to appear in red text. Invoke your implementation of
stringForObjectValue (page 212) to get the nonattributed string. Then create an NSAttributedString with
it. The default attributes for text in the cell are passed in with attributes; use this NSDictionary to reset
the attributes of the string when a change in value warrants it (for example, a negative value becomes
positive). If an NSAttributedString cannot be created for anObject,anNSFormatter.FormattingException
is thrown. For information on creating attributed strings, see the NSAttributedString (page 67) class.

dateFormat

Returns the date format string used by the receiver.
public String dateFormat()

Discussion
See “The Calendar Format” for a list of the conversion specifiers permitted in date format strings.

isPartialStringValid
Since this method is invoked each time the user presses a key while the cell has the keyboard focus, it lets
you verify the cell text as the user types it. partialStringis the text currently in the cell.

public boolean isPartialStringValid(String partialString)

Discussion
Return trueif partialStringisacceptable and false ifitis not. If you return false, the cell displays
partialString minus the last character typed.

See Also
replacementStringForString (page 212)

Instance Methods 2N
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

objectValueForString
Returns an object you've created from aString.

public Object objectValueForString(String aString)

Discussion
If an object cannot be created from aString, an NSFormatter.ParsingException is thrown.

See Also
stringForObjectValue (page 212)

replacementStringForString

Checks whether aStringis a valid string for the cell.
public String replacementStringForString(String aString)

Discussion
If it is, returns it unmodified. Otherwise, corrects it and returns the modified string. For example, you might
convert all lowercase letters to uppercase or insert different separator characters in a date.

See Also
isPartialStringValid (page211)

stringForObjectValue

Returns the string that textually represents the cell’s object for display and for editing.
public String stringForObjectValue(Object anObject)

Discussion

First tests the passed-in object to see if it's of the correct class. If it isn’t, returns nu171; if it is of the right class,
returns a properly formatted and, if necessary, localized string. If a string cannot be created for an0Object,
an NSFormatter.FormattingException is thrown.

See Also
attributedStringForObjectValue (page211)

objectValueForString (page 212)

Constants

212

The following constants specify predefined date and time format styles.The format for these date and time
styles is not exact because they depend on the locale, user preference settings, and the operating system
version. Do not use these constants if you want an exact format.

Date and Time Format Styles

Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

NSDateFormatterNoStyle
Specifies no style. Equal to kCFDateFormatterNoSty1e. Available in Mac OS X version 10.4 and
later.
NSDateFormatterShortStyle
Specifies a short style, typically numeric only, such as “11/23/37” or “3:30pm” Equal to
kCFDateFormatterShortStyle. Available in Mac OS X version 10.4 and later.
NSDateFormatterMediumStyle
Specifies a medium style, typically with abbreviated text, such as “Nov 23, 1937" Equal to
kCFDateFormatterMediumSty1e. Available in Mac OS X version 10.4 and later.
NSDateFormatterLongStyle
Specifies a long style, typically with full text, such as “November 23, 1937" or “3:30:32pm" Equal to
kCFDateFormatterlLongStyle. Available in Mac OS X version 10.4 and later.
NSDateFormatterFullStyle

Specifies a full style with complete details, such as “Tuesday, April 12, 1952 AD” or “3:30:42pm PST".
Equal to kCFDateFormatterFull1Style. Available in Mac OS X version 10.4 and later.

Date Formatter Behavior

NSDateFormatterBehaviorDefault
Specifies default formatting behavior.

NSDateFormatterBehavior10_0
Specifies formatting behavior equivalent to that in Mac OS X 10.0.

NSDateFormatterBehavior10_4
Specifies formatting behavior equivalent for Mac OS X 10.4.

Constants 213
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 32

NSGregorianDateFormatter

214 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33

NSHFSFileTypes

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Low-Level File Management Programming Topics
Overview

NSHFSFileTypes supports an environment in which the type of a file may be indicated by either a filename
extension or an HFS file type.

Tasks

Constructors

NSHFSFileTypes (page 215)
Creates an NSHFSFileTypes object.

Working with HFS File Types

fileTypeForHFSTypeCode (page 216)
Returns a string that encodes typeCode.

hfsTypeCodeFromFileType (page 216)
Given a string of the type encoded by fileTypeForHFSTypeCode (page 216), returns the
corresponding HFS file type code.

hfsTypeOfFile (page 216)
Returns a string encoding the file type of fi7ePath, or null if unsuccessful.

Constructors

NSHFSFileTypes
Creates an NSHFSFileTypes object.

Overview 215
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 33
NSHFSFileTypes

public NSHFSFileTypes()

Discussion
All of its methods are static, so there is no need to create instances.

Static Methods

216

fileTypeForHFSTypeCode

Returns a string that encodes typeCode.

public static String fileTypeForHFSTypeCode(int typeCode)

hfsTypeCodeFromFileType

Given a string of the type encoded by fileTypeForHFSTypeCode (page 216), returns the corresponding
HFS file type code.

public static int hfsTypeCodeFromFileType(String fileType)

Discussion
If this cannot be done, 0 is returned.

hfsTypeOfFile

Returns a string encoding the file type of filePath, or null if unsuccessful.

public static String hfsTypeOfFile(String filePath)

Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34

NSIndexSet

Inherits from NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.3 and later.

Companion guide Collections Programming Topics for Cocoa
Overview

Tasks

NSIndexSet manages an immutable collection of unique unsigned integers, also known as indexes because
of the way they are used. You use NSIndexSet in your code to store indexes into some other data structure.
For example, given an NSArray object, you could use an index set to identify a subset of objects in that array.

Each index value can appear only once in the index set. This is an important concept to understand and is
why you would not use NSIndexSet to store an arbitrary collection of integer values. To illustrate how this
works, if you created a new NSIndexSet with the values 4, 5, 2, and 5, the resulting set would only have the
values 4, 5, and 2 in it. Because index values are always maintained in sorted order, the actual order of the
values when you created the set would be 2, 4, and then 5.

In most cases, using an NSIndexSet is more efficient than storing a collection of individual integers. Internally,
indexes are represented using ranges. For maximum performance and efficiency, overlapping ranges in an
index set are automatically coalesced—that is, ranges merge rather than overlap. Thus, the more contiguous
the indexes in the set, the fewer ranges are required to specify those indexes.

NSIndexSet is not intended to be subclassed.

The mutable subclass of NSIndexSet is NSMutableIndexSet (page 329).

Constructors

NSIndexSet (page 218)
Creates and returns an NSIndexSet containing the indexes specified by NSRange.ZeroRange.

Overview 217
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34
NSIndexSet

Testing an Index Set

isEqualTolndexSet (page 222)
Returns true if the receiver contains the same indexes as indexSet.

containsIndex (page 219)
Returns true if the receiver contains the index represented by value.

containsIndexes (page 219)
Returns true if the receiver contains all of the indexes present in indexSet.

containsIndexesInRange (page 220)
Returns true if the receiver contains all the indexes in the range specified by range.

intersectsIndexesInRange (page 222)
Returns true if the receiver contains any indexes in the range specified by range.

Getting Information About an Index Set

count (page 220)
Returns the number of indexes in the receiver or 0 if it is empty.

Accessing Indexes

firstindex (page 220)
Returns the first index in the index set or Not Found if the index set is empty.

lastIndex (page 222)
Returns the last index in the index set or Not Found if the index set is empty.

indexGreaterThanIndex (page 220)

Returns the next closest index that is greater than va /ue or NotFound if va Tue is equal to or beyond

the last index in the set.

indexLessThanIndex (page 221)

Returns the next closest index that is less than vaTue or NotFound if valueis equal to or before the

first index in the set.

indexGreaterThanOrEqualTolIndex (page 221)

Returns the next closest index that is greater than or equal to va7ue or NotFound if valueis beyond

the last index in the set.

indexLessThanOrEqualTolIndex (page 221)

Returns the next closest index that is less than or equal to value or NotFound if value is before the

first index in the set.

Constructors

218

NSIndexSet

Creates and returns an NSIndexSet containing the indexes specified by NSRange.ZeroRange.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34
NSIndexSet

public NSIndexSet()

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSIndexSet containing a single index, value.
public NSIndexSet(int value)

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSIndexSet containing the indexes specified by range.
public NSIndexSet(NSRange range)

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSIndexSet containing the indexes in indexSet.
public NSIndexSet(NSIndexSet indexSet)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods

containsindex

Returns true if the receiver contains the index represented by value.
public boolean containsIndex(int value)

Availability
Available in Mac OS X v10.3 and later.

See Also
containsIndexes (page 219)

containsIndexesInRange (page 220)

containsindexes

Returns true if the receiver contains all of the indexes present in indexSet.
public boolean containsIndexes(NSIndexSet indexSet)

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 219
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

220

CHAPTER 34
NSIndexSet

See Also
containsIndex (page 219)

containsIndexesInRange (page 220)

containsindexesinRange

Returns true if the receiver contains all the indexes in the range specified by range.
public boolean containsIindexesInRange(NSRange range)

Discussion
For example, if an index set contains indexes 20 through 30, this method would return true for the range
(20, 8) and false for the range (20, 14).

Availability
Available in Mac OS X v10.3 and later.

See Also
containsIndex (page 219)

containsIndexes (page 219)
intersectsIndexesInRange (page 222)

count

Returns the number of indexes in the receiver or 0 if it is empty.
public int count()

Availability
Available in Mac OS X v10.3 and later.

firstindex

Returns the first index in the index set or Not Found if the index set is empty.
public int firstIndex()

Availability
Available in Mac OS X v10.3 and later.

See Also
lastIndex (page 222)

indexGreaterThanindex

Returns the next closest index that is greater than value or NotFound if value is equal to or beyond the
last index in the set.

public int indexGreaterThanIndex(int value)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34
NSIndexSet

Availability
Available in Mac OS X v10.3 and later.

See Also
indexLessThanIndex (page 221)

indexGreaterThanOrEqualTolndex (page 221)
indexlLessThanOrEqualToIndex (page 221)

indexGreaterThanOrEqualTolndex
Returns the next closest index that is greater than or equal to value or NotFound if value is beyond the
last index in the set.

public int indexGreaterThanOrEqualTolIndex(int value)

Availability
Available in Mac OS X v10.3 and later.

See Also
indexGreaterThanIndex (page 220)

indexLessThanIndex (page 221)
indexlLessThanOrEqualToIndex (page 221)

indexLessThanindex

Returns the next closest index that is less than value or NotFound if valueis equal to or before the first
index in the set.

public int indexlLessThanIndex(int value)

Availability
Available in Mac OS X v10.3 and later.

See Also
indexGreaterThanIndex (page 220)

indexGreaterThanOrEqualTolndex (page 221)
indexlLessThanOrEqualToIndex (page 221)

indexLessThanOrEqualTolndex

Returns the next closest index that is less than or equal to value or NotFound if value is before the first
index in the set.

public int indexLessThanOrEqualTolIndex(int value)

Availability
Available in Mac OS X v10.3 and later.

See Also
indexGreaterThanIndex (page 220)

Instance Methods 221
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 34
NSIndexSet

indexLessThanIndex (page 221)
indexGreaterThanOrEqualToIndex (page 221)

intersectsindexesinRange

Returns true if the receiver contains any indexes in the range specified by range.
public boolean intersectsIndexesInRange(NSRangerange

Availability
Available in Mac OS X v10.3 and later.

See Also
containsIndexesInRange (page 220)

isEqualTolndexSet

Returns true if the receiver contains the same indexes as indexSet.
public boolean iskEqualTolIndexSet(NSIndexSet indexSet)

Availability
Available in Mac OS X v10.3 and later.

lastindex

Returns the last index in the index set or NotFound if the index set is empty.
public int TastIndex()

Availability
Available in Mac OS X v10.3 and later.

See Also
firstIindex (page 220)

Constants

NSIndexSet provides the following constant as a convenience; you can use it to compare to values returned
by some NSIndexSet methods:

Constant Description

NotFound | Returned when an object is not found in an NSIndexSet.

222 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 35

NSIndexSpecifier

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide
Overview

Specifies an object in a collection (or container) by index number. The script terms first and front specify
the object with index 0, while “last” specifies the object with index of count minus 1. A negative index indicates
a location by counting backward from the last object in the collection.

You don't normally subclass NSIndexSpecifier.

Tasks

Constructors

NSIndexSpecifier (page 223)
Returns an NSIndexSpecifier with no data.

Accessing Index Information

index (page 224)
Returns the index number encapsulated with the receiver for the specified object in the container.

setIndex (page 224)
Sets index as the index number encapsulated by the receiver for the specified object in the container.

Constructors

NSIndexSpecifier

Returns an NSIndexSpecifier with no data.

public NSIndexSpecifier()

Overview 223
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 35
NSIndexSpecifier

Discussion
Do not use this constructor.

Returns an NSIndexSpecifier initialized with container specifier specifier, key key, and the class description
of the object specifier cTassDescription, derived from the value of the specifier’s key.

public NSIndexSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key)

Discussion
The receiver’s child specifier reference is set to nu11. You use the setIndex (page 224) method to set the
zero-based index value for the specifier.

Returns an NSIndexSpecifier initialized with container specifier specifier and key key.
public NSIndexSpecifier(NSScriptObjectSpecifier specifier, String key)

Discussion
The class description of container is set automatically.

Returns an NSIndexSpecifier initialized with an index value of index for container specifier specifier, key
key, and the class description of the object specifier c7assDescription, derived from the value of the
specifier’s key.

public NSIndexSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key, int index)

Instance Methods

index

Returns the index number encapsulated with the receiver for the specified object in the container.

public int index()

setindex

Sets 7ndex as the index number encapsulated by the receiver for the specified object in the container.

public void setlndex(int 7ndex)

224 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36

NSKeyedArchiver

Inherits from NSCoder : NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.2 and later.

Companion guide Archives and Serializations Programming Guide for Cocoa
Overview

Tasks

NSKeyedArchiver, a concrete subclass of NSCoder, provides a way to encode objects (and scalar values) into
an architecture-independent format that can be stored in a file. When you archive a set of objects, the class
information and instance variables for each object are written to the archive. NSKeyedArchiver’s companion
class, NSKeyedUnarchiver, decodes the data in an archive and creates a set of objects equivalent to the
original set.

A keyed archive differs from a non-keyed archive in that all the objects and values encoded into the archive
are given names, or keys. When decoding a non-keyed archive, values have to be decoded in the same order
in which they were encoded. When decoding a keyed archive, because values are requested by name, values
can be decoded out of sequence or not at all. Keyed archives, therefore, provide better support for forward
and backward compatibility.

The keys given to encoded values must be unique only within the scope of the current object being encoded.
A keyed archive is hierarchical, so the keys used by object A to encode its instance variables do not conflict
with the keys used by object B, even if A and B are instances of the same class. Within a single object, however,
the keys used by a subclass can conflict with keys used in its superclasses.

An NSArchiver object can write the archive data to a file or to a mutable-data object (NSMutableData) that
you provide.

Constructors

NSKeyedArchiver (page 228)
Creates an empty NSKeyedArchiver.

Overview 225
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

Archiving Data

archivedDatallithRootObject (page 229)
Returns a data object containing the encoded form of the object graph whose root object is
rootObject.

archiveRootObjectToFile (page 229)
Archives root0bject by encoding it into a data object and atomically writes the resulting data object
to the file path.

finishEncoding (page 236)
Tells the receiver that you have finished encoding objects, allowing it to construct the final data
stream.

outputFormat (page 236)
Returns the format in which the receiver encodes its data.

setOutputFormat (page 237)
Sets the format in which the receiver encodes its data.

Encoding Data

encodeBoolForKey (page 230)
Encodes boo v and associates it with the string key.

encodeByte (page 231)
Encodes bytev.

encodeByteForKey (page 231)
Encodes bytev and associates it with the string key.

encodeChar (page 231)
Encodes charv.

encodeCharForKey (page 231)
Encodes charv and associates it with the string key.

encodeConditionalObject (page 232)
Encodes a reference to objv only if 0bjv has been unconditionally encoded elsewhere in the archive.
encodeConditionalObjectForKey (page 232)

Encodes a reference to 0bj v and associates it with the string key only if 0bj v has been unconditionally
encoded elsewhere in the archive with encodeObjectForKey (page 235).

encodeDatalbject (page 232)
Encodes datav.

encodeDouble (page 232)
Encodes realv.

encodeDoubleForKey (page 233)
Encodes realvand associates it with the string key.

encodeFloat (page 233)
Encodes realv.

encodeFloatForKey (page 233)
Encodes realv and associates it with the string key.

226 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

encodelnt (page 233)

Encodes intv.
encodelntForKey (page 234)

Encodes 7ntv and associates it with the string key.
encodelong (page 234)

Encodes Tongv.
encodelongForKey (page 234)

Encodes 7ongv and associates it with the string key.
encodeObject (page 234)

Encodes objv.
encodeObjectForKey (page 235)

Encodes objv and associates it with the string key.
encodePointForKey (page 235)

Encodes pointvand associates it with the string key.
encodeRectForKey (page 235)

Encodes rectv and associates it with the string key.
encodeShort (page 235)

Encodes shortv.
encodeShortForKey (page 236)

Encodes shortvand associates it with the string key.
encodeSizeForKey (page 236)

Encodes s7zevand associates it with the string key.

Managing Delegates

delegate (page 230)
Returns the receiver’s delegate.

setDelegate (page 237)
Sets the receiver’s delegate.

Managing Classes and Class Names

setGlobalClassNameForClass (page 229)
Adds a class translation mapping to NSKeyedArchiver whereby instances of ¢ /s are encoded with
the class name codedName instead of their real class names.
globalClassNameForClass (page 229)
Returns the class name with which NSKeyedArchiver encodes instances of c7s.
setClassNameForClass (page 237)
Adds a class translation mapping to the receiver whereby instances of c /s are encoded with the class
name codedName instead of their real class names.

classNameForClass (page 230)
Returns the class name with which the receiver encodes instances of c7s.

Tasks 227
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

Querying an Archiver

versionForClassName (page 238)
Returns the current class version number for the class named c7assName.

Encoding objects

archiverDidEncodeObject (page 238)
Informs the delegate that object has been encoded.

archiverWillEncodeObject (page 238)
Informs the delegate that object is about to be encoded.

archiverWillReplaceObject (page 239)
Informs the delegate that new0Object is being substituted for object.

Finishing encoding

archiverDidFinish (page 238)
Notifies the delegate that encoding has finished.

archiverWillFinish (page 239)
Notifies the delegate that encoding is about to finish.

Constructors

NSKeyedArchiver

Creates an empty NSKeyedArchiver.
public NSKeyedArchiver()

Discussion
Use the other constructor or the static methods archivedDataWithRootObject (page 229) or
archiveRootObjectToFile (page 229), instead.

Availability
Available in Mac OS X v10.2 and later.

Creates an NSKeyedArchiver with the data object as its archive and prepares the NSKeyedArchiver for a
subsequent encode operation.

public NSKeyedArchiver(NSMutableData data)

Availability
Available in Mac OS X v10.2 and later.

228 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

Static Methods

archivedDataWithRootObject

Returns a data object containing the encoded form of the object graph whose root object is root0Object.
public static NSData archivedDataWithRootObject(Object rootObject)

Discussion
The format of the archive is NSPropertylList.PropertylListBinaryFormat.

Availability
Available in Mac OS X v10.2 and later.

archiveRootObjectToFile

Archives root0bject by encoding it into a data object and atomically writes the resulting data object to
the file path.

public static boolean archiveRootObjectToFile(0Object rootObject, String path)

Discussion
Returns t rue upon success. The format of the archive is NSPropertylList.PropertyListBinaryFormat.

Availability
Available in Mac OS X v10.2 and later.

globalClassNameForClass

Returns the class name with which NSKeyedArchiver encodes instances of c7s.
public static String globalClassNameForClass(Class cls)

Discussion
Returns nul1 if NSKeyedArchiver does not have a translation mapping for c7s.

Availability
Available in Mac OS X v10.2 and later.

See Also
setGlobalClassNameForClass (page 229)

classNameForClass (page 230)

setGlobalClassNameForClass

Adds a class translation mapping to NSKeyedArchiver whereby instances of c /s are encoded with the class
name codedName instead of their real class names.

public static void setGlobalClassNameForClass(String codedName, Class cls)

Static Methods 229
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

Discussion
When encoding, the class’s translation mapping is used only if no translation is found first in an instance’s
separate translation map.

Availability
Available in Mac OS X v10.2 and later.

See Also
globalClassNameForClass (page 229)

setClassNameForClass (page 237)

Instance Methods

classNameForClass

Returns the class name with which the receiver encodes instances of c7s.
public String classNameForClass(Class cls)

Discussion
Returns nul11 if the receiver does not have a translation mapping for c7s. The class’s separate translation
map is not searched.

Availability
Available in Mac OS X v10.2 and later.

See Also
setClassNameForClass (page 237)

globalClassNameForClass (page 229)

delegate

Returns the receiver’s delegate.
public Object delegate()

Availability
Available in Mac OS X v10.2 and later.

See Also
setDelegate (page 237)

encodeBoolForKey

Encodes boo v and associates it with the string key.

public void encodeBoolForKey(boolean boolv, String key)

230 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeBoolForKey (page 246) (NSKeyedUnarchiver)

encodeByte
Encodes bytev.

public void encodeByte(byte bytev)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeByte (page 247) (NSKeyedUnarchiver)

encodeByteForKey

Encodes bytev and associates it with the string key.
public void encodeByteForKey(byte bytev, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeByteForKey (page 247) (NSKeyedUnarchiver)

encodeChar

Encodes charv.
public void encodeChar(char charv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeChar (page 247) (NSKeyedUnarchiver)

encodeCharForKey

Encodes charv and associates it with the string key.
public void encodeCharForKey(char charv, String key)

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 231
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

232

CHAPTER 36
NSKeyedArchiver

See Also
decodeCharForKey (page 247) (NSKeyedUnarchiver)

encodeConditionalObject

Encodes a reference to objv only if 0bjv has been unconditionally encoded elsewhere in the archive.
public void encodeConditionalObject(0Object objv)

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeConditionalObjectForKey (page 232)

encodeObject (page 234)
encodeObjectForKey (page 235)

encodeConditionalObjectForKey

Encodes a reference to 0bjv and associates it with the string key only if objv has been unconditionally
encoded elsewhere in the archive with encodeObjectForKey (page 235).

public void encodeConditionalObjectForKey(0Object objv, String key)

Availability
Available in Mac OS X v10.2 and later.

encodeDataObject

Encodes datav.
public void encodeDataObject(NSData datav)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeDataObject (page 248) (NSKeyedUnarchiver)

encodeDouble

Encodes realv.
public void encodeDouble(double realv)

Availability
Available in Mac OS X v10.2 and later.

See Also

decodeDouble (page 248) (NSKeyedUnarchiver)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

encodeDoubleForKey

Encodes realv and associates it with the string key.
public void encodeDoubleForKey(double realv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeDoubleForKey (page 248) (NSKeyedUnarchiver)

decodeFloatForKey (page 249) (NSKeyedUnarchiver)

encodeFloat

Encodes realv.
public void encodeFloat(float realv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeFloat (page 248) (NSKeyedUnarchiver)

encodeFloatForKey

Encodes realv and associates it with the string key.
public void encodeFloatForKey(float realv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeFloatForKey (page 249) (NSKeyedUnarchiver)

decodeDoubleForKey (page 248) (NSKeyedUnarchiver)

encodelnt

Encodes intv.
public void encodelnt(int 7ntv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodelnt (page 249) (NSKeyedUnarchiver)

Instance Methods 233
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

encodelntForKey

Encodes 7ntv and associates it with the string key.
public void encodelntForKey(int 7ntv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodelntForKey (page 249) (NSKeyedUnarchiver)

decodeShortForKey (page 252) (NSKeyedUnarchiver)
decodelongForKey (page 250) (NSKeyedUnarchiver)

encodelong

Encodes Tongv.
public void encodelong(long Tongv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodelong (page 250) (NSKeyedUnarchiver)

encodelLongForKey

Encodes 7ongv and associates it with the string key.
public void encodelongForKey(long Tongv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodelongForKey (page 250) (NSKeyedUnarchiver)

decodeShortForKey (page 252) (NSKeyedUnarchiver)
decodelntForKey (page 249) (NSKeyedUnarchiver)

encodeObject

Encodes objv.
public void encodeObject(Object objv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeObject (page 250) (NSKeyedUnarchiver)

234 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

encodeObjectForKey

Encodes objv and associates it with the string key.
public void encodeObjectForKey(Object objv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeObjectForKey (page 251) (NSKeyedUnarchiver)

encodePointForKey

Encodes pointvand associates it with the string key.
public void encodePointForKey(NSPoint pointv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodePointForKey (page 251) (NSKeyedUnarchiver)

encodeRectForKey

Encodes rectv and associates it with the string key.
public void encodeRectForKey(NSRect rectv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeRectForKey (page 251) (NSKeyedUnarchiver)

encodeShort

Encodes shortv.
public void encodeShort(short shortv)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeShort (page 251) (NSKeyedUnarchiver)

Instance Methods 235
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

236

CHAPTER 36
NSKeyedArchiver

encodeShortForKey

Encodes shortv and associates it with the string key.
public void encodeShortForKey(short shortv, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeShortForKey (page 252) (NSKeyedUnarchiver)

decodelntForKey (page 249) (NSKeyedUnarchiver)
decodelongForKey (page 250) (NSKeyedUnarchiver)

encodeSizeForKey

Encodes s7zev and associates it with the string key.
public void encodeSizeForKey(NSSize sizev, String key)

Availability
Available in Mac OS X v10.2 and later.

See Also
decodeSizeForKey (page 252) (NSKeyedUnarchiver)

finishEncoding

Tells the receiver that you have finished encoding objects, allowing it to construct the final data stream.
public void finishEncoding()

Discussion
No more values can be encoded after this method is called. You must call this method when finished.

Availability
Available in Mac OS X v10.2 and later.

See Also
NSKeyedArchiver (page 228)

outputFormat

Returns the format in which the receiver encodes its data.
public int outputFormat()

Discussion
The available formats are NSPropertylList.PropertyListXMLFormat and
NSPropertylList.PropertylListBinaryFormat.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

Availability
Available in Mac OS X v10.2 and later.

See Also
setOutputFormat (page 237)

setClassNameForClass

Adds a class translation mapping to the receiver whereby instances of ¢ /s are encoded with the class name
codedName instead of their real class names.

public void setClassNameForClass(String codedName, Class cls)

Discussion
When encoding, the receiver’s translation map overrides any translation that may also be present in the
class’s map.

Availability
Available in Mac OS X v10.2 and later.

See Also
classNameForClass (page 230)

setGlobalClassNameForClass (page 229)

setDelegate

Sets the receiver’s delegate.
public void setDelegate(Object delegate)

Availability
Available in Mac OS X v10.2 and later.

See Also
delegate (page 230)

setOutputFormat

Sets the format in which the receiver encodes its data.
public void setOutputFormat(int format)

Discussion
format can be NSPropertylList.PropertyListXMLFormat or
NSPropertylList.PropertylListBinaryFormat.

Availability
Available in Mac OS X v10.2 and later.

See Also
outputFormat (page 236)

Instance Methods 237
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

versionForClassName

Returns the current class version number for the class named c7assName.
public int versionfForClassName(String className)

Discussion
Keyed archives do not record class version numbers like non-keyed archives do. Objects can explicitly encode
and decode version numbers if desired.

Availability
Available in Mac OS X v10.2 and later.

Delegate Methods

238

archiverDidEncodeObject

Informs the delegate that object has been encoded.

public abstract void archiverDidEncodeObject(NSKeyedArchiver archiver, Object
object)

Discussion
The delegate might restore some state it had modified previously, or use this opportunity to keep track of
the objects that are encoded. object may be null.

This method is not called for conditional objects until they are actually encoded (if ever).

Availability
Available in Mac OS X v10.2 and later.

archiverDidFinish
Notifies the delegate that encoding has finished.

public abstract void archiverDidFinish(NSKeyedArchiver archiver)

Availability
Available in Mac OS X v10.2 and later.

archiverWillEncodeObject

Informs the delegate that object is about to be encoded.

public abstract Object archiverWillEncodeObject(NSKeyedArchiver archiver, Object
object)

Discussion
The delegate either returns object or can return a different object to be encoded instead. The delegate can
also modify the coder state. If the delegate returns nul11, nul1 is encoded.

Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

This method is not called for an object once a replacement mapping has been set up for that object (either
explicitly, or because the object has previously been encoded). This method is also not called when nul1 is
about to be encoded.

This method is called whether or not the object is being encoded conditionally.

Availability
Available in Mac OS X v10.2 and later.

archiverWillFinish

Notifies the delegate that encoding is about to finish.
public abstract void archiverWillFinish(NSKeyedArchiver archiver)

Availability
Available in Mac OS X v10.2 and later.

archiverWillReplaceObject

Informs the delegate that newObject is being substituted for object.

public abstract void archiverWillReplaceObject(NSKeyedArchiver archiver, 0Object
object, 0Object newObject)

Discussion
This method is called even when the delegate itself is doing, or has done, the substitution. The delegate may
use this method if it is keeping track of the encoded or decoded objects.

Availability
Available in Mac OS X v10.2 and later.

Delegate Methods 239
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 36
NSKeyedArchiver

240 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37

NSKeyedUnarchiver

Inherits from NSCoder : NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.2 and later.

Companion guide Archives and Serializations Programming Guide for Cocoa
Overview

Tasks

NSKeyedUnarchiver, a concrete subclass of NSCoder, defines methods for decoding a set of named objects
(and scalar values) from a keyed archive. Such archives are produced by instances of the NSKeyedArchiver
class.

A keyed archive is encoded as a hierarchy of objects. Each object in the hierarchy serves as a namespace into
which other objects are encoded. The objects available for decoding are restricted to those that were encoded
within the immediate scope of a particular object. Objects encoded elsewhere in the hierarchy, whether
higher than, lower than, or parallel to this particular object, are not accessible. In this way, the keys used by
a particular object to encode its instance variables need to be unique only within the scope of that object.

If you invoke one of the decode. .. methods of this class using a key that does not exist in the archive, a
non-positive value is returned. This value varies by decoded type. For example, if a key does not exist in an
archive, decodeBoolForKey (page 246) returns false, decodeIntForKey (page 249) returns 0, and
decodeObjectForKey (page 251) returns null.

NSKeyedUnarchiver supports limited type coercion. A value encoded as any type of integer, whether a
standard int or an explicit 32-bit or 64-bit integer, can be decoded using any of the integer decode methods.
Likewise, a value encoded asa f1oat or double can be decoded as eithera f1oat ora double value. If an
encoded value is too large to fit within the coerced type, the decoding method throws a RangeException.
Further, when trying to coerce a value to an incompatible type, for example decoding an int asa float,
the decoding method throws an InvalidUnarchiveOperationException.

Constructors

NSKeyedUnarchiver (page 244)
Creates an empty NSKeyedUnarchiver.

Overview 241
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

242

CHAPTER 37
NSKeyedUnarchiver

Unarchiving Data

unarchiveObjectWithData (page 245)
Decodes the object graph previously encoded by NSKeyedArchiver and stored in data.

unarchiveObjectWithFile (page 245)
Decodes the object graph previously encoded by NSKeyedArchiver written to the file path.

Decoding Data

containsValueForKey (page 246)
Returns a Boolean value that indicates whether the archive contains a value for a string within the
current decoding scope.

decodeBoolForKey (page 246)

Decodes a boolean value associated with the string key.
decodeByte (page 247)

Decodes a byte.
decodeByteForKey (page 247)

Decodes a byte associated with the string key.
decodeChar (page 247)

Decodes a char value.
decodeCharForKey (page 247)

Decodes a char value associated with the string key.
decodeDataObject (page 248)

Decodes an NSData object.
decodeDouble (page 248)

Decodes a double-precision floating-point value.
decodeDoubleForKey (page 248)

Decodes a double-precision floating-point value associated with the string key.
decodeFloat (page 248)

Decodes a single-precision floating-point value.
decodeFloatForKey (page 249)

Decodes a single-precision floating-point value associated with the string key.
decodelnt (page 249)

Decodes an integer value.
decodelIntForKey (page 249)

Decodes an integer value associated with the string key.
decodelong (page 250)

Decodes a 1ong value.
decodelongForKey (page 250)

Decodes a 1ong value associated with the string key.
decodeObject (page 250)

Decodes an arbitrary Object.

decodeObjectForKey (page 251)
Decodes an object associated with the string key.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

decodePointForKey (page 251)
Decodes an NSPoint associated with the string key.

decodeRectForKey (page 251)
Decodes an NSRect associated with the string key.

decodeShort (page 251)
Decodes a short value.

decodeShortForKey (page 252)
Decodes a short value associated with the string key.

decodeSizeForKey (page 252)
Decodes an NSSize associated with the string key.

finishDecoding (page 253)

Tells the receiver that you are finished decoding objects, allowing the receiver to notify its delegate
and to perform any final operations on the archive.

Managing Delegates

setDelegate (page 253)
Sets the receiver’s delegate.

delegate (page 252)
Returns the receiver’s delegate.

Managing Class Names

setGlobalClassForClassName (page 245)
Adds a class translation mapping to NSKeyedUnarchiver whereby encoded objects with the class
name codedName are decoded as instances of the class c s instead.
globalClassForClassName (page 244)
Returns the class from which NSKeyedUnarchiver instantiates an encoded object with the class name
codedName.
setClassForClassName (page 253)
Adds a class translation mapping to the receiver whereby encoded objects with the class name
codedName are decoded as instances of the class c7s instead.
classForClassName (page 246)
Returns the class from which the receiver instantiates an encoded object with the class name

codedName.
Querying an Unarchiver

versionForClassName (page 253)
Returns the current class version number for the class named c7assName.

Tasks 243
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

Decoding objects

unarchiverCannotDecodeObject (page 254)
Informs the delegate that the named class, name, is not available during decoding.

unarchiverDidDecodeObject (page 254)
Informs the delegate that object has been decoded.

unarchiverWillReplaceObject (page 255)
Informs the delegate that new0Object is being substituted for object.

Finishing decoding

unarchiverDidFinish (page 254)
Notifies the delegate that decoding has finished.

unarchiverWillFinish (page 255)
Notifies the delegate that decoding is about to finish.

Constructors

NSKeyedUnarchiver

Creates an empty NSKeyedUnarchiver.
pubTlic NSKeyedUnarchiver()

Discussion
Use the other constructor or the static methods unarchiveObjectWithData (page 245) or
unarchiveObjectWithFile (page 245), instead.

Availability
Available in Mac OS X v10.2 and later.

Creates an NSKeyedUnarchiver with the data object as its archive and prepare the NSKeyedUnarchiver for
a subsequent decode operation.

public NSKeyedUnarchiver(NSData data)

Availability
Available in Mac OS X v10.2 and later.

Static Methods

globalClassForClassName

Returns the class from which NSKeyedUnarchiver instantiates an encoded object with the class name
codedName.

244 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

public static Class globalClassForClassName(String codedName)

Discussion
Returns nul11 if NSKeyedUnarchiver does not have a translation mapping for codedName.

Availability
Available in Mac OS X v10.2 and later.

See Also
setGlobalClassForClassName (page 245)

classForClassName (page 246)

setGlobalClassForClassName

Adds a class translation mapping to NSKeyedUnarchiver whereby encoded objects with the class name
codedName are decoded as instances of the class c7s instead.

public static void setGlobalClassForClassName(Class cls, String codedName)

Discussion
When decoding, the class’s translation mapping is used only if no translation is found first in an instance’s
separate translation map.

Availability
Available in Mac OS X v10.2 and later.

See Also
globalClassForClassName (page 244)

setClassForClassName (page 253)

unarchiveObjectWithData
Decodes the object graph previously encoded by NSKeyedArchiver and stored in data.

public static Object unarchiveObjectWithData(NSData data)

Availability
Available in Mac OS X v10.2 and later.

unarchiveObjectWithFile
Decodes the object graph previously encoded by NSKeyedArchiver written to the file path.

public static Object unarchiveObjectWithFile(String path)

Availability
Available in Mac OS X v10.2 and later.

Static Methods 245
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

Instance Methods

classForClassName

Returns the class from which the receiver instantiates an encoded object with the class name codedName.
public Class classForClassName(String codedName)

Discussion
Returns nul1 if the receiver does not have a translation mapping for codedName. The class’s separate
translation map is not searched.

Availability
Available in Mac OS X v10.2 and later.

See Also
setClassForClassName (page 253)

globalClassForClassName (page 244)

containsValueForKey

Returns a Boolean value that indicates whether the archive contains a value for a string within the current
decoding scope.

public boolean containsValueForKey(String key)

Discussion
The string is represented by key .

Availability
Available in Mac OS X v10.2 and later.

decodeBoolForKey

Decodes a boolean value associated with the string key.
public boolean decodeBoolForKey(String key)

Discussion
Returns false if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeBoolForKey (page 230) (NSKeyedArchiver)

246 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

decodeByte

Decodes a byte.
public byte decodeByte()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeByte (page 231) (NSKeyedArchiver)

decodeByteForKey

Decodes a byte associated with the string key.
public byte decodeByteForKey(String key)

Discussion
Returns 0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeByteForKey (page 231) (NSKeyedArchiver)

decodeChar

Decodes a char value.
public char decodeChar()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeChar (page 231) (NSKeyedArchiver)

decodeCharForKey

Decodes a char value associated with the string key.
public char decodeCharForKey(String key)

Discussion
Returns 0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 247
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

248

CHAPTER 37
NSKeyedUnarchiver

See Also
encodeCharForKey (page 231) (NSKeyedArchiver)

decodeDataObject

Decodes an NSData object.
public NSData decodeDataObject()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeDataObject (page 232) (NSKeyedArchiver)

decodeDouble

Decodes a double-precision floating-point value.
public double decodeDouble()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeDouble (page 232) (NSKeyedArchiver)

decodeDoubleForKey

Decodes a double-precision floating-point value associated with the string key.
public double decodeDoubleForKey(String key)

Discussion
If the archived value was encoded as single-precision, the type is coerced. Returns 0.0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeDoubleForKey (page 233) (NSKeyedArchiver)

encodeFloatForKey (page 233) (NSKeyedArchiver)

decodeFloat

Decodes a single-precision floating-point value.

public float decodeFloat()

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeFloat (page 233) (NSKeyedArchiver)

decodeFloatForKey

Decodes a single-precision floating-point value associated with the string key.
public float decodeFloatForKey(String key)

Discussion

If the archived value was encoded as double precision, the type is coerced, loosing precision. If the archived
value is too large for single precision, the method throws a RangeException. Returns 0.0 if key does not
exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeFloatForKey (page 233) (NSKeyedArchiver)

encodeDoubleForKey (page 233) (NSKeyedArchiver)

decodeint

Decodes an integer value.
public int decodelnt()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodelnt (page 233) (NSKeyedArchiver)

decodelntForKey

Decodes an integer value associated with the string key.
public int decodelntForKey(String key)

Discussion

If the archived value was encoded with a different size but is still an integer, the type is coerced. If the archived
value is too large to fit into the default size for an integer, the method throws a RangeException. Returns
0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods 249
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

See Also
encodelntForKey (page 234) (NSKeyedArchiver)

encodeShortForKey (page 236) (NSKeyedArchiver)
encodelongForKey (page 234) (NSKeyedArchiver)

decodelong

Decodes a 1ong value.
public Tong decodelong()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodelong (page 234) (NSKeyedArchiver)

decodelLongForKey
Decodes a 1ong value associated with the string key.

public Tong decodelLongForKey(String key)

Discussion
Returns 0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodelongForKey (page 234) (NSKeyedArchiver)

encodeShortForKey (page 236) (NSKeyedArchiver)
encodeIntForKey (page 234) (NSKeyedArchiver)

decodeObject

Decodes an arbitrary Object.
public Object decodeObject()

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeObject (page 234)

encodeConditionalObject (page 232)

250 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

decodeObjectForKey

Decodes an object associated with the string key.
public Object decodeObjectForKey(String key)

Discussion
Returns nul1 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeObjectForKey (page 235) (NSKeyedArchiver)

decodePointForKey

Decodes an NSPoint associated with the string key.
public NSPoint decodePointForKey(String key)

Discussion
Returns NSPoint.ZeroPoint if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodePointForKey (page 235) (NSKeyedArchiver)

decodeRectForKey

Decodes an NSRect associated with the string key.
public NSRect decodeRectForKey(String key)

Discussion
Returns NSRect.ZeroRect if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeRectForKey (page 235) (NSKeyedArchiver)

decodeShort

Decodes a short value.

public short decodeShort()

Instance Methods 251
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeShort (page 235) (NSKeyedArchiver)

decodeShortForKey

Decodes a short value associated with the string key.
public short decodeShortForKey(String key)

Discussion
Returns 0 if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeShortForKey (page 236) (NSKeyedArchiver)

encodelntForKey (page 234) (NSKeyedArchiver)
encodelongForKey (page 234) (NSKeyedArchiver)

decodeSizeForKey

Decodes an NSSize associated with the string key.
public NSSize decodeSizeForKey(String key)

Discussion
Returns NSSize.ZeroSize if key does not exist.

Availability
Available in Mac OS X v10.2 and later.

See Also
encodeSizeForKey (page 236) (NSKeyedArchiver)

delegate

Returns the receiver’s delegate.
public Object delegate()

Availability
Available in Mac OS X v10.2 and later.

See Also
setDelegate (page 253)

252 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

finishDecoding

Tells the receiver that you are finished decoding objects, allowing the receiver to notify its delegate and to
perform any final operations on the archive.

public void finishDecoding()

Discussion
Once this method is invoked, the receiver cannot decode any further values.

Availability
Available in Mac OS X v10.2 and later.

setClassForClassName

Adds a class translation mapping to the receiver whereby encoded objects with the class name codedName
are decoded as instances of the class c /s instead.

public void setClassForClassName(Class cls, String codedName)

Discussion
When decoding, the receiver’s translation map overrides any translation that may also be present in the
class’s map.

Availability
Available in Mac OS X v10.2 and later.

See Also
classForClassName (page 246)

setGlobalClassForClassName (page 245)

setDelegate

Sets the receiver’s delegate.
public void setDelegate(Object delegate)

Availability
Available in Mac OS X v10.2 and later.

See Also
delegate (page 252)

versionForClassName

Returns the current class version number for the class named c7assName.

public int versionForClassName(String className)

Instance Methods 253
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

Discussion

Keyed archives do not record class version numbers like non-keyed archives do, so the value returned by
this method is not the version number for the class in the archive. Objects can explicitly encode and decode
version numbers if desired.

Availability
Available in Mac OS X v10.2 and later.

Delegate Methods

254

unarchiverCannotDecodeObject

Informs the delegate that the named class, name, is not available during decoding.

public abstract Class unarchiverCannotDecodeObject(NSKeyedUnarchiver unarchiver,
String name, NSArray classNames)

Discussion

The delegate may, for example, load some code to introduce the class to the runtime and return the class,
or substitute a different class object. If the delegate returns nu11, unarchiving aborts and the method throws
an InvalidUnarchiveOperationException. The first elementin c7assNames is the class name string
of the encoded object, the second element is the class name of its immediate superclass, and so on.

Availability
Available in Mac OS X v10.2 and later.

unarchiverDidDecodeObject

Informs the delegate that object has been decoded.

public abstract Object unarchiverDidDecodeObject(NSKeyedUnarchiver unarchiver,
Object object)

Discussion
The delegate can either return object or return a different object to replace the decoded one. object may
be nul1.If the delegate returns nul1, nul1 is the result of decoding the object.

The delegate may use this method to keep track of the decoded objects.

Availability
Available in Mac OS X v10.2 and later.

unarchiverDidFinish
Notifies the delegate that decoding has finished.

public abstract void unarchiverDidFinish(NSKeyedUnarchiver unarchiver)

Availability
Available in Mac OS X v10.2 and later.

Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 37
NSKeyedUnarchiver

unarchiverWillFinish
Notifies the delegate that decoding is about to finish.

public abstract void unarchiverWillFinish(NSKeyedUnarchiver unarchiver)

Availability
Available in Mac OS X v10.2 and later.

unarchiverWillReplaceObject
Informs the delegate that new0Object is being substituted for object.

public abstract void unarchiverWillReplaceObject(NSKeyedUnarchiver unarchiver,

Object object, Object newObject)

Discussion
This method is called even when the delegate itself is doing, or has done, the substitution with
unarchiverDidDecodeObject (page 254).

The delegate may use this method if it is keeping track of the encoded or decoded objects.

Availability
Available in Mac OS X v10.2 and later.

Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

255

CHAPTER 37
NSKeyedUnarchiver

256 Delegate Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38

NSKeyValue

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Key-Value Coding Programming Guide
Overview

Tasks

The NSKeyValue class provides methods for modifying the properties of an object using key-value coding.
This class goes beyond the capabilities of the NSKeyValueCoding interface by taking advantage of the
information available for an object’s NSClassDescription. A class description identifies by name (or key) the
properties (or attributes) that can be accessed for objects of a given class. Properties can contain multiple
values or consist of one-to-one or one-to-many relationships with other objects. NSKeyValue uses this
information to provide convenient methods for accessing individual elements of array properties and for
automatically managing reciprocal relationships between objects.

Constructors

NSKeyValue (page 259)
Returns an empty NSKeyValue.

Getting Values

valueAtIndexInPropertyWithKey (page 263)

Returns the contents of location 7ndex of the to-many property identified by key for anObject.
valueForKey (page 263)

Returns the property identified by key for anObject.
valueForKeyPath (page 263)

Returns the value of an0Object for the derived property identified by keyPath.
valuesForKeys (page 263)

Returns a dictionary containing the property values for an0bject identified by each element of keys.
valueWithNameInPropertyWithKey (page 264)

Retrieves a single value from a multi-value key for the object an0Object.

Overview 257
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

258

CHAPTER 38
NSKeyValue

valueWithUniqueIDInPropertyWithKey (page 264)
Retrieves a single value from a multi-value key for the object an0Object.
coerceValueForKey (page 260)

Returns value coerced to the proper data type needed for the property identified by key for
anObject.

Setting Values

takeStoredValueForKey (page 261)
Sets anObject's property identified by key to value.

takeValueForKey (page 262)

Sets the property of an0Object identified by key to value.
takeValueForKeyPath (page 262)

Sets the property of anObject identified by keyPathto value.

Adding

addObjectToBothSidesOfRelationshipWithKey (page 259)
Sets or adds vaue as the destination for the relationship identified by key for an0Object and also
sets or adds an0Object for any reciprocal relationship with value, if there is one.
addObjectToPropertyWithKey (page 259)
Adds valueto anObject's to-many property identified by key, without setting a reciprocal
relationship.
insertValueAtIndexInPropertyWithKey (page 260)
Inserts value at location 7ndex of the to-many property identified by key for anObject.

insertValuelnPropertyWithKey (page 260)
Inserts a single value in a multivalue key at a reasonable index for anObject.

Removing

removeObjectFromBothSidesOfRelationshipWithKey (page 261)
Removes va I ue as the destination of the relationship identified by key for an0bject and also removes
anObject for any reciprocal relationship with vaTue, if there is one.
removeObjectFromPropertyWithKey (page 261)
Removes va i ue from the to-many property identified by key for anObject.

removeValueAtIndexFromPropertyWithKey (page 261)
Removes the value at location 7ndex of the to-many property identified by key for anObject.

Replacing
replaceValueAtIndexInPropertyWithKeyWithValue (page 261)

Replaces the contents of location 7ndex of the to-many property identified by key for anObject
with the value value.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38
NSKeyValue

Using Metadata

classDescription (page 260)
Returns the NSClassDescription object for anObject.

objectSpecifier (page 260)
Returns the object specifier for anObject.

Constructors

NSKeyValue

Returns an empty NSKeyValue.
public NSKeyValue()

Discussion
NSKeyValue contains only static methods, so you do not need to create instances.

Static Methods

addObjectToBothSidesOfRelationshipWithKey

Sets or adds vaue as the destination for the relationship identified by key for an0Object and also sets or
adds an0bject for any reciprocal relationship with value, if there is one.

public static void addObjectToBothSidesOfRelationshipWithKey(Object anObject, Object
value, String key)

Discussion

This method removes any previous link an0Object has for relationship key. For example, if an Employee
object belongs to the Research department, invoking this method with the Maintenance department as the
new value removes the Employee from the Research department employee list as well as setting the
Employee’s department to Maintenance.

See Also
removeObjectFromBothSidesOfRelationshipWithKey (page 261)

addObjectToPropertyWithKey

Adds valueto anObject's to-many property identified by key, without setting a reciprocal relationship.

public static void addObjectToPropertyWithKey(Object anObject, Object value, String
key)

Discussion
The key property should be an NSMutableArray.

Constructors 259
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

260

CHAPTER 38
NSKeyValue

See Also
removeObjectFromPropertylWithKey (page 261)

classDescription
Returns the NSClassDescription object for anObject.

public static NSClassDescription classDescription(Object anObject)

coerceValueForKey
Returns value coerced to the proper data type needed for the property identified by key for anObject.

public static Object coerceValueForKey(Object anObject, Object value, String key)

Discussion
If anObject does not have an NSScriptClassDescription, which allows properties to be typed, registered as
its class description, value is returned unchanged.

insertValueAtindexinPropertyWithKey

Inserts value at location 7ndex of the to-many property identified by key for anObject.

public static void insertValueAtIndexInPropertyWithKey(Object anObject, Object
value, int index, String key)

Discussion
The key property should be an NSMutableArray.

See Also
removeValueAtIndexFromPropertyWithKey (page 261)

replaceValueAtIndexInPropertyWithKeyWithValue (page 261)
valueAtIndexInPropertyWithKey (page 263)

insertValuelnPropertyWithKey

Inserts a single value in a multivalue key at a reasonable index for anObject.

public static void insertValuelnPropertyWithKey(Object anObject, Object value,
String key)

Discussion

The method insertIn<Key> is invoked on anObject if it exists. Otherwise, throws an
NSUnknownKeyException. This is part of Cocoa’s scripting support for inserting newly-created objects into
containers without explicitly specifying a location.

objectSpecifier

Returns the object specifier for anObject.

Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38
NSKeyValue

public static NSScriptObjectSpecifier objectSpecifier(0Object anObject)

removeObjectFromBothSidesOfRelationshipWithKey

Removes value as the destination of the relationship identified by key for anObject and also removes
anObject for any reciprocal relationship with vaiue, if there is one.

public static void removeObjectFromBothSidesOfRelationshipWithKey(Object anObject,
Object value, String key)

See Also
addObjectToBothSidesOfRelationshipWithKey (page 259)

removeObjectFromPropertyWithKey

Removes value from the to-many property identified by key for anObject.

public static void removeObjectFromPropertyWithKey(0Object anObject, Object value,
String key)

See Also
addObjectToPropertyWithKey (page 259)

removeValueAtindexFromPropertyWithKey

Removes the value at location 7ndex of the to-many property identified by key for anObject.

public static void removeValueAtIndexFromPropertyWithKey(0Object anObject, int index,
String key)

See Also
insertValueAtIndexInPropertyWithKey (page 260)

replaceValueAtindexInPropertyWithKeyWithValue

Replaces the contents of location 7ndex of the to-many property identified by key for an0Object with the
value vaTue.

public static void replaceValueAtIndexInPropertyWithKeyWithValue(Object anObject,
int 7ndex, String key, 0Object value)

See Also
insertValueAtIndexInPropertyWithKey (page 260)

takeStoredValueForKey
Sets anObject's property identified by key to value.

pubTic static void takeStoredValueForKey(0Object anObject, Object value, String key)

Static Methods 261
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

262

CHAPTER 38
NSKeyValue

Discussion
Similar to the implementation of takeValueForKey (page 262), but it resolves key with a different method
instance variable search order:

1. Searches for a private accessor method based on key (a method preceded by an underbar). For example,
with a key of “TastName’ takeStoredValueForKey looks for a method named _setlLastName.

2. Ifa private accessor is not found, searches for an instance variable based on key and sets its value directly.
For example, with a key of “TastName; takeStoredValueForKey looks for an instance variable named
_lastName or TastName.

3. If neither a private accessor nor an instance variable is found, takeStoredValueForKey searches for
a public accessor method based on key. For the key “1astName’ this would be setLastName.

takeValueForKey
Sets the property of anObject identified by key to value.

public static void takeValueForKey(QObject anObject, Object value, String key)

Discussion
The default implementation works as follows:

1. Searches for a public accessor method of the form setKey, invoking it if there is one.

2. If a public accessor method is not found, searches for a private accessor method of the form _setKey,
invoking it if there is one.

3. If an accessor method is not found, takeValueForKey searches for an instance variable based on key
and sets value directly. For the key “TastName] this would be _TastName or TastName.

See Also
valueForKey (page 263)

takeValueForKeyPath
Sets the property of anObject identified by keyPathto value.

public static void takeValueForKeyPath(Object anObject, Object value, String keyPath)

Discussion

A key path has the form relationship.property (with one or more relationships). The default implementation
gets the destination object for each relationship using valueForKey (page 263) and sends the final object
atakeValueForKey (page 262) message with value and property.

See Also
valueForKeyPath (page 263)

Static Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38
NSKeyValue

valueAtindexInPropertyWithKey

Returns the contents of location 7ndex of the to-many property identified by key for anObject.

public static Object valueAtIndexInPropertyWithKey(0Object anObject, int index,
String key)

See Also
insertValueAtIndexInPropertyWithKey (page 260)

valueForKey
Returns the property identified by key for anObject.
public static Object valueForKey(Object anObject, String key)

Discussion
The default implementation works as follows:

1. Searches for a public accessor method based on key. For example, with a key of “1astName’
valueForKey looks for a method named getLastName or TastName.

2. Ifapublicaccessor method is not found, searches for a private accessor method based on key (a method
preceded by an underbar). For example, with a key of “TastName} valueForKey looks for a method
named _getlLastName or _lastName.

3. If an accessor method is not found, valueForKey searches for an instance variable based on key and
returns its value directly. For the key “TastName’ this would be _TastName or TastName.

See Also
takeValueForKey (page 262)

valueForKeyPath
Returns the value of an0Object for the derived property identified by keyPath.
public static Object valueForKeyPath(Object anObject, String keyPath)

Discussion

A key path has the form relationship.property (with one or more relationships). The default implementation
gets the destination object for each relationship using valueForKey (page 263) and returns the result of a
valueForKey (page 263) message to the final object.

See Also
takeValueForKeyPath (page 262)

valuesForKeys

Returns a dictionary containing the property values for an0bject identified by each element of keys.

public static NSDictionary valuesForKeys(Object anObject, NSArray keys)

Static Methods 263
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 38
NSKeyValue

Discussion
The default implementation invokes valueForKey (page 263) for each key in keys, substituting NSNulls in
the dictionary for returned nu11 values.

valueWithNamelnPropertyWithKey

Retrieves a single value from a multi-value key for the object anObject.

public static Object valueWithNameInPropertyWithKey(Object anObject, String name,
String key)

Discussion
The method valueIn<Key>WithName isinvoked on anObject if it exists. Otherwise, an exception is thrown.

valueWithUniquelDInPropertyWithKey

Retrieves a single value from a multi-value key for the object an0Object.

public static Object valueWithUniqueIDInPropertyWithKey(Object anObject, 0Object
uniquelD, String key)

Discussion

The method valueIn<Key>WithUniquelD isinvoked on an0Object if it exists. Otherwise, an exception is
thrown. The declared type of uniqueID in the constructed method must be Object, String, or one of the
scalar types that can be encapsulated by the numeric classes, such as Integer or Double.

Constants

264

The following constant is defined in this informal interface.

Constant Description

OperationNot- Can be thrown by key-value coding methods that want to explicitly
SupportedForKeyException disallow certain manipulations or accesses. For instance, a
takeValueForKey method for a read-only key can throw this
exception.

Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39

NSLogicalTest

Inherits from NSScriptWhoseTest : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide
Overview

Instances of this class perform logical operations of AND, OR, and NOT on Boolean expressions represented
by NSSpecifierTests. These operators are equivalent to “&&’ “||7 and “!" in the C language. For AND and OR
operations, an NSLogicalTest is typically initialized with an array containing two or more NSSpecifierTests.
isTrue (page 558), inherited from NSScriptWhoseTest, evaluates the array in a manner appropriate to the
logical operation. For NOT operations, an NSLogicalTest is initialized with only one NSSpecifierTest; it simply
reverses the Boolean outcome of the i sTrue (page 558) method.

You don't normally subclass NSLogicalTest.

Constants

The following constants are defined by NSLogicalTest:

Constant Description

AndLogicalTest | Specifies a logical AND test.

NotLogicalTest | Specifies a logical NOT test.

OrLogicalTest | Specifies a logical OR test.

Tasks

Constructors

NSLogicalTest (page 266)
Returns an NSLogicalTest with no data.

Overview 265
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 39
NSLogicalTest

Constructors

NSLogicalTest

Returns an NSLogicalTest with no data.
public NSLogicalTest()

Discussion
Do not use this constructor.

Returns an NSLogicalTest initialized with logical test of type testType and argument anObject.
public NSLogicalTest(int testType, QObject anObject)
Discussion

If testTypeisNotLogicalTest, anObject is a single NSScriptWhoseTest object. For other testType
values, anObject is an NSArray object holding two or more NSScriptWhoseTest objects.

266 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40

NSMetadataltem

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.
Overview

Tasks

NSMetadataltem encapsulates the metadata associated with a file, providing a simple interface to retrieve
the available attribute names and values.

Constructors

NSMetadataltem (page 267)

Getting Item Attributes

attributes (page 268)

Returns an array containing the attribute names of the receiver’s values.
valueForAttribute (page 268)

Returns the receiver’s metadata attribute name specified by key.

valuesForAttributes (page 268)
Returns a dictionary containing the key-value pairs for the attribute names specified by keys.

Constructors

NSMetadataltem
public NSMetadataltem()

Overview 267
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 40
NSMetadataltem

Discussion
Creates an empty NSMetadataltem object.

Instance Methods

268

attributes

Returns an array containing the attribute names of the receiver’s values.
public NSArray attributes()

Availability
Available in Mac OS X v10.4 and later.

valueForAttribute

Returns the receiver’s metadata attribute name specified by key.
public Object valueForAttribute(String key)

Availability
Available in Mac OS X v10.4 and later.

valuesForAttributes

Returns a dictionary containing the key-value pairs for the attribute names specified by keys.
public NSDictionary valuesForAttributes(NSArray keys)

Availability
Available in Mac OS X v10.4 and later.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41

NSMetadataQuery

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.
Overview

Tasks

NSMetadataQuery provides an object-oriented encapsulation of the MDQuery functionality for querying the
Spotlight metadata.

NSMetadataQuery provides the metadata query results in several ways:

= Asindividual attribute values for requested attributes.
= Asvalue lists that contain the distinct values for given attributes in the query results.
= Aresult array proxy, containing all the query results. This is suitable for use with Cocoa bindings.

= Asa hierarchical collection of results, grouping together items with the same values for specified grouping
attributes. This is also suitable for use with Cocoa bindings.

Constructors

NSMetadataQuery (page 271)

Setting the Search Scope

searchScopes (page 275)

Returns an array containing the receiver’s search scopes.
setSearchScopes (page 277)

Sets the locations searched by the receiver.

Overview 269
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41
NSMetadataQuery

Setting the Delegate

delegate (page 272)
Returns the delegate used by the receiver, or nul1 if there is none.

setDelegate (page 276)
Sets the receiver’s delegate to delegate.

Setting the Query Attributes

predicate (page 274)

Returns the predicate the receiver uses to filter query results.
setPredicate (page 277)

Sets the predicate used by the receiver to filter the query results.
sortDescriptors (page 278)

Returns an array containing the receiver’s sort descriptors.
setSortDescriptors (page 277)

Sets the sort descriptors used by the receiver to descriptors.
valuelistAttributes (page 279)

Returns an array containing the value list attributes the receiver generates.
setValuelistAttributes (page 278)

Sets the value list attributes for the receiver to the specified attribute names.
groupingAttributes (page 273)

Returns the receiver’s grouping attributes.
setGroupingAttributes (page 276)

Sets the receiver’s grouping attributes to the attribute names specified in attrs.
notificationBatchingInterval (page 274)

Returns the interval that the receiver provides notification of updated query results.

setNotificationBatchingInterval (page 276)
Sets the interval between update notifications sent by the receiver to timelInterval.

Running the Query

startQuery (page 278)
Attempts to start the query, returning true if successful.

stopQuery (page 279)
Stops the receiver’s current query from gathering any further results.

isStarted (page 274)
Returns a Boolean value that indicates whether the receiver has received a startQuery (page 278)
message.

isGathering (page 273)
Returns a Boolean value that indicates whether the receiver is in the initial gathering phase of the
query.

270 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41
NSMetadataQuery

isStopped (page 274)
Returns a Boolean value that indicates whether the receiver has received a stopQuery (page 279)
message.

Getting Query Results

resultCount (page 275)
Returns the number of results returned by the receiver.

resultAtIndex (page 275)

Returns the query result at 7dx.
results (page 275)

Returns an array representation of the result objects for the receiver.
disablelUpdates (page 272)

Disables updates to the query results.
enableUpdates (page 272)

Enables updates to the query results.
indexOfResult (page 273)

Returns the index of result in the receiver’s results array.
valuelists (page 279)

Returns a dictionary containing the value lists generated by the receiver.

groupedResults (page 272)
Returns an array containing hierarchical groups of query results based on the receiver’s grouping
attributes.

valueOfAttributeForResultAtIndex (page 279)
Returns the value for the attribute name attriName at the index in the results specified by 7dx.

Constructors

NSMetadataQuery
public NSMetadataQuery()

Discussion
Creates an empty NSMetadataQuery object.

Availability
Available in Mac OS X v10.4 and later.

Constructors 271
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41
NSMetadataQuery

Instance Methods

272

delegate

Returns the delegate used by the receiver, or nul1 if there is none.
public Object delegate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDelegate (page 276)

disableUpdates

Disables updates to the query results.
public void disableUpdates()

Discussion
This method should be called before iterating over query results that could change due to live updates.

Availability
Available in Mac OS X v10.4 and later.

See Also
enablelUpdates (page 272)

enableUpdates

Enables updates to the query results.
public void enableUpdates()

Discussion
This method should be called when finished iterating over the query results.

Availability
Available in Mac OS X v10.4 and later.

See Also
disablelUpdates (page 272)

groupedResults

Returns an array containing hierarchical groups of query results based on the receiver’s grouping attributes.

public NSArray groupedResults()

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41
NSMetadataQuery

Availability
Available in Mac OS X v10.4 and later.

See Also
groupingAttributes (page 273)

setGroupingAttributes (page 276)

groupingAttributes

Returns the receiver’s grouping attributes.
public NSArray groupingAttributes()

Availability
Available in Mac OS X v10.4 and later.

See Also
setGroupingAttributes (page 276)

indexOfResult

Returns the index of result in the receiver’s results array.

public int indexOfResult(Object result)

Availability
Available in Mac OS X v10.4 and later.

See Also
resultAtIndex (page 275)

isGathering

Returns a Boolean value that indicates whether the receiver is in the initial gathering phase of the query.

public boolean isGathering()

Discussion

Queries have two phases: the initial gathering phase that collects all currently matching results and a second

live-update phase.

Availability
Available in Mac OS X v10.4 and later.

See Also
isStarted (page 274)

isStopped (page 274)

Instance Methods

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

273

CHAPTER 41
NSMetadataQuery

isStarted

Returns a Boolean value that indicates whether the receiver has received a startQuery (page 278) message.
public boolean isStarted()

Availability
Available in Mac OS X v10.4 and later.

See Also
isGathering (page 273)

isStopped (page 274)

isStopped

Returns a Boolean value that indicates whether the receiver has received a stopQuery (page 279) message.
public boolean isStopped()

Availability
Available in Mac OS X v10.4 and later.

See Also
isGathering (page 273)

isStarted (page 274)

notificationBatchinginterval

Returns the interval that the receiver provides notification of updated query results.
public double notificationBatchingInterval()

Discussion
The default is 1.0.

Availability
Available in Mac OS X v10.4 and later.

See Also
setNotificationBatchingInterval (page 276)

predicate

Returns the predicate the receiver uses to filter query results.
public NSPredicate predicate()

Availability
Available in Mac OS X v10.4 and later.

See Also

setPredicate (page 277)

274 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41
NSMetadataQuery

resultAtindex

Returns the query result at 7dx.
public Object resultAtIndex(int 7dx)

Discussion
For performance reasons, you should use this method when retrieving a specific result, rather than they array
returned by results (page 275).

Availability
Available in Mac OS X v10.4 and later.

See Also
indexOfResult (page 273)

resultCount

Returns the number of results returned by the receiver.
public int resultCount()

Discussion
For performance reasons, you should use this method, rather than invoking count on results (page 275).

Availability
Available in Mac OS X v10.4 and later.

results

Returns an array representation of the result objects for the receiver.
public NSArray results()

Discussion

The results array is a proxy object that is primarily intended for use with Cocoa bindings. While it is possible
to copy the proxy array and receive a “snapshot” of the complete current query results, it is generally not
recommended due to performance and memory issues. To access individual result array elements you should
instead use the resultCount (page 275) and resultAtIndex (page 275) methods.

Availability
Available in Mac OS X v10.4 and later.

See Also
groupedResults (page 272)

searchScopes

Returns an array containing the receiver’s search scopes.

public NSArray searchScopes()

Instance Methods 275
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

276

CHAPTER 41
NSMetadataQuery

Discussion

The array can contain NSString or NSURL objects that represent file system directories or the search scopes
specified in “Constants” (page 280). An empty array indicates that there is no limitation on where the receiver
searches.

Availability
Available in Mac OS X v10.4 and later.

See Also
setSearchScopes (page 277)

setDelegate

Sets the receiver’s delegate to delegate.
public void setDelegate(Object delegate)

Availability
Available in Mac OS X v10.4 and later.

See Also
delegate (page 272)

setGroupingAttributes

Sets the receiver’s grouping attributes to the attribute names specified in attrs.
public void setGroupingAttributes(NSArray attrs)

Discussion
Invoking this method on a receiver running a query causes the existing query to stop, all current results are
discarded, and a new query is started immediately.

Availability
Available in Mac OS X v10.4 and later.

See Also
groupingAttributes (page 273)

setNotificationBatchinginterval

Sets the interval between update notifications sent by the receiver to timelInterval.
public void setNotificationBatchingInterval(double timelnterval)

Discussion
The default is 1.0.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41
NSMetadataQuery

See Also
notificationBatchingInterval (page 274)

setPredicate

Sets the predicate used by the receiver to filter the query results.
public void setPredicate(NSPredicate predicate)

Discussion

The predicate is represented by predicate. You must set a predicate before starting a query. Invoking this
method on a receiver running a query causes the existing query to stop, all current results are discarded, and
a new query is started immediately.

Availability
Available in Mac OS X v10.4 and later.

See Also
setPredicate (page 277)

setSearchScopes

Sets the locations searched by the receiver.
public void setSearchScopes(NSArray scopes)

Discussion

By default the receiver has no limitation on its search scope. The scopes parameter is an array of NSString
or NSURL objects that specify file system directories. You can also include the predefined search scopes
specified in “Constants” (page 280). If scopes is an empty array, the receiver removes any search scope
limitations.

Availability
Available in Mac OS X v10.4 and later.

See Also
searchScopes (page 275)

setSortDescriptors

Sets the sort descriptors used by the receiver to descriptors.
public void setSortDescriptors(NSArray descriptors)

Discussion
Invoking this method on the receiver running a query causes the existing query to stop, all current results
are discarded, and a new query is started immediately.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 277
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

278

CHAPTER 41
NSMetadataQuery

See Also
sortDescriptors (page 278)

setValueListAttributes

Sets the value list attributes for the receiver to the specified attribute names.
public void setValuelistAttributes(NSArray attrs)

Discussion

The attribute names are passed in the attrs array. The query will collect the values of these attributes into
uniqued lists that can be used to summarize the results of the query. If attrsisnull, no value lists are
generated. Note that value list collection increases CPU usage and significantly increases the memory usage
of an NSMetadataQuery.

Invoking this method on the receiver running a query causes the existing query to stop, all current results
are discarded, and a new query is started immediately.

Availability
Available in Mac OS X v10.4 and later.

See Also
valuelistAttributes (page 279)

sortDescriptors

Returns an array containing the receiver’s sort descriptors.
public NSArray sortDescriptors()

Availability
Available in Mac OS X v10.4 and later.

See Also
setSortDescriptors (page 277)

startQuery

Attempts to start the query, returning true if successful.
public boolean startQuery()

Discussion
A query can't be started if the receiver is already running a query or no predicate has been specified.

Availability
Available in Mac OS X v10.4 and later.

See Also
stopQuery (page 279)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41
NSMetadataQuery

stopQuery

Stops the receiver’s current query from gathering any further results.
public void stopQuery()

Discussion

The receiver will first complete gathering any unprocessed results. If a query is stopped before the gathering

phase finishes, it will not post an NSMetadataQueryDidStartGatheringNotification notification.

You would call this function to stop a query that is generating too many results to be useful, but still want
to access the available results. If the receiver is senta startQuery (page 278) after receiving this message,

the existing results are discarded.

Availability
Available in Mac OS X v10.4 and later.

See Also
startQuery (page 278)

valueListAttributes

Returns an array containing the value list attributes the receiver generates.
public NSArray valuelistAttributes()

Availability
Available in Mac OS X v10.4 and later.

See Also
setValuelistAttributes (page 278)

valuelLists

Returns a dictionary containing the value lists generated by the receiver.
public NSDictionary valuelists()

Discussion
The values are arrays of NSMetadataQueryAttributeValueTuple.

Availability
Available in Mac OS X v10.4 and later.

valueOfAttributeForResultAtindex

Returns the value for the attribute name attrName at the index in the results specified by 7dx.

public Object valueOfAttributeForResultAtIindex(String attrName, int 7idx)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

279

CHAPTER 41
NSMetadataQuery

Discussion
Values can only be returned for attribute names that are specifiedto setValuelistAttributes (page 278),
as a sorting key in a specified sort descriptor, or as one of the grouping attributes specified set for the query.

Availability
Available in Mac OS X v10.4 and later.

Constants

The following constants specify the predefined search scopes used by setSearchScopes (page 277):

Constant Description

NSMetadataQueryUserHomeScope | Search the user’s home directory.
Available for Mac OS X v10.4 and later.

NSMetadataQuerylocal- Search all local mounted volumes, including the user home
ComputerScope directory. The user’s home directory is searched even if it is a remote
volume.

Available for Mac OS X v10.4 and later.

NSMetadataQueryNetworkScope Search all user-mounted remote volumes.
Available for Mac OS X v10.4 and later.

In addition to the requested metadata attributes, a query result also includes the following attribute:

Constant Description

NSMetadataQuery- An NSNumber with a floating point value between 0.0 and 1.0 inclusive. The
ResultContent- relevance value indicates the relevance of the content of a result object. The
RelevanceAttribute relevance is computed based on the value of the result itself, not on its

relevance to the other results returned by the query. If the value is not
computed it is treated as an attribute on the item that does not exist.
Available for Mac OS X v10.4 and later.

Notifications

NSMetadataQueryDidFinishGatheringNotification

Posted when the receiver has finished with the initial result-gathering phase of the query.

NSMetadataQueryDidStartGatheringNotification

Posted when the receiver begins with the initial result-gathering phase of the query.

280 Constants
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41
NSMetadataQuery

NSMetadataQueryDidUpdateNotification

Posted when the receiver’s results have changed during the live-update phase of the query.

NSMetadataQueryGatheringProgressNotification

Posted as the receiver’s is collecting results during the initial result-gathering phase of the query.

Notifications 281
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 41
NSMetadataQuery

282 Notifications
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 42

NSMetadataQueryAttributeValueTuple

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.
Overview

NSMetadataQueryAttributeValueTuple encapsulates the attribute name and value of a metadata attribute.
They are returned by NSMetadataQuery as the results in the value lists. Each instance contains the attribute
name, the value, and the number of instances of that value that exist for the attribute name.

Tasks

Constructors

NSMetadataQueryAttributeValueTuple (page 283)

Getting Attribute Information

attribute (page 284)
Returns the receiver’s attribute name.

count (page 284)
Returns the number of instances of the value that exist for the attribute name of the receiver.

value (page 284)
Returns the receiver’s attribute value.

Constructors

NSMetadataQueryAttributeValueTuple
public NSMetadataQueryAttributeValueTuple()

Overview 283
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 42
NSMetadataQueryAttributeValueTuple

Discussion
Creates an empty NSMetadataQueryAttributeValueTuple object.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

attribute

Returns the receiver’s attribute name.
public String attribute()

Availability
Available in Mac OS X v10.4 and later.

count

Returns the number of instances of the value that exist for the attribute name of the receiver.
public int count()

Availability
Available in Mac OS X v10.4 and later.

value

Returns the receiver’s attribute value.
public Object value()

Availability
Available in Mac OS X v10.4 and later.

284 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 43

NSMetadataQueryResultGroup

Inherits from NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.4 and later.
Overview

Tasks

NSMetadataQueryResultGroup encapsulates a collection of grouped attribute results returned by an
NSMetadataQuery.

Constructors

NSMetadataQueryResultGroup (page 286)

Getting Result Values

attribute (page 286)

Returns the attribute name for the receiver’s result group.
resultAtIndex (page 286)

Returns the query result at 7dx.
resultCount (page 286)

Returns the number of results returned by the receiver.
results (page 287)

Returns an array representation of the result objects for the receiver.
subgroups (page 287)

Returns an array containing the subgroups of the receiver.
value (page 287)

Returns the value of the attribute name for the receiver.

Overview 285
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 43
NSMetadataQueryResultGroup

Constructors

NSMetadataQueryResultGroup
public NSMetadataQueryResultGroup()

Discussion
Creates an empty NSMetadataQueryResultGroup object.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

attribute

Returns the attribute name for the receiver’s result group.
public String attribute()

Availability
Available in Mac OS X v10.4 and later.

resultAtindex

Returns the query result at 7dx.
public Object resultAtIndex(int 7dx)

Discussion
For performance reasons, you should use this method when retrieving a specific result, rather than they array
returned by results (page 287).

Availability
Available in Mac OS X v10.4 and later.

resultCount

Returns the number of results returned by the receiver.
public int resultCount()

Discussion
For performance reasons, you should use this method, rather than invoking count on results (page 287).

Availability
Available in Mac OS X v10.4 and later.

286 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 43
NSMetadataQueryResultGroup

results
Returns an array representation of the result objects for the receiver.

public NSArray results()

Discussion

The results array is a proxy object that is primarily intended for use with Cocoa bindings. While it is possible
to copy the proxy array and receive a “snapshot” of the complete current query results, it is generally not
recommended due to performance and memory issues. To access individual result array elements you should
instead use the resultCount (page 286) and resultAtIndex (page 286) methods.

Availability
Available in Mac OS X v10.4 and later.

subgroups

Returns an array containing the subgroups of the receiver.
public NSArray subgroups()

Availability
Available in Mac OS X v10.4 and later.

value

Returns the value of the attribute name for the receiver.
public Object value()

Availability
Available in Mac OS X v10.4 and later.

Instance Methods 287
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 43
NSMetadataQueryResultGroup

288 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 44

NSMiddleSpecifier

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide
Overview

Specifies the middle object in a collection or, if not a one-to-many relationship, the sole object. You don't
normally subclass NSMiddleSpecifier.

Tasks

Constructors

NSMiddleSpecifier (page 289)
Returns an NSMiddleSpecifier with no data.

Constructors

NSMiddleSpecifier

Returns an NSMiddleSpecifier with no data.
public NSMiddleSpecifier()

Discussion
Do not use this constructor.

Returns an NSMiddleSpecifier initialized with container specifier specifier, key key, and the class description
of the object specifier cTassDescription, derived from the value of the specifier’s key.

public NSMiddleSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier specifier, String key)

Discussion
The receiver’s child specifier reference is set to nu11.

Overview 289
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 44
NSMiddleSpecifier

Returns an NSMiddleSpecifier initialized with container specifier specifier and key key.
public NSMiddleSpecifier(NSScriptObjectSpecifier specifier, String key)

Discussion
The class description of the container is set automatically.

290 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 45

NSMoveCommand

Inherits from NSScriptCommand : NSObject

Package: com.apple.cocoa.foundation

Companion guide Cocoa Scripting Guide
Overview

Tasks

An instance of NSMoveCommand moves the specified scriptable object or objects; for example, it may move
words to a new location in a document or a file to a new directory.

NSMoveCommand is part of Cocoa’s built-in scripting support. It works automatically to support the Move
command through key-value coding. Most applications don’t need to subclass NSMoveCommand or invoke
its methods.

When an instance of NSMoveCommand is executed, it does not make copies of moved objects. It removes
objects from the source container or containers, then inserts them into the destination container.

Constructors

NSMoveCommand (page 292)
Returns an NSMoveCommand with no data.

Working with Specifiers

keySpecifier (page 292)
Returns a specifier for the object or objects to be moved.
setReceiversSpecifier (page 292)

Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers
of the Move command.

Overview 291
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 45

NSMoveCommand

Constructors

NSMoveCommand

Returns an NSMoveCommand with no data.
public NSMoveCommand()

Discussion
Do not use this constructor.

Initializes an instance of NSMoveCommand with the command description supplied by commandDescription.
public NSMoveCommand(NSScriptCommandDescription commandDescription)

Discussion
Note that such an instance has no receiver specifier, arguments, or direct parameter and is not a fully functional
command.

Instance Methods

292

keySpecifier

Returns a specifier for the object or objects to be moved.
public NSScriptObjectSpecifier keySpecifier()

Discussion

Note that this specifier may be different than the specifier set by setReceiversSpecifier (page 292),
which sets the container specifier. For example, fora command such as move the third circle to the
lTocation of the first circle, the receiver might identify a document (which has a list of graphics),
while the key specifier identifies the particular graphic to be moved.

setReceiversSpecifier

Sets the receiver’s object specifier; when evaluated, the specifier indicates the receiver or receivers of the
Move command.

public void setReceiversSpecifier(NSScriptObjectSpecifier receiversRef)

Discussion

This method overrides setReceiversSpecifier (page 525) in NSScriptCommand. It performs the same
function as the overridden method, with a critical difference: it causes the container specifier part of the
passed-in object specifier to become the receiver specifier of the command, and the key part of the passed-in
object specifier to become the key specifier. If, for example, receiversRefis a specifier for the third
paragraph of the first document, the receiver specifieris the first document while the key
specifieris the third paragraph.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46

NSMutableArray

Inherits from

Implements

Package:

Companion guides

Class at a Glance

NSArray : NSObject
NSCoding (NSArray)

com.apple.cocoa.foundation

Collections Programming Topics for Cocoa
Key-Value Coding Programming Guide

An NSMutableArray stores a modifiable array of objects.

Principal Attributes

= A count of the number of objects in the array

m The list of objects contained in the array

NSMutableArray (page 295)
Creates a mutable array.

Commonly Used Methods

insertObjectAtIndex (page 297)
Inserts an object at a specified index.

removeObject (page 298)
Removes all occurrences of an object.

removeObjectAtIndex (page 299)
Removes the object at a given index.

replaceObjectAtIndex (page 300)
Replaces the object at a given index.

Class at a Glance

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

293

CHAPTER 46
NSMutableArray

Overview

Tasks

294

The NSMutableArray class declares the programmatic interface to objects that manage a modifiable array of
objects. This class adds insertion and deletion operations to the basic array-handling behavior inherited from
NSArray.

NSMutableArray methods are conceptually based on these primitive methods:

addObject (page 296)
insertObjectAtIndex (page 297)
removelastObject (page 298)
removeObjectAtIndex (page 299)
replaceObjectAtIndex (page 300)

The other methods in its interface provide convenient ways of inserting an object into a specific slot in the
array and removing an object based on its identity or position in the array.

Constructors

NSMutableArray (page 295)

Adding and Replacing Objects

addObject (page 296)
Inserts anObject at the end of the receiver.
addObjectsFromArray (page 296)
Adds the objects contained in otherArray to the end of the receiver’s array of objects.
insertObjectAtIndex (page 297)
Inserts anObject into the receiver at index.
insertObjectsAtIndexes (page 297)
Inserts the objects in objects into the receiver at the indexes specified by indexes.
replaceObjectAtIndex (page 300)
Replaces the object at index with anObject.
replaceObjectsAtIndexes (page 300)
Replaces the objects in the receiver at the locations specified by 7ndexes with the objects from
objects.
replaceObjectsInRange (page 301)

Replaces the objects in the receiver specified by aRange with the objects in otherArray specified
by otherRange.

Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46
NSMutableArray

setArray (page 301)
Sets the receiver’s elements to those in otherArray.

Removing Objects

filterUsingPredicate (page 296)

removeAll0bjects (page 297)

Empties the receiver of all its elements.
removeldenticalObject (page 298)

This method has been deprecated.
removelastObject (page 298)

Removes the object with the highest-valued index in the receiver.
removeObject (page 298)

Removes all occurrences of an0bject throughout the receiver.
removeObjectAtIndex (page 299)

Removes the object at 7ndex and moves all elements beyond 7ndex by subtracting 1 from their

indices to fill the gap.

removeObjectsAtIndexes (page 299)
Removes the objects at the specified indexes from the receiver.

removeObjectsInArray (page 299)
This method is similar to removeObject (page 298), but allows you to efficiently remove large sets
of objects with a single operation.

removeObjectsInRange (page 300)
Removes each of the objects within the specified range, aRange, in the receiver using
removeObjectAtIndex (page 299).

Rearranging Objects

sortUsingDescriptors (page 301)
Sorts the receiver as specified by sortDescriptors.

sortUsingSelector (page 302)

Sorts the receiver’s elements in ascending order, as determined by the comparison method specified
by the selector selector.

Constructors

NSMutableArray
pubTlic NSMutableArray()

Discussion
Creates an empty array.

Constructors 295
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46
NSMutableArray

public NSMutableArray(Object anObject)

Discussion
Creates an array containing the single element anObject.

public NSMutableArray(Object[] objects)

Discussion
Creates an array containing objects.

public NSMutableArray(NSArray anArray)

Discussion
Creates an array containing the objects in anArray.

Instance Methods

addObject

Inserts anObject at the end of the receiver.
public void addObject(0Object anObject)

Discussion
If anObjectisnull,an InvalidArgumentException is thrown.

See Also
addObjectsFromArray (page 296)

removeObject (page 298)
setArray (page 301)

addObjectsFromArray

Adds the objects contained in otherArray to the end of the receiver’s array of objects.
public void addObjectsFromArray(NSArray otherArray)

See Also
setArray (page 301)

removeObject (page 298)

filterUsingPredicate
public void filterUsingPredicate(NSPredicate predicate)

Discussion
Evaluates the predicate against the receiver’s content and leaves only objects that match.

Availability
Available in Mac OS X v10.4 and later.

296 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46
NSMutableArray

insertObjectAtindex

Inserts anObject into the receiver at index.
public void insertObjectAtIndex(Object anObject, int index)

Discussion

If index is already occupied, the objects at 7ndex and beyond are shifted by adding 1 to their indices to
make room. 7ndex cannot be greater than the number of elements in the array. This method throws an
InvalidArgumentExceptionifanObjectisnull and throwsaRangeExceptionif indexisgreaterthan
the number of elements in the array.

Note that NSArrays are not like C arrays. That is, even though you specify a size when you create an array,
the specified size is regarded as a “hint”; the actual size of the array is still 0. Because of this fact, you can only
insert new objects in ascending order—with no gaps. Once you add two objects, the array’s size is 2, so you
can add objects at indices 0, 1, or 2. Index 3 is illegal and out of bounds; if you try to add an object at index
3 (when the size of the array is 2), NSMutableArray throws an exception.

See Also
removeObjectAtIndex (page 299)

insertObjectsAtindexes

Inserts the objects in objects into the receiver at the indexes specified by 7ndexes.
public void insertObjectsAtIndexes(NSArray objects, NSIndexSet 7indexes)

Discussion
Each objectin objects isinserted into the receiver in turn at the corresponding location specified in indexes
after earlier insertions have been made.

The locations specified by indexes may only exceed the bounds of the receiver if one location specifies the
count of the array or the count of the array after preceding insertions, and other locations exceeding the
bounds do so in a contiguous fashion from that location.

Availability
Available in Mac OS X version 10.4 and later.

See Also
insertObjectAtIndex (page 297)

removeAllObjects

Empties the receiver of all its elements.
public void removeAll0bjects()

See Also
removeObject (page 298)

removelastObject (page 298)
removeObjectAtIndex (page 299)
removeldenticalObject (page 298)

Instance Methods 297
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

298

CHAPTER 46
NSMutableArray

removeldenticalObject
This method has been deprecated.

public void removeldenticalObject(0Object anObject)
This method has been deprecated.
public void removeldenticalObject(Object anObject, NSRange aRange)

See Also
removeAll0bjects (page 297)

removelastObject (page 298)
removeObject (page 298)
removeObjectAtIndex (page 299)

removelLastObject

Removes the object with the highest-valued index in the receiver.
public void removelastObject()

Discussion
removelastObject throws a RangeException if there are no objects in the receiver.

See Also
removeAll0bjects (page 297)

removeObject (page 298)
removeObjectAtIndex (page 299)
removeldenticalObject (page 298)

removeObject

Removes all occurrences of an0bject throughout the receiver.
public void removeObject(Object anObject)

Discussion

This method uses index0f0bject (page 63) to locate matches and then removes them by using
removeObjectAtIndex (page 299). Thus, matches are determined on the basis of an object’s response to
the equals message.

Removes all occurrences of anObject in the specified range, aRange, of the receiver.
public void removeObject(Object anObject, NSRange aRange)

Discussion

This method uses index0f0Object (page 63) to locate matches and then removes them by using
removeObjectAtIndex (page 299). Thus, matches are determined on the basis of an object’s response to
the equals message.

See Also
removeAll0bjects (page 297)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46
NSMutableArray

removelastObject (page 298)
removeObjectAtIndex (page 299)
removeldenticalObject (page 298)
removeObjectsInArray (page 299)

removeObjectAtindex
Removes the object at index and moves all elements beyond 7ndex by subtracting 1 from their indices to
fill the gap.

public void removeObjectAtIndex(int index)

Discussion
This method throws a RangeException if index is beyond the end of the receiver.

See Also
insertObjectAtIndex (page 297)

removeAll0bjects (page 297)
removelastObject (page 298)
removeObject (page 298)
removeldenticalObject (page 298)

removeObjectsAtindexes

Removes the objects at the specified indexes from the receiver.
public void removeObjectsAtIndexes(NSIndexSet indexes)

Discussion

This method is similar to removeObjectAtIndex (page 299), but allows you to efficiently remove multiple
objects with a single operation. indexes specifies the locations of objects to be removed given the state of
the receiver when the method is invoked.

The locations specified by 7ndexes must lie within the bounds of the receiver.

Availability
Available in Mac OS X version 10.4 and later.

See Also
removeObjectAtIndex (page 299)

removeObjectsinArray

This method is similar to removeObject (page 298), but allows you to efficiently remove large sets of objects
with a single operation.

public void removeObjectsInArray(NSArray otherArray)

Instance Methods 299
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46
NSMutableArray

Discussion
It assumes that all elements in otherArray—which are the objects to be removed—respond to hash and
equals.

See Also
removeAll0bjects (page 297)

removeldenticalObject (page 298)

removeObjectsinRange

Removes each of the objects within the specified range, aRange, in the receiver using
removeObjectAtIndex (page 299).

public void removeObjectsInRange(NSRange aRange)

replaceObjectAtindex

Replaces the object at index with anObject.
public void replaceObjectAtIndex(int 7ndex, Object anObject)

Discussion
This method throws an InvalidArgumentExceptionif anObjectisnull andthrowsaRangeException
if 7ndex is beyond the end of the receiver.

See Also
insertObjectAtIndex (page 297)

removeObjectAtIndex (page 299)

replaceObjectsAtindexes

Replaces the objects in the receiver at the locations specified by 7ndexes with the objects from objects.
public void replaceObjectsAtIndexes(NSIndexSet indexes, NSArray objects)

Discussion
The count of locations in 7ndexes must equal the count of objects.

Availability
Available in Mac OS X version 10.4 and later.

See Also
insertObjectAtIndex (page 297)

removeObjectAtIndex (page 299)
replaceObjectAtIndex (page 300)

300 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46
NSMutableArray

replaceObjectsinRange

Replaces the objects in the receiver specified by aRange with the objects in otherArray specified by
otherRange.

public void replaceObjectsInRange(NSRange aRange, NSArray otherArray, NSRange
otherRange)

Discussion

aRange and otherRange don't have to be equal; if aRange is greater than otherRange, the extra objects
in the receiver are removed. If otherRange is greater than aRange, the extra objects from otherArray are
inserted into the receiver.

See Also
insertObjectAtIndex (page 297)

removeObjectAtIndex (page 299)
replaceObjectAtIndex (page 300)

setArray

Sets the receiver’s elements to those in otherArray.
public void setArray(NSArray otherArray)

Discussion

Shortens the receiver, if necessary, so that it contains no more than the number of elements in otherArray.
Replaces existing elements in the receiver with the elements in otherArray. Finally, if there are more
elements in otherArray than there are in the receiver, the additional items are then added.

See Also
addObjectsFromArray (page 296)

insertObjectAtIndex (page 297)

sortUsingDescriptors
Sorts the receiver as specified by sortDescriptors.

public void sortUsingDescriptors(NSArray sortDescriptors)

Discussion
See NSSortDescriptor (page 581) for additional information.

Availability
Available in Mac OS X v10.3 and later.

See Also
sortUsingSelector (page 302)

sortedArrayUsingDescriptors (page 65) (NSArray)

Instance Methods 301
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 46
NSMutableArray

sortUsingSelector

Sorts the receiver’s elements in ascending order, as determined by the comparison method specified by the
selector selector.

public void sortUsingSelector(NSSelector selector)

Discussion

The selector message is sent to each object in the array and has as its single argument another object in
the array. The selector method is used to compare two elements at a time and should return
OrderedAscending if the receiver is smaller than the argument, OrderedDescending if the receiver is
larger than the argument, and OrderedSame if they are equal.

See Also
sortUsingDescriptors (page 301)

sortedArraylUsingSelector (page 65) (NSArray)

302 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47

NSMutableAttributedString

Inherits from NSAttributedString : NSObject

Implements NSCoding (NSAttributedString)

Package: com.apple.cocoa.foundation

Companion guide Attributed Strings Programming Guide
Overview

Tasks

NSMutableAttributedString declares the programmatic interface to objects that manage mutable attributed
strings. You can add and remove characters (raw strings) and attributes separately or together as attributed
strings. See the class description for NSAttributedString (page 67) for more information about attributed
strings.

When working with the Application Kit, you must also clean up changed attributes using the various fix. . .
methods.

NSMutableAttributedString adds two primitive methods to those of NSAttributedString. These primitive
methods provide the basis for all the other methods in its class. The primitive
replaceCharactersInRange (page 312) method replaces a range of characters with those from a string,
leaving all attribute information outside that range intact. The primitive setAttributesInRange (page
312) method sets attributes and values for a given range of characters, replacing any previous attributes and
values for that range.

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to encapsulate
the paragraph or ruler attributes used by the NSAttributedString classes.

Note that the default font for NSAttributedString objects is Helvetica 12-point, which differs from the Mac
OS X system font Lucida Grande, so you may wish to create the string with non-default attributes suitable
for your application.

Constructors

NSMutableAttributedString (page 305)
Creates an empty NSMutableAttributedString.

Overview 303
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

304

CHAPTER 47
NSMutableAttributedString

Retrieving Character Information

mutableStringReference (page 310)
Returns the character contents of the receiver as an NSMutableStringReference object.

Changing Characters

deleteCharactersInRange (page 308)
Deletes the characters in aRange along with their associated attributes.

Changing Attributes

setAttributesInRange (page 312)

Sets the attributes for the characters in aRangeto attributes.
addAttributelInRange (page 306)

Adds an attribute with the given name and vaue to the characters in aRange.
addAttributesInRange (page 307)

Adds the collection of attributes in attributes to the characters in aRange.
removeAttributeInRange (page 311)

Removes the attribute named name from the characters in aRange.

Changing Characters and Attributes

appendAttributedString (page 307)
Adds the characters and attributes of attributedStringto the end of the receiver.

applyFontTraitsInRange (page 307)
Applies the font attributes specified by mask to the characters in aRange.

fixAttachmentAttributeInRange (page 308)
Cleans up attachment attributes in aRange, removing all attachment attributes assigned to characters
other than NSTextAttachment.AttachmentCharacter.
fixAttributesInRange (page 308)
Invokes the other fix. .. methods, allowing you to clean up an attributed string with a single
message.
fixFontAttributeInRange (page 309)
Fixes the font attribute in aRange, assigning default fonts to characters with illegal fonts for their
scripts and otherwise correcting font attribute assignments.
fixParagraphStyleAttributeInRange (page 309)
Fixes the paragraph style attributes in aRange, assigning the first paragraph style attribute value in
each paragraph to all characters of the paragraph.
insertAttributedStringAtIndex (page 310)
Inserts the characters and attributes of attributedString into the receiver, so the new characters

and attributes begin at 7ndex and the existing characters and attributes from 7ndex to the end are
shifted by the length of attributedString.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47
NSMutableAttributedString

readFromData (page 310)

readFromURL (page 310)
Sets the contents of receiver from the file at ur7.

replaceCharactersInRange (page 312)
Replaces the characters and attributes in aRange with the characters and attributes of
attributedString.

setAlignmentInRange (page 312)
Sets the alignment characteristic of the paragraph style attribute for the characters in aRange to
alignment.

setAttributedString (page 312)
Replaces the receiver’s entire contents with the characters and attributes of attributedString.

subscriptRange (page 313)
Decrements the value of the superscript attribute for characters in aRange by 1.

superscriptRange (page 313)
Increments the value of the superscript attribute for characters in aRange by 1.

unscriptRange (page 313)
Removes the superscript attribute from the characters in aRange.

updateAttachmentsFromPath (page 314)
Updates all attachments based on files contained in the RTFD file package at path.

Grouping Changes

beginkEditing (page 307)
Overridden by subclasses to buffer or optimize a series of changes to the receiver’s characters or
attributes, until it receives a matching endEditing (page 308) message, upon which it can consolidate
changes and notify any observers that it has changed.

endEditing (page 308)
Overridden by subclasses to consolidate changes made since a previous beginEditing (page 307)
message and to notify any observers of the changes.

Constructors

NSMutableAttributedString
Creates an empty NSMutableAttributedString.

pubTlic NSMutableAttributedString()
Creates an NSMutableAttributedString with the characters and attributes of attributedString.
public NSMutableAttributedString(NSAttributedString attributedString)

Creates an NSMutableAttributedString with the contents of aData, returning document properties in
attributes.

Constructors 305
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47
NSMutableAttributedString

public NSMutableAttributedString(NSData aData, NSMutableDictionary attributes)
Creates an NSMutableAttributedString from the HTML contained in data and base URL aURL.

public NSMutableAttributedString(NSData data, java.net.url aURL, NSMutableDictionary
attributes)

Discussion
Also returns in attributes a dictionary containing document-level attributes described in
NSAttributedString’s “Constants” (page 75). Returns nul1 if the file at aURL can't be decoded.

Creates an NSMutableAttributedString from wrapper, an NSFileWrapper object containing an RTFD document.

public NSMutableAttributedString(NSFileWrapper wrapper, NSMutableDictionary
attributes)

Discussion

Also returnsin attributes a dictionary containing document-level attributes described in
NSAttributedString’s “Constants” (page 75). Returns nul1 if wrapper can't be interpreted as an RTFD
document.

Creates an NSMutableAttributedString with the characters of string
public NSMutableAttributedString(String string)

Discussion
and no attribute information

Creates an NSMutableAttributedString with the characters of aString and the attributes of attributes.
public NSMutableAttributedString(String aString, NSDictionary attributes)

Creates an NSMutableAttributedString with the contents of aURL, returning document properties, which are
described in NSAttributedString’s “Constants” (page 75),in attributes.

public NSMutableAttributedString(java.net.URL aURL, NSMutableDictionary attributes)

Creates an NSMutableAttributedString with the contents of aURL, returning document properties, which are
described in NSAttributedString’s “Constants” (page 75),in attributes.

public NSMutableAttributedString(NSData aURL, NSDictionary options,
NSMutableDictionary attributes)

Discussion
options can contain one of the values described in readFromURL (page 310).

Instance Methods

306

addAttributelnRange

Adds an attribute with the given name and vaue to the characters in aRange.

public void addAttributelnRange(String name, Object value, NSRange aRange)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47
NSMutableAttributedString

Discussion
Throws an InvalidArgumentException if nameor valueisnull and a RangeException if any part of
aRange lies beyond the end of the receiver’s characters.

See Also
addAttributesInRange (page 307)

removeAttributeInRange (page311)

addAttributesinRange

Adds the collection of attributes in attributes to the characters in aRange.
public void addAttributesInRange(NSDictionary attributes, NSRange aRange)

Discussion
Throws an InvalidArgumentExceptionif attributesisnull and aRangeException if any part of
aRange lies beyond the end of the receiver’s characters.

See Also
addAttributeInRange (page 306)

removeAttributeInRange (page311)

appendAttributedString

Adds the characters and attributes of attributedString to the end of the receiver.
public void appendAttributedString(NSAttributedString attributedString)

See Also
insertAttributedStringAtindex (page 310)

applyFontTraitsinRange

Applies the font attributes specified by mask to the characters in aRange.
public void applyFontTraitsInRange(int mask, NSRange aRange)

Discussion
See the NSFontManager class specification for a description of the font traits available. Throws a
RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
setAlignmentInRange (page 312)

beginEditing

Overridden by subclasses to buffer or optimize a series of changes to the receiver’s characters or attributes,
until it receives a matching endEditing (page 308) message, upon which it can consolidate changes and
notify any observers that it has changed.

Instance Methods 307
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

308

CHAPTER 47
NSMutableAttributedString

public void beginEditing()

Discussion
You can nest pairs of beginEditing and endEditing (page 308) messages.

deleteCharactersinRange

Deletes the characters in aRange along with their associated attributes.
public void deleteCharactersInRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
replaceCharactersInRange (page 312)

endEditing
Overridden by subclasses to consolidate changes made since a previous beginEditing (page 307) message
and to notify any observers of the changes.

public void endEditing()

Discussion

NSMutableAttributedString's implementation does nothing. NSTextStorage, for example, overrides this
method to invoke fixAttributesInRange and to inform its NSLayoutManagers that they need to re-lay
the text.

See Also
processEditing (NSTextStorage)

fixAttachmentAttributelnRange

Cleans up attachment attributes in aRange, removing all attachment attributes assigned to characters other
than NSTextAttachment.AttachmentCharacter.

public void fixAttachmentAttributelnRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
fixFontAttributeInRange (page 309)

fixParagraphStyleAttributeInRange (page 309)
fixAttributesInRange (page 308)

fixAttributesinRange

Invokes the other fix. .. methods, allowing you to clean up an attributed string with a single message.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47
NSMutableAttributedString

public void fixAttributesInRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
fixAttachmentAttributeInRange (page 308)

fixFontAttributeInRange (page 309)
fixParagraphStyleAttributeInRange (page 309)

fixFontAttributeInRange

Fixes the font attribute in aRange, assigning default fonts to characters with illegal fonts for their scripts and
otherwise correcting font attribute assignments.

public void fixFontAttributeInRange(NSRange aRange)

Discussion
For example, Kanji characters assigned a Latin font are reassigned an appropriate Kanji font. Throws a
RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
fixParagraphStyleAttributelInRange (page 309)

fixAttachmentAttributeInRange (page 308)
fixAttributesInRange (page 308)

fixParagraphStyleAttributelnRange

Fixes the paragraph style attributes in aRange, assigning the first paragraph style attribute value in each
paragraph to all characters of the paragraph.

public void fixParagraphStyleAttributeInRange(NSRange aRange)

Discussion
This method extends the range as needed to cover the last paragraph partially contained. A paragraph is
delimited by any of these characters, the longest possible sequence being preferred to any shorter:

U+000D
U+000A
U+2028
U+2029

\r or CR)

\n or LF)

Unicode line separator)

Unicode paragraph separator) \r\n, in that order (also known as CRLF)

—_ o~

—_—

Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
fixFontAttributeInRange (page 309)

fixAttachmentAttributeInRange (page 308)
fixAttributesInRange (page 308)

Instance Methods 309
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

310

CHAPTER 47
NSMutableAttributedString

insertAttributedStringAtindex

Inserts the characters and attributes of attributedString into the receiver, so the new characters and
attributes begin at 7ndex and the existing characters and attributes from 7ndex to the end are shifted by
the length of attributedString.

public void insertAttributedStringAtIndex(NSAttributedString attributedString, int
index)

Discussion
Throws a RangeException if index lies beyond the end of the receiver’s characters.

See Also
appendAttributedString (page 307)

mutableStringReference

Returns the character contents of the receiver as an NSMutableStringReference object.
public NSMutableStringReference mutableStringReference()

Discussion
The receiver tracks changes to this string and keeps its attribute mappings up to date.

readFromData

public boolean readFromData(NSData data, NSDictionary options, NSMutableDictionary
dict)

Discussion
Sets the contents of the receiver from the stream at data. options can contain one of the values described
in readFromURL (page 310).

On return, the documentAttributes dictionary (if provided) contains the various keys described in the
“Constants” (page 75) section of NSAttributedString.

Availability
Available in Mac OS X v10.3 and later.

readFromURL

Sets the contents of receiver from the file at ur7.

public boolean readFromURL(java.net.URL url, NSDictionary options,
NSMutableDictionary documentAttributes)

Discussion
Filter services can be used to convert the contents of the URL into a format recognized by Cocoa. options
can contain:

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47
NSMutableAttributedString

Key Description

CharacterEncoding | For plain text documents; the unsigned int to be used if the encoding cannot be
determined

BaseURL For HTML documents; java.net.URL containing base URL

DefaultAttributes | NSDictionary containing attributes to be applied to plain files

Starting with Mac OS X v10.3, these options keys are recognized for HTML documents, both by this method
as well as the NSAttributedString constructor with an options parameter:

Key Description

"UseWebKit" An integer. If present and positive, forces WebKit-based HTML importing be
used; behavior in this case may differ from HTML import in Mac OS X v10.2 and
before, particularly for tables.

"TextEncodingName" | String containing the name, IANA or otherwise, of a text encoding to be used
if the encoding cannot be determined from the document. Mutually exclusive
with "CharacterEncoding".

"Timeout" A float. Time in seconds to wait for a document to finish loading.
"WebPreferences"” WebPreferences. If WebKit-based HTML importing is used, specifies a
WebPreferences object. If not present, a default set of preferences is used.
"WebResourceload- NSObject. If WebKit-based HTML importing is used, specifies an object to serve
Delegate" as the WebResourceLoadDelegate. If not present, a default delegate will be

used that will permit the loading of subsidiary resources but will not respond
to authentication challenges.

On return, the documentAttributes dictionary (if provided) contains the various keys described in the
“Constants” (page 75) section of NSAttributedString.

removeAttributelnRange

Removes the attribute named name from the characters in aRange.
public void removeAttributelInRange(String name, NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
addAttributelInRange (page 306)

addAttributesInRange (page 307)

Instance Methods 3N
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

312

CHAPTER 47
NSMutableAttributedString

replaceCharactersinRange

Replaces the characters and attributes in aRange with the characters and attributes of attributedString.

public void replaceCharactersInRange(NSRange aRange, NSAttributedString
attributedString)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

Replaces the characters in aRange with the characters of aString.
public void replaceCharactersInRange(NSRange aRange, String aString)

Discussion

The new characters inherit the attributes of the first replaced character from aRange. Where the length of
aRangeis 0, the new characters inherit the attributes of the character preceding aRange if it has any, otherwise
of the character following aRange.

Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
insertAttributedStringAtindex (page 310)

deleteCharactersInRange (page 308)

setAlignmentinRange

Sets the alignment characteristic of the paragraph style attribute for the charactersin aRangeto alignment.
public void setAlignmentInRange(int alignment, NSRange aRange)

Discussion
When attribute fixing takes place, this change will affect only paragraphs whose first character was included
in aRange. Throws a RangeExceptionifany partof aRange lies beyond the end of the receiver’s characters.

See Also
applyFontTraitsInRange (page 307)

fixParagraphStyleAttributeInRange (page 309)

setAttributedString

Replaces the receiver’s entire contents with the characters and attributes of attributedString.
public void setAttributedString(NSAttributedString attributedString)

See Also
appendAttributedString (page 307)

setAttributesinRange

Sets the attributes for the characters in aRangeto attributes.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47
NSMutableAttributedString

public void setAttributesInRange(NSDictionary attributes, NSRange aRange)

Discussion
These new attributes replace any attributes previously associated with the characters in aRange. Throws a
RangeException if any part of aRange lies beyond the end of the receiver’s characters.

To set attributes for a zero-length NSMutableAttributedString displayed in a text view, use the NSTextView
method setTypingAttributes.

See Also
addAttributesInRange (page 307)

removeAttributeInRange (page 311)

subscriptRange

Decrements the value of the superscript attribute for characters in aRange by 1.
public void subscriptRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
superscriptRange (page 313)

unscriptRange (page 313)

superscriptRange

Increments the value of the superscript attribute for characters in aRange by 1.
public void superscriptRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
subscriptRange (page 313)

unscriptRange (page 313)

unscriptRange

Removes the superscript attribute from the characters in aRange.
public void unscriptRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the receiver’s characters.

See Also
subscriptRange (page 313)

superscriptRange (page 313)

Instance Methods 313
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 47
NSMutableAttributedString

updateAttachmentsFromPath
Updates all attachments based on files contained in the RTFD file package at path.

public void updateAttachmentsFromPath(String path)

See Also
updateFromPath (NSFileWrapper)

314 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48

NSMutableCharacterSet

Inherits from NSCharacterSet : NSObject

Implements NSCoding

Package: com.apple.cocoa.foundation

Companion guide String Programming Guide for Cocoa
Overview

Tasks

The NSMutableCharacterSet class declares the programmatic interface to objects that manage a modifiable
set of Unicode characters. You can add or remove characters from a mutable character set as numeric values
in NSRanges or as character values in strings, combine character sets by union or intersection, and invert a
character set.

Mutable character sets are less efficient to use than immutable character sets. If you don't need to change
a character set after creating it, create an immutable copy with copy and use that.

NSMutableCharacterSet defines no primitive methods. Subclasses must implement all methods declared by
this class in addition to the primitives of NSCharacterSet.

Constructors

NSMutableCharacterSet (page 316)
Creates an empty NSMutableCharacterSet.

Adding and Removing Characters

addCharacter (page 317)
Adds the character aChar to the receiver.

removeCharacter (page 318)
Removes the character aChar from the receiver.

addCharactersInRange (page 317)
Adds the characters whose integer values are given by aRange to the receiver.

Overview 315
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48
NSMutableCharacterSet

removeCharactersInRange (page 318)
Removes from the receiver the characters whose integer values are given by aRange.

addCharactersInString (page 317)
Adds the characters in aString to those in the receiver.

removeCharactersInString (page 318)
Removes the characters in aString from those in the receiver.

Combining Character Sets

intersectCharacterSet (page 317)
Modifies the receiver so it contains only characters that exist in both the receiver and otherSet.

subtractCharacterSet (page 318)
Removes the characters in otherSet from those in the receiver.

unionCharacterSet (page 319)
Modifies the receiver so it contains all characters that exist in either the receiver or otherSet.

Inverting a Character Set

invertCharacterSet (page 318)
Replaces all the characters in the receiver with all the characters it didn’t previously contain.

Constructors

316

NSMutableCharacterSet

Creates an empty NSMutableCharacterSet.

public NSMutableCharacterSet()

Creates a mutable character set containing characters determined by the bitmap representation data.
public NSMutableCharacterSet(NSData data)

Discussion
This method is useful for creating a mutable character set object with data from a file or other external data
source.

Creates a mutable character set containing characters whose Unicode values are given by aRange.
public NSMutableCharacterSet(NSRange aRange)

Discussion
aRange.location is the value of the first character,and aRange.location + aRange.length — 1 is the
value of the last. Returns an empty mutable character set if aRange.length is 0.

Creates a mutable character set containing the characters in aString.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48
NSMutableCharacterSet

public NSMutableCharacterSet(String aString)

Discussion
Returns an empty mutable character set if aStringis empty.

Instance Methods

addCharacter

Adds the character aChar to the receiver.
public void addCharacter(char aChar)

See Also
removeCharacter (page 318)

addCharactersinRange

Adds the characters whose integer values are given by aRange to the receiver.
public void addCharactersInRange(NSRange aRange)

Discussion
aRange.location is the value of the first character to add; aRange.location + aRange.length-1is
the value of the last. If aRange.1ength is 0 this method has no effect.

See Also
removeCharactersInRange (page 318)

addCharactersInString (page 317)

addCharactersinString

Adds the characters in aString to those in the receiver.
public void addCharactersInString(String aString)

Discussion
This method has no effect if aStringis empty.

See Also
removeCharactersInString (page 318)

addCharactersInRange (page 317)

intersectCharacterSet

Modifies the receiver so it contains only characters that exist in both the receiver and otherSet.

public void intersectCharacterSet(NSCharacterSet otherSet)

Instance Methods 317
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48
NSMutableCharacterSet

See Also
unionCharacterSet (page 319)

invertCharacterSet

Replaces all the characters in the receiver with all the characters it didn’t previously contain.

public void invertCharacterSet()

removeCharacter

Removes the character aChar from the receiver.
public void removeCharacter(char aChar)

See Also
addCharacter (page 317)

removeCharactersinRange

Removes from the receiver the characters whose integer values are given by aRange.
public void removeCharactersInRange(NSRange aRange)

Discussion
aRange.location is the value of the first character to remove, and aRange.location+ aRange.length
- 1is the value of the last. If aRange.length is 0 this method has no effect.

See Also
addCharactersInRange (page 317)

removeCharactersInString (page 318)

removeCharactersinString

Removes the characters in aString from those in the receiver.
public void removeCharactersInString(String aString)

Discussion
This method has no effectif aStringis empty.

See Also
addCharactersInString (page 317)

removeCharactersInRange (page 318)

subtractCharacterSet

Removes the characters in otherSet from those in the receiver.

318 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48
NSMutableCharacterSet

public void subtractCharacterSet(NSCharacterSet otherSet)

unionCharacterSet

Modifies the receiver so it contains all characters that exist in either the receiver or otherSet.
public void unionCharacterSet(NSCharacterSet otherSet)

See Also
intersectCharacterSet (page 317)

Instance Methods 319
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 48
NSMutableCharacterSet

320 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 49

NSMutableData

Inherits from NSData : NSObject

Implements NSCoding (NSData)

Package: com.apple.cocoa.foundation

Companion guide Binary Data Programming Guide for Cocoa

Class at a Glance

An NSMutableData object stores mutable data in the form of bytes. The size of the data is subject to a 2GB
limit.

Principal Attributes

= A count of the number of bytes in the mutable data object

= The sequence of bytes contained in the mutable data object

NSMutableData (page 322)
Creates an NSMutableData object.

Primitive Methods

setlLength (page 323)
Extends or truncates the number of bytes in the NSMutableData object.

Overview

NSMutableData (and its superclass NSData) provide data objects, object-oriented wrappers for byte buffers.
Data objects let simple allocated buffers (that is, data with no embedded pointers) take on the behavior of
Foundation objects. They are typically used for data storage and are also useful in Distributed Objects
applications, where data contained in data objects can be copied or moved between applications. NSData
creates static data objects, and NSMutableData creates dynamic data objects. You can easily convert one
type of data object to the other with the constructor that takes an NSData or NSMutableData as an argument.

Class at a Glance 321
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Tasks

CHAPTER 49
NSMutableData

Constructors

NSMutableData (page 322)

Adjusting Capacity

increaselengthBy (page 323)
Increases the length of the receiver by extralength.

setlLength (page 323)
Extends or truncates a mutable data object to 7ength.

Adding Data

appendData (page 323)
Appends the contents of a data object otherData to the receiver.

Modifying Data

resetBytesInRange (page 323)
Specifies a range within the contents of the receiver to be replaced by zeros.

setData (page 323)
Replaces the entire contents of the receiver with the contents of aData.

Constructors

322

NSMutableData
public NSMutableData()

Discussion
Creates an empty data object. This method is declared primarily for the use of mutable subclasses of NSData.

public NSMutableData(java.net.URL aURL)

Discussion
Creates a data object with the data from the location specified by aURL.

public NSMutableData(NSData aData)

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 49
NSMutableData

Discussion
Creates a data object containing the contents of another data object, aData.

public NSMutableData(int Tength)

Discussion
Creates data object with enough memory to hold 7ength bytes. Fills the object with zeros up to Tength.

Instance Methods

appendData

Appends the contents of a data object otherData to the receiver.

public void appendData(NSData otherData)

increaseLengthBy

Increases the length of the receiver by extralength.
public void increaselengthBy(int extralength)

Discussion
The additional bytes are all set to 0.

See Also
setlength (page 323)

resetBytesinRange

Specifies a range within the contents of the receiver to be replaced by zeros.
public void resetBytesInRange(NSRange range)

Discussion
If the location of range isn't within the receiver’s range of bytes, a RangeException is thrown. The receiver
is resized to accommodate the new bytes, if necessary.

setData

Replaces the entire contents of the receiver with the contents of aData.

public void setData(NSData aData)

setLength

Extends or truncates a mutable data object to 7ength.

Instance Methods 323
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 49
NSMutableData

public void setlength(int Tength)

Discussion
If the mutable data object is extended, the additional bytes are filled with zeros.

See Also
increaselengthBy (page 323)

324 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 50

NSMutableDictionary

Inherits from NSDictionary : NSObject

Implements NSCoding (NSDictionary)

Package: com.apple.cocoa.foundation

Companion guide Collections Programming Topics for Cocoa

Class at a Glance

An NSDictionary object stores a mutable set of entries.

Principal Attributes

= A count of the number of entries in the dictionary
= The set of keys contained in the dictionary

m The objects that correspond to the keys in the dictionary

NSMutableDictionary (page 326)
Creates a new dictionary.

Commonly Used Methods

removeObjectForKey (page 327)
Removes the specified entry from the dictionary.

removeObjectsForKeys (page 327)
Removes multiple entries from the dictionary.

Overview

The NSMutableDictionary class declares the programmatic interface to objects that manage mutable
associations of keys and values. With its two efficient primitive methods—set0bjectForKey (page 328) and
removeObjectForKey (page 327)—this class adds modification operations to the basic operations it inherits
from NSDictionary.

Class at a Glance 325
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 50
NSMutableDictionary

The other methods declared here operate by invoking one or both of these primitives. The nonprimitive
methods provide convenient ways of adding or removing multiple entries at a time.

Tasks

Constructors

NSMutableDictionary (page 326)

Adding and Removing Entries

addEntriesFromDictionary (page 327)
Adds the entries from otherDictionary to the receiver.

removeAll0bjects (page 327)
Empties the receiver of its entries.

removeObjectForKey (page 327)
Removes aKey and its associated value object from the receiver.

removeObjectsForKeys (page 327)
Removes one or more entries from the receiver.

setDictionary (page 328)
Sets the receiver to entries in otherDictionary.

setObjectForKey (page 328)
Adds an entry to the receiver, consisting of aKey and its corresponding value object anObject.

Constructors

NSMutableDictionary
public NSMutableDictionary()

Discussion
Creates and returns an empty mutable dictionary.

public NSMutableDictionary(NSDictionary otherDictionary)

Discussion
Creates a mutable dictionary containing the keys and values found in otherDictionary.

326 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 50
NSMutableDictionary

Instance Methods

addEntriesFromDictionary

Adds the entries from otherDictionary to the receiver.
public void addEntriesFromDictionary(NSDictionary otherDictionary)

Discussion
Each value object from otherDictionary is added directly to the receiver.

See Also
setObjectForKey (page 328)

removeAllObjects

Empties the receiver of its entries.
public void removeAll0bjects()

See Also
removeObjectForKey (page 327)

removeObjectsForKeys (page 327)

removeObjectForKey

Removes aKey and its associated value object from the receiver.
public void removeObjectForKey(Object aKey)

Discussion
Does nothing if akey does not exist.

See Also
removeAll0bjects (page 327)

removeObjectsForKeys (page 327)

removeObjectsForKeys
Removes one or more entries from the receiver.

public void removeObjectsForKeys(NSArray keyArray)

Discussion
The entries are identified by the keys in keyArray.If akeyin keyArray does not exist, the entry is ignored.

See Also
removeObjectForKey (page 327)

removeObjectForKey (page 327)

Instance Methods 327
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 50
NSMutableDictionary

setDictionary

Sets the receiver to entries in otherDictionary.
public void setDictionary(NSDictionary otherDictionary)

Discussion
setDictionary does this by removing all entries from the receiver (with removeAl10bjects (page 327)),
then adding each entry from otherDictionary into the receiver.

setObjectForKey

Adds an entry to the receiver, consisting of aKey and its corresponding value object anObject.
public void setObjectForKey(Object anObject, Object aKey)

Discussion
The value object is added directly to the dictionary. Throws an InvalidArgumentException if the key or

value objectis null.

See Also
removeObjectForKey (page 327)

328 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51

NSMutablelndexSet

Inherits from NSIndexSet : NSObject

Implements NSCoding (NSIndexSet)

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.3 and later.

Companion guide Collections Programming Topics for Cocoa
Overview

Tasks

NSMutablelndexSet manages a mutable collection of unsigned integers. This collection is referred to as an
index set and is composed of a series of indexes. A given index can appear only once in an index set. The
values in an index set are always sorted, so the order in which values are added is irrelevant.

Internally, indexes are represented in ranges. Thus, an index set includes the integer members of a range or
of many ranges. For maximum performance and efficiency, overlapping ranges in an index set are automatically
coalesced (ranges merge rather than overlap).

NSMutablelndexSet is not intended to be subclassed.

Constructors

NSMutableIndexSet (page 330)
Creates and returns an NSMutablelndexSet containing the indexes specified by NSRange . ZeroRange.

Adding Indexes

addIndex (page 331)
Adds the index specified by vaue to the receiver.

addIndexes (page 331)

addIndexesInRange (page 331)
Adds the indexes specified by range to the receiver.

Overview 329
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51
NSMutablelndexSet

Removing Indexes

removelndex (page 332)
Removes the index specified by va 7 ue from the receiver.

removelndexes (page 332)
Removes the indexes contained in indexSet from the receiver.

removeAllIndexes (page 332)
Removes all the indexes from the receiver.

removelIndexesInRange (page 332)
Removes the indexes specified by range from the receiver.

Shifting Indexes in an Index Set

shiftIndexes (page 333)

Constructors

NSMutablelndexSet

Creates and returns an NSMutablelndexSet containing the indexes specified by NSRange.ZeroRange.
public NSMutableIndexSet()

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSMutablelndexSet containing a single index, value.
public NSMutablelIndexSet(int value)

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSMutableIndexSet containing the indexes specified by range.
public NSMutablelndexSet(NSRange range)

Availability
Available in Mac OS X v10.3 and later.

Creates and returns an NSMutablelndexSet containing the indexes in 7ndexSet.
public NSMutableIndexSet(NSIndexSet indexSet)

Availability
Available in Mac OS X v10.3 and later.

330 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51
NSMutablelndexSet

Instance Methods

addindex

Adds the index specified by value to the receiver.
public void addIndex(int value)

Discussion
This method throws a RangeException if the addition of va7ue to the index set would exceed the maximum
range allowed by NSIndexSet.

Availability
Available in Mac OS X v10.3 and later.

See Also
addIndexes (page 331)

addIndexesInRange (page 331)

addIndexes
public void addIndexes(NSIndexSet indexSet)

Discussion
Adds the indexes specified by indexSet to the receiver.

Availability
Available in Mac OS X v10.3 and later.

See Also
addIndex (page 331)

addIndexesInRange (page 331)

addindexesinRange

Adds the indexes specified by range to the receiver.
public void addIndexesInRange(NSRange range)

Discussion
This method throws a RangeException if the addition of the indexes specified by range would exceed the
maximum range allowed by NSIndexSet.

Availability
Available in Mac OS X v10.3 and later.

See Also
addIndex (page 331)

addIndexes (page 331)

Instance Methods 331
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51
NSMutablelndexSet

removeAlllndexes

Removes all the indexes from the receiver.
public void removeAllIndexes()

Availability
Available in Mac OS X v10.3 and later.

See Also
removelndex (page 332)

removelndexes (page 332)
removelndexesInRange (page 332)

removelndex

Removes the index specified by va 7ue from the receiver.
public void removelndex(int value)

Availability
Available in Mac OS X v10.3 and later.

See Also
removeAllIndexes (page 332)

removelndexes (page 332)
removelndexesInRange (page 332)

removelndexes

Removes the indexes contained in indexSet from the receiver.
public void removelndexes(NSIndexSet indexSet)

Availability
Available in Mac OS X v10.3 and later.

See Also
removelndex (page 332)

removeAllIndexes (page 332)
removelndexesInRange (page 332)

removelndexesinRange

Removes the indexes specified by range from the receiver.
public void removelndexesInRange(NSRange range)

Availability
Available in Mac OS X v10.3 and later.

332 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51
NSMutablelndexSet

See Also
removelIndex (page 332)

removelndexes (page 332)
removeAllIndexes (page 332)

shiftindexes
public void shiftlIndexes(int index, int delta)

Discussion

For a positive de] ta, shifts the indexes in [7ndex, INT_MAX] to the right, thereby inserting an "empty space"
intherange [7ndex, deltal. Foranegative del ta, shifts the indexesin [7ndex, INT_MAX] to the left, thereby
deleting the indexes in the range [7ndex - delta, deltal.

Availability
Available in Mac OS X v10.3 and later.

Instance Methods 333
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 51
NSMutablelndexSet

334 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 52

NSMutablePoint

Inherits from NSPoint : Object

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities
Overview

An NSMutablePoint is an object representing a point that can be changed in a coordinate system. The main
purpose for NSMutablePoints is to provide a way for methods to return coordinate values in an “out” parameter.
The client creates and passes in one or more NSMutablePoints to a method and gets back changed objects
when the method returns. NSMutablePoints are also useful for performance reasons; instead of creating
multiple NSPoints in a loop, you can create just one NSMutablePoint and reuse it.

Tasks

Constructors

NSMutablePoint (page 336)

Accessing and Setting Coordinate Values

setX (page 336)

Sets the x coordinate of the receiver to newX.
setY (page 337)

Sets the y coordinate of the receiver to new/.
X (page 337)

Returns the x coordinate of the receiver.
y (page 337)

Returns the y coordinate of the receiver.

Overview 335
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 52
NSMutablePoint

Copying

clone (page 336)
Creates and returns a copy of the receiver.

Constructors

NSMutablePoint
public NSMutablePoint()

Discussion
This constructor initializes the x and y coordinates to 0.

public NSMutablePoint(float x, float y)

Discussion
Initializes the NSMutablePoint with the horizontal coordinate x and the vertical coordinate .

public NSMutablePoint(NSPoint aPoint)

Discussion
Initializes the new NSMutablePoint with the coordinate values of NSPoint aPo7nt; this constructor is used

in cloning the receiver.
public NSMutablePoint(java.awt.Point javaPoint)

Discussion
Initializes the NSMutablePoint with the values extracted from an AWT Point object, javaPoint.

Instance Methods

clone

Creates and returns a copy of the receiver.

public Object clone()

setX

Sets the x coordinate of the receiver to newX.
public void setX(float newX)

Discussion
Throws an I11egalArgumentException if newXis NaN (that is, not a valid float value).

336 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 52
NSMutablePoint

See Also
X (page 337)

setY

Sets the y coordinate of the receiver to new/.
public void setY(float newY)

Discussion
Throws an I11egalArgumentException if newY is NaN (that is, not a valid float value).

See Also
y (page 337)

X

Returns the x coordinate of the receiver.
public float x()

Discussion
NSMutablePoint overrides this method because implementation details make overriding necessary.

See Also
setX (page 336)

y

Returns the y coordinate of the receiver.
public float y()

Discussion
NSMutablePoint overrides this method because implementation details make overriding necessary.

See Also
setY (page 337)

Instance Methods 337
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 52
NSMutablePoint

338 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 53

NSMutableRange

Inherits from NSRange : Object

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities
Overview

Tasks

An NSMutableRange is an object representing a range that can be changed. A range is a measurement of a
segment of something linear, such as a byte stream. You can change an NSMutableRange’s two primary
values, its location and its length. The methods of NSMutableRange also enable you to alter an
NSMutableRange based on its union or intersection with another NSRange object.

The main purpose for NSMutableRanges is to provide a way for methods to return range values in an “out”
parameter. A client creates and passes in one or more NSMutableRanges to a method and gets back changed
objects when the method returns. NSMutableRanges are also useful for performance reasons; instead of
creating multiple NSRanges in a loop, you can create just one NSMutableRange and reuse it.

Constructors

NSMutableRange (page 340)

Accessing and Setting Range Elements

length (page 341)

Returns the length of the receiver, its distance from its starting location.
setlLength (page 341)

Sets the length of the receiver to newlength.
location (page 341)

Returns the starting location of the receiver.

setlLocation (page 341)
Sets the length of the receiver to newlLocation.

Overview 339
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 53
NSMutableRange

Transforming Mutable Ranges

clone (page 340)
Creates and returns a copy of the receiver.
intersectRange (page 340)
Changes the receiver to the range resulting from the intersection of aRange and the receiver before
the operation.
unionRange (page 342)
Changes the receiver to the range resulting from the union of aRange and the receiver.

Constructors

NSMutableRange
public NSMutableRange()

Discussion
Initializes the object to an empty NSMutableRange.

public NSMutableRange(int Tocation, int length)

Discussion
Initializes the NSMutableRange with the range elements of 7ocationand Tength. Throws an
I11egalArgumentException if either integer is negative.

public NSMutableRange(NSRange aRange)

Discussion
Initializes the new NSMutableRange with the location and length values of aRange; this constructor is used
in cloning the receiver.

Instance Methods

340

clone

Creates and returns a copy of the receiver.

public Object clone()

intersectRange

Changes the receiver to the range resulting from the intersection of aRange and the receiver before the
operation.

public void intersectRange(NSRange aRange)

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 53
NSMutableRange

Discussion
Sets the receiver to an empty range if they do not intersect.

See Also
unionRange (page 342)

length

Returns the length of the receiver, its distance from its starting location.
public int Tength()

Discussion
NSMutableRange overrides this method because of internal implementation requirements.

See Also
location (page 341)

location

Returns the starting location of the receiver.
public int Tocation()

Discussion
NSMutableRange overrides this method because of internal implementation requirements.

See Also
length (page 341)

setLength

Sets the length of the receiver to newlength.
public void setlLength(int newlLength)

Discussion
Throws an I11egalArgumentException if newLength is a negative value.

See Also
setlLocation (page 341)

setLocation

Sets the length of the receiver to newlocation.
public void setlocation(int newlocation)

Discussion
Throws an I11egalArgumentException if newlLocationis a negative value.

Instance Methods 34
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 53
NSMutableRange

See Also
setlength (page 341)

unionRange

Changes the receiver to the range resulting from the union of aRange and the receiver.
public void unionRange(NSRange aRange)

Discussion
The result is a range with the lowest starting location and the highest ending location of the two NSRanges.

See Also
intersectRange (page 340)

342 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54

NSMutableRect

Inherits from NSRect : Object

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities
Overview

Tasks

An NSMutableRect is an object representing a rectangle that can be modified. The elemental attributes of a
rectangle are its origin (its starting x coordinate and y coordinate) and its size (its width and height as measured
from the origin). The methods of NSMutableRect allow you to change these elemental values. They also let
you inset and offset rectangles by specific amounts and alter an NSMutableRect based on its union or
intersection with another NSRect object.

The main purpose for NSMutableRects is to provide a way for methods to return rectangle values in an “out”
parameter. A client creates and passes in one or more NSMutableRects to a method and gets back converted
objects when the method returns. NSMutableRects are also useful for performance reasons; instead of creating
multiple NSRects in a loop, you can create just one NSMutablePoint and reuse it.

Constructors

NSMutableRect (page 344)

Accessing and Setting Coordinate Values

setOrigin (page 347)

Sets the origin point of the receiver to new0Origin.
x (page 348)

Returns the origin x coordinate of the receiver.
y (page 349)

Returns the origin y coordinate of the receiver.

setX (page 347)
Sets the x-coordinate of the receiver to newX.

Overview 343
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54
NSMutableRect

setY (page 348)
Sets the y-coordinate of the receiver to newY.

Accessing and Setting Size Values

height (page 345)

Returns the height dimension of the receiver.
setHeight (page 347)

Sets the width of the receiver to newHeight.
setSize (page 347)

Sets the size of the receiver to newSize.
width (page 348)

Returns the width of the receiver.
setWidth (page 347)

Sets the width of the receiver to newl7dth.

Transforming Mutable Rectangles

insetRect (page 346)
Modifies the receiver to be inset from both upper and lower edges by vertDistance and from both
left and right edges by horizDistance.

intersectRect (page 346)
Modifies the receiver to be the intersection of itself and otherRectangle.

makeIntegral (page 346)
Changes the receiver so that its origin and size are rounded to the nearest integer, ensuring that the
receiver completely contains the original rectangle.

offsetRect (page 346)
Changes the receiver so that its x coordinate is moved by horiz0ffset anditsy coordinate is moved
by vertOffset.

unionRect (page 348)
Modifies the receiver to be the union of itself and otherRectangle.

Copying

clone (page 345)
Creates and returns a copy of the receiver.

Constructors

344

NSMutableRect
public NSMutableRect()

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54
NSMutableRect

Discussion
Initializes an empty mutable rectangle (that is, a rectangle with at least one dimension of 0).

public NSMutableRect(float x, float y, float w, float h)

Discussion
Initializes an NSMutableRect from a starting x coordinate (x), a starting y coordinate (y), a width value (w),
and a height value (h). If either width and height is 0, it initializes an empty rectangle.

public NSMutableRect(NSPoint aPoint, NSSize aSize)

Discussion
Initializes an NSMutableRect from an NSPoint object, aPoint, and an NSSize object, aSize.

public NSMutableRect(NSPoint pointOne, NSPoint pointTwo)

Discussion
Initializes an NSMutableRect from two NSPoint objects, point0One and pointTwo. Creates the smallest
rectangle containing the two points.

public NSMutableRect(java.awt.Rectangle javaRectangle)

Discussion
Initializes an NSMutableRect from an AWT Rectangle object, javaRectangle.

public NSMutableRect(NSRect aRectangle)

Discussion
Initializes an NSMutableRect from an NSRect object, aRectangle; this constructor is used in cloning the
receiver.

Instance Methods

clone

Creates and returns a copy of the receiver.

public Object clone()

height
Returns the height dimension of the receiver.

public float height()

Discussion
NSMutableRect overrides this method because implementation details make overriding necessary.

See Also
setHeight (page 347)

width (page 348)

Instance Methods 345
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

346

CHAPTER 54
NSMutableRect

insetRect

Modifies the receiver to be inset from both upper and lower edges by vertDistance and from both left
and right edges by horizDistance.

public void insetRect(float vertDistance, float horizDistance)

Discussion
The values vertDistanceand horizDistance can be negative. An I11egalArgumentExceptionis
thrown if the resulting width or height would be negative.

See Also
offsetRect (page 346)

intersectRect

Modifies the receiver to be the intersection of itself and otherRectangle.
public void intersectRect(NSRect otherRectangle)

Discussion
If either the receiver or otherRectanglie has an empty dimension, it modifies the receiver to be an empty
rectangle (all dimensions) at point {0.0f, 0.0f}.

See Also
unionRect (page 348)

makelntegral

Changes the receiver so that its origin and size are rounded to the nearest integer, ensuring that the receiver
completely contains the original rectangle.

public void makelIntegral()

Discussion
The x coordinate and the y coordinate are rounded down, and the height and width are rounded up. If the
receiver has an empty dimension, it is modified to be an empty rectangle (all dimensions) at point {0.0f, 0.0f}.

offsetRect

Changes the receiver so that its x coordinate is moved by horiz0ffset and its y coordinate is moved by
vertOffset.

public void offsetRect(float horizOffset, float vertOffset)

Discussion
Both arguments can be negative values.

See Also
insetRect (page 346)

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54
NSMutableRect

setHeight

Sets the width of the receiver to newHeight.
public void setHeight(float newHeight)

Discussion
Throwsan I11egalArgumentExceptionif newHeight is NaN (an invalid float value) or is a negative value.

See Also
height (page 345)

setWidth (page 347)

setOrigin

Sets the origin point of the receiver to newOrigin.
public void setOrigin(NSPoint newOrigin)

See Also
origin (page 487) (NSRect)

setSize

Sets the size of the receiver to newSize.
public void setSize(NSSize newSize)

See Also
size (page 489) (NSRect)

setWidth

Sets the width of the receiver to newl7dth.
public void setWidth(float newWidth)

Discussion
Throws an I11egalArgumentException if newWidthis NaN (an invalid float value) or is a negative value.

See Also
setHeight (page 347)

width (page 348)

setX

Sets the x-coordinate of the receiver to newX.

public void setX(float newX)

Instance Methods 347
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

348

CHAPTER 54
NSMutableRect

Discussion
Throws an I11egalArgumentException if newXis NaN (an invalid float value) or is a negative value.

See Also
setY (page 348)

X (page 348)

setY

Sets the y-coordinate of the receiver to newY.
public void setY(float newY)

Discussion
Throws an I11egalArgumentException if newY is NaN (an invalid float value) or is a negative value.

See Also
setX (page 347)

y (page 349)

unionRect

Modifies the receiver to be the union of itself and otherRectangle.
public void unionRect(NSRect otherRectangle)

Discussion

If the receiver and otherRectang] e both have an empty dimension, it modifies the receiver to be an empty
rectangle (all dimensions) at point {0.0f, 0.0f}. If otherRectangle has an empty dimension, but the receiver
doesn't, the receiver is unchanged.

See Also
intersectRect (page 346)

width

Returns the width of the receiver.
public float width()

Discussion
NSMutableRect overrides this method because implementation details make overriding necessary.

See Also
height (page 345)

X

Returns the origin x coordinate of the receiver.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54
NSMutableRect

public float x()

Discussion
NSMutableRect overrides this method because implementation details make overriding necessary.

See Also
setX (page 347)

y (page 349)

y

Returns the origin y coordinate of the receiver.
public float y()

Discussion
NSMutablePoint overrides this method because implementation details make overriding necessary.

See Also
X (page 348)

setY (page 348)

Instance Methods 349
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 54
NSMutableRect

350 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55

NSMutableSet

Inherits from NSSet : NSObject

Implements NSCoding (NSSet)

Package: com.apple.cocoa.foundation

Companion guide Collections Programming Topics for Cocoa

Class at a Glance

An NSMutableSet object stores a modifiable set of objects.

Principal Attributes

m The objects that make up the set

NSMutableSet (page 353)
Creates a new set.

Commonly Used Methods

addObject (page 353)
Adds an object to the set, if it isn't already a member.

removeObject (page 354)
Removes an object from the set.

Primitive Methods

addObject (page 353)
Adds an object to the set, if it isn't already a member.

removeObject (page 354)
Removes an object from the set.

Class at a Glance

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

351

CHAPTER 55
NSMutableSet

Overview

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of
objects. NSMutableSet provides support for the mathematical concept of a set. A set, both in its mathematical
sense and in the NSMutableSet implementation, is an unordered collection of distinct elements. The NSSet
class supports creating and managing immutable sets.

Objects are added to an NSMutableSet with addObject (page 353), which adds a single object to the set;
addObjectsFromArray (page 353), which adds all objects from a specified array to the set; or unionSet (page
355), which adds all the objects from another set.

Objects are removed from an NSMutableSet using any of the methods intersectSet (page 353),
removeAll0bjects (page 354), removeObject (page 354), or subtractSet (page 354).

Tasks

Constructors

NSMutableSet (page 353)

Adding and Removing Entries

addObject (page 353)
Adds the specified object to the receiver if it is not already a member.

removeObject (page 354)
Removes an0bject from the receiver.
removeAll0bjects (page 354)
Empties the receiver of all of its members.
addObjectsFromArray (page 353)
Adds each object contained in anArray to the receiver, if that object is not already a member.

Combining and Recombining Sets

unionSet (page 355)

Adds each object contained in otherSet to the receiver, if that object is not already a member.
subtractSet (page 354)

Removes from the receiver each object contained in otherSet that is also present in the receiver.
intersectSet (page 353)

Removes from the receiver each object that isn't a member of otherSet.

setSet (page 354)
Empties the receiver, then adds each object contained in otherSet to the receiver.

352 Overview
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55
NSMutableSet

Constructors

NSMutableSet
public NSMutableSet()

Discussion
Returns an empty mutable set.

public NSMutableSet(NSSet aSet)

Discussion
Returns a mutable set containing those objects contained within the set aSet.

Instance Methods

addObject
Adds the specified object to the receiver if it is not already a member.

public void addObject(0Object anObject)

Discussion
If anObject is already present in the set, this method has no effect on either the setor anObject.

See Also
addObjectsFromArray (page 353)

unionSet (page 355)

addObjectsFromArray

Adds each object contained in anArray to the receiver, if that object is not already a member.
public void addObjectsFromArray(NSArray anArray)

Discussion
If a given element of the array is already present in the set, this method has no effect on either the set or the
array element.

See Also
addObject (page 353)

unionSet (page 355)

intersectSet

Removes from the receiver each object that isn't a member of otherSet.

Constructors 353
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55
NSMutableSet

public void intersectSet(NSSet otherSet)

See Also
removeObject (page 354)

removeAll0bjects (page 354)
subtractSet (page 354)

removeAllObjects

Empties the receiver of all of its members.
public void removeAll0Objects()

See Also
removeObject (page 354)

subtractSet (page 354)
intersectSet (page 353)

removeObject
Removes an0bject from the receiver.
public void removeObject(Object anObject)

See Also
removeObject (page 354)

subtractSet (page 354)
intersectSet (page 353)

setSet

Empties the receiver, then adds each object contained in otherSet to the receiver.

public void setSet(NSSet otherSet)

subtractSet

Removes from the receiver each object contained in otherSet that is also present in the receiver.
public void subtractSet(NSSet otherSet)

Discussion
If any member of otherSetisn't present in the receiving set, this method has no effect on either the receiver
or the otherSet member.

See Also
removeObject (page 354)

removeAll0bjects (page 354)
intersectSet (page 353)

354 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55
NSMutableSet

unionSet

Adds each object contained in otherSet to the receiver, if that object is not already a member.
public void unionSet(NSSet otherSet)

Discussion
If any member of otherSet is already present in the receiver, this method has no effect on either the receiver
or the otherSet member.

See Also
addObject (page 353)

addObjectsFromArray (page 353)

Instance Methods 355
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 55
NSMutableSet

356 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 56

NSMutableSize

Inherits from NSSize : Object

Package: com.apple.cocoa.foundation

Companion guide Geometry and Range Utilities
Overview

An NSMutableSize is an object representing a dimension that can be changed. The main purpose for
NSMutableSizes is to provide a way for methods to return size values in an “out” parameter. The client creates
and passes in one or more NSMutableSizes to a method and gets back changed objects when the method
returns. NSMutableSizes are also useful for performance reasons; instead of creating multiple NSSizes in a
loop, you can create just one NSMutableSize and reuse it.

Tasks

Constructors

NSMutableSize (page 358)

Accessing and Setting Dimensions

height (page 358)

Returns the height dimension of the receiver.
setHeight (page 359)

Sets the height dimension of the receiver to newHeight.
width (page 359)

Returns the width of the receiver.
setWidth (page 359)

Sets the width dimension of the receiver to newWidth.

Overview 357
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 56
NSMutableSize

Copying

clone (page 358)
Creates and returns a copy of the receiver.

Constructors

NSMutableSize
NSMutableSize()

Discussion
Initializes an “empty” NSMutableSize (one whose height or width is 0).

NSMutableSize(float w, float h)

Discussion
Initializes the NSMutableSize with the width dimension w and the height dimension y; it throws an
ITlegalArgumentException if either value is negative.

NSMutableSize(NSSize aSize)

Discussion
Initializes the new NSMutableSize with the width and height values of an existing NSSize aS17 ze; this
constructor is used in cloning the receiver.

NSMutableSize(java.awt.Dimension dimension)

Discussion
Initializes an NSMutableSize with the values extracted from an AWT Dimension object, d7mension.

Instance Methods

clone

Creates and returns a copy of the receiver.

public Object clone()

height
Returns the height dimension of the receiver.

public float height()

Discussion
NSMutableSize overrides this method because implementation details make overriding necessary

358 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 56
NSMutableSize

See Also
setHeight (page 359)

width (page 359)

setHeight

Sets the height dimension of the receiver to newHeight.
public void setHeight(float newHeight)

Discussion
Throws an I11egalArgumentException if newHeight is negative or is NaN (an invalid float value).

See Also
height (page 358)

setWidth

Sets the width dimension of the receiver to newlWidth.
public void setWidth(float newWidth)

Discussion
Throws an I11egalArgumentException if newlidthis negative or is NaN (an invalid float value).

See Also
width (page 359)

width

Returns the width of the receiver.
public float width()

Discussion
NSMutableSize overrides this method because implementation details make overriding necessary.

See Also
height (page 358)

setWidth (page 359)

Instance Methods 359
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 56
NSMutableSize

360 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 57

NSMutableStringReference

Inherits from NSStringReference : NSObject

Package: com.apple.cocoa.foundation

Companion guide String Programming Guide for Cocoa
Overview

Tasks

The NSMutableStringReference class declares the programmatic interface to an object that manages a mutable
string—that is, a string whose contents can be edited. To construct and manage an immutable string—or a
string that cannot be changed after it has been created—use an object of the NSStringReference class.

An immutable string is implemented as an array of Unicode characters (in other words, as a text string). The
NSMutableStringReference class adds one primitive method—replaceCharactersInRange (page 363)—to
the basic string-handling behavior inherited from NSStringReference. All other methods that modify a string
work through this method. For example, insertStringAtIndex (page 363) simply replaces the characters
inarange of 0 length, while deleteCharactersIinRange (page 363) replaces the characters in a given range
with no characters.

The Application Kit also uses NSParagraphStyle and its subclass NSMutableParagraphStyle to encapsulate
the paragraph or ruler attributes used by the NSAttributedString classes.

Constructors

NSMutableStringReference (page 362)
Creates an empty NSMutableStringReference.

Modifying a String

appendString (page 362)
Adds the characters of aString to the end of the receiver.

deleteCharactersInRange (page 363)
Removes the characters in aRange from the receiver.

insertStringAtIndex (page 363)

Inserts the characters of aStringinto the receiver, so the new characters begin at an/ndex and the
existing characters from anIndex to the end are shifted by the length of aString.

Overview 361
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 57
NSMutableStringReference

replaceCharactersInRange (page 363)
Replaces the characters from aRange with those in aString.

replaceOccurrences0fString (page 364)
This method replaces all occurrences of target with replacement, in the specified searchRange
of the receiver.

setString (page 364)
Replaces the characters of the receiver with those in aString.

Constructors

NSMutableStringReference

Creates an empty NSMutableStringReference.

public NSMutableStringReference()

Creates a new NSMutableStringReference by converting the bytes in aData into Unicode characters.
public NSMutableStringReference(NSData aData, int encoding)

Discussion
aData must be an NSData object containing bytes in encoding and the default plain text format (that is,
pure content with no attributes or other markups) for that encoding.

Creates a new NSMutableStringReference by reading characters from the location named by aURL.
public NSMutableStringReference(java.net.URL aURL)

Discussion

If the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode characters;
otherwise interprets the contents as characters in the default C-string encoding. Returns nu11 if the location
can’t be opened.

Creates a new NSMutableStringReference by converting the bytes at aURL into Unicode characters.
public NSMutableStringReference(java.net.URL aURL, int encoding)

Discussion
aURL must contain bytes in encoding and the default plain text format (that is, pure content with no
attributes or other markups) for that encoding.

Instance Methods

362

appendString

Adds the characters of aString to the end of the receiver.

public void appendString(String aString)

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 57
NSMutableStringReference

Discussion
aString may notbe null.

Adds the characters of aStringReference to the end of the receiver.
public void appendString(NSStringReference aStringReference)

Discussion
aStringReference may notbenull.

deleteCharactersinRange

Removes the characters in aRange from the receiver.
public void deleteCharactersInRange(NSRange aRange)

Discussion
Throws a RangeException if any part of aRange lies beyond the end of the string. This method treats the
length of the string as a valid range value that returns an empty string.

insertStringAtindex

Inserts the characters of aStringinto the receiver, so the new characters begin at anIndex and the existing
characters from anIndex to the end are shifted by the length of aString.

public void insertStringAtIndex(String aString, int anlndex)

Discussion
aString may not be nul1. Throws a RangeException if anIndex lies beyond the end of the string. This
method treats the length of the string as a valid index value that returns an empty string.

Inserts the characters of aStringReference into the receiver, so the new characters begin at an/ndexand
the existing characters from anIndex to the end are shifted by the length of aStringReference.

public void insertStringAtIndex(NSStringReference aStringReference, int anlndex)

Discussion
aStringReference may not be null. Throws a RangeException if anIndex lies beyond the end of the
string.

replaceCharactersinRange

Replaces the characters from aRange with those in aString.
public void replaceCharactersIinRange(NSRange aRange, String aString)

Discussion
aStringmay not be null. Throws a RangeException if any part of aRange lies beyond the end of the
receiver. This method treats the length of the string as a valid range value that returns an empty string.

Replaces the characters from aRange with those in aStringReference.

Instance Methods 363
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

364

CHAPTER 57
NSMutableStringReference

public void replaceCharactersIinRange(NSRange aRange, NSStringReference
aStringReference)

Discussion

aStringReference may not be null. Throws a RangeException if any part of aRange lies beyond the
end of the receiver. This method treats the length of the string as a valid range value that returns an empty
string.

replaceOccurrencesOfString
This method replaces all occurrences of target with replacement, in the specified searchRange of the
receiver.

pubTic void replaceOccurrencesOfString(String target, String replacement, int opts,
NSRange searchRange)

Discussion

Throws an InvalidArgumentException if any of the arguments are nul1. Throws a RangeException if
any part of searchRange lies beyond the end of the receiver. This method treats the length of the string as
a valid range value that returns an empty string. If opts is BackwardsSearch, the search is done from the
end of therange. If optsis AnchoredSearch, only anchored (but potentially multiple) instances are replaced.
LiteralSearchand CaselnsensitiveSearch also apply. Specify searchRange as new NSRange(O0,
receiver.length()) to process the entire string.

Availability
Available in Mac OS X v10.2 and later.

setString

Replaces the characters of the receiver with those in aString.
public void setString(String aString)

Discussion
aString may notbe null.

Replaces the characters of the receiver with those in aStringReference.
public void setString(NSStringReference aStringReference)

Discussion
aStringReference may notbenull.

Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

Inherits from NSObject

Package: com.apple.cocoa.foundation

Companion guide Key-Value Coding Programming Guide
Overview

Tasks

NSNamedValueSequence manages a set of keys, allowing you to assign scalar and object values to them.

The class is similar to an NSMutableDictionary, but NSNamedValueSequence is created with a fixed number
of elements, and it defines convenient methods such as getFloatWlithName (page 367) and
setFloatWithName (page 368). If you request a value for an undefined key, a default value of 0 or nu11 is
returned. After the object reaches its capacity of keys, attempts to define additional keys fail.
NSNamedValueSequence objects cannot be resized, nor can keys be deleted.

Constructors

NSNamedValueSequence (page 366)
Creates an empty NSNamedValueSequence object with the capacity size.

Getting Values

getBooleanWithName (page 367)

Returns the boo1ean value associated with key.
getByteWithName (page 367)

Returns the byte value associated with key.
getCharWithName (page 367)

Returns the char value associated with key.
getDoubleWithName (page 367)

Returns the doub1e value associated with key.

getFloatWithName (page 367)
Returns the f1oat value associated with key.

Overview 365
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

getIntWithName (page 367)
Returns the int value associated with key.

getlLongWithName (page 367)

Returns the 1ong value associated with key.
getObjectWithName (page 368)

Returns the 0bject value associated with key.

getShortWithName (page 368)
Returns the short value associated with key.

Setting Values

setBooleanWithName (page 368)
Sets the value of key to value.

setByteWithName (page 368)

Sets the value of key to value.
setCharWithName (page 368)

Sets the value of key to value.
setDoubleWithName (page 368)

Sets the value of key to value.
setFloatWithName (page 368)

Sets the value of key to value.
setIntWithName (page 368)

Sets the value of key to value.
setLongWithName (page 369)

Sets the value of key to value.
setObjectWithName (page 369)

Sets the value of key to value.

setShortWithName (page 369)
Sets the value of key to value.

Constructors

NSNamedValueSequence

Creates an empty NSNamedValueSequence object with the capacity size.
public NSNamedValueSequence(int size)

Discussion
An instance cannot be resized after being created, so make sure you allocate enough space for all the keys
you expect to use.

366 Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

Instance Methods

getBooleanWithName

Returns the boo1ean value associated with key.

public boolean getBooleanWithName(String key)

getByteWithName

Returns the byte value associated with key.

public byte getByteWithName(String key)

getCharWithName

Returns the char value associated with key.

public char getCharWithName(String key)

getDoubleWithName

Returns the doub1e value associated with key.

public double getDoubleWithName(String key)

getFloatWithName

Returns the f1oat value associated with key.

public float getFloatWithName(String key)

getintWithName

Returns the int value associated with key.

public int getIntWithName(String key)

getLongWithName

Returns the 1ong value associated with key.

public long getLongWithName(String key)

Instance Methods 367
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

getObjectWithName

Returns the 0bject value associated with key.

public Object getObjectWithName(String key)

getShortWithName

Returns the short value associated with key.

public short getShortWithName(String key)

setBooleanWithName

Sets the value of key to value.

public void setBooleanWithName(boolean value, String key)

setByteWithName

Sets the value of key to value.

public void setByteWithName(byte value, String key)

setCharWithName

Sets the value of key to value.

public void setCharWithName(char value, String key)

setDoubleWithName

Sets the value of key to value.

public void setDoubleWithName(double value, String key)

setFloatWithName

Sets the value of key to value.

public void setFloatWithName(float value, String key)

setintWithName

Sets the value of key to value.

public void setIntWithName(int value, String key)

368 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

setLongWithName

Sets the value of key to value.

public void setLongWithName(long value, String key)

setObjectWithName

Sets the value of key to value.

public void setObjectWithName(0Object value, String key)

setShortWithName

Sets the value of key to value.

public void setShortWithName(short value, String key)

Instance Methods 369
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 58

NSNamedValueSequence

370 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 59

NSNameSpecifier

Inherits from NSScriptObjectSpecifier : NSObject

Package: com.apple.cocoa.foundation

Availability Available in Mac OS X v10.2 and later.

Companion guide Cocoa Scripting Guide
Overview

Specifies an object in a collection (or container) by name. For example, the following script specifies both an
application and a window by name. In this script, the named window’s implicitly specified container is the
Finder application’s list of open windows.

tell application "Finder" -- specifies an application by name
close window "Reports" -- specifies a window by name
end tell

This specifier works only for objects that have a name property. You don't normally subclass NSNameSpecifier.
The evaluation of NSNameSpecifiers follows these steps until the specified object is found:

1. If the container implements a method whose selector matches the relevant valueIn<Key>WithName
pattern established by scripting key-value coding, the method is invoked. This method can potentially
be very fast, and it may be relatively easy to implement.

2. Asis the case when evaluating any script object specifier, the container of the specified object is given
a chance to evaluate the object specifier. If the container class implements the
indicesOfObjectsByEvaluatingObjectSpecifier method, the method is invoked. This method
can potentially be very fast, but it is relatively difficult to implement.

3. An NSWhoseSpecifier that specifies the first object whose relevant 'pnam' attribute matches the name
is synthesized and evaluated. The NSWhoseSpecifier must search through all of the keyed elements in
the container, looking for a match. The search is potentially very slow.

Overview 37
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

Tasks

CHAPTER 59
NSNameSpecifier

Constructors

NSNameSpecifier (page 372)
Creates an NSNameSpecifier with no data.

Accessing a Name Specifier

name (page 373)
Returns the name encapsulated by the receiver for the specified object in the container.

setName (page 373)
Sets the name encapsulated with the receiver for the specified object in the container.

Constructors

372

NSNameSpecifier

Creates an NSNameSpecifier with no data.
public NSNameSpecifier()

Discussion
Do not use this constructor.

Availability
Available in Mac OS X v10.2 and later.

Returns a newly created unnamed NSNameSpecifier with container specifier containerandkey property.
public NSNameSpecifier(NSScriptObjectSpecifier container, String property)

Discussion
The class description of container is set automatically. Use setName (page 373) to assign a name to the
returned object.

Availability
Available in Mac OS X v10.2 and later.

Creates an unnamed NSNameSpecifier initialized with container specifier container, key property, and
the class description of the object specifier c7assDescription, derived from the value of the specifier’s
key.

public NSNameSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier container, String property)

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 59
NSNameSpecifier

Discussion
The receiver’s child specifier reference is set to nu11. Use setName (page 373) to assign a name to the returned
object.

Availability
Available in Mac OS X v10.2 and later.

Creates an NSNameSpecifier named name initialized with container specifier container, key property,
and the class description of the object specifier classDescription, derived from the value of the specifier’s
key.

public NSNameSpecifier(NSScriptClassDescription classDescription,
NSScriptObjectSpecifier container, String property, String name)

Discussion
The receiver’s child specifier reference is set to nu11.

Availability
Available in Mac OS X v10.2 and later.

Instance Methods

name

Returns the name encapsulated by the receiver for the specified object in the container.
public String name()

Availability
Available in Mac OS X v10.2 and later.

See Also
setName (page 373)

setName

Sets the name encapsulated with the receiver for the specified object in the container.
public void setName(String name)

Availability
Available in Mac OS X v10.2 and later.

See Also
name (page 373)

Instance Methods 373
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 59
NSNameSpecifier

374 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60

NSNetService

Inherits from NSObject
Implements NSObject
Package: com.apple.cocoa.foundation
Availability Available in Mac OS X v10.4 and later.
Companion guide Bonjour Overview

Overview

The NSNetService class represents a network service that your application publishes or uses as a client. This
class and the NSNetServiceBrowser class use multicast DNS to convey information about network services
to and from your application. The API of NSNetService provides a convenient way to publish the services
offered by your application and to resolve the socket address for a service.

The types of services you access using NSNetService are the same types that you access directly using BSD
sockets. HTTP and FTP are two services commonly provided by systems. (For a list of common services and
the ports used by those services, see thefile /etc/services.) Applications can also define their own custom
services to provide specific data to clients.

You can use the NSNetService class as either a publisher of a service or as a client of a service. If your application
publishes a service, your code must acquire a port and prepare a socket to communicate with clients. Once
your socket is ready, you use the NSNetService class to notify clients that your service is ready. If your
application is the client of a network service, you can either create an NSNetService object directly (if you
know the exact host and port information) or you can use an NSNetServiceBrowser object to browse for
services.

To publish a service, you must initialize your NSNetService object with the service name, domain, type, and
port information. All of this information must be valid for the socket created by your application. Once
initialized, you call the pub11sh (page 380) method to broadcast your service information out to the network.

When connecting to a service, you would normally use the NSNetServiceBrowser class to locate the service
on the network and obtain the corresponding NSNetService object. Once you have the object, you proceed
tocalltheresolvelithTimeout (page 381) method to verify that the service is available and ready for your
application. Ifitis, the addresses (page 378) method returns the socket information you can use to connect
to the service.

The methods of NSNetService operate asynchronously so that your application is not impacted by the speed
of the network. All information about a service is returned to your application through the NSNetService
object’s delegate. You must provide a delegate object to respond to messages and to handle errors
appropriately.

Overview 375
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60
NSNetService

Tasks

Constructors

NSNetService (page 378)
Creates an NSNetService object as a network service of the specified type at the socket location
specified by domain, name, and port.

Managing Delegates

delegate (page 379)
Returns the receiver’s delegate.

setDelegate (page 382)
Sets the receiver’s delegate.

Maintaining Run Loops

removeFromRunlLoop (page 380)
Removes the service from the specified run loop.

scheduleInRunLoop (page 381)
Adds the service to the specified run loop.

Getting Information About a Service

addresses (page 378)
Returns an NSArray containing NSData objects, each of which contains a socket address for the service.
domain (page 379)
Returns the domain name of the service.
hostName (page 379)
Returns the host name of the computer providing the service.
name (page 380)
Returns the name of the service.
type (page 383)
Returns the type of the service.
protocolSpecificInformation (page 380)
This method has been deprecated. Use TXTRecordData (page 383) instead.

setProtocolSpecificInformation (page 382)
This method has been deprecated. Use setTXTRecordData (page 382) instead.

setTXTRecordData (page 382)
Sets the TXT record for the receiver.

TXTRecordData (page 383)
Returns the TXT record for the receiver.

376 Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60
NSNetService

Working with a Service

publish (page 380)
Attempts to advertise the receiver’s service on the network.

resolve (page 381)
This method has been deprecated. Use resolvelWithTimeout (page 381) instead.

resolveWithTimeout (page 381)
Starts a resolve process of a finite duration for the receiver.

stop (page 383)
Halts a currently running attempt to publish or resolve a service.

Availability notifications

netServiceDidNotPublish (page 384)
Notifies the delegate that the service offered by sender could not be published.

netServiceDidPublish (page 384)

Notifies the delegate that the service offered by sender was successfully published.

netServiceWillPublish (page 385)
Notifies the delegate that the network is ready to publish the service.

Resolving services

netServiceDidNotResolve (page 384)
Informs the delegate that an error occurred during resolution of sender.

netServiceDidResolveAddress (page 384)
Informs the delegate that the address for sender was resolved.

netServiceDidUpdateTXTRecordData (page 385)
Notifies the delegate that the TXT record for sender has been updated.

netServiceWillResolve (page 385)
Notifies the delegate that the network is ready to resolve the service.

Stopping services

netServiceDidStop (page 385)

Informs the delegate that a pub1ish (page 380) or resolvelithTimeout (page 381) request was

stopped.

Tasks
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

377

CHAPTER 60
NSNetService

Constructors

NSNetService
public NSNetService()

Discussion
The default constructor for the NSNetService object.

public com.apple.cocoa.foundation.NSNetService(String domain, String type, String
name)

Discussion
Creates an NSNetService object for a network service of the specified type and sets the initial domain and
service name. After using this constructor, you can call resolve (page 381) to resolve the service location.

You cannot use this constructor to publish a service. The constructor passes an invalid port number, which
prevents the service from being registered.

Creates an NSNetService object as a network service of the specified type at the socket location specified
by domain, name, and port.

public NSNetService(java.lang.String domain, java.lang.String type, java.lang.String
name, int port)

Discussion
You can use this constructor to create a service you wish to publish on the network.

When publishing a service, you must provide valid arguments to advertise your service correctly. The name
parameter identifies your service to the network and must be unique. The port parameter must contain a
port number acquired by your application for the service.

It is preferable to use a NSNetServiceBrowser object to obtain the local registration domain in which to
publish your service. To use the default domain, simply pass an empty string to the domain parameter. If the
host computer has access to multiple registration domains, you must create separate NSNetService objects
for each domain. If you attempt to publish in a domain for which you do not have registration authority,
your request may be denied.

The type parameter must contain both the service type and transport layer information. To ensure that the
mDNS repsonder searches for services, as opposed to hosts, prefix both the service name and transport layer
name with an underscore character (“_"). For example, to search for an HTTP service on TCP, you would pass
the string “_http._tcp.” to the type parameter. Note that the period character at the end of the string is
required. It indicates that the domain name is an absolute name.

Instance Methods

378

addresses

Returns an NSArray containing NSData objects, each of which contains a socket address for the service.

Constructors
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60
NSNetService

pubTlic NSArray addresses()

Discussion

Each NSData object in the returned array contains an appropriate sockaddr structure that you can use to
connect to the socket. The exact type of this structure depends on the service to which you are connecting.

Itis possible for a single service to resolve to more than one address or not resolve to any addresses. A service
might resolve to multiple addresses if the computer publishing the service is currently multihoming. If no

addresses were resolved for the service, the returned NSArray contains zero elements.

Availability
Available in Mac OS X v10.4 and later.

See Also
resolve (page 381)

delegate

Returns the receiver’s delegate.
public Object delegate()

Availability
Available in Mac OS X v10.4 and later.

See Also
setDelegate (page 382)

domain

Returns the domain name of the service.

public String domain()

Discussion

This can be an explicit domain name or it can contain the generic local domain name @"1ocal." (note the

trailing period, which indicates an absolute name).

Availability
Available in Mac OS X v10.4 and later.

hostName

Returns the host name of the computer providing the service.

public String hostName()

Discussion

Returns nu11 if a successful resolve has not occurred.

Availability
Available in Mac OS X v10.4 and later.

Instance Methods

Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

379

CHAPTER 60
NSNetService

name

Returns the name of the service.
public String name()

Availability
Available in Mac OS X v10.4 and later.

protocolSpecificinformation
This method has been deprecated. Use TXTRecordData (page 383) instead.

public String protocolSpecificInformation()

Discussion
Returns any protocol-specific data associated with the service.

This method is provided for legacy support of older zeroconf-style clients and its use is discouraged.

Availability
Deprecated in Mac OS X v10.4.

See Also
setProtocolSpecificInformation (page 382)

publish

Attempts to advertise the receiver’s service on the network.
public void pubTish()

Discussion
This method returns immediately, with success or failure indicated by the callbacks to the delegate.

Availability
Available in Mac OS X v10.4 and later.

See Also
stop (page 383)

removeFromRunLoop

Removes the service from the specified run loop.
public void removeFromRunlLoop(NSRunLoop aRunloop, String mode)

Discussion

You can use this method in conjunction with scheduleInRunlLoop (page 381) to transfer the service to a
different run loop. Although it is possible to remove an NSNetService completely from any run loop and then
attempt actions on it, it is an error to do so.

Possible values for mode are discussed in the “Constants” (page 503) section of NSRunLoop.

380 Instance Methods
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

CHAPTER 60
NSNetService

Availability
Available in Mac OS X v10.4 and later.

See Also
scheduleInRunLoop (page 381)

resolve
This method has been deprecated. Use resolvelWithTimeout (page 381) instead.

public void resolve()

Discussion
Attempts to determine at least one address for the receiver. This method returns immediately, with success
or failure indicated by the callbacks to the delegate.

In Mac OS X v10.4, this method calls resolvellithTimeout (page 381) with a timeout value of 5.

Availability
Deprecated in Mac OS X v10.4.

See Also
addresses (page 378)

stop (page 383)
resolveWithTimeout (page 381)

resolveWithTimeout

Starts a resolve process of a finite duration for the receiver.
public void resolveWithTimeout(double timeout)

Availability
Available in Mac OS X v10.4 and later.

See Also
addresses (page 378)

stop (page 383)

schedulelInRunLoop

Adds the service to the specified run loop.
public void scheduleInRunLoop(NSRunLoop aRunlLoop, String mode)

Discussion
You can use this method in conjunction with removeFromRunlLoop (page 380) to transfer the service to a
different run loop. You should not attempt to run the service on multiple run loops.

Possible values for mode are discussed in the “Constants” (page 503) section of NSRunLoop.

Instance Methods 381
Legacy Document | 2006-07-24 | © 1997, 2006 Apple Computer, Inc. All Rights Reserved.

382

CHAPTER 60
NSNetService

Availability
Available in Mac OS X v10.4 and later.

See Also
removeFromRunlLoop (page 380)

setDelegate

