
Open Directory Reference
Networking > Mac OS X Server

2006-05-23

Apple Inc.
© 2006 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Carbon, eMac,
Mac, Mac OS, and QuickTime are trademarks
of Apple Inc., registered in the United States
and other countries.

DEC is a trademark of Digital Equipment
Corporation.

FileMaker is a trademark of FileMaker, Inc.
registered in the U.S. and other countries.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Open Directory Reference 7

Overview 7
Functions by Task 7

Open Directory Client Functions 7
Open Directory Plug-in Functions 11

Functions 11
dsAddAttribute 11
dsAddAttributeValue 12
dsAddChildPIDToReference 13
dsAllocAttributeValueEntry 14
dsAppendStringToListAlloc 14
dsBuildFromPath 15
dsBuildListFromNodesAlloc 16
dsBuildListFromPathAlloc 17
dsBuildListFromStrings 18
dsBuildListFromStringsAlloc 18
dsBuildListFromStringsAllocV 19
dsCloseAttributeList 20
dsCloseAttributeValueList 20
dsCloseDirNode 21
dsCloseDirService 22
dsCloseRecord 22
dsCreateRecord 23
dsCreateRecordAndOpen 24
dsDataBufferAllocate 25
dsDataBufferDeAllocate 25
dsDataListAllocate 26
dsDataListCopyList 27
dsDataListDeallocate 27
dsDataListDeleteThisNode 28
dsDataListGetNodeAlloc 28
dsDataListGetNodeCount 29
dsDataListInsertAfter 30
dsDataListMergeListAfter 30
dsDataNodeAllocateBlock 31
dsDataNodeAllocateString 32
dsDataNodeDeAllocate 33
dsDataNodeGetLength 33
dsDataNodeGetSize 34
dsDataNodeSetLength 34
dsDeallocAttributeEntry 35

3
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

dsDeallocAttributeValueEntry 35
dsDeallocRecordEntry 36
dsDeleteRecord 37
dsDoAttributeValueSearch 37
dsDoAttributeValueSearchWithData 40
dsDoDirNodeAuth 41
dsDoDirNodeAuthOnRecordType 43
dsDoMultipleAttributeValueSearch 45
dsDoMultipleAttributeValueSearchWithData 47
dsDoPlugInCustomCall 49
dsFindDirNodes 49
dsFlushRecord 51
dsGetAttributeEntry 51
dsGetAttributeValue 53
dsGetDataLength 54
dsGetDirNodeCount 54
dsGetDirNodeCountWithInfo 55
dsGetDirNodeInfo 56
dsGetDirNodeList 57
dsGetDirNodeName 58
dsGetPathFromList 59
dsGetRecordAttributeInfo 59
dsGetRecordAttributeValueByID 60
dsGetRecordAttributeValueByIndex 61
dsGetRecordAttributeValueByValue 62
dsGetRecordEntry 63
dsGetRecordList 64
dsGetRecordNameFromEntry 66
dsGetRecordReferenceInfo 66
dsGetRecordTypeFromEntry 67
dsIsDirServiceRunning 67
dsOpenDirNode 68
dsOpenDirService 69
dsOpenDirServiceProxy 70
dsOpenRecord 71
dsReleaseContinueData 72
dsRemoveAttribute 73
dsRemoveAttributeValue 73
dsSetAttributeValue 74
dsSetAttributeValues 75
dsSetRecordName 76
dsSetRecordType 77
dsVerifyDirRefNum 77
Initialize 78
PeriodicTask 78
ProcessRequest 79

4
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

SetPluginState 79
Shutdown 79
Validate 80

Callbacks 80
DSDebugLog 80
DSRegisterNode 81
DSUnregisterNode 82

Data Types 82
Open Directory Structures 82
Other Open Directory Data Types 85
Request Structures 90

Constants 129
Authentication Constants 129
Authentication Methods 131
Neighborhood Types 137
Pattern Matching Constants 137
Meta Record Type Constants 142
Standard Record Types 143
Meta Attribute Type Constants 147
Alias Attribute Constants 147
Boot Attribute Constants 148
Certificate Attribute Constants 148
DNS Attribute Constants 149
Kerberos Attribute Constants 150
LDAP Attribute Constants 150
Network Address Attribute Constants 151
Machine and Host Record Attribute Constants 151
Managed Clients for Mac OS X Attribute Constants 152
Miscellaneous Attribute Constants 152
Neighborhood Attribute Constants 154
Node Attribute Constants 155
Password Attribute Constants 155
Password Server Attribute Constants 156
Print Attribute Constants 156
Record Attribute Constants 158
Search Attribute Constants 159
Server Attribute Constants 159
Setup Assistant Attribute Constants 160
SMB Attribute Constants 161
User and Group Record Attribute Constants 162
VFS Attribute Constants 167
eAttribute Flags 168
ePluginState Constants 168

Result Codes 169

5
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Document Revision History 187

Index 189

6
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Framework: DirectoryService

Declared in DirServices.h
DirServicesTypes.h
DirServicesUtils.h
ImageCodec.k.h
ImageCompression.k.h

Companion guides Open Directory Programming Guide
Open Directory Plug-in Programming Guide

Overview

This document describes the Open Directory functions, constants and data types for retrieving information
stored in directories.

Functions by Task

Open Directory Client Functions

dsAddAttribute (page 11)
Adds an attribute to a record.

dsAddAttributeValue (page 12)
Adds a value to an attribute.

dsAddChildPIDToReference (page 13)
Allows the specified process to use a node reference.

dsAllocAttributeValueEntry (page 14)
Allocates an attribute value entry structure having the specified attribute value.

dsAppendStringToListAlloc (page 14)
Appends a string to a data list.

dsBuildListFromNodesAlloc (page 16)
Fills in a previously allocated data list using one or more data nodes.

dsBuildFromPath (page 15)
Builds a data list from a pathname.

dsBuildListFromPathAlloc (page 17)
Builds a data list from a pathname using a data list that has already been allocated.

Overview 7
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

dsBuildListFromStrings (page 18)
Builds a data list from strings.

dsBuildListFromStringsAlloc (page 18)
Fills in a previously allocated data list using data from strings.

dsBuildListFromStringsAllocV (page 19)
Fills in a previously allocated data list using data from a list of type va_list.

dsCloseAttributeList (page 20)
Disposes of an attribute list reference.

dsCloseAttributeValueList (page 20)
Disposes of an attribute value list reference.

dsCloseDirNode (page 21)
Closes a session with a node.

dsCloseDirService (page 22)
Closes an Open Directory session.

dsCloseRecord (page 22)
Closes a open record.

dsCreateRecord (page 23)
Creates a record.

dsCreateRecordAndOpen (page 24)
Creates a record and opens it.

dsDataBufferAllocate (page 25)
Allocates an Open Directory data buffer.

dsDataBufferDeAllocate (page 25)
Deallocates an Open Directory data buffer.

dsDataListAllocate (page 26)
Allocates a data list.

dsDataListCopyList (page 27)
Copies a data list.

dsDataListDeallocate (page 27)
Deallocates a data list.

dsDataListGetNodeAlloc (page 28)
Gets a data node from a data list.

dsDataListGetNodeCount (page 29)
Gets the number of data nodes in a data list.

dsDataListInsertAfter (page 30)
Inserts a data node in a data list.

dsDataListMergeListAfter (page 30)
Merges two data lists.

dsDataListDeleteThisNode (page 28)
Deletes a data node from a data list.

dsDataNodeAllocateBlock (page 31)
Allocates an Open Directory data node.

dsDataNodeAllocateString (page 32)
Allocates an Open Directory data node using a string.

8 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

dsDataNodeDeAllocate (page 33)
Deallocates a data node.

dsDataNodeGetSize (page 34)
Gets the size of a data node’s buffer.

dsDataNodeGetLength (page 33)
Gets the length of valid data in a data node’s buffer.

dsDataNodeSetLength (page 34)
Sets the length of valid data in a data node’s buffer.

dsDeallocAttributeEntry (page 35)
Deallocates an attribute entry structure.

dsDeallocAttributeValueEntry (page 35)
Deallocates an attribute value entry structure.

dsDeallocRecordEntry (page 36)
Deallocates a record entry structure.

dsDeleteRecord (page 37)
Deletes a record.

dsDoAttributeValueSearch (page 37)
Searches a node for records by attribute value.

dsDoAttributeValueSearchWithData (page 40)
Searches for records by attribute type and attribute value.

dsDoDirNodeAuth (page 41)
Performs authentication with a node.

dsDoDirNodeAuthOnRecordType (page 43)
Performs authentication using a record type.

dsDoMultipleAttributeValueSearch (page 45)
Uses multiple attribute values to search a node for records.

dsDoMultipleAttributeValueSearchWithData (page 47)
Searches for records by attribute type and multiple attribute values.

dsDoPlugInCustomCall (page 49)
Exchanges custom information with an Open Directory plug-in.

dsFindDirNodes (page 49)
Finds the registered node names that match a pattern.

dsFlushRecord (page 51)
Writes a record.

dsGetAttributeEntry (page 51)
Gets an attribute entry from a data buffer.

dsGetAttributeValue (page 53)
Gets the value of an attribute from a data buffer.

dsGetDataLength (page 54)
Gets the length of data in a data list.

dsGetDirNodeCount (page 54)
Gets the total number of registered nodes.

dsGetDirNodeCountWithInfo (page 55)
Gets the total number of registered nodes and a change token.

Functions by Task 9
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

dsGetDirNodeInfo (page 56)
Gets information about a node’s attribute types and attribute values.

dsGetDirNodeList (page 57)
Gets the names of registered nodes.

dsGetDirNodeName (page 58)
Gets node names from a buffer.

dsGetPathFromList (page 59)
Gets the path from a data list.

dsGetRecordAttributeInfo (page 59)
Gets information about a record’s attribute.

dsGetRecordAttributeValueByID (page 60)
Uses an attribute value ID to obtain the value of an attribute.

dsGetRecordAttributeValueByIndex (page 61)
Uses an index to get the value of an attribute.

dsGetRecordAttributeValueByValue (page 62)
Verifies the existence of an attribute value within a record.

dsGetRecordEntry (page 63)
Gets the next record from a data buffer.

dsGetRecordList (page 64)
Gets a list of records and puts it in a data buffer.

dsGetRecordReferenceInfo (page 66)
Gets a record’s name and type and the number of attributes the record has.

dsGetRecordNameFromEntry (page 66)
Gets the name of a record from a record entry structure.

dsGetRecordTypeFromEntry (page 67)
Gets the type of a record from a record entry structure.

dsIsDirServiceRunning (page 67)
Checks to see if Open Directory is running.

dsOpenDirNode (page 68)
Opens a session with a node.

dsOpenDirService (page 69)
Opens an Open Directory session.

dsOpenDirServiceProxy (page 70)
Opens a remote Open Directory session.

dsOpenRecord (page 71)
Opens a record.

dsReleaseContinueData (page 72)
Releases memory allocated for continuation data.

dsRemoveAttribute (page 73)
Removes an attribute from a record.

dsRemoveAttributeValue (page 73)
Removes an attribute value.

dsSetAttributeValue (page 74)
Sets the value of an attribute.

10 Functions by Task
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

dsSetAttributeValues (page 75)
Sets multiple values for an attribute.

dsSetRecordName (page 76)
Sets the name of a record.

dsSetRecordType (page 77)
Sets the type of a record.

dsVerifyDirRefNum (page 77)
Verifies that a tDirReference is valid.

Open Directory Plug-in Functions

Initialize (page 78)
Initializes the plug-in.

PeriodicTask (page 78)
Performs a periodic task.

ProcessRequest (page 79)
Processes requests.

SetPluginState (page 79)
Sets the plug-in’s state.

Shutdown (page 79)
Prepares the plug-in for shut down.

Validate (page 80)
Validates the plug-in.

Functions

dsAddAttribute
Adds an attribute to a record.

tDirStatus dsAddAttribute (
 tRecordReference inRecordReference,
 tDataNodePtr inNewAttribute,
 tAccessControlEntryPtr inNewAttributeAccess,
 tDataNodePtr inFirstAttributeValue
);

Parameters
inRecordReference

On input, a value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) or dsCreateRecordAndOpen (page 24) that represents the record to
which an attribute is to be added.

Functions 11
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inNewAttribute
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the name of the attribute that is to be added.

inNewAttributeAccess
Reserved for this release. On input, set inNewAttributeAccess to NULL.

inFirstAttributeValue
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the value of the attribute that is to be added. If you don’t want to set a value, this
parameter can be NULL.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function adds to the specified record an attribute having the name specified by the inNewAttribute
parameter and the value pointed to by the inFirstAttributeValue parameter.

To change the value of an attribute, call dsSetAttributeValue (page 74) or dsSetAttributeValues (page
75).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsAddAttributeValue
Adds a value to an attribute.

tDirStatus dsAddAttributeValue (
 tRecordReference inRecordReference,
 tDataNodePtr inAttributeType,
 tDataNodePtr inAttributeValue
);

Parameters
inRecordReference

On input, value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) that represents the record having an attribute to which a value is to be
appended.

inAttributeType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the type of the attribute to which a value is to be added.

inAttributeValue
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the value that is to be added.

12 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function adds the specified value to the specified attribute. The attribute must be capable of having
more than one value.

To change the value of an attribute, call dsSetAttributeValue (page 74) or dsSetAttributeValues (page
75).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsAddChildPIDToReference
Allows the specified process to use a node reference.

tDirStatus dsAddChildPIDToReference (
 tDirReference inDirRef,
 SInt32 inValidChildPID,
 UInt32 inValidAPIReferenceToGrantChild
);

Parameters
inDirRef

A value of type tDirReference (page 89) obtained by previously calling dsOpenDirService (page
69) that identifies the Open Directory session.

inValidChildPID
A value of type long that specifies the child process ID that is to be granted permission to use the
Open Directory reference specified by inDirReference.

inValidAPIReferenceToGrantChild
A value of type unsigned long containing a node reference obtained by previously calling
dsOpenDirNode (page 68).

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function allows the child process specified by inValidChildPID to use the node reference specified
by the inValidAPIReferenceToGrantChild parameter. Calling this function allows a child process that
your application forks to use a node reference that the parent process has already acquired.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

Functions 13
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

dsAllocAttributeValueEntry
Allocates an attribute value entry structure having the specified attribute value.

tAttributeValueEntryPtr dsAllocAttributeValueEntry (
 tDirReference inDirRef,
 UInt32 inAttrValueID,
 void *inAttrValueData,
 UInt32 inAttrValueDataLen
);

Parameters
inDirRef

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) representing the Open Directory session that is to be associated with the attribute value entry
structure, or zero.

inAttrValueID
On input, a value of type unsigned long containing an attribute value ID.

inAttrValueData
On input, a pointer an arbitrary value containing the value that is to be incorporated in the attribute
value entry structure as an attribute value.

inAttrValueDataLen
On input, the length of valid data in the value pointed to by inAttrValueData.

function result
A value of type tAttributeEntryPtr (page 85) that points to the new
tAttributeValueEntry (page 83) structure.

Discussion
This utility function allocates a structure of type tAttributeValueEntry (page 83) and returns a pointer
to it. The resulting structure can be used to set the value of the attribute identified by inAttrValueID by
calling dsSetAttributeValue (page 74) and passing to it the attribute value entry pointer returned by
this function.

The allocated structure contains the attribute value ID specified by inAttrValueID and the attribute value
pointed to by inAttrValueData.

To release the memory associated with tAttributeValueEntryPtr, call
dsDeallocAttributeValueEntry (page 35).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsAppendStringToListAlloc
Appends a string to a data list.

14 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsAppendStringToListAlloc (
 tDirReference inDirReferences,
 tDataListPtr inDataList,
 const char *inCString
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session that is associated
with this data list, or zero.

inDataList
On input, a value of type tDataListPtr (page 87) that points to the data list to which the string
specified by inCString is to be appended.

inCString
On input, a pointer to a null-terminated string containing the value in UTF-8 format that is to be
appended to the data list.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function appends a string to a data list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsBuildFromPath
Builds a data list from a pathname.

tDataListPtr dsBuildFromPath (
 tDirReference inDirReference,
 const char *inPathCString,
 const char *inPathSeparatorCString
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) that represents the Open Directory session for which
the data list is to be built, or zero.

inPathCString
On input, a pointer to a null-terminated string containing a pathname in UTF-8 format.

inPathSeparatorCString
On input, a pointer to a null-terminated string containing the character that delimits the components
of the pathname pointed to by inPathCString.

Functions 15
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDataListPtr (page 87) that points to the new data list.

Discussion
This utility function uses a pathname to build a null-terminated data list and returns a pointer to it. Many
Open Directory functions take a pointer to a data list as a parameter. For example, you can pass the resulting
data list pointer as a parameter to dsOpenDirNode (page 68).

When you no longer need the data list, call dsDataListDeallocate (page 27) to release the memory
associated with it. If the data list is a heap-based data list, you also need to call free().

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServicesUtils.h

dsBuildListFromNodesAlloc
Fills in a previously allocated data list using one or more data nodes.

tDirStatus dsBuildListFromNodesAlloc (
 tDirReference inDirReferences,
 tDataListPtr inDataList,
 tDataNodePtr in1stDataNodePtr,
 ...
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session that is associated
with the specified data list, or zero.

inDataList
On input, a value of type tDataListPtr that points to a data list allocated by calling
dsDataListAllocate (page 26).

in1stDataNodePtr
On input, a value of type tDataNodePtr (page 88) that points to a data node containing data in
UTF-8 format. The in1stDataNodePtr parameter may be followed by one or more parameters of
type tDataNodePtr, each pointing to a data node. Each data node may have been allocated by
calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page 32).

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function uses information from one or more data nodes to fill in a previously allocated data list.
The resulting data list is null-terminated.

16 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

When you no longer need the data list, call dsDataListDeallocate (page 27) to release the memory
associated with it. If the data list is a heap-based data list, you also need to call free().

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsBuildListFromPathAlloc
Builds a data list from a pathname using a data list that has already been allocated.

tDirStatus dsBuildListFromPathAlloc (
 tDirReference inDirReference,
 tDataListPtr inDataList,
 const char *inPathCString,
 const char *inPathSeparatorCString
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) that represents the Open Directory session for which
the data list is to be built, or zero.

inDataList
On input, a value of type tDataListPtr that points to a data list allocated by calling
dsDataListAllocate (page 26).

inPathCString
On input, a pointer to a null-terminated string containing a pathname in UTF-8 format.

inPathSeparatorCString
On input, a pointer to a null-terminated string containing the character that delimits the components
of the pathname pointed to by inPathCString.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function uses previously allocated data list and a pathname to build a null-terminated data list
and returns a pointer to it. Many Open Directory functions take a pointer to a data list as a parameter. For
example, you can pass the resulting data list pointer as a parameter to dsOpenDirNode (page 68).

When you no longer need the data list, call dsDataListDeallocate (page 27) to release the memory
associated with it. If the data list is a heap-based data list, you also need to call free().

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

Functions 17
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

dsBuildListFromStrings
Builds a data list from strings.

tDataListPtr dsBuildListFromStrings (
 tDirReference inDirReference,
 const char *in1stCString,
 ...
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session for which the
data list is being built, or zero.

in1stCString
On input, a pointer to a null-terminated string containing data in UTF-8 format that is to be added
to the data list. The in1stCString parameter may be followed by one or more parameters of type char
*, each pointing to a C string containing data in UTF-8 format that is to be added to the data list.

function result
A value of type tDataListPtr that points to the tDataList (page 84) structure that has been
created.

Discussion
This utility function uses one or more null-terminated strings to build a data list and returns a pointer to it.

When you no longer need the data list, call dsDataListDeallocate (page 27) t o release the memory
associated with it. If the data list is a heap-based data list, you also need to call free().

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServicesUtils.h

dsBuildListFromStringsAlloc
Fills in a previously allocated data list using data from strings.

tDirStatus dsBuildListFromStringsAlloc (
 tDirReference inDirReferences,
 tDataListPtr inDataList,
 const char *in1stCString,
 ...
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session that is associated
with the specified data list, or zero.

18 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inDataList
On input, a value of type tDataListPtr that points to a data list allocated by calling
dsDataListAllocate (page 26).

in1stCString
On input, a pointer to a character string that specifies the name of a data node to add to the data list.
The in1stCString parameter may be followed by one or more additional parameters of type char
*, each pointing to a C string containing data that is to be added to the data list.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function fills in a data list using the data in UTF-8 format contained by the specified null-terminated
strings.

When you no longer need the data list, call dsDataListDeallocate (page 27) to release the memory
associated with it. If the data list is a heap-based data list, you also need to call free().

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsBuildListFromStringsAllocV
Fills in a previously allocated data list using data from a list of type va_list.

tDirStatus dsBuildListFromStringsAllocV (
 tDirReference inDirRef,
 tDataList *inDataList,
 const char *in1stCString,
 va_list args
);

Parameters
inDirRef

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) representing the Open Directory session that is associated with the specified data list, or zero.

inDataList
On input, a pointer to a value of type tDataList (page 84) allocated by calling
dsDataListAllocate (page 26).

in1stCString
On input, a pointer to a character string that specifies the name of a data node to add to the data list.
The in1stCString parameter may be followed by one or more additional parameters of type char
*, each pointing to a C string containing data that is to be added to the data list.

args
On input, a value of type va_list with additional C strings containing data that is to be added to
the date list.

Functions 19
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function fills in a data list using the data in UTF-8 format contained by the specified null-terminated
string and additional strings in the va_list parameter.

When you no longer need the data list, call dsDataListDeallocate (page 27) to release the memory
associated with it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsCloseAttributeList
Disposes of an attribute list reference.

tDirStatus dsCloseAttributeList (
 tAttributeListRef inAttributeListRef
);

Parameters
inAttributeListRef

On input, a value of type tAttributeListRef (page 86) obtained by a previous call to
dsGetDirNodeInfo (page 56) or dsGetRecordEntry (page 63).

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function disposes of an attribute list reference that was obtained by a previous call to
dsGetDirNodeInfo (page 56) or dsGetRecordList (page 64). You should dispose of an attribute list
reference when it is no longer needed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsCloseAttributeValueList
Disposes of an attribute value list reference.

20 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsCloseAttributeValueList (
 tAttributeValueListRef inAttributeValueListRef
);

Parameters
inAttributeValueListRef

On input, a value of type tAttributeValueListRef (page 86) that was obtained by a previous
call to dsGetAttributeEntry (page 51).

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function disposes of an attribute value list reference that was obtained by a previous call to
dsGetAttributeEntry (page 51). You should dispose of an attribute value list reference when it is no
longer needed.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsCloseDirNode
Closes a session with a node.

tDirStatus dsCloseDirNode (
 tDirNodeReference inDirNodeReference
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89) obtained by previously calling
dsOpenDirNode (page 68) or dsOpenDirServiceProxy (page 70) that identifies the node session
that is to be closed.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. such as
eDSInvalidReference if the tDirNodeReference is invalid. For a list of other possible result
codes, see “Result Codes” (page 169).

Discussion
This function closes a session with the node represented by inDirNodeReference.

When the session with the node is closed, inDirNodeReference becomes invalid and cannot be used with
any other Open Directory function that takes a node reference as a parameter. Any references that were
created with inDirNodeReference as a parameter, such as record references, attribute list references, and
attribute value references become invalid when the session represented by inDirNodeReference is closed.

Availability
Available in Mac OS X v10.0 and later.

Functions 21
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsCloseDirService
Closes an Open Directory session.

tDirStatus dsCloseDirService (
 tDirReference inDirReference
);

Parameters
inDirReference

A value of type tDirReference (page 89) obtained by previously calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) that identifies the Open Directory session that is to be
closed.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function closes the Open Directory session represented by inDirReference. Continuation data and
child references, such as node, record, attribute list, and attribute value list references, that were created
using inDirReference become invalid when the session is closed and are released implicitly when this
function is called. You must deallocate data lists, data nodes, and data buffers yourself by calling
dsDataListDeallocate (page 27), dsDataNodeDeAllocate (page 33), and
dsDataBufferDeAllocate (page 25) respectively.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsCloseRecord
Closes a open record.

tDirStatus dsCloseRecord (
 tRecordReference inRecordReference
);

Parameters
inRecordReference

On input, value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) that identifies the record that is to be closed.

22 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function closes a record that was previously opened by calling dsOpenRecord (page 71). Closing the
record invalidates the inRecordReference parameter so that it cannot be used as a parameter to any other
Open Directory function. Any pending changes to the record are flushed at this time.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsCreateRecord
Creates a record.

tDirStatus dsCreateRecord (
 tDirNodeReference inDirNodeReference,
 tDataNodePtr inRecordType,
 tDataNodePtr inRecordName
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89), obtained by previously calling
dsOpenDirNode (page 68) that identifies the node in which the record is to be created.

inRecordType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the record type for the record that is to be created. For record type constants, see
Standard Record Types (page 143).

inRecordName
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the name in UTF-8 format for the record that is to be created.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function creates in the node represented by inDirNodeReference a record having the name and type
specified by the data nodes pointed to by the inRecordType and inRecordName parameters.

To add attributes to the new record, call dsAddAttribute (page 11).

This function does not open the created record. To create a record and open it in one step, call
dsCreateRecordAndOpen (page 24).

Availability
Available in Mac OS X v10.0 and later.

Functions 23
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Declared In
DirServices.h

dsCreateRecordAndOpen
Creates a record and opens it.

tDirStatus dsCreateRecordAndOpen (
 tDirNodeReference inDirNodeReference,
 tDataNodePtr inRecordType,
 tDataNodePtr inRecordName,
 tRecordReference *outRecordReference
);

Parameters
inDirNodeReference

On input, a value of type tDirReference (page 89), obtained by calling dsOpenDirNode (page
68) that identifies the node in which the record is to be created.

inRecordType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the record type for the record that is to be created. For record type constants, see
Standard Record Types (page 143).

inRecordName
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the name in UTF-8 format for the record that is to be created.

outRecordReference
On input, a pointer to a value of type tRecordReference (page 89). On output, outRecordReference
points to a record reference for the created record and that can be provided as a parameter to Open
Directory functions that operate on opened records.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function creates a record and opens it. On output the outRecordReference parameter is a reference
to the newly created record that can be passed as a parameter to Open Directory functions that operate on
open records.

To add attributes to the new record, call dsAddAttribute (page 11).

To create a record without opening it, call dsCreateRecord (page 23).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

24 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

dsDataBufferAllocate
Allocates an Open Directory data buffer.

tDataBufferPtr dsDataBufferAllocate (
 tDirReference inDirReference,
 UInt32 inBufferSize
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70), or zero.

inBufferSize
On input, a value of type unsigned long that specifies the length of the buffer that is to be allocated.

function result
A value of type tDataBufferPtr (page 87) that points to the allocated tDataBuffer (page 84)
structure.

Discussion
The utility function allocates an Open Directory data buffer of the specified size and returns a value that
points to the allocated buffer.

Open Directory data buffers are used by many Open Directory functions to exchange information between
an Open Directory client application and an Open Directory plug-in.

When you no longer need the data buffer, call dsDataBufferDeAllocate (page 25) to deallocate the
memory that is associated with it.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServicesUtils.h

dsDataBufferDeAllocate
Deallocates an Open Directory data buffer.

tDirStatus dsDataBufferDeAllocate (
 tDirReference inDirReference,
 tDataBufferPtr inDataBufferPtr
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) for which a data buffer is to be deallocated, or zero.

inDataBufferPtr
A value of type tDataBufferPtr (page 87) that points to the tDataBuffer (page 84) structure
that is to be deallocated.

Functions 25
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function appends the specified string to the specified data list.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServicesUtils.h

dsDataListAllocate
Allocates a data list.

tDataListPtr dsDataListAllocate (
 tDirReference inDirReference
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session for which the
data list is to be allocated, or zero.

function result
A value of type tDataListPtr that points to the allocated tDataList (page 84) structure. If this
function cannot allocate the data list, it returns NULL.

Discussion
This utility function allocates an empty data list and returns a value of type tDataListPtr that points to it.

Many Open Directory functions return information in a data list and receive information in a data list, such
as dsFindDirNodes (page 49), dsGetDirNodeInfo (page 56), dsGetRecordList (page 64), and
dsDoAttributeValueSearch (page 37).

To add data to the data list, call dsBuildListFromNodesAlloc (page 16) or
dsBuildListFromStringsAlloc (page 18).

When you no longer need the data list, call dsDataListDeallocate (page 27) to release the memory
associated with it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

26 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

dsDataListCopyList
Copies a data list.

tDataListPtr dsDataListCopyList (
 tDirReference inDirReference,
 const tDataList *inDataListSource
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session that is associated
with the specified data list, or zero.

inDataListSource
On input, a pointer to a tDataList (page 84) structure for the data list that is to be copied.

function result
A value of type tDataListPtr that points to the copy of the data list. If this function cannot copy
the list, it returns NULL.

Discussion
This utility function copies a data list and returns a pointer to the copy of the data list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsDataListDeallocate
Deallocates a data list.

tDirStatus dsDataListDeallocate (
 tDirReference inDirReference,
 tDataListPtr inDataList
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session for which the
data list is to be deallocated, or zero.

inDataList
On input, a value of type tDataListPtr pointing to the tDataList (page 84) structure that is to
be deallocated.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function deallocates a data list previously created by calling dsBuildListFromNodesAlloc (page
16), dsBuildFromPath (page 15), dsBuildListFromStrings (page 18), or dsDataListCopyList (page
27).

Functions 27
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

This utility function does not clean up the header structure associated with the inDataList parameter, so
if the inDataList parameter is a true pointer and not the address of a stack variable, you need to call
free(inDataList).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServicesUtils.h

dsDataListDeleteThisNode
Deletes a data node from a data list.

tDirStatus dsDataListDeleteThisNode (
 tDirReference inDirReference,
 tDataListPtr inDataList,
 UInt32 inNodeIndex
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session that is associated
with the specified data list, or zero.

inDataList
On input, a value of type tDataListPtr pointing to the data list from which a data node is to be
removed.

inNodeIndex
On input, a value of type unsigned long that identifies the data node to remove. Set inNodeIndex
to 1 to remove the first node. Set inNodeIndex to 2 to remove the second node, and so on.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function removes a data node from a data list. The inNodeIndex parameter specifies the index
of the data node that is to be removed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsDataListGetNodeAlloc
Gets a data node from a data list.

28 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsDataListGetNodeAlloc (
 tDirReference inDirReference,
 const tDataList *inDataListPtr,
 UInt32 inNodeIndex,
 tDataNodePtr *outDataNode
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session that is associated
with the specified data list, or zero.

inDataListPtr
On input, a pointer to a tDataList (page 84) structure of the data list from which a data node is to
be obtained.

inNodeIndex
On input, a value of type unsigned long that identifies the data node to obtain. Set inNodeIndex
to 1 to get the first node. Set inNodeIndex to 2 to get the second node, and so on.

outDataNode
On output, a value of type tDataNodePtr (page 88) that points to the data node obtained from the
data list.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function obtains a data node from a data list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsDataListGetNodeCount
Gets the number of data nodes in a data list.

UInt32 dsDataListGetNodeCount (
 const tDataList *inDataList
);

Parameters
inDataListPtr

On input, a pointer to a value of type tDataList (page 84) containing the data nodes that are to
be counted.

function result
The number of data nodes in the data list or an error code. For a list of possible result codes, see
“Result Codes” (page 169).

Discussion
This utility function returns the number of data nodes in a data list.

Functions 29
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsDataListInsertAfter
Inserts a data node in a data list.

tDirStatus dsDataListInsertAfter (
 tDirReference inDirReferences,
 tDataListPtr inDataList,
 tDataNodePtr inInsertDataNode,
 const UInt32 inNodeIndex
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session that is associated
with the specified data list, or zero.

inDataList
On input, a value of type tDataListPtr pointing to a data list containing a list of nodes.

inInsertDataNode
On input, a value of type tDataNodePtr (page 88) pointing to a data node.

inNodeIndex
On input, a value of type const unsigned long that specifies the data node in the list after which
the data node specified by inInsertDataNode is to be inserted. If inNodeIndex is zero, the data
node is inserted at the beginning of the data list.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function inserts a node into a list of nodes in a data list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsDataListMergeListAfter
Merges two data lists.

30 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsDataListMergeListAfter (
 tDataListPtr inTargetList,
 tDataListPtr inSourceList,
 const UInt32 inNodeIndex
);

Parameters
inTargetList

On input, a value of type tDataListPtr pointing to a data list containing data nodes. When this
function returns, inTargetList contains the data nodes it contained before this function was called
as well as the data nodes contained by the data list pointed to by inSourceList.

inSourceList
On input, a value of type tDataListPtr pointing to a data list containing data nodes that are to be
merged with the data nodes in the data list specified by inTargetList.

inNodeIndex
On input, a value of type const unsigned long that specifies the index of the node in the data
list pointed to by inTargetList after which the data nodes in the list pointed to by inSourceList
are to be inserted. If inNodeIndex is zero, the data nodes are inserted at the beginning of the list.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function merges two data lists. The data nodes in the data list pointed by the inSourceList
parameter are merged with the data nodes in the data list pointed to by the inTargetList parameter after
the data node indicated by the inNodeIndex parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsDataNodeAllocateBlock
Allocates an Open Directory data node.

tDataNodePtr dsDataNodeAllocateBlock (
 tDirReference inDirReference,
 UInt32 inDataNodeSize,
 UInt32 inDataNodeLength,
 tBuffer inDataNodeBuffer
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session for which the
data node is to be allocated, or zero.

inDataNodeSize
On input, a value of type unsigned long that specifies the size of inDataNodeBuffer.

Functions 31
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inDataNodeLength
On input, a value of type unsigned long that specifies the length of valid data in inDataNodeBuffer.

inDataNodeBuffer
On input, a value of type tBuffer (page 87) containing the value the data node is to contain.

function result
A value of type tDataNodePtr (page 88) that points to the allocated data node and that can be
passed as a parameter to Open Directory functions that require such a value as a parameter. If this
function cannot allocate the data node, it returns NULL.

Discussion
This utility function allocates an Open Directory data node and returns a pointer to it. Use the data node as
a convenient way to pass data, such as record names and authentication types, to Open Directory functions.

To release the memory associated with a data node, call dsDataNodeDeAllocate (page 33).

To use a C string to allocate a data node, call dsDataNodeAllocateString (page 32).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsDataNodeAllocateString
Allocates an Open Directory data node using a string.

tDataNodePtr dsDataNodeAllocateString (
 tDirReference inDirReference,
 const char *inCString
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session for which the
data node is to be allocated. The value of this parameter is actually ignored in Mac OS X.

inCString
A pointer to a value of type char that specifies the value the data node is to contain.

function result
A value of type tDataNodePtr (page 88) that points to the allocated data node and that can be
passed as a parameter to Open Directory functions that require such a value as a parameter. If this
function cannot allocate the data node, it returns NULL.

Discussion
This utility function uses a C string to allocate an Open Directory data node and returns a pointer to the
allocated data node. Use the data node as a convenient way to pass data, such as record names and
authentication types, to Open Directory functions.

To release the memory associated with a data node, call dsDataNodeDeAllocate (page 33).

Availability
Available in Mac OS X v10.0 and later.

32 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Related Sample Code
NetworkAuthentication

Declared In
DirServicesUtils.h

dsDataNodeDeAllocate
Deallocates a data node.

tDirStatus dsDataNodeDeAllocate (
 tDirReference inDirReference,
 tDataNodePtr inDataNodePtr
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70), or zero.

inDataNodePtr
On input, a value of type tDataNodePtr (page 88) that points to the tDataBuffer (page 84)
structure that is to be deallocated.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function deallocates an Open Directory data node that was created by previously calling
dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page 32).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServicesUtils.h

dsDataNodeGetLength
Gets the length of valid data in a data node’s buffer.

UInt32 dsDataNodeGetLength (
 tDataNodePtr inDataNodePtr
);

Parameters
inDataNodePtr

On input, a value of type tDataNodePtr (page 88) that points to the data node for which the length
of valid data in the data node’s buffer is to be obtained.

Functions 33
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type unsigned long that contains the length of valid data in the data node’s buffer. If
this function cannot obtain the length, it returns zero.

Discussion
This utility function gets the length of valid data in the buffer of the data node pointed to by inDataNodePtr.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsDataNodeGetSize
Gets the size of a data node’s buffer.

UInt32 dsDataNodeGetSize (
 tDataNodePtr inDataNodePtr
);

Parameters
inDataNodePtr

On input, a value of type tDataNodePtr (page 88) that points to the tDataBuffer (page 84)
structure whose buffer size is to be obtained.

function result
A value of type unsigned long that contains the size of the buffer. If this function cannot obtain
the buffer’s size, it returns zero.

Discussion
This utility function obtains the size of a data node’s buffer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsDataNodeSetLength
Sets the length of valid data in a data node’s buffer.

tDirStatus dsDataNodeSetLength (
 tDataNodePtr inDataNodePtr,
 UInt32 inDataNodeLength
);

Parameters
inDataNodePtr

On input, a value of type tDataNodePtr (page 88) that points to the data node whose buffer size
is to be set.

inDataNodeLength
On input, a value of type unsigned long that specifies the length of valid data in the buffer.

34 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function sets the length of valid data in the buffer of the data node pointed to by inDataNodePtr.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsDeallocAttributeEntry
Deallocates an attribute entry structure.

tDirStatus dsDeallocAttributeEntry (
 tDirReference inDirRef,
 tAttributeEntryPtr inAttrEntry
);

Parameters
inDirRef

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) representing the Open Directory session associated with the attribute entry structure that is to
be deallocated, or zero.

inAttrEntry
On input, a value of type tAttributeEntryPtr (page 85) that points to the
tAttributeValueEntry (page 83) structure that is to be deallocated.

function result
A value of type tDirStatus indicating success or failure.

Discussion
This utility function deallocates an attribute entry structure and the pointer to it that were allocated in order
to call dsGetAttributeEntry (page 51) or dsGetRecordAttributeInfo (page 59).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServicesUtils.h

dsDeallocAttributeValueEntry
Deallocates an attribute value entry structure.

Functions 35
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsDeallocAttributeValueEntry (
 tDirReference inDirRef,
 tAttributeValueEntryPtr inAttrValueEntry
);

Parameters
inDirRef

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) representing the Open Directory session associated with the attribute value entry structure that
is to be deallocated, or zero.

inAttrValueEntry
On input, a value of type tAttributeValueEntryPtr that points to the
tAttributeValueEntry (page 83) structure that is to be deallocated.

function result
A value of type tDirStatus indicating success or failure.

Discussion
This utility function deallocates an attribute value entry structure that was previously allocated by calling
dsGetAttributeValue (page 53), dsGetRecordAttributeValueByID (page 60),
dsGetRecordAttributeValueByIndex (page 61), or dsGetRecordAttributeValueByValue (page
62).

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServicesUtils.h

dsDeallocRecordEntry
Deallocates a record entry structure.

tDirStatus dsDeallocRecordEntry (
 tDirReference inDirRef,
 tRecordEntryPtr inRecEntry
);

Parameters
inDirRef

A value of type tDirReference (page 89) obtained by previously calling dsOpenDirService (page
69) that identifies the Open Directory session for the record entry structure that is to be deallocated,
or zero.

inRecEntry
On input, a value of type tRecordEntryPtr (page 89) that points to the tRecordEntry (page 85)
structure that is to be deallocated.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

36 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Discussion
This utility function deallocates the specified record entry structure that was allocated by a previous call to
dsGetRecordEntry (page 63) or dsGetRecordReferenceInfo (page 66).

You should always deallocate record entry structures when you no longer need them.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServicesUtils.h

dsDeleteRecord
Deletes a record.

tDirStatus dsDeleteRecord (
 tRecordReference inRecordReference
);

Parameters
inRecordReference

On input, a value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) or dsCreateRecordAndOpen (page 24)that represents the record that
is to be deleted.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function deletes the specified record. Deleting the record invalidates the record reference. Therefore,
before deleting a record, be sure to call dsCloseAttributeList (page 20) and
dsCloseAttributeValueList (page 20) to close any attribute list references and attribute value list
references that may have been allocated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsDoAttributeValueSearch
Searches a node for records by attribute value.

Functions 37
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsDoAttributeValueSearch (
 tDirNodeReference inDirNodeReference,
 tDataBufferPtr inOutDataBuffer,
 tDataListPtr inRecordTypeList,
 tDataNodePtr inAttributeType,
 tDirPatternMatch inPatternMatchType,
 tDataNodePtr inPattern2Match,
 UInt32 *inOutMatchRecordCount,
 tContextData *inOutContinueData
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89), obtained by calling dsOpenDirNode (page
68), that identifies the node that is to be searched.

inOutDataBuffer
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to the tDataBuffer (page 84) structure in which
this function is to place search results. On output, if inOutMatchRecordCount points to a value
greater than zero, call dsGetRecordEntry (page 63), dsGetAttributeEntry (page 51), and
dsGetAttributeValue (page 53) to get the records, attributes, and attribute values from the data
buffer.

inRecordTypeList
On input, a value of type tDataListPtr pointing to a tDataList (page 84) structure allocated by
calling dsDataListAllocate (page 26) that contains a list of record types to search. Set the record
type to kDSStdRecordTypeAll to search all records. See Standard Record Types (page 143) for other
possible values.

inAttributeType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains an attribute type to search for. To search all attribute types, set the attribute type
to kDSAttributesAll. See the attribute constants described in the “Constants” (page 129) section
for other possible values.

inPatternMatchType
On input, a value of type tDirPatternMatch specifying a pattern type that controls the way in
which the pattern specified by inPattern2Match is compared with attribute values. See Pattern
Matching Constants (page 137) for possible values. The pattern type may also be defined by the Open
Directory plug-in that handles the directory service represented by inDirNodeReference.

inPattern2Match
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the pattern to match.

inOutMatchRecordCount
On input, a pointer to a value of type unsigned long that specifies the total number of matching
records to get across multiple calls to this function. Set this value to zero to get all matching records.
On output, inOutRecordMatchCount points to the number of records in the data buffer pointed
to by inOutDataBuffer. Once you start a series of dsDoAttributeValueSearch calls,
inOutMatchRecordCount is ignored as an input parameter.

38 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if the
value pointed to by inOutContinueData is not NULL, get more matching records by calling this
function again and pass the value pointed to by inOutContinueData. If on output
inOutContinueData is NULL, there are no more records to get. If inOutContinueData is not NULL
and an error occurs or you don’t want to get any more matching records, you must call
dsReleaseContinueData (page 72) to release the memory associated with inOutContinueData.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function works across multiple calls to obtain a list of all records having attributes whose values match
the specified pattern. Set inOutRecordMatchCount to zero to get all matching records. If you want to limit
the number of matching records that this function returns, set inOutRecordMatchCount to a positive
integer value that specifies the limit.

On output, matching records are returned in the buffer pointed to by inOutDataBuffer with the number
of records in that buffer indicated by the value pointed to by inOutMatchRecordCount.

On output, the value pointed to by inOutContinueData indicates whether you should call this function
again to obtain more matching records. If inOutContinueData is NULL; you do not need to call this function
again. If inOutContinueData is not NULL and you do not want to continue the search, you must call
dsReleaseContinueData (page 72) to deallocate the memory that is associated with inOutContinueData.

If there are too many records to fit in a single buffer, this function returns a non-null value in the value pointed
to by inOutContinueData. To get more records, call this function again, passing the pointer to
inOutContinueData that was returned by the previous call to this function.

If this function returns eDSBufferTooSmall, the buffer is too small for a record that is to be returned. You
should allocate a larger buffer and try again. When this function returns eDSBufferTooSmall,
inOutContinueData is also set.

If the value pointed to by inOutContinueData is not NULL and the value returned by this function is zero,
more results may be available. Continue calling this function until inOutContinueData points to a NULL
value.

To get a record from the data buffer pointed to by inOutDataBuffer, call dsGetRecordEntry (page 63).
To get information about the record’s attributes, call dsGetAttributeEntry (page 51). To get the value
of a record’s attribute, call dsGetAttributeValue (page 53).

If inOutContinueData is not NULL and you no longer need it, call dsReleaseContinueData (page 72)
to release the memory associated with it.

Special Considerations

In a series of calls to this function, the value of inOutRecordEntryCount must be set by the first call. Its
value is ignored in the next calls in the series.

See dsDoAttributeValueSearchWithData (page 40) to get information about other attribute types and
their values.

Availability
Available in Mac OS X v10.0 and later.

Functions 39
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Declared In
DirServices.h

dsDoAttributeValueSearchWithData
Searches for records by attribute type and attribute value.

tDirStatus dsDoAttributeValueSearchWithData (
 tDirNodeReference inDirNodeReference,
 tDataBufferPtr inOutDataBuffer,
 tDataListPtr inRecordTypeList,
 tDataNodePtr inAttributeMatchType,
 tDirPatternMatch inPatternMatchType,
 tDataNodePtr inPatternToMatch,
 tDataListPtr inAttributeTypeRequestList,
 dsBool inAttributeInfoOnly,
 UInt32 *inOutMatchRecordCount,
 tContextData *inOutContinueData
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89), obtained by calling dsOpenDirNode (page
68), that identifies the node that is to be searched.

inOutDataBuffer
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to the tDataBuffer (page 84) structure in which
this function is to place search results. On output, if inOutMatchRecordCount points to a value
greater than zero, call dsGetRecordEntry (page 63), dsGetAttributeEntry (page 51), and
dsGetAttributeValue (page 53) to get the records, attributes, and attribute values from the data
buffer.

inRecordTypeList
On input, a value of type tDataListPtr pointing to a tDataList (page 84) structure allocated by
calling dsDataListAllocate (page 26) that contains a list of the record types to search for. Set the
record type to kDSStdRecordTypeAll to search all records. For other possible values, see Standard
Record Types (page 143).

inAttributeMatchType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains an attribute type to search for. To search all attribute types, set the attribute type
to kDSAttributesAll. For other possible values, see the attribute constants described in the
“Constants” (page 129) section for other possible values.

inPatternMatchType
On input, a value of type tDirPatternMatch specifying a pattern type that controls the way in
which the pattern specified by inPattern2Match is compared with attribute values. See Pattern
Matching Constants (page 137) for possible values. The pattern type may also be defined by the Open
Directory plug-in that handles the directory service represented by inDirNodeReference.

inPatternToMatch
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the pattern to match.

40 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inAttributeTypeRequestList
On input, a value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure
allocated by calling dsDataListAllocate (page 26) that specifies the record attribute types that
are to be returned.

inAttributeInfoOnly
On input, a value of type dsBool set to TRUE if the calling application only wants information about
attributes. To get the values of the attributes as well as information about the attributes, set
inAttributeInfoOnly to FALSE.

inOutMatchRecordCount
On input, a pointer to a value of type long that specifies the number of matching records to get. On
output, inOutRecordEntryCount points to the number of records in the data buffer pointed to by
inOutDataBuffer; the number may be less than the requested number if there were not enough
matching records to fill the buffer. The caller cannot change the value of inOutRecordEntryCount
across multiple calls to this function using the value pointed to by inOutContinueData.

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if the
value pointed to by inOutContinueData is NULL, there are no new results in the buffer. If the value
pointed to by inOutContinueData is not NULL on output, pass the value pointed to by
inOutContinueData to this function again to get the next entries. You must call
dsReleaseContinueData (page 72) if you don’t want to get the remaining records.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function stores in the data buffer pointed to by inOutDataBuffer a list of records having attributes
of the type specified by the inAttributeMatchType parameter whose values match the specified pattern.

Set inOutRecordEntryCount to point to a positive integer value that represents the number of records
that are to be returned. You cannot change the value pointed to by inOutRecordEntryCount if you call
this function with inOutContinueData pointing to context data returned by a previous call to this function.

If there are too many records to fit in a single buffer, this function returns a non-null value in the value pointed
to by inOutContinueData. To get more records, call this function again, passing the pointer to
inOutContinueData that was returned by the previous call to this function.

To get a record from the data buffer pointed to by inOutDataBuffer, call dsGetRecordEntry (page 63).
To get information about the record’s attributes, call dsGetAttributeEntry (page 51). To get the value
of a record’s attribute, call dsGetAttributeValue (page 53).

When you no longer need inOutContinueData, call dsReleaseContinueData (page 72) to release the
memory associated with it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsDoDirNodeAuth
Performs authentication with a node.

Functions 41
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsDoDirNodeAuth (
 tDirNodeReference inDirNodeReference,
 tDataNodePtr inDirNodeAuthName,
 dsBool inDirNodeAuthOnlyFlag,
 tDataBufferPtr inAuthStepData,
 tDataBufferPtr outAuthStepDataResponse,
 tContextData *inOutContinueData
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89) obtained by previously calling
dsOpenDirNode (page 68) that representing the node that is to be authenticated.

inDirNodeAuthName
On input, a value of type tDataNodePtr (page 88) pointing to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) containing the authentication method to use. Authentication methods vary from user to user.
Examples include kDSStdAuthSetPasswd, kDSStdAuthSetPasswdAsRoot, and
kDSStdAuthChangePasswd to set or change a password andkDSStdAuthNodeNativeNoClearText
to authenticate a user. If changes will be made to the node after authentication, the value of the
inDirNodeAuthOnlyFlag parameter should be FALSE. For other possible values, see Authentication
Constants (page 129).

inDirNodeAuthOnlyFlag
On input, a value of type dsBool that indicates whether the result of authentication will be used in
the future. A file server that is only authenticating a user should set this parameter to TRUE to indicate
that once the user is authenticated, the result will not be used in the future. An application that might
make changes to the node after authentication would set this parameter to FALSE to indicate that
the result may be used in the future.

inAuthStepData
On input, this parameter contains the data necessary for this step in the authentication process. This
parameter is a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to a tDataBuffer (page 84) structure.

outAuthStepDataResponse
On output, this parameter contains the plug-in’s response. If the authentication was not successful,
the buffer contains a plug-in–defined value. If there are more steps in the authentication process, the
buffer contains a plug-in–defined value that is used in the next step of the authentication process.
This parameter is a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) pointing to a tDataBuffer (page 84) structure.

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if the
value pointed to by inOutContinueData is NULL, there are no more steps in the authentication
process. If inOutContinueData is not NULL on output, there are more steps to complete. Call this
function again and pass to it the value pointed to by inOutContinueData. Call
dsReleaseContinueData (page 72) if the value pointed to by inOutContinueData is not NULL
and you do not want to complete the authentication process.

42 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating successful authentication (eDSNoErr) or an error, such as
eDSAuthFailed. Other authentication result codes include eDSAuthMethodNotSupported,
eDSAuthInBuffFormatError, eDSAuthNoSuchEntity, eDSAuthBadPassword,
eDSAuthContinueDataBad, eDSAuthUnknownUser, eDSAuthCannotRecoverPasswd,
eDSAuthFailedClearTextOnly, eDSAuthNoAuthServerFound, eDSAuthServerError,
eDSAuthNewPasswordRequired, eDSAuthPasswordExpired,
eDSAuthPasswordQualityCheckFailed,eDSAuthAccountDisabled,eDSAuthAccountExpired,
and eDSAuthAccountInactive. For an explanation of these result codes, see “Result Codes” (page
169).

Discussion
This function performs a variety of authentication tasks, such as authenticating a user, setting a password,
and changing a password, depending on the value of the inDirNodeAuthName parameter.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsDoDirNodeAuthOnRecordType
Performs authentication using a record type.

tDirStatus dsDoDirNodeAuthOnRecordType (
 tDirNodeReference inDirNodeReference,
 tDataNodePtr inDirNodeAuthName,
 dsBool inDirNodeAuthOnlyFlag,
 tDataBufferPtr inAuthStepData,
 tDataBufferPtr outAuthStepDataResponse,
 tContextData *inOutContinueData,
 tDataNodePtr inRecordType
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89) obtained by previously calling
dsOpenDirNode (page 68) that representing the node that is to be authenticated.

inDirNodeAuthName
On input, a value of type tDataNodePtr (page 88) pointing to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) containing the authentication method to use. Authentication methods vary from record to record.
Examples include kDSStdAuthSetPasswd, kDSStdAuthSetPasswdAsRoot, and
kDSStdAuthChangePasswd to set or change a password andkDSStdAuthNodeNativeNoClearText
to authenticate a user. If changes will be made to the node after authentication, the value of the
inDirNodeAuthOnlyFlag parameter should be FALSE. For other possible values, see Authentication
Constants (page 129).

Functions 43
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inDirNodeAuthOnlyFlag
On input, a value of type dsBool that indicates whether the result of authentication will be used in
the future. A file server that is only authenticating a user should set this parameter to TRUE to indicate
that once the user is authenticated, the result will not be used in the future. An application that might
make changes to the node after authentication would set this parameter to FALSE to indicate that
the result may be used in the future.

inAuthStepData
On input, this parameter contains the data necessary for this step in the authentication process. This
parameter is a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to a tDataBuffer (page 84) structure.

outAuthStepDataResponse
On output, this parameter contains the plug-in’s response. If the authentication was not successful,
the buffer contains a plug-in–defined value. If there are more steps in the authentication process, the
buffer contains a plug-in–defined value that is used in the next step of the authentication process.
This parameter is a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) pointing to a tDataBuffer (page 84) structure.

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if the
value pointed to by inOutContinueData is NULL, there are no more steps in the authentication
process. If inOutContinueData is not NULL on output, there are more steps to complete. Call this
function again and pass to it the value pointed to by inOutContinueData. Call
dsReleaseContinueData (page 72) if the value pointed to by inOutContinueData is not NULL
and you do not want to complete the authentication process.

inRecordType
On input, a value of type tDataNodePtr (page 88) that points to a tDataBuffer (page 84) structure
allocated by calling dsDataBufferAllocate (page 25) containing the type of the record to use for
authentication. Currently, the only record types that are allowed are kDSStdRecordTypeComputers
and kDSStdRecordTypeUsers.If this parameter is NULL, dsDoDirNodeAuth (page 41) is called and
a record type of kDSStdRecordTypeUsers is used.

function result
A value of type tDirStatus indicating successful authentication (eDSNoErr) or an error, such as
eDSAuthFailed. Other authentication result codes include eDSAuthMethodNotSupported,
eDSAuthInBuffFormatError, eDSAuthNoSuchEntity, eDSAuthBadPassword,
eDSAuthContinueDataBad, eDSAuthUnknownUser, eDSAuthCannotRecoverPasswd,
eDSAuthFailedClearTextOnly, eDSAuthNoAuthServerFound, eDSAuthServerError,
eDSAuthNewPasswordRequired, eDSAuthPasswordExpired,
eDSAuthPasswordQualityCheckFailed,eDSAuthAccountDisabled,eDSAuthAccountExpired,
and eDSAuthAccountInactive. For an explanation of these result codes, see “Result Codes” (page
169).

Discussion
This function uses a record type of kDDStdRecordTypeUsers or kDSStdRecordTypeComputers to perform
authentication. Specifying a record type of kDSStdRecordTypeUsers is equivalent to calling
dsDoDirNodeAuth (page 41). Records of type kDSStdRecordTypeUsers and
kDSStdRecordTypeComputers are the only records that can be used for authentication.

Version Notes
Introduced in Mac OS X v10.3.

Availability
Available in Mac OS X v10.3 and later.

44 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Declared In
DirServices.h

dsDoMultipleAttributeValueSearch
Uses multiple attribute values to search a node for records.

tDirStatus dsDoMultipleAttributeValueSearch (
 tDirNodeReference inDirNodeReference,
 tDataBufferPtr inOutDataBuffer,
 tDataListPtr inRecordTypeList,
 tDataNodePtr inAttributeType,
 tDirPatternMatch inPatternMatchType,
 tDataListPtr inPatterns2Match,
 UInt32 *inOutMatchRecordCount,
 tContextData *inOutContinueData
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89), obtained by calling dsOpenDirNode (page
68), that identifies the node that is to be searched.

inOutDataBuffer
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to the tDataBuffer (page 84) structure in which
this function is to place search results. On output, if inOutMatchRecordCount points to a value
greater than zero, call dsGetRecordEntry (page 63), dsGetAttributeEntry (page 51), and
dsGetAttributeValue (page 53) to get the records, attributes, and attribute values from the data
buffer.

inRecordTypeList
On input, a value of type tDataListPtr pointing to a tDataList (page 84) structure allocated by
calling dsDataListAllocate (page 26) that contains a list of record types to search. Set the record
type to kDSStdRecordTypeAll to search all records. See Standard Record Types (page 143) for other
possible values.

inAttributeType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains an attribute type to search for. To search all attribute types, set the attribute type
to kDSAttributesAll. See the attribute constants described in the “Constants” (page 129) section
for other possible values.

inPatternMatchType
On input, a value of type tDirPatternMatch specifying a pattern type that controls the way in
which the pattern specified by inPattern2Match is compared with attribute values. See Pattern
Matching Constants (page 137) for possible values. The pattern type may also be defined by the Open
Directory plug-in that handles the directory service represented by inDirNodeReference.

inPatterns2Match
On input, a value of type tDataListPtr (page 87) that points to a list of patterns to match.

Functions 45
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inOutMatchRecordCount
On input, a pointer to a value of type unsigned long that specifies the total number of matching
records to get across multiple calls to this function. Set this value to zero to get all matching records.
On output, inOutRecordMatchCount points to the number of records in the data buffer pointed
to by inOutDataBuffer. Once you start a series of dsDoMultipleAttributeValueSearch calls,
inOutMatchRecordCount is ignored as an input parameter.

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if the
value pointed to by inOutContinueData is not NULL, get more matching records by calling this
function again and pass the value pointed to by inOutContinueData. If on output
inOutContinueData is NULL, there are no more records to get. If inOutContinueData is not NULL
and an error occurs or you don’t want to get any more matching records, you must call
dsReleaseContinueData (page 72) to release the memory associated with inOutContinueData.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. A result code of
eDSBufferTooSmall indicates you should allocate a larger buffer and call this function again. For
a list of possible result codes, see “Result Codes” (page 169).

Discussion
This function works across multiple calls to obtain a list of all records having an attribute whose value matches
one of the patterns specified by inPatters2Match. Set inOutRecordMatchCount to zero to get all matching
records. If you want to limit the number of matching records that this function returns, set
inOutRecordMatchCount to a positive integer value that specifies the limit.

On output, matching records are returned in the buffer pointed to by inOutDataBuffer with the number
of records in that buffer indicated by the value pointed to by inOutDataBuffer.

On output, the value pointed to by inOutContinueData indicates whether you should call this function
again to obtain more matching records. If inOutContinueData is NULL; you do not need to call this function
again. If inOutContinueData is not NULL and you do not want to continue the search, you must call
dsReleaseContinueData (page 72) to deallocate the memory that is associated with inOutContinueData.

If there are too many records to fit in a single buffer, this function returns a non-null value in the value pointed
to by inOutContinueData. To get more records, call this function again, passing the pointer to
inOutContinueData that was returned by the previous call to this function.

If the value pointed to by inOutContinueData is not NULL and the value returned by this function is zero,
more results may be available. Continue calling this function until inOutContinueData points to a NULL
value.

To get a record from the data buffer pointed to by inOutDataBuffer, call dsGetRecordEntry (page 63).
To get information about the record’s attributes, call dsGetAttributeEntry (page 51). To get the value
of a record’s attribute, call dsGetAttributeValue (page 53).

If inOutContinueData is not NULL and you no longer need it, call dsReleaseContinueData (page 72)
to release the memory associated with it.

Special Considerations

In a series of calls to this function, the value of inOutRecordEntryCount must be set by the first call. Its
value is ignored in the next calls in the series.

See dsDoAttributeValueSearchWithData (page 40) to get information about other attribute types and
their values.

46 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Version Notes
Introduced in Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
DirServices.h

dsDoMultipleAttributeValueSearchWithData
Searches for records by attribute type and multiple attribute values.

tDirStatus dsDoMultipleAttributeValueSearchWithData (
 tDirNodeReference inDirNodeReference,
 tDataBufferPtr inOutDataBuffer,
 tDataListPtr inRecordTypeList,
 tDataNodePtr inAttributeMatchType,
 tDirPatternMatch inPatternMatchType,
 tDataListPtr inPatternsToMatch,
 tDataListPtr inAttributeTypeRequestList,
 dsBool inAttributeInfoOnly,
 UInt32 *inOutMatchRecordCount,
 tContextData *inOutContinueData
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89), obtained by calling dsOpenDirNode (page
68), that identifies the node that is to be searched.

inOutDataBuffer
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to the tDataBuffer (page 84) structure in which
this function is to place search results. On output, if inOutMatchRecordCount points to a value
greater than zero, call dsGetRecordEntry (page 63), dsGetAttributeEntry (page 51), and
dsGetAttributeValue (page 53) to get the records, attributes, and attribute values from the data
buffer.

inRecordTypeList
On input, a value of type tDataListPtr pointing to a tDataList (page 84) structure allocated on
the stack or by calling dsDataListAllocate (page 26) that contains a list of the record types to
search for. Set the record type to kDSStdRecordTypeAll to search all records. For other possible
values, see Standard Record Types (page 143).

inAttributeMatchType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the attribute type to search for. To search all attribute types, set the attribute type
to kDSAttributesAll. See the attribute constants described in the “Constants” (page 129) section
for other possible values.

Functions 47
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inPatternMatchType
On input, a value of type tDirPatternMatch specifying a pattern type that controls the way in
which the pattern specified by inPattern2Match is compared with attribute values. See Pattern
Matching Constants (page 137) for possible values. The pattern type may also be defined by the Open
Directory plug-in that handles the directory service represented by inDirNodeReference.

inPatternsToMatch
On input, a value of type tDataListPtr (page 87) that points to a list of patterns to match.

inAttributeTypeRequestList
On input, a value of type tDataListPtr pointing to a tDataList (page 84) structure allocated by
calling dsDataListAllocate (page 26) that specifies the record attribute types that are to be
returned.

inAttributeInfoOnly
On input, a value of type dsBool set to TRUE if the calling application only wants information about
attributes. To get the values of the attributes as well as information about the attributes, set
inAttributeInfoOnly to FALSE.

inOutMatchRecordCount
On input, a pointer to a value of type long that specifies the number of matching records to get. On
output, inOutRecordEntryCount points to the number of records in the data buffer pointed to by
inOutDataBuffer; the number may be less than the requested number if there were not enough
matching records to fill the buffer. The caller cannot change the value of inOutRecordEntryCount
across multiple calls to this function using the value pointed to by inOutContinueData.

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if the
value pointed to by inOutContinueData is NULL, there are no new results in the buffer. If the value
pointed to by inOutContinueData is not NULL on output, pass the value pointed to by
inOutContinueData to this function again to get the next entries. You must call
dsReleaseContinueData (page 72) if you don’t want to get the remaining records.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. A result code of
eDSBufferTooSmall indicates you should allocate a larger buffer and call this function again. For
a list of possible result codes, see “Result Codes” (page 169).

Discussion
This function stores in the data buffer pointed to by inOutDataBuffer a list of records having attributes
of the type specified by the inAttributeMatchTypes parameter whose values match the specified pattern.

Set inOutRecordEntryCount to point to a positive integer value that represents the number of records
that are to be returned. You cannot change the value pointed to by inOutRecordEntryCount if you call
this function with inOutContinueData pointing to context data returned by a previous call to this function.

If there are too many records to fit in a single buffer, this function returns a non-null value in the value pointed
to by inOutContinueData. To get more records, call this function again, passing the pointer to
inOutContinueData that was returned by the previous call to this function.

To get a record from the data buffer pointed to by inOutDataBuffer, call dsGetRecordEntry (page 63).
To get information about the record’s attributes, call dsGetAttributeEntry (page 51). To get the value
of a record’s attribute, call dsGetAttributeValue (page 53).

When you no longer need inOutContinueData, call dsReleaseContinueData (page 72) to release the
memory associated with it.

48 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Version Notes
Introduced in Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
DirServices.h

dsDoPlugInCustomCall
Exchanges custom information with an Open Directory plug-in.

tDirStatus dsDoPlugInCustomCall (
 tDirNodeReference inDirNodeReference,
 UInt32 inCustomRequestCode,
 tDataBufferPtr inCustomRequestData,
 tDataBufferPtr outCustomRequestResponse
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89), obtained by calling dsOpenDirNode (page
68), that identifies the open node for which custom information is to be exchanged.

inCustomRequestCode
On input, a value of type unsigned long, containing a request code that is to be sent to the plug-in.

inCustomRequestData
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to a tDataBuffer (page 84) structure containing
data that is to be sent to the plug-in.

outCustomRequestResponse
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to a tDataBuffer (page 84) structure. On output,
the buffer contains the plug-in’s response to the information that was sent.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function exchanges custom information with the Open Directory plug-in for the node represented by
inDirNodeReference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsFindDirNodes
Finds the registered node names that match a pattern.

Functions 49
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsFindDirNodes (
 tDirReference inDirReference,
 tDataBufferPtr inOutDataBufferPtr,
 tDataListPtr inNodeNamePattern,
 tDirPatternMatch inPatternMatchType,
 UInt32 *outDirNodeCount,
 tContextData *inOutContinueData
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69).

inOutDataBufferPtr
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to a tDataBuffer (page 84) structure in which the
results are to be returned. On output, call dsGetDirNodeName (page 58) to extract the results from
the data buffer pointed to by inOutDataBufferPtr.

inNodeNamePattern
On input, a value of type tDataListPtr pointing to a tDataList (page 84) structure containing
the pattern that is to be matched. Set this parameter to NULL and inPatternMatchType to the
appropriate constant to get the contacts search node (eDSContactsSearchNodeName), network
search node (eDSNetworkSearchNodeName), authentication search node
(eDSAuthenticationSearchNodeName), the node for the local NetInfo domain
(eDSLocalNodeNames), or locally hosted nodes (eDSLocalHostedNodes).

inPatternMatchType
On input, a value of type tDirPatternMatch specifying a pattern type that controls the way in
which the pattern specified by inNodeNamePattern is compared with registered node names. See
Pattern Matching Constants (page 137) for possible values.

outDirNodeCount
On output, a pointer to a value of type unsigned long in which this function has stored the number
of registered node names in the data buffer pointed to by inOutDataBufferPtr.

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if
inOutContinueData points to a value that is NULL, there is no more response data to get. If
inOutContinueData points to a value that is not NULL, there is more response data, which you can
get by calling this function again and passing the context data pointed to by inOutContinueData.
If inOutContinueData points to a value that is not NULL and you do not want to get the remaining
response data, you must call dsReleaseContinueData (page 72) to deallocate the memory
associated with inOutContinueData.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function searches the list of nodes that have been registered by Open Directory plug-ins for the directory
service represented by inDirReference for names that match a pattern. It places the names that match
the pattern in the data buffer pointed to by inOutDataBufferPtr. Use the inNodeNamePattern parameter
to specify pattern to match and the inPatternMatchType parameter to specify how the pattern is to be
matched or to specify that a search node is to be found.

50 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

On output, outDirNodeCount contains the number of matching registered node names that this function
has found. Call dsGetDirNodeName (page 58) to extract the names from the data buffer.

On output, if inOutContinueData points to a value that is not NULL, there are more matching registered
node names for this function to find even if outDirNodeCount points to a zero value. To get another buffer
of matching registered node names, call this function again and pass to it the context data pointed to by
inOutContinueData. If you do not want to get another buffer of matching node names, you must call
dsReleaseContinueData (page 72) to deallocate the context data pointed to by inOutContinueData.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsFlushRecord
Writes a record.

tDirStatus dsFlushRecord (
 tRecordReference inRecordReference
);

Parameters
inRecordReference

On input, value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71).

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function requests the directory service to write the record. The directory service may comply with the
request or may choose to ignore it.

The value returned by this function does not reflect whether the record was actually written.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsGetAttributeEntry
Gets an attribute entry from a data buffer.

Functions 51
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsGetAttributeEntry (
 tDirNodeReference inDirNodeReference,
 tDataBufferPtr inOutDataBuffer,
 tAttributeListRef inAttributeListRef,
 UInt32 inAttributeInfoIndex,
 tAttributeValueListRef *outAttributeValueListRef,
 tAttributeEntryPtr *outAttributeInfoPtr
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89) obtained by calling dsOpenDirNode (page
68) representing the node associated with the data in the buffer pointed to by inOutDataBuffer.

inOutDataBuffer
On input, a value of type tDataBufferPtr (page 87) pointing to a tDataBuffer (page 84) structure
containing data returned, for example, by a previous call to dsGetDirNodeInfo (page 56) or
dsGetRecordList (page 64).

inAttributeListRef
On input, a value of type tAttributeListRef (page 86) obtained by previously calling
dsGetDirNodeInfo (page 56) or dsGetRecordEntry (page 63).

inAttributeInfoIndex
On input, a value of type unsigned long. Set inAttributeInfoIndex to 1 to get the first attribute
entry. Set inAttributeInfoIndex to 2 to get the second attribute entry, and so on.

outAttributeValueListRef
On output, a pointer to a value of type tAttributeValueListRef (page 86). Pass the pointer to
outAttributeValueListRef to dsGetAttributeValue (page 53) to get the value of the attribute.

outAttributeInfoPtr
On output, a pointer to a value of type tAttributeEntryPtr (page 85) that points to a
tAttributeEntry (page 82) structure in which this function stores information about the attribute
specified by inAttributeInfoIndex. The information includes the number of attribute values, the
maximum size of the attribute’s value, and the attribute’s signature.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function uses an attribute list reference to extract an attribute entry from a data buffer previously obtained
by calling dsGetDirNodeInfo (page 56) or dsGetRecordEntry (page 63). The function stores the
information in the tAttributeEntry (page 82) structure pointed to by outAttributeInfoPtr.

To get the value(s) of the attribute, call dsGetAttributeValue (page 53) and pass to it the data buffer
pointed to by inOutDataBuffer and the attribute value list reference pointed to by
outAttributeValueListRef.

When you no longer need the attribute value list pointed to by outAttributeValueListRef, call
dsCloseAttributeValueList (page 20).

When you no longer need the outAttributeInfoPtr parameter, call dsDeallocAttributeEntry (page
35) to deallocate the tAttributeEntry (page 82) structure and its pointer.

Availability
Available in Mac OS X v10.0 and later.

52 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsGetAttributeValue
Gets the value of an attribute from a data buffer.

tDirStatus dsGetAttributeValue (
 tDirNodeReference inDirNodeReference,
 tDataBufferPtr inOutDataBuffer,
 UInt32 inAttributeValueIndex,
 tAttributeValueListRef inAttributeValueListRef,
 tAttributeValueEntryPtr *outAttributeValue
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89) obtained by calling dsOpenDirNode (page
68) that represents the node for which the search was conducted.

inOutDataBuffer
On input, a value of type tDataBufferPtr (page 87) pointing to a tDataBuffer (page 84) structure
that was previously filled in, for example, by calling dsDoAttributeValueSearch (page 37),
dsGetDirNodeInfo (page 56), or dsGetRecordList (page 64).

inAttributeValueIndex
On input, a value of type unsigned long. Set inAttributeValueIndex to 1 to get the first attribute
value. Set inAttributeValueIndex to 2 to get the second attribute value, and so on.

inAttributeValueListRef
On input, a value of type tAttributeValueListRef (page 86) obtained by calling
dsGetAttributeEntry (page 51) that represents a tAttributeValueEntry (page 83) structure
containing an attribute value ID and the value of the attribute represented by the attribute value ID.

outAttributeValue
On output, a pointer to a value of type tAttributeValueEntryPtr that points to an
application-allocated tAttributeValueEntry (page 83) structure containing the attribute value
ID and the value of the attribute.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function obtains the value of an attribute from a data buffer previously filled in, for example, by calling
dsDoAttributeValueSearch (page 37) or dsGetRecordList (page 64), and stores the value in a
tAttributeValueEntry (page 83) structure.

When you no longer need the attribute value list pointed to by inAttributeValueListRef, call
dsCloseAttributeValueList (page 20). When you no longer need outAttributeValue, call
dsDeallocAttributeValueEntry (page 35).

Availability
Available in Mac OS X v10.0 and later.

Functions 53
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsGetDataLength
Gets the length of data in a data list.

UInt32 dsGetDataLength (
 const tDataList *inDataList
);

Parameters
inDataListPtr

On input, a pointer to a value of type tDataList (page 84) whose length is to be obtained.

function result
The length of data in the specified data list or an error code. For a list of possible result codes, see
“Result Codes” (page 169).

Discussion
This utility function obtains the length in bytes of data in a data list.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsGetDirNodeCount
Gets the total number of registered nodes.

tDirStatus dsGetDirNodeCount (
 tDirReference inDirReference,
 UInt32 *outDirectoryNodeCount
);

Parameters
inDirReference

A value of type tDirReference (page 89) obtained by previously calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70).

outDirectoryNodeCount
On output, a pointer to a value of type unsigned long containing the total number of registered
nodes that are available to the Open Directory session represented by inDirReference.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

54 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Discussion
This function gets the total number of registered nodes that are available to the Open Directory session
represented by inDirReference. If you need to know whether directory names have changed even if the
count has not changed, see dsGetDirNodeCountWithInfo (page 55).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsGetDirNodeCountWithInfo
Gets the total number of registered nodes and a change token.

tDirStatus dsGetDirNodeCountWithInfo (
 tDirReference inDirReference,
 UInt32 *outDirectoryNodeCount,
 UInt32 *outDirectoryNodeChangeToken
);

Parameters
inDirReference

A value of type tDirReference (page 89) obtained by previously calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70).

outDirectoryNodeCount
On output, a pointer to a value of type unsigned long containing the total number of registered
nodes that are available to the Open Directory session represented by inDirReference.

outChangeToken
On output, a pointer to a value of type unsigned long containing the change token. Save the value
pointed to by outChangeToken and compare it with the next value received when you call this
function again to see if there has been a change.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function gets the total number of registered nodes that are available to the Open Directory session
represented by inDirReference, as well as a change token. To learn whether the node names have changed
even though the number of registered nodes remains the same, call this function and get another change
token. Compare the original and the new change token. The two change tokens will not be equal if there
has been a change in the name of a registered node or to the number of registered nodes. If the change
tokens are not equal, you may want to call dsGetDirNodeList (page 57) to get a new list of registered
nodes.

The change token is only guaranteed to be different if the node names have changed. Do not assume that
the new change token will be incremented or decremented relative to the value of the original change token.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

Functions 55
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

dsGetDirNodeInfo
Gets information about a node’s attribute types and attribute values.

tDirStatus dsGetDirNodeInfo (
 tDirNodeReference inDirNodeReference,
 tDataListPtr inDirNodeInfoTypeList,
 tDataBufferPtr inOutDataBuffer,
 dsBool inAttributeInfoOnly,
 UInt32 *outAttributeInfoCount,
 tAttributeListRef *outAttributeListRef,
 tContextData *inOutContinueData
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89), obtained by previously calling
dsOpenDirNode (page 68), that identifies the node for which information is to be obtained.

inDirNodeInfoTypeList
On input, a value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure
containing the attribute types for which information is requested. To get information about all attribute
types, pass a tDataList (page 84) structure whose list is kDSAttributesAll.

inOutDataBuffer
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to a tDataBuffer (page 84) structure. On output,
the tDataBuffer (page 84) structure contains the requested attribute type information for the
specified node. If the input value of inAttributeInfoOnly is FALSE, the data buffer also contains
attribute values. Call dsGetAttributeEntry (page 51) to extract attribute information from the
buffer. Then call dsGetAttributeValue (page 53) to get the value of an attribute.

inAttributeInfoOnly
On input, a value of type dsBool set to TRUE if you only want attribute information. To get the values
of the requested attributes as well as information about the attributes, set inAttributeInfoOnly
to FALSE.

outAttributeInfoCount
On output, a pointer to a value of type unsigned long containing the number of attribute types in
the data buffer pointed to by inOutDataBuffer.

outAttributeListRef
On input, a pointer to a value of type tAttributeListRef (page 86). When this function returns,
use the attribute list reference pointed to by outAttributeListRef to call
dsGetAttributeEntry (page 51) to get the attribute type information. Use information provided
by calling dsGetAttributeEntry to call dsGetAttributeValue (page 53) to get the value of an
attribute.

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if
inOutContinueData points to a value that is NULL, there is no more response data to get. If
inOutContinueData points to a value that is not NULL, there is more response data, which you can
get by calling this function again and passing the context data pointed to by inOutContinueData.
If inOutContinueData points to a value that is not NULL and you do not want to get the remaining
response data, you must call dsReleaseContinueData (page 72) to deallocate the memory
associated with inOutContinueData.

56 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function gets attribute type information about a node, which may include attribute types for storing
the authentication methods the node supports, the types of records the node contains,
kDS1AttrReadOnlyNode, which indicates whether the node supports write operations, kDSNAttrNodePath,
which indicates the node’s name, and kDSNAttrSubNodes, which indicates nodes that are children of this
node in the hierarchy.

You should call dsCloseAttributeList (page 20) when you no longer need the attribute list reference
pointed to by outAttributeListRef.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsGetDirNodeList
Gets the names of registered nodes.

tDirStatus dsGetDirNodeList (
 tDirReference inDirReference,
 tDataBufferPtr inOutDataBufferPtr,
 UInt32 *outDirNodeCount,
 tContextData *inOutContinueData
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by previously calling
dsOpenDirService (page 69) or dsOpenDirServiceProxy (page 70).

inOutDataBufferPtr
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to a tDataBuffer (page 84) structure. On output,
the tDataBuffer (page 84) structure contains the requested list of registered node names. Call
dsGetDirNodeName (page 58) to get a name from the buffer.

outDirNodeCount
On output, a pointer to a value of type unsigned long in which this function has stored the number
of registered directory names in the data buffer pointed to by inOutDataBufferPtr.

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if
inOutContinueData points to a value that is NULL, there is no more response data to get. If
inOutContinueData points to a value that is not NULL, there is more response data, which you can
get by calling this function again and passing the context data pointed to by inOutContinueData.
If inOutContinueData points to a value that is not NULL and you do not want to get the remaining
response data, you must call dsReleaseContinueData (page 72) to deallocate the memory
associated with inOutContinueData.

Functions 57
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. A result code of
eDSBufferTooSmall indicates you should allocate a larger buffer and call this function again. For
a list of possible result codes, see “Result Codes” (page 169).

Discussion
This function fills a data buffer with the names of registered nodes. Call dsGetDirNodeName (page 58) to
extract the names from the buffer.

On output, if inOutContinueData points to a value that is not NULL, there are more registered node names
to get even if outDirNodeCount points to a zero value. To get another buffer of registered node names,
call this function again and pass to it the context data pointed to by inOutContinueData.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsGetDirNodeName
Gets node names from a buffer.

tDirStatus dsGetDirNodeName (
 tDirReference inDirReference,
 tDataBufferPtr inOutDataBuffer,
 UInt32 inDirNodeIndex,
 tDataListPtr *inOutDataList
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by previously calling
dsOpenDirService (page 69) or dsOpenDirServiceProxy (page 70).

inOutDataBuffer
On input, a value of type tDataBufferPtr (page 87) that points to a tDataBuffer (page 84)
structure containing the results of calling dsFindDirNodes (page 49) or dsGetDirNodeList (page
57).

inDirNodeIndex
On input, a value of type unsigned long. Set inDirNodeIndex to 1 to get the first name. Set
inDirNodeIndex to 2 to get the second name, and so on.

inOutDataList
On input, a value of type tDataListPtr pointing to a value that is NULL or that can be overwritten.
On output, the data list contains the full pathname of the node specified by inDirNodeIndex. You
can reuse the data list for other purposes, but when you no longer need the data list, call
dsDataListDeallocate (page 27) to deallocate it. The data list is heap-based, you also need to
call free().

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

58 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Discussion
This function parses a buffer of node names obtained by calling dsFindDirNodes (page 49) or
dsGetDirNodeList (page 57).

The inOutDataBuffer parameter points to the data buffer that contains node names. The inDirNodeIndex
parameter specifies which node name to get, and the inOutDataList parameter specifies the address of
the application-defined tDataList (page 84) structure in which this function is to place the node name.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsGetPathFromList
Gets the path from a data list.

char * dsGetPathFromList (
 tDirReference inDirReference,
 const tDataList *inDataList,
 const char *inDelimiter
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by calling dsOpenDirService (page
69) or dsOpenDirServiceProxy (page 70) representing the Open Directory session associated
with the data list from which a path is to be obtained, or zero.

inDataList
On input, a pointer to a value of type tDataList (page 84) containing the path to get.

inDelimiter
On input, a pointer to a character string containing the character that delimits the components of
the path in the data list pointed to by the inDataList parameter.

function result
A pointer to a character string that contains the path that was obtained from the data list.

Discussion
This utility function gets the path from a data list. The path is in UTF-8 format.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsGetRecordAttributeInfo
Gets information about a record’s attribute.

Functions 59
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsGetRecordAttributeInfo (
 tRecordReference inRecordReference,
 tDataNodePtr inAttributeType,
 tAttributeEntryPtr *outAttributeInfoPtr
);

Parameters
inRecordReference

On input, a value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) representing the record for which the record’s attribute type information
is to be obtained.

inAttributeType
On input, a value of type tDataNodePtr (page 88) that points to a tDataBuffer (page 84) structure
allocated by calling dsDataBufferAllocate (page 25) containing the attribute type for which
information is to be obtained. Call dsGetRecordList (page 64) to find out the record’s attribute
types.

outAttributeInfoPtr
On output, a pointer to a value of type tAttributeEntryPtr (page 85) that points to an
application-allocated tAttributeEntry (page 82) structure containing the information about the
attribute pointed to by inAttributeType.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function gets information about a record’s attribute. The information consists of the number of attribute
values, data size, maximum value size, and signature.

When you no longer need the outAttributeInfoPtr parameter, call dsDeallocAttributeEntry (page
35) to deallocate the tAttributeValueEntry (page 83) structure and its pointer.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsGetRecordAttributeValueByID
Uses an attribute value ID to obtain the value of an attribute.

tDirStatus dsGetRecordAttributeValueByID (
 tRecordReference inRecordReference,
 tDataNodePtr inAttributeType,
 UInt32 inValueID,
 tAttributeValueEntryPtr *outEntryPtr
);

Parameters
inRecordReference

On input, a value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) representing the record that has an attribute whose value is to be obtained.

60 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inAttributeType
On input, a value of type tDataNodePtr (page 88) pointing to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the type of the attribute whose value is to be obtained.

inValueID
On input, a value of type unsigned long containing the attribute value ID of the value to get. Call
dsGetAttributeEntry (page 51) to get an attribute value ID.

outEntryPtr
On output, a pointer to a value of type tAttributeValueEntryPtr (page 86) that points to a
tAttributeValueEntry (page 83) structure allocated by calling
dsAllocAttributeValueEntry (page 14) containing the requested attribute value.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function uses an attribute value ID to obtain the value of an attribute for the record represented by
inRecordReference.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsGetRecordAttributeValueByIndex
Uses an index to get the value of an attribute.

tDirStatus dsGetRecordAttributeValueByIndex (
 tRecordReference inRecordReference,
 tDataNodePtr inAttributeType,
 UInt32 inValueIndex,
 tAttributeValueEntryPtr *outEntryPtr
);

Parameters
inRecordReference

On input, a value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) representing the record that has an attribute whose value is to be obtained.

inAttributeType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the type of the attribute whose value is to be obtained.

inValueIndex
On input, a value of type unsigned long that specifies the index of the attribute value that is to be
obtained. Call dsGetRecordAttributeInfo (page 59) to find out how many values the attribute
has. Set inValueID to 1 to get the first value; set inValueID to 2 to get the second value, and so on.

outEntryPtr
On output, a value of type tAttributeValueEntryPtr that points to a
tAttributeValueEntry (page 83) structure containing the requested attribute value.

Functions 61
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function uses an index to obtain the value of an attribute for the record represented by
inRecordReference.

To determine whether an attribute can have multiple values, call dsGetRecordAttributeInfo (page 59),
which returns a value that points to the attribute’s value count.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsGetRecordAttributeValueByValue
Verifies the existence of an attribute value within a record.

tDirStatus dsGetRecordAttributeValueByValue (
 tRecordReference inRecordReference,
 tDataNodePtr inAttributeType,
 tDataNodePtr inAttributeValue,
 tAttributeValueEntryPtr *outEntryPtr
);

Parameters
inRecordReference

On input, a value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) representing the record that has an attribute whose value is to be obtained.

inAttributeType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the type of the attribute whose value is to be obtained.

inValueValue
On input, a value of type tDataNodePtr (page 88) that specifies the value that is to be verified.

outEntryPtr
On output, a value of type tAttributeValueEntryPtr that points to a
tAttributeValueEntry (page 83) structure containing the attribute value.

function result
A value of type tDirStatus indicating that the value was obtained (eDSNoErr); any value other
than eDSNoErr indicates failure. For a list of possible result codes, see “Result Codes” (page 169).

Discussion
This function verifies the existence the specified attribute value for the record specified by
inRecordReference. It also returns the value’s ID, which is useful if you want to remove this value by calling
dsRemoveAttributeValue (page 73) or change it by calling dsSetAttributeValue (page 74).

Version Notes
Introduced in Mac OS X v10.4.

62 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Availability
Available in Mac OS X v10.4 and later.

Declared In
DirServices.h

dsGetRecordEntry
Gets the next record from a data buffer.

tDirStatus dsGetRecordEntry (
 tDirNodeReference inDirNodeReference,
 tDataBufferPtr inOutDataBuffer,
 UInt32 inRecordEntryIndex,
 tAttributeListRef *outAttributeListRef,
 tRecordEntryPtr *outRecordEntryPtr
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89), obtained by calling dsOpenDirNode (page
68), that identifies the node in which the record specified by inRecordEntryIndex resides.

inOutDataBuffer
On input, a value of type tDataBufferPtr (page 87) that points to a tDataBuffer (page 84)
structure containing data obtained by previously calling dsGetRecordList (page 64),
dsDoAttributeValueSearch (page 37), dsDoAttributeValueSearchWithData (page 40),
dsDoMultipleAttributeValueSearch (page 45), or
dsDoMultipleAttributeValueSearchWithData (page 47).

inRecordEntryIndex
On input, a value of type unsigned long that specifies the next record to get. Set
inRecordEntryIndex to 1 to get the first record. Set inRecordEntryIndex to 2 to get the second
record, and so on.

outAttributeListRef
On input, a pointer to a value of type tAttributeListRef (page 86). On output, to get information
about the record’s attributes, pass the value pointed to by outAttributeListRef as a parameter
when calling dsGetAttributeEntry (page 51).

outRecordEntryPtr
On output, outRecordEntryPtr points to a tRecordEntry (page 85) structure that contains the
record entry specified by the inRecordEntryIndex. When you no longer need the record entry
structure, call dsDeallocRecordEntry (page 36).

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function gets the name, type and number of attribute types for a record from the data buffer pointed
to by inOutDataBuffer and puts it in the tRecordEntry (page 85) structure pointed to by
outRecordEntryPtr.

Functions 63
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

This function also returns a pointer to an attribute list reference that can be used to get information about
a record’s attributes by calling dsGetAttributeEntry (page 51). Calling dsGetAttributeEntry returns
an attribute value list reference that can be used to call dsGetAttributeValue (page 53) to get the value
of an attribute.

You should call dsCloseAttributeList (page 20) when you no longer need the attribute list reference
pointed to by outAttributeListRef. You should call dsDeallocRecordEntry (page 36) when you no
longer need the record entry structure pointed to by outRecordEntryPtr.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsGetRecordList
Gets a list of records and puts it in a data buffer.

tDirStatus dsGetRecordList (
 tDirNodeReference inDirNodeReference,
 tDataBufferPtr inOutDataBuffer,
 tDataListPtr inRecordNameList,
 tDirPatternMatch inPatternMatchType,
 tDataListPtr inRecordTypeList,
 tDataListPtr inAttributeTypeList,
 dsBool inAttributeInfoOnly,
 UInt32 *inOutRecordEntryCount,
 tContextData *inOutContinueData
);

Parameters
inDirNodeReference

On input, a value of type tDirNodeReference (page 89) obtained by calling dsOpenDirNode (page
68).

inOutDataBuffer
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) that points to a tDataBuffer (page 84) structure into which
this function is to place the requested list of records. If inOutRecordEntryCount points to a positive
value greater than zero when this function returns, parse the records in the buffer pointed to by
inOutDataBuffer by calling dsGetRecordEntry (page 63).

inRecordNameList
On input, a value of type tDataListPtr (page 87) specifying the record names to get.

inPatternMatchType
On input, a value of type tDirPatternMatch specifying a pattern type that controls the way in
which the pattern specified by inRecordNameList is compared with record names. See Pattern
Matching Constants (page 137) for possible values. The pattern type may also be defined by the Open
Directory plug-in that handles the directory service represented by inDirNodeReference. The
inPatternMatchType parameter is ignored if inRecordNameList is set to get all records.

64 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inRecordTypeList
On input, a value of type tDataListPtr pointing to an tDataList (page 84) structure containing
the types of records to get. One way to allocate the data list is to call dsDataListAllocate (page
26).

inAttributeTypeList
On input, a value of type tDataListPtr pointing to a tDataList (page 84) structure that contains
the attribute types of the records that are to be obtained. If you want all attribute types, create the
data list using kDSAttributesAll. To get all standard attribute types, create the data list using
kDSAttributesStandardAll. To get all native attribute types, create the data list using
kDSAttributesNativeAll.

inAttributeInfoOnly
On input, a value of type dsBool. Set inAttributeInfoOnly to TRUE if you only want attribute
type information. To get attribute type information as well as attribute values, set
inAttributeInfoOnly to FALSE.

inOutRecordEntryCount
On input, a pointer to a value of type unsigned long that specifies the total number of records to
get across what may be multiple calls to this function in order to get the complete list of records, or
zero if you want to get all matching records. On output, inOutRecordEntryCount points to the
number of records this function has stored in the data buffer pointed to by inOutDataBufferPtr.
Once you start a series of dsGetRecordList calls, inOutMatchRecordCount is ignored as an input
parameter.

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if the
value pointed to by inOutContinueData is NULL, there are no more records to get. On output, if
the value pointed to by inOutContinueData is not NULL, fill the data buffer pointed to by
inOutDataBuffer with the next records by calling this function again and passing the context data
pointed to by inOutContinueData. If you don’t want to get the remaining records, you must call
dsReleaseContinueData (page 72) to deallocate the memory pointed to by inOutContinueData.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. An result code of
eDSBufferTooSmall occurs if the buffer is too small to fit the first record to be returned. In this case,
call this function again after allocating a larger buffer. For a list of other possible result codes, see
“Result Codes” (page 169).

Discussion
This function stores in the data buffer pointed to by inOutDataBuffer a list of records having the specified
data types and values. Call dsGetRecordEntry (page 63) to parse the records in the buffer.

Set inOutRecordEntryCount to point to a positive integer value that represents the number of records
that are to be returned. You cannot change the value pointed to by inOutRecordEntryCount if you call
this function with inOutContinueData pointing to context data returned by a previous call to this function.

If there are too many records to fit in the data buffer pointed to by inOutDataBuffer, inOutContinueData
points to a non-null value when this function returns. To get more records, call this function again, passing
the pointer to the inOutContinueData parameter that was returned by the previous call to this function.
To get all records, continue calling this function until inOutContinueData points to a null value.

If the value pointed to by inOutContinueData is not NULL and you do not want to get more records, call
dsReleaseContinueData (page 72) to release the memory associated with inOutContinueData.

Availability
Available in Mac OS X v10.0 and later.

Functions 65
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsGetRecordNameFromEntry
Gets the name of a record from a record entry structure.

tDirStatus dsGetRecordNameFromEntry (
 tRecordEntryPtr inRecEntryPtr,
 char **outRecName
);

Parameters
inRecEntryPtr

On input, a value of type tRecordEntryPtr (page 89) that points to the tRecordEntry (page 85)
structure that contains the name that is to be obtained.

outRecName
On output, a pointer to a value that points to a character string containing the record’s name in UTF-8
format.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function gets the name of the record in a record entry structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsGetRecordReferenceInfo
Gets a record’s name and type and the number of attributes the record has.

tDirStatus dsGetRecordReferenceInfo (
 tRecordReference inRecordReference,
 tRecordEntryPtr *outRecordInfo
);

Parameters
inRecordReference

On input, value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) that represents the record reference information is to be obtained.

outRecordInfo
On output, a pointer to a value of type tRecordEntryPtr (page 89) that points to a
tRecordEntry (page 85) structure containing the record information for the specified record. Call
dsDeallocRecordEntry (page 36) when you no longer need the record entry structure.

66 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function gets information about the record represented by inRecordReference and stores it in the
tRecordEntry (page 85) structure pointed to by outRecordInfo.

The information includes the number of attributes the record has and the name and type of the record.

You should call dsDeallocRecordEntry (page 36) when you no longer need the record entry structure
pointed to by outRecordInfo.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsGetRecordTypeFromEntry
Gets the type of a record from a record entry structure.

tDirStatus dsGetRecordTypeFromEntry (
 tRecordEntryPtr inRecEntryPtr,
 char **outRecType
);

Parameters
inRecEntryPtr

On input, a value of type tRecordEntryPtr (page 89) that points to the tRecordEntry (page 85)
structure that contains the type that is to be obtained.

outRecType
On output, a pointer to a value that points to a character string containing the record’s type.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This utility function gets the type of the record in a record entry structure.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesUtils.h

dsIsDirServiceRunning
Checks to see if Open Directory is running.

Functions 67
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsIsDirServiceRunning

Parameters
function result

A value of type tDirStatus indicating that Open Directory is running (eDSNoErr) or that Open
Directory is not running (eServerNotRunning).

Discussion
This function checks to see if Open Directory is running.

Prior to Mac OS X 10.2, Open Directory did not start until when an application called dsOpenDirService (page
69). With Mac OS X 10.2, Open Directory starts up when the system starts up and is always running.

Applications that run on Mac OS X 10.0 and Mac OS X 10.1 should call this function before calling
dsOpenDirService (page 69). If Open Directory is not running, you can display a progress indicator to
assure the user that your application is still running while Open Directory starts up, and then call
dsOpenDirService.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsOpenDirNode
Opens a session with a node.

tDirStatus dsOpenDirNode (
 tDirReference inDirReference,
 tDataListPtr inDirNodeName,
 tDirNodeReference *outDirNodeReference
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) obtained by previously calling
dsOpenDirService (page 69) or dsOpenDirServiceProxy (page 70).

inDirNodeName
On input, a value of type tDataListPtr that points to a tDataList (page 84) structure containing
the name of the node to open. You can get the name of the node by calling dsGetDirNodeList (page
57) or by calling, for example, dsBuildListFromStrings (page 18) to construct the name yourself.

outDirNodeReference
On input, a pointer to a value of type tDirNodeReference (page 89). On output, the value pointed
to by outDirNodeReference is a node reference that represents the session context for the contents
of the opened node. Provide it as a parameter to Open Directory functions that manipulate nodes,
such as dsGetDirNodeInfo (page 56), dsDoDirNodeAuth (page 41), dsGetRecordList (page
64), dsGetRecordEntry (page 63), dsOpenRecord (page 71), and dsGetAttributeEntry (page
51).

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

68 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Discussion
This function opens a session with the node whose name is specified in the tDataList (page 84) structure
pointed to by the inDirNodeNameparameter. Opening a session with a node allows you to perform operations
on the opened node, such as creating, listing, and deleting records.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsOpenDirService
Opens an Open Directory session.

tDirStatus dsOpenDirService (
 tDirReference *outDirReference
);

Parameters
outDirReference

On input, a pointer to a value of type tDirReference (page 89). On output, the value pointed to
by outDirReference identifies this session and is passed as a parameter to many Open Directory
functions.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
When this function returns, use the value pointed to by outDirReference when calling Open Directory
functions that require an Open Directory reference as a parameter.

With Mac OS X 10.2, Open Directory starts up when the system starts up and is always running. Prior to Mac
OS X 10.2, the DirectoryService daemon was not started until an application called this function for the first
time. Applications that run on Mac OS X 10.0 and Mac OS X 10.1 should call dsIsDirServiceRunning (page
67) to learn whether Open Directory is running. If it’s not running, you can display a progress indicator while
Open Directory starts up and then call this function.

Special Considerations

You can establish multiple Open Directory sessions by calling this function multiple times.

Availability
Available in Mac OS X v10.0 and later.

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

Functions 69
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

dsOpenDirServiceProxy
Opens a remote Open Directory session.

tDirStatus dsOpenDirServiceProxy (
 tDirReference *outDirRef,
 const char *inIPAddress,
 UInt32 inIPPort,
 tDataNodePtr inAuthMethod,
 tDataBufferPtr inAuthStepData,
 tDataBufferPtr outAuthStepDataResponse,
 tContextData *ioContinueData
);

Parameters
outDirRef

On input, a pointer to a value of type tDirReference (page 89). On output, the value pointed to
by outDirReference identifies this session and is passed as a parameter to many Open Directory
functions.

inIPAddress
On input, a pointer to a null-terminated string contain the fully qualified domain name or the IP
address in dotted decimal format of the Open Directory machine with which a TCP/IP connection is
to be established.

inIPPort
On input, a value of type unsigned long containing the port number on which the connection is
to be made, or zero which allows the default port number to be used. The default port number is
625.

inAuthMethod
On input, a value of type tDataNodePtr (page 88) pointing to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) containing the authentication method to use. You can expect these authentication methods to
be supported by any plug-in that handles authentication: kDSStdAuthNodeNativeNoClearText
and kDSStdAuthNodeNativeClearTextOK. For other possible values, see Authentication
Constants (page 129).

inAuthStepData
On input, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) pointing to a tDataBuffer (page 84) structure that contains
the data necessary for this step in the authentication process. For the first step in the authentication
process, inAuthStepData typically consists of four bytes specifying the length of a username,
followed by the user name in UTF-8 encoding, followed by four bytes specifying the length of the
password, followed by the password in UTF-8 encoding.

outAuthStepDataResponse
On output, a value of type tDataBufferPtr (page 87) created by calling
dsDataBufferAllocate (page 25) pointing to a tDataBuffer (page 84) structure that contains
the authentication response.

inOutContinueData
On input, a pointer to a value of type tContextData (page 87) and set to NULL. On output, if the
value pointed to by inOutContinueData is NULL, there are no more steps in the authentication
process. If inOutContinueData is not NULL on output, there are more steps to complete. Call this
function again and pass to it the value pointed to by inOutContinueData. Call
dsReleaseContinueData (page 72) if the value pointed to by inOutContinueData is not NULL
and you do not want to complete the authentication process.

70 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function opens a remote Open Directory session on another machine running Mac OS X 10.2 or later.
When the authentication process completes successfully, this function returns an Open Directory reference
that can be used for all subsequent calls to Open Directory functions, such as dsOpenDirNode (page 68)
and dsFindDirNodes (page 49), on the remote machine. These calls will be dispatched automatically over
the TCP connection to the remote DirectoryService daemon. Any calls using child references obtained by
calling functions such as dsFindDirNodes will also be sent to the remote DirectoryService daemon.

Special Considerations

You can establish multiple remote Open Directory sessions by calling this function multiple times.

Version Notes
Available in Mac OS X v10.2 and later.

Availability
Available in Mac OS X v10.2 and later.

Declared In
DirServices.h

dsOpenRecord
Opens a record.

tDirStatus dsOpenRecord (
 tDirNodeReference inDirNodeReference,
 tDataNodePtr inRecordType,
 tDataNodePtr inRecordName,
 tRecordReference *outRecordReference
);

Parameters
inDirNodeReference

On input, a node reference obtained by calling dsOpenDirNode (page 68).

inRecordType
On input, a value of type tDataNodePtr (page 88) that points to a tDataBuffer (page 84) structure
allocated by calling dsDataBufferAllocate (page 25) containing the type of the record to open.
For possible values, see Standard Record Types (page 143).

inRecordName
On input, a value of type tDataNodePtr (page 88) that points to a tDataBuffer (page 84) structure
allocated by calling dsDataBufferAllocate (page 25) containing the name in UTF-8 format of the
record to open.

outRecordReference
On output, a pointer to a value of type tRecordReference (page 89) that you can pass to other Open
Directory functions that operate on records, such as dsGetRecordReferenceInfo (page 66),
dsFlushRecord (page 51), dsSetRecordName (page 76), and dsCloseRecord (page 22).

Functions 71
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function opens a record and returns in the value pointed to by the outRecordReference parameter
a record reference that you can use in subsequent calls to Open Directory functions that manipulate records.

A record must be open before you can perform operations on the record, such as setting its name, adding
attributes, setting attribute values, and deleting the record.

To close an open record, call dsCloseRecord (page 22).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsReleaseContinueData
Releases memory allocated for continuation data.

tDirStatus dsReleaseContinueData (
 tDirReference inDirReference,
 tContextData inContinueData
);

Parameters
inDirReference

On input, a value of type tDirReference (page 89) if the inContinueData parameter was generated
by, for example, dsGetRecordList (page 64), dsGetDirNodeInfo (page 56),
dsDoAttributeValueSearch (page 37), or dsDoAttributeValueSearchWithData (page 40).
This parameter is a value of type tDirReference (page 89) if the inContinueData parameter was
generated by, for example, dsGetDirNodeList (page 57) or dsFindDirNodes (page 49).

inContinueData
On input, a value of type tContextData (page 87) that is to be released.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function releases the memory allocated for continuation data. Continuation data is returned when any
Open Directory function cannot return all of the requested information in one call, such as
dsDoDirNodeAuth (page 41), dsFindDirNodes (page 49), dsGetDirNodeInfo (page 56),
dsGetDirNodeList (page 57), dsGetRecordList (page 64), dsDoAttributeValueSearch (page 37),
or dsDoAttributeValueSearchWithData (page 40).

If your application does not call again the function that returned the continuation data and provide to it the
continuation data, your application should call dsReleaseContinueData (page 72) to free the memory
allocated to the continuation data.

Availability
Available in Mac OS X v10.0 and later.

72 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Related Sample Code
NetworkAuthentication

Declared In
DirServices.h

dsRemoveAttribute
Removes an attribute from a record.

tDirStatus dsRemoveAttribute (
 tRecordReference inRecordReference,
 tDataNodePtr inAttribute
);

Parameters
inRecordReference

On input, a value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71).

inAttribute
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the name of the attribute that is to be removed.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function removes the specified attribute from the specified record. Any attribute value list references,
attribute value entry structures, and attribute entry structures that have been created for this attribute are
still valid because they use a buffer that has already been filled with data. Calling
dsGetRecordAttributeValueByID (page 60), dsGetRecordAttributeValueByIndex (page 61), or
dsGetRecordAttributeValueByValue (page 62) after the attribute has been removed generates an error
because the attribute no longer exists.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsRemoveAttributeValue
Removes an attribute value.

Functions 73
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirStatus dsRemoveAttributeValue (
 tRecordReference inRecordReference,
 tDataNodePtr inAttributeType,
 UInt32 inAttributeValueID
);

Parameters
inRecordReference

On input, a value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) that represents the record having an attribute whose value is to be removed.

inAttributeType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the type of the attribute whose value is to be removed.

inAttributeValueID
On input, a value of type unsigned long that specifies the attribute value ID of the attribute whose
value is to be removed. Call dsGetAttributeValue (page 53) to get the attribute value ID.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function removes the value of the attribute that has the type specified by the data node pointed to by
inAttributeType and the attribute value ID specified by inAttributeValueID for the record represented
by inRecordReference. Any attribute value list references, attribute value entry structures, and attribute
entry structures that have been created for the removed attribute are still valid because they manage offsets
into a buffer that already contains data. Calling dsGetRecordAttributeValueByID (page 60),
dsGetRecordAttributeValueByIndex (page 61), or dsGetRecordAttributeValueByValue (page
62) after the attribute has been removed generates an error because the attribute no longer exists.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsSetAttributeValue
Sets the value of an attribute.

tDirStatus dsSetAttributeValue (
 tRecordReference inRecordReference,
 tDataNodePtr inAttributeType,
 tAttributeValueEntryPtr inAttributeValuePtr
);

Parameters
inRecordReference

On input, value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) representing the record that has an attribute whose value is to be set.

74 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inAttributeType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the type of the attribute whose value is to be set.

inAttributeValuePtr
On input, a value of type tAttributeValueEntryPtr (page 86) that points to a
tAttributeValueEntry (page 83) structure created by calling
dsAllocAttributeValueEntry (page 14) that contains the value that is to be set and its attribute
value ID. The attribute value ID is the ID of an existing value of this attribute for the record specified
by inRecordReference obtained by calling dsGetRecordAttributeValueByIndex (page 61),
dsGetRecordAttributeValueByValue (page 62), or dsGetAttributeValue (page 53).

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function uses an attribute value ID to replace an existing attribute value with a new value. If the attribute
is a multi-value attribute, this function sets only the value of the attribute specified by the attribute value ID
without affecting any other values. Unlike dsSetAttributeValues, this function does not create an attribute
if it does not already exist.

The inAttributeType parameter points to a data node that specifies the type of the attribute whose value
is to be set, and inAttributeValuePtr points to an attribute entry structure that contains the value that
is to be set and the value’s attribute value ID.

When you no longer needinAttributeValuePtr, you should calldsDeallocAttributeValueEntry (page
35) to release the memory associated with it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsSetAttributeValues
Sets multiple values for an attribute.

tDirStatus dsSetAttributeValues (
 tRecordReference inRecordReference,
 tDataNodePtr inAttributeType,
 tDataListPtr inAttributeValuesPtr
);

Parameters
inRecordReference

On input, value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) representing the record whose values are to be set.

inAttributeType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) that contains the type of the attribute whose values are to be set.

Functions 75
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

inAttributeValuesPtr
On input, a value of type tDataListPtr (page 87) that points to the list of values that are to be set.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function sets multiple values for the attribute specified by inAttributeType for the record specified
by inRecordReference. This function replaces all of the values of the attribute with a new list of values. If
the attribute does not exist, it is created with the specified list of values.

The inAttributeType parameter points to a data node that specifies the type of the attribute whose values
are to be set, and inAttributeValuesPtr points to a list of values that are to be set.

You should call dsDeallocAttributeValueEntry (page 35) to release the memory associated with
inAttributeValuesPtr when you no longer need it.

When you no longer need it, call dsDataListDeallocate (page 27) to release the memory associated with
inAttributeValuesPtr. If inAttributeValuesPtr is heap-based, you also need to call free().

Version Notes
Introduced in Mac OS X v10.4.

Availability
Available in Mac OS X v10.4 and later.

Declared In
DirServices.h

dsSetRecordName
Sets the name of a record.

tDirStatus dsSetRecordName (
 tRecordReference inRecordReference,
 tDataNodePtr inNewRecordName
);

Parameters
inRecordReference

On input, value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) or dsCreateRecordAndOpen (page 24) that represents the record whose
name is to be set.

inNewRecordName
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) containing the record name in UTF-8 format that is to be set.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This function sets the name of a record.

76 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

dsSetRecordType
Sets the type of a record.

tDirStatus dsSetRecordType (
 tRecordReference inRecordReference,
 tDataNodePtr inNewRecordType
);

Parameters
inRecordReference

On input, value of type tRecordReference (page 89) obtained by previously calling
dsOpenRecord (page 71) that represents the record whose type is to be set.

inNewRecordType
On input, a value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure
allocated by calling dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page
32) containing the record type that is to be set.

function result
A value of type tDirStatus indicating success (eDSNoErr) or an error. For a list of possible result
codes, see “Result Codes” (page 169).

Discussion
This deprecated function sets a record’s type. For record type constants, see Pattern Matching Constants (page
137). Not all plug-ins support setting a record’s type.

Version Notes
Deprecated in Mac OS X v10.2.

Availability
Available in Mac OS X v10.0 and later.
Deprecated in Mac OS X v10.2.

Declared In
DirServices.h

dsVerifyDirRefNum
Verifies that a tDirReference is valid.

tDirStatus dsVerifyDirRefNum (
 tDirReference inDirReference
);

Parameters
inRecordReference

On input, the tDirReference that is to be verified.

Functions 77
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

function result
A value of type tDirStatus indicating that the tDirReference is valid (eDSNoErr) or an error.
For a list of possible result codes, see “Result Codes” (page 169).

Discussion
This function verifies that a tDirReference is valid.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServices.h

Initialize
Initializes the plug-in.

ComponentResult ADD_IMAGECODEC_BASENAME() Initialize

Parameters
return result

Value of type long. If the Initialize routine completes successfully, it should return eDSNoErr. If
it encounters an error, it should return ePlugInInitError.

Discussion
The DirectoryService daemon calls a plug-in’s Initialize entry point so that the plug-in can initialize and
prepare itself to run. The plug-in might, for example, open network ports and any files it requires.

An Open Directory plug-in’s Initialize routine is called only once after all Open Directory plug-ins that
can be loaded are loaded. If the plug-in cannot initialize itself and returns ePlugInInitError, the plug-in
remains in the “failed to init” state.

Availability
Available in Mac OS X v10.0 and later.

Declared In
ImageCodec.k.h

PeriodicTask
Performs a periodic task.

long PeriodicTask (void);

Parameters
return result

Value of type long. If the PeriodicTask routine completes successfully, it should return eDSNoErr.
If it encounters an error, it should return ePlugInPeriodicTaskError.

Discussion
The DirectoryService daemon calls a plug-in’s PeriodicTask entry point every two minutes. The plug-in can
use its PeriodicTask routine to perform tasks that need to be performed on a recurring basis. If a plug-in
has no tasks for its PeriodicTask routine to perform, the PeriodicTask routine should immediately return
a result code of eDSNoErr.

78 Functions
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Plug-ins that do not implement their own thread management may want to use the PeriodicTask routine
to perform a task on a regular basis.

For another way of setting timers, see sHeader (page 121).

ProcessRequest
Processes requests.

long ProcessRequest (void *inData);

Parameters
inData

Pointer to an arbitrary value containing the request that is to be processed.

return result
Value of type long. If the ProcessRequest routine completes successfully, it should return eDSNoErr.
If it encounters an error, it should return an appropriate result code as described in “Result Codes” (page
169).

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point when Open Directory client
applications make requests for directory service. The inData parameter points to the request, which consists
of a structure whose first byte always identifies the type of request. The remaining fields of the structure vary
depending on the request type.

SetPluginState
Sets the plug-in’s state.

long SetPluginState (unsigned long inNewState);

Parameters
inNewState

A value of type unsigned long that describes the plug-in’s new state. See the ePluginState
Constants (page 168) enumeration for appropriate values.

return result
Value of type long. If the SetPluginState routine completes successfully, it should return eDSNoErr.
If it encounters an error, it should return an appropriate result code as described in “Result Codes” (page
169).

Discussion
The DirectoryService daemon calls a plug-in’s SetPluginState entry point to inform the plug-in that its
state has changed to the state specified by the inNewState parameter.

Shutdown
Prepares the plug-in for shut down.

Functions 79
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

long Shutdown (void);

Parameters
return result

Value of type long. If the Shutdown routine completes successfully, it should return eDSNoErr. If it
encounters an error, it should return an appropriate result code as described in “Result Codes” (page
169).

Discussion
The DirectoryService daemon calls a plug-in’s Shutdown entry point so that the plug-in can prepare itself
for shut down. The plug-in should close any files that it opened, close network connections that it opened,
and deallocate memory that it allocated for its use while it was running.

Validate
Validates the plug-in.

ComponentResult ADD_GRAPHICSIMPORT_BASENAME() Validate

Parameters
inSignature

Value of type unsigned long that uniquely identifies the plug-in.

return result
Value of type long. If the Validate routine completes successfully, it should return eDSNoErr. If it
encounters an error, it should return an appropriate result code as described in “Result Codes” (page
169).

Discussion
The DirectoryService daemon calls a plug-in’s Validate routine after the plug-in loads in order to pass to the
plug-in a unique signature. The plug-in uses the signature to identify itself when it calls any of the Open
Directory callback routines, which are described in the section PeriodicTask (page 78).

Availability
Available in Mac OS X v10.1 and later.

Declared In
ImageCompression.k.h

Callbacks

This section describes Open Directory callback routines that Open Directory plug-ins can call.

DSDebugLog
Writes information in the log file.

80 Callbacks
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

sInt32 DSDebugLog (
 const char *inFormat,
 va_list inArgs);

Parameters
inFormat

Pointer to a character array that specifies the format that is to be used to write the data. For additional
information, see sprintf(3).

inArgs
Value of type va_list that specifies the values that are to be written in the format specified by
inFormat.

return result
Value of type sInt32. If the DSDebugLog callback routine completes successfully, it returns eDSNoErr.
If the DSDebugLog callback routine cannot complete successfully, it returns an appropriate result
code as described in “Result Codes” (page 169).

Discussion
The DSDebugLog callback routine writes the data specified by inArgs using the format specified by inFormat
in the Open Directory log file, /Library/Logs/DirectoryService/DirectoryService.debug.log.

A wrapper function, CShared:LogIt, is also available writing to the log file. See the sample code for an
example of its use.

DSRegisterNode
Registers a node.

long DSRegisterNode (
 unsigned long inSignature,
 tDataList *inNode,
 eDirNodeType inNodeType);

Parameters
inSignature

Value of type unsigned long obtained by the plug-in when its Validate (page 80) routine was
called and that uniquely identifies the plug-in.

inNode
Pointer to a value of type tDataList (page 84) that specifies the name of the node that is to be
registered.

inNodeType
Value of type eDirNodeType that specifies the type of the node that is to be registered. See the
Discussion section below for possible values.

return result
Value of type unsigned long. If the DSRegisterNode callback routine completes successfully, it
returns eDSNoErr. If the DSRegisterNode callback routine cannot complete successfully (for example,
if the specified node is already registered or if inNode contains a node name that has invalid
characters), it returns an appropriate result code as described in “Result Codes” (page 169).

Discussion
The DSRegisterNode callback routine registers the specified node.

The eDirNodeType enumeration defines values for the inNodeType parameter:

Callbacks 81
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef enum { kUnknownNodeType= 0x00000000, kDirNodeType = 0x00000001,
 kLocalNodeType = 0x00000002 } eDirNodeType;

The local node (kLocalNodeType) is queried by default in response to an Open Directory request and is
always the first node that is queried. Only one node can be registered as the local node at any one time. A
directory node (kDirNodeType) is any other node that is to be registered for Open Directory.

Registrations are valid for the period of time that Open Directory is running. If Open Directory stops and is
started again, the node must be registered again.

The plug-in is responsible for keeping the list of registered nodes accurate. It can use the PeriodicTask (page
78) entry point to update the list on a regular basis.

DSUnregisterNode
Unregisters a node.

long DSUnregisterNode (
 unsigned long inSignature,
 tDataList *inNode);

Parameters
inSignature

Value of type unsigned long obtained by the plug-in when its Validate (page 80) routine was
called and that uniquely identifies the plug-in.

inNode
Pointer to a value of type tDataList (page 84) that specifies the name of the node that is to be
unregistered.

result
Value of type unsigned long. If the DSUnregisterNode callback routine completes successfully,
it returns eDSNoErr. If the DSUnregisterNode callback routine cannot complete successfully, it
returns an error.

Discussion
The DSUnregisterNode callback routine unregisters the specified node.

Data Types

Open Directory Structures

This section describes structures used by the Open Directory client.

tAttributeEntry
A structure used to store information about an attribute.

82 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef struct
{
 unsigned long fReserved1;
 tAccessControlEntry fReserved2;
 unsigned long fAttributeValueCount;
 unsigned long fAttributeDataSize;
 unsigned long fAttributeValueMaxSize;
 tDataNode fAttributeSignature;
} tAttributeEntry;
typedef tAttributeEntry *tAttributeEntryPtr;

Fields
fReserved1

Reserved.

fReserved2
Reserved.

fAttributeValueCount
Number of values associated with this attribute.

fAttributeDataSize
Total byte count of all attribute values.

fAttributeValueMaxSize
Maximum size of a value of this attribute type.

fAttributeSignature
Byte sequence that uniquely represents this attribute type. The byte sequence is typically a collection
of Unicode characters.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tAttributeValueEntry
A structure used to get and set the value of an attribute by attribute value ID.

typedef struct
{
 unsigned long fAttributeValueID;
 tDataNode fAttributeValueData;
} tAttributeValueEntry;

Fields
fAttributeValueID

Unique ID for this attribute value.

fAttributeValueData
Value of type tDataNode (page 88) containing the value of this attribute.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

Data Types 83
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDataBuffer
A structure that provides a standard format for passing information between Open Directory and applications.

typedef struct
{
 unsigned long fBufferSize;
 unsigned long fBufferLength;
 char fBufferData[1];
} tDataBuffer;

Fields
fBufferSize

Number of bytes allocated for this structure. The value of fBufferSize should be set when
tDataBuffer is created.

fBufferLength
Number of meaningful bytes in fBufferData. You should call dsDataNodeSetLength (page 34)
to adjust this value each time you change the value of the fBufferData field.

fBufferData
Array of characters.

Discussion
A tDataBuffer structure is typically used to exchange strings, node names, and attribute types. Call
dsDataBufferAllocate (page 25) to allocate a data buffer. Call dsDataBufferDeAllocate (page 25)
to release the memory associated with a data buffer when it is no longer needed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tDataList
An ordered list of tDataNode structures.

typedef struct
{
 unsigned long fDataNodeCount;
 tDataNodePtr fDataListHead;
} tDataList;

Fields
fDataNodeCount

Number of data nodes in this data list structure.

fDataListHead
First pointer to a data node in this data list structure.

Discussion
This structure is used to represent lists of items, such as nodes, full pathnames, attribute type lists, and lists
of record names. All items in a data list must be in UTF-8 format.

Do not manipulate tDataList structures directly. Instead, use the data list utility functions such as
dsBuildFromPath (page 15), dsDataListAllocate (page 26), dsDataListGetNodeAlloc (page 28),
dsAppendStringToListAlloc (page 14), and dsDataListDeallocate (page 27).

84 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

See also tDataListPtr (page 87).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tRecordEntry
A structure used to store information about a record, including its name, type, and number of attributes.

typedef struct
{
 unsigned long fReserved1;
 tAccessControlEntry fReserved2;
 unsigned long fRecordAttributeCount;
 tDataNode fRecordNameAndType;
} tRecordEntry;

Fields
fReserved1

Reserved.

fReserved2
Reserved.

fRecordAttributeCount
Number of attribute types.

fRecordNameAndType
Value of type tDataNode (page 88) containing the record’s primary name in UTF-8 format and its
type.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

Other Open Directory Data Types

Data types used by the Open Directory Client.

tAttributeEntryPtr
A pointer to a tAttributeEntry structure.

typedef tAttributeEntry *tAttributeEntryPtr;

Availability
Available in Mac OS X v10.0 and later.

Data Types 85
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Declared In
DirServicesTypes.h

tAttributeListRef
A reference used to get attribute entries.

typedef unsigned long tAttributeListRef;

Discussion
You receive a tAttributeListRef by calling dsGetDirNodeInfo (page 56) or dsGetRecordEntry (page
63).Pass the reference to dsGetAttributeEntry (page 51). Dispose of the reference by calling
dsCloseAttributeList (page 20).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tAttributeValueEntryPtr
A pointer to a tAttributeValueEntry structure.

typedef tAttributeValueEntry *tAttributeValueEntryPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tAttributeValueListRef
A reference used to get attribute value entries.

typedef unsigned long tAttributeValueListRef;

Discussion
You receive a tAttributeValueListRef when you call dsGetAttributeEntry (page 51). Pass the
reference to dsGetAttributeValue (page 53). Dispose of the reference by calling
dsCloseAttributeValueList (page 20).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

86 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tBuffer
A pointer to an arbitrary value used to create data nodes.

typedef void * tBuffer;

Discussion
The tBuffer data type is used by dsDataNodeAllocateBlock (page 31) to create data nodes.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tContextData
A pointer to an arbitrary value used to exchange continuation data.

typedef void * tContextData;

Discussion
When the results of calling an Open Directory function exceed the size of the response buffer, the function
returns a value of type tContextData. Your application can get the next buffer of results by calling the
function again and passing the continuation data as a parameter.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tDataBufferPtr
A pointer to a value of type tDataBuffer.

typedef tDataBuffer *tDataBufferPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tDataListPtr
A pointer to a value of type tDataList.

Data Types 87
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef tDataList *tDataListPtr;

Discussion
To allocate a data list, call dsDataListAllocate (page 26). To build a data list from one or more data
nodes, call dsBuildListFromNodesAlloc (page 16); to build a data list from one or more C strings, call
dsBuildListFromStrings (page 18). Or copy a data list by calling dsDataListCopyList (page 27).

To release the memory associated with a data list when it is no longer needed, call
dsDataListDeallocate (page 27). If the data list is heap-based, you also need to call free().

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tDataNode
A value of type tDataBuffer.

typedef tDataBuffer tDataNode;

Discussion
The tDataNode data type provides a standard format for passing information to Open Directory functions.
It is typically used to contain strings, nodes, and attribute types that are exchanged between Open Directory
and an Open Directory client.

See also tDataNodePtr (page 88).

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tDataNodePtr
A pointer to a value of type tDataNode.

typedef tDataNode tDataNodePtr;

Discussion
Call dsDataNodeAllocateBlock (page 31) or dsDataNodeAllocateString (page 32) to allocate a data
node.

Call dsDataNodeDeAllocate (page 33) to release the memory associated with a data node when it is no
longer needed.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

88 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

tDirNodeReference
A value returned when a node is opened.

typedef unsigned long tDirNodeReference;

Discussion
Open Directory functions that operate on nodes, records, and attributes require a tDirNodeReference as
a parameter. Call dsOpenDirNode (page 68) to open a node. Call dsCloseDirNode (page 21) to close the
node and dispose of the reference when you no longer need it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tDirReference
A value returned when an Open Directory session is opened.

typedef unsigned long tDirReference;

Discussion
You receive a tDirReference by calling by dsOpenDirService (page 69) or
dsOpenDirServiceProxy (page 70) to open an Open Directory session. You call dsCloseDirService (page
22) to close the session and dispose of the reference when you no longer need it.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tRecordEntryPtr
A pointer to a value of type tRecordEntry.

typedef tRecordEntry *tRecordEntryPtr;

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

tRecordReference
A value returned when a record is opened.

Data Types 89
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef unsigned long tRecordReference;

Discussion
You receive a tRecordReference by calling dsCreateRecordAndOpen (page 24) or dsOpenRecord (page
71). Closing the record causes the record reference to be invalidated.

Availability
Available in Mac OS X v10.0 and later.

Declared In
DirServicesTypes.h

Request Structures

This section describes the structures that Open Directory passes to a plug-in’s ProcessRequest entry point
in order to work with directory nodes.

sAddAttribute
Structure received when an Open Directory client calls dsAddAttribute.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReference fInRecRef;
 tDataNodePtr fInNewAttr;
 tAccessControlEntryPtrfInNewAttrAccess;
 tDataNodePtr fInFirstAttrValue;
} sAddAttribute;

Fields
fType

Always kAddAttribute.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to add the attribute. If an error occurs, the plug-in sets fResult to a value listed in “Result Codes” (page
169).

fInRecRef
Value of type tRecordReference (page 89) representing the record to which the attribute is to be
added. The record must have been previously opened when the plug-in’s routine for processing
sOpenRecord (page 122) structures was called.

fInNewAttr
Value of type tDataNodePtr (page 88) that points to a value of type tDataNode (page 88) containing
the name of the attribute that is to be added.

fInNewAttrAccess
Reserved for this release. Client applications are advised to set this value to NULL. For this release,
plug-ins should ignore the value of this field.

90 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fInFirstAttrValue
Value of type tDataListPtr (page 87) that points to a value of type tDataNode (page 88) containing
the first value of the attribute that is being added. The tDataNode may contain an empty string or
fInFirsAttrValue may be NULL to indicate that the client application does not want to set the
attribute’s value.

Discussion
When an Open Directory plug-in receives an sAddAttribute structure, it uses the fInRecRef field of the
sAddAttribute structure to determine the record to which an attribute is to be added, the fInNewAttr
field to obtain the name of the attribute that is to be added, and the fInFirstAttrValue field as the added
attribute’s first value.

If the plug-in can the add the attribute, it adds the attribute, sets its first value, sets fResult to eDSNoErr,
and returns.

If the plug-in cannot add the attribute, it sets fResult to an appropriate result code as described in “Result
Codes” (page 169) and returns.

sAddAttributeValue
Structure when an Open Directory client calls dsAddAttributeValue.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReferencefInRecRef;
 tDataNodePtr fInAttrType;
 tDataNodePtr fInAttrValue;
} sAddAttributeValue;

Fields
fType

Always kAddAttributeValue.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to add the value to the attribute. If an error occurs, the plug-in sets fResult to a value listed in “Result
Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) representing the record for which a value is to be add
to an attribute.

fInAttrType
Value of type tDataNodePtr (page 88) that points to a value of type tDataNode (page 88) containing
the type of the attribute to which a value is to be added.

fInAttrValue
Value of type tDataNodePtr (page 88) that points to a value of type tDataNode (page 88) containing
the value that is to be added.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sAddAttributeValue structure when an Open Directory client calls dsAddAttributeValue.

Data Types 91
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

The plug-in should verify that the attribute is capable of having multiple values. It then uses the fInRecRef
field of the sAddAttributeValue structure to determine the record that has the attribute to which a value
is to be added, the fInAttrType field to determine the type of the attribute to which a value is to be added,
and the fInAttrValue field to get the value to that is to be added.

If the plug-in can add the specified value to the specified attribute, it adds the value and creates a unique
attribute value ID for it, sets fResult to eDSNoErr, and returns.

If the plug-in cannot add the value to the attribute, it sets fResult to an appropriate result code as described
in “Result Codes” (page 169) and returns.

sCloseAttributeList
Structure received when an Open Directory client calls dsCloseAttributeList.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tAttributeListReffInAttributeListRef;
} sCloseAttributeList;

Fields
fType

Always kCloseAttributeList.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to close the specified attribute list reference. If an error occurs, the plug-in sets fResult to a value
listed in “Result Codes” (page 169).

fInAttributeListRef
Value of type tAttributeListRef (page 86) representing the attribute list reference that is to be
closed.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sCloseAttributeList structure when an Open Directory client calls dsCloseAttributeList to dispose
of an attribute list reference.

If the attribute value list is valid, the plug-in disposes of it, sets fResult to eDSNoErr, and returns. If the
attribute list reference is invalid, the plug-in sets fResult to an appropriate result code as described in
“Result Codes” (page 169) and returns.

sCloseAttributeValueList
Structure received when an Open Directory client calls dsCloseAttributeValueList.

92 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tAttributeValueListReff InAttributeValueListRef;
} sCloseAttributeValueList;

Fields
fType

Always kCloseAttributeValueList.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to close the specified attribute value list reference. If an error occurs, the plug-in sets fResult to a
value listed in “Result Codes” (page 169).

fInAttributeValueListRef
Value of type tAttributeValueListRef (page 86) representing the attribute value list reference
that is to be closed.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sCloseAttributeValueList structure when an Open Directory client callsdsCloseAttributeValueList
to dispose of an attribute value list reference.

If the attribute value list reference is valid, the plug-in disposes of it, sets fResult to eDSNoErr, and returns.
If the attribute value list reference is invalid, the plug-in sets fResult to an appropriate result code as
described in “Result Codes” (page 169) and returns.

sCloseDirNode
Structure received when an Open Directory client calls dsCloseDirNode.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirReference fInNodeRef;
} sCloseDirNode;

Fields
fType

Always kCloseDirNode.

fResult
Value of type sInt32s that the plug-in sets to eDSNoErr before returning to indicate that it was able
to close the directory node session specified by fInNodeRef. If an error occurs, the plug-in sets
fResult to a value listed in “Result Codes” (page 169).

fInNodeRef
Value of type tDirReference (page 89) that identifies the directory node session that is to be closed.
The directory node reference was created when the client application opened the directory node
session that is to be closed.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sCloseDirNode
structure when an Open Directory client calls dsCloseDirNode to close a session with a directory node.

Data Types 93
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

When an Open Directory plug-in receives a request to close a directory node session, it uses the fInNodeRef
field to determine whether fInNodeRef represents a valid directory node that the client application has
opened.

If the directory node reference is valid, the plug-in invalidates all record references, attribute references,
attribute value references, and continuation data values that are associated with the directory node reference
specified by fInNodeRef. The plug-in sets fResult to eDSNoErr and returns.

If the plug-in cannot close the node (for example, because it is invalid), it sets fResult to an appropriate
result code as described in “Result Codes” (page 169) and returns.

sCloseRecord
Structure received when an Open Directory client application calls dsCloseRecord.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReferencefInRecRef;
} sCloseRecord;

Fields
fType

Always kCloseRecord.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to close the record. If an error occurs, the plug-in sets fResult to a value listed in “Result Codes” (page
169).

fInRecRef
Value of type tRecordReference (page 89) representing the record that is to be closed. The plug-in
created the value of fInRecRef when it was called to process a request to open the record.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sCloseRecord
structure when an Open Directory client calls dsCloseRecord to close a record.

If the record can be closed, the plug-in ensures that any changes for the record that are cached in memory
are saved to disk, invalidates the record reference specified in the fInRecRef field, invalidates any attribute
list references and any attribute value list references associated with the record, sets fResult to eDSNoErr,
and returns.

If the plug-in cannot close the record, it sets fResult to an appropriate result code as described in “Result
Codes” (page 169) and returns.

sCreateRecord
Structure received when an Open Directory client calls dsCreateRecord or dsCreateRecordAndOpen.

94 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReference fInNodeRef;
 tDataNodePtr fInRecType;
 tDataNodePtr fInRecName;
 bool fInOpen;
 tRecordReference fOutRecRef;
} sCreateRecord;

Fields
fType

Always kCreateRecord or kCreateRecordAndOpen.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to create the record. If an error occurs, the plug-in sets fResult to a value listed in “Result Codes” (page
169).

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node in which the record
is to be created. The directory node reference was created when the client application opened a
session with the directory node.

fInRecType
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the type that is to be assigned to the created record.

fInRecName
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the name that is to be assigned to the record that is created.

fInOpen
Boolean whose value is TRUE if the client application wants to create the record and open it. Otherwise,
the value of fInOpen is FALSE to indicate that the client application wants to create the record
without opening it.

fOutRecRef
Value of type tRecordReference (page 89) assigned by the DirectoryService daemon and that the
plug-in associates with the internal structure the plug-in uses to maintain information about the
reference.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sCreateRecord
structure when an Open Directory client calls dsCreateRecordor dsCreateRecordAndOpen to create a
record.

The plug-in uses the fInNodeRef field of the sCreateRecord structure to determine the directory node
in which the record is to be created, the fInRecType field to set the type of the record that is to be created,
and the fInRecName field to set the name of the record that is to be created.

If the plug-in can create the new record, it sets fResult to eDSNoErr, and returns.

If the plug-in cannot create the new record, it sets fResult to an appropriate result code as described in
“Result Codes” (page 169) and returns.

Data Types 95
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

sDeleteRecord
Structure received when an Open Directory client calls dsDeleteRecord.

typedef struct {
 uInt32 fType
 sInt32 fResult;
 tRecordReferencefInRecRef;
} sDeleteRecord;

Fields
fType

Always kDeleteRecord.

fResult
Value of type uInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to delete the record. If an error occurs, the plug-in sets fResult to a value listed in “Result Codes” (page
169).

fInRecRef
Value of type tRecordReference (page 89) representing the record that is to be deleted. The plug-in
created the value of fInRecRef when it was called to process a request to open the record.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sDeleteRecord
structure when an Open Directory client calls dsDeleteRecord to delete a record.

The plug-in uses the fInRecRef field of the sDeleteRecord structure to determine the record that is to
be deleted. If the plug-in can delete the record, it invalidates the record reference specified by the fInRecRef
field, invalidates any attribute list references and any attribute value list references associated with the record,
sets fResult to eDSNoErr, and returns.

If the plug-in cannot delete the record, it sets fResult to an appropriate result code as described in “Result
Codes” (page 169) and returns.

sDoAttrValueSearch
Structure received when an Open Directory client calls dsDoAttributeValueSearch.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReferencefInNodeRef;
 tDataBufferPtr fOutDataBuff;
 tDataListPtr fInRecTypeList;
 tDataNodePtr fInAttrType;
 tDirPatternMatchfInPattMatchType;
 tDataNodePtr fInPatt2Match;
 unsigned long fInOutMatchRecordCount;
 tContextData fIOContinueData;
} sDoAttrValueSearch;

Fields
fType

Always kDoAttributeValueSearch.

96 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to search for the attribute values. If an error occurs, the plug-in sets fResult to a value listed in
“Result Codes” (page 169). If no matches are found, the plug-in should set fResult to eDSNoErr,
fInOutMatchRecordCount to zero, and fIOContinueData to NULL.

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node for which the search
is to be conducted. The directory node reference was created when the client application opened
the directory node session.

fOutDataBuff
Value of type tDataBufferPtr (page 87) that points to the tDataBuffer (page 84) structure in
which the plug-in is to place search results.

fInRecTypeList
Value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure containing
the record types that are to be searched. See Standard Record Types (page 143) and Meta Record Type
Constants (page 142) for possible values. If NULL, set fResult to eDSEmptyRecordTypeList and
return.

fInAttrType
Value of type tDataNodePtr (page 88) pointing to a tDataNode (page 88) structure containing
the attribute types that are to be searched for. See the attribute constants described in the
“Constants” (page 129) section for possible values. If NULL, set fResult to eDSEmptyAttributeType
and return.

fInPattMatchType
Value of type tDirPatternMatch that describes the way in which the pattern specified by
fInPatt2Match is to be matched. The pattern match type can be a value that the plug-in and
application agree upon or a constant defined by Open Directory, as described in the section Pattern
Matching Constants (page 137).

fInPatt2Match
Value of type tDataNodePtr (page 88) pointing to a tDataNode (page 88) structure containing
the pattern that is to be matched.

fInOutMatchRecordCount
Value of typeunsigned long. The first time the client application callsdsDoAttributeValueSearch,
fInOutMatchRecordCount is zero to receive all matching records or is a positive integer value that
specifies the total number of records the client application wants to receive across what may be a
series of dsDoAttributeValueSearch calls. If the latter, the plug-in should use the initial input
value of fInOutMatchRecordCount to limit the total number of matching records it returns. Before
returning, the plug-in should set fInOutMatchRecordCount to the number of records it has placed
in the buffer pointed to by fOutDataBuff. The plug-in should ignore the input value of
fInOutMatchRecordCount whenever it is processing a sDoAttrValueSearch structure that has
an fIOContinueData field that is not NULL.

fIOContinueData
Value of type tContextData (page 87) containing continuation data. For the first in a series of calls
to dsDoAttributeValueSearch, the input value is NULL. If the plug-in can store all of the matching
records in the buffer pointed to by fOutDataBuff, it sets fIOContinueData to NULLbefore returning.
If there more records than can be stored in the buffer, the plug-in stores as much data as possible
and sets fIOContinueData to a plug-in–defined value that the plug-in can use when the client
application calls dsDoAttributeValueSearch again to get another buffer of data. You may want
to include a timestamp in the continuation data and return an error if you determine that
fOutContinueData is out of date.

Data Types 97
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sDoAttrValueSearch structure when an Open Directory client calls dsDoAttributeValueSearch to
search for records that have attributes whose values match a pattern.

The plug-in uses the fInNodeRef field of the sDoAttrValueSearch structure to determine the directory
node in which the search is to be conducted, the fInRecTypeList field to determine the record types that
are to be searched, the fInAttrType field to determine the attribute types that are to be searched, the
fInPatt2Match field to get the pattern to match, and the fInPattMatchType field to determine the way
in which the pattern is to be compared. If this is the first in what may be a series of calls to get the complete
search results, the fIOContinueData field is NULL. Otherwise, fIOContinueData contains a plug-in–defined
value that the plug-in uses to provide the context required to resume filling the buffer pointed to by
fOutDataBuff with search results.

Depending on the size of the data buffer pointed to by fOutDataBuff and the length of the search results,
the plug-in’s routine for processing sDoAttrValueSearch structures may be called multiple times in order
to return all of the search results. The first time the plug-in’s routine for processing sDoAttrValueSearch
structures is called, the input value of fIOContinueData is NULL and input value of fInOutRecEntryCount
specifies the total number of records that the plug-in should return even if the plug-in’s routine for processing
sDoAttrValueSearch structures must be called more than once.

If there are records that match the search criteria specified by fInRecTypeList, fInAttrType,
fInPattMatchType, and fInPatt2Match, the plug-in puts the record entries, attribute entries, and attribute
values in the buffer pointed to by fOutDataBuff. It also sets fInOutMatchRecordCount to the number
of records that have been placed in fOutDataBuff and sets fResult to eDSNoErr. If the buffer pointed
to by fOutDataBuff is too small to hold all of the data, the plug-in sets fIOContinueData to a
plug-in–defined value that the plug-in can use when the client application calls dsDoAttributeValueSearch
again to get another buffer of data. If the buffer pointed to by fOutDataBuff contains all of the records or
contains the last records in the record list, the plug-in sets fIOContinueData to NULL.

If the plug-in returns before it gets search results to place in the buffer pointed to by fOutDataBuff, it
should set fInOutMatchRecordCount to zero, set fResult to eDSNoErr, and set fIOContinueData to
a plug-in–defined value that is not NULL. These settings indicate to the client application that it should call
dsDoAttributeValueSearch again to get the search results.

If there are no matching records, the plug-in sets fInOutMatchRecordCount to zero, fIOContinueData
to NULL, sets fResult to eDSNoErr, and returns.

sDoAttrValueSearchWithData
Structure received when an Open Directory client calls dsDoAttributeValueSearchWithData.

98 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReferencefInNodeRef;
 tDataBufferPtr fOutDataBuff;
 tDataListPtr fInRecTypeList;
 tDataNodePtr fInAttrType;
 tDirPatternMatchfInPattMatchType;
 tDataNodePtr fInPatt2Match;
 unsigned long fInOutMatchRecordCount;
 tContextData fIOContinueData;
 tDataListPtr fInAttrTypeRequestList;
 bool fInAttrInfoOnly;
} sDoAttrValueSearchWithData;

Fields
fType

Always kDoAttributeValueSearchWithData.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to search for the attribute values. If an error occurs, the plug-in sets fResult to a value listed in
“Result Codes” (page 169). If no matches are found, the plug-in should set fResult to eDSNoErr,
fInOutMatchRecordCount to zero, and fIOContinueData to NULL.

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node for which the search
is to be conducted. The directory node reference was created when the client application opened
the directory node session.

fOutDataBuff
Value of type tDataBufferPtr (page 87) that points to the tDataBuffer (page 84) structure in
which the plug-in is to place search results.

fInRecTypeList
Value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure containing
the record types that are to be searched. See Standard Record Types (page 143) and Meta Record Type
Constants (page 142) for possible values. If NULL, set fResult to eDSEmptyRecordTypeList and
return.

fInAttrType
Value of type tDataNodePtr (page 88) pointing to a tDataNode (page 88) structure containing
the attribute types that are to be searched for. See the attribute constants described in the
“Constants” (page 129) section for possible values. If NULL, set fResult to eDSEmptyAttributeType
and return.

fInPattMatchType
Value of type tDirPatternMatch that describes the way in which the pattern specified by
fInPatt2Match is to be matched. The pattern match type can be a value that the plug-in and
application agree upon or a constant defined by Open Directory, as described in the section Pattern
Matching Constants (page 137).

fInPatt2Match
Value of type tDataNodePtr (page 88) pointing to a tDataNode (page 88) structure containing
the pattern that is to be matched.

Data Types 99
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fInOutMatchRecordCount
Value of type unsigned long. The first time the client application calls
dsDoAttributeValueSearchWithData, fInOutMatchRecordCount is zero to receive all matching
records or is a positive integer value that specifies the total number of records the client application
wants to receive across what may be a series of dsDoAttributeValueSearchWithData calls. If the
latter, the plug-in should use the initial input value o ffInOutMatchRecordCount to limit the total
number of matching records it returns. Before returning, the plug-in should set
fInOutMatchRecordCount to the number of records it has placed in the buffer pointed to by
fOutDataBuff. The plug-in should ignore the input value of fInOutMatchRecordCountwhenever
it is processing a sDoAttributeValueSearchWithData structure that has an fIOContinueData
field that is not NULL.

fIOContinueData
Value of type tContextData (page 87) containing continuation data. For the first in a series of calls
to dsDoAttributeValueSearchWithData, the input value is NULL. If the plug-in can store all of
the matching records in the buffer pointed to by fOutDataBuff, it sets fIOContinueData to NULL
before returning. If there more records than can be stored in the buffer, the plug-in stores as much
data as possible and sets fIOContinueData to a plug-in–defined value that the plug-in can use
when the client application calls dsDoAttributeValueSearchWithData again to get another buffer
of data. You may want to include a timestamp in the continuation data and return an error if you
determine that fOutContinueData is out of date.

fInAttrTypeRequestList
Value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure containing
attribute types that are to be returned if matches are found. See the attribute constants described in
the “Constants” (page 129) section for possible values. If NULL, set fResult to
eDSEmptyAttributeTypeList and return.

fInAttrInfoOnly
Boolean value set to TRUE if the plug-in is only to provide information about attributes or set to FALSE
if the plug-in is to provide the values of the attributes as well as information about the attributes.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sDoAttrValueSearchWithData structure when an Open Directory client calls
dsDoAttributeValueSearchWithData to search for records. Matches are based on the value of
fInAttrType, fInPattMatchType, and fInPatt2Match. For records that match, the
fInAttrTypeRequestList field determines which attributes to return.

The plug-in uses the fInNodeRef field of the sDoAttrValueSearchWithData structure to determine the
directory node in which the search is to be conducted, the fInRecTypeList field to determine the record
types that are to be searched, the fInAttrType field to determine the attribute types that are to be searched,
the fInPatt2Match field to get the pattern to match, and the fInPattMatchType field to determine the
way in which the pattern is to be compared. If this is the first in what may be a series of calls to get the
complete search results, the fIOContinueData field is NULL. Otherwise, fIOContinueData contains a
plug-in–defined value that the plug-in uses to provide the context required to resume filling the buffer
pointed to by fOutDataBuff with search results.

The sDoAttrValueSearchWithData structure differs from the sDoAttrValueSearch structure in that
the sDoAttrValueSearchWithData structure has two additional fields: fInAttrTypeRequestList, which
specifies the type of attributes for which information is to be returned when a match is found, and
fInAttrInfoOnly, which indicates whether attribute information or attribute information and attribute
values are to be returned when a match is found.

100 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Depending on the size of the data buffer pointed to by fOutDataBuff and the length of the search results,
the plug-in’s routine for processing sDoAttrValueSearchWithData structures may be called multiple
times in order to return all of the search results. The first time the plug-in’s routine for processing
sDoAttrValueSearchWithData structures is called, the input value of fIOContinueData is NULL and
input value of fInOutRecEntryCount specifies the total number of records that the plug-in should return
even if the plug-in’s routine for processing sDoAttrValueSearchWithData structures must be called more
than once.

If there are records that match the search criteria specified by fInRecTypeList, fInAttrType,
fInPattMatchType, and fInPatt2Match, plug-in puts the record entries, attribute entries, and attribute
values in the buffer pointed to by fOutDataBuff. It also sets fInOutMatchRecordCount to the number
of records that have been placed in fOutDataBuff and sets fResult to eDSNoErr. If the buffer pointed
to by fOutDataBuff is too small to hold all of the data, the plug-in sets fIOContinueData to a
plug-in–defined value that the plug-in can use when the client application calls
dsDoAttributeValueSearchWithData again to get another buffer of data. If the buffer pointed to by
fOutDataBuff contains all of the records or contains the last records in the record list, the plug-in sets
fIOContinueData to NULL.

If the plug-in returns before it gets search results to place in the buffer pointed to by fOutDataBuff, it
should set fInOutMatchRecordCount to zero, set fResult to eDSNoErr, and set fIOContinueData to
a plug-in–defined value that is not NULL. These settings indicate to the client application that it should call
dsDoAttributeValueSearchWithData again to get the search results.

If there are no matching records, the plug-in sets fInOutMatchRecordCount to zero, fIOContinueData
to NULL, sets fResult to eDSNoErr, and returns.

sDoDirNodeAuth
Structure received when an Open Directory client calls dsDoDirNodeAuth.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReference fInNodeRef;
 tDataNodePtr fInAuthMethod;
 bool fInDirNodeAuthOnlyFlag;
 tDataBufferPtr fInAuthStepData;
 tDataBufferPtr fOutAuthStepDataResponse;
 tContextData fIOContinueData;
} sDoDirNodeAuth;

Fields
fType

Always kDoDirNodeAuth.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to authenticate the session. If an error occurs, the plug-in sets fResult to a value listed in “Result
Codes” (page 169).

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node session that is to be
authenticated. The directory node reference was created when the client application opened the
session with the directory node.

Data Types 101
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fInAuthMethod
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the authentication task that is to be performed.Examples include kDSStdAuthSetPasswd,
kDSStdAuthSetPasswdAsRoot, and kDSStdAuthChangePasswd to set or change a password and
kDSStdAuthClearText and kDSStdAuth2WayRandom to authenticate a user for a directory node
session. See the attribute constants described in the “Constants” (page 129) section for possible values.

fInDirNodeAuthOnlyFlag
Boolean value that is TRUE if the client application does not want the result of this authentication to
be used to grant or deny access for subsequent operations pertaining to this node. When the value
of fInDirNodeAuthOnlyFlag is FALSE, the client application wants the result of this authentication
to be applied to other operations that pertain to this directory node.

fInAuthStepData
Value of type tDataBufferPtr (page 87) pointing to a tDataBuffer (page 84) structure that
contains a value that identifies the step in the authentication process for which the plug-in
ProcessRequest routine has been called.

fOutAuthStepDataResponse
Value of type tDataBufferPtr (page 87) that points to the tDataBuffer (page 84) structure in
which the plug-in is to place its response.

fIOContinueData
Value of type tContextData (page 87). If this the first step in the authentication process,
fIOContinueData is NULL. If this is any other step, fIOContinueData should contain a value that
the plug-in returned to the client application when the client previously called dsDoDirNodeAuth.
The plug-in can use fIOContinueData to maintain context information about the authentication
process as it progresses through the various steps required by the authentication method. You may
want to include a timestamp in fIOContinueData and fail the next step in the authentication process
if fIOContinueData is too old.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sDoDirNoteAuth
structure when an Open Directory client calls dsDoDirNodeAuth to perform an authentication task.

The plug-in uses the fInNodeRef field of the sDoDirNodeAuth structure to determine the directory node
for which the authentication task is to be perform and the fInAuthMethod field to determine the
authentication task. The plug-in also uses the fInDirNodeAuthOnlyFlag field to determine whether to
apply the results of the authentication to other Open Directory calls the client application may make, and
the fInAuthStepData field indicates the current step in the authentication process.

If this step in the authentication process is successful, the plug-in sets fResult to eDSNoErr. If there are
additional steps in the authentication process, the plug-in sets fOutAuthStepDataResponse to a value
that is appropriate for this authentication method and sets fIOContinueData to a plug-in–defined value
before returning. If this is the last step in the authentication process, the plug-in sets fIOContinueData to
NULL.

If this step in the authentication process was not successful, the plug-in sets fResult to an appropriate
result code as described in “Result Codes” (page 169), sets fIOContinueData to NULL, and returns.

sDoMultiAttrValueSearch
Structure received when an Open Directory client calls dsDoMultipleAttributeValueSearch.

102 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReferencefInNodeRef;
 tDataBufferPtr fOutDataBuff;
 tDataListPtr fInRecTypeList;
 tDataNodePtr fInAttrType;
 tDirPatternMatchfInPattMatchType;
 tDataListPtr fInPatterns2MatchList;
 unsigned long fInOutMatchRecordCount;
 tContextData fIOContinueData;
} sDoMultiAttrValueSearch;

Fields
fType

Always kDoMultipleAttributeValueSearch.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to search for the attribute values. If an error occurs, the plug-in sets fResult to a value listed in
“Result Codes” (page 169). If no matches are found, the plug-in should set fResult to eDSNoErr,
fInOutMatchRecordCount to zero, and fIOContinueData to NULL.

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node for which the search
is to be conducted. The directory node reference was created when the client application opened
the directory node session.

fOutDataBuff
Value of type tDataBufferPtr (page 87) that points to the tDataBuffer (page 84) structure in
which the plug-in is to place search results.

fInRecTypeList
Value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure containing
the record types that are to be searched. See Standard Record Types (page 143) and Meta Record Type
Constants (page 142) for possible values. If NULL, set fResult to eDSEmptyRecordTypeList and
return.

fInAttrType
Value of type tDataNodePtr (page 88) pointing to a tDataNode (page 88) structure containing
the attribute types that are to be searched for. See the attribute constants described in the
“Constants” (page 129) section for possible values. If NULL, set fResult to eDSEmptyAttributeType
and return.

fInPattMatchType
Value of type tDirPatternMatch that describes the way in which the pattern specified by
fInPatt2Match is to be matched. The pattern match type can be a value that the plug-in and
application agree upon or a constant defined by Open Directory, as described in the section Pattern
Matching Constants (page 137).

fInPatterns2MatchList
Value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure containing a
list of patterns to be matched.

Data Types 103
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fInOutMatchRecordCount
Value of typeunsigned long. The first time the client application callsdsDoAttributeValueSearch,
fInOutMatchRecordCount is zero to receive all matching records or is a positive integer value that
specifies the total number of records the client application wants to receive across what may be a
series of dsDoAttributeValueSearch calls. If the latter, the plug-in should use the initial input
value of fInOutMatchRecordCount to limit the total number of matching records it returns. Before
returning, the plug-in should set fInOutMatchRecordCount to the number of records it has placed
in the buffer pointed to by fOutDataBuff. The plug-in should ignore the input value of
fInOutMatchRecordCountwhenever it is processing a sDoMultiAttrValueSearch structure that
has anfIOContinueData field that is not NULL.

fIOContinueData
Value of type tContextData (page 87) containing continuation data. For the first in a series of calls
to dsDoAttributeValueSearch, the input value is NULL. If the plug-in can store all of the matching
records in the buffer pointed to by fOutDataBuff, it sets fIOContinueData to NULLbefore returning.
If there more records than can be stored in the buffer, the plug-in stores as much data as possible
and sets fIOContinueData to a plug-in–defined value that the plug-in can use when the client
application calls dsDoAttributeValueSearch again to get another buffer of data. You may want
to include a timestamp in the continuation data and return an error if you determine that
fOutContinueData is out of date.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sDoMultiAttrValueSearch structure when an Open Directory client calls
dsDoMultipleAttributeValueSearch to search for records that have attributes whose values match one
of multiple specified patterns.

The plug-in uses the fInNodeRef field of the sDoMultiAttrValueSearch structure to determine the
directory node in which the search is to be conducted, the fInRecTypeList field to determine the type of
records that are to be searched, the fInAttrType field to determine the attributes that are to be searched,
the fInPatterns2MatchList field to get the patterns to match, and the fInPattMatchType field to
determine the way in which the patterns are to be compared. If this is the first in what may be a series of
calls to get the complete search results, the fIOContinueData field is NULL. Otherwise, fIOContinueData
contains a plug-in–defined value that the plug-in uses to provide the context required to resume filling the
buffer pointed to by fOutDataBuff with search results.

Depending on the size of the data buffer pointed to by fOutDataBuff and the length of the search results,
the plug-in’s routine for processing sDoMultiAttrValueSearch structures may be called multiple times
in order to return all of the search results. The first time the plug-in’s routine for processing the
sDoMultiAttrValueSearch structure is called, the input value of fIOContinueData is NULL and input
value of fInOutRecEntryCount specifies the total number of records that the plug-in should return even
if the plug-in’s routine for processing sDoMultiAttrValueSearch structures must be called more than
once.

If there are records that match the search criteria specified by fInRecTypeList, fInAttrType,
fInPattMatchType, and fInPattern2MatchList, the plug-in puts the record entries, attribute entries,
and attribute values in the buffer pointed to by fOutDataBuff. It also sets fInOutMatchRecordCount to
the number of records that have been placed in fOutDataBuff and sets fResult to eDSNoErr. If the buffer
pointed to by fOutDataBuff is too small to hold all of the data, the plug-in sets fIOContinueData to a
plug-in–defined value that the plug-in can use when the client application calls
dsDoMultipleAttributeValueSearch again to get another buffer of data. If the buffer pointed to by
fOutDataBuff contains all of the records or contains the last records in the list of records, the plug-in sets
fIOContinueData to NULL.

104 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

If the plug-in returns before it gets search results to place in the buffer pointed to by fOutDataBuff, it
should set fInOutMatchRecordCount to zero, set fResult to eDSNoErr, and set fIOContinueData to
a plug-in–defined value that is not NULL. These settings indicate to the client that it should call
dsDoMultipleAttributeValueSearch again to get the search results.

If there are no matching records, the plug-in sets fInOutMatchRecordCount to zero, fIOContinueData
to NULL, sets fResult to eDSNoErr, and returns.

sDoMultiAttrValueSearchWithData
Structure received when an Open Directory client calls dsDoMultipleAttributeValueSearch.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReferencefInNodeRef;
 tDataBufferPtr fOutDataBuff;
 tDataListPtr fInRecTypeList;
 tDataNodePtr fInAttrType;
 tDirPatternMatchfInPattMatchType;
 tDataListPtr fInPatterns2MatchList;
 unsigned long fInOutMatchRecordCount;
 tContextData fIOContinueData;
 tDataListPtr fInAttrTypeRequestList;
 bool fInAttrInfoOnly;
} sDoMultiAttrValueSearchWithData;

Fields
fType

Always kDoMultipleAttributeValueSearchWithData.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to search for the attribute values. If an error occurs, the plug-in sets fResult to a value listed in
“Result Codes” (page 169). If no matches are found, the plug-in should set fResult to eDSNoErr,
fInOutMatchRecordCount to zero, and fIOContinueData to NULL.

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node for which the search
is to be conducted. The directory node reference was created when the client application opened
the directory node session.

fOutDataBuff
Value of type tDataBufferPtr (page 87) that points to the tDataBuffer (page 84) structure in
which the plug-in is to place search results.

fInRecTypeList
Value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure containing
the record types that are to be searched. See Standard Record Types (page 143) and Meta Record Type
Constants (page 142) for possible values. If NULL, set fResult to eDSEmptyRecordTypeList and
return.

Data Types 105
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fInAttrType
Value of type tDataNodePtr (page 88) pointing to a tDataNode (page 88) structure containing
the attribute types that are to be searched for. See the attribute constants described in the
“Constants” (page 129) section for possible values. If NULL, set fResult to eDSEmptyAttributeType
and return.

fInPattMatchType
Value of type tDirPatternMatch that describes the way in which the pattern specified by
fInPatt2Match is to be matched. The pattern match type can be a value that the plug-in and
application agree upon or a constant defined by Open Directory, as described in the section Pattern
Matching Constants (page 137).

fInPatterns2MatchList
Value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure containing a
list of patterns to be matched.

fInOutMatchRecordCount
Value of typeunsigned long. The first time the client application callsdsDoAttributeValueSearch,
fInOutMatchRecordCount is zero to receive all matching records or is a positive integer value that
specifies the total number of records the client application wants to receive across what may be a
series of dsDoAttributeValueSearch calls. If the latter, the plug-in should use the initial input
value of fInOutMatchRecordCount to limit the total number of matching records it returns. Before
returning, the plug-in should set fInOutMatchRecordCount to the number of records it has placed
in the buffer pointed to by fOutDataBuff. The plug-in should ignore the input value of
fInOutMatchRecordCount whenever it is processing a sDoMultiAttrValueSearchWithData
structure that has an fIOContinueData field that is not NULL.

fIOContinueData
Value of type tContextData (page 87) containing continuation data. For the first in a series of calls
to dsDoAttributeValueSearch, the input value is NULL. If the plug-in can store all of the matching
records in the buffer pointed to by fOutDataBuff, it sets fIOContinueData to NULLbefore returning.
If there more records than can be stored in the buffer, the plug-in stores as much data as possible
and sets fIOContinueData to a plug-in–defined value that the plug-in can use when the client
application calls dsDoAttributeValueSearch again to get another buffer of data. You may want
to include a timestamp in the continuation data and return an error if you determine that
fOutContinueData is out of date.

fInAttrTypeRequestList
Value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure containing
the types of attribute that are to be returned if matches are found. See the attribute constants described
in the “Constants” (page 129) section for possible values. If NULL, set fResult to
eDSEmptyAttributeTypeList and return.

fInAttrInfoOnly
Boolean value set to TRUE if the plug-in is only to provide information about attributes or set to FALSE
if the plug-in is to provide the values of the attributes as well as information about the attributes.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sDoMultiAttrValueSearchWithData structure when an Open Directory client calls
dsDoMultipleAttributeValueSearchWithData to search for records that have attributes whose values
match one of multiple specified patterns and return the values of the attributes specified by
fInAttrTypeRequestList when a match occurs.

The plug-in uses the fInNodeRef field of the sDoMultiAttrValueSearch structure to determine the
directory node in which the search is to be conducted, the fInRecTypeList field to determine the type of
records that are to be searched, the fInAttrType field to determine the attributes that are to be searched,

106 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

the fInPatterns2MatchList field to get the patterns to match, and the fInPattMatchType field to
determine the way in which the patterns are to be compared. If this is the first in what may be a series of
calls to get the complete search results, the fIOContinueData field is NULL. Otherwise, fIOContinueData
contains a plug-in–defined value that the plug-in uses to provide the context required to resume filling the
buffer pointed to by fOutDataBuff with search results.

ThesDoMultiAttrValueSearchWithData structure differs from thesDoMultiAttrValueSearch structure
in that the sDoMultiAttrValueSearchWithData structure has two additional fields:
fInAttrTypeRequestList, which specifies the type of attributes for which information is to be returned
when a match is found, and fInAttrInfoOnly, which indicates whether attribute information or attribute
information and attribute values are to be returned when a match is found.

Depending on the size of the data buffer pointed to by fOutDataBuff and the length of the search results,
the plug-in’s routine for processing sDoMultiAttrValueSearchWithData structures may be called multiple
times in order to return all of the search results. The first time the plug-in’s routine for processing the
sDoMultiAttrValueSearchWithData structure is called, the input value of fIOContinueData is NULL
and input value of fInOutRecEntryCount specifies the total number of records that the plug-in should
return even if the plug-in’s routine for processing sDoMultiAttrValueSearchWithData structures must
be called more than once.

If there are records that match the search criteria specified by fInRecTypeList, fInAttrType,
fInPattMatchType, and fInPattern2MatchList, the plug-in puts the record entries, attribute entries,
and attribute values in the buffer pointed to by fOutDataBuff. It also sets fInOutMatchRecordCount to
the number of records that have been placed in fOutDataBuff and sets fResult to eDSNoErr. If the buffer
pointed to by fOutDataBuff is too small to hold all of the data, the plug-in sets fIOContinueData to a
plug-in–defined value that the plug-in can use when the client application calls
dsDoMultipleAttributeValueSearch again to get another buffer of data. If the buffer pointed to by
fOutDataBuff contains all of the records or contains the last records in the list of records, the plug-in sets
fIOContinueData to NULL.

If the plug-in returns before it gets search results to place in the buffer pointed to by fOutDataBuff, it
should set fInOutMatchRecordCount to zero, set fResult to eDSNoErr, and set fIOContinueData to
a plug-in–defined value that is not NULL. These settings indicate to the client that it should call
dsDoMultipleAttributeValueSearch again to get the search results.

If there are no matching records, the plug-in sets fInOutMatchRecordCount to zero, fIOContinueData
to NULL, sets fResult to eDSNoErr, and returns.

sDoPluginCustomCall
Structure received when an Open Directory client calls dsDoPluginCustomCall.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReferencefInNodeRef;
 unsigned long fInRequestCode;
 tDataBufferPtr fInRequestData;
 tDataBufferPtr fOutRequestResponse;
} sDoPlugInCustomCall;

Fields
fType

Always kDoPlugInCustomCall.

Data Types 107
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that the plug-in
responded without error when it processed the sDoPluginCustomCall structure. If an error occurs,
the plug-in sets fResult to a value listed in “Result Codes” (page 169).

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node session to which
fInRequestCode and fInRequestData apply.

fInRequestCode
Value of type unsigned long that contains a request code that has significance to the plug-in.

fInRequestData
Value of type tDataBufferPtr (page 87) that points to a tDataBuffer (page 84) structure
containing data sent by the client application to the plug-in.

fOutRequestResponse
Value of type tDataBufferPtr (page 87) that points to a tDataBuffer (page 84) structure in
which the plug-in places data that is to be returned to the client application.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sDoPluginCustomCall structure when an Open Directory client calls dsDoPluginCustomCall to send
custom data to the plug-in.

The plug-in verifies that the directory node reference stored in fInNodeRef is valid. It then interprets the
value of the fInRequestCode field, parses the value pointed to by the fInRequestData field, and performs
an action that is appropriate for the request code. If the plug-in needs to return data to the client application,
it stores the data in the tDatabuffer structure pointed to by fOutRequestResponse.

If the plug-in performs the action without error, it sets fResult to eDSNoErr; otherwise, it sets fResult to
an appropriate result code as described in “Result Codes” (page 169).

sFlushRecord
Structure received when an Open Directory client calls dsFlushRecord.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReferencefInRecRef;
} sFlushRecord;

Fields
fType

Always kFlushRecord.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to flush the record. If an error occurs, the plug-in sets fResult to a value listed in “Result Codes” (page
169).

fInRecRef
Value of type tRecordReference (page 89) representing the record that is to be flushed. The plug-in
created the value of fInRecRef when it was called to process a request to open the record.

108 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sFlushRecord
structure when an Open Directory client calls dsFlushRecord.

The plug-in uses the fInRecRef field of the sFlushRecord structure to determine the record that is to be
flushed. If the plug-in can write the record, it does so and sets fResult to eDSNoErr, and returns. If the
plug-in cannot flush the record, it sets fResult to an appropriate result code as described in “Result
Codes” (page 169) and returns.

sGetAttributeEntry
Structure received when an Open Directory client calls dsGetAttributeEntry.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReference fInNodeRef;
 tDataBufferPtr fInOutDataBuff;
 tAttributeListRef fInAttrListRef;
 unsigned long fInAttrInfoIndex;
 tAttributeValueListRef fOutAttrValueListRef;
 tAttributeEntryPtr fOutAttrInfoPtr;
} sGetAttributeEntry;

Fields
fType

Always kGetAttributeEntry.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to get the requested attribute information. If an error occurs, the plug-in sets fResult to a value
listed in “Result Codes” (page 169).

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node of the record whose
attribute information is to be obtained. The directory node reference was created when the client
application opened the directory node session.

fInOutDataBuff
Value of type tDataBufferPtr (page 87) that points to the tDataBuffer (page 84) structure from
which the attribute information is to be obtained.

fInAttrListRef
Value of type tAttributeListRef (page 86) that refers to an attribute list that the plug-in returned
to the client application when it processed a sGetDirNodeInfo (page 111) or a
sGetRecordEntry (page 116) structure or that the plug-in returned to the client application when
it previously called dsGetAttributeEntry. The plug-in uses the attribute list reference to locate
the attribute information in the buffer pointed to by fInOutDataBuff.

fInAttrInfoIndex
Value of type unsigned long that specifies the one-based index number of the attribute whose
information is to be obtained from the buffer pointed to by fInOutDataBuff.

fOutAttrValueListRef
Value of type tAttributeValueListRef (page 86) assigned by the DirectoryService daemon and
that the plug-in associates with the internal structure the plug-in uses to maintain information about
the reference.

Data Types 109
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fOutAttrInfoPtr
Pointer to a value of type tAttributeValueEntryPtr (page 86) that points to a
tAttributeEntry (page 82) structure in which the plug-in is to place the attribute information.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sGetAttributeEntry structure when an Open Directory client calls dsGetAttributeEntry to get
information about an attribute from the buffer pointed to by fInOutDataBuff.

The plug-in uses the fInNodeRef field to determine the directory node of the record for which attribute
information is requested and the fInAttrInfoIndex field to determine the attribute for which attribute
information is requested. The information includes the number of values the attribute has, the total number
of bytes the values use, the maximum size of a value for the specified attribute, and the attribute’s unique
signature.

If the plug-in can get the requested information from fInOutDataBuff, it puts the attribute information in
the attribute entry structure pointed to by fOutAttrInfoPtr, sets fOutAttrValueListRef to a value
that the plug-in can use to locate the attribute’s value if its routine for processing sGetAttributeValue (page
110) structures is called, sets fResult to eDSNoErr, and returns.

If the plug-in cannot provide the requested attribute information, it sets fOutAttrValueListRef to NULL,
sets fResult to an appropriate result code as described in “Result Codes” (page 169) and returns.

For information on parsing the data buffer, see the section “Client Side Buffer Parsing” in Chapter 1.

sGetAttributeValue
Structure received when an Open Directory client calls dsGetAttributeValue.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReference fInNodeRef;
 tDataBufferPtr fInOutDataBuff;
 unsigned long fInAttrValueIndex;
 tAttributeValueListRef fInAttrValueListRef;
 tAttributeValueEntryPtr fOutAttrValue;
} sGetAttributeValue;

Fields
fType

Always kGetAttributeValue.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to get the requested attribute value. If an error occurs, the plug-in sets fResult to a value listed in
“Result Codes” (page 169).

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node of the record whose
attribute value is to be obtained. The directory node reference was created when the client application
opened the directory node session.

110 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fInOutDataBuff
Value of type tDataBufferPtr (page 87) pointing to the tDataBuffer (page 84) structure
containing information previously obtained when the plug-in responded to an sGetRecordList,
sDoAttrValueSearch, sDoAttrValueSearchWithData, sDoMultiAttrValueSearch, or
sDOMultiAttrValueSearchWithData request from the client application.

fInAttrValueIndex
Value of type unsigned long containing a one-based index that specifies which attribute value to
get. A value of 1 specifies the first value, a value of 2 specifies the second value, and so on.

fInAttrValueListRef
Value of type tAttributeValueListRef (page 86) created by the plug-in when its routine for
processing sGetAttributeEntry (page 109) structures was called. The reference contains information
that the plug-in uses to locate the attribute value in the data buffer pointed to by fInOutDataBuff.

fOutAttrValue
Value of type tAttributeValueEntryPtr (page 86) pointing to the tAttributeValueEntry (page
83) structure in which the plug-in is to place the value of the attribute specified by the
fInAttrValueIndex field.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sGetAttributeValue structure when an Open Directory client calls dsGetAttributeValue.

The plug-in uses the fInNodeRef field of the sGetAttributeValue structure to determine the directory
node of the record for which an attribute value is being obtained.

If the plug-in can get the requested value from the data buffer pointed to by fInOutDataBuff, it puts the
value in the attribute value entry structure pointed to by fOutAttrValue, sets fResult to eDSNoErr, and
returns.

If the plug-in cannot get the requested value, it sets fResult to an appropriate result code as described in
“Result Codes” (page 169) and returns.

For information on parsing the data buffer, see the section “Client Side Buffer Parsing” in Chapter 1.

sGetDirNodeInfo
Structure received when an Open Directory client application calls dsGetDirNodeInfo.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReference fInNodeRef;
 tDataListPtr fInDirNodeInfoTypeList;
 tDataBufferPtr fOutDataBuff;
 bool fInAttrInfoOnly;
 unsigned long fOutAttrInfoCount;
 tAttributeListRef fOutAttrListRef;
 tContextData fOutContinueData;
} sGetDirNodeInfo;

Fields
fType

Always kGetDirNodeInfo.

Data Types 111
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to get information about the directory node identified by fInNodeRef. If an error occurs, the plug-in
sets fResult to a value listed in “Result Codes” (page 169).

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node for which information
is to be obtained. The directory node reference was created when the client application opened the
directory node.

fInDirNodeInfoTypeList
Value of type tDataListPtr (page 87) that points to a tDataList (page 84) structure containing
the attribute types for which information is being requested.

fOutDataBuff
Value of type tDataBufferPtr (page 87) pointing to a tDataBuffer (page 84) structure. If the
plug-in obtains the requested information, it puts the information in the data buffer pointed to by
fOutDataBuff.

fInAttrInfoOnly
Boolean value set to TRUE if the plug-in is only to provide information about attributes or set to FALSE
if the plug-in is to provide the values of the attributes as well as information about the attributes.

fOutAttrInfoCount
On return, fOutAttrInfoCount contains the number of attribute types the plug-in has placed in
the buffer pointed to by fOutDataBuff.

fOutAttrListRef
Value of type tAttributeListRef (page 86) assigned by the DirectoryService daemon and that
the plug-in associates with the internal structure the plug-in uses to maintain information about the
reference.

fOutContinueData
Value of type tContextData (page 87) that represents continuation data. If this is the first call in
what may be a series of calls for this value of fInNodeRef, the input value of fOutContinueData is
NULL. If all of the directory node information fits in the buffer pointed to by fOutDataBuff, the
plug-in sets fOutContinueData to NULL. If there is more information than can fit in the buffer, set
fOutContinueData to a plug-in–defined value.Your routine for processing sGetDirNodeInfo
structures will be called again, and the fOutContinueData field will contain the continuation data
that you previously returned to the client application. Therefore, the continuation data should be a
value that you can use to determine which directory node information to place in the data buffer the
next time your routine for processing sGetDirNodeInfo structures is called for this value of
fInNodeRef. You may want to include a timestamp in the continuation data and return an error if
you determine that fOutContinueData is out of date.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sGetDirNodeInfo
structure when an Open Directory client calls dsGetDirNodeInfo.

The plug-in uses the fInNodeRef field of the sGetDirNodeInfo structure to determine the directory node
for which information is requested, the data list pointed to by fInDirNodeInfoTypeList to determine
the type of information that is requested, and fInAttrInfoOnly to determine whether to also return
attribute values.

112 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

If the plug-in can get attribute information for the specified directory node, it puts the requested information
in the buffer pointed to by fOutDataBuff. If fOutDataBuff is too small to hold all of the information, the
plug-in sets fOutContinueData to a plug-in–defined value. If all of the information fits in the buffer, the
plug-in sets fOutDataBuff to NULL. Before returning, the plug-in sets fOutAttrInfoCount to the number
of attributes types that have been placed in the buffer.

If the plug-in cannot get the requested information, it sets fResult to an appropriate result code as described
in “Result Codes” (page 169), sets fOutContinueData to NULL, sets fOutAttrInfoCount to zero, and
returns.

sGetRecAttribInfo
Structure received when an Open Directory client calls dsGetRecordAttributeInfo.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReference fInRecRef;
 tDataNodePtr fInAttrType;
 tAttributeEntryPtr fOutAttrInfoPtr;
} sGetRecAttribInfo;

Fields
fType

Always kGetRecordAttributeInfo.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to get information about the attribute of the record referred to by fInRecRef. If an error occurs, the
plug-in sets fResult to a value listed in “Result Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) that represents the record for which information about
an attribute is to be obtained. The plug-in created the value of fInRecRef when it was called to
process a request to open the record.

fInAttrType
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the attribute type for which information is requested.

fOutAttrInfoPtr
Value of type tAttributeValueEntryPtr (page 86) that points to an tAttributeEntry (page
82) structure containing the requested attribute information.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sGetRecAttribInfo structure when an Open Directory client calls dsGetRecordAttributeInfo.

The plug-in uses the fInRecRef field of the sGetRecAttribInfo structure to determine the record for
which information about an attribute is to be obtained and the fInAttrType field to determine the attribute
type for which attribute information is to be obtained. The information includes the number of values the
attribute has, the total number of bytes the values use, the maximum size of a value for the specified attribute,
and the attribute’s unique signature.

If the plug-in can get the attribute information, it places the information in the attribute entry structure
pointed to by fOutAttrInfoPtr, sets fResult to eDSNoErr, and returns.

Data Types 113
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

If the plug-in cannot get the attribute’s information, it sets fResult to an appropriate result code as described
in “Result Codes” (page 169) and returns.

sGetRecordAttributeValueByID
Structure received when an Open Directory client calls dsGetRecordAttributeValueByID.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReference fInRecRef;
 tDataNodePtr fInAttrType;
 unsigned long fInAttrValueID;
 tAttributeValueEntryPtr fOutEntryPtr;
} sGetRecordAttributeValueByID;

Fields
fType

Always kGetRecordAttributeValueByID.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to get the value of the attribute. If an error occurs, the plug-in sets fResult to a value listed in “Result
Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) that represents the record for which an attribute value
is to be obtained. The plug-in created the value of fInRecRefwhen it was called to process a request
to open the record.

fInAttrType
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the type of attribute for which an attribute value is requested.

fInAttrValueID
Value of type unsigned long that specifies the attribute value ID of the attribute value that is to be
obtained.

fOutEntryPtr
Value of type tAttributeValueEntryPtr (page 86) that points to an
tAttributeValueEntry (page 83) structure in which the plug-in places the requested attribute
value.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sGetRecordAttributeValueByID structure when an Open Directory client calls
dsGetRecordAttributeValueByID to get the value of an attribute by it attribute value ID.

The plug-in uses the fInRecRef field of the sGetRecordAttributeValueByID structure to determine
the record for which the value of an attribute is to be obtained, the fInAttrType field to determine the
type of the attribute whose value is to be obtained, and the fInAttrValueID field to determine the ID of
the attribute value to get.

If the plug-in can get the specified attribute value, it places the value in the attribute value entry structure
pointed to by fOutEntryPtr, sets fResult to eDSNoErr, and returns.

114 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

If the plug-in cannot get the attribute’s value, it sets fResult to an appropriate result code as described in
“Result Codes” (page 169) and returns.

sGetRecordAttributeValueByIndex
Structure received when an Open Directory client calls dsGetRecordAttributeValueByIndex.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReference fInRecRef;
 tDataNodePtr fInAttrType;
 unsigned long fInAttrValueIndex;
 tAttributeValueEntryPtr fOutEntryPtr;
} sGetRecordAttributeValueByIndex;

Fields
fType

Always kGetRecordAttributeValueByIndex.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to get the value of the attribute. If an error occurs, the plug-in sets fResult to a value listed in “Result
Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) that represents the record whose attribute value is to
be obtained. The plug-in created the value of fInRecRef when it was called to process a request to
open the record.

fInAttrType
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the type of the attribute whose value is requested.

fInAttrValueIndex
Value of type unsigned long that specifies the attribute for which information is to be obtained,
using a one-based index.

fOutEntryPtr
Value of type tAttributeValueEntryPtr (page 86) that points to an
tAttributeValueEntry (page 83) in which the plug-in is to place the attribute’s value.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sGetRecordAttributeValueByIndex structure when an Open Directory client calls
dsGetRecordAttributeValueByIndex to get the value of an attribute by its attribute index.

The plug-in uses the fInRecRef field of the sGetRecordAttributeValueByIndex structure to determine
the record for which the value of an attribute is to be obtained, the fInAttrType field to determine the
type of the attribute whose value is to be obtained, and the fInAttrValueIndex field to determine which
attribute value to obtain.

If the plug-in can get the specified attribute value, it places the value in the attribute value entry structure
pointed to by fOutEntryPtr, sets fResult to eDSNoErr, and returns.

If the plug-in cannot get the attribute’s value, it sets fResult to an appropriate result code as described in
“Result Codes” (page 169) and returns.

Data Types 115
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

sGetRecordAttributeValueByValue
Structure received when an Open Directory client calls dsGetRecordAttributeValueByValue.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReference fInRecRef;
 tDataNodePtr fInAttrType;
 tDataNodePtr fInAttrValue;
 tAttributeValueEntryPtr fOutEntryPtr;
} sGetRecordAttributeValueByValue;

Fields
fType

Always kGetRecordAttributeValueByValue.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to get the value of the attribute. If an error occurs, the plug-in sets fResult to a value listed in “Result
Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) that represents the record whose attribute value is to
be obtained. The plug-in created the value of fInRecRef when it was called to process a request to
open the record.

fInAttrType
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the type of the attribute whose value is requested.

fInAttrValue
Value of type tDataNodePtr (page 88) that specifies the value that is to be obtained.

fOutEntryPtr
Value of type tAttributeValueEntryPtr (page 86) that points to an
tAttributeValueEntry (page 83) in which the plug-in is to place the attribute’s value.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sGetRecordAttributeValueByValue structure when an Open Directory client calls
dsGetRecordAttributeValueByValue to get the value of an attribute by its value.

The plug-in uses the fInRecRef field of the sGetRecordAttributeValueByValue structure to determine
the record for which the value of an attribute is to be obtained, the fInAttrType field to determine the
type of the attribute whose value is to be obtained, and the fInAttrValue field to determine which attribute
value to obtain.

If the plug-in can get the specified attribute value, it places the value in the attribute value entry structure
pointed to by fOutEntryPtr, sets fResult to eDSNoErr, and returns.

If the plug-in cannot get the attribute’s value, it sets fResult to an appropriate result code as described in
“Result Codes” (page 169) and returns.

sGetRecordEntry
Structure received when an Open Directory client calls dsGetRecordEntry.

116 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReference fInNodeRef;
 tDataBufferPtr fInOutDataBuff;
 unsigned long fInRecEntryIndex;
 tAttributeListRef fOutAttrListRef;
 tRecordEntryPtr fOutRecEntryPtr;
} sGetRecordEntry;

Fields
fType

Always kGetRecordEntry.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to get the record entries for the directory node identified by fInNodeRef. If an error occurs, the
plug-in sets fResult to a value listed in “Result Codes” (page 169).

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node for which the record
entry is to be obtained. The directory node reference was created when the client application opened
the directory node.

fInOutDataBuff
Value of type tDataBufferPtr (page 87) that points to the tDataBuffer (page 84) structure from
which the record entry is to be obtained.

fInRecEntryIndex
Value of type unsigned long that specifies the record to get. The fInRecEntryIndex field contains
a value that is a one-based index.

fOutAttrListRef
Value of type tAttributeListRef (page 86) assigned by the DirectoryService daemon and that
the plug-in associates with the internal structure the plug-in uses to maintain information about the
reference.

fOutRecEntryPtr
Value of type tRecordEntryPtr (page 89) that points to a tRecordEntry (page 85) structure
containing the requested record.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sGetRecordEntry
structure when an Open Directory client calls dsGetRecordEntry to get information about a record.

The plug-in gets information about the record from the buffer pointed to by fInOutDataBuff. The record
information consists of the record’s name, type, and number of attributes. The buffer pointed to by
fInOutDataBuff was previously filled in by the plug-in when the plug-in’s ProcessRequest routine
responded to the receipt of an sGetRecordList structure.

The plug-in verifies that the directory node reference provided in the fInNodeRef field is valid. If the directory
node reference is valid, the plug-in uses the fInRecEntryIndex field to determine the record for which
record information is to be obtained, places the information in the record entry structure pointed to by the
fOutRecEntryPtr field, and places the record’s attribute information in the attribute list referred to by
tOutAttrListRef. Before returning, the plug-in sets fResult to eDSNoErr.

If the plug-in cannot get the requested information, it sets fResult to an appropriate result code as described
in “Result Codes” (page 169) and returns.

Data Types 117
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

For information on parsing the data buffer, see the section “Client Side Buffer Parsing” in Chapter 1.

sGetRecordList
Structure called when an Open Directory client calls dsGetRecordList.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReference fInNodeRef;
 tDataBufferPtr fInDataBuff;
 tDataListPtr fInRecNameList;
 tDirPatternMatch fInPatternMatch;
 tDataListPtr fInRecTypeList;
 tDataListPtr fInAttribTypeList;
 bool fInAttribInfoOnly;
 unsigned long fOutRecEntryCount;
 tContextData fIOContinueData;
} sGetRecordList;

Fields
fType

Always kGetRecordList.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to get the requested list of records for the node identified by fInNodeRef. If an error occurs, the
plug-in sets fResult to a value listed in “Result Codes” (page 169). If no matches are found, the plug-in
should set fResult to eDSNoErr, fOutRecEntryCount to zero, and fIOContinueData to NULL.

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node for which the record
list is to be obtained. The directory node reference was created when the client application opened
the directory node.

fInDataBuff
Value of type tDataBufferPtr (page 87) pointing to the tDataBuffer (page 84) structure in
which the plug-in is to return the record list.

fInRecNameList
Value of type tDataListPtr (page 87) that points to a tDataList (page 84) structure containing
patterns in UTF-8 encoding that are to be compared with record names. If fInRecNameList is
kDSRecordsAll, the plug-in should ignore fInPatternMatch and include all records for the directory
node identified by fInNodeRef.

fInPatternMatch
Value of type tDirPatternMatch that describes the way in which the patterns specified by
fInRecNameList are to be compared. See Pattern Matching Constants (page 137) for possible
constants. The pattern match type may also be a type defined by the Open Directory plug-in that
handles the directory system represented by inDirReference.

fInRecTypeList
Value of type tDataListPtr (page 87) that points to atDataList (page 84) structure containing
the types of records to get. See Standard Record Types (page 143) and Meta Record Type
Constants (page 142) for possible values.

118 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fInAttribTypeList
Value of type tDataListPtr (page 87) that points to a tDataList (page 84) structure containing
the attribute types of records to get. See the attribute constants described in the “Constants” (page
129) section for possible values.

fInAttribInfoOnly
Value of type bool. If fInAttribInfoOnly is TRUE, the plug-in should include in the buffer pointed
to by fInDataBuff attribute information for matching records. If fInAttribInfoOnly is FALSE,
the plug-in should include in the buffer pointed to by fInDataBuff attribute information as well as
attribute values for matching records.

fOutRecEntryCount
Value of type unsigned long. The first time the client application calls dsGetRecordList,
fOutRecEntryCount is zero to receive all matching records or is a positive integer value that specifies
the total number of records the client application wants to receive across what may be a series of
dsGetRecordList calls. If the latter, the plug-in should use the initial input value of
fOutRecEntryCount to limit the total number of matching records it returns. Before returning, the
plug-in should set fOutRecEntryCount to the number of records it has placed in the buffer pointed
to by fInDataBuff. The plug-in should ignore the input value of fOutRecEntryCount whenever
it is processing a sGetRecordList structure that has an fIOContinueData field that is not NULL.

fIOContinueData
Value of type tContextData (page 87) containing continuation data. For the first in a series of calls
to dsGetRecordList, the input value is NULL. If the plug-in can store all of the matching records in
the buffer pointed to by fInDataBuff, it sets fIOContinueData to NULL before returning. If there
more records than can be stored in the buffer, the plug-in stores as much data as possible and sets
fIOContinueData to a plug-in–defined value that the plug-in can use when the client application
calls dsGetRecordList again to get another buffer of data. You may want to include a timestamp
in the continuation data and return an error if you determine that fOutContinueData is out of date.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sGetRecordList
structure when an Open Directory client calls dsGetRecordList to get a list of records for a directory node.

The plug-in uses the fInNodeRef field of the sGetRecordList structure to determine the directory node
for which the record list is requested, the data list pointed to by fInRecNameList to get the names of records
for which information is requested, the data list pointed to by fInRecTypeList to determine the types of
records for which information is requested, and the data list pointed to by fInAttributeTypeList to
determine the attributes for which information is requested. The plug-in should return only those records
whose names match the pattern specified by fInRecNameList. The value of the fInAttributeInfoOnly
field determines whether the plug-in should also return attribute values.

Depending on the size of the data buffer pointed to by fInDataBuff and the length of the list of records,
the plug-in’s routine for processing sGetRecordList structures may be called multiple times in order to
return the complete list. The first time the plug-in’s routine for processing sGetRecordList structures is
called, the input value of fIOContinueData is NULL and input value of fInOutRecEntryCount specifies
the total number of records that the plug-in should return even if the plug-in’s routine for processing
sGetRecordList structures must be called more than once.

If there are records that match the criteria specified by fInRecNameList, fInPatternMatch,
fInRecTypeList, and fInAttributeTypeList, plug-in puts the record entries, attribute entries, and
attribute values (if fInAttributeInfoOnly is FALSE) in the buffer pointed to by fInDataBuff. It also sets
fInOutRecEntryCount to the number of records that have been placed in fInDataBuff and sets fResult
to eDSNoErr. If the buffer pointed to by fInDataBuff is too small to hold all of the records, the plug-in

Data Types 119
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

sets fIOContinueData to a plug-in–defined value that the plug-in can use when the client application calls
dsGetRecordList again to get another buffer of data. If the buffer pointed to by fInDataBuff contains
all of the records or contains the last records in the record list, the plug-in sets fIOContinueData to NULL.

If the plug-in returns before it can get records to place in the buffer pointed to by fInDataBuff, it should
set fOutRecEntryCount to zero, set fResult to eDSNoErr, set fIOContinueData to a plug-in–defined
value that is not NULL. These settings indicate to the client application that it should call dsGetRecordList
again to get the records.

If there are no matching records, the plug-in sets fOutRecEntryCount to zero, fIOContinueData to NULL,
and fResult to eDSNoErr, and returns.

sGetRecRefInfo
Structure received when an Open Directory client calls dsGetRecordReferenceInfo.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReference fInRecRef;
 tRecordEntryPtr fOutRecInfo;
} sGetRecRefInfo;

Fields
fType

Always kGetRecordRefInfo.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to get information for the record reference specified by fInRecRef. If an error occurs, the plug-in
sets fResult to a value listed in “Result Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) that specifies the record for which information is to be
obtained. The plug-in created the value of fInRecRef when it was called to process a request to
open the record.

fOutRecInfo
Value of type tRecordEntryPtr (page 89) that points to a tRecordEntry (page 85) structure
containing the requested information.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sGetRecRefInfo
structure when an Open Directory client calls dsGetRecordReferenceInfo to get information about a
record.

The plug-in uses the fInRecRef field of the sGetRecRefInfo structure to determine the record for
information is to be obtained. The information consists of the record’s name, type, and the number of
attributes the record has.

If the plug-in can get the record’s information, it places the information in the record entry structure pointed
to by fOutRecInfo, sets fResult to eDSnoErr, and returns.

If the plug-in cannot get the record’s information, it sets fResult to an appropriate result code as described
in “Result Codes” (page 169) and returns.

120 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

sHeader
Structure for passing the DirectoryService daemon’s run loop and the Kerberos mutex.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tContextData fContextData;
} sHeader;

Fields
fType

kServerRunLoop or kKerberosMutex.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning. If an error occurs, the
plug-in sets fResult to a value listed in “Result Codes” (page 169).

fContextData
Value of type tContextData (page 87) containing the run loop or the Kerberos mutex.

Discussion
The DirectoryService daemon calls the plug-in’s ProcessRequest entry point once after the plug-in has
been loaded and initialized to pass in the fContextData field the CFRunloop for the currently executing
process. You can use the run loop to set up timers as an alternative to using the PeriodicTask entry point
for setting timers.

Here is an example that gets the run loop from the fContextData field:

if (((sHeader *)inData)->fType == kServerRunLoop)
{
 if ((((sHeader *)inData)->fContextData) != nil)
 {
 fServerRunLoop = (CFRunLoopRef)(((sHeader *)inData)->fContextData);
 }
}

The sHeader structure is also used to pass the Kerberos mutex, a value of type DSMutexSempaphore,
immediately after the run loop is passed.

sOpenDirNode
Structure received when an Open Directory client calls dsOpenDirNode.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirReference fInDirRef;
 tDataListPtr fInDirNodeName;
 tDirNodeReferencefOutNodeRef;
 uid_t fInUID;
 uid_t fInEffectiveUID;
} sOpenDirNode;

Fields
fType

Always kOpenDirNode.

Data Types 121
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to open the directory node specified by fInDirNodeName. If an error occurs, the plug-in sets fResult
to a value listed in “Result Codes” (page 169).

fInDirRef
Value of type tDirReference (page 89) that was created when the client application opened the
Open Directory session for which this directory node is to be opened.

fInDirNodeName
Value of type tDataListPtr (page 87) pointing to a tDataList (page 84) structure containing
the name of the directory node that is to be opened.

fOutNodeRef
Value of type tDirNodeReference (page 89) assigned by the DirectoryService daemon and that
the plug-in associates with the internal structure the plug-in uses to maintain information about the
reference.

fInUID
Value of type uid_t containing the UID of the calling process. Your plug-in can use the value of
fInUID and fInEffectiveUID to determine whether to allow a process to perform certain activities
without requiring authentication.

fInEffectiveUID
Value of type uid_t containing the effective UID of the calling process. Your plug-in can use the value
of fInEffectiveUID and fInUID to determine whether to allow a process to perform certain
activities without requiring authentication.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sOpenDirNode
structure when an Open Directory client calls dsOpenDirNode to open a directory node.

The plug-in uses the fInDirNodeName field to determine the name of the directory node to open.

If the plug-in can open the specified directory node, it sets fResult to eDSNoErr and returns.

If the plug-in cannot open the directory node or if the Open Directory reference is invalid, the plug-in sets
fResult to an appropriate result code as described in “Result Codes” (page 169) and returns.

sOpenRecord
Structure received when an Open Directory client calls dsOpenRecord.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirNodeReference fInNodeRef;
 tDataNodePtr fInRecType;
 tDataNodePtr fInRecName;
 tRecordReference fOutRecRef;
} sOpenRecord;

Fields
fType

Always kOpenRecord.

122 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to open the specified record. If an error occurs, the plug-in sets fResult to a value listed in “Result
Codes” (page 169).

fInNodeRef
Value of type tDirNodeReference (page 89) that identifies the directory node of the record that
is to be opened. The directory node reference was created when the client application opened the
directory node.

fInRecType
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the type of the record that is to be opened.

fInRecName
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the name of the record that is to be opened.

fOutRecRef
Value of type tRecordReference (page 89) assigned by the DirectoryService daemon and that the
plug-in associates with the internal structure the plug-in uses to maintain information about the
reference.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sOpenRecord
structure when an Open Directory client calls dsOpenRecord.

The plug-in uses the fInNodeRef field of the sOpenRecord structure to determine the directory node of
the record that is to be opened, the fInRecType field to determine the type of the record that this is to be
opened, and the fInRecName field to determine the name of the record that is to be opened.

If the plug-in can open the record, it sets fResult to eDSNoErr, and returns. Later, when the client application
calls Open Directory functions that operate on the opened record, the record reference will be passed to the
plug-in, which should use the record reference to identify the record.

If the plug-in cannot open the record, it should set fResult to an appropriate result code as described in
“Result Codes” (page 169) and return.

sReleaseContinueData
Structure received when an Open Directory client calls dsReleaseContinueData.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tDirReference fInDirReference;
 tContextData fInContinueData;
} sReleaseContinueData;

Fields
fType

Always kReleaseContinueData.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to deallocate the memory associated with fInContinueData. If an error occurs, the plug-in set
fResult to a value listed in “Result Codes” (page 169).

Data Types 123
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fInDirReference
Value of type tDirReference (page 89) or of type tDirNodeReference (page 89), depending on
the type of reference that was used in the call that created the continue data that is to be released.

fInContinueData
Value of type tContextData (page 87) that points to memory that is to be released.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sReleaseContinueData structure when an Open Directory client calls dsReleaseContinueData.

The plug-in deallocates the memory associated with fInContinueData, sets fResult to eDSNoErr, and
returns.

If the plug-in cannot deallocate the memory associated with fInContinueData, it sets fResult to an
appropriate result code as described in “Result Codes” (page 169) and returns.

sRemoveAttribute
Structure received when an Open Directory client calls dsRemoveAttribute.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReferencefInRecRef;
 tDataNodePtr fInAttribute;
} sRemoveAttribute;

Fields
fType

Always kRemoveAttribute.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to remove the attribute. If an error occurs, the plug-in sets fResult to a value listed in “Result
Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) representing the record from which the attribute is to
be removed.

fInAttribute
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the name of the attribute that is to be removed.

Discussion
The DirectoryService daemon calls a plug-in’sProcessRequest entry point and passes ansRemoveAttribute
structure when an Open Directory client calls dsRemoveAttribute to remove an attribute from a record.

The plug-in uses the fInRecRef field of the sRemoveAttribute structure to determine the record from
which an attribute is to be removed and the fInAttribute field to determine the name of the attribute
that is to be removed.

If the plug-in can remove the attribute, it removes the attribute and all of its values, invalidates any attribute
list references that may be active for this attribute, sets fResult to eDSNoErr, and returns. After returning,
the plug-in responds with an error to any calls of its ProcessRequest entry point that provide a pointers
to an attribute entry structure or an attribute value entry structure for the removed attribute.

124 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

If the plug-in cannot remove the attribute, it sets fResult to an appropriate result code as described in
“Result Codes” (page 169) and returns.

sRemoveAttributeValue
Structure received when an Open Directory client calls dsRemoveAttributeValue.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReference fInRecRef;
 tDataNodePtr fInAttrType;
 unsigned long fInAttrValueID;
} sRemoveAttributeValue;

Fields
fType

Always kRemoveAttributeValue.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to remove the value from the attribute. If an error occurs, the plug-in sets fResult to a value listed
in “Result Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) representing the record for which a value is to be
removed to an attribute.

fInAttrType
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the type the attribute from which a value is to be removed.

fInAttrValueID
Value of type unsigned long that specifies the ID of the value that is to be removed.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sRemoveAttributeValue structure when an Open Directory client calls dsRemoveAttributeValue to
remove a value from an attribute.

The plug-in uses the fInRecRef field of the sRemoveAttributeValue structure to determine the record
for which a value is to be removed from an attribute, the fInAttrType field to determine the type of the
attribute from which a value is to be removed, and the fInAttrValueID field to determine which attribute
value to remove.

If the plug-in can remove the specified value from the specified attribute, it removes the attribute, invalidates
any attribute value list references for the removed value, sets fResult to eDSNoErr, and returns. After
returning, the plug-in responds with an error to any calls of its ProcessRequest entry point that provide a
pointer to an attribute value entry structure for the removed attribute value.

If the plug-in cannot add the attribute value, it sets fResult to an appropriate result code as described in
“Result Codes” (page 169) and returns.

Data Types 125
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

sSetAttributeValue
Structure received when an Open Directory client calls dsSetAttributeValue.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReference fInRecRef;
 tDataNodePtr fInAttrType;
 tAttributeValueEntryPtr fInAttrValueEntry;
} sSetAttributeValue;

Fields
fType

Always kSetAttributeValue.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to set the specified value in the attribute. If an error occurs, the plug-in sets fResult to a value listed
in “Result Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) representing the record for which a value is to be set
in an attribute. The record reference was created when the plug-in processed an sOpenRecord (page
122) structure.

fInAttrType
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the type the attribute whose value is to be set.

fInAttrValueEntry
Value of type tAttributeValueEntryPtr (page 86) that points to a tAttributeValueEntry (page
83) structure containing the value that is to be set and its attribute value ID.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sSetAttributeValue structure when an Open Directory client calls dsSetAttributeValue to set an
attribute’s value.

The plug-in uses the fInRecRef field of the sSetAttributeValue structure to determine the record for
which an attribute value is to be set and the fInAttrType field to determine the type of the attribute whose
value is to be set. The fInAttrValueEntry field contains a pointer to a tAttributeValueEntry (page
83) structure whose fAttributeValueID field identifies which value is to be replaced and whose
fAttributeValueData field contains the new value.

If the plug-in can set the attribute value, it sets the value, sets fResult to eDSNoErr, and returns.

If the plug-in cannot set the attribute value, it sets fResult to an appropriate result code as described in
“Result Codes” (page 169) and returns.

sSetAttributeValues
Structure received when an Open Directory client calls dsSetAttributeValues.

126 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReference fInRecRef;
 tDataNodePtr fInAttrType;
 tDataListPtr fInAttrValueList;
} sSetAttributeValues;

Fields
fType

Always kSetAttributeValues.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to set the specified value in the attribute. If an error occurs, the plug-in sets fResult to a value listed
in “Result Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) representing the record for which a value is to be set
in an attribute. The record reference was created when the plug-in processed an sOpenRecord (page
122) structure.

fInAttrType
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the type the attribute whose value is to be set.

fInAttrValueList
Value of type tAttributeValueEntryPtr (page 86) that points to a tAttributeValueEntry (page
83) structure containing the attribute ID of the attribute whose values are to be replaced and a list
of the replacement values.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an
sSetAttributeValues structure when an Open Directory client calls dsSetAttributeValues to replace
multiple values for the specified attribute. If the attribute does not exist, the plug-in creates the attribute
and sets it to the values specified by fInAttrValueList.

The plug-in uses the fInRecRef field of the sSetAttributeValues structure to determine the record for
which an attribute value is to be set and the fInAttrType field to determine the type of the attribute for
which values are to be set. The fInAttrValueList field points to a tDataList (page 84) structure
containing a list of values that are to be set for the attribute.

If the plug-in can set the attribute values, it sets the values, sets fResult to eDSNoErr, and returns.

If the plug-in cannot set the attribute values, it sets fResult to an appropriate result code as described in
“Result Codes” (page 169) and returns.

sSetRecordName
Structure received when an Open Directory client calls dsSetRecordName.

Data Types 127
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReferencefInRecRef;
 tDataNodePtr fInNewRecName;
} sSetRecordName;

Fields
fType

Always kSetRecordName.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to set the record’s name. If an error occurs, the plug-in sets fResult to a value listed in “Result
Codes” (page 169).

fInRecRef
Value of type tRecordReference (page 89) representing the record whose name is to be set. The
plug-in created the value of fInRecRef when it was called to process a request to open the record.

fInNewRecName
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the name in UTF-8 encoding that is to be set.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sSetRecordName
structure when an Open Directory client calls dsSetRecordName to set the name of a record.

The plug-in uses the fInRecRef field of the sSetRecordName structure to determine the record whose
name is to be set.

If the plug-in can set the new name, it sets the new name, sets fResult to eDSNoErr, and returns.

If the plug-in cannot set the new name, it sets fResult to an appropriate result code as described in “Result
Codes” (page 169) and returns.

sSetRecordType
Structure received when an Open Directory client application calls dsSetRecordType.

typedef struct {
 uInt32 fType;
 sInt32 fResult;
 tRecordReference fInRecRef;
 tDataNodePtr fInNewRecType;
} sSetRecordType;

Fields
fType

Always kSetRecordType.

fResult
Value of type sInt32 that the plug-in sets to eDSNoErr before returning to indicate that it was able
to set the record’s type. If an error occurs, the plug-in sets fResult to a value listed in “Result
Codes” (page 169).

128 Data Types
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

fInRecRef
Value of type tRecordReference (page 89) representing the record whose type is to be set. The
plug-in created the value of fInRecRef when it was called to process a request to open the record.

fInNewRecType
Value of type tDataNodePtr (page 88) that points to a tDataNode (page 88) structure containing
the type that is to be set.

Discussion
The DirectoryService daemon calls a plug-in’s ProcessRequest entry point and passes an sSetRecordType
structure when an Open Directory client calls dsSetRecordType to set a record’s type.

The plug-in uses the fInRecRef field of the sSetRecordType structure to determine the record whose
type is to be set.

If the plug-in can set the new type, it sets the record to the new type, sets fResult to eDSNoErr, and
returns.

If the plug-in cannot set the new type, it sets fResult to an appropriate result code as described in “Result
Codes” (page 169) and returns.

Note that this structure is deprecated in Mac OS X 10.3 and later and is not supported on LDAP.

Constants

Authentication Constants
Authentication constants.

#define kDSStdAuthMethodPrefix "dsAuthMethodStandard:"
#define kDSNativeAuthMethodPrefix "dsAuthMethodNative:"
#define kDSSetPasswordBestOf "dsSetPasswdBestOf"
#define kDSValueAuthAuthorityDefault "kDSValueAuthAuthorityBasic"
#define kDSValueAuthAuthorityBasic ";basic;"
#define kDSTagAuthorityBasic ";basic;"
#define kDSValueAuthAuthorityLocalWindowsHash ";LocalWindowsHash;"
#define kDSTagAuthAuthorityLocalWindowsHash "LocalWindowsHash"
#define kDSValueAuthAuthorityShadowHash ";ShadowHash;"
#define kDSTagAuthAuthoridyShadowHash "ShadowHash"
#define kDSTagAuthAuthorityBetterHashOnly "BetterHashOnly"
#define kDSValueAuthAuthorityPasswordServerPrefix ";ApplePasswordServer;"
#define kDSTagAuthAuthorityPasswordServer "ApplePasswordServer"
#define kDSValueAuthAuthorityKerberosv5 ";Kerberosv5;"
#define kDSTagAuthAuthorityKerberosv5 "Kerberosvr5"
#define kDSValueAuthAuthorityLocalCachedUser ";LocalCachedUser;"
#define kDSTagAuthAuthorityLocalCachedUser "LocalCachedUser"
#define kDSValueAuthAuthorityDisabledUser ";DisabledUser;"
#define kDSTagAuthAuthorityDisabledUser "DisabledUser"
#define kDSValueNonCryptPasswordMarker "********"

Constants
kDSStdAuthMethodPrefix

Prefix defined for standard authentication methods.

Constants 129
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSNativeAuthMethodPrefix
Prefix defined for native authentication methods.

kDSSetPasswdBestOf
Not used; retained for backward compatibility only.

kDSValueAuthAuthorityDefault
The default value to use for the kDSNAttrAuthenticationAuthority attribute. Set this attribute
before creating a user record. By default, the value of this attribute is kDSValueAuthAuthorityBasic.

kDSValueAuthAuthorityBasic
Standard authentication authority value for basic (crypt) authentication.

kDSTagAuthAuthorityBasic
Standard center tag data of the authentication authority value for basic (crypt) authentication.

Available in Mac OS X v10.2 and later.

kDSValueAuthAuthorityLocalWindowsHash
Standard authentication authority value for Local Windows Hash authentication; retained for backward
compatibility only.

kDSTagAuthAuthorityLocalWindowsHash
Standard center tag data of the authentication authority value for Local Windows Hash authentication.
Available in Mac OS X v10.2 and later but retained for backward compatibility only in Mac OS X v10.3
and later.

kDSValueAuthAuthorityShadowHash
Standard authentication authority value for ShadowHash authentication.

Available in Mac OS X v10.2 and later.

kDSTagAuthAuthorityShadowHash
Standard center tag data of the authentication authority value for ShadowHash authentication.

Available in Mac OS X v10.3 and later.

kDSTagAuthAuthorityBetterHashOnly
Used as authentication authority data with Shadow Hash authentication authority. Available in Mac
OS X v10.3 and later. Superseded in Mac OX X version 10.4 by specifying customized hash lists. For
details, see the section “Shadow Hash Authentication” in Chapter 1, “Concepts.”

kDSValueAuthAuthorityPasswordServerPrefix
Standard authentication authority value for Apple Password Server authentication.

kDSTagAuthAuthorityPasswordServer
Standard center tag data of the authentication authority value for Apple Password Server
authentication.

Available in Mac OS X v10.3 and later.

kDSValueAuthAuthorityKerberosv5
Standard authentication authority value for Kerberos version 5 authentication.

Available in Mac OS X v10.3 and later.

kDSTagAuthAuthorityKerberosv5
Tag form of the Kerberos version 5 authentication type.

Available in Mac OS X v10.3 and later.

kDSValueAuthAuthorityLocalCachedUser
Standard authentication authority value for Local Cached User authentication.

Available in Mac OS X v10.3 and later.

130 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSTagAuthAuthorityLocalCachedUser
Standard center tag data of the authentication authority value for Local Cached User authentication.

Available in Mac OS X v10.3 and later.

kDSValueAuthAuthorityDisabledUser
Standard authentication authority value for Disabled User authentication.

Available in Mac OS X v10.2 and later.

kDSTagAuthAuthorityDisabledUser
Standard center tag data of the authentication authority value for Disabled User authentication.

Available in Mac OS X v10.2 and later.

kDSValueNonCryptPasswordMarker
Marker used for password attribute value to indicate non-crypt authentication.

Declared In
DirectoryService/DirServicesConst.h

Authentication Methods
Constants defined for authentication methods.

Constants 131
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDSStdAuth2WayRandom "dsAuthMethodStandard:dsAuth2WayRandom"
#define kDSStdAuth2WayRandomChangePasswd
"dsAuthMethodStandard:dsAuth2WayRandomChangePasswd"
#define kDSStdAuthAPOP "dsAuthMethodStandard:dsAuthAPOP"
#define kDSStdAuthCHAP "dsAuthMethodStandard:dsAuthCHAP"
#define kDSStdAuthCRAM_MD5 "dsAuthMethodStandard:dsAuthNodeCRAM-MD5"
#define kDSStdAuthChangePasswd "dsAuthMethodStandard:dsAuthChangePasswd"
#define kDSStdAuthClearText "dsAuthMethodStandard:dsAuthClearText"
#define kDSStdAuthCrypt "dsAuthMethodStandard:dsAuthCrypt"
#define kDSStdAuthDIGEST_MD5 "dsAuthMethodStandard:dsAuthNodeDIGEST-MD5"
#define kDSStdAuthDeleteUser "dsAuthMethodStandard:dsAuthDeleteUser"
#define kDSStdAuthGetEffectivePolicy "dsAuthMethodStandard:dsAuthGetEffectivePolicy"
#define kDSStdAuthGetGlobalPolicy "dsAuthMethodStandard:dsAuthGetGlobalPolicy"
#define kDSStdAuthGetKerberosPrincipal
"dsAuthMethodStandard:dsAuthGetKerberosPrincipal"
#define kDSStdAuthGetPolicy "dsAuthMethodStandard:dsAuthGetPolicy"
#define kDSStdAuthGetUserData "dsAuthMethodStandard:dsAuthGetUserData"
#define kDSStdAuthGetUserName "dsAuthMethodStandard:dsAuthGetUserName"
#define kDSStdAuthMASKE_A "dsAuthMethodStandard:dsAuthMASKE-A"
#define kDSStdAuthMASKE_B "dsAuthMethodStandard:dsAuthMASKE-B"
#define kDSStdAuthMPPEMasterKeys "dsAuthMethodsStandard:dsAuthMPPEMasterKeys"
#define kDSStdAuthMSCHAP1 "dsAuthMethodStandard:dsAuthMSCHAP1"
#define kDSStdAuthMSCHAP2 "dsAuthMethodStandard:dsAuthMSCHAP2"
#define kDSStdAuthNTLMv2 "dsAuthMethodsStandard:dsAuthNodeNTLMv2"
#define kDSStdAuthNewUser "dsAuthMethodStandard:dsAuthNewUser"
#define kDSStdAuthNewUserWithPolicy "dsAuthMethodsStandard:dsAuthNewUserWithPolicy"
#define kDSStdAuthNodeNativeClearTextOK
"dsAuthMethodStandard:dsAuthNodeNativeCanUseClearText"
#define kDSStdAuthNodeNativeNoClearText
"dsAuthMethodStandard:dsAuthNodeNativeCannotUseClearText"
#define kDSStdAuthReadSecureHash "dsAuthMethodStandard:dsAuthReadSecureHash"
#define kDSStdAuthSMBWorkStationCredentialSessionKey
"dsAuthMethodStandard:dsAuthSMBWorkStationCredentialSessionKey"
#define kDSStdAuthSMB_LM_Key "dsAuthMethodStandard:dsAuthSMBLMKey"
#define kDSStdAuthSMB_NT_Key "dsAuthMethodStandard:dsAuthSMBNTKey"
#define kDSStdAuthSMB_NT_UserSessionKey
"dsAuthMethodStandard:dsAuthSMBNTUserSessionKey"
#define kDSStdAuthSecureHash "dsAuthMethodStandard:dsAuthSecureHash"
#define kDSStdAuthSetGlobalPolicy "dsAuthMethodStandard:dsAuthSetGlobalPolicy"
#define kDSStdAuthSetLMHash "dsAuthMethodsStandard:dsAuthSetLMHash"
#define kDSStdAuthSetNTHash "dsAuthMethodsStandard:dsAuthSetNTHash"
#define kDSStdAuthSetPasswd "dsAuthMethodStandard:dsAuthSetPasswd"
#define kDSStdAuthSetPasswdAsRoot "dsAuthMethodStandard:dsAuthSetPasswdAsRoot"
#define kDSStdAuthSetPolicy "dsAuthMethodStandard:dsAuthSetPolicy"
#define kDSStdAuthSetPolicyAsRoot "dsAuthMethodStandard:dsAuthSetPolicyAsRoot"
#define kDSStdAuthSetUserData "dsAuthMethodStandard:dsAuthSetUserData"
#define kDSStdAuthSetUserName "dsAuthMethodStandard:dsAuthSetUserName"
#define kDSStdAuthSetWorkStationPasswd
"dsAuthMethodStandard:dsAuthSetWorkstationPasswd"
#define kDSStdAuthWithAuthorizationRef
"dsAuthMethodStandard:dsAuthWithAuthorizationRef"
#define kDSStdAuthWriteSecureHash "dsAuthMethodStandard:dsAuthWriteSecureHash"

Constants
kDSStdAuth2WayRandom

Two-way random authentication method. Deprecated in Mac OS X v10.3.

132 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSStdAuth2WayRandomChangePasswd
Authentication method for changing the password of a user using the two-way random authentication
method. Use of this authentication method does not require prior authentication. The packed buffer
consists of a four byte length of username, the UTF-8 encoded user name, followed by four bytes
specifying the length of the old password that follows, followed by the old password encrypted with
the new password, followed by four bytes specifying the length of the new password, followed by
the new password encrypted by the old password. Deprecated in Mac OS X v10.3.

kDSStdAuthAPOP
APOP authentication method.

kDSStdAuthCHAP
CHAP authentication.

Available in Mac OS X v10.3 and later.

kDSStdAuthCRAM_MD5
CRAM MD5 authentication method.

kDSStdAuthChangePasswd
Authentication method for changing passwords. When changing a password, send the following
information in a single buffer: four bytes containing the length of the user name, the user name in
UTF-8 encoding, four bytes containing the length of the old password, the old password in UTF-8
encoding, four bytes containing the length of the new password, and the new password in UTF-8
encoding.

kDSStdAuthClearText
Clear text authentication method.

kDSStdAuthCrypt
Crypt password authentication method. When performing crypt authentication, send the following
information in a single buffer: four bytes containing the length of the user name, the user name in
UTF-8 encoding, four bytes containing the length of the password, and the password in UTF-8 encoding.
Open Directory plug-ins are not required to support this authentication method.

kDSStdAuthDIGEST_MD5
Digest MD5 authentication method.

kDSStdAuthDeleteUser
Authentication method used by the Apple Password Server for deleting a user.

kDSStdAuthGetEffectivePolicy
Used to extract from an Apple Password Server the combination of global and user policies that will
be applied to a user.

Available in Mac OS X v10.3 and later.

kDSStdAuthGetGlobalPolicy
Authentication method used by the Apple Password Server plug-in for getting the global password
policy.

kDSStdAuthGetKerberosPrincipal
Authentication method for getting the Kerberos Principal name.

Available in Mac OS X v10.3 and later.

Constants 133
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSStdAuthGetPolicy
The Open Directory plug-in determines which authentication method to use. Prior to Mac OS X v10.4,
this authentication method was used only by the Apple Password Server, which does not require
authentication to use this authentication method. Starting with Mac OX X version 10.4, Shadow Hash
authentication supports password policies, so use of kDSStdAuthGetPolicy is no longer limited to
the Apple Password Server. Send the following items in a single buffer: four bytes containing the
length of the authenticator’s UserID, the authenticator’s UserID in UTF-8 encoding, four bytes containing
the length of the authenticator’s password, the authenticator’s password in UTF-8 encoding, four
bytes containing the length of the UserID that follows, and the UserID in UTF-8 encoding of the
account for which policies are to be obtained. The first and second items can be empty strings and
the third item can be a username if calling a directory node. This authentication method is used by
the Apple Password Server, which does not require authentication to use this authentication method.

kDSStdAuthGetUserData
Authentication method used by the Apple Password Server for getting a user’s data.

kDSStdAuthGetUserName
Authentication method used by the Apple Password Server for getting a user’s name.

kDSStdAuthMASKE_A
Retained for backward compatibility only.

kDSStdAuthMASKE_B
Retained for backward compatibility only.

kDSStdAuthMPPEMasterKeys
40- or 128-bit master key generated from MS-CHAPv2 credentials (RFC 3079).

Available in Mac OS X v10.4 and later.

kDSStdAuthMSCHAP1
MS-CHAP1 authentication method.

Available in Mac OS X v10.3 and later.

kDSStdAuthMSCHAP2
MS-CHAP2, a mutual authentication method. The Open Directory plug-in generates the data and
sends it back to the client. The input buffer format consists of a four byte value specifying the length
of the user name that follows, the user name, a four byte value specifying the length of the server
challenge that follows, the server challenge, a four byte value specifying the length of the peer
challenge that follows, the peer challenge, a four byte value specifying the length of the client’s digest
that follows, and the client’s digest. The output buffer consists of a four byte value specifying the
length of the return digest for the client’s challenge.

kDSStdAuthNTLMv2
NTLMv2 session key packed as follows: 4 byte length of username, username in UTF-8 encoding, four
byte length of the Samba server challenge, the Samba server challenge, four byte length of the NTLMv2
client data, the client data (which includes 16 bytes of client digest prefixed to the client data), four
byte length of the user name used to calculate the digest, the user name used to calculate the digest
in UTF-8 encoding, four byte length of the Samba domain, and the Samba domain in UTF-8 encoding.
If the NTLMv2 session key is supported, it is returned in the output buffer.

Available in Mac OS X v10.4 and later.

kDSStdAuthNewUser
Create a new user record with an authentication authority. Send the following information in a single
buffer: four bytes containing the length of the authenticator’s UserID, the authenticator’s UserID in
UTF-8 encoding, four bytes containing the length of the authenticator’s password, the authenticator’s
password in UTF-8 encoding, four bytes containing the new user’s Short Name, the user’s Short Name,
four byte length of the new user’s password, and the new user’s password. This authentication type
is used by the Apple Password Server.

134 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSStdAuthNewUserWithPolicy
Create a new user record with an authentication authority and initial policy settings. Send the following
information in a single buffer: four bytes containing the length of the authenticator’s UserID, the
authenticator’s UserID in UTF-8 encoding, four bytes containing the length of the authenticator’s
password, the authenticator’s password in UTF-8 encoding, four bytes containing the new user’s Short
Name, the user’s Short Name, four byte length of the user’s password, the new user’s password, four
byte length of the policy string, and the policy string in UTF-8 encoding. This authentication type is
used by the Apple Password Server.

kDSStdAuthNodeNativeClearTextOK
Native authentication method that allows clear text passwords. The Open Directory plug-in determines
which authentication method to use and may decide to use clear text. When using this authentication
method, send the following information in a single buffer: four bytes containing the length of the
user name, the user name in UTF-8 encoding, four bytes containing the password, and the password
in UTF-8 encoding.

kDSStdAuthNodeNativeNoClearText
Native authentication method that does not allow clear text passwords. The Open Directory plug-in
determines which authentication method to use but must not use clear text. When using this
authentication method, send the following information in a single buffer: four bytes containing the
length of the user name, the user name in UTF-8 encoding, four bytes containing the password, and
the password in UTF-8 encoding.

kDSStdAuthReadSecureHash
Allows a root process to read the secure hash attribute of a user record directly.

Available in Mac OS X v10.3 and later.

kDSStdAuthSMBNTv2UserSessionKey
Used to generate an NTLMv2 user session key; requires prior authentication using a trusted
authentication method. The buffer is packed as follows: four byte length of the directory services
name, the directory services name in UTF-8 encoding, four byte length of the server challenge, eight
byte server challenge, four byte length of the client response, and the client response buffer.

Available in Mac OS X v10.4 and later.

kDSStdAuthSMBWorkstationCredentialSessionKey
SMB workstation credential session key authentication; used to support PDC SMB iteration with Open
Directory.

Available in Mac OS X v10.3 and later.

kDSStdAuthSMB_LM_Key
SMB LAN Manager authentication method that uses DES.

kDSStdAuthSMB_NT_Key
MD5 hash-based SMB authentication method.

kDSStdAuthSMB_NT_UserSessionKey
SMB NT session key authentication; used to support PDC SMB iteration with Open Directory.

Available in Mac OS X v10.3 and later.

kDSStdAuthSecureHash
Secure Hash authentication method.

Available in Mac OS X v10.3 and later.

kDSStdAuthSetGlobalPolicy
Authentication method used by the Apple Password Server plug-in for setting the global password
policy, such as the minimum password length, time before a password expires, and maximum number
of failed logins allowed. Starting with Mac OS X verion 10.4, this authentication method can also be
used with ShadowHash on local NetInfo data.

Constants 135
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSStdAuthSetLMHash
Used to set the LAN Manager hash for a user; requires prior authentication using a trusted
authentication method. The buffer is packed as follows: four byte length of the user name, the user
name in UTF-8 encoding, four byte length of the LAN Manager hash, and the LAN Manager hash
buffer (24 bytes).

Available in Mac OS X v10.4 and later.

kDSStdAuthSetNTHash
Used to set the NT hash for a user; requires prior authentication using a trusted authentication method.
The buffer is packed as follows: four byte length of the user name, the user name in UTF-8 encoding,
four byte length of the NT hash, and the NT hash buffer (24 bytes).

Available in Mac OS X v10.4 and later.

kDSStdAuthSetPasswd
Authentication method for setting passwords. The buffer is packed as follows: four byte length of the
authenticator username, an authenticator username in UTF-8 encoding, four byte length of the
authenticator password, authenticator password in UTF-8 encoding, four byte length of the target
username, target username in UTF-8 encoding, four byte length of the new password, and the new
password in UTF-8 encoding. The authenticator is usually an administrator that has permission to
change the target user’s password.

kDSStdAuthSetPasswdAsRoot
Authentication method used by root processes that allow the setting of passwords using Basic or
Shadow Hash authentication on local domains. This authentication method also works if you previously
called dsDoDirNodeAuth (page 41) or dsDoDirNodeAuthOnRecordType (page 43) and set the
inDirNodeAuthOnly or inDirNodeAuthOnlyFlag parameter, respectively, to FALSE. In this case,
your previous credentials determine whether the set password operation succeeds. For example,
administrators can usually set any user’s password because their credentials have saved by setting
the inDirNodeAuthOnly or inDirNoeAuthOnlyFlag parameter to FALSE.

kDSStdAuthSetPolicy
The Open Directory plug-in determines which authentication method to use. Send the following
information in a single buffer: four bytes containing the length of authenticator’s UserID, the
authenticator’s UserID in UTF-8 encoding, four bytes containing the length of the authenticator’s
password, the authenticator’s password in UTF-8 encoding, four bytes containing the length of the
UserID of the account that is setting policies, and the UserID of the account that is setting policies in
UTF-8 encoding. This authentication type is used by the Apple Password Server and, starting with
Mac OS X v10.4, can be used with ShadowHash on local NetInfo data.

kDSStdAuthSetPolicyAsRoot
A two-item buffer version of set policy for the Apple Password Server. Available in Mac OS X v10.3
and later. Starting with Mac OS X v10.4, this authentication method can be used with ShadowHash
on local NetInfo data.

kDSStdAuthSetUserData
Authentication method used by the Apple Password Server for setting user’s data.

kDSStdAuthSetUserName
Authentication method used by the Apple Password Server for setting a user’s name.

kDSStdAuthSetWorkstationPasswd
Authentication method used to set the workstation password; used to support PDC SMB iteration
with Open Directory.

Available in Mac OS X v10.3 and later.

136 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSStdAuthWithAuthorizationRef
Allows access to local directories as root with a valid AuthorizationRef. Input buffer format consists
of an externalized AuthorizationRef.

Available in Mac OS X v10.3 and later.

kDSStdAuthWriteSecureHash
Allows a root process to write the secure hash attribute of a user record directly.

Available in Mac OS X v10.3 and later.

Declared In
DirectoryService/DirServicesConst.h

Neighborhood Types
Constants defined for neighbor types.

#define kDSValueNSLTopLevelNeighborhoodType "NSLTopLevelNeighborhoodType"
#define kDSValueNSLStaticNeighborhoodType "NSLStaticNeighborhoodType"
#define kDSValueNSLDynamicNeighborhoodType "NSLDynamicNeighborhoodType"
#define kDSValueNSLLocalNeighborhoodType "NSLLocalNeighborhoodType"

Constants
kDSValueNSLTopLevelNeighborhoodType

Top level value type for records of type kDSStdRecordTypeNeighborhoods.

Available in Mac OS X v10.4 and later.

kDSValueNSLStaticNeighboodType
Static neighborhood value type for records of type kDSStdRecordTypeNeighborhoods.

Available in Mac OS X v10.4 and later.

kDSValueNSLDynamicNeighboodType
Dynamic neighborhood value type for records of type kDSStdRecordTypeNeighborhoods.

Available in Mac OS X v10.4 and later.

kDSValueNSLLocalNeighboodType
Local neighborhood value type for records of type kDSStdRecordTypeNeighborhoods.

Available in Mac OS X v10.4 and later.

Declared In
DirectoryService/DirServicesConst.h

Pattern Matching Constants
Constants defined for pattern matching.

Constants 137
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

typedef enum {
eDSNoMatch1 = 0x0000,
eDSAnyMatch = 0x0001,
eDSBeginAppleReserve1 = 0x0002,
eDSEndAppleReserve1 = 0x1fff,
eDSExact = 0x2001,
eDSStartsWith = 0x2002,
eDSEndsWith = 0x2003,
eDSContains = 0x2004,
eDSLessThan = 0x2005,
eDSGreaterThan = 0x2006,
eDSLessEqual = 0x2007,
eDSGreaterEqual = 0x2008,
eDSWildCardPattern = 0x2009,
eDSRegularExpression = 0x200A,
eDSCompoundExpression = 0x200B,
eDSiExact = 0x2101,
eDSiStartsWith = 0x2102,
eDSiEndsWith = 0x2103,
eDSiContains = 0x2104,
eDSiLessThan = 0x2105,
eDSiGreaterThan = 0x2106,
eDSiLessEqual = 0x2107,
eDSiGreaterEqual = 0x2108,
eDSiWildCardPattern = 0x2109,
eDSiRegularExpression = 0x210A,
eDSiCompoundExpression = 0x210B,
eDSLocalNodeNames = 0x2200,
eDSSearchNodeName = 0x2201,
eDSConfigNodeName = 0x2202,
eDSLocalHostedNodes = 0x2203,
eDSAuthenticationSearchNodeName = 0x2201,
eDSContactsSearchNodeName = 0x2204,
eDSNetworkSearchNodeName = 0x2205,
eDSDefaultNetworkNodes = 0x2206,
dDSBeginPlugInCustom = 0x3000,
eDSEndPlugInCustom = 0x4fff,
eDSBeginAppleReserve2 = 0x5000,
eDSEndAppleReserve2 = 0xfffe,
eDSNoMatch2 = 0xffff
} tDirPatternMatch;

Constants
eDSNoMatch1

Reserved.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSAnyMatch
Matches any value.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

138 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

eDSBeginAppleReserve1
Beginning of a range of values reserved for use by Apple Computer.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSEndAppleReserve1
End of a range of values reserved for use by Apple Computer.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSExact
Matches the specified value exactly (case sensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSStartsWith
Matches values that start with the specified value (case sensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSEndsWith
Matches values that end with the specified value (case sensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSContains
Matches values that contain the specified value (case sensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSLessThan
Matches values that are less than the specified value (case sensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSGreaterThan
Matches values that are greater than the specified value (case sensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSLessEqual
Matches values that are less than or equal to the specified value (case sensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSGreaterEqual
Matches values that are greater than or equal to the specified value (case sensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

Constants 139
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

eDSWildCardPattern
Matches values using the specified wild card pattern (case sensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSRegularExpression
Matches values using the specified regular expression (case sensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSCompoundExpression
Accommodates an attribute search based on a pre-built compound expression.

Available in Mac OS X v10.2 and later.

Declared in DirServicesTypes.h.

eDSiExact
Matches the specified value exactly (case insensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSiStartsWith
Matches values that start with the specified value (case insensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSiEndsWith
Matches values that end with the specified value (case insensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSiContains
Matches values that contain the specified value (case insensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSiLessThan
Matches values that are less than the specified value (case insensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSiGreaterThan
Matches values that are greater than the specified value (case insensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSiLessEqual
Matches values that are less than or equal to the specified value (case insensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

140 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

eDSiGreaterEqual
Matches values that are greater than or equal to the specified value (case insensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSiWildCardPattern
Matches values using the specified wild card pattern (case insensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSiRegularExpression
Matches values using the specified regular expression (case insensitive).

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSiCompoundExpression
Accommodates an attribute search based on a pre-built compound expression (case insensitive).

Available in Mac OS X v10.2 and later.

Declared in DirServicesTypes.h.

eDSLocalNodeNames
Matches the local node name.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSSearchNodeName
Matches the node name that is to be used to authenticate the Open Directory client.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSConfigNodeName
Matches the configuration node. Used primarily by the Directory Access application for configuration
purposes; not intended for use by developers.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSLocalHostedNodes
Matches NetInfo domains stored on this machine.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSAuthenticationSearchNodeName
Matches the node name that is to be used to authenticate an Open Directory client. (This is another
name for eDSSearchNodeName.)

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSContactsSearchNodeName
Matches the node name that is to be used for searching when authentication is not required; used
by Address Book and Mail applications.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

Constants 141
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

eDSNetworkSearchNodeName
Searches across all the nodes returned by eDSDefaultNetworkNodes.

Available in Mac OS X v10.2 and later.

Declared in DirServicesTypes.h.

eDSDefaultNetworkNodes
Matches the default network node.

Available in Mac OS X v10.2 and later.

Declared in DirServicesTypes.h.

dDSBeginPlugInCustom
Beginning of a range of values reserved for use by Open Directory plug-ins.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSEndPlugInCustom
End of a range of values reserved for use by Open Directory plug-ins.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSBeginAppleReserve2
Beginning of a range of values reserved for use by Apple Computer.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSEndAppleReserve2
End of a range of values reserved for use by Apple Computer.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

eDSNoMatch2
Reserved.

Available in Mac OS X v10.0 and later.

Declared in DirServicesTypes.h.

Discussion
The tDirPatternMatch enumeration defines constants for use with Open Directory functions that look for
pattern matches. A directory service is not required to support all types of pattern matching.

Declared In
DirectoryService/DirServicesTypes.h

Meta Record Type Constants
Constants defined to work with all records, standard records, or native records.

142 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDSRecordsAll "dsRecordsAll"
#define kDSRecordsStandardAll "dsRecordsStandardAll"
#define kDSRecordsNativeAll "dsRecordsNativeAll"
#define kDSNativeRecordTypePrefix "dsRecTypeNative:"
#define kDSStdRecordTypeAll "dsRecTypeStandard:All
#define kDSStdUserNamesMeta "dsRecTypeStandard:MetaUserNames"

Constants
kDSRecordsAll

Used to indicate that all records should be returned (instead of returning records that match a pattern).

kDSRecordsStandardAll
Retained for backward compatibility.

kDSRecordsNativeAll
Retained for backward compatibility.

kDSStdRecordTypePrefix
Used as the prefix for all standard record types.

kDSNativeRecordTypePrefix
Prefix used to identify a native record type.

kDSStdRecordTypeAll
Used to indicate that all record types need to be searched.

Available in Mac OS X v10.4 and later.

kDSStdUserNamesMeta
Retained for backward compatibility.

Declared In
DirectoryService/DirServicesConst.h

Standard Record Types
Constants defined for standard record types.

Constants 143
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDSStdRecordTypeAccessControls "dsRecTypeStandard:AccessControls
#define kDSStdRecordTypeAFPServer "dsRecTypeStandard:AFPServer"
#define kDSStdRecordTypeAFPUserAliases "dsRecTypeStandard:AFPUserAliases"
#define kDSStdRecordTypeAliases "dsRecTypeStandard:Aliases"
#define kDSStdRecordTypeAutoServerSetup "dsRecTypeStandard:AutoServerSetup"
#define kDSStdRecordTypeBootp "dsRecTypeStandard:Bootp"
#define kDSStdRecordTypeCertificateAuthorities
"dsRecTypeStandard:CertificateAuthorities
#define kDSStdRecordTypeComputerLists "dsRecTypeStandard:ComputerLists"
#define kDSStdRecordTypeComputers "dsRecTypeStandard:Computers"
#define kDSStdRecordTypeConfig "dsRecTypeStandard:Config"
#define kDSStdRecordTypeEthernets "dsRecTypeStandard:Ethernets"
#define kDSStdRecordTypeFileMakerServers "dsRecTypeStandard:FileMakerServers"
#define kDSStdRecordTypeFTPServer "dsRecTypeStandard:FTPServer"
#define kDSStdRecordTypeGroupAliases "dsRecTypeStandard:GroupAliases"
#define kDSStdRecordTypeGroups "dsRecTypeStandard:Groups"
#define kDSStdRecordTypeHostServices "dsRecTypeStandard:HostServices"
#define kDSStdRecordTypeHosts "dsRecTypeStandard:Hosts"
#define kDSStdRecordTypeLDAPServer "dsRecTypeStandard:LDAPServer"
#define kDSStdRecordTypeLocations "dsRecTypeStandard:Locations"
#define kDSStdRecordTypeMachines "dsRecTypeStandard:Machines"
#define kDSStdRecordTypeMeta "dsRecTypeStandard:AppleMetaRecord"
#define kDSStdRecordTypeMounts "dsRecTypeStandard:Mounts"
#define kDSStdRecordTypeNeighborhoods "dsRecTypeStandard:Neighborhoods"
#define kDSStdRecordTypeNFS "dsRecTypeStandard:NFS"
#define kDSStdRecordTypeNetDomains "dsRecTypeStandard:NetDomains"
#define kDSStdRecordTypeNetGroups "dsRecTypeStandard:NetGroups"
#define kDSStdRecordTypeNetworks "dsRecTypeStandard:Networks"
#define kDSStdRecordTypePasswordServer "dsRecTypeStandard:PasswordServer"
#define kDSStdRecordTypePeople "dsRecTypeStandard:People"
#define kDSStdRecordTypePresetComputerLists "dsRecTypeStandard:PresetComputerLists"
#define kDSStdRecordTypePresetGroups "dsRecTypeStandard:PresetGroups"
#define kDSStdRecordTypePresetUsers "dsRecTypeStandard:PresetUsers"
#define kDSStdRecordTypePrintService "dsRecTypeStandard:PrintService"
#define kDSStdRecordTypePrintServiceUser "dsRecTypeStandard:PrintServiceUser"
#define kDSStdRecordTypePrinters "dsRecTypeStandard:Printers"
#define kDSStdRecordTypeProtocols "dsRecTypeStandard:Protocols"
#define kDSStdRecordTypeQTSServer "dsRecTypeStandard:QTSServer"
#define kDSStdRecordTypeRPC "dsRecTypeStandard:RPC"
#define kDSStdRecordTypeSMBServer "dsRecTypeStandard:SMBServer"
#define kDSStdRecordTypeServer "dsRecTypeStandard:Server"
#define kDSStdRecordTypeServices "dsRecTypeStandard:Services"
#define kDSStdRecordTypeSharePoints "dsRecTypeStandard:SharePoints"
#define kDSStdRecordTypeUserAliases "dsRecTypeStandard:UserAliases"
#define kDSStdRecordTypeUsers "dsRecTypeStandard:Users"
#define kDSStdRecordTypeWebServer "dsRecTypeStandard:WebServer"

Constants
kDSStdRecordTypeAccessControls

Record type for storing directory access control directives.

Available in Mac OS X v10.4 and later.

kDSStdRecordTypeAFPServer
Record type for storing Apple Filing Protocol (AFP) server records.

kDSStdRecordTypeAFPUserAliases
Record type for storing AFP user aliases records used exclusively by AFP processes. Not used in Mac
OS X v10.4 and later.

144 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSStdRecordTypeAliases
Record type for representing alias records.

kDSStdRecordTypeAutoServerSetup
Type for locating automated server set up information.

Available in Mac OS X v10.3 and later.

kDSStdRecordTypeBootp
Record in the local node for storing bootp information.

kDSStdRecordTypeCertificateAuthorities
Record type for storing certificate authority information.

Available in Mac OS X v10.4 and later.

kDSStdRecordTypeComputerLists
Record type for identifying computer record lists.

Available in Mac OS X v10.2 and later.

kDSStdRecordTypeComputers
Record type for identifying computer records.

Available in Mac OS X v10.2 and later.

kDSStdRecordTypeConfig
Record type for identifying configuration records.

kDSStdRecordTypeEthernets
Record type in the local node for storing Ethernets.

kDSStdRecordTypeFileMakerServers
Record type for storing FileMaker server records that describe FileMaker servers.

Available in Mac OS X v10.4 and later.

kDSStdRecordTypeFTPServer
Record type for storing File Transfer Protocol (FTP) server records.

kDSStdRecordTypeGroupAliases
Record type for group aliases records. Not supported in Mac OS X v10.4 or later.

kDSStdRecordTypeGroups
Record type for identifying group records.

kDSStdRecordTypeHostServices
Record in the local node for storing host services.

kDSStdRecordTypeHosts
Record type for storing host records.

kDSStdRecordTypeLDAPServer
Record type for storing Lightweight Directory Access Protocol (LDAP) server records.

kDSStdRecordTypeLocations
Record type for storing location information.

Available in Mac OS X v10.4 and later.

kDSStdRecordTypeMachines
Record type for storing machine records.

kDSStdRecordTypeMeta
Record type for identifying meta records. Not used as of Mac OS X v10.4.

kDSStdRecordTypeMounts
Record type for identifying mount records.

Constants 145
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSStdRecordTypeNeighborhoods
Record type for identifying records that contain a list of computers and other neighborhoods; used
for network browsing.

Available in Mac OS X v10.4 and later, and used for Managed Network Views.

kDSStdRecordTypeNFS
Record type for identifying Network File System (NFS) records.

kDSStdRecordTypeNetDomains
Record type in the local node for storing net domains.

kDSStdRecordTypeNetGroups
Record type in the local node for storing net groups.

kDSStdRecordTypeNetworks
Record type for identifying network records.

kDSStdRecordTypePasswordServer
Record type for discovering password servers via Bonjour.

Available in Mac OS X v10.3 and later.

kDSStdRecordTypePeople
Record type for identifying “people” records containing contact information.

Available in Mac OS X v10.3 and later.

kDSStdRecordTypePresetComputerLists
Record type for identifying preset computer list records used in record creation.

Available in Mac OS X v10.2 and later.

kDSStdRecordTypePresetGroups
Record type for identifying preset group records used in record creation.

Available in Mac OS X v10.2 and later.

kDSStdRecordTypePresetUsers
Record type for identifying preset user records used in record creation.

Available in Mac OS X v10.2 and later.

kDSStdRecordTypePrintService
Record type for identifying print service records.

kDSStdRecordTypePrintServiceUser
Record type in the local node for storing quota usage for a user.

Available in Mac OS X v10.3 and later.

kDSStdRecordTypePrinters
Record type for identifying printer records.

kDSStdRecordTypeProtocols
Record type for identifying protocol records.

kDSStdRecordTypeQTSServer
Record type for identifying QuickTime Streaming Server (QTSS) records.

kDSStdRecordTypeRPC
Record type for identifying RPC records.

kDSStdRecordTypeSMBServer
Record type for identifying SMB server records.

kDSStdRecordTypeServer
Record type for identifying generic server records.

146 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSStdRecordTypeServices
Record type for identifying directory-based service records.

kDSStdRecordTypeSharePoints
Record type for identifying share point records.

Available in Mac OS X v10.3 and later.

kDSStdRecordTypeUserAliases
Record type for storing user aliases records. Not supported in Mac OS X v10.4 or later.

kDSStdRecordTypeUsers
Record type for identifying user records.

kDSStdRecordTypeWebServer
Record type for identifying Web server records.

Declared In
DirectoryService/DirServicesConst.h

Meta Attribute Type Constants
Constants defined to get all attributes, standard attributes, or native attributes.

#define kDSAttributesAll "dsAttributesAll"
#define kDSAttributesStandardAll "dsAttributesStandardAll"
#define kDSAttributesNativeAll "dsAttributesNativeAll"
#define kDSStdAttrTypePrefix "dsAttrTypeStandard:"
#define kDSNativeAttrTypePrefix "dsAttrTypeNative:"
#define kDSAttrNone "dsNone"

Constants
kDSAttributesAll

Indicates that all attribute types should be searched or returned.

kDSAttributesStandardAll
Indicates that all standard attribute types should be searched or returned.

kDSAttributesNativeAll
Indicates that all native attribute types should be searched or returned.

kDSStdAttrTypePrefix
Prefix used to identify all standard attribute types.

kDSNativeAttrTypePrefix
Prefix used to identify directory-native attribute types.

kDSAttrNone
Retained for backward compatibility.

Declared In
DirectoryService/DirServicesConst.h

Alias Attribute Constants
Constants for accessing alias information.

Constants 147
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDS1AttrAlias "dsAttrTypeStandard:Alias"
#define kDS1AttrAliasData "dsAttrTypeStandard:AppleAliasData"
#define kDSNAttrRecordAlias "dsAttrTypeStandard:RecordAlias"
#define kStandardTargetAlias "dsAttrTypeStandard:AppleMetaAliasTarget"
#define kStandardSourceAlias "dsAttrTypeStandard:AppleMetaAliasSource"

Constants
kDS1AttrAlias

Single-value attribute for storing a pointer to another node, record, or attribute.

kDS1AttrAliasData
Single-value attribute for storing alias data.

kDSNAttrRecordAlias
Multi-value attribute for storing record aliases. Not supported in Mac OS X v10.4 or later.

kStandardTargetAlias
Single-value attribute for storing a target alias. Not supported in Mac OS X v10.4 or later.

kStandardSourceAlias
Single-value attribute for storing a source alias. Not supported in Mac OS X v10.4 or later.

Declared In
DirectoryService/DirServicesConst.h

Boot Attribute Constants
Constants for accessing boot information.

#define kDS1AttrBootFile "dsAttrTypeStandard:BootFile"
#define kDSNAttrBootParams "dsAttrTypeStandard:BootParams"

Constants
kDS1AttrBootFile

Single-value attribute for storing the name of the kernel that this machine uses by default when
performing a netboot. This attribute is available in Mac OS X v10.4 and later.

kDSNAttrBootParams
Multi-value attribute for storing boot parameters. This attribute is found in records of type
kDSStdRecordTypeHosts or kDSStdRecordTypeMachines.

Declared In
DirectoryService/DirServicesConst.h

Certificate Attribute Constants
Certificate attribute constants.

148 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDS1AttrAuthorityRevocationList "dsAttrTypeStandard:AuthorityRevocationList"
#define kDS1AttrCACertificate "dsAttrTypeStandard:CACertificate"
#define kDS1AttrCertificateRevocationList
"dsAttrTypeStandard:CertificateRevocationList"
#define kDS1AttrCrossCertificatePair "dsAttrTypeStandard:CrossCertificatePair"
#define kDS1AttrUserCertificate "dsAttrTypeStandard:UserCertificate"
#define kDS1AttrUserPKCS12Data "dsAttrTypeStandard:UserPKCS12Data"
#define kDS1AttrUserSMIMECertificate "dsAttrTypeStandard:UserSMIMECertificate"

Constants
kDS1AttrAuthorityRevocationList

Single-value attribute for storing a list of binary certificate authority certificates that are no longer
trusted. No user certificates are included in this list. This attribute is usually found in records of type
kDSStdRecordTypeCertificateAuthorities. This attribute is available in Mac OS X v10.4 and
later.

kDS1AttrCACertificate
Single-value attribute for storing the binary of a certificate of a certificate authority. The corresponding
private key is used to sign certificates. This attribute is usually found in records of type
kDSStdRecordTypeCertificateAuthorities. This attribute is available in Mac OS X v10.4 and
later.

kDS1AttrCertificateRevocationList
Single-value attribute for storing the list of binary certificates that are no longer trusted. This attribute
is usually found in records of type kDSStdRecordTypeCertificateAuthorities. This attribute
is available in Mac OS X v10.4 and later.

kDS1AttrCrossCertificatePair
Single-value attribute for storing the binary of a pair of certificates that verify each other. Both
certificates have the same level of authority. This attribute is usually found in records of type
kDSStdRecordTypeCertificateAuthorities. This attribute is available in Mac OS X v10.4 and
later.

kDS1AttrUserCertificate
Single-value attribute for storing the binary of a user’s certificate, where a certificate is data that
identifies the user and that is attested to by a known party and that can be independently verified
by a third party. This attribute is usually found in user records. This attribute is available in Mac OS X
v10.4 and later.

kDS1AttrUserPKCS12Data
Single-value attribute for storing binary data usually encrypted with a passphrase, such as keys,
certificates and other related information, in PKCS #12 format. This attribute is available in Mac OS X
v10.4 and later.

kDS1AttrUserSMIMECertificate
Single-value attribute containing the binary of the user’s SMIME certificate and usually found in records
of type kDSStdRecordTypeUsers. The certificate is data that identifies a user, is attested to by a
known third party, and can be independently verified by a third party. SMIME certificates are often
used for signed or encrypted e-mail. This attribute is available in Mac OS X v10.4 and later.

Declared In
DirectoryService/DirServicesConst.h

DNS Attribute Constants
Constants defined for attributes that store DNS information.

Constants 149
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDS1AttrDNSDomain "dsAttrTypeStandard:DNSDomain"
#define kDS1AttrDNSNameServer "dsAttrTypeStandard:DNSNameServer"
#define kDSNAttrDNSName "dsAttrTypeStandard:DNSName"

Constants
kDS1AttrDNSDomain

Single-value attribute for storing a DNS Resolver domain. This attribute is available in Mac OS X v10.4
and later.

kDS1AttrDNSNameServer
Single-value attribute for storing a DNS Resolver name server. This attribute is available in Mac OS X
v10.4 and later.

kDSNAttrDNSName
Multi-value attribute for storing DNS names.

Declared In
DirectoryService/DirServicesConst.h

Kerberos Attribute Constants
Constants for accessing to Kerberos attributes.

#define kDSNAttrKDCAuthKey "dsAttrTypeStandard:KDCAuthKey"
#define kDS1AttrKDCConfigData "dsAttrTypeStandard:KDCConfigData"
#define kDS1AttrKerberosRealm "dsAttrTypeStandard:KerberosRealm"

Constants
kDSNAttrKDCAuthKey

Multi-value attribute for storing KDC master keys. Each key is RSA-encrypted with the realm public
key.

Available in Mac OS X v10.3 and later.

kDS1AttrKDCConfigData
Single-value attribute for storing the contents of the Kerberos Key Distribution Center (KDC) file,
kdc.conf.

Available in Mac OS X v10.3 and later.

kDS1AttrKerberosRealm
Attribute for storing the Kerberos realm; used with the Open Directory dsGetDirNodeInfo function
in support of Kerberos SMB server services.

Available in Mac OS X v10.4 and later.

Declared In
DirectoryService/DirServicesConst.h

LDAP Attribute Constants
Constants for accessing LDAP attributes.

150 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDS1AttrRelativeDNPrefix "dsAttrTypeStandard:RelativeDNPrefix"
#define kDSNAttrLDAPReadReplicas "dsAttrTypeStandard:LDAPReadReplicas"
#define kDSNAttrLDAPWriteReplicas "dsAttrTypeStandard:LDAPWriteReplicas"

Constants
kDS1AttrRelativeDNPrefix

Single-value attribute for storing information needed to map the first native LDAP attribute type. This
is required to build the Relative Distinguished Name for creating LDAP records.

Available in Mac OS X v10.3 and later.

kDSNAttrLDAPReadReplicas
Attribute for storing LDAP server URLs that can be used to read directory data.

Available in Mac OS X v10.3 and later.

kDSNAttrLDAPWriteReplicas
Attribute for storing LDAP server URLs that can be used to write directory data.

Available in Mac OS X v10.3 and later.

Declared In
DirectoryService/DirServicesConst.h

Network Address Attribute Constants
Constants for accessing network address attributes.

#define kDS1AttrENetAddress "dsAttrTypeStandard:ENetAddress’
#define kDSNAttrIPAddress "dsAttrTypeStandard:IPAddress"
#define kDSNAttrNBPEntry "dsAttrTypeStandard:NBPEntry"

Constants
kDS1AttrENetAddress

Single-value attribute for storing a hardware Ethernet (MAC) address. This attribute is found in records
of type kDSStdRecordTypeComputers and kDSStdRecordTypeMachines.

kDSNAttrIPAddress
Multi-value attribute for storing IP addresses. This attribute is found in records of type
kDSStdRecordTypeComputers and kDSStdRecordTypeMachines.

kDSNAttrNBPEntry
Multi-value attribute for storing Name Binding Protocol (NBP) data; retained for backward compatibility
only.

Declared In
DirectoryService/DirServicesConst.h

Machine and Host Record Attribute Constants
Constants for accessing certain attributes typically found in records of type kDSStdRecordTypeHosts and
kDSStdRecordTypeMachines.

Constants 151
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDS1AttrContactPerson "dsAttrTypeStandard:ContactPerson"
#define kDSNAttrMachineServes "dsAttrTypeStandard:MachineServes"

Constants
kDS1AttrContactPerson

Single-value attribute for storing the name of the contact person for the machine. This attribute is
available in Mac OS X v10.4 and later.

kDSNAttrMachineServes
Multi-value attribute for storing the NetInfo domains that a machine or host serves. This attribute is
supported in Mac OS X v10.4 and later.

Declared In
DirectoryService/DirServicesConst.h

Managed Clients for Mac OS X Attribute Constants
Constants for Managed Clients for Mac OS X (MCX) attributes.

#define kDS1AttrMCXFlags "dsAttrTypeStandard:MCXFlags"
#define kDS1AttrMCXSettings "dsAttrTypeStandard:MCXSettings"
#define kDSNAttrMCXSettings "dsAttrTypeStandard:MCXSettings"

Constants
kDS1AttrMCXFlags

Single-value attribute for storing MCX flags.

kDS1AttrMCXSettings
Single-value attribute for storing MCX settings.

kDSNAttrMCXSettings
Multi-value attribute for storing MCX settings.

Available in Mac OS X v10.3 and later.

Declared In
DirectoryService/DirServicesConst.h

Miscellaneous Attribute Constants
Constants for accessing miscellaneous attributes.

152 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDS1AttrCopyTimestamp "dsAttrTypeStandard:CopyTimestamp"
#define kDS1AttrDataStamp "dsAttrTypeStandard:DataStamp"
#define kDS1AttrPresetUserIsAdmin "dsAttrTypeStandard:PresetUserIsAdmin"
#define kDS1AttrRARA "dsAttrTypeStandard:RARA"
#define kDS1AttrTimePackage "dsAttrTypeStandard:TimePackage"
#define kDSNAttrAccessControlEntry "dsAttrTypeStandard:AccessControlEntry"
#define kDSNAttrAuthMethod "dsAttrTypeStandard:AuthMethod"
#define kDSNAttrComputers "dsAttrTypeStandard:Computers"
#define kDSNAttrGroup "dsAttrTypeStandard:Group"
#define kDSNAttrHTML "dsAttrTypeStandard:HTML"
#define kDSNAttrKeywords "dsAttrTypeStandard:Keywords"
#define kDSNAttrMember "dsAttrTypeStandard:Member"
#define kDSNAttrMIME "dsAttrTypeStandard:MIME"
#define kDSNAttrNetworkView "dsAttrTypeStandard:NetworkView"
#define kDSNAttrPGPPublicKey "dsAttrTypeStandard:PGPPublicKey"
#define kDSNAttrProtocols "dsAttrTypeStandard:Protocols"
#define kDSNAttrSchema "dsAttrTypeStandard:Schema"
#define kDSNAttrURL "dsAttrTypeStandard:URL"
#define kDSNAttrURLForNSL "dsAttrTypeStandard:URLForNSL"
#define kDSStdMachPortName "com.apple.DirectoryService"

Constants
kDS1AttrCopyTimestamp

Single-value attribute for storing a timestamp used in local account caching.

Available in Mac OS X v10.3 and later.

kDS1AttrDataStamp
Single-value attribute for storing checksum meta data.

kDS1AttrPresetUserIsAdmin
Single-value attribute whose value indicates whether users created using this preset are administrators
by default. This attribute is found in records of type kDSStdRecordTypePresetUsers.

kDS1AttrRARA
Retained for backward compatibility.

kDS1AttrTimePackage
Single-value attribute for storing creation, modification, and backup dates in UTC.

kDSNAttrAccessControlEntry
Multi-value attribute for storing directory access control directives. This attribute is supported in Mac
OS X v10.4 and later.

kDSNAttrAuthMethod
Multi-value attribute for storing authentication methods for an authentication-capable record.

kDSNAttrComputers
Multi-value attribute for storing names of records of type kDSStdRecordTypeComputers that are
members of a computer list. Used by records of type kDSStdRecordTypeComputerLists; maps to
“computers” in NetInfo.

kDSNAttrGroup
Multi-value attribute for storing group records.

kDSNAttrHTML
Multi-value attribute for storing HTML locations.

kDSNAttrKeywords
Multi-value attribute for storing search keywords.

Available in Mac OS X v10.3 and later.

Constants 153
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSNAttrMember
Multi-value attribute for storing member records.

kDSNAttrMIME
Multi-value attribute for storing fully qualified MIME types.

kDS1AttrNetworkView
Single-value attribute for storing the name of the managed network view a computer should use for
browsing.

kDSNAttrPGPPublicKey
Multi-value attribute for storing Pretty Good Privacy (PGP) public keys.

kDSNAttrProtocols
Multi-value attribute for storing the names of protocols.

kDSNAttrSchema
Multi-value attribute for storing attribute types.

kDSNAttrURL
Multi-value attribute for storing URLs.

kDSNAttrURLForNSL
Multi-value attribute for storing URLs used by the Network Services Location Manager; not used.

kDSStdMachPortName
Registered name used with mach_init for DirectoryService daemon.

Declared In
DirectoryService/DirServicesConst.h

Neighborhood Attribute Constants
Neighborhood attribute constants.

#define kDS1AttrComputerAlias "dsAttrTypeStandard:ComputerAlias"
#define kDS1AttrNeighborhoodAlias "dsAttrTypeStandard:NeighborhoodAlias"
#define kDS1AttrNeighborhoodType "dsAttrTypeStandard:NeighborhoodType"
#define kDS1AttrNodePathXMLPlist "dsAttrTypeStandard:NodePathXMLPlist"

Constants
kDS1AttrComputerAlias

Single-value attribute found in records of type kDSStdRecordTypeNeighborhoods; used to describe
computer records pointed to by this neighborhood. This attribute is available in Mac OS X v10.4 and
later.

kDS1AttrNeighborhoodAlias
Single-value attribute found in records of type kDSStdRecordTypeNeighborhoods; used to describe
sub-neighborhood records. This attribute is available in Mac OS X v10.4 and later.

kDS1AttrNeighborhoodType
Single-value attribute for storing a description of the function of a record of type
kDSStdRecordTypeNeighborhoods. This attribute is available in Mac OS X v10.4 and later.

kDS1AttrNodePathXMLPlist
Single-value attribute found in records of type kDSStdRecordTypeNeighborhoods; used to describe
the Open Directory node to search when looking for aliases in this neighborhood. This attribute is
available in Mac OS X v10.4 and later.

Declared In
DirectoryService/DirServicesConst.h

154 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Node Attribute Constants
Constants defined for storing information about nodes.

#define kDS1AttrAuthCredential "dsAttrTypeStandard:AuthCredential"
#define kDS1AttrCapabilities "dsAttrTypeStandard:Capabilities"
#define kDS1AttrOriginalNodeName "dsAttrTypeStandard:OriginalNodeName"
#define kDS1AttrReadOnlyNode "dsAttrTypeStandard:ReadOnlyNode"
#define kDSNAttrMetaNodeLocation "dsAttrTypeStandard:AppleMetaNodeLocation"
#define kDSNAttrNodePath "dsAttrTypeStandard:NodePath"
#define kDSNAttrPlugInInfo "dsAttrTypeStandard:PlugInInfo"
#define kDSNAttrSubNodes "dsAttrTypeStandard:SubNodes"

Constants
kDS1AttrAuthCredential

Single-value attribute for storing an authentication credential used to authenticate to other directory
nodes.

kDS1AttrCapabilities
Single-value attribute used to store information about the API capabilities of a directory node.

kDS1AttrOriginalNodeName
Single-value attribute for storing the node name used in local account caching.

Available in Mac OS X v10.3 and later.

kDS1AttrReadOnlyNode
Single-value attribute for storing the read/write status of a node, which can be one of ReadOnly,
ReadWrite, or WriteOnly. Attributes of this type can be found by calling dsGetDirNodeInfo. Note
that ReadWrite does not imply fully readable or fully writable.

kDSNAttrMetaNodeLocation
Multi-value attribute for storing the registered node name returned by an Open Directory plug-in.

kDSNAttrNodePath
Multi-value attribute for storing, in order, plug-in defined sub-strings of an Open Directory node.

kDSNAttrPlugInInfo
Multi-value attribute for storing information provided by the plug-in that services a particular directory
node. Clients can use this attribute to get information about an Open Directory plug-in, such as its
version, signature, “about” information, and credits. As of Mac OX X version 10.4, this attribute is not
used.

kDSNAttrSubNodes
Multi-value attribute for storing a list of a node’s subnodes. This attribute is supported in Mac OS X
v10.4 and later.

Declared In
DirectoryService/DirServicesConst.h

Password Attribute Constants
Constants for accessing password policy and password setting method attributes.

Constants 155
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDS1AttrPasswordPolicyOptions "dsAttrTypeStandard:PasswordPolicyOptions"
#define kDS1AttrPwdAgingPolicy "dsAttrTypeStandard:PwdAgingPolicy"
#define kDSNAttrSetPasswdMethod "dsAttrTypeStandard:SetPasswdMethod"

Constants
kDS1AttrPasswordPolicyOptions

Single-value attribute for storing the collection of password policy options; used in records of type
kDSStdRecordTypePresetUsers.

Available in Mac OS X v10.3 and later.

kDS1AttrPwdAgingPolicy
Single-value attribute for storing password aging policy data for an authentication-capable record.
Not implemented and not used.

kDSNAttrSetPasswdMethod
Multi-value attribute for storing password-setting methods. Not implemented and not used.

Declared In
DirectoryService/DirServicesConst.h

Password Server Attribute Constants
Constants for accessing Password Server attributes.

#define kDS1AttrPasswordServerList "dsAttrTypeStandard:PasswordServerList"
#define kDS1AttrPasswordServerLocation "dsAttrTypeStandard:PasswordServerLocation"

Constants
kDS1AttrPasswordServerList

Single-value attribute for storing an Apple Password Server’s replication information.

Available in Mac OS X v10.3 and later.

kDS1AttrPasswordServerLocation
Single-value attribute for storing the IP address or domain name of the Password Server associated
with a given directory node. This attribute is found in configuration records named “passwordserver”.

Available in Mac OS X v10.2 and later.

Declared In
DirectoryService/DirServicesConst.h

Print Attribute Constants
Constants for accessing print-related attributes.

156 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDS1AttrNote "dsAttrTypeStandard:Note"
#define kDS1AttrPrinter1284DeviceID "dsAttrTypeStandard:Printer1284DeviceID"
#define kDS1AttrPrinterLPRHost "dsAttrTypeStandard:PrinterLPRHost"
#define kDS1AttrPrinterLPRQueue "dsAttrTypeStandard:PrinterLPRQueue"
#define kDS1AttrPrinterMakeAndModel "dsAttrTypeStandard:PrinterMakeAndModel"
#define kDS1AttrPrinterType "dsAttrTypeStandard:PrinterType"
#define kDS1AttrPrinterURI "dsAttrTypeStandard:PrinterURI"
#define kDS1AttrPrintServiceInfoText "dsAttrTypeStandard:PrintServiceInfoText"
#define kDS1AttrPrintServiceInfoXML "dsAttrTypeStandard:PrintServiceInfoXML"
#define kDS1AttrPrintServiceUserData "dsAttrTypeStandard:PrintServiceUserData"
#define kDSNAttrPrinterXRISupported "dsAttrTypeStandard:PrinterXRISupported"

Constants
kDS1AttrNote

Single-value attribute for storing a note; commonly used in printer records. This attribute is available
in Mac OS X v10.4 and later.

kDS1AttrPrinter1284DeviceID
Single-value attribute for storing a printer’s IEEE 1284 DeviceID, which is used when configuring a
printer. This attribute is available in Mac OS X v10.4 and later.

kDS1AttrPrinterLPRHost
Single-value attribute for storing the name of the host for an LPR printer in records of type
kDSStdRecordTypePrinters.

Available in Mac OS X v10.3 and later.

kDS1AttrPrinterLPRQueue
Single-value attribute for storing the name of the queue for an LPR printer in records of type
kDSStdRecordTypePrinters.

Available in Mac OS X v10.3 and later.

kDS1AttrPrinterMakeAndModel
Single-value attribute for storing a printer’s make and model; for example, “HP LaserJet 2200”. The
value of this attribute is used to determine the PPD file to use when configuring a printer and is based
on RFC 3712, Lightweight Directory Access Protocol (LDAP) Schema for Printer Services and RFC 2911,
Internet Printing Protocol/1.1 (IPP), and the IETF IPP-LDAP Printer Record. This attribute is available
in Mac OS X v10.4 and later.

kDS1AttrPrinterType
Single-value attribute for storing the printer type in records of type kDSStdRecordTypePrinters.

Available in Mac OS X v10.3 and later.

kDS1AttrPrinterURI
Single-value attribute for storing a printer’s URI; for example, “ipp://address” or “smb://server/queue”.
The value of this attribute is used when configuring a printer and is based on RFC 3712, Lightweight
Directory Access Protocol (LDAP) Schema for Printer Services and RFC 2911, Internet Printing
Protocol/1.1 (IPP), and the IETF IPP-LDAP Printer Record. This attribute is available in Mac OS X v10.4
and later.

kDS1AttrPrintServiceInfoText
Single-value attribute for storing text print service information.

kDS1AttrPrintServiceInfoXML
Single-value attribute for storing XML print service information.

kDS1AttrPrintServiceUserData
Single-value attribute for storing print quota configuration or statistics (XML data). This attribute is
found in records of type kDSStdRecordTypeUsers and kDSStdRecordTypePrintServiceUser.

Constants 157
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSNAttrPrinterXRISupported
Multi-value attribute for storing additional URIs that a printer supports. This attribute is used when
configuring a printer and is based on the RFC 3712, Lightweight Directory Access Protocol (LDAP)
Schema for Printer Services and RFC 2911, Internet Printing Protocol/1.1 (IPP), and the IETF IPP-LDAP
Printer Record. This attribute is available in Mac OS X v10.4 and later.

Declared In
DirectoryService/DirServicesConst.h

Record Attribute Constants
Constants for accessing attributes that store information about records.

#define kDS1AttrCreationTimestamp "dsAttrTypeStandard:CreationTimeStamp"
#define kDS1AttrDateRecordCreated "dsAttrTypeStandard:DateRecordCreated"
#define kDS1AttrModificationTimestamp "dsAttrTypeStandard:ModificationTimestamp"
#define kDS1AttrOwner "dsAttrTypeStandard:Owner"
#define kDS1AttrRecordImage "dsAttrTypeStandard:RecordImage"
#define kDS1AttrTimeToLive "dsAttrTypeStandard:TimeToLive"
#define kDS1AttrTotalSize "dsAttrTypeStandard:TotalSize"
#define kDSNAttrAllNames "dsAttrTypeStandard:AllNames"
#define kDSNAttrRecordName "dsAttrTypeStandard:RecordName"
#define kDSNAttrRecordType "dsAttrTypeStandard:RecordType"

Constants
kDS1AttrCreationTimestamp

Single-value attribute for storing the date and time the record was created. The date and time are
stored in x.208 format (YYYYMMDDHHMMSSZ) where “Z” is required to be Greenwich Mean Time
(GMT). This attribute is available in Mac OS X v10.4 and later.

kDS1AttrDateRecordCreated
Single-value attribute for storing the date the record was created.

Available in Mac OS X v10.4 and later.

kDS1AttrModificationTimestamp
Single-value attribute for storing the date and time the record was modified. The date and time are
stored in x.208 format (YYYYMMDDHHMMSSZ) where “Z” is required to be GMT. This attribute is
available in Mac OS X v10.4 and later.

kDS1AttrOwner
Single-value attribute for storing the owner of a record; typically the value is an LDAP distinguished
name. This attribute is available in Mac OS X v10.4 and later.

kDS1AttrRecordImage
Single-value attribute for storing a record image; clients can use this attribute to force a directory
service to generate a binary image of the record and all of its attributes. Not used or implemented.

kDS1AttrTimeToLive
Single-value attribute for storing the recommended amount of time to cache the record’s attribute
values. The time is stored as an unsigned 32-bit value representing the number of seconds. For
example, 300 is five minutes. This attribute is available in Mac OS X v10.4 and later.

kDS1AttrTotalSize
Single-value attribute for storing checksum or meta data. Not used or implemented.

kDSNAttrAllNames
Multi-value attribute for all possible names for a record; retained for backward compatibility but has
never been supported.

158 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSNAttrRecordName
Multi-value attribute for storing a list of names and keys for a record.

kDSNAttrRecordType
Multi-value attribute for storing record types; a single value is allowed for records and multiple values
are allowed for directory nodes.

Declared In
DirectoryService/DirServicesConst.h

Search Attribute Constants
Constants for accessing search-related attributes.

#define kDS1AttrCSPSearchPath "dsAttrTypeStandard:CSPSearchPath"
#define kDS1AttrLSPSearchPath "dsAttrTypeStandard:LSPSearchPath"
#define kDS1AttrNSPSearchPath "dsAttrTypeStandard:NSPSearchPath"
#define kDS1AttrSearchPath "dsAttrTypeStandard:SearchPath"
#define kDS1AttrSearchPolicy "dsAttrTypeStandard:SearchPolicy"
#define kDSNAttrCSPSearchPath "dsAttrTypeStandard:CSPSearchPath"
#define kDSNAttrLSPSearchPath "dsAttrTypeStandard:LSPSearchPath"
#define kDSNAttrNSPSearchPath "dsAttrTypeStandard:NSPSearchPath"
#define kDSNAttrSearchPath "dsAttrTypeStandard:SearchPath"

Constants
kDS1AttrCSPSearchPath

Retained for backward compatibility only.

kDS1AttrLSPSearchPath
Retained for backward compatibility only.

kDS1AttrNSPSearchPath
Retained for backward compatibility only.

kDS1AttrSearchPath
Retained for backward compatibility only.

kDS1AttrSearchPolicy
Single-value attribute for storing the search policy of a search node.

kDSNAttrCSPSearchPath
Single-value attribute for storing a custom search path configured by an administrator.

kDSNAttrLSPSearchPath
Single-value attribute for storing the local-only search path defined by the search node.

kDSNAttrNSPSearchPath
Single-value attribute for storing the automatic search path defined by the search node.

kDSNAttrSearchPath
Single-value attribute for storing the search path used by the search node.

Declared In
DirectoryService/DirServicesConst.h

Server Attribute Constants
Constants defined for server attributes.

Constants 159
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDS1AttrLocation "dsAttrTypeStandard:Location"
#define kDS1AttrPort "dsAttrTypeStandard:Port"
#define kDS1AttrServiceType "dsAttrTypeStandard:ServiceType"
#define kDS1AttrXMLPlist "dsAttrTypeStandard:XMLPlist"

Constants
kDS1AttrLocation

Single-value attribute for storing the location at which a service is available. The location is usually a
domain name. This attribute is found in records of type kDSStdRecordTypeAFPServer,
kDSStdRecordTypeLDAPServer, and kDSStdRecordTypeWebServer.

kDS1AttrPort
Single-value attribute for storing the port number at which a service is available. This attribute is
typically found in records of type kDSStdRecordTypeAFPServer, kDSStdRecordTypeLDAPServer,
and kDSStdRecordTypeWebServer.

kDS1AttrServiceType
Single-value attribute for storing the service type for a service. For example, a record of type
kDSStdRecordTypeWebserver would have a kDS1AttrServiceType attribute whose value is
http or https.

kDS1AttrXMLPlist
Single-value attribute for storing AutoServer configuration settings. Also used for storing encrypted
Kerberos information in computer records when using the Open Directory delegated administration
feature for adding a Kerberized server to the network.

Available in Mac OS X v10.3 and later.

Declared In
DirectoryService/DirServicesConst.h

Setup Assistant Attribute Constants
Constants for accessing Setup Assistant attributes.

#define kDS1AttrSetupAdvertising "dsAttrTypeStandard:SetupAssistantAdvertising"
#define kDS1AttrSetupAutoRegister "dsAttrTypeStandard:SetupAssistantAutoRegister"
#define kDS1AttrSetupLocation "dsAttrTypeStandard:SetupAssistantLocation"
#define kDS1AttrSetupOccupation "dsAttrTypeStandard:Occupation"

Constants
kDS1AttrSetupAdvertising

Single-value attribute used by Setup Assistant to store advertising information.

kDS1AttrSetupAutoRegister
Single-value attribute used by Setup Assistant to store automatic registration information.

kDS1AttrSetupLocation
Single-value attribute used by Setup Assistant to store a location.

kDS1AttrSetupOccupation
Single-value attribute used by Setup Assistant to store an occupation.

Declared In
DirectoryService/DirServicesConst.h

160 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

SMB Attribute Constants
Constants for accessing SMB attributes.

#define kDS1AttrPrimaryNTDomain "dsAttrTypeStandard:PrimaryNTDomain"
#define kDS1AttrNTDomainComputerAccount "dsAttrTypeStandard:NTDomainComputerAccount"
#define kDS1AttrSMBAcctFlags "dsAttrTypeStandard:SMBAccountFlags"
#define kDS1AttrSMBGroupRID "dsAttrTypeStandard:SMBGroupRID"
#define kDS1AttrSMBHome "dsAttrTypeStandard:SMBHome"
#define kDS1AttrSMBHomeDrive "dsAttrTypeStandard:SMBHomeDrive"
#define kDS1AttrSMBKickoffTime "dsAttrTypeStandard:SMBKickoffTime"
#define kDS1AttrSMBLogoffTime "dsAttrTypeStandard:SMBLogoffTime"
#define kDS1AttrSMBLogonTime "dsAttrTypeStandard:SMBLogonTime"
#define kDS1AttrSMBPrimaryGroupSID "dsAttrTypeStandard:SMBPrimaryGroupSID"
#define kDS1AttrSMBProfilePath "dsAttrTypeStandard:SMBProfilePath"
#define kDS1AttrSMBPWDLastSet "dsAttrTypeStandard:SMBPWDLastSet"
#define kDS1AttrSMBRID "dsAttrTypeStandard:SMBRID"
#define kDS1AttrSMBScriptPath "dsAttrTypeStandard:SMBScriptPath"
#define kDS1AttrSMBSID "dsAttrTypeStandard:SMBSID"
#define kDS1AttrSMBUserWorkstations "dsAttrTypeStandard:SMBUserWorkstations"

Constants
kDS1AttrPrimaryNTDomain

Single-value attribute for storing the primary NT domain; used with the Open Directory
dsGetDirNodeInfo function in support of Kerberos SMB server services.

Available in Mac OS X v10.4 and later.

kDS1AttrPrimaryNTDomainComputerAccount
Single-value attribute for storing the primary NT domain computer account; used with the Open
Directory dsGetDirNodeInfo function in support of Kerberos SMB server services.

Available in Mac OS X v10.4 and later.

kDS1AttrSMBAcctFlags
Single-value attribute for storing account flags.

Available in Mac OS X v10.3 and later.

kDS1AttrSMBGroupRID
Single-value attribute used for storing information about PDC SMB interaction with Open Directory.

Available in Mac OS X v10.3 and later.

kDS1AttrSMBHome
Single-value attribute for storing the Universal Naming Convention (UNC) address of a Windows home
directory mount point (\\server\\sharepoint).

Available in Mac OS X v10.3 and later.

kDS1AttrSMBHomeDrive
Single-value attribute for storing the drive letter for the home directory mount point.

Available in Mac OS X v10.3 and later.

kDS1AttrSMBKickoffTime
Single-value attribute for storing the kickoff time. Authentications before the kick off time will fail.

Available in Mac OS X v10.3 and later.

kDS1AttrSMBLogoffTime
Single-value attribute for storing the time the user last logged off.

Available in Mac OS X v10.3 and later.

Constants 161
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDS1AttrSMBLogonTime
Single-value attribute for storing the current log on time.

Available in Mac OS X v10.3 and later.

kDS1AttrSMBPrimaryGroupSID
Single-value attribute for storing an SMB Primary Group Security ID stored as a string of up to 64
bytes. Found in records of type kDSStdRecordTypeUsers, kDSStdRecordTypeGroups, and
kDSStdRecordTypeComputers.

Available in Mac OS X v10.4 and later.

kDS1AttrSMBProfilePath
Single-value attribute for storing desktop management information, such as desktop links and docking
information.

Available in Mac OS X v10.3 and later.

kDS1AttrSMBPWDLastSet
Single-value attribute for storing the last time the password was set.

Available in Mac OS X v10.3 and later.

kDS1AttrSMBRID
Single-value attribute used for storing information about PDC SMB interaction with Open Directory.

Available in Mac OS X v10.3 and later.

kDS1AttrSMBScriptPath
Single-value attribute for storing the login script path.

Available in Mac OS X v10.3 and later.

kDS1AttrSMBSID
Single-value attribute for storing an SMB Security ID stored as a string of up to 64 bytes. Found in
records of type kDSStdRecordTypeUsers, kDSStdRecordTypeGroups, and
kDSStdRecordTypeComputers.

Available in Mac OS X v10.4 and later.

kDS1AttrSMBUserWorkstations
Single-value attribute for storing the list of workstations user can log in from.

Available in Mac OS X v10.3 and later.

Declared In
DirectoryService/DirServicesConst.h

User and Group Record Attribute Constants
Constants for accessing attributes typically found in records of type kDSStdRecordTypeUsers and
kDSStdRecordTypeGroups.

162 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDS1AttrAdminLimits "dsAttrTypeStandard:AdminLimits"
#define kDS1AttrAdminStatus "dsAttrTypeStandard:AdminStatus"
#define kDS1AttrAlternateDatastoreLocation
"dsAttrTypeStandard:AlternateDatastoreLocation"
#define kDS1AttrAuthenticationHint "dsAttrTypeStandard:AuthenticationHint"
#define kDS1AttrChange "dsAttrTypeStandard:Change"
#define kDS1AttrComment "dsAttrTypeStandard:Comment"
#define kDS1AttrDistinguishedName "dsAttrTypeStandard:RealName"
#define kDS1AttrExpire "dsAttrTypeStandard:Expire"
#define kDS1AttrFirstName "dsAttrTypeStandard:FirstName"
#define kDS1AttrGeneratedUID "dsAttrTypeStandard:GeneratedUID"
#define kDS1AttrHomeDirectorySoftQuota "dsAttrTypeStandard:HomeDirectorySoftQuota"
#define kDS1AttrHomeDirectoryQuota "dsAttrTypeStandard:HomeDirectoryQuota"
#define kDS1AttrHomeLocOwner "dsAttrTypeStandard:HomeLocOwner"
#define kDS1AttrInternetAlias "dsAttrTypeStandard:InetAlias"
#define kDS1AttrLastName "dsAttrTypeStandard:LastName"
#define kDS1AttrMailAttribute "dsAttrTypeStandard:MailAttribute"
#define kDS1AttrMiddleName "dsAttrTypeStandard:MiddleName"
#define kDS1AttrNFSHomeDirectory "dsAttrTypeStandard:NFSHomeDirectory"
#define kDS1AttrOriginalNFSHomeDirectory
"dsAttrTypeStandard:OriginalNFSHomeDirectory"
#define kDS1AttrPassword "dsAttrTypeStandard:Password"
#define kDS1AttrPasswordPlus "dsAttrTypeStandard:PasswordPlus"
#define kDS1AttrPicture "dsAttrTypeStandard:Picture"
#define kDS1AttrPrimaryGroupID "dsAttrTypeStandard:PrimaryGroupID"
#define kDS1AttrRealuserID "dsAttrTypeStandard:RealUserID"
#define kDS1AttrUniqueID "dsAttrTypeStandard:UniqueID"
#define kDS1AttrUserShell "dsAttrTypeStandard:UserShell"
#define kDSNAttrAddressLine1 "dsAttrTypeStandard:AddressLine1"
#define kDS1StandardAttrHomeLocOwner "DS1AttrHomeLocOwner"
#define kDSNAttrAddressLine2 "dsAttrTypeStandard:AddressLine2"
#define kDSNAttrAddressLine3 "dsAttrTypeStandard:AddressLine3"
#define kDSNAttrAreaCode "dsAttrTypeStandard:AreaCode"
#define kDSNAttrAuthenticationAuthority "dsAttrTypeStandard:AuthenticationAuthority"
#define kDSNAttrBuilding "dsAttrTypeStandard:Building"
#define kDSNAttrCity "dsAttrTypeStandard:City"
#define kDSNAttrCountry "dsAttrTypeStandard:Country"
#define kDSNAttrDepartment "dsAttrTypeStandard:Department"
#define kDSNAttrEMailAddress "dsAttrTypeStandard:EMailAddress"
#define kDSNAttrFaxNumber "dsAttrTypeStandard:FAXNumber"
#define kDSNAttrGroupMembers "dsAttrTypeStandard:GroupMembers
#define kDSNAttrGroupMembership "dsAttrTypeStandard:GroupMembership"
#define kDSNAttrHomeDirectory "dsAttrTypeStandard:HomeDirectory"
#define kDSNAttrIMHandle "dsAttrTypeStandard:IMHandle"
#define kDSNAttrJobTitle "dsAttrTypeStandard:JobTitle"
#define kDSNAttrMobileNumber "dsAttrTypeStandard:MobileNumber"
#define kDSNAttrNamePrefix "dsAttrTypeStandard:NamePrefix"
#define kDSNAttrNameSuffix "dsAttrTypeStandard:NameSuffix"
#define kDSNAttrNestedGroups "dsAttrTypeStandard:NestedGroups"
#define kDSNAttrNetGroups "dsAttrTypeStandard:NetGroups"
#define kDSNAttrNickName "dsAttrTypeStandard:NickName"
#define kDSNAttrOrganizationName "dsAttrTypeStandard:OrganizationName"
#define kDSNAttrOriginalHomeDirectory "dsAttrTypeStandard:OriginalHomeDirectory"
#define kDSNAttrPagerNumber "dsAttrTypeStandard:PagerNumber"
#define kDSNAttrPhoneNumber "dsAttrTypeStandard:PhoneNumber"
#define kDSNAttrPostalAddress "dsAttrTypeStandard:PostalAddress"
#define kDSNAttrPostalCode "dsAttrTypeStandard:PostalCode"
#define kDSNAttrState "dsAttrTypeStandard:State"

Constants 163
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

#define kDSNAttrStreet "dsAttrTypeStandard:Street"

Constants
kDS1AttrAdminLimits

Single-value attribute for storing an XML plist indicating what the user can edit as an administrator.

kDS1AttrAdminStatus
Single-value attribute for storing an administrator status; retained for backward compatibility.

kDS1AttrAlternateDatastoreLocation
Single-value attribute for storing the UNIX path to the location at which a user’s e-mail is stored.

Available in Mac OS X v10.3 and later.

kDS1AttrAuthenticationHint
Single-value attribute for storing the authentication hint that is displayed when an incorrect password
is entered several times at loginwindow.

kDS1AttrChange
Single-value attribute whose value indicates whether a password needs to be changed. Currently not
used and usually set to zero; the Password Server and ShadowHash provide this functionality now.

kDS1AttrComment
Single-value attribute for storing an unformatted comment.

kDSNAttrDepartment
Multi-value attribute for storing the department name of a user or group.

Available in Mac OS X v10.3 and later.

kDS1AttrDistinguishedName
Single-value attribute for storing a user’s real name.

kDS1AttrExpire
Single-value attribute used for storing an expiration date or time, depending on the context. Currently
not used and usually set to zero; the Password Server and ShadowHash provide this functionality
now.

kDS1AttrFirstName
Single-value attribute for storing a user’s first name.

kDS1AttrGeneratedUID
Single-value attribute for storing a universal unique identifier (UUID) consisting of 32 characters
containing hexadecimal data, plus four dash (-) characters, for a total of 36 characters, or 128 bits.

kDS1AttrHomeDirectorySoftQuota
Single-value attribute for storing the home directory size limit in bytes at which the user is notified
that the hard limit has nearly been reached.

Available in Mac OS X v10.3 and later.

kDS1AttrHomeDirectoryQuota
Single-value attribute for storing the allowed usage in bytes for a user’s home directory.

kDS1AttrHomeLocOwner
Single-value attribute for storing the owner of a workgroup’s shared home directory.

kDS1AttrInternetAlias
Single-value attribute used to track Internet aliases.

kDS1AttrLastName
Single-value attribute for storing a user’s last name.

kDS1AttrMailAttribute
Single-value attribute for storing mail account configuration information.

164 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDS1AttrMiddleName
Single-value attribute for storing a user’s middle name.

kDS1AttrNFSHomeDirectory
Single-value attribute for storing a user’s home directory path on the local machine.

kDS1AttrOriginalNFSHomeDirectory
Single-value attribute used in local account caching for storing the user’s original NFS home directory
path.

Available in Mac OS X v10.3 and later.

kDS1AttrPassword
Single-value attribute for storing a password or credential value.

kDS1AttrPasswordPlus
Single-value attribute for storing marker data to indicate possible authentication redirection.

kDS1AttrPicture
Single-value attribute for storing the path to the picture of each user displayed in the login window.

kDS1AttrPrimaryGroupID
Single-value attribute for storing the signed 32-bit unique ID representing the primary group of which
the user is a member, stored in string format.

kDS1AttrRealUserID
Single-value attribute for storing the user’s real user ID; used to support managed desktop features.

Available in Mac OS X v10.3 and later.

kDS1AttrUniqueID
Single-value attribute for storing a 32-bit unique ID representing the user in the legacy manner and
stored in string format.

kDS1AttrUserShell
Single-value attribute for storing the user’s shell setting.

kDSNAttrAddressLine1
Multi-value attribute for storing the first line of an address.

kDSNAttrAddressLine2
Multi-value attribute for storing the second line of an address.

kDSNAttrAddressLine3
Multi-value attribute for storing the third line of an address.

kDSNAttrAreaCode
Multi-value attribute for storing area codes.

kDSNAttrAuthenticationAuthority
Multi-value attribute for storing the mechanism to use when verifying or setting a user’s password.
If this attribute has multiple values, the first attribute returned takes precedence. This attribute is
typically found in records of type kDSStdRecordTypeUsers and kDSStdRecordTypeComputers.

kDSNAttrBuilding
Multi-value attribute for storing the building name of a user or person.

Available in Mac OS X v10.3 and later.

kDSNAttrCity
Multi-value attribute for storing the names of cities; usually found in a record of type
kDSStdRecordTypeUsers.

Constants 165
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSNAttrCountry
Multi-value attribute for storing the country of a user or person; usually found in records of type
kDSStdRecordTypeUsers.

Available in Mac OS X v10.3 and later.

kDSNAttrEMailAddress
Multi-value attribute for storing e-mail addresses; usually found in records of type
kDSStdRecordTypeUsers.

kDSNAttrFaxNumber
Multi-value attribute for storing the fax numbers of a user or person; usually found in records of type
kDSStdRecordTypeUsers.

Available in Mac OS X v10.3 and later.

kDSNAttrGroupMembers
Multi-value attribute listing member user records by record name. Found in records of type
kDSStdRecordTypeGroups.

Available in Mac OS X v10.3 and later.

kDSNAttrGroupMembership
Multi-value attribute for storing the users that belong to a given group record.

kDSNAttrHomeDirectory
Multi-value attribute for storing network home directory URLs.

kDSNAttrIMHandle
Multi-value attribute for storing the Instant Messaging handles of a user. Values should be prefixed
with the appropriate IM type, such as AIM:, Jabber:, MSN:, Yahoo:, and ICQ:.

Available in Mac OS X v10.3 and later.

kDSNAttrJobTitle
Multi-value attribute for storing the job title of a user; usually found in records of type
kDSStdRecordTypeUsers.

Available in Mac OS X v10.3 and later.

kDSNAttrMobileNumber
Multi-value attribute for storing the mobile numbers of a user or person; usually found in records of
type kDSStdRecordTypeUsers.

Available in Mac OS X v10.3 and later.

kDSNAttrNamePrefix
Multi-value attribute for storing the name prefix of a user, such as Mr., Ms., Mrs., or Dr.

Available in Mac OS X v10.3 and later.

kDSNAttrNameSuffix
Multi-value attribute for storing the name suffix of a user, such as Jr., or Sr.

Available in Mac OS X v10.3 and later.

kDSNAttrNestedGroups
Multi-value attribute for storing GUID values for nested groups; found in records of type
kDSStdRecordTypeGroups. This attribute is supported in Mac OS X v10.4 and later.

kDSNAttrNetGroups
Multi-value attribute for storing the net groups in which the record is a member. This attribute is
found in records of type kDSStdRecordTypeUsers, kDSStdRecordTypeHosts, and
kDSStdRecordTypeNetDomains.

166 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSNAttrNickName
Multi-value attribute for storing the nickname of a user or group.

Available in Mac OS X v10.3 and later.

kDSNAttrOrganizationName
Multi-value attribute for storing organization names.

kDSNAttrOriginalHomeDirectory
Multi-value attribute for storing home directory URL used in local account caching.

Available in Mac OS X v10.3 and later.

kDSNAttrPagerNumber
Multi-value attribute for storing the pager numbers of a user or person; usually found in records of
type kDSStdRecordTypeUsers.

Available in Mac OS X v10.3 and later.

kDSNAttrPhoneNumber
Multi-value attribute for storing phone numbers.

kDSNAttrPostalAddress
Multi-value attribute for storing postal addresses; usually excludes the postal code.

kDSNAttrPostalCode
Multi-value attribute for storing postal codes such as zip codes.

kDSNAttrState
Multi-value attribute for storing the names of states or provinces.

kDSNAttrStreet
Multi-value attribute for storing the street address of a user or person; usually found in records of
type kDSStdRecordTypeUsers.

Available in Mac OS X v10.3 and later.

Declared In
DirectoryService/DirServicesConst.h

VFS Attribute Constants
Constants for accessing virtual file system (VFS) attributes.

#define kDS1AttrVFSDumpFreq "dsAttrTypeStandard:VFSDumpFreq"
#define kDS1AttrVFSLinkDir "dsAttrTypeStandard:VFSLinkDir"
#define kDS1AttrVFSPassNo "dsAttrTypeStandard:VFSPassNo"
#define kDS1AttrVFSType "dsAttrTypeStandard:VFSType"
#define kDSNAttrVFSOpts "dsAttrTypeStandard:VFSOpts"

Constants
kDS1AttrVFSDumpFreq

Single-value attribute for storing a dump frequency.

kDS1AttrVFSLinkDir
Single-value attribute for storing the beginning of a path in a mounts record; usually is set to
/Network/Servers. A record name is appended to the value of this attribute to create the path to
mount. Maps to “dir” in NetInfo.

kDS1AttrVFSPassNo
Single-value attribute for storing mount record information; usually set to zero.

kDS1AttrVFSType
Single-value attribute for storing a VFS type.

Constants 167
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

kDSNAttrVFSOpts
Multi-value attribute for storing VFS options.

Declared In
DirectoryService/DirServicesConst.h

eAttribute Flags
Constants for getting and setting an attribute’s read/write status.

typedef enum {
keAttrReadOnly = 0x00000001,
keAttrReadWrite = 0x00000002
} eAttributeFlags;

Constants
keAttrReadOnly

Attribute is a read-only attribute.

keAttrReadWrite
Attribute can be read and written.

Discussion
This enumeration is not currently used or supported.

ePluginState Constants
Constants for setting a plug-in’s state.

typedef enum {
kUnknownState = 0x00000000,
kActive = 0x00000001,
kInactive = 0x00000002,
kInitialized = 0x00000004,
kUninitialized = 0x00000008,
kFailedToInit = 0x00000010,
} ePluginState;

Constants
kUnknownState

Plug-in has not yet been loaded.

kActive
Plug-in is loaded, initialized, and active.

kInactive
Plug-in is loaded and initialized but is not active.

kUninitialized
Plug-in is loaded but not initialized.

kFailedToInit
Plug-in is loaded but inactive because it failed to initialize.

168 Constants
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

Result Codes

The result codes for Open Directory are listed here. Note that some errors, such as system errors, do not
appear in this list.

DescriptionValueResult Code

No error occurred.0eDSNoErr

Available in Mac OS X v10.0 and later.

Attempt to open an Open Directory session failed.-14000eDSOpenFailed

Available in Mac OS X v10.0 and later.

Attempt to close an Open Directory session failed.-14001eDSCloseFailed

Available in Mac OS X v10.0 and later.

Attempt to open a node failed.-14002eDSOpenNodeFailed

Available in Mac OS X v10.0 and later.

Specified Open Directory reference is invalid.-14003eDSBadDirReferences

Specified record reference is empty.-14004eDSNullRecordReference

Available in Mac OS X v10.0 and later.

Session limit has been reached.-14005eDSMaxSessionsOpen

Available in Mac OS X v10.0 and later.

Specified session is not valid.-14006eDSCannotAccessSession

Available in Mac OS X v10.0 and later.

No Open Directory session has been opened.-14007eDSDirSrvcNotOpened

Available in Mac OS X v10.0 and later.

Specified node could not be found.-14008eDSNodeNotFound

Available in Mac OS X v10.0 and later.

Node of the specified name is unknown.-14009eDSUnknownNodeName

Available in Mac OS X v10.0 and later.

Registration of a custom routine failed.-14010eDSRegisterCustomFailed

Available in Mac OS X v10.0 and later.

Unable to get a custom routine.-14011eDSGetCustomFailed

Available in Mac OS X v10.0 and later.

Deregistration of a custom routine failed.-14012eDSUnRegisterFailed

Available in Mac OS X v10.0 and later.

Result Codes 169
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Requested data type could not be allocated.-14050eDSAllocationFailed

Available in Mac OS X v10.0 and later.

Requested deallocation failed.-14051eDSDeAllocateFailed

Available in Mac OS X v10.0 and later.

Custom thread block routine failed.-14052eDSCustomBlockFailed

Available in Mac OS X v10.0 and later.

Custom thread unblock routine failed.-14053eDSCustomUnblockFailed

Available in Mac OS X v10.0 and later.

Custom yield routine failed.-14054eDSCustomYieldFailed

Available in Mac OS X v10.0 and later.

Contents of buffer provided as a parameter to an
Open Directory function have been corrupted.

-14060eDSCorruptBuffer

Available in Mac OS X v10.0 and later.

Specified index is invalid.-14061eDSInvalidIndex

Available in Mac OS X v10.0 and later.

Specified index is out of range.-14062eDSIndexOutOfRange

Available in Mac OS X v10.0 and later.

Specified index could not be found.-14063eDSIndexNotFound

Available in Mac OS X v10.0 and later.

Data in a record entry structure is corrupt.-14065eDSCorruptRecEntryData

Available in Mac OS X v10.0 and later.

Reference table is full, so a new reference could
not be allocated.

-14069eDSRefSpaceFull

Available in Mac OS X v10.0 and later.

Allocation error occurred; the new reference could
not be allocated.

-14070eDSRefTableAllocError

Available in Mac OS X v10.0 and later.

Specified reference is invalid.-14071eDSInvalidReference

Available in Mac OS X v10.0 and later.

Specified reference has an invalid type.-14072eDSInvalidRefType

Available in Mac OS X v10.0 and later.

170 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Specified Open Directory reference is invalid.-14073eDSInvalidDirRef

Available in Mac OS X v10.0 and later.

Specified node reference is invalid.-14074eDSInvalidNodeRef

Available in Mac OS X v10.0 and later.

Specified record reference is invalid.-14075eDSInvalidRecordRef

Available in Mac OS X v10.0 and later.

Specified attribute list reference is invalid.-14076eDSInvalidAttrListRef

Available in Mac OS X v10.0 and later.

Specified attribute value reference is invalid.-14077eDSInvalidAttrValueRef

Available in Mac OS X v10.0 and later.

Specified continuation date is invalid.-14078eDSInvalidContinueData

Available in Mac OS X v10.0 and later.

Specified buffer format is invalid.-14079eDSInvalidBuffFormat

Available in Mac OS X v10.0 and later.

Specified pattern match type is invalid.-14080eDSInvalidPatternMatchType

Available in Mac OS X v10.0 and later.

Reference table error occurred.-14081eDSRefTableError

Available in Mac OS X v10.2 and later.

Reference table error occurred.-14082eDSRefTableNilError

Available in Mac OS X v10.3 and later.

Reference table index error occurred.-14083eDSRefTableIndexOfBoundsError

Reference table error occurred.-14084eDSRefTableEntryNilError

Available in Mac OS X v10.3 and later.

Reference table client side buffer parsing (CSBP)
error occurred.

-14085eDSRefTableCSBPAllocError

Available in Mac OS X v10.3 and later.

Reference table allocation error occurred.-14086eDSRefTableFWAllocError

Available in Mac OS X v10.3 and later.

Authentication failed.-14090eDSAuthFailed

Available in Mac OS X v10.0 and later.

Result Codes 171
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Specified authentication is not supported.-14091eDSAuthMethodNotSupported

Available in Mac OS X v10.0 and later.

Response buffer is too small for the response data.-14092eDSAuthResponseBufTooSmall

Available in Mac OS X v10.0 and later.

Authentication parameter is invalid.-14093eDSAuthParameterErr

Buffer format error occurred during the
authentication process.

-14094eDSAuthInBuffFormatError

Available in Mac OS X v10.0 and later.

Specified entity does not exist.-14095eDSAuthNoSuchEntity

Available in Mac OS X v10.0 and later.

Specified password is invalid.-14096eDSAuthBadPassword

Available in Mac OS X v10.0 and later.

Specified authentication continuation data is
invalid.

-14097eDSAuthContinueDataBad

Available in Mac OS X v10.0 and later.

User is not known.-14098eDSAuthUnknownUser

Available in Mac OS X v10.0 and later.

User name is not valid.-14099eDSAuthInvalidUserName

Available in Mac OS X v10.0 and later.

User’s password could not be read.-14100eDSAuthCannotRecoverPasswd

Available in Mac OS X v10.0 and later.

Authentication failed because the specified
authentication method requested that clear text
authentication not be used
(kDSStdAuthNodeNativeNoClearText), but
clear text authentication is the only available
method.

-14101eDSAuthFailedClearTextOnly

Available in Mac OS X v10.0 and later.

No authentication server was found.-14102eDSAuthNoAuthServerFound

Available in Mac OS X v10.0 and later.

Authentication server reported an error.-14103eDSAuthServerError

Available in Mac OS X v10.0 and later.

172 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Continuation data does not fit with the other
parameters.

-14104eDSInvalidContext

Available in Mac OS X v10.0 and later.

Specified continuation data is bad.-14105eDSBadContextData

Available in Mac OS X v10.0 and later.

Permission error occurred.-14120eDSPermissionError

Available in Mac OS X v10.0 and later.

Write operation was attempted on data that is read
only.

-14121eDSReadOnly

Available in Mac OS X v10.0 and later.

Specified domain is invalid.-14122eDSInvalidDomain

Available in Mac OS X v10.0 and later.

NetInfo error occurred.-14123eNetInfoError

Available in Mac OS X v10.0 and later.

Specified record type is invalid.-14130eDSInvalidRecordType

Available in Mac OS X v10.0 and later.

Specified attribute type is invalid.-14131eDSInvalidAttributeType

Available in Mac OS X v10.0 and later.

Specified record name is invalid.-14133eDSInvalidRecordName

Available in Mac OS X v10.0 and later.

Specified attribute could not be found.-14134eDSAttributeNotFound

Available in Mac OS X v10.0 and later.

Specified record already exists.-14135eDSRecordAlreadyExists

Available in Mac OS X v10.0 and later.

Requested record was not found.-14136eDSRecordNotFound

Available in Mac OS X v10.0 and later.

Specified attribute does not exist.-14137eDSAttributeDoesNotExist

Available in Mac OS X v10.0 and later.

Standard mapping is not available for the specified
attribute.

-14140eDSNoStdMappingAvailable

Available in Mac OS X v10.0 and later.

Result Codes 173
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Native mapping is not available for the specified
attribute.

-14141eDSInvalidNativeMapping

Available in Mac OS X v10.0 and later.

Write operation failed because the result would
conflict with the server's schema, such as trying to
remove a required attribute.

-14142eDSSchemaError

Available in Mac OS X v10.2 and later.

Specified attribute value could not be obtained,
set, or removed.

-14143eDSAttributeValueNotFound

Available in Mac OS X v10.2 and later.

Configuration file version is not compatible with
this version of Open Directory or with the plug-in
that loaded it.

-14149eDSVersionMismatch

Available in Mac OS X v10.2 and later.

Error occurred with the plug-in’s configuration file.-14150eDSPlugInConfigFileError

Available in Mac OS X v10.0 and later.

Specified plug-in’s configuration data is invalid.-14151eDSInvalidPlugInConfigData

Available in Mac OS X v10.0 and later.

Password must be reset now. This result code is
returned when authentication is successful and
account settings require the setting of a new
password.

-14161eDSAuthNewPasswordRequired

Available in Mac OS X v10.2 and later.

Password has expired and must be reset now. This
result code is returned when authentication is
successful and account settings indicate that the
password has expired.

-14162eDSAuthPasswordExpired

Available in Mac OS X v10.2 and later.

New password does not meet security standards.
This error only occurs when setting or changing a
password, not when authenticating.

-14165eDSAuthPasswordQualityCheckFailed

Available in Mac OS X v10.2 and later.

Account is disabled.-14167eDSAuthAccountDisabled

Available in Mac OS X v10.2 and later.

Account has been automatically disabled because
its expiration time has passed.

-14168eDSAuthAccountExpired

Available in Mac OS X v10.2 and later.

174 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Account has been automatically disabled because
it was not used for a preset amount of time.

-14169eDSAuthAccountInactive

Available in Mac OS X v10.2 and later.

New password does not meet the password
server’s minimum length requirements; this result
is returned when changing or setting a password,
not when authenticating.

-14170eDSAuthPasswordTooShort

Available in Mac OS X v10.2 and later.

New password does not meet the password
server’s maximum length limit; this result is
returned when changing or setting a password,
not when authenticating.

-14171eDSAuthPasswordTooLong

Available in Mac OS X v10.2 and later.

New password does contain a letter; this result is
returned when changing or setting a password,
not when authenticating.

-14172eDSAuthPasswordNeedsLetter

Available in Mac OS X v10.2 and later.

New password does not contain a number; this
result is returned when changing or setting a
password, not when authenticating.

-14173eDSAuthPasswordNeedsDigit

Available in Mac OS X v10.2 and later.

Attempt to change a password occurred too soon.-14174eDSAuthPasswordChangeTooSoon

Available in Mac OS X v10.3 and later.

Attempt to log in at an inappropriate time.-14175eDSAuthInvalidLogonHours

Available in Mac OS X v10.3 and later.

Attempt to log in from the wrong computer.-14176eDSAuthInvalidComputer

Available in Mac OS X v10.3 and later.

Authentication could not be completed because
a writable Open Directory replica could not be
reached.

-14177eDSAuthMasterUnreachabe

Required parameter is null.-14200eDSNullParameter

Available in Mac OS X v10.0 and later.

Specified data buffer is null.-14201eDSNullDataBuff

Available in Mac OS X v10.0 and later.

Specified node name is null.-14202eDSNullNodeName

Available in Mac OS X v10.0 and later.

Result Codes 175
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Specified record entry pointer is null.-14203eDSNullRecEntryPtr

Available in Mac OS X v10.0 and later.

Specified record name is null.-14204eDSNullRecName

Available in Mac OS X v10.0 and later.

Specified record name list is null.-14205eDSNullRecNameList

Available in Mac OS X v10.0 and later.

Specified record type is null.-14206eDSNullRecType

Available in Mac OS X v10.0 and later.

Specified record type list is null.-14207eDSNullRecTypeList

Available in Mac OS X v10.0 and later.

Specified attribute is null.-14208eDSNullAttribute

Available in Mac OS X v10.0 and later.

Reserved.-14209eDSNullAttributeAccess

Available in Mac OS X v10.0 and later.

Specified attribute value is null.-14210eDSNullAttributeValue

Available in Mac OS X v10.0 and later.

Specified attribute type is null.-14211eDSNullAttributeType

Available in Mac OS X v10.0 and later.

Specified attribute type list is null.-14212eDSNullAttributeTypeList

Available in Mac OS X v10.0 and later.

Reserved.-14213eDSNullAttributeControlPtr

Available in Mac OS X v10.0 and later.

Specified attribute request list is null.-14214eDSNullAttributeRequestList

Available in Mac OS X v10.0 and later.

Specified data list is empty.-14215eDSNullDataList

Available in Mac OS X v10.0 and later.

Specified node type list is empty.-14216eDSNullDirNodeTypeList

Available in Mac OS X v10.0 and later.

Specified authentication method is null.-14217eDSNullAutMethod

Available in Mac OS X v10.0 and later.

176 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Specified authentication step data is null.-14218eDSNullAuthStepData

Available in Mac OS X v10.0 and later.

Specified authentication step data response is null.-14219eDSNullAuthStepDataResp

Available in Mac OS X v10.0 and later.

Specified node information type list is null.-14220eDSNullNodeInfoTypeList

Available in Mac OS X v10.0 and later.

Specified pattern to match is null.-14221eDSNullPatternMatch

Available in Mac OS X v10.0 and later.

Specified node name pattern is null.-14222eDSNullNodeNamePattern

Available in Mac OS X v10.0 and later.

Specified target argument is null.-14223eDSNullTargetArgument

Available in Mac OS X v10.0 and later.

Parameter is empty.-14230eDSEmptyParameter

Available in Mac OS X v10.0 and later.

Buffer is empty.-14231eDSEmptyBuffer

Available in Mac OS X v10.0 and later.

Specified node name is empty.-14232eDSEmptyNodeName

Available in Mac OS X v10.0 and later.

Specified record name is empty.-14233eDSEmptyRecordName

Available in Mac OS X v10.0 and later.

Specified list of record names is empty.-14234eDSEmptyRecordNameList

Available in Mac OS X v10.0 and later.

Specified record type is empty.-14235eDSEmptyRecordType

Available in Mac OS X v10.0 and later.

Specified list of record types is empty.-14236eDSEmptyRecordTypeList

Available in Mac OS X v10.0 and later.

Specified record entry is empty.-14237eDSEmptyRecordEntry

Available in Mac OS X v10.0 and later.

Specified pattern is empty.-14238eDSEmptyPatternMatch

Available in Mac OS X v10.0 and later.

Result Codes 177
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Specified node name pattern is empty.-14239eDSEmptyNodeNamePattern

Available in Mac OS X v10.0 and later.

Specified attribute is empty.-14240eDSEmptyAttribute

Available in Mac OS X v10.0 and later.

Specified attribute type is empty.-14241eDSEmptyAttributeType

Available in Mac OS X v10.0 and later.

Specified list of attribute types is empty.-14242eDSEmptyAttributeTypeList

Available in Mac OS X v10.0 and later.

Specified attribute value is empty.-14243eDSEmptyAttributeValue

Available in Mac OS X v10.0 and later.

Specified list of attribute requests is empty.-14244eDSEmptyAttributeRequestList

Available in Mac OS X v10.0 and later.

Specified data list is empty.-14245eDSEmptyDataList

Available in Mac OS X v10.0 and later.

Specified node information type list is empty.-14246eDSEmptyNodeInfoTypeList

Available in Mac OS X v10.0 and later.

Specified authentication method is empty.-14247eDSEmptyAuthMethod

Available in Mac OS X v10.0 and later.

Specified authentication step data is empty.-14248eDSEmptyAuthStepData

Available in Mac OS X v10.0 and later.

Response to an authentication step is empty.-14249eDSEmptyAuthStepDataResp

Available in Mac OS X v10.0 and later.

Specified pattern to match is empty.-14250eDSEmptyPattern2Match

Available in Mac OS X v10.0 and later.

Specified data not length is invalid.-14255eDSBadDataNodeLength

Available in Mac OS X v10.0 and later.

Specified data not format is invalid.-14256eDSBadDataNodeFormat

Available in Mac OS X v10.0 and later.

Specified source data node is invalid.-14257eDSBadSourceDataNode

Available in Mac OS X v10.0 and later.

178 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Specified target data node is invalid.-14258eDSBadTargetDataNode

Available in Mac OS X v10.0 and later.

Attempt was made to place information in a buffer
that is too small. Nothing has been placed in the
buffer.

-14260eDSBufferTooSmall

Available in Mac OS X v10.0 and later.

Specified match type is not known.-14261eDSUnknownMatchType

Available in Mac OS X v10.0 and later.

Specified match type is not supported.-14262eDSUnSupportedMatchType

Available in Mac OS X v10.0 and later.

Specified data list is invalid.-14263eDSInvalDataList

Available in Mac OS X v10.0 and later.

Attribute list error occurred.-14264eDSAttrListError

Available in Mac OS X v10.0 and later.

Server is not running.-14270eServerNotRunning

Available in Mac OS X v10.0 and later.

Unknown call was attempted.-14271eUnknownAPICall

Available in Mac OS X v10.0 and later.

Server error occurred.-14272eUnknownServerError

Available in Mac OS X v10.0 and later.

Specified plug-in is unknown.-14273eUnknownPlugIn

Available in Mac OS X v10.0 and later.

Plug-in data error occurred.-14274ePlugInDataError

Available in Mac OS X v10.0 and later.

Specified plug-in was not found.-14275ePlugInNotFound

Available in Mac OS X v10.0 and later.

Plug-in error occurred.-14276ePlugInError

Available in Mac OS X v10.0 and later.

Plug-in initialization error occurred.-14277ePlugInInitError

Available in Mac OS X v10.0 and later.

Specified plug-in is not active.-14278ePlugInNotActive

Available in Mac OS X v10.0 and later.

Result Codes 179
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Specified plug-in could not initialize itself.-14279ePlugInFailedToInitialize

Available in Mac OS X v10.0 and later.

Call to a plug-in timed out.-14280ePlugInCallTimedOut

Available in Mac OS X v10.0 and later.

No search nodes were found.-14290eNoSearchNodesFound

Available in Mac OS X v10.0 and later.

No search path is defined.-14291eSearchPathNotDefined

Available in Mac OS X v10.0 and later.

Requested operation is not handled by the
specified node.

-14292eNotHandledByThisNode

Available in Mac OS X v10.0 and later.

Send error occurred.-14330eIPCSendError

Available in Mac OS X v10.0 and later.

Receive error occurred.-14331eIPCReceiveError

Available in Mac OS X v10.0 and later.

Server reply error occurred.-14332eServerReplyError

Available in Mac OS X v10.0 and later.

Error occurred when sending data to a remote
server.

-14350eDSTCPSendError

Available in Mac OS X v10.2 and later.

Error occured when receiving data from a remote
server.

-14351eDSTCPReceiveError

Available in Mac OS X v10.2 and later.

Mismatch of TCP versions occurred.-14352eDSTCPVersionMismatch

Available in Mac OS X v10.2 and later.

No response from the server at the specified IP
address.

-14353eDSIPUnreachable

Available in Mac OS X v10.2 and later.

Specified server could not be found.-14354eDSUnknownHost

Available in Mac OS X v10.2 and later.

Plug-in handler is not loaded.-14400ePluginHandlerNotLoaded

Available in Mac OS X v10.0 and later.

180 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

No plug-ins loaded.-14402eNoPluginsLoaded

Available in Mac OS X v10.0 and later.

Specified plug-in is already loaded.-14404ePluginAlreadyLoaded

Available in Mac OS X v10.0 and later.

Plug-in’s version is not specified in its configuration
file.

-14406ePluginVersionNotFound

Available in Mac OS X v10.0 and later.

Plug-in’s name is not specified in its configuration
file.

-14408ePluginNameNotFound

Available in Mac OS X v10.0 and later.

Plug-in factories were not found.-14410eNoPluginFactoriesFound

Available in Mac OS X v10.0 and later.

Plug-in’s property list does not contain a
CFBundleConfigAvail statement.

-14412ePluginConfigAvailNotFound

Available in Mac OS X v10.0 and later.

Plug-in’s property list does not contain a
CFBundleConfigFile statement.

-14414ePluginConfigFileNotFound

Available in Mac OS X v10.0 and later.

Error occurred getting a file system report from
the Code Fragment Manager.

-14450eCFMGetFileSysRepErr

Available in Mac OS X v10.0 and later.

Error occurred getting the bundle for a plug-in
from the Code Fragment Manager.

-14452eCFPlugInGetBundleErr

Available in Mac OS X v10.0 and later.

Error occurred getting the information dictionary
for a plug-in from the Code Fragment Manager.

-14454eCFBndleGetInfoDictErr

Available in Mac OS X v10.0 and later.

Error occurred getting a value from the information
dictionary.

-14456eCFDictGetValueErr

Available in Mac OS X v10.0 and later.

Server timeout occurred during authentication.-14470eDSServerTimeout

Available in Mac OS X v10.0 and later.

Authentication can continue.-14471eDSContinue

Available in Mac OS X v10.0 and later.

Result Codes 181
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Invalid handle error occurred during
authentication.

-14472eDSInvalidHandle

Available in Mac OS X v10.0 and later.

Send error occurred during authentication.-14473eDSSendFailed

Available in Mac OS X v10.0 and later.

Receive error occurred during authentication.-14474eDSReceiveFailed

Available in Mac OS X v10.0 and later.

Bad packet error occurred during authentication.-14475eDSBadPacket

Available in Mac OS X v10.0 and later.

Invalid tag error occurred during authentication.-14476eDSInvalidTag

Available in Mac OS X v10.0 and later.

Session invalid error occurred during
authentication.

-14477eDSInvalidSession

Available in Mac OS X v10.0 and later.

Specified name is invalid.-14478eDSInvalidName

Available in Mac OS X v10.0 and later.

Specified user is unknown.-14479eDSUserUnknown

Available in Mac OS X v10.0 and later.

Password could not be obtained.-14480eDSUnrecoverablePassword

Available in Mac OS X v10.0 and later.

Authentication failed.-14481eDSAuthenticationFailed

Available in Mac OS X v10.0 and later.

Specified server is invalid.-14482eDSBogusServer

Available in Mac OS X v10.0 and later.

Specified operation failed during authentication.-14483eDSOperationFailed

Available in Mac OS X v10.0 and later.

Unauthorized operation was attempted.-14484eDSNotAuthorized

Available in Mac OS X v10.0 and later.

NetInfo error occurred during authentication.-14485eDSNetInfoError

Available in Mac OS X v10.0 and later.

182 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Changes must be written to the master rather than
a replica.

-14486eDSContactMaster

Available in Mac OS X v10.0 and later.

Authentication service is not available.-14487eDSServiceUnavailable

Available in Mac OS X v10.0 and later.

Open Directory error occurred.-14501eFWGetDirNodeNameErr1

Available in Mac OS X v10.0 and later.

Open Directory error occurred.-14502eFWGetDirNodeNameErr2

Available in Mac OS X v10.0 and later.

Open Directory error occurred.-14503eFWGetDirNodeNameErr3

Available in Mac OS X v10.0 and later.

Open Directory error occurred.-14504eFWGetDirNodeNameErr4

Available in Mac OS X v10.0 and later.

Open Directory error occurred when sending a
parameter to a plug-in.

-14700eParameterSendError

Available in Mac OS X v10.0 and later.

Open Directory error occurred when receiving a
parameter from a plug-in.

-14720eParameterReceiveError

Available in Mac OS X v10.0 and later.

Open Directory send error occurred.-14740eServerSendError

Available in Mac OS X v10.0 and later.

Open Directory receive error occurred.-14760eServerReceiveError

Available in Mac OS X v10.0 and later.

Open Directory experienced a memory error.-14900eMemoryError

Available in Mac OS X v10.0 and later.

Open Directory experienced a memory allocation
error.

-14901eMemoryAllocError

Available in Mac OS X v10.0 and later.

Server error occurred.-14910eServerError

Available in Mac OS X v10.0 and later.

Parameter error occurred.-14915eParameterError

Available in Mac OS X v10.0 and later.

Result Codes 183
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

No Open Directory reference was received.-14950eDataReceiveErr_NoDirRef

Available in Mac OS X v10.0 and later.

No record reference was received.-14951eDataReceiveErr_NoRecRef

Available in Mac OS X v10.0 and later.

No attribute list reference was received.-14952eDataReceiveErr_NoAttrListRef

Available in Mac OS X v10.0 and later.

No attribute list reference was received.-14953eDataReceiveErr_NoAttrValueListRef

Available in Mac OS X v10.0 and later.

Plug-in did not return an attribute entry.-14954eDataReceiveErr_NoAttrEntry

Available in Mac OS X v10.0 and later.

Plug-in did not return an attribute value entry.-14955eDataReceiveErr_NoAttrValueEntry

Available in Mac OS X v10.0 and later.

Plug-in did not return a node count.-14956eDataReceiveErr_NoNodeCount

Available in Mac OS X v10.0 and later.

Plug-in did not return an attribute count.-14957eDataReceiveErr_NoAttrCount

Available in Mac OS X v10.0 and later.

Plug-in did not return a record entry.-14958eDataReceiveErr_NoRecEntry

Available in Mac OS X v10.0 and later.

Plug-in did not return a count of record entries.-14959eDataReceiveErr_NoRecEntryCount

Available in Mac OS X v10.0 and later.

Plug-in did not return a count of record matches.-14960eDataReceiveErr_NoRecMatchCount

Available in Mac OS X v10.0 and later.

Plug-in did not return a data buffer.-14961eDataReceiveErr_NoDataBuff

Available in Mac OS X v10.0 and later.

Plug-in did not return continuation data.-14962eDataReceiveErr_NoContinueData

Available in Mac OS X v10.0 and later.

Plug-in did not provide a change token value.-14963eDataReceiveErr_NoNodeChangeToken

Available in Mac OS X v10.0 and later.

Specified call is not supported.-14986eNoLongerSupported

Available in Mac OS X v10.0 and later.

184 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

DescriptionValueResult Code

Undefined error occurred.-14987eUndefinedError

Available in Mac OS X v10.0 and later.

Specified operation is not yet implemented.-14988eNotYetImplemented

Available in Mac OS X v10.0 and later.

Result Codes 185
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

186 Result Codes
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Open Directory Reference

This table describes the changes to Open Directory Reference.

NotesDate

Added Open Directory Plug-in reference information.2006-05-23

New document that describes the Carbon API for using Open Directory.2006-04-04

187
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

188
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

A

Alias Attribute Constants 147
Authentication Constants 129
Authentication Methods 131

B

Boot Attribute Constants 148

C

Certificate Attribute Constants 148

D

dDSBeginPlugInCustom constant 142
DNS Attribute Constants 149
dsAddAttribute function 11
dsAddAttributeValue function 12
dsAddChildPIDToReference function 13
dsAllocAttributeValueEntry function 14
dsAppendStringToListAlloc function 14
dsBuildFromPath function 15
dsBuildListFromNodesAlloc function 16
dsBuildListFromPathAlloc function 17
dsBuildListFromStrings function 18
dsBuildListFromStringsAlloc function 18
dsBuildListFromStringsAllocV function 19
dsCloseAttributeList function 20
dsCloseAttributeValueList function 20
dsCloseDirNode function 21
dsCloseDirService function 22
dsCloseRecord function 22
dsCreateRecord function 23
dsCreateRecordAndOpen function 24

dsDataBufferAllocate function 25
dsDataBufferDeAllocate function 25
dsDataListAllocate function 26
dsDataListCopyList function 27
dsDataListDeallocate function 27
dsDataListDeleteThisNode function 28
dsDataListGetNodeAlloc function 28
dsDataListGetNodeCount function 29
dsDataListInsertAfter function 30
dsDataListMergeListAfter function 30
dsDataNodeAllocateBlock function 31
dsDataNodeAllocateString function 32
dsDataNodeDeAllocate function 33
dsDataNodeGetLength function 33
dsDataNodeGetSize function 34
dsDataNodeSetLength function 34
dsDeallocAttributeEntry function 35
dsDeallocAttributeValueEntry function 35
dsDeallocRecordEntry function 36
DSDebugLog callback 80
dsDeleteRecord function 37
dsDoAttributeValueSearch function 37
dsDoAttributeValueSearchWithData function 40
dsDoDirNodeAuth function 41
dsDoDirNodeAuthOnRecordType function 43
dsDoMultipleAttributeValueSearch function 45
dsDoMultipleAttributeValueSearchWithData

function 47
dsDoPlugInCustomCall function 49
dsFindDirNodes function 49
dsFlushRecord function 51
dsGetAttributeEntry function 51
dsGetAttributeValue function 53
dsGetDataLength function 54
dsGetDirNodeCount function 54
dsGetDirNodeCountWithInfo function 55
dsGetDirNodeInfo function 56
dsGetDirNodeList function 57
dsGetDirNodeName function 58
dsGetPathFromList function 59
dsGetRecordAttributeInfo function 59
dsGetRecordAttributeValueByID function 60

189
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

Index

dsGetRecordAttributeValueByIndex function 61
dsGetRecordAttributeValueByValue function 62
dsGetRecordEntry function 63
dsGetRecordList function 64
dsGetRecordNameFromEntry function 66
dsGetRecordReferenceInfo function 66
dsGetRecordTypeFromEntry function 67
dsIsDirServiceRunning function 67
dsOpenDirNode function 68
dsOpenDirService function 69
dsOpenDirServiceProxy function 70
dsOpenRecord function 71
DSRegisterNode callback 81
dsReleaseContinueData function 72
dsRemoveAttribute function 73
dsRemoveAttributeValue function 73
dsSetAttributeValue function 74
dsSetAttributeValues function 75
dsSetRecordName function 76
dsSetRecordType function (Deprecated in Mac OS X

v10.2) 77
DSUnregisterNode callback 82
dsVerifyDirRefNum function 77

E

eAttribute Flags 168
eCFBndleGetInfoDictErr constant 181
eCFDictGetValueErr constant 181
eCFMGetFileSysRepErr constant 181
eCFPlugInGetBundleErr constant 181
eDataReceiveErr_NoAttrCount constant 184
eDataReceiveErr_NoAttrEntry constant 184
eDataReceiveErr_NoAttrListRef constant 184
eDataReceiveErr_NoAttrValueEntry constant 184
eDataReceiveErr_NoAttrValueListRef constant

184
eDataReceiveErr_NoContinueData constant 184
eDataReceiveErr_NoDataBuff constant 184
eDataReceiveErr_NoDirRef constant 184
eDataReceiveErr_NoNodeChangeToken constant 184
eDataReceiveErr_NoNodeCount constant 184
eDataReceiveErr_NoRecEntry constant 184
eDataReceiveErr_NoRecEntryCount constant 184
eDataReceiveErr_NoRecMatchCount constant 184
eDataReceiveErr_NoRecRef constant 184
eDSAllocationFailed constant 170
eDSAnyMatch constant 138
eDSAttributeDoesNotExist constant 173
eDSAttributeNotFound constant 173
eDSAttributeValueNotFound constant 174
eDSAttrListError constant 179

eDSAuthAccountDisabled constant 174
eDSAuthAccountExpired constant 174
eDSAuthAccountInactive constant 175
eDSAuthBadPassword constant 172
eDSAuthCannotRecoverPasswd constant 172
eDSAuthContinueDataBad constant 172
eDSAuthenticationFailed constant 182
eDSAuthenticationSearchNodeName constant 141
eDSAuthFailed constant 171
eDSAuthFailedClearTextOnly constant 172
eDSAuthInBuffFormatError constant 172
eDSAuthInvalidComputer constant 175
eDSAuthInvalidLogonHours constant 175
eDSAuthInvalidUserName constant 172
eDSAuthMasterUnreachabe constant 175
eDSAuthMethodNotSupported constant 172
eDSAuthNewPasswordRequired constant 174
eDSAuthNoAuthServerFound constant 172
eDSAuthNoSuchEntity constant 172
eDSAuthParameterErr constant 172
eDSAuthPasswordChangeTooSoon constant 175
eDSAuthPasswordExpired constant 174
eDSAuthPasswordNeedsDigit constant 175
eDSAuthPasswordNeedsLetter constant 175
eDSAuthPasswordQualityCheckFailed constant 174
eDSAuthPasswordTooLong constant 175
eDSAuthPasswordTooShort constant 175
eDSAuthResponseBufTooSmall constant 172
eDSAuthServerError constant 172
eDSAuthUnknownUser constant 172
eDSBadContextData constant 173
eDSBadDataNodeFormat constant 178
eDSBadDataNodeLength constant 178
eDSBadDirReferences constant 169
eDSBadPacket constant 182
eDSBadSourceDataNode constant 178
eDSBadTargetDataNode constant 179
eDSBeginAppleReserve1 constant 139
eDSBeginAppleReserve2 constant 142
eDSBogusServer constant 182
eDSBufferTooSmall constant 179
eDSCannotAccessSession constant 169
eDSCloseFailed constant 169
eDSCompoundExpression constant 140
eDSConfigNodeName constant 141
eDSContactMaster constant 183
eDSContactsSearchNodeName constant 141
eDSContains constant 139
eDSContinue constant 181
eDSCorruptBuffer constant 170
eDSCorruptRecEntryData constant 170
eDSCustomBlockFailed constant 170
eDSCustomUnblockFailed constant 170

190
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

eDSCustomYieldFailed constant 170
eDSDeAllocateFailed constant 170
eDSDefaultNetworkNodes constant 142
eDSDirSrvcNotOpened constant 169
eDSEmptyAttribute constant 178
eDSEmptyAttributeRequestList constant 178
eDSEmptyAttributeType constant 178
eDSEmptyAttributeTypeList constant 178
eDSEmptyAttributeValue constant 178
eDSEmptyAuthMethod constant 178
eDSEmptyAuthStepData constant 178
eDSEmptyAuthStepDataResp constant 178
eDSEmptyBuffer constant 177
eDSEmptyDataList constant 178
eDSEmptyNodeInfoTypeList constant 178
eDSEmptyNodeName constant 177
eDSEmptyNodeNamePattern constant 178
eDSEmptyParameter constant 177
eDSEmptyPattern2Match constant 178
eDSEmptyPatternMatch constant 177
eDSEmptyRecordEntry constant 177
eDSEmptyRecordName constant 177
eDSEmptyRecordNameList constant 177
eDSEmptyRecordType constant 177
eDSEmptyRecordTypeList constant 177
eDSEndAppleReserve1 constant 139
eDSEndAppleReserve2 constant 142
eDSEndPlugInCustom constant 142
eDSEndsWith constant 139
eDSExact constant 139
eDSGetCustomFailed constant 169
eDSGreaterEqual constant 139
eDSGreaterThan constant 139
eDSiCompoundExpression constant 141
eDSiContains constant 140
eDSiEndsWith constant 140
eDSiExact constant 140
eDSiGreaterEqual constant 141
eDSiGreaterThan constant 140
eDSiLessEqual constant 140
eDSiLessThan constant 140
eDSIndexNotFound constant 170
eDSIndexOutOfRange constant 170
eDSInvalDataList constant 179
eDSInvalidAttributeType constant 173
eDSInvalidAttrListRef constant 171
eDSInvalidAttrValueRef constant 171
eDSInvalidBuffFormat constant 171
eDSInvalidContext constant 173
eDSInvalidContinueData constant 171
eDSInvalidDirRef constant 171
eDSInvalidDomain constant 173
eDSInvalidHandle constant 182

eDSInvalidIndex constant 170
eDSInvalidName constant 182
eDSInvalidNativeMapping constant 174
eDSInvalidNodeRef constant 171
eDSInvalidPatternMatchType constant 171
eDSInvalidPlugInConfigData constant 174
eDSInvalidRecordName constant 173
eDSInvalidRecordRef constant 171
eDSInvalidRecordType constant 173
eDSInvalidReference constant 170
eDSInvalidRefType constant 170
eDSInvalidSession constant 182
eDSInvalidTag constant 182
eDSIPUnreachable constant 180
eDSiRegularExpression constant 141
eDSiStartsWith constant 140
eDSiWildCardPattern constant 141
eDSLessEqual constant 139
eDSLessThan constant 139
eDSLocalHostedNodes constant 141
eDSLocalNodeNames constant 141
eDSMaxSessionsOpen constant 169
eDSNetInfoError constant 182
eDSNetworkSearchNodeName constant 142
eDSNodeNotFound constant 169
eDSNoErr constant 169
eDSNoMatch1 constant 138
eDSNoMatch2 constant 142
eDSNoStdMappingAvailable constant 173
eDSNotAuthorized constant 182
eDSNullAttribute constant 176
eDSNullAttributeAccess constant 176
eDSNullAttributeControlPtr constant 176
eDSNullAttributeRequestList constant 176
eDSNullAttributeType constant 176
eDSNullAttributeTypeList constant 176
eDSNullAttributeValue constant 176
eDSNullAuthStepData constant 177
eDSNullAuthStepDataResp constant 177
eDSNullAutMethod constant 176
eDSNullDataBuff constant 175
eDSNullDataList constant 176
eDSNullDirNodeTypeList constant 176
eDSNullNodeInfoTypeList constant 177
eDSNullNodeName constant 175
eDSNullNodeNamePattern constant 177
eDSNullParameter constant 175
eDSNullPatternMatch constant 177
eDSNullRecEntryPtr constant 176
eDSNullRecName constant 176
eDSNullRecNameList constant 176
eDSNullRecordReference constant 169
eDSNullRecType constant 176

191
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

eDSNullRecTypeList constant 176
eDSNullTargetArgument constant 177
eDSOpenFailed constant 169
eDSOpenNodeFailed constant 169
eDSOperationFailed constant 182
eDSPermissionError constant 173
eDSPlugInConfigFileError constant 174
eDSReadOnly constant 173
eDSReceiveFailed constant 182
eDSRecordAlreadyExists constant 173
eDSRecordNotFound constant 173
eDSRefSpaceFull constant 170
eDSRefTableAllocError constant 170
eDSRefTableCSBPAllocError constant 171
eDSRefTableEntryNilError constant 171
eDSRefTableError constant 171
eDSRefTableFWAllocError constant 171
eDSRefTableIndexOfBoundsError constant 171
eDSRefTableNilError constant 171
eDSRegisterCustomFailed constant 169
eDSRegularExpression constant 140
eDSSchemaError constant 174
eDSSearchNodeName constant 141
eDSSendFailed constant 182
eDSServerTimeout constant 181
eDSServiceUnavailable constant 183
eDSStartsWith constant 139
eDSTCPReceiveError constant 180
eDSTCPSendError constant 180
eDSTCPVersionMismatch constant 180
eDSUnknownHost constant 180
eDSUnknownMatchType constant 179
eDSUnknownNodeName constant 169
eDSUnrecoverablePassword constant 182
eDSUnRegisterFailed constant 169
eDSUnSupportedMatchType constant 179
eDSUserUnknown constant 182
eDSVersionMismatch constant 174
eDSWildCardPattern constant 140
eFWGetDirNodeNameErr1 constant 183
eFWGetDirNodeNameErr2 constant 183
eFWGetDirNodeNameErr3 constant 183
eFWGetDirNodeNameErr4 constant 183
eIPCReceiveError constant 180
eIPCSendError constant 180
eMemoryAllocError constant 183
eMemoryError constant 183
eNetInfoError constant 173
eNoLongerSupported constant 184
eNoPluginFactoriesFound constant 181
eNoPluginsLoaded constant 181
eNoSearchNodesFound constant 180
eNotHandledByThisNode constant 180

eNotYetImplemented constant 185
eParameterError constant 183
eParameterReceiveError constant 183
eParameterSendError constant 183
ePluginAlreadyLoaded constant 181
ePlugInCallTimedOut constant 180
ePluginConfigAvailNotFound constant 181
ePluginConfigFileNotFound constant 181
ePlugInDataError constant 179
ePlugInError constant 179
ePlugInFailedToInitialize constant 180
ePluginHandlerNotLoaded constant 180
ePlugInInitError constant 179
ePluginNameNotFound constant 181
ePlugInNotActive constant 179
ePlugInNotFound constant 179
ePluginState Constants 168
ePluginVersionNotFound constant 181
eSearchPathNotDefined constant 180
eServerError constant 183
eServerNotRunning constant 179
eServerReceiveError constant 183
eServerReplyError constant 180
eServerSendError constant 183
eUndefinedError constant 185
eUnknownAPICall constant 179
eUnknownPlugIn constant 179
eUnknownServerError constant 179

I

Initialize function 78

K

kActive constant 168
kDS1AttrAdminLimits constant 164
kDS1AttrAdminStatus constant 164
kDS1AttrAlias constant 148
kDS1AttrAliasData constant 148
kDS1AttrAlternateDatastoreLocation constant

164
kDS1AttrAuthCredential constant 155
kDS1AttrAuthenticationHint constant 164
kDS1AttrAuthorityRevocationList constant 149
kDS1AttrBootFile constant 148
kDS1AttrCACertificate constant 149
kDS1AttrCapabilities constant 155
kDS1AttrCertificateRevocationList constant 149
kDS1AttrChange constant 164

192
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

kDS1AttrComment constant 164
kDS1AttrComputerAlias constant 154
kDS1AttrContactPerson constant 152
kDS1AttrCopyTimestamp constant 153
kDS1AttrCreationTimestamp constant 158
kDS1AttrCrossCertificatePair constant 149
kDS1AttrCSPSearchPath constant 159
kDS1AttrDataStamp constant 153
kDS1AttrDateRecordCreated constant 158
kDS1AttrDistinguishedName constant 164
kDS1AttrDNSDomain constant 150
kDS1AttrDNSNameServer constant 150
kDS1AttrENetAddress constant 151
kDS1AttrExpire constant 164
kDS1AttrFirstName constant 164
kDS1AttrGeneratedUID constant 164
kDS1AttrHomeDirectoryQuota constant 164
kDS1AttrHomeDirectorySoftQuota constant 164
kDS1AttrHomeLocOwner constant 164
kDS1AttrInternetAlias constant 164
kDS1AttrKDCConfigData constant 150
kDS1AttrKerberosRealm constant 150
kDS1AttrLastName constant 164
kDS1AttrLocation constant 160
kDS1AttrLSPSearchPath constant 159
kDS1AttrMailAttribute constant 164
kDS1AttrMCXFlags constant 152
kDS1AttrMCXSettings constant 152
kDS1AttrMiddleName constant 165
kDS1AttrModificationTimestamp constant 158
kDS1AttrNeighborhoodAlias constant 154
kDS1AttrNeighborhoodType constant 154
kDS1AttrNetworkView constant 154
kDS1AttrNFSHomeDirectory constant 165
kDS1AttrNodePathXMLPlist constant 154
kDS1AttrNote constant 157
kDS1AttrNSPSearchPath constant 159
kDS1AttrOriginalNFSHomeDirectory constant 165
kDS1AttrOriginalNodeName constant 155
kDS1AttrOwner constant 158
kDS1AttrPassword constant 165
kDS1AttrPasswordPlus constant 165
kDS1AttrPasswordPolicyOptions constant 156
kDS1AttrPasswordServerList constant 156
kDS1AttrPasswordServerLocation constant 156
kDS1AttrPicture constant 165
kDS1AttrPort constant 160
kDS1AttrPresetUserIsAdmin constant 153
kDS1AttrPrimaryGroupID constant 165
kDS1AttrPrimaryNTDomain constant 161
kDS1AttrPrimaryNTDomainComputerAccount

constant 161
kDS1AttrPrinter1284DeviceID constant 157

kDS1AttrPrinterLPRHost constant 157
kDS1AttrPrinterLPRQueue constant 157
kDS1AttrPrinterMakeAndModel constant 157
kDS1AttrPrinterType constant 157
kDS1AttrPrinterURI constant 157
kDS1AttrPrintServiceInfoText constant 157
kDS1AttrPrintServiceInfoXML constant 157
kDS1AttrPrintServiceUserData constant 157
kDS1AttrPwdAgingPolicy constant 156
kDS1AttrRARA constant 153
kDS1AttrReadOnlyNode constant 155
kDS1AttrRealUserID constant 165
kDS1AttrRecordImage constant 158
kDS1AttrRelativeDNPrefix constant 151
kDS1AttrSearchPath constant 159
kDS1AttrSearchPolicy constant 159
kDS1AttrServiceType constant 160
kDS1AttrSetupAdvertising constant 160
kDS1AttrSetupAutoRegister constant 160
kDS1AttrSetupLocation constant 160
kDS1AttrSetupOccupation constant 160
kDS1AttrSMBAcctFlags constant 161
kDS1AttrSMBGroupRID constant 161
kDS1AttrSMBHome constant 161
kDS1AttrSMBHomeDrive constant 161
kDS1AttrSMBKickoffTime constant 161
kDS1AttrSMBLogoffTime constant 161
kDS1AttrSMBLogonTime constant 162
kDS1AttrSMBPrimaryGroupSID constant 162
kDS1AttrSMBProfilePath constant 162
kDS1AttrSMBPWDLastSet constant 162
kDS1AttrSMBRID constant 162
kDS1AttrSMBScriptPath constant 162
kDS1AttrSMBSID constant 162
kDS1AttrSMBUserWorkstations constant 162
kDS1AttrTimePackage constant 153
kDS1AttrTimeToLive constant 158
kDS1AttrTotalSize constant 158
kDS1AttrUniqueID constant 165
kDS1AttrUserCertificate constant 149
kDS1AttrUserPKCS12Data constant 149
kDS1AttrUserShell constant 165
kDS1AttrUserSMIMECertificate constant 149
kDS1AttrVFSDumpFreq constant 167
kDS1AttrVFSLinkDir constant 167
kDS1AttrVFSPassNo constant 167
kDS1AttrVFSType constant 167
kDS1AttrXMLPlist constant 160
kDSAttributesAll constant 147
kDSAttributesNativeAll constant 147
kDSAttributesStandardAll constant 147
kDSAttrNone constant 147
kDSNativeAttrTypePrefix constant 147

193
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

kDSNativeAuthMethodPrefix constant 130
kDSNativeRecordTypePrefix constant 143
kDSNAttrAccessControlEntry constant 153
kDSNAttrAddressLine1 constant 165
kDSNAttrAddressLine2 constant 165
kDSNAttrAddressLine3 constant 165
kDSNAttrAllNames constant 158
kDSNAttrAreaCode constant 165
kDSNAttrAuthenticationAuthority constant 165
kDSNAttrAuthMethod constant 153
kDSNAttrBootParams constant 148
kDSNAttrBuilding constant 165
kDSNAttrCity constant 165
kDSNAttrComputers constant 153
kDSNAttrCountry constant 166
kDSNAttrCSPSearchPath constant 159
kDSNAttrDepartment constant 164
kDSNAttrDNSName constant 150
kDSNAttrEMailAddress constant 166
kDSNAttrFaxNumber constant 166
kDSNAttrGroup constant 153
kDSNAttrGroupMembers constant 166
kDSNAttrGroupMembership constant 166
kDSNAttrHomeDirectory constant 166
kDSNAttrHTML constant 153
kDSNAttrIMHandle constant 166
kDSNAttrIPAddress constant 151
kDSNAttrJobTitle constant 166
kDSNAttrKDCAuthKey constant 150
kDSNAttrKeywords constant 153
kDSNAttrLDAPReadReplicas constant 151
kDSNAttrLDAPWriteReplicas constant 151
kDSNAttrLSPSearchPath constant 159
kDSNAttrMachineServes constant 152
kDSNAttrMCXSettings constant 152
kDSNAttrMember constant 154
kDSNAttrMetaNodeLocation constant 155
kDSNAttrMIME constant 154
kDSNAttrMobileNumber constant 166
kDSNAttrNamePrefix constant 166
kDSNAttrNameSuffix constant 166
kDSNAttrNBPEntry constant 151
kDSNAttrNestedGroups constant 166
kDSNAttrNetGroups constant 166
kDSNAttrNickName constant 167
kDSNAttrNodePath constant 155
kDSNAttrNSPSearchPath constant 159
kDSNAttrOrganizationName constant 167
kDSNAttrOriginalHomeDirectory constant 167
kDSNAttrPagerNumber constant 167
kDSNAttrPGPPublicKey constant 154
kDSNAttrPhoneNumber constant 167
kDSNAttrPlugInInfo constant 155

kDSNAttrPostalAddress constant 167
kDSNAttrPostalCode constant 167
kDSNAttrPrinterXRISupported constant 158
kDSNAttrProtocols constant 154
kDSNAttrRecordAlias constant 148
kDSNAttrRecordName constant 159
kDSNAttrRecordType constant 159
kDSNAttrSchema constant 154
kDSNAttrSearchPath constant 159
kDSNAttrSetPasswdMethod constant 156
kDSNAttrState constant 167
kDSNAttrStreet constant 167
kDSNAttrSubNodes constant 155
kDSNAttrURL constant 154
kDSNAttrURLForNSL constant 154
kDSNAttrVFSOpts constant 168
kDSRecordsAll constant 143
kDSRecordsNativeAll constant 143
kDSRecordsStandardAll constant 143
kDSSetPasswdBestOf constant 130
kDSStdAttrTypePrefix constant 147
kDSStdAuth2WayRandom constant 132
kDSStdAuth2WayRandomChangePasswd constant 133
kDSStdAuthAPOP constant 133
kDSStdAuthChangePasswd constant 133
kDSStdAuthCHAP constant 133
kDSStdAuthClearText constant 133
kDSStdAuthCRAM_MD5 constant 133
kDSStdAuthCrypt constant 133
kDSStdAuthDeleteUser constant 133
kDSStdAuthDIGEST_MD5 constant 133
kDSStdAuthGetEffectivePolicy constant 133
kDSStdAuthGetGlobalPolicy constant 133
kDSStdAuthGetKerberosPrincipal constant 133
kDSStdAuthGetPolicy constant 134
kDSStdAuthGetUserData constant 134
kDSStdAuthGetUserName constant 134
kDSStdAuthMASKE_A constant 134
kDSStdAuthMASKE_B constant 134
kDSStdAuthMethodPrefix constant 129
kDSStdAuthMPPEMasterKeys constant 134
kDSStdAuthMSCHAP1 constant 134
kDSStdAuthMSCHAP2 constant 134
kDSStdAuthNewUser constant 134
kDSStdAuthNewUserWithPolicy constant 135
kDSStdAuthNodeNativeClearTextOK constant 135
kDSStdAuthNodeNativeNoClearText constant 135
kDSStdAuthNTLMv2 constant 134
kDSStdAuthReadSecureHash constant 135
kDSStdAuthSecureHash constant 135
kDSStdAuthSetGlobalPolicy constant 135
kDSStdAuthSetLMHash constant 136
kDSStdAuthSetNTHash constant 136

194
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

kDSStdAuthSetPasswd constant 136
kDSStdAuthSetPasswdAsRoot constant 136
kDSStdAuthSetPolicy constant 136
kDSStdAuthSetPolicyAsRoot constant 136
kDSStdAuthSetUserData constant 136
kDSStdAuthSetUserName constant 136
kDSStdAuthSetWorkstationPasswd constant 136
kDSStdAuthSMBNTv2UserSessionKey constant 135
kDSStdAuthSMBWorkstationCredentialSessionKey

constant 135
kDSStdAuthSMB_LM_Key constant 135
kDSStdAuthSMB_NT_Key constant 135
kDSStdAuthSMB_NT_UserSessionKey constant 135
kDSStdAuthWithAuthorizationRef constant 137
kDSStdAuthWriteSecureHash constant 137
kDSStdMachPortName constant 154
kDSStdRecordTypeAccessControls constant 144
kDSStdRecordTypeAFPServer constant 144
kDSStdRecordTypeAFPUserAliases constant 144
kDSStdRecordTypeAliases constant 145
kDSStdRecordTypeAll constant 143
kDSStdRecordTypeAutoServerSetup constant 145
kDSStdRecordTypeBootp constant 145
kDSStdRecordTypeCertificateAuthorities

constant 145
kDSStdRecordTypeComputerLists constant 145
kDSStdRecordTypeComputers constant 145
kDSStdRecordTypeConfig constant 145
kDSStdRecordTypeEthernets constant 145
kDSStdRecordTypeFileMakerServers constant 145
kDSStdRecordTypeFTPServer constant 145
kDSStdRecordTypeGroupAliases constant 145
kDSStdRecordTypeGroups constant 145
kDSStdRecordTypeHosts constant 145
kDSStdRecordTypeHostServices constant 145
kDSStdRecordTypeLDAPServer constant 145
kDSStdRecordTypeLocations constant 145
kDSStdRecordTypeMachines constant 145
kDSStdRecordTypeMeta constant 145
kDSStdRecordTypeMounts constant 145
kDSStdRecordTypeNeighborhoods constant 146
kDSStdRecordTypeNetDomains constant 146
kDSStdRecordTypeNetGroups constant 146
kDSStdRecordTypeNetworks constant 146
kDSStdRecordTypeNFS constant 146
kDSStdRecordTypePasswordServer constant 146
kDSStdRecordTypePeople constant 146
kDSStdRecordTypePrefix constant 143
kDSStdRecordTypePresetComputerLists constant

146
kDSStdRecordTypePresetGroups constant 146
kDSStdRecordTypePresetUsers constant 146
kDSStdRecordTypePrinters constant 146

kDSStdRecordTypePrintService constant 146
kDSStdRecordTypePrintServiceUser constant 146
kDSStdRecordTypeProtocols constant 146
kDSStdRecordTypeQTSServer constant 146
kDSStdRecordTypeRPC constant 146
kDSStdRecordTypeServer constant 146
kDSStdRecordTypeServices constant 147
kDSStdRecordTypeSharePoints constant 147
kDSStdRecordTypeSMBServer constant 146
kDSStdRecordTypeUserAliases constant 147
kDSStdRecordTypeUsers constant 147
kDSStdRecordTypeWebServer constant 147
kDSStdUserNamesMeta constant 143
kDSTagAuthAuthorityBasic constant 130
kDSTagAuthAuthorityBetterHashOnly constant 130
kDSTagAuthAuthorityDisabledUser constant 131
kDSTagAuthAuthorityKerberosv5 constant 130
kDSTagAuthAuthorityLocalCachedUser constant

131
kDSTagAuthAuthorityLocalWindowsHash constant

130
kDSTagAuthAuthorityPasswordServer constant 130
kDSTagAuthAuthorityShadowHash constant 130
kDSValueAuthAuthorityBasic constant 130
kDSValueAuthAuthorityDefault constant 130
kDSValueAuthAuthorityDisabledUser constant 131
kDSValueAuthAuthorityKerberosv5 constant 130
kDSValueAuthAuthorityLocalCachedUser constant

130
kDSValueAuthAuthorityLocalWindowsHash constant

130
kDSValueAuthAuthorityPasswordServerPrefix

constant 130
kDSValueAuthAuthorityShadowHash constant 130
kDSValueNonCryptPasswordMarker constant 131
kDSValueNSLDynamicNeighboodType constant 137
kDSValueNSLLocalNeighboodType constant 137
kDSValueNSLStaticNeighboodType constant 137
kDSValueNSLTopLevelNeighborhoodType constant

137
keAttrReadOnly constant 168
keAttrReadWrite constant 168
Kerberos Attribute Constants 150
kFailedToInit constant 168
kInactive constant 168
kStandardSourceAlias constant 148
kStandardTargetAlias constant 148
kUninitialized constant 168
kUnknownState constant 168

195
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

L

LDAP Attribute Constants 150

M

Machine and Host Record Attribute Constants 151
Managed Clients for Mac OS X Attribute Constants 152
Meta Attribute Type Constants 147
Meta Record Type Constants 142
Miscellaneous Attribute Constants 152

N

Neighborhood Attribute Constants 154
Neighborhood Types 137
Network Address Attribute Constants 151
Node Attribute Constants 155

P

Password Attribute Constants 155
Password Server Attribute Constants 156
Pattern Matching Constants 137
PeriodicTask function 78
Print Attribute Constants 156
ProcessRequest function 79

R

Record Attribute Constants 158

S

sAddAttribute structure 90
sAddAttributeValue structure 91
sCloseAttributeList structure 92
sCloseAttributeValueList structure 92
sCloseDirNode structure 93
sCloseRecord structure 94
sCreateRecord structure 94
sDeleteRecord structure 96
sDoAttrValueSearch structure 96
sDoAttrValueSearchWithData structure 98
sDoDirNodeAuth structure 101

sDoMultiAttrValueSearch structure 102
sDoMultiAttrValueSearchWithData structure 105
sDoPluginCustomCall structure 107
Search Attribute Constants 159
Server Attribute Constants 159
SetPluginState function 79
Setup Assistant Attribute Constants 160
sFlushRecord structure 108
sGetAttributeEntry structure 109
sGetAttributeValue structure 110
sGetDirNodeInfo structure 111
sGetRecAttribInfo structure 113
sGetRecordAttributeValueByID structure 114
sGetRecordAttributeValueByIndex structure 115
sGetRecordAttributeValueByValue structure 116
sGetRecordEntry structure 116
sGetRecordList structure 118
sGetRecRefInfo structure 120
sHeader structure 121
Shutdown function 79
SMB Attribute Constants 161
sOpenDirNode structure 121
sOpenRecord structure 122
sReleaseContinueData structure 123
sRemoveAttribute structure 124
sRemoveAttributeValue structure 125
sSetAttributeValue structure 126
sSetAttributeValues structure 126
sSetRecordName structure 127
sSetRecordType structure 128
Standard Record Types 143

T

tAttributeEntry structure 82
tAttributeEntryPtr data type 85
tAttributeListRef data type 86
tAttributeValueEntry structure 83
tAttributeValueEntryPtr data type 86
tAttributeValueListRef data type 86
tBuffer data type 87
tContextData data type 87
tDataBuffer structure 84
tDataBufferPtr data type 87
tDataList structure 84
tDataListPtr data type 87
tDataNode data type 88
tDataNodePtr data type 88
tDirNodeReference data type 89
tDirReference data type 89
tRecordEntry structure 85
tRecordEntryPtr data type 89

196
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

tRecordReference data type 89

U

User and Group Record Attribute Constants 162

V

Validate function 80
VFS Attribute Constants 167

197
2006-05-23 | © 2006 Apple Computer, Inc. All Rights Reserved.

INDEX

	Open Directory Reference
	Contents
	Open Directory Reference
	Overview
	Functions by Task
	Open Directory Client Functions
	Open Directory Plug-in Functions

	Functions
	dsAddAttribute
	dsAddAttributeValue
	dsAddChildPIDToReference
	dsAllocAttributeValueEntry
	dsAppendStringToListAlloc
	dsBuildFromPath
	dsBuildListFromNodesAlloc
	dsBuildListFromPathAlloc
	dsBuildListFromStrings
	dsBuildListFromStringsAlloc
	dsBuildListFromStringsAllocV
	dsCloseAttributeList
	dsCloseAttributeValueList
	dsCloseDirNode
	dsCloseDirService
	dsCloseRecord
	dsCreateRecord
	dsCreateRecordAndOpen
	dsDataBufferAllocate
	dsDataBufferDeAllocate
	dsDataListAllocate
	dsDataListCopyList
	dsDataListDeallocate
	dsDataListDeleteThisNode
	dsDataListGetNodeAlloc
	dsDataListGetNodeCount
	dsDataListInsertAfter
	dsDataListMergeListAfter
	dsDataNodeAllocateBlock
	dsDataNodeAllocateString
	dsDataNodeDeAllocate
	dsDataNodeGetLength
	dsDataNodeGetSize
	dsDataNodeSetLength
	dsDeallocAttributeEntry
	dsDeallocAttributeValueEntry
	dsDeallocRecordEntry
	dsDeleteRecord
	dsDoAttributeValueSearch
	dsDoAttributeValueSearchWithData
	dsDoDirNodeAuth
	dsDoDirNodeAuthOnRecordType
	dsDoMultipleAttributeValueSearch
	dsDoMultipleAttributeValueSearchWithData
	dsDoPlugInCustomCall
	dsFindDirNodes
	dsFlushRecord
	dsGetAttributeEntry
	dsGetAttributeValue
	dsGetDataLength
	dsGetDirNodeCount
	dsGetDirNodeCountWithInfo
	dsGetDirNodeInfo
	dsGetDirNodeList
	dsGetDirNodeName
	dsGetPathFromList
	dsGetRecordAttributeInfo
	dsGetRecordAttributeValueByID
	dsGetRecordAttributeValueByIndex
	dsGetRecordAttributeValueByValue
	dsGetRecordEntry
	dsGetRecordList
	dsGetRecordNameFromEntry
	dsGetRecordReferenceInfo
	dsGetRecordTypeFromEntry
	dsIsDirServiceRunning
	dsOpenDirNode
	dsOpenDirService
	dsOpenDirServiceProxy
	dsOpenRecord
	dsReleaseContinueData
	dsRemoveAttribute
	dsRemoveAttributeValue
	dsSetAttributeValue
	dsSetAttributeValues
	dsSetRecordName
	dsSetRecordType
	dsVerifyDirRefNum
	Initialize
	PeriodicTask
	ProcessRequest
	SetPluginState
	Shutdown
	Validate

	Callbacks
	DSDebugLog
	DSRegisterNode
	DSUnregisterNode

	Data Types
	Open Directory Structures
	tAttributeEntry
	tAttributeValueEntry
	tDataBuffer
	tDataList
	tRecordEntry

	Other Open Directory Data Types
	tAttributeEntryPtr
	tAttributeListRef
	tAttributeValueEntryPtr
	tAttributeValueListRef
	tBuffer
	tContextData
	tDataBufferPtr
	tDataListPtr
	tDataNode
	tDataNodePtr
	tDirNodeReference
	tDirReference
	tRecordEntryPtr
	tRecordReference

	Request Structures
	sAddAttribute
	sAddAttributeValue
	sCloseAttributeList
	sCloseAttributeValueList
	sCloseDirNode
	sCloseRecord
	sCreateRecord
	sDeleteRecord
	sDoAttrValueSearch
	sDoAttrValueSearchWithData
	sDoDirNodeAuth
	sDoMultiAttrValueSearch
	sDoMultiAttrValueSearchWithData
	sDoPluginCustomCall
	sFlushRecord
	sGetAttributeEntry
	sGetAttributeValue
	sGetDirNodeInfo
	sGetRecAttribInfo
	sGetRecordAttributeValueByID
	sGetRecordAttributeValueByIndex
	sGetRecordAttributeValueByValue
	sGetRecordEntry
	sGetRecordList
	sGetRecRefInfo
	sHeader
	sOpenDirNode
	sOpenRecord
	sReleaseContinueData
	sRemoveAttribute
	sRemoveAttributeValue
	sSetAttributeValue
	sSetAttributeValues
	sSetRecordName
	sSetRecordType

	Constants
	Authentication Constants
	Authentication Methods
	Neighborhood Types
	Pattern Matching Constants
	Meta Record Type Constants
	Standard Record Types
	Meta Attribute Type Constants
	Alias Attribute Constants
	Boot Attribute Constants
	Certificate Attribute Constants
	DNS Attribute Constants
	Kerberos Attribute Constants
	LDAP Attribute Constants
	Network Address Attribute Constants
	Machine and Host Record Attribute Constants
	Managed Clients for Mac OS X Attribute Constants
	Miscellaneous Attribute Constants
	Neighborhood Attribute Constants
	Node Attribute Constants
	Password Attribute Constants
	Password Server Attribute Constants
	Print Attribute Constants
	Record Attribute Constants
	Search Attribute Constants
	Server Attribute Constants
	Setup Assistant Attribute Constants
	SMB Attribute Constants
	User and Group Record Attribute Constants
	VFS Attribute Constants
	eAttribute Flags
	ePluginState Constants

	Result Codes

	Revision History
	Index
	A
	B
	C
	D
	E
	I
	K
	L
	M
	N
	P
	R
	S
	T
	U
	V

