QuickTime Streaming Server Modules
Programming Guide

QuickTime > Streaming

¢

2005-04-29

.

[

Apple Inc.

© 2002, 2005 Apple Computer, Inc.
All rights reserved.

No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in
any form or by any means, mechanical,
electronic, photocopying, recording, or
otherwise, without prior written permission of
Apple Inc., with the following exceptions: Any
person is hereby authorized to store
documentation on a single computer for
personal use only and to print copies of
documentation for personal use provided that
the documentation contains Apple’s copyright
notice.

The Apple logo is a trademark of Apple Inc.

Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial purposes
without the prior written consent of Apple may
constitute trademark infringement and unfair
competition in violation of federal and state
laws.

No licenses, express or implied, are granted
with respect to any of the technology described
in this document. Apple retains all intellectual
property rights associated with the technology
described in this document. This document is
intended to assist application developers to
develop applications only for Apple-labeled
computers.

Every effort has been made to ensure that the
information in this document is accurate. Apple
is not responsible for typographical errors.

Apple Inc.

1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac, Mac OS, and
QuickTime are trademarks of Apple Inc.,
registered in the United States and other
countries.

QuickTime Broadcaster is a trademark of Apple
Inc.

Times is a registered trademark of Heidelberger
Druckmaschinen AG, available from Linotype
Library GmbH.

UNIX is a registered trademark of The Open
Group

Simultaneously published in the United States
and Canada.

Even though Apple has reviewed this document,
APPLE MAKES NO WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH RESPECT TO
THIS DOCUMENT, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT, THIS DOCUMENT IS
PROVIDED “AS IS,” AND YOU, THE READER, ARE
ASSUMING THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS DOCUMENT, even
if advised of the possibility of such damages.

THE WARRANTY AND REMEDIES SET FORTH ABOVE
ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED. No Apple
dealer, agent, or employee is authorized to make
any modification, extension, or addition to this
warranty.

Some states do not allow the exclusion or limitation
of implied warranties or liability for incidental or
consequential damages, so the above limitation or
exclusion may not apply to you. This warranty gives
you specific legal rights, and you may also have
other rights which vary from state to state.

Contents

Introduction About This Manual 11

What's New 11
Conventions Used in This Manual 12
For More Information 12

Chapter 1 Concepts 15

Server Architecture 15
Modules 17
Protocols 17
Data 19
Classes 19
Applications and Tools 20
Source Organization 21
Server Preference Naming 23
Requirements for Modules 24
Main Routine 24
Dispatch Routine 24
Overview of QuickTime Streaming Server Operations 25
Server Startup and Shutdown 25
RTSP Request Processing 26
Runtime Environment for QTSS Modules 29
Server Time 30
Naming Conventions 30
Module Roles 31
Register Role 32
Initialize Role 32
Shutdown Role 33
Reread Preferences Role 34
Error Log Role 34
RTSP Roles 34
RTP Roles 39
RTCP Process Role 41
QTSS Objects 42
qgtssAttrinfoObjectType 42
qtssClientSessionObjectType 43
gtssConnectedUserObjectType 45
gtssDynamicObjectType 46
qtssFileObjectType 47
gttsModuleObjectType 47
gtssModulePrefsObjectType 48

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

qtssPrefsObjectType 56
qtssRTPStreamObjectType 67
qtssRTSPHeaderObjectType 70
qtssRTSPRequestObjectType 70
qtssRTSPSessionObjectType 73
qtssServerObjectType 74
qtssTextMessageObjectType 77
gtssUserProfileObjectType 80

QTSS Streams 80

QTSS Services 82
Built-in Services 83

Automatic Broadcasting 83
Automatic Broadcasting Scenarios 83
ANNOUNCE Requests and SDP 85
Access Control of Announced Broadcasts 85
Broadcaster-to-Server Example 87
Additional Trace Examples 88

Stream Caching 95
Speed RTSP Header 96
x-Transport-Options Header 96
RTP Payload Meta-Information 97
x-Packet-Range RTSP Header 102

Reliable UDP 103
Acknowledgment Packets 103
RTSP Negotiation 104

Tunneling RTSP and RTP Over HTTP 104
HTTP Client Request Requirements 105
HTTP Server Reply Requirements 106
RTSP Request Encoding 107
Connection Maintenance 107
Support For Other HTTP Features 108

Chapter 2 Tasks 109

Building the Streaming Server 109
Mac OS X 109
POSIX 109
Windows 109
Building a QuickTime Streaming Server Module 110
Compiling a QTSS Module into the Server 110
Building a QTSS Module as a Code Fragment 110
Debugging 111
RTSP and RTP Debugging 111
Source File Debugging Support 111
Working with Attributes 112
Getting Attribute Values 112

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

Setting Attribute Values 114

Adding Attributes 115
Using Files 116

Reading Files Using Callback Routines 116

Implementing a QTSS File System Module 117
Using the Admin Protocol 125

Access to Server Data 125

Request Syntax 125

Request Functionality 126

Data References 126

Request Options 127

Command Options 127

Attribute Access Types 129

Data Types 129

Server Responses 129

Changing Server Settings 134

Getting and Setting Preferences 134

Getting and Changing the Server’s State 135

Chapter 3 QTSS Callback Routines 137

Callbacks by Task 137
QTSS Utility Callback Routines 137
QTSS Object Callback Routines 137
QTSS Attribute Callback Routines 137
Stream Callback Routines 138
File System Callback Routines 139
Service Callback Routines 139
RTSP Header Callback Routines 139
RTP Callback Routines 140

Callbacks 140
QTSS_AddInstanceAttribute 140
QTSS_AddRole 141
QTSS_AddRTPStream 142
QTSS_AddService 142
QTSS_AddStaticAttribute 143
QTSS_Advis 144
QTSS_AppendRTSPHeader 144
QTSS_CloseFileObject 145
QTSS_CreateObjectType 145
QTSS_CreateObjectValue 146
QTSS_Delete 146
QTSS_DoService 147
QTSS_Flush 147
QTSS_GetAttrinfoBylD 148
QTSS_GetAttrinfoBylndex 148

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

Chapter 4

CONTENTS

149
150

QTSS_GetAttrinfoByName
QTSS_GetNumAttributes
QTSS_GetValue 150
QTSS_GetValueAsString
QTSS_GetValuePtr 152
QTSS_IDForAttr 153
QTSS_IDForService
QTSS_LockObject 154
QTSS_Milliseconds 154
QTSS_MilliSecsTo1970Secs
QTSS_New 155
QTSS_OpenFileObject
QTSS_Pause 156
QTSS_Play 156
QTSS_Read 157
QTSS_RemovelnstanceAttribute
QTSS_RemoveValue 158
QTSS_RequestEvent 159
QTSS_Seek 159
QTSS_SendRTSPHeaders 160
QTSS_SendStandardRTSPResponse
QTSS_SetValue 161
QTSS_SetValuePtr 162
QTSS_SignalStream 163
QTSS_StringToValue 163
QTSS_Teardown 164
QTSS_TypeStringToType
QTSS_TypeToTypeString
QTSS_UnLockObject 166
QTSS_ValueToString 166
QTSS_Write 167
QTSS_WriteV 167

151

153

155

155

158

165
165

QTSS Data Types 169

Chapter 5

QTSS_AttributelD
QTSS_Object 169
QTSS_ObjectType
QTSS_Role 170

QTSS_ServicelD 170
QTSS_StreamRef 170
QTSS_TimeVal 171

169

169

QTSS Constants 173

QTSS_AttrDataType 173

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

160

CONTENTS

QTSS_AttrPermission 174
QTSS_AddStreamFlags 174
QTSS_CliSesTeardownReason 175
QTSS_EventType 175
QTSS_OpenFileFlags 176
QTSS_RTPPayloadType 176
QTSS_RTPNetworkMode 176
QTSS_RTPSessionState 177
QTSS_RTPTransportType 177
QTSS_RTSPSessionType 178
QTSS_ServerState 178

Document Revision History 181

Index 183

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CONTENTS

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

Chapter 1

Figures, Tables, and Listings

Concepts 15

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-1
Figure 1-12
Figure 1-13
Figure 1-14
Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8
Table 1-9
Table 1-10
Table 1-11
Table 1-12
Table 1-13
Table 1-14
Table 1-15
Table 1-16
Table 1-17
Table 1-18
Table 1-19
Table 1-20
Table 1-21
Table 1-22
Table 1-23
Table 1-24
Table 1-25
Table 1-26

Server architecture 16

Server object data model 19

QuickTime Streaming Server startup and shutdown 25

Sample RTSP request 26

Summary of RTSP request processing 27

Summary of the RTSP Preprocessor and RTSP Request roles 29
Pull-then-push automatic broadcasting 84

Listen-then-push automatic broadcasting 84

Standard RTP payload meta-information format 99

RTP data in standard format 100

Compressed RTP payload meta-information format 101

Mixed RTP payload meta-information format 101

Reliable UDP acknowledgment packet format 104

Required connections for tunneling 105

Module roles 31

Attributes of objects of type qtssAttrInfoObjectType 42
Attributes of objects of type qtssClientSessionObjectType 43
Attributes of objects of type qtssConnectedUserObjectType 46
Attributes of objects of type qtssFileObjectType 47

Attributes of objects of type qtssModuleObjectType 48

Attributes for preferences of the module QTSSAccesslLogModule 48
Attributes for preferences of the module QTSSAccessModule 49
Attributes for preferences of the module QTSSAdminModule 49
Attributes for preferences of the module QTSSFileModule 50
Attributes for preferences of the module QTSSFlowControlModule 51
Attributes for preferences of the module QTSSHomeDirectoryModule 52
Attributes for preferences of the module QTSSMP3StreamingModule 52
Attributes for preferences of the module QTSSReflectorModule 53
Attributes for preferences of the module QTSSRefMovieModule 56
Attributes for preferences of the module QTSSReTayModule 56
Attributes of objects of type qtssPrefsObjectType 57

Attributes of objects of type qtssRTPStreamObjectType 67
Attributes of type qtssRTSPRequestObjectType 70

Attributes of objects of type qtssRTSPSessionObjectType 73
Attributes of objects of type qtssServerObjectType 74

Attributes of objects of type qtssTextMessageObjectType 77
Attributes of objects of type qtssUserProfileObjectType 80
Streams and appropriate callback routines 81

Access control user tags 85

Defined Name subfield values 99

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

FIGURES, TABLES, AND LISTINGS

Listing 1-1 Starting a service 82
Chapter 2 Tasks 109
Listing 2-1 Getting the value of an attribute by calling QTSS_GetValue 113

Listing 2-2 Getting the value of an attribute by calling QTSS_GetValuePtr 113
Listing 2-3 Getting the value of an attribute by calling QTSS_GetValueAsString 113
Listing 2-4 Setting the value of an attribute by calling QTSS_SetValue 114

Listing 2-5 Setting the value of an attribute by calling QTSS_SetValuePtr 115
Listing 2-6 Adding a static attribute 115

Listing 2-7 Reading a file 117

Listing 2-8 Handling the Open File Role 123

10
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION

About This Manual

Framework: None.
Declared in QTSS.h

This manual describes version 5.0 of the programming interface for creating QuickTime Streaming Server
(QTSS) modules for the open source Darwin Streaming Server. The QTSS programming interface provides an
easy way for developers to add new functionality to the Streaming Server. This version of the programming
interface is compatible with QuickTime Streaming Server version 5.5.

This chapter describes the callback rotuines and data types that modules use to call the QuickTime Streaming
Server.

What's New

Version 5.0 of the QTSS programming interface provides the following new features:

= These new internal server preferences have been added: disable_thinning,
player_requires_rtp_header_info,and player_requires_bandwidth_adjustment.

m These new preferences have been added to the QTSSFi1eModule module for compatibility with 3rd
Generation Partnership Project (3GPP) players:
compatibility_adjust_sdp_media_bandwidth_percentandenable_player_compatibility.

= RTP play information is now enabled by default in the QTSSReflectorModule module. Use the new
preference, disable_rtp_play_info to disable RTP Play information. Another new
QTSSReflectorModule preferenceis reflector_rtp_info_offset_msec. For compatibility with
3GPP players, these preferences have also been added to the QTSSReflectorModule module:
enable_play_response_range_header,enable_player_compatibility, and
force_rtp_info_sequence_and_time.

m This new preference has been added to the QTSSF1owControlModule module:
flow_control_udp_thinning_module_enabled.

The following changes have been made to existing preferences:

m Default size of the QTSSFileModule preference shared_buffer_unit_k_size has been increased
from 32 to 64.

m Default size of the QTSSFileModule preference private_buffer_unit_k_size has been increased
from 32 to 64.

The enable_rtp_play_info preference has been removed from the QTSSReflectorModule module.

What's New n
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

INTRODUCTION
About This Manual

The -D command line option has been added to the StreamingServer. When specified, the - D option outputs
performance status information.

The file streamingloadtool.conf,installedin /Library/QuickTimeStreaming/Config, has new file
tags:

m player text, where text is the name of the RTSP player. The information is sent to the server as the
UserAgent header.

= sendoptions setting, where setting is yes or no. If yes, a Send Options request is made before the
DESCRIBE statement.

= requestrandomdata setting, where setting is yes or no. Set setting to yes to ask for random data from
the server.

= randomdatasize setting, where setting is a number from 0 to 262144 that specifies the number of
random bytes the server should send.

Conventions Used in This Manual

The Letter Gothic fontis used toindicate text that you type or see displayed. This manual includes special
text elements to highlight important or supplemental information:

Note: Text set off in this manner presents sidelights or interesting points of information.

Important: Text set off in this manner—with the word Important—presents important information or
instructions.

/) Warning: Text set off in this manner—with the word Warning—indicates potentially serious problems.

For More Information

12

Go to http://www.opensource.apple.com to register as a member of the Apple open source community.
Then download the source code for the Darwin Streaming Server at http://www.publicsource.ap-
ple.com/projects/streaming. The source code’s Documentation directory contains valuable information:

m AboutTheSource.html
m DevNotes.html
m SourceCodeFAQ.html

The following RFCs provide additional information of interest to developers of QuickTime Streaming Server
modules and are available at many locations on the Internet:

m RFC 2326, Real Time Streaming Protocol (RTSP)

Conventions Used in This Manual
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

http://www.opensource.apple.com
http://www.publicsource.apple.com/projects/streaming
http://www.publicsource.apple.com/projects/streaming

INTRODUCTION
About This Manual

= RFC 1889, RTP: A Transport Protocol for Real-Time Applications
m RFC 2327, SDP: Session Description Protocol
= RFC 2616, HTTP 1.1

For an overview of the Darwin Streaming Server and links to the latest QuickTime information, go to
http://developer.apple.com/darwin/projects/streaming.

Go to http://developer.apple.com/documentation/quicktime for QuickTime developer documentation.

Communicate with other Darwin Streaming Server developers by joining the discussion list at
http://lists.apple.com/mailman/listinfo/streaming-server-dev.

See what with other Darwin Streaming Server developers are doing by joining the discussion list at
http://lists.apple.com/mailman/listinfo/publicsource-modifications.

For More Information
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

13

http://developer.apple.com/darwin/projects/streaming
http://developer.apple.com/documentation/quicktime
http://lists.apple.com/mailman/listinfo/streaming-server-dev
http://lists.apple.com/mailman/listinfo/publicsource-modifications

INTRODUCTION
About This Manual

14 For More Information
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Server

This manual describes version 4.0 of the programming interface for creating QuickTime Streaming Server

(QTSS) modules. This version of the programming interface is compatible with QuickTime Streaming Server
version 5.

QTSS is an open-source, standards-based streaming server that runs on Windows NT and Windows 2000 and
several UNIX implementations, including Mac OS X, Linux, FreeBSD, and the Solaris operating system. To use
the programming interface for the QuickTime Streaming Server, you should be familiar with the following
Internet Engineering Task Force (IETF) protocols that the server implements:

m Real Time Streaming Protocol (RTSP)
m Real Time Transport Protocol (RTP)
m Real Time Transport Control Protocol (RTCP)

m Session Description Protocol (SDP)

This manual describes how to use the QTSS programming interface to develop QTSS modules for the QuickTime
Streaming Server. Using the programming interface described in this manual allows your application to take
advantage of the server’s scalability and protocol implementation in a way that will be compatible with future
versions of the QuickTime Streaming Server. Most of the core features of the QuickTime Streaming Server
are implemented as modules, so support for modules has been designed into the core of the server.

You can use the programming interface to develop QTSS modules that supplement the features of the
QuickTime Streaming server. For example, you could write a module that

= acts as an RTSP proxy, which would be useful for streaming clients located behind a firewall

= supports virtual hosting, allowing a single server to serve multiple domains from multiple document
roots.

= logs statistical information for particular RTSP and client sessions

= supports additional ways of storing content, such as storing movies in databases
m configures users’ QuickTime Streaming Server preferences

= monitors and reports statistical information in real time

m tracks pay-per-view accounting information

Architecture

The Streaming Server consists of one parent process that forks a child process, which is the core server. The

parent process waits for the child process to exit. If the child process exits with an error, the parent process
forks a new child process.

Server Architecture 15
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

16

CHAPTER 1

Concepts

The core server acts as an interface between network clients, which use RTP and RTSP to send requests and
receive responses, and server modules, which process requests and send packets to the client. The core server
does its work by creating four types of threads:

m the server’s own Main thread. The Main thread checks to see if the server needs to shut down, log status
information, or print statistics.

m the Idle Task thread. The Idle Task thread manages a queue of tasks that occur periodically. There are
two types of task queues: timeout tasks and socket tasks.

m the Event thread. The Event thread listens for socket events such as a received RTSP request or RTP
packet and forwards them to a Task thread.

= one or more Task threads. Tasks threads receive RTSP and RTP requests from the Event thread. Tasks
threads foward requests to the appropriate server module for processing and send packets to the client.
By default, the core server creates one Task thread per processor.

Figure 1-1 summarizes the relationship between clients, the core server’s threads, and server modules.

Figure 1-1 Server architecture
Clients Core Server Modules
Main
thread
Idle
Task Idle
Task :> queue > task
thread
Event
thread
Process
Task Task
threads :> queue > Request
Task
Send
packets
task

Because the server is largely asynchronous, there needs to be a communication mechanism for events. For
instance, when a socket used for an RTSP connection gets data, something has to be notified so that data
can be processed. The Task object is a generalized mechanism for performing this communication.

Each Task object has two major methods: Signal and Run. Signal is called by the server to send an event to
a Task object. Run is called to give time to the Task for processing the event.

The goal of each Task object is to implement server functionality using small non-blocking time slices. Run
is a pure virtual function that is called when a Task object has events to process. Inside the Run function, the
Task object can call GetEvents to receive and automatically dequeue all its current and previously signaled
events. The Run function is never re-entered: if a Task object calls GetEvents in its Run function, and is then

Server Architecture
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

signaled before the Run function completes, the Run function will be called again for the new event only
after exiting the function. In fact, the Task’s Run function will be called repeatedly until the all the Task object’s
events have been cleared with GetEvents.

This core concept of event-triggered tasks is integrated into almost every Streaming Server subsystem. For
example, a Task object can be associated with a Socket object. If the Socket gets an event (through a select()
notification or through the Mac OS X Event Queue, the corresponding Task object will be signaled. In this
case, the body of the Run function will contain the code for processing whatever event was received on that
Socket.

Task objects make it possible for the Streaming Server use a singlethread to run all connections, which is the
Streaming Server’s default configuration on a single processor system.

Modules

The Streaming Server uses modules to respond to requests and complete tasks. There are three types of
modules:

Content-Managing Modules

The content-managing modules manage RTSP requests and responses related to media sources, such as a
file or a broadcast. Each module is responsible for interpreting the client’s request, reading and parsing their
supported files or network source, and responding with RTSP and RTP. In some cases, such as the mp3
streaming module, the module uses HTTP.

The content-managing modules are QTSSFileModule, QTSSReflectorModule, QTSSRelayModule, and
QTSSMP3StreamingModule.

Server-Support Modules

The server-support modules perform server data gathering and logging functions. The server-support modules
are QTSSErrorLogModule, QTSSAccessLogModule, QTSSWebStatsModule, QTSSWebDebugModule,
QTSSAdminModule, and QTSSPOSIXFileSystemModule.

Access Control Modules

The access control modules provide authentication and authorization functions as well as URL path
manipulation.

The access control modules are QTSSAccessModule, QTSSHomeDirectoryModule, QTSSHttpFileModule, and
QTSSSpamDefenseModule.

Protocols

The Streaming Server supports the following protocols:

Server Architecture 17
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

m RTSP over TCP. The Real Time Streaming Protocol (RTSP) is a client-server multimedia presentation control
protocol designed to provide efficient delivery of streamed multimedia over IP networks. RTSP provides
a basis for negotiating unicast and multicast transport protocols, such as RTP, and negotiates codecs in
a file format independent way. It works well for large audiences as well as single-viewer media-on-demand.
RFC 2326 defines the IETF standard for RTSP.

= RTP over UDP. The Realtime Transport Protocol (RTP) is a packet format for multimedia data streams.
RTP is used by many standard protocols, such as RTSP for streaming applications and SDP for multicast
applications. It provides the data delivery format for RTSP and SDP. RFC 1889 defines the IETF proposed
standard for RTP.

= RTP over Apple’s Reliable UDP. If an RTP client requests it, the server sends RTP packets using Reliable
UDP. Reliable UDP is a set of quality of service enhancements, such as congestion control tuning
improvements, retransmit, and thinning server algorithms, that improve the ability to present a good
quality RTP stream to RTP clients even in the presence of packet loss and network congestion. For more
information, see “Reliable UDP” (page 103).

m RTSP/RTP in HTTP (tunneled). Firewalls often prevent users on private IP networks from receiving
QuickTime presentations. On private networks, an HTTP proxy server is often configured to provide users
with indirect access to the Internet. To reach such clients, QuickTime 4.1 supports the placement of RTSP
and RTP data in HTTP requests and replies, allowing viewers behind firewalls to access QuickTime
presentations through HTTP proxy servers. For more information, see “Tunneling RTSP and RTP Over
HTTP” (page 104).

= RTP over RTSP (RTP over TCP). Certain firewall designs and other circumstances may require a server to
use alternative means to send data to clients. RFC 2326 allows RTSP packets destined for the same control
end point to be packed into a single lower-layer protocol data unint (PDU), encapsulated into a TCP
stream, or interleaved with RTP and RTCP packets. Interleaving complicates client and server operation
and imposes additional overhead and should only be used if RTSP is carried over TCP. RTP packets are
encapsulated by an ASCII dollar sign ($), followed by a one-byte channel identifier (defined in the transport
header using the interleaved parameter), followed by the length of the encapsulated binary data as a
binary, two-byte integer in network byte order. The stream data follows immediately, without a CRLF,
but including the upper-layer protocol headers. Each $ block contains exactly one RTP packet. When the
transport is RTP, RTCP messages are also interleaved by the server over the TCP connection. By default,
RTCP packets are sent on the first available channel higher than the RTP channel. The client may request
RTCP packets on another channel explicitly. This is done by specifying two channels in the interleaved
parameter of the transport header. RTCP is used for synchronization when two or more streams are
interleaved. Also, this provides a convenient way to tunnel RTP/RTCP packets through the TCP control
connection when required by the network configuration and transfer them onto UDP when possible.

In addition, the following modules implement HTTP:

= QTSSAdminModule

= QTSSMP3StreamingModule
= QTSSWebStatsModule

m QTSSHTTPStreamingModule
= QTSSRefMovieModule

= QTSSWebStats

= QTSSWebDebugModule

18 Server Architecture
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Data

When a module needs access to a request’s RTSP header, it gains access to the request through a request
object defined by the QTSS.h API header file. For example, the RTSPRequestinterface class implements the
APl dictionary elements accessible by the API. Objects whose name ends with “Interface’ such as
RTSPRequestinterface, RTSPSessioninterface, and QTSServerInterface, implement the module’s API.

The following interface classes are significant:

m QTSServerinterface — This is the internal data storage object tagged as the QTSS_ServerObject in the
API. Each of the QTSS_ServerAttributes in the API is declared and implemented in this base class.

m RTSPSessioninterace — This is the internal data storage object tagged as the qtssRTSPSessionObjectType
in the API. Each of the QTSS_RTSPSessionAttributes in the APl is declared and implemented in this base
class.

m RTPSessioninterface — This is the internal data storage object tagged as the QTSS_ClientSessionObject
in the API. Each of the QTSS_ClientSessionAttributes in the APl is declared and implemented in this base
class.

m RTSPRequestinterface — This is the internal data storage object tagged as the QTSS_RTSPRequestObject
in the API. Each of the QTSS_RTSPRequestAttributes in the APl is declared and implemented in this base
class.

Classes

Figure 1-2 shows how the objects in the server reference each other.

Figure 1-2 Server object data model
Server
| i
Server Client
preferences Modules \\ sessions
Module RTSP RTP
preferences session streams

The server object has a a dictionary of preferences. The server owns a list of modules each with a dictionary
for their preferences. The server owns a list of RTP client sessions, each of which can have an RTSP session
and one or more RTP media streams. It is possible to use the API to walk all of the server’s the live sessions
and streams.

= QTServer is the core server object, some of which is accessible through the APl and the QTSServerlnterface
base class.

Server Architecture 19
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

20

CHAPTER 1

Concepts

= Dictionary is a data storage base class that implements key and value access to object data. This base
class is inherited by all server objects defined by the API.

= Module is a class for managing modules. Each module instance is responsible for loading, initializing,
and executing a static or dynamic APl module.

m RTSP and RTP sessions. Reads and writes are managed by the sessions through a stream object. The RTSP
session calls each of the modules in their registered RTSP role fromthe session’s RTSPSession::Run method.
The APl module roles that are called are QTSS_RTSPFilter_Role, QTSS_RTSPRoute_Role,
QTSS_RTSPAuthenticate_Role, QTSS_RTSPAuthorize_Role, QTSS_RTSPPreProcessor_Role,
QTSS_RTSPRequest_Role,QTSS_RTSPPostProcessor_Role,and QTSS_RTSPSessionClosingRole.
The RTSP session also calls modules in their QTSS_RTSPIncomingData_Role. The RTP session handles
the following role calls as well as data reads and writes: QTSS_RTPSendPackets_Role,
QTSS_RTCPProcess_Role,and QTSS_ClientSessionClosing_Role. For more information about
roles, see “Module Roles” (page 31).

Applications and Tools

The Streaming Server comes with the following applications and tools:

m PlayListBroadcaster

= MP3Broadcaster

m StreamingProxy

= QTFileTools (POSIX and Mac OS X only; not maintained)
= WebAdmin

m (tpasswd

PlayListBroadcaster

PlaylistBroadcaster broadcasts QuickTime, MPEG4, and 3GPP streaming files to a streaming server, such as
QuickTime Streaming Server, which then reflects the media to clients. This lets you create a virtual radio
station or TV broadcast that appears to users as a live broadcast of the media.

MP3Broadcaster

The MP3Broadcaster application broadcasts an MP3 file as if it were a live broadcast.

StreamingProxy

POSIX and Mac OS X only.

QTFileTools

QTFileTools are movie-inspection utilities that use the QTFile library. The utillities are:

m QTBroadcaster. This utility requires a target IP address, a source movie having one or more hint track
IDs, and an initial port. Every packet referenced by the hint track(s) is broadcast to the specified IP address.

Server Architecture
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

QTFilelnfo. This utility requires a source movie. It displays the movie’s name, creation date, and
modification date. If the track is a hint track, the utility also displays the total RTP bytes and packets, the
average bit rate and packet size, and the total header percentage of the stream.

QTFileTest. This utility requires a source movie. It parses the Movie Header Atom and displays a trace of
the output.

QTRTPGent. This utility requires a source movie having a hint track ID. It displays the number of packets
in each hint track sample and writes the RTP packets to a file named track.cache.

QTRTPFileTest. This utility requires a source movie having a hint track ID. It displays the RTP header
(TransmitTime, Cookie, SeqNum, and TimeStamp) for each packet.

QTSampilelLister. This utility requires a source movie and a track ID. It displays the track media sample
number, media time, data offset, and sample size for each sample in the track.

QTSDPGen. This utility requires a list of one or more source movies. It displays the SDP information for
all of the hinted tracks in each movie. Use the - f option to save the SDP information to the file
moviename. sdp in the same directory as the source movie.

QTTracklnfo. This utility requires a source movie, a sample table atom type (stco, stsc, stsz, or stts)
and a track ID. It displays the information in the sample table atom of the specified track.

The following example displays the chunk offset sample table in track 3:

./QTTrackInfo -T stco /movies/mystery/.mov 3

WebAdmin

WebAdmin is a Perl-based web server. Connect a browser to it, and you can administer the server.

qtpasswd

The gqtpasswd application generates password files for access control.

Source Organization

The Streaming Server source code is written entirely in C++ and pervasively uses object-oriented concepts
such as inheritance and polymorphism. Almost exclusively, there is one C++ class per .h / .cpp file pair, and
those file names match the class name.The Streaming Server source is organized as follows:

“Server.tproj” (page 22)
“CommonUtilitiesLib” (page 22)
“QTFileLib” (page 22)
“APICommonCode” (page 23)
“APIModules” (page 23)
“RTSPClientLib” (page 23)
“RTCPUtilitiesLib” (page 23)
“APIStubLib” (page 23)

Server Architecture 21
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

22

CHAPTER 1

Concepts

m “HTTPUtilitiesLib” (page 23)

Server.tproj

This directory contains the core server code, which can be divided into three subsystems:

m Server core. Classes in this subsystem are prefixed by QTSS. QTSServer handles startup and shutdown.
QTSServerInterface stores server globals and compiles server statistics. QTSSPrefs is a data store for server
preferences. QTSSModule, QTSSModulelnterface, and QTSSCallbacks are classes whose sole purpose is
to support the QTSS module API.

m RTSP subsystem. These classes handle the parsing and processing of RTSP requests, and implement the
RTSP part of the QTSS module API. Several of the classes correspond directly to elements of the QTSS
API (for instance, RTSPRequestinterface is a QTSS_RTSPRequestObject). There is one RTSP session object
per RTSP TCP connection. The RTSPSession object is a Task object that processes RTSP related events.

m RTP subsystem. These classes handle the sending of media data. The RTPSession object contains the
data associated with each RTSP session ID. Each RTPSession is a Task object that can be scheduled to
send RTP packets. The RTPStream object represents a single RTP stream. Any number of RTPStream
objects can be associated with a single RTPSession. These two objects implement the RTP specific parts
of the QTSS module API.

CommonUtilitiesLib

This directory contains a toolkit of thread management, data structure, networking, and text parsing utilities.
Darwin Streaming Server and associated tools use these classes to reduce repeated code by abstracting
similar or identical tasks, to simplify higher level code through encapsulation, and to separate out
platform-specific code. Here is a short description of the classes in the CommonUstilitiesLib directory:

= OS Classes. These classes provide platform-specific code abstractions for timing, condition variables,
mutexes, and threads. The classes are OS, OSCond, OSMutex, OSThread, and OSFileSource. The data
structures are OSQueue, OSHashTable, OSHeap, and OSRef.

= Sockets. These classes provide platform-specific code abstractions for TCP and UDP networking. Socket
classes are generally asynchronous (or non-blocking), and can send events to Task objects. The classes
are EventContext, Socket, UDPSocket, UDPDemuxer, UDPSocketPool, TCPSocket, and TCPListenerSocket.

= Parsing Utilities. These classes parse and format text. The classes are StringParser, StringFormatter,
StrPtrLen, and StringTranslator.

m Tasks: These classes implement the server’s asynchronous event mechanism.

QTFileLib

A major feature of the Streaming Server is its ability to serve hinted QuickTime movie files over RTSP and
RTP. This directory contains source code for the QTFile library, which contains all of the code for parsing
hinted QuickTime files. The server’s RTPFileModule calls the QTFile library to retrieve packets and meta-data
from hinted QuickTime files. The QTFile library parses the following movie file types: .mov, .mp4 (a modification
of .mov), and .3gpp (a modification of .mov).

Server Architecture
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

APICommonCode

This directory contains source code for API-related classes, such as moduletils, or common module functions,
such as log file management.

APIModules

This directory contains a directory for each Streaming Server module.

RTSPClientLib

This directory contains source code that implements the server’s RTSP client, which can be used to connect
to the server using any of the supported protocols.

RTCPUrtilitiesLib

This directory contains source code for parsing RTCP requests.

APIStubLib

This directory contains API definition and support files.

HTTPUtilitiesLib

This directory contains source code for parsing HTTP requests.

Server Preference Naming

The file QTSS, h defines server preferences. Each server preference defined in QTSS. h has a name, such as
gtssPrefskEnableMonitorStatsFile, a numericID, such as 57 and a string constant, such as
enable_monitor_stats_file.

To get the current setting of server preferences, the server reads the file StreamingServer.xml when it
starts up or when signaled to reread that file. In the StreamingServer.xml file, string constant names are
used to refer to preferences.

The modules that come with the server use the built-in preference file support provided by the APl to generate
preferences and a unique ID if the preference is not already defined in the module’s preference object. The
check and creation of preferences is usually done in QTSS_Initialize_Role butthe code to generate the
preference and an ID from the string name for the preference is also run in QTSS_RereadPrefs_Role. The
modules that come with the server use the QTSSModuleUt1i1s object to encapsulate API calls such as
QTSS_AddInstanceAttribute and QTSS_GetAttrInfoByName.

Module developers who want to use theserver’s built-in preference storage support should use the utility
method QTSSModuleUtils::GetAttribute or examine and call the QTSS API callbacks used by
QTSSModuleUtils::GetAttribute. The implementation and header file for QTSSModuleUtils can be
found in the APICommonCode directory.

Server Architecture 23
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Requirements for Modules

24

Every QTSS module must implement two routines:

= amain routine, which the server calls when it starts up to initialize the QTSS stub library with your module

= adispatch routine, which the server uses when it calls the module for a specific purpose

Main Routine

Every QTSS modules must provide a main routine. The server calls the main routine as the server starts up
and uses it to initialize the QTSS stub library so the server can invoke your module later.

For modules that are compiled into the server, the address of the module's main routine must be passed to
the server's module initialization routine, as described in the section “Compiling a QTSS Module into the
Server’

The body of the main routine must be written like this:
QTSS_Error MyModule_Main(void* inPrivateArgs)
{
return _stublibrary_main(inPrivateArgs, MyModuleDispatch);
}
where MyModuleDispatch is the name of the module’s dispatch routine, which is described in the following
section, “Dispatch Routine” (page 24).

Important: For code fragment modules, the main routine must be named MyModule_Main where MyModule
is the name of the file that contains the module.

Dispatch Routine

Every QTSS module must provide a dispatch routine. The server calls the dispatch routine when it invokes a
module for a specific task, passing to the dispatch routine the name of the task and a task-specific parameter
block. (The programming interface uses the term “role” to describe specific tasks. For information about roles,
see “Module Roles” (page 31).)

The dispatch routine must have the following prototype:
void MyModuleDispatch(QTSS_Role inRole, QTSS_RoleParamPtr inParams);

where MyModuleDispatch is the name specified as the name of the dispatch routine by the module’s main
routine, inRo1e is the name of the role for which the module is being called, and inParams is a structure
containing values of interest to the module.

Requirements for Modules
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Overview of QuickTime Streaming Server Operations

The QuickTime Streaming Server works with modules to process requests from clients by invoking modules
in a particular role. Each role is designed to perform a particular task. This section describes how the server
works with roles when it starts up and shuts down and how the server works with roles when it processes
client requests.

Server Startup and Shutdown

Figure 2-1 shows how the server works with the Register, Initialize, and Shutdown roles when the server
starts up and shuts down.

Figure 1-3 QuickTime Streaming Server startup and shutdown
Startup Shutdown
Server starts up Server shuts down
Server loads dynamic modules Server calls modules in Shutdown role
Server loads static modules Server quits

L

Server calls modules in Register role

L

Server calls modules in Initialize role

L

Server processes RTSP requests

When the server starts up, it first loads modules that are not compiled into the server (dynamic modules)
and then loads modules that are compiled into the server (static modules). If you are writing a module that
replaces existing server functionality, compile it as a dynamic module so that it is loaded first.

Then the server invokes each QTSS module in the Register role, which is a role that every module must
support. In the Register role, the module calls QTSS_AddRo1e to specify the other roles that the module
supports.

Next, the server invokes the Initialize role for each module that has registered for that role. The Initialize role
performs any initialization tasks that the module requires, such as allocating memory and initializing global
data structures.

At shutdown, the server invokes the Shutdown role for each module that has registered for that role. When
handling the Shutdown role, the module should perform cleanup tasks and free global data structures.

Overview of QuickTime Streaming Server Operations 25
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

RTSP Request Processing

After the server calls each module that has registered for the Initialize role, the server is ready to receive
requests from the client. These requests are known as RTSP requests. A sample RTSP request is shown in
Figure 1-4.

Figure 1-4 Sample RTSP request

DESCRIBE rtsp://streaming.site.com/foo.mov RTSP/1.0
CSeq: 1

Accept: application/sdp

User-agent: QTS/1.0

When the server receives an RTSP request, it creates an RTSP request object, which is a collection of attributes
that describe the request. At this point, the qtssRTSPReqFul1Request attribute is the only attribute that
has a value and that value consists of the complete contents of the RTSP request.

Next, the server calls modules in specific roles according to a predetermined sequence. That sequence is
shown in Figure 1-5 (page 27).

26 Overview of QuickTime Streaming Server Operations
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Note: The order in which the server calls any particular module for any particular role is undetermined.

Figure 1-5 Summary of RTSP request processing

Server receives an RTSP request

U

Server calls modules registered
for RTSP Filter role

!

Did a module
respond to the
client?

/;> Server calls modules registered
for RTSP Preprocessor role

L !

Server calls modules registered
for RTSP Route role

Server parses the request

Did a module
respond to the
client?

!

Did a module
respond to the
client?

<O

Server calls module registered
for RTSP Request role

!

Server calls modules registered
'~ > for RTSP Postprocessor role @

When processing an RTSP request, the first role that the server calls is the RTSP Filter role. The server calls
each module that has registered for the RTSP Filter role and passes to it the RTSP request object. Each module’s
RTSP Filter role has the option of changing the value of the gt ssRTSPReqFul1Request attribute. For
example, an RTSP Filter role might change /foo/foo.mov to /bar/bar.mov, thereby changing the folder
that will be used to satisfy this request.

Overview of QuickTime Streaming Server Operations 27
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

28

CHAPTER 1

Concepts

Important: Any module handling the RTSP Filter role that responds to the client causes the server to skip

other modules that have registered for the RTSP Filter role, skip modules that have registered for other RTSP
roles, and immediately call the RTSP Postprocessor role of the responding module. A response to a client is

defined as any data the module may send to the client.

When all RTSP Filter roles have been invoked, the server parses the request. Parsing the request consists of
filling in the remaining attributes of the RTSP object and creating two sessions:

m an RTSP session, which is associated with this particular request and closes when the client closes its
RTSP connection to the server

= aclient session, which is associated with the client connection that originated the request and remains
in place until the client’s streaming presentation is complete

After parsing the request, the server calls the RTSP Route role for each module that has registered in that
role and passes the RTSP object. Each RTSP Route role has the option of using the values of certain attributes
to determine whether to change the value of the qtssRTSPReqRootDi r attribute, thereby changing the
folder that is used to process this request. For example, if the language type is French, the module could
change the qtssRTSPReqRootD1ir attribute to a folder that contains the French version of the requested
file.

Important: Any module handling the RTSP Route role that responds to the client causes the server to skip
other modules that have registered for the RTSP Route role, skip modules that have registered for other RTSP
roles, and immediately calls the RTSP Postprocessor role of the responding module.

After all RTSP Route roles have been called, the server calls the RTSP Preprocessor role for each module that
has registered for that role. The RTSP Preprocessor role typically uses the gt ssRTSPReqAbsoluteURL
attribute to determine whether the request matches the type of request that the module handles.

If the request matches, the RTSP Preprocessor role responds to the request by calling QTSS_Write or
QTSS_WriteV to send data to the client. To send a standard response, the module can call
QTSS_SendStandardRTSPResponse, or QTSS_AppendRTSPHeader and QTSS_SendRTSPHeaders.

Important: Any module handling the RTSP Preprocessor role that responds to the client causes the server
to skip other modules that have registered for the RTSP Preprocessor role, skip modules that have registered
for other RTSP roles, and immediately calls the RTSP Postprocessor role of the responding module.

If no RTSP Preprocessor role responds to the RTSP request, the server invokes the RTSP Request role of the
modaule that successfully registered for this role. (The first module that registers for the RTSP Request role is
the only module that can register for the RTSP Request role.) The RTSP Request role is responsible for
responding to all RTSP Requests that are not handled by modules registered for the RTSP Preprocessor role.

After the RTSP Request role processes the request, the server calls modules that have registered for the RTSP
Postprocessor role. The RTSP Postprocessor role typically performs accounting tasks, such as logging statistical
information.

A module handling the RTSP Preprocessor or RTSP Request role may generate the media data for a particular
client session. To generate media data, the module calls QTSS_P1ay, which causes that module to be invoked
in the RTP Send Packets role, as shown in Figure 1-6 (page 29).

Overview of QuickTime Streaming Server Operations
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Figure 1-6 Summary of the RTSP Preprocessor and RTSP Request roles

Module calls
server's QTSS_Play routine

g

Server calls RTP Send
Packets role for the module
that called QTSS_Play

)

RTP Send Packets role
sends packets to client

Are there
more packets
to send?

Server calls RTP Send
Packets role again

N

Return to server asking
to be called again

The RTP Send Packets role calls QTSS_Write orQTSS_WriteV to send data to the client over the RTP session.
When the RTP Send Packets role has sent some packets, it returns to the server and specifies the time that
is to elapse before the server calls the module’s RTP Send Packets role again. This cycle repeats until all of
the packets for the media have been sent or until the client requests that the client session be paused or
torn down.

Runtime Environment for QTSS Modules

QTSS modules can spawn threads, use mutexes, and are completely free to use any operating system tools.

The QuickTime Streaming Server is fully multi-threaded, so QTSS modules must be prepared to be preempted.
Global data structures and critical sections in code should be protected with mutexes. Unless otherwise
noted, assume that preemption can occur at any time.

The server usually runs all activity from very few threads or possibly a single thread, which requires the server
to use asynchronous 1/0 whenever possible. (The actual behavior depends on the platform and how the
administrator configures the server.)

QTSS modules should adhere to the following rules:

m Perform tasks and return control to the server as quickly as possible. Returning quickly allows the server
to load balance among a large number of clients.

m Beprepared for QTSS_WouldB1ock errors when performing stream 1/0.The QTSS_Write,QTSS_WriteV,
and QTSS_Read callback routines return QTSS_WouldB1ock if the requested I/0 would block. For more
information about streams, see “QTSS Streams” (page 80).

Runtime Environment for QTSS Modules 29
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

= Avoid using synchronous I/O wherever possible. An I/0 operation that blocks may affect streaming
quality for other clients.

Server Time

The QuickTime Streaming Server handles real-time delivery of media, so many elements of QTSS module
programming interface are time values.

The server’s internal clock counts the number of milliseconds that have elapsed since midnight, January 1st,
1970. The data type QTSS_TimeVal is used to store the value of the server’s internal clock. To make it easy
to work with time values, every attribute, parameter, and callback routine that deals with time specifies the
time units explicitly. For example, the qt ssRTPStrBufferDelayInSecs attribute specifies the client’s buffer
size in seconds. Unless otherwise noted, all time values are reported in milliseconds from the server’s internal
clock using a QTSS_TimeVal data type.

To get the current value of the server’s clock, call QTSS_Mi11iseconds or get the value of the
gtssSvrCurrentTimeMilliseconds attribute of the server object (QTSS_Server0Object). To convert a
time obtained from the server’s clock to the current time, call QTSS_Mi11iSecsTol970Secs.

Naming Conventions

30

The QTSS programming interface uses a naming convention for the data types that it defines. The convention
is to use the size of the data type in the name. Here are the data types that the QTSS programming interface
uses:

m Booll6 — A 16-bit Boolean value

m SInt64 — A signed 64-bit integer value

m SInt32 — Asigned 32-bit integer value

m UIntl6 — Anunsigned 16-bit integer value

= UInt32 — An unsigned 32-bit integer value

Parameters for callback functions defined by the QTSS programming interface follow these naming
conventions:

= Input parameters begin with in.
= Output parameters begin with out.

= Parameters that are used for both input and output begin with i o.

Naming Conventions
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Module Roles

Roles provide modules with a well-defined state for performing certain types of processing. A selector of
type QTSS_Ro1e defines each role and represents the internal processing state of the server and the number,
accessibility, and validity of server data. Depending on the role, the server may pass to the module one or
more QTSS objects. In general, the server uses objects to exchange information with modules. For more
information about QTSS objects, see “QTSS Objects” (page 42).

Table 1-1 (page 31) lists the roles that this version of the QuickTime Streaming Server supports.

Table 1-1 Module roles

Name Constant Task

Register role

QTSS_Register_Role

Registers the roles the module supports.

Initialize role

QTSS_Initialize_Role

Performs tasks that initialize the module.

Shutdown role

QTSS_Shutdown_Role

Performs cleanup tasks.

Reread Preferences role

QTSS_RereadPrefs_Role

Rereads the modules’s preferences.

Error Log role

QTSS_ErrorLog_RoTe

Logs errors.

RTSP Filter role

QTSS_RTSPFilter_Role

Makes changes to the contents of RTSP
requests.

RTSP Route role

QTSS_RTSPRoute_Role

Routes requests from the client to the

appropriate folder.

QTSS_RTSPPreProcessor_- | Processes requests from the client before
Role the server processes them.

RTSP Preprocessor role

RTSP Request role QTSS_RTSPRequest_Role Processes a request from the client if no

other role responds to the request.

QTSS_RTSPPostProcessor_- | Performs tasks, such as logging statistical
Role information, after a request has been
responded to.

RTSP Postprocessor role

RTP Send Packets role QTSS_RTPSendPackets_Role | Sends packets.

Client Session Closing role | QTSS_ - Performs tasks when a client session closes.

ClientSessionClosing_Role

RTCP Process role QTSS_RTCPProcess_Role Processes RTCP receiver reports.

Open File Preprocess role | QTSS_OpenFilePreProcess_- | Processes requests to open files.

Role

Processes requests to open files that are not
handled by the Open File Preprocess role.

Open File role QTSS_OpenFile_Role

Module Roles 31
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

32

CHAPTER 1

Concepts

Name Constant Task

Advise File role QTSS_AdviseFile_Role Responds when a module (or the server) calls
the QTSS_Advise callback for a file object.

Read File role QTSS_ReadFile_Role Reads a file.

Request Event File role QTSS_RequestEventFile_- | Handles requests for notification of when a

Role file becomes available for reading.
Close File role QTSS_CloseFile_Role Closes a file that was previously opened.

With the exception of the Register, Shutdown, and Reread Preferences roles, when the server invokes a
modaule for a role, the server passes to the module a structure specific to that particular role. The structure
contains information that the modules uses in the execution of that role or provides a way for the module
to return information to the server.

The RTSP roles have the option of responding to the client. A response is defined as any data that a module
sends to a client. Modules can send data to the client in a variety of ways. They can, for example, call
QTSS_WriteorQTSS_WriteV.

Note: The order in which modules are called for any particular role is undetermined.

Register Role

Modules use the Register role to call QTSS_AddRo1e to tell the server the roles they support.

Modules also use the Register role to call QTSS_AddService to register services and to call
QTSS_AddStaticAttribute to add static attributes to QTSS object types. (QTSS objects are collections of
attributes, each having a value.)

The server calls a module’s Register role once at startup. The Register role is always the first role that the
server calls.

A module that returns any value other than QTSS_NoErr from its Register role is not loaded into the server.

Initialize Role

The server calls the Initialize role of those modules that have registered for this role after it calls the Register
role for all modules. Modules use the Initialize role to initialize global and private data structures.

The server passes to each module’s Initialize role objects that can be used to obtain the server’s global
attributes, preferences, and text error messages. The server also passes the error log stream reference, which
can be used to write to the error log. All of these objects are globals, so they are valid for the duration of this
run of the server and may be accessed at any time.

When called in the Initialize role, the module receives a QTSS_Initialize_Params structure which is
defined as follows:

typedef struct

Module Roles
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

QTSS_ServerObject inServer;
QTSS_PrefsObject inPrefs;
QTSS_TextMessagesObjectinMessages;
QTSS_ErrorLogStream inErrorLogStream;
QTSS_ModuleObject inModule;

} QTSS_Initialize_Params;

inServer
AQTSS_Server0bject object containing the server’s global attributes and an attribute that contains
information about all of the modules in the running server. For a description of each attribute, see
the section “qtssServerObjectType” (page 74).

inPrefs
AQTSS_PrefsObject object containing the server’s preferences. For a description of each attribute,
see the section “qtssPrefsObjectType” (page 56).

inMessages
AQTSS_TextMessagesObject object that a module can use for providing localized text strings. See
the section “qtssTextMessageObjectType” (page 77).

inErrorLogStream
A QTSS_ErrorLogStream stream reference that a module can use to write to the server’s error log.
Writing to this stream causes the module to be invoked in its Error Log role.

inModule
A QTSS_ModuleObject object that a module can use to store information about itself, including its
name, version number, and a description of what the module does. See the section
“gttsModulelbjectType” (page 47).

A module that wants to be called in the Initialize role must in its Register role call QTSS_AddRo1e and specify
QTSS_Initialize_Role astherole.

A module that returns any value other than QTSS_NoErr from its Initialize role is not loaded into the server.

Shutdown Role

The server calls the Shutdown role of those modules that have registered for this role when the server is
getting ready to shut down.

The server calls a module’s Shutdown role without passing any parameters.

The module uses its Shutdown role to delete all data structures it has created and to perform any other
cleanup task

A module that wants to be called in the Shutdown role must in its Register role call QTSS_AddRo1e and
specify QTSS_Shutdown_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

The server guarantees that the Shutdown role is the last time that the module is called before the server
shuts down.

Module Roles 33
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

34

CHAPTER 1

Concepts

Reread Preferences Role

The server calls the Reread Preferences role of those modules that have registered for this role and rereads
its own preferences when the server receives a SIGHUP signal or when a module calls the Reread Preferences
service described in the section “QTSS Services” (page 82).

When called in this role, the module should reread its preferences, which may be stored in a file or in a QTSS
object.

A module that wants to be called in the Reread Preferences role must in its Register role call QTSS_AddRole
and specify QTSS_RereadPrefs_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Error Log Role

The server calls the Error Log role of those modules that have registered for this role when an error occurs.
The module should process the error message by, for example, writing the message to a log file.

When called in the Error Log role, the module receivesa QTSS_ErrorlLog_Params structure, which is defined
as follows:

typedef struct

{
QTSS_ErrorVerbosity inVerbosity;
char * inBuffer;

} QTSS_ErrorLog_Params;

inVerbosity
Specifies the verbosity level of this error message. Modules should use the inF1ags parameter of
QTSS_Write to specify the verbosity level. The following constants are defined:

gtssFatalVerbosity = 0, gtssWarningVerbosity = 1, gtssMessageVerbosity = 2,
gtssAssertVerbosity = 3, qtssDebugVerbosity = 4,

inBuffer
Points to a null-terminated string containing the error message.

Writing an error message at the level gtssFatalVerbosity causes the server to shut down immediately.
Writing to the error log cannot result in an QTSS_WouldBlock error.

A module that wants to be called in the Error Log role must in its Register role call 0TSS_AddRo1e and specify
QTSS_ErrorLog_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTSP Roles

When the server receives an RTSP request, it goes through a series of steps to process the request and ensure
that a response is sent to the client. The steps consist of calling certain roles in a predetermined order. This
section describes each role in detail. For an overview of roles and the sequence in which they are called, see
the section “Overview of QuickTime Streaming Server Operations” (page 25).

Module Roles
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Note: All RTSP roles have the option of responding directly to the client. When any RTSP role responds to a
client, the serverimmediately skips the RTSP roles that it would normally call and calls the RTSP Postprocessor
role of the module that responded to the RTSP request.

RTSP Filter Role

The server calls the RTSP Filter role of those modules that have registered for the RTSP Filter role immediately
upon receipt of an RTSP request. Processing the Filter role gives the module an opportunity to respond to
the request or to change the RTSP request.

When called in the RTSP Filter role, the module receives a QTSS_StandardRTSP_Params structure, which
is defined as follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
char** outNewRequest;

} QTSS_StandardRTSP_Params;

inRTSPSession
The QTSS_RTSPSessionObject object for this RTSP session. See the section
“qtssRTSPSessionObjectType” (page 73) for information about RTSP session object attributes.

inRTSPRequest
The QTSS_RTSPRequestObject object for this RTSP request. When called in the RTSP Filter role,
only the gtssRTSPReqFul1Request attribute has a value. See the section
“qtssRTSPRequestObjectType” (page 70) for information about RTSP request object attributes.

outNewRequest
A pointer to a location in memory.

The module calls QTSS_GetValuePtr to get from the qtssRTSPReqgFul1Request attribute the complete
RTSP request that caused the server to call this role. The gt ssRTSPReqFul1Request attribute is a read-only
attribute. To change the RTSP request, the module should call QTSS_New to allocate a buffer, write the
modified request into that buffer, and return a pointer to that buffer in the outNewRequest field of the
QTSS_StandardRTSP_Params structure.

While a module is handling the RTSP Filter role, the server guarantees that the module will not be called for
any other role referencing the RTSP session represented by inRTSPSession.

If module handling the RTSP Filter role responds directly to the client, the server next calls the responding
modaule in the RTSP Postprocessor role. For information about that role, see the section “RTSP Postprocessor
Role” (page 39).

A module that wants to be called in the RTSP Filter role must in its Register role call QTSS_AddRole and
specify QTSS_RTSPFilter_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Module Roles 35
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

36

CHAPTER 1

Concepts

RTSP Route Role

The server calls the RTSP Route role after the server has called all modules that have registered for the RTSP
Filter role. It is the responsibility of a module handling this role to set the appropriate root directory for each
RTSP request by changing the qtssRTSPReqRootDi r attribute for the request.

When called, an RTSP Route role receives a QTSS_StandardRTSP_Params structure, which is defined as
follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;

QTSS_ClientSessionObject inClientSession;
} QTSS_StandardRTSP_Params;

inRTSPSession
The QTSS_RTSPSessionObject object for this RTSP session. See the section
“qtssRTSPSessionObjectType” (page 73) for information about RTSP session object attributes.

inRTSPRequest
The QTSS_RTSPRequest0Object object for this RTSP request. In the Route role and all subsequent
RTSP roles, all of the attributes are filled in. See the section “qtssRTSPRequestObjectType” (page 70)
for information about RTSP request object attributes.

inRTSPHeaders
The QTSS_RTSPHeaderObject object for the RTSP headers. See the section
“qtssRTSPHeaderObjectType” (page 70) for information about RTSP header object attributes.

inClientSession
The QTSS_ClientSessionObject object for the client session. See the section
“gtssClientSessionObjectType” (page 43) for information about client session object attributes.

Before calling modules in the RTSP Route role, the server parses the request. Parsing the request consists of
filling in all of the attributes of the QTSS_RTSPSessionObject and QTSS_RTSPRequestObject members
of the QTSS_StandardRTSP_Params structure.

A module processing the RTSP Route role has the option of changing the qtssRTSPReqRootDi r attribute
of the QTSS_RTSPRequestObject member of the QTSS_StandardRTSP_Params structure. Changing the
qtssRTSPReqRootDi r attribute changes the root folder for this RTSP request.

While a module is handling the RTSP Route role, the server guarantees that the module will not be called for
any other role referencing the RTSP session represented by inRTSPSession.

If a module that is processing the RTSP Route role responds directly to the client, the server immediately
skips the processing of any other roles and calls the responding module’s RTSP Postprocessor role. For
information about that role, see the section “RTSP Postprocessor Role” (page 39).

A module that wants to be called in the RTSP Route role must in its Register role call QTSS_AddRole and
specify QTSS_RTSPRoute_RoTle as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Module Roles
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

RTSP Preprocessor Role

The server calls the RTSP Preprocessor role after the server has called all modules that have registered for
the RTSP Route role. If the module handles the type of RTSP request for which the module is called, it is the
responsibility of a module handling this role to send a proper RTSP response to the client.

When called, an RTSP Preprocessor role receives a QTSS_StandardRTSP_Params structure, which is defined
as follows:

typedef struct

{
QTSS_RTSPSessionObject 1inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;
QTSS_ClientSessionObjectinClientSession;

b QTSS_StandardRTSP_Params;

inRTSPSession

The QTSS_RTSPSessionObject object for this RTSP session. See the section
“qtssRTSPSessionObjectType” (page 73) for information about RTSP session object attributes.

inRTSPRequest
The QTSS_RTSPRequestObject objectfor this RTSP request with a value for each attribute. See the
section “qtssRTSPRequestObjectType” (page 70) for information about RTSP request object attributes.

inRTSPHeaders
The QTSS_RTSPHeaderObject object for the RTSP headers. See the section
“qtssRTSPHeaderObjectType” (page 70) for information about RTSP header object attributes.

inClientSession
The QTSS_ClientSession0Object object for the client session. See the section
“gtssClientSessionObjectType” (page 43) for information about client session object attributes.

The RTSP Preprocessor role typically uses the qtssRTSPReqFilePath attribute of the inRTSPRequest
member of the QTSS_StandardRTSP_Params structure to determine whether the request matches the
type of request that the module handles. For example, a module may only handle URLs that end in .mov or
.sdp.

If the request matches, the module handling the RTSP Preprocessor role responds to the request by calling
QTSS_SendStandardRTSPResponse, QTSS_Write, or QTSS_WriteV, or by calling
QTSS_AppendRTSPHeader,and QTSS_SendRTSPHeaders. If this module is also responsible for generating
RTP packets for this client session, it should call 0TSS_AddRTPStream (page 142) to add streams to the client
session, and QTSS_P1ay, which causes the server to invoke the RTP Send Packets role of the module whose
RTSP Preprocessor role calls QTSS_Play.

While a module is handling the RTSP Preprocessor role, the server guarantees that the module will not be
called for any other role referencing the RTSP session specified by inRTSPSession or the client session
specified by inClientSession.

A module that wants to be called in the RTSP Preprocessor role must in its Register role call QTSS_AddRole
and specify QTSS_RTSPPreProcessor_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Module Roles 37
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

38

CHAPTER 1

Concepts

RTSP Request Role

The server calls the RTSP Request role if no RTSP Preprocessor role responds to an RTSP request. Only one
modaule is called in the RTSP Request role, and that is the first module to register for the RTSP Request role
when the server starts up.

When called, the RTSP Request role receives a QTSS_StandardRTSP_Params structure, which is defined as
follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;

QTSS_ClientSessionObject inClientSession;
b QTSS_StandardRTSP_Params;

inRTSPSession
The QTSS_RTSPSessionObject object for this RTSP session. See the section
“qtssRTSPSessionObjectType” (page 73) for information about RTSP session object attributes.
inRTSPRequest
The QTSS_RTSPRequestObject objectfor this RTSP request with a value for each attribute. See the
section“qtssRTSPRequestObjectType” (page 70) for information about RTSP request object attributes.
inRTSPHeaders
The QTSS_RTSPHeaderObject object for the RTSP headers. See the section
“qtssRTSPHeaderObjectType” (page 70) for information about RTSP header object attributes.
inClientSession
The QTSS_ClientSessionObject object for the client session. See the section
“gtssClientSessionObjectType” (page 43) for information about client session object attributes.
Like a module processing the RTSP Preprocessor role, a module that processes the RTSP Request Role should
use an attribute, such as the qtssRTSPReqFilePath attribute of the inRTSPRequest member of the
QTSS_StandardRTSP_Params structure, to determine whether the request matches the type of request
that the module can handle.

A module handling the RTSP Request role should respond to the request by

= Sending an RTSP response to the client by calling QTSS_AppendRTSPHeader and
QTSS_SendRTSPHeaders, by calling QTSS_SendStandardRTSPResponse, or by calling QTSS_Write
or QTSS_WriteV.

m Preparing the QTSS_ClientSessionObject for streaming by using the RTP callbacks, such as
QTSS_AddRTPStream and QTSS_Play.IfQTSS_Play is called, the server will invoke the calling module
in the RTP Send Packets role, at which time the module will be expected to generate RTP packets to
send to the client.

A module that wants to be called in the RTSP Request role must in its Register role call QTSS_AddRole and
specify QTSS_RTSPRequest_Ro1e as the role. The first module that successfully calls TSS_AddRo1e and
specifies QTSS_RTSPRequest_RoTe as the role is the only module that is called in the RTSP Request role.

Modules should always return QTSS_NoErr when they finish handling this role.

Module Roles
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

RTSP Postprocessor Role

The server calls a module’s RTSP Postprocessor role whenever the module responds to an RTSP request if
that module has registered for this role.

Modules can use the RTSP Postprocessor role to log statistical information.

When called, the RTSP Postprocessor role receives a QTSS_StandardRTSP_Params structure, which is defined
as follows:

typedef struct
{

QTSS_RTSPSessionObject inRTSPSession;
QTSS_RTSPRequestObject inRTSPRequest;
QTSS_RTSPHeaderObject inRTSPHeaders;

QTSS_ClientSessionObject inClientSession;
} QTSS_StandardRTSP_Params;

inRTSPSession
The QTSS_RTSPSessionObject object for this RTSP session. See the section
“qtssRTSPSessionObjectType” (page 73) for information about RTSP session object attributes.

inRTSPRequest
The QTSS_RTSPRequestObject object for this RTSP request with a value for each attribute. See the
section “qtssRTSPRequestObjectType” (page 70) for information about RTSP request object attributes.
inRTSPHeaders
The QTSS_RTSPHeaderObject object for the RTSP headers. See the section
“qtssRTSPHeaderObjectType” (page 70) for information about RTSP header object attributes.
inClientSession
The QTSS_ClientSessionObject object for the client session. See the section
“gtssClientSessionObjectType” (page 43) for information about client session object attributes.

While a module is handling the RTSP Postprocessor role, the server guarantees that the module will not be
called for any role referencing the RTSP session specified by inRTSPSession or the client session specified by
inClientSession.

A module that wants to be called in the RTSP Postprocessor role must in its Register role call QTSS_AddRoTe
and specify QTSS_RTSPPostProcessor_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTP Roles

This section describes RTP roles, which are used to send data to clients and to handle the closing of client
sessions.

RTP Send Packets Role

The server calls a module’s RTP Send Packets role when the module calls QTSS_P1ay. It is the responsibility
of the RTP Send Packets role to send media data to the client and tell the server when the module’s RTP Send
Packets role should be called again.

Module Roles 39
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

40

CHAPTER 1

Concepts

When called, the RTP Send Packets role receives a QTSS_RTPSendPackets_Params structure, which is
defined as follows:

typedef struct

{
QTSS_ClientSessionObject inClientSession;
SInt64 inCurrentTime;
QTSS_TimeVal outNextPacketTime;

} QTSS_RTPSendPackets_Params;

inClientSession
The QTSS_ClientSessionObject object for the client session. See the section
“gtssClientSessionObjectType” (page 43) for information about client session object attributes.
inCurrentTime
The current time in server time units.

outNextPacketTime
A time offset in milliseconds. Before returning from this role, a module should set outNextPacketTime
to the amount of time that the server should allow to elapse before calling the RTP Send Packets role
again for this session.

The RTP Send Packets role is invoked whenever a module calls QTSS_P1ay for that client session. The module
calls QTSS_Write orQTSS_WriteV to send data to the client.

While a module is handling the RTP Send Packets role, the server guarantees that the module will not be
called for any role referencing the client session specified by inClientSession.

A module that wants to be called in the RTP Send Packets role must in its Register role call QTSS_AddRole
and specify QTSS_RTPSendPackets_RoTle as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Client Session Closing Role

The server calls a module’s Client Session Closing role to allow the module to process the closing of client
sessions.

When called, the Client Session Closing role receives a QTSS_ClientSessionClosing_Params structure,
which is defined as follows:

typedef struct
{
QTSS_ClientClosing inReason;
QTSS_ClientSessionObject inClientSession;
} QTSS_ClientSessionClosing_Params;

inReason
The reason why the session is closing. The session may be closing because the client sent an RTSP
teardown (qtssC1iSesClosClientTeardown), because this session has timed out
(gtssC1iSesClosTimeout), or because the client disconnected without issuing a teardown
(qtssCl1iSesClosClientDisconnect).

inClientSession
The QTSS_ClientSessionObject object for the client session that is closing.

Module Roles
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

The Client Session Closing role is called whenever the client session specified by inC1ientSession is about
to be torn down.

While a module is handling the Client Session Closing role, the server guarantees that the module will not
be called for any role referencing the client session specified by inClientSession.

A module that wants to be called in the Client Session Closing role must in its Register role call QTSS_AddRole
and specify QTSS_ClientSessionClosing_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

RTCP Process Role

The server calls a module’s RTCP Process role whenever it receives an RTCP receiver report from a client.

RTCP receiver reports contain feedback from the client on the quality of the stream. The feedback includes
the percentage of lost packets, the number of times the audio has run dry, and frames per second. Many
attributes in the QTSS_RTPStreamObject correlate directly to fields in the receiver report.

When called, the RTP Process role receives a QTSS_RTCPProcess_Params structure, which is defined as
follows:

typedef struct
{

QTSS_RTPStreamObject inRTPStream;
QTSS_ClientSessionObject inClientSession;
void* inRTCPPacketData;
UInt32 inRTCPPacketDatalen;

} QTSS_RTCPProcess_Params;

inRTPStream
The QTSS_RTPStreamObject object for the RTP stream that this RTCP packet belongs to. See the
section “qtssRTPStreamObjectType” (page 67) for information about RTP stream object attributes.
inClientSession
The QTSS_ClientSessionObject object for the client session. See the section
“gtssClientSessionObjectType” (page 43) for information about client session object attributes.
inRTCPPacketData
A pointer to a buffer containing the packets that are to be processed.
inRTCPPacketDatalen
The length of valid data in the buffer pointed to by inRTCPPacketData.

A module handling the RTCP Process role typically monitors the status of the connection. It might, for example,
track the percentage of packets lost for each connected client and update its counters.

While a module is handling the RTCP Process role, the server guarantees that the module will not be called
for any role referencing the RTP stream specified by inRTPStream.

A module that wants to be called in the RTCP Process role must in its Register role call QTSS_AddRoTle and
specify QTSS_RTCPProcess_Role as the role.

Modules should always return QTSS_NoErr when they finish handling this role.

Module Roles 1
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

QTSS Objects

QTSS objects provide a way for modules and the server to exchange data with each other. QTSS objects
consist of attributes that are used to store data. Every attribute has a name, an attribute ID, a data type, and
permissions for reading and writing the attribute’s value. Built-in attributes are attributes that the server
always defines for an object type. For example, the QTSS_RTSPRequest0bject object has a built-in URL
attribute that other modules can read to obtain the URL associated with a particular RTSP request.

This section describes the attributes for each object type. The object types are

m qtssAttrinfoObjectType (page 42)

gtssClientSessionObjectType (page 43)
m qgtssConnectedUserObjectType (page 45)
m qtssDynamicObjectType (page 46)

m (tssFileObjectType (page 47)

m gttsModuleObjectType (page 47)

m qtssPrefsObjectType (page 56)

m (qCssRTPStreamObjectType (page 67)

m (tssRTSPHeaderObjectType (page 70)

m (qtssRTSPRequestObjectType (page 70)

m (qLssRTSPSessionObjectType (page 73)

m gtssServerObjectType (page 74)

m (gtssTextMessageObjectType (page 77)

gtssAttrinfoObjectType

An object of type gtssAttrInfoObjectType consists of attributes whose values describe an attribute: the
attribute’s name, attribute ID, data type, and permissions for reading and writing the attribute’s value. An
attribute information object (QTSS_AttrInfo0Object) is an instance of this object type. There is one
QTSS_AttrInfoObject for every attribute.

Table 1-2 (page 42) lists the attributes for objects of type qtssAttrInfoObjectType.

Note: All of these attributes are preemptive safe, so they can be read by calling QTSS_GetValue,
QTSS_GetValueAsString, orQTSS_GetValuePtr.

Table 1-2 Attributes of objects of type qtssAttrInfoObjectType

Attribute Name and Description Access Data Type
qtssAttrID The attribute’s identifier. Readable, preemptive safe | QTSS_AttributelD
42 QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Attribute Name and Description

Access

Data Type

gtssAttrDataType The attribute’s data type.

Readable, preemptive safe

QTSS_AttrDataType

gtssAttrName The attribute’s name.

Readable, preemptive safe

char

attribute’s value is preemptive safe.

gtssAttrPermissions Permissions for reading and
writing the attribute’s value, and whether getting the

Readable, preemptive safe

QTSS_AttrPermission

qtssClientSessionObjectType

An object of type qtssClientSessionObjectType consists of attributes that describe a client session,
where a client session is defined as a single client streaming presentation. A client session object
(QTSS_ClientSessionObject) is an instance of this object type. The attributes of a client session object
are valid for all roles that receive a value of type QTSS_ClientSessionObject in the structure the server

passes to them.

Table 1-3 (page 43) lists the attributes for objects of type qtssClientSessionObjectType.

Note: All of these attributes are preemptive safe, so they can be read by calling QTSS_GetValue,
QTSS_GetValueAsString, orQTSS_GetValuePtr.

Table 1-3 Attributes of objects of type qtssClientSessionObjectType
Attribute Name and Description Access Data Type
gtssCliSesAdjustedPlayTimeInMsec The | Readable, preemptive | QTSS_TimeVal
time in milliseconds at which the most recent safe
play was issued, adjusted forward to delay
sending packets until the play response is issued.
qtssCliSesCounterID A counter-based unique | Readable, preemptive | UInt32
ID for the session. safe
qtssCliSesCreateTimeInMsec The timein Readable, preemptive | QTSS_TimeVal
milliseconds that the session was created. safe
qtssCliSesCurrentBitRate The movie bit Readable, preemptive | UInt32
rate. safe
qtssCliSesFirstPlayTimeInMsec The time | Readable, preemptive | QTSS_TimeVal
in milliseconds at which QTSS_P1ay was first safe
called.
qtssC1iSesFullURL The full presentation URL | Readable, preemptive | char

for this session. Same as the qtssC1iSes-
PresentationURL attribute but includes the
rtsp://domain_name prefix.

safe

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

43

44

CHAPTER 1

Concepts

RTP packets sent for this session.

safe

Attribute Name and Description Access Data Type
qtssCliSesHostName The host name for this | Readable, preemptive | char
session. Also the domain_name portion of safe

the qtssCliSesFullURL attribute.

qtssCliSesMovieAverageBitRate The Readable, writable, Uint32
average bits per second based on total RTP preemptive safe

bits/movie duration. The value is zero unless set

by a module.

qtssCliSesMovieDurationInSecs Duration | Readable, writable, Float64
of the movie for this session in seconds. The value | preemptive safe

is zero unless set by a module.

qtssCliSesMovieSizeInBytes Movie size in | Readable, writable, Uint64
bytes. The value is zero unless set by a module. | preemptive safe
qtssCliSesPacketlLossPercent Percentage | Readable, preemptive | Float32
of packets lost; for example, .5 = 50% safe
qtssCliSesPlayTimeInMsec The timein Readable, preemptive | QTSS_TimeVal
milliseconds at which QTSS_P1ay was most safe

recently called.

gtssCliSesPresentationURL The presentation | Readable, preemptive | char
URL for this session. This URL is the “base” URL | safe

for the session. RTSP requests to the presentation

URL are assumed to affect all streams of the

session.

qtssCliSesReqQueryString The query string | Readable, preemptive | char
from the request that created this client session. | safe
qtssC1iSesRTPBytesSent The number of RTP | Readable, preemptive | SInt32
bytes sent for this session. safe
qtssCl1iSesRTPPacketsSent The number of | Readable, preemptive | SInt32

qtssCliSesState The state of this session.
Possible values are qtssPausedState and
gtssPlayingState.

Readable, preemptive
safe

QTSS_RTPSessionState

qtssCliSesStreamObjects Iterated attribute
containing all RTP stream references
(QTSS_RTPStreamObject) belonging to this
session.

Readable, preemptive
safe

QTSS_RTPStreamObject

gtssCliSesTimeConnectedinMsec Timein
milliseconds that the client session has been
connected.

Readable, preemptive
safe

SInt64

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

user from the most recent request.

safe

Attribute Name and Description Access Data Type
qtssCTiRTSPReqRealStatusCode The status | Readable, preemptive | UInt32
from the most recent request. (Same as the safe
qtssRTSPReqRealStatusCode session.)

qtssC1iRTSPReqRespMsg The error message | Readable, preemptive | char
sent to the client for the most recent request if | safe

the response was an error.

qtssC1iRTSPSesslLocalAddrStr The local IP | Readable, preemptive | char
address for this RTSP connection in dotted safe

decimal format.

qtssC1iRTSPSessLocalDNS The DNS name of | Readable, preemptive | char
the local IP address for this RTSP connection. safe
qtssCTiRTSPSessRemoteAddrStr The IP Readable, preemptive | char
address of the client in dotted decimal format. | safe
qtssC1iRTSPSesURLRealmThe realm from the | Readable, preemptive | char
most recent request. safe
qtssCl1iRTSPSesUserName The name of the Readable, preemptive | char

qtssCliTeardownReason Theteardown reason.
If not requested by the client, the reason for the
disconnection must be set by the module that
calls QTSS_Teardown.

Readable, writable,
preemptive safe

QTSS_CliSesTeardownReason

gtssConnectedUserObjectType

An object of type gtssConnectedUserObjectType consists of attributes associated with a connected
user, irrespective of the transport. Users connecting to a QuickTime movie are already represented by objects
of type qtssClientSessionObjectType, so this object is used for other connected users, such as those

requesting MP3 streams.

A connected user object (QTSS_ConnectedUser0bject) is an instance of this object type. A
QTSS_ConnectedUser0Object can be created in any module. It can be added to the
gtssSvrConnectedUsers attribute of the QTSS_ServerObject (described in the section

“qtssServerObjectType” (page 74)).

Table 2-4 (page 46) lists the attributes for objects of type gtssConnectedUserObjectType.

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

45

46

CHAPTER 1

Concepts

Note: All of these attributes are preemptive safe, so they can be read by calling QTSS_GetValue,

QTSS_GetValueAsString, QTSS_GetValuePtr.

Table 1-4 Attributes of objects of type qtssConnectedUserObjectType
Attribute Name and Description Access Data Types
gtssConnectionBytesSent Number of RTP bytes sent so | Readable, preemptive safe | UInt32
far for this session.
gtssConnectionCreateATimeInMsec The timein Readable, preemptive safe | QTSS_TimeVal
milliseconds at which the session was created.
gtssConnectionCurrentBitRate Combined current bit | Readable, preemptive safe | UInt32
rate in bits per second of all of the streams for this session.
This is not an average.
gtssConnectionHostName The host name of the connected | Readable, preemptive safe | char
client.
gtssConnectionMountPoint Presentation URL for this Readable, preemptive safe | char
session. This URL is the “base” URL for the session. RTSP
requests to this URL are assumed to affect all of the session’s
streams.
gtssConnectionPacketlLossPercent Combined current | Readable, preemptive safe | Float32
percent loss as a fraction; for example, .5 = 50%. This is not
an average.
gtssConnectionTimeConnectedInMsec Timein Readable, preemptive safe | QTSS_TimeVal
milliseconds the session has been connected.
gtssConnectionType The user’s connection type, such as | Readable, preemptive safe | char
“MP3".
gtssConnectionSesslLocalAddrStr Local IP address for | Readable, preemptive safe | char
this connection in dotted-decimal format.
gtssConnectionSessRemoteAddrStr IP address of the | Readable, preemptive safe | char

client in dotted-decimal format.

gtssDynamicObjectType

An object of type qgtssDynamicObjectType can be used to create an object that doesn’t have any static

attributes.

QTSS Objects
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

qtssFileObjectType

An object of type qtssFileObject consists of attributes that describe a file that has been opened. A file
object (QTSS_File0Object) is an instance of this object type. These attributes are valid for all roles that
receive a QTSS_FileObject in the structure the server passes to them.

Table 1-5 (page 47) lists the attributes for objects of type qtssFileObjectType.

Note: All of these attributes are preemptive safe, so they can be read by calling QTSS_GetValue,
QTSS_GetValueAsString, orQTSS_GetValuePtr.

Table 1-5 Attributes of objects of type qtssFileObjectType

Attribute Name and Description Access Data Type
qtssF10bjStream The stream reference for this file | Readable, preemptive safe QTSS_StreamRef
object.

qtssF10jFileSysModuleName The name of the file | Readable, preemptive safe char

system module that handles this file object

qtssF10bjlLength The length of the file in bytes. Readable, writable, preemptive | Ulnt64
safe

qtssF10bjPosition The current position in bytes | Readable, writable, preemptive | Ulnt64
of the file’s file pointer from the beginning of the file | safe
(byte zero).

qtssF10bjModDate The date and time of the last Readable, writable, preemptive | QTSS_TimeVal
time the file was modified. safe

gttsModuleObjectType

An object of type gt ssModule0bject consists of attributes that describe a particular QTSS module, including
its name, version number, a description of what the module does, its preferences, and the roles the module
is registered for. A module object (QTSS_ModuleObject) is an instance of this object type. These attributes
are valid for all roles that receive a QTSS_ModuleObject in the structure the server passes to them.

For each module the server loads, the server creates a module object and passes it to the module in the
modaule’s Initialize role. Modules can get information about other modules the server has loaded by accessing
the gtssSvrModuleObject attribute of the QTSS_ServerObject object.

In addition to the attributes that store the module’s name, version number and description, this object type
has a module preferences attribute, gt ssModPrefs. The gtssModPrefs attribute itself is an object whose
attributes store the module’s preferences as instance attributes. All modifications to the qtssModPrefs
attribute are persistent between invocations of the server because the contents of each module’s
gqtssModPrefs attribute are written to the server’s configuration file, which is read when the server starts

up.

Table 1-6 (page 48) lists the attributes for objects of type qtssModuleObjectType.

QTSS Objects 47
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

48

CHAPTER 1

Concepts

Note: With the exception of gt ssModDesc and gtssModVersion, these attributes are preemptive safe and
can be read by calling QTSS_GetValue, QTSS_GetValueAsString, or QTSS_GetValuePtr.

Table 1-6

Attributes of objects of type qtssModuleObjectType

Attribute Name and Description

Access

Data Type

gtssModAttributes An object that modules
can use to store any local attributes other than
preferences.

Readable, writable,
preemptive safe

QTSS_Object

qtssModDesc A description of what the module | Readable, writable not char
does. preemptive safe
gtssModName The module’s name. Readable, preemptive safe | char

gtssModPrefs An object whose attributes store
the preferences for this module.

Readable, preemptive safe

QTSS_ModulePrefsObject

in the format OXMM.m.v.bbbb, where MM = major
version, m = minor version, v = very minor
version, and b = build number.

gtssModRoles A list of all the roles for which | Readable, preemptive safe | QTSS_Role
this module is registered.
gtssModVersion The module’s version number | Readable, writable, not Uint32

preemptive safe

qgtssModulePrefsObjectType

An object of type QTSS_ModulePrefsObject consists of attributes that contain a module’s preferences. A
module preferences object QTSS_ModulePrefs0bject) is an instance of this object type.

Each module is reponsible for adding attributes to its module preferences object and setting their values.
The values of the preferences in the module preferences object are persistent between invocations of the
server because the server writes the module preferences object for each module to a configuration file that

the server reads when it is started.

QTSSAccessLogModule Preferences

Table 1-7 (page 48) lists the attributes for preferences of the module QTSSAccessLogModule. These
preferences are maintained in the streamingserver.xm] file.

Table 1-7

Attributes for preferences of the module QTSSAccessLogModule

Attribute Name and Description

Access

Data Type

istrue.

request_1logging By default, the value of this attribute

safe

Readable, writable, not preemptive | Bool16

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

attribute is StreamingServer.

safe

Attribute Name and Description Access Data Type
request_logfile_size By default, the value of this | Readable, writable, not preemptive | UInt32
attribute is 10240000. safe

request_logfile_interval By default, the value of | Readable, writable, not preemptive | UInt32
this attribute is 7. safe

request_logfile_in_gmt Setto true to use Readable, writable, not preemptive | Bool16
Greenwich Mean Time (GMT) instead of local time in safe

access log file entries. By default, the value of this

attribute is true.

request_logfile_dir By default, the value of this Readable, writable, not preemptive | char
attributeis /Library/QuickTimeStreaming/Logs/. | safe

request_logfile_name By default, the value of this | Readable, writable, not preemptive | char

QTSSAccessModule Preferences

Table 1-8 (page 49) lists the attributes for preferences of the module QTSSAccessModule. These preferences

are maintained in the streamingserver.xml file.

Table 1-8 Attributes for preferences of the module QTSSAccessModule
Attribute Name and Description Access Data Type
modAccess_groupsfilepath By default, the value of Readable, writable, not char
this attributeis /Library/QuickTime- preemptive safe
Streaming/Config/qtgroups.
modAccess_qtaccessfilename By default, the value of | Readable, writable, not char
this attribute is gtaccess. preemptive safe
modAccess_usersfilepath By default, the value of this | Readable, writable, not char

attributeis /Library/QuickTime-
Streaming/Config/qtusers.

preemptive safe

QTSSAdminModule Preferences

Table 1-9 (page 49) lists the attributes for preferences of the module QTSSAdminModule. These preferences

are maintained in the streamingserver.xml file.

Table 1-9 Attributes for preferences of the module QTSSAdminModule
Attribute Name and Description Access Data Type
AdministratorGroup By default, the value of this Readable, writable, not preemptive | char
attribute is admin. safe

QTSS Objects 49

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

50

CHAPTER 1

Concepts

this attribute is 50.

safe

Attribute Name and Description Access Data Type
Authenticate By default, the value of this attribute is | Readable, writable, not preemptive | Bool16
true. safe

enable_remote_admin By default, the value of this Readable, writable, not preemptive | Bool16
attribute is true. safe

IPAccesslList Setto a list of IP addresses to allow Readable, writable, not preemptive | char
remote admin access from the specified IPs only. By safe

default, the value of this attribute is 127.0.0.*.

LocalAccessOnly Setto true to allow local admin Readable, writable, not preemptive | Bool16
server requests only. By default, the value of this attribute | safe

is true.

RequestTimelIntervalMilli By default, the value of | Readable, writable, not preemptive | UInt32

QTSSFileModule Preferences

Table 1-10 (page 50) lists the attributes for preferences of the module QTSSFi1eModule. These preferences

are maintained in the streamingserver.xml file.

Table 1-10 Attributes for preferences of the module QTSSFileModule
Attribute Name and Description Access Data Type
add_seconds_to_client_buffer_delay Adds the Readable, writable, not preemptive | Float32
specified number of seconds to the normal buffer delay. | safe
By default, the value of this attribute is 0.000000.
admin_email By default, this attribute does not have a | Readable, writable, not preemptive | char
value. safe
compatibility_adjust_sdp_media_- Readable, writable, not preemptive | UInt32
bandwidth_percent Used to adjust the SDP media safe
bandwidth percentage for compatibility with certain
players. By default, the value of this attribute is 100.
enable_movie_file_sdp Setto true to override the | Readable, writable, not preemptive | Bool16
movie’s built-in SDP information. By default, the value of | safe
this attribute is false.
enable_player_compatibility Enables player Readable, writable, not preemptive | Bool16
compatibility with certain players. By default, the value | safe
of this attribute is true.
enable_private_file_buffers By default, the value | Readable, writable, not preemptive | Bool16
of this attribute is true. safe
enable_shared_file_buffers By default, the value | Readable, writable, not preemptive | Bool16

of this attribute is true.

safe

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

buffers. By default, the value of this attribute is 64.

safe

Attribute Name and Description Access Data Type

flow_control_probe_interval By default, the value | Readable, writable, not preemptive | UInt32

of this attribute is 10. safe

max_allowed_speed By default, the value of this Readable, writable, not preemptive | Float32

attribute is 4.000000. safe

max_private_buffer_units_per_buffer Bydefault, | Readable, writable, not preemptive | UInt32

the value of this attribute is 8. safe

max_shared_buffer_units_per_buffer By default, | Readable, writable, not preemptive | UInt32

the value of this attribute is 8. safe

num_private_buffer_units_per_buffer Bydefault, | Readable, writable, not preemptive | UInt32

the value of this attribute is 1. safe

num_shared_buffer_increase_per_session By Readable, writable, not preemptive | UInt32

default, the value of this attribute is 2. safe

num_shared_buffer_units_per_buffer By default, | Readable, writable, not preemptive | UInt32

the value of this attribute is 0. safe

private_buffer_unit_k_size Size of private file I/O | Readable, writable, not preemptive | UInt32

buffers. By default, the value of this attribute is 64. safe

record_movie_file_sdp Setto true to cause SDP Readable, writable, not preemptive | Bool16

information to be provided when the movie is played. By | safe

default, the value of this attribute is false.

sdp_url By default, this attribute does not have a value. | Readable, writable, not preemptive | char
safe

shared_buffer_unit_k_size Size of shared file I/O | Readable, writable, not preemptive | UInt32

QTSSFlowControlModule Preferences

Table 1-11 (page 51) lists the attributes for preferences of the module QTSSF1owControlModule. These
preferences are maintained in the streamingserver.xml file.

Table 1-1 Attributes for preferences of the module QTSSFl1owControlModule
Attribute Name and Description Access Data Type
flow_control_udp_thinning_module_enabled | Readable, writable, not preemptive safe | Bool16
By default, the value of this attribute is true.
lToss_thick_tolerance By default, the value of this | Readable, writable, not preemptive safe | UInt32
attribute is 5.
loss_thin_tolerance By default, the value of this | Readable, writable, not preemptive safe | UInt32
attribute is 30.

QTSS Objects 51

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts
Attribute Name and Description Access Data Type
num_losses_to_thick By default, the value of this | Readable, writable, not preemptive safe | UInt32
attribute is 6.
num_losses_to_thin By default, the value of this | Readable, writable, not preemptive safe | UInt32
attribute is 3.
num_worses_to_thin By default, the value of this | Readable, writable, not preemptive safe | UInt32

attribute is 2.

QTSSHomeDirectoryModule Preferences

Table 1-12 (page 52) lists the attributes for preferences of the module QTSSHomeDirectoryModule. These
preferences are maintained in the streamingserver.xml file.

Table 1-12 Attributes for preferences of the module Q

TSSHomeDirectoryModule

additional client connections when the value of this

is 0.

attribute is exceeded. By default, the value of this attribute

preemptive safe

Attribute Name and Description Access Data Type
enabled Enable or disable this module. By default, the Readable, writable, not Bool16
value of this attribute is false. preemptive safe

movies_directory By default, this attribute does not have | Readable, writable, not Bool16

a value. preemptive safe
max_num_cons_per_home_directory Deniesadditional | Readable, writable, not Uint32
client connections greater than the value of this attribute. | preemptive safe

By default, the value of this attribute is 0.

max_bandwidth_kbps_per_home_directory Denies Readable, writable, not UInt32

QTSSMP3StreamingModule Preferences

Table 1-13 (page 52) lists the attributes for preferences of the module QTSSMp3StreamingModule. These
preferences are maintained in the streamingserver.xml file.

Table 1-13 Attributes for preferences of the module QTSSMP3StreamingModule

this attributeis /Library/QuickTime-
Streaming/Logs.

safe

Attribute Name and Description Access Data Type
mp3_request_logfile_name By default, the value | Readable, writable, not preemptive | char

of this attribute is mp3_access. safe

mp3_request_logfile_dir By default, the value of | Readable, writable, not preemptive | char

52 QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

of this attribute is true.

safe

Attribute Name and Description Access Data Type
mp3_streaming_enabled By default, the value of this | Readable, writable, not preemptive | Bool16
attribute is true. safe

mp3_broadcast_password By default, the value of | Readable, writable, not preemptive | Bool16
this attribute is true. safe

mp3_broadcast_password By default, this attribute | Readable, writable, not preemptive | char
has no value. safe

mp3_broadcast_buffer_size By default, the value | Readable, writable, not preemptive | SInt32
of this attribute is 8192 bytes. safe

mp3_max_flow_control_time Length of the Readable, writable, not preemptive | UInt32
server-side MP3 buffer in milliseconds. By default, the | safe

value of this attribute is 10.

mp3_request_logging By default, the value of this | Readable, writable, not preemptive | Bool16
attribute is true. safe

mp3_request_logfile_size By default, the value | Readable, writable, not preemptive | UInt32
of this attribute is 10240000. safe

mp3_request_logfile_interval By default, the Readable, writable, not preemptive | UInt32
value of this attribute is 7. safe

mp3_request_logtime_in_gmt By default, the value | Readable, writable, not preemptive | Bool16

QTSSReflectorModule Preferences

Table 1-14 (page 53) lists the attributes for preferences of the module QTSSReflectorModule.

preferences are maintained in the streamingserver.xml file.

These

Table 1-14 Attributes for preferences of the module QTSSReflectorModule
Attribute Name and Description Access Data Type
allow_broadcasts By default, the value of this attribute | Readable, writable, not preemptive | Bool16
is true. safe
allow_duplicate_broadcasts Setto true toallow | Readable, writable, not preemptive | Bool16
the acceptance of setups on an existing broadcast stream. | safe
By default, the value of this attribute is false.
allow_non_sdp_urls By default, the value of this Readable, writable, not preemptive | Bool16
attribute is true. safe
allow_announced_ki11 By default, the value of this Readable, writable, not preemptive | Bool16
attribute is true. safe

QTSS Objects 53

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

54

CHAPTER 1

Concepts

true, clients watching the stream of a broadcaster RTSP
session that goes down are also torn down. By default,
the value of this attribute is false.

safe

Attribute Name and Description Access Data Type
authenticate_local_broadcast Bydefault, the value | Readable, writable, not preemptive | Bool16
of this attribute is false. safe

broadcast_dir_11ist By default, this attribute has no | Readable, writable, not preemptive | char
value. safe
compatibility_adjust_sdp_media_- Readable, writable, not preemptive | UInt32
bandwidth_percent This attribute is provided for safe

compatibility with 3GPP players. By default, the value of

this attribute is 50.

disable_rtp_play_infoRTP playinformation is always | Readable, writable, not preemptive | Bool16
enabled. Set this attribute to true to disable RTP play safe

information. By default, the value of this attributeis false.

disable_overbuffering By default, the value of this | Readable, writable, not preemptive | Bool16
attribute is false. safe

enable_broadcast_announce Setto true to enable | Readable, writable, not preemptive | Bool16
broadcaster announce of an SDP file to the server. By safe

default, the value of this attribute is true.

enable_broadcast_push Setto true to enable Readable, writable, not preemptive | Bool16
broadcaster RTSP push to the server. By default, the value | safe

of this attribute is true.

enable_play_response_range_header This attribute | Readable, writable, not preemptive | Bool16
is provided for compatibility with 3GPP players. By default, | safe

the value of this attribute is true.

enable_player_compatibility This attribute is Readable, writable, not preemptive | Bool16
provided for compatibility with 3GPP players. By default, | safe

the value of this attribute is true.

enforce_static_sdp_port_range By default, the value | Readable, writable, not preemptive | Bool16
of this attribute is false. safe
force_rtp_info_sequence_and_time This attribute | Readable, writable, not preemptive | Bool16
is provided for compatibility with 3GPP players. By default, | safe

the value of this attribute is false.

ip_allow_11ist By default, the value of this attribute is | Readable, writable, not preemptive | char
127.0.0.%. safe
kill_clients_when_broadcast_stops When setto | Readable, writable, not preemptive | Bool16

QTSS Objects
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

attribute is true.

safe

Attribute Name and Description Access Data Type
max_broadcast_announce_duration_secs Sets the | Readable, writable, not preemptive | UInt32
maximum duration, in seconds, of announced SDPs. By | safe

default, the value of this attribute is 0, which allows an

infinite duration.

maximum_static_sdp_port By default, the value of this | Readable, writable, not preemptive | UInt16
attribute is 65535. safe

minimum_statid_sdp_port By default, the value of this | Readable, writable, not preemptive | UInt16
attribute is 2000. safe

redirect_broadcast_keyword By default, this attribute | Readable, writable, not preemptive | char
has no value. safe

redirect_broadcasts_dir By default, this attribute | Readable, writable, not preemptive | char
has no value. safe
reflector_bucket_offset_delay_msc By default, Readable, writable, not preemptive | UInt32
the value of this attribute is 73. safe

reflector_buffer_size_sec By default, the value of | Readable, writable, not preemptive | UInt32
this attribute is 10. safe
reflector_in_packet_receive_time By default, the | Readable, writable, not preemptive | UInt32
value of this attribute is 60. safe
reflector_rtp_info_offset_msec Aninternal value | Readable, writable, not preemptive | UInt32
for live player compatibility. By default, the value of this | safe

attribute is 500.

reflector_use_in_packet_receive_time Bydefault, | Readable, writable, not preemptive | Bool16
the value of this attribute is false. safe
timeout_broadcaster_session_secs Bydefault,the | Readable, writable, not preemptive | UInt32
value of this attribute is 20. safe

use_one_SSRC_per_streamBy default, the value of this | Readable, writable, not preemptive | Bool16

QTSSRefMovieModule Preferences

Table 1-15 (page 56) lists the attributes for preferences of the module QTSSRefMovieModule, which allows
web developers to put RTSP URLs in web pages. These preferences are maintained in the

streamingserver.xml file.

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

55

56

CHAPTER 1

Concepts

Table 1-15 Attributes for preferences of the module QTSSRefMovieModule

Attribute Name and Description Access Data
Type
refmovie_rtsp_port The port to use for RTSP request redirection. Readable, writable, | UInt16

Technically, this is not a protocol redirect. It is a media or content level | not preemptive safe
redirect. Works the same as if you had a text file on a Web server called
mymovie.mov that contained the RTSP URL with an rtsptext QuickTime
tag. The tag and file name extension would tell the QuickTime client to
RTSP stream the file. By default,the value of this attribute is 554.

refmovie_xfer_enabled For QuickTime clients only, converts, for Readable, writable, | Bool16
example, http://hostname/mymovie.mov to rtsp://hostname: | notpreemptive safe
554/mymovie.mov. The server creates a text-based ref movie as the HTTP
response, which redirects the client to the same movie on the server but
as an RTSP request. This conversion is useful for placing streaming movie
references on a web server. HTTP requests that do not specify a port go
to port 80. However, http://hostname:554/mymovie.mov alsoworks.
By default, the value of this attribute is true.

QTSSRelayModule Preferences

Table 1-16 (page 56) lists the attributes for preferences of the module QTSSReTayModule. These preferences
are maintained in the streamingserver.xml file.

Table 1-16 Attributes for preferences of the module QTSSReTayModule

Attribute Name and Description Access Data Type

relay_prefs_file By default, the value of this attribute | Readable, writable, not preemptive | char
is /Library/QuickTime- safe
Streaming/Config/relayconfig.xml.

relay_stats_url Bydefault, this attribute has no value. | Readable, writable, not preemptive | char
safe

qtssPrefsObjectType

An object of type qtssPrefsObjectType consists of attributes that describe the server’s internal preference
storage system. A preference object (QTSS_Prefs0Object) is an instance of this object type. The attribute
values for objects of this type are stored in the server’s configuration file, streamingserver.xml. For each
server, there is a single instance of this object type.

In previous versions of the QTSS programming interface, module preferences were stored in this object. Since
version 4.0, module preferences have been stored in each module’s QTSS_ModuleObject object.

Table 1-17 (page 57) lists the attributes for objects of type qtssPrefsObjectType.

QTSS Objects
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Note: None of these attributes is preemptive safe, so they can must be read by calling QTSS_GetValue or

by locking the object, calling QTSS_GetValuePtr, and unlocking the object.

Table 1-17 Attributes of objects of type qtssPrefsObjectType
Attribute Name and Description Name in Access Data
streamingserver.xml Type
qtssPrefsAckLoggingEnabled Enables ack_logging_enabled | Readable, writable, | Bool16
detailed logging of UDP acknowledgement and not preemptive
retransmit packets. By default, the value of this safe
attribute is false.
qtssPrefsAltTransportIPAddrIfyouwant | alt_transport_src Readable, writable, | char
an IP address other than the server’s IP address | _ipaddr not preemptive
appended to the transport header, use this safe
attribute to specify the alternate address. By
default, this attribute does not have a value.
gtssPrefsAlwaysThinDelayInMseclIfa always_thin_delay Readable, writable, | SInt32
packet is as late in milliseconds as the value of not preemptive
this attribute, the server starts to thin. This safe
attribute is part of the server’s thinning
algorithm. By default, the value of this attribute
is 750.
gtssPrefsAuthenticationScheme Set this | authentication _- Readable, writable, | char
attribute to the authentication scheme you want | scheme not preemptive
the server to use. The currently supported values safe
are basic, digest, and none. By default, the
value of this attribute is digest.
qtssPrefsAutoDeleteSPDFiles Anattribute | auto_delete_sdp_ Readable, writable, | Bool16
for a preference that is no longer supported. files not preemptive
The attribute remains for APl compatibility. safe
gtssPrefsAutoRestart If true, theserver |auto_restart Readable, writable, | Bool16
automatically restarts itself if it crashes. By not preemptive
default, the value of this attribute is true. safe
qtssPrefsAutoStart Obsolete and should |auto_start Readable, writable, | Bool16
always be setto false. not preemptive
safe
gtssPrefsAvgBandwidthUpdate Theinterval | average_bandwidth _- | Readable, writable, | UInt32
in seconds between computations of the update not preemptive
server's average bandwidth. By default, the safe
value of this 60.
qtssPrefsBreakOnAssert Iftrue,theserver | break_on_assert Readable, writable, | Bool16
will stop and enter the debugger when an assert not preemptive
condition is hit. By default, the value of this safe
attribute is false.
QTSS Objects 57

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

to true, the server writes server statistics to the
monitor file, which is read by an external
monitor application. By default, the value of this
attribute is false.

stats_file

not preemptive
safe

Attribute Name and Description Name in Access Data
streamingserver.xml Type

gtssPrefsCloselLogsOnWritelfsettotrue, | force_logs_close_- Readable, writable, | Bool16

the server closes log files after each write. By | on_write not preemptive

default, the value of this attribute is false. safe

gtssPrefsDefaultAuthorizationRealm default_- Readable, writable, | char

Specifies the text to display as the login entity | authorization_realm | not preemptive

“realm” by the client. By default, the value of safe

this attribute is Streaming Server.If the value

of this attribute is not set, Streaming Server

is displayed.

qtssPrefsDeleteSPDFilesInterval The |sdp_file_delete _ Readable, writable, | Bool16

interval in seconds at which to check SDP files. | interval_seconds not preemptive

Changes to this attribute take effect at the end safe

of the current interval. By default, the value of

this attribute is 10. The server maintains an

internal interval of 1.

qtssPrefsDoReportHTTPConnection- do_report_http_- Readable, writable, | Bool16

Address When behind a round-robin DNS, the | connection_ip_- not preemptive

client needs to be told the IP address of the address safe

machine that is handling its request. This

attribute tells the server to report its IP address

in the reply to the HTTP GET request when

tunneling RTSP through HTTP. By default, the

value of this attribute is false.

qtssPrefsDropAllPacketsDelayInMsecIf | drop_all_packets _- | Readable, writable, | SInt32

a packet is as late as the value of this attribute | delay not preemptive

in milliseconds, the server drops it. This attribute safe

is part of the server’s thinning algorithm. By

default, the value of this attribute is 2500.

gtssPrefsDropVideoAll1PacketsDelayIn- | drop_all_video _- Readable, writable, | SInt32

Msec If a video packet cannot be sent within | delay not preemptive

the time in milliseconds specified by this safe

attribute, the server drops it. This atttribute is

used by the server’s thinning algorithm. By

default, the value of this attribute is 1750.

qtssPrefskEnableMonitorStatsFilelfset | enable_monitor _- Readable, writable, | Bool16

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Attribute Name and Description Name in Access Data
streamingserver.xml Type
qtssPrefskEnablePacketHeaderPrintfsIf | enable_packet _- Readable, writable, | Bool16
set to true, the server prints the headers of header_printfs not preemptive
outgoing RTP and RTCP packets on stdout. The safe
server must have been started with the -d
command line option. See the
gtssPrefsPacketHeaderPrintfOptions
attribute for the available print options. By
default, the value of this attribute is false.
qtssPrefskEnableRTSPDebugPrintfs When | RTSP_debug_printfs Readable, writable, | Bool16
set to true, the server prints on stdout not preemptive
incoming RTSP requests and outgoing RTSP safe
responses. The server must have been started
with the -d command line option. By default,
the value of this attribute is false.
qtssPrefsEnableRTSPErrorMessage If set | RTSP_error_message Readable, writable, | Bool16
to true, the server appends a content body not preemptive
string error message for reported RTSP errors. safe
By default, the value of this attribute is false.
qtssPrefsEnableRTSPServerInfolfsetto | RTSP_server_info Readable, writable, | Bool16
true, the server adds server information to RTSP not preemptive
headers. The informatin includes the server’s safe
platform, version number, and build number.
By default, the value of this attribute is true.
gtssPrefsLargeWindowSizeInK ForReliable | Targe_window_size Readable, writable, | UInt32
UDP, the window size in K bytes used for high not preemptive
bitrate movies. For clients that don't specify a safe
window size, the server may use the value of
this attribute. By default, the value of this
attribute is 64.
gtssPrefsMaxAdvanceSendTimeTimeInSec | max_send_ahead_time | Readable, writable, | UInt32
The most number of seconds the server sends not preemptive
a packet ahead of time to a client that supports safe
overbuffing. By default, the value of this
attribute is 25.
gtssPrefsMaximumBandwidth The maximum | maximum_bandwidth Readable, writable, | SInt32
amount of bandwidth the server is allowed to not preemptive
serve in K bits. If the server exceeds this value, safe
it responds to new client requests for additional
streams with RTSP error 453, “Not Enough
Bandwidth.” A value of -1 means the amount of
bandwidth the server is allowed to serve is
unlimited. By default, the value of this attribute
is 102400.
QTSS Objects 59

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

movie folder. By default, the value of this
attributeis /Library/QuickTime-
Streaming/Movies.

not preemptive
safe

Attribute Name and Description Name in Access Data
streamingserver.xml Type

gtssPrefsMaximumConnections The maximum_connections | Readable, writable, | SInt32

maximum number of concurrent RTP not preemptive

connections the server allows. A value of -1 safe

means that an unlimited number of connections

are allowed. By default, the value of this

attribute is 1000.

qtssPrefsMaxRetransDelayInMsec For max_retransmit _- Readable, writable, | UInt32

Reliable UDP, the maximum interval in delay not preemptive

milliseconds between when a retransmit is safe

supposed to be sent and when it is actually sent.

Lower values result in smoother but slower

server performance. By default, the value of this

attribute is 500.

qtssPrefsMaxTCPBufferSizelnBytes The | max_tcp_buffer_size | Readable, writable, | Float32

maximum size in bytes the TCP socket send not preemptive

buffer can be set to. By default, the value of this safe

attribute is 200000.

qtssPrefsMediumWindowSizeInK For medium_window_size Readable, writable, | UInt32

Reliable UDP, the window size in K bytes used not preemptive

for medium bitrate movies. For clients that don’t safe

specify a window size, the server may use the

value of this attribute. By default, the value of

this attribute is 48.

qtssPrefsMinTCPBufferSizelnBytes The | min_tcp_buffer_size | Readable, writable, | UInt32

minimum size in bytes the TCP socket send not preemptive

buffer can be set to. By default, the value of this safe

attribute is 8192.

gtssPrefsModuleFolder The path to the module_folder Readable, writable, | char

folder containing dynamic loadable server not preemptive

modules. For Mac OS X, this attribute is set to safe

/Library/QuickTimeStreaming/Moduless.

For Darwin platforms, this attribute is set to

/usr/local/sbin/Streaming-

Server/Modules, and for Win32 platforms,

this attribute is set to c: \Program

Files\DarwinStreamingServer

\QTSSModules.

gtssPrefsMovieFolder The path totheroot | movie_folder Readable, writable, | char

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Attribute Name and Description Name in Access Data
streamingserver.xml Type

gtssPrefsMonitorStatsFileFileName monitor_stats_- Readable, writable, | char

Name of the monitor file. By default, the value | file_name not preemptive

of this attribute is server_status. safe

gtssPrefsMonitorStatsFilelntervalSec |monitor_stats_file_- | Readable, writable, | UInt32

Interval at which server writes server statistics | interval_seconds not preemptive

in the monitor file. By default, the value of this safe

attribute is 10.

gqtssPrefsOverbufferRate The server uses | overbuffer_rate Readable, writable, | Float32

this attribute to calculate the rate at which to not preemptive

overbuffer. The value of this attribute is safe

multiplied by the data rate. By default, the value

of this attribute is 2. 0.

qtssPrefsPacketHeaderPrintfOptions packet_header _ Readable, writable, | char

Identifies which packet headers to print when | printf_options not preemptive

gtssPrefsEnabledPacketHeaderPrintfs safe

is t rue. The options are semicolon (;) delimited

strings. By default, the value of this attribute is

all of the available options,

rtp;rr;sr;app;ack;, which means that

headers of RTP packets (rtp), RTCP receiver

reports (rr), RTCP sender reports (sr), RTCP

application packets (app), and Reliable UDP RTP

acknowledgement packets (ack) are printed.

qtssPrefsPIDFi1e Specifies the name of the | pid_file Readable, writable, | char

file in which the server’s process ID is written. not preemptive

By default, the value of this attribute is safe

/var/run/QuickTime-

StreamingServer.pid.

qtssPrefsRealRTSPTimeout The amountof | real_rtsp_timeout Readable, writable, | UInt32

time in seconds the server actually waits before not preemptive

disconnecting idle RTSP clients. This timer is safe

reset each time the server receives a new RTSP

request from the client. A value of zero means

that there is no timeout. By default, the value

of this attribute is 180.

qtssPrefsReliableUDP If setto true, the reliable_udp Readable, writable, | Bool16

server the uses Reliable UDP transport if not preemptive

requested by the client. By default, the value of safe

this attribute is true.

QTSS Objects 61

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

in seconds the server will wait before
disconnecting idle RTP clients. This timer is reset
each time the server receives an RTCP status
packet from a client. A value of zero means there
is no timeout. By default, the value of this
attribute is 120.

not preemptive
safe

Attribute Name and Description Name in Access Data
streamingserver.xml Type

qtssPrefsReliableUDPDirs This attribute | reliable_udp_dirs Readable, writable, | char

specifies the directories for which Reliable UDP not preemptive

is to be used. The directories are interpreted as safe

relative to the Movies folder

(gtssPrefsMovieFolder)withaleading slash

but no trailing slash. For example,

/reliable_udp_dir.Bydefault, this attribute

does not have a value.

qtssPrefsReliableUDPPrintfs Whenset |reliable_udp _- Readable, writable, | Bool16

to true, the server prints on stdout Reliable | printfs not preemptive

UDP statistics when the client disconnects. The safe

server must have been started with the -d

command line option. The statistics include the

URL, maximum congestion window, minimum

congestion window, maximim, minimum, and

average RTT, number of skipped frames, and

the number of late packets dropped. By default,

the value of this attribute is false.

qtssPrefsReliableUDPSTowStart Setto reliable_udp_slow Readable, writable, | Bool16

true to enable Reliable UDP slow start. _start not preemptive

Disabling UDP slow start may lead to an initial safe

burst of packet loss due to mis-estimate of the

client's available bandwidth. Enabling UDP slow

start may lead to premature reduction of the

bit rate (known as “thinning”). By default, the

value of this attribute is true.

qtssPrefsRTCPPollIntervalInMsec A rtcp_poll_interval Readable, writable, | UInt32

preference that is no longer used. Polling is no not preemptive

longer a feature of RTCP. safe

qtssPrefsRTCPSockRcvBufSizeInK Size of | rtcp_rcv_buf_size Readable, writable, | UInt32

the receive socket buffer for UDP sockets used not preemptive

to receive RTCP packets. The buffer needs to be safe

big enough to absorb bursts of RTCP

acknowledgements. By default, the value of this

attribute is 768.

qtssPrefsRTPTimeout The amount of time | rtp_timeout Readable, writable, | UInt32

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Attribute Name and Description Name in Access Data
streamingserver.xml Type

qtssPrefsRTSPIPAddr Specifies the IP bind_ip_addr Readable, writable, | char

address(es) in dotted-decimal format the server not preemptive

should accept RTSP client connections on. This safe

attribute is useful when the machine has more

than one IP address and you want to specify

which addresses the server should listen on. A

value of 0 means the server should accept

connections on all IP addresses that are

currently enabled on the system. By default, the

value of this attribute is 0.

qtssPrefsRTSPPorts Ports foraccepting RTSP | rtsp_port Readable, writable, | UInt32

client connections. By default, ports 554, 7070, not preemptive

8000, and 8001 are enabled. Add port 80 to this safe

list if you are streaming across the Internet and

want clients behind firewalls to be able to

connect to the server.

qtssPrefsRTSPTimeout Amount of timein | rtsp_timeout Readable, writable, | UInt32

seconds the server tells clients it will wait before not preemptive

disconnecting idle RTSP clients. By default, the safe

value of this attribute is 0.

gtssPrefsRunGroupName Run the server run_group_name Readable, writable, | char

under the specified group name. By default, the not preemptive

value of this attribute is gtss. safe

gtssPrefsRunNumThreads If value of this run_num_threads Readable, writable, | UInt32

attribute is non-zero, the server will create the not preemptive

specified number of threads for handling RTSP safe

and RTP streams. Otherwise, the server creates

one thread per processor for handling RTSP and

RTP streams. By default, the value of this

attribute is 0.

qtssPrefsRunUserName Runtheserverunder | run_user_name Readable, writable, | char

the specified user name. By default, the value not preemptive

of this attribute is qtss. safe

QTSS Objects 63

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

packet is as late as the value of this attribute,
start thinning. By default, the value of this
attribute is 0.

deTay

not preemptive
safe

Attribute Name and Description Name in Access Data
streamingserver.xml Type

qtssPrefsSafePlayDuration If the server |safe_play_duration Readable, writable, | UInt32

finds it is serving more than its allowed not preemptive

maximum bandwidth (using the average safe

bandwidth computation), it will attempt to

disconnect the most recently connected clients

until the average bandwidth drops to

acceptable levels. However, it will not

disconnect clients if they've been connected for

longer than the time in seconds specified by

this attribute. If this value is set to zero, the

server does not disconnect clients. By default,

the value of this attribute is 600.

gtssPrefsSendInterval The minimumtime | send_interval Readable, writable, | UInt32

in milliseconds the server will wait between not preemptive

sending packet data to the client. By default, safe

the value of this attribute is 50.

qtssPrefsSmallWindowSizeInK ForReliable | small_window_size Readable, writable, | UInt32

UDP, the window size in K bytes used for low not preemptive

bitrate movies. For clients that don't specify a safe

window size, the server may use the value of

this attribute. By default, the value of this

attribute is 24.

qtssPrefsSrcAddrinTransport If set to append_source_addr_- | Readable, writable, | Bool16

true, the server adds its source address toits | in_transport not preemptive

transport headers. This is necessary on certain safe

networks where the source address is not

necessarily known. By default, the value of this

attribute is false.

gtssPrefsStartQualityCheckInterval- |quality_check _- Readable, writable, | UInt32

InMsec The interval in milliseconds at which | interval not preemptive

server checks thinning and adjusts it if safe

necessary. This attribute is part of the server’s

thinning algorithm. By default, the value of this

attribute is 1000.

gtssPrefsStartThickingDelayInMseclfa | start_thicking _- Readable, writable, | SInt32

packet is this late in milliseconds, starting delay not preemptive

thicking. This attribute is part of the server’s safe

thinning algorithm. By default, the value of this

attribute is 250.

gtssPrefsStartThinningDelayInMseclfa| start_thinning _- Readable, writable, | SInt32

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Attribute Name and Description

Name in
streamingserver.xml

Access

Data
Type

qtssPrefsTCPSecondsToBuffer When
streaming over TCP, the size of the send buffer
is scaled based on the movie’s bitrate. Using the
bitrate of the movie as a guide, the server will
set the TCP send buffer to fit this number of
seconds of data. By default, the value of this
attribute is .5.

tcp_seconds_to
_buffer

Readable, writable,
not preemptive
safe

Float32

qtssPrefsThickAl1TheWayDelayInMsec If
a packet is this late (negative means it is ahead
of time), restore full quality. This attribute is part
of the server’s thinning algorithm. By default,
the value of this attribute is -2000.

thick_all_the_way
delay

Readable, writable,
not preemptive
safe

UInt32

qtssPrefsThinAl1TheWayDelayInMseclfa
packet is as late in milliseconds as the value of
this attribute, the server thins the stream as
much as possible. This attribute is part of the
server’s thinning algorithm. By default, the value
of this attribute is 1500.

thin_all_the_way
delay

Readable, writable,
not preemptive
safe

SInt32

gtssPrefsTotalBytesUpdate The interval
in seconds between updates of the server’s total
bytes and current bandwidth statistics. By
default, the value of this attribute is 1.

total_bytes_update

Readable, writable,
not preemptive
safe

UInt32

qtssPrefsWindowSizeMaxThreshold The
window size in bytes used to measure reliable
UDP bandwidth. If the bit rate is greater than
qtssPrefsWindowSizeMaxThreshold, the
window size is setto qtssPrefslarge-
WindowSizelInK. If the bit rate is greater than
gqtssPrefsWindowSizeThreshold and and
less than or equal to qtssPrefsWindowSize-
MaxThreshold, the window is set to
qtssPrefsMediumWindowSizelInK. If the bit
rate is less than or equal to
qtssPrefsWindSizeThreshold,the window
sizeissettoqtssPrefsSmallWindowSizelInK.
By default, the value of this attribute is 1000.

window_size_max _
threshold

Readable, writable,
not preemptive
safe

Ulnt32

gtssPrefsWindowSizeThreshold For
Reliable UDP, if the client doesn’t specify its
window size, the server uses the value of
gtssPrefsSmallWindowSizelInK as the
window size if the bitrate is below the value of
this attribute measured in K bits/second. By
default, the value of this attribute is 200.

window_size _
threshold

Readable, writable,
not preemptive
safe

UInt32

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

65

CHAPTER 1

Concepts

certain players.

bandwidth_adjustment

not preemptive
safe

Attribute Name and Description Name in Access Data
streamingserver.xml Type

This attribute is used for performance testing. | disable_thinning Readable, writable, | Bool16

When set to true, this attribute forces the not preemptive

server to maintain full bandwidth connections. safe

By default, the value of this attribute is false.

This attribute is used for compatibility with player_requires_- Readable, writable, | char

certain players. It contains a list of players that, | rtp_header_info not preemptive

for compatibility, require RTP header informatin. safe

By default, the list consists of Nokia and Real.

This attribute is used for compatibility with player_requires_- Readable, writable, | char

The built-in error log module that loads before all other modules uses the following seven attributes:

size in bytes of the error log. A value of zero
means that the server does not impose a limit.
By default, the value of this attribute is 256000.

not preemptive
safe

qtssPrefskErrorLogDir Setsthepathtothe | error_logfile_dir Readable, writable, | char
directory containing the error log file. By default, not preemptive

the value of this attribute is safe
/Library/QuickTimeStreaming/Logs.

gtssPrefskErrorLogEnabled Setto trueto | error_logging Readable, writable, | Bool16
enable error logging. By default, the value of not preemptive

this attribute is true. safe
qtssPrefskErrorLogName Setsthe nameof | error_log_name Readable, writable, | char
the error log file. By default, the value of this not preemptive
attributeis Error. safe
qtssPrefskErrorLogVerbosity Sets the error_logfile _- Readable, writable, | UInt32
verbosity level of messages the error logger verbosity not preemptive

logs. The following values are meaningful: 0 = safe

log fatal errors 1 = log fatal errors and warnings

2 = log fatal errors, warnings, and asserts 3 =

log fatal errors, warnings, asserts, and debug

messages By default, the value of this attribute

is 2.

qtssPrefsErrorRollInterval Theinterval | error_logfile _- Readable, writable, | UInt32
in days between rolling the error log file. By interval not preemptive

default, the value of this attribute is 0, which safe

means that the error log file is not rolled.

gtssPrefsMaxErrorLogSize The maximum | error_logfile_size Readable, writable, | UInt32

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts
Attribute Name and Description Name in Access Data
streamingserver.xml Type
gqtssPrefsScreenlLogging If this attribute is | screen_logging Readable, writable, | Bool16
setto true,everylinein the errorlog is written not preemptive
to the terminal window. Note that to see the safe

error log, the server must be launched from the
command line in foreground mode by using
the - d flag. By default, the value of this attribute
istrue.

qtssRTPStreamObjectType

An object of type qtssRTPStreamObjectType consists of attributes that describe a particular RTP stream
whether it’s an audio, video, or text stream. An RTP stream object (Q0TSS_RTPStream0Object) is an instance
of this object type and is created by calling QTSS_AddRTPStream. An RTP stream object must be associated
with a single client session object (QTSS_ClientSession0bject).Aclient session object may be associated
with any number of RTP stream objects. These attributes are valid for all roles that receive a
QTSS_RTPStreamObject in the structure the server passes to them.

Table 1-18 (page 67) lists the attributes for objects of type qtssRTPStreamObjectType.

Note: All of these attributes are preemptive safe, so they can be read by calling QTSS_GetValue,
QTSS_GetValueAsString, orQTSS_GetValuePtr.

Table 1-18 Attributes of objects of type qtssRTPStreamObjectType

Attribute Name and Description Access Data Type

qtssRTPStrBufferDelayInSecs Size of the Readable, preemptive safe | Float32
client’s buffer. The server sets this attribute to three
seconds, but the module is responsible for
determining the buffer size and setting this attribute
accordingly.

qtssRTPStrFirstSeqNumber Sequence number | Readable, writable, SInt16
of the first packet after the last PLAY request was | preemptive safe
issued. If known, this attribute must be set by a
module before calling QTSS_P1ay. The server uses
this attribute to generate a proper RTSP PLAY
response.

qtssRTPStrFirstTimestamp RTP timestamp of | Readable, writable, SInt32
the first RTP packet generated for this stream after | preemptive safe
the last PLAY request was issued. If known, this
attribute must be set by a module before calling
QTSS_PTlay. The server uses this attribute to
generate a proper RTSP PLAY response.

QTSS Objects 67
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

68

CHAPTER 1

Concepts

Attribute Name and Description

Access

Data Type

qtssRTPStrNetworkMode Network mode for the
RTP stream. Possible values are
qtssRTPNetworkModeDefault,
qtssRTPNetworkModeMulticast, and
gtssNetworkModeUnicast.

Readable, preemptive safe

Uint32

qtssRTPStrPayloadName Name of the media for
this stream. This attribute is empty unless a module
explicitly sets it.

Readable, writable,
preemptive safe

char

qtssRTPStrPayloadType Payload type of the
media for this stream. The value of this attribute is
gtssUnknownPayloadType unless a module sets
ittoqtssVideoPayloadType or
qtssAudioPayloadType.

Readable, writable,
preemptive safe

QTSS_RTPPayloadType

generated by the server. The SSRC is guaranteed to
be unique among all streams in the session. The
server includes the SSRC in all RTCP Sender Reports
that the server generates.

qtssRTPStrTrackID Unique ID thatidentifies each | Readable, writable, UInt32
RTP stream. preemptive safe
qtssRTPStrTimescale Timescale for the track. If | Readable, writable, SInt32
known, this must be set before calling QTSS_P1ay. | preemptive safe
qtssRTPStrSSRC Synchronization source (SSRC) | Readable, preemptive safe | UInt32

The values of the following attributes come from the most recent RTCP packet received on a stream. If a
field in the most recent RTCP packet is blank, the server sets the value of the corresponding attribute to

frames per second.

zero.
qtssRTPStrAudioDryCount Numberof times the | Readable, preemptive safe | UInt16
audio has run dry.

qtssRTPStrAvgBugDelayInMsec Average buffer | Readable, preemptive safe | UInt16
delay in milliseconds.

qtssRTPStrAvglLateMilliseconds Averagein | Readable, preemptive safe | UInt16
milliseconds of packets that the client received late.

qtssRTPStrClientBufFill How full the client | Readable, preemptive safe | UInt16
buffer is in tenths of a second.

qtssRTPStrExpFrameRate The expected frame | Readable, preemptive safe | UInt16
rate in frames per second.

qtssRTPStrFractionlLostPackets The fraction | Readable, preemptive safe | UInt32
of packets that have been lost for this stream.

qtssRTPStrFrameRate The current frame rate in | Readable, preemptive safe | UInt16

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

by the client in bits per second.

Attribute Name and Description Access Data Type
qtssRTPStrGettingBetter A non-zero value if | Readable, preemptive safe | UInt16
the client reports that the stream is getting better.
qtssRTPStrGettingWorse Anon-zero value if the | Readable, preemptive safe | UInt16
client reports that the stream is getting worse.

qtssRTPStrIsTCP If this RTP stream is being sent | Readable, preemptive safe | Bool16
over TCP, this attribute is true. If this RTP stream is

being sent over UDP, this attribute is false.

qtssRTPStrJditter Cumulative jitter for this Readable, preemptive safe | UInt32
stream.

qtssRTPStrNumEyes Number of clients connected | Readable, preemptive safe | UInt32
to this stream.

qtssRTPStrNumEyesActive Number of clients | Readable, preemptive safe | UInt32
playing this stream.

qtssRTPStrNumEyesPaused Number of clients | Readable, preemptive safe | UInt32
connected but currently paused.

qtssRTPStrPercentPacketslLost Fixed Readable, preemptive safe | UInt16
percentage of lost packets for this stream.

qtssRTPStrRecvBitRate Average bitrate received | Readable, preemptive safe | UInt32

qtssRTPStrStreamRef AQTSS_StreamRef used
for sending RTP or RTCP packets to the client. Use
QTSS_WriteF1ags to specify whether each packet
is an RTP or RTCP packet.

Readable, preemptive safe

QTSS_StreamRef

qtssRTPStrTotallLostPackets Thetotal number | Readable, preemptive safe | UInt32
of packets that have been lost for this stream.

qtssRTPStrTotPacketsRecv Total packets Readable, preemptive safe | UInt32
received by the client.

qtssRTPStrTotPacketsDropped Total packets | Readable, preemptive safe | UInt16
dropped by the client.

qtssRTPStrTotPacketslost Total packets lost. | Readable, preemptive safe | UInt16
qtssRTPStrTransportType The transport type. | Readable, preemptive safe | QTSS_ -

RTPTransportType

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

69

70

CHAPTER 1

Concepts

qtssRTSPHeaderObjectType

An object of type qtssRTSPHeaderObjectType consists of attributes containing all of the RTSP request
headers associated with an individual RTSP request. An RTSP header object (QTSS_RTSPHeaderObject)is
an instance of this object type.

The names of the attributes are the names of the RTSP headers associated with that RTSP request. For example,
the following RTSP request has a Session header and a User-agent header:

DESCRIBE /foo.mov RTSP/1.0
Session: 20fj02ijf
User-agent: QTS/4.0.3

In this case, the value of the Session attribute is “20fj02ijf” and the value of the User-agent attribute is
“QTS/4.0.3” Modules can get the value of a given header by calling QTSS_GetValue,
QTSS_GetValueAsString, orQTSS_GetValuePtr.

qtssRTSPRequestObjectType

An object of type qtssRTSPRequestObjectType consists of attributes that describe a particular RTSP
request. An RTSP request object (QTSS_RTSPRequest0bject) is an instance of this object type and exists
from the time the server receives a complete RTSP request from a client until the response is sent and the
server moves on to the next request. An RTSP request object must be associated with a single RTSP session
object (QTSS_RTSPSessionObject) for a given request made over a given connection.

With the exception of the RTSP Filter role, the value of each attribute is available in all roles that receive an
object of type QTSS_RTSPRequest0bject. When the RTSP Filter role receives an object of type
QTSS_RTSPRequestObject, the only attribute that has a value is the gt sSRTSPReqFul1Request attribute.

Each text name is identical to its enumerated type name.

Table 1-19 (page 70) lists the attributes for objects of type qtssRTSPRequestObjectType.

Note: All of these attributes are preemptive safe, so they can be read by calling QTSS_GetValue,
QTSS_GetValueAsString, orQTSS_GetValuePtr.

Table 1-19 Attributes of type qtssRTSPRequest0ObjectType

Attribute Name and Description Access Data Type

qtssRTSPRegAbsoluteURL The full URL starting with | Readable, preemptive | char
“rtsp://" safe

qtssRTSPRegContentlen Content length of incoming | Readable, preemptive | UInt32
RTSP request body. safe

qtssRTSPReqFileDigit If the URI ends with one or | Readable, preemptive | char
more digits, this attribute points to those digits. safe

qtssRTSPReqFileName All characters after the last Readable, preemptive | char
path separator in the file system path. safe

QTSS Objects
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

late-tolerance field in the x-RTP-0ptions header, or
-1 if not present.

safe

Attribute Name and Description Access Data Type
qtssRTSPReqFilePath URIfor this request, converted | Readable, preemptive | char

to a local file system path. safe

qtssRTSPRegFilePathTrunc Same as Readable, preemptive | char
qtssRTSPReqFilePath, but without the last element | safe

of the path.

qtssRTSPReqFull1Request The complete RTSP request | Readable, preemptive | char

as sent by the client. This attribute is available in every | safe

role that receives an object of type QTSS_ -

RTSPRequestObject.

qtssRTSPReqIfModSinceDate Ifthe RTSP request | Readable, preemptive | QTSS_TimeVal
contains an If-Modified-Since header, this attribute is | safe

the if-modified date converted to a value of type

QTSS_TimeVal.

qtssRTSPReqlLateTolerance Value of the Readable, preemptive | Float32

qtssRTSPRegMethod The RTSP method as a value of
type QTSS_RTSPMethod.

Readable, preemptive
safe

QTSS_RTSPMethod

back to the client if the response was an error. A module
sending an RTSP error to the client should set this
attribute to be a text message that describes why the
error occurred. It is also useful to write this message to
a log file. Once the RTSP response has been sent, this
attribute contains the response message.

preemptive safe

qtssRTSPRegMethodStr The RTSP method of this Readable, preemptive | char
request. safe
qtssRTSPRegNetworkMode Network mode for the Readable, preemptive | Bool16
request. Possible values are safe
qtssRTPNetworkModeDefault,

gtssRTPNetworkModeMulticast, and

qtssRTPNetworkModeUnicast.

qtssRTSPReqRealStatusCode Same as the Readable, preemptive | UInt32
qtssRTSPReqStatusCode attribute but translated safe

froma QTSS_RTSPStatusCode to an actual RTSP status

code.

qtssRTSPReqRespKeepAlive Set this attribute to Readable, writable, Bool16
true if you want the server to keep the connection preemptive safe

open after completion of the request. Otherwise, set

this attribute to false if you want the server to

terminate the connection upon completion of the

request.

qtssRTSPReqRespMsg The error message that is sent | Readable, writable, char

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

71

CHAPTER 1

Concepts

the Range header of the PLAY request.

safe

Attribute Name and Description Access Data Type

qtssRTSPReqRootDir The root directory for this Readable, writable, char

request. The default value for this attribute is the server's | preemptive safe

media folder path. Modules can set this attribute from

the RTSP Route role.

qtssRTSPReqSkipAuthorization Set by a module | Readable, writable, Bool16

that wants this request to be allowed by all authorization | preemptive safe

modules.

qtssRTSPReqSpeed Value of the speed header. Readable, preemptive | Float32
safe

qtssRTSPReqStartTime The start time specified in | Readable, preemptive | Float64

qtssRTSPReqStatusCode The current status code for
the requestas QTSS_RTSPStatusCode. By default, the
valueis gt ssSuccessOK. If amodule sets this attribute
and calls QTSS_SendRTSPHeaders, the status code in
the header that the server generates contains the value
of this attribute.

Readable, writable,
preemptive safe

QTSS_RTSPStatusCode

qtssRTSPReqStopTime The stop time specified in the
Range header of the PLAY request.

Readable, preemptive
safe

Float64

qtssRTSPReqStreamRef A value of type
QTSS_StreamRef for sending data to the RTSP client.
This stream reference, unlike the one provided as an
attribute in the QTSS_RTSPSession0Object, never
returns QTSS_WouldBTock in response to a
QTSS_WriteoraQTSS_WriteV call.

Readable, preemptive
safe

QTSS_StreamRef

provided by the RTSP request.

safe

qtssRTSPReqTruncAbsoluteURL The URL without | Readable, preemptive | char

last element of the path. safe

qtssRTSPReqURI URI for this request. Readable, preemptive | char
safe

qtssRTSPReqURLRealm The authorization entity for | Readable, writable, char

the client to display in the following string: “Please enter | preemptive safe

password for realm at server-name. The default value

of this attribute is “Streaming Server.”

qtssRTSPReqUserName The decoded user name, if Readable, preemptive | char

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

qtssRTSPSessionObjectType

An object of type qtssRTSPSession0bjectType consists of attributes associated with an RTSP client-server
connection. An RTSP session object (QTSS_RTSPSession0Object)isan instance of this object type and exists
as long as the RTSP client is connected to the server. These attributes are valid for all roles that receive a

QTSS_RTSPSession0bject in the structure the server passes to them.

Table 1-20 (page 73) lists the attributes for objects of type gt ssRTSPSession0ObjectType.

Note: All of these attributes are preemptive safe, so they can be read by calling QTSS_GetValue,
QTSS_GetValueAsString,or QTSS_GetValuePtr.

Table 1-20

Attributes of objects of type qtssRTSPSessionObjectType

Attribute Name and Description

Access

Data Type

qtssRTSPSesEventCntxt Aneventcontext for
the RTCP connection to the client. This attribute
should primarily be used to wait for
flow-controlled EV_WR event when responding to
a client.

Readable, preemptive safe

QTSS_EventContextRef

for the connection.

qtssRTSPSesID An ID that uniquely identifies | Readable, preemptive safe | UInt32
each RTSP session since the server started up.

qtssRTSPSeslLocalAddr Local IP address for | Readable, preemptive safe | UInt32
this RTSP session.

qtssRTSPSesLocalAddrStr Local IP address | Readable, preemptive safe | char
for the RTSP session in dotted-decimal format.

qtssRTSPSesLocalDNS DNS name that Readable, preemptive safe | char
corresponds to the local IP address for this RTSP

session.

qtssRTSPSeslocalPort Local port for the Readable, preemptive safe | UInt16
connection.

qtssRTSPSesRemoteAddr IP address of the Readable, preemptive safe | UInt32
client.

qtssRTSPSesRemoteAddrStr IPaddress of the | Readable, preemptive safe | char
client in dotted-decimal format.

qtssRTSPSesRemotePort Remote (client) port | Readable, preemptive safe | UInt16

qtssRTSPSesStreamRef AQTSS_StreamRef
used for sending data to the RTSP client.

Readable, preemptive safe

QTSS_RTSPSessionStream

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

73

CHAPTER 1

Concepts

Attribute Name and Description

Access

Data Type

qtssRTSPSesType The RTSP session type.
Possible values are qtssRTSPSession,
qtssRTSPHTTPSession (@n HTTP tunneled RTSP
session), and qtssRTSPHTTPInputSession.
Sessions of type qtssRTSPHTTPInputSession
are usually very short lived.

Readable, preemptive safe

QTSS_RTSPSessionType

gtssServerObjectType

An object of type qtssServer0ObjectType consists of attributes that contain global server information,
such as server statistics. A server object (QTSS_ServerObject is an instance of this object type.There is a
single instance of this object type for each server. These attributes are valid for all roles that receive a
QTSS_Server0bject in the structure the server passes to them.

Table 1-21 (page 74) lists the attributes for objects of type qtssServerObjectType.

Note: Some of these attributes are not preemptive safe, as noted in Table 1-21 (page 74).

Table 1-21 Attributes of objects of type qtssServerObjectType
Attribute Name and Description Access Data Type
qtssMP3SvrAvgBandwidth Average MP3 Readable, writable, UInt32
bandwidth in bits per second that the server is | preemptive safe
currently sending.
qtssMP3SvrCurBandwidth MP3 bandwidth in | Readable, writable, Uint32
bits per second that the server is currently preemptive safe
sending.
qtssMP3SvrCurConn Number of currently Readable, writable, UInt32
connected MP3 client sessions. preemptive safe
qtssMP3SvrTotalBytes Total number of MP3 | Readable, writable, Uint32
bytes sent since the server started up. preemptive safe
qtssMP3TotalConn Total number of MP3 client | Readable, writable, UInt32
sessions since the server started up. preemptive safe
qtssRTPSvrAvgBandwidth Average bandwidth | Readable, not Uint32
output by the server in bits per second. preemptive safe
qtssRTPSvrCurBandwidth Current bandwidth | Readable, not Uint32
being output by the server in bits per second. preemptive safe
qtssRTPSvrCurConn The number of clients Readable, not Uint32
currently connected to the server. preemptive safe

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

address of the server as a string.

Attribute Name and Description Access Data Type
qtssRTPSvrCurPackets Current packets per | Readable, not UInt32
second being output by the server. preemptive safe
qtssRTPSvrNumUDPSockets Number of UDP Readable, not Uint32
sockets currently being used by the server. preemptive safe
qtssRTPSvrTotalBytes Total number of bytes | Readable, not Uint64
output since the server started up. preemptive safe
qtssRTPSvrTotalConn Total number of clients | Readable, not Uint32
that have connected to the server since the server | preemptive safe

started up.

qtssRTPSvrTotalPackets Total number of Readable, not Uint64
bytes output since the server started up. preemptive safe
qtssRTSPCurrentSessionCount The number | Readable, not Uint32
of clients that are currently connected over preemptive safe

standard RTSP.

qtssRTSPHTTPCurrentSessionCount The Readable, not Uint32
number of clients that are currently connected | preemptive safe

over RTSP/HTTP.

gtssServerAPIVersion The API version Readable, preemptive | UInt32
supported by this server. The format of this value | safe

is OXMMMMmmmm, where M is the major version

number and m is the minor version number.

gtssSvrDefaultIPAddrStr The default IP Readable, preemptive | char

safe

gtssSvrClientSessions Anobjectcontaining
all client sessions stored as indexed
QTSS_ClientSessionObject objects.

Read

QTSS_Object

gtssSvrConnectedUsers The number of
connected clients. The QTSSMP3StreamingModule
is the only module that adds QTSS_ -
ConnectedUser0bject objects to this attribute,
but other modules can add
QTSS_ConnectedUser0Object objects filled in
with their own data.

Readable, writable, not
preemptive safe

QTSS_ConnectedUserObject

server’s current time in milliseconds. Getting the
value of this attribute is equivalent to calling
QTSS_Milliseconds.

gtssSvrCPULoadPercent The percentage of | Readable, not Float32
CPU time the server is currently using. preemptive safe
qtssSvrCurrentTimeMilliseconds The Readable, not QTSS_TimeVal

preemptive safe

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

75

CHAPTER 1

Concepts

which the server is running (offset from GMT in
hours).

safe

Attribute Name and Description Access Data Type
gqtssSvrDefaultDNSName The “default” DNS Readable, preemptive | char
name of the server. safe

gtssSvrDefaultIPAddr The “default” IP address | Readable, preemptive | UInt32

of the server. safe

qtssSvrGMTOffsetInHrs The time zone in Readable, preemptive | SInt32

gtssSvrHandledMethods The methods that the
server supports. Modules should append the
methods they support to this attribute in their
QTSS_Initialize_Role.

Readable, writable, not
preemptive safe

QTSS_RTSPMethod

qtssSvrIsOutOfDescriptors Ifthe server has
run out of file descriptors, this attribute is true;
otherwise, this attribute is false.

Readable, not
preemptive safe

Bool16

gtssSvrMessages An object containing the
server's error messages.

Readable, preemptive
safe

QTSS_Object

gtssSvrModuleObjects A module object
representing each module.

Readable, preemptive
safe

QTSS_ModuleObject

gtssSvrPreferences An object representing
each of the server's preferences.

Readable, preemptive
safe

QTSS_PrefsObject

server started up.

safe

qtssSvrRTSPPorts An indexed attribute Readable, not char
containing all the ports the server is listening on. | preemptive safe
qtssSvrRTSPServerHeader The header that | Readable, preemptive | char
the server uses when responding to RTSP clients. | safe
gtssSvrServerBuildDate Datethatthe server | Readable, preemptive | char
was built. safe
gtssSvrServerName The name of the server. | Readable, preemptive | char
safe
gtssSvrServerVersion The version of the Readable, preemptive | char
server. safe
gtssSvrStartupTime The time at which the Readable, preemptive | QTSS_TimeVal

QTSS Objects

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Attribute Name and Description Access

Data Type

gtssSvrState The current state of the server.
Possible values are qtssStartingUpState,
gtssRunningState,
gtssRefusingConnectionsState,
qtssFatalErrorState, andqgtssShutting-
DownState, qtssIdleState. Modules can set
the server state. If a module sets the server state,
the server responds accordingly. Setting the server
state to qtssRefusingConnectionsState
causes the server to refuse new
connections.Setting the server state to
qtssFatalErrorStateortoqtssShutting-
DownState causes the server to quit. The
gtssFatalErrorState stateindicates thata
fatal error has occurred but the server is not
shutting down yet.

Readable, writable, not
preemptive safe

QTSS_ServerState

qtssTextMessageObjectType

An objectof type qtssTextMessageObjectType consists of attributes whose values are intended for display
to the user or that are returned to the client. A text message object (QTSS_TextMessageObject)isan
instance of this object type. To make localization easier, the attribute values are text strings.

Table 1-22 (page 77) lists the attributes for objects of type qtssTextMessageObjectType.

Table 1-22 Attributes of objects of type qtssTextMessageObjectType
Attribute Name and Description Access Data Type
gtssListenPortAccessDenied Read only, preemptive safe | char
gtssListenPortError Read only, preemptive safe | char
gtssListenPortInUse Read only, preemptive safe | char
qtssMsgAltDestNotAl1owed Request specifies an alternative | Read only, preemptive safe | char
destination and the server is not configured to support alternative
destinations.
qtssMsgBadBase64 Read only, preemptive safe | char
qtssMsgBadFormat The server could not parse the request. Read only, preemptive safe | char
qtssMsgBadModule The server tried to run an invalid module. | Read only, preemptive safe | char
qtssMsgBadRTSMethod Request specified an invalid RTS Read only, preemptive safe | char
method.

QTSS Objects 77

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

78

CHAPTER 1

Concepts

version.

Attribute Name and Description Access Data Type
gqtssMsgCannotCreatePIDFile The server could not create | Read only, preemptive safe | char
the process ID file. See the gt ssPrefsPIDFi1e attribute of the

qtssPrefsObjectType described in Table 1-17 (page 57).

gtssMsgCannotSetRunUser The server could not run under | Read only, preemptive safe | char
the user name specified by the gtssPrefsRunUser attribute

of the qtssPrefsObjectType described in Table 1-17 (page

57).

gtssMsgCannotSetRunGroup The server could not run under | Read only, preemptive safe | char
the group name specified by the gt ssPrefsRunGroup attribute

of the qtssPrefsObjectType described in Table 1-17 (page

57).

gqtssMsgCantSetupMulticast Server is not configured for Read only, preemptive safe | char
multicast.

gtssMsgCantWriteFile Read only, preemptive safe | char
gqtssMsgColonAfterHeader Request’s header is not followed | Read only, preemptive safe | char
by a colon (:) character.

gqtssMsgCouldntListen This text message is not used. Read only, preemptive safe | char
gqtssMsgDefaultRTSPAddrUnavail The IP address specified | Read only, preemptive safe | char
by the qgtssPrefsRTSPIPAddr attribute could not be found or

failed in some way.

qtssMsgFileNameToolong Request contains a file name that | Read only, preemptive safe | char
is too long.

qtssMsgInitFailed The server could not initialize itself. Read only, preemptive safe | char
qtssMsgNoClientPortInTransport Request contains a Read only, preemptive safe | char
transport header that does not specify the client’s port number.

qtssMsgNoEQLAfterHeader Request’s header is not terminated | Read only, preemptive safe | char
by an end of line character.

gtssMsgNoMessage No message. Read only, preemptive safe | char
gqtssMsgNoModuleFolder The server could not find the module | Read only, preemptive safe | char
folder.

gtssMsgNoModuleForRequest Request specifies a module the | Read only, preemptive safe | char
server does not have.

qtssMsgNoRTSPInURL Request specifed a URL that does not | Read only, preemptive safe | char
support RTSP.

qtssMsgNoRTSPVersion Request did not specify an RTSP Read only, preemptive safe | char

QTSS Objects
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Attribute Name and Description Access Data Type
gtssMsgNoPortsSucceeded Read only, preemptive safe | char
qtssMsgNoSesIDOnDescribe The Describe section of the Read only, preemptive safe | char
request’s header does not contain a session ID.
qtssMsgNoSessionID Request does not contain a session ID. | Read only, preemptive safe | char
gqtssMsgNotConfiguredForIP The server is not configured | Read only, preemptive safe | char
for IP.
qtssMsgNoURLInRequest Request did not contain a URL. Read only, preemptive safe | char
qtssMsgOut0fPorts The server could not accept the request | Read only, preemptive safe | char
because it is out of ports.
gtssMsgRefusingConnections The server is refusing Read only, preemptive safe | char
connections.
qtssMsgRegFailed A module failed to register. Read only, preemptive safe | char
gqtssMsgRequestToolong Request is too long. Read only, preemptive safe | char
qtssMsgRTCPPortMustBeOneBigger Request contains an Read only, preemptive safe | char
RTCP port number that is not bigger than the RTP port number
by 1.
qtssMsgRTPPortMustBeEven Request contains an RTP port | Read only, preemptive safe | char
number that is odd instead of even.
qtssMsgSockBufSizesToolarge Read only, preemptive safe | char
gqtssMsgTooManyC11ients The server has too many connections | Read only, preemptive safe | char
to accept this connection.
gqtssMsgTooMuchThroughput The server is consuming too Read only, preemptive safe | char
much bandwidth to accept this request.
gtssMsgSomePortsFailed Read only, preemptive safe | char
qtssMsgURLInBadFormat Request specifed a URL that is Read only, preemptive safe | char
properly formatted.
qtssMsgURLToolong Request contains a URL that is longer than | Read only, preemptive safe | char
256 bytes.
gtssServerPrefMissing A required server preference is Read only, preemptive safe | char
missing from the server’s configuration.
gtssServerPrefWrongType Arequired server preference is of | Read only, preemptive safe | char
the wrong type.

QTSS Objects 79

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

gtssUserProfileObjectType

An object of type qtssUserProfileObjectType consists of attributes whose values describe a user’s
profile.

Table 1-23 (page 80) lists the attributes for objects of type qtssUserProfileObjectType.

Table 1-23 Attributes of objects of type qtssUserProfileObjectType

Attribute Name and Description Access Data Type

gtssUserPassword The user’s password. Readable, writable preemptive safe | char

qtssUserGroups Groups of which the userisa member. | Readable, writable preemptive safe | char
This is a multi-valued attribute. Each group nameis a C
strings padded with enough nulls to make all of the group
names the same length.

gtssUserName The user’s name. Readable, preemptive safe char

gtssUserRealm Authentication realm for this user. Readable, writable preemptive safe | char

QTSS Streams

80

The QTSS programming interface provides QTSS stream references as a generalized stream abstraction.
Streams can be used for reading and writing data to many types of 1/0 sources, including, but not limited to
files, the error log, and sockets and for communicating with the client via RTSP or RTP. In all RTSP roles, for
example, modules receive an object of type QTSS_RTSPRequestObject thathasaqtssRTSPReqStreamRef
attribute. The value of this attribute is of type QTSS_StreamRef, and it can be used for sending RTSP
response data to the client.

Unless otherwise noted, all streams are asynchronous. When using the asynchronous QTSS file system
callbacks, modules should be prepared to receive the QTSS_Wou1dB1ock result code, subject to the restrictions
and rules of each stream type described in this section. The QTSS_WouldB1ock error is returned from a
stream callback when completing the requested operation would require the current thread to block. For
instance, QTSS_Write on a socket will return QTSS_WouldB1ock if the socket is currently subject to flow
control. For information on threading and asynchronous I/0, see the section “Runtime Environment for QTSS
Modules” (page 29).

When a module receives the QTSS_WouldB1ock result code, modules should call the QTSS_RequestEvent
callback routine to request a notification from the server when the specified stream becomes available for
I/0. After calling QTSS_RequestEvent, the module should return control immediately to the server. The
module will be re-invoked in the same role in the exact same state when the specified stream is available for
I/0.

All stream references are of type QTSS_StreamRef. The QTSS programming interface uses following stream
types:

QTSS_ErrorLogStream
Used for writing binary data to the server’s error log. There is a single instance of this stream type,
which is passed to each module in the Initialize role. When data is written to this stream, modules

QTSS Streams
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

that have registered for the Error Log role are invoked. For information about this role, see the section
“Error Log Role” (page 34). All operations on this stream type are synchronous.

QTSS_FileStream
Represents a file and is obtained by making the QTSS_0OpenFileStream callback. If the file stream
is opened with the qtssFileStreamAsync flag, callers should expect to receive a result code of
QTSS_WouldBlock when they call QTSS_Read, QTSS_Write,and QTSS_WriteV.

QTSS_RTSPSessionStream
Used for reading data (QTSS_Read) from an RTSP client and writing data (QTSS_Write or
QTSS_WriteV) to an RTSP client. The server may encounter flow control conditions, so modules
should be prepared to handle QTSS_WouldB1ock result codes when reading from or writing to this
stream type. Calling QTSS_Read means that you are reading the request body sent by the client to
the server. This stream reference is an attribute of the object QTSS_RTSPSession0Object.

QTSS_RTSPRequestStream
Used for reading data (QTSS_Read) from an RTSP client and writing data (QTSS_Write or
QTSS_WriteV) to an RTSP client. This stream is identical to the QTSS_RTSPSessionStream stream
except that data written to streams of this type is buffered in memory until a full RTSP response is
constructed. Because the data is buffered internally, modules do not receive QTSS_WouldBlock
errors when writing to streams of this type. Calling QTSS_Read on this type of streammeans
that you are reading the request body sent by the client to the server. Modules that call QTSS_Read
to read this type of stream should be prepared to handle aresult code of QTSS_WouldBlock.
This stream reference is an attribute of the object QTSS_RTSPRequestObject.

QTSS_RTPStreamStream
Used for writing data to an RTP client. When writing to a stream of this type, a single write call
corresponds to a single, complete RTP packet, including headers. Currently, it is not possible to use
the QTSS_RequestEvent callback to receive events for this stream, so if QTSS_Write or QTSS_WriteV
returns QTSS_WouldB1ock, modules must poll periodically for the blocking condition to be lifted.
This stream reference is an attribute of the object QTSS_RTPStreamObject.

QTSS_SocketStream
Represents a socket. This stream type allows modules to use the QTSS stream event mechanism
(QTSS_RequestEvent) for raw socket I/O. (In fact, the QTSS_RequestEvent callback is the only
stream callback available for this type of stream.) Modules should read sockets asynchronously and
should use the operating system’s socket function to read from and write to sockets. When those
routines reach a blocking condition, the module can call QTSS_RequestEvent to be notified when
the blocking condition has cleared.

Table 1-24 (page 81) uses an “X" to summarize the I/O-related callback routines that are appropriate for each
type of stream.

Table 1-24 Streams and appropriate callback routines

Stream Type Read | Seek | Flush | Advise | Write | WriteV | RequestEvent | SignalStream
File Stream X X X X X
Error Log X
Socket Stream X
RTSP Session Stream | X X X X X
RTSP Request Stream | X X X X X
QTSS Streams 81

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts
Stream Type Read | Seek | Flush | Advise | Write | WriteV | RequestEvent | SignalStream
RTP Stream X X X X

QTSS Services

82

QTSS services are services the modules can access. The service may be a built-in service provided by the
server or an added service provided by another module. An example of a service would be a logging module
that allows other modules to write messages to the error log.

Modules use the callback routines described in the section “Service Callback Routines” (page 139) to register
and invoke services. Modules add and find services in a way that is similar to the way in which they add and
find attributes of an object.

Every service has a name. To invoke a service, the calling module must know the name of the service and
resolve that name into an ID.

Each service has its own specific parameter block format. Modules that export services should carefully
document the services they export. Modules that call services should fail gracefully if the service isn't available
or returns an error.

A module that implements a service calls QTSS_AddService in its Register role to add the service to the
server’s internal database of services, as shown in the following code:

void MyAddService()
{

QTSS_Error theErr = QTSS_AddService("MyService", &MyServiceFunction);
}

The MyServiceFunction corresponds to the name of a function that must be implemented in the same
module. Here is a stub implementation of the MyServiceFunction:

QTSS_Error MyServiceFunction(MyServiceArgs* inArgs)

{
// Each service function must take a single void* argument
// Implement the service here.
// Return a QTSS_Error.

}

To use a service, a module must get the service’s ID by calling QTSS_IDForService and providing the name
of the service as a parameter. With the service’s ID, the module calls QTSS_DoService to cause the service
to run, as shown in Listing 1-1 (page 82).

Listing 1-1 Starting a service

void MyInvokeService()

{
// Service functions take a single void* parameter that corresponds
// to a parameter block specific to the service.
MyServiceParamBlock theParamBlock;

// Initialize service-specific parameters in the parameter block.
theParamBlock.myArgument = xxx;

QTSS Services
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

QTSS_ServicelD theServicelD = qgtsslllegalServicelD;
// Get the service ID by providing the name of the service.
QTSS_Error theErr = QTSS_IDForService(‘MyService’, &theServicelD);
if (theErr != QTSS_NoErr)

return; // The service isn’t available.

// Run the service.
theErr = QTSS_DoService(theServicelD, &theParamBlock);

Built-in Services

The QuickTime Streaming Server provides built-in services that modules may invoke using the service routines.
In this version of the QTSS programming interface, there is one built-in service:

J#fdefine QTSS_REREAD_PREFS_SERVICE "RereadPreferences"

Invoking the Reread Preferences service causes the server to reread its preferences and invoke each module
in the Reread Preferences role, if they have registered for that role.

To invoke a built-in service, retrieve the service ID of the service by calling QTSS_IDForService. Then call
QTSS_DoService to run the service.

Automatic Broadcasting

The Streaming Server can accept RTSP ANNOUNCE requests from QuickTime broadcasters. Support for
ANNOUNCE requests and the ability of the server to act as an RTSP client allow the server to initiate new
relay sessions. This section describes the two ways in which an automatic broadcast can be initiated, how
ANNOUNCE requests work with SDP, and how the qtaccess and qtusers files control automatic
broadcasting.

Automatic Broadcasting Scenarios

QTSS supports two automatic broadcasting scenarios:

m Pull then push. To initiate automatic broadcast, an RTSP client sends standard RTSP requests to request
a stream and the server then relays the stream to one or more other streaming servers. This scenario is
described in the section “Pull Then Push” (page 84).

m Listen then push. In this scenario, an automatic broadcast is initiated when the streaming server receives
an ANNOUNCE request. This scenario is described in the section “Listen Then Push” (page 84).

Automatic Broadcasting 83
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Pull Then Push

The user can request a stream from a remote source by making standard DESCRIBE/SETUP/PLAY requests
and then relay it to one or more destinations. This functionality can be useful when an organization only
wants one copy of an outside stream to consume bandwidth on its Internet connection. The relay would sit
just inside the corporate network and push the stream to a reflector (possibly itself). Figure 2-7 (page 84)
provides an example of the pull-then-push scenario.

Figure 1-7 Pull-then-push automatic broadcasting
Streaming
Server A
2. ANNOUNCE
1. DESCRIBE/SETUP/PLAY _l
Streaming
Streaming Server
Server B
Streaming
Server

Using Figure 2-7 (page 84) as a reference, the steps for the pull-then-push scenario are as follows:

1. Streaming Server A (the relay client) sends standard RTSP client DESCRIBE/SETUP/PLAY requests to a
remote server, Streaming Server B.

2. The relay “client” (Streaming Server A) that requested the stream will begin receiving it and then send
an ANNOUNCE to all of the destinations listed in the relay configuration for that particular incoming
stream.

Listen Then Push

The streaming server can be configured to send incoming streams created by an ANNOUNCE request to one
or more destination machines automatically. This can be useful for setting up an automated broadcast
network. Figure 2-8 (page 84) provides an example of the pull-then-push scenario.

Figure 1-8 Listen-then-push automatic broadcasting

2. DESCRIBE/SETUP/PLAY

1. ANNOUNCE

Broadcaster |)

Streaming
Server A

3. ANNOUNCE

Streaming
Server

Streaming
Server

84 Automatic Broadcasting
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Using Figure 2-8 (page 84) as a reference, the steps for the listen -then-push scenario are as follows:

= A remote machine (a broadcaster or a relay) sends an ANNOUNCE request to Streaming Server A. The
streaming server may accept or deny the request. If it accepts the request, the streaming server checks
its relay configuration to determined whether the stream should be relayed.

= [fthe stream should be relayed, the streaming server will send standard RTSP client DESCRIBE/SETUP/PLAY
request to itself.

= The relay “client” (Streaming Server A) that requested the stream will begin receiving it and then send
an ANNOUCE to all of the destinations listed in its relay configuration for that particular incoming stream.

By default, authentication is required for automatic broadcasts. ANNOUNCE requests from broadcasters are
filtered through the authentication mechanism active in the server. To support broadcast authentication, a
new WRITE directive has been added to qtaccess file. The new directive allows SDP files to be written to the
movies folder.

ANNOUNCE Requests and SDP

The ANNOUNCE request contains the Session Description Protocol (SDP) information for the broadcast. The
ANNOUNCE request’s URI value may contain path delimiters in order to provide name space functionality.

When a broadcast is initiated by an ANNOUNCE request, the SDP information is stored in an in-memory
broadcast list. To terminate a broadcast, the broadcaster sends to the server a TEARDOWN request, which
causes the server to close the broadcast session and discard the SDP information. Similarly, dropped RTSP
connections and broadcasters that do no send RTCP sender reports to the server within a 90-second window
cause the server to close the broadcast session and discard the SDP information.

To support multiple SDP references to the same broadcast for announced UDP and TCP broadcasts, the port
setting is zero in the ANNOUNCE header. Here is an example:

m=audio O RTP/AVP

The a=x-urlmap tag is required to support sharing streams between broadcasts (where one stream comes
from one broadcaster and another stream comes from another broadcaster). The a=x-urlmap tag should
appear in the SDP that references the source SDP. Here is an example:

a=x-urlmap: someotherbroadcastURL/TrackID=1

Access Control of Announced Broadcasts

To control automatic broadcasting, two new user tags have been defined in the gtaccess file. Table
2-25 (page 85) lists the new tags.

Table 1-25 Access control user tags

Tag Purpose

valid-user | Specifies that the user can have access to the requested movie if the client provides a name
and password that match an entry in the gtusers file. The tag is written as require
valid-user.

Automatic Broadcasting 85
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

86

CHAPTER 1

Concepts

Tag Purpose

any-user Specifies that any user can have access to the requested movie, with no requirement that
the user be defined in the qtusers file or that the client provide a name and password
that is checked. The tag is written as require any-user.

By default, the qtaccess file allows read access for all directives in the file. To allow announced broadcasts,
the qtaccess file must contain a Limi t directive that allows writing.

The purpose of the Limi t directive is to restrict the effect of access controls to RTSP readers or writers. The
following example limits the require access control so that only users defined in the gtusers file can RTSP
PLAY a broadcast to the server. All other normal client PLAY requests are available to any user:

<Limit WRITE>
require valid-user
</Limit>

Note: The termination of the Limit directive (</Limit>) must be placed on its own line.

The following example allows movie viewing by any user in the qtusers file thatisin themovie_watchers
group and the user john. Broadcasters must be in the movie_broadcasters group to broadcast to this
directory or its protected branches.

<Limit READ>

require group movie_watchers
require user john

</Limit>

<Limit WRITE>

require group movie_broadcasters
</Limit>

Note: Strings in the gtaccess file are case-sensitive.

The following example has the same effect as the previous example. It works because the default behavior
is to limit access to reading when no limit field is specified.

require group movie_watchers
<Limit WRITE>

require group movie_broadcasters
</Limit>

require user john

The following example allows movie viewing and broadcasting by any user in the gtusers file that is in the
movie_watchers_and_broadcasters group:

<Limit READ WRITE>
require group movie_watchers_and_broadcasters
</ Limitd

Automatic Broadcasting
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Broadcaster-to-Server Example

This section shows a typical exchange between a client and a server in order to initiate an announced

broadcast. The following example shows a UDP multicast. Announced broadcasts can also set up requests
with using unicast RTP/AVP/UDP streams as well as RTP/AVP/TCP interleaved streams. For more information,

see RFC 2326.
Client to server:

ANNOUNCE rtsp://server.example.com/meeting RTSP/1.0
CSeq: 90

Content-Type: application/sdp

Content-Length: 121

v=0

o=cameral 3080117314 3080118787 IN IP4 195.27.192.36
s=IETF Meeting, Munich - 1

i=The thirty-ninth IETF meeting will be held in Munich, Germany
u=http://www.ietf.org/meetings/Munich.html

e=IETF Channel 1 <ietf39-mbone@uni-koeln.de>

p=IETF Channel 1 +49-172-2312 451

c=IN IP4 224.0.1.11/127

£=3080271600 3080703600

a=tool:sdr v2.4a6

a=type:test

m=audio 0 RTP/AVP 5

a=control:trackID=1

c=IN IP4 224.0.1.11/127

a=ptime:40

m=video 0 RTP/AVP 31

a=control:trackID=2

c=IN IP4 224.0.1.12/127

Server to client:

RTSP/1.0 200 0K
CSeq: 90

Client to server:

SETUP rtsp://server.example.com/meeting/trackID=1 RTSP/1.0
CSeq: 91

Transport: RTP/AVP;multicast;destination=224.0.1.11;
client_port=21010-21011;mode=record;tt1=127

Server to client:

RTSP/1.0 200 OK

CSeq: 91

Session: 50887676

Transport: RTP/AVP;multicast;destination=224.0.1.11;
client_port=21010-21011;serverport=6000-6001;mode=receive;ttl=127

Client to server:
SETUP rtsp://server.example.com/meeting/trackID=2 RTSP/1.0

CSeq: 92
Session: 50887676

Automatic Broadcasting
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

87

88

CHAPTER 1

Concepts

Transport: RTP/AVP;multicast;destination=224.0.1.12;
client_port =61010-61011;mode=record;tt1=127

Server to client:

RTSP/1.0 200 0K

CSeq: 92

Transport: RTP/AVP;multicast;destination=224.0.1.12;

client_port =61010-61011;serverport=6002-6003;mode=record;ttl=127
Client to server:

RECORD rtsp://server.example.com/meeting RTSP/1.0

CSeq: 93

Session: 50887676

Server to client:

RTSP/1.0 200 OK
CSeq: 93

Additional Trace Examples

This section provides three traces. The first trace is from the QuickTime Broadcaster, and it is sending MPEG
4 streams using TCP. The second trace is also from the QuickTime Broadcaster, but it is using UDP. The third
trace is from RFC 2326 (RTSP) showing the ANNOUNCE and RECORD RTSP methods using UDP transport.

The broadcaster requests to notice are

= RTSP ANNOUNCE to send the SDP file to the server

m RTSP SETUP to send a Transport header setting mode=record; the direction of the stream is implicitly
from the perspective of the server

= RTSP RECORD to start the broadcast

The requests mirror the streaming client requests:

m RTSP DESCRIBE to receive the SDP file from the server
m RTSP SETUP to set up each stream
m RTSP PLAY to start the streams

Trace of QuickTime Broadcaster Using TCP

Here is a trace of a QuickTime Broadcaster sending MPEG 4 streams using TCP. A TCP connection uses the
same set of RTSP requests with the standard specified transport of RTP/AVP/TCP and the port identifier of
interleaved= for each stream.

For this example, authentication and authorization has been disabled by a qgtaccess file to allow any user
to annouce a broadcast. The broadcast file is relative to the movies directory. If an SDP file already exists for
the URL, it is replaced. Clients that are already connected to the URL are not updated with the new SDP as
doing so would require a new DESCRIBE from the client, and there currently is no way to notify clients of
the SDP change.

Automatic Broadcasting
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Client to server:

ANNOUNCE rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n

CSeq: 1\r\n

Content-Type: application/sdp\rin

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

Content-Length: 790\r\n

\rin

c=IN IP4

127.0.0.1\ra=x-qt-text-nam:test\ra=x-qt-text-cpy:apple\
ra=x-qt-text-aut:john\

ra=x-qt-text-inf:none\

ra=mpeg4-iod:"data:application/

mpeg4-iod;base64,AoF/

AEBBAQEBAQOBEgABQHRKYXRhOmFwcGxpY2F0aWuL21wZWcOLWIKLWF102Jhc2U2NCxBVGdC
R3dVZkFAYOF5U1FBWIFRTKTCRUFGMOFBQVBVQUFBRERVQVTCQOKFFWkFWOERGUUJSQTFRTTFC
VUFCOUFBQUQ2QUFBQStnQVTCAXcIPQANAQUAAMGAAAAAAAAAAAY JAQAAAAAAAAAAAZ EAAKA+
ZGFOYTphcHBsaWNhdGTvbi9tcGVnNCliaWZzLWF102Jhc2U2NCx3QkFTZ1RBcUJYSmhCSWhR
UTFVLOFBPTOEEGINAAAUAAAAAAAAAAAFAWAAQAY JAQAAAAAAAAAA™ \ra=1sma -
compliance:1,1.0,1\rm=audio 0 RTP/AVP 96\ra=rtpmap:96
X-QT/8000/1\ra=control:trackid=1\rm=video 0 RTP/AVP 97\ra=rtpmap:97

MPAV-ES\ra=fmtp:97
profile-Tevel-id=1;config=000001BOF3000001B50EE040C0O0CF0000010000000120008440FA2850
20F0

A31F\ra=mpeg4-esid:201\ra=cliprect:0,0,240,320\ra=control:trackid=2\r

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/Mac0OSX; Release/Development;)\ri\n
Cseq: 1\r\n

\rin

Client to server:

// The broadcaster is trying to determine if RECORD is supported. QTSS 4.0 used
an Apple
// method of RECEIVE instead of the RECORD.

OPTIONS rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n
CSeq: 2\r\n

User-Agent: QTS (gtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n
\rin

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/Mac0OSX; Release/Development;)\r\n
Cseq: 2\r\n

Public: DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE, ANNOUNCE, SET_PARAMETER,
RECORD\r\n

\r\n

Client to server:

// Here is the first setup with the transport defined from the client to the
// server. The URL is the same as when a client performs a setup requesting
// a stream. QTSS does not allow a SETUP on a stream that is already set up
// and will return an error. This can happen in two ways.

Automatic Broadcasting
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

89

920

CHAPTER 1

Concepts

// 1) A broadcast software error that does not change the URL.

// 2) A broadcast dies without performing a teardown. In this case, the

// broadcast session has to timeout and die before another setup can occur.
// The server uses a short timeout of 20 seconds for broadcast sessions. The
// timeout is refreshed by any packet received from the broadcaster.

SETUP rtsp://127.0.0.1/mystream.sdp/trackid=1 RTSP/1.0\r\n

CSeq: 3\r\n

Transport: RTP/AVP/TCP;unicast;mode=record;interleaved=0-1\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

Accept-Language: en-US\r\n

\r\n

Server to client:

// The server responds with the interleaved values. If the values conflict,
// the client will change them so each stream has a unique set of
// interleaved IDs.

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/Mac0OSX; Release/Development;)\r\n
Cseq: 3\r\n

Cache-Control: no-cache\r\n

Session: 6664885458621367225\r\n

Date: Thu, 13 Feb 2003 21:34:27 GMT\r\n

Expires: Thu, 13 Feb 2003 21:34:27 GMT\r\n

Transport: RTP/AVP/TCP;unicast;mode=record;interleaved=0-1\r\n

\rin

Client to server:

SETUP rtsp://127.0.0.1/mystream.sdp/trackid=2 RTSP/1.0\r\n
CSeq: 4\r\n

Transport: RTP/AVP/TCP;unicast:mode=record;interleaved=2-3\r\n
Session: 6664885458621367225\r\n

User-Agent: QTS (qgtver=6.1;cpu=PPC;o0s=Mac 10.2.3)\r\n
Accept-Language: en-US\r\n

\r\n

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/Mac0OSX; Release/Development;)\r\n
Cseq: 4\r\n

Session: 6664885458621367225\r\n

Cache-Control: no-cache\r\n

Date: Thu, 13 Feb 2003 21:34:27 GMT\r\n

Expires: Thu, 13 Feb 2003 21:34:27 GMT\r\n

Transport: RTP/AVP/TCP;unicast;mode=record;interleaved=2-3\r\n

\rin

Client to server:

// This is the equivalent to a client PLAY request. The broadcaster is now
// starting the streams.

RECORD rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n
CSeq: 5\r\n

Session: 6664885458621367225\r\n

User-Agent: QTS (gtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

Automatic Broadcasting
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

\r\n
Server to client:

// RTCPs will be sent back on the channels to show the number of watching
// clients.

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/Mac0OSX; Release/Development;)\r\n
Cseq: 5\r\n

Session: 6664885458621367225\r\n

RTP-Info: url=trackid=1,url=trackid=2\r\n

\r\n

Client to server:

PAUSE rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n
CSeq: 6\r\n

Session: 6664885458621367225\r\n

User-Agent: QTS (gtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n
\rin

Server to client:

RTSP/1.0 200 OK\r\n
Server: QTSS/4.1.3.x (Build/425; Platform/Mac0OSX; Release/Development;)\r\n

Cseq: 6\r\n
Session: 6664885458621367225\r\n
\r\n

Client to server:

// A TEARDOWN stops the broadcast streams. It does not stop the clients or

/!
/!
/1
/1l
//
//
/!
/!
/1
/1l
//
//

their streams. By default, QTSS allows a restarted or different broadcaster
to send to the same URL and the clients will receive the new streams. This
can be both good and bad since the broadcaster can change the stream media
type on the clients. The streamingserver.xml file provides an attribute
that allows the server to force clients to disconnect if the broadcaster
disconnects. The broadcast receiver is recommended to have a way for an
administrator or the broadcaster to tear down sessions that have failed.
The server adds a 30 second timeout between SSRC values to prevent someone
from pirating a stream. As long as a stream is playing with the initial
SSRC, another stream arriving on the same ports will not be reflected to
clients. Attempts to pirate a steam usually occur by accident when users
manually set their SDP ports.

TEARDOWN rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n
CSeq: 7\r\n

Session: 6664885458621367225\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;o0s=Mac 10.2.3)\r\n
\r\n

Server to client:

/1
//

The server removes the SDP file from the movies directory on teardown or
broadcaster timeout.

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\ri\n
Cseq: 7\r\n

Session: 6664885458621367225\r\n

Connection: Close\ri\n

Automatic Broadcasting
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

91

92

CHAPTER 1

Concepts

\ri\n

Trace of UDP Broadcast with Negotiated Server Ports

The only significant addition to RFC 2326 is that when receiving a broadcast over UDP, the QuickTime server
uses SETUP with mode=RECORD to generate and send back to the client a UDP port to use when the SDP
contains a port value of 0 for a given stream. Otherwise, the server uses the SDP-defined port to receive the
streams. The server's receive port is declared in the SETUP response transport header. The format looks exactly
as if a client were performing a SETUP request for a stream from the server and then receiving the port the
server is sending from.

Client to server:

ANNOUNCE rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n

CSeq: 1\r\n

Content-Type: application/sdp\ri\n

User-Agent: QTS (qtver=6.1;cpu=PPC;os=Mac 10.2.3)\r\n

Content-Length: 790\r\n

\rin

c=IN IP4

127.0.0.1\ra=x-qt-text-nam:test\ra=x-qt-text-cpy:apple\
ra=x-qt-text-aut:john\

ra=x-qt-text-inf:none\

ra=mpeg4-iod:"data:application/

mpeg4-iod;base64,AoF/

AEBBAQEBAQOBEgABQHRKYXRhOmFwcGxpY2F0aWOuL21wZWcOLWIKkLWF102Jhc2U2NCxBVGdC
R3dVZkF4YOF5UTFBWTFRTKTCRUFGMOFBQVBVQUFBRERVQVTCQkFFWkFWOERGUUJSQTFRTTFC
VUFCOUFBQUQ2QUFBQStnQVTCQXc9PQANAQUAAMgAAAAAAAAAAAY JAQAAAAAAAAAAAZ EAAKA+
ZGFOYTphcHBsaWNhdGTvbi9tcGVnNC1iaWZzLWF102Jhc2U2NCx3QkFTZ1RBcUJYSmhCSWhR
UTFVLOFBPTOEEGINAAAUAAAAAAAAAAAFAWAAQAY JAQAAAAAAAAAA" \ra=1isma-
compliance:1,1.0,1\rm=audio 0 RTP/AVP 96\ra=rtpmap:96
X-QT/8000/1\ra=control:trackid=I1\rm=video O RTP/AVP 97\ra=rtpmap:97

MPAV-ES\ra=fmtp:97
profile-Tevel-id=1;config=000001BOF3000001B50EE040COCFO000010000000120008440FA2850
20F0

A31F\ra=mpeg4-esid:201\ra=cliprect:0,0,240,320\ra=control:trackid=2\r

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/Mac0OSX; Release/Development;)\r\n
Cseq: 1\r\n

\r\n

Client to server:

OPTIONS rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n
CSeq: 2\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;o0s=Mac 10.2.3)\r\n
\ri\n

Server to client:
RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/Mac0OSX; Release/Development;)\r\n
Cseq: 2\r\n

Automatic Broadcasting
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Public: DESCRIBE, SETUP, TEARDOWN, PLAY, PAUSE, ANNOUNCE, SET_PARAMETER,
RECORD\r\n
\r\n

Client to server:

SETUP rtsp://127.0.0.1/mystream.sdp/trackid=1 RTSP/1.0\r\n

CSeq: 3\r\n

Transport: RTP/AVP;unicast;client_port=6974-6975;mode=record\r\n
User-Agent: QTS (gtver=6.1;cpu=PPC;0s=Mac 10.2.3)\r\n
Accept-Language: en-US\r\n

\ri\n

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/Mac0OSX; Release/Development;)\ri\n
Cseq: 3\r\n

Cache-Control: no-cache\r\n

Session: 1549167172936112945\r\n

Date: Thu, 13 Feb 2003 21:59:22 GMT\r\n

Expires: Thu, 13 Feb 2003 21:59:22 GMT\r\n

Transport:
RTP/AVP;unicast;client_port=6974-6975;mode=record;source=127.0.0.1;
server_port=6976-6977\r\n

\ri\n

Client to server:

SETUP rtsp://127.0.0.1/mystream.sdp/trackid=2 RTSP/1.0\r\n

CSeq: 4\r\n

Transport: RTP/AVP;unicast;client_port=6972-6973;mode=record\r\n
Session: 1549167172936112945\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;o0s=Mac 10.2.3)\r\n
Accept-Language: en-US\r\n

\ri\n

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/MacOSX; Release/Development;)\r\n
Cseq: 4\r\n

Session: 1549167172936112945\r\n

Cache-Control: no-cache\r\n

Date: Thu, 13 Feb 2003 21:59:22 GMT\r\n

Expires: Thu, 13 Feb 2003 21:59:22 GMT\r\n

Transport:
RTP/AVP;unicast;client_port=6972-6973;mode=record;source=127.0.0.1;
server_port=6978-6979\r\n

\r\n

Client to server:

RECORD rtsp://127.0.0.1/mystream.sdp RTSP/1.0\r\n
CSeq: 5\r\n

Session: 1549167172936112945\r\n

User-Agent: QTS (qtver=6.1;cpu=PPC;o0s=Mac 10.2.3)\r\n
\rin

Automatic Broadcasting 93
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

94

CHAPTER 1

Concepts

Server to client:

RTSP/1.0 200 OK\r\n

Server: QTSS/4.1.3.x (Build/425; Platform/Mac0OSX; Release/Development;)\ri\n
Cseq: 5\r\n

Session: 1549167172936112945\r\n

RTP-Info: url=trackid=1,url=trackid=2\r\n

\ri\n

Trace of ANNOUNCE and RECORD Using UDP Transport

The following trace example of ANNOUNCE and RECORD RTSP methods using UDP transport is from RFC
2326. The conference participant client asks the media server to record the audio and video portions of a
meeting. The client uses the ANNOUNCE method to provide meta-information about the recorded session
to the server.

Client to server:

ANNOUNCE rtsp://server.example.com/meeting RTSP/1.0
CSeq: 90

Content-Type: application/sdp

Content-Length: 121

v=0

o=cameral 3080117314 3080118787 IN IP4 195.27.192.36
s=IETF Meeting, Munich - 1

i=The thirty-ninth IETF meeting will be held in Munich, Germany
u=http://www.ietf.org/meetings/Munich.html

e=IETF Channel 1 <ietf39-mbone@uni-koeln.de>

p=IETF Channel 1 +49-172-2312 451

c=IN IP4 224.0.1.11/127

t=3080271600 3080703600

a=tool:sdr v2.4a6

a=type:test

m=audio 21010 RTP/AVP 5

c=IN IP4 224.0.1.11/127

a=ptime:40

m=video 61010 RTP/AVP 31

c=IN IP4 224.0.1.12/127

Server to client:

RTSP/1.0 200 0K
CSeq: 90

Client to server:

SETUP rtsp://server.example.com/meeting/audiotrack RTSP/1.0

CSeq: 91

Transport: RTP
AVP;multicast;destination=224.0.1.11;port=21010-21011;mode=record;ttl=127

Server to client:
RTSP/1.0 200 0K

CSeq: 91
Session: 50887676

Automatic Broadcasting
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Transport: RTP
AVP;multicast;destination=224.0.1.11;port=21010-21011;mode=record;tt1=127

Client to server:

SETUP rtsp://server.example.com/meeting/videotrack RTSP/1.0

CSeq: 92

Session: 50887676

Transport: RTP/
AVP;multicast;destination=224.0.1.12;port=61010-61011;mode=record;ttl=127

Server to client:

RTSP/1.0 200 OK

CSeq: 92

Transport: RTP
AVP;multicast;destination=224.0.1.12;port=61010-61011;mode=record;tti=127

Client to server:

RECORD rtsp://server.example.com/meeting RTSP/1.0
CSeq: 93

Session: 50887676

Range: clock=19961110T1925-19961110T2015

Server to client:

RTSP/1.0 200 0K
CSeq: 93

Stream Caching

This version of QTSS includes RTSP and RTP features that make it as easy for a caching proxy server to capture
and manage a pristine copy of a media stream. Some of these features are elements of RTSP that were not
supported in previous versions of QTSS, and other features are additions to RTSP and RTP. The features are

m Speed RTSP header. This version of QTSS supports the speed header wherever possible. The speed header
allows a caching proxy server to request that a stream be delivered faster than real time so that the
caching proxy server can move the stream into the cache as quickly as possible. This header is described
in the section “Speed RTSP Header” (page 96).

m x-Transport-Options RTSP header. This version of QTSS supports the non-standard RTSP header,
x-Transport-0ptions. Caching proxy servers can use this header to tell the streaming server how
late packets the streaming server can send packets and have them still be useful to the caching proxy
server. This header is described in the section “x-Transport-Options Header” (page 96).

m RTP payload meta-information. This version of QTSS fully supports RTP payload meta-information (an
IETF draft), which includes information such as the packet transmission time, unique packet number,
and video frame type. Caching proxy servers can use this information to provide the same quality of
service to clients as the originating server. This header is described in the section “RTP Payload
Meta-Information” (page 97).

= x-Packet-Range RTSP header. This version of QTSS supports the non-standard RTSP header,
x-Packet-Range. This header is similar to the Range RTSP header but allows the client to specify a
specific range of packets instead of a range of time. A caching proxy server can use the x-Packet-Range

Stream Caching 95
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

96

CHAPTER 1

Concepts

header to tell the originating server to selectively retransmit only those packets that the caching proxy
server needs in order to fill in holes in its cached copy of the stream. This header is described in the
section “x-Packet-Range RTSP Header” (page 102).

The following sections describe each of these features.

Speed RTSP Header

Clients can send to the server the optional Speed RTSP header to request that the server send data to the
client at a particular speed. The server must respond by echoing the Speed RTSP header to the client. If the
server does not echo the Speed RTSP header, the client must assume that the server cannot accommodate
the request at this time. The server may modify the value of the Speed RTSP header argument. If the server
modifies the value of the argument, the client must accept the modified value.

The value of the Speed RTSP header argument is expressed as a decimal ratio. The following example asks
the server to send data twice as fast as normal:

Speed: 2.0

Note: An argument of zero is invalid.

If the request also contains a Range argument, the new speed value will take effect at the specified time.

This header is intended for use when preview of the presentation at a higher or lower rate is necessary.
Bandwidth for the session may have been negotiated earlier (by means other than RTSP), and therefore
re-negotiation may be necessary.

When data is delivered over UDP, it is highly recommended that means such as RTCP be used to track packet
loss rates.

x-Transport-Options Header

The optional x-Transport-0Options RTSP header should be sent from a client (typically a caching proxy
server) to the server in an RTSP SETUP request and must echoed by the server. If the server does not echo
the x-Transport-0Options header, the client must assume that the server does not support this header.
The server may modify the value of the x-Transport-0ptions header argument. If the server modifies
the value of the argument, the client must accept the modified value.

The body of this header contains one or more arguments delimited by the semicolon character. For this
version of QTSS, there is only one argument, the late-tolerance argument.

The value of the Tate-tolerance argument is a positive integer that represents the number of seconds
late that the server can send a media packet and still have it be useful to the client. The server should use
the value of the Tate-tolerance argument as a guide for making a best-effort attempt to deliver all media
data so that the delivered data is no older than the late-tolerance value.

Here is an example:

x-Transport-Options: late-tolerance=30

Stream Caching
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

If this example were for a video stream, the server would send all video frames that are less than 30 seconds
old. The server would drop frames that are more than 30 seconds old because they are stale.

Caching proxy servers can use the x-Transport-0ptions header to prevent the media server from dropping
frames or lowering the stream bit rate in the event it falls behind in sending media data. If the caching proxy
server knows the duration of the media, it can prevent the server from dropping any frames by setting the
lTate-tolerance argument to the duration of the media, allowing the cache to receive a complete copy
of the media data.

For a live broadcast, a caching proxy server may want to do extra buffering to improve quality for its clients.
It could use the x-Transport-0ptions header to advertise the length of its buffer to the server.

RTP Payload Meta-Information

Certain RTP clients, such as caching proxy servers, require per-packet meta information that goes beyond
the sequence number and timestamp already provided in the RTP header. For instance, a caching proxy
server may want to provide stream thinning to its clients in case those clients are bandwidth constrained. If
that stream thinning is based on the type of video frame being sent by the originating server, there is no
payload-independent way for the caching proxy server to determine the frame type.

The RTP payload meta-information solves this deficiency by including information that RTP clients can use
to provide the same quality of service to clients as the originating server. The following section, “RTP
Data” (page 97), describes the RTP data that the server delivers in the RTP payload meta-information type.

RTP Data

The server uses the RTP payload meta-information type to provide the following information to the RTP
client:

m Transmission time, described in the section “Transmission Time” (page 97)
= Frame type, described in the section “Frame Type” (page 98)

m Packet number, described in the section “Packet Number” (page 98)

m Packet position, described in the section “Packet Position” (page 98)

= Media data, described in the section “Media Data” (page 98)

= Sequence number, described in the section “Sequence Number” (page 98)

Transmission Time

The server sends the transmission time as a single four-octet unsigned integer representing the recommended
transmission time of the RTP packet in milliseconds.

The transmission time is always offset from the start of the media presentation. For example, if the SDP
response for a URL includes a range of 0-729.45 and the client makes a PLAY request with a range of
100-729.45, the first RTP packet from the server should provide a transmission time value of approximately
100,000. (It may not be exactly 100,000 because the server is free to find a frame nearby the requested time.)
If the SDP for a URL does not contain a range, the client can at least use these values as relative offsets.

Stream Caching 97
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

98

CHAPTER 1

Concepts

Frame Type

The server sends the frame type as a single 16-bit unsigned integer value for which several well-known values
representing different frame types are defined. The well-known values are as follows:

= 0 represents an unknown frame type
= 1 represents a key frame
m 2 represents a b-frame

= 3 represents a p-frame

Note: The frame type is valid for video RTP streams only.

Packet Number

The server sends the packet number as a single 64-bit unsigned integer value. The value is the packet number
offset from the absolute start of the stream. For example, if the SDP response for a URL includes a range of
0-729.45 and the client makes a PLAY request with a range of 0-729.45, the packet number value of the first
packet will be 0 and will increment by 1 for each subsequent packet. If there are 1000 packets between in
the first 60 seconds of a stream and a client makes a PLAY request of 60-729.45, the packet number of the
first packet will be 1001 and will increment by 1 for each subsequent packet.

Packet Position

The server sends the packet position as a single 64-bit unsigned integer value. The value is the byte offset
of this packet from the absolute start of the stream. For example, if the SDP response for a URL includes a
range of 0-729.45 and the client makes a PLAY request with a range of 100-729.45, the packet position value
of the first video RTP packet will be the total number of bytes of the video RTP packets between 0 and 100.
Only the RTP packet payload bytes are used to compute each packet position value.

The server cannot provide the packet position for live or dynamic media. In general, if the media SDP has a
range attribute, the server can provide the packet position.

Media Data

The server sends media data for the underlying RTP protocol.

Sequence Number

The server sends the RTP sequence number as a two-octet value. The sequence number is useful for mapping
RTP meta-information to the underlying payload data that they refer to, if that data is being sent out-of-band.

Standard Format

The RTP payload meta-information returned by the server consists of a series of fields. Each field consists of
a header and data. When returned in standard format, the first bit of the header is zero to indicate that the
field is in standard format (that is, not compressed).

Stream Caching
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

The first bit is followed by the 15-bit Name subfield. The Name subfield contains two ASCII alphanumeric
characters that represent one of the RTP data types listed in the section “RTP Data” (page 97). The first
character is seven bits long, so the value of the Name subfield must consist of seven-bit ASCII characters.

Table 2-26 (page 99) lists the Name subfield values for each of the RTP data types.

Table 1-26 Defined Name subfield values

RTP data type Name subfield value

Transmission time | tt

Frame type ft

Packet number pn

Packet position pp

Media md

Sequence number | sn

The Name subfield is followed by a two-octet Length subfield that contains the full length of the Data subfield.

Figure 2-9 (page 99) shows the format of the Name subfield in standard format.

Figure 1-9 Standard RTP payload meta-information format
0 1 2 3
01234567890123456789012345678901
0| Name | Tength

data
0| Name | lTength

data

Figure 2-10 (page 100) shows the format of the RTP data in standard format.

Stream Caching 929
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Figure 1-10 RTP data in standard format

0 1 2 3
01234567890123456789012345678901

Transmit time data |0 tt 4

(transmit time)

0 1 2 3
01234567890123456789012345678901

Frame type data |0 ft 2

(frame type)

0 1 2 3
01234567890123456789012345678901

Packet number data |O pn 8

(high order packet number)

(low order packet number)

0 1 2 3
01234567890123456789012345678901

Packet position data |0 pp 8

(high order packet number)

(low order packet number)

0 1 2 3

01234567890123456789012345678901
Media data |0 md (field length)

0 1 2 3

01234567890123456789012345678901

Sequence number [0 sq 2

(sequence number)

Compressed Format

When the server provides a field of RTP meta-information in compressed format, the field consists of a header
and data. The first bit of the header is set to one to indicate that the rest of the header is in compressed
format.

The first bit is followed by a seven-bit ID subfield that identifies the type of data in the Data subfield. The
meaning of the ID subfield is assigned by the server, as described in the section “x-RTP-Meta-Info RTSP
Header Negotiation” (page 101).

The ID subfield is followed by the one-octet Length subfield that contains the full length of the Data subfield
that follows the Length subfield.

Figure 2-11 (page 101) shows the format of the ID subfield in compressed format.

100 Stream Caching
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Figure 1-1 Compressed RTP payload meta-information format

0 1 2 3
01234567890123456789012345678901
1| ID | length | data

1| ID | length | data

1] o | tength | data

Figure 2-12 (page 101) shows an RTP payload meta-information packet when some fields are in compressed
format and some fields are in standard format.

Figure 1-12 Mixed RTP payload meta-information format

0 1 2 3
01234567890123456789012345678901
1 | ID length | data
— Compressed format
1 | Name | length N
data — Standard format
! | ID | Tength | data — Compressed format

Negotiation for Use of Compressed Format

Use of the compressed format requires out-of-band negotiation between client and server. During the
negotiation process, the server assigns a seven-bit ID for each RTP data type. Instead sending the name of
the RTP data type (for example, ft) in the RTP payload, only the ID is sent.

Negotiation for using the compressed format can occur in two ways:

= Through the x-RTP-Meta-Info RTSP header, described in the section “x-RTP-Meta-Info RTSP Header
Negotiation” (page 101)

m Through the SDP description of the data, described in the section “Describing RTP-Meta-Info
Payload in SDP” (page 102)

x-RTP-Meta-Info RTSP Header Negotiation

The client can negotiate compression with the server for any payload by sending an x-RTP-Meta-Info RTSP
header to the server in a SETUP request. If the server does not echo the header in its SETUP response, the
client must assume that the server does not support this header.

The client’s SETUP request specifies the RTP data types the client wants to receive in the specified RTP stream.
Here is an example of a client request:

Stream Caching 101
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

102

CHAPTER 1

Concepts

x-RTP-Meta-Info: to;bi;bo

The server’s response lists the names of the RTP data that the server will provide for that RTP stream. If the
server supports the compressed format, the response may also contain ID mappings for some or all of the
names. The server may return a subset of the names if it doesn’'t support all of the requested names, or if
some requested names don't apply to the RTP stream specified by the SETUP request. Here are two examples
of a server response:

x-RTP-Meta-Info: to=0;bi;bo=1
x-RTP-Meta-Info: to;bi

In the first response, the server indicates that it will provide bi data in standard format. The server will send
to data in compressed format and use an ID of 0 to indicate fields that contain to data. The server will send
bo data in compressed format and use an ID of 1 to indicate fields that contain bo data. Because IDs are
represented by seven bits, an ID must be between 0 and 127.

In the second response, the server indicates that it will provide to and bi data in standard format.

Describing RTP-Meta-Info Payload in SDP

The originator of RTP-Meta-Info payload packets should describe the contents of the payload as part of the
SDP description of the media. RTP-Meta-Info descriptions consist of two additional a= headers.

The a=x-embedded-rtpmap header tells the client the payload type of the underlying RTP payload.

The a=x-RTP-Meta-Info header tells the client the RTP data types the server will provide. Here is an example
of an SDP description of the RTP-Meta-Info payload:

m=other 5084 RTP/AVP 96

a=rtpmap:96 x-RTP-Meta-Info
a=x-embedded-rtpmap:96 x-QT}
a=x-RTP-Meta-Info: standard;to;bi;bo

x-Packet-Range RTSP Header

The x-Packet-Range RTSP header allows the client (typically a caching proxy server) to specify a range of
packets that the server should retransmit, thereby allowing the client to fill in holes in its cached copy of the
stream. The client should send the x-Packet-Range RTSP header in a PLAY request in place of the Range
header. If the server does not support this header, it sends the client a “501 Header Not Implemented”
response.

The body of this header contains a start and stop packet number for this PLAY request. The specified packet
numbers must be based on the packet number RTP-Meta-Info field. For information on how to request packet
numbers as part of the RTP stream, see the RTP-Meta-Info payload format IETF Draft.

The header format consists of two arguments delimited by the semicolon character. The first argument must
be the packet number range, with the start and stop packet numbers separated by a hyphen (-). The second
argument must be the stream URL to which the specified packets belong.

The following example requests packet numbers 4551 through 4689 for tracklD3:

x-Packet-Range: pn=4551-4689;url=trackID3

Stream Caching
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

The stop packet number must be equal to or greater than the start packet number. Otherwise, the server
may return an error or may not send any media data after the PLAY response.

Reliable UDP

Reliable UDP is a set of quality of service enhancements, such as congestion control tuning improvements,
retransmit, and thinning server algorithms, that improve the ability to present a good quality RTP stream to
RTP clients even in the presence of packet loss and network congestion. Reliable UDP’s congestion control
mechanisms allow streams to behave in a TCP-friendly fashion without disturbing the real-time nature of
the protocol.

To work well with TCP traffic on the Internet, Reliable UDP uses retransmission and congestion control
algorithms similar to the algorithms used by TCP. Additionally, these algorithms are time-tested to utilize
available bandwidth optimally.

Relibable UDP features include

= Client acknowledgment of packets sent by the server to the client
= Windowing and congestion control so the server does not exceed the currently available bandwidth
= Server retransmission to the client in the event of packet loss

m Faster than real-time streaming known as “overbuffering”

Whether a client uses Reliable UDP is determined by the content of the client’s RTSP SETUP request.

Acknowledgment Packets

When using Reliable UDP, the server expects to receive an acknowledgment for each RTP packet it sends. If
the server does not receive an acknowledgment for a packet, it may retransmit the packet. The client does
not need to send an acknowledgment packet for each RTP packet it receives. Instead, the client can coalesce
acknowledgments for several packets and send them to the server in a single packet.

The Reliable UDP acknowledgment packet format is a type of RTCP APP packet. After the standard RTCP APP
packet headers, the payload for an acknowledgment packet consists of an RTP sequence number followed
by a variable length bit mask. The sequence number identifies the first RTP packet that the client is
acknowledging. Each additional RTP packet being acknowledged is represented by a bit set in the bitmask.
The bit mask is an offset from the specified sequence number, where the high order bit of the first byte in
the mask is one greater than the sequence number, the second bit is two greater, and so on. Bit masks must
be sent in multiples of four octets. Setting a bit to 0 in the mask simply means that the client does not wish
to acknowledge this sequence number right now and does not imply a negative acknowledgment.

Figure 2-13 (page 104) shows the format of the Reliable UDP acknowledgment packet.

Reliable UDP 103
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Figure 1-13 Reliable UDP acknowledgment packet format

0 1 2 3
01234567890123456789012345678901
v=2|p|subtype | PT-APP=204 Tength

SSRC/CSRC

name (ASCII)='qtak'
SSRC/CSRC
reserved seq num
mask. ..

RTSP Negotiation

Whether to use Reliable UDP is negotiated out of band in RTSP. If a client wants to use Reliable UDP, it should
include an x-Retransmit header in its RTSP SETUP request. The body of the header contains the retransmit
protocol name (our-retransmit) followed by a list of arguments delimited by the semicolon character.

Currently, one argument can be passed from the client to the server: the window argument. If included, the
window argument tells the Reliable UDP server the size of the client’s window in KBytes.

Here is an example:
x-Retransmit: our-retransmit;window=128

The server must echo the header and all parameters. If the x-Retransmit header is not in the SETUP response,
the client must assume that Reliable UDP will not be used for this stream. If the server changes the parameter
values, the client must use the new values.

Tunneling RTSP and RTP Over HTTP

104

Using standard RTSP/RTP, a single TCP connection can be used to stream a QuickTime presentation to a user.
Such a connection is not sufficient to reach users on private IP networks behind firewalls where HTTP proxy
servers provide clients with indirect access to the Internet. To reach such clients, QuickTime 4.1 supports the
placement of RTSP and RTP data in HTTP requests and replies. As a result, viewers behind firewalls can access
QuickTime presentations through HTTP proxy servers.

The QuickTime HTTP transport is built from two separate HTTP GET and POST method requests initiated by
the client. The server then binds the connections to form a virtual full-duplex connection. The protocol that
forms this type of connection is must meet the following requirements:

= Work with unmodified RTSP/RTP packets

m Be acceptable to HTTP proxy servers

= Indicate to proxy servers that requests and replies are not to be cached
= Work in an environment where the client originates all requests

= Provide a way to uniquely identify request pairs so that they can be bound together to form a full-duplex
connection

Tunneling RTSP and RTP Over HTTP
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

= Ensure that related requests connect to the same RTSP server in spite of load-balancing algorithms such
as round-robin DNS servers

= |dentify any request as one that will eventually tunnel an RTSP conversation and RTP data

The QuickTime HTTP transport exploits the capability of HTTP’s GET and POST methods to carry an indefinite
amount of data in their reply and message body respectively. In the most simple case, the client makes an
HTTP GET request to the server to open the server-to-client connection. Then the client makes a HTTP POST
request to the server to open the client-to-server connection. The resulting virtual full-duplex connection
(shownin Figure 2-14 (page 105)) makes it possible to send unmodified RTSP and RTP data over the
connection.

Figure 1-14 Required connections for tunneling

Server-to-client connection created by the client's GET request

< data
Client Server
data)

Client-to-server connection created by the client's POST request

HTTP Client Request Requirements

To work with the QuickTime HTTP transport, client HTTP requests must

= Be made using HTTP version 1.0

= Includeinthe headeran x-sessioncookie directive whose value is a globally unique identifier (GUID).
The GUID makes it possible for the server to unambiguously bind the two connections by passing it as
an opaque token to the C library strcmp function

m In POST requests, the application/x-rtsp-tunneled MIME type for both the Content-Type and
Accept directives must be specified; this MIME type reflects the data type that is expected and delivered
by the client and server

= Direct POST requests to the specified IP address if a server’s reply to an initial GET request includes the
x-server-ip-address directive and an IP address

In addition to these requirements, client HTTP POST request headers may include other directives in order
to help HTTP proxy servers handle RTSP streams optimally.

Sample Client GET Request

Here is an example of a client GET request:
GET /sw.mov HTTP/1.0

User-Agent: QTS (qtver=4.1;cpu=PPC;0s=Mac8.6)
x-sessioncookie: tDI9hKgAAfBBABCTtAAAAAW

Sample Client POST Request

Here is an example of a client POST request:

Tunneling RTSP and RTP Over HTTP 105
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

106

CHAPTER 1

Concepts

POST /sw.mov HTTP/1.0

User-Agent: QTS (qtver=4.1;cpu=PPC;0s=Mac8.6)
Content-Type: application/x-rtsp-tunnelled
Pragma: no-cache

Cache-Control: no-cache

Content-Length: 32767

Expires: Sun, 9 Jan 1972 00:00:00 GMT

Note: The server does not respond to client POST requests. The client will continue to send RTSP data as
the message body of this POST request.

The sample client POST request includes three optional header directives that are present to control the
behavior of HTTP proxy servers so that they handle RTSP streams optimally:

m ThePragma: no-cache directive tells many HTTP 1.0 proxy servers not to cache the transaction.
m TheCache-Control: no-cache directive tells many HTTP 1.1 proxy servers not to cache the transaction.

= The Expires directive specifies an arbitrary time in the past. This directive is intended to prevent proxy
servers from caching the transaction.

HTTP requires that all POST requests have a content-length header. In the sample client POST request, the
content length of 32767 is an arbitrary value. In practice, the actual value seems to be ignored by proxy
servers, so it is possible to send more than this amount of data in the form of RTSP requests. The QuickTime
Server ignores the content-length header.

HTTP Server Reply Requirements

When the server receives an HTTP GET request from a client, it must respond with a reply whose header
specifies the application/x-rtsp-tunneled MIME type for both the Content-Type and Accept
directives.

Note: The server must reply to all client HTTP GET requests but never replies to client HTTP POST requests.

Server reply headers may optionally include the Cache-Control: no-storeand Pragma: no-cache
directives to prevent HTTP proxy servers from caching the transaction. It is recommended that implementations
honor these headers if they are present.

Server clusters are often allocated connections by a round-robin DNS or other load-balancing algorithm. To
insure that client requests are directed to the same server among potentially several servers in a server farm,
the server may optionally include the x-server-ip-address directive followed by an IP address in dotted
decimal format in the header of its reply to a client’s initial GET request. When this directive is present, the
client must direct its POST request to the specified IP address regardless of the IP address returned by a DNS
lookup.

In the absence of an HTTP error, the server reply header contains “200 OK" An HTTP error in a server reply
reflects the inability of the server to form the virtual full-duplex connection; an HTTP error does not imply
an RTSP error. When an HTTP error occurs, the server simply closes the connection.

Tunneling RTSP and RTP Over HTTP
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Sample Server Reply to a GET Request

Here is an example of a server reply to a GET request:

HTTP/1.0 200 0K

Server: QTSS/2.0 [v101] MacOSX

Connection: close

Date: Thu, 19 Aug 1982 18:30:00 GMT
Cache-Control: no-store

Pragma: no-cache

Content-Type: application/x-rtsp-tunnelled

Including the following header directives in a reply is not required but is recommended because the directives
they tell proxy servers to behave in a way that allows them to handle RTSP streams optimally:

= The Date directive specifies an arbitrary time in the past. This keeps proxy servers from caching the
transaction.

m TheCache-Control: no-cache directive tells many HTTP 1.1 proxy servers not to cache the transaction.

= The Pragma: no-cache directive tells many HTTP 1.0 proxy servers not to cache the transaction.

RTSP Request Encoding

RTSP requests made by the client on the POST connection must be encoded using the base64 method. (See
RFC 2045 “Internet Message Bodies] section 6.8, Base64 Content-Transfer-Encoding, and RFC 1421 “Privacy
Enhancements for Electronic Mail,” section 4.3.2.4, Printable Encoding.) The base64 encoding prevents HTTP
proxy server from determining that an embodied RTSP request is a malformed HTTP requests.

Here is a sample RTSP request before it is encoded:

DESCRIBE rtsp://tuckru.apple.com/sw.movRTSP/1.0
CSeq: 1

Accept: application/sdp

Bandwidth: 1500000

Accept-Language: en-US

User-Agent: QTS (qtver=4.1;cpu=PPC;0s=Mac8.6)

Here is the same request after encoding:

REVTQ1JJQkUgcnRzcDovL3R1Y2tydS5hcHBsZS5ib20vc3cubW921FJUUTIAVMSAw
DQpDU2Vx0iAxDQpBY2Z2N1cHQ6IGFwcGxpY2F0aW9uL3NkcAOKQmFuZHdpZHRo01 Ax
NTAWMDAWDQpPBY2N1cHQtTGFUZ3VhZ2U6IGVulLVVTDQpVc2VyLUFnZW5001BRVFMg
KHFOdmVyPTQuMTtjcHU9UFBDO29zPUlhYyA4LjYpDQoNCg==

Connection Maintenance

The client may close the POST connection at any time. Doing so frees socket and memory resources at the
server that might otherwise be unused for a long time. In QuickTime HTTP streaming, the best time to close
the POST connection usually occurs after the PLAY request.

Tunneling RTSP and RTP Over HTTP 107
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 1

Concepts

Support For Other HTTP Features

Support for HTTP features that are not documented here is not required in order to implement the tunneling
of QuickTime RTSP and RTP over HTTP. The tunnel should mimic a normal TCP connection as closely as
possible without adding unnecessary features.

108 Tunneling RTSP and RTP Over HTTP
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2

Tasks

This chapter describes common QTSS tasks:

m Building the Streaming Server, described in “Building the Streaming Server” (page 109).

m Compiling and installed a QTSS module, described in “Compiling a QTSS Module into the
Server” (page 110).

= Getting and setting attribute values, described in “Working with Attributes” (page 112).This section
also tells you how to add your own attributes to an object.

= Using the server’s file module to open, read, and close files, described in “Using Files” (page 116).
This section also tells you how to implement your own file system module.

= Communicating with the server with the Admin protocol, described in “Using the Admin
Protocol” (page 125).

Building the Streaming Server

This section describes the Streaming Server build and install process for Mac OS X, POSIX, and Windows
platforms.

Mac OS X

Use the Bui1d1it script to build the Streaming Server for Mac OS X. Use the following command line options:
StreamingServer.pbroj -target DSS. Asthey are built, the binaries are left in the build directory.

The command Build0SXInstallerPkg dss creates a file named DarwinStreamingServer.pkg.

POSIX

Use the Bui1dit script to build the Streaming Server on POSIX platforms. Binaries are left in the source
directories. To create the installer, use the buildtarball script, which creates an install directory with Install
script and tar file,

Windows

Use the WindowsNTSupport/StreamingServer.dsw script to build the Streaming Server on Windows
platforms. Batch build all. Binaries are left in the Debug and Release directory. The
WindowsNTSupport/makezip.bat script creates an install directory with an Install.bat file.

Building the Streaming Server 109
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

Building a QuickTime Streaming Server Module

110

You can add a QTSS module to the QuickTime Streaming Server by compiling the code directly into the server
itself or by building a module as a separate code fragment that is loaded when the server starts up.

Whether compiled into the server or built as a separate module, the code for the module is the same. The
only difference is the way in which the code is compiled.

Compiling a QTSS Module into the Server

If you have the source code for the QuickTime Streaming Server, you can compile your module into the
server.

Note: The source code for the server is available at http://www.publicsource.apple.com/projects/streaming.
To compile your code into the server, locate the function QTSServer::LoadCompiledInModules in
QTSServer.cpp and add to it the following lines

QTSSModule* myModule = new QTSSModule("__XYZ__");
(void)myModule->Initialize(&sCallbacks, & XYZMAIN_);

(void)AddModule(myModule);

where XYZ is the name of your module and XYZMATIN is your module’s main routine.

Some platforms require that each module use unique function names. To prevent name conflicts when you
compile a module into the server, make your functions static.

Modules that are compiled into the server are known as static modules.

Building a QTSS Module as a Code Fragment

To have the server load at runtime a QTSS module that is a code fragment, follow these steps:

1. Compile the source for your module as a dynamic shared library for the platform you are targeting. For
Mac OS X, the project type must be Toadable bundle.

2. Link the resulting file against the QTSS API stub library for the platforms you are targeting.

3. Place the resulting file in the /Library/QuickTimeStreaming/Modules directory (Mac OS X),
/usr/local/sbin/StreamingServerModules (Darwin platforms),andc:\Program
Files\Darwin StreamingServer\QTSSModules. The server will load your module the next time it
restarts.

Some platforms require that each module use unique function names. To prevent name conflicts when the
server loads your module, strip the symbols from your module before you have the server load it.

Building a QuickTime Streaming Server Module
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

http://www.publicsource.apple.com/projects/streaming

CHAPTER 2
Tasks

Debugging

Several server preferences in the streamingserverxml file are available for enabling the generation of
debugging information, which is printed on the terminal screen. The following sections provide information
on debugging:

RTSP and RTP Debugging

To enable the display of RTSP and RTP informati on the terminal screen, modify the RTSP_debug_printfs
preference in the streamingserver.xml file and restart the server:

<PREF NAME="RTSP_debug_printfs" TYPE="BOOL16" >true</PREF>

To enable the display of packet header information, modify the “enable_packet_header_printfs” preference
in the streamingserverxml file:

<PREF NAME="enable_packet_header_printfs" TYPE="BOOL16" >true</PREF>

Then specify which packet headers to display by modifying the “packet_header_printf_options” preference.
The following example enables the display of all packet headers:

<PREF NAME="packet_header_printf_options" >rtp;rr;sr;app;ack;</PREF>

In the previous example, rtp enables the display of RTP packet headers, rr enables the display of RTCP
receiver reports, sr enables the display of RTCP sender reports, app enables the display of RTCP application
packets, and ack enables the display of Reliable UDP RTP acknowledgement packets.

After enabling RTSP and RTP debugging, restart the Streaming Server in debug mode using this command:
QuickTimeStreamingServer -d

When you connect a client, debug information is displayed on the terminal screen.

Source File Debugging Support

You can enable debugging in specific source files. For example, in the file CommonUtilitiesLib/Task.h, make
the following change:

ffdefine TASK_DEBUG 1

Rebuild and start the Streaming Server in debug mode:
QuickTimeStreamingServer -d

Here is some sample output:

Task::Signal enque task TaskName=RTSPSession ...
TaskThread::Entry run task TaskName=RTSPSession ...
TaskThread::Entry insert task TaskName=RTSPSession ...
TaskThread::Entry run task TaskName=RTSPSession ...

TaskThread::WaitForTask found timer task TaskName=QTSSAccesslog ...
TaskThread::Entry run task TaskName=QTSSAccesslog ...

Debugging m
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

You can also enable debugging in CommonUstilitiesLib/OSFileSource.cpp:

ffdefine FILE_SOURCE_DEBUG 1

Here is some sample output:

0SFileSource::SetlLog=/Library/QuickTimeStreaming/Movies/sample_100kbit.mov
FileMap::AllocateBufferMap shared buffers

0SFileSource::ReadFromCache inPosition =272

OSFileSource::ReadFromCache inPosition =276 ...
0SFileSource::ReadFromCache inPosition =280 ...

OSFileSource::ReadFromCache inPosition =80667

Working with Attributes

112

QTSS objects consist of attributes that are used to store data. Every attribute has a name, an attribute ID, a
data type, and permissions for reading and writing the attribute’s value. There are two attribute types:

static attributes. Static attributes are present in all instances of an object type. A module can add static
attributes to objects from its Register role only. All of the server’s built-in attributes are static attributes.
For information about adding static attributes to object types, see the section “Adding Attributes” (page
115)

instance attributes. Instance attributes are added to a specific instance of any object type. A module can
use any role to add an instance attribute to an object and can also remove instance attributes that it has
added to an object. For information about adding instance attributes to objects, see the section “Adding
Attributes” (page 115).

Note: Adding static attributes is more efficient than adding instance attributes, so adding static attributes
instead of adding instance attributes is strongly recommended.

Getting Attribute Values

Modules use attributes stored in objects to exchange information with the server, so they frequently get
attribute values. Three callback routines get attribute values:

QTSS_GetValue, which copies the attribute value into a buffer provided by the module. This callback
can be used to get the value of any attribute, but it is not as efficient as QTSS_GetValuePtr.

QTSS_GetValueAsString, which copies the attribute value as a string into a buffer provided by the
module. This callback can be used to get the value of any attribute. This is the least efficient way to get
the value of an attribute

QTSS_GetValuePtr, which returns a pointer to the server’s internal copy of the attribute value. This is
the most efficient way to get the value of preemptive safe attributes. It can also be used to get the value
of non-preemptive safe attributes, but the object must first be locked and must be unlocked after
QTSS_GetValuePtr is called. When getting the value of a single non-preemptive-safe attribute, calling
QTSS_GetValue may be more efficient than locking the object, calling QTSS_GetValuePtr and unlocking
the object.

Working with Attributes
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

The sample code in Listing 2-1 (page 113) calls QTSS_GetValue to get the value of the gt ssRTPSvrCurConn
attribute, which is not preemptive safe, from the QTSS_Server0Object object.

Listing 2-1 Getting the value of an attribute by calling QTSS_GetValue

UInt32 MyGetNumCurrentConnections(QTSS_ServerObject inServerObject)
{
// qtssRTPSvrCurConn is a UInt32, so provide a UInt32 for the result.
UInt32 theNumConnections = 0;
// Pass in the size of the attribute value.
UInt32 thelength = sizeof(theNumConnections);
// Retrieve the value.
QTSS_Error thekErr = QTSS_GetValue(inServerObject, qtssRTPSvrCurConn, 0,
&theNumConnections, &thelength);
// Check for errors. If the length is not what was expected, return 0.
if ((theErr != QTSS_NoErr) || (thelength != sizeof(theNumConnections))
return 0;
return theNumConnections;
}

The sample code in Listing 2-2 (page 113) calls QTSS_GetValuePtr, which is the preferred way to get the
value of preemptive-safe attributes. In this example, value of the gt ssRTSPRegMethod attribute is obtained
from the object QTSS_RTSPRequestObject.

Listing 2-2 Getting the value of an attribute by calling QTSS_GetValuePtr

QTSS_RTSPMethod MyGetRTSPRequestMethod(QTSS_RTSPRequestObject inRTSPRequestObject)
{

QTSS_RTSPMethod* theMethod = NULL;

UInt32 thelen = 0;

QTSS_Error thekErr = QTSS_GetValuePtr(inRTSPRequestObject, qtssRTSPRegMethod, O,
(void**)&theMethod, &thelen);
if ((theErr != QTSS_NoErr) || (thelen != sizeof(QTSS_RTSPMethod))
return -1; // Return a -1 if there is an error, which is not a valid
// QTSS_RTSPMethod index
else
return *theMethod;
}

You can obtain the value any attribute by calling QTSS_GetValueAsString, which gets the attribute’s value
as a C string. Calling QTSS_GetValueAsString is convenient when you don't know the type of data the
attribute contains. In Listing 2-3 (page 113), the value of the gt ssRTPSvrCurConn attribute is obtained as a
string from the QTSS_ServerObject.

Listing 2-3 Getting the value of an attribute by calling QTSS_GetValueAsString

void MyPrintNumCurrentConnections(QTSS_ServerObject inServerObject)
{
// Provide a string pointer for the result
char* theCurConnString = NULL;
// Retrieve the value as a string.
QTSS_Error thekrr = QTSS_GetValueAsString(inServerObject, gqtssRTPSvrCurConn,
0, &theCurConnString);
if (theErr != QTSS_NoErr) return;
// Print out the result. Because the value was returned as a string, use
// %s in the printf format.

Working with Attributes 113
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

14

CHAPTER 2
Tasks

c:printf("Number of currently connected clients: %s\n", theCurConnString);

// QTSS_GetValueAsString allocates memory, so reclaim the memory by calling
QTSS_Delete.

QTSS_Delete(theCurConnString);

Setting Attribute Values

Two QTSS callback routines are available for setting the value of an attribute: QTSS_SetValue and
QTSS_SetValuePtr.

The sample code in Listing 2-4 (page 114) would be found handling the Route role. It calls QTSS_GetValuePtr
to get the value of the gt ssRTSPReqFiTePath. If the path matches a certain string, the function sets a new
request root directory by calling QTSS_SetValue to setthe gt ssRTSPRegRootD1 r attribute to a new path.

Listing 2-4 Setting the value of an attribute by calling QTSS_SetValue

// First get the file path for this request using QTSS_GetValuePtr
char* theFilePath = NULL;
UInt32 theFilePathLen = 0;
QTSS_Error theErr = QTSS_GetValuePtr(inParams->inRTSPRequest, qtssRTSPReqFilePath,
0, &theFilePath,
&theFilePathlen);

// Check for any errors
if (theErr != QTSS_NoErr) return;
// See if this path is a match. If it is, use QTSS_SetValue to set the root
directory for this request.
if ((theFilePathlLen == sStaticFilePathlLen) &&
(::strncmp(theFilePath, sStaticFilePath, theFilePathlen) ==
0))

{

theErr = QTS_SetValue(inParams->inRTSPRequest, qtssRTSPReqRootDir, 0,
sNewRootDirString,

sNewRootDirStringlLen);

if (theErr != QTSS_NoErr) return;

}

Listing 2-5 (page 115) demonstrates the use of the QTSS_SetValuePtr callback. The QTSS_SetValuePtr
callback associates an attribute with the value of a module’s variable. This code sample modifies the
QTSS_ServerObject object nonatomically, so it calls QTSS_LockObject to prevent other threads from
accessing the attributes of the QTSS_ServerObject before the value has been set.

Then the code sample calls QTSS_CreateObjectValue tocreatea QTSS_ConnectedUserObject object
asthevalueoftheqtssSvrConnectedUsers attribute of the QTSS_ServerObject object. Then the code
sample calls QTSS_SetValuePtr to set the value of the gtssConnectionBytesSent attribute of the
QTSS_ConnectedUserObject objecttothe module’s fBytesSent variable. Thereafter, when any module
gets the value of the gtssConnectionBytesSent attribute, it will get the current value of the module’s
fBytesSent variable.

After calling QTSS_SetValuePtr, the code sample calls QTSS_UnTlockObject to unlock the
QTSS_ServerObject object.

Working with Attributes
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

Listing 2-5 Setting the value of an attribute by calling QTSS_SetValuePtr

UInt32 index;
QTSS_LockObject(sServer);

QTSS_CreateObjectValue(sServer, gtssSvrConnectedUsers,
qtssConnectedUserTypeObject, &index, &fQTSSObject);

QTSS_CreateObjectValue(sServer, gtssSvrConnectedUsers,
gtssConnectedUserObjectType, &index, &fQTSSObject);

QTSS_SetValuePtr(fQTSSObject, gtssConnectionBytesSent, &fBytesSent,
sizeof (fBytesSent));

QTSS_UnlockObject(sServer);

Adding Attributes

Any module can add an attribute to a QTSS object type by calling the QTSS_AddStaticAttribute callback
routine from its Register role. Modules can also call QTSS_AddInstanceAttribute from any role to add
an attribute to an instance of an object.

Note: Adding one or more attributes to an object type or to an instance of an object is the most efficient
and the recommended way for modules to store data that is specific to a particular session.

Once added, the new attribute is included in every object of that type that the server creates and its value
can be set and obtained by calling that same callback routines that set and obtain the value of the server’s
built-in attributes: QTSS_SetValue, QTSS_SetValuePtr, QTSS_GetValue,and QTSS_GetValuePtr.

Note: If you are adding attributes to an object that your module created, you must first lock the object by
calling QTSS_LockObject. When all of the attributes have been added, call QTSS_UnTockObject to
unlock the object.

The sample code in Listing 2-6 (page 115) calls QTSS_AddStaticAttribute toadd an attribute to the
object QTSS_ClientSession0Object.

Listing 2-6 Adding a static attribute

QTSS_Error MyRegisterRoleFunction()
{
// Add the static attribute. The third parameter is always NULL.
QTSS_Error theErr = QTSS_AddStaticAttribute(qtssClientSessionObjectType,
"MySampleAttribute", NULL, qtssAttrDataTypelUInt32);
// Retrieve the ID for this attribute. This ID can be passed into
QTSS_GetValue,
// QTSS_SetValue, and QTSS_GetValuePtr.
QTSS_AttributelD thelD;
theErr = QTSS_IDForAttr(gtssClientSessionObjectType, MySampleAttribute",
&thelD);
// Store the attribute ID in a global for later use. Attribute IDs do not
// change while the server is running.
gMyExampleAttrID = thelD;

Working with Attributes 115
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

Note: Attribute permissions for an added attribute (static or instance) are automatically set to readable,
writable, and preemptive safe.

Using Files

116

QTSS supports file system modules so that QTSS can transparently and easily work with custom file systems.
For example, a QTSS file system module can allow a QTSS module to read a custom networked file system
or a custom database. Support for reading files consists of the following:

m QTSS file system callback routines that any module can use to open, read, and close files. Calling the file
system callback routines is described in the section “Reading Files Using Callback Routines” (page 116).
The QTSS file system callback routines allow QTSS to easily work with many different file system types.
A QTSS module that uses the file system callbacks for reading all files can transparently use whatever
file system is deployed on a server.

= File system roles for which modules that implement file systems register. These roles provide a bridge
between QTSS and a specific file system. The file system roles are described in the section “Implementing
a QTSS File System Module” (page 117). You could, for example, write a file system module that interfaces
QTSS to a custom database or a custom networked file system.

Reading Files Using Callback Routines

In QTSS, afile is represented by a QTSS stream, so you can use existing QTSS stream callback routines to read
files. The callback routines that are available for working with files are:

m QTSS_OpenFileObject, which is called to open a file in the local operating system. This call is one of
two callback routines that is only used when working with files.

m (QTSS_CloseFileObject, which is called to close a file that was opened by a previous call to
QTSS_0OpenFileObject. This call is one of two callback routines that is only used when working with
files.

m (QTSS_Read, which is called to read data from a file object’s stream that was created by a previous call
to QTSS_OpenFileObject.

m QTSS_Seek, which is called to set the current position of a file object’s stream.

m (QTSS_Advise, which is called to tell a file system module that a specified section of one of its streams
will be read soon.

m (QTSS_RequestEvent, which is called to tell a file system module that the calling module wants to be
notified when one of the events in the specified event mask occurs. The events are when a stream
becomes readable and when a stream becomes writable.

In QTSS, a file is QTSS_0bject that has its own object type, QTSS_File0Object, that allows you to use
standard QTSS callbacks (QTSS_GetValue, QTSS_GetValueAsString,and QTSS_GetValuePtr) to get
meta information about a file, such as its length and modification date. You can use standard QTSS callbacks
to store any amount of file system meta information with the file object. For example, a module working

Using Files
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

with a POSIX file system would want to add an attribute to the file object that stores the POSIX file system
descriptor. A file object also has a QTSS stream reference that can be used when calling QTSS stream routines
that work with files, such as QTSS_Read.

The sample codein Listing 3-7 (page 117) shows how to open a file, determine the file’s length, read the
entire file, close the file, and return the data it contains.

Listing 2-7 Reading a file

QTSS_Error ReadEntireFile(char* inPath, void** outData, UInt32* outDatalen)
{

QTSS_Object theFileObject = NULL;
QTSS_Error theErr = QTSS_OpenFileObject(inPath, gtssOpenFileNoFlags,
&theFileObject);
if (theErr != QTSS_NoErr)
return thekrr; // The file wasn't found or it couldn't be opened.

// The file is open. Find out how Tong it is.

UInt64* thelLength = NULL;

UInt32 theParamLen = 0;

theErr = QTSS_GetValuePtr(theFileObject, qtssF10bjlLength, 0,
(void**)&thelength, &theParamlen);

if (theErr != QTSS_NoErr)
return thekErr;

if (theParamLen != sizeof(UInt64))
return QTSS_RequestFailed;;

// Allocate memory for the file data.
*outData = new char[*thelength + 17;
*outDatalen = *thelength;

// Read the data
UInt32 recvlen = 0;
theErr = QTSS_Read(theFileObject, *outData, *outDatalen, &recvlen);

if ((theErr != QTSS_NoErr) || (recvLen != *outDatalen))
{

delete *outData;

return thekrr;
}

// Close the file.
(void)QTSS_CloseFileObject(theFileObject);

Implementing a QTSS File System Module

A file system module provides a way for QTSS modules to read files in a specific file system regardless of that
file system’s type. Typically, a file system module handles a subset of paths in a file system, but it may handle
all paths on the system. If a file system module handles only a certain subset of paths, it usually handles all
paths inside a certain root path. For example, a module handling files stored in a certain database may only
respond to paths that begin with /Local/database_root/.

Using Files n7z
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

118

CHAPTER 2
Tasks

Implementing a QTSS file system module begins with registering for one of the following roles:

= Open File Preprocess role, which the server calls in response to a module (or the server) that calls the
QTSS_OpenFileObject callback routine to open a file. If the module does not handle files of the
specified type, the module immediately returns QTSS_FileNotFound. If the module handles the files
of the specified type, it opens the file, updates a file object provided by the server and returns
QTSS_NoErr. If an error occurs during this setup period, the module returns QTSS_RequestFailed.
Once the module returns QTSS_NoErr, it should be prepared to handle the Advise File, Read File, Request
Event File and Close File roles for the opened file. The server calls each module registered in the Open
File Preprocess role until one of the called modules returns QTSS_NoErr or QTSS_RequestFailed.

= Open File role, which the server calls in response to a module (or the server) that calls the
QTSS_OpenFileObject callback routine for which all modules handling the Open File Preprocess role
return QTSS_FileNotFound. Only one module can register for the Open File role. Like modules called
for the Open File Preprocess role, the module called for the Open File role must determine whether it
can handle the specified file. It it can, it opens the file, updates the file object provided by the server and
returns QTSS_NoErr. If an error occurs during the setup process or if the module cannot handle the
specified file, the module returns QTSS_RequestFailed or QTSS_FileNotFound, respectively.

A file system module should register in the Open File Preprocess role if it handles a subset of files available
on the system. For instance, a file system module that serves files out of a database may only handle files
rooted at a certain path. All other paths should fall through to other modules that handle other paths.

A file system module should register in the Open File role if it implements the default file system on a system.
For instance, on a UNIX system the module handling the Open File Role would probably provide an interface
between the server and the standard POSIX file system.

Once a module returns QTSS_NoErr from either the Open File Role or the Open File Preprocess role, it is
responsible for the newly opened file. It should be prepared to handle the following roles on behalf of that
file:

m Advise File role, which is called in response to a module (or the server) calling the QTSS_Advi se callback
for a file object. The QTSS_Advise callback is made to inform the file system module that a specific
region of the file will be needed soon.

= Read File role, which is called in response to a module (or the server) calling the QTSS_Read callback for
afile object. It is the responsibility of a file system module handling this role to make a best-effort attempt
to fill the buffer provided by the caller with the appropriate file data.

m Request Event File role, which is called in response to a module (or the server) calling the
QTSS_RequestEvent callback on a file object.

m Close File role, which is called in response to a module (or the server) calling the QTSS_C1ose callback
on a file object. The module should clean up any file-system and module-specific data structures for this
file. This role is always the last role a file system module will be invoked in for a given file object.

Using Files
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

Note: Modules do not need to explicitly register for the Advise File, Read File, Request Event File or Close
File roles in order to handle them. Instead, returning QTSS_NoErr or QTSS_RequestFailed from one of
the open file roles constitutes taking ownership for a specific file object, and therefore means that the module
has implicitly registered for those roles.

File System Module Roles

This section describes the file system module roles. The roles are:

m “Open File Preprocess Role” (page 119) which is called to process requests to open files.

m “Open File Role” (page 120) which is the default role that is called when none of the modules
registered for the Open File Preprocess role opens the specified file.

m “Advise File Role” (page 121) which is called to tell a file system module about the caller’s I/0
preferences.

m “Read File Role” (page 121) which is called to read a file.
m “Close File Role” (page 122) which is called to close a file.

“Request Event File Role” (page 122) which is called to request notification when a file becomes
available for reading or writing.

Open File Preprocess Role

The server calls the Open File Preprocess role in response to a module that calls the QTSS_OpenFileObject
callback routine to open a file. It is the responsibility of a module handling this role to determine whether it
handles the type of file specified to be opened. If it does and if the file exists, the module opens the file,
updates the file object provided by the server, and returns QTSS_NoErr.

When called, an Open File Preprocess role receives a QTSS_0OpenFile_Params structure, which is defined
as follows:

typedef struct
{

char* inPath;
QTSS_OpenFileFlags inFlags;
QTSS_Object inFileObject;

} QTSS_OpenFile_Params;s

inPath
A pointer to a null-terminated C string containing the full path to the file that is to be opened.

inFlags
Open flags specifying whether the module that called QTSS_OpenFileObject can handle
asynchronous read operations (qtssOpenFileAsync) or expects to read the file in order from
beginning to end (qtss0penfFileReadAhead).

inFileObject
A QTSS object that the module updates if it can open the file specified by inPath.
If the file is a file the module handles, the module should do whatever work is necessary to open and set up

the file. It can use inFileObject to store any module-specific information for that file. In addition, the
module should set the value of the file object’s gtssF10bjLenth and qtssF10bjModDate attributes.

Using Files 119
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

120

CHAPTER 2
Tasks

If the file is a file the module handles but an error occurs while attempting to set up the file, the module
should return QTSS_RequestFailed.

If every module registered for the Open File Preprocess role returns QTSS_FileNotFound, the server calls
the one module that is registered in the Open File role.

A module that wants to be called in the Open File Preprocess role must in its Register role call QTSS_AddRole
and specify QTSS_OpenFilePreprocess_Role as the role. Modules that register for this role must also
handle the following roles, but they do not need to explicitly register for them: Advise File, Read File, Request
Event File, and Close File.

Open File Role

The server calls the module registered for the Open File role when all modules registered for the Open File
Preprocess role have been called and have returned QTSS_F1i1leNotFound. Only one module can be registered
for the Open File role, and that module is the first module that registers for this role when QTSS starts up.

Like modules called for the Open File Preprocess role, it is the responsibility of a module handling the Open
File role to determine whether it handles the type of file specified to be opened. If it does and if the file exists,
the module opens the file, updates the file object provided by the server, and returns QTSS_NoErr.

When called, the module receives a QTSS_0OpenFile_Params structure, which is defined as follows:

typedef struct
{

char* inPath;
QTSS_OpenFileFlags inFlags;
QTSS_Object inFileObject;

} QTSS_OpenFile_Params;

inPath
A pointer to a null-terminated C string containing the full path to the file that is to be opened.

infFlags
Open flags specifying whether the module that called QTSS_OpenFileObject can handle
asynchronous read operations (qtssOpenFileAsync) or expects to read the file in order from
beginning to end (qtssOpenFileReadAhead).

inFileObject
A QTSS object that the module updates if it can open the file specified by inPath.

If the file is a file the module handles, the module should do whatever work is necessary to open and set up
the file. It can use inFileObject to store any module-specific information for that file. In addition, the
module should set the value of the file object’s qtssF10bjLength and qtssF10bjModDate attributes.

If the file is a file the module handles but an error occurs while attempting to set up the file, the module
should return QTSS_RequestFailed.

A module that wants to be called in the Open File role must in its Register role call QTSS_AddRo1e and
specify QTSS_OpenFile_RoTle as the role. Modules that register for this role must also handle the following
roles, but they do not need to explicitly register for them: Advise File, Read File, Request Event File, and Close
File.

Using Files
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

Advise File Role

The server calls modules for the Advise File role in response to a module (or the server) calling the
QTSS_Advise callback routine for a file object in order to inform the file system module that the calling
module will soon read the specified section of the file.

When called, an Advise File role receivesa QTSS_AdviseFile_Params structure, which is defined as follows:

typedef struct
{

QTSS_Object inFileObject;
Ulnt64 inPosition;
UInt32 inSize;

} QTSS_AdviseFile_Params;

inFileObject
The file object for the opened file. The file system module uses the file object to determine the file
for which the QTSS_Advise callback routine was called.

inPosition
The offset in bytes from the beginning of the file that represents the beginning of the section that is
soon to be read.

inSize
The number of bytes that are soon to be read.

The file system modaule is not required to do anything while handling this role, but it may take this opportunity
to read the specified section of the file.

File system modules do not need to explicitly register for this role.

Modules should always return QTSS_NoErr when they finish handling this role.

Read File Role

The server calls modules for the Read File role in response to a module (or the server) calling the QTSS_Read
callback routine for a file object in order to read the specified file.

When called, a Read File role receives a QTSS_ReadFile_Params structure, which is defined as follows:

typedef struct
{ QTSS_Object inFileObject;

UInte4d inFilePosition;
void* ioBuffer;
UInt32 inBuflen;
UInt32* outlLenRead;

} QTSS_ReadFile_Params;

inFileObject
The file object for the file that is to be read. The file system module uses the file object to determine
the file for which the QTSS_Read callback routine was called.

inFilePosition
The offset in bytes from the beginning of the file that represents the beginning of the section that is

to be read. The server maintains the file position as an attribute of the file object, so the file system
module does not have to cache the file position internally and can obtain the position at any time.

Using Files 121
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

122

CHAPTER 2
Tasks

ioBuffer
A pointer to the buffer in which the file system module is to place the data that is read.

ioBuflen
The length of the buffer pointed to by ioBuffer.

outlLenRead
The number of bytes actually read.

The file system module should make a best-effort attempt to fill the buffer pointed to by ioBuffer with
data from the file that is being read starting with the position specified by inFilePosition.

If the file was opened with the qtssOpenFileAsync flag, the module should return QTSS_WouldBlock if
reading the data will cause the thread to block. Otherwise, the module should block the thread until all of
the data has become available. When the buffer pointed to by ioBuf fer is full or the end of file has been
reached, the file system module should set out LenRead to the number of bytes read and return QTSS_NoErr.

If the read fails for any reason, the file system module handling this role should return QTSS_RequestFailed.

File system modules do not need to explicitly register for this role.

Close File Role

The server calls modules for the Close File role in response to a module (or the server) calling the
QTSS_CloseFile callback routine for a file object in order to close a file that has been opened.

When called, a Close File role receives a QTSS_CloseFile_Params structure, which is defined as follows:
typedef struct
{

QTSS_Object inFileObject;
} QTSS_CloseFile_Params;

inFileObject
The file object for the file that is to be closed. The file system module uses the file object to determine
the file for which the QTSS_C1ose callback routine was called.

A module handling this role should dispose of any data structures that it has created for the file that is to be
closed.

This role is always the last role for which a file system module will be invoked for any given file object.
File system modules do not need to explicitly register for this role.

Modules should always return QTSS_NoErr when they finish handling this role.

Request Event File Role

The server calls modules for the Request Event File role in response to a module (or the server) calling the
QTSS_RequestEvent callback routine. If a module or the server calls the QTSS_OpenFileObject callback
routine and specifies the qtssOpenFileAsync flag, the file system module handling that file object may
return QTSS_WouldBlock from its Read File role. When that occurs, the caller of QTSS_Read may call
QTSS_RequestEvent callback to tell the server that the caller of QTSS_Read wants to be notified when the
data becomes available for reading.

When called, a Request Event File role receives a QTSS_RequestEventFile_Params structure, which is
defined as follows:

Using Files
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

typedef struct
{
QTSS_Object inFileObject;
QTSS_EventType inEventMask;
} QTSS_RequestEventFile_Params;

inFileObject
The file object for the file for which notifications are requested. The file system module uses the file
object to determine the file for which the QTSS_RequestEvent callback routine was called.

inEventMask

A mask specifying the type of events for which notification is requested. Possible values are
QTSS_ReadableEvent and QTSS_WriteableEvent.

If the file system that the file system module is implementing supports notification, the file system module
should do whatever setup is necessary to receive an event for the file for which the QTSS_RequestEvent
callback routine was called. When the file becomes readable, the file system module should call the
QTSS_SignalStream callback routine and pass the stream reference for this file object (which can be
obtained through the file object’s gt ssF10bjStream attribute). Calling the QTSS_SignalStream callback
routine tells the server that the caller of QTSS_RequestEvent should be notified that the file is now
readable.

File system modules do not need to explicitly register for this role.

Modules should always return QTSS_NoErr when they finish handling this role.

Sample Code for the Open File Role

The sample codein Listing 3-8 (page 123) handles the Open File role, but it could also be used to handle
the Open File Preprocess role. This code uses the POSIX file system layer as the file system and does not
support asynchronous I/O.

Listing 2-8 Handling the Open File Role

QTSS_Error OpenFile(QTSS_OpenFile_Params* inParams)

{
// Use the POSIX open call to attempt to open the specified file.
// If it doesn't exist, return QTSS_FileNotFound

int theFile = open(inParams->inPath, O0_RDONLY);
if (theFile == -1)
return QTSS_FileNotFound;

// Use the POSIX stat call to get the length and the modification date
// of the file. This information must be set in the QTSS_FileObject
// by every file system module.

UInt64 thelength = 0;
time_t theModDate = 0;
struct stat theStatStruct;
if (::fstat(fFile, &theStatStruct) >= 0)
{
thelength = buf.st_size;
theModDate = buf.st_mtime;
}
else

Using Files 123
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

::close(theFile);
return QTSS_RequestFailed; // Stat failed
}

// Set the file length and the modification date attributes of this file
// object before returning

(void)QTSS_SetValue(inParams->inFileObject, qtssF10bjLength, 0, &thelength,
sizeof(thelength));

(void)QTSS_SetValue(inParams->inFileObject, qtssF10bjModDate, 0, &theModDate,
sizeof(theModDate));

// Place the file reference in a custom attribute in the QTSS_FileObject.
// This way, we can easily get the file reference in other role handlers,
// such as the QTSS_ReadFile_Role and the QTSS_CloseFile_Role.

QTSS_Error theErr = QTSS_SetValue(inParams->inFileObject, sFileRefAttr, O,
&theFile, sizeof(theFileSource));

if (theErr I= QTSS_NoErr)
{

::close(theFile);

return QTSS_RequestFailed;
}

return QTSS_NoErr;

Implementing Asynchronous Notifications

If a module, or the server, calls the QTSS_OpenFileObject and specifies the qtssOpenFileAsync flag,
the file system module handling that file object may return QTSS_WouldB1ock fromits QTSS_ReadFile_Role
handler. Once that happens, the caller of QTSS_Read may want to be notified when the requested data
becomes available for reading. This is possible by calling the QTSS_RequestEvent callback, which tells the

server that the caller would like to be notified when data is available to be read from the file.

Not all file systems support notification mechanisms, and if they do, the notification mechanisms are particular
to each file system architecture. Therefore, whether a file system module supports notifications is at the

discretion of the developer of the file system module. In general it is better for a file system module to support
asynchronous notifications and not block in QTSS_ReadFile_Role because blocking on one file operation

may disrupt service for many of the server’s clients.

Two facilities allow file system modules to implement notifications:

m QTSS_RequestEventFile_Role, which is called in response to a module (or the server) calling the
QTSS_RequestEvent callback on a file object. Modules do not need to explicitly register for this role.
If a module doesn’t implement asynchronous notifications, it should return QTSS_RequestFailed from
this role. If a module does implement asynchronous notifications, it should do whatever setup is necessary

to receive an event for this file when the file becomes readable.

m (QTSS_SendEventToStream callback, called by a file system module when a file does become readable.
Calling QTSS_SendEventToStream tells the server that the caller of QTSS_RequestEvent should be

notified that the file is now readable.

124 Using Files
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

Using the Admin Protocol

You can use the Admin protocol to communicate with QTSS. The Admin Protocol relies on the URI mechanism
defined by RFC 2396 for specifying a container entity using a path and on the request and response mechanism
for the Hypertext Transfer Protocol defined in RFC 1945.

The server’s internal data is mapped to a hierarchical tree of element arrays. Each element is a named type
including a container type for retrieval of sub-node elements.

The server state machine and database can be accessed through a regular expression. The Admin Protocol
abstracts the QTSS module API to handle data access and in some cases to provide data access triggers for
execution of server functions.

Server streaming threads are blocked while the Admin Protocol accesses the server’s internal data. To minimize
blocking, the Admin Protocol allows scoped access to the server’s data structures by allowing specific URL
paths to any element.

The Admin Protocol uses the HTTP GET as the request and response method. At the end of each response,
the session between client and server is closed. The Admin Protocol also supports the Authorization request
header field as described in RFC 1945, section 10.2.

Access to Server Data

The Admin Protocol uses URIs to specify the location of server data. The following URI references the top
level of the server’s hierarchical data tree using a simple HTTP GET request.

GET /modules/admin

Request Syntax

A valid request is an absolute reference followed by the server URI. An absolute reference is a path beginning
with a forward slash character (/). A path represents the server’s virtual hierarchical data structure of containers
and is expressed as a URL.

Here is the request syntax:
[absolute URL]?[parameters="values"]+[command="value"]+["option"="value”]
The following rules govern URls:

m /path is an absolute reference.
m path/* is defined as all elements contained in the “path” container.
m An asterisk (*) in the current URL location causes each element in that location to be iterated.

m A question mark (?) indicates that options follow. Options are specified as name="value" pairs delimited
by the plus (+) character.

m Space and tab characters are treated as stop characters.

Using the Admin Protocol 125
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

= Values can be enclosed by the double quotation characters ("). Enclosing double quotation characters
is required for values that contain spaces and tabs.

m These characters cannot be used: period (.), two periods (. .), and semicolon (;).

Here is an example of a request:

GET /modules/admin/server/qtssSvrClientSessions?parameters=rt+command=get

Request Functionality

Requests can contain an array iterator, a name lookup, a recursive tree walk, and a filtered response. All
functions can execute in a single URI query.

Here is a request that gets the stream time scale and stream payload name for every stream in every session:

GET /modules/admin/server/qtssSvrClientSessions/*/qtssCliSesStreamObjects?
parameters=r+command=get+filterl=qtssRTPStrTimescale+filterZ=qtssRTPStrPayloadName

where

m * iterates the array of sessions

= rinparameter=rt specifies a recursive walk and t specifies that data types are to be included in the
result

m filter=qtssRTPStrTimescale specifies that the stream time scale is to be returned

m filter2=qtssRTPStrPayloadName specifies that the stream payload is to be returned

This request gets all server module names and their descriptions:

GET /modules/admin/server/qtssSvrModuleObjects?
parameters=r+command=get+filterZ2=qtssModDesc+filterl=qtssModName

The following example does a recursive search and gets all server attributes and their data types:

GET /modules/admin/server/?parameters=rt

Note: Repeated recursive searches should be avoided because they impact server performance.
The following examples return server attributes and their paths:

GET /modules/admin/server/*
GET /modules/admin/server/qtssSvrPreferences/*

Data References

All elements are arrays. Single element arrays may be referenced in any of the following ways:

m path/element

= path/element/

126 Using the Admin Protocol
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

m path/element/*

m path/element/1

The references listed above are all evaluated as the same request.

Request Options

URIs that do not include a question mark (?) default to a GET request option.

URIs that include a question mark (?) must be followed by a " command=command-option" request option,
where command-option is GET, SET, ADD, or DEL. URIs may also be followed by a
"parameters=parameter-option" that refines the action of the command option.

Request options are not case-sensitive, but request option values are case-sensitive.

The Admin Protocol ignores any request option that it does not recognize as well any request options that
a command does not require.

Command Options

The Admin Protocol recognizes the following command options:

m GET, described in the section “GET Command Option” (page 127)
m SET, described in the section “SET Command Option” (page 128)
m DEL, described in the section “DEL Command Option” (page 128)
m ADD, described in the section “ADD Command Option” (page 128)

Any unknown command option is reported as an error.

The effect of a command option may be modified by in the inclusion of one or more of the following modifiers:

= value — used to specify a value
= type — used to specify a data type

m name — used to specify an element name

GET Command Option

The GET command option gets the data identified by the URL. It is the default command option. For that
reason, it does not have to be specified, as shown in the following example:

GET /modules/admin/example_count

The GET command does not require any request options. If any request options were specified, they would
be ignored.

Using the Admin Protocol 127
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

SET Command Option

The SET command option sets the data identified by the URI. No value checking is performed. Conversion
between the text value and the actual value is type-specific. Here are two examples of the SET command
option:

GET /modules/admin/example_count?command=SET+value=b
GET /modules/admin/maxcount?command=SET+value=5+type=SInt32

If the type option is included in the command, type checking of the server element type and the set type
is performed. If the types do not match, an error is returned and the command fails.

DEL Command Option

The DEL command option deletes the element referenced by the URL and any data it contains. Here is an
example:

GET /modules/admin/maxcount?command=DEL

ADD Command Option

The ADD command option adds the data specified by the URI to the specified element.

If the end of the URL is an element, the ADD command performs an add to the array of elements referenced
by the element name. The following example adds 6 to example_count if the data type of example_count
isSIntlé:

GET /modules/admin/example_count?command=ADD+value=6+type=SIntl6

If the element at the end of the URLisa QTSS_0bject container, the ADD command option adds the element
to the container. The following example adds 5 to the element whose name is maxcount if the data type of
maxcountis SIntlé6:

GET /modules/admin/?command=ADD+value=5+name=maxcount+type=SIntl6

Parameter Options

Parameter options are single characters without delimiters that appear after the URL.
The Admin Protocol recognizes the following parameter options:

= — Walk downward in the hierarchy starting at end of the URL. Recursion should be avoided if “*"
iterators or direct URL access to elements can be used instead.

= v — Return the full path in name.

m a — Return the access type.

m t — Return the data type of value.

= d — Return debugging information if an error occurs.

m ¢ — Return the count of elements in the path.

128 Using the Admin Protocol
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

Here is an example that uses the r and t parameter options to recursively get the data type of all
gtssSvrClientSessions:

GET /modules/admin/server/qtssSvrClientSessions?parameters=rt+command=get

Attribute Access Types

The following access types are used to control access to server data:

m r — Read access type
m W — Write access type

= p — Preemptive safe access type

Data Types

Data types can be any server-allowed text value. New data types can be defined and returned by the server,
so data types are not limited to the basic set listed here:

UInt8 |SIntl6e |UInt64 | Float64 |char

SInt8 |UInt32|SInt64 |Bool8 QTSS_Object

UIntlé | SInt32 | Float32 |Booll6 |void_pointer

Values of type QTSS_0bject, pointers, and unknown data types always converted to a host-ordered string
of hexadecimal values. Here is an example of a hexadecimal value result:

unknown_pointer=halogen; type=void_pointer

Server Responses

This section describes the data that is returned in response to a request. The information on response data
is organized in the following sections:

m “Unauthorized Response” (page 130)
m “0K Response” (page 130)

m “Response Data” (page 130)

m “Array Values” (page 131)

m “Response Root” (page 131)

m “Errors in Responses” (page 132)

m “Request and Response Examples” (page 132)

Using the Admin Protocol 129
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

Unauthorized Response

Here is an example of an unauthorized response:

HTTP/1.1 401 Unauthorized

WWW-Authenticate: Basic realm="QTSS/modules/admin"
Server: QTSS

Connection: Close

Content-Type: text/plain

OK Response

Here is an example of an “OK” response:

HTTP/1.0 200 OK

Server: QTSS/4.0 [v408]-Mac0SX
Connection: Close
Content-Type: text/plain
Container="/"

admin/

error:(0)

All OK responses end with error: (0).

Response Data

All entity references in response data follow this form:
[INAME=VALUE] ; [attribute="value"], [attribute="value"]

where brackets ([]) indicate that the enclosed response data is optional. Therefore, the response data may
take the following forms:

NAME=VALUE

NAME=VALUE ; attribute="value"

NAME=VALUE ; attribute="value" , attribute="value"
All container references follow this form:

[NAME/]; [attribute="value"], [attribute="value"]

where brackets ([]) indicate that the enclosed response data is optional. Therefore, response data may take
the following forms:

NAME/
NAME/ ; attribute="value"
NAME ; attribute="value" , attribute="value"

The order of appearance of container references and the container’s entity references are important. This is
especially true when the response is a recursive walk of a container hierarchy.

130 Using the Admin Protocol
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

Each new level in the hierarchy must begin with a Container= reference. Each container list of elements
must be a complete list of the contained elements and any containers. The appearance of a Container=

reference indicates the end of a previous container’s contents and the beginning of a new container.

This example shows how each new container is identified with a unique path:

Container="/levell/"
fieldl="value"
field2="value"

levelZ2a/

level2b/
Container="/levell/level2a/"
fieldl="value"

level3a/

level3b/

Container="/levell/levelZ2a/level3a"

fieldl="value"

Container="/levell/levelZ2a/level3b"

Container="/levell/level2b/"
fieldl="value"
level3a/

Container="/levell/level2b/level3a/"

fieldl="value"

Array Values

For arrays of elements, a numerical value represents the index. Arrays are containers. Here is an example:

Container="/levell/"
fieldl="value"
field2="value"

arrayl/
Container="/levell/arrayl/"
1=value

2=value

Array elements may be containers, as shown in this example:

Container="/levell/arrayl/"
1/
2/
3/

Container="/levell/arrayl/1/"
fieldl="value"
field2="value"
Container="/levell/arrayl/2/"
Container="/levell/arrayl/3/"
fieldl="value"

Response Root

The root for responses is /admin.

Using the Admin Protocol

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

131

CHAPTER 2
Tasks

Errors in Responses

For each response, the error state for the request is reported at the end of the data. Here are some examples:
Error:(0) indicates that no error occurred
Error: (404) indicates that no data was found

The number enclosed by parentheses is an HTTP error code followed by an error string when debugging is
turned on using the "parameters=d" query option. Here is an example:

error:(404);reason="No data found"

Request and Response Examples

An easy way to make requests is to use a web browser and a URL like this:
http://IP-address:554/modules/admin/?parameters=a+command=get

The following example uses basic authentication and shows the HTTP response headers:
Request: GET /modules/admin?parameters=a+command=get

Authorization: Basic QWXtaW5pT3RXYXRvcjXkZWZhdWx0

Response:

HTTP/1.0 200 OK

Server: QTSS/4.0 [v408]-Mac0OSX

Connection: Close

Content-Type: text/plain

Container="/"

admin/;a=r

error:(0)

The following recursive request gets the value of each elementin /modules/admin:

GET /modules/admin?command=get+parameters=r

The following recursive request returns the access type and data type for the value of each element in
/modules/admin:

GET /modules/admin?command=get+parameters=rat

The following request gets the elements in /modules/admin. Note that the GET command option is not
required because request options are not present.

GET /modules/admin/*

A request like the following can be used to monitor the session list:

GET /modules/admin/server/qtssSvrClientSessions/*

The response is a list of unique gtssSvrClientSessions session IDs. Here is an example::

Container="/admin/server/qtssSvrClientSessions/"

132 Using the Admin Protocol
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

12/

2/

4/

8/
error:(0)

The following request gets the indexes for the qtssC1iSesStreamObjects object, which is an indexed

array of streams:

GET /modules/admin/server/qtssSvrClientSessions/*/qtssCliSesStreamObjects/*

The response might look like this:

Container="/admin/server/qtssSvrClientSessions/3/qtssCliSesStreamObjects/"

0/
1/
error:(0)

Here is another request:

GET /modules/admin/server/qtssSvrClientSessions/3/qtssCliSesStreamObjects/0/*

And here is a typical response:

qtssRTPStrTrackID="4"
qtssRTPStrSSRC="683618521"
qtssRTPStrPayloadName="X-QT/600"
qtssRTPStrPayloadType="1"
qtssRTPStrFirstSeqNumber="-7111"
qtssRTPStrFirstTimestamp="433634204"
qtssRTPStrTimescale="600"
qtssRTPStrQualitylevel="0"
qtssRTPStrNumQualitylevels="3"
qtssRTPStrBufferDelayInSecs="3.000000"
qtssRTPStrFractionLostPackets="0"
qtssRTPStrTotallostPackets="52"
qtssRTPStrditter="0"
qtssRTPStrRecvBitRate="1526072"
qtssRTPStrAvglLateMilliseconds="501"
qtssRTPStrPercentPacketslLost="0"
qtssRTPStrAvgBufDelayInMsec="30"
qtssRTPStrGettingBetter="0"
qtssRTPStrGettingWorse="0"
qtssRTPStrNumEyes="0"
qtssRTPStrNumEyesActive="0"
qtssRTPStrNumEyesPaused="0"
qtssRTPStrTotPacketsRecv="6763"
qtssRTPStrTotPacketsDropped="0"
qtssRTPStrTotPacketslLost="0"
qtssRTPStrClientBufFill="0"
qtssRTPStrFrameRate="0"
qtssRTPStrExpFrameRate="3903"
qtssRTPStrAudioDryCount="0"
qtssRTPStrIsTCP="false"
qtssRTPStrStreamRef="18861508"
qtssRTPStrCurrentPacketDelay="-2"
qtssRTPStrTransportType="0"
qtssRTPStrStalePacketsDropped="0"

Using the Admin Protocol

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

133

134

CHAPTER 2
Tasks

qtssRTPStrTimeFlowControllifted="974373815109"
qtssRTPStrCurrentAckTimeout="0"
qtssRTPStrCurPacketsLostInRTCPInterval="52"
qtssRTPStrPacketCountInRTCPInterval="689"
QTSSReflectorModuleStreamCookie=(null)
qtssNextSegNum=(null)
qtssSegNumOffset=(null)
QTSSSplitterModuleStreamCookie=(null)
QTSSFlowControlModulelLossAboveTol="0"
QTSSFlowControlModulelLossBelowTol="3"
QTSSFlowControIModuleGettingWorses="0"
error:(0)

Here is an request that returns the IP addresses of connected clients:
GET /modules/admin/server/qtssSvrClientSessions/*/qtssCliRTSPSessRemoteAddrStr
And here is a typical response:

Container="/admin/server/qtssSvrClientSessions/5/
"qtssCliRTSPSessRemoteAddrStr=17.221.40.1
Container="/admin/server/qtssSvrClientSessions/6/
"qtssCliRTSPSessRemoteAddrStr=17.221.40.2
Container="/admin/server/qtssSvrClientSessions/8/
"qtssCliRTSPSessRemoteAddrStr=17.221.40.3
Container="/admin/server/qtssSvrClientSessions/14/
"qtssCliRTSPSessRemoteAddrStr=17.221.40.4
error:(0)

Changing Server Settings

To change a server setting, the entity name and the value to be set are specified in the request body. If a
match is made on the URL base and entity name at the current container level and if the setting is writable,
the value is set.

base = /base/container

name = value
/base/container/name="value"

Getting and Setting Preferences

Preferences paths are useful for getting and setting a server or module preference. Setting a preference
causes the preference’s new value to be flushed to the server’s XML preference file. The new value takes
effect immediately.

Server preferences are stored in /modules/admin/server/qtssSvrPreferences. Module preferences
are stored in /modules/admin/server/qtssSvrModuleObjects/*/qtssModPrefs/.

The elements defined in the gtssSvrPreferences object can only be modified — they cannot be deleted.

The elements defined in gtssModPrefs can be added to, deleted, and modified.

Using the Admin Protocol
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

A module or the server can automatically restore some deleted elements if the elements are needed by a
modaule or the server. When applied to a gt ssModPrefs element, the ADD, DEL, and SET commands cause
the streaming server’s XML preference file to be rewritten.

Getting and Changing the Server’s State

The qtssSvrState attribute controls the server’s state. The path is
/modules/admin/server/qtssSvrState. It can be modified as a UTnt32 with the following values.

gtssStartingUpState =0,

gtssRunningState =1,

qtssRefusingConnectionsState = 2,

qtssFatalErrorState =3,

gtssShuttingDownState =4,

gtssldleState =5

Using the Admin Protocol 135

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 2
Tasks

136 Using the Admin Protocol
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3

QTSS Callback Routines

This section describes the QTSS callback routines that modules call to obtain information from the server,
allocate and deallocate memory, create objects, get and set attribute values, and manage client and RTSP
sessions.

Callbacks by Task

QTSS Utility Callback Routines

Modules call the following callback routines to register for roles, allocate and deallocate memory, get the
value of the server’s internal timer, and to convert a value from the internal timer to the current time.

QTSS_AddRole (page 141)
Adds a role.
QTSS_New (page 155)
Allocates memory.
QTSS_Delete (page 146)
Deletes memory.
QTSS_Milliseconds (page 154)
Gets the current value of the server’s internal clock.

QTSS_Mil1iSecsTol970Secs (page 155)
Converts a value obtained from the server’s internal clock to the current time.

QTSS Object Callback Routines

Modules call the object callback routines to create, lock, and unlock o bjects.

QTSS_CreateObjectType (page 145)
Creates an object type.

QTSS_CreateObjectValue (page 146)
Creates a new object that is the value of another object’s attribute.

QTSS_LockObject (page 154)
Locks an object.

QTSS_UnLockObject (page 166)
Unlocks an object.

QTSS Attribute Callback Routines

Modules call the attribute callback routines to work with attributes.

Callbacks by Task 137
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

138

CHAPTER 3
QTSS Callback Routines

QTSS_AddInstanceAttribute (page 140)
Adds an instance attribute to the instance of an object.

QTSS_AddStaticAttribute (page 143)

Adds a static attribute to an object type.
OQTSS_GetAttrinfoByID (page 148)

Uses an attribute ID to get information about an attribute.
QTSS_GetAttrInfoByIndex (page 148)

Gets information about all of an object’s attributes by iteration.

QTSS_GetAttrinfoByName (page 149)
Uses an attribute’s name to get information about an attribute.

QTSS_GetNumAttributes (page 150)

Gets a count of an object’s attributes.
QTSS_GetValue (page 150)

Copies the value of an attribute into a buffer.
QTSS_GetValueAsString (page 151)

Gets the value of an attribute as a C string.
QTSS_GetValuePtr (page 152)

Gets a pointer to an attribute’s value.
QTSS_IDForAttr (page 153)

Gets the ID of a static attribute.
QTSS_RemovelnstanceAttribute (page 158)

Remove an instance attribute from the instance of an object.
QTSS_RemoveValue (page 158)

Removes the specified value from an attribute.
QTSS_SetValue (page 161)

Sets the value of an attribute.
QTSS_SetValuePtr (page 162)

Sets an existing variable as the value of an attribute.
QTSS_StringToValue (page 163)

Converts an attribute data type in C string format to a value in QTSS_AttrDataType format.
QTSS_TypeStringToType (page 165)

Gets the attribute data type of a data type string that is in C string format.
QTSS_TypeToTypeString (page 165)

Gets the name in C string format of an attribute data type.
QTSS_ValueToString (page 166)

Converts an attribute data type in QTSS_AttrDataType format to a value in C string format.

Stream Callback Routines

This section describes the callback routines that modules call to perform 1/0 on streams. Internally, the server
performs 1/0 asynchronously, so QTSS stream callback routines do not block and, unless otherwise noted,
return the error QTSS_WouldB1ock if data cannot be written.

QTSS_Advis (page 144)
Advises that the specified section of the stream will soon be read.

Callbacks by Task
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

QTSS_Read (page 157)

Reads data from a stream.
QTSS_Seek (page 159)

Sets the position of a stream.
QTSS_RequestEvent (page 159)

Requests notification of specified events.
QTSS_SignalStream (page 163)

Notifies the recipient of events that a stream has become available for I/0.
QTSS_Write (page 167)

Writes data to a stream.
QTSS_WriteV (page 167)

Writes data to a stream using an iovec structure.

QTSS_Flush (page 147)
Forces an immediate write operation.

File System Callback Routines

Modules use the callback routines described in this section to open and close a file object.

QTSS_OpenFileObject (page 155)
Opens a file.

QTSS_CloseFileObject (page 145)
Closes afile.

Service Callback Routines

Modules use the callback routines described in this section to register and invoke services.

QTSS_AddService (page 142)
Adds a service.

QTSS_IDForService (page 153)
Resolves a service name to a service ID.

QTSS_DoService (page 147)
Invokes a service.

RTSP Header Callback Routines

As a convenience to modules that want to send RTSP responses, the server provides the utilities described
in this section for formatting RTSP responses properly.

QTSS_AppendRTSPHeader (page 144)
Appends information to an RTSP header.

QTSS_SendRTSPHeaders (page 160)
Sends an RTSP header.

QTSS_SendStandardRTSPResponse (page 160)
Sends an RTSP response to a client.

Callbacks by Task 139
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

RTP Callback Routines

QTSS modules can generate and send RTP packets in response to an RTSP request. Typically RTP packets are
sent in response to a SETUP request from the client. Currently, only one module can generate packets for a
particular session.

OQTSS_AddRTPStream (page 142)

Enables a module to send RTP packets to a client.
QTSS_PTay (page 156)

Starts playing streams associated with a client session.
QTSS_Pause (page 156)

Pauses a stream that is playing.

QTSS_Teardown (page 164)
Closes a client session.

Callbacks

140

QTSS_AddIinstanceAttribute

Adds an instance attribute to the instance of an object.

QTSS_Error QTSS_AddInstanceAttribute(
QTSS_0Object inObject,
char* inAttrName,
void* inUnused,
QTSS_AttrDataType inAttrDataType);

Parameters

inObject
On input, a value of type QTSS_Object (page 169) that specifies the object to which the instance
attribute is to be added.

inAttrName
On input, a pointer to a byte array that specifies the name of the attribute that is to be added.

inUnused
Always NULL.

QTSS_AttrDataType

Oninput, avalue of type QTSS_AttrDataType (page 173) that specifies the data type of the attribute
that is being added.

result
A result code. Possible values are QTSS_NoErr,QTSS_0ut0fStateif QTSS_AddInstanceAttribute
is called from a role other than the Register role, QTSS_BadArgument if the specified object type
does not exist, the attribute name is too long, or a parameter is not specified, and
QTSS_AttrNameExists if an attribute of the specified name already exists.

Discussion
The QTSS_AddInstanceAttribute callback routine adds an attribute to the instance of an object as
specified by the inObject parameter. This callback can only be called from the Register role.

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

When adding attributes to an object that a module as created, you must lock the object first by calling
QTSS_LockObject (page 154). Add the attributes and then call QTSS_UnlLockObject (page 166).

All added instance attributes have values that are implicitly readable, writable, and preemptive safe, so their
values can be obtained by calling QTSS_GetValueAsString (page 151) and QTSS_GetValuePtr (page
152). You can also call QTSS_GetValue (page 150) to get the value of an added static attribute, but doing so
is less efficient.

Adding static attributes is more efficient than adding instance attributes, so adding static attributes instead
of adding instance attributes is strongly recommended.

Typically, a module adds an instance attribute and sets its value by calling QTSS_SetValue (page 161) when
it is first installed to add its default preferences to its module preferences object. On subsequent runs of the
server, the preferences will already exist in the module’s module preferences object, so the module only
needstocall QTSS_GetValue (page 150),QTSS_GetValueAsString (page 151),0orQTSS_GetValuePtr (page
152) to get the value. Calling QTSS_GetValuePtr is the most efficient and recommended way to get the
value of an attribute. Calling QTSS_GetVaTlue is less efficient than calling QTSS_GetValuePtr, and calling
QTSS_GetValueAsStringis less efficient than calling QTSS_GetValue.

Call QTSS_RemoveValue (page 158) to remove the value of an added attribute.

Unlike static attributes, instance attributes can be removed. To remove an instance attribute from the instance
of an object, call QTSS_RemovelInstanceAttribute (page 158).

QTSS_AddRole
Adds a role.

QTSS_Error QTSS_AddRoTe(QTSS_Role inRole);

Parameters
inRole
On input, a value of type QTSS_Ro1e (page 170) that specifies the role that is to be added.

result
A result code. Possible values are QTSS_NoErr, QTSS_0ut0fState if QTSS_AddRole is called from
a role other than the Register role, QTSS_RequestFailed if the module is registering for the RTSP
Request role and a module is already registered for that role, and QTSS_BadArgument if the specified
role does not exist.

Discussion
The QTSS_AddRoTe callback routine tells the server that your module can be called for the role specified by
inRoTe.

The QTSS_AddRoTe callback can only be called from a module’s Register role. For this version of the server,
you can add the following roles: QTSS_ClientSessionClosing_Role, QTSS_ErrorlLog_Role,
QTSS_Initialize_Role, QTSS_OpenFilePreprocess_Role, QTSS_OpenFile_Role,
QTSS_RTSPFilter_Role, QTSS_RTSPRoute_Role, QTSS_RTSPPreProcessor_Role,
QTSS_RTSPRequest_Role, QTSS_RTSPPostProcessor_Role, QTSS_RTPSendPackets_Role,
QTSS_RTCPProcess_Role, QTSS_Shutdown_Role.

Callbacks M
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

142

CHAPTER 3
QTSS Callback Routines

QTSS_AddRTPStream

Enables a module to send RTP packets to a client.

QTSS_Error QTSS_AddRTPStream(
QTSS_ClientSessionObject inClientSession,
QTSS_RTSPRequestObject inRTSPRequest,
QTSS_RTPStreamObject* outStream,
QTSS_AddStreamFlags inFlags);

Parameters

inClientRequest
Oninput, a value of type QTSS_ClientSession0bject identifying the client session for which the
sending of RTP packets is to be enabled.

TnRTSPRequest
On input, a value of type QTSS_RTSPRequestObject.

outStream
On output, a pointer to a value of type QTSS_RTPStreamObject, containing the newly created
stream.

infFlags
On input, a value of type QTSS_AddStreamFlags (page 174) that specifies stream options.

result
Aresult code. Possible valuesare QTSS_NoErr, QTSS_RequestFailedifthe QTSS_RTPSteamObject
couldn’t be created, and QTSS_BadArgument if a parameter is invalid.

Discussion

The QTSS_AddRTSPStream callback routine enables a module to send RTP packets to a client in response
to an RTSP request. Call QTSS_AddRTSPStream multiple times in order to add more than one stream to the
session.

To start playing a stream, call QTSS_Play (page 156).

QTSS_AddService

Adds a service.

QTSS_Error QTSS_AddService(
const char* inServiceName,
QTSS_ServiceFunctionPtr inFunctionPtr);

Parameters
inServiceName
On input, a pointer to a string containing the name of the service that is being added.

infunctionPtr
On input, a pointer to the module that provides the service that is being added.

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

result
A result code. Possible values include QTSS_NoErr, QTSS_0ut0fState if QTSS_AddService is not
called from the Register role,and QTSS_BadArgument if inServiceName is too long or if a parameter
is NULL.

Discussion
The QTSS_AddService callback routine makes the specified service available for other modules to call.

This callback can only be called from the Register role.

QTSS_AddStaticAttribute
Adds a static attribute to an object type.

QTSS_Error QTSS_AddStaticAttribute(
QTSS_ObjectType inObjectType,
const char* inAttributeName,
void* inUnused,

QTSS_AttrDataType inAttrDataType);

Parameters

inType
Oninput, a value of type QTSS_0ObjectType (page 169) that specifies the type of object to which the
attribute is to be added.

inAttributeName
On input, a pointer to a byte array that specifies the name of the attribute that is to be added.

inUnused
Always NULL.

QTSS_AttrDataType
Oninput, avalue of type QTSS_AttrDataType (page 173) that specifies the data type of the attribute
that is being added.

result
A result code. Possible values are QTSS_NoErr, QTSS_0QutO0fState if QTSS_AddStaticAttribute
is called from a role other than the Register role, QTSS_BadArgument if the specified object type
does not exist, the attribute name is too long, or a parameter is not specified, and
QTSS_AttrNameExists if an attribute of the specified name already exists.

Discussion

The QTSS_AddStaticAttribute callback routine adds the specified attribute to all objects of the type
specified by the inType parameter. This callback can only be called from the Register role. Once added,
static attributes cannot be removed while the server is running.

When adding attributes to an object that a module as created, you must lock the object first by calling
QTSS_LockObject (page 154). Add the attributes and then call QTSS_UnLockObject (page 166).

Adding static attributes is more efficient than adding instance attributes, so adding static attributes instead
of instance attributes is strongly recommended.

The values of all added static attributes are implicitly readable, writable, and preemptive safe. Call
QTSS_SetValue (page 161) or QTSS_SetValuePtr (page 162) to set the value of an added attribute.

Callbacks 143
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

144

CHAPTER 3
QTSS Callback Routines

CallQTSS_GetValuePtr (page 152),QTSS_GetValue (page 150) or QTSS_GetValueAsString (page 151)
to get the value of a static attribute that has been added. Calling QTSS_GetValuePtr is the most efficient
and recommended way to get the value of an attribute. Calling QTSS_GetValue is less efficient than calling
QTSS_GetValuePtr, and calling QTSS_GetValueAsString is less efficient than calling QTS_GetValue.

Call QTSS_RemoveValue (page 158) to remove the value of an added static attribute.

QTSS_Advis

Advises that the specified section of the stream will soon be read.

QTSS_Error QTSS_Advise(
QTSS_StreamRef inRef,
UInté4 inPosition,
UInt32 inAdviseSize);

Parameters

inRef
On input, a value of type QTSS_StreamRef (page 170) obtained by calling
QTSS_OpenFileObject (page 155) that specifies the stream.

inPosition
On input, the offset in bytes from the beginning of the stream that marks the beginning of the advise
section.

inAdviseSize
On input, the size in bytes of the advise section.

result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameter is invalid,
and QTSS_RequestFailed.
Discussion
The QTSS_Adv i se callback routine tells a file system module that the specified section of a stream will be
read soon. The file system module may read ahead in order to respond more quickly to future calls to
QTSS_Read for the specified stream.

QTSS_AppendRTSPHeader
Appends information to an RTSP header.

QTSS_Error QTSS_AppendRTSPHeader(
QTSS_RTSPRequestObject inRef,
QTSS_RTSPHeader inHeader,
const char* inValue,

UInt32 inValuelen);

Parameters
inRef
On input, a value of type QTSS_RTSPRequestObject for the RTSP stream.

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

inHeader
On input, a value of type QTSS_RTSPHeader.
inValue
On input, a pointer to a byte array containing the header that is to be appended.
inValuelen
On input, a value of type UInt32 containing the length of valid data pointed to by inValue.
result
A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if a parameter is invalid.

Discussion
The QTSS_AppendRTSPHeader callback routine appends headers to an RTSP header. After calling
QTSS_AppendRTSPHeader, call QTSS_SendRTSPHeaders (page 160) to send the entire header.

QTSS_CloseFileObject

Closes afile.
QTSS_Error QTSS_CloseFileObject(QTSS_Object inFileObject);

Parameters
inFileObject

On input, a value of type QTSS_Object (page 169) that represents the file that is to be closed.
result

A result code. Possible values include QTSS_NoErr and QTSS_BadArgument if a parameter is invalid.

Discussion
The QTSS_CloseFileObject callback routine closes the specified file.

QTSS_CreateObjectType

Creates an object type.
QTSS_Error QTSS_CreateObjectType(QTSS_0bjectType* outType);

Parameters

outType
On input, a pointer to a value of type QTSS_0bjectType (page 169).

result
A result code. Possible values are QTSS_NoErr,QTSS_FailedRequest too many object types already
exist,and QTSS_OutO0fStateif QTSS_CreateObjectType an attribute of the specified name already
exists.

Discussion

The QTSS_CreateObjectType callback routine creates a new object type and provides a pointer to it. Static
attributes can be added to the object type by calling QTSS_AddStaticAttribute (page 143). Instance
attributes can be added to instances of objects of the new object type.

Callbacks 145
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

146

CHAPTER 3
QTSS Callback Routines

The QTSS_AddStaticAttribute callback can only be called from the Register role. Call
QTSS_SetValue (page 161) to set the value of an added attribute and QTSS_RemoveValue (page 158) to
remove the value of an added attribute.

This callback may only be called from the Register role.

QTSS_CreateObjectValue

Creates a new object that is the value of another object’s attribute.

QTSS_Error QTSS_CreateObjectValue(
QTSS_Object inObject,
QTSS_AttributelID inlID,
QTSS_ObjectType inType,

UInt32* outlndex,
QTSS_Object* outCreatedObject);

Parameters

inObject
On input, a pointer to a value of type QTSS_0bjectType (page 169) that specifies the object having
an attribute whose value will be the created object.

inlD
Oninput, a value of type QTSS_AttributelD (page 169) that specifies the attribute ID of the attribute
whose value will be the created object.

inType
On input, a value of type QTSS_ObjectType (page 169) that specifies the object type of the object
that is to be created.

outIndex
On output, a pointer to a value of type UInt32 that contains the index of the created object.

outCreatedObject
On output, a pointer to a value of type QTSS_0bjectType (page 169)s that is the new object.

result
A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if any parameter is invalid, and
QTSS_ReadOnly if the attribute specified by inID is a read-only attribute.

Discussion
The QTSS_CreateObjectValue callback routine creates an object that is the value of an existing object’s
attribute. The object specified by inObject is the “parent” object.

If the object specified by inObject is later locked by calling QTSS_Lock0bject (page 154), the object pointed
to by outCreatedObject is also locked.

QTSS_Delete

Deletes memory.

void* QTSS_Delete(void* inMemory);

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

Parameters
inMemory

On input, a pointer to an arbitrary value that specifies in bytes the amount of memory to be deleted.
result

None.

Discussion
The QTSS_Delete callback routine deletes memory that was previously allocated by QTSS_New (page 155).

QTSS_DoService

Invokes a service.

QTSS_Error QTSS_DoService(
QTSS_ServicelD inlID,
QTSS_ServiceFunctionArgsPtr inArgs);

Parameters

inlD
Oninput, a value of type QTSS_ServicelD (page 170) that specifies the service that is to be invoked.
Call QTSS_IDForAttr (page 153) to get the service ID of the service you want to invoke.

TnArgs
On input, a value of type QTSS_ServiceFunctionArgsPtr that points to the arguments that are
to be passed to the service.

result
A result code returned by the service or QTSS_IT1egalService if inID isinvalid.

Discussion
The QTSS_DoService callback routine invokes the service specified by in1D.

QTSS_Flush

Forces an immediate write operation.

QTSS_Error QTSS_Flush(QTSS_StreamRef inRef);

Parameters

inRef
On input, a value of type QTSS_StreamRef (page 170) that specifies the stream for which buffered
data is to be written.

result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameteris NULL, and
QTSS_WouldBlock if the stream cannot be flushed completely at this time.

Discussion
The QTSS_Flush callback routine forces the stream to immediately write any data that has been buffered.
Some QTSS stream references, such as QTSSRequestRef, buffer data before sending it.

Callbacks 147
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

148

CHAPTER 3
QTSS Callback Routines

QTSS_GetAttrinfoBylD

Uses an attribute ID to get information about an attribute.

QTSS_Error QTSS_GetAttrInfoByID(
QTSS_Object inObject,
QTSS_AttributelID inAttrID,
QTSS_AttrInfoObject* outAttrInfoObject);

Parameters

inObject
On input, a value of type QTSS_0Object (page 169) that specifies the object having the attribute for
which information is to be obtained.

TnAttriD
On input, a value of type QTSS_AttributelD (page 169) that specifies the attribute for which
information is to be obtained.

outAttrinfoObject
On output, a pointer to a value of type QTSS_AttrInfoObject that can be used to get information
about the attribute specified by inAttrID.

result
A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if the specified object does not
exist, and QTSS_AttrDoesntExist if the attribute doesn’t exist.

Discussion

The QTSS_GetAttrInfoByID callback routine uses an attribute ID to getan QTSS_AttrInfoObject that

can be used to get the attribute’s name, data type, permissions for reading and writing the attribute’s value,
and whether getting the attribute’s value is preemptive safe.

QTSS_GetAttrinfoBylndex

Gets information about all of an object’s attributes by iteration.

QTSS_Error QTSS_GetAttrInfoByIndex(
QTSS_0Object inObject,
UInt32 inlndex,
QTSS_AttrInfolObject* outAttrInfoObject);

Parameters

inObject
On input, a value of type QTSS_0Object (page 169) that specifies the object having the attribute for
which information is to be obtained.

inIndex
On input, a value of type UInt32 that specifies the index of the attribute for which information is to
be obtained. Start by setting inIndex to zero. For the next call to QTSS_GetAttrInfoByIndex,

increment inIndex by one to get information for the next attribute. Call
QTSS_GetNumAttributes (page 150) to get the number of attributes that inObject has.

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

outAttrinfoObject
On output, a pointer to a value of type QTSS_AttrInfoObject that can be used to get information
about the attribute specified by inAttrName.

result
A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if the specified object does not
exist,and QTSS_AttrDoesntExist if the attribute doesn't exist.
Discussion
The QTSS_GetAttrInfoByIndex callback routine uses an index to getan QTSS_AttrInfolObject that
can be used to get the attribute’s name and ID, data type, permissions for reading and write the attribute’s
value, and whether getting the attribute’s value is preemptive safe

The QTSS_GetAttrInfoByIndex callback routine returnsa QTSS_AttrInfoObject for both static and
instance attributes.

QTSS_GetAttrinfoByName

Uses an attribute’s name to get information about an attribute.

QTSS_Error QTSS_GetAttrInfoByName(
QTSS_0Object inObject,
char* inAttrName,
QTSS_AttrInfolObject* outAttrInfoObject);

Parameters

inObject
On input, a value of type QTSS_Object (page 169) that specifies the object having the attribute for
which information is to be obtained.

inAttrName
On input, a pointer to a C string containing the name of the attribute for which information is to be
obtained.

outAttrinfoObject
On output, a pointer to a value of type QTSS_AttrInfoObject that can be used to get information
about the attribute specified by inAttrName.

result
A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if the specified object does not
exist,and QTSS_AttrDoesntExist if the attribute doesn’t exist.
Discussion
The QTSS_GetAttrInfoByName callback routine uses an attribute nametogetan QTSS_AttrInfoObject
that can be used to get the attribute’s ID, its data type, and permissions for reading and writing the attribute’s
value, and whether getting the attribute’s value is preemptive safe.

The QTSS_GetAttrInfoByName callback routine returnsa QTSS_AttrInfoObject for both static and
instance attributes.

Callbacks 149
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

150

CHAPTER 3
QTSS Callback Routines

QTSS_GetNumAttributes

Gets a count of an object’s attributes.

QTSS_Error QTSS_GetNumAttributes(
QTSS_Object inObject,
UInt32* outNumAttributes);

Parameters

inObject
On input, a value of type QTSS_0Object (page 169) that specifies the object whose attributes are to
be counted.

outNumAttributes
On output, a pointer to a value of type UInt32 that contains the count of the object’s attributes.

result
A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if the specified object does
not exist.

Discussion

The QTSS_GetNumAttributes callback routine gets the number of attributes for the object specified by
in0bject. Having the number of attributes lets you know how often to call
QTSS_GetAttrInfoByIndex (page 148) when getting information about each of an object’s attributes.

QTSS_GetValue

Copies the value of an attribute into a buffer.

QTSS_Error QTSS_GetValue (
QTSS_0Object inObject,
QTSS_AttributelID inID,
UInt32 inIndex,
void* ioBuffer,

UInt32* jolen);

Parameters

inObject
On input, a value of type QTSS_Object (page 169) specifying the object that contains the attribute
whose value is to be obtained.

inlD
On input, a value of type QTSS_AttributelD (page 169) specifying the ID of the attribute whose
value is to be obtained.

inIndex
On input, a value of type UInt32 that specifies which attribute value to get (if the attribute can have
multiple values) or zero for single-value attributes.

ioBuffer

On input, a pointer to a buffer. On output, the buffer pointed to by ioBuffer contains the value of
the attribute specified by in1D. If the buffer is too small to contain the value, the buffer is empty.

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

iolLen
On input, a pointer to a value of type UInt32 specifying the length of the buffer pointed to by
ioBuffer.On output, ioLen points to a value that is the length of the valid data in ioBuffer.

result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameter is invalid,
QTSS_BadIndex if the index specified by inIndex does not exist, QTSS_NotEnoughSpace if the
attribute value is longer than the value pointed to by iolLen, and QTSS_AttrDoesntExist if the
attribute doesn't exist.

Discussion

The QTSS_GetValue callback routine copies the value of the specified attribute into the provided buffer.

Calling QTSS_GetValue is slower and less efficient than calling QTSS_GetValuePtr (page 152).

QTSS_GetValueAsString

Gets the value of an attribute as a C string.

QTSS_Error QTSS_GetValueAsString (
QTSS_0Object inObject,
QTSS_AttributelID inlID,

UInt32 inlIndex,
char** outString);

Parameters

inObject
On input, a value of type QTSS_Object (page 169) specifying the object that contains the attribute
whose value is to be obtained.

inID
On input, a value of type QTSS_AttributelD (page 169) specifying the ID of the attribute whose
value is to be obtained.

inIndex
On input, a value of type UInt32 specifying which attribute value to get (if the attribute can have
multiple values) or zero for single-value attributes.

outString

On input, a pointer to an address in memory. On output, outString points to the value of the
attribute specified by in1D in string format.

result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameter is invalid,
and QTSS_BadIndex if the index specified by inIndex does not exist.

Discussion
The QTSS_GetValueAsString callback routine gets the value of the specified attribute, converts it to C
string format, and stores it at the location in memory pointed to by the outString parameter.

When you no longer need outString, call QTSS_Delete (page 146) to free the memory that has been
allocated for it.

Callbacks 151
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

152

CHAPTER 3
QTSS Callback Routines

The QTSS_GetValueAsString callback routine can be called to get the value of preemptive safe attributes
as well as attributes that are not preemptive safe. However, calling QTSS_GetValueAsStringisless efficient
than calling QTSS_GetValue (page 150), and calling QTSS_GetValue is less efficient than calling
QTSS_GetValuePtr (page 152).

Calling QTSS_GetValue is the recommended way to get the value of an attribute that is not preemptive
safe and calling QTSS_GetValuePtr is the recommended way to get the value of an attribute that is
preemptive safe.

QTSS_GetValuePtr

Gets a pointer to an attribute’s value.

QTSS_Error QTSS_GetValuePtr (
QTSS_0Object inObject,
QTSS_AttributelID inlID,
UInt32 inlIndex,
void** outBuffer,

UInt32* outlen);

Parameters

inObject
On input, a value of type QTSS_Object (page 169) specifying the object containing the attribute
whose value is to be obtained.

inlD
On input, a value of type QTSS_AttributelD (page 169) specifying the ID of an attribute.

inlndex
On input, a value of type UInt32 specifying which attribute value to get (if the attribute can have
multiple values) or zero for single-value attributes.

outBuffer
On input, a pointer to an address in memory. On output, outBuf fer points to the value of the
attribute.

outlen
On output, a pointer to a value of type UInt32 specifying the number of valid bytes pointed to by
outBuffer.

result
A result code. Possible values include QTSS_NoErr, QTSS_NotPreemptiveSafeif inIDisan attribute
that is not preemptive safe, QTSS_BadArgument if a parameter is invalid, QTSS_BadIndex if the
index specified by inIndex does not exist, and QTSS_AttrDoesntExist if the attribute doesn’t
exist.

Discussion
The QTSS_GetValuePtr callback routine gets a pointer to an attribute’s value. Calling QTSS_GetValuePtr
is the fastest and most efficient way to get the value of an attribute, and it is less likely to generate an error.

Before calling QTSS_GetValuePtr to get the value of an attribute that is not preemptive safe, you must
lock the object by calling QTSS_Lock0Object (page 154). After getting the value, unlock the object by calling
QTSS_UnLockObject (page 166).

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

If you don’t want to lock and unlock the object to get the value of an attribute that is not preemptive safe,
get the value by calling QTSS_GetValue (page 150) or QTSS_GetValueAsString (page 151).

QTSS_IDForAttr
Gets the ID of a static attribute.

QTSS_Error QTSS_IDForAttr(
QTSS_ObjectType inType,
const char* inAttributeName,
QTSS_AttributelD* outlD);

Parameters
inType
On input, a value of type QTSS_ObjectType (page 169) specifying the type of object for which the
ID is to be obtained.
inAttributeName
On input, a pointer to a byte array specifying the name of the attribute whose ID is to be obtained.
outlD
On input, a pointer to a value of type QTSS_AttributelD (page 169). On output, outID points to
the ID of the attribute specified by inAttributeName.
result
A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if a parameter is invalid.

Discussion

The QTSS_IDForAttr callback routine obtains the attribute ID for the specified static attribute in the specified
object type. The attribute ID is used to when calling QTSS_GetValue (page 150),
QTSS_GetValueAsString (page 151),and QTSS_GetValuePtr (page 152) get the attribute’s value.

To get the ID of an instance attribute, call QTSS_GetAttrInfoByName (page 149) or
QTSS_GetAttrInfoByIndex (page 148).

QTSS_IDForService

Resolves a service name to a service ID.

QTSS_Error QTSS_IDForService(
const char* inTag,
QTSS_ServicelD* outlID);

Parameters
inTag

On input, a pointer to a string containing the name of the service that is to be resolved.
outlD

On input, a pointer to a value of type QTSS_ServiceID (page 170). On output, QTSS_ServicelID
contains the ID of the service specified by inTag.

Callbacks 153
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

154

CHAPTER 3
QTSS Callback Routines

result
A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if a parameter is invalid.

Discussion

The QTSS_IDForService callback routine returns in the out 1D parameter the service ID of the service
specified by the inTag parameter. You can use the service ID to call 0TSS_DoService (page 147) to invoke
the service that servicelD represents.

QTSS_LockObject

Locks an object.
QTSS_Error QTSS_LockObject(QTSS_Object inObject);

Parameters
inObject

On input, a value of type QTSS_Object (page 169) that specifies the object that is to be locked.
result

Aresult code. Possible values are QTSS_NoErr and QTSS_BadArgument if the specified object instance
does not exist.

Discussion

The QTSS_LockObject callback routine locks the specified object so that accesses to the object’s attributes
from other threads will block. Call QTSS_LockObject before performing non-atomic updates on a variable
that is pointed to by an attribute—as set by calling QTSS_SetValuePtr (page 162)—or before getting the
value of a non-preemptive safe attribute.

Call QTSS_UnLockObject (page 166) to unlock the object.

Objects created by QTSS_CreateObjectValue (page 146) are locked when the parent object is locked.

QTSS_Milliseconds

Gets the current value of the server’s internal clock.
QTSS_TimeVal QTSS_Milliseconds();

Parameters

result
The value of the server’s internal clock in milliseconds since midnight January 1, 1970.

Discussion

The QTSS_Mi111iseconds callback routine gets the current value of the server’s internal clock since midnight
January 1, 1970. Unless otherwise noted, all millisecond values that the server provides in attributes are
obtained from this clock.

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

QTSS_MilliSecsTo1970Secs

Converts a value obtained from the server’s internal clock to the current time.
time_t QTSS_Mil1iSecsTol970Secs(QTSS_TimeVal inQTSS_Milliseconds);

Parameters
inQTSS_Milliseconds
On input, a value of type QTSS_TimeVal obtained by calling QTSS_Mi11iseconds().

result
A value of type time_t containing the current time.

Discussion
The QTSS_MiT1iSecstol970Secs callback routine converts a value obtained by calling
QTSS_Milliseconds (page 154) to the current time.

QTSS_New

Allocates memory.

void* QTSS_New(
FourCharCode inMemoryldentifier,
UInt32 inSize);

Parameters
inMemoryldentifier
On input, a value of type FourCharCode that will be associated with this memory allocation. The
server can track the allocated memory to make debugging memory leaks easier.
inSize
On input, a value of type UInt32 that specifies in bytes the amount of memory to be allocated.
result
None.
Discussion

The QTSS_New callback routine allocates memory. QTSS modules should call QTSS_New whenever it needs
to allocate memory dynamically.

To delete the memory that QTSS_New allocates, call QTSS_Delete (page 146).

QTSS_OpenFileObject

Opens a file.

QTSS_Error QTSS_OpenFileObject(
char* inPath,
QTSS_OpenFileFlags inFlags,
QTSS_Object* outFileObject);

Callbacks 155
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

Parameters

inPath
On input, a pointer to a null-terminated C string containing the full path to the file in the local file
system that is to be opened.

inFlags
On input, a value of type QTSS_OpenFileFlags (page 176) specifying flags that describe how the
file is to be opened.

outFileObject
On output, a pointer to a value of type QTSS_0bject (page 169) in which the file object for the opened
file is to be placed.

result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameter is invalid,
and QTSS_FileNotFound if the specified file does not exist.

Discussion

The QTSS_OpenFile0bject callback routine opens the specified file and returns a file object for it. One of
the attributes of the file object is a stream reference that is passed to QTSS stream callback routines to read
and write data to the file and to perform other file operations.

QTSS_Pause

Pauses a stream that is playing.
QTSS_Error QTSS_Pause(QTSS_ClientSessionObject inClientSession);

Parameters

inClientSession
On input, a value of type QTSS_ClientSession0Object that identifies the client session that is to
be paused.

result
A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if a parameter is invalid.

Discussion
The QTSS_Pause callback routine pauses playing for a stream. The module that called
QTSS_AddRTPStream (page 142) is the only module that can call QTSS_Pause.

QTSS_Play

Starts playing streams associated with a client session.

QTSS_Error QTSS_Play(
QTSS_ClientSessionObject inClientSession,
QTSS_RTSPRequestObject inRTSPRequest,
QTSS_PlayFlags inPlayFlags);

156 Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

Parameters
inClientSession
On input, a value of type QTSS_ClientSessionObject that identifies the client session for which the
sending of RTP packets was enabled by previously calling QTSS_AddRTPStream (page 142).
inRTSPRequest
On input, a value of type QTSS_RequestObject.
inPlayFlags
On input, a value of type QTSS_PlayFlags.Set inPlayFlags to the constant qtssPlaySendRTCP
to cause the server to generate RTCP sender reports automatically while playing. Otherwise, the
module is responsible for generating sender reports that specify play characteristics.
result
A result code. Possible values are QTSS_NoErrand QTSS_BadArgument if a parameter is invalid, and
QTSS_RequestFailed if no streams have been added to the session.

Discussion
The QTSS_Play callback routine starts playing streams associated with the specified client session.

The module that called QTSS_AddRTPStream (page 142) is the only module that can call QTSS_P1ay.

Before calling QTSS_P1ay, the module should set the following attributes of the QTSS_RTPStreamObject
object for this RTP stream:

m qtssRTPStrFirstSegNumber, which should be set to the sequence number of the first packet after
the last PLAY request was issued. The server uses the sequence number to generate a proper RTSP PLAY
response.

m qtssRTPStrFirstTimestamp, which should be set to the timestamp of the first RTP packet generated
for this stream after the last PLAY request was issued. The server uses the timestamp to generate a proper
RTSP PLAY response.

m (tssRTPStrTimescale, which should be set to the timescale for the track.

After calling QTSS_P1ay, the module is invoked in the RTP Send Packets role.

Call QTSS_Pause (page 156) to pause playing or call QTSS_Teardown (page 164) to close the client session.

QTSS_Read

Reads data from a stream.

QTSS_Error QTSS_Read(
QTSS_StreamRef inRef,
void* ioBuffer,

UInt32 inBuflen,
UInt32* outlLengthRead);

Parameters
inRef

On input, a value of type QTSS_StreamRef (page 170) that specifies the stream from which data is
to be read. Call QTSS_OpenFileObject to obtain a stream reference for the file you want to read.

Callbacks 157
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

158

CHAPTER 3
QTSS Callback Routines

ioBuffer
On input, a pointer to a buffer in which data that is read is to be placed.

inBuflen
On input, a value of type UInt32 that specifies the length of the buffer pointed to by ioBuffer.

outlenRead
On output, a pointer to a value of type UInt32 that contains the number of bytes that were read.

result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameter is invalid,
QTSS_WouldB1ock if the read operation would block, or QTSS_RequestFailed if the read operation
failed.

Discussion
The QTSS_Read callback routine reads a buffer of data from a stream.

QTSS_RemovelnstanceAttribute

Remove an instance attribute from the instance of an object.

QTSS_Error QTSS_RemovelnstanceAttribute(
QTSS_0Object inObject,
QTSS_AttributelID inID);

Parameters

inObject
On input, a value of type QTSS_0Object (page 169) that specifies the object from which the instance
attribute is to be removed.

inlD
On input, a value of typeQTSS_AttributeID (page 169) that specifies the ID of the attribute that is
to be removed.

result
A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if the specified object instance
does not exist, and QTSS_AttrDoesntExist if the attribute doesn't exist.

Discussion

The QTSS_RemovelInstanceAttribute callback routine removes the attribute specified by the inID

parameter from the instance of an object specified by the inObject parameter.

The QTSS_RemovelInstanceAttribute callback can be called from any role.

QTSS_RemoveValue

Removes the specified value from an attribute.

QTSS_Error QTSS_RemoveValue (
QTSS_0Object inObject,
QTSS_AttributeID inlID,
UInt32 inIndex);

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

Parameters

inObject
Oninput, a value of type QTSS_Object (page 169) having an attribute whose value is to be removed.

inValuelen
On input, a value of type QTSS_AttributelD (page 169) containing the attribute ID of the attribute
whose value is to be removed.

inIndex
On input, a value of type UInt32 that specifies the attribute value that is to be removed. Attribute
value indexes are numbered starting from zero.

result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if InObject, inID, or
inIndex do not contain valid values, QTSS_ReadOn1y if the attribute is read-only, and
QTSS_BadIndex if the specified index does not exist.

Discussion

The QTSS_RemoveValue callback routine removes the value of the specified attribute. After the value is
removed, the attribute values are renumbered.

QTSS_RequestEvent

Requests notification of specified events.

QTSS_Error QTSS_RequestEvent(
QTSS_StreamRef inStream,
QTSS_EventType inEventMask);

Parameters

inStream
On input, a value of type QTSS_StreamRef (page 170) that specifies the stream for which event
notifications are requested.

inEventMask
On input, a value of type QTSS_EventType (page 175) specifying a mask that represents the events
for which notifications are requested.

result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameter is invalid,
and QTSS_RequestFailed if the call failed.

Discussion

The QTSS_RequestEvent callback requests that the caller be notified when the specified events occur on

the specified stream. After calling QTSS_RequestEvent, the calling module should return as soon as possible

from its current module role. The server preserves the calling module’s current state and, when the event
occurs, calls the module in the role the module was in when it called QTSS_RequestEvent.

QTSS_Seek

Sets the position of a stream.

QTSS_Error QTSS_Seek(

Callbacks 159
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

160

CHAPTER 3
QTSS Callback Routines

QTSS_StreamRef inRef,
UInt64 inNewPosition);

Parameters
inRef
On input, a value of type QTSS_StreamRef (page 170) QTSS_StreamRef that specifies the stream
whose position is to be set. Call QTSS_OpenFileObject to obtain stream reference.
inNewPosition
On input, the offset in bytes from the start of the stream to which the position is to be set.
result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameter is invalid,
and QTSS_RequestFailed if the seek operation failed.

Discussion
The QTSS_Seek callback routine sets the stream position to the value specified by inNewPosition.

QTSS_SendRTSPHeaders
Sends an RTSP header.

QTSS_Error QTSS_SendRTSPHeaders(QTSS_RTSPRequestOjbect inRef);

Parameters

inRef
On input, a value of type QTSS_RTSPRequestObject for the RTSP stream.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if a parameter is invalid.
Discussion
The QTSS_SendRTSPHeaders callback routine sends an RTSP header. When a module calls
QTSS_SendRTSPHeaders, the server sends a proper RTSP status line, using the request’s current status code.
The server also sends the proper CSeq header, session ID header, and connection header.

QTSS_SendStandardRTSPResponse

Sends an RTSP response to a client.

QTSS_Error QTSS_SendStandardRTSPResponse(
QTSS_RTSPRequestObject inRTSPRequest,
QTSS_Object inRTPInfo,

UInt32 inFlags);

Parameters

TnRTSPRequest
On input, a value of type QTSS_RTSPRequestObject for the RTSP stream.

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

inRTPInfo
Oninput, a value of type QTSS_0Object (page 169). This parameterisa QTSS_ClientSessionObject
ora QTSS_RTPStream0Object, depending the response that is sent.

infFlags
Oninput, a value of type UTnt32.Set inFlagstoqtssPlayRespWriteTrackInfo if you wantthe
server to append the seq number, a timestamp, and SSRC information to RTP-Info headers.

result
A result code. Possible values include QTSS_NoErr and QTSS_BadArgument if a parameter is invalid.

Discussion
The QTSS_SendStandardRTSPResponse callback routine writes a standard response to the stream specified
by the inRTSPRequest parameter. The actual response that is sent depends on the method.

The following enumeration defines the qt ssPTayRespWriteTrackInfo constantforthe inFlags parameter:

enum
{
qtssPlayRespWriteTrackInfo = 0x00000001

Vs
This function supports the following response methods:

m DESCRIBE. This response method writes status line, CSeq, SessionID, Connection headers as determined
by the request. Writes a Content-Base header with the content base being the URL provided. Writes a
Content-Type header of application/sdp. The inRTPInfo parameter must be a
QTSS_ClientSessionObject.

= ANNOUNCE. This response method writes status line, CSeq, and Connection headers as determined by
the request. The inRTPInfo parameter must be a QTSS_ClientSessionObject.

m SETUP This response method writes status line, CSeq, SessionID, Connection headers as determined by
the request. Writes a Transport header with client and server ports (if the connection is over UDP). The
inRTPInfo parameter must be a QTSS_RTPStreamObject.

m PLAY. This response method writes status line, CSeq, SessionID, Connection headers as determined by
the request. The inRTPInfo parameter must be a QTSS_ClientSessionObject. Setthe inFlags
parameter to qtssPlayRespWriteTrackInfo to specify that you want the server to append the
sequence number, timestamp, and SSRC information to the RTP-Info header.

m PAUSE. This response method writes status line, CSeq, SessionID, Connection headers as determined by
the request. The inRTPInfo parameter must be a QTSS_ClientSessionObject.

m TEARDOWN. This response method writes status line, CSeq, SessionlD, Connection headers as determined
by the request. The inRTPInfo parameter must be a QTSS_ClientSessionObject.

QTSS_SetValue

Sets the value of an attribute.

QTSS_Error QTSS_SetValue (
QTSS_Object inObject,
QTSS_AttributelID inlID,
UInt32 inlIndex,
const void* inBuffer,

Callbacks 161
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

162

CHAPTER 3
QTSS Callback Routines

UInt32 inLen);

Parameters

inObject
On input, a value of type QTSS_0bject (page 169) that specifies the object containing the attribute
whose value is to be set.

iniD
Oninput, a value of type QTSS_AttributelD (page 169) that specifies the ID of the attribute whose
value is to be set.

inlIndex
On input, a value of type UInt32 that specifies which attribute value to set (if the attribute can have
multiple values) or zero for single-value attributes.

inBuffer
On input, a pointer to a buffer containing the value that is to be set. When QTSS_SetVaTlue returns,
you can dispose of inBuffer.

inLen
On input, a pointer to a value of type UInt32 that specifies the length of valid data in inBuffer.

result
A result code. Possible values are QTSS_NoErr, QTSS_BadIndex if the index specified by inIndex
does not exist, QTSS_BadArgument if a parameter is invalid, QTSS_ReadOn1y if the attribute is
read-only, and QTSS_AttrDoesntExist if the attribute doesn't exist.

Discussion

The QTSS_SetValue callback routine explicitly sets the value of the specified attribute. Another way to set
the value of an attribute is to call QTSS_SetValuePtr (page 162).

QTSS_SetValuePtr

Sets an existing variable as the value of an attribute.

QTSS_Error QTSS_SetValue (
QTSS_0Object inObject,
QTSS_AttributelID inlID,
const void* inBuffer,
UInt32 inlLen);

Parameters

inObject
On input, a value of type QTSS_0bject (page 169) that specifies the object containing the attribute
whose value is to be set.

inID
Oninput, a value of type QTSS_AttributelD (page 169) that specifies the ID of the attribute whose
value is to be set.
inBuffer
On input, a pointer to a buffer containing the value that is to be set.
inLen
On input, a pointer to a value of type UInt32 that specifies the length of valid data in inBuffer.
Callbacks

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

result
A result code. Possible values are QTSS_NoErr, QTSS_BadArgument if a parameter is invalid, and
QTSS_ReadOnTly if the attribute is a read-only attribute.
Discussion
The QTSS_SetValuePtr callback routine allows modules to set an attribute that its value is the value of a
module’s variable. This callback is an alternative to the QTSS_SetValue (page 161) callback.

After calling QTSS_SetValuePtr, the module must insure that the buffer pointed to by inBuffer exists as
long as the attribute specified by in1D exists.

If the buffer pointed to by inBuffer is not updated atomically, updating the value of inBuffer should be
protected by calling QTSS_LockObject (page 154) before an update.callback

QTSS_SignalStream

Notifies the recipient of events that a stream has become available for I/0.

QTSS_Error QTSS_RequestEvent(
QTSS_StreamRef inStream,
QTSS_EventType inEventMask);

Parameters
inStream

Oninput, a value of type QTSS_StreamRef (page 170) specifying the stream that has become available
for 1/0.

inEventMask
On input, a value of type QTSS_EventType (page 175) containing a mask that represents whether
the stream has become available for reading, writing, or both.

result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameter is invalid,
QTSS_Out0fState if this callback is made from a role that does not allow asynchronous events, and
QTSS_RequestFailed if the call failed.

Discussion
The QTSS_SignalStream callback routine tells the server that the stream represented by inStream has
become available for I/0. Currently only file system modules have reason to call 0TSS_SignalStream.

QTSS_StringToValue

Converts an attribute data type in C string format to a value in QTSS_AttrDataType format.

QTSS_Error QTSS_StringToValue(
const char* inValueAsString,
const QTSS_AttrDataType inType,
void* ioBuffer,

UInt32* ioBufSize);

Callbacks 163
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

164

CHAPTER 3
QTSS Callback Routines

Parameters

inValueAsString
On input, a pointer to a character array containing the value that is to be converted.

inType
On input, a value of type QTSS_AttrDataType (page 173) that specifies the attribute data type to
which the value pointed to by inValueAsString is to be converted.

joBuffer
On input, a pointer to a buffer. On output, the buffer contains the attribute data type to which
inValueAsString has been converted. The calling module must allocate ioBuffer before calling
QTSS_StringToValue.

ToBufrSize
On input, a pointer to a value of type UInt32 that specifies the length of the buffer
pointed to by ioBuffer. On output, ioBufSize points to the length of data in ioBuffer.
result
A result code. Possible values are QTSS_NoErr,QTSS_BadArgumentifinValueAsStringorinType
do not contain valid values, and QTSS_NotEnoughSpace if the buffer pointed to by ioBuffer is too
small to contain the converted value.

Discussion
The QTSS_StringToValue callback routine converts an attribute data type that is in C string format to a
value thatis in QTSS_AttrDataType format.

When the memory allocated for the buffer pointed to by i oBuffer is no longer needed, you should deallocate
the memory.

QTSS_Teardown

Closes a client session.

QTSS_Error QTSS_Teardown(QTSS_ClientSessionObject inClientSession);

Parameters

inClientSession
On input, a value of type QTSS_ClientSession0bject that identifies the client session that is to
be closed.

result
A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if a parameter is invalid.

Discussion
The QTSS_Teardown callback routine closes a client session.

The module that called QTSS_AddRTPStream (page 142) is the only module that can call QTSS_Teardown.

Calling QTSS_Teardown causes the calling module to be invoked in the Client Session Closing role for the
session identified by the inC1ientSession parameter.

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

QTSS_TypeStringToType
Gets the attribute data type of a data type string that is in C string format.

QTSS_Error QTSS_TypeStringToType(
const char* inTypeString,
QTSS_AttrDataType* outType);

Parameters
inTypeString
On input, a pointer to a character array containing the attribute data type in C string format.
outType
On output, a pointer to avalue of type QTSS_AttrDataType (page 173) containing the attribute data
type.
result
A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if inTypeString does not
contain a value for which an attribute data type can be returned.
Discussion

The QTSS_TypeStringToType callback routine gets the attribute data type of a data type string that is in
C string format.

QTSS_TypeToTypeString

Gets the name in C string format of an attribute data type.

QTSS_Error QTSS_TypeToTypeString(
const QTSS_AttrDataType inType,
char** outTypeString);

Parameters

inType
On input, a pointer to a value of type QTSS_AttrDataType (page 173) containing the attribute data
type that is to be returned in C string format.

outType
On input, a pointer to an address in memory. On output, outType points to a C string containing
the attribute data type.

result
A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if inType does not contain
a valid attribute data type.
Discussion
The QTSS_TypeToTypeString callback routine gets the name in C string format of a value that is in
QTSS_AttrDataType format.

Callbacks 165
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

166

CHAPTER 3
QTSS Callback Routines

QTSS_UnLockObject

Unlocks an object.
QTSS_Error QTSS_UnLockObject(QTSS_0Object inObject);

Parameters

inObject
On input, a value of type QTSS_0Object (page 169) that is to be unlocked.

result
A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if the specified object is not
a valid object.

Discussion

The QTSS_UnlLockObject callback routine unlocks an object that was previously locked by
QTSS_LockObject (page 154).

QTSS_ValueToString

Converts an attribute data type in QTSS_AttrDataType format to a value in C string format.

QTSS_Error QTSS_ValueToString(
const void* inValue,
const UInt32 inValuelen,
const QTSS_AttrDataType inType,
char** outString);

Parameters
inValue
On input, a pointer to a buffer containing the value that is to be converted from QTSS_AttrDataType
format.
inValuelen
On input, a value of type UInt32 that specifies the length of the value pointed to by inValue.
inType
On input, a value of type QTSS_AttrDataType (page 173) that specifies the attribute data type of
the value pointed by inValue.

outString
On output, a pointer to a location in memory containing the attribute data type in C string format.

result

A result code. Possible values are QTSS_NoErr and QTSS_BadArgument if inValue, inValuelen,
or inType do not contain valid values.

Discussion
The QTSS_ValueToString callback routine converts an attribute data type in QTSS_AttrDataType format
to a value in C string format.

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 3
QTSS Callback Routines

QTSS_Write

Writes data to a stream.

QTSS_Error QTSS_Write(
QTSS_StreamRef inRef,
void* inBuffer,

UInt32 inlLen,
UInt32* outlLenWritten,
UInt32 inFlags);

Parameters

inRef
On input, a value of type QTSS_StreamRef (page 170) that specifies the stream to which data is to
be written.

inBuffer
On input, a pointer to a buffer containing the data that is to be written.

inLen
On input, a value of type UInt32 that specifies the length of the data in the buffer pointed to by
ioBuffer.
outlenWritten
On output, a pointer to a value of type UInt32 that contains the number of bytes that were written.
inflags
On input, a value of type UInt32. See the Discussion section for possible values.
result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameter is invalid,
QTSS_NotConnected if the stream receiver is no longer connected, and QTSS_WouldBTlock if the
stream cannot be completely flushed at this time.

Discussion
The QTSS_Write callback routine writes a buffer of data to a stream.

The following enumeration defines constants for the inFlags parameter:

enum
{
qtssWriteFlagsIsRTP = 0x00000001,
qtssWriteFlagsIsRTCP= 0x00000002
b

These flags are relevant when writing to an RTP stream reference and tell the server whether the data written
should be sent over the RTP channel (qtssWriteF1agsIsRTP) or over the RTCP channel of the specified
RTP stream (qtssWriteFlagsIsRTCP).

QTSS_ WriteV

Writes data to a stream using an iovec structure.

QTSS_Error QTSS_WriteV(
QTSS_StreamRef inRef,

Callbacks 167
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

168

CHAPTER 3
QTSS Callback Routines

iovec* inVec,

UInt32 inNumVectors,
UInt32 inTotallength,
UInt32* outlLenWritten);

Parameters

inRef
On input, a value of type QTSS_StreamRef (page 170) that specifies the stream to which data is to
be written.

inlVec
On input, a pointer to an iovec structure. The first member of the iovec structure must be empty.

inNumVectors
On input, a value of type UInt32 that specifies the number of vectors.

inTotallength
On input, a value of type UInt32 specifying the total length of inVec.

outlLenWritten
On output, a pointer to a value of type UInt32 containing the number of bytes that were written.

result
A result code. Possible values include QTSS_NoErr, QTSS_BadArgument if a parameteris NULL, and
QTSS_WouldBlock if the write operation would block.
Discussion
The QTSS_WriteV callback routine writes a data to a stream using an iovec structure in a way that is similar
to the POSIX writev call.

Callbacks
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4

QTSS Data Types

QTSS_AttributelD
A QTSS_AttributelD is a signed 32-bit integer that uniquely identifies an attribute.

typedef SInt32 QTSS_AttributelD;

QTSS_Object
A QTSS_0Object is a pointer to a value that identifies a particular object. The QTSS_0bject is defined as

typedef void* QTSS_Object;

Discussion
The QTSS_0bject is used to define other QTSS objects:

typedef QTSS_Object QTSS_RTPStreamObject;
typedef QTSS_Object QTSS_RTSPSessionQObject;
typedef QTSS_Object QTSS_RTSPRequestObject;
typedef QTSS_Object QTSS_RTSPHeaderQObject;
typedef QTSS_0Object QTSS_ClientSessionObject;
typedef QTSS_0Object QTSS_ConnectedUserObject;
typedef QTSS_Object QTSS_ServerObject;
typedef QTSS_Object QTSS_PrefsObject;

typedef QTSS_Object QTSS_TextMessagesObject;
typedef QTSS_Object QTSS_FileObject;

typedef QTSS_Object QTSS_ModuleObject;
typedef QTSS_Object QTSS_ModulePrefsObject;
typedef QTSS_Object QTSS_AttrinfolObject;
typedef QTSS_Object QTSS_UserProfileObject;

QTSS_ObjectType
A QTSS_0ObjectType is a value of type UInt32 that identifies a particular QTSS object type.

typedef UInt32 QTSS_ObjectType;

Discussion
Constants for the following QTSS object types are defined:

m qgtssAttrInfoObjectType — The attribute information object type. Objects of this type have attributes
that describe an attribute.

m qtssClientSessionObjectType — The client session object type. Objects of this type have attributes
that describe a client session.

m gtssConnectedUsderObjectType — The connected user object type. Objects of this type have
attributes that described connections other than those described by qtssClientSessionObjectType objects.

169
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

170

CHAPTER 4
QTSS Data Types

m qtssFileObjectType — Thefile object type. Objects of this type have attributes that describe an open
file.

m gtssModuleObjectType — The module object type. Objects of this type have attributes that describe
a QTSS module.

m gtssModulePrefsObjectType — The module preferences object type. Objects of this type have
attributes that describe module preferences.

m qtssPrefsObjectType — The preferences object type. Objects of this type have attributes that describe
the server’s preferences.

m qtssRTPStreamObjectType — The RTPS stream object type. Objects of this type have attributes that
describe an RTP stream.

m (qtssRTSPHeaderObjectType — The RTSP header object type. Objects of this type have attributes
that contain all of the RTSP headers associated with an individual RTSP request.

m (qtssRTSPRequestObjectTYPE — The RTSP request object type. Objects of this type have attributes
that describe a particular RTSP request.

m qtssRTSPSessionObjectType — The RTSP session object type. Objects of this type have attributes
that describe an RTSP client-server connection.

m qgtssServerObjectType — The server object type. Objects of this type have attributes that contain
global server information, such as server statistics.

m gtssTextMessageOjbectType — The text messages object type. Objects of this type have attributes
that contain messages intended for display to the user.

m gtssUserProfileObjectType — The user profile object type. Objects of this type have attributes
that contain information about a user, such as name, password, the groups the user is a member of, and
the user’s authentication realm.

QTSS_Role

A value of type QTSS_Ro1e is an unsigned 32-bit integer used to store module roles. It is defined as

typedef UInt32 QTSS_Role;

QTSS_ServicelD

A QTSS_ServicelD is a signed 32-bit integer that uniquely identifies a service. It is defined as

typedef SInt32 QTSS_ServicelD;

QTSS_StreamRef

A value of type QTSS_StreamRef is a pointer to a value that identifies a particular stream. It is defined as
typedef void* QTSS_StreamRef;

Discussion
The QTSS_StreamRef is used to define other stream references:

typedef QTSS_StreamRef QTSS_ErrorlLogStream;

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
QTSS Data Types

typedef QTSS_StreamRef QTSS_FileStream;
typedef QTSS_StreamRef QTSS_RTSPSessionStream;
typedef QTSS_StreamRef QTSS_RTSPRequestStream;
typedef QTSS_StreamRef QTSS_RTPStreamStream;
typedef QTSS_StreamRef QTSS_SocketStr

QTSS_TimeVal

A value of type QTSS_TimeVal is a signed 64-bit integer used to store time values. It is defined as

typedef SInt64 QTSS_TimeVal;

171
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 4
QTSS Data Types

172
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5

QTSS Constants

QTSS_AttrDataType

Each QTSS attribute has an associated data type. The QTSS_AttrDataType enumeration defines values for
attribute data types. Having an attribute’s data type helps the server and modules handle an attribute value
without having specific knowledge about the attribute.

typedef UInt32 QTSS_AttrDataType;

enum

{
gtssAttrDataTypeUnknown
gtssAttrDataTypeCharArray
qtssAttrDataTypeBooll6
qtssAttrDataTypeSIntlé
qtssAttrDataTypeUIntl6 =
gtssAttrDataTypeSInt32
gtssAttrDataTypelUInt32
qtssAttrDataTypeSInt64d
qtssAttrDataTypeUInt64 =
gtssAttrDataTypeQTSS_Object 9,
gtssAttrDataTypeQTSS_StreamRef= 10,
gtssAttrDataTypeFloat3? =11,

O ~NOYOT WO

gtssAttrDataTypeFloat64 =12,
gtssAttrDataTypeVoidPointer = 13,
gtssAttrDataTypeTimeVal = 14,
gtssAttrDataTypeNumTypes =15

b

Constants
gtssAttrDataTypeUnknown
The data type is unknown.

gtssAttrDataTypeCharArray

The data type is a character array.
gtssAttrDataTypeBooll6

The data type is a 16-bit Boolean value.
qtssAttrDataTypeSIntlé

The data type is a signed 16-bit integer.
qtssAttrDataTypeUIntl6

The data type is an unsigned 16-bit integer.
gtssAttrDataTypeSInt32

The data type is a signed 32-bit integer.
qtssAttrDataTypeUInt32

The data type is an unsigned 32-bit integer.

gtssAttrDataTypeSInte4d
The data type is a signed 64-bit integer.

173
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
QTSS Constants

qtssAttrDataTypeQTSS_0Object
The data typeisa QTSS_0bject (page 169).

qtssAttrDataTypeQTSS_StreamRef
The data typeisa QTSS_ServerState (page 178).

gtssAttrDataTypeFloat3?
The data typeisa Float32.

gtssAttrDataTypeFloat64
The data typeisa Float64.

gtssAttrDataTypeVoidPointer
The data type is a pointer to a void.

gtssAttrDataTypeTimeVal
The data typeisa QTSS_TimeVal (page 171).

gtssAttrDataTypeNumTypes
The data type is a value that describes the number of types.

QTSS_AttrPermission

The QTSS_AttrPermission data type is an enumeration that defines values used to indicate whether an
attribute is readable, writable, or preemptive safe. The data type of the gtssAttrPermissions attribute
of the QTSS_AttrInfoObject object type is of type QTSS_AttrPermission.

typedef UInt32 QTSS_AttrPermission;

enum

{
qtssAttrModeRead =1,
gtssAttrModeWrite =2,
gtssAttrModePreempSafe= 4

Vs

Constants
gtssAttrModeRead
The attribute is readable.

gtssAttrModeWrite
The attribute is writable.

qtssAttrModePrempSafe
The attribute is preemptive safe.

Discussion
Once set, attribute permissions cannot be changed.

QTSS_AddStreamFlags

The QTSS_AddStreamFlags enumeration defines flags that specify stream options when adding RTP
streams.

174
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
QTSS Constants

enum
{
qtssASFlagsAllowDestination = 0x00000001,
qtssASFlagsForcelnterleave 0x00000002

b
typedef UInt32 QTSS_AddStreamFlags;

Constants

qtssASFlagsAllowDestination

qtssASFlagsForcelnterleave
Requires interleaving.

QTSS_CliSesTeardownReason

The QTSS_CliSesTeardownReason enumeration defines values that describe why a session is closing. The
QTSS_RTPSessionState enumeration is defined as

enum
{
qtssCliSesTearDownClientRequest = 0,
gtssCliSesTearDownUnsupportedMedia = 1,
gtssCliSesTearDownServerShutdown = 2,
qtssCliSesTearDownServerInternalkErr = 3
b
typedef UInt32 QTSS_CliSesTeardownReason;

Constants
qtssCliSesTearDownClientRequest
The client requested that the session be closed.

gtssCliSesTearDownUnsupportedMedia
The session is being closed because the media is not supported.

gtssCliSesTearDownServerShutdown
The server requested that the session be closed.

qtssCliSesTearDownServerInternalErr
The session is being closed because of a server error.

QTSS_EventType

A QTSS_EventType is an unsigned 32-bit integer whose value uniquely identifies stream I/O events.

enum
{
QTSS_ReadableEvent =1,
QTSS_WriteableEvent =2
b
typedef UInt32 QTSS_EventType;

Constants
QTSS_ReadableEvent
The stream has become readable.

QTSS_WriteableEvent
The stream has become writable.

175
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

176

CHAPTER 5
QTSS Constants

QTSS_OpenFileFlags

A QTSS_0OpenFileFlags is an unsigned 32-bit integer whose value describes how a file is to be opened.

enum

{
qtssOpenFileNoFlags = 0,
qtssOpenFileAsync =1,
qtssOpenFileReadAhead= 2

b

typedef UInt32 QTSS_OpenFileFlags;

Constants
qtssOpenFileNoFlags
No open flags are specified.

qtssOpenFileAsync
The file stream will be read asynchronously. Reads may return QTSS_Wou1dB1ock. Modules that open
files with qtssOpenFileAsync should call 0TSS_RequestEvent (page 159) to be notified when
data is available for reading.

qtssOpenReadAhead
The file stream will be read in order from beginning to end. The file system module may read ahead
in order to respond more quickly to future read calls.

QTSS_RTPPayloadType

The QTSS_RTPPayloadType enumeration defines values that a module uses to specify the stream’s payload
type when it adds an RTP stream to a client session. The enumeration is defined as

enum
{
gtssUnknownPayloadType
qtssVideoPayloadType =
qtssAudioPayloadType =

N~

b
typedef UInt32 QTSS_RTPPayloadType;

Constants
gtssUnknownPayloadType
The payload type is unknown.

gtssVideoPayloadType
The payload type is video.

gtssAudioPayloadType
The payload type is audio.

QTSS_RTPNetworkMode

The QTSS_RTPNetworkMode enumeration defines values that describe the RTP network mode. These values
are set as the value of the qtssRTPStrNetworkMode and qtssRTSPReqNetworkMode attributes of
objects of type qtssRTPStreamObjectType and qtssRTSPRequestObjectType, respectively. The
QTSS_RTPNetworkMode enumeration is defined as

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
QTSS Constants

enum

{
qtssRTPNetworkModeDefault = 0,
qtssRTPNetworkModeMulticast = 1,
qtssRTPNetworkModeUnicast= 2

b

typedef UInt32 QTSS_RTPNetworkModes;

Constants
qtssRTPNetworkModeDefault
The RTP network mode is not declared.

gtssRTPNetworkModeMulticast
The RTP network mode is multicast.

gtssRTPNetworkModeUnicast
The RTP network mode is unicast.

QTSS_RTPSessionState

The QTSS_RTPSessionState enumeration defines values that identify the state of an RTP session. The
QTSS_RTPSessionState enumeration is defined as

enum
{
gtssPausedState = 0,
gtssPlayingState = 1
b
typedef UInt32 QTSS_RTPSessionState;

Constants
gtssPausedState
The RTP session is paused.

gtssPlayingState
The RTP session is playing.

QTSS_RTPTransportType

The QTSS_RTPTransportType enumeration defines values for RTP transports. The enumeration is defined
as

enum

{
qtssRTPTransportTypeUDP =0,
qtssRTPTransportTypeReliableUDP= 1,
qtssRTPTransportTypeTCP =2

b

typedef UInt32 QTSS_RTPTransportType;

Constants
qtssRTPTransportTypeUDP
The RTP transport type is UDP.

qtssRTPTransportTypeReliableUDP
The RTP transport type is Reliable UDP.

177
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
QTSS Constants

qtssRTPTransportTypeTCP
The RTP transport type is TCP.

QTSS_RTSPSessionType

The QTSS_RTSPSessionType enumeration defines values that specify RTSP session types. The enumeration

is defined as

enum

{
qtssRTSPSession =0,
qtssRTSPHTTPSession =1,

qtssRTSPHTTPInputSession= 2
b
typedef UInt32 QTSS_RTSPSessionType;

Constants
qtssRTSPSession
The session is an RTSP session.

qtssRTSPHTTPSession
The session is an RTSP session tunneled over HTTP.

qtssRTSPHTTPInputSession
The session is the input half of an RTSP session tunneled over HTTP.

Discussion
These session types are usually very short lived.

QTSS_ServerState

The QTSS_ServerState enumeration defines values that describe the server’s state. Modules can set the
server's state by setting the value of the qtssSvrState attribute in the QTSS_ServerObject object. The
enumeration is defined as

enum

{
gtssStartingUpState =0,
gtssRunningState =1,
qtssRefusingConnectionsState= 2,
gtssFatalErrorState = 3,
gtssShuttingDownState =4,
gtssldleState =5

b
typedef UInt32 QTSS_ServerState;

Constants
gtssStartingUpState
The server is starting up.

gtssRunningState
The server is running.

gtssRefusingConnectionsState
Setting the server to this state causes the server to refuse new connections.

178
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
QTSS Constants

gtssFatalErrorState
Setting the server to this state causes the server to quit. When the server is running in the background,
setting the server to this state causes the server to quit and restart (Mac OS X and POSIX platforms).

gtssShuttingDownState
Setting the server to this state causes the server to quit.

gtssldleState
Setting the server to this state causes the server to refuse new connections and disconnect existing
connections.

179
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

CHAPTER 5
QTSS Constants

180
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

REVISION HISTORY

Document Revision History

This table describes the changes to QuickTime Streaming Server Modules Programming Guide.

Date

Notes

2005-04-29

Updated for consistency with version 5.0 of the programming interface for
creating QuickTime Streaming Server (QTSS) modules.

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

181

REVISION HISTORY

Document Revision History

182
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

Index

Q

qtssASFlagsAllowDestination constant 175
qtssASFlagsForcelnterleave constant 175
qtssAttrDataTypeBool16 constant 173
qtssAttrDataTypeCharArray constant 173
qtssAttrDataTypeFloat32 constant 174
qtssAttrDataTypeFloat64 constant 174
qtssAttrDataTypeNumTypes constant 174
qtssAttrDataTypeQTSS_Object constant 174
qtssAttrDataTypeQTSS_StreamRef constant 174
qtssAttrDataTypeSIntl6 constant 173
qtssAttrDataTypeSInt32 constant 173
qtssAttrDataTypeSInt64 constant 173
qtssAttrDataTypeTimeVal constant 174
qtssAttrDataTypeUIntl6 constant 173
qtssAttrDataTypeUInt32 constant 173
qtssAttrDataTypeUnknown constant 173
qtssAttrDataTypeVoidPointer constant 174
qtssAttrModePrempSafe constant 174
qtssAttrModeRead constant 174
qtssAttrModelrite constant 174
qtssAudioPayloadType constant 176
qtssCliSesTearDownClientRequest constant 175
qtssCliSesTearDownServerInternalErr constant
175
qtssCliSesTearDownServerShutdown constant 175
qtssCliSesTearDownUnsupportedMedia constant
175
qtssFatalErrorState constant 179
qtssldleState constant 179
qtssOpenFileAsync constant 176
qtssOpenFileNoFTags constant 176
qtssOpenReadAhead constant 176
qtssPausedState constant 177
qtssPlayingState constant 177
qtssRefusingConnectionsState constant 178
qtssRTPNetworkModeDefault constant 177
qtssRTPNetworkModeMulticast constant 177
qtssRTPNetworkModeUnicast constant 177
qtssRTPTransportTypeReliableUDP constant 177

qtssRTPTransportTypeTCP constant 178
qtssRTPTransportTypeUDP constant 177
qtssRTSPHTTPInputSession constant 178
qtssRTSPHTTPSession constant 178
qtssRTSPSession constant 178
gtssRunningState constant 178
gtssShuttingDownState constant 179
gtssStartingUpState constant 178
gtssUnknownPayloadType constant 176
qtssVideoPayloadType constant 176

QTSS_AddInstanceAttribute callback 140

QTSS_AddRoTe callback 141
QTSS_AddRTPStream callback 142
QTSS_AddService callback 142
QTSS_AddStaticAttribute callback 143
QTSS_AddStreamFlags 174

QTSS_Advis callback 144
QTSS_AppendRTSPHeader callback 144
QTSS_AttrDataType 173
QTSS_AttributelD data type 169
QTSS_AttrPermission 174
QTSS_CliSesTeardownReason 175
QTSS_CloseFileObject callback 145
QTSS_CreateObjectType callback 145
QTSS_CreateObjectValue callback 146
QTSS_Delete callback 146
QTSS_DoService callback 147
QTSS_EventType 175

QTSS_Flush callback 147
QTSS_GetAttrInfoByID callback 148
QTSS_GetAttrInfoByIndex callback 148
QTSS_GetAttrInfoByName callback 149
QTSS_GetNumAttributes callback 150
QTSS_GetValue callback 150
QTSS_GetValueAsString callback 151
QTSS_GetValuePtr callback 152
QTSS_IDForAttr callback 153
QTSS_IDForService callback 153
QTSS_LockObject callback 154
QTSS_Milliseconds callback 154
QTSS_Mil11iSecsTol970Secs callback 155
QTSS_New callback 155

2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

183

INDEX

QTSS_Object data type 169
QTSS_ObjectType data type 169
QTSS_OpenfFileFlags 176
QTSS_OpenFileObject callback 155
QTSS_Pause callback 156

QTSS_Play callback 156

QTSS_Read callback 157
QTSS_ReadableEvent constant 175
QTSS_RemovelnstanceAttribute callback 158
QTSS_RemoveValue callback 158
QTSS_RequestEvent callback 159
QTSS_RoTle data type 170
QTSS_RTPNetworkMode 176
QTSS_RTPPayloadType 176
QTSS_RTPSessionState 177
QTSS_RTPTransportType 177
QTSS_RTSPSessionType 178
QTSS_Seek callback 159
QTSS_SendRTSPHeaders callback 160
QTSS_SendStandardRTSPResponse callback 160
QTSS_ServerState 178
QTSS_ServicelD data type 170
QTSS_SetValue callback 161
QTSS_SetValuePtr callback 162
QTSS_SignalStream callback 163
QTSS_StreamRef data type 170
QTSS_StringToValue callback 163
QTSS_Teardown callback 164
QTSS_TimeVal data type 171
QTSS_TypeStringToType callback 165
QTSS_TypeToTypeString callback 165
QTSS_UnLock0Object callback 166
QTSS_ValueToString callback 166
QTSS_Write callback 167
QTSS_WriteableEvent constant 175
QTSS_WriteV callback 167

184
2005-04-29 | © 2002, 2005 Apple Computer, Inc. All Rights Reserved.

	QuickTime Streaming Server Modules Programming Guide
	Contents
	Figures, Tables, and Listings
	Introduction
	What’s New
	Conventions Used in This Manual
	For More Information

	Concepts
	Server Architecture
	Modules
	Content-Managing Modules
	Server-Support Modules
	Access Control Modules

	Protocols
	Data
	Classes
	Applications and Tools
	PlayListBroadcaster
	MP3Broadcaster
	StreamingProxy
	QTFileTools
	WebAdmin
	qtpasswd

	Source Organization
	Server.tproj
	CommonUtilitiesLib
	QTFileLib
	APICommonCode
	APIModules
	RTSPClientLib
	RTCPUtilitiesLib
	APIStubLib
	HTTPUtilitiesLib

	Server Preference Naming

	Requirements for Modules
	Main Routine
	Dispatch Routine

	Overview of QuickTime Streaming Server Operations
	Server Startup and Shutdown
	RTSP Request Processing

	Runtime Environment for QTSS Modules
	Server Time

	Naming Conventions
	Module Roles
	Register Role
	Initialize Role
	Shutdown Role
	Reread Preferences Role
	Error Log Role
	RTSP Roles
	RTSP Filter Role
	RTSP Route Role
	RTSP Preprocessor Role
	RTSP Request Role
	RTSP Postprocessor Role

	RTP Roles
	RTP Send Packets Role
	Client Session Closing Role

	RTCP Process Role

	QTSS Objects
	qtssAttrInfoObjectType
	qtssClientSessionObjectType
	qtssConnectedUserObjectType
	qtssDynamicObjectType
	qtssFileObjectType
	qttsModuleObjectType
	qtssModulePrefsObjectType
	QTSSAccessLogModule Preferences
	QTSSAccessModule Preferences
	QTSSAdminModule Preferences
	QTSSFileModule Preferences
	QTSSFlowControlModule Preferences
	QTSSHomeDirectoryModule Preferences
	QTSSMP3StreamingModule Preferences
	QTSSReflectorModule Preferences
	QTSSRefMovieModule Preferences
	QTSSRelayModule Preferences

	qtssPrefsObjectType
	qtssRTPStreamObjectType
	qtssRTSPHeaderObjectType
	qtssRTSPRequestObjectType
	qtssRTSPSessionObjectType
	qtssServerObjectType
	qtssTextMessageObjectType
	qtssUserProfileObjectType

	QTSS Streams
	QTSS Services
	Built-in Services

	Automatic Broadcasting
	Automatic Broadcasting Scenarios
	Pull Then Push
	Listen Then Push

	ANNOUNCE Requests and SDP
	Access Control of Announced Broadcasts
	Broadcaster-to-Server Example
	Additional Trace Examples
	Trace of QuickTime Broadcaster Using TCP
	Trace of UDP Broadcast with Negotiated Server Ports
	Trace of ANNOUNCE and RECORD Using UDP Transport

	Stream Caching
	Speed RTSP Header
	x-Transport-Options Header
	RTP Payload Meta-Information
	RTP Data
	Transmission Time
	Frame Type
	Packet Number
	Packet Position
	Media Data
	Sequence Number

	Standard Format
	Compressed Format
	Negotiation for Use of Compressed Format
	x-RTP-Meta-Info RTSP Header Negotiation
	Describing RTP-Meta-Info Payload in SDP

	x-Packet-Range RTSP Header

	Reliable UDP
	Acknowledgment Packets
	RTSP Negotiation

	Tunneling RTSP and RTP Over HTTP
	HTTP Client Request Requirements
	Sample Client GET Request
	Sample Client POST Request

	HTTP Server Reply Requirements
	Sample Server Reply to a GET Request

	RTSP Request Encoding
	Connection Maintenance
	Support For Other HTTP Features

	Tasks
	Building the Streaming Server
	Mac OS X
	POSIX
	Windows

	Building a QuickTime Streaming Server Module
	Compiling a QTSS Module into the Server
	Building a QTSS Module as a Code Fragment

	Debugging
	RTSP and RTP Debugging
	Source File Debugging Support

	Working with Attributes
	Getting Attribute Values
	Setting Attribute Values
	Adding Attributes

	Using Files
	Reading Files Using Callback Routines
	Implementing a QTSS File System Module
	File System Module Roles
	Open File Preprocess Role
	Open File Role
	Advise File Role
	Read File Role
	Close File Role
	Request Event File Role

	Sample Code for the Open File Role
	Implementing Asynchronous Notifications

	Using the Admin Protocol
	Access to Server Data
	Request Syntax
	Request Functionality
	Data References
	Request Options
	Command Options
	GET Command Option
	SET Command Option
	DEL Command Option
	ADD Command Option
	Parameter Options

	Attribute Access Types
	Data Types
	Server Responses
	Unauthorized Response
	OK Response
	Response Data
	Array Values
	Response Root
	Errors in Responses
	Request and Response Examples

	Changing Server Settings
	Getting and Setting Preferences
	Getting and Changing the Server’s State

	Callbacks
	Callbacks by Task
	QTSS Utility Callback Routines
	QTSS Object Callback Routines
	QTSS Attribute Callback Routines
	Stream Callback Routines
	File System Callback Routines
	Service Callback Routines
	RTSP Header Callback Routines
	RTP Callback Routines

	Callbacks
	QTSS_AddInstanceAttribute
	QTSS_AddRole
	QTSS_AddRTPStream
	QTSS_AddService
	QTSS_AddStaticAttribute
	QTSS_Advis
	QTSS_AppendRTSPHeader
	QTSS_CloseFileObject
	QTSS_CreateObjectType
	QTSS_CreateObjectValue
	QTSS_Delete
	QTSS_DoService
	QTSS_Flush
	QTSS_GetAttrInfoByID
	QTSS_GetAttrInfoByIndex
	QTSS_GetAttrInfoByName
	QTSS_GetNumAttributes
	QTSS_GetValue
	QTSS_GetValueAsString
	QTSS_GetValuePtr
	QTSS_IDForAttr
	QTSS_IDForService
	QTSS_LockObject
	QTSS_Milliseconds
	QTSS_MilliSecsTo1970Secs
	QTSS_New
	QTSS_OpenFileObject
	QTSS_Pause
	QTSS_Play
	QTSS_Read
	QTSS_RemoveInstanceAttribute
	QTSS_RemoveValue
	QTSS_RequestEvent
	QTSS_Seek
	QTSS_SendRTSPHeaders
	QTSS_SendStandardRTSPResponse
	QTSS_SetValue
	QTSS_SetValuePtr
	QTSS_SignalStream
	QTSS_StringToValue
	QTSS_Teardown
	QTSS_TypeStringToType
	QTSS_TypeToTypeString
	QTSS_UnLockObject
	QTSS_ValueToString
	QTSS_Write
	QTSS_WriteV

	Data Types
	QTSS_AttributeID
	QTSS_Object
	QTSS_ObjectType
	QTSS_Role
	QTSS_ServiceID
	QTSS_StreamRef
	QTSS_TimeVal

	Constants
	QTSS_AttrDataType
	QTSS_AttrPermission
	QTSS_AddStreamFlags
	QTSS_CliSesTeardownReason
	QTSS_EventType
	QTSS_OpenFileFlags
	QTSS_RTPPayloadType
	QTSS_RTPNetworkMode
	QTSS_RTPSessionState
	QTSS_RTPTransportType
	QTSS_RTSPSessionType
	QTSS_ServerState

	Revision History
	Index
	Q

