

C H A P T E R 4

4

Z
one Inform

ation P
rotocol (Z

IP
)

Zone Information Protocol (ZIP) 4

This chapter describes the Zone Information Protocol (ZIP) that maintains mappings of
zone names to network numbers on internet routers. ZIP is primarily implemented by
routers. A small portion of ZIP is implemented on nodes that are not routers to allow
you to obtain zone information from a router node. This chapter describes only the
portion of ZIP that is implemented on a node that is not a router.

You should read this chapter if you want to obtain

■ the name of the zone to which the node belongs that is running your application

■ the names of the zones for the local network to which your application’s node
is connected

■ the names of all the zones that exist throughout the AppleTalk internet to which your
local network belongs

The portion of ZIP that is implemented on nodes that are not routers uses the AppleTalk
Transaction Protocol (ATP) to send requests for zone information to a router node. To
better understand how ZIP handles your requests for information and returns to you
responses to those requests, you should read the chapter “AppleTalk Transaction
Protocol (ATP)” in this book.

For an overview of the Zone Information Protocol and how it fits within the AppleTalk
protocol stack, read the chapter “Introduction to AppleTalk” in this book, which also
introduces and defines some of the terminology used in this chapter. For a description of
the Zone Information Protocol specification, see Inside AppleTalk, second edition.

About ZIP 4

The Zone Information Protocol (ZIP) provides applications and processes with access to
zone names. A zone is a logical grouping of nodes in an AppleTalk internet, and each
zone is identified by a name. A zone name is typically used to identify an affiliation
between a group of nodes, such as a group of nodes belonging to a particular department
within an organization.

ZIP maintains the mapping of networks and the zones they include for all networks
belonging to an AppleTalk internet:

■ Every node on a network belongs to a zone; a node can belong to only one zone at
a time.

■ A nonextended network contains only one zone, and all nodes in that network belong
to the same zone.

■ A single extended network can contain nodes that belong to up to 255 different zones.
A single zone can include nodes that belong to different extended networks. Each
AppleTalk extended network has associated with it a list of the zones to which its
nodes can belong. A node joining the network can select its zone from this list.

On each router node in the internet, ZIP builds a zone information table that includes
each network’s number (extended networks have network number ranges) in association
with the network’s list of zones. Nodes that are not routers, such as end-user systems, do
not contain a zone information table. However, a portion of ZIP is implemented on each
About ZIP 4-3

C H A P T E R 4

Zone Information Protocol (ZIP)

nonrouter node so that applications and processes can gain access to their own node’s
zone name, names of all the zones on their local network, or names of all the zones
throughout the internet. The .XPP driver implements the part of ZIP that is on nonrouter
nodes, and it provides an interface that allows an application or process to request zone
name information in a transaction-based dialog. ZIP uses the transaction-based services
of ATP to transport requests from workstation nodes to router nodes. Figure 4-1 shows
ZIP and its underlying protocols. The portion of ZIP that is implemented on nonrouter
nodes, such as workstations, uses the services of ATP.

Figure 4-1 The Zone Information Protocol (ZIP) and the underlying AppleTalk protocols

Using ZIP 4

The Zone Information Protocol provides three functions that you can use to obtain the
names of registered zones. You can use these functions to obtain

■ the name of the zone to which your application and its node belong

■ the names of the zones in your local network or the names of all the zones that exist
throughout the AppleTalk internet to which your local network belongs

ZIP

ATP

DDP

LAP Manager

Port
4-4 Using ZIP

C H A P T E R 4

Zone Information Protocol (ZIP)

4

Z
one Inform

ation P
rotocol (Z

IP
)

Applications running on nodes connected to both extended and nonextended networks
can use ZIP to get the name of their node’s zone. An application running on a node that
belongs to an extended network can call ZIP to get a list of all the zone names associated
with that network. For example, a network administration application might use ZIP to
provide an administrator with a list of the zones for a particular network so that the
administrator can select the correct zone for a node when adding nodes to a network.

You can use ZIP in conjunction with NBP. For example, you can use ZIP to look up zones
on the network, then use NBP to look up names in each zone.

ZIP sends the GetMyZone, GetLocalZones, and GetZoneList functions as AppleTalk
Transaction Protocol (ATP) requests. These requests always ask for a single response.
For example, when you call ZIP to request zone name information, the portion of ZIP
implemented on the node running your application sends a request using the transaction-
based services of ATP to the portion of ZIP implemented on a local router that contains
the zone information table; using ATP, ZIP on the router node transmits a response to
your request.

When you call GetMyZone to get the name of your node’s zone, ZIP returns the
complete zone name in a single ATP response and writes that zone name to the buffer
you provide. However, when you want to retrieve a list of zone names belonging
either to your local network or to all of the networks forming the internet, ZIP may not
always be able to return the complete list of names in a single ATP response. In this
case, you need to call the ZIP function repeatedly in a loop in order to retrieve all of the
zone names.

The GetMyZone, GetLocalZones, and GetZoneList functions each use a parameter
block of type XPPParamBlock to contain input and output values for the call. You use
the xCallParam variant record to the XPP parameter block for the ZIP functions. This
parameter block contains an ioRefNum field, which the MPW interface sets to the .XPP
driver reference number.

The parameter block for each of the three ZIP functions includes a csCode field and an
xppSubCode field. You do not need to set these field values before you call the function;
the MPW interface fills in the value for each of these fields. The value for the csCode
field is always xCall. The xppSubCode field value identifies the specific ZIP function,
and it differs for each of the three functions.

For the three ZIP functions, you specify timeout and retry values that determine the
behavior of the ATP transaction that the ZIP call relies on. You need to set values for
these fields before you call the ZIP function. You use the parameter block’s xppTimeout
field to set the timeout value and the xppRetry field to set the retry value. The timeout
tells ATP how long in seconds to wait between each attempt, and the retry value tells it
how may retries it should attempt. For information on how ATP uses these values, see
the chapter “AppleTalk Transaction Protocol (ATP)” in this book.

For each function, you supply a buffer to hold the returned zone name data and a buffer
that ZIP requires for its own use. These two buffers and the XPPParamBlock parameter
block that you allocate for the function belong to ZIP for the life of the call; you must not
Using ZIP 4-5

C H A P T E R 4

Zone Information Protocol (ZIP)

manipulate them or alter their contents during the operation. The memory for these
buffers and the parameter block belongs to the function until the function completes
execution.

If you set the function’s async Boolean parameter to TRUE, either you must provide a
completion routine or your application must poll the parameter block’s ioResult field
to determine when the function completes the operation. See the chapter “Introduction
to AppleTalk” in this book for a discussion of synchronous and asynchronous execution
as it applies to the Boolean parameter.

Getting the Name of Your Application’s Zone 4
Your application can get the name of the zone for the node on which it is running by
calling the GetMyZone function. The zone name is a data structure of type Str32,
and the GetMyZone function writes the zone name to a buffer that you supply. You
set the parameter block’s zipBuffPtr field to a pointer for a buffer that must be at
least 33 bytes in size.

You also supply a buffer that is 70 bytes in size as the value of the zipInfoField. You
must set the first word of this buffer to 0 before you call the function. This buffer is for
ZIP to use.

Listing 4-1 shows the application-defined DoGetMyZone function, which illustrates the
use of the GetMyZone function. The DoGetMyZone function declares the parameter block
and the return buffer. Then it assigns values to the some of parameter block fields and
initializes to 0 the first word of the zipInfoField parameter before it calls GetMyZone.
The MPW interface fills in the XPP parameter block ioRefNum, csCode, and
xppSubCode fields, so the DoGetMyZone function doesn’t need to assign these values.

Listing 4-1 Using the GetMyZone function

FUNCTION DoGetMyZone(VAR myZoneName: Str32): OSErr;

VAR

xppPB: XPPParamBlock;

myZoneName: ARRAY[1..33] OF Char;

BEGIN

WITH xppPB DO

BEGIN

xppTimeout := 3; {timeout interval}

xppRetry := 4; {retry count for ZIP requests}

zipBuffPtr := @myZoneName; {buffer for returned zone name}

zipInfoField[1] := 0; {initialize first word to 0}

zipInfoField[2] := 0;

END;

DoGetMyZone := GetMyZone(@xppPB, FALSE);

END;
4-6 Using ZIP

C H A P T E R 4

Zone Information Protocol (ZIP)

4

Z
one Inform

ation P
rotocol (Z

IP
)

If there is no router present in the network, the function returns a function result of
noBridgeErr. If the retry count is exceeded before the ATP transaction that ZIP relies
on receives a valid response, the function returns a function result of reqFailed. The
function returns a function result of tooManyReq when too many concurrent ATP
requests have been made. If you receive a function result of tooManyReq, wait a minute
or so, and then try again; some transactions can take up to 30 seconds to complete. For
the complete list of function results, see the description of the function GetMyZone
beginning on page 4-12.

Getting a List of Zone Names for Your Local Network
or Its Internet 4
If your application is running on a node that belongs to an extended network, the
application can use the GetLocalZones function to obtain a list of the names of the
zones in its node’s local network. An application running on a node that belongs to an
extended network can also use the GetZoneList function to obtain a list of the names
of the zones throughout the AppleTalk internet to which its node’s local network
belongs. These functions behave similarly.

ZIP returns a single ATP response per request. Because the complete list of zone
names may not fit in a single ATP response, you need to make repeated calls to either
GetLocalZones or GetZoneList until you receive all of the zone names. You must
allocate a buffer to hold the zone names data that the ZIP function returns and point
to that buffer from the function’s zipBuffPtr parameter block field. This buffer must
be 578 bytes in size, large enough to hold an entire ATP response. ZIP returns the zone
names into this buffer as a packed array of packed Pascal strings.

The zipNumZones field returns the actual number of zone names that ZIP placed in the
buffer. You must set the zipLastFlag field to 0 before you execute the GetZoneList
or GetLocalZones function. If the zipLastFlag parameter is still 0 when the
command has completed execution, then ZIP is waiting to return more zone names. In
this case you must empty the buffer, or allocate a new one, and call the GetZoneList or
GetLocalZones function again immediately. When there are no more zone names to
return, ZIP sets the zipLastFlag field to a nonzero value. The zipInfoField field is
a 70-byte data buffer that you must allocate for use by ZIP. The first time you call any of
these functions, you must set the first word of this field to 0. You must not change any
values in this field subsequently.

Listing 4-2 shows the application-defined DoGetZoneList function, which illustrates
how to use the GetZoneList function. The GetLocalZones function operates in
exactly the same fashion.

This DoGetZoneList function allocates a buffer for zone names and repeatedly calls
the GetZoneList function to get a list of zone names. If GetZoneList returns a
function result of noErr, then the DoGetZoneList code calls the application-defined
MyZIPExtract function, shown in Listing 4-3, to remove a zone name from the
GetZoneList buffer and place it in the application’s buffer. The DoGetZoneList code
in Listing 4-2 does not show the application-defined MyAddToZoneList that writes the
zone name to the application’s buffer.
Using ZIP 4-7

C H A P T E R 4

Zone Information Protocol (ZIP)
Listing 4-2 Using GetZoneList to retrieve names of zones throughout the AppleTalk internet

FUNCTION DoGetZoneList: OSErr;

CONST

kZoneBufferSize = 578; {required size of zone list buffer}

VAR

xppPB: XPPParamBlock;

result: OSErr;

zoneBuffer: Ptr;

index: Integer;

zoneName: Str32;

BEGIN

{Allocate buffer for returned zone names.}

zoneBuffer := NewPtr(kZoneBufferSize);

IF zoneBuffer = NIL THEN

result := MemError

ELSE

BEGIN

WITH xppPB DO

BEGIN

xppTimeout := 3; {timeout interval}

xppRetry := 4; {retry count}

zipBuffPtr := zoneBuffer; {zone names returned here}

zipLastFlag := 0; {set to 0 first time through}

zipInfoField[1] := 0; {first word of zipInfoField must be }

zipInfoField[2] := 0; { initialized to 0 the first time}

END;

{Loop to get all of the zone names.}

REPEAT

result := GetZoneList(@xppPB, FALSE);

IF (result = noErr) THEN

FOR index := 1 TO xppPB.zipNumZones DO

IF MyZIPExtract(zoneBuffer, xppPB.zipNumZones, index,

 zoneName) = noErr THEN

MyAddToZoneList(zoneName);

UNTIL (xppPB.zipLastFlag <> 0) OR (result <> noErr);

DisposPtr(zoneBuffer); {release memory}

END;

DoGetZoneList := result;

END;

When you call the GetZoneList function or the GetLocalZones function to obtain a
list of zone names, ZIP returns the zone names as a packed array of packed Pascal
strings. Your application must include a routine to extract the zone names that you want
from the buffer.
4-8 Using ZIP

C H A P T E R 4

Zone Information Protocol (ZIP)

4
Z

one Inform
ation P

rotocol (Z
IP

)

Listing 4-3 shows an application-defined function called MyZipExtract that extracts
a particular zone name from the buffer of packed zone names returned by either
GetZoneList or GetLocalZones.

The MyZipExtract function takes a numInBuf input parameter that specifies the
number of zone names in the buffer pointed to by the theBuffer parameter. For the
numInBuf parameter, you specify the value that ZIP returned in the zipNumZones field
of the XPP parameter block used for the GetZoneList or GetLocalZones function.

You use the whichOne input parameter to identify the zone name to extract. The
MyZIPExtract function returns the zone name in the zoneName string parameter.

The MyZIPExtract function returns a result of paramErr if whichOne is 0 or
whichOne is greater than the number of zones in the buffer. Otherwise, the function
returns a function result of noErr.

Listing 4-3 Extracting a zone name from the list of zone names returned in the buffer

FUNCTION MyZIPExtract (theBuffer: Ptr; numInBuf: Integer; whichOne: Integer;

VAR zoneName: Str32): OSErr;

VAR

result: OSErr;

zonePtr: Ptr;

BEGIN

{preflight the input parameters}

IF (whichOne = 0) OR (whichOne > numInBuf) THEN

result := paramErr

ELSE

BEGIN

zonePtr := theBuffer;

{Look for whichOne}

REPEAT

whichOne := whichOne - 1;

IF whichOne <> 0 THEN

{move pointer to next zone name}

zonePtr := Ptr(ORD4(zonePtr) +

Length(StringPtr(zonePtr)^) + 1);

UNTIL whichOne = 0;

{return the zone name}

BlockMove(zonePtr, @zoneName,

Length(StringPtr(zonePtr)^) + 1);

result := noErr;

END;

MyZIPExtract := result;

END;
Using ZIP 4-9

C H A P T E R 4

Zone Information Protocol (ZIP)
ZIP Reference 4

This section describes the data structure and the functions that are specific to the
Zone Information Protocol (ZIP). The “Data Structures” section shows the Pascal
data structure for the XPP parameter block. The “Routines” section describes the
ZIP functions.

Data Structures 4
This section describes the XPP parameter block that you use to provide information to
and receive it from ZIP.

The XPP Parameter Block for ZIP 4

The Zone Information Protocol’s GetMyZone, GetLocalZones, and GetZoneList
functions implemented by the .XPP driver use the xCallParam variant record to the
XPP parameter block defined by the XPPParamBlock data type. Your application uses
this parameter block to specify input values to and receive output values from a ZIP
function. This section defines the parameter block fields that are common to all of the
ZIP functions and that are filled in by the MPW interface or returned by the function;
your application does not need to fill in these fields. This section does not define
reserved fields, which are used either internally by the .XPP driver or not at all. The
fields for the xCallParam variant record are defined in the function descriptions.

TYPE XPPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

cmdResult: LongInt; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}

CASE XPPPrmBlkType OF

xCallParam

xppSubCode: Integer; {secondary command code}

xppTimeout: Byte; {.XPP timeout period}

xppRetry: Byte; {retry count}

filler1: Integer; {reserved}
4-10 ZIP Reference

C H A P T E R 4

Zone Information Protocol (ZIP)

4
Z

one Inform
ation P

rotocol (Z
IP

)

zipBuffPtr: Ptr; {returned zone names}

zipNumZones: Integer; {number of zones returned}

zipLastFlag: Byte; {nonzero when all zone names }

{ have been returned}

filler2: Byte; {reserved}

zipInfoField: PACKED ARRAY[1..70] OF Byte;

{reserved}

END;

XPPParmBlkPtr = ^XPPParamBlock;

Field descriptions

ioCompletion A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .XPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NIL for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .XPP driver
ignores the ioCompletion field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

ioResult The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of noErr as soon as the function begins execution. When the
function completes execution, it sets the ioResult field to the
actual result code.

ioRefNum The .XPP driver reference number. The MPW interface fills in
this field.

csCode The command code of the XPP command to be executed. The MPW
interface fills in this field.

Routines 4
This section describes the ZIP functions. The ZIP functions allow you to

■ obtain the name of the zone to which the node belongs that is running your
application

■ obtain a list of all the zones for the local network of the node that is running your
application

■ obtain a list of all the zones associated with the internet that the node running your
application belongs to

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning

→ Input

← Output

↔ Both
ZIP Reference 4-11

C H A P T E R 4

Zone Information Protocol (ZIP)
Obtaining Zone Information 4

This section describes the Zone Information Protocol (ZIP) functions: GetMyZone,
GetLocalZones, and GetZoneList. The GetMyZone function returns the name of the
zone that your application’s node belongs to. The GetLocalZones function returns a
list of zone names on the local network that your application’s node belongs to. The
GetZoneList function returns a complete list of zones on the internet that your
application’s node belongs to.

Assembly-language note

The .XPP driver functions all use the same value (xCall, which is equal
to 246) for the csCode parameter to the XPP parameter block. The
xCall routine uses the value of the xppSubCode parameter to
distinguish between the functions, as follows:

GetMyZone 4

The GetMyZone function returns the zone name of the node on which your application
is running.

FUNCTION GetMyZone (thePBptr: XPPParmBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Function xppSubCode Value

GetMyZone zipGetMyZone 7

GetLocalZones zipGetLocalZones 5

GetZoneList zipGetZoneList 6 ◆

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ csCode Integer Always xCall for this function.
→ xppSubCode Integer Always zipGetMyZone for

this function.
→ xppTimeout Byte The retry interval in seconds.
→ xppRetry Byte The retry count.
→ zipBuffPtr Ptr A pointer to data buffer.
→ zipInfoField PACKED ARRAY A data buffer for use by ZIP; first

word set to 0.
4-12 ZIP Reference

C H A P T E R 4

Zone Information Protocol (ZIP)

4
Z

one Inform
ation P

rotocol (Z
IP

)

Field descriptions

xppSubCode A routine selector. This field is automatically set by the MPW
interface to zipGetMyZone for this function.

xppTimeout The amount of time, in seconds, that the .ATP driver should wait
between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTimeout field is usually sufficient.

xppRetry The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (reqFailed) result code.
A value of 3 or 4 is usually sufficient.

zipBuffPtr A pointer to a 33-byte data buffer that you must allocate. ZIP
returns the zone name into this buffer as a Pascal string.

zipInfoField A 70-byte data buffer that you must allocate and initialize for use by
ZIP. You must set the first word of this buffer to 0 before you call the
GetMyZone function.

DESCRIPTION

Before you call GetMyZone, you must allocate a buffer that is 33 bytes in size and set the
zipBuffPtr parameter block field to point to this buffer. ZIP writes the zone name that
it retrieves to this buffer that you supply. You must also supply a buffer that is 70 bytes
in size as the value of the zipInfoField field. This buffer is for ZIP to use. An applica-
tion running on a node on either an extended or a nonextended network can use this
function to retrieve the node’s zone name.

SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required
by the GetMyZone function belongs to the .XPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

To execute the GetMyZone function from assembly language, call the _Control
trap macro with a value of xCall in the csCode field of the parameter block and
a value of zipGetMyZone in the xppSubCode field of the parameter block. To
execute this function from assembly language, you must also specify the .XPP driver
reference number.

RESULT CODES

noErr 0 No error
noBridgeErr –93 No router is available
reqFailed –1096 Request to contact router failed; retry count exceeded
tooManyReqs –1097 Too many concurrent requests
noDataArea –1104 Too many outstanding ATP calls
ZIP Reference 4-13

C H A P T E R 4

Zone Information Protocol (ZIP)
SEE ALSO

For the XPPParamBlock data type, see “The XPP Parameter Block for ZIP” beginning
on page 4-10.

To get the correct reference number for the .XPP driver, you can use the Device
Manager’s OpenDriver function, which returns the driver reference number. For
information about the OpenDriver function, see the chapter “Device Manager” in
Inside Macintosh: Devices.

GetLocalZones 4

The GetLocalZones function returns a list of all the zone names on the local network—
that is, the network that includes the node on which your application is running.

FUNCTION GetLocalZones (thePBptr: XPPParmBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

Field descriptions

xppSubCode A routine selector. This field is automatically set by the MPW
interface to zipGetLocalZones for this function.

xppTimeout The amount of time, in seconds, that the .ATP driver should wait
between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTimeout field is usually sufficient.

xppRetry The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (reqFailed) result code. A
value of 3 or 4 is usually sufficient.

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result code.
→ csCode Integer Always xCall for this function.
→ xppSubCode Integer Always zipGetLocalZones.
→ xppTimeout Byte The retry interval in seconds.
→ xppRetry Byte The retry count.
→ zipBuffPtr Ptr A pointer to data buffer.
← zipNumZones Integer The number of names returned.
← zipLastFlag Byte A flag that is nonzero if there are no

more names.
→ zipInfoField PACKED ARRAY A data buffer for use by ZIP; first word

set to 0.
4-14 ZIP Reference

C H A P T E R 4

Zone Information Protocol (ZIP)

4
Z

one Inform
ation P

rotocol (Z
IP

)

zipBuffPtr A pointer to a 578-byte data buffer that you must allocate. ZIP
returns the zone names into this buffer as a packed array of
Pascal strings.

zipNumZones The number of zone names that ZIP placed in the data buffer.
zipLastFlag A value that indicates if there are more zone names for your

network beyond those that ZIP returned in the zipBuffPtr field.
The .XPP driver sets this field to 1 if there are no more zone names
for your network.

zipInfoField A 70-byte data buffer that you must allocate for use by ZIP. You
must set the first word of this buffer to 0 before you call the
GetLocalZones function the first time through the loop, and
you must not change the contents of this field thereafter.

DESCRIPTION

A single extended network can have more than one zone associated with it. Your
application can use the GetLocalZones function to retrieve the list of zones for its
node’s local network. The GetLocalZones function uses ATP to retrieve the zone
information. The buffer that you allocate to hold the returned zone names is the size
of a single ATP response. You must call the GetLocalZones function repeatedly until
all of the zones for the local network have been returned.

Your application must check the zipLastFlag field to determine if there are more zone
names for your network. If the value of this field is 1, there are no more zone names for
your local network. If the value of this field is still 0 when the GetLocalZones function
completes execution, you must empty the data buffer pointed to by the zipBuffPtr
parameter and immediately call the GetLocalZones function again without changing
the value in the zipInfoField parameter.

If you receive a GetLocalZones function result of tooManyReqs, wait a minute or so,
and then try again; some transactions can take up to 30 seconds to complete.

This function works for extended networks only. If the node that is running your
application is on a nonextended network and you want the name of that node’s zone,
use the GetMyZone function.

SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required by
the GetLocalZones function belongs to the .XPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

To execute the GetLocalZones function from assembly language, call the _Control
trap macro with a value of xCall in the csCode field of the parameter block and a
value of zipGetLocalZones in the xppSubCode field of the parameter block. To
execute this function from assembly language, you must also specify the .XPP driver
reference number.
ZIP Reference 4-15

C H A P T E R 4

Zone Information Protocol (ZIP)
RESULT CODES

SEE ALSO

For the XPPParamBlock data type, see “The XPP Parameter Block for ZIP” beginning
on page 4-10.

To get the correct reference number for the .XPP driver, you can use the Device
Manager’s OpenDriver function, which returns the driver reference number. For
information about the OpenDriver function, see the chapter “Device Manager” in
Inside Macintosh: Devices.

GetZoneList 4

The GetZoneList function returns a complete list of all the zone names on the internet.

FUNCTION GetZoneList (thePBptr: XPPParmBlkPtr;

async: Boolean): OSErr;

thePBptr A pointer to an XPP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

noErr 0 No error
noBridgeErr –93 No router is available
reqFailed –1096 Request to contact router failed; retry count exceeded
tooManyReqs –1097 Too many concurrent requests
noDataArea –1104 Too many outstanding ATP calls

→ ioCompletion ProcPtr A pointer to a completion routine.
← ioResult OSErr The function result.
→ csCode Integer Always xCall for this function.
→ xppSubCode Integer Always zipGetZoneList for this

function.
→ xppTimeout Byte The retry interval in seconds.
→ xppRetry Byte The retry count.
→ zipBuffPtr Ptr A pointer to data buffer.
← zipNumZones Integer The number of names returned.
← zipLastFlag Byte A flag that is nonzero if there are no

more names.
→ zipInfoField PACKED ARRAY A data buffer for use by ZIP; first word

set to 0.
4-16 ZIP Reference

C H A P T E R 4

Zone Information Protocol (ZIP)

4
Z

one Inform
ation P

rotocol (Z
IP

)

Field descriptions

xppSubCode A routine selector. This field is automatically set by the MPW
interface to zipGetZoneList for this function.

xppTimeout The amount of time, in seconds, that the .ATP driver should wait
between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTimeout field generally gives good results.

xppRetry The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (reqFailed) result code.
A value of 3 or 4 is usually sufficient.

zipBuffPtr A pointer to a 578-byte data buffer that you must allocate. ZIP
returns the zone names into this buffer as a packed array of
Pascal strings.

zipNumZones The number of zone names that ZIP placed in the data buffer.
zipLastFlag A value that indicates if there are more zone names for your

network beyond those that ZIP returned in the zipBuffPtr field.
The .XPP driver sets this field to 1 if there are no more zone names
for your network.

zipInfoField A 70-byte data buffer that you must allocate for use by ZIP.
Typically, you call GetZoneList repeatedly from within a loop.
You must set the first word of this buffer to 0 before you call the
GetZoneList function the first time through the loop, and you
must not change the contents of this field thereafter.

DESCRIPTION

The GetZoneList function returns a complete list of all the zone names on the internet
to which the local network of the node running your application belongs. The
GetZoneList function uses ATP to retrieve the zone information. The buffer that you
allocate to hold the returned zone names is the size of a single ATP response. You must
call the GetZoneList function repeatedly until all of the zones for the local network
have been returned.

Your application must check the zipLastFlag field to determine if there are more zone
names for your network. If the value of this field is 1, there are no more zone names for
your local network. If the value of this field is still 0 when the GetZoneList function
completes execution, you must empty the data buffer pointed to by the zipBuffPtr
parameter and immediately call the GetZoneList function again without changing the
value in the zipInfoField parameter.

If you receive a GetZoneList function result of tooManyReqs, wait a minute or so,
and then try again; some transactions can take up to 30 seconds to complete.

To obtain a list of only the zone names on the local network, use the GetLocalZones
function instead. If you use the GetZoneList function on a nonextended network, the
function returns the reqFailed result code.
ZIP Reference 4-17

C H A P T E R 4

Zone Information Protocol (ZIP)
SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required by
the GetZoneList function belongs to the .XPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

To execute the GetZoneList function from assembly language, call the _Control trap
macro with a value of xCall in the csCode field of the parameter block and a value of
zipGetZoneList in the xppSubCode field of the parameter block. To execute this
function from assembly language, you must also specify the .XPP driver reference
number.

RESULT CODES

SEE ALSO

For the XPPParamBlock data type, see “The XPP Parameter Block for ZIP” beginning
on page 4-10.

To get the correct reference number for the .XPP driver, you can use the Device
Manager’s OpenDriver function, which returns the driver reference number. For
information about the OpenDriver function, see the chapter “Device Manager” in
Inside Macintosh: Devices.

noErr 0 No error
noBridgeErr –93 No router is available
reqFailed –1096 Request to contact router failed; retry count exceeded
tooManyReqs –1097 Too many concurrent requests
noDataArea –1104 Too many outstanding ATP calls
4-18 ZIP Reference

C H A P T E R 4

Zone Information Protocol (ZIP)

4
Z

one Inform
ation P

rotocol (Z
IP

)

Summary of ZIP 4

Pascal Summary 4

Constants 4

CONST

{csCode for .XPP extended calls}

xCall = 246;

{.XPP driver unit and reference number}

xppUnitNum = 40;

xppRefNum = -41;

{routine selectors}

zipGetLocalZones = 5; {routine selector for local zone names}

zipGetZoneList = 6; {routine selector for internet zone list}

zipGetMyZone = 7; {routine selector for node's zone name}

Data Types 4

The XPP Parameter Block for ZIP

TYPE XPPParamBlock =

PACKED RECORD

qLink: QElemPtr; {reserved}

qType: Integer; {reserved}

ioTrap: Integer; {reserved}

ioCmdAddr: Ptr; {reserved}

ioCompletion: ProcPtr; {completion routine}

ioResult: OSErr; {result code}

cmdResult: LongInt; {reserved}

ioVRefNum: Integer; {reserved}

ioRefNum: Integer; {driver reference number}

csCode: Integer; {primary command code}
Summary of ZIP 4-19

C H A P T E R 4

Zone Information Protocol (ZIP)
CASE XPPPrmBlkType OF

xCallParam

xppSubCode: Integer; {secondary command code}

xppTimeout: Byte; {timeout period for .XPP}

xppRetry: Byte; {retry count}

filler1: Integer; {reserved}

zipBuffPtr: Ptr; {returned zone names}

zipNumZones: Integer; {number of zones returned}

zipLastFlag: Byte; {nonzero when all zone }

{ names have been returned}

filler2: Byte; {reserved}

zipInfoField: PACKED ARRAY[1..70] OF Byte;

{reserved for use by .XPP}

END;

XPPParmBlkPtr = ^XPPParamBlock;

Routines 4

Obtaining Zone Information

FUNCTION GetMyZone (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

FUNCTION GetLocalZones (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

FUNCTION GetZoneList (thePBptr: XPPParmBlkPtr; async: Boolean): OSErr;

C Summary 4

Constants 4

/*MPP parameter constants*/

#define MPPioCompletion MPP.ioCompletion

#define MPPioResult MPP.ioResult

#define MPPioRefNum MPP.ioRefNum

#define MPPcsCode MPP.csCode

enum { /*.XPP csCode*/

xCall = 246}; /*csCode for .XPP extended calls*/

enum { /*.XPP driver unit and reference */

/* numbers*/

xppUnitNum = 40, /*XPP unit number */

xppRefNum = -41}; /*XPP reference number */
4-20 Summary of ZIP

C H A P T E R 4

Zone Information Protocol (ZIP)

4
Z

one Inform
ation P

rotocol (Z
IP

)

enum { /*XPP routine selectors*/

zipGetLocalZones = 5, /*routine selector for local zone names*/

zipGetZoneList = 6, /*routine selector for internet zone list*/

zipGetMyZone = 7}; /*routine selector for node's zone name*/

Data Types 4

The XPP Parameter Block for ZIP

#define XPPPBHeader

QElem *qLink; /*reserved*/\

short qType; /*reserved*/\

short ioTrap; /*reserved */\

Ptr ioCmdAddr; /*reserved*/\

ProcPtr ioCompletion; /*completion routine*/\

OSErr ioResult; /*result code*/\

long cmdResult; /*reserved*/\

short ioVRefNum; /*reserved*/\

short ioRefNum; /*driver reference number*/

short csCode; /*primary command code*/

typedef struct {

XPPPBHeader

short xppSubCode; /*secondary command code*/

char xppTimeout; /*retry interval in seconds*/

char xppRetry; /*retry count*/

short filler1;

Ptr zipBuffPtr; /*pointer to buffer of 578 bytes*/

short zipNumZones; /*number of zone names in response*/

char zipLastFlag; /*nonzero if no more zones*/

char filler2; /*filler*/

char zipInfoField[70]; /*initial call, set first word to 0*/

}XCallParam;

Routines 4

Obtaining Zone Information
pascal OSErr GetMyZone (XPPParmBlkPtr thePBptr, Boolean async);

pascal OSErr GetLocalZones (XPPParmBlkPtr thePBptr, Boolean async);

pascal OSErr GetZoneList (XPPParmBlkPtr thePBptr, Boolean async);
Summary of ZIP 4-21

C H A P T E R 4

Zone Information Protocol (ZIP)
Assembly-Language Summary 4

Constants 4

XPP csCode

xCall EQU 246 ;csCode for XPP extended calls

XPP Driver Unit Reference Number

xppUnitNum EQU 9 ;XPP unit number

XPP xCall Subcodes for ZIP Commands

ZGetMyZone EQU 7 ;selector for GetMyZone command

ZGetZoneList EQU 8 ;selector for GetZoneList command

ZGetLocalZones EQU 9 ;selector for GetLocalZones command

Data Structures 4

XPP Parameter Block Common Fields for ZIP Routines

GetMyZone

0 qLink long reserved
4 qType word reserved
6 ioTrap word reserved
8 ioCmdAddr long reserved

12 ioCompletion long address of completion routine
16 ioResult word result code
18 cmdResult long reserved
22 ioVRefNum word reserved
24 ioRefNum word driver reference number

28 xppSubCode word always zipGetZoneList for this function
30 xppTimeout byte retry interval in seconds
31 xppRetry byte retry count
34 zipBuffPtr long pointer to data buffer
42 zipInfoField 70 bytes data buffer for use by ZIP; first word set to 0
4-22 Summary of ZIP

C H A P T E R 4

Zone Information Protocol (ZIP)

4
Z

one Inform
ation P

rotocol (Z
IP

)

GetLocalZones

GetZoneList

Result Codes 4

28 xppSubCode word always zipGetLocalZones for this function
30 xppTimeout byte retry interval in seconds
31 xppRetry byte retry count
34 zipBuffPtr long pointer to data buffer
38 zipNumZones word number of names returned
40 zipLastFlag byte nonzero if no more names
42 zipInfoField 70 bytes data buffer for use by ZIP; first word set to 0

28 xppSubCode word always zipGetZoneList for this function
30 xppTimeout byte retry interval in seconds
31 xppRetry byte retry count
34 zipBuffPtr long pointer to data buffer
38 zipNumZones word number of names returned
40 zipLastFlag byte nonzero if no more names
42 zipInfoField 70 bytes data buffer for use by ZIP; first word set to 0

noErr 0 No error
noBridgeErr –93 No router is available
reqFailed –1096 Request to contact router failed; retry count exceeded
tooManyReqs –1097 Too many concurrent requests
noDataArea –1104 Too many outstanding ATP calls
Summary of ZIP 4-23

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	Zone Information Protocol (ZIP)
	About ZIP
	Using ZIP
	Getting the Name of Your Application’s Zone
	Getting a List of Zone Names for Your Local Networ...

	ZIP Reference
	Data Structures
	The XPP Parameter Block for ZIP

	Routines
	Obtaining Zone Information

	Summary of ZIP
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

