CHAPTER 4

Zone Information Protocol (ZIP)

This chapter describes the Zone Information Protocol (ZIP) that maintains mappings of
zone names to network numbers on internet routers. ZIP is primarily implemented by
routers. A small portion of ZIP is implemented on nodes that are not routers to allow
you to obtain zone information from a router node. This chapter describes only the
portion of ZIP that is implemented on a node that is not a router.

You should read this chapter if you want to obtain

» the name of the zone to which the node belongs that is running your application

» the names of the zones for the local network to which your application’s node
is connected

» the names of all the zones that exist throughout the AppleTalk internet to which your
local network belongs

The portion of ZIP that is implemented on nodes that are not routers uses the AppleTalk
Transaction Protocol (ATP) to send requests for zone information to a router node. To
better understand how ZIP handles your requests for information and returns to you
responses to those requests, you should read the chapter “AppleTalk Transaction
Protocol (ATP)” in this book.

For an overview of the Zone Information Protocol and how it fits within the AppleTalk
protocol stack, read the chapter “Introduction to AppleTalk” in this book, which also
introduces and defines some of the terminology used in this chapter. For a description of
the Zone Information Protocol specification, see Inside AppleTalk, second edition.

About ZIP

The Zone Information Protocol (ZIP) provides applications and processes with access to
zone names. A zone is a logical grouping of nodes in an AppleTalk internet, and each
zone is identified by a name. A zone name is typically used to identify an affiliation
between a group of nodes, such as a group of nodes belonging to a particular department
within an organization.

ZIP maintains the mapping of networks and the zones they include for all networks
belonging to an AppleTalk internet:

= Every node on a network belongs to a zone; a node can belong to only one zone at
a time.

» A nonextended network contains only one zone, and all nodes in that network belong
to the same zone.

» Asingle extended network can contain nodes that belong to up to 255 different zones.
A single zone can include nodes that belong to different extended networks. Each
AppleTalk extended network has associated with it a list of the zones to which its
nodes can belong. A node joining the network can select its zone from this list.

On each router node in the internet, ZIP builds a zone information table that includes
each network’s number (extended networks have network number ranges) in association
with the network’s list of zones. Nodes that are not routers, such as end-user systems, do
not contain a zone information table. However, a portion of ZIP is implemented on each

About ZIP 4-3

(d12) 10001014 uonew.Iou| dUo7 -

CHAPTER 4

Zone Information Protocol (ZIP)

nonrouter node so that applications and processes can gain access to their own node’s
zone name, names of all the zones on their local network, or names of all the zones
throughout the internet. The .XPP driver implements the part of ZIP that is on nonrouter
nodes, and it provides an interface that allows an application or process to request zone
name information in a transaction-based dialog. ZIP uses the transaction-based services
of ATP to transport requests from workstation nodes to router nodes. Figure 4-1 shows
ZIP and its underlying protocols. The portion of ZIP that is implemented on nonrouter
nodes, such as workstations, uses the services of ATP.

Figure 4-1 The Zone Information Protocol (ZIP) and the underlying AppleTalk protocols

IR

ZIP

A

—
== =

<§>E

-
>

P Mal

>
QD
«Q
0]
=

S <=
o
=3

Using ZIP

The Zone Information Protocol provides three functions that you can use to obtain the
names of registered zones. You can use these functions to obtain

= the name of the zone to which your application and its node belong

= the names of the zones in your local network or the names of all the zones that exist
throughout the AppleTalk internet to which your local network belongs

Using ZIP

CHAPTER 4

Zone Information Protocol (ZIP)

Applications running on nodes connected to both extended and nonextended networks
can use ZIP to get the name of their node’s zone. An application running on a node that
belongs to an extended network can call ZIP to get a list of all the zone names associated
with that network. For example, a network administration application might use ZIP to
provide an administrator with a list of the zones for a particular network so that the
administrator can select the correct zone for a node when adding nodes to a network.

You can use ZIP in conjunction with NBP. For example, you can use ZIP to look up zones
on the network, then use NBP to look up names in each zone.

ZIP sends the Get MyZone, Get Local Zones, and Get Zoneli st functions as AppleTalk
Transaction Protocol (ATP) requests. These requests always ask for a single response.

For example, when you call ZIP to request zone name information, the portion of ZIP
implemented on the node running your application sends a request using the transaction-
based services of ATP to the portion of ZIP implemented on a local router that contains
the zone information table; using ATP, ZIP on the router node transmits a response to
your request.

When you call Get MyZone to get the name of your node’s zone, ZIP returns the
complete zone name in a single ATP response and writes that zone name to the buffer
you provide. However, when you want to retrieve a list of zone names belonging
either to your local network or to all of the networks forming the internet, ZIP may not
always be able to return the complete list of names in a single ATP response. In this
case, you need to call the ZIP function repeatedly in a loop in order to retrieve all of the
zone names.

The Get MyZone, Cet Local Zones, and Get Zoneli st functions each use a parameter
block of type XPPPar anBl ock to contain input and output values for the call. You use
the xCal | Par amvariant record to the XPP parameter block for the ZIP functions. This
parameter block contains an i oRef Numfield, which the MPW interface sets to the . XPP
driver reference number.

The parameter block for each of the three ZIP functions includes a csCode field and an
xppSubCode field. You do not need to set these field values before you call the function;
the MPW interface fills in the value for each of these fields. The value for the csCode
field is always xCal | . The xppSubCode field value identifies the specific ZIP function,
and it differs for each of the three functions.

For the three ZIP functions, you specify timeout and retry values that determine the
behavior of the ATP transaction that the ZIP call relies on. You need to set values for
these fields before you call the ZIP function. You use the parameter block’s xppTi meout
field to set the timeout value and the xppRet ry field to set the retry value. The timeout
tells ATP how long in seconds to wait between each attempt, and the retry value tells it
how may retries it should attempt. For information on how ATP uses these values, see
the chapter “AppleTalk Transaction Protocol (ATP)” in this book.

For each function, you supply a buffer to hold the returned zone name data and a buffer
that ZIP requires for its own use. These two buffers and the XPPPar anBl ock parameter
block that you allocate for the function belong to ZIP for the life of the call; you must not

Using ZIP 4-5

(d12) 10901014 UonEWIOU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

manipulate them or alter their contents during the operation. The memory for these
buffers and the parameter block belongs to the function until the function completes
execution.

If you set the function’s async Boolean parameter to TRUE, either you must provide a
completion routine or your application must poll the parameter block’s i oResul t field
to determine when the function completes the operation. See the chapter “Introduction
to AppleTalk” in this book for a discussion of synchronous and asynchronous execution
as it applies to the Boolean parameter.

Getting the Name of Your Application’s Zone

Your application can get the name of the zone for the node on which it is running by
calling the Get MyZone function. The zone name is a data structure of type St r 32,
and the Get MyZone function writes the zone name to a buffer that you supply. You
set the parameter block’s zi pBuf f Pt r field to a pointer for a buffer that must be at
least 33 bytes in size.

You also supply a buffer that is 70 bytes in size as the value of the zi pl nf oFi el d. You
must set the first word of this buffer to 0 before you call the function. This buffer is for
ZIP to use.

Listing 4-1 shows the application-defined DoGet MyZone function, which illustrates the
use of the Get MyZone function. The DoGet MyZone function declares the parameter block
and the return buffer. Then it assigns values to the some of parameter block fields and
initializes to 0 the first word of the zi pl nf oFi el d parameter before it calls Get MyZone.
The MPW interface fills in the XPP parameter block i oRef Num csCode, and
xppSubCode fields, so the DoGet MyZone function doesn’t need to assign these values.

Listing 4-1 Using the Get MyZone function

FUNCTI ON DoCet MyZone(VAR myZoneName: Str32): OSErr;

VAR
xppPB: XPPPar anBl ock;
nmyZoneNane: ARRAY[1. . 33] OF Char;
BEG N
W TH xppPB DO
BEG N
XppTi meout : = 3; {tinmeout interval}
xppRetry : = 4; {retry count for ZIP requests}
zipBuffPtr := @wyZoneNane; {buffer for returned zone nane}
ziplnfoField[1] := O; {initialize first word to 0}
ziplnfoField[2] := O;
END;
DoGet MyZone : = Get MyZone(@ppPB, FALSE);
END;

4-6 Using ZIP

CHAPTER 4

Zone Information Protocol (ZIP)

If there is no router present in the network, the function returns a function result of
noBri dgekEr r. If the retry count is exceeded before the ATP transaction that ZIP relies
on receives a valid response, the function returns a function result of r eqFai | ed. The
function returns a function result of t ooManyReq when too many concurrent ATP
requests have been made. If you receive a function result of t ooManyReq, wait a minute
or so, and then try again; some transactions can take up to 30 seconds to complete. For
the complete list of function results, see the description of the function Get MyZone
beginning on page 4-12.

Getting a List of Zone Names for Your Local Network
or Its Internet

If your application is running on a node that belongs to an extended network, the
application can use the Get Local Zones function to obtain a list of the names of the
zones in its node’s local network. An application running on a node that belongs to an
extended network can also use the Get ZoneLi st function to obtain a list of the names
of the zones throughout the AppleTalk internet to which its node’s local network
belongs. These functions behave similarly.

ZIP returns a single ATP response per request. Because the complete list of zone
names may not fit in a single ATP response, you need to make repeated calls to either
Get Local Zones or Get ZoneLi st until you receive all of the zone names. You must
allocate a buffer to hold the zone names data that the ZIP function returns and point
to that buffer from the function’s zi pBuf f Pt r parameter block field. This buffer must
be 578 bytes in size, large enough to hold an entire ATP response. ZIP returns the zone
names into this buffer as a packed array of packed Pascal strings.

The zi pNunZones field returns the actual number of zone names that ZIP placed in the
buffer. You must set the zi pLast Fl ag field to 0 before you execute the Get ZonelLi st
or Cet Local Zones function. If the zi pLast Fl ag parameter is still 0 when the
command has completed execution, then ZIP is waiting to return more zone names. In
this case you must empty the buffer, or allocate a new one, and call the Get ZonelLi st or
Cet Local Zones function again immediately. When there are no more zone names to
return, ZIP sets the zi pLast Fl ag field to a nonzero value. The zi pl nf oFi el d field is
a 70-byte data buffer that you must allocate for use by ZIP. The first time you call any of
these functions, you must set the first word of this field to 0. You must not change any
values in this field subsequently.

Listing 4-2 shows the application-defined DoGet ZonelLi st function, which illustrates
how to use the Get ZoneLi st function. The Get Local Zones function operates in
exactly the same fashion.

This DoGet Zoneli st function allocates a buffer for zone names and repeatedly calls
the Get ZoneLi st function to get a list of zone names. If Get ZoneLi st returns a
function result of noEr r, then the DoGet ZoneLi st code calls the application-defined
MyZI PExt r act function, shown in Listing 4-3, to remove a zone name from the

Cet ZonelLi st buffer and place it in the application’s buffer. The DoGet ZoneLi st code
in Listing 4-2 does not show the application-defined MyAddToZoneLi st that writes the
zone name to the application’s buffer.

Using ZIP 4-7

(d12) 10901014 UonEWIOU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

Listing 4-2 Using Get ZonelLi st to retrieve names of zones throughout the AppleTalk internet

FUNCTI ON DoGet ZonelLi st: OSErr;
CONST
kZoneBuf fer Si ze = 578; {required size of zone list buffer}
VAR
XppPB: XPPPar anBl ock;
result: OSErr;
zoneBuffer: Ptr;
i ndex: Integer;
zoneName: Str32;
BEG N
{Al'l ocate buffer for returned zone nanes.}
zoneBuffer := NewPtr(kZoneBufferSize);
| F zoneBuffer = NIL THEN

result := MenError
ELSE
BEG N
W TH xppPB DO
BEG N
xppTi meout : = 3; {tinmeout interval}
XppRetry := 4; {retry count}
Zi pBuffPtr := zoneBuffer; {zone nanes returned here}
zi pLastFlag : = 0; {set to O first time through}
ziplnfoField[1] := 0; {first word of ziplnfoField nust be }
ziplnfoField[2] := O; { initialized to O the first tine}

END;

{Loop to get all of the zone nanes.}
REPEAT
result := CGetZonelList(@ppPB, FALSE);
IF (result = noErr) THEN
FOR index := 1 TO xppPB. zi pNunZones DO
| F MyZl PExtract (zoneBuffer, xppPB.zi pNunZones, index,
zoneNanme) = noErr THEN
MyAddToZoneli st (zoneNarne) ;
UNTIL (xppPB. zi pLastFlag <> 0) OR (result <> noErr);
Di sposPtr(zoneBuffer); {rel ease nenory}
END;
DoGet ZonelLi st := result;
END;

When you call the Get ZoneLi st function or the Get Local Zones function to obtain a
list of zone names, ZIP returns the zone names as a packed array of packed Pascal
strings. Your application must include a routine to extract the zone names that you want
from the buffer.

4-8 Using ZIP

CHAPTER 4

Zone Information Protocol (ZIP)

Listing 4-3 shows an application-defined function called MyZi pExt r act that extracts
a particular zone name from the buffer of packed zone names returned by either
Get ZonelLi st or Get Local Zones.

The MyZi pExt r act function takes a num nBuf input parameter that specifies the
number of zone names in the buffer pointed to by the t heBuf f er parameter. For the
num nBuf parameter, you specify the value that ZIP returned in the zi pNuniZones field
of the XPP parameter block used for the Get ZonelLi st or Get Local Zones function.

You use the whi chOne input parameter to identify the zone name to extract. The
MyZI PExt r act function returns the zone name in the zoneNane string parameter.

The MyZI PExt r act function returns a result of par anEr r if whi chOne is 0 or
whi chOne is greater than the number of zones in the buffer. Otherwise, the function
returns a function result of noErr.

Listing 4-3 Extracting a zone name from the list of zone names returned in the buffer

FUNCTI ON MyZl PExtract (theBuffer: Ptr; num nBuf: |nteger; whichOne: Integer;

VAR
result:
zonePtr:

BEG N

VAR zoneNane: Str32): OSErr;

CSErr;
Ptr;

{preflight the input paraneters}
| F (whichOne = 0) OR (whi chOne > numl nBuf) THEN

result := parankrr
ELSE
BEG N
zonePtr := theBuffer;
{Look for whichOne}
REPEAT

whi chOne : = whi chOne - 1;
| F whichOne <> 0 THEN

UNTI L

Bl ock

resul
END;
My ZI PExt
END;

{nove pointer to next zone nane}

zonePtr := Ptr(ORD4(zonePtr) +
Lengt h(StringPtr(zonePtr)”) + 1);
whi chOne = 0;

{return the zone nane}
Move(zonePtr, @oneNane,

Length(StringPtr(zonePtr)”) + 1);
t = noErr;

ract := result;

Using ZIP 4-9

(d12) 10901014 UonEWIOU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

Z1IP Reference

This section describes the data structure and the functions that are specific to the
Zone Information Protocol (ZIP). The “Data Structures” section shows the Pascal
data structure for the XPP parameter block. The “Routines” section describes the
ZIP functions.

Data Structures

This section describes the XPP parameter block that you use to provide information to
and receive it from ZIP.

The XPP Parameter Block for ZIP

The Zone Information Protocol’s Get MyZone, Get Local Zones, and Get ZonelLi st
functions implemented by the .XPP driver use the xCal | Par amvariant record to the
XPP parameter block defined by the XPPPar anBl ock data type. Your application uses
this parameter block to specify input values to and receive output values from a ZIP
function. This section defines the parameter block fields that are common to all of the
ZIP functions and that are filled in by the MPW interface or returned by the function;
your application does not need to fill in these fields. This section does not define
reserved fields, which are used either internally by the .XPP driver or not at all. The
fields for the xCal | Par amvariant record are defined in the function descriptions.

TYPE XPPPar anBl ock =
PACKED RECORD

gLi nk: CEl enPtr; {reserved}

gType: I nt eger; {reserved}

i oTr ap: I nt eger; {reserved}

i oCrdAddr : Ptr; {reserved}

i oConpl etion: ProcPtr; {conpl etion routine}

i oResul t: OSErr; {result code}

cndResul t: Longl nt; {reserved}

i oVRef Num I nt eger; {reserved}

i oRef Num I nt eger; {driver reference nunber}
csCode: I nt eger; {primary comrand code}

CASE XPPPr mBl kType OF
xCal | Param

xppSubCode: I nt eger; {secondary comand code}
XppTi meout : Byt e; {. XPP tinmeout period}
XppRetry: Byt e; {retry count}

fillerl: I nt eger; {reserved}

4-10 ZIP Reference

END;

CHAPTER 4

Zone Information Protocol (ZIP)

zi pBuffptr: Ptr; {returned zone nanes}

Zi pNuniZones: I nt eger; {nunber of zones returned}

zi pLast Fl ag: Byt e; {nonzero when all zone nanes }
{ have been returned}

filler2: Byt e; {reserved}

zi pl nf oFi el

d: PACKED ARRAY[1..70] OF Byte;
{reserved}

XPPPar nBl kPt r = ~XPPPar anBl ock;

Routines

Field descriptions
i oConpl etion

i oResul t

i oRef Num

csCode

A pointer to a completion routine that you can provide. When you
execute a function asynchronously, the .XPP driver calls your
completion routine when it completes execution of the function if
you specify a pointer to the routine as the value of this field. Specify
NI L for this field if you do not wish to provide a completion
routine. If you execute a function synchronously, the .XPP driver
ignores the i oConpl et i on field. For information about completion
routines, see the chapter “Introduction to AppleTalk” in this book.

The result of the function. When you execute the function asynchro-
nously, the function sets this field to 1 and returns a function result
of NOErr as soon as the function begins execution. When the
function completes execution, it sets the i oResul t field to the
actual result code.

The .XPP driver reference number. The MPW interface fills in
this field.

The command code of the XPP command to be executed. The MPW
interface fills in this field.

This section describes the ZIP functions. The ZIP functions allow you to

= obtain the name of the zone to which the node belongs that is running your

application

» obtain a list of all the zones for the local network of the node that is running your

application

= obtain a list of all the zones associated with the internet that the node running your
application belongs to

An arrow preceding a parameter indicates whether the parameter is an input parameter,
an output parameter, or both:

Arrow Meaning
- Input

- Output
- Both

ZIP Reference

4-11

(d12) 10901014 UonEWIOU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

Obtaining Zone Information

GetMyZone

This section describes the Zone Information Protocol (ZIP) functions: Get MyZone,

Get Local Zones, and Get ZonelLi st . The Get MyZone function returns the name of the
zone that your application’s node belongs to. The Get Local Zones function returns a
list of zone names on the local network that your application’s node belongs to. The

Get ZonelLi st function returns a complete list of zones on the internet that your
application’s node belongs to.

Assembly-language note

The .XPP driver functions all use the same value (xCal | , which is equal
to 246) for the csCode parameter to the XPP parameter block. The

xCal | routine uses the value of the xppSubCode parameter to
distinguish between the functions, as follows:

Function xppSubCode Value
Cet MyZone Zi pGet MyZone 7

CGet Local Zones Zi pCet Local Zones 5

Get ZonelLi st zi pGet ZonelLi st 6 O

4-12

The Get MyZone function returns the zone name of the node on which your application
is running.

FUNCTI ON Get MyZone (thePBptr: XPPParnBl kPtr;
async: Bool ean): OSErr;

t hePBpt r A pointer to an XPP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oConpl eti on ProcPtr A pointer to a completion routine.
- i oResul t CSEr r The function result.
- csCode I nt eger Always xCal | for this function.
- xppSubCode I nt eger Always zi pCGet MyZone for
this function.
- xppTi meout Byte The retry interval in seconds.
. XppRetry Byt e The retry count.
- zi pBuf f Ptr Ptr A pointer to data buffer.
= zi pl nfoFi el d PACKED ARRAY A data buffer for use by ZIP; first

ZIP Reference

word set to 0.

DESCRIPTION

CHAPTER 4

Zone Information Protocol (ZIP)

Field descriptions

xppSubCode A routine selector. This field is automatically set by the MPW
interface to zi pGet MyZone for this function.
XppTi meout The amount of time, in seconds, that the .ATP driver should wait

between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTi meout field is usually sufficient.
XppRetry The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (r eqFai | ed) result code.
A value of 3 or 4 is usually sufficient.
zi pBuffPtr A pointer to a 33-byte data buffer that you must allocate. ZIP
returns the zone name into this buffer as a Pascal string.
ziplnfoField A 70-byte data buffer that you must allocate and initialize for use by

ZIP. You must set the first word of this buffer to 0 before you call the
Get MyZone function.

Before you call Get MyZone, you must allocate a buffer that is 33 bytes in size and set the
zi pBuf f Pt r parameter block field to point to this buffer. ZIP writes the zone name that
it retrieves to this buffer that you supply. You must also supply a buffer that is 70 bytes
in size as the value of the zi pl nf oFi el d field. This buffer is for ZIP to use. An applica-
tion running on a node on either an extended or a nonextended network can use this
function to retrieve the node’s zone name.

SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required
by the Get MyZone function belongs to the XPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

To execute the Get MyZone function from assembly language, call the _Cont r ol
trap macro with a value of xCal | in the csCode field of the parameter block and

a value of zi pGet MyZone in the xppSubCode field of the parameter block. To
execute this function from assembly language, you must also specify the .XPP driver
reference number.

nokErr 0 No error

noBri dgeErr -93 No router is available

regFail ed -1096 Request to contact router failed; retry count exceeded
t ooManyReqs -1097 Too many concurrent requests

noDat aAr ea -1104 Too many outstanding ATP calls

ZIP Reference 4-13

(d12) 10901014 UonEWIOU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

SEE ALSO
For the XPPPar anBl ock data type, see “The XPP Parameter Block for ZIP” beginning
on page 4-10.

To get the correct reference number for the XPP driver, you can use the Device
Manager’s OpenDr i ver function, which returns the driver reference number. For
information about the QpenDr i ver function, see the chapter “Device Manager” in
Inside Macintosh: Devices.

GetLocalZones

The Get Local Zones function returns a list of all the zone names on the local network—
that is, the network that includes the node on which your application is running.

FUNCTI ON Cet Local Zones (thePBptr: XPPPar Bl kPtr;
async: Bool ean): OSErr;

t hePBpt r A pointer to an XPP parameter block.

async A Boolean that indicates whether the function should be executed
asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oConpl etion ProcPtr A pointer to a completion routine.
- i oResul t OSEr r The function result code.

- csCode I nt eger Always xCal | for this function.

- xppSubCode I nt eger Always zi pCet Local Zones.

- XppTi meout Byt e The retry interval in seconds.

N XppRetry Byt e The retry count.

- zi pBuffPtr Ptr A pointer to data buffer.

- zi pNunZones I nt eger The number of names returned.

- zi pLast Fl ag Byt e A flag that is nonzero if there are no

more names.
o ziplnfoField PACKED ARRAY A data buffer for use by ZIP; first word
set to 0.

Field descriptions

xppSubCode A routine selector. This field is automatically set by the MPW
interface to zi pGet Local Zones for this function.

xppTi meout The amount of time, in seconds, that the .ATP driver should wait
between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTi meout field is usually sufficient.

xppRetry The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (r eqFai | ed) result code. A
value of 3 or 4 is usually sufficient.

4-14 ZIP Reference

CHAPTER 4

Zone Information Protocol (ZIP)

zi pBuffPtr A pointer to a 578-byte data buffer that you must allocate. ZIP
returns the zone names into this buffer as a packed array of
Pascal strings.

zi pNunZones The number of zone names that ZIP placed in the data buffer.

zi pLast Fl ag A value that indicates if there are more zone names for your
network beyond those that ZIP returned in the zi pBuf f Pt r field.
The .XPP driver sets this field to 1 if there are no more zone names
for your network.

ziplnfoField A 70-byte data buffer that you must allocate for use by ZIP. You
must set the first word of this buffer to 0 before you call the
Cet Local Zones function the first time through the loop, and
you must not change the contents of this field thereafter.

DESCRIPTION

A single extended network can have more than one zone associated with it. Your
application can use the Get Local Zones function to retrieve the list of zones for its
node’s local network. The Get Local Zones function uses ATP to retrieve the zone
information. The buffer that you allocate to hold the returned zone names is the size
of a single ATP response. You must call the Get Local Zones function repeatedly until
all of the zones for the local network have been returned.

Your application must check the zi pLast Fl ag field to determine if there are more zone
names for your network. If the value of this field is 1, there are no more zone names for
your local network. If the value of this field is still 0 when the Get Local Zones function
completes execution, you must empty the data buffer pointed to by the zi pBuf f Pt r
parameter and immediately call the Get Local Zones function again without changing
the value in the zi pl nf oFi el d parameter.

If you receive a Get Local Zones function result of t ooManyReqs, wait a minute or so,
and then try again; some transactions can take up to 30 seconds to complete.

This function works for extended networks only. If the node that is running your
application is on a nonextended network and you want the name of that node’s zone,
use the Get MyZone function.

SPECIAL CONSIDERATIONS
The memory that you allocate for the parameter block and the two buffers required by

the Get Local Zones function belongs to the .XPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

To execute the Get Local Zones function from assembly language, call the _Cont r ol
trap macro with a value of xCal | in the csCode field of the parameter block and a
value of zi pGet Local Zones in the xppSubCode field of the parameter block. To
execute this function from assembly language, you must also specify the .XPP driver
reference number.

ZIP Reference 4-15

(d12) 10901014 UonEWIOU| BUOZ -

RESULT CODES

SEE ALSO

CHAPTER 4

Zone Information Protocol (ZIP)

noErr 0 No error

noBri dgeErr -93 No router is available

reqFai | ed -1096 Request to contact router failed; retry count exceeded
t ooManyReds -1097 Too many concurrent requests

noDat aAr ea -1104 Too many outstanding ATP calls

For the XPPPar anBl ock data type, see “The XPP Parameter Block for ZIP” beginning
on page 4-10.

To get the correct reference number for the .XPP driver, you can use the Device
Manager’s OpenDr i ver function, which returns the driver reference number. For
information about the QpenDr i ver function, see the chapter “Device Manager” in
Inside Macintosh: Devices.

GetZoneList

4-16

The Get ZonelLi st function returns a complete list of all the zone names on the internet.

FUNCTI ON Get ZonelLi st (thePBptr: XPPParnBl kPtr;
async: Bool ean): OSErr;
t hePBpt r A pointer to an XPP parameter block.
async A Boolean that indicates whether the function should be executed

asynchronously or synchronously. Specify TRUE for asynchronous
execution.

Parameter block

- i oCompl etion ProcPtr A pointer to a completion routine.

- i oResul t CSErr The function result.

- csCode I nt eger Always xCal | for this function.

- xppSubCode | nt eger Always zi pGet ZonelLi st for this
function.

- xppTi meout Byt e The retry interval in seconds.

. XppRet ry Byt e The retry count.

- zi pBuf f Ptr Ptr A pointer to data buffer.

- zi pNuniZones | nt eger The number of names returned.

- zi pLast Fl ag Byt e A flag that is nonzero if there are no

zi pl nfoFi el d

ZIP Reference

PACKED ARRAY

more names.

A data buffer for use by ZIP; first word
set to 0.

DESCRIPTION

CHAPTER 4

Zone Information Protocol (ZIP)

Field descriptions

xppSubCode A routine selector. This field is automatically set by the MPW
interface to zi pGet Zoneli st for this function.
XppTi meout The amount of time, in seconds, that the .ATP driver should wait

between attempts to obtain the data. A value of 3 or 4 seconds for
the xppTi meout field generally gives good results.

XppRetry The number of times the .ATP driver should attempt to obtain the
data before returning the request failed (r eqFai | ed) result code.
A value of 3 or 4 is usually sufficient.

zi pBuffPtr A pointer to a 578-byte data buffer that you must allocate. ZIP
returns the zone names into this buffer as a packed array of
Pascal strings.

zi pNunZones The number of zone names that ZIP placed in the data buffer.

zi pLast Fl ag A value that indicates if there are more zone names for your
network beyond those that ZIP returned in the zi pBuf f Pt r field.
The .XPP driver sets this field to 1 if there are no more zone names
for your network.

ziplnfoField A 70-byte data buffer that you must allocate for use by ZIP.
Typically, you call Get ZoneLi st repeatedly from within a loop.
You must set the first word of this buffer to 0 before you call the
Get ZonelLi st function the first time through the loop, and you
must not change the contents of this field thereafter.

The Get ZonelLi st function returns a complete list of all the zone names on the internet
to which the local network of the node running your application belongs. The

Get ZonelLi st function uses ATP to retrieve the zone information. The buffer that you
allocate to hold the returned zone names is the size of a single ATP response. You must
call the Get ZoneLi st function repeatedly until all of the zones for the local network
have been returned.

Your application must check the zi pLast Fl ag field to determine if there are more zone
names for your network. If the value of this field is 1, there are no more zone names for
your local network. If the value of this field is still 0 when the Get ZoneLi st function
completes execution, you must empty the data buffer pointed to by the zi pBuf f Pt r
parameter and immediately call the Get ZoneLi st function again without changing the
value in the zi pl nf oFi el d parameter.

If you receive a Get ZonelLi st function result of t ooManyReqs, wait a minute or so,
and then try again; some transactions can take up to 30 seconds to complete.

To obtain a list of only the zone names on the local network, use the Get Local Zones
function instead. If you use the Get ZoneLi st function on a nonextended network, the
function returns the r eqFai | ed result code.

ZIP Reference 4-17

(d12) 10901014 UonEWIOU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

SPECIAL CONSIDERATIONS

The memory that you allocate for the parameter block and the two buffers required by
the Get ZonelLi st function belongs to the .XPP driver until the function completes
execution. You can reuse the memory or dispose of it after the operation completes.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

4-18

To execute the Get ZoneLi st function from assembly language, call the _Cont rol trap
macro with a value of xCal | in the csCode field of the parameter block and a value of
zi pGet Zoneli st in the xppSubCode field of the parameter block. To execute this
function from assembly language, you must also specify the XPP driver reference

number.

noErr 0
noBri dgeErr -93
regFail ed -1096
t ooManyReqs -1097
noDat aAr ea -1104

No error

No router is available

Request to contact router failed; retry count exceeded
Too many concurrent requests

Too many outstanding ATP calls

For the XPPPar anBl ock data type, see “The XPP Parameter Block for ZIP” beginning

on page 4-10.

To get the correct reference number for the .XPP driver, you can use the Device
Manager’s OpenDr i ver function, which returns the driver reference number. For
information about the QpenDr i ver function, see the chapter “Device Manager” in

Inside Macintosh: Devices.

ZIP Reference

CHAPTER 4

Zone Information Protocol (ZIP)

Summary of ZIP

Pascal Summary

Constants

CONST

{csCode for .XPP extende

xCal | =

{.XPP driver unit and reference nunber}

xppUni t Num =
xppRef Num =

{routine sel ectors}
zi pGet Local Zones =
zi pGet ZonelLi st
zi pGet MyZone

Data Types

d calls}
246;

40;

-41;

{routine selector for local zone nanes}

{routine selector for
{routine selector for

i nternet zone list}
node' s zone nane}

The XPP Parameter Block for ZIP

TYPE XPPPar anBl ock =
PACKED RECORD

gLi nk:
qType:
i oTr ap:
i oCdAddr :
i oConpl eti on:
i oResul t:
cndResul t:
i oVRef Num
i oRef Num
csCode:

Summary of ZIP

CEl enPtr;
I nt eger;
I nt eger;
Ptr;
Prochtr;
CSErr;
Longl nt;

I nt eger;

I nt eger;

I nt eger;

{reserved}

{reserved}

{reserved}

{reserved}

{conpl etion routine}
{result code}

{reserved}

{reserved}

{driver reference nunber}
{primary command code}

4-19

(d12) 10901014 UonEWIOU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

CASE XPPPr mBl kType OF
xCal | Par am

xppSubCode: I nt eger; {secondary comand code}
XppTi meout : Byt e; {tinmeout period for .XPP}
XppRetry: Byt e; {retry count}
fillerl: I nt eger; {reserved}
zi pBuffptr: Ptr; {returned zone nanes}
Zi pNuniZones: I nt eger; {nunber of zones returned}
zi pLast Fl ag: Byt e; {nonzero when all zone }
{ nanmes have been returned}
filler2: Byt e; {reserved}
zi pInfoFi el d: PACKED ARRAY[1..70] OF Byte;
{reserved for use by .XPP}
END;
XPPPar nBl kPt r = ~XPPPar anBl ock;
Routines
Obtaining Zone Information
FUNCTI ON Get MyZone (thePBptr: XPPParnBl kPtr; async: Bool ean): OSErr;
FUNCTI ON Get Local Zones (thePBptr: XPPParnBl kPtr; async: Bool ean): OSErr
FUNCTI ON Get ZonelLi st (thePBptr: XPPParnBl kPtr; async: Bool ean): OSErr;

C Summary

Constants

/*MPP par anet er constants*/

#def i ne MPPi oConpl etion MPP.ioConpl etion
#defi ne MPPi oResult MPP.ioResult
#def i ne MPPi oRef Num MPP. i oRef Num
#defi ne MPPcsCode MPP. csCode
enum { /*.XPP csCode*/
xCal | = 246} ; /*csCode for . XPP extended calls*/
enum { [*.XPP driver unit and reference */
[* nunbers*/
xppUni t Num = 40, /*XPP unit nunber */
xppRef Num = -41}; /*XPP reference nunber */
4-20 Summary of ZIP

CHAPTER 4

Zone Information Protocol (ZIP)

enum {
Zi pGet Local Zones = 5,
zi pGet Zoneli st = 6,
Zi pGet MyZone = 7},
Data Types

/*XPP routine selectors*/

/*routine selector for |ocal zone nanes*/
/*routine selector for internet zone |ist*/
/*routine selector for node's zone nane*/

The XPP Parameter Block for ZIP
#def i ne XPPPBHeader

QEl em *qLi nk; /*reserved*/\
short qType; /*reserved*/\
short i oTr ap; /*reserved */\
Ptr i oCndAddr ; [*reserved*/\
ProcPtr i oConpl eti on; /*conpl etion routine*/\
OSErr i oResul t; /*result code*/\
| ong cndResul t; /*reserved*/\
short i oVRef Num /*reserved*/\
short i oRef Num /*driver reference nunber*/
short csCode; /[*primry comuand code*/
typedef struct {
XPPPBHeader
short xppSubCode; /*secondary command code*/
char xppTi meout ; /*retry interval in seconds*/
char xppRetry; /*retry count*/
short filler1l;
Ptr zi pBuffptr; /*pointer to buffer of 578 bytes*/
short zi pNun¥Zones; /*nunber of zone names in response*/
char zi pLast Fl ag; /*nonzero if no nore zones*/
char filler2; [*filler*/
char ziplnfoField[70]; /*initial call, set first word to 0*/
} XCal | Par am
Routines

Obtaining Zone Information

pascal OSErr Get MyZone
pascal OSErr GCetLocal Zones
pascal OSErr Get ZonelLi st

Summary of ZIP

(XPPPar nBl kPtr thePBptr,
(XPPPar nBl kPt r thePBptr,
(XPPPar nBl kPtr t hePBptr,

Bool ean async);
Bool ean async);
Bool ean async);

4-21

(d12) 10901014 UonEWIOU| BUOZ -

CHAPTER 4

Zone Information Protocol (ZIP)

Assembly-Language Summary

Constants

XPP csCode

xCal | EQU 246 ; csCode for XPP extended calls

XPP Driver Unit Reference Number

xppUni t Num EQU 9 ; XPP unit nunber

XPP xCall Subcodes for ZIP Commands

ZGet MyZone EQU 7 ;selector for Get MyZone conmand
ZGet Zoneli st EQU 8 ;selector for GetZonelLi st comrand
ZGet Local Zones EQU 9 ; sel ector for GetlLocal Zones command

Data Structures

XPP Parameter Block Common Fields for ZIP Routines

0 gLi nk long reserved
4 gType word reserved
6 i oTrap word reserved
8 i oCndAddr long reserved
12 i oConpl etion long address of completion routine
16 i oResul t word result code
18 cnoResul t long reserved
22 i oVRef Num word reserved
24 i oRef Num word driver reference number
GetMyZone
28 xppSubCode word always zi pGet ZoneLi st for this function
30 xppTi meout byte retry interval in seconds
31 XppRetry byte retry count
34 zi pBuffPtr long pointer to data buffer

42 ziplnfoField 70 bytes data buffer for use by ZIP; first word set to 0

4-22 Summary of ZIP

CHAPTER 4

Zone Information Protocol (ZIP)

GetLocalZones

28 xppSubCode
30 XppTi meout
31 XppRetry

34 zi pBuffptr
38 zi pNunZones
40 zi pLast Fl ag
42 ziplnfoField

GetZoneList

28 xppSubCode
30 xppTi meout
31 XppRetry

34 zi pBuffPtr
38 zi pNunZones
40 zi pLast Fl ag
42 ziplnfoField

Result Codes

word always zi pGet Local Zones for this function
byte retry interval in seconds

byte retry count

long pointer to data buffer

word number of names returned

byte nonzero if no more names

70 bytes data buffer for use by ZIP; first word set to 0

word always zi pGet ZoneLi st for this function
byte retry interval in seconds

byte retry count

long pointer to data buffer

word number of names returned

byte nonzero if no more names

70 bytes data buffer for use by ZIP; first word set to 0

noErr 0
noBri dgeErr -93
regFail ed -1096
t ooManyReqs -1097
noDat aAr ea -1104

No error

No router is available

Request to contact router failed; retry count exceeded
Too many concurrent requests

Too many outstanding ATP calls

Summary of ZIP

4-23

(d12) 10901014 UonEWIOU| BUOZ -

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to AppleTalk TOC
	 Introduction to AppleTalk
	 AppleTalk Utilities TOC
	 AppleTalk Utilities
	 Name-Binding Protocol (NBP) TOC
	 Name-Binding Protocol (NBP)
	 Zone Information Protocol (ZIP) TOC
	Zone Information Protocol (ZIP)
	About ZIP
	Using ZIP
	Getting the Name of Your Application’s Zone
	Getting a List of Zone Names for Your Local Networ...

	ZIP Reference
	Data Structures
	The XPP Parameter Block for ZIP

	Routines
	Obtaining Zone Information

	Summary of ZIP
	Pascal Summary
	Constants
	Data Types
	Routines

	C Summary
	Constants
	Data Types
	Routines

	Assembly-Language Summary
	Constants
	Data Structures

	Result Codes

	 AppleTalk Data Stream Protocol (ADSP) TOC
	 AppleTalk Data Stream Protocol (ADSP)
	 AppleTalk Transaction Protocol (ATP) TOC
	 AppleTalk Transaction Protocol (ATP)
	 Datagram Delivery Protocol (DDP) TOC
	 Datagram Delivery Protocol (DDP)
	 AppleTalk Session Protocol (ASP) TOC
	 AppleTalk Session Protocol (ASP)
	 AppleTalk Filing Protocol (AFP) TOC
	 AppleTalk Filing Protocol (AFP)
	 Link-Access Protocol (LAP) Manager TOC
	 Link-Access Protocol (LAP) Manager
	 Ethernet, Token Ring, Fiber Distribution Data Interface TOC
	 Ethernet, Token Ring, Fiber Distribution Data Interface
	 Multinode Architecture TOC
	 Multinode Architecture
	 Glossary
	 Index
	 Colophon

