CHAPTER 5

Collection Manager

This chapter describes the Collection Manager, which provides an abstract data type you
can use to store collections of information. Read this chapter if you need to work with
some advanced features of QuickDraw GX printing, including print dialog boxes, or if
you want to create collections for purposes specific to your application.

Before reading this chapter, you might want to familiarize yourself with the information
in the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox. For some
examples of how the Collection Manager is used by other parts of QuickDraw GX, you
should read the chapter “Page Formatting and Dialog Box Customization” in Inside
Macintosh: QuickDraw GX Printing.

This chapter introduces the collection object as an abstract data type and describes the
properties of this object. It then shows how to use the functions provided by the
Collection Manager to

= create and manipulate collection objects

= add information to a collection object

= retrieve information from a collection object

= store a collection object to disk and retrieve a collection object from disk

This chapter also contains reference information for all data types, functions, and
resources associated with the Collection Manager.

About the Collection Manager

The Collection Manager implements an abstract data type that allows you to store
multiple pieces of related information. This abstract data type is called a collection object.

Collection Objects

A collection object, or simply a collection, is an abstract data type that allows you to
store information. A collection is like an array in that it contains a number of
individually accessible items. However, a collection offers some advantanges over an
array:

= Acollection allows for a variable number of data items. You can add items to a
collection or remove items from a collection during run time, and the Collection
Manager automatically resizes the collection.

= A collection allows for variable-size items. Each item in a collection can contain data
of any size.

About the Collection Manager 5-5

Jabeuepy uonag|0d -

5-6

CHAPTER 5

Collection Manager

There are some corresponding disadvantages to using a collection versus using an array:

= You must store and retrieve information in a collection using Collection Manager
functions, which is not as efficient as accessing an item of an array.

= The Collection Manager stores extra information about the collection and about each
item in the collection, so a collection requires more memory than a comparable array.

A collection is also similar to a database, in that you can store information and retrieve it
using a variety of search mechanisms. However, a collection has many more limitations
than a real database. For example, the Collection Manager provides only a few
mechanisms for searching a collection. Also, a collection is entirely memory-based. You
can use a collection only when the entire contents of the collection are in memory, which
makes a collection more like a powerful array than a database.

The internal structure of a collection object is private—you must store information in a
collection and retrieve information from it by providing a Collection Manager function
with a reference to the collection.

Figure 5-1 depicts the accessible properties of a collection object. Note that, because a
collection is an object and not a public data structure, the order of the properties as
shown is completely arbitrary.

About the Collection Manager

CHAPTER 5

Collection Manager

Figure 5-1

The collection object

Collection object

Owner count

Exception procedure

Default attributes

Collection tag

Collection ID

Collection attributes

— First collection item

Variable-length data

Collection tag

o

Collection ID

Collection attributes

— Second collection item

Variable-length data

7

Collection tag

Collection ID

Collection attributes

— Final collection item

Variable-length data

a

As Figure 5-1 shows, a collection object contains

= an owner count, which reflects the current number of references to the collection

= an exception procedure, which you can use to handle errors that occur while

operating on the collection

= default attributes, which are described in “Collection Attributes” beginning on
page 5-9.

= a number of collection items, which are described in the next section

About the Collection Manager

5-7

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

The Collection Manager maintains the owner count for you, although you can increment
or decrement it by cloning or disposing of the collection, as described in “Creating or
Disposing of a Collection” beginning on page 5-14 and “Cloning or Copying a
Collection” beginning on page 5-14.

The Collection Manager allows you to install an exception procedure for each collection
object. When the Collection Manager is operating on a collection and an error

occurs, the Collection Manager calls the collection’s exception procedure (if you installed
one) and passes to it the result code associated with the error that occurred.

Your exception procedure can then respond to the error. For more information about
exception procedures, see “Getting and Setting the Exception Procedure for a Collection
beginning on page 5-58 and the description of an application-defined exception
procedure on page 5-101.

Collection Items

A collection is composed of collection items. Figure 5-2 shows the general structure of a
collection item and also shows a sample collection item. Note that, because a collection
item is always part of a collection object, you always access the information in a
collection item using Collection Manager functions. Therefore, the order of the
properties shown in Figure 5-2 is completely arbitrary.

5-8

Figure 5-2 The collection item
Collection tag tagA
Collection ID 10
Collection attibutes ...000010010...
an exanpl e of

Variable-length data vari abl e-l ength
data. ..

‘ Structure of a collection item Sample collection item

As Figure 5-2 shows, each collection item contains these properties:

= Collection tag. A collection tag is a four-character identifier that, in conjunction with
the collection ID, uniquely identifies the collection item.

= Collection ID. Acollection ID is al ong value that, in conjunction with the collection
tag, uniquely identifies the collection item.

About the Collection Manager

CHAPTER 5

Collection Manager

= Collection attributes. The collection attributes are a set of 32 bit flags, each of which
represents an attribute of the collection item. The Collection Manager defines the
meaning of some of these attributes and leaves some of them for you to define. See the
next section for more information about collection attributes.

= Variable-length data. The variable-length data contains the actual data of the item.
This data corresponds to the contents of an item in an array, except items in the same
collection can store data of different sizes, whereas items in a single array must all
store data of the same size.

The Collection Manager uses a collection item’s collection tag and collection ID to
uniquely identify the item. As an example, in any collection there can be exactly one item
with a collection tag of ' t agA' and a collection ID of 10.

When you want to retrieve the data stored in an item, you can specify the item by
providing a Collection Manager function with the item’s collection tag and collection ID.
You can also specify a collection item using one of the other methods provided by the
Collection Manager. See “Methods of Identifying Collection Items” beginning on

page 5-11 for more information.

Collection Attributes

Each collection item has 32 attributes. Each attribute is represented by one bit flag in the
item’s attributes property. Therefore each attribute is either set or clear. An item’s
attributes are stored in a 32-bit long word. The bits are numbered 0 through 31. Bit 31 is
the high bit.

The upper 16 bits of an item’s attributes property represent attributes that are reserved
for use by Apple Computer, Inc. Currently, two of these attributes are defined:

= Bit 31 represents the lock attribute. When an item has this attribute set, attempts to
replace the item result in an error. When this attribute is clear, you can replace the
item.

= Bit 30 represents the persistence attribute. When an item has this attribute set, the
Collection Manager includes this item when flattening the collection. When this
attribute is clear, the Collection Manager ignores the item when flattening the
collection. See “Flattening and Unflattening a Collection” beginning on page 5-37 for
more information about flattening collections.

The other 14 reserved attribute bits are called the reserved attributes.

The lower 16 bits of an item’s attributes property represent attributes that you can define
for purposes suitable to your application. For example, you could use one of these
attributes to mark all of the items that you wanted to write to disk and remove from the
collection should you need more memory. These 16 attributes are called the user
attributes.

Depending on your application, you can set and examine the user attributes
individually, or you can set and examine combinations of them. As an example, if your
application uses collections that contain four distinct types of items, you could combine
two user attributes to provide the four values (0-3) necessary to identify the four types
of items.

About the Collection Manager 5-9

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Every collection object contains default attributes. A collection’s default attributes
determine the initial attribute values assigned to items added to that collection. For
example, you could set the lock and persistence default attributes for a collection. From
then on, when you added an item to the collection, the new item would have its lock and
persistence attributes set. Of course, you would still be free to edit the attributes for the
new item after adding it to the collection.

The Collection Manager provides a mechanism for editing attributes that allows you to
set (or clear) the values of some attributes while leaving the values of other attributes
alone. To edit attributes, you provide an attribute mask, in which you specify the
attributes you want to edit, and new attribute values, in which you specify the new
values for the attributes.

Figure 5-3 depicts this editing mechanism.

Figure 5-3 Editing attributes in a collection item

Original attibutes 0 0 1 1 0 0 0 0

New attribute values

Attribute mask 0 0 0 0 1 1 1 1

—

=

=
2R

Resulting attributes

19

5-10 About the Collection Manager

CHAPTER 5

Collection Manager

When editing an item’s attributes, you provide an attribute mask and new attribute
values. For every attribute:

» If you set the corresponding bit of the attribute mask to 0, the Collection Manager
leaves the attribute unchanged from the original. The new value for the attribute
(which you provide in the new attribute values) is ignored.

» If you set the corresponding bit in the attribute mask to 1, the Collection Manager
copies the new attribute value you provide for this attribute. The original value of this
attribute is overwritten.

You use this mechanism when editing an item’s attributes, when editing a collection’s
default attributes, when searching for items whose attributes match a certain pattern,
when flattening parts of a collection, and when purging items from a collection. For an
example, see “Changing the Default Attributes of a Collection” beginning on page 5-15.

Methods of Identifying Collection Items

Many Collection Manager functions operate on an individual item within a collection.
For example, the Collection Manager provides functions that allow you to replace the
variable-length data for a particular item as well as functions that allow you to retrieve
an item’s variable-length data.

When calling these Collection Manager functions, you need to specify which collection
item you want to examine or edit. The Collection Manager provides three methods of
specifying a particular item in a collection:

= The collection tag and the collection ID. Together, these two properties uniquely
identify an item in a collection. The collection I1Ds of collection items with the same
collection tag do not have to be sequential. For example, the collection shown in
Figure 5-4 has four items with the ' t agA" collection tag. These four items have
collection IDs 2, 6, 4, and 0.

= The collection tag and the tag list position. Each item in a collection has a tag list
position as well as a collection ID. The tag list position of an item is the position of
the item in the list of items with the same collection tag. Unlike a collection ID, the tag
list positions of items with the same tag are sequential. For example, in Figure 5-4 the
four items with the ' t agA' collection tag have tag list positions 1, 2, 3, and 4. Unlike
the collection ID, the tag list position of an item can change if another item with the
same collection tag is added to or removed from the collection.

= The collection index. The Collection Manager assigns a collection index to each item
in a collection. A collection index uniquely identifies its item within a collection.
Indexes across a collection do not have to be sequential. The collection index of any
item in a collection can change if another item is added to or removed from the
collection.

About the Collection Manager 5-11

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Figure 5-4 Items in a collection
List of t agAitems tagA tagA t agA tagA
2 6 4 0

List of t agB items tagB tagB tagB

List of t agCitems tagC
10
Tag list position: 1 2 3 4

In Figure 5-4, the third item in the second row can be identified in three ways:
= It has a collection tag of ' t agB' and a collection ID of 1.

= It has a collection tag of ' t agB' and a tag list position of 3.

= It has a unique collection index assigned to it by the Collection Manager.

For examples of identifying collection items, see “Adding Items to a Collection”
beginning on page 5-17, “Determining the Collection Index of an Item” beginning on
page 5-19, and “Determining the Tag and ID of an Item” beginning on page 5-21.

Using the Collection Manager

This section describes how your application can
= create or dispose of a collection
= clone or copy a collection

= change the default attributes of a collection

5-12 Using the Collection Manager

CHAPTER 5

Collection Manager

add items to a collection

= determine the collection index of an item

= determine the collection tag and collection ID of an item
= determine the size of an item’s variable-length data

= get and set the attributes of a collection item

= replace items in a collection

= remove items from a collection

= retrieve the variable-length data from a collection item

= examine the collection tags of a collection

» flatten and unflatten collections

= read collections from and write collections to disk

Determining Whether the Collection Manager Is Available

The Collection Manager is not available in all system software versions. Therefore,
before calling any Collection Manager functions, you should use the Gest al t function
to determine whether the Collection Manager is available. To get information about the
Collection Manager, you pass the Gest al t function the

gestal t Col | ecti onMyr Ver si on selector, as shown in Listing 5-1.

Listing 5-1 Determining whether the Collection Manager is available

Bool ean Col | ecti onMyr Exi st s(l ong versi onRequi red) ({
| ong col | ecti onMyr Ver si on;

Bool ean exists = (Cestalt(gestaltCollectionMrVersion,
&col | ecti onMyr Ver si on) == noErr);
if (exists)
exi sts = (collectionMyrVersion >= versionRequired);
return(exists);

}

In Listing 5-1, the Col | ecti onMyr Exi st s sample function uses the Gest al t function
to determine whether the Collection Manager is available and, if so, which version is
available. If the Collection Manager is available, this sample function tests whether the
version number is sufficiently high by comparing it with a specified minimum.

You would call this sample function with a line of code such as

exi sts = Col | ecti onMyr Exi st s(0x01008000); /* version 1.0f0 */

Using the Collection Manager 5-13

Jabeuepy uonag|0d -

5-14

CHAPTER 5

Collection Manager

You can find out more about the Gest al t function in the chapter “Gestalt Manager” of
Inside Macintosh: Operating System Utilities.

Creating or Disposing of a Collection

The Collection Manager provides a number of ways for you to create a collection object:

= You can create a new collection object using the NewCol | ect i on function, as
described in this section.

= You can make a copy of an existing collection object using the CopyCol | ecti on
function, as described in “Cloning or Copying a Collection” beginning on page 5-14.

= You can create a collection from a resource using the Get NewCol | ect i on function,
as described in “Reading Collections From and Writing Collections to Disk”
beginning on page 5-41.

The NewCol | ect i on function creates a new collection object containing no collection

items. The section “Adding Items to a Collection” beginning on page 5-17 shows how

you can add items to a new collection.

The default attributes of the new, empty collection are described by the

defaul t Col | ecti onAttri but es constant, in which only the persistence attribute is
set. This constant is defined in “Attributes Masks” beginning on page 5-49. The section
“Changing the Default Attributes of a Collection” beginning on page 5-15 shows how
you can change the default attributes of the new collection.

The owner count of the new collection is 1. You can increment the collection’s owner
count using the Cl oneCol | ect i on function, as shown in the section “Cloning or
Copying a Collection” beginning on page 5-14. You can decrement the collection’s owner
count using the Di sposeCol | ect i on function. This function decrements the owner
count of a collection and frees the memory used by the collection if the owner count
becomes 0.

You can find more information about the NewCol | ect i on function on page 5-54. You
can find more information about the Di sposeCol | ect i on function on page 5-55.

Cloning or Copying a Collection

You use the O oneCol | ecti on and CopyCol | ect i on functions to clone and copy
collection objects. You clone a collection object if you want to make a copy of the
reference to the collection object, and you copy a collection object if you want to make a
copy of the entire object, including all of its items.

For example, if you have a reference to a collection object stored in the variable
aCol | ect i on, you can create a new reference to this collection using

newCol | ecti on = Cl oneCol | ecti on(aCol | ection);

which increments the owner count of the collection object referenced by the
aCol | ect i on variable and returns a copy of the reference as the function result. After

Using the Collection Manager

CHAPTER 5

Collection Manager

this call to the d oneCol | ect i on function, the newCol | ecti onand aCol | ecti on
variables reference the same collection object, which has an incremented owner count.

You can create a copy of a collection object, including a copy of all its items, using
newCol | ecti on = CopyCol | ecti on(aCol |l ection, nil);

The CopyCol | ect i on function does not increment the owner count of the

aCol | ect i on collection. Instead, it creates a new collection object with an owner count
of 1, copies all of the information from the aCol | ect i on collection into the new
collection, and returns a reference to the new collection. After this call to the

CopyCol | ect i on function, the newCol | ecti on and aCol | ecti on variables
reference two distinct collections—you can make changes to one without affecting the
other.

You can use the second parameter of the CopyCol | ect i on function to provide a
reference to an existing collection object, in which case the function copies the
information from the collection referenced by the first parameter into the collection
referenced by the second parameter. If the collection referenced by the second parameter
already has information in it, the function

= removes all of the items in the second collection—including locked items—before
copying the items from the first collection into the second collection

= copies the default attribute values from the first collection into the second collection

The CopyCol | ect i on function does not copy the owner count or the exception
procedure of the first collection; it leaves the owner count and the exception procedure of
the second collection unchanged.

You can find more information about the Cl oneCol | ect i on function on page 5-56. You
can find more information about the CopyCol | ect i on function on page 5-57.

Changing the Default Attributes of a Collection

Every collection object has default attributes. When you add a new item to a collection,
the Collection Manager sets the attributes of the new item to match the default attributes
of the collection. You can change the attributes of individual items in a collection using
the functions described in “Getting and Setting the Attributes of an Item” beginning on
page 5-24. You can change the default attributes for a collection using the

Set Col | ecti onDef aul t Attri but es function. This function allows you to change
the value of a collection’s default attributes. With this function, you can change the value
of every default attribute or you can choose to change only some of the default attributes.

This function takes three parameters:

= a reference to the collection object

= a mask specifying which attributes you want to edit

= the new values for the attributes

(See Figure 5-3 on page 5-10 for an overview of editing attributes.)

Using the Collection Manager 5-15

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager
As an example, Listing 5-2 changes the default attributes for a collection object so that
= user attribute 0 and the lock attribute are set

= all other attributes are clear

Listing 5-2 Changing the default attributes of a collection

5-16

| ong newAttri butes;

newAttri butes = coll ectionUserOMask /* set user 0 bit */
| collectionLockMask; /* set lock bit */

anErr = Set Col |l ecti onDefaul tAttributes(anyCollection,
all Coll ectionAttributes, /* mask */
newAttributes); /* new val ues */

In this example, the al | Col | ecti onAttri but es mask, which is defined in
“Attributes Masks” on page 5-49, specifies that you want to replace the value of every
attribute in the collection’s default attributes with the corresponding value in the

newAt t ri but es parameter. The value of the newAt t ri but es parameter specifies that
the user 0 attribute and the lock attribute are set while every other attribute is clear.

You can use different values for the second parameter of this function if you want to edit
some of the collection’s default attributes but leave other default attributes unchanged.
For example, you could set the second parameter of this function to the

user Col | ecti onAttri but es mask:

anErr = Set Col |l ecti onDefaul tAttributes(anyCollection,
userCol | ectionAttributes, /* mask */
newAttributes); /* new val ues */

Using this mask specifies that you want to edit only the user attributes of the collection’s
default attributes. The function replaces the existing values for the collection’s default
user attributes with the values of the user attributes from the newAt t ri but es
parameter. In this example, the user 0 attribute is set while all the other user attributes
are cleared. However, this call to the Set Col | ecti onDef aul t Attri but es function
does not change the values of any of the reserved attributes. For example, the value of
the lock attribute in the collection’s default attributes remains the same as it was—the
value of the lock attribute in the newAt t r i but es parameter makes no difference as it is
not copied into the collection’s default attributes.

You can find more information about the Set Col | ecti onDef aul t Attri but es
function on page 5-61.

If you want to examine the default attributes of a particular collection object, you can use
the Get Col | ecti onDef aul t At t ri but es function, which is described on page 5-60.

Using the Collection Manager

CHAPTER 5

Collection Manager

Adding Items to a Collection

Once you've created a collection object, you can add new items to the collection using
the AddCol | ect i onl t emfunction. With this function, you specify the collection tag
and collection ID that you want associated with the new item, the size of the new item’s
variable-length data, and a pointer to the data.

Note

The Collection Manager also provides a utility function,

AddCol | ecti onl t enHdl , which allows you to specify a handle, rather
than a pointer, to the data. See page 5-92 for more information about this
function. O

Listing 5-3 creates a new collection object and adds ten items to it. Each item has the
collection tag ' GXPT' , the items have collection IDs 0 through 9, and each item contains
two coordinates that make up a QuickDraw GX point.

Listing 5-3 Adding items to a collection

OSErr anErr;

Col I ecti on poi nt sAndQuot es;
gxPoi nt | ocation;

| ong count;

poi nt sAndQuot es = NewCol | ection();

| ocation.x = ff(10);
| ocation.y = ff(10);
for (count = 0; count < 10; count++) {

anErr = AddCol | ecti onltem(poi nt sAndQuot es,
"GXPT', [* tag */
count, [* id */
si zeof (gxPoi nt), /[* size */
& ocation); /* data */

location.x += ff(1); /* change data for next item*/
location.y += ff(1);
}

The collection resulting from the code in Listing 5-3 is very similar to an array: the items
are numbered sequentially starting with 0, and all items are of the same size. Unlike
arrays, however, collections are not limited to these properties. For example, you can add
items to a collection dynamically, increasing the total number of collection items during

Using the Collection Manager 5-17

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

run time. That is, you do not have to specify the capacity of the collection at compile
time. Also, collection IDs do not have to be sequential. To demonstrate, the code

| ocati on. x ff(100);

| ocation.y = ff(100);

anErr = AddCol | ecti onltem(poi nt sAndQuot es,
"GXPT', 20, /* tag and id */
si zeof (gxPoi nt), /* size */
& ocation); /* data */

adds an eleventh item to the collection from Listing 5-3. The collection tag of the new
item is' GXPT' , but the new item has a collection ID of 20.

When you add this item to the collection, the Collection Manager assigns it a tag list
position, reflecting its position in the list of items with the same collection tag. This tag
list position can change if you add a new item with the same collection tag. For example,
the call

anErr = AddCol | ecti onltempoi nt sAndQuot es,
"GXPT', 15, /* tag and id */
si zeof (gxPoi nt), /[* size */
& ocation); /* data */

adds a new item with the ' GXPT" collection tag and a collection ID of 15. Adding this
item can change the tag list position of any other item with the ' GXPT" collection tag.

So far, the example collection contains items of the same size. You can also use the
AddCol | ecti onl t emfunction to add items with variable-length data, as shown in
Listing 5-4.

Listing 5-4 Adding items with variable-length data to a collection

5-18

ankrr AddCaol | ecti onl t en{ poi nt sAndQuot es,
'Qoor, 0, /* tag and id */
17, [* size */

"Le plus ca change"); [/* data */

anErr = AddCol | ecti onltempoi nt sAndQuot es,

Quor, 1,

29, "Fourscore and seven years ago");
anErr = AddCol | ecti onltempoi nt sAndQuot es,

Quaor, 2,
18, "It's not the heat.");

Using the Collection Manager

CHAPTER 5

Collection Manager

The sample code from Listing 5-4 adds three new items to the example collection. Each
of these items, which have collection tag ' QUOT' , contains a string of characters as its
variable-length data; however, each item contains a string of different length.

Note that the AddCol | ect i onl t emfunction copies the information from the block of
memory pointed to by its final parameter into the specified collection item. After adding
the item, you can change your copy of the information (the copy that the last parameter
points to) without affecting the value of the item’s variable-length data.

You can use the Count Col | ecti onl t ens function to count the number of items in a
collection. For example, after the call

totalltems = Count Col | ecti onltens(poi nt sAndQuot es);

the t ot al I t errs variable contains the value 15 (12 items with points and 3 items with
guotes).

You can use the Count TaggedCol | ect i onl t ens function to count the number of
items in a collection that have a specified collection tag. For example, after the call

guot edl t ens = Count TaggedCol | ecti onltens(poi nt sAndQuotes, ' QUOT');

the quot edl t ens variable contains the value 3.
For more information about the AddCol | ect i onl t emfunction, see page 5-62.

For more information about the Count Col | ecti onl t ens and
Count TaggedCol | ecti onl t enrs functions, see “Counting Items in a Collection”
beginning on page 5-69.

Determining the Collection Index of an ltem

Once you have added an item to a collection, you can identify that item in three ways:
= You can specify its collection tag and ID.

= You can specify its collection tag and its tag list position.

= You can specify its collection index.

A collection index is a unique value that the Collection Manager assigns to each item in a
collection. You can use an item’s collection index to identify the item without specifying
the item’s collection tag or collection ID. In fact, once you’ve determined the collection
index of an item, specifying that item using its collection index results in faster
operations than specifying the item using its collection tag and collection ID.

Using the Collection Manager 5-19

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

There are two ways to determine the collection index that the Collection Manager has
assigned to an item:

You can use the Get Col | ect i onl t eml nf o function. With this function, you specify
the collection tag and collection ID of the item, and the function returns the item’s
collection index.

You can use the Get TaggedCol | ecti onl t em nf o function. With this function, you
specify the collection tag and the tag list position of the item, and the function returns
the item’s collection index.

Both of these functions optionally return other information about the specified item, as
shown in the next two sections.

Listing 5-5 shows how to use the the Get Col | ect i onl t eml nf o function to determine
the collection index of an item from the sample collection created in “Adding Items to a
Collection” beginning on page 5-17. This listing uses the dont Want Si ze and

dont WAnt At t ri but es constants, which are equal to ni | and specify that you don’t
want to determine certain information about the item. These constants are described in
“Optional Return Value Constants” on page 5-49.

Listing 5-5 Determining the index of an item

5-20

| ong i ndex;

anErr = CGet Coll ectionltem nfo(poi ntsAndQuotes, /* collection */

"GXPT', 15, [/* tag and id */
& ndex, [/* returned index */
dont Want Si ze,

dont WAnt Attri but es);

After this call to Get Col | ecti onl t eml nf o function, the i ndex variable contains

the collection index of the item in the poi nt sAndQuot es collection with the ' GXPT'
collection tag and a collection ID of 15. You can use this value to identify this item when
using certain Collection Manager functions, such as Renovel ndexedCol | ecti onltem
and Get | ndexedCol | ectionltem

Using the Collection Manager

CHAPTER 5

Collection Manager

You can also use the Get TaggedCol | ecti onl t em nf o function to determine the
collection index of a collection item. This function allows you to specify the item using
the item’s collection tag and tag list position. For example, in Listing 5-5, the item is
specified using the ' GXPT" collection tag and collection ID 15. Assuming the Collection
Manager has assigned this item a tag list position of 11, you could also use the call

anErr = CGet TaggedCol | ecti onltem nf o(poi nt sAndQuot es,
"GXPT', /* collection tag */
11, /* tag list position */
dont Want | d,
& ndex, /* returned index */
dont Vant Si ze,
dont Want Attri but es);

to determine the collection index for that item.

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the Get Col | ecti onl t em nf o and
CGet TaggedCol | ecti onl t em nf o functions, see “Getting Information About a
Collection Item” beginning on page 5-76.

Determining the Tag and ID of an Iltem

Just as you can determine the collection index of an item given its collection tag and ID,
you can also determine the collection tag and ID of an item given its collection index.
Listing 5-6 shows how to determine an item’s collection tag and collection ID using the
Get | ndexedCol | ecti onl t eml nf o function.

Listing 5-6 Determining the tag and ID of an item given the item’s index

Il ong tag, id;

Jabeuepy uonag|0d -

anErr = Cetl ndexedCol | ecti onltenl nfo(poi nt sAndQuot es,
i ndex, /* index of item*/
& ag, [/* returned tag */
& d, /* returned id */
dont ant Si ze,
dont WAnt Attri but es);

Using the Collection Manager 5-21

5-22

CHAPTER 5

Collection Manager

You need to set the value of the i ndex variable to contain the collection index of the
desired item before making this call to the Get | ndexedCol | ectionltem nfo
function. (See the previous section, “Determining the Collection Index of an Item” on
page 5-19, for in the Get Col | ecti onl t em nf o function shown in Listing 5-6, thet ag
variable contains the collection tag and the i d variable contains the collection ID of the
item in the poi nt sAndQuot es collection with the collection index specified by the

i ndex variable.

If you know the collection tag of an item and you know its tag list position, you can use
the Get TaggedCol | ecti onl t em nf o function to determine its collection ID. For
example, you could also use the call

anErr = Get TaggedCol | ecti onltem nf o(poi nt sAndQuot es,
'GXPT', 11,
& d,
dont Vnt | ndex,
dont Want Si ze,
dont Want Attri but es);

to determine the collection ID of the eleventh item in the poi nt sAndQuot es collection
with the tag ' GXPT' . With the poi nt sAndQuot es collection defined in “Adding Items
to a Collection” beginning on page 5-17, the collection ID of this item turns out to be 15.

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the Get Col | ecti onl t em nf o and
CGet TaggedCol | ecti onl t em nf o functions, see “Getting Information About a
Collection Item” beginning on page 5-76.

Determining the Size of an Item’s Variable-Length Data

The Collection Manager provides three functions that provide information about an item
in a collection. These three functions differ in how they allow you to specify which item
you want information about:

s The Get Col | ecti onl t em nf o function requires that you specify the collection tag
and ID of the desired item.

s The Get | ndexedCol | ecti onl t el nf o function requires that you specify the
collection index of the desired item.

» The Get TaggedCol | ecti onl t em nf o function requires that you specify the
collection tag and tag list position of the desired item.

These functions each return a variety of information about the specified item—for
example, the item’s attributes, the size of the item’s variable length data, and so on.
These functions return each piece of information in a separate parameter. You can specify
that you do not want certain pieces of information returned by providing ni | for the
corresponding parameter. The Collection Manager provides the optional return value
constants, each of which is equal to ni | , to make your code easier to read.

Using the Collection Manager

CHAPTER 5

Collection Manager

Listing 5-7 shows how to use the Get Col | ecti onl t eml nf o function to determine the
size of an item’s variable-length data, given that item’s collection tag and ID.

Listing 5-7 Determining the size of an item’s variable-length data

[ong theSi ze;

anErr = Get Coll ectionltem nfo(poi ntsAndQuotes, /* collection */
"GXPT', 15, [/* tag and id */
dont Vant | ndex,
& heSize, [/* returned size */
dontWAnt Attri but es);

(You can also use the Get Col | ecti onl t em nf o function to determine an item’s
collection index, as described in “Determining the Collection Index of an Item”
beginning on page 5-19, or to examine an item’s attributes, as described in “Getting and
Setting the Attributes of an Item” beginning on page 5-24.)

Similarly, you can use the Get | ndexedCol | ecti onl t eml nf o function to determine
the size of the item’s variable-length data given the item’s collection index:

anErr = Cetl ndexedCol | ectionlten nfo(poi nt sAndQuot es,
i ndex, [/* index of item?*/
dont Want Tag,
dont Vant | d,
& heSi ze, /* returned size */
dont WAnt Atti but es);

(You can also use the Get | ndexedCol | ecti onl t em nf o function to determine an
item’s collection tag and collection ID, as described in “Determining the Tag and ID of an
Item” beginning on page 5-21, or to examine an item’s attributes, as described in the next
section, “Getting and Setting the Attributes of an Item.”.)

Finally, you can use the Get TaggedCol | ecti onl t enl nf o function to determine the
size of the item’s variable-length data given its collection tag and tag list position.

Jabeuepy uonag|0d -

anErr = CGet TaggedCol | ectionltem nf o(poi nt sAndQuot es,
"GXPT', [/* tag of item?*/
11, /* tag list position */
dont Vnt | d,
dont Want | ndex,
& heSi ze, /* returned size */
dont Want Attri butes);

Using the Collection Manager 5-23

5-24

CHAPTER 5

Collection Manager

(You can also use the Get TaggedCol | ecti onl t em nf o function to determine an
item’s collection index, as described in “Determining the Collection Index of an Item”
beginning on page 5-19, to determine an item’s collection ID, as described in
“Determining the Tag and ID of an Item” beginning on page 5-21, or to examine an
item’s attributes, as described in the next section, “Getting and Setting the Attributes of
an ltem.”)

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the Get Col | ecti onl t eml nf o,
Get | ndexedCol | ecti onltenl nf 0, and Get TaggedCol | ecti onltem nfo
functions, see “Getting Information About a Collection Item” beginning on page 5-76.

Getting and Setting the Attributes of an Item

The Collection Manager provides three functions that allow you to examine the
attributes of a collection item:

= The Get Col | ecti onl t em nf o function requires that you specify the collection tag
and ID of the desired item.

s The Get | ndexedCol | ecti onl t enml nf o function requires that you specify the
collection index of the desired item.

= The Get TaggedCol | ecti onl t eml nf o function requires that you specify the
collection tag and tag list position of the desired item.

The Collection Manager provides two functions that allow you to edit the attributes of
an item:

= The Set Col | ecti onl t em nf o function requires that you specify the collection tag
and ID of the desired item.

= The Set | ndexedCol | ecti onl t el nf o function requires that you specify the
collection index of the desired item.

(There is no Set TaggedCol | ecti onl t em nf o function to correspond to the
Get TaggedCol | ecti onl t em nf o function.)

The three information-retrieving functions allow you to determine a variety of
information about the item—not just its attributes. You can find more information

about the other values returned by these functions in “Determining the Collection Index
of an Item” beginning on page 5-19, “Determining the Tag and ID of an Item” beginning
on page 5-21, and “Determining the Size of an Item’s Variable-Length Data” beginning
on page 5-22.

The information-editing functions, however, allow you to edit the attributes of only the
specified item. (You cannot, for instance, use these functions to change the index of an
item, or the size of its variable-length data.)

Using the Collection Manager

CHAPTER 5

Collection Manager

Listing 5-8 shows how you can use the Get Col | ecti onl t enl nf o function to examine
the attributes of an item given the item’s collection tag and collection ID. This listing uses
the collection defined in “Adding Items to a Collection” beginning on page 5-17.

Listing 5-8 Examining the attributes of an item

long attributes;

anErr = Get Col |l ectionltem nfo(poi ntsAndQuotes, /* collection */
‘Quor', 0, /* tag and id */
dont ant | ndex,
dont Vant Si ze,
&attributes); /* returned attr's */

After this call to the Get Col | ecti onl t eml nf o function, the at t ri but es variable
contains a copy of the attributes of item from the poi nt sAndQuot es collection with the
collection tag ' QUOT" and a collection ID of 0. You can examine specific attributes using
the attribute bit masks, which are described in “Attribute Bit Masks” beginning on

page 5-52. As an example, the expression

(attributes & collectionLockMask)

evaluates to f al se (0) if the lock attribute is not set and to t r ue (not 0) if the lock
attribute is set.

You can also use the Get | ndexedCol | ecti onl t em nf o function to examine the
attributes of an item, given its collection index rather than its collection tag and
collection ID:

anErr = CetlndexedCol | ectionltem nfo(poi nt sAndQuot es,
i ndex, /* index of item?*/
dont Want Tag,
dont Want | d,
dont Vant Si ze,
&attributes); /* returned */

Using the Collection Manager 5-25

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Similarly, you can use the Get TaggedCol | ecti onl t enml nf o function to examine the
attributes of an item, given its collection tag and tag list position:

anErr = Cet TaggedCol | ecti onltem nf o(poi nt sAndQuot es,
"Quort, /* tag of item*/
1, /* tag list position */
dont Vant | d,
dont Want | ndex,
dont ant Si ze,
&attributes); [/* returned */

You can edit the attributes of a collection item using the Set Col | ecti onl t enl nf 0 and
Set | ndexedCol | ecti onl t enl nf o functions. These functions require you to specify
which attributes you want to edit and what the new values for those attributes should be.

You specify this information using two | ong parameters:

= The first is a mask. Each bit in this mask represents one of the item’s attributes. A bit
value of 0 in this mask signifies that you do not want to edit the corresponding
attribute of the specified item. A bit value of 1 in this mask signifies that you do want
to edit the corresponding attribute of the item.

= The second contains the new values. Each bit in this parameter represents the new
value for the corresponding attribute of the item. Only the bits in this parameter that
correspond to bits in the mask parameter that have a value of 1 are significant. The
Collection Manager ignores the other bit values in this parameter.

Listing 5-9 shows how you can use the Set Col | ecti onl t em nf o to set the lock and
persistence attributes of a collection item and clear all the other attributes.

Listing 5-9 Setting the lock and persistence bit attribute of an item

5-26

| ong newAttri butes;

newAttri butes = col |l ecti onLockMask
| collectionPersistenceMask;

anErr = SetCol |l ectionltenl nfo(pointsAndQuot es,
'Quor', 0, /* tag and id */
all Coll ectionAttributes, /* mask */
newAttri butes); /* new val ues */

Using the Collection Manager

CHAPTER 5

Collection Manager

This example uses the al | Col | ecti onAttri but es constant (which is defined in
“Attributes Masks” beginning on page 5-49) to indicate that all the attributes of the
specified collection item should be edited. As a result, the code in the example replaces
the value of every attribute in the specified collection item with the corresponding value
from the newAt t ri but es parameter.

If you want to set the lock and persistence attributes of this collection item without
affecting the values of the other attributes, you can use the newAt t r i but es variable as
both the mask and the values parameters:

anErr = Set Col | ecti onltem nfo(poi nt sAndQuot es,
'QUor', 0, /* tag and id */
newAttributes, /* mask */
newAttributes); /* new val ues */

In this case, the code uses the newAt t r i but es parameter as the mask (which indicates
that only the lock attribute and the persistence attribute should be affected) as well as the
values (which indicate that both of these attributes should be set). The values of all the
other attributes of the specified item remain as they were before the call.

You can also use the Set | ndexedCol | ecti onl t eml nf o function to set the attributes
of an item, given the item’s collection index rather than its collection tag and
collection ID:

anErr = Setl ndexedCol | ecti onlten nfo(poi nt sAndQuot es,
i ndex,
all Col l ectionAttributes,
newAttri butes);

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the Get Col | ecti onl t eml nf o,
Get I ndexedCol | ecti onl t em nf o, and Get TaggedCol | ecti onl tem nfo
functions, see “Getting Information About a Collection Item” beginning on page 5-76.

For more information about the Set Col | ecti onl t em nf o and
Set | ndexedCol | ecti onl t enl nf o functions, see “Editing Item Attributes” beginning
on page 5-82.

Jabeuepy uonag|0d -

Using the Collection Manager 5-27

CHAPTER 5

Collection Manager

Replacing Items in a Collection

The Collection Manager provides two methods for replacing items in a collection:

= You can use the AddCol | ect i onl t emfunction, specifying the collection tag and
collection ID of an existing item.

= You can use the Repl acel ndexedCol | ect i onl t emfunction, specifying the
collection index of an existing item.

Note

The Collection Manager also provides the utility functions,

AddCol | ecti onltenHdl and Repl aceCol | ecti onlt enHdl , which
allow you to specify a handle, rather than a pointer, to the item’s data.
See “Working With Macintosh Memory Manager Handles” beginning
on page 5-92 for more information about these functions. O

The new item does not have to be the same size as the replaced item. For example,
Listing 5-10 shows how you can use the AddCol | ect i onl t emfunction to replace the
data in a collection item with a new data of a different length. (This example uses the
collection created in “Adding Items to a Collection” beginning on page 5-17, in which
the item identified by the collection tag ' QUOT' and the collection ID 1 contains the
29-character string “Fourscore and seven years ago”)

Listing 5-10 Replacing an item in a collection

5-28

anErr = AddCol | ecti onltempoi nt sAndQuot es,
Quor, 1,
22, "Eighty-seven years ago");

You cannot replace a collection item if its lock attribute is set. For example, the previous
section shows how to set the lock attribute of the item with the collection tag ' QUOT'
and the collection ID 0. If you try to replace this item using

anErr = AddCol | ecti onltempoi nt sAndQuot es,
'Quar, o,

24, "Plus c'est |la nmenme chose");

the code sets the anEr r variable to the col | ecti onl t enlLockedEr r value and the
Collection Manager does not replace the item.

If you know the collection index of an item, you can use the

Repl acel ndexedCol | ecti onl t emfunction to replace the item. This function finds
the specified item more efficiently than the AddCol | ect i onl t emfunction. Listing 5-11
shows an example of this function.

Using the Collection Manager

CHAPTER 5

Collection Manager

Listing 5-11 Replacing an item using the item’s index

| ong i ndex;

/* find the index. */

anErr = Get Col |l ectionltem nfo(poi ntsAndQuot es,
tQuar, 1,
& ndex,
dont Vant Si ze,
dontWAnt Attri but es);

/* replace the item */
anErr = Repl acel ndexedCol | ecti onl t em(poi nt sAndQuot es,
i ndex,
22,
"Ei ghty-seven years ago");

The example in Listing 5-11 uses the Get Col | ect i onl t eml nf o function to find the
collection index that the Collection Manager has assigned to the item with a collection
tag of ' QUOT" and a collection ID of 1. Finding this collection index requires some
processing time. However, once you’ve found the item’s collection index, you can use it
to find information about the item quickly, because functions that search for a collection
item using the item’s collection index operate more efficiently than functions that search
using the item’s collection tag and collection ID. Typically, if you want to search for an
item only once, you use the item’s collection tag and collection ID. If you know that you
have to search for the same item repeatedly, you find the item’s collection index and use
the collection index when examining or editing the item.

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the AddCol | ect i onl t emfunction and the
Repl acel ndexedCol | ect i onl t emfunction, see “Adding and Replacing Items in a
Collection” beginning on page 5-62.

Using the Collection Manager 5-29

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Removing Items From a Collection

The Collection Manager provides two methods for removing individual items from a
collection:

= You can use the RenpveCol | ecti onl t emfunction, specifying the collection tag and
collection ID of the item you want to remove.

= You can use the Renpvel ndexedCol | ecti onl t emfunction, specifying the
collection index of the item you want to remove.

The Collection Manager provides three methods for removing multiple items from a
collection:

= You can use the Pur geCol | ect i on function to remove all the items in a collection
whose attributes match criteria you specify.

= You can use the Pur geCol | ect i onTag function to remove all the items in a
collection that have a specified collection tag.

= You can use the Enpt yCol | ect i on function to remove every item from a collection.

Listing 5-12 shows how you can use the RenbveCol | ect i onl t emfunction to remove
an item from a collection. (This example uses the collection created in “Adding Items to a
Collection” beginning on page 5-17.)

Listing 5-12 Removing an item in a collection

5-30

anErr = RenpveCol | ecti onltem poi nt sAndQuot es,
'Quor', 1); /* tag and id */

You can remove a collection item even if its lock attribute is set—the lock attribute only
affects replacing. For example, if you have set the lock attribute of the collection item
with the collection tag ' QUOT' and the collection ID 0, you can remove this item using

anErr = RenpveCol | ecti onlt e poi nt sAndQuot es,
'QUOor', 0); /* tag and id */

You can also remove the item using

anErr = RenpveCol | ecti onltem poi nt sAndQuot es,
'QUor', 0); /* tag and id */

If you know the index of an item, you can use the Renovel ndexedCol | ecti onltem
function to remove the item. This function finds the specified item more efficiently than
the RenmoveCol | ect i onl t emfunction. Listing 5-13 shows an example of this function.

Using the Collection Manager

CHAPTER 5

Collection Manager

Listing 5-13 Removing an item using the item’s index

| ong i ndex;

/* get the index */

anErr = Get Col |l ectionltem nfo(poi ntsAndQuot es,
tQuar, 1,
& ndex,
dont Vant Si ze,
dontWAnt Attri but es);

/* renove the item*/
anErr = Renpvel ndexedCol | ecti onlten(poi nt sAndQuot es, index);

The example in Listing 5-13 uses the Get Col | ecti onl t em nf o function to find the
collection index that the Collection Manager has assigned to the item with a collection
tag of ' QUOT" and a collection ID of 1. Finding this collection index requires some
processing time. However, once you’ve found the item’s collection index, you can use it
to find information about the item quickly, because functions that search for a collection
item using the item’s collection index operate more efficiently than functions that search
using the item’s collection tag and collection ID.

The Pur geCol | ect i on function allows you to remove multiple items from a collection.
You provide this function with a collection and a set of attribute values, and it removes
any items in the collection whose attributes match these values. You specify which
attributes to examine in the second parameter of this function, and you specify the
values to compare those attributes against in the third parameter, as shown in

Listing 5-14.

Listing 5-14 Removing multiple items with specific attributes

| ong whi chAttri butes, attributeVal ues;

/* specify which attributes to exam ne: user 0 and user 1 */
whi chAttri butes = col |l ecti onUser OMask
| collectionUser1Mask;

Using the Collection Manager 5-31

Jabeuepy uonag|0d -

5-32

CHAPTER 5

Collection Manager

/* specify the values to test for: user 0 set and user 1 clear */
attri buteVal ues = col |l ecti onUser OMask
& ~col | ecti onUser 1Mask;

/* purge all itenms with user O attribute set and user 1 clear */
Pur geCol | ecti on(poi nt sAndQuot es,

whi chAttri butes,

attri but eval ues);

This example sets two bits in the whi chAt t ri but es variable—the user 0 attribute and
the user 1 attribute—and clears every other bit in this variable, which signifies that the
function should test only the user 0 attribute and the user 1 attribute. The

attri but eval ues variable sets the user attribute 0 flag and clears the user attribute 1
flag. Therefore, this call to Pur geCol | ect i on removes every item in the collection that
has the user 0 attribute set and the user 1 attribute clear. It ignores the values of all the
other attributes.

You can use the Pur geCol | ect i onTag function to remove all of the items in a
collection that share a collection tag—even the locked items. To remove all the items with
the collection tag ' GXPT' from the poi nt sAndQuot es collection (which is defined in
“Adding Items to a Collection” beginning on page 5-17), you could use this line of code:

Pur geCol I ecti onTag(poi nt sAndQuot es, ' GXPT');

Finally, you can remove all of the items in a collection—even the locked items—using the
Enpt yCol | ect i on function:

Enpt yCol | ecti on(poi nt sAndQuot es) ;
For more information about identifying collection items, see “Methods of Identifying

Collection Items” on page 5-11.

For more information about the RenoveCol | ecti onltem

Renovel ndexedCol | ecti onlt em PurgeCol | ecti on, PurgeCol | ecti onTag, and
Enpt yCol | ecti on functions, see “Removing Items From a Collection” beginning on
page 5-65.

Using the Collection Manager

CHAPTER 5

Collection Manager

Retrieving the Variable-Length Data From an Item

The Collection Manager provides three functions that return a copy of the information in
an item’s variable-length data. These three functions differ in how they allow you to
specify which item you want information about:

s The Get Col | ect i onl t emfunction requires that you specify the collection tag and
collection ID of the desired item.

= The Get | ndexedCol | ect i onl t emfunction requires that you specify the collection
index of the desired item.

= The Get TaggedCaol | ecti onl t emfunction requires that you specify the collection
tag and tag list position of the desired item.

Note

The Collection Manager also provides the utility function

Cet Col | ecti onl t enHdl , which returns a copy of the item’s data in a
block of memory referenced by a Macintosh Memory Manager handle,
rather than a pointer. See page 5-94 for more information about this
function. O

These functions each return two pieces of information about the specified item—the size
of its variable-length data and a copy of the data itself. You can specify that you want to
determine either the size or the data or both (or neither, actually, although that doesn’t
prove to be very useful).

Typically, you call these functions twice:
= once to determine the size of the data (if you don’t already know the size)
= once (after allocating enough memory) to obtain a copy of the data.

Listing 5-15 shows how to use the Get Col | ect i onl t emfunction to retrieve the
variable-length data from an item. This sample code uses the poi nt sAndQuot es
collection defined in “Adding Items to a Collection” beginning on page 5-17.

Listing 5-15 Retrieving the variable-length data from an item

| ong t heSi ze;
char *theDat a;

anErr = Get Col | ectionltemnpointsAndQuot es,
'Quor', 0, /* tag and id */
&t heSi ze,
dont Want Dat a) ;

theData = (char *) NewPtr(theSize);

Using the Collection Manager 5-33

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

anErr = Get Col |l ectionltempointsAndQuot es,
tQar, o,
dont Vant Si ze,
t heDat a) ;

If you specify a non-NI L value for the size parameter, the Get Col | ecti onl tem
function returns in the size parameter the actual number of bytes of the item’s data.

If you specify non-NI L values for both the size and data parameters, the number of bytes
returned in the data parameter is either the value specified by the size parameter or the
actual number of bytes of the specified item’s data, whichever is lower.

You can also use the Get | ndexedCol | ect i onl t emfunction to retrieve an item’s data,
given the item’s collection index rather than its collection tag and collection ID, as shown
in Listing 5-16.

Listing 5-16 Retrieving the variable-length data from an item using the item’s index

5-34

| ong i ndex;
[ong theSi ze;
char *theDat a;

/* get the index and data size */
anErr = Get Col | ectionltem nfo(poi nt sAndQuot es,
'QUOor', 0, /* tag and id */
& ndex,
&t heSi ze,
dont Vant At tri but es;

theData = (char *) NewPtr(theSize);

ankErr = CGetl ndexedCol | ecti onltem poi nt sAndQuot es,
i ndex,
dont Vant Si ze,
t heDat a) ;

Using the Collection Manager

CHAPTER 5

Collection Manager

Similarly, you can use the Get TaggedCol | ect i onl t emfunction to retrieve an item’s
data, given the item’s collection tag and tag list position, as shown in Listing 5-17.

Listing 5-17 Retrieving the variable-length data from an item using the tag and tag list position

| ong i ndex;
| ong theSi ze;
char *theDat a;

anErr = Get TaggedCol | ecti onlten(poi nt sAndQuot es,
1, /* first of the 'QUOT" itens */
&t heSi ze,
dont Want Dat a) ;

theData = (char *) NewPtr(theSize);

ankErr = CGet TaggedCol | ecti onlt em poi nt sAndQuot es,
1, /* first of the 'QUJOT" itens */
dont Want Si ze,
(void *) theData);

For more information about identifying collection items, see “Methods of Identifying
Collection Items” on page 5-11.

For more information about the Get Col | ecti onltem
CGet | ndexedCol | ecti onl t em and Get TaggedCol | ecti onl t emfunctions, see
“Retrieving the Variable-Length Data From an Item” beginning on page 5-70.

Examining the Collection Tags of a Collection

The Collection Manager provides three functions that allow you to examine the
collection tags contained in a specific collection:

= You can use the Col | ecti onTagExi st s function to determine if any of the items in
a specific collection have a specified collection tag.

= You can use the Count Col | ecti onTags function to determine the total number of
distinct collection tags contained in the items of a collection.

= You can use the Get | ndexedCol | ect i onTag function to examine the value of one
of the distinct collection tags contained in a collection.

Using the Collection Manager 5-35

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Every collection has a list of distinct collection tags contained in that collection. The
Get | ndexedCol | ecti onTag function allows you to step through this list of distinct
collection tags, as shown in Listing 5-18.

Listing 5-18 Counting tags in a collection

5-36

| ong nunTags, numltens, eachTag, eachltem

nunTags = Count Col | ecti onTags(poi nt sAndQuot es) ;

/* iterate through each tag */

for (eachTag = 1; eachTag <= numlags; ++eachTag) {
CGet | ndexedCol | ecti onTag(poi nt sAndQuot es, eachTag, &theTag);
num tenms = Count TaggedCol | ecti onlt ens(poi nt sAndQuot es, theTag);

/* iterate through each itemw th that tag */
for (eachltem = 1; eachltem <= numtens; ++eachltem {

/* find size of itemdata and obtain copy of data */
CGet TaggedCol | ecti onlt en{ poi nt sAndQuot es,

t heTag, eachltem

& heSi ze, dont Want Dat a) ;
theData = (char *) NewPtr(theSize);
Get TaggedCol | ecti onlt en{ poi nt sAndQuot es,

t heTag, eachltem

dont Want Si ze, theData);

/* manipulate itemdata . . .*/

Di sposePtr (theDat a) ;

Using the Collection Manager

CHAPTER 5

Collection Manager

This sample code determines the total number of distinct tags in the poi nt sAndQuot es
collection using the Count Col | ecti onTags function. Then, it uses the

Cet | ndexedCol | ecti onTag function to step through each of the distinct collection
tags in the collection.

With each collection tag, the sample code uses the Get TaggedCol | ecti onl t em
function to retrieve the variable-length data from each item with the tag. In this manner,
this sample code retrieves the data from every item in the collection.

For more information about the Col | ecti onTagExi sts, Count Col | ecti onTags,
and Get | ndexedCol | ect i onTag functions, see “Getting Information About
Collection Tags” beginning on page 5-85.

Flattening and Unflattening a Collection

The Collection Manager provides the Fl at t enCol | ect i on function for converting the
information in a collection object into a flattened stream of bytes. With the

Fl att enCol | ect i on function, you provide a callback function that operates on the
stream of bytes—you can use this callback function to write the stream out to disk, store
the stream in a Macintosh Memory Manager handle, and so on.

The Fl att enCol | ect i on function takes three parameters:
= areference to the collection to flatten

= a pointer to the callback function that you provide to handle the returned stream of
bytes

= a 32-bit reference constant that the Collection Manager passes back to your callback
function

When you call the FI at t enCol | ect i on function, the Collection Manager begins
converting the collection into a stream of bytes. It repeatedly calls your callback function,
each time sending it more of the flattened collection, until it has converted the entire
collection.

Your callback function determines what happens to the flattened collection. This
function must take three parameters: a| ong value that represents the size of the current
block of data, a pointer to the current block of data, and a reference constant that you can
use as a pointer to other information.

Using the Collection Manager 5-37

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Listing 5-19 shows an example callback function. This function appends the block of data
provided by the Collection Manager in the t heDat a parameter to the end of a block of
data referenced by a Macintosh Memory Manager handle. The handle and the current
size of the block of data referenced by the handle are stored in a TFl at t enBl ock
structure. (The sample code in Listing 5-20 passes a pointer to this structure as the
reference constant when calling the Fl at t enCol | ect i on function, which passes the
pointer back to your callback function.)

Listing 5-19 Flattening procedure

typedef struct {
| ong position;
Handl e dat aHandl e;
} TFl attenBl ock;

CSErr FlattenProc(l ong theSize, Ptr theData,
TFl attenBl ock *fl attenBl ock) {

regi ster OSErr anErr = noErr;

Set Handl eSi ze(f | att enBl ock- >dat aHandl e,
fl attenBl ock->position + theSize);
anErr = Menkrror();
if (anErr == noErr) {
Bl ockMove(dat a,
*fl attenBl ock->dat aHandl e +
fl attenBl ock->position,
t heSi ze) ;
fl attenBl ock->position += theSize;

}

return ankrr;

5-38 Using the Collection Manager

CHAPTER 5

Collection Manager

Listing 5-20 shows how you can use this callback function. The sample function
in Listing 5-20 uses the Fl at t enCol | ect i on function to flatten a collection into a block
of memory referenced by a Macintosh Memory Manager handle.

Listing 5-20 The Fl att enCol | ecti onToHdl function

/* possible inplenmentation of FlattenColl ectionToHdl */

OSErr Fl attenCol |l ecti onToHdl (Col | ecti on anyCol | ecti on,
Handl e fl attenedCol | ecti on)

{
regi ster OSErr ankErr;
TFl at t enBl ock fl attenBl ock;
flattenBl ock. position = O;
flattenBl ock. dataHandl e = fl attenedCol | ecti on;
if (!(anErr = Menkrror())) {
anErr = FlattenCol | ection(anyCol | ecti on,
Fl at t enPr oc,
&f | at t enBl ock) ;
if (ankErr)
flattenBl ock. dataHandl e = ni | ;
}
return ankrr;
}

This function creates a TFI at t enBl ock structure, initializes the posi ti on field to 0,
and initializes the dat aHandl e field to a newly allocated Macintosh Memory Manager
handle. The function then calls the FI at t enCol | ect i on function, specifying the
collection to flatten, the callback function specified in Listing 5-19, and a pointer to the
TFI at t enBl ock structure. In response, the Collection Manager flattens the specified
collection one piece at a time, repeatedly calling the callback function with new blocks of
the flattened collection. The Collection Manager provides a pointer to the

TFI at t enBl ock structure when calling the callback function. The callback function
uses this information to copy each new block of flattened collection data onto the end of
the Macintosh Memory Manager handle.

Using the Collection Manager 5-39

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Listing 5-21 shows the reverse process—using the Unf | at t enCol | ect i on function to
convert a flattened collection from a Macintosh Memory Manager handle into a
collection object.

Listing 5-21 A possible implementation of the Unf | at t enCol | ect i onFr onHdl function

void UnflattenProc(long theSize, Ptr theData,
TFl attenBl ock *fl attenBl ock) {

Bl ockMove(*fl att enBl ock- >dat aHandl e +
fl attenBl ock->position,

t heDat a, theSize)

fl attenBl ock->position += theSize;

OSErr Unfl attenCol | ecti onFrontHdl (Col | ection anyCol | ecti on,
Handl e fl attenedCol | ecti on)

{
regi ster OSErr ankErr;
TFl att enBl ock fl attenBl ock;
flattenBl ock. position = O;
flattenBl ock. dat aHandl e = fl attenedCol | ecti on;
anErr = UnflattenCol |l ection(anyColl ection,
Unfl att enProc,
&f | at t enBl ock) ;
return ankrr;
}

Listing 5-21 shows a possible implementation of the Unf | at t enCol | ect i onFr onmHdI
function. The Collection Manager provides both the Fl at t enCol | ecti onToHdl and
Unfl att enCol | ecti onFronmHdl functions for you—you do not have to define these
yourself. For more information about the flattening and unflattening functions, see
“Flattening and Unflattening a Collection” beginning on page 5-88.

5-40 Using the Collection Manager

CHAPTER 5

Collection Manager

Reading Collections From and Writing Collections to Disk

The Collection Manager provides a number of methods for storing collections on disk:

You can store the collection’s contents as a collection (' ¢l t n') resource and read the
information into a collection object using the Get NewCol | ect i on function. For more
information about the ' cl t n' resource, see “The Collection Resource” beginning on
page 5-102, and for more information about the Get NewCol | ect i on function, see
the description of that function on page 5-99. For an example of reading a collection
object from a collection resource, see the next section, “Reading a Collection From a
Collection Resource.”

You can flatten a collection using the Fl at t enCol | ect i on function and provide a
callback function that writes the blocks of flattened data to a file. You can unflatten
this collection using the Unf | at t enCol | ect i on function, providing a callback
function that reads blocks of data from the file. For more information about

these functions, see “Flattening and Unflattening a Collection” beginning on

page 5-37 and the description of the FI at t enCol | ect i on function on page 5-88 and
the description of the Unf | at t enCol | ect i on function on page 5-90.

You can flatten a collection to a handle using the Fl att enCol | ect i onToHdI
function and write the contents of the handle to the resource fork of a file (using the
Macintosh function AddResour ce) or to the data fork of a file (using the Macintosh
function FSW i t e). You can then read the contents of this file into a handle (using the
Macintosh functions Get Resour ce or FSRead) and unflatten the result using the
Unfl att enCol | ecti onFronHdl function.

IMPORTANT

Although you may create a resource containing a flattened collection
using the Fl at t enCol | ecti onToHdl and AddResour ce functions,
you cannot recreate the collection from this resource using the

Get NewCol | ect i on function. The resource format created by the
Fl att enCol | ecti onToHdl and AddResour ce functions is
incompatible with the resource format expected by the

Get NewCol | ecti on function. a

Jabeuepy uonag|0d -

Using the Collection Manager 5-41

CHAPTER 5

Collection Manager

Listing 5-22 shows how to flatten a collection to a handle and then write the contents of
the handle to the resource fork of a disk file.

Listing 5-22 Flattening a collection to a disk file as a resource

OSErr anErr;
Handl e fl attened;

/* wite the collection out as a resource */

flattened = NewHandl e(0);
anErr = FlattenCol |l ecti onToHdl (nmyCol | ection, flattened);

if (anErr == noErr) {
AddResource(fl attened, nyType, nylD, nyNane);
ankErr = ResError();

}

Listing 5-23 shows how to flatten a collection to a handle and then write the contents of
the handle to the data fork of a disk file.

Listing 5-23 Flattening a collection to a data fork of a disk file

5-42

CSErr anErr;
Handl e fl attened;
[ong theSi ze;

/* wite the collection out to the data fork */

flattened = NewHandl e(0);
anErr = FlattenCol | ectionToHdl (nmyCol | ection, flattened);

if (ankErr == noErr) {
theSi ze = Get Handl eSi ze(fl att ened);
anErr = FSWite(refNum theSize, *flattened);

Using the Collection Manager

CHAPTER 5

Collection Manager

Listing 5-24 shows how to read a flattened collection from the resource fork of a disk file
into a block of memory referenced by a Macintosh Memory Manager handle and then
unflatten the information in that block of memory into a collection object.

Listing 5-24 Unflattening a collection from a disk file as a resource

Handl e fl attened,;
Col l ection myCol |l ecti on;

if (nyCollection = NewCollection()) {
/* read the collection in as a resource */
flattened = Get Resource(nyType, nylD);

if ((anErr = ResError()) == noErr) {
anErr = UnflattenCol |l ectionFronHdl (nyCol |l ection, flattened);
Rel easeResource(fl attened);
if (anErr == noErr)
anErr = ResError();

}

Listing 5-25 shows how to read a flattened collection from the data fork of a disk file into
a block of memory referenced by a Macintosh Memory Manager handle and then
unflatten the information in that block of memory into a collection object.

Listing 5-25 Unflattening a collection from the data fork of a disk file

OSErr anErr;
Handl e fl attened;
Col | ection myCol | ecti on;
if (myCollection = NewCollection()) {
/* read the collection in fromthe data fork */

flattened = NewHandl e(t heSi ze);

if ((anErr = MenError()) == noErr) {

Using the Collection Manager 5-43

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

if ((anErr = FSRead(ref Num theSize, *flattened)) == noErr)
anErr = Unfl attenCol | ecti onFronmHdl (nyCol | ecti on,
flattened);

Di sposHandl e(fl attened);

}

To unflatten a collection using Listing 5-25, you must know the size of the collection
before you can unflatten it. If you don’t know the size of the collection, you unflatten a
collection using the callback function mechanism described in “Flattening and
Unflattening a Collection” beginning on page 5-37.

For more information about the Fl at t enCol | ecti onToHdl function and the

Unfl attenCol | ecti onFronHdl function, see “Flattening and Unflattening a
Collection” beginning on page 5-37 as well as the descriptions of these functions starting
on page 5-97.

For information about the Macintosh functions AddResour ce and Get Resour ce, see
the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox. For
information about the Macintosh functions FSRead and FSW i t e, see the chapter “File
Manager” in Inside Macintosh: Files.

Reading a Collection From a Collection Resource

To store a collection to disk, you can flatten a collection and write the flattened data to a
file, as described in the previous section, or you can create a collection (' cl tn')
resource. The format of the collection resource is shown in the section “The Collection
Resource” beginning on page 5-102.

You can create a collection object from the information stored in a collection resource
using the Get NewCol | ect i on function. Listing 5-26 gives an example.

Listing 5-26 Reading a collection from a collection resource

5-44

OSErr ReadCol | ecti onFronResour ce(short ref Num short reslD,
Col | ection* pCol |l ection)

OCSErr anErr = noErr;
short saveResFile = CurResFile();

UseResFil e(ref Num ;
*pCol | ecti on = Get NewCol | ection(reslD);

Using the Collection Manager

CHAPTER 5

Collection Manager

if (!*pCollection) {
anErr = ResError();
if (lanErr) /* if ResErr returned noErr */
anErr = resNot Found; /* then the error was resNot Found */

UseResFi | e(saveResFile);

return ankrr;

}

The ReadCol | ect i onFr omResour ce sample function requires three parameters:
= the reference number of the file containing the desired collection resource

= the resource ID of the desired collection resource

= a pointer to a collection object reference

The sample function uses the Cur ResFi | e function to determine the current resource
file, saves the reference number of that resource file, and uses the UseResFi | e function
to indicate that the current resource file should be the resource file specified by the
reference number contained in the first parameter.

The sample function then uses the Get NewCol | ect i on function, which takes a
resource ID as its only parameter, to read the information from the designated
collection resource into the collection object referenced by the sample function’s third
parameter.

Finally, the sample function checks for errors and resets the current resource file.

For more information about resource files and the Cur ResFi | e, UseResFi | e, and
ResEr r or functions, see the chapter “Resource Manager” in Inside Macintosh: More
Macintosh Toolbox.

For more information about the collection resource, see “The Collection Resource”
beginning on page 5-102. For more information about the Get NewCol | ect i on function,
see the description of that function on page 5-99.

Jabeuepy uonag|0d -

Installing an Exception Procedure

The Collection Manager allows you to specify an exception procedure for each collection
object. When you attempt to manipulate a collection object using a Collection Manager
function and the function results in an error, the Collection Manager calls the exception
procedure for the collection object and sends it two parameters: a reference to the
collection object that caused the error and the error code that was generated.

In an exception procedure, you can handle the error and then change the error code to
noEr r, a process which indicates that the Collection Manager can return control to the
place in your application that generated the error as if no error had occurred. You can
also change the error from one error code to another. A third alternative is to use the

Using the Collection Manager 5-45

CHAPTER 5

Collection Manager

ANSI C functions set j np and | ongj np to jump out of the exception handler and into
code to handle the error. Listing 5-27 shows a sample exception procedure.

Listing 5-27 A sample exception procedure

5-46

jmp_buf cpuState; /* global nachine state */

pascal OSErr MyExcepti onHandl er (Col I ecti on errorColl ection,
OSErr st atus)

{
/* ignore collectionltenLockedErr errors */
if (status == collectionltenlLockedErr)
return nokrr;
/* all other errors nmust be handled by caller’s setjnp block */
/* junmp back to callers setjnmp block and return status */
| ongj np(cpuSt ate, status);
}
voi d ExceptionTest(Col |l ection anyColl ection)
{
OSErr result;
Set Col | ecti onExcepti onProc(anyCol | ecti on, MyExcepti onHandl er);
if (!(result = setjnp(cpuState))) {
AddCol | ectionltem anyCol | ection, "tagl', 1, 4, "data");
AddCol | ectionlten{anyCol | ection, 'tagl', 2, 9, "nore data");
AddCol | ectionlten{anyCol | ection, 'tagl', 3, 9, "last data");
/* cause an error . . . */
RenoveCol | ectionlten(anyCol | ection, 'tagl', 4);
} else {
/* handl e errors other than collectionltenlLockedErr */
/* use result local variable to deternine which error */
}
}

Using the Collection Manager

CHAPTER 5

Collection Manager

In Listing 5-27, the Except i onTest sample function takes a single parameter: a
reference to a collection object. The sample function first calls the

Set Col | ecti onExcept i onPr oc function to install an exception handler for this
collection object. In this example, the call to Set Col | ect i onExcept i onPr oc installs
the MyExcept i onHandl er function as the exception handler.

The next line of the Except i onTest sample function calls the set j np function. This
function stores the current machine state, including the current position in the sample
code, into the cpuSt at e global variable. It also returns a value of 0 as its function result,
and this value is assigned to the local variable r esul t . This value is negated (by the!
operator), an operation that produces a Boolean value of t r ue. Therefore, the block of
code inthei f clause begins to execute.

Imagine that the first call to the AddCol | ect i onl t emfunction completes successfully,
but that the second call to AddCol | ect i onl t emgenerates a

col I ectionltemnmLockedErr error. During the second call to AddCol | ecti onl tem
the Collection Manager responds to the error by calling the MyExcept i onHandl er
function. The first parameter passed to this function indicates the collection that
generated the error, and the second parameter passed to this function indicates the error
that was generated. This sample exception handler determines whether the error is the
col I ecti onl t enLockedErr error (which itis in this example) and then returns with
the noEr r error as the function result. The Collection Manager notices this change in
error and returns control to the sample function as if no error had occurred. (Just as you
can use this mechanism to ignore certain errors, you can also use this mechanism to
change errors of one type into errors of another type.) Since effectively no error has now
occurred, the Except i onTest sample function continues by executing the third call to
the AddCol | ect i onl t emfunction.

The subsequent line of the Except i onTest sample function attempts to remove an
item that is not in the collection, resulting inacol | ecti onl t emNot FoundEr r error.
Again, the Collection Manager responds by calling the exception handler. In this case,
however, the error is not the col | ecti onl t enlLockedEr r error, so the exception
handler executes this line of code:

| ongj mp(cpuSt ate, status);
When you call the | ongj np function,

= control is passed to the location of the corresponding call to the set j np function

Jabeuepy uonag|0d -

= the value passed as the second parameter to the | ongj np function becomes the
function result of the set j np function

Therefore, this call to the | ongj np function passes control back to the location in the
Except i onTest sample function where set j np(cpuSt at e) was called earlier. This
time, however, the function result returned by the set j np function is not 0, as it was
before, but instead is the value of st at us, the second parameter in the call to the

I ongj np function. Therefore, the function result of the set j np function is set to be the
col I ecti onlt emNot FoundEr r error.

Using the Collection Manager 5-47

CHAPTER 5

Collection Manager

Once again, the Except i onTest sample function assigns this function result to the
resul t local variable, and negates it with the ! operator. This time the negation
produces a Boolean value of f al se, and therefore the block of code in the el se clause
begins to execute. In this block of code, you can handle errors not handled in the
exception handler, using the r esul t local variable to determine which error occurred.

You can find more information about the Set Col | ect i onExcept i onPr oc function on
page 5-59. You can find more information about exception procedures on page 5-101.

Collection Manager Reference

This section provides reference information about the data types, functions, and
resources that allow you to create and manipulate collection objects. It includes

» type definitions of the data types, including enumeration types, that are specific to the
Collection Manager

» descriptions of the functions that operate on collection objects and their items

» descriptions of the application-defined callback function used for flattening and
unflattening collections and the application-defined callback function used for
exception handling

= the definition of the resource type used to store collection objects on disk

Data Types

This section describes the data types that you use to obtain information from and
provide information to the Collection Manager functions.

Collection Objects

5-48

The Collection Manager provides you with access to a collection object through a
Col | ect i on reference:

typedef struct PrivateCollectionRecord *Coll ection;

The Col | ect i on type defines a reference type that your compiler can type-check; it
does not define a pointer to a publicly defined data structure. The contents of the
collection object are private; you must use the Collection Manager functions to
manipulate collection objects.

Collection Manager Reference

CHAPTER 5

Collection Manager

Collection Tags

Each item in a collection is uniquely identified by its collection tag and its collection ID.
The collection tag is a four-character identifier, similar to the indentifiers used for
resources:

typedef |ong CollectionTag; /* 4-byte identifier ('xxxx') */

For more information about collection tags, see “Collection Items” beginning on page 5-8.

Optional Return Value Constants

Many of the Collection Manager functions return multiple pieces of information. For
most of these functions, you can specify that you don’t want a specific piece of
information to be returned by specifying ni | for the corresponding parameter when
calling the function.

The Collection Manager provides the optional return value constants to make your code
easier to read when specifying that you are not interested in obtaining certain types of
information:

enum {
dont Want Tag = OL,
dontWantld = OL,
dont Want Si ze = OL,
dont Want Attri butes = OL,
dont Want | ndex = OL,
dont Want Data = OL

}s

You can use these enumeration constants in place of the more generic constant ni | when
specifying that you don’t want to receive certain optional return values from a function.

Attributes Masks

The Collection Manager provides four convenient attributes masks that you can use
when specifying attributes for any of the attribute-related Collection Manager functions:

enum {
noCol | ectionAttri butes = 0x00000000,
all Col l ectionAttributes = OxFFFFFFFF,
userCol | ecti onAttri butes = 0xO0000FFFF,
defaul t Col | ecti onAttri butes = 0x40000000

Collection Manager Reference 5-49

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Constant descriptions

noCol | ecti onAttri butes
Specifies a mask in which all collection attributes are clear. You
might use this constant when clearing all the attributes of an item or
when testing whether all of an item’s attributes are clear.

all Coll ectionAttributes
Specifies a mask in which all collection attributes are set. You might
use this constant as a mask to indicate that you want to edit or test
every attribute of an item, or you might use it to set every attribute
of an item.

user Col | ectionAttributes
Specifies a mask in which the user attributes are set and the
reserved attributes are clear. You might use this constant as a mask
to indicate that you want to edit or test only the user attributes of an
item, or you might use it to set every user attribute of an item.

defaul t Col | ecti onAttributes
Specifies a mask in which the persistent attribute is set and all other
attributes are clear. You might use this constant when testing to see
if an item’s attributes have been edited.

You can also use the attribute bit masks, described on page 5-52, as masks for individual
attributes.

For more information about collection item attributes, see “Collection Items” beginning
on page 5-8.-

Attribute Bit Numbers

5-50

The Collection Manager provides the attribute bit numbers enumeration to provide
constant names for each of the bits in a collection item’s attributes.

enum {

collectionUserOBit = 0, /* for use by your application */
col l ectionUser1Bit = 1,
col l ectionUser2Bit = 2,
col l ectionUser3Bit = 3,
col l ectionUser4Bit = 4,
col l ectionUser5Bit = 5,
col l ectionUser6Bit = 6,
col l ectionUser7Bit = 7,
col l ectionUser8Bit = 8,
col l ectionUser9Bit = 9,
col l ectionUser10Bit = 10,
collectionUser1lBit = 11,
col l ectionUser12Bit = 12,

Collection Manager Reference

CHAPTER 5

Collection Manager

col l ectionUser13Bit =
col l ectionUser14Bit =
col l ecti onUser 15Bit =

col | ecti onReservedOBi t
col l ecti onReservedlBit
col | ecti onReserved2Bi t
col | ecti onReserved3Bit
col | ecti onReserved4Bi t
col | ecti onReserved5Bi t
col | ecti onReserved6Bit
col l ecti onReserved7Bi t
col | ecti onReserved8Bi t
col | ecti onReserved9Bi t
col |l ecti onReservedl10Bit
col | ecti onReservedl1Bit
col | ecti onReservedl12Bit
col l ecti onReserved13Bit

col | ecti onPer si stenceBi t

col l ectionLockBit = 31

b

13,
14,
15,

16,
17,
18,
19,
20,
21,
22,
23,
24,
25,

26,
27,
28,
29,

= 30,

/* reserved for use by Apple */

/* Currently defined */

The lower 16 bits of the attributes property of a collection item represent the
user-defined attributes. You can use these attributes for any purpose suitable to your

application.

The upper 16 bits are reserved for use by Apple Computer, Inc. Currently, the 2 high bits
are defined: bit 30 represents the persistence attribute and bit 31 represents the lock

attribute.

For more information about collection item attributes, see “Collection Items” beginning

on page 5-8.

Collection Manager Reference

5-51

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Attribute Bit Masks

Using the attribute bit numbers, the Collection Manager provides convenient attribute
masks for each of the attributes:

enum {
col l ecti onUserOMask = 1L << collectionUser0Bit,
col l ectionUser 1Mask = 1L << coll ectionUseriBit,
col | ecti onUser2Mask = 1L << collectionUser2Bit,
col l ecti onUser3Mask = 1L << collectionUser3Bit,
col l ectionUser4Mask = 1L << coll ectionUser4Bit,
col | ecti onUser5Mask = 1L << collectionUser5Bit,
col l ecti onUser6Mask = 1L << collectionUser6Bit,
col l ectionUser 7Mask = 1L << coll ectionUser7Bit,
col | ecti onUser 8Mask = 1L << collectionUser8Bit,
col l ecti onUser9Mask = 1L << collectionUser9Bit,
col l ecti onUser 10Mask = 1L << coll ecti onUser10Bit,
col | ecti onUser 11Mask 1L << coll ectionUser1lBit,
col | ecti onUser 12Mask 1L << collectionUser12Bit,
col I ecti onUser 13Mask 1L << collectionUser13Bit,
col | ecti onUser 14Mask 1L << collectionUser14Bit,
col | ecti onUser 15Mask 1L << coll ectionUser15Bit,

col | ecti onReservedOMask = 1L << collecti onReservedOBit,
col | ecti onReservedlMask = 1L << collectionReservedlBit,
col I ecti onReserved2Mask = 1L << col |l ecti onReserved2Bit,
col | ecti onReserved3Mask = 1L << collecti onReserved3Bit,
col | ecti onReserved4Mask = 1L << coll ectionReserved4Bit,
col I ecti onReserved5Mask = 1L << coll ecti onReserved5Bit,
col | ecti onReserved6Mask = 1L << collecti onReserved6Bit,
col | ecti onReserved7Mask = 1L << coll ectionReserved7Bit,
col I ecti onReserved8Mask = 1L << coll ecti onReserved8Bit,
col | ecti onReserved9Mask = 1L << coll ecti onReserved9Bit,
col | ecti onReser ved10Mask 1L << coll ecti onReservedl0Bit,
col I ecti onReservedllMask 1L << coll ectionReservedll1Bit,
col | ecti onReservedl2Mask 1L << coll ecti onReservedl12Bit,
col | ecti onReservedl13Mask 1L << coll ecti onReservedl13Bit,

col | ecti onPersi stenceivMask = 1L << coll ecti onPersi stenceBit,
col | ecti onLockMask = 1L << coll ecti onLockBit

5-52 Collection Manager Reference

Functions

CHAPTER 5

Collection Manager

You can use these attribute masks when testing or setting a particular collection item
attribute.

For more information about collection attributes, see “Collection Attributes” beginning
on page 5-9.

For an example using these attributes, see “Getting and Setting the Attributes of an
Item” beginning on page 5-24.

This section describes the Collection Manager functions you can use to
= create and dispose of collection objects

= clone and copy collection objects and determine their owner counts
= get and set the default attributes for a collection object

» add and replace items in a collection

= remove items from a collection

= count items in a collection

= retrieve the variable-length data from a collection item

= get information about an item in a collection (for example, the index of the item, the
size of the item’s data, or the item’s attribute flags)

» set the attribute flags of a collection item

= get information about the collection tags associated with the items of a collection
= flatten and unflatten collections

= use Macintosh Memory Manager handles to specify variable-length data

WARNING

Many of the functions in this section require a reference to a collection
object (that is, a reference of type Col | ect i on) as a parameter. When
calling any of these functions, you must always provide a valid
collection object reference. If you do not, the behavior of the function is
undefined. a

Creating and Disposing of Collection Objects

The functions described in this section allow you to work with collections as objects in
memory. With the functions in this section, you can create new, empty collection objects
and dispose of existing collection objects.

You use the NewCol | ect i on function to create a new collection object and the
Di sposeCol | ect i on function to dispose of a collection object.

Collection Manager Reference 5-53

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

NewCollection

DESCRIPTION

You can use the NewCol | ect i on function to create a new, empty collection object.
Col I ecti on NewCol | ecti on(void);

function result A reference to the newly created collection object.

The NewCol | ect i on function allocates memory for a new collection object, initializes
it, and returns a reference to it as the function result. The new collection contains no
items and has an owner count of 1.

The NewCol | ect i on function does not return an error code; it returns ni | if it cannot
create a new collection object.

SPECIAL CONSIDERATIONS

SEE ALSO

5-54

You are responsible for disposing of collection objects that you create with this function
when you no longer need them. See the next section, which describes the
Di sposeCaol | ect i on function, for information about disposing of collection objects.

For general information about QuickDraw GX objects, see the chapter “Introduction to
QuickDraw GX” in Inside Macintosh: QuickDraw GX Objects.

For examples using this function, see “Creating or Disposing of a Collection” beginning
on page 5-14 and “Adding Items to a Collection” beginning on page 5-17.

To create a copy of an existing collection object, use the CopyCol | ect i on function,
which is described in the previous section.

To dispose of a collection object, use the Di sposeCol | ect i on function, which is
described in the next section.

Collection Manager Reference

CHAPTER 5

Collection Manager

DisposeCollection

DESCRIPTION

SEE ALSO

You can use the Di sposeCol | ect i on function to dispose of a collection object.
voi d Di sposeCol | ection(Collection target);

t ar get A reference to the collection object you want to dispose of.

The Di sposeCaol | ect i on function decrements the owner count of the collection object
referenced by the t ar get parameter. If the resulting owner count is 0, this function
releases the memory occupied by the collection object, and the collection object reference
contained in the t ar get parameter becomes invalid.

The behavior of this function is undefined if you do not provide a reference to a valid
collection object in the t ar get parameter.

For general information about QuickDraw GX objects, see the chapter “Introduction to
QuickDraw GX” in Inside Macintosh: QuickDraw GX Objects.

For examples using this function, see “Creating or Disposing of a Collection” beginning
on page 5-14.

To create a new collection object, use the NewCol | ect i on function, which is described
on page 5-55.

To increment the owner count of a collection object, use the Cl oneCol | ecti on
function, which is described in the next section. To determine the owner count of an
existing collection object, use the Count Col | ect i onOwner s function, which is
described on page 5-57.

Cloning and Copying Collection Objects

The functions described in this section allow you to examine and manipulate the owner
count of a collection object or to make a complete copy of a collection object.

The C oneCol | ect i on function allows you to increment the owner count of a
collection object. Typically, you use this function to signify the creation of a new
reference to an existing collection object. The Count Col | ecti onOaner s function
allows you to determine the current owner count of a collection object.

The CopyCol | ect i on function allows you to create a complete copy of a collection
object. The new collection object contains a copy of every item in the original
collection object.

Collection Manager Reference 5-55

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

CloneCollection

DESCRIPTION

SEE ALSO

5-56

You can use the Cl oneCol | ect i on function to clone a collection object—that is, to
increment its owner count.

Col l ection CloneCollection (Collection target);

t ar get A reference to the collection object you want to clone.

function result A reference to the cloned collection. (This result is effectively a copy of the
reference you provide in the t ar get parameter.)

The Cl oneCol | ect i on function increments the owner count of the collection object
referenced by the t ar get parameter, and, as a programming convenience, returns
a reference to this collection as the function resulit.

Typically, you use this function to increment a collection object’s owner count to
represent a new reference to the collection object. For example, if you want two variables
in your application to reference a single collection object, you can use this code to
maintain the correct owner count:

firstReference = NewCol | ection();
secondRef erence = C oneCol |l ection(firstReference);

Disposing of either reference (using the Di sposeCol | ect i on function)
simply decrements the collection’s owner count. Disposing of the remaining reference
decrements the owner count again and frees the memory associated with the collection.

The Cl oneCol | ect i on function does not return an error code.

For general information about QuickDraw GX objects, see the chapter “Introduction to
QuickDraw GX” in Inside Macintosh: QuickDraw GX Objects.

For examples of this function, see “Cloning or Copying a Collection” beginning on
page 5-14.

To decrement the owner count of a collection object, use the Di sposeCol | ecti on
function, which is described in the previous section. To determine the owner count of an
existing collection object, use the Count Col | ect i onOwner s function, which is
described in the next section.

To copy a collection object, use the CopyCol | ect i on function, which is described on
page 5-57.

Collection Manager Reference

CHAPTER 5

Collection Manager

CountCollectionOwners

DESCRIPTION

SEE ALSO

You can use the Count Col | ecti onOwner s function to determine the number of
existing references to a collection object.

| ong Count Col | ecti onOaner s(Col | ecti on source);

source The collection object whose owner count you want to determine.

function result The owner count of the collection object.

The Count Col | ect i onOamner s function returns as its function result the owner count
of the collection object referenced by the sour ce parameter.

For general information about QuickDraw GX objects, see the chapter “Introduction to
QuickDraw GX Objects” in Inside Macintosh: QuickDraw GX Objects.

For examples of this function, see “Cloning or Copying a Collection” on page 5-14.

To increment the owner count of a collection object, use the Cl oneCol | ecti on
function, which is described on page 5-56. To decrement the owner count of a collection
object, use the Di sposeCol | ect i on function, which is described on page 5-55.

CopyCollection

DESCRIPTION

You use the CopyCol | ect i on function to create a copy of an existing collection.
Col I ection CopyCol | ection(Collection source, Collection target);

source A reference to the collection object you want to copy.

t ar get A reference to a collection object to contain the copied collection items.
You may provide ni | for this parameter to request that the Collection
Manager create a new collection object to hold the copied information.

function result A reference to the collection object containing the copied information.

The CopyCol | ect i on function copies all of the information (except the owner count

and exception procedure) from the collection object referenced by the sour ce parameter
into the collection object referenced by the t ar get parameter.

Collection Manager Reference 5-57

Jabeuepy uonag|0d -

SEE ALSO

CHAPTER 5

Collection Manager

If you specify ni | for thet ar get parameter, this function creates a new collection
object to copy the information into. (This function does not return an error code; it
returns ni | if it cannot create a new collection object.)

In either case, this function returns a reference to the collection object containing the
copied information.

For general information about QuickDraw GX objects, see the chapter “Introduction to
QuickDraw GX Objects” in Inside Macintosh: QuickDraw GX Objects.

For examples using this function, see “Cloning or Copying a Collection” on page 5-14.

To clone a collection object, use the Cl oneCol | ect i on function, which is described on
page 5-56.

Getting and Setting the Exception Procedure for a Collection

The functions described in this section allow you to examine and alter a collection
object’s exception procedure. You are allowed to specify an exception procedure for any
collection object. When the Collection Manager encounters an error while operating on

a collection object, it calls that collection’s exception procedure, sending it the result code
associated with the error.

The Get Col | ecti onExcept i onPr oc function allows you to obtain a pointer to the
exception procedure intalled in a specified collection.

The Set Col | ecti onExcept i onPr oc function allows you to install a new exception
procedure into a collection.

You can find a description of exception procedures on page 5-101.

GetCollectionExceptionProc

5-58

You use the Get Col | ecti onExcept i onPr oc function to obtain a pointer to the
exception procedure installed in a specified collection.

Col | ecti onExcepti onProc Get Col | ecti onExcepti onProc
(Col l ection source);

source A reference to the collection object whose exception procedure you want
to determine.

function result A pointer to the exception procedure installed in the source collection
object.

Collection Manager Reference

DESCRIPTION

SEE ALSO

CHAPTER 5

Collection Manager

The Get Col | ecti onExcept i onPr oc function returns as its function result a pointer
to the exception procedure installed in the collection object referenced by the sour ce
parameter.

To install a new exception procedure in a collection object, use the
Set Col | ecti onExcepti onPr oc function, which is described in the next section.

For more information about exception procedures, see page 5-101.

SetCollectionExceptionProc

DESCRIPTION

SEE ALSO

You use the Set Col | ect i onExcept i onPr oc function to install an exception
procedure in a collection object.

voi d Set Col | ecti onExcepti onProc(Col |l ection target,
Col | ecti onExcepti onProc newkxcepti onProc);

t ar get A reference to the collection object whose exception procedure you want
to change.

newExcept i onProc
A pointer to the new exception procedure.

The Set Col | ecti onExcept i onPr oc function copies the function pointer from the
newExcept i onPr oc parameter into the collection object referenced by the t ar get
parameter.

For an example using this function, see “Installing an Exception Procedure” beginning
on page 5-45.

To obtain a pointer to an existing exception procedure in a collection object, use the

Get Col | ecti onExcepti onProc function, which is described in the previous section.

For more information about exception procedures, see page 5-101.

Collection Manager Reference 5-59

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Getting and Setting the Default Attributes for a Collection

The functions described in this section allow you to examine and alter a collection
object’s default attributes. The default attributes of a collection specify the attributes that
the Collection Manager assigns to new items added to the collection.

The Get Col | ecti onDef aul t At tri but es function allows you to determine a
collection’s current default attributes. The Set Col | ecti onDef aul t Attri butes
function allows you to change a collection’s default attributes.

GetCollectionDefaultAttributes

DESCRIPTION

SEE ALSO

5-60

You use the Get Col | ecti onDef aul t At t ri but es function to examine the default
attributes of a collection object.

l ong GetCol |l ectionDefaultAttributes(Collection source);

source A reference to the collection object whose default attributes you want to
determine.

function result A long word containing the bit flags that make up the collection’s default
attributes.

The CGet Col | ecti onDef aul t Att ri but es function returns as its function result the
default attributes of the collection object referenced by the sour ce parameter.

For information about default attributes for collection objects, see “Collection Attributes”
beginning on page 5-9.

For information about attribute-related data types and enumerations, see page 5-49
through page 5-53.

To change the attributes of a collection object, use the
Set Col | ecti onDef aul t Attri but es function, which is described in the next section.

To examine the attributes of a specific item in a collection, use the functions described in
“Getting Information About a Collection Item” beginning on page 5-76.

Collection Manager Reference

CHAPTER 5

Collection Manager

SetCollectionDefaultAttributes

DESCRIPTION

SEE ALSO

You use the Set Col | ecti onDef aul t At t ri but es function to alter the default
attributes of a collection object.

voi d SetCol | ectionDefaul t Attributes(Collection target,
[ong whi chAttri butes,
| ong newAttri butes);

t ar get A reference to the collection object whose default attributes you want to
alter.

whi chAttri butes
A mask indicating which bit flags in the target collection’s default
attributes you want to alter.

newAttri butes
A long word containing the new values for the bit flags.

The Set Col | ecti onDef aul t At tri but es function copies the values of bit flags from
the newAt t ri but es parameter into the default attributes of the target collection.

This function uses the whi chAt t ri but es parameter to determine which bits to copy.
For every bit in the whi chAt t ri but es parameter, this function takes one of two actions:

» If the bit is set, this function copies the value of the corresponding bit from the
newAt t ri but es parameter into the corresponding bit of the default attributes of the
target collection.

» If the bit is not set, the corresponding bit of the target collection’s default attributes
remains unchanged.

For information about default attributes for collection objects, see “Collection Attributes”
beginning on page 5-9.

For information about attribute-related data types and enumerations, see page 5-49
through page 5-53.

For examples of this function, see “Changing the Default Attributes of a Collection”
beginning on page 5-15.

To examine the attributes of a collection object, use the
Get Col | ecti onDef aul t Attri but es function, which is described in the previous
section.

To change the attributes of a specific item in a collection, use the functions described in
“Editing Item Attributes” beginning on page 5-82.

Collection Manager Reference 5-61

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Adding and Replacing Items in a Collection

The functions described in this section allow you to add items to a collection and replace
items already in a collection.

The AddCol | ect i onl t emfunction allows you to add a new item to a collection. You
can also use this function to replace a collection item by specifying its collection tag and
collection ID.

The Repl acel ndexedCol | ecti onl t emfunction allows you to replace a collection
item by specifying its collection index.

AddcCollectionltem

DESCRIPTION

5-62

You use the AddCol | ect i onl t emfunction to add a new item to a collection or to
replace an existing item in a collection.

OSErr AddCol I ectionltem (Col I ection target,
Col l ectionTag tag, long id,
long itenSize, void *itenData);

t ar get A reference to the collection you want to add the item to.
t ag The collection tag you want to associate with the new item.
id The collection ID you want to associate with the new item.

itentSi ze The size in bytes of the item’s variable-length data.
itenData A pointer to the item’s variable-length data.

The AddCol | ect i onl t emfunction adds an item to the collection referenced by the
t ar get parameter. This new item contains

= the collection tag specified by the t ag parameter

= the collection ID specified by the i d parameter

= the attributes specified by the default attributes of the target collection

= the variable-length data specified by the i t en5i ze and i t enDat a parameters

This function copies the information pointed to by the i t enDat a parameter into the
new item; after calling this function, you may alter this information or free the memory
pointed to by this parameter without affecting the collection.

Collection Manager Reference

RESULT CODES

SEE ALSO

ReplacelndexedCollectionltem

CHAPTER 5

Collection Manager

If the target collection already contains an item with the same collection tag and
collection ID as specified in the t ag and i d parameters, this function removes the
original item and replaces it with the new one, unless the existing item is locked. If it is
locked, this function returnsa col | ecti onl t em_ockedEr r result code.

Thei t enSi ze parameter determines how many bytes of information this function
copies into the new item. If you specify 0 for this parameter, or provide ni | for the

i t enDat a parameter, this function copies no information into the variable-length data
of the new item, or removes the variable-length data if the item already exists.

menftul | Err -108 Can’t allocate memory.
col l ectionltemLockedErr -5750 Can’t replace locked item.

For information about collection items, see “Collection Items” beginning on page 5-8.

For information about locking collection items, see “Getting and Setting the Attributes of
an Item” beginning on page 5-24. To lock a collection item, use the functions described in
“Editing Item Attributes” beginning on page 5-82.

For examples using this function, see “Adding Items to a Collection” beginning on
page 5-17 and “Replacing Items in a Collection” beginning on page 5-28.

To replace a collection item using the item’s index (rather than the item’s tag and 1D), use
the Repl acel ndexedCol | ect i onl t emfunction, described in the next section.

To remove an item from a collection, use the functions described in “Removing Items
From a Collection” beginning on page 5-65.

You use the Repl acel ndexedCol | ecti onl t emfunction to replace the variable-length
data of an item in a collection given the item’s index.

Jabeuepy uonag|0d -

CSErr Repl acel ndexedCol | ectionlten{Col |l ection target, |ong index,
long itentSize, void *itenData);

t ar get A reference to the collection containing the item you want to replace.
i ndex The collection index associated with the item to replace.

itenSi ze Theitem’s size.

itenData A pointer to the item’s data.

Collection Manager Reference 5-63

DESCRIPTION

RESULT CODES

SEE ALSO

5-64

CHAPTER 5

Collection Manager

The Repl acel ndexedCol | ect i onl t emfunction replaces the variable-length data
associated with an item in the target collection. You specify which item to replace using
the i ndex parameter. If the target collection does not contain an item whose collection
index matches the value of the i ndex parameter, this function returns a

col | ecti onl ndexRangeErr result code.

If the target collection does contain an item with the specified index, this function
replaces that item with a new item (if the existing item is not locked—if it is, this
function returnsacol | ecti onl t enLockedEr r result code). The new item contains

= the same collection tag as the original item

= the same collection ID as the original item

= the same attributes as the original item

= the variable-length data specified by the i t en5i ze and i t enDat a parameters

This function copies the information pointed to by the i t enDat a parameter into the
new item; after calling this function, you may alter this information or free the memory
pointed to by this parameter without affecting the collection.

Thei t enSi ze parameter determines how many bytes of information this function
copies into the new item. If you specify 0 for this parameter, or provide ni | for the

i t enDat a parameter, this function copies no information into the variable-length data
of the new item, or removes the variable-length data if the item already exists.

menftul | Err -108 Can’t allocate memory.
col I ectionltenLockedErr -5750 Can’t replace locked item.
col | ecti onl ndexRangeErr -5752 Index is out of range.

For information about collection items, see “Collection Items” beginning on page 5-8.

For information about locking collection items, see “Getting and Setting the Attributes of
an Item” beginning on page 5-24. To lock a collection item, use the functions described in
“Editing Item Attributes” beginning on page 5-82.

To replace a collection item using the item’s tag and ID (rather than the item’s index), use
the Repl acel ndexedCol | ecti onl t emfunction, described on page 5-63.

To remove an item from a collection, use the functions described in the next section.

Collection Manager Reference

CHAPTER 5

Collection Manager

Removing Items From a Collection

The functions described in this section allow you to remove items from a collection.

The RenoveCol | ecti onl t emand Renovel ndexedCol | ecti onl t emfunctions
allow you to remove a single item from a collection. You use the

RenoveCol | ecti onl t emfunction if you want to specify the item to remove using the
item’s tag and ID. You use the Renovel ndexedCol | ecti onl t emfunction if you want
to specify the item to remove using the item’s index.

The Pur geCol | ect i on function allows you to remove from a collection all the items
whose attributes match a specified pattern.

The Pur geCol | ecti onTag function allows you to remove from a collection all the
items with a specified collection tag.

The Enpt yCol | ect i on function allows you to remove every item from a collection.

RemoveCollectionltem

DESCRIPTION

RESULT CODES

You can use the RenoveCol | ecti onl t emfunction to remove an item from a collection
given the item’s associated collection tag and collection ID.

OSErr RenpveCol | ectionltem (Col | ection target,
Col l ectionTag tag, long id);

t ar get A reference to the collection object from which you want to remove the
item.

t ag The collection tag associated with the item you want to remove.

id The collection ID associated with the item you want to remove.

The RenpveCol | ect i onl t emfunction removes the item specified by thet ag andi d
parameters from the collection referenced by the t ar get parameter. This function
removes the specified item even if its lock attribute is set.

If the target collection does not contain an item whose collection tag and collection ID
match the values in the t ag and i d parameters, this function returns a
col [ecti onl t emNot FoundEr r result code.

col | ecti onl t emNot FoundEr r -5751 Can’t locate item.

Collection Manager Reference 5-65

Jabeuepy uonag|0d -

SEE ALSO

CHAPTER 5

Collection Manager

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Removing Items From a Collection” beginning on
page 5-30.

To remove a collection item using the item’s index (rather than the item’s tag and ID),
use the Renovel ndexedCol | ect i onl t emfunction, described in the next section.

To replace an item in a collection, use the functions described in “Adding and Replacing
Items in a Collection” beginning on page 5-62.

RemovelndexedCollectionltem

DESCRIPTION

RESULT CODES

SEE ALSO

5-66

You can use the Renpvel ndexedCol | ect i onl t emfunction to remove an item from a
collection given the item’s index.

OCSErr Renopvel ndexedCol | ectionltem(Col |l ection target, |ong index);

t ar get A reference to the collection object from which you want to remove the
item.
i ndex The collection index of the item you want to remove.

The Renpvel ndexedCol | ect i onl t emfunction removes the item specified by the
i ndex parameter from the collection referenced by the t ar get parameter. This function
removes the specified item even if its lock attribute is set.

If the target collection does not contain an item whose collection index matches the
values in the i ndex parameter, this function returnsa col | ect i onl ndexRangeEr r
result code.

col I ecti onl ndexRangeErr —5752 Index is out of range.

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Removing Items From a Collection” beginning on
page 5-30.

To remove a collection item using the item’s tag and ID (rather than the item’s index),
use the RenoveCol | ect i onl t emfunction, described in the previous section.

To replace an item in a collection, use the functions described in “Adding and Replacing
Items in a Collection” beginning on page 5-62.

Collection Manager Reference

CHAPTER 5

Collection Manager

PurgeCollection

DESCRIPTION

SEE ALSO

You use the Pur geCol | ect i on function to remove all items in a collection whose
attributes match a specified pattern.

voi d PurgeCol |l ection(Collection target,
[ong whi chAttri butes,
| ong nmatchi ngAttri butes);

t ar get A reference to the collection object containing the items you want to
remove.

whi chAttri butes
A mask indicating which attributes you want to test.

mat chi ngAttri butes
A long word containing the values of the attributes you want to match.

The Pur geCol | ect i on function removes from the target collection any items whose
attributes match the criteria you specify in the whi chAt t ri but es and
mat chi ngAtt ri but es parameters.

The whi chAt t ri but es parameter allows you to specify which attributes this function
examines. You should set the bits of the whi chAt t ri but es parameter that correspond
to the attributes you want to test.

This function compares the specified attributes of each item in the target collection with
the corresponding attributes in the mat chi ngAt t ri but es parameter. If the values of
all the specified attributes match, the function removes the item. To avoid purging
locked items, you should clear the lock attribute in the whi chAtt ri but es and

mat chi ngAtt ri but es parameters.

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Removing Items From a Collection” beginning on
page 5-30.

To remove all of the items in a collection with a specified collection tag, use the
Pur geCol | ect i onTag function, described in the next section.

To remove every item in a collection, use the Enpt yCol | ect i on function, described on
page 5-68.

Collection Manager Reference 5-67

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

PurgeCollectionTag

DESCRIPTION

SEE ALSO

You use the Pur geCol | ect i onTag function to remove from a collection all items with
a specific collection tag.

voi d PurgeCol |l ecti onTag(Col | ection target,
Col l ectionTag tag);

t ar get A reference to the collection object containing the items you want to
remove.
t ag The collection tag associated with the items to remove.

The Pur geCol | ect i onTag function removes from the target collection all items whose
collection tag matches the value of the t ag parameter. This function removes locked and
unlocked items.

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Removing Items From a Collection” beginning on
page 5-30.

To remove all of the items in a collection whose attributes match a specified pattern, use
the Pur geCol | ect i on function, described in the previous section.

To remove every item in a collection, use the Enpt yCol | ect i on function, described in
the next section.

EmptyCollection

DESCRIPTION

5-68

You use the Enpt yCol | ect i on function to remove every item in a collection.
void EnptyCol |l ection (Collection target);

t ar get A reference to the collection object you want to empty.

This function removes every item in the collection referenced by the t ar get
parameter. This function provides the fastest mechanism for emptying a collection.

Collection Manager Reference

SEE ALSO

CHAPTER 5

Collection Manager

For information about collection items, see “Collection Items” beginning on page 5-8.

To remove all of the items in a collection whose attributes match a specified pattern, use
the Pur geCol | ect i on function, described on page 5-67.

To remove all of the items in a collection with a specified collection tag, use the
Pur geCol | ecti onTag function, described in the previous section.

Counting Items in a Collection

The functions described in this section allow you to count items in a collection.

The Count Col | ecti onl t ens function allows you to determine the total number of
items in a collection.

The Count TaggedCol | ect i onl t ens function allows you to determine the total
number of items in a collection that have a specified collection tag.

CountCollectionltems

DESCRIPTION

SEE ALSO

You can use the Count Col | ecti onl t ens function to determine the total number of
items in a collection.

| ong Count Col | ectionltens(Col |l ection source);

source A reference to the collection object whose items you want to count.

function result The total number of items in the source collection.

The Count Col | ect i onl t ens function returns as its function result the total number of
items in the collection referenced by the sour ce parameter.

For information about collection items, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Adding Items to a Collection” beginning on
page 5-17.

To count the items in a collection that have a specified collection tag, use the
Count TaggedCol | ecti onl t ens function, described in the next section.

Collection Manager Reference 5-69

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

CountTaggedCollectionltems

DESCRIPTION

SEE ALSO

You can use the Count TaggedCol | ect i onl t ens function to obtain the total number
of items in a collection that have a specified collection tag.

| ong Count TaggedCol | ectionltens(Col |l ecti on source,
Col l ectionTag tag);

source A reference to the collection object whose items you want to count.
t ag The collection tag associated with the items you want to count.

function result The total number of items in the source collection whose collection tags
match the value specified in the t ag parameter.

The Count TaggedCol | ect i onl t ens function returns as its function result the total
number of items in the source collection whose collection tags match the value you
specify in the t ag parameter.

For information about collection items, see “Collection Items” beginning on page 5-8.
For examples of this function, see “Adding Items to a Collection” beginning on page 5-17.

To count all of the items in a collection, use the Count Col | ecti onl t ens function,
described in the previous section.

Retrieving the Variable-Length Data From an Item

5-70

The functions described in this section allow you to obtain a copy of the variable-length
data associated with a specified collection item.

The Get Col | ecti onl t emfunction allows you to retrieve data from an item given its
collection tag and collection ID. The Get | ndexedCol | ect i onl t emfunction allows
you to retrieve data from an item given its collection index.

The Get TaggedCol | ect i onl t emfunction provides another way for you to specify the
item whose data you want to retrieve. With this function, you specify the item using

the item’s collection tag and the item’s tag list position. See “Methods of Identifying
Collection Items” beginning on page 5-11 for a discussion of collection tags and tag list
positions.

Collection Manager Reference

CHAPTER 5

Collection Manager

GetCollectionltem

DESCRIPTION

You can use the Get Col | ect i onl t emfunction to obtain a copy of the variable-length
data associated with a collection item given the item’s collection tag and collection ID.

OSErr CGetCol l ectionlten{Collection source,
Col l ectionTag tag,
long id,
l ong *itenti ze,
void *itenData);

source A reference to the collection object containing the item whose data you
want to retrieve.

t ag The collection tag associated with the item whose data you want to
retrieve.

id The collection ID associated with the item whose data you want to
retrieve.

itensi ze A pointer to al ong value indicating the number of bytes of data you
want returned in the i t enDat a parameter. On return, this value
indicates the size in bytes of the variable-length data associated with the
specified item. You may specify the constant dont Want Si ze for this
parameter to indicate that you want to copy all the specified item’s
variable-length data and you do not want to determine the size of this
data.

itenData A pointer to a block of memory to contain the item’s data. On return, this
memory contains a copy of the data associated with the specified item.
You may specify the constant dont Want Dat a for this parameter if you
do not want a copy of the item’s data.

The Get Col | ecti onl t emfunction allows you to obtain a copy of the variable-length
data associated with a specific collection item. You specify a collection object using the
sour ce parameter and you specify an item in that collection using thet ag and i d
parameters.

Jabeuepy uonag|0d -

You use the i t enf5i ze parameter to specify how many bytes of data to return in the

i t enDat a parameter. You may specify the constant dont Want Si ze for this parameter
to indicate that you want to copy all of the variable-length data from the specified item
into the i t enDat a parameter. You may specify a value for the i t ensi ze parameter
that is greater than the actual number of bytes in the specified item’s variable-length
data; however, this function never returns in the i t enDat a parameter more data than
contained in the specified item’s variable-length data.

Collection Manager Reference 5-71

RESULT CODES

SEE ALSO

CHAPTER 5

Collection Manager

This function returns information in the i t enSi ze and i t enDat a parameters:

» If you provide a pointer in the i t en5i ze parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

= If you provide a pointer in the i t enDat a parameter, the function uses this parameter
to return a copy of the variable-length data associated with the specified collection
item.

If you don’t know the size of the item you want to retrieve, you typically call this
function twice. The first time you provide a pointer in the i t enSi ze parameter to
determine the size of the specified item’s data and you specify dont WAnt Dat a for the

i t enDat a parameter. Then you allocate a memory block large enough to hold a copy of
the item’s data. Then you call the function a second time. This time you specify the
constant dont Want Si ze for the i t enSi ze parameter and provide a pointer to the
allocated memory block for the i t enDat a parameter. The function then copies the data
into the allocated block of memory.

col | ecti onl t emNot FoundEr r -5751 Can’t locate item.

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Retrieving the Variable-Length Data From an
Item” beginning on page 5-33.

To retrieve the data associated with a collection item given its collection index (rather
than its collection tag and ID), use the Get | ndexedCol | ect i onl t emfunction,
described in the next section.

GetlndexedCollectionltem

5-72

You can use the Get | ndexedCol | ect i onl t emfunction to obtain a copy of the
variable-length data associated with a collection item given the item’s collection index.

OSErr Cetl ndexedCol | ectionlten(Col |l ection source,
| ong i ndex,
long *itensi ze,
void *itenData);

Collection Manager Reference

DESCRIPTION

CHAPTER 5

Collection Manager

source A reference to the collection object containing the item whose data you
want to retrieve.

i ndex The collection index associated with the item whose data you want to
retrieve.

itentSi ze A pointer to al ong value indicating the number of bytes of data you
want returned in the i t enDat a parameter. On return, this value
indicates the size in bytes of the variable-length data associated with the
specified item. You may specify the constant dont Want Si ze for this
parameter to indicate that you want to copy all of the specified item’s
variable-length data and you do not want to determine the size of this
data.

itenData Apointer to a block of memory to contain the item’s data. On return, this
memory contains a copy of the data associated with the specified item.
You may specify the constant dont Want Dat a for this parameter if you
do not want a copy of the item’s data.

The Get | ndexedCol | ect i onl t emfunction allows you to obtain a copy of the
variable-length data associated with a specific collection item. You specify a collection
object using the sour ce parameter and you specify an item in that collection using the
i ndex parameter.

You use the i t enSi ze parameter to specify how many bytes of data to return in the

i t enDat a parameter. You may specify the constant dont Want Si ze for this parameter
to indicate that you want to copy all of the variable-length data from the specified item
into the i t enDat a parameter. You may specify a value for the i t en5i ze parameter
that is greater than the actual number of bytes in the specified item’s variable-length
data; however, this function never returns in the i t enDat a parameter more data than
contained in the specified item’s variable-length data.

This function returns information in the i t enSi ze and i t enDat a parameters:

» If you provide a pointer in the i t en5i ze parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

= If you provide a pointer in the i t enDat a parameter, the function uses this parameter
to return a copy of the variable-length data associated with the specified collection
item.

Jabeuepy uonag|0d -

If you don’t know the size of the item you want to retrieve, you typically call this
function twice. The first time you provide a pointer in the i t enSi ze parameter to
determine the size of the specified item’s data and you specify the constant

dont Want Dat a for the i t enDat a parameter. Then you allocate a memory block large
enough to hold a copy of the item’s data. Then you call the function a second time. This
time you specify the constant dont Want Si ze for the i t enSi ze parameter and provide
a pointer to the allocated memory block for the i t enDat a parameter. The function then
copies the data into the allocated block of memory.

Collection Manager Reference 5-73

RESULT CODES

SEE ALSO

CHAPTER 5

Collection Manager

col | ecti onl ndexRangeErr -5752 Index is out of range.

For information about collection items and their associated variable-length data, see
“Collection Items” beginning on page 5-8. For information about collection indexes, see
“Methods of Identifying Collection Items” beginning on page 5-11.

For examples using this function, see “Retrieving the Variable-Length Data From an
Item” beginning on page 5-33.

To retrieve the data associated with a collection item given its collection tag and ID
(rather than its collection index), use the Get Col | ect i onl t emfunction, described in
the previous section.

GetTaggedCollectionltem

5-74

You can use the Get TaggedCol | ecti onl t emfunction to obtain a copy of the
variable-length data associated with a collection item given the item’s collection tag and
tag list position.

OSErr Get TaggedCol | ectionlten(Col | ection source,
Col l ectionTag tag,
 ong position,

I ong *itensi ze,
void *itenData);

source A reference to the collection object containing the item whose data you
want to retrieve.

t ag The collection tag associated with the item whose data you want to
retrieve.

position The tag list position associated with the specific item.

itenti ze A pointer to a | ong value indicating the number of bytes of data you
want returned in the i t enDat a parameter. On return, this value
indicates the size in bytes of the variable-length data associated with the
specified item. You may specify the constant dont Want Si ze for this
parameter to indicate that you want to copy all of the specified item’s
variable-length data and you do not want to determine the size of this
data.

itenData Apointer to a block of memory to contain the item’s data. On return, this
memory contains a copy of the data associated with the specified item.
You may specify the constant dont Want Dat a for this parameter if you
do not want a copy of the item’s data.

Collection Manager Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 5

Collection Manager

The Get TaggedCol | ecti onl t emfunction allows you to obtain a copy of the
variable-length data associated with a specific collection item. You specify a collection
object using the sour ce parameter; you specify the item in that collection using the t ag
and posi ti on parameters. In the t ag parameter you specify the collection tag of

the desired item and in the posi t i on parameter you specify the tag list position of the
desired item.

Remember that a tag list position is the sequential index that determines an item given a
specific collection tag. For example:

= Atag list position of 1 indicates the first item with the specified tag.

= Atag list position of 2 indicates the second item with the specified tag.

By sequentially incrementing the posi t i on parameter, you can use this function to step
through all of the items in a collection without knowing their collection IDs.

This function returns information in the i t enSi ze and i t enDat a parameters:

= If you provide a pointer in the i t enf5i ze parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

= If you provide a pointer in the i t enDat a parameter, the function uses this parameter
to return a copy of the variable-length data associated with the specified collection
item.

If you don’t know the size of the item you want to retrieve, you typically call this
function twice. The first time you provide a pointer in the i t enSi ze parameter to
determine the size of the specified item’s data and you specify the constant

dont Want Dat a for the i t enDat a parameter. Then you allocate a memory block large
enough to hold a copy of the item’s data. Then you call the function a second time. This
time you specify the constant dont Want Si ze for the i t enSi ze parameter and provide
a pointer to the allocated memory block for the i t enDat a parameter. The function then
copies the data into the allocated block of memory.

col | ecti onl ndexRangeErr -5752 Index is out of range.

For information about collection items and their associated collection tags and
variable-length data, see “Collection Items” beginning on page 5-8. For information
about tag list positions, see “Methods of Identifying Collection Items” beginning on
page 5-11.

For examples of this function, see “Retrieving the Variable-Length Data From an Item”
beginning on page 5-33.

Collection Manager Reference 5-75

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

To retrieve the data associated with a collection item given its collection tag and ID, use
the Get Col | ect i onl t emfunction, described on page 5-71.

To retrieve the data associated with a collection item given its collection index, use the
Cet | ndexedCol | ecti onl t emfunction, described in the previous section.

Getting Information About a Collection Item

The functions described in this section allow you to determine information about a
collection item, such as the item’s collection index, the item’s size, and the item’s
attributes.

Each function in this section provides a different way for you to specify which collection
item you want to examine:

s The Get Col | ecti onlt em nf o function requires you to specify the item’s collection
tag and collection ID.

» The CGet | ndexedCol | ecti onl t em nf o function requires you to specify the item’s
collection index.

s The Get TaggedCol | ecti onl t em nf o function requires you to specify the item’s
collection tag and tag list position.

GetCollectionltemInfo

5-76

You use the Get Col | ecti onl t em nf o function to obtain information about a specific
collection item given the item’s collection tag and collection ID.

OSErr CGetCol l ectionltem nfo(Coll ection source,
Col l ectionTag tag,
long id,
| ong *i ndex,
long *itenSi ze,
long *attributes);

source A reference to the collection object containing the item you want to obtain
information about.

t ag The collection tag associated with the item you want to obtain
information about.

id The collection ID associated with the item you want to obtain information
about.

Collection Manager Reference

DESCRIPTION

RESULT CODES

CHAPTER 5

Collection Manager

i ndex A pointer to al ong value. On return, this value represents the collection

index of the specified item. You may specify the constant
dont Want | ndex for this parameter if you do not want to determine the
specified item’s collection index.

itenSize Apointertoal ong value. On return, this value indicates the size in bytes

of the variable-length data associated with the specified item. You may
specify the constant dont WaAnt Si ze for this parameter to indicate that
you do not want to determine the size of this data.

attri butes

A pointer to al ong value. On return, this value contains a copy of the
attributes associated with the specified item. You may specify the constant
dont WAnt At t ri but es for this parameter if you do not want a copy of
the item’s attributes.

The Get Col | ecti onl t erl nf o function allows you to obtain information about a
specific collection item in the collection referenced by the sour ce parameter. You specify
the collection item by specifying the item’s collection tag and collection ID in the t ag
and i d parameters.

This function returns information in the i ndex, i tenSi ze,and attri but es
parameters:

If you provide a pointer in the i ndex parameter, the function uses this parameter to
return the collection index of the specified item. Once you have determined an item’s
collection index, you can use it to specify the item when calling Collection Manager
functions, rather than using the item’s collection tag and collection ID. Specifying
collection items using their collection index, rather than using the item’s collection tag
and collection ID, generally results in improved performance.

If you provide a pointer in the i t enf5i ze parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

If you provide a pointer in the at t ri but es parameter, the function uses this
parameter to return a copy of the attributes associated with the specified collection
item.

col | ecti onl t enNot FoundEr r -5751 Can’t locate item.

Collection Manager Reference 5-77

Jabeuepy uonag|0d -

SEE ALSO

CHAPTER 5

Collection Manager

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8.

For examples of this function, see “Determining the Collection Index of an Item”
beginning on page 5-19, “Determining the Size of an Item’s Variable-Length Data”
beginning on page 5-22, and “Getting and Setting the Attributes of an Item” beginning
on page 5-24.

To obtain information about a collection item using the collection index to specify the
item, use the Get | ndexedCol | ecti onl t enl nf o function, described in the next
section.

To obtain information about a collection item using the collection tag and tag list
position to specify the item, use the Get TaggedCol | ect i onl t em nf o function,
described on page 5-80.

GetlndexedCollectionltemlInfo

5-78

You use the Get | ndexedCol | ecti onl t em nf o function to obtain information about a
specific collection item given the item’s collection index.

OSErr CetlndexedCol |l ectionltem nfo (Collection source,
| ong i ndex,
Col l ectionTag *tag,
long *id,
l ong *itenti ze,
long *attributes);

source A reference to the collection object containing the item you want to obtain
information about.

i ndex The collection index associated with the item you want to obtain
information about.

t ag A pointer to a collection tag. On return, the collection tag associated with
the specified item. You may specify the constant dont Want Tag for this
parameter if you do not want to determine the specified item’s collection
tag.

id A pointer to al ong value. On return, the collection ID associated
with the specified item. You may specify the constant dont Want | d for
this parameter if you do not want to determine the specified item’s
collection ID.

Collection Manager Reference

CHAPTER 5

Collection Manager

itensSi ze A pointer to al ong value. On return, this value indicates the size in bytes
of the data associated with the specified item. You may specify the
constant dont Want Si ze for this parameter if you do not want to
determine the specified item’s data size.

attributes
A pointer to al ong value. On return, this value contains a copy of the
attributes associated with the specified item. You may specify the constant
dont WAnt At t ri but es for this parameter if you do not want a copy of
the item’s attributes.

DESCRIPTION

The Get | ndexedCol | ecti onl t enml nf o function allows you to obtain information
about a specific collection item in the collection referenced by the sour ce parameter.
You specify the collection item by specifying the item’s collection index in the i ndex
parameter.

This function returns information inthet ag,i d,i t enSi ze,and attri but es
parameters:

= If you provide a pointer in the t ag parameter, the function uses this parameter to
return the collection tag of the specified item.

» If you provide a pointer in the i d parameter, the function uses this parameter to
return the collection ID of the specified item.

= If you provide a pointer in the i t en5i ze parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

= If you provide a pointer in the at t r i but es parameter, the function uses this
parameter to return a copy of the attributes associated with the specified collection
item.

RESULT CODES
col | ecti onl ndexRangeErr -5752 Index is out of range.

SEE ALSO

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8. For information
about collection indexes, see “Methods of Identifying Collection Items” beginning on
page 5-11.

For examples of this function, see “Determining the Collection Index of an Item”
beginning on page 5-19, “Determining the Size of an Item’s Variable-Length Data”
beginning on page 5-22, and “Getting and Setting the Attributes of an Item” beginning
on page 5-24.

Collection Manager Reference 5-79

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

To obtain information about a collection item using the collection tag and collection ID to
specify the item, use the Get Col | ecti onl t em nf o function, described in the previous

section.

To obtain information about a collection item using the collection tag and tag list
position to specify the item, use the Get TaggedCol | ect i onl t em nf o function,
described in the next section.

GetTaggedCollectionlteminfo

5-80

You use the Get TaggedCol | ecti onl t em nf o function to obtain information about a
specific collection item given the item’s collection tag and tag list position.

OSErr Get TaggedCol | ectionlten nfo(Col | ection source,

source

tag

posi tion
id

i ndex

itentSi ze

attributes

Col l ectionTag tag,
l ong position,
long *id,

| ong *i ndex,

long *itenSi ze,
void *attributes);

A reference to the collection object containing the item you want to obtain
information about.

The collection tag associated with the item you want to obtain
information about.

The tag list position of the item you want to obtain information about.

A pointer to al ong value. On return, this value represents the collection
ID associated with the specified item. You may specify the constant
dont Want | d for this parameter if you do not want to determine the
specified item’s collection ID.

A pointer to al ong value. On return, this value represents the collection
index of the specified item. You may specify the constant

dont Want | ndex for this parameter if you do not want to determine the
specified item’s collection index.

A pointer to al ong value. On return, this value indicates the size in bytes
of the data associated with the specified item. You may specify the
constant dont Want Si ze for this parameter if you do not want to
determine the specified item’s data size.

A pointer to al ong value. On return, this value contains a copy of the
attributes associated with the specified item. You may specify the constant
dont WAnt At t ri but es for this parameter if you do not want a copy of
the item’s attributes.

Collection Manager Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 5

Collection Manager

The Get TaggedCol | ecti onl t enl nf o function allows you to obtain information
about a specific collection item in the collection referenced by the source parameter. You
specify the item in the source collection using the t ag and posi t i on parameters. In the
t ag parameter you specify the collection tag of the desired item and in the posi ti on
parameter you specify the tag list position of the desired item.

Remember that a collection tag and a tag list position uniquely identify a collection item.
The tag list position indicates where the collection item would lie in a list made up of all
the collection items with the same collection tag. For example:

= Atag list position of 1 indicates the first item with the specified tag.

= Atag list position of 2 indicates the second item with the specified tag.

By sequentially incrementing the posi t i on parameter, you can use this function to step
through all of the items in a collection that share a collection tag without knowing their
collection IDs.

The Get TaggedCol | ecti onl t e nf o function returns information in thei d, i ndex,
i tenSi ze,and at t ri but es parameters:

» If you provide a pointer in the i d parameter, the function uses this parameter to
return the collection ID of the specified item.

= If you provide a pointer in the i ndex parameter, the function uses this parameter to
return the collection index of the specified item.

= If you provide a pointer in the i t en5i ze parameter, the function uses this parameter
to return the size in bytes of the variable-length data associated with the specified
collection item.

= If you provide a pointer in the at t r i but es parameter, the function uses this
parameter to return a copy of the attributes associated with the specified collection
item.

col | ecti onl ndexRangeErr -5752 Index is out of range.

Jabeuepy uonag|0d -

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8. For information
about tag list positions, see “Methods of Identifying Collection Items” beginning on
page 5-11.

For examples of this function, see “Determining the Collection Index of an Item”
beginning on page 5-19, “Determining the Size of an Item’s Variable-Length Data”
beginning on page 5-22, and “Getting and Setting the Attributes of an Item” beginning
on page 5-24.

Collection Manager Reference 5-81

CHAPTER 5

Collection Manager

To obtain information about a collection item using the collection tag and collection ID to
specify the item, use the Get Col | ecti onl t em nf o function, described on page 5-76.

To obtain information about a collection item using the collection index to specify the
item, use the Get | ndexedCol | ecti onl t em nf o function, described in the previous
section.

Editing Item Attributes

The functions described in this section allow you to edit the attributes of a collection
item. Each function in this section provides a different way for you to specify the
collection item whose attributes you want to edit;

s The Set Col | ecti onl t em nf o function requires you to specify the item’s collection
tag and collection ID.

s The Set | ndexedCol | ecti onl t em nf o function requires you to specify the item’s
collection index.

SetCollectionltemInfo

5-82

You use the Set Col | ecti onl t em nf o function to edit the attributes of a specific
collection item given the item’s collection tag and collection ID.

OSErr SetCol l ectionltem nfo(Coll ection target,
Col l ectionTag tag,
long id,
| ong whi chAttri butes,
| ong newAttri butes);

t ar get A reference to the collection object containing the item whose attributes
you want to edit.

t ag The collection tag associated with the item whose attributes you want to
edit.

id The collection ID associated with the item whose attributes you want to
edit.

whi chAttri butes
A mask indicating which attributes you want to edit.

newAt tri butes
A long word containing the new settings for the attributes.

Collection Manager Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 5

Collection Manager

The Set Col | ecti onl t enl nf o function allows you to edit the attributes of a specific
collection item in the collection referenced by the t ar get parameter. You specify

the collection item by specifying the item’s collection tag and collection ID in the t ag
and i d parameters.

This function copies bit values from the newAt t r i but es parameter to the attributes
associated with the specified item.

This function uses the whi chAt t ri but es parameter to determine which bits to copy.
For every bit in the whi chAt t ri but es parameter, this function takes one of two actions:

If the bit is set, this function copies the value of the corresponding bit from the
newAt t ri but es parameter into the corresponding bit of the attributes associated
with the specified item.

If the bit is not set, the corresponding bit of the specified item’s attributes remains
unchanged.

The whi chAt t ri but es parameter allows you to change the values of specific bits in the
specified item’s attributes without affecting the values of other bits.

col | ecti onl t enNot FoundEr r -5751 Can’t locate item.

For information about collection attributes, see “Collection Attributes” beginning on
page 5-9.

For attribute-related data types and enumerations, see page 5-49 through page 5-53.

For examples of this function, see “Getting and Setting the Attributes of an Item”
beginning on page 5-24.

To obtain information about a collection item using the collection index to specify the
item, use the Set | ndexedCol | ect i onl t em nf o function, described in the next
section.

Collection Manager Reference 5-83

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

SetlndexedCollectionltemInfo

DESCRIPTION

RESULT CODES

5-84

You use the Set | ndexedCol | ecti onl t enl nf o function to edit the attributes of a
specific collection item given the item’s collection index.

OSErr Set | ndexedCol | ectionltem nfo(Collection target,
| ong i ndex,
| ong whi chAttri butes,
| ong newAttri butes);

t ar get A reference to the collection object containing the item whose attributes
you want to edit.

i ndex The collection index of the item whose attributes you want to edit.

whi chAttri butes
A mask indicating which attributes you want to edit.

newAttri butes
A long word containing the new settings for the attributes.

The Set | ndexedCol | ecti onl t eml nf o function allows you to edit the attributes of a
specific collection item in the collection referenced by the t ar get parameter. You specify
the collection item by specifying the item’s collection index in the i ndex parameter.

This function copies bit values from the newAt t r i but es parameter to the attributes
associated with the specified item.

This function uses the whi chAt t ri but es parameter to determine which bits to copy.
For every bit in the whi chAt t ri but es parameter, this function takes one of two actions:

= If the bit is set, this function copies the value of the corresponding bit from the
newAt t ri but es parameter into the corresponding bit of the attributes associated
with the specified item.

= If the bit is not set, the corresponding bit of the specified item’s attributes remains
unchanged.

The whi chAt t ri but es parameter allows you to change the values of specific bits in the
specified item’s attributes without affecting the values of other bits.

col | ecti onl ndexRangeErr -5752 Index is out of range.

Collection Manager Reference

SEE ALSO

CHAPTER 5

Collection Manager

For information about collection attributes, see “Collection Attributes” beginning on
page 5-9.

For attribute-related data types and enumerations, see page 5-49 through page 5-53.

For examples of this function, see “Getting and Setting the Attributes of an Item”
beginning on page 5-24.

To edit the attributes of collection item using the collection tag and collection ID (rather
than the collection index) to specify the item, use the Set Col | ecti onltem nf o
function, described in the previous section.

To examine the attributes of a collection item, use the functions described in “Getting
Information About a Collection Item” beginning on page 5-76.

Getting Information About Collection Tags

You use the Col | ect i onTagExi st s function to identify if a specific collection tag
exists within a collection. You use the Count Col | ect i onTags function to obtain the
number of unique collection tags in a collection.

You use the Get | ndexedCol | ect i onTag function to obtain a specific collection tag
from a collection.

CollectionTagExists

DESCRIPTION

You can use the Col | ecti onTagExi st s function to identify if any of the items in a
specified collection contain a specified collection tag.

Bool ean Col | ecti onTagExi sts(Col | ecti on source,
Col l ectionTag tag);

source A reference to the collection object you want to search for a specific
collection tag.
t ag The collection tag to search for in the collection.

function result A Boolean value indicating whether the source collection contains any
items that contain the specified tag.

The Col | ecti onTagExi st s function returns as its function result a Boolean value
indicating whether any of the items in the collection referenced by the sour ce
parameter contain the collection tag specified by the t ag parameter.

Collection Manager Reference 5-85

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

SEE ALSO

For information about collection tags, see “Collection Items” beginning on page 5-8. For
information about data types related to collection tags, see the section “Collection Tags”
on page 5-49.

CountCollectionTags

You use the Count Col | ect i onTags function to determine the number of distinct
collection tags contained by the items of a specified collection.

| ong Count Col | ecti onTags(Col | ecti on source);

source A reference to the collection object whose collection tags you want to
count.

function result The number of distinct collection tags contained by the items of the
source collection.

DESCRIPTION
The Count Col | ect i onTags function returns as its function result the number of
distinct collection tags contained by the items of the collection referenced by the sour ce
parameter.

SEE ALSO

For information about collection tags, see “Collection Items” beginning on page 5-8. For
information about data types related to collection tags, see the section “Collection Tags”
on page 5-49.

For an example of this function, see “Examining the Collection Tags of a Collection”
beginning on page 5-35.

5-86 Collection Manager Reference

CHAPTER 5

Collection Manager

GetindexedCollectionTag

DESCRIPTION

RESULT CODES

SEE ALSO

Each collection object contains a number of distinct collection tags. You can use the
CGet | ndexedCol | ect i onTag function to examine a specific collection tag contained in
a collection.

OSErr Cet |l ndexedCol | ecti onTag(Col | ecti on source,
| ong whi chTag,
Col l ectionTag *tag);

source The collection from which to obtain a specific collection tag.

whi chTag The position of the desired collection tag in the source collection’s list of
distinct collection tags.

t ag A pointer to a collection tag. On return, the collection tag that lies at the

specified position in the list of distinct collection tags contained in the
source collection.

The Get | ndexedCol | ect i onTag function returns in the t ag parameter the collection
tag that lies at the position specified by the whi chTag parameter in the list of distinct
collection tags contained in the collection referenced by the sour ce parameter.

By sequentially incrementing the value of the whi chTag parameter from 1 to the result
of the Count Col | ect i onTags function, you can use this function to determine every
collection tag contained in a collection.

col | ecti onl ndexRangeErr -5752 Index is out of range.

For information about collection tags, see “Collection Items” beginning on page 5-8. For
information about data types related to collection tags, see the section “Collection Tags”
beginning on page 5-49.

For an example of this function, see “Examining the Collection Tags of a Collection”
beginning on page 5-35.

To determine the total number of distinct collection tags contained in a collection, use the
Count Col | ect i onTags function, described in the previous section.

Collection Manager Reference 5-87

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Flattening and Unflattening a Collection

You use the Fl at t enCol | ect i on function to flatten a collection into a stream of
bytes. You use the Unf | at t enCol | ect i on function to unflatten a collection that was
flattened using the Fl at t enCol | ect i on function.

FlattenCollection

You can use the Fl at t enCol | ect i on function to convert a collection object into a
stream format suitable for storing and unflattening. For example, you could use this
function to copy a collection onto the Clipboard so that it could be pasted into another
application.

OSErr Fl attenCol |l ection(Collection source,
Col I ectionFl attenProc fl attenProc,
void *refCon);

source A reference to the collection that you want to flatten.

flattenProc
A pointer to a callback function you provide to process the flattened
stream of bytes.

ref Con A reference constant that you want the Collection Manager to pass
repeatedly to the callback function.

DESCRIPTION

The Fl att enCol | ect i on function flattens into a stream of bytes the collection you
specify with the sour ce parameter. As this function flattens the collection, it repeatedly
calls the callback function you specify using the f | at t enPr oc parameter. Each time

it calls this function, it provides the callback function with a pointer to a block of
memory containing flattened data. It continues to call this function until it has flattened
the entire collection. Your callback function can process the flattened data in a number of
ways: it could copy the flattened data into a handle-based block of memory;, it could
write the flattened data to disk, and so on.

In the r ef Con parameter, you specify a value that the Collection Manager passes on to
your callback function each time it calls your callback function. You can use this
parameter as a pointer to a structure containing information your callback function
needs to process the blocks of flattened data.

When flattening the source collection, this function includes only the collection items
whose persistence attribute is set.

This function can return any error returned by the callback function.

5-88 Collection Manager Reference

SEE ALSO

CHAPTER 5

Collection Manager

For information about the persistence attribute, see “Collection Items” beginning on
page 5-8.

For information about the callback function that you provide, see page 5-100.
For examples of this function, see “Flattening and Unflattening a Collection” beginning

on page 5-37 and “Reading Collections From and Writing Collections to Disk” beginning
on page 5-41.

To create a flattened collection that includes only those collection items whose attributes
match a specified pattern, use the FI at t enParti al Col | ecti on function, described in
the next section.

To unflatten a flattened collection, use the Unf | at t enCol | ect i on function, described
on page 5-90.

FlattenPartialCollection

You can use the Fl att enParti al Col | ecti on function to convert a collection object
into a stream format suitable for storage and unflattening. With this function, you can
include in the flattened collection only those items whose attributes match a specified
pattern.

OSErr FlattenPartial Coll ecti on(Col |l ection source,
Col I ectionFl attenProc flattenProc,
voi d *ref Con,
[ong whi chAttri butes,
| ong natchi ngAttri butes)

source The collection that you want to flatten.

flattenProc
A pointer to a function to write data.

r ef Con A reference constant that you want the Collection Manager to pass
repeatedly to the flatten procedure.

whi chAttri but es
A mask indicating which attributes you want to test.

mat chi ngAttri butes
A long word containing the attribute values you want to match.

Collection Manager Reference 5-89

Jabeuepy uonag|0d -

DESCRIPTION

SEE ALSO

CHAPTER 5

Collection Manager

The Fl att enParti al Col | ect i on function flattens into a stream of bytes the
collection you specify with the sour ce parameter. It includes only the collection items
whose attributes specified by the whi chAt t ri but es parameter match the values
specified by the mat chi ngAt t ri but es parameter.

As this function flattens the collection, it repeatedly calls the callback function you
specify using the f | at t enPr oc parameter. Each time it calls this function, it provides
the callback function with a pointer to a block of memory containing flattened data. It
continues to call this function until it has flattened the entire collection. Your callback
function can process the flattened data in a number of ways: it could copy the flattened
data into a handle-based block of memory, it could write the flattened data to disk, and
so on.

In the r ef Con parameter, you specify a value that the Collection Manager passes on to
your callback function each time it calls your callback function. You can use this
parameter as a pointer to a structure containing information your callback function
needs to process the blocks of flattened data.

When flattening the source collection, this function includes only the collection items
whose persistence attribute is set, regardless of the values you provide in the
whi chAt t ri but es and mat chi ngAt t ri but es parameters.

This function can return any error returned by the callback function.

For information about matching collection item attributes, see “Collection Items”
beginning on page 5-8.

For information about the callback function that you provide, see page 5-100.

To create a flattened collection that includes every item in a collection, use the
Fl att enCol | ect i on function, described in the previous section.

To unflatten a flattened collection, use the Unf | at t enCol | ect i on function, described
in the next section.

UnflattenCollection

5-90

You use the Unf | at t enCol | ect i on function to unflatten a collection that was
flattened using the Fl at t enCol | ecti onor Fl attenParti al Col | ecti on function.

CSErr UnflattenColl ection (Collection target,
Col I ecti onFl attenProc fl attenProc,
void *ref Con);

Collection Manager Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 5

Collection Manager

t ar get A reference to the collection object you want to create from the flattened
data.

flattenProc
A pointer to a function to read in flattened data.

r ef Con A reference constant that you want the Collection Manager to pass
repeatedly to the callback function.

The Unf I at t enCol | ect i on function unflattens a stream of bytes into the collection
object you specify with the t ar get parameter.

As this function unflattens the collection, it repeatedly calls the callback function you
specify using the f | at t enPr oc parameter. Each time it calls this function, it provides
the callback function with a pointer to a block of memory and a requested size. The
callback function is responsible for reading the next set of bytes from the flattened byte
stream and copying the data into the block of memory.

The Collection Manager continues to call your callback function, requesting more of the
flattened stream of bytes each time, until it has unflattened the entire collection. Your
callback function can read the flattened data from any source you choose: it could read
the flattened data from a handle-based block of memory, it could read the flattened data
from disk, and so on.

In the r ef Con parameter, you specify a value that the Collection Manager passes on to
your callback function each time it calls your callback function. You can use this
parameter as a pointer to a structure containing information your callback function
needs when reading the blocks of flattened data.

This function can return any error returned by the callback function.

mentul | Err -108 Can’t allocate memory.
col | ecti onVer si onErr -5753 Unrecognized version/data may be corrupt.

Jabeuepy uonag|0d -

For examples of this function, see “Flattening and Unflattening a Collection” beginning
on page 5-37 and “Reading Collections From and Writing Collections to Disk” beginning
on page 5-41.

For information about the callback function that you provide, see page 5-100.

To create a flattened collection that includes only those collection items whose attributes
match a specified pattern, use the Fl at t enParti al Col | ect i on function, described in
the previous section.

To create a flattened collection that includes every item in a collection, use the
Fl att enCol | ect i on function, described on page 5-88.

Collection Manager Reference 5-91

CHAPTER 5

Collection Manager

Working With Macintosh Memory Manager Handles

This section describes a set of utility functions provided by the Collection Manager that
allow you to specify a collection item’s variable-length data using a Macintosh Memory
Manager handle.

AddCollectionltemHdI

DESCRIPTION

5-92

You use the AddCol | ecti onl t enHdl function to add a new item to a collection or to
replace an existing item in a collection, specifying the item’s variable-length data using a
handle rather than a pointer and a data size.

OSErr AddCol | ectionltenHdl (Collection target,
Col l ectionTag tag, long id,
Handl e itenData);

t ar get A reference to the collection you want to add the item to.
t ag The collection tag you want to associate with the new item.
id The collection ID you want to associate with the new item.

itenData A Macintosh Memory Manager handle to the item’s variable-length data.

The AddCol | ecti onl t enHdl function adds an item to the collection referenced by the
t ar get parameter. This new item contains:

= the collection tag specified by the t ag parameter

= the collection ID specified by the i d parameter

= the attributes specified by the default attributes of the target collection
= the variable-length data specified by the i t enDat a parameter

This function copies the information referenced by the i t enDat a parameter into the
new item; after calling this function, you may alter this information or free the memory
referenced by this parameter without affecting the collection.

If the target collection already contains an item with the same collection tag and
collection ID as specified inthe t ag and i d parameters, this function removes the
variable-length data from the original item and replaces it with the new data, unless the
existing item is locked. If it is locked, this function returns a

col I ectionltenLockedErr result code.

Collection Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 5

Collection Manager

menful | Err -108 Can’t allocate memory.
col l ectionltenlLockedErr -5750 Can’t replace locked item.

For information about collection items, see “Collection Items” beginning on page 5-8.

For information about locking collection items, see “Getting and Setting the Attributes of
an Item” beginning on page 5-24. To lock a collection item, use the functions described in
“Editing Item Attributes” beginning on page 5-82.

To add or replace a collection item using a pointer (rather than a handle) to the item’s
variable-length data, use the AddCol | ect i onl t emfunction, described on page 5-62.

To replace a collection item using the item’s collection index (rather than the item’s
collection tag and collection ID), use the Repl acel ndexedCol | ecti onl t enHd|
function, described in the next section.

ReplacelndexedCollectionltemHd]

DESCRIPTION

You use the Repl acel ndexedCol | ecti onl t enHdl function to replace the
variable-length data of an item in a collection given the item’s collection index,
specifying the item’s new variable-length data using a handle rather than a pointer and a
data size.

CSErr Repl acel ndexedCol | ecti onltentdl (Col | ection target,
| ong i ndex,
Handl e itenData);

t ar get A reference to the collection containing the item you want to replace.
i ndex The collection index associated with the item you want to replace.
itenData A Macintosh Memory Manager handle to the new variable-length data.

Jabeuepy uonag|0d -

The Repl acel ndexedCol | ecti onl t erHdl function replaces the variable-length data
of an item in the t ar get collection. You specify which item to replace using the i ndex
parameter. If the target collection does not contain an item whose collection index
matches the value of the i ndex parameter, this function returns a

col | ecti onl ndexRangeEr r result code.

Collection Manager Reference 5-93

RESULT CODES

SEE ALSO

CHAPTER 5

Collection Manager

If the target collection does contain an item with the specified index, this function
replaces the data in that item with new data (if the existing item is not locked—if it is,
this function returnsacol | ecti onl t emLockedEr r result code). The resulting item
contains

= the same collection tag as the original item

= the same collection ID as the original item

= the same attributes as the original item

= the variable-length data specified by the i t enDat a parameter

This function copies the information referenced by the i t enDat a parameter into the
collection item; after calling this function, you may alter this information or free the
memory referenced by this parameter without affecting the collection.

mentul | Err -108 Can’t allocate memory.
col l ectionltenlockedErr -5750 Can’t replace locked item.
col | ecti onl ndexRangeErr -5752 Index is out of range.

For information about collection items, see “Collection Items” beginning on page 5-8.

To replace a collection item using a pointer (rather than a handle) to the item’s
variable-length data, use the Repl acel ndexedCol | ect i onl t emfunction, described
on page 5-63.

To replace a collection item using the item’s collection tag and collection ID (rather than
the item’s collection index), use the AddCol | ecti onl t enHdl function, described in the
previous section.

GetCollectionltemHdl

5-94

You can use the Get Col | ecti onl t enHdl function to obtain a copy of the
variable-length data associated with a collection item given the item’s collection tag and
collection ID. You must provide a valid Macintosh Memory Manager handle for this
function to copy the data into.

OSErr CGetCol | ectionltenHdl (Coll ection source,
Col l ectionTag tag,
long id,
Handl e itenData);

Collection Manager Reference

DESCRIPTION

RESULT CODES

SEE ALSO

CHAPTER 5

Collection Manager

source A reference to the collection object containing the item whose data you
want to retrieve.

tag The collection tag associated with the item whose data you want to
retrieve.

id The collection ID associated with the item whose data you want to
retrieve.

itenData Ahandle to a block of memory to contain the item’s data. On return, this
memory contains a copy of the data associated with the specified item.
You may specify the constant dont Want Dat a for this parameter if you
do not want a copy of the item’s data.

The Get Col | ecti onl t enHdl function allows you to obtain a copy of the
variable-length data associated with a specific collection item. You specify a collection
object using the sour ce parameter and you specify an item in that collection using the
t ag and i d parameters. If you provide a valid Macintosh Memory Manager handle in
the i t enDat a parameter, the function uses this parameter to return a copy of the
variable-length data associated with the specified collection item.

mentul | Err -108 Can’t allocate memory.
col | ecti onlt enmNot FoundEr r -5751 Can’t locate item.

For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8.

For examples using this function, see “Retrieving the Variable-Length Data From an
Item” beginning on page 5-33.

To retrieve the data associated with a collection item into a block of memory referenced
by a pointer (rather than a handle), use the Get Col | ect i onl t emfunction, described
on page 5-71.

Collection Manager Reference 5-95

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

GetlndexedCollectionltemHdl

You can use the Get | ndexedCol | ecti onl t enHdl function to copy the
variable-length data associated with a collection item into a Macintosh Memory Manager
handle, given the item’s collection index.

OSErr Cet | ndexedCol | ectionltenHdl (Col | ection source,
| ong i ndex,
Handl e itenData);

source A reference to the collection object containing the item whose data you
want to retrieve.

i ndex The collection index associated with the item whose data you want to
retrieve.

itenData Ahandle to a block of memory to contain the item’s data. On return, this
memory contains a copy of the data associated with the specified item.

DESCRIPTION

The Get | ndexedCol | ecti onlt enHdl function allows you to obtain a copy of the
variable-length data associated with a specific collection item. You specify a collection
object using the sour ce parameter and you specify an item in that collection using the
i ndex parameter. If you provide a valid Macintosh Memory Manager handle in the

i t enDat a parameter, the function uses this parameter to return a copy of the
variable-length data associated with the specified collection item.

RESULT CODES

menftul | Err -108 Can’t allocate memory.
col | ecti onl t emNot FoundEr r -5751 Can’t locate item.

SEE ALSO
For information about collection items and their associated collection tags, collection IDs,
and variable-length data, see “Collection Items” beginning on page 5-8.
For examples using this function, see “Retrieving the Variable-Length Data From an
Item” beginning on page 5-33.

To retrieve the data associated with a collection item into a block of memory referenced
by a pointer (rather than a handle), use the Get Col | ect i onl t emfunction, described
on page 5-71.

5-96 Collection Manager Reference

CHAPTER 5

Collection Manager

FlattenCollectionToHdlI

DESCRIPTION

RESULT CODES

SEE ALSO

You use the Fl at t enCol | ecti onToHd| utility function to flatten a collection into a
Macintosh Memory Manager handle.

OSErr Fl attenCol | ecti onToHdl (Col | ecti on source
Handl e fl attened);

source The collection that you want to flatten into a handle.
flattened A handle to contain the flattened data.

This function flattens the collection referenced by the sour ce parameter into a block of
memory referenced by the handle you provide in the f | at t ened parameter.

You must provide a valid collection object reference in the sour ce parameter and a
valid Macintosh Memory Manager handle in the f | at t ened parameter. You may
specify a handle of size 0; this function resizes the handle as necessary to hold the
flattened data.

mentul | Err -108 Can’t allocate memory.

For examples of this function, see “Reading Collections From and Writing Collections to
Disk” beginning on page 5-41.

For an example that shows one possible implementation of this function, see “Flattening
and Unflattening a Collection” beginning on page 5-37.

To flatten a collection directly to disk, use the Fl at t enCol | ect i on function, described
on page 5-88.

To unflatten a collection from a block of memory referenced by a handle, use the
Unfl att enCol | ecti onFronmHdl function, described in the next section.

Collection Manager Reference 5-97

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

UnflattenCollectionFromHdl

DESCRIPTION

RESULT CODES

SEE ALSO

You use the Unf | at t enCol | ecti onFr onHdl utility function to unflatten a collection
that was flattened using the Fl at t enCol | ecti onToHd! utility function.

OSErr Unfl attenCol | ecti onFrontHdl (Col | ection target
Handl e fl attened);

t ar get A reference to a collection object in which to store the unflattened
information.

flattened Ahandle to the data that was previously flattened.

This function unflattens the information referenced by the handle you provide in the
flattened parameter and stores the unflattened collection in the collection object
referenced by the t ar get parameter. You must provide a reference to a valid collection
object in the t ar get parameter and a valid Macintosh Memory Manager handle in the
fl att ened parameter.

mentul | Err -108 Can’t allocate memory.
col | ecti onVersi onErr -5753 Unrecognized version/data may be corrupt.

For examples of this function, see “Reading Collections From and Writing Collections to
Disk” beginning on page 5-41.

For an example that shows one possible implementation of this function, see “Flattening
and Unflattening a Collection” beginning on page 5-37.

To unflatten a collection directly from disk, use the Unf | at t enCol | ect i on function,
described on page 5-90.

To flatten a collection to a block of memory referenced by a handle, use the
Fl attenCol | ecti onToHdl function, described in the previous section.

Reading Collections From Resource Files

5-98

The function described in this section creates a collection object and initializes it with
information stored ina' cl t n' resource. You can find more information about' cl t n'
resources in “The Collection Resource” beginning on page 5-102.

You should be familiar with the information in the “Resource Manager” chapter of Inside
Macintosh: More Macintosh Toolbox before using this function.

Collection Manager Reference

CHAPTER 5

Collection Manager

GetNewcCollection

Use the Get NewCol | ect i on utility function to read a collection in from a collection
(' cltn')resource.

Col l ection Get NewCol | ection(short collectionlD);
col l ectionl D

The resource ID associated with the collection resource from which you
want to create the new collection object.

function result A reference to the new collection object.

DESCRIPTION
This function searches the current resource file path for a collection (" ¢l t n') resource
with the resource 1D specified by the col | ect i onl D parameter. If it finds such a
resource, this function creates a new collection object, initializes it with the information
stored in the resource, and returns a reference to it as the function result.
If this function does not find a collection resource with the specified resource ID, it
returns ni | as the function result.
You can use the MenEr r or and ResEr r or functions to check for other errors after
calling this function.

RESULT CODES
menftul | Err -108 Can’t allocate memory.
r esNot Found -192 Resource not found.

SEE ALSO

For an example using this function, see “Reading a Collection From a Collection
Resource” beginning on page 5-44.

For information about collection resources, see “The Collection Resource” beginning on
page 5-102.

For more information about resources in general, see the “Resource Manager” chapter of
Inside Macintosh: More Macintosh Toolbox.

Collection Manager Reference 5-99

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Application-Defined Functions

This section describes two types of functions that you can provide to the Collection
Manager:

= the callback function that you provide to the Fl at t enCol | ect i on,
Fl attenParti al Col | ecti on,and Unfl attenCol | ecti on functions

= the exception procedure that you can provide for any collection object

MyFlattenProc

DESCRIPTION

5-100

You provide the MyFl at t enPr oc function to read or write flattened collection data.
OSErr MyFl attenProc(long size, void *data, void *refCon);

si ze The size of the block of flattened data to read or write.

dat a A pointer to the block of flattened data. When flattening, this pointer
points to the data your callback function should write. When
unflattening, your callback function should read flattened data into the
memory pointed to by this parameter.

r ef Con A value you provide to the Fl att enCol | ect i on function or
Unfl at t enCol | ect i on function that the Collection Manager passes on
to your callback function.

You create this function to pass to the Fl at t enCol | ecti on,
FlattenPartial Col |l ecti on,and Unfl attenCol | ecti on functions when
flattening or unflattening a collection.

As the Collection Manager is flattening a collection, it repeatedly calls this callback
function to process sequential blocks of flattened data. Each time it calls this function, it
provides a pointer to the current block of flattened data in the dat a parameter and the
size of the current block in the si ze parameter. You can process this data in a number of
ways: appending it to a handle-based block of memory, writing it to disk, and so on.

When unflattening a collection, the Collection Manager repeatedly calls this function to
obtain blocks of flattened data. The Collection Manager specifies the size of the
requested block in the si ze parameter, and your function should read or copy

the requested number of bytes of flattened data into the block of memory pointed to

by the dat a parameter.

Collection Manager Reference

SEE ALSO

CHAPTER 5

Collection Manager

In either case, the Collection Manager passes in the r ef Con parameter the same value
you originally passed as the r ef Con parameter to the Fl at t enCol | ecti on,
FlattenParti al Col | ection,orUnfl attenCol | ecti on function. You can use this
parameter as a pointer to a structure containing relevant state information you need
when reading or writing the flattened data.

If the execution of this function results in any fatal error, you should return the error
code back to the Collection Manager as the function result. If the function executes
successfully, you should return the noEr r error code as the function result.

For more information about the flattening and unflattening functions, see “Flattening
and Unflattening a Collection” beginning on page 5-88.

For examples of this function, see “Flattening and Unflattening a Collection” beginning
on page 5-37.

MyExceptionProc

DESCRIPTION

You provide the MyExcept i onPr oc function (an exception procedure) to handle errors
that occur when operating on a collection object.

OSErr MyExceptionProc(Col | ection target, OSErr whichErr);

t ar get A reference to the collection object for which the error occurred.
whi chErr The result code associated with the error that occurred.

You create this function to install in a collection object using the

Set Col | ecti onExcept i onPr oc function. Subsequently, whenever the Collection
Manager is operating on that collection object and an error occurs, the

Collection Manager calls this function, sending it a reference to the collection for
which the error occurred and the result code associated with the error. You can use
this information to handle the error appropriately for your application.

Jabeuepy uonag|0d -

You can use an exception procedure to respond to an error in a number of ways:

= You can change the error from one result code to another by returning as the function
result the new result code.

= You can handle the error and return the noEr r error code, which indicates that the
Collection Manager should return control to the place in your application that
generated the error, as if no error had occurred.

= You can use the ANSI C functions set j np and | ongj np to jump out of the exception
procedure into code to handle the error.

Collection Manager Reference 5-101

CHAPTER 5

Collection Manager

SEE ALSO
For an example of an exception procedure see “Installing an Exception Procedure”
beginning on page 5-45.
To install an exception procedure in a collection object, use the
Set Col | ecti onExcepti onPr oc function, which is described on page 5-59.

To obtain a pointer to an existing exception procedure in a collection object, use the
Get Col | ecti onExcept i onProc function, which is described on page 5-58.

Resources

This section describes the structure of the collection resource and the meaning of its
fields.

The Collection Resource

The Collection Manager provides the Get NewCol | ect i on function, described on
page 5-99, to create a new collection object and initialize it using information stored in a
collection (' cl t n') resource. Listing 5-28 shows the structure of the collection resource
in Rez format.

Listing 5-28 A Rez template fora' cl t n' resource

type 'cltn' {
l ongi nt = $$Count OF (I temArray);
array ltemArray
{
longint; /* tag */
longint; /* id */
bool ean itemnl ocked = false, /* defined attributes */
i temLocked = true;
bool ean itemNonPersistent = fal se,
itemPersistent = true;
unsigned bitstring[14] = 0; /* reserved attributes */
unsi gned bitstring[16] userBits; /* user attributes */
wstring;
al i gn word;
b
1

5-102 Collection Manager Reference

CHAPTER 5

Collection Manager

The collection resource has two parts:

a count of the number of items in the resource

an array of items

Each item in the array specifies

the collection tag for that item

the collection ID for the item

a Boolean value representing the lock attribute for the item

a Boolean value representing the persistence attribute for the item
14 bits representing the 14 reserved attributes for the item

16 bits representing the 16 user-defined attributes for the item

a string containing the variable-length data for the item

Collection Manager Reference

5-103

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Summary of the Collection Manager

Data Types

Optional Return Value Constants

enum {
dont Want Tag = 0L, /* don't want collection tag returned */
dontWant 1 d = 0L, /* don't want collection ID returned */
dont Want Si ze = 0L, /* don't want size of data returned */
dont Want Attri but es = 0L, /* don't want attributes returned */
dont WAnt | ndex = 0L, /* don’'t want collection index returned */
dont Want Dat a = 0L /* don't want variable-length data returned */
s

Attributes Masks

enum {
noCol | ecti onAttri butes

0x00000000, /* no attributes bits set */
all Col l ectionAttributes OXFFFFFFFF, /* all attributes bits set */
user Col | ecti onAttri butes Ox0000FFFF, /* user attributes bits set */
defaul t Col I ecti onAttri butes = 0x40000000 /* unl ocked, persistent */

b

Attribute Bit Numbers

enum {

col l ecti onUser OBi t =0, /* for use by application */
col | ecti onUser 1Bi t =1,
col | ecti onUser 2Bi t = 2,
col l ectionUser 3Bi t = 3,
col | ecti onUser4Bit = 4,
col l ecti onUser5Bit = b5,
col l ecti onUser 6Bi t = 6,
col | ecti onUser 7Bi t =7,
col l ecti onUser 8Bi t = 8,
col l ectionUser9Bi t = 9,
col l ectionUser10Bit = 10,
col l ectionUser11Bit = 11,

5-104 Summary of the Collection Manager

CHAPTER 5

Collection Manager

collectionUser12Bit = 12,
col l ectionUser13Bit = 13,
col l ectionUser14Bit = 14,
col l ectionUser15Bit = 15,
col l ecti onReservedOBit = 16, /* reserved for use by Apple */
col l ecti onReservedlBit = 17,
col | ecti onReserved2Bit = 18,
col l ecti onReserved3Bit = 19,
col l ecti onReserved4Bit = 20,
col | ecti onReserved5Bit = 21,
col l ecti onReserved6Bit = 22,
col l ecti onReserved7Bit = 23,
col | ecti onReserved8Bit = 24,
col l ecti onReserved9Bit = 25,

col l ecti onReservedl10Bit = 26,
col | ecti onReservedl11Bit = 27,
col l ecti onReserved12Bit = 28,
col l ecti onReservedl13Bit = 29,

col I ecti onPersi stenceBit 30, [/* currently defined by Apple */
col I ecti onLockBi t = 31

s

Attribute Bit Masks

enum {
col | ecti onUserOMask = 1L << collectionUser0Bit,
col l ectionUser 1Mask = 1L << coll ectionUseriBit,
col | ecti onUser2Mask = 1L << collectionUser2Bit,
col l ecti onUser3Mask = 1L << collectionUser3Bit,
col l ectionUser4Mask = 1L << coll ectionUser4Bit,
col l ecti onUser5Mask = 1L << collectionUser5Bit,
col | ecti onUser6Mask = 1L << collectionUser6Bit,
col l ectionUser 7Mask = 1L << coll ectionUser7Bit,
col | ecti onUser 8Mask = 1L << collectionUser8Bit,
col l ecti onUser9Mask = 1L << collectionUser9Bit,
col l ecti onUser 10Mask = 1L << coll ecti onUser10Bit,
col | ecti onUser 11Mask 1L << collectionUser1lBit,
col l ectionUser 12Mask = 1L << coll ectionUser12Bit,
col I ecti onUser 13Mask 1L << collectionUser13Bit,
col | ecti onUser 14Mask 1L << coll ectionUser14Bit,
col | ecti onUser 15Mask 1L << coll ectionUser15Bit,

Summary of the Collection Manager 5-105

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

col | ecti onReservedOMask = 1L << collecti onReservedOBit,
col l ecti onReservedliMask = 1L << coll ecti onReservedlBit,
col l ecti onReserved2Mask = 1L << coll ecti onReserved2Bit,
col | ecti onReserved3Mask = 1L << collectionReserved3Bit,
col | ecti onReserved4Mask = 1L << coll ecti onReserved4Bit,
col I ecti onReserved5Mask = 1L << coll ecti onReserved5Bit,
col | ecti onReserved6Mask = 1L << coll ecti onReserved6Bit,
col l ecti onReserved7Mask = 1L << coll ecti onReserved7Bit,
col l ecti onReserved8Mask = 1L << coll ecti onReserved8Bit,
col | ecti onReserved9Mask = 1L << coll ecti onReserved9Bit,
col | ecti onReser ved10Mask 1L << coll ecti onReservedl0Bit,
col I ecti onReservedllMask 1L << coll ectionReservedl1Bit,
col | ecti onReservedl2Mask 1L << coll ecti onReservedl12Bit,
col | ecti onReser ved13Mask 1L << coll ecti onReservedl3Bit,

col | ecti onPersi stenceMask = 1L << col |l ecti onPersi stenceBit,
col | ecti onLockMask = 1L << coll ecti onLockBit

Functions

Creating and Disposing of Collection Objects

Col I ecti on NewCol | ecti on (void);
voi d Di sposeCol | ection (Coll ection target);

Cloning and Copying Collection Objects
Col l ection CloneCollection (Collection target);
| ong Count Col | ecti onOmers (Collection source);

Col I ection CopyCol | ection (Col l ection source
Col I ection target);

5-106 Summary of the Collection Manager

CHAPTER 5

Collection Manager

Getting and Setting the Exception Procedure for a Collection
Col | ecti onExcepti onProc Get Col | ecti onExcepti onProc
(Col I ection source);

voi d Set Col | ecti onExcepti onProc
(Col l ection target,

Col | ecti onExcepti onProc newkExcepti onProc);

Getting and Setting the Default Attributes for a Collection
l ong GetCol |l ecti onDefaul tAttributes
(Col l ection source);

voi d Set Col | ecti onDefaul tAttri butes
(Col l ection target,
| ong whi chAttributes,
| ong newAttri butes);

Adding and Replacing Items in a Collection

OSErr AddCol | ectionltem (Col l ection target,
Col l ectionTag tag, long id,
long itenSize, void *itenData);

OSErr Repl acel ndexedCol | ectionltem
(Coll ection target, |ong index,
long itenSize, void *itenData);

Removing Items From a Collection
OCSErr RenoveCol l ectionltem (Collection target,
Col l ectionTag tag, long id);

OSErr Renovel ndexedCol | ecti onltem
(Collection target, |ong index);

voi d PurgeCol | ection (Col l ection target,
| ong whi chAttri butes,
| ong mat chi ngAttri butes);

voi d PurgeCol | ecti onTag (Collection target, CollectionTag tag);
voi d EnptyCol | ection (Collection target);

Summary of the Collection Manager

5-107

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Counting Items in a Collection

| ong Count Col | ectionltens (Col |l ection source);

| ong Count TaggedCol | ecti onltens
(Col l ection source, CollectionTag tag);

Retrieving the Variable-Length Data From an Item

OSErr CGetCol l ectionltem (Col l ection source,

Col l ectionTag tag, long id,

long *itentize, void *itenData);
OSErr Cetl ndexedCol | ectionltem

(Col l ection source, |ong index,

long *itentize, void *itenData);
OSErr Cet TaggedCol | ecti onltem

(Col l ection source,

Col l ectionTag tag, |ong position

long *itentize, void *itenData);

Getting Information About a Collection Item

OSErr CetCollectionltem nfo (Collection source,
Col l ectionTag tag, long id,
I ong *index, long *itensize,
I ong *attributes);

OSErr Cetl ndexedCol |l ectionltem nfo

(Col l ection source, |ong index,

Col l ectionTag *tag, long *id,

long *itenSize, long *attributes);
OSErr CGet TaggedCol | ectionltem nfo

(Col l ecti on source,

Col I ectionTag tag, long position

long *id, long *index,

long *itentize, void *attributes);

Editing Item Attributes

OSErr SetCol I ectionltem nfo
(Col I ection target,
Col l ectionTag tag, long id,
| ong whichAttributes, long newAttributes);

OSErr SetlndexedCol | ectionltem nfo
(Coll ection target, |ong index,
| ong whichAttributes, long newAttributes);

5-108 Summary of the Collection Manager

CHAPTER 5

Collection Manager

Getting Information About Collection Tags

Bool ean Col | ecti onTagExi st's
(Col l ection source, CollectionTag tag);

| ong Count Col | ecti onTags (Col |l ection source);
OSErr Cet |l ndexedCol | ecti onTag

(Col l ection source, |ong whichTag,
Col l ectionTag *tag);

Flattening and Unflattening a Collection

CSErr Fl attenCol | ection (Col l ection source,
Col | ectionFl attenProc flattenProc,
void *ref Con);
OSErr FlattenPartial Collection
(Col l ection source,
Col | ecti onFl attenProc fl attenProc,
voi d *ref Con,
| ong whi chAttri butes,
| ong mat chi ngAttri butes);
OSErr Unfl attenCol | ection (Coll ection target,
Col I ectionFl attenProc flattenProc,
voi d *ref Con);

Working With Macintosh Memory Manager Handles

OSErr AddCol | ectionlt entHdl (Col l ection target,
Col l ectionTag tag, long id,
Handl e itenData);

OSErr Repl acel ndexedCol | ecti onlt entdl
(Coll ection target, |ong index,
Handl e itenData);

OSErr Cet Col | ectionltentHdl (Col l ection source,
Col l ectionTag tag, long id,
Handl e itenData) ;

OSErr Cet | ndexedCol I ecti onlt enmHdl
(Col l ection source, |ong index,
Handl e itenData) ;

OSErr Fl attenCol | ecti onToHdI
(Col l ection source, Handle flattened);

OSErr Unfl attenCol | ecti onFronHdl
(Collection target, Handle flattened);

Summary of the Collection Manager 5-109

Jabeuepy uonag|0d -

CHAPTER 5

Collection Manager

Reading Collections From Resource Files
Col I ection Get NewCol | ection (short collectionlD);

Application-Defined Functions

OSErr MyFl att enProc (long size, void *data, void *refCon);
OSErr MyExcepti onProc (Coll ection target, OSErr whichErr);
Resources

The Collection Resource

type 'cltn' {
[ongint = $$Count Of (I temArray);
array ltemArray
{
longint; /* tag */
longint; /* id */
bool ean itemnl ocked = false, /* defined attributes */
i temLocked = true;
bool ean itemNonPersistent = fal se,
itenPersistent = true
unsi gned bitstring[14] = 0; /* reserved attributes */
unsi gned bitstring[16] userBits; /* user attributes */
wst ring;
al i gn word;
1
1

5-110 Summary of the Collection Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 QuickDraw GX and the Macintosh Environment TOC
	 QuickDraw GX and the Macintosh
	 QuickDraw GX Memory Management TOC
	 QuickDraw GX Memory Management
	 Errors, Warnings, and NoticesTOC
	 Errors, Warnings, and Notices
	 QuickDraw GX Debugging TOC
	 QuickDraw GX Debugging
	 Collection Manager TOC
	Collection Manager
	About the Collection Manager
	Collection Objects
	Collection Items
	Collection Attributes
	Methods of Identifying Collection Items

	Using the Collection Manager
	Determining Whether the Collection Manager Is Avai...
	Creating or Disposing of a Collection
	Cloning or Copying a Collection
	Changing the Default Attributes of a Collection
	Adding Items to a Collection
	Determining the Collection Index of an Item
	Determining the Tag and ID of an Item
	Determining the Size of an Item’s Variable-Length ...
	Getting and Setting the Attributes of an Item
	Replacing Items in a Collection
	Removing Items From a Collection
	Retrieving the Variable-Length Data From an Item
	Examining the Collection Tags of a Collection
	Flattening and Unflattening a Collection
	Reading Collections From and Writing Collections t...
	Reading a Collection From a Collection Resource
	Installing an Exception Procedure

	Collection Manager Reference
	Data Types
	Collection Objects
	Collection Tags
	Optional Return Value Constants
	Attributes Masks
	Attribute Bit Numbers
	Attribute Bit Masks

	Functions
	Creating and Disposing of Collection Objects
	Cloning and Copying Collection Objects
	Getting and Setting the Exception Procedure for a ...
	Getting and Setting the Default Attributes for a C...
	Adding and Replacing Items in a Collection
	Removing Items From a Collection
	Counting Items in a Collection
	Retrieving the Variable-Length Data From an Item
	Getting Information About a Collection Item
	Editing Item Attributes
	Getting Information About Collection Tags
	Flattening and Unflattening a Collection
	Working With Macintosh Memory Manager Handles
	Reading Collections From Resource Files

	Application-Defined Functions
	Resources
	The Collection Resource

	Summary of the Collection Manager
	Data Types
	Functions
	Application-Defined Functions
	Resources

	 Message Manager TOC
	 Message Manager
	 QuickDraw GX Stream Format TOC
	 QuickDraw GX Stream Format
	 QuickDraw GX Mathematics TOC
	 QuickDraw GX Mathematics
	 Glossary
	 Index
	 Colophon

