

C H A P T E R 2

2

Q
uickD

raw
 G

X
 M

em
ory M

anagem
ent

QuickDraw GX Memory Management 2

This chapter describes the aspects of QuickDraw GX memory management that your
application can control. QuickDraw GX manages the memory blocks used by
your application automatically. Read this chapter if you want to understand how
QuickDraw GX memory works or to supplement QuickDraw GX memory management
operations.

Before reading this chapter, you should be familiar with QuickDraw GX objects. For
more information on objects, see Inside Macintosh: QuickDraw GX Objects.

For more information regarding Macintosh memory, see Inside Macintosh: Memory.

This chapter starts by providing an overview of the QuickDraw GX memory
management system. It then tells how to:

■ create and dispose of a graphics client and its heap

■ determine memory requirements for a graphics client heap

Additional memory management topics of concern to few developers are also addressed,
such as how to:

■ respond to low-memory conditions

■ load and unload objects

■ work with multiple graphics clients

This chapter also contains reference information for the constants, data types, and
functions associated with QuickDraw GX memory management.

About QuickDraw GX Memory Management 2

QuickDraw GX works with the Macintosh Memory Manager to manage the memory
used by your application for creating and manipulating objects. QuickDraw GX memory
management is automatic. Memory blocks are allocated and deallocated as your
application needs them.

Nevertheless, the more memory that QuickDraw GX has available, the faster your
application can run. As a result, you may be able to improve the performance of
your application by using some of the QuickDraw GX memory management operations.

Memory Heaps 2
QuickDraw GX applications use an application heap and one or more graphics client
heaps. The application heap memory holds your code and data structures. This is the
part of memory where you allocate variables and your application executes. You can
access any data structure in the application heap. Your application manages its own
structures in the application heap and makes function calls to obtain or modify the
contents of the graphics client heap.
About QuickDraw GX Memory Management 2-3

C H A P T E R 2

QuickDraw GX Memory Management

The QuickDraw GX graphics client heap memory holds the QuickDraw GX objects you
create. The graphics client heap consists of one or more blocks of discontiguous memory
that QuickDraw GX uses to allocate its objects, structures, and variables. QuickDraw GX
memory is private so, in general, you cannot directly access the contents of a graphics
client heap.

The graphics client heap and the application heap work independently. For
example, QuickDraw GX can execute from the memory on an accelerator card. As
a result, QuickDraw GX never moves application memory. In addition, Macintosh
Memory Manager functions cannot modify QuickDraw GX objects. QuickDraw GX has
its own internal memory manager and memory management functions for interacting
with its objects.

Graphics Clients and Graphics Client Heaps 2
At system startup, QuickDraw GX does not have any memory available in which to do
work. To allocate memory, it needs a special QuickDraw GX object called a graphics
client. This object is associated with a graphics client heap.

Because a graphics client stores bookkeeping data for its heap, including the memory
starting address and the size of all of the heap’s memory blocks, a graphics client can be
associated with only one QuickDraw GX graphics client heap. A graphics client also
stores the error, warning, and notice state.

An application heap is allocated by the Macintosh Memory Manager when an
application is launched. This is the memory region used by your application for its own
code and data structures. Graphics clients and their heaps are never allocated from
memory blocks that have been allocated to the application heap.

QuickDraw GX provides functions to create a new graphics client and its graphics client
heap. If you don’t use these functions in your application, QuickDraw GX will call them
for you to create a graphics client having a default memory size and location.

When you no longer need a graphics client and its heap, you dispose of them to release
memory blocks. QuickDraw GX provides functions so that your application can dispose
of a graphics client and its graphics client heap, but if you don’t use these functions in
your application, QuickDraw GX calls them for you at the appropriate time. Whenever
an application requires memory allocation, QuickDraw GX automatically deallocates as
many graphics client heap memory blocks as it needs to in order to satisfy the
application’s memory requirements. QuickDraw GX never deallocates graphics client
heaps while they are in use. If QuickDraw GX cannot find sufficient memory blocks, it
may automatically unload objects from memory to storage disk. QuickDraw GX
automatically reloads these objects from storage disk to memory as it needs them.
2-4 About QuickDraw GX Memory Management

C H A P T E R 2

QuickDraw GX Memory Management

2

Q
uickD

raw
 G

X
 M

em
ory M

anagem
ent

Additional Topics 2

The latter part of this chapter discusses some issues that are relevant in only a few very
specific and uncommon situations: handling low-memory problems, manual loading
and unloading of objects, using functions that do not require a graphics client or its heap,
specifying a memory starting location for a graphics client and its heap, and working
with multiple graphics clients.

Under normal circumstances, QuickDraw GX resolves low-memory conditions and
handles the loading of objects as needed, performing these tasks automatically and in a
way that is transparent to your application. However, you can affect some of its
processing in these areas. You can also set an attribute that prevents QuickDraw GX from
allocating additional memory blocks to your graphics client heap and you can manually
load and unload objects. These topics are described in the section “Additional Memory
Management Topics” beginning on page 2-10.

Using Graphics Clients and Graphics Client Heaps 2

QuickDraw GX provides most memory management services automatically. This section
describes how your application can override this automatic control to

■ create a graphics client and its heap

■ determine memory requirements for a graphics client heap

■ dispose of a graphics client and its heap

Creating a Graphics Client and Its Graphics Client Heap 2
Either QuickDraw GX or you can create a new graphics client and its heap. This section
discusses how you can control these tasks.

Implicit Creation 2

If your application does not explicitly create a graphics client or a graphics client heap,
QuickDraw GX creates them for you when needed. QuickDraw GX calls the
GXNewGraphicsClient and the GXEnterGraphics functions when the first function
call is made in your application that requires a graphics client heap. Almost all
QuickDraw GX functions require a graphics client heap. The few exceptions are listed in
the section “Functions That Do Not Require a Graphics Client or Heap” beginning on
page 2-14.

When QuickDraw GX calls the GXNewGraphicsClient function, it selects the starting
memory location for the heap and creates a graphics client to provide the bookkeeping
for the heap. When QuickDraw GX calls the GXEnterGraphics function, it uses the
memory location and heap size stored in the graphics client to create the new heap.
Using Graphics Clients and Graphics Client Heaps 2-5

C H A P T E R 2

QuickDraw GX Memory Management

QuickDraw GX looks for a resource of type 'gasz' with an ID of 0 and uses the first
long word of that resource as the number of bytes to be allocated to the graphics client
heap. If your application does not provide this resource, QuickDraw GX version 1.0 uses
a default memory size value of 600 KB. For additional information, see the description
of the GXNewGraphicsClient routine beginning on page 2-19.

A 'gasz' resource can only provide one graphics client heap size in a single
application. QuickDraw GX uses this size for every graphics client with a
memoryLength parameter of zero. Listing 2-1 shows how to create a type 'gasz'
resource for a 512 KB graphics client heap.

Listing 2-1 Creating a 'gasz' resource

resource 'gasz' (0) {

 0x00080000 /* 512KB graphics client heap */

};

The GXNewGraphicsClient function is described on page 2-19. The
GXEnterGraphics function is described on page 2-22.

Explicit Creation 2

If you want to specify the characteristics of the graphics client heap, you can use the
GXNewGraphicsClient function explicitly to create a graphics client.

The GXNewGraphicsClient function has parameters that specify the heap’s starting
memory location, memory size in bytes, and whether or not QuickDraw GX is permitted
to later increase the heap’s size by allocating additional memory blocks. The graphics
client stores the data passed by the GXNewGraphicsClient function, but does not
allocate memory to the heap. This requires the GXEnterGraphics function call.

Most applications should allow QuickDraw GX to select the memory starting location by
passing nil for the memoryStart parameter. If you need to specify the memory
starting location, see the section “Specifying the Starting Location of a Graphics Client”
beginning on page 2-14.

If you pass zero for the memoryLength parameter, QuickDraw GX looks for a resource
of type 'gasz' with an ID of 0 and uses the first long word of that resource as the heap
size (the number of bytes to allocate). If your application does not provide this resource,
QuickDraw GX version 1.0 uses a default size of 600 KB. Alternatively, you can specify
the requested heap size in bytes. To determine how many bytes to specify for your
graphics client heap, see the next section. The 'gasz' resource is described in the
previous section.
2-6 Using Graphics Clients and Graphics Client Heaps

C H A P T E R 2

QuickDraw GX Memory Management

2

Q
uickD

raw
 G

X
 M

em
ory M

anagem
ent

If you pass zero for the attribute parameter, QuickDraw GX can later add additional
memory blocks to the heap when more memory is required. If the attribute
parameter has value 1, indicating the gxStaticHeapConstant constant, QuickDraw
GX cannot add more memory blocks to the graphics client heap allocated.

Once a graphics client is created, you use the GXEnterGraphics function to allocate
memory for its heap. If you don’t explicitly make the call, QuickDraw GX implicitly calls
the GXEnterGraphics function for you when it executes the next function that requires
a graphics client heap. Almost all QuickDraw GX functions require a graphics client
heap. The exceptions are given in the section “Functions That Do Not Require a Graphics
Client or Heap” beginning on page 2-14.

Listing 2-2 shows how to explicitly create a graphics client and allocate 10 KB of memory
for its heap. Since the attribute parameter is 0, QuickDraw GX performs its default
behavior to add memory blocks to the graphics client heap created, as required. For
example, additional memory may be required as your application creates new objects.
You should allocate your graphics client at the beginning of your application and poll for
errors to ensure that the graphics client is allocated.

Listing 2-2 Explicitly creating a graphics client and its heap

gxGraphicsClient newClient;

long graphicsHeapSizeRequested = 50K; // 50K GX heap

newClient = GXNewGraphicsClient(nil, graphicsHeapSizeRequested

* 1024,OL);

// After we attempted to create the graphics client, we need to

// determine if the call succeeded. If the call did not (as in

// the case for all GX functions), “newClient” will be nil. If

// it is, we alert the user to the problem, Otherwise, we will

// attempt to allocate the GX heap.

if (newClient) {

GXEnterGraphiccs();

// Calling GXEnterGraphics allocates the memory within the GX

// heap. The call would fail only if there is not enough

// memory. In this case, the graphics error posted is -27999

// (out of memory). At this point, we have not installed an

// error handler, so we check for the error number

// corresponding to the out-of-memory error.
Using Graphics Clients and Graphics Client Heaps 2-7

C H A P T E R 2

QuickDraw GX Memory Management

if (GXGetGraphicsError(nil) == -27999) {

// Because we cannot allocate the requested size for our GX

// heap, we need to throw away the client we created and alert

// the user that there is not enough memory to continue.

GXDisposeGraphicsClient(newClient);

>> application code to alert user and shut down app

} else {

// Application error code to tell the user there is not enough

// memory to create the graphics client. No error is

// posted from GX because a graphics client does not

// exist. The only reason you would not be able to create

// a graphics client is if there is not enough memory.

>> application code to alert user and shut down app

Determining Memory Requirements for a Graphics Client Heap 2
Using the optimal heap size increases the performance of your application. If your
application does not allocate sufficient memory, QuickDraw GX will need to add
additional memory blocks to the initial graphics client heap. If your heap is sized too
large, you are wasting memory space.

You can use the QuickDraw GX GraphicsBug utility to check the actual size of your
graphics client heap to ensure that your application has allocated sufficient, but not
excessive, memory. Once you determine the optimal graphics client heap size for your
application, you can specify this size at the beginning of your application by using the
GXNewGraphicsClient function.

You can use the following procedure to determine the memory requirements of your
graphics client heap:

1. Start your application with the GXNewGraphicsClient function and specify a
memory size, such as 1 MB.

2. Run your application and create a document. QuickDraw GX allocates or deallocates
memory blocks to a size that it deems necessary and sufficient to accommodate the
number and complexity of the objects you have created.
2-8 Using Graphics Clients and Graphics Client Heaps

C H A P T E R 2

QuickDraw GX Memory Management

2

Q
uickD

raw
 G

X
 M

em
ory M

anagem
ent

3. Use the Heap Total (HT) GraphicsBug command to determine the memory size that
QuickDraw GX is currently using. This is the size of the graphics client heap.

4. Use the GXNewGraphicsClient function to specify the size of the QuickDraw GX
graphics client heap to accommodate the actual memory required.

Repeat these steps varying the size of the document used in step 2.

By running your application with what you would consider to be a document of average
size and then with a document of large size, you can arrive at an optimum graphics
client heap size that is probably somewhere between these two heap sizes. One
important consideration is to ensure that your largest objects have sufficient memory
allocated for the graphics client heap that they reside in. This is because an object cannot
be split into multiple memory blocks in the heap.

Because QuickDraw GX can grow the heap to accommodate the needs of your
application, you don’t need to allocate sufficient space for your largest document.
Assuming you have not passed the gxStaticHeapClient attribute to
GXNewGraphicsClient. This procedure provides only a preliminary evaluation of the
memory requirements for your application.

For additional information on how to use the GraphicsBug utility, see the section
“Debugging With GraphicsBug” in the chapter “QuickDraw GX Debugging,” in this
book.

Disposing of a Graphics Client and Graphics Client Heap 2
When your application no longer needs a graphics client and its heap, you should
dispose of them to free memory blocks. You can use the GXExitGraphics and
GXDisposeGraphicsClient functions to do this.

While you are writing and debugging your application, it is a good idea to be meticulous
about disposing of all graphics clients and graphics client heaps at the end of your
application. As a result, you should use the GXExitGraphics function to dispose of the
currently active graphics client heap and the GXDisposeGraphicsClient function to
dispose of each active graphics client. If your application does not make these calls,
QuickDraw GX automatically disposes of all graphics clients and heaps that belong to
the exiting application. However, in this case, the graphics clients and heaps are
considered aborted instead of being disposed of normally, and therefore QuickDraw GX
does not report any errors that occur during the process of disposing of these graphics
clients and heaps. Listing 2-3 shows how to properly dispose of a graphics client and its
heap.
Using Graphics Clients and Graphics Client Heaps 2-9

C H A P T E R 2

QuickDraw GX Memory Management

Listing 2-3 Disposing of graphics clients and graphics client heaps

.

. /* QuickDraw GX application code */

.

GXExitGraphics(void);

GXDisposeGraphicsClient(client);

}

Once your application is ready to ship, be sure to remove the terminating
GXExitGraphics and GXDisposeGraphicsClient function calls and rely on
QuickDraw GX to automatically dispose of all of your graphics clients and their heaps
for your exiting application. When your application quits, it is much faster for
QuickDraw GX to throw away all of the graphics clients and their graphics client heaps,
rather than to dispose of each of them sequentially. This approach is analogous to
quitting an application rather than taking the extra time to close multiple application
windows.

The GXExitGraphics function is described on page 2-23. The GXDisposeGraphics
function is described on page 2-21.

Additional Memory Management Topics 2

This section describes some additional memory management topics. Your application
can supplement QuickDraw GX automatic memory management operations to

■ respond to low-memory conditions

■ load and unload objects

■ work with graphics clients and graphics client heaps

Low-Memory Conditions 2
QuickDraw GX may post memory-related errors, warnings, and notices while trying to
allocate additional memory. These notifications indicate the status of QuickDraw GX
memory management operations and, in some cases, provide the opportunity for your
application to respond accordingly.
2-10 Additional Memory Management Topics

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
Freeing Up Already Allocated Memory 2

When QuickDraw GX needs one or more additional memory blocks for a graphics client
heap, it responds to the situation by performing one or more of the following sequential
steps. If insufficient memory is freed in one step, QuickDraw GX proceeds to the next
step in the sequence. When sufficient memory blocks are freed, QuickDraw GX allocates
the memory blocks and processing continues. QuickDraw GX memory management
steps 1 through 4 affect memory blocks that have already been allocated.

1. QuickDraw GX disposes of dead caches: A QuickDraw GX cache is temporary
memory used by QuickDraw GX. A cache that contains out of date, and therefore
invalid, information is called a dead cache. If it disposes of dead caches, QuickDraw
GX posts a disposed_dead_caches notice in the debugging init when the
operation is complete. This notice is posted once per graphics client. This notice is a
one-time-only alert indicating that your graphics client heap is low on memory.

2. QuickDraw GX unloads objects in pictures that have the gxDiskShape shape
attribute: All of the objects within the picture are unloaded before any other objects
are unloaded. The picture object is not unloaded. The gxDiskShape shape attribute
is described in the chapter “Shape Objects” in Inside Macintosh: QuickDraw GX Objects.

3. QuickDraw GX disposes of live caches: A QuickDraw GX cache that contains current
valid drawing information is called a live cache. After live caches are disposed of,
they need to be rebuilt before the next time you draw the object. QuickDraw GX posts
a disposed_live_caches notice in the debugging init when the operation is
complete. This notice is only posted once per graphics client. This notice is a
one-time-only alert indicating that your graphics client heap is low on memory.

4. QuickDraw GX relocates bit images: Bit images are moved in memory in order to free
memory space adjacent to them. No memory error, warning, or notice is posted to
notify you of this step.

Allocating New Memory and Unloading Objects 2

If QuickDraw GX has not released sufficient memory after step 4, it attempts to add
additional memory blocks to the graphics client heap. If sufficient memory is not
available after step 5, QuickDraw GX begins to unload objects to disk storage.

5. QuickDraw GX adds additional memory blocks: QuickDraw GX adds additional
memory blocks to the graphics client heap. Prior to adding memory blocks,
QuickDraw GX posts an about_to_grow_heap warning. If the
gxStaticHeapClient attribute is set for the graphics client heap, QuickDraw GX
does not perform this step.

6. QuickDraw GX unloads objects: Prior to unloading objects, QuickDraw GX posts an
about_to_unload_objects warning. First, shapes with the gxDiskShape shape
attribute are unloaded. Then, objects without either the gxDiskShape or the
gxMemoryShape attributes are unloaded. Finally, shapes with the gxMemoryShape
attribute are unloaded. Unlike disposing of caches, unloading occurs without
information loss, but it does take time and disk space. For additional information
about object loading and unloading, see the section “Loading and Unloading Objects”
beginning on page 2-12. If an object cannot be unloaded, QuickDraw GX posts a
could_not_create_backing_store error or the appropriate system error.
Additional Memory Management Topics 2-11

C H A P T E R 2

QuickDraw GX Memory Management
When your application has received the about_to_grow_heap warning or the
could_not_create_backing_store error, you can decide to free up some memory
before GX does. However, you must be very careful if you decide to dispose of a GX
object. You cannot dispose of anything that is currently in use. The only way to
determine if something is in use would be by carefully tracking the GX objects used
within your application. Most likely, you would only want to dispose of off-screen
worlds used by your application and let GX free up memory by releasing other blocks.
GX knows what is and is not busy.

If steps 1 through 6 fail to release sufficient memory to accommodate the allocation of
the required additional blocks of memory, QuickDraw GX posts an out_of_memory
error.

Functions That Create Additional Memory Demands 2

Individual QuickDraw GX functions have different memory-allocation consequences:

■ Many QuickDraw GX functions explicitly allocate memory. For example, the
GXNewShape, GXCopyToShape, and GetShapeParts functions allocate memory.
An out_of_memory error may be posted when a memory allocation fails.

■ Most QuickDraw GX functions can implicitly allocate memory to load a required
object. For example, the GXGetShapeAttributes function may need to load a
shape into memory to retrieve its attributes. QuickDraw GX loads objects
automatically and does not post an error, warning, or notice. The exception is when
QuickDraw GX posts an out_of_memory error when a memory allocation fails or a
disk error occurs.

■ Some functions do not allocate memory explicitly or implicitly. These functions might
require a graphics client heap and do not post an out_of_memory error. These
include math routines, error routines, and the GXCloneObject, GXDisposeObject,
GXUnloadObject, GXValidateObject function sets and all of the functions listed in
the second part of Table 2-1 on page 2-14.

The GraphicsBug utility is useful in debugging memory problems. This utility is
described in the chapter “QuickDraw GX Debugging” in this book.

QuickDraw GX errors, warnings, and notices are described in the chapter “Errors,
Warnings, and Notices” in this book.

Loading and Unloading Objects 2
If your application needs more memory during execution, QuickDraw GX automatically
unloads objects to disk storage to free memory. QuickDraw GX automatically reloads
previously unloaded objects when it needs them.
2-12 Additional Memory Management Topics

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
QuickDraw GX only begins to unload objects after it has failed to free sufficient memory
by disposing of dead caches, unloading picture shape objects, disposing of live caches,
relocating bit images, and adding additional memory blocks to the graphics client heap.
Unless you choose to control loading and unloading of objects to memory, QuickDraw
GX performs these tasks for you automatically. Your application never needs to load or
unload an object.

The order in which QuickDraw GX automatically loads and unloads objects depends
upon the objects’ shape attributes. QuickDraw GX first unloads shape objects with the
gxDiskShape attribute. QuickDraw GX then unloads shapes without special attributes,
style, ink, transform, color set, color profile, and tag objects. Finally, after all other objects
are unloaded, QuickDraw GX unloads objects with the gxMemoryShape attribute.

You can use the GXSetShapeAttribute function to set or clear an object’s shape
attribute and the GXGetShapeAttribute function to determine which attributes of a
shape object are set. Shape attributes are described in the chapter “Shape Objects” in
Inside Macintosh: QuickDraw GX Objects.

Objects are unloaded to a temporary file created on the startup disk in the invisible
temporary items folder. When an object is unloaded, a 4-byte stub remains in memory to
describe the location of each object on disk so that it can be reloaded when required.
Sufficient disk storage space must be available to accommodate all of the objects that are
unloaded or a file system error is posted.

You can supplement QuickDraw GX automatic loading and unloading operations by
using function calls. These functions may be useful in increasing application
performance. For example, a multimedia application with time-critical processing may
need to control specific objects to ensure that they are resident in memory when they are
to be displayed and removed from memory when they are no longer required.

You can use the GXUnloadShape function to move a shape from memory to disk
storage and the GXLoadShape function to move a shape from disk storage to memory.
QuickDraw GX provides loading and unloading functions for shape, style, ink,
transform, color set, color profile, and tag objects.

When you unload an object, QuickDraw GX always first disposes of all of the live and
dead caches for the object.

A recommended approach is to initially write your application without the use of object
loading and unloading functions. Then, experiment with loading and unloading
functions to improve performance.

The QuickDraw GX loading and unloading functions are described in the section
“Loading and Unloading Objects” beginning on page 2-26.

When objects are loaded and unloaded by QuickDraw GX is discussed in the section
“Low-Memory Conditions” beginning on page 2-10.
Additional Memory Management Topics 2-13

C H A P T E R 2

QuickDraw GX Memory Management
Functions That Do Not Require a Graphics Client or Heap 2
Almost all QuickDraw GX functions require both a graphics client and a graphics client
heap to execute. Table 2-1 lists the functions that either do not require a graphics client or
require a graphics client but not its heap to execute.

Specifying the Starting Location of a Graphics Client 2
If you use the GXNewGraphicsClient function to specify the starting location of a new
graphics client, you must also specify the requested size of the graphics client heap. In
this case, the size in bytes of the graphics client heap requested is used for a contiguous
block of memory for both the graphics client and heap. In all other cases, the graphics
client heap is allocated as a discontiguous memory block and the entire memory
allocation requested by specifying a memoryLength parameter for the
GXNewGraphicsClient function is assigned to the new graphics client heap.

Use the GXNewGraphicsClient function if you need to create a graphics client without
allocating any memory. This allows you to draw at interrupt time. For example, you may
want to report out_of_memory errors in a dialog box.

Table 2-1 QuickDraw GX functions that do not require a graphics client or heap

Memory requirements Function

graphics client not required GXValidateGraphicsClient
GXGetUserGraphicsDebug
GXSetUserGraphicsDebug
GXNewGraphicsClient
GXGetGraphicsClient
GXSetGraphicsClient
GXDisposeGraphicsClient
GXGetGraphicsClients
GXGetConvertQDFont
GXSetConvertQDFont

graphics client required;
graphics client heap not required

All of the functions described in the chapter
“Errors, Warnings, and Notices” (excluding the
application-defined functions)

All of the functions described in the chapter
“QuickDraw GX Mathematics”

GXSetValidation
GXGetValidation
GXSetValidationError
GXGetGraphicsPollingHandler
GXSetGraphicsPollingHandler
GXEnterGraphics
2-14 Additional Memory Management Topics

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
Listing 2-4 demonstrates how to specify a memory size and a memory starting location
for a graphics client and its heap.

Listing 2-4 Specifying the starting location and size for a graphics client and its heap

gxGraphicsClient newClient;

char memoryBuffer[10000]

newClient = GXNewGraphicsClient(&memoryBuffer[0],

sizeof (memoryBuffer),

gxNoAttributes);

// After we attempted to create the graphics client, we need

// to determine if the call succeeded.If it did not (as in the

// case for all GX functions), “newClient” will be nil. If it

// is, we alert the user to the problem. Otherwise, we attempt

// to allocate the GX heap.

if (newClient)

GXEnterGraphics();

// Calling GXEnterGraphics allocates the memory within the GX

// heap. The only reason the call would not succeed is if

// there is not enough memory. In this case, the graphics

// error which is posted is -27999 (out of memory). At this

// point, we have not installed an error handler, so we check

// for the error number corresponding to the out-of-memory

// error.

if (GXGetGraphicsError(nil) == -27999) {

// Because we canot allocate the requested size for our GX

// heap, we need to throw away the client we created and alert

// the user that there is not enough memory to continue..

//

GXDisposeGraphicsClient(newClient);

>>application code to alert user and shut down app

} else {

>>application code to alert user and shut down app

}}
Additional Memory Management Topics 2-15

C H A P T E R 2

QuickDraw GX Memory Management
The myClient variable holds the new graphics client. You can use this variable to access
the graphics client any time you need it. The combined size of the graphics client and the
graphics client heap is 10 KB and its starting location in memory is at the starting
location of the buffer. Since the memory starting location is specified, the new graphics
client and its heap use contiguous memory, as shown in Figure 2-1.

Figure 2-1 Creating a graphics client by specifying the memory starting location

Working With Multiple Graphics Clients 2
The exceptional QuickDraw GX application may need multiple graphics clients to
provide special features. For example, an application may want to create multiple
graphics clients to provide a QuickDraw GX environment with

■ segmented memory to allow some sets of objects to have more memory than others

■ different error states so that one state would have an error condition and the other
would have a normal condition.

Starting

location

Allocated

memory size

0xFFFF

0x0000

Graphics client

Graphics client heap
2-16 Additional Memory Management Topics

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
Another example is a QuickDraw GX application that needs to display a dialog box to
convey status information while continuing to perform other tasks. By using separate
graphics clients for the dialog box and the other task-oriented part of the application,
you can guarantee that QuickDraw GX will not affect the memory being used for the
dialog box.

Two disadvantages of having multiple graphics clients are that

■ objects cannot be shared between graphics clients

■ memory may become fragmented as the memory size grows

Without object sharing, if an object is to be used by more than one graphics client, the
object must be duplicated and this requires additional memory overhead. Fragmented
memory results from QuickDraw GX objects being initially allocated to a large block
of memory and subsequent addition of multiple discontiguous memory blocks.

If you are going to have multiple graphics clients, you must explicitly create them using
the GXNewGraphicsClient and GXEnterGraphics functions. This assures that a
reference is returned for each new graphics client. If you allow QuickDraw GX to
implicitly create a graphics client, QuickDraw GX has no way of returning a reference.

The GXGetGraphicsClient, GXGetGraphicsClients, and
GXSetGraphicsClient functions allow you to work with the graphics clients that you
create.

You can use the GXGetGraphicsClients function to return some or all of the graphics
client references that have been allocated by QuickDraw GX. The
GXGetGraphicsClients function is described on page 2-25.

You can use the GXSetGraphicsClient function to change the active graphics client
for your application and the GXGetGraphicsClient function to return the active
graphics client for your application. These functions may be used prior to calling
GXEnterGraphics and GXExitGraphics to specify the active graphics client.
The GXSetGraphicsClient function is described on page 2-26 and the
GXGetGraphicsClients function is described on page 2-25.

Creating graphics clients and graphics client heaps explicitly is described in the section
“Explicit Creation” beginning on page 2-6.

QuickDraw GX Memory Management Reference 2

This section describes the constants, data types, and functions related to QuickDraw GX
memory management. The section “Constants and Data Types” gives the type definition
of the graphics client and the graphics client attributes enumeration. The section
“Functions” describes the functions used for creating and disposing of a graphics client,
working with multiple graphics clients, and loading and unloading objects.
QuickDraw GX Memory Management Reference 2-17

C H A P T E R 2

QuickDraw GX Memory Management
Constants and Data Types 2
This section describes the constants and data types that are used for memory
management.

Graphics Client Object 2

QuickDraw GX provides you with access to the graphics client object through a graphics
client reference:

typedef struct gxPrivateGraphicsClientRecord *gxGraphicsClient;

In this type definition, gxGraphicsClient is a type-checked reference, not an actual
pointer to any defined structure. The contents of the graphics client object are private.

Graphics Client Attributes 2

The options for the attribute parameter of the GXNewGraphicsClient function are
defined in the gxClientAttributes enumeration:

enum gxClientAttributes {

gxStaticHeapClient= 0x0001

};

typedef long gxClientAttribute;

Constant descriptions

gxStaticHeapClient
QuickDraw GX will never add additional memory blocks to the
graphics client heap.

A graphics client having a gxClientAttributes value of 0 may add additional
memory blocks to its heap, as required. This is the standard default behavior.

For additional information, see the section “Creating a Graphics Client and Its Graphics
Client Heap” beginning on page 2-5. The GXNewGraphicsClient function is described
on page 2-19.

Functions 2
This section describes the Quickdraw GX functions you can use to

■ create and dispose of graphics clients

■ allocate and dispose of graphics client heaps

■ load and unload objects

■ work with multiple graphics clients
2-18 QuickDraw GX Memory Management Reference

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
Creating and Disposing of a Graphics Client 2

This section describes the QuickDraw GX functions you can use to

■ create a new graphics client

■ dispose of a graphics client

GXNewGraphicsClient 2

You can use the GXNewGraphicsClient function to create a new graphics client.

gxGraphicsClient GXNewGraphicsClient(void *memoryStart,

long memoryLength, gxClientAttribute attribute);

memoryStart
A pointer to the memory location where the new graphics client will
begin.

memoryLength
The requested size in bytes of the QuickDraw GX graphics client heap.

attribute The attributes flag set for the new graphics client.

function result A reference to the new graphics client object.

DESCRIPTION

The GXNewGraphicsClient function creates a new graphics client and makes it the
active graphics client for this application. The graphics client specifies the memory
location, the size in bytes, and the attributes of its graphics client heap. When additional
memory blocks are allocated to the graphics client heap, their locations and sizes are also
stored in the graphics client. The GXNewGraphicsClient function does not allocate
memory for the graphics client heap. Calling the GXEnterGraphics functionallocates
the heap.

If you are going to make a GXNewGraphicsClient call, it must be the first QuickDraw
GX call in your application. Otherwise, a Quickdraw GX call may implicitly create the
first graphics client and any subsequent GXNewGraphicsClient call creates another
graphics client. If you want to create multiple graphics client objects, you can call this
routine several times.

The memoryStart parameter specifies the starting location in memory for the graphics
client and its graphics client heap. If you specify nil, QuickDraw GX selects the location
for you. This is the most common selection. Since QuickDraw GX is managing memory,
it selects what it believes is the optimum location in memory for the new graphics client.
However, in the rare case in which you need to specify the memory location, you can use
QuickDraw GX Memory Management Reference 2-19

C H A P T E R 2

QuickDraw GX Memory Management
the memoryStart parameter to specify the exact location of the graphics client. If you
specify the memoryStart parameter, you must also specify the memoryLength
parameter.

The memoryLength parameter specifies the size of the heap in bytes. If you pass 0 and
there is no 'gasz' resource, QuickDraw GX version 1.0 creates a graphics client with a
default heap size of 600 KB. If there is a 'gasz' resource, QuickDraw GX uses its size
value instead.

The attributes parameter is a flag from the gxClientAttributes enumeration that
defines whether QuickDraw GX will or will not add additional memory blocks to the
newly defined, but not allocated, graphics client heap. A flag of default value 0 indicates
that QuickDraw GX may add memory blocks to the graphics client heap, as required. A
flag of value 1 is the gxStaticHeapClient constant and indicates that QuickDraw GX
will never add memory blocks to the initially allocated graphics client heap.

If QuickDraw GX is unable to create a graphics client, there probably is not sufficient
memory. As a result, the function returns nil. Note that QuickDraw GX does not post
an error since there is no graphics client to post the error to.

SPECIAL CONSIDERATIONS

If no error results, the GXNewGraphicsClient function creates a graphics client object;
you are responsible for disposing of that object when you no longer need it.

SEE ALSO

The use of the GXNewGraphicsClient function to create a new graphics client is
described in the section “Creating a Graphics Client and Its Graphics Client Heap”
beginning on page 2-5.

To determine the correct size of the memory for your graphics client, see the section
“Determining Memory Requirements for a Graphics Client Heap” beginning on page 2-8.

The gxClientAttribute enumeration is described in the section “Graphics Client
Attributes” beginning on page 2-18.

QuickDraw GX functions that do not require a graphics client or a graphics client heap
are described in the section “Functions That Do Not Require a Graphics Client or Heap”
beginning on page 2-14.

If you need to specify the memory starting location of the graphics client and its graphics
client heap, see the section “Specifying the Starting Location of a Graphics Client”
beginning on page 2-14.
2-20 QuickDraw GX Memory Management Reference

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
GXDisposeGraphicsClient 2

You can use the GXDisposeGraphicsClient function to dispose of a specific graphics
client.

void GXDisposeGraphicsClient(gxGraphicsClient client);

client A reference to the graphics client to be disposed of.

DESCRIPTION

The GXDisposeGraphicsClient function is the last QuickDraw GX call that an
application being debugged should make. It disposes of all the data structures associated
with the passed graphics client, including its heap. If the application does not make this
call, QuickDraw GX automatically disposes of all graphics clients that belong to the
exiting application. However, in this case the graphics clients are considered aborted
instead of being disposed of normally, and therefore QuickDraw GX does not report any
errors that occur during the process of disposing of these graphics clients.

SPECIAL CONSIDERATIONS

If your GXNewGraphicsClient call failed to create a graphics client and returned nil,
this function accepts nil as a valid graphics client and disposes of the referenced
graphics client.

When your application is ready to ship, you should remove the terminating
GXDisposeGraphicsClient function and rely on QuickDraw GX to automatically
dispose of your graphics clients.

SEE ALSO

The role of the GXDisposeGraphicsClient function in disposing of a graphics client
is described in the section “Disposing of a Graphics Client and Graphics Client Heap”
beginning on page 2-9.

The GXNewGraphicsClient function is used to create a new graphics client from
memory and is described on page 2-19.
QuickDraw GX Memory Management Reference 2-21

C H A P T E R 2

QuickDraw GX Memory Management
Allocating and Disposing of a Graphics Client Heap 2

This section describes the QuickDraw GX functions you can use to

■ allocate a graphics client heap

■ obtain a list of all of the allocated graphics clients

■ dispose of a graphics client heap

GXEnterGraphics 2

You can use the GXEnterGraphics function to allocate memory for a QuickDraw GX
graphics client heap.

void GXEnterGraphics(void);

DESCRIPTION

The GXEnterGraphics function allocates memory for a graphics client heap and
initializes the default data structures. QuickDraw GX obtains the memory starting
location, memory length, and attributes for the new graphics client heap from the active
graphics client.

Normally, you never need to call GXEnterGraphics. You should call this function only
in the specific instance that you want to isolate the QuickDraw GX call to a specific part
of the application. You then usethe GXExitGraphics function to remove all memory
used by QuickDraw GX and then use the GXEnterGraphics function to begin using
QuickDraw GX memory again.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The use of the GXEnterGraphics function to allocate memory to a graphics client is
described in the section “Creating a Graphics Client and Its Graphics Client Heap”
beginning on page 2-5.

The GXExitGraphics function deallocates memory for the QuickDraw GX graphics
client heap and removes the default data structures. This function is described in the
next section.

QuickDraw GX functions that do not require a graphics client or a graphics client heap
are described in the section “Functions That Do Not Require a Graphics Client or Heap”
beginning on page 2-14.

Errors
out_of_memory
2-22 QuickDraw GX Memory Management Reference

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
GXExitGraphics 2

You can use the GXExitGraphics function to dispose of the default structures and the
active QuickDraw GX graphics client heap.

void GXExitGraphics(void);

DESCRIPTION

The GXExitGraphics function disposes of all of the default data structures that you
have created in your QuickDraw GX application and disposes of the active graphics
client heap. If a notice handler routine has been installed, it is called to report any objects
allocated by the application that have not been disposed of.

Normally, you never need to call the GXExitGraphics function if you use the
GXDisposeGraphicsClient function.

SPECIAL CONSIDERATIONS

In the debugging version of QuickDraw GX, you can call the GXExitGraphics
function if you want to confirm that all QuickDraw GX objects that you allocated have
been disposed of.

When your application is ready to ship, you should remove the terminating
GXExitGraphics function and rely on QuickDraw GX to automatically dispose of your
graphics client heaps.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

The role of the GXExitGraphicsClient function in disposing of a graphics client heap
is described in the section “Disposing of a Graphics Client and Graphics Client Heap”
beginning on page 2-9.

The GXDisposeGraphicsClient function is described on page 2-21.

The GXEnterGraphics function allocates memory for the QuickDraw GX graphics
client heap and initializes the default data structures. This function is described on
page 2-22.

Notices (debugging only)
shape_not_disposed
font_not_disposed
style_not_disposed
ink_not_disposed
transform_not_disposed
colorSet_not_disposed
colorProfile_not_disposed
QuickDraw GX Memory Management Reference 2-23

C H A P T E R 2

QuickDraw GX Memory Management
Working With Multiple Graphics Clients 2

This section describes the QuickDraw GX functions you can use to

■ return the active graphics client

■ change the active graphics client

GXGetGraphicsClient 2

You can use the GXGetGraphicsClient function to return the active graphics client to
your application.

gxGraphicsClient GXGetGraphicsClient(void);

function result The active graphics client.

DESCRIPTION

The GXGetGraphicsClient function returns the active graphics client. Each
application has its own active graphics client. The only way that the active graphics
client is changed within an application is when the application calls the
GXSetGraphicsClient function or when a new graphics client is created by
the GXNewGraphicsClient call.

SEE ALSO

For additional information about graphics clients, see the section “About QuickDraw GX
Memory Management” beginning on page 2-3.

Multiple graphics clients are discussed in the section“Working With Multiple Graphics
Clients” beginning on page 2-16.

The GXGetGraphicsClients function returns all or some of the graphics clients that
have been allocated by QuickDraw GX. This function is described in the next section.
2-24 QuickDraw GX Memory Management Reference

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
GXGetGraphicsClients 2

You can use the GXGetGraphicsClients function to list all of the graphics clients that
have been allocated by QuickDraw GX.

long GXGetGraphicsClients(long index, long count,

gxGraphicsClient clients[]);

index The one-based index into the list of all graphics clients that indicates the
first client to return.

count The number of graphics clients to be returned.

clients An array of graphics client references. On return, the array contains
references to the allocated graphics clients.

function result The number of graphics clients returned.

DESCRIPTION

The GXGetGraphicsClients function copies the graphics client references specified
by the index and count parameters into the array. It will return the graphics clients
that are owned by other applications in addition to the ones owned by the calling
application. Specifying the value 1 for the index parameter returns the first client.
Specifying the gxSelectToEnd constant for the count parameter returns all remaining
graphics clients, starting with the indexed graphics client. If nil is passed for the
clients parameter, no graphics clients are returned.

SEE ALSO

For additional information about graphics clients, see the section “About QuickDraw GX
Memory Management” beginning on page 2-3.

Multiple graphics clients are discussed in the section“Working With Multiple Graphics
Clients” beginning on page 2-16.
QuickDraw GX Memory Management Reference 2-25

C H A P T E R 2

QuickDraw GX Memory Management
GXSetGraphicsClient 2

You can use the GXSetGraphicsClient function to change the active graphics client
for your application.

void GXSetGraphicsClient(gxGraphicsClient client);

client A reference to the graphics client that is to become active.

DESCRIPTION

The GXSetGraphicsClient function can be used to switch to any of the graphics
clients that your application owns; it may not switch to graphics clients that other
applications own.

The active graphics client determines which QuickDraw GX graphics client heap to use
for subsequent QuickDraw GX calls. Note that if you create a QuickDraw GX object with
one graphics client active and switch to another one, you may not make calls that use the
object. This is because an object cannot be shared by graphics clients. The object must be
duplicated.

SEE ALSO

See the section“Working With Multiple Graphics Clients” beginning on page 2-16 for
more information about multiple graphics clients.

Loading and Unloading Objects 2

This section describes the functions you use to load objects from disk storage to memory
and to unload objects from memory to disk storage.

GXLoadShape 2

You can use the GXLoadShape function to load a shape into memory.

void GXLoadShape(gxShape target);

target A reference to the shape object to be loaded into memory.
2-26 QuickDraw GX Memory Management Reference

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
DESCRIPTION

The GXLoadShape function moves a shape object from disk storage to the active
graphics client heap. When you or QuickDraw GX unload a shape object from memory
to disk storage using the GXUnloadShape function, QuickDraw GX creates a 4-byte
stub that remains in the active graphics client heap. When you use the GXLoadShape
function to retrieve the stored object, QuickDraw GX obtains the location of the stored
shape object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the sections “Loading and
Unloading Objects” beginning on page 2-12.

The GXUnloadShape function is described in the next section.

GXUnloadShape 2

You can use the GXUnloadShape function to unload a shape from memory.

void GXUnloadShape(gxShape target);

target A reference to the shape object to be unloaded from memory.

DESCRIPTION

The GXUnloadShape function moves a shape object from the active graphics client heap
to disk storage. When you or QuickDraw GX use the GXUnloadShape function to
unload a shape object from memory to disk storage, QuickDraw GX stores its location in
a 4-byte stub in the active graphics client heap. When you use the GXLoadShape
function to reload the object from disk storage to memory, QuickDraw GX uses the stub
to find the stored shape object.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
shape_is_nil

Errors
out_of_memory
shape_is_nil
QuickDraw GX Memory Management Reference 2-27

C H A P T E R 2

QuickDraw GX Memory Management
SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadShape function is described in the previous section.

GXLoadStyle 2

You can use the GXLoadStyle function to load a style into memory.

void GXLoadStyle(gxStyle target);

target A reference to the style object to be loaded into memory.

DESCRIPTION

The GXLoadStyle function moves a style object from disk storage to the active graphics
client heap of your application. When you or QuickDraw GX unload a style object from
memory to disk storage using the GXUnloadStyle function, QuickDraw GX creates a
4-byte stub that remains in the graphics client heap. When you use the GXLoadStyle
function to retrieve the stored style, QuickDraw GX obtains the location of the stored
style object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadStyle function is described in the next section.

Errors
out_of_memory
style_is_nil
2-28 QuickDraw GX Memory Management Reference

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
GXUnloadStyle 2

You can use the GXUnloadStyle function to unload a style from memory.

void GXUnloadStyle(gxStyle target);

target A reference to the style object to be unloaded from memory.

DESCRIPTION

The GXUnloadStyle function moves a style object from the active graphics client heap
to disk storage. When you or QuickDraw GX use the GXUnloadStyle function to
unload a style object from memory to disk storage, QuickDraw GX stores its location in a
4-byte stub in the active graphics client heap. When you use the GXLoadStyle function
to reload the object from disk storage to memory, QuickDraw GX uses the stub to find
the stored style object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadStyle function is described in the previous section.

GXLoadInk 2

You can use the GXLoadInk function to load an ink into memory.

void GXLoadInk(gxInk target);

target A reference to the ink object to be loaded into memory.

DESCRIPTION

The GXLoadInk function moves an ink object from disk storage to the active graphics
client heap of your application. When you or QuickDraw GX unload an ink object from
memory to disk storage using the GXUnloadInk function, QuickDraw GX creates a

Errors
out_of_memory
style_is_nil
QuickDraw GX Memory Management Reference 2-29

C H A P T E R 2

QuickDraw GX Memory Management
4-byte stub that remains in the graphics client heap. When you use the GXLoadInk
function to retrieve the stored object, QuickDraw GX obtains the location of the stored
ink object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadInk function is described in the next section.

GXUnloadInk 2

You can use the GXUnloadInk function to unload an ink from memory.

void GXUnloadInk(gxInk target);

target A reference to the ink object to be unloaded from memory.

DESCRIPTION

The GXUnloadInk function moves an ink object from the active graphics client heap to
disk storage. When you or QuickDraw GX use the GXUnloadInk function to unload an
ink object from memory to disk storage, QuickDraw GX stores its location in a 4-byte
stub in the active graphics client heap. When you use the GXLoadInk function to reload
the object from disk storage to memory, QuickDraw GX uses the stub to find the stored
ink object.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
ink_is_nil

Errors
out_of_memory
ink_is_nil
2-30 QuickDraw GX Memory Management Reference

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadInk function is described in the previous section.

GXLoadTransform 2

You can use the GXLoadTransform function to load a transform into memory.

void GXLoadTransform(gxTransform target);

target A reference to the transform object to be loaded into memory.

DESCRIPTION

The GXLoadTransform function moves a transform object from disk storage to the
active graphics client heap of your application. When you or QuickDraw GX unload a
transform object from memory to disk storage using the GXUnloadTransform function,
QuickDraw GX creates a 4-byte stub that remains in the graphics client heap. When you
use the GXLoadTransform function to retrieve the stored object, QuickDraw GX
obtains the location of the stored transform object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadTransform function is described in the next section.

Errors
out_of_memory
transform_is_nil
QuickDraw GX Memory Management Reference 2-31

C H A P T E R 2

QuickDraw GX Memory Management
GXUnloadTransform 2

You can use the GXUnloadTransform function to unload a transform from memory.

void GXUnloadTransform(gxTransform target);

target A reference to the transform object to be unloaded from memory.

DESCRIPTION

The GXUnloadTransform function moves a transform object from the active graphics
client heap to disk storage. When you or QuickDraw GX use the GXUnloadTransform
function to unload a transform object from memory to disk storage, QuickDraw GX
stores its location in a 4-byte stub in the active graphics client heap. When you use the
GXLoadTransform function to reload the object from disk storage to memory,
QuickDraw GX uses the stub to find the stored transform object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadTransform function is described in the previous section.

GXLoadColorSet 2

You can use the GXLoadColorSet function to load a color set into memory.

void GXLoadColorSet(gxColorSet target);

target A reference to the color set object to be loaded into memory.

Errors
out_of_memory
transform_is_nil
2-32 QuickDraw GX Memory Management Reference

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
DESCRIPTION

The GXLoadColorSet function moves a color set object from disk storage to the active
graphics client heap of your application. When you or QuickDraw GX unload a color set
object from memory to disk storage using the GXUnloadColorSet function,
QuickDraw GX creates a 4-byte stub that remains in the graphics client heap. When you
use the GXLoadColorSet function to retrieve the stored object, QuickDraw GX obtains
the location of the stored color set object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadColorSet function is described in the next section.

GXUnloadColorSet 2

You can use the GXUnloadColorSet function to unload a color set from memory.

void GXUnloadColorSet(gxColorSet target);

target A reference to the color set object to be unloaded from memory.

DESCRIPTION

The GXUnloadColorSet function moves a color set object from the active graphics
client heap to disk storage. When you or QuickDraw GX use the GXUnloadColorSet
function to unload a color set object from memory to disk storage, QuickDraw GX stores
its location in a 4-byte stub in the active graphics client heap. When you use the
GXLoadColorSet function to reload the object from disk storage to memory,
QuickDraw GX uses the stub to find the stored color set object.

ERRORS, WARNINGS, AND NOTICES

Errors
out_of_memory
color_set_is_nil

Errors
out_of_memory
color_set_is_nil
QuickDraw GX Memory Management Reference 2-33

C H A P T E R 2

QuickDraw GX Memory Management
SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadColorSet function is described in the previous section.

GXLoadColorProfile 2

You can use the GXLoadColorProfile function to load a color profile into memory.

void GXLoadColorProfile(gxColorProfile target);

target A reference to the color profile object to be loaded into memory.

DESCRIPTION

The GXLoadColorProfile function moves a color profile object from disk storage to
the active graphics client heap of your application. When you or QuickDraw GX unload
a color profile object from memory to disk storage using the GXUnloadColorProfile
function, QuickDraw GX creates a 4-byte stub that remains in the graphics client heap.
When you use the GXLoadColorProfile function to retrieve the stored object,
QuickDraw GX obtains the location of the stored color profile object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadColorProfile function is described in the next section.

Errors
out_of_memory
color_profile_is_nil
2-34 QuickDraw GX Memory Management Reference

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
GXUnloadColorProfile 2

You can use the GXUnloadColorProfile function to unload a color profile from
memory.

void GXUnloadColorProfile(gxColorProfile target);

target A reference to the color profile object to be unloaded from memory.

DESCRIPTION

The GXUnloadColorProfile function moves a color profile object from the active
graphics client heap to disk storage. When you or QuickDraw GX use the
GXUnloadColorProfile function to unload a color profile object from memory to disk
storage, QuickDraw GX stores its location in a 4-byte stub in the active graphics client
heap. When you use the GXLoadColorProfile function to reload the object from disk
storage to memory, QuickDraw GX uses the stub to find the stored color profile object.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadColorProfile function is described in the previous section.

GXLoadTag 2

You can use the GXLoadTag function to load a tag into memory.

void GXLoadTag(gxTag target);

target A reference to the tag object to be loaded into memory.

Errors
out_of_memory
color_profile_is_nil
QuickDraw GX Memory Management Reference 2-35

C H A P T E R 2

QuickDraw GX Memory Management
DESCRIPTION

The GXLoadTag function moves a tag object from disk storage to the active graphics
client heap of your application. When you or QuickDraw GX unload a tag object from
memory to disk storage using the GXUnloadTag function, QuickDraw GX creates a
4-byte stub that remains in the graphics client heap. When you use the GXLoadTag
function to retrieve the stored object, QuickDraw GX obtains the location of the stored
tag object from the stub.

ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXUnloadTag function is described in the next section.

GXUnloadTag 2

You can use the GXUnloadTag function to unload a tag from memory.

void GXUnloadTag(gxTag target);

target A reference to the tag object to be unloaded from memory.

DESCRIPTION

The GXUnloadTag function moves a tag object from the active graphics client heap to
disk storage. When you or QuickDraw GX use the GXUnloadTag function to unload a
tag object from memory to disk storage, QuickDraw GX stores its location in a 4-byte
stub in the active graphics client heap. When you use the GXLoadTag function to reload
the object from disk storage to memory, QuickDraw GX uses the stub to find the stored
tag object.

Errors
out_of_memory
tag_is_nil
2-36 QuickDraw GX Memory Management Reference

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
ERRORS, WARNINGS, AND NOTICES

SEE ALSO

For additional information about loading objects from disk storage to memory and
unloading objects from memory to disk storage, see the section “Loading and Unloading
Objects” beginning on page 2-12.

The GXLoadTag function is described in the previous section.

Errors
out_of_memory
tag_is_nil
QuickDraw GX Memory Management Reference 2-37

C H A P T E R 2

QuickDraw GX Memory Management
Summary of QuickDraw GX Memory Management 2

Constants and Data Types 2

Graphics Client Object

typedef struct gxPrivateGraphicsClientRecord *gxGraphicsClient;

Graphics Client Attributes

enum gxClientAttributes {

gxStaticHeapClient = 0x0001

};

typedef long gxClientAttribute;

Functions 2

Creating and Disposing of a Graphics Client

gxGraphicsClient GXNewGraphicsClient
(void *memoryStart, long memoryLength,
gxClientAttribute attribute);

void GXDisposeGraphicsClient (gxGraphicsClient client);

Allocating and Disposing of a Graphics Client Heap

void GXEnterGraphics (void);

void GXExitGraphics (void);

Working With Multiple Graphics Clients

gxGraphicsClient GXGetGraphicsClient
(void);

long GXGetGraphicsClients (long index, long count,
gxGraphicsClient clients[]);

void GXSetGraphicsClient (gxGraphicsClient client);
2-38 Summary of QuickDraw GX Memory Management

C H A P T E R 2

QuickDraw GX Memory Management

2
Q

uickD
raw

 G
X

 M
em

ory M
anagem

ent
Loading and Unloading Objects

void GXLoadShape (gxShape target);

void GXUnloadShape (gxShape target);

void GXLoadStyle (gxStyle target);

void GXUnloadStyle (gxStyle target);

void GXLoadInk (gxInk target);

void GXUnloadInk (gxInk target);

void GXLoadTransform (gxTransform target);

void GXUnloadTransform (gxTransform target);

void GXLoadColorSet (gxColorSet target);

void GXUnloadColorSet (gxColorSet target);

void GXLoadColorProfile (gxColorProfile target);

void GXUnloadColorProfile (gxColorProfile target);

void GXLoadTag (gxTag target);

void GXUnloadTag (gxTag target);
Summary of QuickDraw GX Memory Management 2-39

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 QuickDraw GX and the Macintosh Environment TOC
	 QuickDraw GX and the Macintosh
	QuickDraw GX Memory Management
	About QuickDraw GX Memory Management
	Memory Heaps
	Graphics Clients and Graphics Client Heaps
	Additional Topics

	Using Graphics Clients and Graphics Client Heaps
	Creating a Graphics Client and Its Graphics Client...
	Implicit Creation
	Explicit Creation

	Determining Memory Requirements for a Graphics Cli...
	Disposing of a Graphics Client and Graphics Client...

	Additional Memory Management Topics
	Low-Memory Conditions
	Freeing Up Already Allocated Memory
	Allocating New Memory and Unloading Objects
	Functions That Create Additional Memory Demands

	Loading and Unloading Objects
	Functions That Do Not Require a Graphics Client or...
	Specifying the Starting Location of a Graphics Cli...
	Working With Multiple Graphics Clients

	QuickDraw GX Memory Management Reference
	Constants and Data Types
	Graphics Client Object
	Graphics Client Attributes

	Functions
	Creating and Disposing of a Graphics Client
	Allocating and Disposing of a Graphics Client Heap...
	Working With Multiple Graphics Clients
	Loading and Unloading Objects

	Summary of QuickDraw GX Memory Management
	Constants and Data Types
	Functions

	 QuickDraw GX Memory Management TOC
	 Errors, Warnings, and NoticesTOC
	 Errors, Warnings, and Notices
	 QuickDraw GX Debugging TOC
	 QuickDraw GX Debugging
	 Collection Manager TOC
	 Collection Manager
	 Message Manager TOC
	 Message Manager
	 QuickDraw GX Stream Format TOC
	 QuickDraw GX Stream Format
	 QuickDraw GX Mathematics TOC
	 QuickDraw GX Mathematics
	 Glossary
	 Index
	 Colophon

