

C H A P T E R 6

6

M
essage M

anager

Message Manager 6

The QuickDraw GX Message Manager is a part of the message-passing printing
architecture of QuickDraw GX. Read this chapter if you want to use the Message
Manager to develop printing extensions or printer drivers.

Because QuickDraw GX uses the Message Manager for printing, you should be familiar
with the chapter “Introduction to QuickDraw GX Printing” in Inside Macintosh:
QuickDraw GX Printing before reading this chapter.

If you want to use the Message Manager to create printing extensions and printer
drivers, you should also read Inside Macintosh: QuickDraw GX Printing Extensions and
Drivers.

This chapter introduces the Message Manager as it is used for printing with QuickDraw
GX. It then shows how to use Message Manager functions to

■ allocate memory for and dispose of global data

■ store global data for a single message handler instance

■ store global data for multiple message handler instances

■ send and forward messages

This chapter also contains reference information for constants, data types, and functions
associated with the Message Manager.
6-3

C H A P T E R 6

Message Manager

About the Message Manager 6

On Macintosh systems in which QuickDraw GX is not installed, the Macintosh Printing
Manager calls the printer driver by loading appropriate code resource for the printer
driver, as shown in Figure 6-1.

Figure 6-1 Printing with the Macintosh Printing Manager

In contrast, QuickDraw GX provides a low-level software manager called the Message
Manager to transfer control to the printer driver. Whenever an application makes a
printing call, QuickDraw GX interacts with the printer driver by calling the Message
Manager to request that the appropriate message be sent to the printer driver.
QuickDraw GX printing extensions may be inserted between QuickDraw GX and the
printer driver to modify the behavior of printing without changing the printer driver.
This approach greatly increases the flexibility of printing and allows printing
enhancements to be developed quickly and easily. Figure 6-2 shows the relationship of
the QuickDraw GX printing software components.

Macintosh

Printing

Manager

Application

Printer driver
6-4 About the Message Manager

C H A P T E R 6

Message Manager

6

M
essage M

anager

Figure 6-2 Printing with QuickDraw GX

QuickDraw GX predefines over a hundred messages. An application starts the printing
process by calling the QuickDraw GX printing application programming interface (API).
QuickDraw GX may perform the task itself or call the Message Manager to send one or
more messages to the application to initiate one or more steps in the following sequential
message chain: application, printing extensions, printer driver, and the default message
handler.

Default message

handler

Application

Printing extension

Printer driver

Printing API

Printing

function calls

Printing

messages

Start

Forward

Forward

Forward

Send

Send

Send

Message

Manager

Send
About the Message Manager 6-5

C H A P T E R 6

Message Manager

The key to the QuickDraw GX extensible printing architecture is the sequential
relationship of the application, printing extensions, printer driver, and default message
handler for printing. Applications, printing extensions, and printer drivers are located in
the message stream so that they may override messages before the message gets to the
default message handler. This is the end of the line for any message that makes it to the
end of the chain. QuickDraw GX defines the normal printing characteristics that occur
unless modified by an application, printing extensions, or the printer driver. Printing
modification may occur when one or more messages are overridden. QuickDraw GX
sends a large number of printing messages during the printing process. Since many
messages are not normally overridden, QuickDraw GX provides a default printing
behavior for most messages via the default message handler.

A partial message override occurs when the application, printing extensions, or printer
driver perform one or more tasks in response to a message and then forward the
message to the next step in the message chain. A complete message override occurs
when the application, printing extensions, or printer driver perform one or more tasks in
response to a message and do not forward the message to the the next message handler
in the chain. Any message that is not explicitly overridden by a printing extension or
printer driver is implicitly forwarded to the next link in the sequential message chain. A
complete override of a message prevents the next extension, printer driver, or default
implementation in the chain from receiving the overridden message.

The Message Manager is not the only initiator of messages. Applications, printing
extensions, printer drivers, and QuickDraw GX not only make printing function calls,
but they can also initiate messages.

For additional information about printing with QuickDraw GX, see Inside Macintosh:
QuickDraw GX Printing. For additional information about how to use the QuickDraw GX
Message Manager and messages, see Inside Macintosh: QuickDraw GX Printing Extensions
and Drivers.

Message Terminology 6
In working with the Message Manager there are a number of terms that are useful to
describe the software components and their interactions.

A message object is the loose equivalent of an object in a fully object-oriented system. It
is the recipient of messages. A message object may also send messages to itself or to
another message object.

A message is a form of notification passed to a message object in order to have that
message object perform some operation.

A message handler is a component of a message class. A message class may consist of
one or more handlers, each of which overrides zero or more messages. Each message
handler may override some portion of the functionality of the handler below it in the
message class. Message classes are built up from message handlers, in a manner similar
to that in which a class in an object-oriented language is derived from other classes. To
forward is to invoke the override of the next handler in the chain for the current message.
6-6 About the Message Manager

C H A P T E R 6

Message Manager

6

M
essage M

anager

A message override is the loose equivalent of a method. It is the implementation, in
actual code, of a given message. The override performs the operation requested by
sending a message to a message object.

A message class is the loose equivalent of a class in a fully object-oriented system. It
defines the set of messages that message objects instantiated from it understand and
encapsulates the message handlers that implement the overrides corresponding to those
messages. Message classes define the acceptable set of messages for all handlers that
they encapsulate.

An instance is one copy of a message handler in memory.

Global Data Storage for Printing Extensions and Printer Drivers 6
Printing extensions and printer drivers are stand-alone code and do not enjoy the full
status of an application. When an application is launched, a memory block is
automatically allocated for the storage of globals. Unlike applications, stand-alone code
is never launched. It is simply loaded, and therefore no memory for globals is allocated.

As a result, if your printing extension or driver requires global data, it must allocate and
deallocate memory for this data. Global data can be stored as a constant, a handle, a
pointer, or in a so-called A5 world by the use of QuickDraw GX Message Manager
functions. QuickDraw GX will not dispose of your globals for you. You must explicitly
dispose of them yourself when you are done using them.

Each instance of a message handler can only see its data. If you want to limit access to
one instance of your message handler’s data, see the section “Setting and Getting Global
Data for a Single Handler Instance” beginning on page 6-10.

If you want to use common global data that is accessible to all instances of your
handlers, see the section “Setting and Getting Global Data for Multiple Handler
Instances” beginning on page 6-12.

To create an A5 world that limits the access of your global data to one copy of your
message handler, see the section “Allocating Memory for and Disposing of Global Data”
beginning on page 6-8.

For more information about the A5 world, see Inside Macintosh: Memory.

Message Sending and Forwarding 6
QuickDraw GX provides functions that allow you to send a specific message to the top
of the message chain (your application), forward a specific message to the next message
handler, or forward the current message to the next message handler. For additional
information about message sending and forwarding, see the section “Sending and
Forwarding Messages” beginning on page 6-15.
About the Message Manager 6-7

C H A P T E R 6

Message Manager

Using the Message Manager 6

This section describes how to

■ determine the version of the Message Manager

■ allocate and deallocate memory for globals

■ create and retrieve global data for a single instance of the message handler

■ create and retrieve global data for multiple instances of a message handler

■ send and forward messages

Determining the Version of the Message Manager 6
To determine the current version of the QuickDraw GX Message Manager, you can call
the Gestalt function with the gestaltMessageMgrVersion selector 'mess'. The
gestaltMessageMgrVersion selector returns a 2-byte value indicating the version of
the QuickDraw GX Message Manager that is currently installed. The high-order byte is
the major version number and the low-order byte is the minor revision number.

The selector 'mess' is defined in the section “Message Manager Gestalt Selector”
beginning on page 6-16.

For more information about the Gestalt function, see the chapter “Gestalt Manager” in
Inside Macintosh: Operating System Utilities.

Allocating Memory for and Disposing of Global Data 6
You can use the NewMessageGlobals function to request and allocate memory for
globals. You should only call this function while your application is performing a
message override.

You should always initialize your global data from a function other than the one in
which you call the NewMessageGlobals function. Otherwise, your development
environment may generate code with bad data references.
6-8 Using the Message Manager

C H A P T E R 6

Message Manager

6

M
essage M

anager

Listing 6-1 gives an example of using the NewMessageGlobals function to create an A5
world from an MPW programming environment.

Listing 6-1 Creating an A5 world for global data

gxShape gMyShape;

Handle gMyHandle;

OSErr MyInitGlobalData()

{

OSErr err;

gMyShape = nil;

gMyHandle = TempNewHandle(1024, &err);

return err;

}

OSErr MyInitialize()

{

OSErr err;

/*

Create an A5 world, and initialize the

global data.

*/

err = NewMessageGlobals(A5Size(), A5Init);

if (!err) err = MyInitGlobalData();

return err;

}

The MyInitalize function is the override for the GXInitialize message. The
MyInitialize function first sets up an A5 world, as required if an extension is going to
use global data. In this case the global data is the MyShape structure. Once you create
the A5 world by calling the NewMessageGlobals function, your global data will be
valid whenever your printing extension or printer driver is called. Once the
NewMessageGlobals function has been called, the extension or driver can initialize its
global data. In this example, the code uses a function called MyInitGlobalData to do
this.
Using the Message Manager 6-9

C H A P T E R 6

Message Manager

If you have allocated memory for your globals using the NewMessageGlobals
function, you must use the DisposeMessageGlobals function to dispose of the
globals and deallocate their memory blocks when they are no longer needed.

Note that DisposeMessageGlobals does not dispose of data and handles. These must
be disposed of by your code. First, you deallocate any memory that you have allocated
and then let QuickDraw GX deallocate memory that it has allocated for your global data.

Listing 6-2 shows how to dispose of global data and deallocate the memory that was
allocated in Listing 6-1.

Listing 6-2 Disposing of global data and deallocating memory

OSErr MyShutDown()

{/* Dispose of our global data */

if (gMyHandle != nil)

DisposHandle(GMyHandle);

/* dispose of the A5 world that was created in MyInitialize */

DisposeMessageGlobals();

return noErr;

}

The NewMessageGlobals function is described on page 6-17. The
DisposeMessageGlobals function is described on page 6-18.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

Setting and Getting Global Data for a Single Handler Instance 6
You can use the SetMessageHandlerInstanceContext function to store data that
can be used by a single instance of a message handler. A new instance of your message
handler is created each time a new printing job is created. For example, if four printing
jobs are created, four instances of the message handler are created. Each job has a unique
context called the instance context.

Listing 6-3 uses this function to store global data whenever a new printing job is
initiated. If there are multiple print jobs, this function will be called when each job is
started.
6-10 Using the Message Manager

C H A P T E R 6

Message Manager

6

M
essage M

anager

Listing 6-3 Storing global data for a single message handler instance

typedef struct MyDataRec {

long something;

long somethingElse;

} MyDataRec, **MyDataHdl;

OSErr MyInitialize()

{

OSErr err;

MyDataHdl dataHandle;

/*

Create a new temporary memory handle, initialize

it, and store it as the message handler's instance

context.

*/

dataHandle = (MyDataHdl) TempNewHandle(sizeof(MyDataRec),

 &err);

if (err == noErr)

{

MyInitDataHandle(dataHandle);

SetMessageHandlerInstanceContext(dataHandle);

}

return err;

}

In Listing 6-3, you begin by creating a handle to store global data for the MyDataRec
structure. Each message handler instance has a unique copy with unique values for the
fields of the data structure. If there is insufficient memory to create the handle, an error
will be generated. If the handler is successfully created, the handler is initialized. The
SetMessageHandlerInstanceContext function is then used to store a reference to
the handle that can then be used by this message handler’s overrides. If you use this
code in an extension and four jobs were created for it, each job would have a handle to a
unique copy of a record for the structure.

You can use the GetMessageHandlerInstanceContext function to retrieve the data
that you stored with the SetMessageHandlerInstanceContext function. Listing 6-4
uses the GetMessageHandlerInstanceContext function to return and dispose of
the handle containing the global data that was previously stored in Listing 6-3.
Using the Message Manager 6-11

C H A P T E R 6

Message Manager

Listing 6-4 Getting and disposing of global data

OSErr MyShutDown()

{

MyDataHdl dataHandle;

/*

Retrieve the message handler's instance context. If the

value returned isn't nil, it's a handle that we stored

earlier. Dispose of the handle and set the instance

context to nil to "clear" it.

*/

dataHandle = (MyDataHdl) GetMessageHandlerInstanceContext();

if (dataHandle != nil)

{

DisposHandle((Handle) dataHandle);

SetMessageHandlerInstanceContext(nil);

}

return noErr;

}

In Listing 6-4, the GetMessageHandlerInstanceContext function is used to get the
previously stored handle containing the global data. If the handle isn’t nil, it’s the
handle that was previously stored and it is disposed of. Finally, the
SetMessageHandlerInstanceContext function is used to set the context data to
nil. If the instance context is nil, the handle was previously disposed of.

The SetMessageHandlerInstanceContext function is described on page 6-19. The
GetMessageHandlerInstanceContext function is described on page 6-20.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

Setting and Getting Global Data for Multiple Handler Instances 6
You can use the SetMessageHandlerClassContext function to store data that can be
used by multiple copies of your message handler in memory. This common data can be
accessed by multiple print jobs and eliminates the need for storing redundant data.
Listing 6-5 shows how to use the SetMessageHandlerClassContext function to
store global data that can be used by multiple handler instances.
6-12 Using the Message Manager

C H A P T E R 6

Message Manager

6
M

essage M
anager
Listing 6-5 Storing global data for multiple handler instances

typedef struct MySharedDataRec {

unsigned long ownerCount;

long someData;

long someMoreData;

} MySharedDataRec, **MySharedDataHdl;

OSErr MyInitialize()

{

OSErr err = noErr;

MySharedDataHdl sharedDataHdl;

/*

Retrieve the message handler's class context. If the

value returned is nil, the class context isn’t set up. In

that case, create a new handle, initialize

it, set its owner count to 1, and store it in our class

context.

If the class context has been set up, retrieve the data

handle and increment its owner count. (We will use the

owner count in our gxShutDown message override.)

*/

sharedDataHdl = (MySharedDataHdl)

GetMessageHandlerClassContext();

if (sharedDataHdl == nil)

{

sharedDataHdl = (MySharedDataHdl)

TempNewHandle(sizeof(MySharedDataRec), &err);

if (!err)

{

MyInitSharedDataHandle(sharedDataHdl);

(*sharedDataHdl)->ownerCount = 1;

SetMessageHandlerClassContext(sharedDataHdl);

}

}

else

++(*sharedDataHdl)->ownerCount;

return err;

}

Using the Message Manager 6-13

C H A P T E R 6

Message Manager
In contrast to the instance context that is always nil as you enter into an initialize
routine, with the class context you can’t assume that the context is nil. For example,
you may be the third instance of this message handler. As a result, you need to test to see
if the class context is already set up. If it is, you increment the owner count. If it isn’t you
se tup the context. This ensures that the class context is only set up once Listing 6-5
shows how to use the owner count to set up the class context. If the class context is not
nil, then you increment the owner count. Otherwise, create the handle, set the owner
count to 1, and store the class context.

You can use the GetMessageHandlerClassContext function to retrieve data that has
been stored by the SetMessageHandlerClassContext function. Listing 6-6 shows
how to retrieve a message handler’s class context and use the information during
shutdown.

Listing 6-6 Retrieving a message handler’s class context

OSErr MyShutDown()

{

MySharedDataHdl sharedDataHdl;

/*

Retrieve the message handler's class context. If the

value returned is nil, the class context isn't set up.

Otherwise, decrement our data's owner count.

If the owner count falls below 1, dispose of the

actual data and set our class context to nil to

"clear" it.

*/

sharedDataHdl = (MySharedDataHdl)

GetMessageHandlerClassContext();

if (sharedDataHdl != nil)

{

if (--(*sharedDataHdl)->ownerCount < 1)

{

DisposHandle((Handle) sharedDataHdl);

SetMessageHandlerClassContext(nil);

}

}

return noErr;

}

6-14 Using the Message Manager

C H A P T E R 6

Message Manager

6
M

essage M
anager
In Listing 6-6, you use the GetMessageHandlerClassContext function to obtain and
use the class context during shutdown. If the class context is not nil, you decrement the
owner count. If the owner count is less than 1, there are no other owners and you may
then dispose of the data. Using the owner count during shutdown prevents disposing of
data more than once.

The SetMessageHandlerClassContext function is described on page 6-21. The
GetMessageHandlerClassContext function is described on page 6-22.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

Sending and Forwarding Messages 6
Message objects can send a printing message to other clients in the message chain. When
a message is sent, QuickDraw GX receives it and sends it to the first message handler in
the chain. In Figure 6-2 this is the application.

QuickDraw GX provides two methods of sending messages. You can use a statement
with the format:

anErr = Send_GXMessageName(arguments);

A typical example is

anErr = Send_GXCompleteSpoolFile(theSpoolFile);

Alternatively, you can use the SendMessage function to send a specified message to the
top of the message chain.

You can use the ForwardMessage function to specify the message to be forwarded to
the next message handler. This function takes a selector that indicates the message to be
forwarded and has parameters that are message-specific.

For example, a four-up printing extension that maps four document pages onto one
physical page at print time may require that the GXCountPages message be forwarded.
The GXCountPages message has the following interface:

OSErr GXCountPages (gxSpoolFile thePrintFile, long* numPages);

You can use the ForwardThisMessage function to forward the current message to the
next message handler.

anErr = ForwardThisMessage(gxCountPages, thePrintFile, &numPages);

All the QuickDraw GX Forward_xxx functions, where xxx is the QuickDraw GX
printing message to forward, are in-line aliases to the ForwardThisMessage function
with the message-specific parameters added for type-checking purposes. An example of
the recommended format for forwarding a message is:

anErr = Forward_GXCountPages(thePrintFile, &numPages);
Using the Message Manager 6-15

C H A P T E R 6

Message Manager
The SendMessage function is described on page 6-23. The ForwardMessage function
is described on page 6-24. The ForwardThisMessage function is described on
page 6-25.

Printing messages are described in the “Printing Messages” chapter of Inside Macintosh:
QuickDraw GX Printing Extensions and Drivers.

Message Manager Reference 6

This section provides reference information for constants, data types, and functions that
allow you to work with the QuickDraw GX Message Manager.

Constants and Data Types 6
This section describes the constants and data types used by the Message Manager.

Message Manager Gestalt Selector 6

The Gestalt selector 'mess' can be used to determine which version, if any, of the
Message Manager is installed.

enum {

gestaltMessageMgrVersion = 'mess'

};

Message Globals Initiatialization Procedure 6

You may supply your own initialization procedure for your globals using this type
definition.

typedef void (*MessageGlobalsInitProc) (void *messageGlobals);

To install a message globals initialization procedure, use the NewMessageGlobals
function described on page 6-17.

For more about initializing your globals, see the section “Allocating Memory for and
Disposing of Global Data” beginning on page 6-8.
6-16 Message Manager Reference

C H A P T E R 6

Message Manager

6
M

essage M
anager
Functions 6
This section describes the Message Manager functions you can use to

■ allocate memory for and dispose of global data

■ define and retrieve global data for a single handler instance

■ define and retrieve global data for multiple handler instances

■ send and forward messages

Allocating Memory for and Disposing of Global Data 6

This section describes the functions the QuickDraw GX Message Manager provides for
allocating and deallocating memory for your global data.

NewMessageGlobals 6

You can use the NewMessageGlobals function to request and allocate memory for
globals.

OSErr NewMessageGlobals (long msgGlobalsSize,

MessageGlobalsInitProc aProc);

msgGlobalsSize
The size of the memory requested for global data.

aProc A pointer to an application-defined callback function that initializes and
allocates global data memory.

function result An error of type OSErr indicating that the requested memory allocation
could not be completed.

DESCRIPTION

The NewMessageGlobals function sets up a global world for your printing extension
or printer driver. This consists of allocating the specified amount of memory and
initializing it with the passed procedure. Once you have created a global world, you can
access your data just as you would if your printing extension or printer driver were an
application. Whenever your extension or driver is called, your data will be valid.

To establish an A5 world for your globals, the msgGlobalsSize parameter is
the A5Size function and the aProc parameter is the A5Init function. The A5Size and
A5Init functions are both Macintosh Programming Workshop (MPW) library routines.
The A5Size function determines how much memory is to be allocated for the A5
world. The A5Init function takes a pointer to the A5 globals and initializes them to the
appropriate values.
Message Manager Reference 6-17

C H A P T E R 6

Message Manager
When your extension or printing driver no longer needs the globals, you should release
the memory allocated by the NewMessageGlobals function by calling the
DisposeMessageGlobals function.

SEE ALSO

Global data and the A5 world are discussed in the sections “Global Data Storage for
Printing Extensions and Printer Drivers” beginning on page 6-7 and “Allocating
Memory for and Disposing of Global Data” beginning on page 6-8.

To dispose of printing extension and printer driver globals, use the
DisposeMessageGlobals function described in the next section.

The prototype for the application-defined callback function for global data initialization
is described on page 6-26.

DisposeMessageGlobals 6

You can use the DisposeMessageGlobals function to dispose of globals and
deallocate their memory blocks.

OSErr DisposeMessageGlobals (void);

function result An error of type OSErr indicating that the globals are not disposed of.

DESCRIPTION

The DisposeMessageGlobals function disposes of all globals and deallocates the
memory used by your printing extension or printer driver for globals. You should use
this function to free memory whenever your printing extension or printer driver no
longer requires globals.

SEE ALSO

Global data and the A5 world are discussed in the sections “Global Data Storage for
Printing Extensions and Printer Drivers” beginning on page 6-7 and “Allocating
Memory for and Disposing of Global Data” beginning on page 6-8.

To allocate memory for globals, use the NewMessageGlobals function described in the
previous section.
6-18 Message Manager Reference

C H A P T E R 6

Message Manager

6
M

essage M
anager
Setting and Getting Global Data for a Single Handler Instance 6

This section describes the functions the QuickDraw GX Message Manager provides for
defining and retrieving global data for a single handler instance.

SetMessageHandlerInstanceContext 6

You can use the SetMessageHandlerInstanceContext function to store data that
can be used by a single handler.

void *SetMessageHandlerInstanceContext (void *);

DESCRIPTION

The SetMessageHandlerInstanceContext function is used to store data that can be
used by only a single instance of a message handler. This data is specific to your
handler’s code and is unique to one copy in memory. The stored data can be in the form
of a long word constant, handle, or pointer to other data. The passed data can be
accessed only by the instance of the message handler that sets the data.

SEE ALSO

To retrieve the data that has been set by the SetMessageHandlerInstanceContext
function, use the GetMessageHandlerInstanceContext function described in the
next section.

To define common data that can be used by multiple instances of a handler, use the
SetMessageHandlerClassContext function described on page 6-21. To retrieve the
common data that has been set, use the GetMessageHandlerClassContext function
described on page 6-22.

The use of the SetMessageHandlerInstanceContext function is described in the
section “Setting and Getting Global Data for a Single Handler Instance” beginning on
page 6-10.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.
Message Manager Reference 6-19

C H A P T E R 6

Message Manager
GetMessageHandlerInstanceContext 6

You can use the GetMessageHandlerInstanceContext function to retrieve data for
a single instance of a handler.

void *GetMessageHandlerInstanceContext (void);

DESCRIPTION

The GetMessageHandlerInstanceContext function returns the data that you stored
using the SetMessageHandlerInstanceContext function. This function returns the
data that was stored by the instance of a handler that is calling the
GetMessageHandlerInstanceContext function.

If the SetMessageHandlerInstanceContext function has not been previously
called, the GetMessageHandlerInstanceContext function will return nil. If a
constant, handle, or pointer to other data has been stored, the
GetMessageHandlerInstanceContext function returns the stored data.

SEE ALSO

The SetMessageHandlerInstanceContext function is described in the previous
section.

To define common data that can be used by multiple handlers, use the
SetMessageHandlerClassContext function described on page 6-21. To retrieve the
common data that has been set, use the GetMessageHandlerClassContext function
described on page 6-22.

The use of the GetMessageHandlerInstanceContext function is described in the
section “Setting and Getting Global Data for a Single Handler Instance” beginning on
page 6-10.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.
6-20 Message Manager Reference

C H A P T E R 6

Message Manager

6
M

essage M
anager
Setting and Getting Global Data for Multiple Handler Instances 6

This section describes the functions the QuickDraw GX Message Manager provides for
defining and retrieving global data for multiple handler instances.

SetMessageHandlerClassContext 6

You can use the SetMessageHandlerClassContext function to store data that can be
used by multiple instances of a message handler.

void *SetMessageHandlerClassContext (void *);

DESCRIPTION

The SetMessageHandlerClassContext function is used to store data that can be
used by multiple instances of a message handler in one or more print jobs. The
parameter passed is a pointer to the long data. The stored data can be in the form of a
constant, handle, or pointer to additional data. This reference constant can be used by all
instances of a message handler.

SEE ALSO

To retrieve the data defined by the SetMessageHandlerClassContext function, use
the GetMessageHandlerClassContext function described in the next section.

The use of the SetMessageHandlerClassContext function is described in the
section “Setting and Getting Global Data for Multiple Handler Instances” beginning on
page 6-12.

To define data that can be used by only one handler, use the
SetMessageHandlerInstanceContext function described on page 6-19. To retrieve
the data that has been set, use the GetMessageHandlerInstanceContext function
described on page 6-20.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.
Message Manager Reference 6-21

C H A P T E R 6

Message Manager
GetMessageHandlerClassContext 6

You can use the GetMessageHandlerClassContext function to allow multiple
instances of your handler to retrieve common global data.

void *GetMessageHandlerClassContext (void);

DESCRIPTION

The GetMessageHandlerClassContext function returns common data that you
defined using the SetMessageHandlerClassContext function. This function can be
called by any instance of your handler.

If the SetMessageHandlerClassContext function has not been previously called,
the GetMessageHandlerClassContext function will return nil. If a constant,
handle, or pointer has been stored, the GetMessageHandlerClassContext function
returns the stored data. This function may be used by your handler to allow multiple
print jobs to share common global data.

SEE ALSO

To store the data that is retrieved by the GetMessageHandlerClassContext function,
use the SetMessageHandlerClassContext function described in the previous
section.

The use of the GetMessageHandlerClassContext function is described in the
section “Setting and Getting Global Data for Multiple Handler Instances” beginning on
page 6-12.

To store data that can be used by only one instance of a handler, use the
SetMessageHandlerInstanceContext function described on page 6-19. To retrieve
the data that has been set, use the GetMessageHandlerInstanceContext function
described on page 6-20.

Global data is discussed in the section “Global Data Storage for Printing Extensions and
Printer Drivers” beginning on page 6-7.

Sending and Forwarding Messages 6

This section describes the functions the QuickDraw GX Message Manager provides for
sending and forwarding messages.
6-22 Message Manager Reference

C H A P T E R 6

Message Manager

6
M

essage M
anager
SendMessage 6

You can use the SendMessage function to send a specified message to the current
message target.

OSErr SendMessage (long messageSelector,…);

messageSelector
The number of the message to be sent to the message handler.

additional parameters
Parameters associated with the message sent.

function result An error of type OSErr.

DESCRIPTION

The SendMessage function dispatches a message to the topmost handler in the message
class that is the parent of the current message target.

The messageSelector parameter indicates which message is to be sent.

The ellipsis character at the end of the parameter list indicates that the remaining
additional parameters are unspecified; the caller must pass whatever parameters are
expected by the recipient of the message identified by the messageSelector
parameter. By definition, all message overrides return a result of type OSErr. It is an
error to call the SendMessage function except from within a message handler. In any
other case, behavior is undefined.

The OSErr error returned may indicate that the message could not be sent. If no error
occurs, the function result is noErr. In addition, the receiving message handler may
return an error of type OSErr.

SEE ALSO

To forward a specified message to the next message handler, use the ForwardMessage
function described in the next section.

To forward the current message to the next message handler, use the
ForwardThisMessage function described on page 6-25.

The use of the SendMessage function is described in the section “Sending and
Forwarding Messages” beginning on page 6-15.
Message Manager Reference 6-23

C H A P T E R 6

Message Manager
ForwardMessage 6

You can use the ForwardMessage function to specify the message to be forwarded to
the next message handler.

OSErr ForwardMessage (long messageSelector,…);

messageSelector
The number of the message to be forwarded.

additional parameters
Parameters associated with the message sent.

function result An error of type OSErr.

DESCRIPTION

The ForwardMessage function forwards the message specified by the
messageSelector parameter to the next message handler. This function is like the
ForwardThisMessage function, except that any message may be forwarded. The
messageSelector parameter indicates which message is to be forwarded, as in the
SendMessage function. By definition, all messages return a function result of type
OSErr.

The ellipsis character at the end of the parameter list indicates that the remaining
additional parameters are unspecified; the caller must pass whatever parameters are
expected by the recipient of the message identified by the messageSelector
parameter. By definition, all message overrides return a result of type OSErr. It is an
error to call the ForwardMessage function except from within a message handler. In
any other case, behavior is undefined.

The OSErr error returned may indicate that the message could not be forwarded. If no
error occurs, the function result is noErr. In addition, the receiving message handler
may return an error of type OSErr.

SEE ALSO

To send a specified message to the current message target, use the SendMessage
function described in the previous section.

To forward the current message to the next message handler, use the
ForwardThisMessage function described in the next section.

The use of the ForwardMessage function is described in the section “Sending and
Forwarding Messages” beginning on page 6-15.
6-24 Message Manager Reference

C H A P T E R 6

Message Manager

6
M

essage M
anager
ForwardThisMessage 6

You can use the ForwardThisMessage function to forward the current message to the
next message handler.

OSErr ForwardThisMessage (…);

parameters Parameters associated with the message sent.

function result An error of type OSErr.

DESCRIPTION

The ForwardThisMessage function explicitly inherits the current message by
forwarding it to the next handler in the message class of the current message target. By
definition, all message overrides return a function result of type OSErr.

The OSErr error returned may indicate that the message could not be forwarded. If no
error occurs, the function result is noErr. In addition, the receiving message handler
may return a result of type OSErr.

The ellipsis character in the parameter list indicates that the parameters are unspecified;
the caller must pass whatever parameters are expected by the recipient of the message. It
is an error to call the ForwardThisMessage function except from within a message
handler. In any other case, behavior is undefined.

SEE ALSO

To send a specified message to the current message target, use the SendMessage
function described on page 6-23.

To forward a specified message to the next message handler, use the ForwardMessage
function described in the previous section.

The use of the ForwardThisMessage function is described in the section “Sending and
Forwarding Messages” beginning on page 6-15.
Message Manager Reference 6-25

C H A P T E R 6

Message Manager
Driver- or Extension-Defined Functions 6
This section describes the callback function that you must provide for QuickDraw GX to
call when initializing global data.

MessageGlobalsInitProc 6

You can create an initialization function that requests and allocates memory for your
global data. The initialization function must have a prototype of this form:

typedef void (*MessageGlobalsInitProc) (void *messageGlobals);

messageGlobals
A pointer to the global data to be initialized.

DESCRIPTION

You must supply the MessageGlobalsInitProc function if you use the
NewMessageGlobals function to allocate memory for your global data. Once this
initialization function is installed, QuickDraw GX calls it whenever you use the
NewMessageGlobals function.

If your programming environment is MPW, you may use the A5Init function that
MPW provides to establish an A5 world for your global data:

void A5Init (void *globalPtr);

SEE ALSO

The NewMessageGlobals function is described on page 6-17.

For more information on initializing you global data, see the section “Allocating
Memory for and Disposing of Global Data” beginning on page 6-8.
6-26 Message Manager Reference

C H A P T E R 6

Message Manager

6
M

essage M
anager
Summary of the Message Manager 6

Constants and Data Types 6

Message Manager Gestalt Selector

#define gestaltMessageMgrVersion 'mess' /* gestalt version selector */

Message Globals Inititialization Procedure

typedef void (*MessageGlobalsInitProc) (void *messageGlobals);

Functions 6

Allocating Memory for and Disposing of Global Data

OSErr NewMessageGlobals (long msgGlobalsSize,
MessageGlobalsInitProc aProc);

OSErr DisposeMessageGlobals (void);

Setting and Getting Global Data for Multiple Handler Instances

void *SetMessageHandlerClassContext
(void *);

void *GetMessageHandlerClassContext
(void);

Setting and Getting Global Data for a Single Handler Instance

void *SetMessageHandlerInstanceContext
(void *);

void *GetMessageHandlerInstanceContext
(void);

Sending and Forwarding Messages

OSErr SendMessage (long messageSelector…);

OSErr ForwardMessage (long messageSelector, …);

OSErr ForwardThisMessage (…);
Summary of the Message Manager 6-27

C H A P T E R 6

Message Manager
Application-DefinedFunctions 6

Initializing Memory for Global Data

typedef void (*MessageGlobalsInitProc) (void *messageGlobals);
6-28 Summary of the Message Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 QuickDraw GX and the Macintosh Environment TOC
	 QuickDraw GX and the Macintosh
	 QuickDraw GX Memory Management TOC
	 QuickDraw GX Memory Management
	 Errors, Warnings, and NoticesTOC
	 Errors, Warnings, and Notices
	 QuickDraw GX Debugging TOC
	 QuickDraw GX Debugging
	 Collection Manager TOC
	 Collection Manager
	 Message Manager TOC
	Message Manager
	About the Message Manager
	Message Terminology
	Global Data Storage for Printing Extensions and Pr...
	Message Sending and Forwarding

	Using the Message Manager
	Determining the Version of the Message Manager
	Allocating Memory for and Disposing of Global Data...
	Setting and Getting Global Data for a Single Handl...
	Setting and Getting Global Data for Multiple Handl...
	Sending and Forwarding Messages

	Message Manager Reference
	Constants and Data Types
	Message Manager Gestalt Selector
	Message Globals Initiatialization Procedure

	Functions
	Allocating Memory for and Disposing of Global Data...
	Setting and Getting Global Data for a Single Handl...
	Setting and Getting Global Data for Multiple Handl...
	Sending and Forwarding Messages

	Driver- or Extension-Defined Functions

	Summary of the Message Manager
	Constants and Data Types
	Functions
	Application-DefinedFunctions

	 QuickDraw GX Stream Format TOC
	 QuickDraw GX Stream Format
	 QuickDraw GX Mathematics TOC
	 QuickDraw GX Mathematics
	 Glossary
	 Index
	 Colophon

